WorldWideScience

Sample records for total water balance

  1. Evaluation of seasonality on total water intake, water loss and water balance in the general population in Greece.

    Science.gov (United States)

    Malisova, O; Bountziouka, V; Panagiotakos, D Β; Zampelas, A; Kapsokefalou, M

    2013-07-01

    Water balance is achieved when water intake from solid and fluid foods and drinking water meets water losses, mainly in sweat, urine and faeces. Seasonality, particularly in Mediterranean countries that have a hot summer, may affect water loss and consequently water balance. Water balance has not been estimated before on a population level and the effect of seasonality has not been evaluated. The present study aimed to compare water balance, intake and loss in summer and winter in a sample of the general population in Greece. The Water Balance Questionnaire (WBQ) was used to evaluate water balance, estimating water intake and loss in summer (n = 480) and in winter (n = 412) on a stratified sample of the general population in Athens, Greece. In winter, mean (SD) water balance was -63 (1478) mL/day(-1) , mean (SD)water intake was 2892 (987) mL/day(-1) and mean (quartile range) water loss was 2637 (1810-3922) mL/day(-1) . In summer, mean (SD) water balance was -58 (2150) mL/day(-1) , mean (SD) water intake was 3875 (1373) mL/day(-1) and mean (quartile range) water loss was 3635 (2365-5258) mL/day(-1) . Water balance did not differ between summer and winter (P = 0.96); however, the data distribution was different; in summer, approximately 8% more participants were falling in the low and high water balance categories. Differences in water intake from different sources were identified (P balance in summer and winter was not different. However, water intake and loss were approximately 40% higher in summer than in winter. More people were falling in the low and high water balance categories in summer when comparing the distribution on water balance in winter. © 2013 The Authors Journal of Human Nutrition and Dietetics © 2013 The British Dietetic Association Ltd.

  2. Water and sodium balance in space

    DEFF Research Database (Denmark)

    Drummer, C; Norsk, P; Heer, M

    2001-01-01

    , cumulative water balance and total body water content are stable during flight if hydration, nutritional energy supply, and protection of muscle mass are at an acceptable level. Recent water balance data disclose that the phenomenon of an absolute water loss during space flight, which has often been reported...... and an exaggerated extravasation very early in-flight. The mechanisms for the increased vascular permeability are not known. Evaporation, oral hydration, and urinary fluid excretion, the major components of water balance, are generally diminished during space flight compared with conditions on Earth. Nevertheless...... in the past, is not a consequence of the variable microG. The handling of sodium, however, is considerably affected by microG. Sodium-retaining endocrine systems, such as renin-aldosterone and catecholamines, are much more activated during microG than on Earth. Despite a comparable oral sodium supply, urinary...

  3. Assessing Variation in Water Balance Components in Mountainous Inland River Basin Experiencing Climate Change

    Directory of Open Access Journals (Sweden)

    Zhenliang Yin

    2016-10-01

    Full Text Available Quantification of the changes of water balance components is significant for water resource assessment and management. This paper employed the Soil and Water Assessment Tool (SWAT model to estimate the water balance in a mountainous watershed in northwest China at different spatial scales over the past half century. The results showed that both Nash-Sutcliffe efficiency (NSE and determination coefficient (R2 were over 0.90 for the calibration and validation periods. The water balance components presented rising trends at the watershed scale, and the total runoff increased by 30.5% during 1964 to 2013 period. Rising surface runoff and rising groundwater flow contributed 42.7% and 57.3% of the total rising runoff, respectively. The runoff coefficient was sensitive to increasing precipitation and was not significant to the increase of temperature. The alpine meadow was the main landscape which occupied 51.1% of the watershed and contributed 55.5% of the total runoff. Grass land, forest land, bare land, and glacier covered 14.2%, 18.8%, 15.4%, and 0.5% of the watershed and contributed 8.5%, 16.9%, 15.9%, and 3.2% of the total runoff, respectively. The elevation zone from 3500 to 4500 m occupied 66.5% of the watershed area, and contributed the majority of the total runoff (70.7%. The runoff coefficients in the elevation zone from 1637 to 2800 m, 2800 to 3500 m, 3500 to 4000 m, 4000 to 4500 m, and 4500 to 5062 m were 0.20, 0.27, 0.32, 0.43, and 0.78, respectively, which tend to be larger along with the elevation increase. The quantities and change trends of the water balance components at the watershed scale were calculated by the results of the sub-watersheds. Furthermore, we characterized the spatial distribution of quantities and changes in trends of water balance components at the sub-watershed scale analysis. This study provides some references for water resource management and planning in inland river basins.

  4. Renal aquaporins and water balance disorders

    DEFF Research Database (Denmark)

    Kortenoeven, Marleen; Fenton, Robert A.

    2013-01-01

    BACKGROUND: Aquaporins (AQPs) are a family of proteins that can act as water channels. Regulation of AQPs is critical to osmoregulation and the maintenance of body water homeostasis. Eight AQPs are expressed in the kidney of which five have been shown to play a role in body water balance; AQP1, A......-solute diet and diuretics. GENERAL SIGNIFICANCE: In recent years, our understanding of the underlying mechanisms of water balance disorders has increased enormously, which has opened up several possible new treatment strategies.......BACKGROUND: Aquaporins (AQPs) are a family of proteins that can act as water channels. Regulation of AQPs is critical to osmoregulation and the maintenance of body water homeostasis. Eight AQPs are expressed in the kidney of which five have been shown to play a role in body water balance; AQP1, AQP......2, AQP3, AQP4 and AQP7. AQP2 in particular is regulated by vasopressin. SCOPE OF REVIEW: This review summarizes our current knowledge of the underlying mechanisms of various water balance disorders and their treatment strategies. MAJOR CONCLUSIONS: Dysfunctions of AQPs are involved in disorders...

  5. Water balance of Slovenia 1971 - 2000

    International Nuclear Information System (INIS)

    Frantar, P; Dolinar, M; Kurnik, B

    2008-01-01

    The water is becoming more and more valuable natural resource. The increasing water demand and climate changes are making water a precious and not always available valuable. The water balance is the most appropriate way to make a full overview of water cycle in Slovenia, to find general information about hydrological characteristics of drainage basins, precipitation, evaporation and runoff. The article presents the methodology and the results of the Water balance project of Slovenia. Slovenia has the geographical position at the juncture of 4 main European georegions: The Alps, the Panonian Basin, the Mediterranean and the Dinaric Mountains. This makes the territory very diverse also from a hydrological point of view. Our major watershed divides the precipitation runoff into two watershed areas - the Adriatic Sea and the Black Sea. Due to this watershed almost all the Slovenia's rivers have headwaters in our territory. Water balance is calculation of water inputs and outputs over the defined area. The basic elements of the water balance include all the inflows and outflows for a given basin and serve for the computation of the water regime of a catchment area. It is defined by the parameters precipitation (P), evaporation (E), discharge (Q) and the change of the water reserves (dS). Main results of the water balance elements for the 1971 - 2000 period for Slovenia are: Average annual precipitation in Slovenia is 1579 mm, average annual evapotranspiration is 717 mm and calculated runoff is 862 mm. Compared to water amounts in the World, where the average precipitation is 750 mm, evapotranspiration is 480 mm and runoff is 270 mm, Slovenia shows an abundance of water quantities. Also the runoff coefficient with 55 % is much higher as 36 % of the world. The major questions remain if we are capable to live with this water amounts within the limits of sustainable development and what will be the effects of climate change to water balance.

  6. Significance analysis of the leachate level in a solid waste landfill in a coastal zone using total water balance and slope stability alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Ja-Kong; Do, Nam-Young [Korea Advanced Institute of Science & Technology, Taejon (Korea, Republic of)

    1996-12-31

    The K site near Seoul began landfilling in 1992. The landfilled wastes include municipal solid waste (66.4%), construction residues (20.4%), water and wastewater sludges (trace levels), and hazardous waste (trace levels). The water content of the municipal solid waste is very high (47.3%); as a result, the leachate level (average E.L.) of the landfill, the design value of which is 7.0 m, was measured at 10.3 m in January 1995 and is increasing. The increase of leachate level in the landfill site causes a problem with slope stability. The leachate level at each disposal stage divided by the intermediate cover layer was calculated with the HELP (Hydrologic Evaluation of Landfill Performance) model and calibrated with the data measured from February 1993 to June 1995. Also, the hydraulic conductivities of the waste layer and the intermediate cover layer in each stage were calibrated continuously with HELP model analysis. To verify these results, the total water balance in the landfill site was calculated using the infiltration rate calculated from HELP modeling. The leachate level was E.L. 10.0 m, which was close to the measured leachate level. To estimate the change of the leachate level in the future, the total water balances with different leachate discharge rates of 3,000, 3,500, and 5,000 m{sup 3}/day were analyzed. When the leachate discharge rate was 5,000 ton/day and the initial water content was decreased below 25%, the average leachate level was 10.8 m. This result satisfies the safety factor requirements (=1.3) for landfill slope stability. 4 refs., 8 figs., 1 tab.

  7. Using Electrolyte Free Water Balance to Rationalize and Treat Dysnatremias.

    Science.gov (United States)

    Shah, Sanjeev R; Bhave, Gautam

    2018-01-01

    Dysnatremias or abnormalities in plasma [Na + ] are often termed disorders of water balance, an unclear physiologic concept often confused with changes in total fluid balance. However, most clinicians clearly recognize that hypertonic or hypotonic gains or losses alter plasma [Na + ], while isotonic changes do not modify plasma [Na + ]. This concept can be conceptualized as the electrolyte free water balance (EFWB), which defines the non-isotonic components of inputs and outputs to determine their effect on plasma [Na + ]. EFWB is mathematically proportional to the rate of change in plasma [Na + ] (dP Na /dt) and, therefore, is actively regulated to zero so that plasma [Na + ] remains stable at its homeostatic set point. Dysnatremias are, therefore, disorders of EFWB and the relationship between EFWB and dP Na /dt provides a rationale for therapeutic strategies incorporating mass and volume balance. Herein, we leverage dP Na /dt as a desired rate of correction of plasma [Na + ] to define a stepwise approach for the treatment of dysnatremias.

  8. Using Electrolyte Free Water Balance to Rationalize and Treat Dysnatremias

    Science.gov (United States)

    Shah, Sanjeev R.; Bhave, Gautam

    2018-01-01

    Dysnatremias or abnormalities in plasma [Na+] are often termed disorders of water balance, an unclear physiologic concept often confused with changes in total fluid balance. However, most clinicians clearly recognize that hypertonic or hypotonic gains or losses alter plasma [Na+], while isotonic changes do not modify plasma [Na+]. This concept can be conceptualized as the electrolyte free water balance (EFWB), which defines the non-isotonic components of inputs and outputs to determine their effect on plasma [Na+]. EFWB is mathematically proportional to the rate of change in plasma [Na+] (dPNa/dt) and, therefore, is actively regulated to zero so that plasma [Na+] remains stable at its homeostatic set point. Dysnatremias are, therefore, disorders of EFWB and the relationship between EFWB and dPNa/dt provides a rationale for therapeutic strategies incorporating mass and volume balance. Herein, we leverage dPNa/dt as a desired rate of correction of plasma [Na+] to define a stepwise approach for the treatment of dysnatremias. PMID:29740578

  9. Using Electrolyte Free Water Balance to Rationalize and Treat Dysnatremias

    Directory of Open Access Journals (Sweden)

    Sanjeev R. Shah

    2018-04-01

    Full Text Available Dysnatremias or abnormalities in plasma [Na+] are often termed disorders of water balance, an unclear physiologic concept often confused with changes in total fluid balance. However, most clinicians clearly recognize that hypertonic or hypotonic gains or losses alter plasma [Na+], while isotonic changes do not modify plasma [Na+]. This concept can be conceptualized as the electrolyte free water balance (EFWB, which defines the non-isotonic components of inputs and outputs to determine their effect on plasma [Na+]. EFWB is mathematically proportional to the rate of change in plasma [Na+] (dPNa/dt and, therefore, is actively regulated to zero so that plasma [Na+] remains stable at its homeostatic set point. Dysnatremias are, therefore, disorders of EFWB and the relationship between EFWB and dPNa/dt provides a rationale for therapeutic strategies incorporating mass and volume balance. Herein, we leverage dPNa/dt as a desired rate of correction of plasma [Na+] to define a stepwise approach for the treatment of dysnatremias.

  10. Towards a Fully Conservative Water Balance

    Science.gov (United States)

    Rodriguez, L. B.; Vionnet, C. A.; Younger, P. L.; Parkin, G.

    2001-12-01

    Hydrological modeling is nowadays an essential tool in many aspects of water resources assessment and management. For practical purposes, hydrological models may be defined as mathematical procedures, which transform meteorological input data such as precipitation and evapotranspiration into hydrological output values such as riverflows. Conceptual water balance models are one kind of hydrological models still quite popular among engineers and scientists for three main reasons: firstly the "book-keeping" procedure they are based upon makes them computationally inexpensive, secondly, they require far less data than any physically based model, and thirdly, once calibrated and validated, they can yield the proper order of magnitude of the water cycle component on the basin under investigation. A common criticism of water balance models is their lack of sound theoretical basis. In this work a fully conservative water balance model for basin applications which takes into account physical processes is presented. The two-storage level model contains four calibration parameters: a, b, l and Umax. The saturated storage component resembles the abcd model by Thomas, corrected by the presence of the aquifer storativity coefficient s and the river-aquifer interface conductance l. The resulting model is capable of estimating monthly basin-average of actual evapotranspiration, soil moisture, effective groundwater recharge, groundwater level fluctuations, baseflows and direct runoff using an integral form of the mass conservation law in the saturated/unsaturated layers. The model was applied to a 600 Km2 catchment in the United Kingdom. An eight-year record was used for calibration, while a similar record was reserved for validation of model results. Total streamflows as well as baseflows calculated by the model were compared with observed and estimated data. A quite good agreement was obtained. Finally, simulated groundwater levels were compared with observation data collected at

  11. The water balance questionnaire: design, reliability and validity of a questionnaire to evaluate water balance in the general population.

    Science.gov (United States)

    Malisova, Olga; Bountziouka, Vassiliki; Panagiotakos, Demosthenes B; Zampelas, Antonis; Kapsokefalou, Maria

    2012-03-01

    There is a need to develop a questionnaire as a research tool for the evaluation of water balance in the general population. The water balance questionnaire (WBQ) was designed to evaluate water intake from fluid and solid foods and drinking water, and water loss from urine, faeces and sweat at sedentary conditions and physical activity. For validation purposes, the WBQ was administrated in 40 apparently healthy participants aged 22-57 years (37.5% males). Hydration indices in urine (24 h volume, osmolality, specific gravity, pH, colour) were measured through established procedures. Furthermore, the questionnaire was administered twice to 175 subjects to evaluate its reliability. Kendall's τ-b and the Bland and Altman method were used to assess the questionnaire's validity and reliability. The proposed WBQ to assess water balance in healthy individuals was found to be valid and reliable, and it could thus be a useful tool in future projects that aim to evaluate water balance.

  12. A phylogenetic approach to total evaporative water loss in mammals.

    Science.gov (United States)

    Van Sant, Matthew J; Oufiero, Christopher E; Muñoz-Garcia, Agustí; Hammond, Kimberly A; Williams, Joseph B

    2012-01-01

    Maintaining appropriate water balance is a constant challenge for terrestrial mammals, and this problem can be exacerbated in desiccating environments. It has been proposed that natural selection has provided desert-dwelling mammals physiological mechanisms to reduce rates of total evaporative water loss. In this study, we evaluated the relationship between total evaporative water loss and body mass in mammals by using a recent phylogenetic hypothesis. We compared total evaporative water loss in 80 species of arid-zone mammals to that in 56 species that inhabit mesic regions, ranging in size from 4 g to 3,500 kg, to test the hypothesis that mammals from arid environments have lower rates of total evaporative water loss than mammals from mesic environments once phylogeny is taken into account. We found that arid species had lower rates of total evaporative water loss than mesic species when using a dichotomous variable to describe habitat (arid or mesic). We also found that total evaporative water loss was negatively correlated with the average maximum and minimum environmental temperature as well as the maximum vapor pressure deficit of the environment. Annual precipitation and the variable Q (a measure of habitat aridity) were positively correlated with total evaporative water loss. These results support the hypothesis that desert-dwelling mammals have lower rates of total evaporative water loss than mesic species after controlling for body mass and evolutionary relatedness regardless of whether categorical or continuous variables are used to describe habitat.

  13. Large Scale Evapotranspiration Estimates: An Important Component in Regional Water Balances to Assess Water Availability

    Science.gov (United States)

    Garatuza-Payan, J.; Yepez, E. A.; Watts, C.; Rodriguez, J. C.; Valdez-Torres, L. C.; Robles-Morua, A.

    2013-05-01

    used in a "kind of" crop factor manner for all vegetation types (including agricultural fields). Finally, the model uses air temperature and humidity, both extracted from the North American Land Data Assimilation System (NLDAS) database. ET estimates were then compared to ground truth data from four sites where long-term Eddy Covariance (EC) measurements of ET were conducted. This approach was developed and applied in Northern Mexico. Emphasis was placed on trying to minimize the large uncertainties that still remained on the temporal evolution and the spatial repartition of ET. Results show good agreement with ground data (with r2 greater than 0.7 on daily ET estimates) from the four sites evaluated using different vegetation types hence reducing the spatial uncertainties. Estimates of total annual ET were used in a water balance, assessing ground water availability for eleven aquifers in the state of Chihuahua. Annual ET in a four-year analysis period, ranged from 200 to 280 mm/year, representing 63 to 83 % of total annual precipitation, which reflects the importance of this component in the water balance. A GIS tool kit is under development to support decision makers at CONAGUA.

  14. A holistic water balance of Austria - how does the quantitative proportion of urban water requirements relate to other users?

    Science.gov (United States)

    Vanham, D

    2012-01-01

    Traditional water use statistics only include the blue water withdrawal/consumption of municipalities, industry and irrigated agriculture. When, however, green water use of the agricultural sector is included as well as the virtual water use/water footprint (WF), water use quantity statistics become very different. In common water use statistics, Austria withdraws in total about 2.5 km(3) per year, only 3% of available resources (total discharge 81.4 km(3) = surface and ground water). The total water consumption (0.5 km(3)) is less than 1% of available resources. Urban (municipal) water requirements account for 27% of total withdrawal or 33% of consumption. When agricultural green water use (cropland) is included in statistics, the fraction of municipal water requirements diminishes to 7.6% of total withdrawal and 2.5% of total consumption. If the evapotranspiration of grassland and alpine meadows is also included in agricultural green water use, this fraction decreases to 3.2% and 0.9% respectively. When the WF is assessed as base value for water use in Austria, the municipal water use represents 5.8% of this value. In this globalized world, these traditional water use statistics are no longer recommendable. Only a holistic water balance approach really represents water use statistics.

  15. A Stochastic Water Balance Framework for Lowland Watersheds

    Science.gov (United States)

    Thompson, Sally; MacVean, Lissa; Sivapalan, Murugesu

    2017-11-01

    The water balance dynamics in lowland watersheds are influenced not only by local hydroclimatic controls on energy and water availability, but also by imports of water from the upstream watershed. These imports result in a stochastic extent of inundation in lowland watersheds that is determined by the local flood regime, watershed topography, and the rate of loss processes such as drainage and evaporation. Thus, lowland watershed water balances depend on two stochastic processes—rainfall and local inundation dynamics. Lowlands are high productivity environments that are disproportionately associated with urbanization, high productivity agriculture, biodiversity, and flood risk. Consequently, they are being rapidly altered by human development—generally with clear economic and social motivation—but also with significant trade-offs in ecosystem services provision, directly related to changes in the components and variability of the lowland water balance. We present a stochastic framework to assess the lowland water balance and its sensitivity to two common human interventions—replacement of native vegetation with alternative land uses, and construction of local flood protection levees. By providing analytical solutions for the mean and PDF of the water balance components, the proposed framework provides a mechanism to connect human interventions to hydrologic outcomes, and, in conjunction with ecosystem service production estimates, to evaluate trade-offs associated with lowland watershed development.

  16. Water, Ice, and Meteorological Measurements at South Cascade Glacier, Washington, Balance Years 2004 and 2005

    Science.gov (United States)

    Bidlake, William R.; Josberger, Edward G.; Savoca, Mark E.

    2007-01-01

    Winter snow accumulation and summer snow and ice ablation were measured at South Cascade Glacier, Washington, to estimate glacier mass-balance quantities for balance years 2004 and 2005. The North Cascade Range in the vicinity of South Cascade Glacier accumulated smaller than normal winter snowpacks during water years 2004 and 2005. Correspondingly, the balance years 2004 and 2005 maximum winter snow balances of South Cascade Glacier, 2.08 and 1.97 meters water equivalent, respectively, were smaller than the average of such balances since 1959. The 2004 glacier summer balance (-3.73 meters water equivalent) was the eleventh most negative during 1959 to 2005 and the 2005 glacier summer balance (-4.42 meters water equivalent) was the third most negative. The relatively small winter snow balances and unusually negative summer balances of 2004 and 2005 led to an overall loss of glacier mass. The 2004 and 2005 glacier net balances, -1.65 and -2.45 meters water equivalent, respectively, were the seventh and second most negative during 1953 to 2005. For both balance years, the accumulation area ratio was less than 0.05 and the equilibrium line altitude was higher than the glacier. The unusually negative 2004 and 2005 glacier net balances, combined with a negative balance previously reported for 2003, resulted in a cumulative 3-year net balance of -6.20 meters water equivalent. No equal or greater 3-year mass loss has occurred previously during the more than 4 decades of U.S. Geological Survey mass-balance measurements at South Cascade Glacier. Accompanying the glacier mass losses were retreat of the terminus and reduction of total glacier area. The terminus retreated at a rate of about 17 meters per year during balance year 2004 and 15 meters per year during balance year 2005. Glacier area near the end of balance years 2004 and 2005 was 1.82 and 1.75 square kilometers, respectively. Runoff from the basin containing the glacier and from an adjacent nonglacierized basin was

  17. An estimation of the water balance in a reformer/fuel-cells system

    Energy Technology Data Exchange (ETDEWEB)

    Jovan, Vladimir [Jo-ef Stefan Institute and Centre of Excellence Low-Carbon Technologies (Slovenia); Cufar, Alja [University of Ljubljana, Faculty of Mathematics and Physics (Slovenia)], e-mail: vladimir.jovan@ijs.si

    2011-07-01

    PEM fuel cells use hydrogen as fuel. Since it is a very light element, its energy density is small despite its high caloric value. Thus hydrogen storage requires a lot of space. One possible solution is simultaneous production of hydrogen from higher-density materials, such as methanol. The object of this paper is to determine what is the total water balance in a system consisting of a methanol reformer and a fuel-cells-based generator set, and to determine if water should be supplied to, or removed from, the system. Based on relatively little information obtained from technical sources and on some simple assumptions, this paper presents a model which helps to determine the actual water balance in the system. In conclusion, commercially available fuel-cell systems with realistic water production can be used for fuel reforming purposes in the methanol reformer. It is also shown that under normal operating conditions, and using commercially available devices, there is always an excess of water produced.

  18. Determining water use of sorghum from two-source energy balance and radiometric temperatures

    Directory of Open Access Journals (Sweden)

    J. M. Sánchez

    2011-10-01

    Full Text Available Estimates of surface actual evapotranspiration (ET can assist in predicting crop water requirements. An alternative to the traditional crop-coefficient methods are the energy balance models. The objective of this research was to show how surface temperature observations can be used, together with a two-source energy balance model, to determine crop water use throughout the different phenological stages of a crop grown. Radiometric temperatures were collected in a sorghum (Sorghum bicolor field as part of an experimental campaign carried out in Barrax, Spain, during the 2010 summer growing season. Performance of the Simplified Two-Source Energy Balance (STSEB model was evaluated by comparison of estimated ET with values measured on a weighing lysimeter. Errors of ±0.14 mm h−1 and ±1.0 mm d−1 were obtained at hourly and daily scales, respectively. Total accumulated crop water use during the campaign was underestimated by 5%. It is then shown that thermal radiometry can provide precise crop water necessities and is a promising tool for irrigation management.

  19. Balancing the Energy-Water Nexus

    Energy Technology Data Exchange (ETDEWEB)

    Dell, Jan

    2010-09-15

    Optimizing the complex tradeoffs in the Energy-Water Nexus requires quantification of energy use, carbon emitted and water consumed. Water is consumed in energy production and is often a constraint to operations. More global attention and investment has been made on reducing carbon emissions than on water management. Review of public reporting by the largest 107 global power producers and 50 companies in the oil/gas industry shows broad accounting on carbon emissions but only partial reporting on water consumption metrics. If the Energy-Water Nexus is to be balanced, then water must also be measured to be optimally managed with carbon emissions.

  20. R package CityWaterBalance | Science Inventory | US EPA

    Science.gov (United States)

    CityWaterBalance provides a reproducible workflow for studying an urban water system. The network of urban water flows and storages can be modeled and visualized. Any city may be modeled with preassembled data, but data for US cities can be gathered via web services using this package and dependencies, geoknife and dataRetrieval. Urban water flows are difficult to comprehensively quantify. Although many important data sources are openly available, they are published by a variety of agencies in different formats, units, spatial and temporal resolutions. Increasingly, open data are made available via web services, which allow for automated, current retrievals. Integrating data streams and estimating the values of unmeasured urban water flows, however, remains needlessly time-consuming. In order to streamline a reproducible analysis, we have developed the CityWaterBalance package for the open source R language. The CityWaterBalance package for R is based on a simple model of the network of urban water flows and storages. The model may be run with data that has been pre-assembled by the user, or data can be retrieved by functions in CityWaterBalance and dependencies. CityWaterBalance can be used to quickly assemble a quantitative portrait of any urban water system. The systemic effects of water management decisions can be readily explored. Much of the data acquisition process for US cities can already be automated, while the package serves as a place-hold

  1. Bioimpedance measurement of body water correlates with measured volume balance in injured patients.

    Science.gov (United States)

    Rosemurgy, A S; Rodriguez, E; Hart, M B; Kurto, H Z; Albrink, M H

    1993-06-01

    Bioimpedance technology is being used increasingly to determine drug volume of distribution, body water status, and nutrition repletion. Its accuracy in patients experiencing large volume flux is not established. To address this, we undertook this prospective study in 54 consecutive seriously injured adults who had emergency celiotomy soon after arrival in the emergency department. Bioimpedance measurements were obtained in the emergency department before the patient was transported to the operating room, on completion of celiotomy, and 24 hours and 48 hours after celiotomy. Bioimpedance measurements of body water were compared with measured fluid balance. If insensible losses are subtracted from measured fluid balance, the percentage of body weight, which is body water determined by bioimpedance, closely follows fluid flux. This study supports the use of bioimpedance measurements in determining total body water even during periods of surgery, blood loss, and vigorous resuscitation.

  2. Management of the water balance and quality in mining areas

    Science.gov (United States)

    Pasanen, Antti; Krogerus, Kirsti; Mroueh, Ulla-Maija; Turunen, Kaisa; Backnäs, Soile; Vento, Tiia; Veijalainen, Noora; Hentinen, Kimmo; Korkealaakso, Juhani

    2015-04-01

    Although mining companies have long been conscious of water related risks they still face environmental management problems. These problems mainly emerge because mine sites' water balances have not been adequately assessed in the stage of the planning of mines. More consistent approach is required to help mining companies identify risks and opportunities related to the management of water resources in all stages of mining. This approach requires that the water cycle of a mine site is interconnected with the general hydrologic water cycle. In addition to knowledge on hydrological conditions, the control of the water balance in the mining processes require knowledge of mining processes, the ability to adjust process parameters to variable hydrological conditions, adaptation of suitable water management tools and systems, systematic monitoring of amounts and quality of water, adequate capacity in water management infrastructure to handle the variable water flows, best practices to assess the dispersion, mixing and dilution of mine water and pollutant loading to receiving water bodies, and dewatering and separation of water from tailing and precipitates. WaterSmart project aims to improve the awareness of actual quantities of water, and water balances in mine areas to improve the forecasting and the management of the water volumes. The study is executed through hydrogeological and hydrological surveys and online monitoring procedures. One of the aims is to exploit on-line water quantity and quality monitoring for the better management of the water balances. The target is to develop a practical and end-user-specific on-line input and output procedures. The second objective is to develop mathematical models to calculate combined water balances including the surface, ground and process waters. WSFS, the Hydrological Modeling and Forecasting System of SYKE is being modified for mining areas. New modelling tools are developed on spreadsheet and system dynamics platforms to

  3. Par Pond water balance

    International Nuclear Information System (INIS)

    Hiergesell, R.A.; Dixon, K.L.

    1996-06-01

    A water budget for the Par Pond hydrologic system was established in order to estimate the rate of groundwater influx to Par Pond. This estimate will be used in modeling exercises to predict Par Pond reservoir elevation and spillway discharge in the scenario where Savannah River water is no longer pumped and discharged into Par Pond. The principal of conservation of mass was used to develop the water budget, where water inflow was set equal to water outflow. Components of the water budget were identified, and the flux associated with each was determined. The water budget was considered balanced when inflow and outflow summed to zero. The results of this study suggest that Par Pond gains water from the groundwater system in the upper reaches of the reservoir, but looses water to the groundwater system near the dam. The rate of flux of groundwater from the water table aquifer into Par Pond was determined to be 13 cfs. The rate of flux from Par Pond to the water table aquifer near the dam was determined to be 7 cfs

  4. River Basin Water Assessment and Balance in fast developing areas in Viet Nam

    Science.gov (United States)

    Le, Van Chin; Ranzi, Roberto

    2010-05-01

    Uneven precipitation in space and time together with mismanagement and lack of knowledge about quantity and quality of water resources, have caused water shortages for water supply to large cities and irrigation areas in many regions of Viet Nam in the dry season. The rainy season (from June to October) counts for 80% of the total annual rainfall, while the water volume of dry season (from November to May of the following year) accounts for 20% only. Lack of sufficient water volumes occurs in some areas where the pressure of a fast increasing population (1.3% per year on average in the last decade in Viet Nam), intensive agricultural and industrial uses is one of the major problems facing sustainable development. For those areas an accurate water assessment and balance at the riverbasin scale is needed to manage the exploitation and appropriate use of water resources and plan future development. The paper describes the preliminary phase of the pilot development of the river basin water balance for the Day River Basin in the Red River delta in Viet Nam. The Day river basin includes a 7,897 km² area in the south-western part of the Red River in Viet Nam. The total population in the Day river basin exceeds 8 millions inhabitants, including the Hanoi capital, Nam Dinh and other large towns. Agricultural land covered 390,294 ha in 2000 and this area is going to be increased by 14,000 ha in 2010 due to land reclamation and expansion toward the sea. Agricultural uses exploit about 90% of surface water resources in the Day river basin but have to compete with industrial and civil needs in the recent years. At the background of the brief characterization of the Day River Basin, we concentrate on the application of a water balance model integrated by an assessment of water quality after consumptive uses for civil, agricultural and industrial needs to assist water management in the basin. In addition, future development scenarios are taken into account, considering less

  5. Enhancement of a parsimonious water balance model to simulate surface hydrology in a glacierized watershed

    Science.gov (United States)

    Valentin, Melissa M.; Viger, Roland J.; Van Beusekom, Ashley E.; Hay, Lauren E.; Hogue, Terri S.; Foks, Nathan Leon

    2018-01-01

    The U.S. Geological Survey monthly water balance model (MWBM) was enhanced with the capability to simulate glaciers in order to make it more suitable for simulating cold region hydrology. The new model, MWBMglacier, is demonstrated in the heavily glacierized and ecologically important Copper River watershed in Southcentral Alaska. Simulated water budget components compared well to satellite‐based observations and ground measurements of streamflow, evapotranspiration, snow extent, and total water storage, with differences ranging from 0.2% to 7% of the precipitation flux. Nash Sutcliffe efficiency for simulated and observed streamflow was greater than 0.8 for six of eight stream gages. Snow extent matched satellite‐based observations with Nash Sutcliffe efficiency values of greater than 0.89 in the four Copper River ecoregions represented. During the simulation period 1949 to 2009, glacier ice melt contributed 25% of total runoff, ranging from 12% to 45% in different tributaries, and glacierized area was reduced by 6%. Statistically significant (p < 0.05) decreasing and increasing trends in annual glacier mass balance occurred during the multidecade cool and warm phases of the Pacific Decadal Oscillation, respectively, reinforcing the link between climate perturbations and glacier mass balance change. The simulations of glaciers and total runoff for a large, remote region of Alaska provide useful data to evaluate hydrologic, cryospheric, ecologic, and climatic trends. MWBM glacier is a valuable tool to understand when, and to what extent, streamflow may increase or decrease as glaciers respond to a changing climate.

  6. Testing the performance of a Dynamic Global Ecosystem Model: Water balance, carbon balance, and vegetation structure

    Science.gov (United States)

    Kucharik, Christopher J.; Foley, Jonathan A.; Delire, Christine; Fisher, Veronica A.; Coe, Michael T.; Lenters, John D.; Young-Molling, Christine; Ramankutty, Navin; Norman, John M.; Gower, Stith T.

    2000-09-01

    While a new class of Dynamic Global Ecosystem Models (DGEMs) has emerged in the past few years as an important tool for describing global biogeochemical cycles and atmosphere-biosphere interactions, these models are still largely untested. Here we analyze the behavior of a new DGEM and compare the results to global-scale observations of water balance, carbon balance, and vegetation structure. In this study, we use version 2 of the Integrated Biosphere Simulator (IBIS), which includes several major improvements and additions to the prototype model developed by Foley et al. [1996]. IBIS is designed to be a comprehensive model of the terrestrial biosphere; the model represents a wide range of processes, including land surface physics, canopy physiology, plant phenology, vegetation dynamics and competition, and carbon and nutrient cycling. The model generates global simulations of the surface water balance (e.g., runoff), the terrestrial carbon balance (e.g., net primary production, net ecosystem exchange, soil carbon, aboveground and belowground litter, and soil CO2 fluxes), and vegetation structure (e.g., biomass, leaf area index, and vegetation composition). In order to test the performance of the model, we have assembled a wide range of continental and global-scale data, including measurements of river discharge, net primary production, vegetation structure, root biomass, soil carbon, litter carbon, and soil CO2 flux. Using these field data and model results for the contemporary biosphere (1965-1994), our evaluation shows that simulated patterns of runoff, NPP, biomass, leaf area index, soil carbon, and total soil CO2 flux agree reasonably well with measurements that have been compiled from numerous ecosystems. These results also compare favorably to other global model results.

  7. Conclusions drawn of tritium balance in light water reactors

    International Nuclear Information System (INIS)

    Dolle, L.; Bazin, J.

    1978-01-01

    In the tritium balance of pressurized water reactors, using boric acid and lithium in the cooling water, contribution of the tritium produced by fission, diffusing through the zircalloy of the fuel cladding estimated to 0.1%, was not in agreement with quantities measured in reactors. It is still difficult to estimate what percentage is represented by the tritium formed by fission in the fuel, owing to diffusion through cladding. The tritium balance in different working nuclear power stations is consequently of interest. The tritium balance method in the water of the cooling circuit of PWR is fast and experimentally simple. It is less sensitive to errors originating from fission yields than balance of tritium produced by fission in the fuel. A tritium balance in the water of the cooling circuit of Biblis-A, with a specific burn-up of 18000 MWd/t gives a better precision. Diffusion rate of tritium produced by fission was less than 0.2%. So low a contribution is a justification to the use of lithium with an isotopic purity of 99.9% of lithium 7 to limit at a low value the residual lithium 6 [fr

  8. A Monthly Water-Balance Model Driven By a Graphical User Interface

    Science.gov (United States)

    McCabe, Gregory J.; Markstrom, Steven L.

    2007-01-01

    This report describes a monthly water-balance model driven by a graphical user interface, referred to as the Thornthwaite monthly water-balance program. Computations of monthly water-balance components of the hydrologic cycle are made for a specified location. The program can be used as a research tool, an assessment tool, and a tool for classroom instruction.

  9. Water balance at a low-level radioactive-waste disposal site

    Science.gov (United States)

    Healy, R.W.; Gray, J.R.; De Vries, G. M.; Mills, P.C.

    1989-01-01

    The water balance at a low-level radioactive-waste disposal site in northwestern Illinois was studied from July 1982 through June 1984. Continuous data collection allowed estimates to be made for each component of the water-balance equation independent of other components. The average annual precipitation was 948 millimeters. Average annual evapotranspiration was estimated at 637 millimeters, runoff was 160 millimeters, change in water storage in a waste-trench cover was 24 millimeters, and deep percolation was 208 millimeters. The magnitude of the difference between precipitation and all other components (81 millimeters per year) indicates that, in a similar environment, the water-budget method would be useful in estimating evapotranspiration, but questionable for estimation of other components. Precipitation depth and temporal distribution had a very strong effect on all other components of the water-balance equation. Due to the variability of precipitation from year to year, it appears that two years of data are inadequate for characterization of the long-term average water balance at the site.

  10. Water balance at a low-level radioactive-waste disposal site

    International Nuclear Information System (INIS)

    Healy, R.W.; Gray, J.R.; de Vries, M.P.; Mills, P.C.

    1989-01-01

    The water balance at a low-level radioactive-waste disposal site in northwestern Illinois was studied from July 1982 through June 1984. Continuous data collection allowed estimates to be made for each component of the water-balance equation independent of other components. The average annual precipitation was 948 millimeters. Average annual evapotranspiration was estimated at 637 millimeters, runoff was 160 millimeters, change in water storage in a waste-trench cover was 24 millimeters, and deep percolation was 208 millimeters. The magnitude of the difference between precipitation and all other components indicates that, in a similar environment, the water-budget method would be useful in estimating evapotranspiration, but questionable for estimation of other components. Precipitation depth and temporal distribution had a very strong effect on all other components of the water-balance equation. Due to the variability of precipitation from year to year, it appears that two years of data are inadequate for characterization of the long-term average water balance at the site

  11. Water Intake in a Sample of Greek Adults Evaluated with the Water Balance Questionnaire (WBQ and a Seven-Day Diary

    Directory of Open Access Journals (Sweden)

    Adelais Athanasatou

    2016-09-01

    Full Text Available Awareness on the importance of hydration in health has created an unequivocal need to enrich knowledge on water intake of the general population and on the contribution of beverages to total water intake. We evaluated in the past water intake in a sample of Greek adults using two approaches. In study A, volunteers completed the Water Balance Questionnaire (WBQ, a food frequency questionnaire, designed to evaluate water intake (n = 1092; 48.1% males; 43 ± 18 years. In study B, a different population of volunteers recorded water, beverage, and food intake in seven-day diaries (n = 178; 51.1% males; 37 ± 12 years. Herein, data were reanalyzed with the objective to reveal the contribution of beverages in total water intake with these different methodologies. Beverage recording was grouped in the following categories: Hot beverages; milk; fruit and vegetable juices; caloric soft drinks; diet soft drinks; alcoholic drinks; other beverages; and water. Total water intake and water intake from beverages was 3254 (SE 43 mL/day and 2551 (SE 39 mL/day in study A; and 2349 (SE 59 mL/day and 1832 (SE 56 mL/day in study B. In both studies water had the highest contribution to total water intake, approximately 50% of total water intake, followed by hot beverages (10% of total water intake and milk (5% of total water intake. These two approaches contribute information on water intake in Greece and highlight the contribution of different beverages; moreover, they point out differences in results obtained from different methodologies attributed to limitations in their use.

  12. Recovery of balance function among individuals with total knee arthroplasty: Comparison of responsiveness among four balance tests.

    Science.gov (United States)

    Chan, Andy C M; Ouyang, Xi H; Jehu, Deborah A M; Chung, Raymond C K; Pang, Marco Y C

    2018-01-01

    Balance deficits are common after total knee arthroplasty (TKA); however the responsiveness of commonly used balance measurement tools has not been well defined. The objective of this prospective study was to compare the internal and external responsiveness of four measurement tools in assessing recovery of balance function following TKA. A total of 134 individuals with TKA (95 women; age: 66.3±6.6years) completed the Balance Evaluation Systems Test (BESTest), Mini-BESTest, Brief-BESTest, and Berg Balance Scale (BBS) at 2, 4, 8, 12, and 24 weeks post-TKA. The Functional Gait Assessment (FGA) served as the anchor measure, and was also measured across these time points. Internal responsiveness was indicated by the standardized response mean (SRM), while external responsiveness was reflected by the degree of association of the changes of balance scores with those of FGA. The SRM ranged from 0.60-1.14 for the BESTest, 0.40-0.94 for the Mini-BESTest, 0.27-0.91 for the Brief-BESTest, and 0.19-0.70 for the BBS, over time. The change in BESTest and Mini-BESTest scores predicted the change in the FGA scores across all time periods, except for the Mini-BESTest between weeks 12-24, accounting for 13-27%, and 12-24% of the variance, respectively. The Brief-BESTest scores only predicted FGA scores between the weeks 2-4 (R 2 =20%). The changes in BBS scores were not associated with the FGA. The BESTest is the most responsive in measuring recovery of balance among individuals with TKA. The Mini-BESTest is a reasonable option during time constraints. Copyright © 2017. Published by Elsevier B.V.

  13. Water balance modelling of a uranium mill effluent management system

    Science.gov (United States)

    Plagnes, Valérie; Schmid, Brad; Mitchell, Brett; Judd-Henrey, Ian

    2017-06-01

    A water balance model was developed to forecast the management strategy of a uranium mill effluent system, located in northern Saskatchewan, Canada. Mining and milling operations, such as pit dewatering or treated effluent release, can potentially influence the hydrology and the water quality downstream of the operations. This study presents the methodology used to predict water volumes and water quality discharging downstream in surface water bodies. A compartment model representing the three subsequent lakes included in the management system was set up using the software GoldSim®. The water balance allows predicting lake volumes at the daily time step. A mass balance model developed for conservative elements was also developed and allows validating the proportions of inputs and outputs issued from the water balance model. This model was then used as predictive tool to evaluate the impact of different scenarios of effluents management on volumes and chemistry of surface water for short and longer time periods. An additional significant benefit of this model is that it can be used as an input for geochemical modelling to predict the concentrations of all constituents of concern in the receiving surface water.

  14. Application of a water balance model for estimating deep infiltration in a karstic watershed

    Directory of Open Access Journals (Sweden)

    Maria Lúcia Calijuri

    2011-12-01

    Full Text Available The current scenario of water scarcity evidences the need for an adequate management of water resources. In karstic regions, the water flow through fractures significantly increases the water infiltration rate, which explains the small number of rivers and the importance of groundwater for urban supply. Therefore, the water balance is necessary since it may aid decision making processes and guide water management projects. The objective of this paper was to perform the water balance of a watershed situated in a karstic region quantifying infiltration, runoff and evapotranspiration. The study area is located near the Tancredo Neves International Airport in Confins, in the state of Minas Gerais, Brazil. Most of the area consists of forest formations (40.9%, and pastures (34.5%. In order to estimate deep infiltration, the BALSEQ model was used. BALSEQ is a numeric model of sequential water balance in which deep infiltration at the end of the day is given by the difference between daily precipitation and the sum of surface runoff, evapotranspiration and the variation of the amount of water stored in the soil. The results show that approximately 60% of total annual precipitation result in deep infiltration, considering the recharge period from September to March. After the dry period, the areas with no vegetal cover present higher deep infiltration. However, over the months, the contribution of the vegetated areas becomes greater, showing the importance of these areas to aquifer recharge.

  15. Temporal and spatial variability of global water balance

    Science.gov (United States)

    McCabe, Gregory J.; Wolock, David M.

    2013-01-01

    An analysis of simulated global water-balance components (precipitation [P], actual evapotranspiration [AET], runoff [R], and potential evapotranspiration [PET]) for the past century indicates that P has been the primary driver of variability in R. Additionally, since about 2000, there have been increases in P, AET, R, and PET for most of the globe. The increases in R during 2000 through 2009 have occurred despite unprecedented increases in PET. The increases in R are the result of substantial increases in P during the cool Northern Hemisphere months (i.e. October through March) when PET increases were relatively small; the largest PET increases occurred during the warm Northern Hemisphere months (April through September). Additionally, for the 2000 through 2009 period, the latitudinal distribution of P departures appears to co-vary with the mean P departures from 16 climate model projections of the latitudinal response of P to warming, except in the high latitudes. Finally, changes in water-balance variables appear large from the perspective of departures from the long-term means. However, when put into the context of the magnitudes of the raw water balance variable values, there appears to have been little change in any of the water-balance variables over the past century on a global or hemispheric scale.

  16. Bathymetric survey and estimation of the water balance of Lake ...

    African Journals Online (AJOL)

    Quantification of the water balance components and bathymetric survey is very crucial for sustainable management of lake waters. This paper focuses on the bathymetry and the water balance of the crater Lake Ardibo, recently utilized for irrigation. The bathymetric map of the lake is established at a contour interval of 10 ...

  17. Demonstration of isotope-mass balance approach for water budget analyses of El-burulus Lake, Nile Delta, Egypt

    International Nuclear Information System (INIS)

    Sadek, M.A.

    2006-01-01

    The major elements of El-Burulus lake water system are rainfall, agricultural drainage discharge, groundwater, human activities, evaporation and water interaction between the lake and the Mediterranean sea. The principal input sources are agricultural drainage (8 drains at the southern borders of the lake), sea water as well as some contribution of precipitation, groundwater and human activities. Water is lost from the lake through evaporation and surface outflow. The present study has been conducted using isotopic / mass balance approach to investigate the water balance of El-Burulus lake and to emphasize the relative contribution of different input / output components which affect the environmental and hydrological terms of the system. An isotopic evaporation pan experiment was performed to estimate the parameters of relevance to water balance (isotopic composition of free air moisture and evaporating flux) and to simulate the isotopic enrichment of evaporation under atmospheric and hydraulic control. The isotopic mass balance approach employed herein facilitated the estimation of groundwater inflow to the lake, evaporated fraction of total lake inflow (E/I) and its fraction to outflow (E/O), ratio of surface inflow to surface outflow (I/O) as well as residence time of lake water. The isotopic mass balance approach has been validated by comparing the values of estimated parameters with the previous hydrological investigations; a quite good match has been indicated, the relevance of this approach is related to its integrative scale and the more simply implementation

  18. The climatic water balance in an ecological context

    Science.gov (United States)

    Stephenson, N. L.

    2011-12-01

    Because the climatic water balance describes the seasonal interactions of energy (heat and solar radiation) and water in biologically meaningful ways, it provides a powerful tool for understanding and predicting the effects of climatic changes on the terrestrial biosphere. I begin with a brief overview of the definitions and interpretations of the biologically most important water balance parameters -- actual evapotranspiration (AET) and climatic water deficit (Deficit) -- and how the particular approach used to calculate these parameters depends both on the goals of the study and on the available climatic data. Some authors have attempted to represent aspects of the climatic water balance with indices based on annual potential evapotranspiration (PET) and precipitation (P), such at P/PET or PET - P. However, these and related indices do not reflect soil water dynamics, snow dynamics, or the seasonal interactions of energy and water, and therefore have no biological interpretation. Consequently, such indices are more poorly correlated with ecological patterns and processes than AET and Deficit. Of critical importance, the effects of changing energy and water supplies on the climatic water balance are nearly orthogonal. For example, a plant community growing on shallow soils on a shaded slope and one growing on deep soils on a sunward slope often may have the same amount of measured soil moisture available to them. However, the dynamics of energy and water that resulted in the identical soil moistures were fundamentally different (decreased evaporative demand on the shaded slope versus increased water supply on the deep soils); the associated differences in AET and Deficit will therefore result in different plant communities occupying the sites, in spite of identical soil moistures. In the context of climatic change, the orthogonal effects of energy and water mean that increasing precipitation cannot be expected to counteract the effects of increasing temperature

  19. Exercise, energy expenditure and energy balance, as measured with doubly labelled water.

    Science.gov (United States)

    Westerterp, Klaas R

    2018-02-01

    The doubly labelled water method for the measurement of total daily energy expenditure (TDEE) over 1-3 weeks under daily living conditions is the indicated method to study effects of exercise and extreme environments on energy balance. Subjects consume a measured amount of doubly labelled water (2H2 18O) to increase background enrichment of body water for 18O and 2H, and the subsequent difference in elimination rate between 18O and 2H, as measured in urine, saliva or blood samples, is a measure for carbon dioxide production and thus allows calculation of TDEE. The present review describes research showing that physical activity level (PAL), calculated as TDEE (assessed with doubly labelled water) divided by resting energy expenditure (REE, PAL = TDEE/REE), reaches a maximum value of 2·00-2·40 in subjects with a vigorously active lifestyle. Higher PAL values, while maintaining energy balance, are observed in professional athletes consuming additional energy dense foods to compete at top level. Exercise training can increase TDEE/REE in young adults to a value of 2·00-2·40, when energy intake is unrestricted. Furthermore, the review shows an exercise induced increase in activity energy expenditure can be compensated by a reduction in REE and by a reduction in non-exercise physical activity, especially at a negative energy balance. Additionally, in untrained subjects, an exercise-induced increase in activity energy expenditure is compensated by a training-induced increase in exercise efficiency.

  20. Snow cover dynamics and water balance in complex high alpine terrain

    Science.gov (United States)

    Warscher, Michael; Kraller, Gabriele; Kunstmann, Harald; Strasser, Ulrich; Franz, Helmut

    2010-05-01

    The water balance in high alpine regions in its full complexity is so far insufficiently understood. High altitudinal gradients, a strong variability of meteorological variables in time and space, complex hydrogeological situations, unquantified lateral snow transport processes and heterogenous snow cover dynamics result in high uncertainties in the quantification of the water balance. To achieve interpretable modeling results we have complemented the deterministic hydrological model WaSiM-ETH with the high-alpine specific snow model AMUNDSEN. The integration of the new snow module was done to improve the modeling of water fluxes influenced by the dynamics of the snow cover, which greatly affect the water cycle in high alpine regions. To enhance the reproduction of snow deposition and ablation processes, the new approach calculates the energy balance of the snow cover considering the terrain-dependent radiation fluxes, the interaction between tree canopy and snow cover as well as lateral snow transport processes. The test site for our study is the Berchtesgaden National Park which is characterized by an extreme topography with mountain ranges covering an altitude from 607 to 2713 m.a.s.l. About one quarter of the investigated catchment area, which comprises 433 km² in total, is terrain steeper than 35°. Due to water soluble limestone being predominant in the region, a high number of subsurface water pathways (karst) exist. The results of several tracer experiments and extensive data of spring observations provide additional information to meet the challenge of modeling the unknown subsurface pathways and the complex groundwater system of the region. The validation of the new snow module is based on a dense network of meteorological stations which have been adapted to measure physical properties of the snow cover like snow water equivalent and liquid water content. We will present first results which show that the integration of the new snow module generates a

  1. Landscape-scale water balance monitoring with an iGrav superconducting gravimeter in a field enclosure

    Science.gov (United States)

    Güntner, Andreas; Reich, Marvin; Mikolaj, Michal; Creutzfeldt, Benjamin; Schroeder, Stephan; Wziontek, Hartmut

    2017-06-01

    In spite of the fundamental role of the landscape water balance for the Earth's water and energy cycles, monitoring the water balance and its components beyond the point scale is notoriously difficult due to the multitude of flow and storage processes and their spatial heterogeneity. Here, we present the first field deployment of an iGrav superconducting gravimeter (SG) in a minimized enclosure for long-term integrative monitoring of water storage changes. Results of the field SG on a grassland site under wet-temperate climate conditions were compared to data provided by a nearby SG located in the controlled environment of an observatory building. The field system proves to provide gravity time series that are similarly precise as those of the observatory SG. At the same time, the field SG is more sensitive to hydrological variations than the observatory SG. We demonstrate that the gravity variations observed by the field setup are almost independent of the depth below the terrain surface where water storage changes occur (contrary to SGs in buildings), and thus the field SG system directly observes the total water storage change, i.e., the water balance, in its surroundings in an integrative way. We provide a framework to single out the water balance components actual evapotranspiration and lateral subsurface discharge from the gravity time series on annual to daily timescales. With about 99 and 85 % of the gravity signal due to local water storage changes originating within a radius of 4000 and 200 m around the instrument, respectively, this setup paves the road towards gravimetry as a continuous hydrological field-monitoring technique at the landscape scale.

  2. Landscape-scale water balance monitoring with an iGrav superconducting gravimeter in a field enclosure

    Directory of Open Access Journals (Sweden)

    A. Güntner

    2017-06-01

    Full Text Available In spite of the fundamental role of the landscape water balance for the Earth's water and energy cycles, monitoring the water balance and its components beyond the point scale is notoriously difficult due to the multitude of flow and storage processes and their spatial heterogeneity. Here, we present the first field deployment of an iGrav superconducting gravimeter (SG in a minimized enclosure for long-term integrative monitoring of water storage changes. Results of the field SG on a grassland site under wet–temperate climate conditions were compared to data provided by a nearby SG located in the controlled environment of an observatory building. The field system proves to provide gravity time series that are similarly precise as those of the observatory SG. At the same time, the field SG is more sensitive to hydrological variations than the observatory SG. We demonstrate that the gravity variations observed by the field setup are almost independent of the depth below the terrain surface where water storage changes occur (contrary to SGs in buildings, and thus the field SG system directly observes the total water storage change, i.e., the water balance, in its surroundings in an integrative way. We provide a framework to single out the water balance components actual evapotranspiration and lateral subsurface discharge from the gravity time series on annual to daily timescales. With about 99 and 85 % of the gravity signal due to local water storage changes originating within a radius of 4000 and 200 m around the instrument, respectively, this setup paves the road towards gravimetry as a continuous hydrological field-monitoring technique at the landscape scale.

  3. Metal balance shift induced in small fresh water fish by several environmental stresses

    International Nuclear Information System (INIS)

    Yukawa, Masae; Iso, Hiroyuki; Kodama, Kumiko; Imaseki, Hitoshi; Aoki, Kazuko; Ishikawa, Yuji

    2005-01-01

    Balance of essential elements in organisms might be changed by environmental stresses. Small fresh water fish, Medaka, was burdened with X-ray irradiation (total dose: 17 Gy), keeping in salty water (70% NaCl of sea water) and keeping in metal containing water (10 ppm of Cr and Co). These stresses are not lethal doses. Essential elements in liver, gall bladder, kidney, spleen, heart and brain in the stress-loaded fish were measured by PIXE method and compared with a control fish to determine the effect of the stresses. Various changes of the elemental contents were observed. Effect of X-ray irradiation was the smallest among the stresses. Relatively high content elements such as P, S, Cl and K were hardly affected with the stresses examined in this work. The effect of Cr on the metal balance seems to be larger than the other stresses. As PIXE method can analyze many elements in a small sample simultaneously, change of elemental distribution in small organisms induced by environmental stresses can be determined readily. (author)

  4. Field-scale water balance closure in seasonally frozen conditions

    Directory of Open Access Journals (Sweden)

    X. Pan

    2017-11-01

    Full Text Available Hydrological water balance closure is a simple concept, yet in practice it is uncommon to measure every significant term independently in the field. Here we demonstrate the degree to which the field-scale water balance can be closed using only routine field observations in a seasonally frozen prairie pasture field site in Saskatchewan, Canada. Arrays of snow and soil moisture measurements were combined with a precipitation gauge and flux tower evapotranspiration estimates. We consider three hydrologically distinct periods: the snow accumulation period over the winter, the snowmelt period in spring, and the summer growing season. In each period, we attempt to quantify the residual between net precipitation (precipitation minus evaporation and the change in field-scale storage (snow and soil moisture, while accounting for measurement uncertainties. When the residual is negligible, a simple 1-D water balance with no net drainage is adequate. When the residual is non-negligible, we must find additional processes to explain the result. We identify the hydrological fluxes which confound the 1-D water balance assumptions during different periods of the year, notably blowing snow and frozen soil moisture redistribution during the snow accumulation period, and snowmelt runoff and soil drainage during the melt period. Challenges associated with quantifying these processes, as well as uncertainties in the measurable quantities, caution against the common use of water balance residuals to estimate fluxes and constrain models in such a complex environment.

  5. Development of a simplified urban water balance model (WABILA).

    Science.gov (United States)

    Henrichs, M; Langner, J; Uhl, M

    2016-01-01

    During the last decade, water sensitive urban design (WSUD) has become more and more accepted. However, there is not any simple tool or option available to evaluate the influence of these measures on the local water balance. To counteract the impact of new settlements, planners focus on mitigating increases in runoff through installation of infiltration systems. This leads to an increasing non-natural groundwater recharge and decreased evapotranspiration. Simple software tools which evaluate or simulate the effect of WSUD on the local water balance are still needed. The authors developed a tool named WABILA (Wasserbilanz) that could support planners for optimal WSUD. WABILA is an easy-to-use planning tool that is based on simplified regression functions for established measures and land covers. Results show that WSUD has to be site-specific, based on climate conditions and the natural water balance.

  6. Water Balance Study of a Groundwater-dependent Oak Forest

    Directory of Open Access Journals (Sweden)

    MÓRICZ, Norbert

    2010-01-01

    Full Text Available The objectives of this study were (1 to estimate the water balance components of an oak standby calibrating a Hydrus 1-D model, (2 to determine the groundwater consumption by the water tablefluctuation method and (3 to compare the results of the modelling with a remote-sensing based estimation.Model simulation described the observed soil moisture and groundwater level relatively well, theroot mean square errors varied between 12.0 and 14.9% for the soil moisture measurements and 5.0%for the groundwater level. Groundwater consumption was estimated also by the water table fluctuationmethod, which provided slightly different groundwater consumption rates than estimated by theHydrus model simulation. The simulated evapotranspiration was compared with results of a remotesensingbased estimation using the surface temperature database of MODIS.According to the Hydrus model, the estimated evapotranspiration resulted from transpiration(73%, interception loss (23% and soil surface evaporation (4% in the two-year study period. Theproportion of groundwater consumption was 58% of the total transpiration. During the dry growingseason of 2007 the groundwater consumption was significant with 66% of the total transpiration.Water supply from groundwater was found to be less important in the wet growing season of 2008with 50%. The remote-sensing based estimation of evapotranspiration was about 4% lower than themodel based results of nearby comparable sites.

  7. Water balance dynamics in the Nile Basin

    Science.gov (United States)

    Senay, Gabriel B.; Asante, Kwabena; Artan, Guleid A.

    2009-01-01

    Understanding the temporal and spatial dynamics of key water balance components of the Nile River will provide important information for the management of its water resources. This study used satellite-derived rainfall and other key weather variables derived from the Global Data Assimilation System to estimate and map the distribution of rainfall, actual evapotranspiration (ETa), and runoff. Daily water balance components were modelled in a grid-cell environment at 0·1 degree (∼10 km) spatial resolution for 7 years from 2001 through 2007. Annual maps of the key water balance components and derived variables such as runoff and ETa as a percent of rainfall were produced. Generally, the spatial patterns of rainfall and ETa indicate high values in the upstream watersheds (Uganda, southern Sudan, and southwestern Ethiopia) and low values in the downstream watersheds. However, runoff as a percent of rainfall is much higher in the Ethiopian highlands around the Blue Nile subwatershed. The analysis also showed the possible impact of land degradation in the Ethiopian highlands in reducing ETa magnitudes despite the availability of sufficient rainfall. Although the model estimates require field validation for the different subwatersheds, the runoff volume estimate for the Blue Nile subwatershed is within 7·0% of a figure reported from an earlier study. Further research is required for a thorough validation of the results and their integration with ecohydrologic models for better management of water and land resources in the various Nile Basin ecosystems.

  8. Myths and methodologies: Making sense of exercise mass and water balance.

    Science.gov (United States)

    Cheuvront, Samuel N; Montain, Scott J

    2017-09-01

    What is the topic of this review? There is a need to revisit the basic principles of exercise mass and water balance, the use of common equations and the practice of interpreting outcomes. What advances does it highlight? We propose use of the following equation as a way of simplifying exercise mass and water balance calculations in conditions where food is not consumed and waste is not excreted: ∆body mass - 0.20 g/kcal -1  = ∆body water. The relative efficacy of exercise drinking behaviours can be judged using the following equation: percentage dehydration = [(∆body mass - 0.20 g kcal -1 )/starting body mass] × 100. Changes in body mass occur because of flux in liquids, solids and gases. This knowledge is crucial for understanding metabolism, health and human water needs. In exercise science, corrections to observed changes in body mass to estimate water balance are inconsistently applied and often misinterpreted, particularly after prolonged exercise. Although acute body mass losses in response to exercise can represent a close surrogate for body water losses, the discordance between mass and water balance equivalence becomes increasingly inaccurate as more and more energy is expended. The purpose of this paper is briefly to clarify the roles that respiratory water loss, gas exchange and metabolic water production play in the correction of body mass changes for fluid balance determinations during prolonged exercise. Computations do not include waters of association with glycogen because any movement of water among body water compartments contributes nothing to water or mass flux from the body. Estimates of sweat loss from changes in body mass should adjust for non-sweat losses when possible. We propose use of the following equation as a way of simplifying the study of exercise mass and water balance: ∆body mass - 0.20 g kcal -1  = ∆body water. This equation directly controls for the influence of energy expenditure on body mass

  9. Evapotranspiration partitioning, stomatal conductance, and components of the water balance: A special case of a desert ecosystem in China

    Science.gov (United States)

    Zhao, Wenzhi; Liu, Bing; Chang, Xuexiang; Yang, Qiyue; Yang, Yuting; Liu, Zhiling; Cleverly, James; Eamus, Derek

    2016-07-01

    Partitioning evapotranspiration (ET) into its components reveals details of the processes that underlie ecosystem hydrologic budgets and their feedback to the water cycle. We measured rates of actual evapotranspiration (ETa), canopy transpiration (Tc), soil evaporation (Eg), canopy-intercepted precipitation (EI), and patterns of stomatal conductance of the desert shrub Calligonum mongolicum in northern China to determine the water balance of this ecosystem. The ETa was 251 ± 8 mm during the growing period, while EI, Tc, and Eg accounted for 3.2%, 63.9%, and 31.3%, respectively, of total water use (256 ± 4 mm) during the growing period. In this unique ecosystem, groundwater was the main water source for plant transpiration and soil evaporation, Tc and exceeded 60% of the total annual water used by desert plants. ET was not sensitive to air temperature in this unique desert ecosystem. Partitioning ET into its components improves our understanding of the mechanisms that underlie adaptation of desert shrubs, especially the role of stomatal regulation of Tc as a determinant of ecosystem water balance.

  10. Arid site water balance: evapotranspiration modeling and measurements

    International Nuclear Information System (INIS)

    Gee, G.W.; Kirkham, R.R.

    1984-09-01

    In order to evaluate the magnitude of radionuclide transport at an aird site, a field and modeling study was conducted to measure and predict water movement under vegetated and bare soil conditions. Significant quantities of water were found to move below the roo of a shallow-rooted grass-covered area during wet years at the Hanford site. The unsaturated water flow model, UNSAT-1D, was resonably successful in simulating the transient behavior of the water balance at this site. The effects of layered soils on water balance were demonstrated using the model. Models used to evaluate water balance in arid regions should not rely on annual averages and assume that all precipitation is removed by evapotranspiration. The potential for drainage at arid sites exists under conditions where shallow rooted plants grow on coarse textured soils. This condition was observed at our study site at Hanford. Neutron probe data collected on a cheatgrass community at the Hanford site during a wet year indicated that over 5 cm of water drained below the 3.5-m depth. The unsaturated water flow model, UNSAT-1D, predicted water drainage of about 5 cm (single layer, 10 months) and 3.5 cm (two layers, 12 months) for the same time period. Additional field measurements of hydraulic conductivity will likely improve the drainage estimate made by UNSAT-1D. Additional information describing cheatgrass growth and water use at the grass site could improve model predictions of sink terms and subsequent calculations of water storage within the rooting zone. In arid areas where the major part of the annual precipitation occurs during months with low average potential evapotranspiration and where soils are vegetated but are coarse textured and well drained, significant drainage can occur. 31 references, 18 figures, 1 table

  11. Spacebased Observation of Water Balance Over Global Oceans

    Science.gov (United States)

    Liu, W.; Xie, X.

    2008-12-01

    We demonstrated that ocean surface fresh water flux less the water discharge into the ocean from river and ice melt balances the mass loss in the ocean both in magnitude and in the phase of annual variation. The surface water flux was computed from the divergence of the water transport integrated over the depth of the atmosphere. The atmospheric water transport is estimated from the precipitable water measured by Special Sensor Microwave Imager, the surface wind vector by QuikSCAT, and the NOAA cloud drift wind through a statistical model. The transport has been extensively validated using global radiosonde and data and operational numerical weather prediction results. Its divergence has been shown to agree with the difference between evaporation estimated from the Advanced Microwave Scanning Radiometer data and the precipitation measured by Tropical Rain Measuring Mission over the global tropical and subtropical oceans both in magnitude and geographical distribution for temporal scales ranging from intraseasonal to interannual. The water loss rate in the ocean is estimated by two methods, one is from Gravity Recovery and Climate Experiment and the other is by subtracting the climatological steric change from the sea level change measured by radar altimeter on Jason. Only climatological river discharge and ice melt from in situ measurements are available and the lack of temporal variation may contribute to discrepancies in the balance. We have successfully used the spacebased surface fluxes to estimate to climatological mean heat transport in the Atlantic ocean and is attempting to estimate the meridional fresh water (or salt) transport from the surface flux. The approximate closure of the water balance gives a powerful indirect validation of the spacebased products.

  12. Water balance of goats in Jeneponto - South Sulawesi under sunlight exposure and water restriction

    Directory of Open Access Journals (Sweden)

    Djoni Prawira Rahardja

    2007-10-01

    Full Text Available Water balance of 5 does of Kacang goat of Jeneponto was studied under the condition of sunlight exposure and water restriction. The study was conducted in dry season with 4 consecutive treatments of 10 d with 4-5 d of adjustment period between two consecutive treatments: (1 indoor and unrestricted water; (2 indoor and restricted water; (3 10 h outdoor–and unrestricted water; (4 10 h outdoor – restricted water. The maximum air temperature of outdoor was 39.3OC, and it was 30OC in the indoor environment. In all treatments, the animals were placed in the individual crates. The plasma volume of the goats was higher under sunlight exposure, but it decreased by water restriction, while hematocrite value indicated a reverse responses. Sunlight exposure did not significantly decrease the intake and digestion of organic matter, but water restriction affected significantly and this effect was higher under sunlight exposre. The proportions of water loss through every avenue were maintained relatively constant either under water restriction or sunlight exposure in which the respration rate increased significantly. The findings suggest that sunlight exposure with unrestricted water resulted in a positive water balance without a significant change in organic matter intake and utilization. Water restriction resulted in a negative water balance, reducing organic matter intake and utilization. As the adaptive mechanisms, the goat appeared to be able to withstand in the harsh environment of Jeneponto by expanding plasma volume, increasing body temperature and respiration rate.

  13. Soil water balance in different densities of Pinus taeda in Southern Brazil

    Directory of Open Access Journals (Sweden)

    Jorge Luiz Moretti Souza

    2016-04-01

    Full Text Available This study aimed to quantify and compare water balance components over the course of a year for different Pinus taeda planting densities in an oxisol in southern Brazil. This experiment was conducted on 6-year-old trees in a clay oxisol at the Monte Alegre Farm, a property of the Klabin Company. The experimental design was a randomized block with four replicates and five treatments with different amounts of soil coverage: T100 (100% coverage - standard planting coverage; (T75, 75; T50, 50; and T25, 25%, and; T0 (without cover - clearcutting. The soil water storage and actual evapotranspiration under non-standard conditions were determined in a weekly estimated soil water balance (SWB with measured components. By the end of the year, the treatments had not reached field capacity or wilting point storage. The average value of total downward drainage was 100.2 mm, and the highest values occurred in the T75 and T100 treatments. The lowest population density (T25 had the highest actual evapotranspiration (ETr, due to the growth of the remaining Pinus taeda trees. The highest evapotranspiration occurred in September, due to the resumption of Pinus taeda growth.

  14. Water balance and irrigation water pumping of Lake Merdada for potato farming in Dieng Highland, Indonesia.

    Science.gov (United States)

    Fadlillah, Lintang N; Widyastuti, M

    2016-08-01

    Lakes provide water resources for domestic use, livestock, irrigational use, etc. Water availability of lakes can be estimated using lake water balance. Lake water balance is calculated from the water input and output of a lake. Dieng Highland has several volcanic lakes in its surroundings. Lake Merdada in Dieng Highland has been experiencing extensive water pumping for several years more than other lakes in the surrounding area. It provides irrigation water for potato farming in Dieng Highland. The hydrological model of this lake has not been studied. The modeled water balance in this research uses primary data, i.e., bathymetric data, soil texture, and outflow discharge, as well as secondary data, i.e., rainfall, temperature, Landsat 7 ETM+ band 8 image, and land use. Water balance input components consist of precipitation on the surface area, surface (direct) runoff from the catchment area, and groundwater inflow and outflow (G net), while the output components consist of evaporation, river outflow, and irrigation. It shows that groundwater is the dominant input and output of the lake. On the other hand, the actual irrigation water pumping plays the leading role as human-induced alteration of outflow discharge. The maximum irrigation pumping modeling shows that it will decrease lake storage up to 37.14 % per month and may affect the ecosystem inside the lake.

  15. A Generic Water Balance Model for a Trench Repository

    International Nuclear Information System (INIS)

    Lee, Youn Myoung; Choi, Hee Joo

    2016-01-01

    To quantify the exposure dose rates from the nuclide release and transport through the various pathways possible in the near- and far-fields of the LILW repository system, various scenarios are to be conveniently simulated in a straightforward manner and extensively with this GoldSim model, as similarly developed for other various types of repositories in previous studies. Through this study, a result from four scenario cases, each of which is or is not associated with water balance, are compared to each other to see what happens in different cases in which an overflow over a trench rooftop, stochastic rainfall on the trench cover, and an unsaturated flow scheme under the trench bottom are combined. The other two latter elements vary periodically owing to stochastic behavior of the time series data for the past rain-fall records. This program is ready for a total system performance assessment and is able to deterministically and probabilistically evaluate the nuclide release from a repository and farther transport into the geosphere and biosphere under various scenarios that can occur after a failure of waste packages with associated uncertainty. An illustration conducted through a study with a new water balance scheme shows the possibility of a stochastic evaluation associated with the stochastic behavior and various pathways that happen around the trench repository.

  16. A Generic Water Balance Model for a Trench Repository

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youn Myoung; Choi, Hee Joo [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    To quantify the exposure dose rates from the nuclide release and transport through the various pathways possible in the near- and far-fields of the LILW repository system, various scenarios are to be conveniently simulated in a straightforward manner and extensively with this GoldSim model, as similarly developed for other various types of repositories in previous studies. Through this study, a result from four scenario cases, each of which is or is not associated with water balance, are compared to each other to see what happens in different cases in which an overflow over a trench rooftop, stochastic rainfall on the trench cover, and an unsaturated flow scheme under the trench bottom are combined. The other two latter elements vary periodically owing to stochastic behavior of the time series data for the past rain-fall records. This program is ready for a total system performance assessment and is able to deterministically and probabilistically evaluate the nuclide release from a repository and farther transport into the geosphere and biosphere under various scenarios that can occur after a failure of waste packages with associated uncertainty. An illustration conducted through a study with a new water balance scheme shows the possibility of a stochastic evaluation associated with the stochastic behavior and various pathways that happen around the trench repository.

  17. Total Water Management - Report

    Science.gov (United States)

    There is a growing need for urban water managers to take a more holistic view of their water resource systems as population growth, urbanization, and current operations put different stresses on the environment and urban infrastructure. Total Water Management (TWM) is an approac...

  18. Differences in the water-balance components of four lakes in the southern-central Tibetan Plateau

    Science.gov (United States)

    Biskop, S.; Maussion, F.; Krause, P.; Fink, M.

    2016-01-01

    The contrasting patterns of lake-level fluctuations across the Tibetan Plateau (TP) are indicators of differences in the water balance over the TP. However, little is known about the key hydrological factors controlling this variability. The purpose of this study is to contribute to a more quantitative understanding of these factors for four selected lakes in the southern-central part of the TP: Nam Co and Tangra Yumco (increasing water levels), and Mapam Yumco and Paiku Co (stable or slightly decreasing water levels). We present the results of an integrated approach combining hydrological modeling, atmospheric-model output and remote-sensing data. The J2000g hydrological model was adapted and extended according to the specific characteristics of closed-lake basins on the TP and driven with High Asia Refined analysis (HAR) data at 10 km resolution for the period 2001-2010. Differences in the mean annual water balances among the four basins are primarily related to higher precipitation totals and attributed runoff generation in the Nam Co and Tangra Yumco basins. Precipitation and associated runoff are the main driving forces for inter-annual lake variations. The glacier-meltwater contribution to the total basin runoff volume (between 14 and 30 % averaged over the 10-year period) plays a less important role compared to runoff generation from rainfall and snowmelt in non-glacierized land areas. Nevertheless, using a hypothetical ice-free scenario in the hydrological model, we indicate that ice-melt water constitutes an important water-supply component for Mapam Yumco and Paiku Co, in order to maintain a state close to equilibrium, whereas the water balance in the Nam Co and Tangra Yumco basins remains positive under ice-free conditions. These results highlight the benefits of linking hydrological modeling with atmospheric-model output and satellite-derived data, and the presented approach can be readily transferred to other data-scarce closed lake basins, opening new

  19. Management of water balance in mining areas – WaterSmart: Final Report

    OpenAIRE

    Krogerus, Kirsti; Pasanen, Antti

    2016-01-01

    Although mining companies have long been conscious of water related risks, they still face environmental management challenges. Several recent environmental incidents in Finnish mines have raised questions regarding mine site environmental and water management practices. This has increased public awareness of mining threats to the environment and resulted in stricter permits and longer permitting procedures. Water balance modelling aids in predictive water management and reduces risks caused ...

  20. Assessment of check-dam groundwater recharge with water-balance calculations

    Science.gov (United States)

    Djuma, Hakan; Bruggeman, Adriana; Camera, Corrado; Eliades, Marinos

    2017-04-01

    Studies on the enhancement of groundwater recharge by check-dams in arid and semi-arid environments mainly focus on deriving water infiltration rates from the check-dam ponding areas. This is usually achieved by applying simple water balance models, more advanced models (e.g., two dimensional groundwater models) and field tests (e.g., infiltrometer test or soil pit tests). Recharge behind the check-dam can be affected by the built-up of sediment as a result of erosion in the upstream watershed area. This natural process can increase the uncertainty in the estimates of the recharged water volume, especially for water balance calculations. Few water balance field studies of individual check-dams have been presented in the literature and none of them presented associated uncertainties of their estimates. The objectives of this study are i) to assess the effect of a check-dam on groundwater recharge from an ephemeral river; and ii) to assess annual sedimentation at the check-dam during a 4-year period. The study was conducted on a check-dam in the semi-arid island of Cyprus. Field campaigns were carried out to measure water flow, water depth and check-dam topography in order to establish check-dam water height, volume, evaporation, outflow and recharge relations. Topographic surveys were repeated at the end of consecutive hydrological years to estimate the sediment built up in the reservoir area of the check dam. Also, sediment samples were collected from the check-dam reservoir area for bulk-density analyses. To quantify the groundwater recharge, a water balance model was applied at two locations: at the check-dam and corresponding reservoir area, and at a 4-km stretch of the river bed without check-dam. Results showed that a check-dam with a storage capacity of 25,000 m3 was able to recharge to the aquifer, in four years, a total of 12 million m3 out of the 42 million m3 of measured (or modelled) streamflow. Recharge from the analyzed 4-km long river section without

  1. Cycle studies: material balance estimation in the domain of pressurized water and boiling water reactors. Experimental qualification

    International Nuclear Information System (INIS)

    Chabert, Christine

    1994-01-01

    This study is concerned with the physics of the fuel cycle the aim being to develop and make recommendations concerning schemes for calculating the neutronics of light water reactor fuel cycles. A preliminary study carried out using the old fuel cycle calculation scheme APOLLO1- KAFKA and the library SERMA79 has shown that for the compositions of totally dissolved assemblies from Pressurized Water Reactors (type 17*17) and also for the first time, for Boiling Water Reactor assemblies (type 8*8), the differences between calculation and measurement are large and must be reduced. The integration of the APOLLO2 neutronics code into the fuel cycle calculation scheme improves the results because it can model the situation more precisely. A comparison between APOLLO1 and APOLLO2 using the same options, demonstrated the consistency of the two methods for PWR and BWR geometries. Following this comparison, we developed an optimised scheme for PWR applications using the library CEA86 and the code APOLLO2. Depending on whether the information required is the detailed distribution of the composition of the irradiated fuel or the average composition (estimation of the total material balance of the fuel assembly), the physics options recommended are different. We show that the use of APOLLO2 and the library CEA86 improves the results and especially the estimation of the Pu 239 content. Concerning the Boiling Water Reactor, we have highlighted the need to treat several axial sections of the fuel assembly (variation of the void-fraction, heterogeneity of composition). A scheme using Sn transport theory, permits one to obtain a better coherence between the consumption of U 235 , the production of plutonium and burnup, and a better estimation of the material balance. (author) [fr

  2. Water balance of the Republic of Croatia: achievements and necessities

    International Nuclear Information System (INIS)

    Bonaccil, Ognjen; Horvat, Bojana

    2004-01-01

    The paper presents recent results of water balance of the Republic of Croatia based on definition of average values for the thirty years period from 1961 to 1990. The long-term mean hydrological balance for the seventeen watersheds is presented as P·Q=ET, where P is average annual precipitation in a watershed, Q is average annual runoff from the watershed, and ET is average annual evapotranspiration (runoff deficit) from a watershed given in mm and m3/s. The simplified water balances according to given equation does not consider the distribution of hydrological variables into components as well as: variation of water storage within the catchment; water volumes infiltrating in or flowing out from the deep strata, etc. Most of the runoff data is based on the measured values, while the dispersed surface water and groundwater flows are estimated using regional analyses. The annual average precipitation is 1162 mm or 2083 m 3 /s. The annual average inner water runoff is 461 mm or 827m 3 /s, while transit water runoff is 2303 mm or 4130 m 3 /s. Croatia is the country rich in water with unevenly (in space and time) distributed water resources due to extremely variable geological setting (karst and flatland) and different climatic conditions (Mediterranean and continental climate).(Author)

  3. Semi-arid vegetation response to antecedent climate and water balance windows

    Science.gov (United States)

    Thoma, David P.; Munson, Seth M.; Irvine, Kathryn M.; Witwicki, Dana L.; Bunting, Erin

    2016-01-01

    Questions Can we improve understanding of vegetation response to water availability on monthly time scales in semi-arid environments using remote sensing methods? What climatic or water balance variables and antecedent windows of time associated with these variables best relate to the condition of vegetation? Can we develop credible near-term forecasts from climate data that can be used to prepare for future climate change effects on vegetation? Location Semi-arid grasslands in Capitol Reef National Park, Utah, USA. Methods We built vegetation response models by relating the normalized difference vegetation index (NDVI) from MODIS imagery in Mar–Nov 2000–2013 to antecedent climate and water balance variables preceding the monthly NDVI observations. We compared how climate and water balance variables explained vegetation greenness and then used a multi-model ensemble of climate and water balance models to forecast monthly NDVI for three holdout years. Results Water balance variables explained vegetation greenness to a greater degree than climate variables for most growing season months. Seasonally important variables included measures of antecedent water input and storage in spring, switching to indicators of drought, input or use in summer, followed by antecedent moisture availability in autumn. In spite of similar climates, there was evidence the grazed grassland showed a response to drying conditions 1 mo sooner than the ungrazed grassland. Lead times were generally short early in the growing season and antecedent window durations increased from 3 mo early in the growing season to 1 yr or more as the growing season progressed. Forecast accuracy for three holdout years using a multi-model ensemble of climate and water balance variables outperformed forecasts made with a naïve NDVI climatology. Conclusions We determined the influence of climate and water balance on vegetation at a fine temporal scale, which presents an opportunity to forecast vegetation

  4. Water, ice, and meteorological measurements at South Cascade glacier, Washington, balance year 2003

    Science.gov (United States)

    Bidlake, William R.; Josberger, Edward G.; Savoca, Mark E.

    2005-01-01

    Winter snow accumulation and summer snow and ice ablation were measured at South Cascade Glacier, Washington, to estimate glacier mass-balance quantities for balance year 2003. The 2003 glacier-average maximum winter snow balance was 2.66 meters water equivalent, which was about equal to the average of such balances for the glacier since balance year 1959. The 2003 glacier summer balance (-4.76 meters water equivalent) was the most negative reported for the glacier, and the 2003 net balance (-2.10 meters water equivalent), was the second-most negative reported. The glacier 2003 annual (water year) balance was -1.89 meters water equivalent. The area of the glacier near the end of the balance year was 1.89 square kilometers, a decrease of 0.03 square kilometer from the previous year. The equilibrium-line altitude was higher than any part of the glacier; however, because snow remained along part of one side of the upper glacier, the accumulation-area ratio was 0.07. During September 13, 2002-September 13, 2003, the glacier terminus retreated at a rate of about 15 meters per year. Average speed of surface ice, computed using a series of vertical aerial photographs dating back to 2001, ranged from 2.2 to 21.8 meters per year. Runoff from the subbasin containing the glacier and from an adjacent non-glacierized basin was gaged during part of water year 2003. Air temperature, precipitation, atmospheric water-vapor pressure, wind speed, and incoming solar radiation were measured at selected locations on and near the glacier. Summer 2003 at the glacier was among the warmest for which data are available.

  5. Assessment of the terrestrial water balance using the global water availability and use model WaterGAP - status and challenges

    Science.gov (United States)

    Müller Schmied, Hannes; Döll, Petra

    2017-04-01

    The estimation of the World's water resources has a long tradition and numerous methods for quantification exists. The resulting numbers vary significantly, leaving room for improvement. Since some decades, global hydrological models (GHMs) are being used for large scale water budget assessments. GHMs are designed to represent the macro-scale hydrological processes and many of those models include human water management, e.g. irrigation or reservoir operation, making them currently the first choice for global scale assessments of the terrestrial water balance within the Anthropocene. The Water - Global Assessment and Prognosis (WaterGAP) is a model framework that comprises both the natural and human water dimension and is in development and application since the 1990s. In recent years, efforts were made to assess the sensitivity of water balance components to alternative climate forcing input data and, e.g., how this sensitivity is affected by WaterGAP's calibration scheme. This presentation shows the current best estimate of terrestrial water balance components as simulated with WaterGAP by 1) assessing global and continental water balance components for the climate period 1971-2000 and the IPCC reference period 1986-2005 for the most current WaterGAP version using a homogenized climate forcing data, 2) investigating variations of water balance components for a number of state-of-the-art climate forcing data and 3) discussing the benefit of the calibration approach for a better observation-data constrained global water budget. For the most current WaterGAP version 2.2b and a homogenized combination of the two WATCH Forcing Datasets, global scale (excluding Antarctica and Greenland) river discharge into oceans and inland sinks (Q) is assessed to be 40 000 km3 yr-1 for 1971-2000 and 39 200 km3 yr-1 for 1986-2005. Actual evapotranspiration (AET) is close to each other with around 70 600 (70 700) km3 yr-1 as well as water consumption with 1000 (1100) km3 yr-1. The

  6. Water balance of a small catchment with permeable soils in Ile-Ife area, southwester Nigeria

    International Nuclear Information System (INIS)

    Ogunkoya, O. O.

    2000-01-01

    Three - year and annual catchment water balances were drawn for a small l catchment (44 ha.) in southwestern Nigeria. The equation: P - Q - E T - Δs = O was not resolved. Rather, the terms on the left did not sum to zero. The residual, which are between 4% and 5% of total rainfall, were consistently negative. A probable source of error is the use of Thornthwaite's potential evaporation in estimating catchment evapotranspiration. Potential evapotranspiration is higher than actual evapotranspiration in the study area due to the limited evaporation opportunity during the approximately five - mouth dry season. Given that the study catchment had runoff patterns that are simi liar to those of larger rivers in the region the computed catchment water balance indicated that 37% of annual rainfall may be taken as the runoff coefficient for the region. This suggests that the engineer's coefficient (0.35 - 0.45) used in assessment of surface water resources in southwestern Nigeria, is reasonable

  7. Water and salt balance modelling to predict the effects of land-use changes in forested catchments. 1. Small catchment water balance model

    Science.gov (United States)

    Sivapalan, Murugesu; Ruprecht, John K.; Viney, Neil R.

    1996-03-01

    A long-term water balance model has been developed to predict the hydrological effects of land-use change (especially forest clearing) in small experimental catchments in the south-west of Western Australia. This small catchment model has been used as the building block for the development of a large catchment-scale model, and has also formed the basis for a coupled water and salt balance model, developed to predict the changes in stream salinity resulting from land-use and climate change. The application of the coupled salt and water balance model to predict stream salinities in two small experimental catchments, and the application of the large catchment-scale model to predict changes in water yield in a medium-sized catchment that is being mined for bauxite, are presented in Parts 2 and 3, respectively, of this series of papers.The small catchment model has been designed as a simple, robust, conceptually based model of the basic daily water balance fluxes in forested catchments. The responses of the catchment to rainfall and pan evaporation are conceptualized in terms of three interdependent subsurface stores A, B and F. Store A depicts a near-stream perched aquifer system; B represents a deeper, permanent groundwater system; and F is an intermediate, unsaturated infiltration store. The responses of these stores are characterized by a set of constitutive relations which involves a number of conceptual parameters. These parameters are estimated by calibration by comparing observed and predicted runoff. The model has performed very well in simulations carried out on Salmon and Wights, two small experimental catchments in the Collie River basin in south-west Western Australia. The results from the application of the model to these small catchments are presented in this paper.

  8. Impact of Water Recovery from Wastes on the Lunar Surface Mission Water Balance

    Science.gov (United States)

    Fisher, John W.; Hogan, John Andrew; Wignarajah, Kanapathipi; Pace, Gregory S.

    2010-01-01

    Future extended lunar surface missions will require extensive recovery of resources to reduce mission costs and enable self-sufficiency. Water is of particular importance due to its potential use for human consumption and hygiene, general cleaning, clothes washing, radiation shielding, cooling for extravehicular activity suits, and oxygen and hydrogen production. Various water sources are inherently present or are generated in lunar surface missions, and subject to recovery. They include: initial water stores, water contained in food, human and other solid wastes, wastewaters and associated brines, ISRU water, and scavenging from residual propellant in landers. This paper presents the results of an analysis of the contribution of water recovery from life support wastes on the overall water balance for lunar surface missions. Water in human wastes, metabolic activity and survival needs are well characterized and dependable figures are available. A detailed life support waste model was developed that summarizes the composition of life support wastes and their water content. Waste processing technologies were reviewed for their potential to recover that water. The recoverable water in waste is a significant contribution to the overall water balance. The value of this contribution is discussed in the context of the other major sources and loses of water. Combined with other analyses these results provide guidance for research and technology development and down-selection.

  9. Calculating the water and heat balances of the Eastern Mediterranean Basin using ocean modelling and available meteorological, hydrological and ocean data

    Directory of Open Access Journals (Sweden)

    Anders Omstedt

    2012-04-01

    Full Text Available Eastern Mediterranean water and heat balances wereanalysed over 52 years. The modelling uses a process-orientedapproach resolving the one-dimensional equations of momentum,heat and salt conservation; turbulence is modelled using a two-equation model. The results indicate that calculated temperature and salinity follow the reanalysed data well. The water balance in the Eastern Mediterranean basin was controlled by the difference between inflows and outflows through the Sicily Channel and by net precipitation. The freshwater component displayed a negative trend over the study period, indicating increasing salinity in the basin.The heat balance was controlled by heat loss from the water surface, solar radiation into the sea and heat flow through the Sicily Channel. Both solar radiation and net heat loss displayed increasing trends, probably due to decreased total cloud cover. In addition, the heat balance indicated a net import of approximately 9 W m-2 of heat to the Eastern Mediterranean Basin from the Western Basin.

  10. Water balance and ad libitum water intake in football players during a training session

    Directory of Open Access Journals (Sweden)

    Juan Diego Hernández-Camacho

    2016-01-01

    Full Text Available Introduction: It is known that hydration plays a crucial performance in sports performance. But a great number of studies assessing hydration during football practice have shown that many players have a dehydration state prior to this sport and that most players are not able to replace water loss by sweating with ad libitum water intake. Objectives: To analyze ad libitum water consumption, water balance, thirst sensation and rate of perceived exertion on a sample of young football players during a training session. Material and Methods: A total of 57 players from three teams in the youth category voluntary participated in this study. Weight was collected at the beginning and at the end of training; thirst sensation, rate of perceived exertion and quantification of ingested water were assessed. We used descriptive statistics, correlational and ratio analysis. Results: Mean global intake of players studied was 844.74±351.95mL and an average loss of body water 1274.56±385.82mL. Average rate of dehydration of the initial weight was 0.63%. Average score of 2.81±1.32 on the scale of thirst sensation was obtained. Discussion and conclusions: Rate of loss of body water similar to previous studies is obtained. The players were not able to replace water loss by drinking liquid ad libitum, so the intake of an amount previously scheduled could become helpful.

  11. Temporal 222Rn distributions to reveal groundwater discharge into desert lakes: Implication of water balance in the Badain Jaran Desert, China

    Science.gov (United States)

    Luo, Xin; Jiao, Jiu Jimmy; Wang, Xu-sheng; Liu, Kun

    2016-03-01

    How lake systems are maintained and water is balanced in the lake areas in the Badain Jaran Desert (BJD), northeast of China have been debated for about a decade. In this study, continuous 222Rn measurement is used to quantify groundwater discharge into two representative fresh and brine water lakes in the desert using a steady-state mass-balance model. Two empirical equations are used to calculate atmospheric evasion loss crossing the water-air interface of the lakes. Groundwater discharge rates yielded from the radon mass balance model based on the two empirical equations are well correlated and of almost the same values, confirming the validity of the model. The fresh water and brine lakes have a daily averaged groundwater discharge rate of 7.6 ± 1.7 mm d-1 and 6.4 ± 1.8 mm d-1, respectively. The temporal fluctuations of groundwater discharge show similar patterns to those of the lake water level, suggesting that the lakes are recharged from nearby groundwater. Assuming that all the lakes have the same discharge rate as the two studied lakes, total groundwater discharge into all the lakes in the desert is estimated to be 1.59 × 105 m3 d-1. A conceptual model of water balance within a desert lake catchment is proposed to characterize water behaviors within the catchment. This study sheds lights on the water balance in the BJD and is of significance in sustainable regional water resource utilization in such an ecologically fragile area.

  12. Utilization of balance equipment in windsurf beginners off water training.

    OpenAIRE

    Frič, Čestmír

    2013-01-01

    Work name: Utilization of balance equipment in windsurf beginners off water training. Aim of work: To determin and evaluate significance of balance equipment in off water training. Method: The method of comparative experiment have been used in this thesis. Than the obtained data were evaluated. It was nessesary to create and compare two groups of people, compound of young healthy individuals in the age 20 - 30 both male and female. The only condition for the research was their zero experience...

  13. WATER SUPPLY MEASUREMENTS IN MULTI-FAMILY BULDINGS AND DISCREPANCIES IN A WATER BALANCE

    Directory of Open Access Journals (Sweden)

    Tomasz Cichoń

    2016-06-01

    Full Text Available A large-scale implementation of individual water meters in water charging systems has created problems with a water shortage that have to be settled between real estate managers and water and sewage utilities. The article presents the observations and experiences from operation of a water metering system at the Krakow agglomeration. The studies have confirmed that many small leaks in installations, taps, faucets, flush toilets as well as system failures and the incidences of water stealing are still the factors responsible for significant differences in the water balance in the apartment buildings.

  14. The effects of salinity in the soil water balance: A Budyko's approach

    Science.gov (United States)

    Perri, S.; Viola, F.; Molini, A.

    2017-12-01

    Soil degradation and water scarcity pose important constraints on productivity and development of arid and semi-arid countries. Among the main causes of loss of soil fertility, aridification and soil salinization are deeply connected threats enhanced by climate change. Assessing water availability is fundamental for a large number of applications especially in arid regions. An approach often adopted to estimate the long-term rainfall partitioning into evapotranspiration and runoff is the Budyko's curve. However, the classical Budyko framework might not be able to properly reproduce the water balance in salt affected basins, especially under elevated soil salinization conditions. Salinity is a limiting factor for plant transpiration (as well as growth) affecting both short and long term soil moisture dynamics and ultimately the hydrologic balance. Soluble salts cause a reduction of soil water potential similar to the one arising from droughts, although plant adaptations to soil salinity show extremely different traits and can vary from species to species. In a similar context, the salt-tolerance plants are expected to control the amount of soil moisture lost to transpiration in saline soils, also because salinity reduces evaporation. We propose a simple framework to include the effects of salinization on the surface energy and water balance within a simple Budyko approach. By introducing the effects of salinity in the stochastic water balance we are able to include the influence of vegetation type (i.e. in terms of salt-tolerance) on evapotranspiration-runoff partitioning under different climatic conditions. The water balance components are thus compared to data obtained from arid salt-affected regions.

  15. Water and heat balances in Doñana wetlands

    Directory of Open Access Journals (Sweden)

    A. Ramos-Fuertes

    2016-10-01

    Full Text Available This paper presents the main results of the study of water balance and surface heat balance in the Doñana marshlands. The study was based on a broad base of hydrometeorological data taken at 10 minute intervals from 2006 to 2011 by a network of six measuring stations located in areas of vegetation-free marsh. This information is used to characterize, at different time scales, the thermal behavior of the marsh by analyzing its hydrometeorology centering on the surface heat fluxes. Thus, we have modeled and analyzed the heat flux between the water and flooded soil and the processes of heat transfer between the water surface and the atmosphere. Special attention has been paid to evaporation, on which the marsh draining process depends.

  16. Water Balance and Forest Productivity in Mediterranean Mountain Environments

    Directory of Open Access Journals (Sweden)

    Giuseppe Scarascia-Mugnozza

    2010-06-01

    Full Text Available The availability of water resources is one of the major drivers affecting forest and agricultural productivity. The sensitivity of Mediterranean forest species to water shortage is becoming even more relevant in relation to climate changes, that for Southern Europe could lead to an increase in temperature of 2 to 3 °C, paralleled by a decrease of 5 to 15% of summer rainfall. It is then important to study the relationship between water balance and productivity of important forest tree species such as beech and mountain pines that represent the upper limit of forest vegetation in almost all the Apennines range. In the present paper, the measurements of water balance, evapotranspiration, carbon exchange and productivity in beech and pine forests of central-southern Italy (Abruzzo and Calabria regions are reported. The results are obtained in the course of several years of experimentation with innovative techniques and integrated at the canopy level.

  17. An Evaluation Tool for CONUS-Scale Estimates of Components of the Water Balance

    Science.gov (United States)

    Saxe, S.; Hay, L.; Farmer, W. H.; Markstrom, S. L.; Kiang, J. E.

    2016-12-01

    Numerous research groups are independently developing data products to represent various components of the water balance (e.g. runoff, evapotranspiration, recharge, snow water equivalent, soil moisture, and climate) at the scale of the conterminous United States. These data products are derived from a range of sources, including direct measurement, remotely-sensed measurement, and statistical and deterministic model simulations. An evaluation tool is needed to compare these data products and the components of the water balance they contain in order to identify the gaps in the understanding and representation of continental-scale hydrologic processes. An ideal tool will be an objective, universally agreed upon, framework to address questions related to closing the water balance. This type of generic, model agnostic evaluation tool would facilitate collaboration amongst different hydrologic research groups and improve modeling capabilities with respect to continental-scale water resources. By adopting a comprehensive framework to consider hydrologic modeling in the context of a complete water balance, it is possible to identify weaknesses in process modeling, data product representation and regional hydrologic variation. As part of its National Water Census initiative, the U.S. Geological survey is facilitating this dialogue to developing prototype evaluation tools.

  18. Modeling Regional Soil Water Balance in Farmland of the Middle Reaches of Heihe River Basin

    Directory of Open Access Journals (Sweden)

    Jiang Li

    2017-11-01

    Full Text Available Quantifying components of soil water balance in farmland of the middle reaches of Heihe River Basin is essential for efficiently scheduling and allocating limited water resources for irrigation in this arid region. A soil water balance model based on empirical assumptions in the vadose zone of farmland was developed and simulation results were compared/validated with results by the numerical model HYDRUS-1D. Results showed a good coherence between the simulated results of the water balance models and the HYDRUS-1D model in soil water storage, evapotranspiration, deep percolation and groundwater recharge, which indicated that the water balance model was suitable for simulating soil water movement in the study area. Considering the spatial distribution of cropping patterns, groundwater depth and agricultural management, ArcGIS was applied for the pre-/post-processing of the water balance model to quantify the spatial distribution of components of soil water balance in the major cropland in middle reaches of Heihe River Basin. Then, distributions of components of soil water balance in the major cropland under different water-saving irrigation practices during the growing season were predicted and discussed. Simulation results demonstrated that evapotranspiration of the main crops would be more prominently influenced by irrigation quota under deep groundwater depth than that under shallow groundwater depth. Groundwater recharge would increase with the increase of irrigation quota and decrease with the increase of groundwater depth. In general, when groundwater depth reached 3 m, groundwater recharge from root zone was negligible for spring wheat. While when it reached 6 m, groundwater recharge was negligible for maize. Water-saving irrigation practices would help to reduce groundwater recharge with a slight decrease of crop water consumption.

  19. Cumulative impacts of hydroelectric development on the fresh water balance in Hudson Bay

    International Nuclear Information System (INIS)

    Anctil, F.; Couture, R.

    1994-01-01

    A study is presented of the impacts of hydroelectric development on the surface water layer of Hudson Bay, including James Bay and the Foxe Basin. These impacts are directly related to the modifications in the fresh water balance of Hudson Bay and originate from the management of hydroelectric complexes. The fresh water balance is determined by identifying, at different scales, the modifications caused by each complex. The main inputs are the freezing and thawing of the ice cover, runoff water, and mass exchange at the air-water interface. Three spatial scales were used to obtain the resolution required to document the cumulative effects of fresh water balance modifications on the water surface layer, one each for Hudson Bay, Hudson Strait, and the Labrador Sea. Finally, the addition of the proposed Great Whale hydroelectric complex is examined from the available information and forecasts. 18 refs,. 6 figs., 1 tab

  20. Water and solute balances as a basis for sustainable irrigation agriculture

    Science.gov (United States)

    Pla-Sentís, Ildefonso

    2015-04-01

    The growing development of irrigated agriculture is necessary for the sustainable production of the food required by the increasing World's population. Such development is limited by the increasing scarcity and low quality of the available water resources and by the competitive use of the water for other purposes. There are also increasing problems of contamination of surface and ground waters to be used for other purposes by the drainage effluents of irrigated lands. Irrigation and drainage may cause drastic changes in the regime and balance of water and solutes (salts, sodium, contaminants) in the soil profile, resulting in problems of water supply to crops and problems of salinization, sodification and contamination of soils and ground waters. This is affected by climate, crops, soils, ground water depth, irrigation and groundwater composition, and by irrigation and drainage management. In order to predict and prevent such problems for a sustainable irrigated agriculture and increased efficiency in water use, under each particular set of conditions, there have to be considered both the hydrological, physical and chemical processes determining such water and solute balances in the soil profile. In this contribution there are proposed the new versions of two modeling approaches (SOMORE and SALSODIMAR) to predict those balances and to guide irrigation water use and management, integrating the different factors involved in such processes. Examples of their application under Mediterranean and tropical climate conditions are also presented.

  1. A regional water balance for the WIPP site and surrounding area

    International Nuclear Information System (INIS)

    Hunter, R.L.

    1987-01-01

    A water balance or budget is developed as an accounting of the components of a closed hydrologic system. In the WIPP study area, water-budget techniques have previously been used to compute leakage from Lake Avalon and from potash refinery spoil ponds. A general expression for a closed hydrologic system is presented. In a developed area like the WIPP region, the water budget must include many usage factors, such as municipal or industrial pumpage. In the WIPP water-budget study area, inflows are precipitation, surface- and ground-water inflow, and the artificial addition of surface and ground water. Outflows are surface runoff, evaporation and transpiration, and ground-water outflow. Changes in storage in the WIPP region have also been documented. The WIPP water balance described here is based on a combination of long-term averages and figures for 1980. 12 refs., 5 figs., 1 tab

  2. Water balance versus land surface model in the simulation of Rhine river discharges

    NARCIS (Netherlands)

    Hurkmans, R.T.W.L.; Moel, de H.; Aerts, J.C.J.H.; Troch, P.A.

    2008-01-01

    Accurate streamflow simulations in large river basins are crucial to predict timing and magnitude of floods and droughts and to assess the hydrological impacts of climate change. Water balance models have been used frequently for these purposes. Compared to water balance models, however, land

  3. Salt balance, fresh water residence time and budget for non ...

    African Journals Online (AJOL)

    Water and salt budgets suggest that in order to balance the inflow and outflow of water at Makoba bay, there is net flux of water from the bay to the open ocean during wet season. Residual salt fluxes between the bay and the open ocean indicate advective salt export. Exchange of water between the bay with the open ocean ...

  4. Acid-base balance and hydration status following consumption of mineral-based alkaline bottled water

    Directory of Open Access Journals (Sweden)

    Heil Daniel P

    2010-09-01

    Full Text Available Abstract Background The present study sought to determine whether the consumption of a mineral-rich alkalizing (AK bottled water could improve both acid-base balance and hydration status in young healthy adults under free-living conditions. The AK water contains a naturally high mineral content along with Alka-PlexLiquid™, a dissolved supplement that increases the mineral content and gives the water an alkalizing pH of 10.0. Methods Thirty-eight subjects were matched by gender and self-reported physical activity (SRPA, hrs/week and then split into Control (12 women, 7 men; Mean +/- SD: 23 +/- 2 yrs; 7.2 +/- 3.6 hrs/week SRPA and Experimental (13 women, 6 men; 22 +/- 2 yrs; 6.4 +/- 4.0 hrs/week SRPA groups. The Control group consumed non-mineralized placebo bottled water over a 4-week period while the Experimental group consumed the placebo water during the 1st and 4th weeks and the AK water during the middle 2-week treatment period. Fingertip blood and 24-hour urine samples were collected three times each week for subsequent measures of blood and urine osmolality and pH, as well as total urine volume. Dependent variables were analyzed using multivariate repeated measures ANOVA with post-hoc focused on evaluating changes over time within Control and Experimental groups (alpha = 0.05. Results There were no significant changes in any of the dependent variables for the Control group. The Experimental group, however, showed significant increases in both the blood and urine pH (6.23 to 7.07 and 7.52 to 7.69, respectively, a decreased blood and increased urine osmolality, and a decreased urine output (2.51 to 2.05 L/day, all during the second week of the treatment period (P Conclusions Consumption of AK water was associated with improved acid-base balance (i.e., an alkalization of the blood and urine and hydration status when consumed under free-living conditions. In contrast, subjects who consumed the placebo bottled water showed no changes over the

  5. Meal consumption is ineffective at maintaining or correcting water balance in a desert lizard, Heloderma suspectum.

    Science.gov (United States)

    Wright, Christian D; Jackson, Marin L; DeNardo, Dale F

    2013-04-15

    Many xeric organisms maintain water balance by relying on dietary and metabolic water rather than free water, even when free water may be available. For such organisms, hydric state may influence foraging decisions, since meal consumption is meeting both energy and water demands. To understand foraging decisions it is vital to understand the role of dietary water in maintaining water balance. We investigated whether meal consumption was sufficient to maintain water balance in captive Gila monsters (Heloderma suspectum) at varying levels of dehydration. Gila monsters could not maintain water balance over long time scales through meal consumption alone. Animals fed a single meal took no longer to dehydrate than controls when both groups were deprived of free water. Additionally, meal consumption imparts an acute short-term hydric cost regardless of hydration state. Meal consumption typically resulted in a significant elevation in osmolality at 6 h post-feeding, and plasma osmolality never fell below pre-feeding levels despite high water content (~70%) of meals. These results failed to support our hypothesis that dietary water is valuable to Gila monsters during seasonal drought. When considered in conjunction with previous research, these results demonstrate that Gila monsters, unlike many xeric species, are heavily reliant on seasonal rainfall and the resulting free-standing water to maintain water balance.

  6. EQUILIBRIUM OF WATER BALANCE AS A BASIC PRECONDITION OF PROGRESSIVE DEVELOPMENT OF LAND AREA

    Directory of Open Access Journals (Sweden)

    K KUDRNA

    2005-04-01

    Full Text Available The proportion of water balance components – precipitation, transpiration, evaporation, underground waters and surface runoff – is a determining factor of stabile development of land area. But this proportion can be considerably disturbed and is permanently changing. Certain many-year averages are usually accepted as a stable state. That is why, in the presented work, we have tried to defi ne water balance on symmetry and invariance principles, to express it as a limit state, which would characterize it as a natural principle and enable comparison with the present balance.

  7. Impacts of climate and management on water balance and nitrogen leaching from montane grassland soils

    Science.gov (United States)

    Fu, Jin; Gasche, Rainer; Wang, Na; Lu, Haiyan; Butterbach-Bahl, Klaus; Kiese, Ralf

    2017-04-01

    The impacts of climate and management on the water balance and nutrient leaching of montane grasslands have rarely been investigated, though such ecosystems may represent a major source for ground and surface water nitrates. In this study nitrogen (nitrate, ammonium, dissolved organic nitrogen) and dissolved organic carbon leaching as well as water balance components (precipitation, evapotranspiration, and groundwater recharge) were quantified (2012-2014) by means of replicated (N=3 per site/ treatment) measurements of weighable grassland lysimeters (1 m2 area, 1.2 m soil depth) at three sites (E860: 860 m a.s.l., E770: 770 m a.s.l. and E600: 600 m a.s.l.) in the pre-alpine region of S-Germany. Two grassland management strategies were investigated: a) intensive management with 5 cuts per year and cattle slurry application rates of 280 kg N ha-1 yr-1, and b) extensive management with 3 cuts per year and cattle slurry application rates of 56 kg N ha-1 yr-1. Our results show that at E600, the site with highest air temperature (8.6 °C) and lowest precipitation (981.9 mm), evapotranspiration losses were 100.7 mm higher as at the E860 site, i.e. the site with lowest mean annual air temperature (6.5 °C) and highest precipitation (1359.3 mm). On the other hand groundwater recharge was substantial lower at E600 (-440.9 mm) as compared to E860. Compared to climate, impacts of grassland management on water balance components were negligible. However, intensive management significantly increased mean total nitrogen leaching rates across sites as compared to extensive management from 2.6 kg N ha-1 year-1 (range: 0.5-6.0 kg N ha-1 year-1) to 4.8 kg N ha-1 year-1 (range: 0.9-12.9 kg N ha-1 year-1). N leaching losses were dominated by nitrate (64.7 %) and equally less by ammonium (14.6 %) and DON (20.7 %). The rather low rates of N leaching (0.8 - 6.9 % of total applied N) suggest a highly efficient nitrogen uptake by plants as measured by plant total N content at harvest

  8. Estimating basin scale evapotranspiration (ET) by water balance and remote sensing methods

    Science.gov (United States)

    Senay, G.B.; Leake, S.; Nagler, P.L.; Artan, G.; Dickinson, J.; Cordova, J.T.; Glenn, E.P.

    2011-01-01

    Evapotranspiration (ET) is an important hydrological process that can be studied and estimated at multiple spatial scales ranging from a leaf to a river basin. We present a review of methods in estimating basin scale ET and its applications in understanding basin water balance dynamics. The review focuses on two aspects of ET: (i) how the basin scale water balance approach is used to estimate ET; and (ii) how ‘direct’ measurement and modelling approaches are used to estimate basin scale ET. Obviously, the basin water balance-based ET requires the availability of good precipitation and discharge data to calculate ET as a residual on longer time scales (annual) where net storage changes are assumed to be negligible. ET estimated from such a basin water balance principle is generally used for validating the performance of ET models. On the other hand, many of the direct estimation methods involve the use of remotely sensed data to estimate spatially explicit ET and use basin-wide averaging to estimate basin scale ET. The direct methods can be grouped into soil moisture balance modelling, satellite-based vegetation index methods, and methods based on satellite land surface temperature measurements that convert potential ET into actual ET using a proportionality relationship. The review also includes the use of complementary ET estimation principles for large area applications. The review identifies the need to compare and evaluate the different ET approaches using standard data sets in basins covering different hydro-climatic regions of the world.

  9. Water, ice, and meteorological measurements at South Cascade Glacier, Washington, balance year 2002

    Science.gov (United States)

    Bidlake, William R.; Josberger, Edward G.; Savoca, Mark E.

    2004-01-01

    Winter snow accumulation and summer snow and ice ablation were measured at South Cascade Glacier, Washington, to estimate glacier mass balance quantities for balance year 2002. The 2002 glacier-average maximum winter snow balance was 4.02 meters, the second largest since 1959. The 2002 glacier summer, net, and annual (water year) balances were -3.47, 0.55, and 0.54 meters, respectively. The area of the glacier near the end of the balance year was 1.92 square kilometers, and the equilibrium-line altitude and the accumulation area ratio were 1,820 meters and 0.84, respectively. During September 20, 2001 to September 13, 2002, the terminus retreated 4 meters, and computed average ice speeds in the ablation area ranged from 7.8 to 20.7 meters per year. Runoff from the subbasin containing the glacier and from an adjacent non-glacierized basin were measured during part of the 2002 water year. Air temperature, precipitation, atmospheric water-vapor pressure, wind speed and incoming solar radiation were measured at selected locations near the glacier.

  10. Effects of balance and proprioceptive training on total hip and knee replacement rehabilitation: A systematic review and meta-analysis.

    Science.gov (United States)

    Domínguez-Navarro, Fernando; Igual-Camacho, Celedonia; Silvestre-Muñoz, Antonio; Roig-Casasús, Sergio; Blasco, José María

    2018-05-01

    Balance and proprioceptive deficits are frequently persistent after total joint replacement, limiting functionality and involving altered movement patterns and difficulties in walking and maintaining postural control among patients. The goal of this systematic review was to evaluate the short- and mid-term effects of proprioceptive and balance training for patients undergoing total knee and hip replacement. This is a systematic review of literature. MEDLINE, Embase, Cochrane Library, PEDro, and Scopus were the databases searched. The review included randomized clinical trials in which the experimental groups underwent a training aimed at improving balance and proprioception, in addition to conventional care. The studies had to assess at least one of the following outcomes: self-reported functionality or balance (primary outcomes), knee function, pain, falls, or quality of life. Eight trials were included, involving 567 participants. The quantitative synthesis found a moderate to high significant effect of balance and proprioceptive trainings on self-reported functionality and balance after total knee replacement. The effects were maintained at mid-term in terms of balance alone. Conversely, preoperative training did not enhance outcomes after total hip arthroplasty. The synthesis showed that, in clinical terms, balance trainings are a convenient complement to conventional physiotherapy care to produce an impact on balance and functionality after knee replacement. If outcomes such as improvement in pain, knee range of movement, or patient quality of life are to be promoted, it would be advisable to explore alternative proposals specifically targeting these goals. Further research is needed to confirm or discard the current evidence ultimately, predominantly in terms of the effects on the hips and those yielded by preoperative interventions. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Gap-Balancing versus Measured Resection Technique in Total Knee Arthroplasty: A Comparison Study.

    Science.gov (United States)

    Churchill, Jessica L; Khlopas, Anton; Sultan, Assem A; Harwin, Steven F; Mont, Michael A

    2018-01-01

    Proper femoral component alignment in the axial plane during total knee arthroplasty (TKA) depends on accurate bone cuts and soft tissue balancing. Two methods that are used to achieve this are "measured resection" and "gap balancing." However, a controversy exists as to which method is more accurate and leads to better outcomes. Therefore, the purpose of this study was to evaluate: (1) implant survivorship, (2) patient outcomes, (3) complications, and (4) radiographic analysis comparing patients who underwent TKA with either gap-balancing or measured resection techniques. A total of 214 consecutive patients (221 knees) underwent primary TKA by a single surgeon between 2011 and 2012. Component alignment was achieved by using measured resection in 116 knees and gap balancing was used in 105 knees. The patients had a mean age of 66 years (range, 44-86 years) and a mean body mass index of 32 kg/m 2 (range, 22-52 kg/m 2 ). Patient range-of-motion (ROM) and Knee Society (KS) function and pain scores, and radiographic assessment, were assessed preoperatively and postoperatively at ∼6 weeks, 3 months, 1 year, and then annually. The mean follow-up time was 3 years. A Kaplan-Meier's analysis was performed to calculate the survivorship. The aseptic survivorship was 98% in both the measured resection and gap-balancing groups. The mean ROM was not significantly different between the measured resection and gap-balancing groups (123 vs. 123 degrees, p  = 0.990). There were no significant differences between the two groups in terms of the KS function scores (86 vs. 85 points, p  = 0.829) or the KS pain scores (93 vs. 92 points, p  = 0.425). Otherwise, the radiographic evaluation at latest follow-up did not demonstrate any evidence of progressive radiolucencies or loosening, of any prosthesis. The results of this study found that at a mean follow-up of 3 years, both the measured resection and gap-balancing techniques achieved excellent survivorship and

  12. Use of total body electrical conductivity (TOBEC) to determine total body water

    International Nuclear Information System (INIS)

    Cochran, W.; Wong, W.; Sheng, H.P.; Klein, P.; Klish, W.

    1986-01-01

    Total body electrical conductivity (TOBEC) has been introduced as a safe and rapid method to estimate body composition in infants and adults. Recently, a second generation instrument that operates in a scanning mode has been developed. A study was undertaken to calibrate this new instrument and to assess the feasibility of its use in estimating total body water. Six healthy adults, 3 males and 3 females, ranging in age from 25 to 57 years, and in weight from 43.3 to 104.7 kg were analyzed. Simultaneously, determinations of total body water were made by standard dilutional techniques using H 2 18 O. A baseline plasma sample was obtained and 60 mg 18 O/kg was given orally as H 2 18 O. Five hr later, a postdose plasma sample was obtained. The 18 O/ 16 O ratio in the plasma samples was determined as CO 2 by gas-isotope-ratio mass spectrometry and used to calculate the H 2 18 O volume of distribution. The total body water values ranged from 26.35 to 58.02 and represented 51 to 58% of body weight. There was good linear correlation between the total body water measurement and its phase average (TOBEC number) with a linear correlation coefficient of 0.998. The standard error of the estimate was 0.98. In addition to estimating fat and fat-free mass, the TOBEC method also estimates total body water with excellent correlation to physical dilutions methods

  13. Water balance of pine forests: Synthesis of new and published results

    Science.gov (United States)

    Pantana Tor-ngern; Ram Oren; Sari Palmroth; Kimberly Novick; Andrew Oishi; Sune Linder; Mikaell Ottosson-Lofvenius; Torgny Nasholm

    2018-01-01

    The forest hydrologic cycle is expected to have important feedback responses to climate change, impacting processes ranging from local water supply and primary productivity to global water and energy cycles. Here, we analyzed water budgets of pine forests worldwide. We first estimated local water balance of forests dominated by two wide-ranging species: Pinus...

  14. Water Balances in the Eastern Mediterranean | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    As a result, the importance of fresh water to economic development, quality of life, ... Case studies from Lebanon, Israel, Palestine, Jordan, Turkey, and North ... balances and propose methods for regional cooperation in the management of ... An IDRC delegation will join international delegates and city representatives at the ...

  15. Sensible heat balance measurements of soil water evaporation beneath a maize canopy

    Science.gov (United States)

    Soil water evaporation is an important component of the water budget in a cropped field. Few methods are available for continuous and independent measurement of soil water evaporation. A sensible heat balance (SHB) approach has recently been demonstrated for continuously determining soil water evapo...

  16. Radium balance in discharge waters from coal mines in Poland the ecological impact of underground water treatment

    International Nuclear Information System (INIS)

    Chalupnik, S.; Wysocka, M.

    2008-01-01

    Saline waters from underground coal mines in Poland often contain natural radioactive isotopes, mainly 226 Ra from the uranium decay series and 228 Ra from the thorium series. More than 70% of the total amount of radium remains underground as radioactive deposits due to spontaneous co-precipitation or water treatment technologies, but several tens of MBq of 226 Ra and even higher activity of 228 Ra are released daily into the rivers along with the other mine effluents from all Polish coal mines. Mine waters can have a severe impact on the natural environment, mainly due to its salinity. Additionally high levels of radium concentration in river waters, bottom sediments and vegetation were also observed. Sometimes radium concentrations in rivers exceeded 0.7 kBq/m 3 , which was the permitted level for wastewaters under Polish law. The investigations described here were carried out for all coal mines and on this basis the total radium balance in effluents has been calculated. Measurements in the vicinity of mine settling ponds and in rivers have given an opportunity to study radium behaviour in river waters and to assess the degree of contamination. For removal of radium from saline waters a method of purification has been developed and implemented in full technical scale in two of Polish coal mines. The purification station in Piast Colliery was unique, the first underground installation for the removal of radium isotopes from saline waters. Very good results have been achieved - approximately 6 m 3 /min of radium-bearing waters were treated there, more than 100 MBq of 226 Ra and 228 Ra remained underground each day. Purification has been started in 1999, therefore a lot of experiences have been gathered during this period. Since year 2006, a new purification station is working in another colliery, Ziemowit, at the level -650 meters. Barium chloride is used as a cleaning , agent, and amount of water to be purified is reaching 9 m 3 /min. Technical measures such as

  17. Total Water Management, the New Paradigm for Urban Water Systems

    Science.gov (United States)

    There is a growing need for urban water managers to take a more holistic view of their water resource systems as population growth, urbanization, and current resource management practices put different stresses on local water resources and urban infrastructure. Total Water Manag...

  18. Channel water balance and exchange with subsurface flow along a mountain headwater stream in Montana, United States

    Science.gov (United States)

    R.A. Payn; M.N. Gooseff; B.L. McGlynn; K.E. Bencala; S.M. Wondzell

    2009-01-01

    Channel water balances of contiguous reaches along streams represent a poorly understood scale of stream-subsurface interaction. We measured reach water balances along a headwater stream in Montana, United States, during summer base flow recessions. Reach water balances were estimated from series of tracer tests in 13 consecutive reaches delineated evenly along a 2.6-...

  19. Evaluation of a mass-balance approach to determine consumptive water use in northeastern Illinois

    Science.gov (United States)

    Mills, Patrick C.; Duncker, James J.; Over, Thomas M.; Marian Domanski,; ,; Engel, Frank

    2014-01-01

    A principal component of evaluating and managing water use is consumptive use. This is the portion of water withdrawn for a particular use, such as residential, which is evaporated, transpired, incorporated into products or crops, consumed by humans or livestock, or otherwise removed from the immediate water environment. The amount of consumptive use may be estimated by a water (mass)-balance approach; however, because of the difficulty of obtaining necessary data, its application typically is restricted to the facility scale. The general governing mass-balance equation is: Consumptive use = Water supplied - Return flows.

  20. bathymetric survey and estimation of the water balance of lake

    African Journals Online (AJOL)

    Preferred Customer

    The average annual open water evaporation, estimated from Colorado Class-A Pan records and Penman modified method is 23.49 million cubic .... Therefore, the ∆S term in equation 2 can be replaced by the net unmeasured ground .... appears that the steady-state water balance is reasonable. Because, the residual value ...

  1. Evaluation of water balance in a population of older adults. A case control study.

    Science.gov (United States)

    Malisova, Olga; Poulia, Kalliopi-Anna; Kolyzoi, Kleoniki; Lysandropoulos, Athanasios; Sfendouraki, Kalliopi; Kapsokefalou, Maria

    2018-04-01

    Older adults are at risk for dehydration and its' potentially life-threatening consequences. Unrecognized dehydration can complicate chronic medical problems and increase morbidity. The objective of the study was to estimate water balance, intake and loss in elderly people living in Greece using the Water Balance Questionnaire (WBQ). WBQ was administered in winter to 108 independents (65-81yrs) (Group A), 94 independents (82-92yrs) (Group B) and 51 hospitalized (65-92yrs) (Group C). A database from previous study of 335 adults (18-65yrs) (Control Group) used for comparison. Mean estimates of water balance, intake and loss were, respectively, for Group A -749 ± 1386 mL/day, 2571 ± 739 mL/day and 3320 ± 1216 mL/day, for Group B -38 ± 933 mL/day, 2571 ± 739 mL/day and 3320 ± 1216 mL/day, for Group C 64 ± 1399 mL/day, 2586 ± 1071 mL/day and 2522 ± 1048 mL/day and for Control Group -253 ± 1495 mL/day, 2912 ± 1025 mL/day and 3492 ± 2099 mL/day. Significant differences were detected in water balance, intake and loss (p < 0.01). Water balance and water intake in Group A was the lowest. For Groups A, B, C and Control, contribution of solid foods to water intake was 36%, 29%, 32%, 25%, of drinking water was 32%, 48%, 45%, 47%, of beverages was 32%, 23%, 23% and 28% respectively. Significant differences observed in the contribution of drinking water and beverages (p < 0.01). Group A had lower water balance and water intake. Groups B and C had lower water intake from beverages. Copyright © 2018 European Society for Clinical Nutrition and Metabolism. Published by Elsevier Ltd. All rights reserved.

  2. Development and application of the Qausi Distributed Water Balance model (QDWB in the Neishaboor-Rokh watershed

    Directory of Open Access Journals (Sweden)

    sajjad razavi

    2017-03-01

    Full Text Available Limitation of water resources in Iran motivates sustaining and preserving of the resources in order to supply future water needs. Fulfilling these objectives will not be possible unless having accurate water balance of watersheds. The purpose of this study is to estimate the water balance parameters using a distributed method. The large number of distributed models and methods was studied and “Quasi Distributed Water Balance model” (QDWB was written in the MATLAB programming environment. To conduct this model, it is needed that each data layer (precipitation, potential evapotranspiration, land use, soil data,.. to be converted into grid format. In this research the 500m * 500m cell size was used and water balance parameters for each cell was estimated. Runoff and deep percolation obtained from surface balance equation and irrigation needs were estimated based on soil moisture deficit. The study area of 9157 square kilometers is Neyshabour- Rokh watershed. The results showed there is a good correlation between water balance parameters such as precipitation-runoff, precipitation-evapotranspiration, and precipitation- deep percoulation and demonstrate that QDWB model is consistent with the basin hydrological process.Change in soil moisture at basin wide is 1 MCM in 1388-89 and 40 MCM in 1380-81. The evapotranspiration results from a distributed model” SWAT” and QDWB model were in good agreement.

  3. The Elements of Water Balance in the Changing Climate in Poland

    Directory of Open Access Journals (Sweden)

    Małgorzata Szwed

    2015-01-01

    Full Text Available Strong global warming has been observed in the last three decades. Central Europe, including Poland, is not an exception. Moreover, climate projections for Poland foresee further warming as well as changes in the spatial and seasonal distribution and quantity of precipitation. However, climate models do not agree on the sign of change of precipitation. In Poland precipitation is projected to decrease in summer (this finding is not robust, being model-dependent and to increase in winter. Therefore, there is still considerable uncertainty regarding likely climate change impacts on water resources in Poland. However, there is no doubt that changes in the thermal characteristics as well as in precipitation will influence changes in the water balance of the country. In this study, the components of climatic water balance, that is, precipitation, evaporation, and runoff, are calculated for the average conditions in the control period of 1961–1990 and in the future (2071–2100 in Poland. The changes of the water balance components for the present and for the future are compared and analysed. Due to insufficient consistency between climate models a possible range of changes should be presented; hence the multimodel projections from ENSEMBLES Project of the European Union are used in this study.

  4. Water balance in the complex mountainous terrain of Bhutan and linkages to land use

    Directory of Open Access Journals (Sweden)

    Ugyen Dorji

    2016-09-01

    Study Focus: Located in the Himalayas with elevation ranging 100–7550 m and with an area equivalent to Switzerland, Bhutan has great biodiversity despite its small area. A monsoon-dominated climate causes generally wet summer and dry winter. Bhutan is highly dependent of climatic conditions for its developmental activities. Using multiple regression analysis we have established models to predict the evapotranspiration (ETo and water balance and test the linkage to vegetation and land cover using meteorological data from 70 weather stations across Bhutan. Temperature-based ETo equations were evaluated in reference to the Penman-Monteith (PM method and a calibrated Hargreaves (H equation was used for computing the ETo. New Hydrological Insights for the Region. The calibrated Hargreaves equation gave good estimates of average daily ETo comparable to the PM ETo. The spatial variation in PM ETo is linked to variation in sunshine hours in summer and temperature in other seasons. Seasonal and annual ETo was mainly affected by elevation and latitude, which is linked to temperature and sunshine duration. Precipitation and water balance correlated positively with the Southern Oscillation Index (SOI while ETo correlated negatively. Our models for predicting ETo and water balances performed clearly better than the global CRU gridded data for Bhutan. A positive water balance is found in broadleaf forest areas and small or negative water balance for coniferous forests.

  5. Effects of water addition to total mixed ration on water intake, nutrient digestibility, wool cortisol and blood indices in Corriedale ewes.

    Science.gov (United States)

    Nejad, Jalil Ghassemi; Kim, Byong-Wan; Lee, Bae-Hun; Kim, Ji-Yung; Sung, Kyung-Il

    2017-10-01

    The objective of this study was to determine the effect of adding water to total mixed ration (TMR) on fresh water intake, nutrient digestibility, wool cortisol, and blood indices in Corriedale ewes under hot and humid conditions. Nine non-pregnant Corriedale ewes (ave. body weight = 41±3.5 kg) were individually fed diets based on maintenance requirements in metabolic crates. Ewes were assigned to three treatment groups according to a triplicate 3×3 Latin Square design for 3 periods of 21 days duration each (9 ewes per treatment, 27 replications). Treatments were TMR (crude protein [CP] = 16.1, total digestible nutrients = 69.1%) moisture levels for 40%, 50%, and 60%. No differences were found in body weight gain among all treatment groups (p>0.05). Nitrogen balance including digestible N, retained N, and urinary and fecal N showed no change among the treatment groups (p>0.05). Fresh water intake was the lower in 50% TMR moisture group than in the other groups (p0.05). No significant difference was observed for serum protein, blood urea nitrogen, glucose, and triglyceride among the treatment groups (p>0.05). Wool and blood cortisol were not different among the treatment groups (p>0.05). Blood hematology including red blood cell, white blood cells, hemoglobin, hematocrit, basophils, and eosinophils were not different among the treatment groups (p>0.05). It is concluded that TMR moisture at 40%, 50%, and 60% had no effects on N balance parameters, and nutrient digestibilities except for the ether extract under hot and humid conditions. Additionally there were no effects on stress conditions include wool cortisol, as well as blood cortisol levels of ewes.

  6. Assessing the impact of climate variability on catchment water balance and vegetation cover

    Directory of Open Access Journals (Sweden)

    X. Xu

    2012-01-01

    Full Text Available Understanding the interactions among climate, vegetation cover and the water cycle lies at the heart of the study of watershed ecohydrology. Recently, considerable attention is being paid to the effect of climate variability on catchment water balance and also associated vegetation cover. In this paper, we investigate the general pattern of long-term water balance and vegetation cover (as reflected by fPAR among 193 study catchments in Australia through statistical analysis. We then employ the elasticity analysis approach for quantifying the effects of climate variability on hydrologic partitioning (including total, surface and subsurface runoff and on vegetation cover (including total, woody and non-woody vegetation cover. Based on the results of statistical analysis, we conclude that annual runoff (R, evapotranspiration (E and runoff coefficient (R/P increase with vegetation cover for catchments in which woody vegetation is dominant and annual precipitation is relatively high. Control of water available on annual evapotranspiration in non-woody dominated catchments is relatively stronger compared to woody dominated ones. The ratio of subsurface runoff to total runoff (Rg/R also increases with woody vegetation cover. Through the elasticity analysis of catchment runoff, it is shown that precipitation (P in current year is the most important factor affecting the change in annual total runoff (R, surface runoff (Rs and subsurface runoff (Rg. The significance of other controlling factors is in the order of annual precipitation in previous years (P−1 and P−2, which represents the net effect of soil moisture and annual mean temperature (T in current year. Change of P by +1% causes a +3.35% change of R, a +3.47% change of Rs and a +2.89% change of

  7. Modelling raster-based monthly water balance components for Europe

    Energy Technology Data Exchange (ETDEWEB)

    Ulmen, C.

    2000-11-01

    The terrestrial runoff component is a comparatively small but sensitive and thus significant quantity in the global energy and water cycle at the interface between landmass and atmosphere. As opposed to soil moisture and evapotranspiration which critically determine water vapour fluxes and thus water and energy transport, it can be measured as an integrated quantity over a large area, i.e. the river basin. This peculiarity makes terrestrial runoff ideally suited for the calibration, verification and validation of general circulation models (GCMs). Gauging stations are not homogeneously distributed in space. Moreover, time series are not necessarily continuously measured nor do they in general have overlapping time periods. To overcome this problems with regard to regular grid spacing used in GCMs, different methods can be applied to transform irregular data to regular so called gridded runoff fields. The present work aims to directly compute the gridded components of the monthly water balance (including gridded runoff fields) for Europe by application of the well-established raster-based macro-scale water balance model WABIMON used at the Federal Institute of Hydrology, Germany. Model calibration and validation is performed by separated examination of 29 representative European catchments. Results indicate a general applicability of the model delivering reliable overall patterns and integrated quantities on a monthly basis. For time steps less then too weeks further research and structural improvements of the model are suggested. (orig.)

  8. Evaluation of alternative model-data fusion approaches in water balance estimation across Australia

    Science.gov (United States)

    van Dijk, A. I. J. M.; Renzullo, L. J.

    2009-04-01

    Australia's national agencies are developing a continental modelling system to provide a range of water information services. It will include rolling water balance estimation to underpin national water accounts, water resources assessments that interpret current water resources availability and trends in a historical context, and water resources predictions coupled to climate and weather forecasting. The nation-wide coverage, currency, accuracy, and consistency required means that remote sensing will need to play an important role along with in-situ observations. Different approaches to blending models and observations can be considered. Integration of on-ground and remote sensing data into land surface models in atmospheric applications often involves state updating through model-data assimilation techniques. By comparison, retrospective water balance estimation and hydrological scenario modelling to date has mostly relied on static parameter fitting against observations and has made little use of earth observation. The model-data fusion approach most appropriate for a continental water balance estimation system will need to consider the trade-off between computational overhead and the accuracy gains achieved when using more sophisticated synthesis techniques and additional observations. This trade-off was investigated using a landscape hydrological model and satellite-based estimates of soil moisture and vegetation properties for aseveral gauged test catchments in southeast Australia.

  9. Data on the water balance in plants in the presence of fluor in the substrate

    Energy Technology Data Exchange (ETDEWEB)

    Navara, J

    1969-01-01

    Experiments were performed to determine the water balance of Pisum sativm to fluorine compounds. The results indicate that fluorine compounds in the substrate caused a withering of the above soil portions of the plants due to a disruption in the water balance. Water intake was generally observed to be reduced along with an increase in F concentration.

  10. Hydroclimatic regimes: a distributed water-balance framework for hydrologic assessment, classification, and management

    Science.gov (United States)

    Weiskel, Peter K.; Wolock, David M.; Zarriello, Phillip J.; Vogel, Richard M.; Levin, Sara B.; Lent, Robert M.

    2014-01-01

    Runoff-based indicators of terrestrial water availability are appropriate for humid regions, but have tended to limit our basic hydrologic understanding of drylands – the dry-subhumid, semiarid, and arid regions which presently cover nearly half of the global land surface. In response, we introduce an indicator framework that gives equal weight to humid and dryland regions, accounting fully for both vertical (precipitation + evapotranspiration) and horizontal (groundwater + surface-water) components of the hydrologic cycle in any given location – as well as fluxes into and out of landscape storage. We apply the framework to a diverse hydroclimatic region (the conterminous USA) using a distributed water-balance model consisting of 53 400 networked landscape hydrologic units. Our model simulations indicate that about 21% of the conterminous USA either generated no runoff or consumed runoff from upgradient sources on a mean-annual basis during the 20th century. Vertical fluxes exceeded horizontal fluxes across 76% of the conterminous area. Long-term-average total water availability (TWA) during the 20th century, defined here as the total influx to a landscape hydrologic unit from precipitation, groundwater, and surface water, varied spatially by about 400 000-fold, a range of variation ~100 times larger than that for mean-annual runoff across the same area. The framework includes but is not limited to classical, runoff-based approaches to water-resource assessment. It also incorporates and reinterprets the green- and blue-water perspective now gaining international acceptance. Implications of the new framework for several areas of contemporary hydrology are explored, and the data requirements of the approach are discussed in relation to the increasing availability of gridded global climate, land-surface, and hydrologic data sets.

  11. Increased fat catabolism sustains water balance during fasting in zebra finches.

    Science.gov (United States)

    Rutkowska, Joanna; Sadowska, Edyta T; Cichoń, Mariusz; Bauchinger, Ulf

    2016-09-01

    Patterns of physiological flexibility in response to fasting are well established, but much less is known about the contribution of water deprivation to the observed effects. We investigated body composition and energy and water budget in three groups of zebra finches: birds with access to food and water, food-deprived birds having access to drinking water and food-and-water-deprived birds. Animals were not stimulated by elevated energy expenditure and they were in thermoneutral conditions; thus, based on previous studies, water balance of fasting birds was expected to be maintained by increased catabolism of proteins. In contrast to this expectation, we found that access to water did not prevent reduction of proteinaceous tissue, but it saved fat reserves of the fasting birds. Thus, water balance of birds fasting without access to water seemed to be maintained by elevated fat catabolism, which generated 6 times more metabolic water compared with that in birds that had access to water. Therefore, we revise currently established views and propose fat to serve as the primary source for metabolic water production. Previously assumed increased protein breakdown for maintenance of water budget would occur if fat stores were depleted or if fat catabolism reached its upper limits due to high energy demands. © 2016. Published by The Company of Biologists Ltd.

  12. Using Water Isotope Tracers to Investigate Past and Present Water Balance Conditions in the Old Crow Flats, Yukon Territory

    Science.gov (United States)

    Turner, K.; Wolfe, B. B.; Edwards, T. W.

    2010-12-01

    The Old Crow Flats (OCF), Yukon Territory, is a wetland of international significance that comprises approximately 2700 shallow thermokarst lakes. Located near the northern limit of the boreal forest, the OCF provides vital habitat for abundant wildlife including waterfowl, moose, muskrat, and the Porcupine Caribou Herd, which support the traditional lifestyle of the Vuntut Gwitchin First Nation. Thermokarst lakes, which occupy vast northern regions, are greatly influenced by climate conditions. In the OCF and other regions there have been observations of decreasing water levels and an increase in frequency of lake drainage events over recent decades. Though there is widespread concern that thermokarst landscape changes are accelerating as a result of ongoing climate change, there are few studies that have investigated current and past variability of lake water balances and climate interactions at the landscape scale. As part of a Government of Canada International Polar Year multidisciplinary project, the present and past hydrology of lakes spanning the OCF are being investigated using water isotope tracers and paleolimnological approaches. Water samples were obtained from 57 lakes three times over three ice-free seasons (2007-09) and analyzed for oxygen and hydrogen isotope composition in order to capture seasonal and interannual changes in water balance conditions. Results highlight strong diversity in the hydrology of lakes throughout the OCF. Based on patterns of isotopic evolution and calculations of input source compositions and evaporation-to-inflow ratios, we identified snowmelt-dominated, rainfall-dominated, groundwater-influenced, evaporation-dominated and drained lake types, which represent the dominant hydrological processes influencing lake water balances. Lake physical and catchment land cover characteristics influence dominant input type (rain or snow). Snowmelt-dominated catchments are large relative to lake surface areas and typically contain

  13. A flow balance approach to scenarios for water reclamation by Ania ...

    African Journals Online (AJOL)

    drinie

    ISSN 0378-4738 = Water SA Vol. 27 No. 1 January 2001 115. Available on website http://www.wrc.org.za. Comments on: A flow balance approach to scenarios for water reclamation by Ania MW Grobicki and B Cohen. I would like to offer a brief comment on the above paper, which appeared in Water SA 25 (4), October ...

  14. Evolution of extreme Total Water Levels along the northern coast of the Iberian Peninsula

    Directory of Open Access Journals (Sweden)

    D. F. Rasilla Álvarez

    2011-02-01

    Full Text Available This paper assesses the evolution of storminess along the northern coast of the Iberian Peninsula through the calculation of extreme (1% Total Water Levels (eTWL on both observed (tide gauge and buoy data and hindcasted (SIMAR-44 data. Those events were first identified and then characterized in terms of oceanographic parameters and atmospheric circulation features. Additionally, an analysis of the long-term trends in both types of data was performed. Most of the events correspond to a rough wave climate and moderate storm surges, linked to extratropical disturbances following a northern track. While local atmospheric conditions seem to be evolving towards lesser storminess, their impact has been balanced by the favorable exposure of the northern coast of the Iberian Peninsula to the increasing frequency and strength of distant disturbances crossing the North Atlantic. This evolution is also correctly reproduced by the simulated long-term evolution of the forcing component (meteorological sea level residuals and wave run up of the Total Water Level values calculated from the SIMAR 44 database, since sea level residuals have been experiencing a reduction while waves are arriving with longer periods. Finally, the addition of the rate of relative sea level trend to the temporal evolution of the atmospheric forcing component of the Total Water Level values is enough to simulate more frequent and persistent eTWL.

  15. Estimates of spatial variation in evaporation using satellite-derived surface temperature and a water balance model

    NARCIS (Netherlands)

    Bouwer, L.M.; Biggs, T.W.; Aerts, J.C.J.H.

    2008-01-01

    Evaporation dominates the water balance in arid and semi-arid areas. The estimation of evaporation by land-cover type is important for proper management of scarce water resources. Here, we present a method to assess spatial and temporal patterns of actual evaporation by relating water balance

  16. Water balance disorders after neurosurgery: The triphasic response revisited

    NARCIS (Netherlands)

    E.J. Hoorn (Ewout); R. Zietse (Bob)

    2010-01-01

    textabstractWater balance disorders after neurosurgery are well recognized, but detailed reports of the triphasic response are scarce. We describe a 55-year-old woman, who developed the triphasic response with severe hyper- and hyponatraemia after resection of a suprasellar meningioma. The case

  17. Effects of Water-Based Training on Static and Dynamic Balance of Older Women.

    Science.gov (United States)

    Bento, Paulo Cesar Barauce; Lopes, Maria de Fátima A; Cebolla, Elaine Cristine; Wolf, Renata; Rodacki, André L F

    2015-08-01

    The aim of this study was to evaluate the effects of a water-based exercise program on static and dynamic balance. Thirty-six older women were randomly assigned to a water-based training (3 days/week for 12 weeks) or control group. Water level was kept at the level of the xiphoid process and temperature at ∼28-30°C. Each session included aerobic activities and lower limb strength exercises. The medial-lateral, the anterior-posterior amplitude, and displacement of the center of pressure (CP-D) were measured in a quiet standing position (60 sec eyes opened and closed). The dynamic balance and 8-Foot Up-and-Go tests were also applied. Group comparisons were made using two-way analysis of variance (ANOVA) with repeated measures. No differences were found in the center of pressure variables; however, the WBT group showed better performance in the 8 Foot Up-and-Go Test after training (5.61±0.76 vs. 5.18±0.42; pwater-based training was effective in improving dynamic balance, but not static balance.

  18. Water balance of an earth fill built of organic clay

    Directory of Open Access Journals (Sweden)

    Birle Emanuel

    2016-01-01

    Full Text Available The paper presents investigations on the water balance of an earth fill built of organic clay in humid climate. As the organic soil used for the fill contains geogenetically elevated concentrations of arsenic, particular attention is paid on the seepage flow through the fill. The test fill is 5 m high, 30 m long and 25 m wide. The fill consists of the organic clay compacted at water contents wet and dry of Proctor Optimum covered by a drainage mat and a 60 cm thick top layer. For the determination of the water balance extensive measuring systems were installed. The seepage at the bottom measured so far was less than 2 % of the precipitation. The interflow in the drainage mat above the compacted organic clay was of similar magnitude. The estimated evapotranspiration reached approx. 84 % of the precipitation. According to these measurements the percolation is much lower than the percolation of many landfill covers in humid climates.

  19. Mechanical Balance Laws for Boussinesq Models of Surface Water Waves

    Science.gov (United States)

    Ali, Alfatih; Kalisch, Henrik

    2012-06-01

    Depth-integrated long-wave models, such as the shallow-water and Boussinesq equations, are standard fare in the study of small amplitude surface waves in shallow water. While the shallow-water theory features conservation of mass, momentum and energy for smooth solutions, mechanical balance equations are not widely used in Boussinesq scaling, and it appears that the expressions for many of these quantities are not known. This work presents a systematic derivation of mass, momentum and energy densities and fluxes associated with a general family of Boussinesq systems. The derivation is based on a reconstruction of the velocity field and the pressure in the fluid column below the free surface, and the derivation of differential balance equations which are of the same asymptotic validity as the evolution equations. It is shown that all these mechanical quantities can be expressed in terms of the principal dependent variables of the Boussinesq system: the surface excursion η and the horizontal velocity w at a given level in the fluid.

  20. Effects of Land Cover / Land Use, Soil Texture, and Vegetation on the Water Balance of Lake Chad Basin

    Science.gov (United States)

    Babamaaji, R. A.; Lee, J.

    2013-12-01

    Lake Chad Basin (LCB) has experienced drastic changes of land cover and poor water management practices during the last 50 years. The successive droughts in the 1970s and 1980s resulted in the shortage of surface water and groundwater resources. This problem of drought has a devastating implication on the natural resources of the Basin with great consequence on food security, poverty reduction and quality of life of the inhabitants in the LCB. Therefore, understanding the effects of land use / land cover must be a first step to find how they disturb cycle especially the groundwater in the LCB. The abundance of groundwater is affected by the climate change through the interaction with surface water, such as lakes and rivers, and disuse recharge through an infiltration process. Quantifying the impact of climate change on the groundwater resource requires reliable forecasting of changes in the major climatic variables and other spatial variations including the land use/land cover, soil texture, topographic slope, and vegetation. In this study, we employed a spatially distributed water balance model WetSpass to simulate a long-term average change of groundwater recharge in the LCB of Africa. WetSpass is a water balance-based model to estimate seasonal and spatial distribution of surface runoff, interception, evapotranspiration, and groundwater recharge. The model is especially suitable for studying the effect of land use/land cover change on the water regime in the LCB. The present study describes the concept of the model and its application to the development of recharge map of the LCB. The study shows that major role in the water balance of LCB. The mean yearly actual evapotranspiration (ET) from the basin range from 60mm - 400 mm, which is 90 % (69mm - 430) of the annual precipitation from 2003 - 2010. It is striking that about 50 - 60 % of the total runoff is produced on build-up (impervious surfaces), while much smaller contributions are obtained from vegetated

  1. Employing Hot Wire Anemometry to Directly Measure the Water Balance in a Proton Exchange membrane Fuel Cell

    DEFF Research Database (Denmark)

    Shakhshir, Saher Al; Hussain, Nabeel; Berning, Torsten

    2015-01-01

    Water management in proton exchange membrane fuel cells (PEMFC’s) remains a critical problem for their durability, cost, and performance. Because the anode side of this fuel cell has the tendency to become dehydrated, measuring the water balance can be an important diagnosis tool during fuel cell...... operation. The water balance indicates how much of the product water leaves at the anode side versus the cathode side. Previous methods of determining the fuel cell water balance often relied on condensing the water in the exhaust gas streams and weighing the accumulated mass which is a time consuming...... process that has limited accuracy. Currently, our group is developing a novel method to accurately determine the water balance in a PEMFC in real time by employing hot-wire anemometry. The amount of heat transferred from the wire to the anode exhaust stream can be translated into a voltage signal which...

  2. A water management strategy for balancing water uses in the Rideau Canal

    International Nuclear Information System (INIS)

    McClennan, B.; Rae, P.; McGonegal, K.

    1995-01-01

    Alternative water management policies for the Rideau Canal system in eastern Ontario were examined. The methodology of analysis and the impact of policy changes on hydro power production were also focussed on. A historical account of the construction and background of the canal system was providid. Water uses such as navigation, hydroelectric power generation, natural environment, flood abatement, recreation, and water supply were described. Current water management practice was outlined. Various single purpose water management policies were investigated. The impact of the most significant policies on hydroelectric power production were discussed. Integrated policy alternatives were presented and their general effects were described. No long term policy was finalized at the time of writing, but a number of short term operating practices were considered, among them to adjust spring flows for walleye, store flows in the Big Rideau for ice flushings, balance drawdown among reservoirs and raise navigation levels in certain lakes

  3. The U.S. Geological Survey Monthly Water Balance Model Futures Portal

    Science.gov (United States)

    Bock, Andrew R.; Hay, Lauren E.; Markstrom, Steven L.; Emmerich, Christopher; Talbert, Marian

    2017-05-03

    The U.S. Geological Survey Monthly Water Balance Model Futures Portal (https://my.usgs.gov/mows/) is a user-friendly interface that summarizes monthly historical and simulated future conditions for seven hydrologic and meteorological variables (actual evapotranspiration, potential evapotranspiration, precipitation, runoff, snow water equivalent, atmospheric temperature, and streamflow) at locations across the conterminous United States (CONUS).The estimates of these hydrologic and meteorological variables were derived using a Monthly Water Balance Model (MWBM), a modular system that simulates monthly estimates of components of the hydrologic cycle using monthly precipitation and atmospheric temperature inputs. Precipitation and atmospheric temperature from 222 climate datasets spanning historical conditions (1952 through 2005) and simulated future conditions (2020 through 2099) were summarized for hydrographic features and used to drive the MWBM for the CONUS. The MWBM input and output variables were organized into an open-access database. An Open Geospatial Consortium, Inc., Web Feature Service allows the querying and identification of hydrographic features across the CONUS. To connect the Web Feature Service to the open-access database, a user interface—the Monthly Water Balance Model Futures Portal—was developed to allow the dynamic generation of summary files and plots  based on plot type, geographic location, specific climate datasets, period of record, MWBM variable, and other options. Both the plots and the data files are made available to the user for download 

  4. General procedure to initialize the cyclic soil water balance by the Thornthwaite and Mather method

    NARCIS (Netherlands)

    Dourado-Neto, D.; Lier, van Q.D.; Metselaar, K.; Reichardt, K.; Nielsen, D.R.

    2010-01-01

    The original Thornthwaite and Mather method, proposed in 1955 to calculate a climatic monthly cyclic soil water balance, is frequently used as an iterative procedure due to its low input requirements and coherent estimates of water balance components. Using long term data sets to establish a

  5. Dynamic regulation and dysregulation of the water channel aquaporin-2: a common cause of and promising therapeutic target for water balance disorders.

    Science.gov (United States)

    Noda, Yumi

    2014-08-01

    The human body is two-thirds water. The ability of ensuring the proper amount of water inside the body is essential for the survival of mammals. The key event for maintenance of body water balance is water reabsorption in the kidney collecting ducts, which is regulated by aquaporin-2 (AQP2). AQP2 is a channel that is exclusively selective for water molecules and never allows permeation of ions or other small molecules. Under normal conditions, AQP2 is restricted within the cytoplasm of the collecting duct cells. However, when the body is dehydrated and needs to retain water, AQP2 relocates to the apical membrane, allowing water reabsorption from the urinary tubule into the cell. Its impairments result in various water balance disorders including diabetes insipidus, which is a disease characterized by a massive loss of water through the kidney, leading to severe dehydration in the body. Dysregulation of AQP2 is also a common cause of water retention and hyponatremia that exacerbate the prognosis of congestive heart failure and hepatic cirrhosis. Many studies have uncovered the regulation mechanisms of AQP2 at the single-molecule level, the whole-body level, and the clinical level. In clinical practice, urinary AQP2 is a useful marker for body water balance (hydration status). Moreover, AQP2 is now attracting considerable attention as a potential therapeutic target for water balance disorders which commonly occur in many diseases.

  6. Energy balance of hydro-aggregate with Pelton water turbine

    International Nuclear Information System (INIS)

    Obretenov, V.

    2005-01-01

    One of the major tasks in the field of hydraulic power engineering refers to machines and equipment modernization in the hydropower plants and pumped storage power plants commissioned more than 20 years ago. The increase of hydraulic units operation efficiency will allow in a number of cases to substantially reduce the specific water consumption and to drive the output of electric energy up. In these cases it is crucial to find out the operational efficiency of individual system elements and to precisely focus the modernization endeavours on such elements where the energy losses go beyond all admissible limits. Besides, the determination of the energy losses in the hydro energy turbo system will allow valid defining of hydraulic units operational scope. This work treats the methods of balance study of a hydraulic unit with Peiton water turbine. The experimental results of the balance study of Belmeken pumped storage power plant hydraulic unit No 5 under turbine operational mode are presented

  7. An attempt to perform water balance in a Brazilian municipal solid waste landfill.

    Science.gov (United States)

    São Mateus, Maria do Socorro Costa; Machado, Sandro Lemos; Barbosa, Maria Cláudia

    2012-03-01

    This paper presents an attempt to model the water balance in the metropolitan center landfill (MCL) in Salvador, Brazil. Aspects such as the municipal solid waste (MSW) initial water content, mass loss due to decomposition, MSW liquid expelling due to compression and those related to weather conditions, such as the amount of rainfall and evaporation are considered. Superficial flow and infiltration were modeled considering the waste and the hydraulic characteristics (permeability and soil-water retention curves) of the cover layer and simplified uni-dimensional empirical models. In order to validate the modeling procedure, data from one cell at the landfill were used. Monthly waste entry, volume of collected leachate and leachate level inside the cell were monitored. Water balance equations and the compressibility of the MSW were used to calculate the amount of leachate stored in the cell and the corresponding leachate level. Measured and calculated values of the leachate level inside the cell were similar and the model was able to capture the main trends of the water balance behavior during the cell operational period. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Effects of water addition to total mixed ration on water intake, nutrient digestibility, wool cortisol and blood indices in Corriedale ewes

    Directory of Open Access Journals (Sweden)

    Jalil Ghassemi Nejad

    2017-10-01

    Full Text Available Objective The objective of this study was to determine the effect of adding water to total mixed ration (TMR on fresh water intake, nutrient digestibility, wool cortisol, and blood indices in Corriedale ewes under hot and humid conditions. Methods Nine non-pregnant Corriedale ewes (ave. body weight = 41±3.5 kg were individually fed diets based on maintenance requirements in metabolic crates. Ewes were assigned to three treatment groups according to a triplicate 3×3 Latin Square design for 3 periods of 21 days duration each (9 ewes per treatment, 27 replications. Treatments were TMR (crude protein [CP] = 16.1, total digestible nutrients = 69.1% moisture levels for 40%, 50%, and 60%. Results No differences were found in body weight gain among all treatment groups (p>0.05. Nitrogen balance including digestible N, retained N, and urinary and fecal N showed no change among the treatment groups (p>0.05. Fresh water intake was the lower in 50% TMR moisture group than in the other groups (p0.05. No significant difference was observed for serum protein, blood urea nitrogen, glucose, and triglyceride among the treatment groups (p>0.05. Wool and blood cortisol were not different among the treatment groups (p>0.05. Blood hematology including red blood cell, white blood cells, hemoglobin, hematocrit, basophils, and eosinophils were not different among the treatment groups (p>0.05. Conclusion It is concluded that TMR moisture at 40%, 50%, and 60% had no effects on N balance parameters, and nutrient digestibilities except for the ether extract under hot and humid conditions. Additionally there were no effects on stress conditions include wool cortisol, as well as blood cortisol levels of ewes.

  9. Carbon and water balance of European croplands throughout the 20th century

    Science.gov (United States)

    Gervois, SéBastien; Ciais, Philippe; de Noblet-Ducoudré, Nathalie; Brisson, Nadine; Vuichard, Nicolas; Viovy, Nicolas

    2008-06-01

    We assessed the effects of rising atmospheric CO2, changing climate, and farmers' practice on the carbon and water balance of European croplands during the past century (1901-2000). The coupled vegetation-crop model ORCHIDEE-STICS is applied over western Europe for C3 crops (winter wheat) and for maize, with prescribed historical agricultural practice changes. Not surprisingly, the enormous crop yield increase observed in all European regions, 300-400% between 1950 and 2000, is found to be dominantly explained by improved practice and varieties selection, rather than by rising CO2 (explaining a ˜11% uniform increase in yield) and changing climate (no further change in yield on average, but causing a decrease of ˜19% in the southern Iberian Peninsula). Agricultural soil carbon stocks in Europe are modeled to have decreased between 1950 and 1970, and since then to have increased again. Thus, the current stocks only differ by 1 ± 6 tC ha-1 from their 1900 value. Compensating effects of increasing yields on the one hand (increasing stocks) and of higher harvest index values and ploughing on the other hand (decreasing stocks) occur. Each of these processes taken individually has the potential to strongly alter the croplands soil carbon balance in the model. Consequently, large uncertainties are associated to the estimated change in carbon stocks between 1901 and 2001, roughly ±6 tC ha-1 a-1. In our most realistic simulation, the current cropland carbon balance is a net sink of 0.16 ± 0.15 tC ha-1 a-1. The annual water balance of cropland soils is influenced by increasing crop water use efficiency, one third of which is caused by rising CO2. However, increasing water use efficiency occurred mainly in spring and winter, when water is not limiting for plant growth, whereas no strong savings of soil water are achieved in summer through elevated CO2. Overall, trends in cultivation practices have caused a 3 times larger increase of water use efficiency than rising CO2.

  10. Soil water balance approach in root zone of maize (95-TZEEY ...

    African Journals Online (AJOL)

    Water balance approach is the simplest method in the study of plant water consumption. The experiment was established in 4.0 x 5.0 m plots in a randomized complete block design containing six (6) treatments water application (3-days, 4-days, 5-days, 6-days, 7-days and 8-days which correspond to T1, T2, T3, T4, T5 and ...

  11. A balanced water layer concept for subglacial hydrology in large-scale ice sheet models

    Directory of Open Access Journals (Sweden)

    S. Goeller

    2013-07-01

    Full Text Available There is currently no doubt about the existence of a widespread hydrological network under the Antarctic Ice Sheet, which lubricates the ice base and thus leads to increased ice velocities. Consequently, ice models should incorporate basal hydrology to obtain meaningful results for future ice dynamics and their contribution to global sea level rise. Here, we introduce the balanced water layer concept, covering two prominent subglacial hydrological features for ice sheet modeling on a continental scale: the evolution of subglacial lakes and balance water fluxes. We couple it to the thermomechanical ice-flow model RIMBAY and apply it to a synthetic model domain. In our experiments we demonstrate the dynamic generation of subglacial lakes and their impact on the velocity field of the overlaying ice sheet, resulting in a negative ice mass balance. Furthermore, we introduce an elementary parametrization of the water flux–basal sliding coupling and reveal the predominance of the ice loss through the resulting ice streams against the stabilizing influence of less hydrologically active areas. We point out that established balance flux schemes quantify these effects only partially as their ability to store subglacial water is lacking.

  12. A balanced water layer concept for subglacial hydrology in large scale ice sheet models

    Science.gov (United States)

    Goeller, S.; Thoma, M.; Grosfeld, K.; Miller, H.

    2012-12-01

    There is currently no doubt about the existence of a wide-spread hydrological network under the Antarctic ice sheet, which lubricates the ice base and thus leads to increased ice velocities. Consequently, ice models should incorporate basal hydrology to obtain meaningful results for future ice dynamics and their contribution to global sea level rise. Here, we introduce the balanced water layer concept, covering two prominent subglacial hydrological features for ice sheet modeling on a continental scale: the evolution of subglacial lakes and balance water fluxes. We couple it to the thermomechanical ice-flow model RIMBAY and apply it to a synthetic model domain inspired by the Gamburtsev Mountains, Antarctica. In our experiments we demonstrate the dynamic generation of subglacial lakes and their impact on the velocity field of the overlaying ice sheet, resulting in a negative ice mass balance. Furthermore, we introduce an elementary parametrization of the water flux-basal sliding coupling and reveal the predominance of the ice loss through the resulting ice streams against the stabilizing influence of less hydrologically active areas. We point out, that established balance flux schemes quantify these effects only partially as their ability to store subglacial water is lacking.

  13. Comparison of effects of a proprioceptive exercise program in water and on land the balance of chronic stroke patients.

    Science.gov (United States)

    Han, Seul Ki; Kim, Myung Chul; An, Chang Sik

    2013-10-01

    [Purpose] The purpose of this study was to compare changes in balance ability of land exercise and underwater exercise on chronic stroke patients. [Subjects] A total of 60 patients received exercise for 40 minutes, three times a week, for 6 weeks. [Methods] Subjects from both groups performed general conventional treatment during the experimental period. In addition, all subjects engaged in extra treatment sessions. This extra treatment consisted of unstable surface exercise. The underwater exercise group used wonder boards in a pool (depth 1.1m, water temperature 33.5 °C, air temperature 27 °C) dedicated to underwater exercise, and the land exercise group used balance mats. [Result] The joint position sense, sway area, Berg Balance Scale showed significant improvements in both groups. However, the joint position sense test, sway area, and Berg Balance Scale showed there was more improvement in the underwater exercise group than in the land exercise group. [Conclusion] The results suggest that underwater exercise is more effective than land exercise at improving the joint position sense and balance of stroke patients.

  14. Total Water Management: The New Paradigm for Urban Water Resources Planning

    Science.gov (United States)

    There is a growing need for urban water managers to take a more holistic view of their water resource systems as population growth, urbanization, and current resource management practices put different stresses on local water resources and urban infrastructure. Total Water Manag...

  15. On the sources of vegetation activity variation, and their relation with water balance in Mexico

    Science.gov (United States)

    F. Mora; L.R. Iverson

    1998-01-01

    Natural landscape surface processes are largely controlled by the relationship between climate and vegetation. Water balance integrates the effects of climate on patterns of vegetation distribution and productivity, and for that season, functional relationships can be established using water balance variables as predictors of vegetation response. In this study, we...

  16. Animal water balance drives top-down effects in a riparian forest-implications for terrestrial trophic cascades.

    Science.gov (United States)

    McCluney, Kevin E; Sabo, John L

    2016-08-17

    Despite the clear importance of water balance to the evolution of terrestrial life, much remains unknown about the effects of animal water balance on food webs. Based on recent research suggesting animal water imbalance can increase trophic interaction strengths in cages, we hypothesized that water availability could drive top-down effects in open environments, influencing the occurrence of trophic cascades. We manipulated large spider abundance and water availability in 20 × 20 m open-air plots in a streamside forest in Arizona, USA, and measured changes in cricket and small spider abundance and leaf damage. As expected, large spiders reduced both cricket abundance and herbivory under ambient, dry conditions, but not where free water was added. When water was added (free or within moist leaves), cricket abundance was unaffected by large spiders, but spiders still altered herbivory, suggesting behavioural effects. Moreover, we found threshold-type increases in herbivory at moderately low soil moisture (between 5.5% and 7% by volume), suggesting the possibility that water balance may commonly influence top-down effects. Overall, our results point towards animal water balance as an important driver of direct and indirect species interactions and food web dynamics in terrestrial ecosystems. © 2016 The Author(s).

  17. Beyond annual streamflow reconstructions for the Upper Colorado River Basin: a paleo-water-balance approach

    Science.gov (United States)

    Gangopadhyay, Subhrendu; McCabe, Gregory J.; Woodhouse, Connie A.

    2015-01-01

    In this paper, we present a methodology to use annual tree-ring chronologies and a monthly water balance model to generate annual reconstructions of water balance variables (e.g., potential evapotrans- piration (PET), actual evapotranspiration (AET), snow water equivalent (SWE), soil moisture storage (SMS), and runoff (R)). The method involves resampling monthly temperature and precipitation from the instrumental record directed by variability indicated by the paleoclimate record. The generated time series of monthly temperature and precipitation are subsequently used as inputs to a monthly water balance model. The methodology is applied to the Upper Colorado River Basin, and results indicate that the methodology reliably simulates water-year runoff, maximum snow water equivalent, and seasonal soil moisture storage for the instrumental period. As a final application, the methodology is used to produce time series of PET, AET, SWE, SMS, and R for the 1404–1905 period for the Upper Colorado River Basin.

  18. Effects of Water and Land-based Sensorimotor Training Programs on Static Balance among University Students

    OpenAIRE

    Abdolhamid Daneshjoo; Ashril Yusof

    2016-01-01

    This study examined the effect of sensorimotor training on static balance in two different environments; in water and on land. Thirty non-clinical university male students (aged 22±0.85 years) were divided randomly into three groups; water, land and control groups. The experimental groups performed their respective sensorimotor training programs for 6 weeks (3 times per week). The Stork Stand Balance Test was used to examine the static balance at pre- and post-time points. Significant main ef...

  19. Impact of climate forcing uncertainty and human water use on global and continental water balance components

    Directory of Open Access Journals (Sweden)

    H. Müller Schmied

    2016-10-01

    Full Text Available The assessment of water balance components using global hydrological models is subject to climate forcing uncertainty as well as to an increasing intensity of human water use within the 20th century. The uncertainty of five state-of-the-art climate forcings and the resulting range of cell runoff that is simulated by the global hydrological model WaterGAP is presented. On the global land surface, about 62 % of precipitation evapotranspires, whereas 38 % discharges into oceans and inland sinks. During 1971–2000, evapotranspiration due to human water use amounted to almost 1 % of precipitation, while this anthropogenic water flow increased by a factor of approximately 5 between 1901 and 2010. Deviation of estimated global discharge from the ensemble mean due to climate forcing uncertainty is approximately 4 %. Precipitation uncertainty is the most important reason for the uncertainty of discharge and evapotranspiration, followed by shortwave downward radiation. At continental levels, deviations of water balance components due to uncertain climate forcing are higher, with the highest discharge deviations occurring for river discharge in Africa (−6 to 11 % from the ensemble mean. Uncertain climate forcings also affect the estimation of irrigation water use and thus the estimated human impact of river discharge. The uncertainty range of global irrigation water consumption amounts to approximately 50 % of the global sum of water consumption in the other water use sector.

  20. Quantifying the water balance of Mfabeni Mire (iSimangaliso Wetland Park, South Africa to understand its importance, functioning and vulnerability

    Directory of Open Access Journals (Sweden)

    P. Grundling

    2015-12-01

    Full Text Available Peatlands occurring in regions with high rates of total evaporation (ET, matching or exceeding precipitation (P during seasonal dry periods or longer-term dry spells, are dependent on sustained groundwater flows to ensure peat accumulation. The objective of this study was to quantify the water balance of Mfabeni Mire in South Africa over one year, and thereby define its contribution to downstream and adjacent ecosystems and identify risks and consequences likely to arise from future shifts in the water balance. P (1,031 mm and ET (1,053 mm dominated the water balance measured from May 2008 to April 2009. These were followed by groundwater inflows (14 mm, stream outflow (9 mm and storage change (-3 mm, a net loss in water stored in the mire with the smallest flux being groundwater outflow (0.3 mm. There were differences in the seasonal patterns of ET from the two dominant plant communities (swamp forest and sedge/reed fen, which probably resulted from their significantly different canopy structures. Limiting factors for ET were low vapour pressure deficit and cloud cover. Although the water balance of Mfabeni Mire was dominated by and equally split between ET and P, it still contributed a small efflux to downstream ecosystems by streamflow. Its value in a landscape where seasonality and long-term dry periods are major ecological drivers lies in its damping effect on climatic variability. This creates a more stable environment for adjacent aquatic ecosystems by contributing to a steady groundwater condition. Mires occurring in areas that experience dry periods, where water stress frequently threatens biodiversity, should be recognised as assets in natural resource management; and their potential to support adjacent ecosystems should be protected through planning and conservation practices. Management of the area should include careful consideration of any proposed changes in land use or encouragement of one plant community at the expense of

  1. Modeling seasonal water balance based on catchments' hedging strategy on evapotranspiration for climate seasonality

    Science.gov (United States)

    Wu, S.; Zhao, J.; Wang, H.

    2017-12-01

    This paper develops a seasonal water balance model based on the hypothesis that natural catchments utilize hedging strategy on evapotranspiration for climate seasonality. According to the monthly aridity index, one year is split into wet season and dry season. A seasonal water balance model is developed by analogy to a two-stage reservoir operation model, in which seasonal rainfall infiltration, evapotranspiration and saturation-excess runoff is corresponding to the inflow, release and surplus of the catchment system. Then the optimal hedging between wet season and dry season evapotranspiration is analytically derived with marginal benefit principle. Water budget data sets of 320 catchments in the United States covering the period from 1980 to 2010 are used to evaluate the performance of this model. The Nash-Sutcliffe Efficiency coefficient for evapotranspiration is higher than 0.5 in 84% of the study catchments; while the runoff is 87%. This paper validates catchments' hedging strategy on evapotranspiration for climate seasonality and shows its potential application for seasonal water balance, which is valuable for water resources planning and management.

  2. Modeled and measured glacier change and related glaciological, hydrological, and meteorological conditions at South Cascade Glacier, Washington, balance and water years 2006 and 2007

    Science.gov (United States)

    Bidlake, William R.; Josberger, Edward G.; Savoca, Mark E.

    2010-01-01

    Winter snow accumulation and summer snow and ice ablation were measured at South Cascade Glacier, Washington, to estimate glacier mass balance quantities for balance years 2006 and 2007. Mass balances were computed with assistance from a new model that was based on the works of other glacier researchers. The model, which was developed for mass balance practitioners, coupled selected meteorological and glaciological data to systematically estimate daily mass balance at selected glacier sites. The North Cascade Range in the vicinity of South Cascade Glacier accumulated approximately average to above average winter snow packs during 2006 and 2007. Correspondingly, the balance years 2006 and 2007 maximum winter snow mass balances of South Cascade Glacier, 2.61 and 3.41 meters water equivalent, respectively, were approximately equal to or more positive (larger) than the average of such balances since 1959. The 2006 glacier summer balance, -4.20 meters water equivalent, was among the four most negative since 1959. The 2007 glacier summer balance, -3.63 meters water equivalent, was among the 14 most negative since 1959. The glacier continued to lose mass during 2006 and 2007, as it commonly has since 1953, but the loss was much smaller during 2007 than during 2006. The 2006 glacier net balance, -1.59 meters water equivalent, was 1.02 meters water equivalent more negative (smaller) than the average during 1953-2005. The 2007 glacier net balance, -0.22 meters water equivalent, was 0.37 meters water equivalent less negative (larger) than the average during 1953-2006. The 2006 accumulation area ratio was less than 0.10, owing to isolated patches of accumulated snow that endured the 2006 summer season. The 2006 equilibrium line altitude was higher than the glacier. The 2007 accumulation area ratio and equilibrium line altitude were 0.60 and 1,880 meters, respectively. Accompanying the glacier mass losses were retreat of the terminus and reduction of total glacier area. The

  3. Role of water balance in the long-term stability of hazardous waste site cover treatments

    International Nuclear Information System (INIS)

    Barnes, F.J.; Rodgers, J.C.; Trujillo, G.

    1986-01-01

    After the 30-year post-closure maintenance period at hazardous waste landfills, long-term stability must be assured without continued intervention. Understanding water balance in the established vegetative cover system is central to predicting such stability. A Los Alamos National Laboratory research project has established a series of experimental cover treatment plots on a closed waste disposal site which will permit the determination of the effects of such critical parameters as soil cover design, leaf area index, and rooting characteristics on water balance under varied conditions. Data from these experiments are being analyzed by water balance modeling and other means. The results show consistent differences in soil moisture storage between soil profiles and between vegetation cover treatments

  4. The use of material balanced equation to determine the oil water ...

    African Journals Online (AJOL)

    The oil water contact of an oil reservoir can be determined using some geophysical well logs. However, some of the methods might not be accurate. Therefore the material balanced equation which is an accurate means of formation evaluation is critically analysed in this study and then used to determine the oil water contact ...

  5. NUTRIENT BALANCE IN WATER HARVESTING SOILS

    Directory of Open Access Journals (Sweden)

    Díaz, F

    2005-05-01

    Full Text Available Dryland farming on Fuerteventura and Lanzarote (Canary Islands, Spain, which has an annual rainfall of less than 150 mm/year, has been based traditionally on water harvesting techniques (known locally as “gavias”. Periods of high productivity alternate with those of very low yield. The systems are sustainable in that they reduce erosive processes, contribute to soil and soil-water conservation and are largely responsible for maintaining the soil’s farming potential. In this paper we present the chemical fertility status and nutrient balance of soils in five “gavia” systems. The results are compared with those obtained in adjacent soils where this water harvesting technique is not used. The main crops are wheat, barley, maize, lentils and chick-peas. Since neither organic nor inorganic fertilisers are used, nutrients are derived mainly from sediments carried by runoff water. Nutrients are lost mainly through crop harvesting and harvest residues. The soils where water harvesting is used have lower salt and sodium in the exchange complex, are higher in carbon, nitrogen, copper and zinc and have similar phosphorous and potassium content. It is concluded that the systems improve the soil’s natural fertility and also that natural renovation of nutrients occurs thanks to the surface deposits of sediments, which mix with the arable layer. The system helps ensure adequate fertility levels, habitual in arid regions, thus allowing dryland farming to be carried out.

  6. Water and energy balance in the cultivated and bake soil in a montane area in Paraiba, Brazil

    International Nuclear Information System (INIS)

    Lima, Jose Romualdo de Sousa

    2004-02-01

    In the areas of rain fed agriculture it is very important to quantify losses of water by evapotranspiration and soil evaporation. The methods used for measuring evapotranspiration and/or evaporation varies from direct measurements techniques, using lysimeters, to measurements of the water and energy balances. The precision lysimeters have high cost, being only used for research purposes. The water and energy balances methods have been very used due the simplicity, robustness and lower cost. Therefore, the objective of this study was to assess the water and energy balance components in the soil cultivated with cowpea (Vigna unguiculata (L) Walp) and without vegetation, besides comparing the methods used to determine the cowpea evapotranspiration. Two experiments (2002 and 2003) were performed in the 4 ha area of the Centro de Ciencias Agrarias, UFPB, municipality of Areia, Paraiba State (6 deg C 58 S, 5 deg C 41 W). To determine the energy balance, the area was instrumented with a rain gauge, a pyrano meter, a net radiometer, and sensors for measuring air temperature and humidity, and wind speed in two levels. Two locals, in the soil, were instrumented with two temperature sensors located at 2.0 cm and 8.0 cm below soil surface and one heat flux plate placed at 5.0 cm below soil surface. The measurements were recorded every 30 minutes on a data logger. To determine the water balance, three plots were installed, composed one-meter access tube for neutron probe measurements, and 8 tensiometers. The results show very good correlation between the aerodynamic method and the Bowen ration energy balance method, for all atmospherics and soil water conditions. For the two years, in average 72% of the net radiation was used by crop evapotranspiration. The energy and water balance can be used, the determine the crop evapotranspiration and soil evaporation, and regardless of the method used, the major water use by crop occurred in the reproductive stage. In the year of 2002

  7. Balanced Central Schemes for the Shallow Water Equations on Unstructured Grids

    Science.gov (United States)

    Bryson, Steve; Levy, Doron

    2004-01-01

    We present a two-dimensional, well-balanced, central-upwind scheme for approximating solutions of the shallow water equations in the presence of a stationary bottom topography on triangular meshes. Our starting point is the recent central scheme of Kurganov and Petrova (KP) for approximating solutions of conservation laws on triangular meshes. In order to extend this scheme from systems of conservation laws to systems of balance laws one has to find an appropriate discretization of the source terms. We first show that for general triangulations there is no discretization of the source terms that corresponds to a well-balanced form of the KP scheme. We then derive a new variant of a central scheme that can be balanced on triangular meshes. We note in passing that it is straightforward to extend the KP scheme to general unstructured conformal meshes. This extension allows us to recover our previous well-balanced scheme on Cartesian grids. We conclude with several simulations, verifying the second-order accuracy of our scheme as well as its well-balanced properties.

  8. Water balance analysis for efficient water allocation in agriculture. A case study: Balta Brailei, Romania

    Science.gov (United States)

    Chitu, Zenaida; Villani, Giulia; Tomei, Fausto; Minciuna, Marian; Aldea, Adrian; Dumitrescu, Alexandru; Trifu, Cristina; Neagu, Dumitru

    2017-04-01

    Balta Brailei is one of the largest agriculture area in the Danube floodplain, located in SE of Romania. An impressive irrigation system, that covered about 53.500 ha and transferred water from the Danube River, was carried out in the period 1960-1980. Even if the water resources for agriculture in this area cover in most of the cases the volumes required by irrigation water users, the irrigation infrastructure issues as the position of the pumping stations against the river levels hinder the use of the water during low flows periods. An efficient optimization of water allocation in agriculture could avoid periods with water deficit in the irrigation systems. Hydrological processes are essentials in describing the mass and energy exchanges in the atmosphere-plant-soil system. Furthermore, the hydrological regime in this area is very dynamic with many feedback mechanisms between the various parts of the surface and subsurface water regimes. Agricultural crops depend on capillary rise from the shallow groundwater table and irrigation. For an effective optimization of irrigation water in Balta Brailei, we propose to analyse the water balance taking into consideration the water movement into the root zone and the influence of the Danube river, irrigation channel system and the shallow aquifer by combining the soil water balance model CRITERIA and GMS hydrogeological model. CRITERIA model is used for simulating water movement into the soil, while GMS model is used for simulating the shallow groundwater level variation. The understanding of the complex feedbacks between atmosphere, crops and the various parts of the surface and subsurface water regimes in the Balta Brailei will bring more insights for predicting crop water need and water resources for irrigation and it will represent the basis for implementing Moses Platform in this specific area. Moses Platform is a GIS based system devoted to water procurement and management agencies to facilitate planning of

  9. GlobWat – a global water balance model to assess water use in irrigated agriculture (discussion paper)

    NARCIS (Netherlands)

    Hoogeveen, J.; Faures, J.M.; Peiser, L.; Burke, J.; Van de Giesen, N.C.

    2015-01-01

    GlobWat is a freely distributed, global soil water balance model that is used by FAO to assess water use in irrigated agriculture; the main factor behind scarcity of freshwater in an increasing number of regions. The model is based on spatially distributed high resolution datasets that are

  10. Water, gravity and trees: Relationship of tree-ring widths and total water storage dynamics

    Science.gov (United States)

    Creutzfeldt, B.; Heinrich, I.; Merz, B.; Blume, T.; Güntner, A.

    2012-04-01

    Water stored in the subsurface as groundwater or soil moisture is the main fresh water source not only for drinking water and food production but also for the natural vegetation. In a changing environment water availability becomes a critical issue in many different regions. Long-term observations of the past are needed to improve the understanding of the hydrological system and the prediction of future developments. Tree ring data have repeatedly proved to be valuable sources for reconstructing long-term climate dynamics, e.g. temperature, precipitation and different hydrological variables. In water-limited environments, tree growth is primarily influenced by total water stored in the subsurface and hence, tree-ring records usually contain information about subsurface water storage. The challenge is to retrieve the information on total water storage from tree rings, because a training dataset of water stored in the sub-surface is required for calibration against the tree-ring series. However, measuring water stored in the subsurface is notoriously difficult. We here present high-precision temporal gravimeter measurements which allow for the depth-integrated quantification of total water storage dynamics at the field scale. In this study, we evaluate the relationship of total water storage change and tree ring growth also in the context of the complex interactions of other meteorological forcing factors. A tree-ring chronology was derived from a Norway spruce stand in the Bavarian Forest, Germany. Total water storage dynamics were measured directly by the superconducting gravimeter of the Geodetic Observatory Wettzell for a 9-years period. Time series were extended to 63-years period by a hydrological model using gravity data as the only calibration constrain. Finally, water storage changes were reconstructed based on the relationship between the hydrological model and the tree-ring chronology. Measurement results indicate that tree-ring growth is primarily

  11. Soil Water Balance and Irrigation Strategies in an Agricultural District of Southern Italy

    Directory of Open Access Journals (Sweden)

    Domenico Ventrella

    2010-06-01

    Full Text Available An efficient management of water resources is considered very important for Mediterranean regions of Italy in order to improve the economical and environmental sustainability of the agricultural activity. The purpose of this study is to analyze the components of soil water balance in an important district included in the regions of Basilicata and Puglia and situated in the Jonical coastal area of Southern Italy and mainly cropped with horticultural crops. The study was performed by using the spatially distributed and physically based model SIMODIS in order to individuate the best irrigation management maximizing the water use efficiency and minimizing water losses by deep percolation and soil evaporation. SIMODIS was applied taking in to account the soil spatial variability and localization of cadastral units for two crops, durum wheat and water melon. For water melon recognition in 2007 a remote sensed image, from SPOT5 satellite, at the spatial resolution of 10 m, has been used. In 2008, a multi-temporal data set was available, from SPOT5 satellite to produce a land cover map for the classes water melon and durum wheat. Water melon cultivation was simulated adopting different water supply managements: rainfed and four irrigation strategies based on (i soil water availability and (ii plant water status adopting a threshold daily stress value. For each management, several water management indicators were calculated and mapped in GIS environment. For seasonal irrigation depth, actual evapotranspiration and irrigation efficiency were also determined. The analysis allowed to individuate the areas particularly sensitive to water losses by deep percolation because of their hydraulic functions characterized by low water retention and large values of saturated hydraulic conductivity. For these areas, the irrigation based on plant water status caused very high water losses by drainage. On the contrary, the irrigation scheduled on soil base allowed to

  12. Potential Foraging Decisions by a Desert Ungulate to Balance Water and Nutrient Intake in a Water-Stressed Environment.

    Science.gov (United States)

    Gedir, Jay V; Cain, James W; Krausman, Paul R; Allen, Jamison D; Duff, Glenn C; Morgart, John R

    2016-01-01

    Arid climates have unpredictable precipitation patterns, and wildlife managers often provide supplemental water to help desert ungulates endure the hottest, driest periods. When surface water is unavailable, the only source of water for ungulates comes from the forage they consume, and they must make resourceful foraging decisions to meet their requirements. We compared two desert bighorn sheep (Ovis canadensis nelsoni) populations in Arizona, USA: a treatment population with supplemental water removed during treatment, and a control population. We examined whether sheep altered their seasonal diets without supplemental water. We calculated water and nutrient intake and metabolic water production from dry matter intake and forage moisture and nitrogen content, to determine whether sheep could meet their seasonal daily water and nutrient requirements solely from forage. Diets of sheep were higher in protein (all seasons) and moisture (autumn and winter) during treatment compared to pretreatment. During treatment, sheep diet composition was similar between the treatment and control populations, which suggests, under the climatic conditions of this study, water removal did not influence sheep diets. We estimated that under drought conditions, without any surface water available (although small ephemeral potholes would contain water after rains), female and male sheep would be unable to meet their daily water requirements in all seasons, except winter, when reproductive females had a nitrogen deficit. We determined that sheep could achieve water and nutrient balances in all seasons by shifting their total diet proportions by 8-55% from lower to higher moisture and nitrogen forage species. We elucidate how seasonal forage quality and foraging decisions by desert ungulates allow them to cope with their xeric and uncertain environment, and suggest that, with the forage conditions observed in our study area during this study period, providing supplemental water during

  13. Potential foraging decisions by a desert ungulate to balance water and nutrient intake in a water-stressed environment

    Science.gov (United States)

    Gedir, Jay V.; Cain, James W.; Krausman, Paul R.; Allen, Jamison D.; Duff, Glenn C.; Morgart, John R.

    2016-01-01

    Arid climates have unpredictable precipitation patterns, and wildlife managers often provide supplemental water to help desert ungulates endure the hottest, driest periods. When surface water is unavailable, the only source of water for ungulates comes from the forage they consume, and they must make resourceful foraging decisions to meet their requirements. We compared two desert bighorn sheep (Ovis canadensis nelsoni) populations in Arizona, USA: a treatment population with supplemental water removed during treatment, and a control population. We examined whether sheep altered their seasonal diets without supplemental water. We calculated water and nutrient intake and metabolic water production from dry matter intake and forage moisture and nitrogen content, to determine whether sheep could meet their seasonal daily water and nutrient requirements solely from forage. Diets of sheep were higher in protein (all seasons) and moisture (autumn and winter) during treatment compared to pretreatment. During treatment, sheep diet composition was similar between the treatment and control populations, which suggests, under the climatic conditions of this study, water removal did not influence sheep diets. We estimated that under drought conditions, without any surface water available (although small ephemeral potholes would contain water after rains), female and male sheep would be unable to meet their daily water requirements in all seasons, except winter, when reproductive females had a nitrogen deficit. We determined that sheep could achieve water and nutrient balances in all seasons by shifting their total diet proportions by 8–55% from lower to higher moisture and nitrogen forage species. We elucidate how seasonal forage quality and foraging decisions by desert ungulates allow them to cope with their xeric and uncertain environment, and suggest that, with the forage conditions observed in our study area during this study period, providing supplemental water during

  14. Potential Foraging Decisions by a Desert Ungulate to Balance Water and Nutrient Intake in a Water-Stressed Environment.

    Directory of Open Access Journals (Sweden)

    Jay V Gedir

    Full Text Available Arid climates have unpredictable precipitation patterns, and wildlife managers often provide supplemental water to help desert ungulates endure the hottest, driest periods. When surface water is unavailable, the only source of water for ungulates comes from the forage they consume, and they must make resourceful foraging decisions to meet their requirements. We compared two desert bighorn sheep (Ovis canadensis nelsoni populations in Arizona, USA: a treatment population with supplemental water removed during treatment, and a control population. We examined whether sheep altered their seasonal diets without supplemental water. We calculated water and nutrient intake and metabolic water production from dry matter intake and forage moisture and nitrogen content, to determine whether sheep could meet their seasonal daily water and nutrient requirements solely from forage. Diets of sheep were higher in protein (all seasons and moisture (autumn and winter during treatment compared to pretreatment. During treatment, sheep diet composition was similar between the treatment and control populations, which suggests, under the climatic conditions of this study, water removal did not influence sheep diets. We estimated that under drought conditions, without any surface water available (although small ephemeral potholes would contain water after rains, female and male sheep would be unable to meet their daily water requirements in all seasons, except winter, when reproductive females had a nitrogen deficit. We determined that sheep could achieve water and nutrient balances in all seasons by shifting their total diet proportions by 8-55% from lower to higher moisture and nitrogen forage species. We elucidate how seasonal forage quality and foraging decisions by desert ungulates allow them to cope with their xeric and uncertain environment, and suggest that, with the forage conditions observed in our study area during this study period, providing supplemental

  15. Salinity controls on plant transpiration and soil water balance

    Science.gov (United States)

    Perri, S.; Molini, A.; Suweis, S. S.; Viola, F.; Entekhabi, D.

    2017-12-01

    Soil salinization and aridification represent a major threat for the food security and sustainable development of drylands. The two problems are deeply connected, and their interplay is expected to be further enhanced by climate change and projected population growth. Salt-affected land is currently estimated to cover around 1.1 Gha, and is particularly widespread in semi-arid to hyper-arid climates. Over 900 Mha of these saline/sodic soils are potentially available for crop or biomass production. Salt-tolerant plants have been recently proposed as valid solution to exploit or even remediate salinized soils. However the effects of salinity on evapotranspiration, soil water balance and the long-term salt mass balance in the soil, are still largely unexplored. In this contribution we analyze the feedback of evapotranspiration on soil salinization, with particular emphasis on the role of vegetation and plant salt-tolerance. The goal is to introduce a simple modeling framework able to shed some light on how (a) soil salinity controls plant transpiration, and (b) salinization itself is favored/impeded by different vegetation feedback. We introduce at this goal a spatially lumped stochastic model of soil moisture and salt mass dynamics averaged over the active soil depth, and accounting for the effect of salinity on evapotranspiration. Here, the limiting effect of salinity on ET is modeled through a simple plant response function depending on both salt concentration in the soil and plant salt-tolerance. The coupled soil moisture and salt mass balance is hence used to obtain the conditional steady-state probability density function (pdf) of soil moisture for given salt tolerance and salinization level, Our results show that salinity imposes a limit in the soil water balance and this limit depends on plant salt-tolerance mainly through the control of the leaching occurrence (tolerant plants exploit water more efficiently than the sensitive ones). We also analyzed the

  16. Hydrological balance and water transport processes of partially sealed soils

    Science.gov (United States)

    Timm, Anne; Wessolek, Gerd

    2017-04-01

    With increased urbanisation, soil sealing and its drastic effects on hydrological processes have received a lot of attention. Based on safety concerns, there has been a clear focus on urban drainage and prevention of urban floods caused by storm water events. For this reason, any kind of sealing is often seen as impermeable runoff generator that prevents infiltration and evaporation. While many hydrological models, especially storm water models, have been developed, there are only a handful of empirical studies actually measuring the hydrological balance of (partially) sealed surfaces. These challenge the general assumption of negligible infiltration and evaporation and show that these processes take place even for severe sealing such as asphalt. Depending on the material, infiltration from partially sealed surfaces can be equal to that of vegetated ones. Therefore, more detailed knowledge is needed to improve our understanding and models. In Berlin, two partially sealed weighable lysimeters were equipped with multiple temperature and soil moisture sensors in order to study their hydrological balance, as well as water and heat transport processes within the soil profile. This combination of methods affirms previous observations and offers new insights into altered hydrological processes of partially sealed surfaces at a small temporal scale. It could be verified that not all precipitation is transformed into runoff. Even for a relatively high sealing degree of concrete slabs with narrow seams, evaporation and infiltration may exceed runoff. Due to the lack of plant roots, the hydrological balance is mostly governed by precipitation events and evaporation generally occurs directly after rainfall. However, both surfaces allow for upward water transport from the upper underlying soil layers, sometimes resulting in relatively low evaporation rates on days without precipitation. The individual response of the surfaces differs considerably, which illustrates how

  17. Evaluating water conservation and reuse policies using a dynamic water balance model.

    Science.gov (United States)

    Qaiser, Kamal; Ahmad, Sajjad; Johnson, Walter; Batista, Jacimaria R

    2013-02-01

    A dynamic water balance model is created to examine the effects of different water conservation policies and recycled water use on water demand and supply in a region faced with water shortages and significant population growth, the Las Vegas Valley (LVV). The model, developed using system dynamics approach, includes an unusual component of the water system, return flow credits, where credits are accrued for returning treated wastewater to the water supply source. In LVV, Lake Mead serves as, both the drinking water source and the receiving body for treated wastewater. LVV has a consumptive use allocation from Lake Mead but return flow credits allow the water agency to pull out additional water equal to the amount returned as treated wastewater. This backdrop results in a scenario in which conservation may cause a decline in the available water supply. Current water use in LVV is 945 lpcd (250 gpcd), which the water agency aims to reduce to 752 lpcd (199 gpcd) by 2035, mainly through water conservation. Different conservation policies focused on indoor and outdoor water use, along with different population growth scenarios, are modeled for their effects on the water demand and supply. Major contribution of this study is in highlighting the importance of outdoor water conservation and the effectiveness of reducing population growth rate in addressing the future water shortages. The water agency target to decrease consumption, if met completely through outdoor conservation, coupled with lower population growth rate, can potentially satisfy the Valley's water demands through 2035.

  18. Evaluating Water Conservation and Reuse Policies Using a Dynamic Water Balance Model

    Science.gov (United States)

    Qaiser, Kamal; Ahmad, Sajjad; Johnson, Walter; Batista, Jacimaria R.

    2013-02-01

    A dynamic water balance model is created to examine the effects of different water conservation policies and recycled water use on water demand and supply in a region faced with water shortages and significant population growth, the Las Vegas Valley (LVV). The model, developed using system dynamics approach, includes an unusual component of the water system, return flow credits, where credits are accrued for returning treated wastewater to the water supply source. In LVV, Lake Mead serves as, both the drinking water source and the receiving body for treated wastewater. LVV has a consumptive use allocation from Lake Mead but return flow credits allow the water agency to pull out additional water equal to the amount returned as treated wastewater. This backdrop results in a scenario in which conservation may cause a decline in the available water supply. Current water use in LVV is 945 lpcd (250 gpcd), which the water agency aims to reduce to 752 lpcd (199 gpcd) by 2035, mainly through water conservation. Different conservation policies focused on indoor and outdoor water use, along with different population growth scenarios, are modeled for their effects on the water demand and supply. Major contribution of this study is in highlighting the importance of outdoor water conservation and the effectiveness of reducing population growth rate in addressing the future water shortages. The water agency target to decrease consumption, if met completely through outdoor conservation, coupled with lower population growth rate, can potentially satisfy the Valley's water demands through 2035.

  19. Water flow pathways and the water balance within a head-water catchment containing a dambo: inferences drawn from hydrochemical investigations

    Directory of Open Access Journals (Sweden)

    M. P. McCartney

    1999-01-01

    Full Text Available Dambos, seasonally saturated wetlands, are widespread in headwater catchments in sub-Saharan Africa. It is widely believed that they play an important role in regional hydrology but, despite research conducted over the last 25 years, their hydrological functions remain poorly understood. To improve conceptualisation of hydrological flow paths and investigate the water balance of a small Zimbabwean catchment containing a single dambo, measurements of alkalinity and chloride in different water types within the catchment have been used as chemical markers. The temporal variation in alkalinity is consistent with the premise that all stream water, including the prolonged dry season recession, is derived predominantly from shallow sources. The proposition that dry season recession flows are maintained by water travelling at depth within the underlying saprolite is not substantiated. There is evidence that a low permeability clay lens, commonly present in many dambos, acts as a barrier for vertical water exchange. However, the highly heterogeneous chemical composition of different waters precludes quantitative hydrograph split-ting using end member mixing analysis. Calculation of the chloride mass-balance confirms that, after rainfall, evaporation is the largest component of the catchment water budget. The study provides improved understanding of the hydrological functioning of dambos. Such understanding is essential for the development and implementation of sustainable management strategies for this landform.

  20. Water balance along a chain of tundra lakes: A 20-year isotopic perspective

    Science.gov (United States)

    Gibson, J. J.; Reid, R.

    2014-11-01

    Stable isotope measurements and isotope mass balance (IMB) calculations are presented in support of an unprecedented 20-year water balance assessment for a tailings pond and a chain of downstream lakes at the Salmita-Tundra mine site, situated near Courageous Lake, Northwest Territories, Canada (65°03‧N; 111°11‧W). The method is shown to provide a comprehensive annual and interannual perspective of water balance fluxes along a chain of lakes during the period 1991-2010, without the need for continuous streamflow gauging, and reveals important lake-order-dependent patterns of land-surface runoff, discharge accumulation, and several key diagnostic ratios, i.e., evaporation/inflow, evaporation/evapotranspiration, land-surface-runoff/precipitation and discharge/ precipitation. Lake evaporation is found to be a significant component of the water balance, accounting for between 26% and 32% of inflow to natural lakes and between 72% and 100% of inflow to mine-tailings ponds. Evaporation/evapotranspiration averages between 7% and 22% and is found to be higher in low-precipitation years, and in watersheds with a higher proportion of lakes. Runoff ratios for land-surface drainages and runoff ratios for watersheds (including lakes) ranged between 14-47% and 20-47%, respectively, and were higher in low precipitation years, in watersheds with a higher proportion of lakes, and in watersheds less affected by mining development. We propose that in general these two runoff ratios will likely converge as lake order increases and as land cover conditions become regionally representative. Notably, the study demonstrates application of IMB, validated with streamflow measurements, to constrain local water balance in a remote low-arctic region. For IMB chain-of-lakes applications, it underlines the importance of accounting for evaporatively-enriched upstream sources to avoid overestimation of evaporation losses.

  1. Modeling and experimental validation of water mass balance in a PEM fuel cell stack

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Araya, Samuel Simon; Olesen, Anders Christian

    2016-01-01

    Polymer electrolyte membrane (PEM) fuel cells require good hydration in order to deliver high performance and ensure long life operation. Water is essential for proton conductivity in the membrane which increases by nearly six orders of magnitude from dry to fully hydrated. Adequate water...... management in PEM fuel cell is crucial in order to avoid an imbalance between water production and water removal from the fuel cell. In the present study, a novel mathematical zero-dimensional model has been formulated for the water mass balance and hydration of a polymer electrolyte membrane. This model...... is validated against experimental data. In the results it is shown that the fuel cell water balance calculated by this model shows better fit with experimental data-points compared with model where only steady state operation were considered. We conclude that this discrepancy is due a different rate of water...

  2. A reassessment of North American river basin water balances in light of new estimates of mountain snow accumulation

    Science.gov (United States)

    Wrzesien, M.; Durand, M. T.; Pavelsky, T.

    2017-12-01

    The hydrologic cycle is a key component of many aspects of daily life, yet not all water cycle processes are fully understood. In particular, water storage in mountain snowpacks remains largely unknown. Previous work with a high resolution regional climate model suggests that global and continental models underestimate mountain snow accumulation, perhaps by as much as 50%. Therefore, we hypothesize that since snow water equivalent (one aspect of the water balance) is underestimated, accepted water balances for major river basins are likely wrong, particularly for mountainous river basins. Here we examine water balances for four major high latitude North American watersheds - the Columbia, Mackenzie, Nelson, and Yukon. The mountainous percentage of each basin ranges, which allows us to consider whether a bias in the water balance is affected by mountain area percentage within the watershed. For our water balance evaluation, we especially consider precipitation estimates from a variety of datasets, including models, such as WRF and MERRA, and observation-based, such as CRU and GPCP. We ask whether the precipitation datasets provide enough moisture for seasonal snow to accumulate within the basin and whether we see differences in the variability of annual and seasonal precipitation from each dataset. From our reassessment of high-latitude water balances, we aim to determine whether the current understanding is sufficient to describe all processes within the hydrologic cycle or whether datasets appear to be biased, particularly in high-elevation precipitation. Should currently-available datasets appear to be similarly biased in precipitation, as we have seen in mountain snow accumulation, we discuss the implications for the continental water budget.

  3. Balancing water resources development and environmental sustainability in Africa: a review of recent research findings and applications.

    Science.gov (United States)

    McClain, Michael E

    2013-09-01

    Sustainable development in Africa is dependent on increasing use of the continent's water resources without significantly degrading ecosystem services that are also fundamental to human wellbeing. This is particularly challenging in Africa because of high spatial and temporal variability in the availability of water resources and limited amounts of total water availability across expansive semi-arid portions of the continent. The challenge is compounded by ambitious targets for increased water use and a rush of international funding to finance development activities. Balancing development with environmental sustainability requires (i) understanding the boundary conditions imposed by the continent's climate and hydrology today and into the future, (ii) estimating the magnitude and spatial distribution of water use needed to meet development goals, and (iii) understanding the environmental water requirements of affected ecosystems, their current status and potential consequences of increased water use. This article reviews recent advancements in each of these topics and highlights innovative approaches and tools available to support sustainable development. While much remains to be learned, scientific understanding and technology should not be viewed as impediments to sustainable development on the continent.

  4. Carbon source/sink function of a subtropical, eutrophic lake determined from an overall mass balance and a gas exchange and carbon burial balance

    International Nuclear Information System (INIS)

    Yang Hong; Xing Yangping; Xie Ping; Ni Leyi; Rong Kewen

    2008-01-01

    Although studies on carbon burial in lake sediments have shown that lakes are disproportionately important carbon sinks, many studies on gaseous carbon exchange across the water-air interface have demonstrated that lakes are supersaturated with CO 2 and CH 4 causing a net release of CO 2 and CH 4 to the atmosphere. In order to more accurately estimate the net carbon source/sink function of lake ecosystems, a more comprehensive carbon budget is needed, especially for gaseous carbon exchange across the water-air interface. Using two methods, overall mass balance and gas exchange and carbon burial balance, we assessed the carbon source/sink function of Lake Donghu, a subtropical, eutrophic lake, from April 2003 to March 2004. With the overall mass balance calculations, total carbon input was 14 905 t, total carbon output was 4950 t, and net carbon budget was +9955 t, suggesting that Lake Donghu was a great carbon sink. For the gas exchange and carbon burial balance, gaseous carbon (CO 2 and CH 4 ) emission across the water-air interface totaled 752 t while carbon burial in the lake sediment was 9477 t. The ratio of carbon emission into the atmosphere to carbon burial into the sediment was only 0.08. This low ratio indicates that Lake Donghu is a great carbon sink. Results showed good agreement between the two methods with both showing Lake Donghu to be a great carbon sink. This results from the high primary production of Lake Donghu, substantive allochthonous carbon inputs and intensive anthropogenic activity. Gaseous carbon emission accounted for about 15% of the total carbon output, indicating that the total output would be underestimated without including gaseous carbon exchange. - Due to high primary production, substantive allochthonous carbon inputs and intensive anthropogenic acitivity, subtropical, eutrophic Lake Donghu is a great carbon sink

  5. The soil water balance in a mosaic of clumped vegetation

    Science.gov (United States)

    Pizzolla, Teresa; Manfreda, Salvatore; Caylor, Kelly; Gioia, Andrea; Iacobellis, Vito

    2014-05-01

    The spatio-temporal distribution of soil moisture influences the plant growth and the distribution of terrestrial vegetation. This effect is more evident in arid and semiarid ecosystems where the interaction between individuals and the water limited conditions play a fundamental role, providing environmental conditions which drive a variety of non-linear ecohydrological response functions (such as transpiration, photosynthesis, leakage). In this context, modeling vegetation patterns at multiple spatial aggregation scales is important to understand how different vegetation structures can modify the soil water distribution and the exchanged fluxes between soil and atmosphere. In the present paper, the effect of different spatial vegetation patterns, under different climatic scenarios, is investigated in a patchy vegetation mosaic generated by a random process of individual tree canopies and their accompanying root system. Vegetation pattern are generated using the mathematical framework proposed by Caylor et al. (2006) characterized by a three dimensional stochastic vegetation structure, based on the density, dispersion, size distribution, and allometry of individuals within a landscape. A Poisson distribution is applied to generate different distribution of individuals paying particular attention on the role of clumping on water distribution dynamics. The soil water balance is evaluated using the analytical expression proposed by Laio et al. (2001) to explore the influence of climate and vegetation patterns on soil water balance steady-state components (such as the average rates of evaporation, the root water uptake and leakage) and on the stress-weighted plant water uptake. Results of numerical simulations show that clumping may be beneficial for water use efficiency at the landscape scale. References Caylor, Kelly K., P. D'Odorico and I. Rodriguez Iturbe: On the ecohydrology of structurally heterogeneous semiarid landscape. Water Resour. Res., 28, W07424, 2006

  6. Impacts of climate and management on water balance and nitrogen leaching from montane grassland soils of S-Germany.

    Science.gov (United States)

    Fu, Jin; Gasche, Rainer; Wang, Na; Lu, Haiyan; Butterbach-Bahl, Klaus; Kiese, Ralf

    2017-10-01

    In this study water balance components as well as nitrogen and dissolved organic carbon leaching were quantified by means of large weighable grassland lysimeters at three sites (860, 770 and 600 m a.s.l.) for both intensive and extensive management. Our results show that at E600, the site with highest air temperature (8.6 °C) and lowest precipitation (981.9 mm), evapotranspiration losses were 100.7 mm higher as at the site (E860) with lowest mean annual air temperature (6.5 °C) and highest precipitation (1359.3 mm). Seepage water formation was substantially lower at E600 (-440.9 mm) as compared to E860. Compared to climate, impacts of management on water balance components were negligible. However, intensive management significantly increased total nitrogen leaching rates across sites as compared to extensive management from 2.6 kg N ha -1 year -1 (range: 0.5-6.0 kg N ha -1 year -1 ) to 4.8 kg N ha -1 year -1 (range: 0.9-12.9 kg N ha -1 year -1 ). N leaching losses were dominated by nitrate (64.7%) and less by ammonium (14.6%) and DON (20.7%). The low rates of N leaching (0.8-6.9% of total applied N) suggest a highly efficient nitrogen uptake by plants as measured by plant total N content at harvest. Moreover, plant uptake was often exceeding slurry application rates, suggesting further supply of N due to soil organic matter decomposition. The low risk of nitrate losses via leaching and surface runoff of cut grassland on non-sandy soils with vigorous grass growth may call for a careful site and region specific re-evaluation of fixed limits of N fertilization rates as defined by e.g. the German Fertilizer Ordinance following requirements set by the European Water Framework and Nitrates Directive. Copyright © 2017. Published by Elsevier Ltd.

  7. Preliminary estimation of Lake El'gygytgyn water balance and sediment income

    Directory of Open Access Journals (Sweden)

    G. Fedorov

    2013-07-01

    Full Text Available Modern process studies of the hydrologic balance of Lake El'gygytgyn, central Chukotka, and the sediment income from the catchment were carried out during a field campaign in spring and summer 2003. Despite high uncertainties due to the limited data, the results provide important first estimates for better understanding the modern and past sedimentation processes in this basin. Formed ca. 3.6 million years ago as a result of a meteorite impact, the basin contains one of the longest paleoclimate records in the terrestrial Arctic. Fluvial activity is concentrated over the short snowmelt period (about 20 days in second part of June. Underground outflow plays a very important role in the water balance and predominates over surface outflow. The residence time of the lake water is estimated to be about 100 yr.

  8. A MASS BALANCE OF SURFACE WATER GENOTOXICITY IN PROVIDENCE RIVER (RHODE ISLAND USA)

    Science.gov (United States)

    White and Rasmussen (Mutation Res. 410:223-236) used a mass balance approach to demonstrate that over 85% of the total genotoxic loading to the St. Lawrence River at Montreal is non-industrial. To validate the mass balance approach and investigate the sources of genotoxins in sur...

  9. Surface energy balance of fresh and saline waters : AquaSEBS

    NARCIS (Netherlands)

    Abdelrady, A.R.; Timmermans, J.; Vekerdy, Z.; Salama, M.S.

    2016-01-01

    Current earth observation models do not take into account the influence of water salinity on the evaporation rate, even though the salinity influences the evaporation rate by affecting the density and latent heat of vaporization. In this paper, we adapt the SEBS (Surface Energy Balance System) model

  10. Assessing climate change impacts on water balance in the Mount

    Indian Academy of Sciences (India)

    A statistical downscaling known for producing station-scale climate information from GCM output was preferred to evaluate the impacts of climate change within the Mount Makiling forest watershed, Philippines. The lumped hydrologic BROOK90 model was utilized for the water balance assessment of climate change ...

  11. Balancing passive and active systems for evolutionary water cooled reactors

    International Nuclear Information System (INIS)

    Fil, N.S.; Allen, P.J.; Kirmse, R.E.; Kurihara, M.; Oh, S.J.; Sinha, R.K.

    1999-01-01

    Advanced concepts of the water-cooled reactors are intended to improve safety, economics and public perception of nuclear power. The potential inclusion of new passive means in addition or instead of traditional active systems is being considered by nuclear plant designers to reach these goals. With respect to plant safety, application of the passive means is mainly intended to simplify the safety systems and to improve their reliability, to mitigate the effect of human errors and equipment malfunction. However, some clear drawbacks and the limited experience and testing of passive systems may raise additional questions that have to be addressed in the design process for each advanced reactor. Therefore the plant designer should find a reasonable balance of active and passive means to effectively use their advantages and compensate their drawbacks. Some considerations that have to be taken into account when balancing active/passive means in advanced water-cooled reactors are discussed in this paper. (author)

  12. Evaluating recharge to an ephemeral dryland stream using a hydraulic model and water, chloride and isotope mass balance

    Science.gov (United States)

    Dogramaci, Shawan; Firmani, Giovanni; Hedley, Paul; Skrzypek, Grzegorz; Grierson, Pauline F.

    2015-02-01

    Dewatering associated with mining below water table to achieve dry mining conditions may exert significant pressure on water balance in terms of lowering the water table and change in the dynamics of interactions between surface water and groundwater. The discharge of surplus mine water into ephemeral streams may also affect the water balance, by elevating groundwater levels and altering the exchange rate between streams and underlying aquifers. However, it is unclear whether volumes and recharge processes are within the range of natural variability. Here, we present a case study of an ephemeral creek in the semi-arid Hamersley Basin of northwest Australia that has received continuous mine discharge for more than six years. We used a numerical model coupled with repeated measurements of water levels, chloride concentrations and the hydrogen and oxygen stable isotope composition (δ2H and δ18O) to estimate longitudinal evapotranspiration and recharge rates along a 27 km length of Weeli Wolli Creek. We found that chloride increased from 73 to 120 mg/L across this length, while δ18O increased from -8.2‰ to -7.00‰. Groundwater is directly connected to the creek for the first 13 km and recharge rates are negligible. Below this point, the creek flows over a highly permeable aquifer and water loss by recharge increases to a maximum rate of 4.4 mm/d, which accounts for ∼65% of the total water discharged to the creek. Evapotranspiration losses account for the remaining ∼35%. The calculated recharge from continuous flow due to surplus water discharge is similar to that measured for rainfall-driven flood events along the creek. Groundwater under the disconnected section of the creek is characterised by a much lower Cl concentration and more depleted δ18O value than mining discharge water but is similar to flood water generated by large episodic rainfall events. Our results suggest that the impact of recharge from continuous flow on the water balance of the creek

  13. Restoring water quality in the polluted Turag-Tongi-Balu river system, Dhaka: Modelling nutrient and total coliform intervention strategies.

    Science.gov (United States)

    Whitehead, Paul; Bussi, Gianbattista; Hossain, Mohammed Abed; Dolk, Michaela; Das, Partho; Comber, Sean; Peters, Rebecca; Charles, Katrina J; Hope, Rob; Hossain, Md Sarwar

    2018-08-01

    River water quality in rapidly urbanising Asian cities threatens to damage the resource base on which human health, economic growth and poverty reduction all depend. Dhaka reflects the challenges and opportunities for balancing these dynamic and complex trade-offs which goals can be achieved through effective policy interventions. There is a serious problem of water pollution in central Dhaka, in the Turag-Tongi-Balu River system in Bangladesh with the river system being one of the most polluted in the world at the moment. A baseline survey of water chemistry and total coliforms has been undertaken and shows dissolved oxygen close to zero in the dry season, high organic loading together with extreme levels of Ammonium-N and total coliform in the water. Models have been applied to assess hydrochemical processes in the river and evaluate alternative strategies for policy and the management of the pollution issues. In particular models of flow, Nitrate-N, Ammonium-N and indicator bacteria (total coliforms) are applied to simulate water quality in the river system. Various scenarios are explored to clean up the river system, including flow augmentation and improved effluent treatment. The model results indicate that improved effluent treatment is likely to have a more significant impact on reducing Ammonium-N and total coliforms than flow augmentation, but a combined strategy would greatly reduce the pollution problems in the Turag-Tongi-Balu River System. Copyright © 2018. Published by Elsevier B.V.

  14. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015

    Science.gov (United States)

    Abatzoglou, John T.; Dobrowski, Solomon Z.; Parks, Sean A.; Hegewisch, Katherine C.

    2018-01-01

    We present TerraClimate, a dataset of high-spatial resolution (1/24°, ~4-km) monthly climate and climatic water balance for global terrestrial surfaces from 1958-2015. TerraClimate uses climatically aided interpolation, combining high-spatial resolution climatological normals from the WorldClim dataset, with coarser resolution time varying (i.e., monthly) data from other sources to produce a monthly dataset of precipitation, maximum and minimum temperature, wind speed, vapor pressure, and solar radiation. TerraClimate additionally produces monthly surface water balance datasets using a water balance model that incorporates reference evapotranspiration, precipitation, temperature, and interpolated plant extractable soil water capacity. These data provide important inputs for ecological and hydrological studies at global scales that require high spatial resolution and time varying climate and climatic water balance data. We validated spatiotemporal aspects of TerraClimate using annual temperature, precipitation, and calculated reference evapotranspiration from station data, as well as annual runoff from streamflow gauges. TerraClimate datasets showed noted improvement in overall mean absolute error and increased spatial realism relative to coarser resolution gridded datasets.

  15. Effects of Land Cover Changes to the Quantity of Water Supply and Hydrologic Cycle using Water Balance Models

    Directory of Open Access Journals (Sweden)

    Caja CC

    2018-01-01

    Full Text Available The hydrologic cycle is a recurring consequence of different forms of movement of water and changes of its physical state on a given area of the earth. The land cover of a certain area is a significant factor affecting the watershed hydrology. This also affects the quantity of water supply within the watershed. This study assessed the impacts of the changing land cover of the Ipo watershed, a part of the Angat-Ipo-La Mesa water system which is the main source of Metro Manila’s water supply. The environmental impacts were assessed using the interaction of vegetation cover changes and the output flow rates in Ipo watershed. Using hydrologic modelling system, the hydrological balance using rainfall, vegetation and terrain data of the watershed was simulated. Over the years, there has been a decreasing land cover within the watershed caused mostly by deforestation and other human activities. This significant change in the land cover resulted to extreme increase in water discharge at all streams and rivers in the watershed and the water balance of the area were affected as saturation and shape of the land terrain changes.

  16. A stochastic approach for the description of the water balance dynamics in a river basin

    Directory of Open Access Journals (Sweden)

    S. Manfreda

    2008-09-01

    Full Text Available The present paper introduces an analytical approach for the description of the soil water balance dynamics over a schematic river basin. The model is based on a stochastic differential equation where the rainfall forcing is interpreted as an additive noise in the soil water balance. This equation can be solved assuming known the spatial distribution of the soil moisture over the basin transforming the two-dimensional problem in space in a one dimensional one. This assumption is particularly true in the case of humid and semihumid environments, where spatial redistribution becomes dominant producing a well defined soil moisture pattern. The model allowed to derive the probability density function of the saturated portion of a basin and of its relative saturation. This theory is based on the assumption that the soil water storage capacity varies across the basin following a parabolic distribution and the basin has homogeneous soil texture and vegetation cover. The methodology outlined the role played by the soil water storage capacity distribution of the basin on soil water balance. In particular, the resulting probability density functions of the relative basin saturation were found to be strongly controlled by the maximum water storage capacity of the basin, while the probability density functions of the relative saturated portion of the basin are strongly influenced by the spatial heterogeneity of the soil water storage capacity. Moreover, the saturated areas reach their maximum variability when the mean rainfall rate is almost equal to the soil water loss coefficient given by the sum of the maximum rate of evapotranspiration and leakage loss in the soil water balance. The model was tested using the results of a continuous numerical simulation performed with a semi-distributed model in order to validate the proposed theoretical distributions.

  17. Proposing water balance method for water availability estimation in Indonesian regional spatial planning

    Science.gov (United States)

    Juniati, A. T.; Sutjiningsih, D.; Soeryantono, H.; Kusratmoko, E.

    2018-01-01

    The water availability (WA) of a region is one of important consideration in both the formulation of spatial plans and the evaluation of the effectiveness of actual land use in providing sustainable water resources. Information on land-water needs vis-a-vis their availability in a region determines the state of the surplus or deficit to inform effective land use utilization. How to calculate water availability have been described in the Guideline in Determining the Carrying Capacity of the Environment in Regional Spatial Planning. However, the method of determining the supply and demand of water on these guidelines is debatable since the determination of WA in this guideline used a rational method. The rational method is developed the basis for storm drain design practice and it is essentially a peak discharge method peak discharge calculation method. This paper review the literature in methods of water availability estimation which is described descriptively, and present arguments to claim that water balance method is a more fundamental and appropriate tool in water availability estimation. A better water availability estimation method would serve to improve the practice in preparing formulations of Regional Spatial Plan (RSP) as well as evaluating land use capacity in providing sustainable water resources.

  18. Assessment of green roof systems in terms of water and energy balance

    Directory of Open Access Journals (Sweden)

    Mert Ekşi

    2016-01-01

    Full Text Available Green roofs concept term is used for extensive green roofs which are planted with herbaceous plants that can be adapted into changeable environmental conditions on a shallow substrate layer, require minimal maintenance, installed for their benefits to building and urban scale. Main objective of this study is to determine the characteristics of a green roof such as thermal insulation, water holding capacity, runoff characteristics, plant growth and its interaction with environmental factors in Istanbul climate conditions by performing comparative measurements. In this study, a research site (IU Green Roof Research Station was founded to assess water and energy balance of green roofs. Thus, a typical green roof was evaluated in terms of water and energy balance and its interaction with the building and city was determined. energy efficiency of green roof system was 77% higher than reference roof. Temperature fluctuations on green roof section of the roof were 79% lower. In addition, green roof retained 12,8% - 100% of precipitation and delayed runoff up to 23 hours depending on water content of substrate.

  19. Optimal ship forms for minimum total resistance in shallow water

    OpenAIRE

    Zhao, Lian-en

    1984-01-01

    Optimal ship forms for minimum total resistance in shallow water Optimal ship forms for minimum total resistance in shallow water: An attempt is made to obtain shallow-water optimal ship forms for total resistance by means of "tent" function representation under the constraints that the main dimensions of the ship and the water-line area were kept constant. The objective function in the quadratic programming is the sum of wave-making resistance calculated by Sretenski's formula and viscou...

  20. The use of Total Body In Vivo Neutron Activation Analysis (TBIVNAA) in balance studies in rodents

    International Nuclear Information System (INIS)

    Smith, D.A.; Lindsay, R.L.; Anderson, J.

    1976-01-01

    In the investigation of animals subject to alteration in diet or other metabolic experiments, the measurements of change in body calcium, phosphorus, sodium and nitrogen are of considerable interest. However, conventional balance studies are tedious and subject to both random and cumulative error, necessitating as they do accurate estimates of dietary intake and faecal and urinary output. The object of the present study was to determine the usefulness of total body in vivo neutron activation analysis, used at the beginning and end of the experimental period, as an alternative to conventional balance techniques. (orig.) [de

  1. Impact of climate seasonality on catchment yield: A parameterization for commonly-used water balance formulas

    Science.gov (United States)

    de Lavenne, Alban; Andréassian, Vazken

    2018-03-01

    This paper examines the hydrological impact of the seasonality of precipitation and maximum evaporation: seasonality is, after aridity, a second-order determinant of catchment water yield. Based on a data set of 171 French catchments (where aridity ranged between 0.2 and 1.2), we present a parameterization of three commonly-used water balance formulas (namely, Turc-Mezentsev, Tixeront-Fu and Oldekop formulas) to account for seasonality effects. We quantify the improvement of seasonality-based parameterization in terms of the reconstitution of both catchment streamflow and water yield. The significant improvement obtained (reduction of RMSE between 9 and 14% depending on the formula) demonstrates the importance of climate seasonality in the determination of long-term catchment water balance.

  2. Modeling efficiency and water balance in PEM fuel cell systems with liquid fuel processing and hydrogen membranes

    Science.gov (United States)

    Pearlman, Joshua B.; Bhargav, Atul; Shields, Eric B.; Jackson, Gregory S.; Hearn, Patrick L.

    Integrating PEM fuel cells effectively with liquid hydrocarbon reforming requires careful system analysis to assess trade-offs associated with H 2 production, purification, and overall water balance. To this end, a model of a PEM fuel cell system integrated with an autothermal reformer for liquid hydrocarbon fuels (modeled as C 12H 23) and with H 2 purification in a water-gas-shift/membrane reactor is developed to do iterative calculations for mass, species, and energy balances at a component and system level. The model evaluates system efficiency with parasitic loads (from compressors, pumps, and cooling fans), system water balance, and component operating temperatures/pressures. Model results for a 5-kW fuel cell generator show that with state-of-the-art PEM fuel cell polarization curves, thermal efficiencies >30% can be achieved when power densities are low enough for operating voltages >0.72 V per cell. Efficiency can be increased by operating the reformer at steam-to-carbon ratios as high as constraints related to stable reactor temperatures allow. Decreasing ambient temperature improves system water balance and increases efficiency through parasitic load reduction. The baseline configuration studied herein sustained water balance for ambient temperatures ≤35 °C at full power and ≤44 °C at half power with efficiencies approaching ∼27 and ∼30%, respectively.

  3. Combining remote sensing and water-balance evapotranspiration estimates for the conterminous United States

    Science.gov (United States)

    Reitz, Meredith; Senay, Gabriel; Sanford, Ward E.

    2017-01-01

    Evapotranspiration (ET) is a key component of the hydrologic cycle, accounting for ~70% of precipitation in the conterminous U.S. (CONUS), but it has been a challenge to predict accurately across different spatio-temporal scales. The increasing availability of remotely sensed data has led to significant advances in the frequency and spatial resolution of ET estimates, derived from energy balance principles with variables such as temperature used to estimate surface latent heat flux. Although remote sensing methods excel at depicting spatial and temporal variability, estimation of ET independently of other water budget components can lead to inconsistency with other budget terms. Methods that rely on ground-based data better constrain long-term ET, but are unable to provide the same temporal resolution. Here we combine long-term ET estimates from a water-balance approach with the SSEBop (operational Simplified Surface Energy Balance) remote sensing-based ET product for 2000–2015. We test the new combined method, the original SSEBop product, and another remote sensing ET product (MOD16) against monthly measurements from 119 flux towers. The new product showed advantages especially in non-irrigated areas where the new method showed a coefficient of determination R2 of 0.44, compared to 0.41 for SSEBop or 0.35 for MOD16. The resulting monthly data set will be a useful, unique contribution to ET estimation, due to its combination of remote sensing-based variability and ground-based long-term water balance constraints.

  4. Fundamentals of the spatially distributed simulation of the water balance of forest sites in a low-range mountain area

    Directory of Open Access Journals (Sweden)

    K. Schwärzel

    2007-05-01

    Full Text Available For a sustainable forest management, a site-specific knowledge on the water balance is a prerequisite. A simple and popular field method for assessing the water balance of forest sites is based on overlaying relief and soil information. Furthermore, climatic influence on the water balance is often restricted to longtime average values of precipitation and air temperature (whole year and/or growing season. However, the impacts of climate change and climatic extremes, as well as silvicultural changes, are inadequately considered. To overcome these short-comings, we integrated the 1D-SVAT model BROOK90 and a radiation model in a GIS to simulate the spatially distributed components of water balance of forest sites. In this paper, we present the model concept and show an approach to describe the influence of a complex terrain on parameters controlling the spatial distribution of energy and water fluxes.

  5. Chlorination or monochloramination: Balancing the regulated trihalomethane formation and microbial inactivation in marine aquaculture waters

    KAUST Repository

    Sanawar, Huma

    2017-08-15

    Disinfection methods like chlorination are increasingly used to sanitize the water, equipment, tools and surfaces in aquaculture facilities. This is to improve water quality, and to maintain a hygienic environment for the well-being of aquatic organisms. However, chlorination can result in formation of regulated disinfection byproducts (DBPs) that can be carcinogenic and toxic. This study aims to evaluate if an optimal balance can be achieved between minimal regulated DBP formation and effective microbial inactivation with either chlorination or monochloramination for application in the Red Sea aquaculture waters. Upon chlorination, the concentration of total trihalomethanes (THMs), primarily bromoform, exceeded the regulatory limit of 80μg/L even at the lowest tested concentration of chlorine (1mg/L) and contact time (1h). Comparatively, regulated THMs concentration was only detectable at 30μg/L level in one of the three sets of monochloraminated marine aquaculture waters. The average log reduction of antibiotic-resistant bacteria (ARB) by chlorine ranged from 2.3-log to 3.2-log with different contact time. The average log reduction of ARB by monochloramine was comparatively lower at 1.9 to 2.9-log. Although viable Staphylococcus aureus was recovered from monochloraminated samples as opposed to chlorinated samples, the abundance of S. aureus was not high enough to result in any significant microbial risks. Both chlorination and monochloramination did not provide any significant improvement in the reduction of antibiotic resistance genes (ARGs). This study demonstrates that a systematic evaluation is needed to determine the optimal disinfectant required to balance both microbial and chemical risks. Compared to chlorine, monochloramine may be a more appropriate disinfection strategy for the treatment of aquaculture effluents prior to discharge or for recirculatory use in the aquaculture facility.

  6. Actual Evapotranspiration in the Al-Khazir Gomal Basin (Northern Iraq Using the Surface Energy Balance Algorithm for Land (SEBAL and Water Balance

    Directory of Open Access Journals (Sweden)

    Hussein Jassas

    2015-04-01

    Full Text Available Increasing dependence on groundwater requires a detailed determination of the different outputs and inputs of a basin for better water management. Determination of spatial and temporal actual evapotranspiration (ETa, in this regard, is of vital importance as there is significant water loss from drainage basins. This research paper uses the Surface Energy Balance Algorithm for Land (SEBAL, as well as the water balance, to estimate the spatial and temporal ETa in the Al-Khazir Gomal Basin, Northern Iraq. To compensate for the shortage in rainfall, and to irrigate summer crops, farmers in this basin have been depending, to a large extent, on groundwater extracted from the underlying unconfined aquifer, which is considered the major source for both domestic and agricultural uses in this basin. Rainfed farming of wheat and barley is one of the most important activities in the basin in the winter season, while in the summer season, agricultural activity is limited to small rice fields and narrow strips of vegetable cultivation along the Al-Khazir River. The Landsat Thematic Mapper images (TM5 acquired on 21 November 2006, 9 March 2007, 5 May 2007, 21 July 2007, and 23 September 2007 were used, along with a digital elevation model (DEM and ground-based meteorological data, measured within the area of interest. Estimation of seasonal ETa from periods between satellite overpasses was computed using the evaporative fraction (Ʌ. The water balance approach was utilized, using meteorological data and river hydrograph analysis, to estimate the ETa as the only missing input in the predefined water balance equation. The results of the two applied methods were comparable. SEBAL results were compared with the land use land cover (LULC map. The river showed the highest ETa, as evaporation from the free-water surface. Rice fields, irrigated in the summer season, have a high ETa in the images, as these fields are immersed in water during June, July and August

  7. Use of Water Balance and Tracer-Based Approaches to Monitor Groundwater Recharge in the Hyper-Arid Gobi Desert of Northwestern China

    Directory of Open Access Journals (Sweden)

    Tomohiro Akiyama

    2018-05-01

    Full Text Available The groundwater recharge mechanism in the hyper-arid Gobi Desert of Northwestern China was analyzed using water balance and tracer-based approaches. Investigations of evaporation, soil water content, and their relationships with individual rainfall events were conducted from April to August of 2004. Water sampling of rainwater, groundwater, and surface water was also conducted. During this period, 10 precipitation events with a total amount of 41.5 mm, including a maximum of 28.9 mm, were observed. Evaporation during the period was estimated to be 33.1 mm. Only the soil water, which was derived from the heaviest precipitation, remained in the vadose zone. This is because a dry surface layer, which was formed several days after the heaviest precipitation event, prevented evaporation. Prior to that, the heaviest precipitation rapidly infiltrated without being affected by evaporation. This is corroborated by the isotopic evidence that both the heaviest precipitation and the groundwater retained no trace of significant kinetic evaporation. Estimated δ-values of the remaining soil water based on isotopic fractionation and its mass balance theories also demonstrated no trace of kinetic fractionation in the infiltration process. Moreover, stable isotopic compositions of the heaviest precipitation and the groundwater were very similar. Therefore, we concluded that the high-intensity precipitation, which rapidly infiltrated without any trace of evaporation, was the main source of the groundwater.

  8. Evapotranspiration management based on the application of SWAT for balancing water consumption: A case study in Guantao, China

    Science.gov (United States)

    Liu, Bin; Gan, Hong

    2018-06-01

    Rapid social and economic development results in increased demand for water resources. This can lead to the unsustainable development and exploitation of water resources which in turn causes significant environmental problems. Conventional water resource management approaches, such as supply and demand management strategies, frequently fail to restore regional water balance. This paper introduces the concept of water consumption balance, the balance between actual evapotranspiration (ET) and target ET, and establishes a framework to realize regional water balance. The framework consists of three stages: (1) determination of target ET and actual ET; (2) quantification of the water-saving requirements for the region; and (3) reduction of actual ET by implementing various water saving management strategies. Using this framework, a case study was conducted for Guantao County, China. The SWAT model was utilized to aid in the selection of the best water saving management strategy by comparing the ET of different irrigation methods and crop pattern adjustments. Simulation results revealed that determination of SWAT model parameters using remote sensing ET is feasible and that the model is a valuable tool for ET management. Irrigation was found to have a greater influence on the ET of winter wheat as compared to that of maize, indicating that reduction in winter wheat cultivation is the most effective way to reduce regional ET. However, the effect of water-saving irrigation methods on the reduction of ET was not obvious. This indicates that it would be difficult to achieve regional ET reduction using water-saving irrigation methods only. Furthermore, selecting the best water saving management strategy by relying solely on the amount of reduced ET was insufficient, because it ignored the impact of water conservation measures on the livelihood of the agricultural community. Incorporating these considerations with our findings, we recommend changing the current irrigation

  9. Application of SWAT99.2 to sensitivity analysis of water balance components in unique plots in a hilly region

    Directory of Open Access Journals (Sweden)

    Jun-feng Dai

    2017-07-01

    Full Text Available Although many sensitivity analyses using the soil and water assessment tool (SWAT in a complex watershed have been conducted, little attention has been paid to the application potential of the model in unique plots. In addition, sensitivity analysis of percolation and evapotranspiration with SWAT has seldom been undertaken. In this study, SWAT99.2 was calibrated to simulate water balance components for unique plots in Southern China from 2000 to 2001, which included surface runoff, percolation, and evapotranspiration. Twenty-one parameters classified into four categories, including meteorological conditions, topographical characteristics, soil properties, and vegetation attributes, were used for sensitivity analysis through one-at-a-time (OAT sampling to identify the factor that contributed most to the variance in water balance components. The results were shown to be different for different plots, with parameter sensitivity indices and ranks varying for different water balance components. Water balance components in the broad-leaved forest and natural grass plots were most sensitive to meteorological conditions, less sensitive to vegetation attributes and soil properties, and least sensitive to topographical characteristics. Compared to those in the natural grass plot, water balance components in the broad-leaved forest plot demonstrated higher sensitivity to the maximum stomatal conductance (GSI and maximum leaf area index (BLAI.

  10. Stable isotopes, δ18O and δ2H, in the study of water balance of Lake Massoko, Tanzania: Investigation of the exchange between lake and underground water

    International Nuclear Information System (INIS)

    Bergonzini, L.; Gibert, E.; Winckel, A.

    2002-01-01

    excess higher than the values obtained from precipitation. This fact appears in good agreement with local rivers composition. However, the hydrological and isotope balances of Lake Massoko gives evidence of important groundwater input and output, overimposed to relationships with groundwater circulation at a regional scale. Water lost by infiltration has been estimated at about 60% of the total lost and inflow from the basin assessed at around 40% of the input. This point indicates that Lake Massoko did not directly amplified the climatic fluctuations, and that its level is maintained by groundwater. In such a scheme, at odds with many lake of East Africa, the sediment preservation is optimised as confirmed by a continuous sedimentary sequence core in the lake in 1996* and having registered more than 35 ky B.P. of environmental history. Sedimentation rate fluctuation over this period are presented and compared with other limnological sequences. (author)

  11. The Effect of Water Exercise Program on Static and Dynamic Balance in Elderly Women

    Directory of Open Access Journals (Sweden)

    Heydar Sadeghi

    2008-01-01

    Full Text Available Objectives: Poor balance is one of risk factors of falling, a cause of injury and even death in elderly. The aim of this study was to evaluate the effect of a water exercise program on static and dynamic balance in elder women. Methods & Materials: Thirty participants aged 55-70 years completed an exercise program (60 min, 3 days and 6 weeks, in 2 groups, exercise and control, voluntarily. Static and dynamic balances were measured before and after exercise program in both groups. Postural sway parameters, including mean displacement of center of pressure and velocity of center of pressure in Medio-Lateral (ML and Anterio-Posterior (AP directions, in single stance position, as a measure of static balance and functional reach test, functional reach right test and functional reach left test, as dynamic measure of balance was considered. T test for deepened groups was used for evaluation of changes within groups, and T test for independent groups was used for between groups' changes at threshold of 0.05 After 6 weeks. Results: Significant changes were observed in results of Functional Reach Test (FRT, Functional Reach Left Test (FRLT after exercise program, also in average displacement of cop and velocity of cop in ML direction. Between groups significant differences were observed in results of average cop displacement and velocity of displacement, FRT and FRLT. Conclusion: These results suggest that challenging the physiological systems involved in balance control, in water, while on the non stable support surface, improved both static and dynamic balance and probably might decrease the risk of falling.

  12. The effect of total knee arthroplasty on patients' balance and incidence of falls: a systematic review.

    Science.gov (United States)

    Moutzouri, M; Gleeson, N; Billis, E; Tsepis, E; Panoutsopoulou, I; Gliatis, J

    2017-11-01

    Despite the high incidence of falls in patients with OA, few studies have explored whether falls risk is affected after patients undergo total knee arthroplasty (TKA). Therefore, the aim of this systematic review was to identify the extent of the effects of TKA on balance and incidence of falls by critically reviewing the available literature. A systematic review of published literature sources was conducted up to March 2014. All studies assessing balance and incidence of falls after TKA (without physiotherapeutic intervention) were included. The methodological quality of each study was reviewed using the Critical Appraisal Skill Programme tool. Thirteen studies were included, comprising of ten cohort studies (Level II) and three studies with Level of evidence III. Findings provide evidence that TKA improves significantly single-limb standing balance (~60%) and dynamic balance up to 1-year following surgery (Level of evidence II). Moreover, TKA influences positively fear of falling and incidence of falls by switching 54.2 % of pre-operative fallers to post-operative non-fallers (Level of evidence II-III). It is highlighted that knee extension strength, proprioception and symmetrization of postural strategies have not fully recovered post-TKA and influence balance performance. Clinically, these persistent deficits need to be mitigated by physiotherapy even before TKA takes place.

  13. Calibration and validation of SWAT model for estimating water balance and nitrogen losses in a small agricultural watershed in central Poland

    Directory of Open Access Journals (Sweden)

    Smarzyńska Karolina

    2016-06-01

    Full Text Available Soil and Water Assessment Tool (SWAT ver. 2005 was applied to study water balance and nitrogen load pathways in a small agricultural watershed in the lowlands of central Poland. The natural flow regime of the Zgłowiączka River was strongly modified by human activity (deforestation and installation of a subsurface drainage system to facilitate stable crop production. SWAT was calibrated for daily and monthly discharge and monthly nitrate nitrogen load. Model efficiency was tested using manual techniques (subjective and evaluation statistics (objective. Values of Nash–Sutcliffe efficiency coefficient (NSE, coefficient of determination (R2 and percentage of bias for daily/monthly discharge simulations and monthly load indicated good or very good fit of simulated discharge and nitrate nitrogen load to the observed data set. Model precision and accuracy of fit was proved in validation. The calibrated and validated SWAT was used to assess water balance and nitrogen fluxes in the watershed. According to the results, the share of tile drainage in water yield is equal to 78%. The model analysis indicated the most significant pathway of NO3-N to surface waters in the study area, namely the tile drainage combined with lateral flow. Its share in total NO3-N load amounted to 89%. Identification of nitrogen fluxes in the watershed is crucial for decision makers in order to manage water resources and to implement the most effective measures to limit diffuse pollution from arable land to surface waters.

  14. Supercritical Water Oxidation Total Organic Carbon (TOC) Analysis

    Science.gov (United States)

    The work presented here is the evaluation of the modified wet‐oxidation method described as Supercritical Water Oxidation (SCWO) for the analysis of total organic carbon (TOC) in very difficult oil/gas produced water sample matrices.

  15. Mathematical modeling of water mass balance for proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Wan Ramli Wan Daud; Kamaruzzaman Sopian; Jaafar Sahari; Nik Suhaimi Mat Hassan

    2006-01-01

    Gas and water management are key to achieving good performance from a proton exchange membrane fuel cell (PEMFC) stack. Water plays a critical role in PEMFC. The proton conductivity is increase with the water content. In order to achieve enough hydration, water is normally introduced into the cell externally by a variety of methods such as liquid injection, steam introduction, and humidification of reactants by passing them through humidifiers before entering the cell. In this paper, mathematical modeling of water mass balance for PEMFC at anode and cathode side are proposed by using external humidification and assume that steady state, constant pressure, constant temperature and gases distribution are uniform

  16. CHANGES OF WATER BALANCE COMPONENTS OF MIDFOREST POND IN A HYDROLOGICAL YEARS OF A DIFFERENT METEOROLOGICAL CONDITION COURSE

    Directory of Open Access Journals (Sweden)

    Mariusz Korytowski

    2014-10-01

    years. Evaporation from pond surface which was from 408 mm (2009/2010 to 835 mm (2002/2003 was the dominant factor of outgoing part of water balance. Outflow from the pond to neighboring areas had significant participation – about 44% of precipitation, in water balance in wet 2009/2010 hydrological year.

  17. Assessment of the water balance over France using regionalized Turc-Pike formula

    Science.gov (United States)

    Le Lay, Matthieu; Garçon, Rémy; Gailhard, Joël; Garavaglia, Federico

    2016-04-01

    With extensive use of hydrological models over a wide range of hydro-climatic contexts, bias in hydro-climatic data may lead to unreliable models and thus hydrological forecasts and projections. This issue is particularly pregnant when considering mountainous areas with great uncertainties on precipitations, or when considering complex unconservative catchments (e.g. karstic systems). The Turc-Pike water balance formula, analogous to the classical Budyko formula, is a simple and efficient mathematical formulation relating long-term average streamflow to long-term average precipitation and potential evaporation. In this study, we propose to apply this framework to assess and eventually adjust the water-balance before calibrating an operational hydrologic model (MORDOR model). Considering a large set of 350 french catchments, the Turc-Pike formula is regionalized based on ecohydrologic criterions to handle various hydro-climatic contexts. This interannual regional model is then applied to assess the water-balance over numerous catchments and various conditions, such as karstic, snow-driven or glaciarized and even anthropized catchments. Results show that it is possible to obtain pretty realistic corrections of meteorological inputs (precipitations, temperature or potential evaporation) or hydrologic surface (or runoff). These corrections can often be confirmed a posteriori by exogenous information. Positive impacts on hydrologic model's calibration are also demonstrated. This methodology is now operational for hydrologic applications at EDF (Electricité de France, French electric utility company), and therefore applied on hundreds of catchments.

  18. Estimating Water Balance Components of Lakes and Reservoirs Using Various Open Access Satellite Databases

    NARCIS (Netherlands)

    Duan, Z.

    2014-01-01

    There are millions of lakes and ten thousands of reservoirs in the world. The number of reservoirs is still increasing through the construction of large dams to meet the growing demand for water resources, hydroelectricity and economic development. Accurate information on the water balance

  19. Cloud water interception and canopy water balance in the Hawaiian Islands: preliminary results and emerging patterns

    Science.gov (United States)

    Tseng, H.; Giambelluca, T. W.; DeLay, J. K.; Nullet, M.

    2017-12-01

    Steep climate gradients and diverse ecosystems make the Hawaiian Islands an ideal laboratory for ecohydrological experiments. Researchers are able to control physical and ecological variables, which is difficult for most environmental studies, by selecting sites along these gradients. Tropical montane forests, especially those situated in the cloud zone, are known to improve recharge and sustain baseflow. This is probably the result of frequent and persistent fog characteristic to these systems. During fog events, evapotranspiration is suppressed due to high humidity and reduced solar radiation. Moreover, cloud water interception by the forest canopy can produce fog drip and contribute significantly to the local water budget. Because the interception process is a complex interaction between the atmosphere and the vegetation, the effects of the meteorological conditions and canopy characteristics are equally important and sometimes hard to separate. This study aims to examine patterns in cloud water interception and canopy water balance across five tropical montane forest sites on three of the main islands of Hawaii. The sites cover a range of elevations between 1100- 2114 m, annual rainfall between 1155-3375 mm, and different dominant plant species with canopy heights ranging from 1.5 m to 30 m. We investigate the effect of climatic factors by comparing passive fog gauge measurements and other meteorological variables, then examine the differences in canopy water balance by comparing throughfall and stemflow measurements at these sites. While this study is ongoing, we present the first few months of field observations and the results of preliminary analyses. This study will improve understanding of how large-scale climate and vegetation factors interact to control cloud water interception and will inform ongoing watershed management. This is particularly important for oceanic islands such as Hawaii because they rely on precipitation entirely for water supply and

  20. Balancing water resource conservation and food security in China.

    Science.gov (United States)

    Dalin, Carole; Qiu, Huanguang; Hanasaki, Naota; Mauzerall, Denise L; Rodriguez-Iturbe, Ignacio

    2015-04-14

    China's economic growth is expected to continue into the next decades, accompanied by sustained urbanization and industrialization. The associated increase in demand for land, water resources, and rich foods will deepen the challenge of sustainably feeding the population and balancing agricultural and environmental policies. We combine a hydrologic model with an economic model to project China's future food trade patterns and embedded water resources by 2030 and to analyze the effects of targeted irrigation reductions on this system, notably on national agricultural water consumption and food self-sufficiency. We simulate interprovincial and international food trade with a general equilibrium welfare model and a linear programming optimization, and we obtain province-level estimates of commodities' virtual water content with a hydrologic model. We find that reducing irrigated land in regions highly dependent on scarce river flow and nonrenewable groundwater resources, such as Inner Mongolia and the greater Beijing area, can improve the efficiency of agriculture and trade regarding water resources. It can also avoid significant consumption of irrigation water across China (up to 14.8 km(3)/y, reduction by 14%), while incurring relatively small decreases in national food self-sufficiency (e.g., by 3% for wheat). Other researchers found that a national, rather than local, water policy would have similar effects on food production but would only reduce irrigation water consumption by 5%.

  1. Converting Paddy Rice Field to Urban Use Dramatically Altered the Water and Energy Balances in Southern China

    Science.gov (United States)

    Hao, L.; Sun, G.; Liu, Y.; Qin, M.; Huang, X.; Fang, D.

    2017-12-01

    Paddy rice wetlands are the main land use type across southern China, which impact the regional environments by affecting evapotranspiration (ET) and other water and energy related processes. Our study focuses on the effects of land-cover change on water and energy processes in the Qinhuai River Basin, a typical subtropical humid region that is under rapid ecological and economical transformations. This study integrates multiple methods and techniques including remote sensing, water and energy balance model (i.e., Surface Energy Balance Algorithm for Land, SEBAL), ecohydrological model (i.e., Soil and Water Assessment Tool, SWAT), and ground observation (Eddy Covariance measurement, etc.). We found that conversion of paddy rice field to urban use led to rise in vapor pressure deficit (VPD) and reduction in ET, and thus resulted in changes in local and regional water and heat balance. The effects of the land-use change on ET and VPD overwhelmed the effects of regional climate warming and climate variability. We conclude that the ongoing large-scale urbanization of the rice paddy-dominated regions in humid southern China and East Asia will likely exacerbate environmental consequences (e.g., elevated storm-flow volume, aggravated flood risks, and intensified urban heat island and urban dry island effects). The potential role of vegetated land cover in moderating water and energy balances and maintaining a stable climate should be considered in massive urban planning and global change impact assessment in southern China.

  2. INVESTIGATION OF QUANTIFICATION OF FLOOD CONTROL AND WATER UTILIZATION EFFECT OF RAINFALL INFILTRATION FACILITY BY USING WATER BALANCE ANALYSIS MODEL

    OpenAIRE

    文, 勇起; BUN, Yuki

    2013-01-01

    In recent years, many flood damage and drought attributed to urbanization has occurred. At present infiltration facility is suggested for the solution of these problems. Based on this background, the purpose of this study is investigation of quantification of flood control and water utilization effect of rainfall infiltration facility by using water balance analysis model. Key Words : flood control, water utilization , rainfall infiltration facility

  3. Effects of Water Management Strategies on Water Balance in a Water Scarce Region: A Case Study in Beijing by a Holistic Model

    Directory of Open Access Journals (Sweden)

    Zhigong Peng

    2016-08-01

    Full Text Available Irrigation is facing increasing pressure from other competitive water users to reduce water consumption in a water scarce region. Based on the Basin-wide Holistic Integrated Water Assessment (BHIWA model, the effects of water management strategies on water balance in the dry regions of North China were analyzed. The results show that, with the decrease of irrigation water supply reliability (IWSR and the increase of irrigation water use efficiency (WUE, irrigation water use decreased significantly, leading to reduced agriculture water consumption, and sustained ground water levels. Compared with the increase of WUE, the decrease of IWSR contributes more to reducing irrigation water consumption and protecting groundwater. Sensitivity tests show that among various water cycle components, irrigation water use is most sensitive to changes, followed by agriculture water consumption, and then groundwater level. Reducing IWSR is an effective strategy to reduce irrigation water consumption and promote sustainable water resources management, which could be the support of basic data and theory for regional water resources planning.

  4. Effects of Climate Change in the Water Balance of a Modified River Watershed System in Central Illinois

    Science.gov (United States)

    Honings, J.; Seyoum, W. M.

    2017-12-01

    Understanding the response of water cycle dynamics to climate change and human activity is essential for best management of water resources. This study used the USDA Soil-Water Assessment Tool (SWAT) to measure and predict major water balance variables including stream discharge, potential aquifer recharge, and surface storage in a small-scale watershed ( 2,930 km²) in Central Illinois. The Mackinaw River drains the study watershed, which is predominantly tile-drained agricultural land. Two reservoirs, Evergreen Lake and Lake Bloomington, and the Mahomet Aquifer in the watershed are used for public water supply. Tiles modify watershed hydrology by efficiently draining water from saturated soil to streams, which increases total streamflow and reduces direct aquifer recharge from precipitation. To assess how the watershed is affected by future climate change, this study used high-resolution climate projection data ( 12 km) in a calibrated and validated SWAT hydrologic model. Using General Circulation Models, four (4) representative concentration pathways (RCPs) developed by the IPCC Coupled Model Intercomparison Project Fifth Assessment Report (CMIP5) were used for prediction of precipitation, mean, minimum, and maximum temperature for the watershed. Temperature predictions for 2050 were warmer for RCPs 2.6 and 8.0 (+0.69°C and +1.8°C), coinciding with increased precipitation rates (+2.5% and +4.3%). End of century projections indicate warmer mean temperatures (+0.66°C and +4.9°C) for RCPs 2.6 and 8.0. By 2099, precipitation predictions are wetter for RCP 8.0 (+10%), but drier for RCP 2.6 (-2%) from the baseline. Preliminary model calibration (R2 value = 0.7) results showed an annual average watershed yield of 32.8 m³/s at the outlet with average potential recharge of 18% of total precipitation. Tile flow comprises 10 to 30% of total flow in the watershed simulations. Predicted hydrologic variables for the extreme scenarios at mid- and end of century indicate

  5. Water Balance and Level Change of Lake Babati, Tanzania: Sensitivity to Hydroclimatic Forcings

    Directory of Open Access Journals (Sweden)

    René P. Mbanguka

    2016-12-01

    Full Text Available We develop and present a novel integrated water balance model that accounts for lake water—groundwater interactions, and apply it to the semi-closed freshwater Lake Babati system, Northern Tanzania, East Africa. The model was calibrated and used to evaluate the lake level sensitivity to changes in key hydro-climatic variables such as temperature, precipitation, humidity and cloudiness. The lake response to the Coupled Model Intercomparison Project, Phase 5 (CMIP5 output on possible future climate outcomes was evaluated, an essential basis in understanding future water security and flooding risk in the region. Results show high lake level sensitivity to cloudiness. Increased focus on cloud fraction measurement and interpretation could likely improve projections of lake levels and surface water availability. Modelled divergent results on the future (21st century development of Lake Babati can be explained by the precipitation output variability of CMIP5 models being comparable to the precipitation change needed to drive the water balance model from lake dry-out to overflow; this condition is likely shared with many other East African lake systems. The developed methodology could be useful in investigations on change-driving processes in complex climate—drainage basin—lake systems, which are needed to support sustainable water resource planning in data scarce tropical Africa.

  6. Intraoperative joint gaps and mediolateral balance affect postoperative knee kinematics in posterior-stabilized total knee arthroplasty.

    Science.gov (United States)

    Watanabe, Toshifumi; Muneta, Takeshi; Sekiya, Ichiro; Banks, Scott A

    2015-12-01

    Adjusting joint gaps and establishing mediolateral (ML) soft tissue balance are considered essential interventions for better outcomes in total knee arthroplasty (TKA). However, the relationship between intraoperative laxity measurements and weightbearing knee kinematics has not been well explored. This study aimed to quantify the effect of intraoperative joint gaps and ML soft tissue balance on postoperative knee kinematics in posterior-stabilized (PS)-TKA. We investigated 44 knees in 34 patients who underwent primary PS-TKA by a single surgeon. The central joint gaps and ML tilting angles at 0°, 10°, 30°, 60°, 90°, 120° and 135° flexion were measured during surgery. At a minimum of two year follow-up, we analyzed in vivo kinematics of these knees and examined the influence of intraoperative measurements on postoperative kinematics. Gap difference of knee flexion at 135° minus 0° was correlated with the total posterior translation of lateral femoral condyle (r=0.336, p=0.042) and femoral external rotation (r=0.488, p=0.002) during squatting, anteroposterior position of lateral femoral condyle (r=-0.510, p=0.001) and maximum knee flexion (r=0.355, p=0.031) in kneeling. Similar correlations were observed between deep flexion gap differences with respect to the 90° reference and postoperative knee kinematics. Well-balanced knees showed less anterior translation of medial femoral condyle in mid- to deep flexion, consistent femoral external rotation, and the most neutral valgus/varus rotation compared with unbalanced knees. These findings indicate the importance of adequate intraoperative joint gaps in deep flexion and ML soft tissue balance throughout the range of motion. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Propagation of errors from a null balance terahertz reflectometer to a sample's relative water content

    International Nuclear Information System (INIS)

    Hadjiloucas, S; Walker, G C; Bowen, J W; Zafiropoulos, A

    2009-01-01

    The THz water content index of a sample is defined and advantages in using such metric in estimating a sample's relative water content are discussed. The errors from reflectance measurements performed at two different THz frequencies using a quasi-optical null-balance reflectometer are propagated to the errors in estimating the sample water content index.

  8. Diurnal Variation in Gas Exchange: The Balance between Carbon Fixation and Water Loss.

    Science.gov (United States)

    Matthews, Jack S A; Vialet-Chabrand, Silvere R M; Lawson, Tracy

    2017-06-01

    Stomatal control of transpiration is critical for maintaining important processes, such as plant water status, leaf temperature, as well as permitting sufficient CO 2 diffusion into the leaf to maintain photosynthetic rates ( A ). Stomatal conductance often closely correlates with A and is thought to control the balance between water loss and carbon gain. It has been suggested that a mesophyll-driven signal coordinates A and stomatal conductance responses to maintain this relationship; however, the signal has yet to be fully elucidated. Despite this correlation under stable environmental conditions, the responses of both parameters vary spatially and temporally and are dependent on species, environment, and plant water status. Most current models neglect these aspects of gas exchange, although it is clear that they play a vital role in the balance of carbon fixation and water loss. Future efforts should consider the dynamic nature of whole-plant gas exchange and how it represents much more than the sum of its individual leaf-level components, and they should take into consideration the long-term effect on gas exchange over time. © 2017 American Society of Plant Biologists. All Rights Reserved.

  9. Natural groundwater recharge and water balance at the Hanford Site

    International Nuclear Information System (INIS)

    Rockhold, M.L.; Fayer, M.J.; Gee, G.W.; Kanyid, M.J.

    1990-01-01

    The purpose of this report is to present water-balance data collected in 1988 and 1989 from the 300 Area Buried Waste Test Facility and Grass Site, and the 200 East Area closed-bottom lysimeter. This report is an annual update of previous recharge status reports by Gee, Rockhold, and Downs, and Gee. Data from several other lysimeter sites are included for comparison. 43 refs., 28 figs., 7 tabs

  10. Water balance model and eucalyptus growth simulation in the rio doce basin, Brazil - doi: 10.4025/actasciagron.v35i4.16955

    Directory of Open Access Journals (Sweden)

    Welliam Chaves Monteiro Silva

    2013-05-01

    Full Text Available Although the 3-PG model is widely used for forest productivity calculations, there are processes that do not present appropriate physical treatment. The aim of this study was to generate a tool to improve the water balance calculation in the model to enhance the energy balance and transpiration process. The calculation of transpiration was modified to account for variations in solar radiation with the inclination and azimuth of the terrain; the vapor pressure deficit was changed based on the relative humidity and air temperature; and the stomatal conductance varied according to solar radiation, vapor pressure deficit and air temperature. The water storage in the soil varied with the depth of the root system and the total water availability (TWA in the soil. The assessment was also changed from a monthly to an hourly basis. The study was conducted in areas surrounding Cenibra, and the data were collected from the Rio Doce river basin, in the Brazilian state of Minas Gerais. Taken together, these modifications improved growth - modeling processes and enhanced the capacity of this analytical tool to differentiate intra - region productivity.

  11. NESDIS Blended Total Precipitable Water (TPW) Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The blended Total Precipitable Water (TPW) product is derived from multiple sensors/satellites. The Percentage of TPW normal (PCT), or TPW anomaly, shows the...

  12. Total body water and total body potassium in anorexia nervosa

    Energy Technology Data Exchange (ETDEWEB)

    Dempsey, D.T.; Crosby, L.O.; Lusk, E.; Oberlander, J.L.; Pertschuk, M.J.; Mullen, J.L.

    1984-08-01

    In the ill hospitalized patient with clinically relevant malnutrition, there is a measurable decrease in the ratio of the total body potassium to total body water (TBK/TBW) and a detectable increase in the ratio of total exchangeable sodium to total exchangeable potassium (Nae/Ke). To evaluate body composition analyses in anorexia nervosa patients with chronic uncomplicated semistarvation, TBK and TBW were measured by whole body K40 counting and deuterium oxide dilution in 10 females with stable anorexia nervosa and 10 age-matched female controls. The ratio of TBK/TBW was significantly (p less than 0.05) higher in anorexia nervosa patients than controls. The close inverse correlation found in published studies between TBK/TBW and Nae/Ke together with our results suggest that in anorexia nervosa, Nae/Ke may be low or normal. A decreased TBK/TBW is not a good indicator of malnutrition in the anorexia nervosa patient. The use of a decreased TBK/TBW ratio or an elevated Nae/Ke ratio as a definition of malnutrition may result in inappropriate nutritional management in the patient with severe nonstressed chronic semistarvation.

  13. Total body water and total body potassium in anorexia nervosa

    International Nuclear Information System (INIS)

    Dempsey, D.T.; Crosby, L.O.; Lusk, E.; Oberlander, J.L.; Pertschuk, M.J.; Mullen, J.L.

    1984-01-01

    In the ill hospitalized patient with clinically relevant malnutrition, there is a measurable decrease in the ratio of the total body potassium to total body water (TBK/TBW) and a detectable increase in the ratio of total exchangeable sodium to total exchangeable potassium (Nae/Ke). To evaluate body composition analyses in anorexia nervosa patients with chronic uncomplicated semistarvation, TBK and TBW were measured by whole body K40 counting and deuterium oxide dilution in 10 females with stable anorexia nervosa and 10 age-matched female controls. The ratio of TBK/TBW was significantly (p less than 0.05) higher in anorexia nervosa patients than controls. The close inverse correlation found in published studies between TBK/TBW and Nae/Ke together with our results suggest that in anorexia nervosa, Nae/Ke may be low or normal. A decreased TBK/TBW is not a good indicator of malnutrition in the anorexia nervosa patient. The use of a decreased TBK/TBW ratio or an elevated Nae/Ke ratio as a definition of malnutrition may result in inappropriate nutritional management in the patient with severe nonstressed chronic semistarvation

  14. Water balance-based estimation of groundwater recharge in the Lake Chad Basin

    Science.gov (United States)

    Babamaaji, R. A.; Lee, J.

    2012-12-01

    Lake Chad Basin (LCB) has experienced drastic changes of land cover and poor water management practices during the last 50 years. The successive droughts in the 1970s and 1980s resulted in the shortage of surface water and groundwater resources. This problem of drought and shortage of water has a devastating implication on the natural resources of the Basin with great consequence on food security, poverty reduction and quality of life of the inhabitants in the LCB. Therefore, understanding the change of land use and its characteristics must be a first step to find how such changes disturb the water cycle especially the groundwater in the LCB. The abundance of groundwater is affected by the climate change through the interaction with surface water, such as lakes and rivers, and vertical recharge through an infiltration process. Quantifying the impact of climate change on the groundwater resource requires not only reliable forecasting of changes in the major climatic variables, but also accurate estimation of groundwater recharge. Spatial variations in the land use/land cover, soil texture, topographic slope, and meteorological conditions should be accounted for in the recharge estimation. In this study, we employed a spatially distributed water balance model WetSpass to simulate a long-term average change of groundwater recharge in the LCB of Africa. WetSpass is a water balance-based model to estimate seasonal average spatial distribution of surface runoff, evapotranspiration, and groundwater recharge. The model is especially suitable for studying the effect of land use/land cover change on the water regime in the LCB. The present study describes the concept of the model and its application to the development of recharge map of the LCB.

  15. Intra-basin variability of snowmelt water balance calculations in a subarctic catchment

    Science.gov (United States)

    McCartney, Stephen E.; Carey, Sean K.; Pomeroy, John W.

    2006-03-01

    The intra-basin variability of snowmelt and melt-water runoff hydrology in an 8 km2 subarctic alpine tundra catchment was examined for the 2003 melt period. The catchment, Granger Creek, is within the Wolf Creek Research Basin, Yukon, which is typical of mountain subarctic landscapes in northwestern Canada. The study catchment was segmented into nine internally uniform zones termed hydrological response units (HRUs) based on their similar hydrological, physiographic, vegetation and soil properties. Snow accumulation exhibited significant variability among the HRUs, with greatest snow water equivalent in areas of tall shrub vegetation. Melt began first on southerly exposures and at lower elevations, yet average melt rates for the study period varied little among HRUs with the exception of those with steep aspects. In HRUs with capping organic soils, melt water first infiltrated this surface horizon, satisfying its storage capacity, and then percolated into the frozen mineral substrate. Infiltration and percolation into frozen mineral soils was restricted where melt occurred rapidly and organic soils were thin; in this case, melt-water delivery rates exceeded the frozen mineral soil infiltration rate, resulting in high runoff rates. In contrast, where there were slower melt rates and thick organic soils, infiltration was unlimited and runoff was suppressed. The snow water equivalent had a large impact on runoff volume, as soil storage capacity was quickly surpassed in areas of deep snow, diverting the bulk of melt water laterally to the drainage network. A spatially distributed water balance indicated that the snowmelt freshet was primarily controlled by areas with tall shrub vegetation that accumulate large quantities of snow and by alpine areas with no capping organic soils. The intra-basin water balance variability has important implications for modelling freshet in hydrological models.

  16. The water balance of the urban Salt Lake Valley: a multiple-box model validated by observations

    Science.gov (United States)

    Stwertka, C.; Strong, C.

    2012-12-01

    A main focus of the recently awarded National Science Foundation (NSF) EPSCoR Track-1 research project "innovative Urban Transitions and Arid-region Hydro-sustainability (iUTAH)" is to quantify the primary components of the water balance for the Wasatch region, and to evaluate their sensitivity to climate change and projected urban development. Building on the multiple-box model that we developed and validated for carbon dioxide (Strong et al 2011), mass balance equations for water in the atmosphere and surface are incorporated into the modeling framework. The model is used to determine how surface fluxes, ground-water transport, biological fluxes, and meteorological processes regulate water cycling within and around the urban Salt Lake Valley. The model is used to evaluate the hypotheses that increased water demand associated with urban growth in Salt Lake Valley will (1) elevate sensitivity to projected climate variability and (2) motivate more attentive management of urban water use and evaporative fluxes.

  17. Estimating Runoff and Soil Moisture Deficit in Guinea Savannah Region of Nigeria using Water Balance Method

    Directory of Open Access Journals (Sweden)

    A. R. Adesiji

    2012-12-01

    Full Text Available The estimation of runoff and soil moisture deficit in Guinea Savannah region using semi arid model based on soil water balance technique (SAMBA was carried out. The input to the SAMBA model are daily rainfall, daily evapotranspiration, type and date of planting of crop, and soil parameters. The estimated runoff was validated with field measurement taken in a 67.23 ha catchment in the study area. The annual rainfall for the year under study (2009 is 1356.2 mm, the estimated annual evapotranspiration. runoff and recharge are 638mm, 132.93mm, and 447.8mm respectively. Recharge was experienced 23 days after a significant depth of rainfall was recorded. For the crop growth in the catchment, the soil was cropped with a pepper and the growth monitored from the planting to the harvesting. The crop enjoyed so much moisture throughout the growing period as Total Available Water in the soil is greater than Soil Moisture Deficit (TAW>SMD. The model results show that the larger percentage of the total annual rainfall was lost to evaporation and recharge during the growing season. The low runoff and high recharge are attributed to soil characteristics of the area and moderate terrain of the study area.

  18. Recharge contribution to the Guarani Aquifer System estimated from the water balance method in a representative watershed.

    Science.gov (United States)

    Wendland, Edson; Gomes, Luis H; Troeger, Uwe

    2015-01-01

    The contribution of recharge to regional groundwater flow systems is essential information required to establish sustainable water resources management. The objective of this work was to determine the groundwater outflow in the Ribeirão da Onça Basin using a water balance model of the saturated soil zone. The basin is located in the outcrop region of the Guarani Aquifer System (GAS). The water balance method involved the determination of direct recharge values, groundwater storage variation and base flow. The direct recharge was determined by the water table fluctuation method (WTF). The base flow was calculated by the hydrograph separation method, which was generated by a rain-flow model supported by biweekly streamflow measurements in the control section. Undisturbed soil samples were collected at depths corresponding to the variation zone of the groundwater level to determine the specific yield of the soil (drainable porosity). Water balances were performed in the saturated zone for the hydrological years from February 2004 to January 2007. The direct recharge ranged from 14.0% to 38.0%, and groundwater outflow from 0.4% to 2.4% of the respective rainfall during the same period.

  19. The water balance of a seasonal stream in the semi-arid Western Cape (South Africa)

    CSIR Research Space (South Africa)

    Bugan, Richard DH

    2012-04-01

    Full Text Available A detailed water balance and conceptual flow model was calculated and developed for the Sandspruit catchment for the period 1990 to 2010 on a winter rainfall water-year (1 April - 31 March) basis. The Sandspruit catchment (quaternary catchment G10J...

  20. THE SIGNIFICANCE OF CUMULATIVE WATER BALANCE IN THE DEVELOPMENT OF EARLY COMPLICATIONS AFTER MAJOR ABDOMINAL SURGERY.

    Science.gov (United States)

    Musaeva, T S; Karipidi, M K; Zabolotskikh, I B

    2016-11-01

    a comprehensive assessment of the water balance on the basis of daily, cumulative balance and 10% of the body weight gain and their role in the development of early complications after major abdominal surgery. A retrospective study of the perioperative period in 150 patients who underwent major abdomi- nal surgery was performed. The physical condition of the patients corresponded to ASA 3 class. The average age was 46 (38-62) years. The following stages ofresearch: an analysis of daily balance and cumulative balance in complicated and uncomplicated group and their role in the development of complications; the timing of development ofcomplications and possible relationship with fluid overload and the development of complications; changes in the level of albumin within 10 days of the postoperative period. The analysis of complications didn't show significant differences between complicated and uncomplicated groups according to the water balance during the surgery and by the end of the first day. When constructing the area under the ROC curve (A UROC) low resolution ofthe balance in intraoperative period and the first day and the balance on the second day to predict complications was shown. Significant diferences according to the cumulative balance was observed from the third day of the postoperative period Also with the third day of the postoperative period there is a good resolution for prediction ofpostoperative complications according to the cumulative balance with the cut-offpoint > of 50,7 ml/kg. the excessive infusion therapy is a predictor of adverse outcome in patients after major abdominal surgery. Therefore, after 3 days of postoperative period it is important to maintain mechanisms for the excretion of excess fluid or limitations of infusion therapy.

  1. Importance of ecohydrological modelling approaches in the prediction of plant behaviour and water balance at different scales

    Science.gov (United States)

    García-Arias, Alicia; Ruiz-Pérez, Guiomar; Francés, Félix

    2017-04-01

    Vegetation plays a main role in the water balance of most hydrological systems. However, in the past it has been barely considered the effect of the interception and evapotranspiration for hydrological modelling purposes. During the last years many authors have recognised and supported ecohydrological approaches instead of traditional strategies. This contribution is aimed to demonstrate the pivotal role of the vegetation in ecohydrological models and that a better understanding of the hydrological systems can be achieved by considering the appropriate processes related to plants. The study is performed in two scales: the plot scale and the reach scale. At plot scale, only zonal vegetation was considered while at reach scale both zonal and riparian were taken into account. In order to assure the main role of the water on the vegetation development, semiarid environments have been selected for the case studies. Results show an increase of the capabilities to predict plant behaviour and water balance when interception and evapotranspiration are taken into account in the soil water balance

  2. (238)U and total radioactivity in drinking waters in Van province, Turkey.

    Science.gov (United States)

    Selçuk Zorer, Özlem; Dağ, Beşir

    2014-06-01

    As part of the national survey to evaluate natural radioactivity in the environment, concentration levels of total radioactivity and natural uranium have been analysed in drinking water samples. A survey to study natural radioactivity in drinking waters was carried out in the Van province, East Turkey. Twenty-three samples of drinking water were collected in the Van province and analysed for total α, total β and (238)U activity. The total α and total β activities were counted by using the α/β counter of the multi-detector low background system (PIC MPC-9604), and the (238)U concentrations were determined by inductively coupled plasma-mass spectrometry (Thermo Scientific Element 2). The samples were categorised according to origin: tap, spring or mineral supply. The activity concentrations for total α were found to range from 0.002 to 0.030 Bq L(-1) and for total β from 0.023 to 1.351 Bq L(-1). Uranium concentrations ranging from 0.562 to 14.710 μg L(-1) were observed in drinking waters. Following the World Health Organisation rules, all investigated waters can be used as drinking water.

  3. Spatial variability of hillslope water balance, wolf creek basin, subarctic yukon

    Science.gov (United States)

    Carey, Sean K.; Woo, Ming-Ko

    2001-11-01

    A hydrological study was conducted between 1997 and 1999 in the subalpine open woodland of the Wolf Creek Basin, Yukon, to assess the interslope water balance variability. The water balance during the snowmelt and summer periods on four hillslopes revealed strong contrasts in process magnitudes and highlighted important factors including frost, vegetation, soils and microclimate that controlled vertical and lateral fluxes of water. Snow accounted for approximately half the annual water input, while differences in accumulation among hillslopes were related to interception properties of vegetation. Available energy at the snow surface controlled the melt sequence and the snow on some slopes disappeared up to two months earlier than others. Snowmelt runoff was confined to slopes with ice-rich substrates that inhibited deep percolation, with the runoff magnitude governed by the snow storage and the antecedent moisture of the desiccated organic soils prior to melt. During summer, evapotranspiration exceeded rainfall, largely sustained by water from the soil moisture reservoir recharged during the melt period. Differences in net radiation on slopes controlled the potential evapotranspiration, with the actual rates limited by the phenology of the deciduous forests and shrubs. Evapotranspiration was further suppressed on slopes where the organic soils became dry in late summer. Summer runoff was confined to slopes with porous organic layers overlying mineral soils to form a two-layer flow system: (1) quickflow in the surface organic layer and (2) slowflow in the mineral soil. Differences in the rates of flow were related to the position of the water table which may rise into the organic layer to activate quickflow. The presence of ice-rich frost and permafrost impeded vertical drainage and indirectly regulated the position of the water table. The location of the hillslope within a basin influenced recharge and discharge dynamics. Slope segments with large inflows sustained

  4. Simulation of the water balance of boreal watersheds of northeastern British Columbia, Canada using MIKE SHE, an integrated hydrological model

    Science.gov (United States)

    Abadzadesahraei, S.; Déry, S.; Rex, J. F.

    2016-12-01

    Northeastern British Columbia (BC) is undergoing rapid development for oil and gas extraction, largely depending on subsurface hydraulic fracturing (fracking), which relies on available freshwater. Even though this industrial activity has made substantial contributions to regional and provincial economies, it is important to ensure that sufficient and sustainable water supplies are available for all those dependent on the resource, including ecological systems. Further, BC statistics predict that the northeastern region's population will increase by 30% over the next 25 years, thereby amplifying the demands of domestic and industrial water usage. Hence, given the increasing demands for surface water in the complex wetlands of northeastern BC, obtaining accurate long-term water balance information is of vital importance. Thus, this study aims to simulate the 1979-2014 water balance at two boreal watersheds using the MIKE SHE model. More specifically, this research intends to quantify the historical, and regional, water budgets and their associated hydrological processes at two boreal watersheds—the Coles Lake and Tsea Lake watersheds—in northeastern BC. The development of coupled groundwater and surface water model of these watersheds are discussed. The model setup, calibration process, and results are presented, focusing on the water balance of boreal watersheds. Hydrological components within these watersheds are quantified through a combination of intensive fieldwork, observational data, analysis and numerical modeling. The output from the model provides important information for decision makers to manage water resources in northeastern BC. Keywords: Northeastern BC; boreal watershed; water balance; MIKE SHE hydrological model.

  5. Analysis of soil and vegetation patterns in semi-arid Mediterranean landscapes by way of a conceptual water balance model

    Directory of Open Access Journals (Sweden)

    I. Portoghese

    2008-06-01

    Full Text Available This paper investigates the impact of various vegetation types on water balance variability in semi-arid Mediterranean landscapes, and the different strategies they may have developed to succeed in such water-limited environments. The existence of preferential associations between soil water holding capacity and vegetation species is assessed through an extensive soil geo-database focused on a study region in Southern Italy. Water balance constraints that dominate the organization of landscapes are investigated by a conceptual bucket approach. The temporal water balance dynamics are modelled, with vegetation water use efficiency being parameterized through the use of empirically obtained crop coefficients as surrogates of vegetation behavior in various developmental stages. Sensitivity analyses with respect to the root zone depth and soil water holding capacity are carried out with the aim of explaining the existence of preferential soil-vegetation associations and, hence, the spatial distribution of vegetation types within the study region. Based on these sensitivity analyses the degrees of suitability and adaptability of each vegetation type to parts of the study region are explored with respect of the soil water holding capacity, and the model results were found consistent with the observed affinity patterns.

  6. Pressure pressure-balanced pH sensing system for high temperature and high pressure water

    International Nuclear Information System (INIS)

    Tachibana, Koji

    1995-01-01

    As for the pH measurement system for high temperature, high pressure water, there have been the circumstances that first the reference electrodes for monitoring corrosion potential were developed, and subsequently, it was developed for the purpose of maintaining the soundness of metallic materials in high temperature, high pressure water in nuclear power generation. In the process of developing the reference electrodes for high temperature water, it was clarified that the occurrence of stress corrosion cracking in BWRs is closely related to the corrosion potential determined by dissolved oxygen concentration. As the types of pH electrodes, there are metal-hydrogen electrodes, glass electrodes, ZrO 2 diaphragm electrodes and TiO 2 semiconductor electrodes. The principle of pH measurement using ZrO 2 diaphragms is explained. The pH measuring system is composed of YSZ element, pressure-balanced type external reference electrode, pressure balancer and compressed air vessel. The stability and pH response of YSZ elements are reported. (K.I.)

  7. Balancing the Interactions of Ions, Water, and DNA in the Drude Polarizable Force Field

    OpenAIRE

    Savelyev, Alexey; MacKerell, Alexander D.

    2014-01-01

    Recently we presented a first-generation all-atom Drude polarizable force field for DNA based on the classical Drude oscillator model, focusing on optimization of key dihedral angles followed by extensive validation of the force field parameters. Presently, we describe the procedure for balancing the electrostatic interactions between ions, water, and DNA as required for development of the Drude force field for DNA. The proper balance of these interactions is shown to impact DNA stability and...

  8. Water Balance Simulations of a PEM Fuel Cell Using a Two-Fluid Model

    DEFF Research Database (Denmark)

    Berning, Torsten; Odgaard, Madeleine; Kær, Søren Knudsen

    2010-01-01

    A previously published computational multi-phase model of a polymer-electrolyte membrane fuel cell has been extended in order to account for the anode side and the electrolyte membrane. The model has been applied to study the water balance of a fuel cell during operation under various humidificat...... net water transport coefficient. Thus we can reduce flooding at the cathode and may obtain improved cell performance due to a better humidified membrane. The results also suggest that membrane dehydration may occur at either anode or cathode depending on the net water transport....

  9. Variations in water balance and recharge potential at three western desert sites

    International Nuclear Information System (INIS)

    Gee, G.W.; Fayer, M.J.; Rockhold, M.L.; Wierenga, P.J.; Young, M.H.; Andraski, B.J.

    1994-01-01

    Radioactive and hazardous waste landfills exist at numerous desert locations in the USA. At these locations, annual precipitation is low and soils are generally dry, yet little is known about recharge of water and transport of contaminants to the water table. Recent water balance measurements made at three desert locations, Las Cruces, NM, Beatty, NV, and the U.S. Department of Energy's Hanford Site in the state of Washington, provide information on recharge potential under three distinctly different climate and soil conditions. All three sites show water storage increases with time when soils are coarse textured and plants are removed from the surface, the rate of increase being influenced by climatic variables such as precipitation, radiation, temperature, and wind. Lysimeter data from Hanford and Las Cruces indicate that deep drainage (recharge) from bare, sandy soils can range from 10 to > 50% of the annual precipitation. At Hanford, when desert plants are present on sandy or gravelly surface soils, deep drainage is reduced but not eliminated. When surface soils are silt loams, deep drainage is eliminated whether plants are present or not. At Las Cruces and Beatty, the presence of plants eliminated deep drainage at the measurement sites. Differences in water balance between sites are attributed to precipitation quantity and distribution and to soil and vegetation types. The implication of waste management at desert locations is that surface soil properties and plant characteristics must be considered in waste site design in order to minimize recharge potential. 39 refs., 9 figs., 3 tabs

  10. Estimating Evapotranspiration of an Apple Orchard Using a Remote Sensing-Based Soil Water Balance

    Directory of Open Access Journals (Sweden)

    Magali Odi-Lara

    2016-03-01

    Full Text Available The main goal of this research was to estimate the actual evapotranspiration (ETc of a drip-irrigated apple orchard located in the semi-arid region of Talca Valley (Chile using a remote sensing-based soil water balance model. The methodology to estimate ETc is a modified version of the Food and Agriculture Organization of the United Nations (FAO dual crop coefficient approach, in which the basal crop coefficient (Kcb was derived from the soil adjusted vegetation index (SAVI calculated from satellite images and incorporated into a daily soil water balance in the root zone. A linear relationship between the Kcb and SAVI was developed for the apple orchard Kcb = 1.82·SAVI − 0.07 (R2 = 0.95. The methodology was applied during two growing seasons (2010–2011 and 2012–2013, and ETc was evaluated using latent heat fluxes (LE from an eddy covariance system. The results indicate that the remote sensing-based soil water balance estimated ETc reasonably well over two growing seasons. The root mean square error (RMSE between the measured and simulated ETc values during 2010–2011 and 2012–2013 were, respectively, 0.78 and 0.74 mm·day−1, which mean a relative error of 25%. The index of agreement (d values were, respectively, 0.73 and 0.90. In addition, the weekly ETc showed better agreement. The proposed methodology could be considered as a useful tool for scheduling irrigation and driving the estimation of water requirements over large areas for apple orchards.

  11. Differential growth responses to water balance of coexisting deciduous tree species are linked to wood density in a Bolivian tropical dry forest.

    Science.gov (United States)

    Mendivelso, Hooz A; Camarero, J Julio; Royo Obregón, Oriol; Gutiérrez, Emilia; Toledo, Marisol

    2013-01-01

    A seasonal period of water deficit characterizes tropical dry forests (TDFs). There, sympatric tree species exhibit a diversity of growth rates, functional traits, and responses to drought, suggesting that each species may possess different strategies to grow under different conditions of water availability. The evaluation of the long-term growth responses to changes in the soil water balance should provide an understanding of how and when coexisting tree species respond to water deficit in TDFs. Furthermore, such differential growth responses may be linked to functional traits related to water storage and conductance. We used dendrochronology and climate data to retrospectively assess how the radial growth of seven coexisting deciduous tree species responded to the seasonal soil water balance in a Bolivian TDF. Linear mixed-effects models were used to quantify the relationships between basal area increment and seasonal water balance. We related these relationships with wood density and sapwood production to assess if they affect the growth responses to climate. The growth of all species responded positively to water balance during the wet season, but such responses differed among species as a function of their wood density. For instance, species with a strong growth response to water availability averaged a low wood density which may facilitate the storage of water in the stem. By contrast, species with very dense wood were those whose growth was less sensitive to water availability. Coexisting tree species thus show differential growth responses to changes in soil water balance during the wet season. Our findings also provide a link between wood density, a trait related to the ability of trees to store water in the stem, and wood formation in response to water availability.

  12. Sustainability of Water Cooled Reactors - Energy Balance for Low Grade Uranium Resources

    International Nuclear Information System (INIS)

    Strupczewski, A.

    2011-01-01

    The opponents of nuclear power claim that as uranium resources get exhausted the energy needed to mine low grade uranium ore will be larger than the energy that can be obtained from fission in a nuclear power plant. This would result in loss of sustainability of nuclear power, with the negative energy balance expected within the next 40-60 years. Since the opponents state clearly that the ore containing less than 0.013% U 3 O 8 cannot yield positive energy balance, the study of the Institute of Atomic Energy in Poland referenced three mines of decreasing ore grade: Ranger 0.234% U 3 O 8 , Rossing 0.028% U 3 O 8 and Trekkopje 0.00126% U 3 O 8 , that is with ore grade below the postulated cut off value. The study considered total energy needs for uranium mining, including not only electricity needed for mining and milling, for water treatment and delivery, but also fuel for transportation and ore crushing, explosives for rock blasting, chemicals for uranium leaching and the energy needed for mine reclamation after completed exploitation. It has been shown that the energy estimates of nuclear opponents are wrong for Ranger mine and go off much further for the mines with lower uranium ore grades. The reasons for erroneous reasoning of nuclear opponents have been found. Their errors arise from treating the uranium ore deposits as if their layout and properties were the same as those of uranium ore mined in the US in the 70-ies. This results in an oversimplified formula, which yields large errors when the thickness of the overlayer is less than it was in the US. In addition the energy needs claimed for mine reclamation are much too high. The study showed that the energy needed for very low grade uranium ore mining and milling increases but the overall energy balance of the nuclear fuel cycle remains strongly positive. (author)

  13. From Drought to Flood: An Analysis of the Water Balance of the Tuolumne River Basin During Extreme Conditions (2015 - 2017)

    Science.gov (United States)

    Hedrick, A. R.; Marks, D. G.; Havens, S.; Robertson, M.; Johnson, M.; Sandusky, M.; Bormann, K. J.; Painter, T. H.

    2017-12-01

    Closing the water balance of a snow-dominated mountain basin has long been a focal point of the hydrologic sciences. This study attempts to more precisely quantify the solid precipitation inputs to a basin using the iSnobal energy balance snowmelt model and assimilated snow depth information from the Airborne Snow Observatory (ASO). Throughout the ablation seasons of three highly dissimilar consecutive water years (2015 - 2017), the ASO captured high resolution snow depth snapshots over the Tuolumne River Basin in California's Central Sierra Nevada. These measurements were used to periodically update the snow depth state variable of iSnobal, thereby nudging the estimates of water storage (snow water equivalent, or SWE) and melt (surface water input, or SWI) toward a more accurate solution. Once precipitation inputs and streamflow outputs are better constrained, the additional loss terms of the water mass balance equation (i.e. groundwater recharge and evapotranspiration) can be estimated with less uncertainty.

  14. Modifying a dynamic global vegetation model for simulating large spatial scale land surface water balance

    Science.gov (United States)

    Tang, G.; Bartlein, P. J.

    2012-01-01

    Water balance models of simple structure are easier to grasp and more clearly connect cause and effect than models of complex structure. Such models are essential for studying large spatial scale land surface water balance in the context of climate and land cover change, both natural and anthropogenic. This study aims to (i) develop a large spatial scale water balance model by modifying a dynamic global vegetation model (DGVM), and (ii) test the model's performance in simulating actual evapotranspiration (ET), soil moisture and surface runoff for the coterminous United States (US). Toward these ends, we first introduced development of the "LPJ-Hydrology" (LH) model by incorporating satellite-based land covers into the Lund-Potsdam-Jena (LPJ) DGVM instead of dynamically simulating them. We then ran LH using historical (1982-2006) climate data and satellite-based land covers at 2.5 arc-min grid cells. The simulated ET, soil moisture and surface runoff were compared to existing sets of observed or simulated data for the US. The results indicated that LH captures well the variation of monthly actual ET (R2 = 0.61, p 0.46, p 0.52) with observed values over the years 1982-2006, respectively. The modeled spatial patterns of annual ET and surface runoff are in accordance with previously published data. Compared to its predecessor, LH simulates better monthly stream flow in winter and early spring by incorporating effects of solar radiation on snowmelt. Overall, this study proves the feasibility of incorporating satellite-based land-covers into a DGVM for simulating large spatial scale land surface water balance. LH developed in this study should be a useful tool for studying effects of climate and land cover change on land surface hydrology at large spatial scales.

  15. Seepage water balance of the mixed tailings site IAA Dresden-Coschuetz/Gittersee by means of the two-dimensional model BOWAHALD

    International Nuclear Information System (INIS)

    Helling, C.; Dunger, V.

    1998-01-01

    Uranium mill tailings were deposited in a section of the Kaitzbach valley which was closed by tow dams. The Kaitzbach creek was cased in the area. After the uranium ore processing was finish the dump was used as a municipal waste deposit. The water balance of the IAA Dresden-Coschuetz/Gittersee was only estimated in former works. In this case a modeling of the water balance is very useful in regard to a process orientated quantification of the contaminant transport within the dump as well as into the underground. Simplified and rough estimating methods such as the runoff coefficient concept or rating curves are less suited because of the complexity of the processes. That's why we tried to get a runoff and seepage water balance by means of a two-dimensional water balance model for waste heaps called BOWAHALD. The tailings site IAA Dresden-Coschuetz/Gittersee was divited into several hydrotopes (areas with similar hydrological characteristics). Different exposition and slopes as well as different soils and vegetation were taken into account. The parameter verification is possible due to comparison with available data such hydrochemical and isotopic analysis of seepage water and groundwater. (orig.)

  16. The effect of an angiotensin-converting enzyme inhibitor on water and electrolyte balance in water-restricted sheep

    Directory of Open Access Journals (Sweden)

    R.A. Meintjies

    1999-07-01

    Full Text Available The importance of angiotensin II in the regulation of water and electrolyte balance in sheep is questionable. In this trial the effects of an angiotensin-converting enzyme (ACE inhibitor were quantified in sheep on restricted water intake. Comparing the phase of water restriction only with that of water restriction plus ACE inhibition, significant increases were observed during the latter phase in urine volume, sodium and potassium excretion via the urine, sodium concentration in the plasma and osmolar clearance. Urine osmolarity decreased with inhibition of angiotensin II formation while variables such as water, sodium and potassium loss via the faeces were unaffected. Most of the renal effects of ACE inhibition, except the increase in urinary potassium excretion, were explicable in terms of the established functions of angiotensin II. Furthermore, results of this trial indicate that angiotensin II has no significant effect on the intestine in regulating water and electrolyte excretion via the faeces.

  17. Water Isotope framework for lake water balance monitoring and modelling in the Nam Co Basin, Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Shichang Kang

    2017-08-01

    New hydrological insights: A water isotope framework for the Nam Co basin, including the Local Meteoric Water Line, limiting isotopic composition of evaporation and two hypothetical evaporation trajectories, is established. We further applied the isotope mass balance model to estimate the overall isotopic composition of input water to the Nam Co, the evaporation over inputs ratios (E/I for three consecutive years, and the water yields (Wy, depth equivalent runoff at a basin scale. Our results clearly suggest a positive water budget (i.e., E/I < 1, providing another line of evidence that the subsurface leakage from Nam Co is likely. The discrepancy between isotope-based water yields estimations and field-based runoff observations suggest that, compared to the well-studied Nyainqentanglha Mountains and southwestern mountains, the ridge-and-valley landscape in the western highlands and northwestern hogbacks are possibly low yields area, which should draw more research attentions in future hydrological investigations.

  18. The Role of Stream Water Carbon Dynamics and Export in the Carbon Balance of a Tropical Seasonal Rainforest, Southwest China

    Science.gov (United States)

    Zhou, Wen-Jun; Zhang, Yi-Ping; Schaefer, Douglas A.; Sha, Li-Qing; Deng, Yun; Deng, Xiao-Bao; Dai, Kai-Jie

    2013-01-01

    A two-year study (2009 ∼ 2010) was carried out to investigate the dynamics of different carbon (C) forms, and the role of stream export in the C balance of a 23.4-ha headwater catchment in a tropical seasonal rainforest at Xishuangbanna (XSBN), southwest China. The seasonal volumetric weighted mean (VWM) concentrations of total inorganic C (TIC) and dissolved inorganic C (DIC) were higher, and particulate inorganic C (PIC) and organic C (POC) were lower, in the dry season than the rainy season, while the VWM concentrations of total organic C (TOC) and dissolved organic C (DOC) were similar between seasons. With increased monthly stream discharge and stream water temperature (SWT), only TIC and DIC concentrations decreased significantly. The most important C form in stream export was DIC, accounting for 51.8% of the total C (TC) export; DOC, POC, and PIC accounted for 21.8%, 14.9%, and 11.5% of the TC export, respectively. Dynamics of C flux were closely related to stream discharge, with the greatest export during the rainy season. C export in the headwater stream was 47.1 kg C ha−1 yr−1, about 2.85% of the annual net ecosystem exchange. This finding indicates that stream export represented a minor contribution to the C balance in this tropical seasonal rainforest. PMID:23437195

  19. The role of stream water carbon dynamics and export in the carbon balance of a tropical seasonal rainforest, southwest China.

    Directory of Open Access Journals (Sweden)

    Wen-Jun Zhou

    Full Text Available A two-year study (2009 ~ 2010 was carried out to investigate the dynamics of different carbon (C forms, and the role of stream export in the C balance of a 23.4-ha headwater catchment in a tropical seasonal rainforest at Xishuangbanna (XSBN, southwest China. The seasonal volumetric weighted mean (VWM concentrations of total inorganic C (TIC and dissolved inorganic C (DIC were higher, and particulate inorganic C (PIC and organic C (POC were lower, in the dry season than the rainy season, while the VWM concentrations of total organic C (TOC and dissolved organic C (DOC were similar between seasons. With increased monthly stream discharge and stream water temperature (SWT, only TIC and DIC concentrations decreased significantly. The most important C form in stream export was DIC, accounting for 51.8% of the total C (TC export; DOC, POC, and PIC accounted for 21.8%, 14.9%, and 11.5% of the TC export, respectively. Dynamics of C flux were closely related to stream discharge, with the greatest export during the rainy season. C export in the headwater stream was 47.1 kg C ha(-1 yr(-1, about 2.85% of the annual net ecosystem exchange. This finding indicates that stream export represented a minor contribution to the C balance in this tropical seasonal rainforest.

  20. Satisfactory Short-Term Results of Navigation-Assisted Gap-Balancing Total Knee Arthroplasty Using Ultracongruent Insert.

    Science.gov (United States)

    Yoon, Jung-Ro; Yang, Jae-Hyuk

    2018-03-01

    The use of highly conforming ultracongruent (UC) polyethylene insert is bone-preserving and became a relatively common alternative to the conventional posterior stabilized total knee arthroplasty (TKA) design. The purpose of this study was to analyze the short-term clinical and radiologic results of UC insert TKA using the navigation-assisted gap-balancing technique. Two hundred thirty-three knees were operated with a mean follow-up period of 8.1 years (minimum of 5 years). Radiologic and clinical outcomes were assessed before operation and at latest follow-up using the Knee Society Score and Western Ontario and McMaster Universities Osteoarthritis Index score. For statistical analysis, paired sample t-test and analysis of variance were used. Significance was considered as P satisfactory short-term outcome. Strict gap-balancing technique using the offset-type-force-controlled-spreader-system aided in the satisfactory results. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. The Balanced Scorecard versus Total Quality Management: which is better for your organization?

    Science.gov (United States)

    Schwartz, Jay

    2005-10-01

    Today's health care organizations must deal with managed care, government oversight, aging baby boomers, new technologies, and increasing pharmaceutical prices. It is imperative that health care organizations adopt some form of business strategy to manage the vast amount of information available. Two of the more popular strategies among health care organizations are the Balanced Scorecard and Total Quality Management. Which one of the strategies is best for an organization? The answer to this question is that it depends on the organization. This article provides the fundamentals of each strategy and contrasts their strengths and weaknesses, so that interested organizations can make informed decisions regarding the best strategy for each organization.

  2. Ten Year Follow-Up of Gap Balanced, Rotating Platform Total Knee Arthroplasty in Patients Under 60 Years of Age.

    Science.gov (United States)

    Lee, Jason H; Barnett, Steven L; Patel, Jay J; Nassif, Nader A; Cummings, Dennis J; Gorab, Robert S

    2016-01-01

    68 patients (91 primary total knee arthroplasties) were evaluated at a mean 10-year, minimum 5 year follow up in patients younger than sixty years of age utilizing the gap balanced, rotating platform design. Follow up assessment included implant survivorship, adverse events, x-rays, Knee Society rating system and clinical evaluation. Three revisions were performed with only one for aseptic loosening at 45 months. Two manipulations were performed in the early postoperative period. Survivorship of the rotating platform, gap balanced knee was 96.7% using surgical revision for any reason and 98.9% using aseptic loosening as endpoints. The rotating platform design using the gap balancing technique in young patients had excellent survivorship at 10-year mean follow up. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Total balance of biogenic fuels for thermal uses; Ganzheitliche Bilanzierung verschiedener biogener Festbrennstoffe zur thermischen Nutzung

    Energy Technology Data Exchange (ETDEWEB)

    Becher, S; Kaltschmitt, M [Stuttgart Univ. (Germany). Inst. fuer Energiewirtschaft und Rationelle Energieanwendung (IER)

    1997-12-31

    In this situation of unfavourable energy price levels, the use of biogenic fuels for power supply can be recommended only if it serves to reduce environmental pollution. Against this background and on the basis of a primary energy balance, the authors attempted a total balance of selected enfironmental effects (global heating and acidification potential) of biomass use as compared to fossil fuel combustion. (orig) [Deutsch] ie Nutzung biogener Festbrennstoffe zur Energienachfragedeckung ist bei dem gegenwaertigen unguenstigen Energiepreisniveau nur dann zu rechtfertigen, wenn es durch die Biomassenutzung zu einer Reduzierung der energiebedingten Umwelteffekte kommt. Vor disem Hintergrund werden ausgehend von der Primaerenergiebilanz ausgewaehlte Umwelteffekte (d.h. das Treibhaus- und das Versauerungspotential) einer Biomassenutzung im Vergleich zu einer Nutzung fossiler Energietraeger ganzheitlich bilanziert. Die wesentlichen Ergebnisse werden zusammengefasst und interpretiert. (orig)

  4. Total balance of biogenic fuels for thermal uses; Ganzheitliche Bilanzierung verschiedener biogener Festbrennstoffe zur thermischen Nutzung

    Energy Technology Data Exchange (ETDEWEB)

    Becher, S.; Kaltschmitt, M. [Stuttgart Univ. (Germany). Inst. fuer Energiewirtschaft und Rationelle Energieanwendung (IER)

    1996-12-31

    In this situation of unfavourable energy price levels, the use of biogenic fuels for power supply can be recommended only if it serves to reduce environmental pollution. Against this background and on the basis of a primary energy balance, the authors attempted a total balance of selected enfironmental effects (global heating and acidification potential) of biomass use as compared to fossil fuel combustion. (orig) [Deutsch] ie Nutzung biogener Festbrennstoffe zur Energienachfragedeckung ist bei dem gegenwaertigen unguenstigen Energiepreisniveau nur dann zu rechtfertigen, wenn es durch die Biomassenutzung zu einer Reduzierung der energiebedingten Umwelteffekte kommt. Vor disem Hintergrund werden ausgehend von der Primaerenergiebilanz ausgewaehlte Umwelteffekte (d.h. das Treibhaus- und das Versauerungspotential) einer Biomassenutzung im Vergleich zu einer Nutzung fossiler Energietraeger ganzheitlich bilanziert. Die wesentlichen Ergebnisse werden zusammengefasst und interpretiert. (orig)

  5. Long-term Evaluation of Landuse Changes On Landscape Water Balance - A Case Study From North-east Germany

    Science.gov (United States)

    Wegehenkel, M.

    In this paper, long-term effects of different afforestation scenarios on landscape wa- ter balance will be analyzed taking into account the results of a regional case study. This analysis is based on using a GIS-coupled simulation model for the the spatially distributed calculation of water balance.For this purpose, the modelling system THE- SEUS with a simple GIS-interface will be used. To take into account the special case of change in forest cover proportion, THESEUS was enhanced with a simple for- est growth model. In the regional case study, model runs will be performed using a detailed spatial data set from North-East Germany. This data set covers a mesoscale catchment located at the moraine landscape of North-East Germany. Based on this data set, the influence of the actual landuse and of different landuse change scenarios on water balance dynamics will be investigated taking into account the spatial distributed modelling results from THESEUS. The model was tested using different experimen- tal data sets from field plots as well as obsverded catchment discharge. Additionally to such convential validation techniques, remote sensing data were used to check the simulated regional distribution of water balance components like evapotranspiration in the catchment.

  6. The Acid-Base Balance Between Organic Acids and Circumneutral Ground Waters in Large Peatlands

    Science.gov (United States)

    Siegel, D. I.; Glaser, P. H.; So, J.

    2006-05-01

    Organic acids supply most of the acidity in the surface waters of bogs in peatlands. Yet, the fundamental geochemical properties of peatland organic acids are still poorly known. To assess the geochemical properties of typical organic acid assemblages in peatlands, we used a triprotic analog model for peat pore waters and surface waters in the Glacial Lake Agassiz Peatlands, optimizing on charge balance and calibrated to estimates of mole site density in DOC and triprotic acid dissociation constants. Before the calibration process, all bog waters and 76% of fen waters had more than +20% charge imbalance. After calibration, most electrochemically balanced within 20%. In the best calibration, the mole site denisty of bog DOC was estimated as ~0.05 mmol/mmol C., approximately 6 times smaller than that for fen DOC or the DOC in the fen deeper fen peats that underlie bogs. The three modeled de-protonation constants were; pKa1 = ~3.0, pKa2 = ~4.5 and pKa3 = ~7.0 for the bog DOC, and; pKa1 = ~5.2, pKa2 =~ 6.5 and pKa3 = ~7.0 for the fen DOC. Bog DOC, behaves as a strong acid despite its small mole site density. The DOC in bog runoff can therefore theoretically acidify the surface waters in adjacent fens wherever these waters do not receive sufficient buffering alkalinity from active groundwater seepage.

  7. Meeting the challenges of on-host and off-host water balance in blood-feeding arthropods.

    Science.gov (United States)

    Benoit, Joshua B; Denlinger, David L

    2010-10-01

    In this review, we describe water balance requirements of blood-feeding arthropods, particularly contrasting dehydration tolerance during the unfed, off-host state and the challenges of excess water that accompany receipt of the bloodmeal. Most basic water balance characteristics during the off-host stage are applicable to other terrestrial arthropods, as well. A well-coordinated suite of responses enable arthropods to conserve water resources, enhance their desiccation tolerance, and increase their water supplies by employing a diverse array of molecular, structural and behavioral responses. Water loss rates during the off-host phase are particularly useful for generating a scheme to classify vectors according to their habitat requirements for water, thus providing a convenient tool with potential predictive power for defining suitable current and future vector habitats. Blood-feeding elicits an entirely different set of challenges as the vector responds to overhydration by quickly increasing its rate of cuticular water loss and elevating the rate of diuresis to void excess water and condense the bloodmeal. Immature stages that feed on blood normally have a net increase in water content at the end of a blood-feeding cycle, but in adults the water content reverts to the pre-feeding level when the cycle is completed. Common themes are evident in diverse arthropods that feed on blood, particularly the physiological mechanisms used to respond to the sudden influx of water as well as the mechanisms used to counter water shortfalls that are encountered during the non-feeding, off-host state. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. Differential growth responses to water balance of coexisting deciduous tree species are linked to wood density in a Bolivian tropical dry forest.

    Directory of Open Access Journals (Sweden)

    Hooz A Mendivelso

    Full Text Available A seasonal period of water deficit characterizes tropical dry forests (TDFs. There, sympatric tree species exhibit a diversity of growth rates, functional traits, and responses to drought, suggesting that each species may possess different strategies to grow under different conditions of water availability. The evaluation of the long-term growth responses to changes in the soil water balance should provide an understanding of how and when coexisting tree species respond to water deficit in TDFs. Furthermore, such differential growth responses may be linked to functional traits related to water storage and conductance. We used dendrochronology and climate data to retrospectively assess how the radial growth of seven coexisting deciduous tree species responded to the seasonal soil water balance in a Bolivian TDF. Linear mixed-effects models were used to quantify the relationships between basal area increment and seasonal water balance. We related these relationships with wood density and sapwood production to assess if they affect the growth responses to climate. The growth of all species responded positively to water balance during the wet season, but such responses differed among species as a function of their wood density. For instance, species with a strong growth response to water availability averaged a low wood density which may facilitate the storage of water in the stem. By contrast, species with very dense wood were those whose growth was less sensitive to water availability. Coexisting tree species thus show differential growth responses to changes in soil water balance during the wet season. Our findings also provide a link between wood density, a trait related to the ability of trees to store water in the stem, and wood formation in response to water availability.

  9. Differential Growth Responses to Water Balance of Coexisting Deciduous Tree Species Are Linked to Wood Density in a Bolivian Tropical Dry Forest

    Science.gov (United States)

    Mendivelso, Hooz A.; Camarero, J. Julio; Royo Obregón, Oriol; Gutiérrez, Emilia; Toledo, Marisol

    2013-01-01

    A seasonal period of water deficit characterizes tropical dry forests (TDFs). There, sympatric tree species exhibit a diversity of growth rates, functional traits, and responses to drought, suggesting that each species may possess different strategies to grow under different conditions of water availability. The evaluation of the long-term growth responses to changes in the soil water balance should provide an understanding of how and when coexisting tree species respond to water deficit in TDFs. Furthermore, such differential growth responses may be linked to functional traits related to water storage and conductance. We used dendrochronology and climate data to retrospectively assess how the radial growth of seven coexisting deciduous tree species responded to the seasonal soil water balance in a Bolivian TDF. Linear mixed-effects models were used to quantify the relationships between basal area increment and seasonal water balance. We related these relationships with wood density and sapwood production to assess if they affect the growth responses to climate. The growth of all species responded positively to water balance during the wet season, but such responses differed among species as a function of their wood density. For instance, species with a strong growth response to water availability averaged a low wood density which may facilitate the storage of water in the stem. By contrast, species with very dense wood were those whose growth was less sensitive to water availability. Coexisting tree species thus show differential growth responses to changes in soil water balance during the wet season. Our findings also provide a link between wood density, a trait related to the ability of trees to store water in the stem, and wood formation in response to water availability. PMID:24116001

  10. Surface fluxes and water balance of spatially varying vegetation within a small mountainous headwater catchment

    Directory of Open Access Journals (Sweden)

    G. N. Flerchinger

    2010-06-01

    Full Text Available Precipitation variability and complex topography often create a mosaic of vegetation communities in mountainous headwater catchments, creating a challenge for measuring and interpreting energy and mass fluxes. Understanding the role of these communities in modulating energy, water and carbon fluxes is critical to quantifying the variability in energy, carbon, and water balances across landscapes. The focus of this paper was: (1 to demonstrate the utility of eddy covariance (EC systems in estimating the evapotranspiration component of the water balance of complex headwater mountain catchments; and (2 to compare and contrast the seasonal surface energy and carbon fluxes across a headwater catchment characterized by large variability in precipitation and vegetation cover. Eddy covariance systems were used to measure surface fluxes over sagebrush (Artemesia arbuscula and Artemesia tridentada vaseyana, aspen (Populus tremuloides and the understory of grasses and forbs beneath the aspen canopy. Peak leaf area index of the sagebrush, aspen, and aspen understory was 0.77, 1.35, and 1.20, respectively. The sagebrush and aspen canopies were subject to similar meteorological forces, while the understory of the aspen was sheltered from the wind. Missing periods of measured data were common and made it necessary to extrapolate measured fluxes to the missing periods using a combination of measured and simulated data. Estimated cumulative evapotranspiratation from the sagebrush, aspen trees, and aspen understory were 384 mm, 314 mm and 185 mm. A water balance of the catchment indicated that of the 699 mm of areal average precipitation, 421 mm was lost to evapotranspiration, and 254 mm of streamflow was measured from the catchment; water balance closure for the catchment was within 22 mm. Fluxes of latent heat and carbon for all sites were minimal through the winter. Growing season fluxes of latent heat and carbon were consistently higher

  11. Improvement of a land surface model for accurate prediction of surface energy and water balances

    International Nuclear Information System (INIS)

    Katata, Genki

    2009-02-01

    In order to predict energy and water balances between the biosphere and atmosphere accurately, sophisticated schemes to calculate evaporation and adsorption processes in the soil and cloud (fog) water deposition on vegetation were implemented in the one-dimensional atmosphere-soil-vegetation model including CO 2 exchange process (SOLVEG2). Performance tests in arid areas showed that the above schemes have a significant effect on surface energy and water balances. The framework of the above schemes incorporated in the SOLVEG2 and instruction for running the model are documented. With further modifications of the model to implement the carbon exchanges between the vegetation and soil, deposition processes of materials on the land surface, vegetation stress-growth-dynamics etc., the model is suited to evaluate an effect of environmental loads to ecosystems by atmospheric pollutants and radioactive substances under climate changes such as global warming and drought. (author)

  12. BALANCE OF WATER AND ENERGY FOR EUCALYPTUS PLANTATIONS WITH PARTIAL SOIL COVER

    Directory of Open Access Journals (Sweden)

    Mariana Gonçalves dos Reis

    2014-03-01

    Full Text Available http://dx.doi.org/10.5902/1980509813329Eucalyptus plots with initial development ages presented discontinuity in soil cover, resulting in greaterexposure of the leaves to wind and solar radiation, which alters soil-plant-atmosphere interactions. Theobjective of this study was to study the components of the water and energy balances along the first yearof eucalyptus development in the Brazilian coastal plain region. The experimental site is located in anarea belonging to the company Fibria in the municipality of Aracruz, Espírito Santo state, Brazil. Thespace between the planted eucalyptus trees in the area studied was 3 x 3 m and the data of planting wason August 15th , 2004. The period of study lasted from the planting date until the plot reached an ageof 19 months. It was verified that there was a greater availability of energy during the summer and theprecipitation directly influenced the energy balance where during the period of study the energy available necessary for evapotranspiration was always greater than the fraction necessary for heating the soil-plantatmospheresystem, presenting a λE/Rn ratio of 59.57%. It was also observed that the water balance with themodeled evapotranspiration showed a good correspondence with the observed moisture content, presentinga determination coefficient of 0,94. In the majority of trees, greater indices of leaf and root system areasfavored evapotranspiration, indicating that most energy available was utilized for changing the phase ofwater

  13. Evapotranspiration and water balance in a hot pepper (Capsicum frutescens L.) field during a dry season in the tropics

    Science.gov (United States)

    Laban, S.; Oue, H.; Rampisela, D. A.

    2018-05-01

    Evapotranspiration and water balance in a hot pepper (Capsicum frutescens L.) field during the 2nd dry season were analyzed in this study. Actual evapotranspiration (ET) was estimated by Bowen Ratio Energy Budget (BREB) method, potential evaporation (EP) was calculated by Penman method, and irrigation volume of water was measured manually. Meteorological instruments were installed in the experimental field during hot pepper cultivation. Leaf area index increased during the growing stages where the highest LAI of 1.65 in the generative stage. The daily average of ET was 1.94 and EP was 6.71 mm resulting in low Kc. The Kc values were significantly different between stage to stage under T-test analysis (α = 0.05). Moreover, Kc in every stage could be related to soil water content (SWC) in logarithmic function. Totally, ET during hot pepper cultivation was 179.19 mm, while rainfall was 180.0 mm and irrigation water was 27.42 mm. However, there was a water shortages during vegetative and generative stages. This study suggested that consumptive water of hot pepper was complimented by soil and groundwater under the condition of water shortages in the vegetative and generative stages during the 2nd dry season.

  14. Water vapor mass balance method for determining air infiltration rates in houses

    Science.gov (United States)

    David R. DeWalle; Gordon M. Heisler

    1980-01-01

    A water vapor mass balance technique that includes the use of common humidity-control equipment can be used to determine average air infiltration rates in buildings. Only measurements of the humidity inside and outside the home, the mass of vapor exchanged by a humidifier/dehumidifier, and the volume of interior air space are needed. This method gives results that...

  15. Transient behavior of enrichment of tritium water in adsorption-distillation column

    International Nuclear Information System (INIS)

    Fukada, Satoshi

    2006-01-01

    Enrichment of tritium in an adsorption-distillation column was experimentally investigated under the two processes of simple distillation and total-reflux distillation. Adsorption of water on silica-gel pellets enhanced the total isotope separation factor in the water distillation column. The transient behavior of tritium enrichment was analyzed using material balance equations of tritium and water in each cell with a height corresponding to HETP. The experimental transient behavior was well simulated by the material balance equations with additional assumptions on vapor and liquid flow rates regardless of the different processes of simple distillation and total-reflux distillation. (author)

  16. Preliminary research on quantitative methods of water resources carrying capacity based on water resources balance sheet

    Science.gov (United States)

    Wang, Yanqiu; Huang, Xiaorong; Gao, Linyun; Guo, Biying; Ma, Kai

    2018-06-01

    Water resources are not only basic natural resources, but also strategic economic resources and ecological control factors. Water resources carrying capacity constrains the sustainable development of regional economy and society. Studies of water resources carrying capacity can provide helpful information about how the socioeconomic system is both supported and restrained by the water resources system. Based on the research of different scholars, major problems in the study of water resources carrying capacity were summarized as follows: the definition of water resources carrying capacity is not yet unified; the methods of carrying capacity quantification based on the definition of inconsistency are poor in operability; the current quantitative research methods of water resources carrying capacity did not fully reflect the principles of sustainable development; it is difficult to quantify the relationship among the water resources, economic society and ecological environment. Therefore, it is necessary to develop a better quantitative evaluation method to determine the regional water resources carrying capacity. This paper proposes a new approach to quantifying water resources carrying capacity (that is, through the compilation of the water resources balance sheet) to get a grasp of the regional water resources depletion and water environmental degradation (as well as regional water resources stock assets and liabilities), figure out the squeeze of socioeconomic activities on the environment, and discuss the quantitative calculation methods and technical route of water resources carrying capacity which are able to embody the substance of sustainable development.

  17. Water Quality Assessment and Total Maximum Daily Loads Information (ATTAINS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Water Quality Assessment TMDL Tracking And Implementation System (ATTAINS) stores and tracks state water quality assessment decisions, Total Maximum Daily Loads...

  18. Geochemical mole-balance modeling with uncertain data

    Science.gov (United States)

    Parkhurst, David L.

    1997-01-01

    Geochemical mole-balance models are sets of chemical reactions that quantitatively account for changes in the chemical and isotopic composition of water along a flow path. A revised mole-balance formulation that includes an uncertainty term for each chemical and isotopic datum is derived. The revised formulation is comprised of mole-balance equations for each element or element redox state, alkalinity, electrons, solvent water, and each isotope; a charge-balance equation and an equation that relates the uncertainty terms for pH, alkalinity, and total dissolved inorganic carbon for each aqueous solution; inequality constraints on the size of the uncertainty terms; and inequality constraints on the sign of the mole transfer of reactants. The equations and inequality constraints are solved by a modification of the simplex algorithm combined with an exhaustive search for unique combinations of aqueous solutions and reactants for which the equations and inequality constraints can be solved and the uncertainty terms minimized. Additional algorithms find only the simplest mole-balance models and determine the ranges of mixing fractions for each solution and mole transfers for each reactant that are consistent with specified limits on the uncertainty terms. The revised formulation produces simpler and more robust mole-balance models and allows the significance of mixing fractions and mole transfers to be evaluated. In an example from the central Oklahoma aquifer, inclusion of up to 5% uncertainty in the chemical data can reduce the number of reactants in mole-balance models from seven or more to as few as three, these being cation exchange, dolomite dissolution, and silica precipitation. In another example from the Madison aquifer, inclusion of the charge-balance constraint requires significant increases in the mole transfers of calcite, dolomite, and organic matter, which reduce the estimated maximum carbon 14 age of the sample by about 10,000 years, from 22,700 years to

  19. The effects of water replacement by oral rehydration fluids with or without betaine supplementation on performance, acid-base balance, and water retention of heat-stressed broiler chickens.

    Science.gov (United States)

    Sayed, M A M; Downing, J

    2011-01-01

    Exposing broilers to a high temperature increases water and electrolyte K(+) and Na(+) excretion, which negatively affects the heat dissipation capacity and acid-base homeostasis, resulting in losses in growth performance. In this experiment, the efficacy of providing oral rehydration therapy and betaine on growth performance, acid-base balance, and water and electrolyte retention was evaluated. A total of 432 one-day-old broiler chicks (Cobb) were allocated to 72 metabolic cages and reared to 31 d of age under standard conditions. From 32 to 41 d of age, chicks were exposed to heat stress (ambient temperature, 32°C) and high RH (80 to 100% RH) for 9 h daily. The ameliorative effects of a 3 × 3 factorial array of treatments administered via drinking water were evaluated in 8 replicates of 6 chicks per cage for each treatment. Two oral rehydration therapy (ORT) fluids, based on either citrate or bicarbonate salts, were added to tap water. In addition, betaine was added to tap water at an inclusion rate of 0, 500, or 1,000 mg/L to complete the array of 9 liquid-based treatments. Growth performance was assessed at 32, 35, and 41 d of age. From 32 to 35 d of age, chicks receiving ORT fluids exhibited improved growth performance, water balance, and electrolyte (K(+), Na(+)) retention. In addition, the physiological response to stress was attenuated, as indicated by lower heterophil-to-lymphocyte ratios and blood glucose concentrations relative to the negative controls. The addition of betaine at an inclusion rate of 500 mg/L improved BW gain. From d 36 to 41, treatments did not significantly influence growth performance, which suggests that chicks receiving tap water were able to compensate and adapt to the heat-stress conditions. The results demonstrate that the beneficial effects of providing ORT fluids and 500 mg of betaine/L were observed only during the first 4 d of heat exposure. After this period, adaptation to the heat appears to occur, and none of the

  20. An efficient soil water balance model based on hybrid numerical and statistical methods

    Science.gov (United States)

    Mao, Wei; Yang, Jinzhong; Zhu, Yan; Ye, Ming; Liu, Zhao; Wu, Jingwei

    2018-04-01

    Most soil water balance models only consider downward soil water movement driven by gravitational potential, and thus cannot simulate upward soil water movement driven by evapotranspiration especially in agricultural areas. In addition, the models cannot be used for simulating soil water movement in heterogeneous soils, and usually require many empirical parameters. To resolve these problems, this study derives a new one-dimensional water balance model for simulating both downward and upward soil water movement in heterogeneous unsaturated zones. The new model is based on a hybrid of numerical and statistical methods, and only requires four physical parameters. The model uses three governing equations to consider three terms that impact soil water movement, including the advective term driven by gravitational potential, the source/sink term driven by external forces (e.g., evapotranspiration), and the diffusive term driven by matric potential. The three governing equations are solved separately by using the hybrid numerical and statistical methods (e.g., linear regression method) that consider soil heterogeneity. The four soil hydraulic parameters required by the new models are as follows: saturated hydraulic conductivity, saturated water content, field capacity, and residual water content. The strength and weakness of the new model are evaluated by using two published studies, three hypothetical examples and a real-world application. The evaluation is performed by comparing the simulation results of the new model with corresponding results presented in the published studies, obtained using HYDRUS-1D and observation data. The evaluation indicates that the new model is accurate and efficient for simulating upward soil water flow in heterogeneous soils with complex boundary conditions. The new model is used for evaluating different drainage functions, and the square drainage function and the power drainage function are recommended. Computational efficiency of the new

  1. Comparison of total body water determinations in lactating women by anthropometry, water displacement, and deuterium isotope dilution

    International Nuclear Information System (INIS)

    Wong, W.; Butte, N.; Lee, L.; Garza, C.; Klein, P.

    1986-01-01

    To expand the limited data on the total body water in lactating women, the authors have determined total body water contents, in eight subjects from anthropometric measurements, water displacement, and isotope dilution of deuterium oxide. On the day of the study, their skinfold thicknesses were measured over the biceps and triceps muscles and at the suprailiac and subscapular areas. Their body densities were measured by water displacement. Deuterium oxide was administered orally at 100 mg/kg of body weight. One predose milk sample was collected from each subject. The milk samples were defatted by centrifugation and the milk water was reduced to hydrogen gas for hydrogen isotope ratio measurements by gas-isotope-ratio mass spectrometry. The results indicated that total body water in lactating women estimated from anthropometric measurements was 49.7 +/- 3.3% of body weight, by water displacement was 54.9 +/- 7.2%, and by isotope dilution was 50.8 +/- 3.7%

  2. A dynamic human water and electrolyte balance model for verification and optimization of life support systems in space flight applications

    Science.gov (United States)

    Hager, P.; Czupalla, M.; Walter, U.

    2010-11-01

    In this paper we report on the development of a dynamic MATLAB SIMULINK® model for the water and electrolyte balance inside the human body. This model is part of an environmentally sensitive dynamic human model for the optimization and verification of environmental control and life support systems (ECLSS) in space flight applications. An ECLSS provides all vital supplies for supporting human life on board a spacecraft. As human space flight today focuses on medium- to long-term missions, the strategy in ECLSS is shifting to closed loop systems. For these systems the dynamic stability and function over long duration are essential. However, the only evaluation and rating methods for ECLSS up to now are either expensive trial and error breadboarding strategies or static and semi-dynamic simulations. In order to overcome this mismatch the Exploration Group at Technische Universität München (TUM) is developing a dynamic environmental simulation, the "Virtual Habitat" (V-HAB). The central element of this simulation is the dynamic and environmentally sensitive human model. The water subsystem simulation of the human model discussed in this paper is of vital importance for the efficiency of possible ECLSS optimizations, as an over- or under-scaled water subsystem would have an adverse effect on the overall mass budget. On the other hand water has a pivotal role in the human organism. Water accounts for about 60% of the total body mass and is educt and product of numerous metabolic reactions. It is a transport medium for solutes and, due to its high evaporation enthalpy, provides the most potent medium for heat load dissipation. In a system engineering approach the human water balance was worked out by simulating the human body's subsystems and their interactions. The body fluids were assumed to reside in three compartments: blood plasma, interstitial fluid and intracellular fluid. In addition, the active and passive transport of water and solutes between those

  3. A conceptual model of daily water balance following partial clearing from forest to pasture

    Directory of Open Access Journals (Sweden)

    M. A. Bari

    2006-01-01

    Full Text Available A simple conceptual water balance model representing the streamflow generation processes on a daily time step following land use change is presented. The model consists of five stores: (i Dry, Wet and Subsurface Stores for vertical and lateral water flow, (ii a transient Stream zone Store (iii a saturated Goundwater Store. The soil moisture balance in the top soil Dry and Wet Stores are the most important components of the model and characterize the dynamically varying saturated areas responsible for surface runoff, interflow and deep percolation. The Subsurface Store describes the unsaturated soil moisture balance, extraction of percolated water by vegetation and groundwater recharge. The Groundwater Store controls the baseflow to stream (if any and the groundwater contribution to the stream zone saturated areas. The daily model was developed following a downward approach by analysing data from Ernies (control and Lemon (53% cleared catchments in Western Australia and elaborating a monthly model. The daily model performed very well in simulating daily flow generation processes for both catchments. Most of the model parameters were incorporated a priori from catchment attributes such as surface slope, soil depth, porosity, stream length and initial groundwater depth, and some were calibrated by matching the observed and predicted hydrographs. The predicted groundwater depth, and streamflow volumes across all time steps from daily to monthly to annual were in close agreement with observations for both catchments.

  4. Impacts of Human Induced Nitrogen Deposition on Ecosystem Carbon Sequestration and Water Balance in China

    Science.gov (United States)

    Sheng, M.; Yang, D.; Tang, J.; Lei, H.

    2017-12-01

    Enhanced plant biomass accumulation in response to elevated atmospheric CO2 concentration could dampen the future rate of increase in CO2 levels and associated climate warming. However, many experiments around the world reported that nitrogen availability could limit the sustainability of the ecosystems' response to elevated CO2. In the recent 20 years, atmospheric nitrogen deposition, primarily from fossil fuel combustion, has increased sharply about 25% in China and meanwhile, China has the highest carbon emission in the world, implying a large opportunity to increase vegetation greenness and ecosystem carbon sequestration. Moreover, the water balance of the ecosystem will also change. However, in the future, the trajectory of increasing nitrogen deposition from fossil fuel use is to be controlled by the government policy that shapes the energy and industrial structure. Therefore, the historical and future trajectories of nitrogen deposition are likely very different, and it is imperative to understand how changes in nitrogen deposition will impact the ecosystem carbon sequestration and water balance in China. We here use the Community Land Model (CLM 4.5) to analyze how the change of nitrogen deposition has influenced and will influence the ecosystem carbon and water cycle in China at a high spatial resolution (0.1 degree). We address the following questions: 1) what is the contribution of the nitrogen deposition on historical vegetation greenness? 2) How does the change of nitrogen deposition affect the carbon sequestration? 3) What is its influence to water balance? And 4) how different will be the influence of the nitrogen deposition on ecosystem carbon and water cycling in the future?

  5. Soil Water Balance and Vegetation Dynamics in two Water-limited Mediterranean Ecosystem on Sardinia under past and future climate change

    Science.gov (United States)

    Corona, R.; Montaldo, N.; Albertson, J. D.

    2016-12-01

    Water limited conditions strongly impacts soil and vegetation dynamics in Mediterranean regions, which are commonly heterogeneous ecosystems, characterized by inter-annual rainfall variability, topography variability and contrasting plant functional types (PFTs) competing for water use. Historical human influences (e.g., deforestation, urbanization) further altered these ecosystems. Sardinia island is a representative region of Mediterranean ecosystems. It is low urbanized except some plan areas close to the main cities where main agricultural activities are concentrated. Two contrasting case study sites are within the Flumendosa river basin (1700 km2). The first site is a typical grassland on an alluvial plan valley (soil depth > 2m) while the second is a patchy mixture of Mediterranean vegetation species (mainly wild olive trees and C3 herbaceous) that grow in a soil bounded from below by a rocky layer of basalt, partially fractured (soil depth 15 - 40 cm). In both sites land-surface fluxes and CO2 fluxes are estimated by the eddy correlation technique while soil moisture was continuously estimated with water content reflectometers, and periodically leaf area index (LAI) was estimated. The following objectives are addressed:1) pointing out the dynamics of land surface fluxes, soil moisture, CO2 and vegetation cover for two contrasting water-limited ecosystems; 2) assess the impact of the soil depth and type on the CO2 and water balance dynamics; 3) evaluate the impact of past and future climate change scenarios on the two contrasting ecosystems. For reaching the objectives an ecohydrologic model that couples a vegetation dynamic model (VDM), and a 3-component (bare soil, grass and woody vegetation) land surface model (LSM) has been used. Historical meteorological data are available from 1922 and hydro-meteorological scenarios are then generated using a weather generator. The VDM-LSM model predict soil water balance and vegetation dynamics for the generated

  6. Determination of the total indicative dose in drinking and mineral waters

    International Nuclear Information System (INIS)

    Flesch, K.; Schulz, H.; Knappik, R.; Koehler, M.

    2006-01-01

    In Europe and Germany administrative regulations exist for the surveillance of the total indicative dose of water supplied for human consumption. This parameter, which cannot be analyzed directly, has to be calculated using nuclide specific activity concentration and age specific dose conversion factors and consumption rates. Available calculation methods differ regarding the used radionuclides, consumption rates and whether they use age specific dose conversion factors or not. In Germany administrative guidelines for the determination of the total indicative dose are still not available. As they have analyzed a large number of waters in the past, the authors derive a praxis orientated concept for the determination of the total indicative dose which respects radiological, analytical and hydrochemical aspects as well. Finally it is suggested to handle sparkling waters in the same manner as drinking waters. (orig.)

  7. Water balance and hydrology research in a mountainous permafrost watershed in upland streams of the Kolyma River, Russia: a database from the Kolyma Water-Balance Station, 1948-1997

    Science.gov (United States)

    Makarieva, Olga; Nesterova, Nataliia; Lebedeva, Lyudmila; Sushansky, Sergey

    2018-04-01

    In 2018, 70 years have passed since the beginning of observations at the Kolyma Water-Balance Station (KWBS), a unique scientific research hydrological and permafrost catchment. The volume and duration (50 continuous years) of hydrometeorological standard and experimental data, characterizing the natural conditions and processes occurring in mountainous permafrost conditions, significantly exceed any counterparts elsewhere in the world. The data are representative of mountainous territory of the North-East of Russia. In 1997, the station was terminated, thereby leaving Russia without operating research watersheds in the permafrost zone. This paper describes the dataset containing the series of daily runoff from 10 watersheds with an area from 0.27 to 21.3 km2, precipitation, meteorological observations, evaporation from soil and snow, snow surveys, soil thaw and freeze depths, and soil temperature for the period 1948-1997. It also highlights the main historical stages of the station's existence, its work and scientific significance, and outlines the prospects for its future, where the Kolyma Water-Balance Station could be restored to the status of a scientific research watershed and become a valuable international centre for hydrological research in permafrost. The data are available at https://doi.org/10.1594/PANGAEA.881731.

  8. Potential groundwater recharge for the State of Minnesota using the Soil-Water-Balance model, 1996-2010

    Science.gov (United States)

    Smith, Erik A.; Westenbroek, Stephen M.

    2015-01-01

    Groundwater recharge is one of the most difficult components of a water budget to ascertain, yet is an important boundary condition necessary for the quantification of water resources. In Minnesota, improved estimates of recharge are necessary because approximately 75 percent of drinking water and 90 percent of agricultural irrigation water in Minnesota are supplied from groundwater. The water that is withdrawn must be supplied by some combination of (1) increased recharge, (2) decreased discharge to streams, lakes, and other surface-water bodies, and (3) removal of water that was stored in the system. Recent pressure on groundwater resources has highlighted the need to provide more accurate recharge estimates for various tools that can assess the sustainability of long-term water use. As part of this effort, the U.S. Geological Survey, in cooperation with the Minnesota Pollution Control Agency, used the Soil-Water-Balance model to calculate gridded estimates of potential groundwater recharge across Minnesota for 1996‒2010 at a 1-kilometer (0.621-mile) resolution. The potential groundwater recharge estimates calculated for Minnesota from the Soil-Water Balance model included gridded values (1-kilometer resolution) of annual mean estimates (that is, the means for individual years from 1996 through 2010) and mean annual estimates (that is, the mean for the 15-year period 1996−2010).

  9. Water balance in the Guarani Aquifer outcrop zone based on hydrogeologic monitoring

    Science.gov (United States)

    Wendland, E.; Barreto, C.; Gomes, L. H.

    2007-09-01

    SummaryMain objective of this work was the study of the infiltration and recharge mechanisms in the Guarani Aquifer System (GAS) outcrop zone. The study was based on hydrogeologic monitoring, evapotranspiration and water balance in a pilot watershed. The pilot watershed (Ribeirão da Onça) is situated in the outcrop zone of the Guarani Aquifer between parallels 22°10' and 22°15' (south latitude) and meridians 47°55' and 48°00' (west longitude). For the execution of the research project, a monitoring network (wells, rain gauge and linigraph) was installed in the watershed. Data have been systematically collected during the period of a hydrological year. Water level fluctuation has been used to estimate deep recharge and subsurface storage variation. The method used to estimate the direct recharge adopted the hypothesis that the recession of the groundwater level obeys a function of power law type. Direct recharge is obtained through the difference between the actual level of an unconfined aquifer and the level indicated by extrapolation of the recession curve, in a given period. Base outflow is estimated through a mixed function (linear and exponential). Outflow in the creek has been measured with current meter and monitored continuously with a linigraph. The annual infiltration in 2005 was estimated to be 350 mm, while the deep recharge, based on water balance, appears to be 3.5% of the precipitation (1410 mm). These results indicate that the estimated long term water availability of the Guarani Aquifer System should be studied more carefully.

  10. CAMEX-4 DC-8 NEVZOROV TOTAL CONDENSED WATER CONTENT SENSOR V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The CAMEX-4 DC-8 Nevzorov Total Condensed Water Content Sensor dataset was collected by the Nevzorov total condensed water content sensor which was used to measure...

  11. Logs and completion data for water and mass balance wells in Mortandad and Ten Site Canyons

    International Nuclear Information System (INIS)

    McLin, S.G.; Koch, R.J.

    1997-10-01

    Twenty-four monitoring wells were drilled and completed in December 1994 as part of a water and mass balance study for the shallow perched aquifer in the Mortandad Canyon alluvium and in the lower part of Ten-Site Canyon. The wells penetrated the alluvium containing the aquifer and were completed into the top of the weathered tuff. Twelve of these wells encountered the Tshirege Member (Cooing Unit 1 g) of the Bandelier Tuff below the canyon alluvium, while ten wells made contact with the Cerro Toledo interval, which lies between the Tshirege and Otowi Members of the Bandelier Tuff. The remaining two wells were completed into the alluvium above the weathered tuff contact. These wells provide access for continuous water level measurement and water sampling. Data from these new wells will be used to determine changes in alluvial aquifer water storage, water quality sampling, and estimation of seepage into the unsaturated Bandelier Tuff below the alluvium. This report documents drilling activities and well completion logs for the water and mass balance study. These wells also provide critical new data for fourteen north-south vertical cross-sections constructed for the canyon alluvium

  12. Integration of In-Flight and Post-Flight Water Monitoring Resources in Addressing the U.S. Water Processor Assembly Total Organic Carbon (TOC) Anomaly

    Science.gov (United States)

    Straub, John E., II; McCly, J. Torin

    2011-01-01

    Beginning in June of 2010, the total organic carbon (TOC) concentration in the U.S. Water Processor Assembly (WPA) product water started to increase. A surprisingly consistent upward TOC trend was observed through weekly ISS total organic carbon analyzer (TOCA) monitoring. As TOC is a general organic compound indicator, return of water archive samples was needed to make better-informed crew health decisions on the specific compounds of concern and to aid in WPA troubleshooting. TOCA-measured TOC was more than halfway to the health-based screening limit of 3,000 g/L before archive samples were returned. Archive samples were returned on 22 Soyuz in September 2010 and on ULF5 in November of 2010. The samples were subjected to extensive analysis. Although TOC was confirmed to be elevated, somewhat surprisingly, none of the typical target compounds were detected at high levels. After some solid detective work, it was confirmed that the TOC was associated with a compound known as dimethylsilanediol (DMSD). DMSD is believed to be a breakdown product of siloxanes which are thought to be ubiquitous in the ISS atmosphere. A toxicological limit was set for DMSD and a forward plan was developed for conducting operations in the context of understanding the composition of the TOC measured in flight. This required careful consideration of existing ISS flight rules, coordination with ISS stakeholders, and development of a novel approach for the blending of inflight TOCA data with archive results to protect crew health. Among other challenges, team members had to determine how to utilize TOCA readings when making decisions about crew consumption of WPA water. This involved balancing very real concerns associated with the assumption that TOC would continue to be comprised of only DMSD. Demonstrated teamwork, multidisciplinary awareness, and innovative problem-solving were required to respond effectively to this anomaly.

  13. Hydrological and Meteorological Role of Forests: Implications for the Regulation of Water and Energy Balances

    Science.gov (United States)

    Salazar, J. F.; Villegas, J. C.; Bettin, D. M.; Molina, R.; Henao, J. J.; Rodríguez, E.; Rendón, A.; Hoyos, I.; Poveda, G.

    2016-12-01

    In last decades, there has been increasing debate about the hydrological and meteorological role of forests, particularly regarding its role in the regulation of the energy and water balances. Here we summarize results from an ongoing research program studying this problem. First, we introduce the notion of ecohydrological scaling to show the existence of two alternative states of regulated or unregulated streamflows in the main tributaries of the Amazon river basin. The transition between both states is associated with the loss of forest cover, with a potential critical threshold at around 40% forest loss in the Amazon. These results imply that large-scale forest loss can force the entire Amazon basin system beyond a critical threshold where its natural streamflow regulation is lost. More generally, our proposed framework provides insights for a physical interpretation of the scaling relations in river basins, as well as foundations and tools to develop early warnings of critical transitions in river basins. Second, we show that long-term rainfall-streamflow ratios converge to low values with low spatial variability in forested basins of the world, independent of location, climatic regime, basin size or forest type. We interpret this as evidence that high forest cover provides long-term regulation of the water balance. Third, we examine the linkage between the presence of tropical forests in South America and the long-term spatial distribution of continental precipitation, and found evidence suggesting that the Amazon forests enhance the atmospheric rivers flowing inland from the Atlantic ocean, particularly during the austral and boreal summers. The associated effects on precipitation may be highly relevant for water availability in river basins located downstream such atmospheric rivers, such as the La Plata and the Orinoco river basins. Finally, we explore the linkage between forest-induced temperature inversions and the vertical transport of atmospheric

  14. Perennial water stratification and the role of freshwater in the mass balance of Arctic ice shelves and multiyear landfast sea ice

    International Nuclear Information System (INIS)

    Jeffries, M.O.

    1991-01-01

    A number of the ice shelves of northern Ellesmere Island in the Canadian High Arctic owe their origin to multiyear landfast sea ice (MLSI) growth during the post-Hypsithermal cooling ca. 3,000-4,000 BP. Since they grew in response to an arctic-wide climatic deterioration and contain evidence of occasional post-4,000 BP climatic ameliorations, they may be expected to be sensitive to future global climate changes manifested in the High Arctic. The purpose of this paper is to examine ice-ocean interactions and feedbacks, and the response of the ice shelves and the MLSI to the improved summer climate of the last ca. 100 years, and implications for the future. There is good evidence that there has been a negative surface mass balance since the turn of the century. Mass balance measurements on the Ward Hunt Ice Shelf between 1966 and 1985 indicate a total ice loss of 1.371 m at a mean annual rate of 68.5 mm. The interannual pattern of accumulation and ablation and the long-term losses on the ice shelf are similar to other Canadian High Arctic glacier mass balance records. It is evident from water and ice core records of salinity, δ 18 0 and tritium, that perennial water stratification is common below and behind the ice shelves and MLSI. The coastal waters are highly stratified, with anything from 0.5 m to 41.0 m of freshwater interposed between the overlying ice and underlying seawater. The primary source of the freshwater is summer run-off of snow-meltwater from the adjacent land and from the ice itself. There is minimal mixing between the influent freshwater and seawater, and the freshwater is either dammed behind the ice shelves and the MLSI, with subsequent under-ice freshwater outflows, or pooled in under-ice depressions

  15. Thermal balance of a LPG fuelled, four stroke SI engine with water addition

    International Nuclear Information System (INIS)

    Ozcan, Hakan; Soeylemez, M.S.

    2006-01-01

    The effect of water injection on a spark ignition engine thermal balance and performance has been experimentally investigated. A four stroke, four cylinder conventional engine was used with LPG (liquid petroleum gas) as fuel. Different water to fuel ratios by mass were used with variable engine speed ranging from 1000 to 4500 rpm. The results showed that as the water injection level to the engine increased, the percentage of useful work increased, while the losses other than unaccounted losses decreased. Additionally, the specific fuel consumption decreases, while the engine thermal efficiency increases. The average increase in the brake thermal efficiency for a 0.5 water to fuel mass ratio is approximately 2.7% over the use of LPG alone for the engine speed range studied

  16. Investigation by tracer method of water balance in filling the gob with slurries

    International Nuclear Information System (INIS)

    Jureczko, J.; Skowronek, E.

    1977-01-01

    Results of investigations on the establishment of conditions of water flow in filling old workings with mud, in order to determine the degree of water hazard for mine workings in one of mines are given. For the inspection of flow, the stable tracer method and the neutron activation analysis were used. Chromium as a complex compound with EDTA was used as tracer. Geological and mining conditions in the area of investigations by tracers are given and the disposal of diluted stowing slurry is characterized. The method of interpretation of results is discussed in order to determine the water flow rate in the gob and to draw up the water balance on the basis of the curve of tracer travel. (author)

  17. Effects of evapotranspiration heterogeneity on catchment water balance in the Southern Sierra Nevada of California

    Science.gov (United States)

    Kerkez, B.; Kelly, A. E.; Lucas, R. G.; Son, K.; Glaser, S. D.; Bales, R. C.

    2011-12-01

    Heterogeneity of Evapotranspiration (ET) is the result of poorly understood interactions between climate, topography, vegetation and soil. Accurate predictions of ET, and thus improved water balance estimates, hinge directly upon an improved understanding of the processes that drive ET across a wide spatio-temporal range. Recent warming trends in the Western US are shifting precipitation toward more rain-dominated patterns, significantly increasing vegetation water stress in historically snow-dominated regimes due to reduced soil moisture and increased vapor deficit during warm summer months. We investigate dominant controls that govern ET variability in a highly instrumented 1km2 mountain catchment at the Southern Sierra Critical Zone Observatory, co-located in the Kings River Experimental Watershed. Various ET estimates are derived from a number of measurement approaches: an eddy flux covariance tower, ET chambers, stream flumes, groundwater monitoring wells, matric potential sensors, as well as data from a distributed wireless sensor network with over 300 sensors. Combined with precipitation data, and high-density distributed soil moisture and snowdepth readings, the ET estimates are utilized to reconstruct the overall catchment water balance. We also apply the Regional Hydro-Ecologic Simulation System (RHESSys), a physically based, spatially distributed hydrologic model, to estimate water balance components. The model predictions are compared with the water budget calculated from field data, and used to identify the key variables controlling spatial and temporal patterns of ET at multiple scales. Initial results show that ET estimates are scale-, and vegetation-dependent, with significant ET variability between vegetation types and physiographic parameters such as elevation, slope, and aspect. In mixed conifer forests terrain, ET is more dependent on soil moisture, while in the meadows, where the soil is generally saturated for the duration of the growing

  18. Efficacy of an extravascular lung water-driven negative fluid balance protocol.

    Science.gov (United States)

    Díaz-Rubia, L; Ramos-Sáez, S; Vázquez-Guillamet, R; Guerrero-López, F; Pino-Sánchez, F; García-Delgado, M; Gómez-Jiménez, F J; Fernández-Mondéjar, E

    2015-01-01

    To analyze the efficacy of negative fluid balance in hypoxemic patients with an elevated extravascular lung water index (EVLWI). A retrospective observational study was made. Intensive Care Unit of Virgen de las Nieves Hospital (Spain). Forty-four patients participated in the study. We analyzed our database of hypoxemic patients covering a period of 11 consecutive months. We included all hemodynamically stable and hypoxemic patients with EVLWI>9ml/kg. The protocol dictates a negative fluid balance between 500 and 1500ml/day. We analyzed the impact of this negative fluid balance strategy upon pulmonary, hemodynamic, and renal function. Demographic data, severity scores, clinical, hemodynamic, pulmonary, metabolic and renal function data. Thirty-three patients achieved negative fluid balance (NFB group) and 11 had a positive fluid balance (PFB group). In the former group, PaO2/FiO2 improved from 145 (IQR 106, 200) to 210mmHg (IQR 164, 248) (pPFB group, EVLWI also decreased from 11 (10, 14) to 10ml/kg (8, 14) at the end of the protocol (p=0.004). For these patients there were no changes in oxygenation, with a PaO2/FiO2 of 216mmHg (IQR 137, 260) at the beginning versus 205mmHg (IQR 99,257) at the end of the study (p=0.08). Three out of four hypoxic patients with elevated EVLWI tolerated the NFB protocol. In these subjects, the improvement of various analyzed physiological parameters was greater and faster than in those unable to complete the protocol. Patients who did not tolerate the protocol were usually in more severe condition, though a larger sample would be needed to detect specific characteristics of this group. Copyright © 2014 Elsevier España, S.L.U. and SEMICYUC. All rights reserved.

  19. Surface water management: a user's guide to calculate a water balance using the CREAMS model

    International Nuclear Information System (INIS)

    Lane, L.J.

    1984-11-01

    The hydrologic component of the CREAMS model is described and discussed in terms of calculating a surface water balance for shallow land burial systems used for waste disposal. Parameter estimates and estimation procedures are presented in detail in the form of a user's guide. Use of the model is illustrated with three examples based on analysis of data from Los Alamos, New Mexico and Rock Valley, Nevada. Use of the model in design of trench caps for shallow land burial systems is illustrated with the example applications at Los Alamos

  20. Water (electrolyte) balance after abdominal therapeutic treatment

    Energy Technology Data Exchange (ETDEWEB)

    Cionini, L; Becciolini, A; Giannardi, G [Florence Univ. (Italy). Istituto di Radiologia

    1976-07-01

    Total body water, plasma volume and Na space have been studied in 34 patients receiving external radiotherapy on the pelvic region. Determinations were made on the same patients before, and half-way treatment; in a few cases, some determinations were also repeated after the end of treatment. The results failed to show any appreciable modification of the different parameters studied.

  1. The balance of kinetic and total energy simulated by the OSU two-level atmospheric general circulation model for January and July

    Science.gov (United States)

    Wang, J.-T.; Gates, W. L.; Kim, J.-W.

    1984-01-01

    A three-year simulation which prescribes seasonally varying solar radiation and sea surface temperature is the basis of the present study of the horizontal structure of the balances of kinetic and total energy simulated by Oregon State University's two-level atmospheric general circulation model. Mechanisms responsible for the local energy changes are identified, and the energy balance requirement's fulfilment is examined. In January, the vertical integral of the total energy shows large amounts of external heating over the North Pacific and Atlantic, together with cooling over most of the land area of the Northern Hemisphere. In July, an overall seasonal reversal is found. Both seasons are also characterized by strong energy flux divergence in the tropics, in association with the poleward transport of heat and momentum.

  2. Developmental profiles in tick water balance with a focus on the new Rocky Mountain spotted fever vector, Rhipicephalus sanguineus.

    Science.gov (United States)

    Yoder, J A; Benoit, J B; Rellinger, E J; Tank, J L

    2006-12-01

    Recent reports indicate that the common brown dog tick, or kennel tick, Rhipicephalus sanguineus (Latreille) (Acari: Ixodidae) is a competent vector of Rocky Mountain spotted fever in the U.S.A. This tick is of concern to public health because of its high frequency of contact, as it has a unique ability to thrive within human homes. To assess the moisture requirements necessary for survival, water balance characteristics were determined for each developmental stage, from egg to adult. This is the first time that water relations in ticks have been assessed throughout the complete lifecycle. Notably, R. sanguineus is differentially adapted for life in a dry environment, as characterized by a suppressed water loss rate distinctive for each stage that distinguishes it from other ticks. Analysis of its dehydration tolerance limit and percentage body water content provides no evidence to suggest that the various stages of this tick can function more effectively containing less water, indicating that this species is modified for water conservation, not desiccation hardiness. All stages, eggs excepted, absorb water vapour from the air and can drink free water to replenish water stores. Developmentally, a shift in water balance strategies occurs in the transition from the larva, where the emphasis is on water gain (water vapour absorption from drier air), to the adult, where the emphasis is on water retention (low water loss rate). These results on the xerophilic-nature of R. sanguineus identify overhydration as the primary water stress, indicating that this tick is less dependent upon a moisture-rich habitat for survival, which matches its preference for a dry environment. We suggest that the controlled, host-confined conditions of homes and kennels have played a key role in promoting the ubiquitous distribution of R. sanguineus by creating isolated arid environments that enable this tick to establish within regions that are unfavourable for maintaining water balance.

  3. WATER TEMPERATURE, VOLUNTARY DRINKING AND FLUID BALANCE IN DEHYDRATED TAEKWONDO ATHLETES

    Directory of Open Access Journals (Sweden)

    Saeed Khamnei

    2011-12-01

    Full Text Available Voluntary drinking is one of the major determiners of rehydration, especially as regards exercise or workout in the heat. The present study undertakes to search for the effect of voluntary intake of water with different temperatures on fluid balance in Taekwondo athletes. Six young healthy male Taekwondo athletes were dehydrated by moderate exercise in a chamber with ambient temperature at 38-40°C and relative humidity between 20-30%. On four separate days they were allowed to drink ad libitum plane water with the four temperatures of 5, 16, 26, and 58°C, after dehydration. The volume of voluntary drinking and weight change was measured; then the primary percentage of dehydration, sweat loss, fluid deficit and involuntary dehydration were calculated. Voluntary drinking of water proved to be statistically different in the presented temperatures. Water at 16°C involved the greatest intake, while fluid deficit and involuntary dehydration were the lowest. Intake of water in the 5°C trial significantly correlated with the subject's plasma osmolality change after dehydration, yet it showed no significant correlation with weight loss. In conclusion, by way of achieving more voluntary intake of water and better fluid state, recommending cool water (~16°C for athletes is in order. Unlike the publicly held view, drinking cold water (~5°C does not improve voluntary drinking and hydration status.

  4. Simulation of the hydrogeologic effects of oil-shale mining on the neighbouring wetland water balance: case study in north-eastern Estonia

    Science.gov (United States)

    Marandi, Andres; Karro, Enn; Polikarpus, Maile; Jõeleht, Argo; Kohv, Marko; Hang, Tiit; Hiiemaa, Helen

    2013-11-01

    The water balance of wetlands plays an integral role in their function. Developments adjacent to wetlands can affect their water balance through impacts on groundwater flow and increased discharge in the area, and they can cause lowering of the wetland water table. A 430 km2 area was selected for groundwater modelling to asses the effect of underground mining on the water balance of wetlands in north-eastern Estonia. A nature conservation area (encompassing Selisoo bog) is within 3 km of an underground oil-shale mine. Two future mining scenarios with different areal extents of mining were modeled and compared to the present situation. Results show that the vertical hydraulic conductivity of the subsurface is of critical importance to potential wetland dewatering as a result of mining. Significant impact on the Selisoo bog water balance will be caused by the approaching mine but there will be only minor additional impacts from mining directly below the bog. The major impact will arise before that stage, when the underground mine extension reaches the border of the nature conservation area; since the restriction of activities in this area relates to the ground surface, the conservation area’s border is not sufficiently protective in relation to underground development.

  5. Surface Energy Balance of Fresh and Saline Waters: AquaSEBS

    Directory of Open Access Journals (Sweden)

    Ahmed Abdelrady

    2016-07-01

    Full Text Available Current earth observation models do not take into account the influence of water salinity on the evaporation rate, even though the salinity influences the evaporation rate by affecting the density and latent heat of vaporization. In this paper, we adapt the SEBS (Surface Energy Balance System model for large water bodies and add the effect of water salinity to the evaporation rate. Firstly, SEBS is modified for fresh-water whereby new parameterizations of the water heat flux and sensible heat flux are suggested. This is achieved by adapting the roughness heights for momentum and heat transfer. Secondly, a salinity correction factor is integrated into the adapted model. Eddy covariance measurements over Lake IJsselmeer (The Netherlands are carried out and used to estimate the roughness heights for momentum (~0.0002 m and heat transfer (~0.0001 m. Application of these values over the Victoria and Tana lakes (freshwater in Africa showed that the calculated latent heat fluxes agree well with the measurements. The root mean-square of relative-errors (rRMSE is about 4.1% for Lake Victoria and 4.7%, for Lake Tana. Verification with ECMWF data showed that the salinity reduced the evaporation at varying levels by up to 27% in the Great Salt Lake and by 1% for open ocean. Our results show the importance of salinity to the evaporation rate and the suitability of the adapted-SEBS model (AquaSEBS for fresh and saline waters.

  6. Aedes aegypti Global Suitability Maps Using a Water Container Energy Balance Model for Dengue Risk Applications

    Science.gov (United States)

    Steinhoff, D.

    2015-12-01

    Dengue infections are estimated to total nearly 400 million per year worldwide, with both the geographic range and the magnitude of infections having increased in the past 50 years. The primary dengue vector mosquito Aedes aegypti is closely associated with humans. It lives exclusively in urban and semi-urban areas, preferentially bites humans, and spends its developmental stages in artificial water containers. Climate regulates the development of Ae. aegypti immature mosquitoes in artificial containers. Potential containers for Ae. aegypti immature development include, but are not limited to, small sundry items (e.g., bottles, cans, plastic containers), buckets, tires, barrels, tanks, and cisterns. Successful development of immature mosquitoes from eggs to larvae, pupae, and eventually adults is largely dependent on the availability of water and the thermal properties of the water in the containers. Recent work has shown that physics-based approaches toward modeling container water properties are promising for resolving the complexities of container water dynamics and the effects on immature mosquito development. An energy balance container model developed by the author, termed the Water Height And Temperature in Container Habitats Energy Model (WHATCH'EM), solves for water temperature and height for user-specified containers with readily available weather data. Here we use WHATCH'EM with NASA Earth Science products used as input to construct global suitability maps based on established water temperature ranges for immature Ae. aegypti mosquitoes. A proxy for dengue risk is provided from habitat suitability, but also population estimates, as Ae. aegypti is closely associated with human activity. NASA gridded Global Population of the World data is used to mask out rural areas with low dengue risk. Suitability maps are illustrated for a variety of containers (size, material, color) and shading scenarios.

  7. A multi-criteria decision making approach to balance water supply-demand strategies in water supply systems

    Directory of Open Access Journals (Sweden)

    Géssica Maria Cambrainha

    2018-02-01

    Full Text Available Abstract Paper aims this paper proposes a model to aid a group of decision makers to establish a portfolio of feasible actions (alternatives that are able to balance water supply-demand strategies. Originality Long periods of water shortages cause problems in semi-arid region of northeast Brazil, which affects different sectors such as food, public health, among others. This problem situation is intensified by population growth. Therefore, this type of decision making is complex, and it needs to be solving by a structured model. Research method The model is based on a problem structuring method (PSM and a multi-criteria decision making (MCDM method. Main findings Due to society and government influences, the proposed model showed appropriate to conduct a robust and well-structured decision making. Implications for theory and practice The main contributions were the study in regions suffering from drought and water scarcity, as well as the combination of PSM and MCDM methods to aid in this problem.

  8. Foggy days and dry nights determine crown-level water balance in a seasonal tropical Montane cloud forest.

    Science.gov (United States)

    Gotsch, Sybil G; Asbjornsen, Heidi; Holwerda, Friso; Goldsmith, Gregory R; Weintraub, Alexis E; Dawson, Todd E

    2014-01-01

    The ecophysiology of tropical montane cloud forest (TMCF) trees is influenced by crown-level microclimate factors including regular mist/fog water inputs, and large variations in evaporative demand, which in turn can significantly impact water balance. We investigated the effect of such microclimatic factors on canopy ecophysiology and branch-level water balance in the dry season of a seasonal TMCF in Veracruz, Mexico, by quantifying both water inputs (via foliar uptake, FU) and outputs (day- and night-time transpiration, NT). Measurements of sap flow, stomatal conductance, leaf water potential and pressure-volume relations were obtained in Quercus lanceifolia, a canopy-dominant tree species. Our results indicate that FU occurred 34% of the time and led to the recovery of 9% (24 ± 9.1 L) of all the dry-season water transpired from individual branches. Capacity for FU was independently verified for seven additional common tree species. NT accounted for approximately 17% (46 L) of dry-season water loss. There was a strong correlation between FU and the duration of leaf wetness events (fog and/or rain), as well as between NT and the night-time vapour pressure deficit. Our results show the clear importance of fog and NT for the canopy water relations of Q. lanceifolia. © 2013 John Wiley & Sons Ltd.

  9. Applying hot wire anemometry to directly measure the water balance in a proton exchange membrane fuel cell - Part 1

    DEFF Research Database (Denmark)

    Berning, Torsten; Al Shakhshir, Saher

    2015-01-01

    In order to accurately determine the water balance of a proton exchange membrane fuel cell it has recently been suggested to employ constant temperature anemometry (CTA), a frequently used method to measure the velocity of a fluid stream. CTA relies on convective heat transfer around a heated wire...... the equations required to calculate the heat transfer coefficient and the resulting voltage signal as function of the fuel cell water balance. The most critical and least understood part is the determination of the Nusselt number to calculate the heat transfer between the wire and the gas stream. Different...... expressions taken from the literature will be examined in detail, and it will be demonstrated that the power-law approach suggested by Hilpert is the only useful one for the current purposes because in this case the voltage response from the hot-wire sensor E/E0 shows the same dependency to the water balance...

  10. Nitrogen Balance During Sweet Sorghum Cropping Cycle as Affected by Irrigation and Fertilization Rate

    Directory of Open Access Journals (Sweden)

    Stella Lovelli

    Full Text Available A two-year trial was carried out on sweet sorghum, grown in semi-arid environments of southern Europe. The trial was aimed to monitor the main components of the crop N-balance under different irrigation regimes and nitrogen fertilization rates, in factorial combination. A rainfed condition (only one watering soon after sowing was compared with a deficit irrigation regime and a full irrigation treatment (50 and 100% restoration of total crop water consumption, respectively. Crop nitrogen uptake always showed to be the highest N-balance components and was included in the range of 125-194 kg ha-1 during 1997-1998, with respect to the total shoot biomass, according to the nitrogen fertilization rate; consequently, it significantly reduced both nitrogen concentration in the soil solution and the total nitrogen loss due to drainage. Nitrogen concentration in the drainage water didn’t result to be strictly dependent on the rate of fertiliser applied but on the actual soil nitrogen content; the maximum registered value of total nitrogen lost by leaching was 1.9 kg ha-1. Differently, total nitrogen loss due to volatilisation was proportional to the amount of fertilizer applied; irrigation favourably reduced this kind of loss. The limited amount of Nvolatilisation loss was probably due to the neutral pH soil conditions; as an order of magnitude, referring to the highest fertilized but rainfed treatment, the utmost N-volatilisation loss was equal to 5.5 Kg ha-1, as an average over the three years, that is to say less than the 5% of the fertilization rate. A fertilisation rate of 120 Kg ha-1 of nitrogen, together with water application, generally produced a balance between crop N-uptake and total N-loss due to volatilisation and drainage (only the stalk biomass was considered in this calculation. Lower rates of fertilizing nitrogen, indeed, determined a depletion in the soil nitrogen content because of the high crop biomass and the strong N-uptake by the

  11. Nitrogen Balance During Sweet Sorghum Cropping Cycle as Affected by Irrigation and Fertilization Rate

    Directory of Open Access Journals (Sweden)

    Michele Perniola

    2011-02-01

    Full Text Available A two-year trial was carried out on sweet sorghum, grown in semi-arid environments of southern Europe. The trial was aimed to monitor the main components of the crop N-balance under different irrigation regimes and nitrogen fertilization rates, in factorial combination. A rainfed condition (only one watering soon after sowing was compared with a deficit irrigation regime and a full irrigation treatment (50 and 100% restoration of total crop water consumption, respectively. Crop nitrogen uptake always showed to be the highest N-balance components and was included in the range of 125-194 kg ha-1 during 1997-1998, with respect to the total shoot biomass, according to the nitrogen fertilization rate; consequently, it significantly reduced both nitrogen concentration in the soil solution and the total nitrogen loss due to drainage. Nitrogen concentration in the drainage water didn’t result to be strictly dependent on the rate of fertiliser applied but on the actual soil nitrogen content; the maximum registered value of total nitrogen lost by leaching was 1.9 kg ha-1. Differently, total nitrogen loss due to volatilisation was proportional to the amount of fertilizer applied; irrigation favourably reduced this kind of loss. The limited amount of Nvolatilisation loss was probably due to the neutral pH soil conditions; as an order of magnitude, referring to the highest fertilized but rainfed treatment, the utmost N-volatilisation loss was equal to 5.5 Kg ha-1, as an average over the three years, that is to say less than the 5% of the fertilization rate. A fertilisation rate of 120 Kg ha-1 of nitrogen, together with water application, generally produced a balance between crop N-uptake and total N-loss due to volatilisation and drainage (only the stalk biomass was considered in this calculation. Lower rates of fertilizing nitrogen, indeed, determined a depletion in the soil nitrogen content because of the high crop biomass and the strong N-uptake by the

  12. Beverage Consumption Habits and Association with Total Water and Energy Intakes in the Spanish Population: Findings of the ANIBES Study.

    Science.gov (United States)

    Nissensohn, Mariela; Sánchez-Villegas, Almudena; Ortega, Rosa M; Aranceta-Bartrina, Javier; Gil, Ángel; González-Gross, Marcela; Varela-Moreiras, Gregorio; Serra-Majem, Lluis

    2016-04-20

    Inadequate hydration is a public health issue that imposes a significant economic burden. In Spain, data of total water intake (TWI) are scarce. There is a clear need for a national study that quantifies water and beverage intakes and explores associations between the types of beverages and energy intakes. The Anthropometry, Intake and Energy Balance Study ANIBES is a national survey of diet and nutrition conducted among a representative sample of 2285 healthy participants aged 9-75 years in Spain. Food and beverage intakes were assessed in a food diary over three days. Day and time of beverage consumption were also recorded. On average, TWI was 1.7 L (SE 21.2) for men and 1.6 L (SE 18.9) for women. More than 75% of participants had inadequate TWI, according to European Food Safety Authority (EFSA) recommendations. Mean total energy intake (EI) was 1810 kcal/day (SE 11.1), of which 12% was provided by beverages. Water was the most consumed beverage, followed by milk. The contribution of alcoholic drinks to the EI was near 3%. For caloric soft drinks, a relatively low contribution to the EI was obtained, only 2%. Of eight different types of beverages, the variety score was positively correlated with TWI (r = 0.39) and EI (r = 0.23), suggesting that beverage variety is an indicator of higher consumption of food and drinks. The present study demonstrates that well-conducted surveys such as the ANIBES study have the potential to yield rich contextual value data that can emphasize the need to undertake appropriate health and nutrition policies to increase the total water intake at the population level promoting a healthy Mediterranean hydration pattern.

  13. Evaluation of the Wii Balance Board for walking aids prediction: proof-of-concept study in total knee arthroplasty.

    Science.gov (United States)

    Pua, Yong-Hao; Clark, Ross A; Ong, Peck-Hoon

    2015-01-01

    To provide proof-of-concept for the validity of the Wii Balance Board (WBB) measures to predict the type of walking aids required by inpatients with a recent (≤4 days) total knee arthroplasty (TKA). A cross-sectional sample of 89 inpatients (mean age, 67.0±8 years) with TKA was analyzed. A multivariable proportional odds prediction model was constructed using 8 pre-specified predictors – namely, age, sex, body mass index, knee pain, knee range-of-motion, active knee lag, and WBB-derived standing balance. The type of walking aids prescribed on day 4 post-surgery was the outcome of interest – an ordinal variable with 4 categories (walking stick, narrow- and broad-base quadstick, and walking frame). Women, increasing body mass index, and poorer standing balance were independently associated with greater odds for requiring walking aids with a larger base-of-support. The concordance-index of the prediction model was 0.74. The model comprising only WBB-derived standing balance had nearly half (44%) the explanatory power of the full model. Adding WBB-derived standing balance to conventional demographic and knee variables resulted in a continuous net reclassification index of 0.60 (95%CI,0.19-1.01), predominantly due to better identification of patients who required walking aids with a large base-of-support (sensitivity gain). The WBB was able to provide quantitative measures of standing balance which could assist healthcare professionals in prescribing the appropriate type of walking aids for patients. Further investigation is needed to assess whether using the WBB could lead to meaningful changes in clinical outcomes such as falls.

  14. Evaluation of the Wii Balance Board for walking aids prediction: proof-of-concept study in total knee arthroplasty.

    Directory of Open Access Journals (Sweden)

    Yong-Hao Pua

    Full Text Available To provide proof-of-concept for the validity of the Wii Balance Board (WBB measures to predict the type of walking aids required by inpatients with a recent (≤4 days total knee arthroplasty (TKA.A cross-sectional sample of 89 inpatients (mean age, 67.0±8 years with TKA was analyzed. A multivariable proportional odds prediction model was constructed using 8 pre-specified predictors – namely, age, sex, body mass index, knee pain, knee range-of-motion, active knee lag, and WBB-derived standing balance. The type of walking aids prescribed on day 4 post-surgery was the outcome of interest – an ordinal variable with 4 categories (walking stick, narrow- and broad-base quadstick, and walking frame.Women, increasing body mass index, and poorer standing balance were independently associated with greater odds for requiring walking aids with a larger base-of-support. The concordance-index of the prediction model was 0.74. The model comprising only WBB-derived standing balance had nearly half (44% the explanatory power of the full model. Adding WBB-derived standing balance to conventional demographic and knee variables resulted in a continuous net reclassification index of 0.60 (95%CI,0.19-1.01, predominantly due to better identification of patients who required walking aids with a large base-of-support (sensitivity gain.The WBB was able to provide quantitative measures of standing balance which could assist healthcare professionals in prescribing the appropriate type of walking aids for patients. Further investigation is needed to assess whether using the WBB could lead to meaningful changes in clinical outcomes such as falls.

  15. SENSITIVITY AND SPECIFICITY OF INDIVIDUAL BERG BALANCE ITEMS COMPARED WITH THE TOTAL SCORE TO PREDICT FALLS IN COMMUNITY DWELLING ELDERLY INDIVIDUALS

    Directory of Open Access Journals (Sweden)

    Hazel Denzil Dias

    2014-09-01

    Full Text Available Background: Falls are a major problem in the elderly leading to increased morbidity and mortality in this population. Scores from objective clinical measures of balance have frequently been associated with falls in older adults. The Berg Balance Score (BBS which is a frequently used scale to test balance impairments in the elderly ,takes time to perform and has been found to have scoring inconsistencies. The purpose was to determine if individual items or a group of BBS items would have better accuracy than the total BBS in classifying community dwelling elderly individuals according to fall history. Method: 60 community dwelling elderly individuals were chosen based on a history of falls in this cross sectional study. Each BBS item was dichotomized at three points along the scoring scale of 0 – 4: between scores of 1 and 2, 2 and 3, and 3 and 4. Sensitivity (Sn, specificity (Sp, and positive (+LR and negative (-LR likelihood ratios were calculated for all items for each scoring dichotomy based on their accuracy in classifying subjects with a history of multiple falls. These findings were compared with the total BBS score where the cut-off score was derived from receiver operating characteristic curve analysis. Results: On analysing a combination of BBS items, B9 and B11 were found to have the best sensitivity and specificity when considered together. However the area under the curve of these items was 0.799 which did not match that of the total score (AUC= 0.837. A, combination of 4 BBS items - B9 B11 B12 and B13 also had good Sn and Sp but the AUC was 0.815. The combination with the AUC closest to that of the total score was a combination items B11 and B13. (AUC= 0.824. hence these two items can be used as the best predictor of falls with a cut off of 6.5 The ROC curve of the Total Berg balance Scale scores revealed a cut off score of 48.5. Conclusion: This study showed that combination of items B11 and B13 may be best predictors of falls in

  16. SENSITIVITY AND SPECIFICITY OF INDIVIDUAL BERG BALANCE ITEMS COMPARED WITH THE TOTAL SCORE TO PREDICT FALLS IN COMMUNITY DWELLING ELDERLY INDIVIDUALS

    Directory of Open Access Journals (Sweden)

    Hazel Denzil Dias

    2014-06-01

    Full Text Available Background: Falls are a major problem in the elderly leading to increased morbidity and mortality in this population. Scores from objective clinical measures of balance have frequently been associated with falls in older adults. The Berg Balance Score (BBS which is a frequently used scale to test balance impairments in the elderly ,takes time to perform and has been found to have scoring inconsistencies. The purpose was to determine if individual items or a group of BBS items would have better accuracy than the total BBS in classifying community dwelling elderly individuals according to fall history. Method: 60 community dwelling elderly individuals were chosen based on a history of falls in this cross sectional study. Each BBS item was dichotomized at three points along the scoring scale of 0 – 4: between scores of 1 and 2, 2 and 3, and 3 and 4. Sensitivity (Sn, specificity (Sp, and positive (+LR and negative (-LR likelihood ratios were calculated for all items for each scoring dichotomy based on their accuracy in classifying subjects with a history of multiple falls. These findings were compared with the total BBS score where the cut-off score was derived from receiver operating characteristic curve analysis. Results: On analysing a combination of BBS items, B9 and B11 were found to have the best sensitivity and specificity when considered together. However the area under the curve of these items was 0.799 which did not match that of the total score (AUC= 0.837. A, combination of 4 BBS items - B9 B11 B12 and B13 also had good Sn and Sp but the AUC was 0.815. The combination with the AUC closest to that of the total score was a combination items B11 and B13. (AUC= 0.824. hence these two items can be used as the best predictor of falls with a cut off of 6.5 The ROC curve of the Total Berg balance Scale scores revealed a cut off score of 48.5. Conclusion: This study showed that combination of items B11 and B13 may be best predictors of falls in

  17. Groundwater controls on post-fire permafrost thaw: Water and energy balance effects

    OpenAIRE

    Rocha, Adrian; Mckenzie, Jeffrey; Lamontagne-Halle, Pierrick; Zipper, Samuel

    2018-01-01

    Fire frequency and severity is increasing in high latitude regions, with large impacts on the water and energy balances. However, the degree to which groundwater flow impacts the permafrost response to fire remains poorly understood and understudied. Here, we use the Anaktuvuk River Fire (Alaska, USA) as an archetypal example to investigate groundwater-permafrost interactions following fire. We identify key thermal and hydrologic parameters controlling permafrost and active layer response to ...

  18. User manual of Visual Balan V. 1.0 Interactive code for water balances and refueling estimation

    International Nuclear Information System (INIS)

    Samper, J.; Huguet, L.; Ares, J.; Garcia, M. A.

    1999-01-01

    This document contains the Users Manual of Visual Balan V1.0, an updated version of Visual Balan V0.0 (Samper et al., 1997). Visual Balan V1.0 performs daily water balances in the soil, the unsaturated zone and the aquifer in a user-friendly environment which facilitates both the input data process and the postprocessing of results. The main inputs of the balance are rainfall and irrigation while the outputs are surface runoff, evapotranspiration, interception, inter flow and groundwater flow. The code evaluates all these components in a sequential manner by starting with rainfall and irrigation, which must be provided by the user, and continuing with interception, surface runoff, evapotranspiration, and potential recharge (water flux crossing the bottom of the soil). This potential recharge is the input to the unsaturated zone where water can flow horizontally as subsurface flow (inter flow) or vertically as percolation into the aquifer. (Author)

  19. Simplificado o balanço hídrico de Thornthwaite-Mather Symplifying the Thornthwaite-Mather water balance

    Directory of Open Access Journals (Sweden)

    Antonio Roberto Pereira

    2005-01-01

    Full Text Available Seguindo a abordagem de Mendonça, em 1958, e com princípios básicos de cálculo o balanço hídrico climatológico de Thornthwaite e Mather, em 1955, foi simplificado eliminando-se a coluna de Negativo Acumulado, sem nenhuma perda para os resultados finais. Essa simplificação aumenta a eficiência dos cálculos e torna o balanço hídrico mais fácil de ser entendido.Following the approach presented by Mendonça (1958 and using basic calculus the Thornthwaite & Mather (1955 climatic water balance was simplyfied by eliminating the column Accumulated Potential Water Loss, without any loss for the final results. Such simplification increases the efficiency of the computations and it makes easier to understand the water balance.

  20. The Water, Energy and Food Nexus: Finding the Balance in Infrastructure Investment

    Science.gov (United States)

    Huber-lee, A. T.; Wickel, B.; Kemp-Benedict, E.; Purkey, D. R.; Hoff, H.; Heaps, C.

    2013-12-01

    There is increasing evidence that single-sector infrastructure planning is leading to severely stressed human and ecological systems. There are a number of cross-sectoral impacts in these highly inter-linked systems. Examples include: - Promotion of biofuels that leads to conversion from food crops, reducing both food and water security. - Promotion of dams solely built for hydropower rather than multi-purpose uses, that deplete fisheries and affect saltwater intrusion dynamics in downstream deltas - Historical use of water for cooling thermal power plants, with increasing pressure from other water uses, as well as problems of increased water temperatures that affect the ability to cool plants efficiently. This list can easily be expanded, as these inter-linkages are increasing over time. As developing countries see a need to invest in new infrastructure to improve the livelihoods of the poor, developed countries face conditions of deteriorating infrastructure with an opportunity for new investment. It is crucial, especially in the face of uncertainty of climate change and socio-political realities, that infrastructure planning factors in the influence of multiple sectors and the potential impacts from the perspectives of different stakeholders. There is a need for stronger linkages between science and policy as well. The Stockholm Environment Institute is developing and implementing practical and innovative nexus planning approaches in Latin America, Africa and Asia that brings together stakeholders and ways of integrating uncertainty in a cross-sectoral quantitative framework using the tools WEAP (Water Evaluation and Planning) and LEAP (Long-range Energy Alternatives Planning). The steps used include: 1. Identify key actors and stakeholders via social network analysis 2. Work with these actors to scope out priority issues and decision criteria in both the short and long term 3. Develop quantitative models to clarify options and balances between the needs and

  1. 78 FR 10269 - National Primary Drinking Water Regulations: Revisions to the Total Coliform Rule

    Science.gov (United States)

    2013-02-13

    ... Illness CWS--Community Water System DBP--Disinfection Byproduct DWC--Drinking Water Committee EA--Economic... 141 and 142 National Primary Drinking Water Regulations: Revisions to the Total Coliform Rule; Final...-9684-8] RIN 2040-AD94 National Primary Drinking Water Regulations: Revisions to the Total Coliform Rule...

  2. Energy Balance over One Athletic Season.

    Science.gov (United States)

    Silva, Analiza M; Matias, Catarina N; Santos, Diana A; Thomas, Diana; Bosy-Westphal, Anja; Müller, Manfred J; Heymsfield, Steven B; Sardinha, Luís B

    2017-08-01

    Magnitude and variation in energy balance (EB) components over an athletic season are largely unknown. We investigated the longitudinal changes in EB over one season and explored the association between EB variation and change in the main fat-free mass (FFM) components in highly trained athletes. Eighty athletes (54 males; handball, volleyball, basketball, triathlete, and swimming) were evaluated from the beginning of the season to the main competition stage. Resting and total energy expenditure (REE and TEE, respectively) were assessed by indirect calorimetry and doubly labeled water, respectively. Physical activity energy expenditure was calculated as TEE - 0.1 TEE - REE. Fat mass (FM), FFM, and bone mineral were evaluated with dual-energy x-ray absorptiometry; changed body energy stores were calculated as 1.0(ΔFFM/Δtime) + 9.5(ΔFM/Δtime). Total-body water (TBW) and its compartments were assessed through dilution techniques, and total-body protein was calculated from a four-compartment model, with body volume assessed by air displacement plethysmography. Although a negative EB of -17.4 ± 72.7 kcal·d was observed (P sports and across sex groups resulting in a net weight increase (0.7 ± 2.3 kg) that is attributable to significant changes in FFM (1.2 ± 1.6 kg) and FM (-0.7 ± 1.5 kg) (P sports, and age. The mean negative EB observed over the season resulted from the rate of FM use and FFM accretion, but with a large variation by sex and sports. TBW, but not total-body protein or mineral balance, explained the magnitude of EB, which means that athletes under a positive or a negative EB showed a TBW expansion or shrinkage, respectively, specifically within the cells, over one athletic season.

  3. Bacteriological (fecal and total coliform) quality of Pakistani coastal water

    International Nuclear Information System (INIS)

    Mashiatullah, A.; Qureshi, R.M.; Javed, T.; Khan, M.S.; Chaudhary, M.Z.; Khalid, F.

    2010-01-01

    The coliform bacteria group consists of several genera of bacteria belonging to the family enterobacteriaceae. These are harmless bacteria, mostly live in soil, water, and digestive system of animals. Fecal coliform bacteria, which belongs to this group, are present in large numbers in feces and intestinal tract of human beings and other warm-blooded animals which can enter into water bodies from human and animal waste. Swimming in water having high levels of Fecal coliform bacteria increases the chance of developing illness (fever, nausea or stomach cramps) from pathogens entering the body through mouth, nose, ears or cuts in the skin. The objective of the present study was to characterize the bathing quality of Pakistani coastal water with respect to coliform bacteria. Total and Fecal coliform bacteria were determined at seven different locations along Pakistan coast using membrane filtration (MF) technique. 100 ml of water was passed through 0.45 micron (mu) filter paper. These filter papers were put on pads, soaked in Lauryle sulphate broth in petri-dishes and incubated at 44 deg. C for Fecal and 37 deg. for Total coliform for 24 hours. Significantly high population of Fecal and Total coliform bacteria was recorded at Karachi harbour area and Indus delta region. Results indicate that a large amount of domestically originated waste is being discharged into these locations without any pre-treatment (e.g., screening, activated sludge, by using filtration beds etc.) resulting in a poor seawater quality making it unfit for bathing. (author)

  4. Modelling the water and heat balances of the Mediterranean Sea using a two-basin model and available meteorological, hydrological, and ocean data

    Directory of Open Access Journals (Sweden)

    Mohamed Shaltout

    2015-04-01

    Full Text Available This paper presents a two-basin model of the water and heat balances of the Western and Eastern Mediterranean sub-basins (WMB and EMB, respectively over the 1958–2010 period using available meteorological and hydrological data. The results indicate that the simulated temperature and salinity in both studied Mediterranean sub-basins closely follow the reanalysed data. In addition, simulated surface water in the EMB had a higher mean temperature (by approximately 1.6°C and was more saline (by approximately 0.87 g kg−1 than in the WMB over the studied period. The net evaporation over the EMB (1.52 mm day−1 was approximately 1.7 times greater than over the WMB (0.88 mm day−1. The water balance of the Mediterranean Sea was controlled by net inflow through the Gibraltar Strait and Sicily Channel, the net evaporation rate and freshwater input. The heat balance simulations indicated that the heat loss from the water body was nearly balanced by the solar radiation to the water body, resulting in a net export (import of approximately 13 (11 W m−2 of heat from the WMB (to the EMB.

  5. Effect of preexercise soup ingestion on water intake and fluid balance during exercise in the heat.

    Science.gov (United States)

    Johannsen, Neil M; Sullivan, Zebblin M; Warnke, Nicole R; Smiley-Oyen, Ann L; King, Douglas S; Sharp, Rick L

    2013-06-01

    To determine whether chicken noodle soup before exercise increases ad libitum water intake, fluid balance, and physical and cognitive performance compared with water. Nine trained men (age 25 ± 3 yr, VO2peak 54.2 ± 5.1 ml · kg-1 · min-1; M ± SD) performed cycle exercise in the heat (wet bulb globe temperature = 25.9 ± 0.4 °C) for 90 min at 50% VO2peak, 45 min after ingesting 355 ml of either commercially available bottled water (WATER) or chicken noodle soup (SOUP). The same bottled water was allowed ad libitum throughout both trials. Participants then completed a time trial to finish a given amount of work (10 min at 90% VO2peak; n = 8). Cognitive performance was evaluated by the Stroop color-word task before, every 30 min during, and immediately after the time trial. Ad libitum water intake throughout steady-state exercise was greater in SOUP than with WATER (1,435 ± 593 vs. 1,163 ± 427 g, respectively; p SOUP than in WATER (87.7% ± 7.6% vs. 74.9% ± 21.7%, respectively; p = .09), possibly due to a change in free water clearance (-0.32 ± 1.22 vs. 0.51 ± 1.06 ml/min, respectively; p = .07). Fluid balance tended to be improved with SOUP (-106 ± 603 vs. -478 ± 594 g, p = .05). Likewise, change in plasma volume tended to be reduced in SOUP compared with WATER (p = .06). Only mild dehydration was achieved (SOUP throughout the entire trial (treatment effect; p = .04). SOUP before exercise increased ad libitum water intake and may alter kidney function.

  6. Investigating onychophoran gas exchange and water balance as a means to inform current controversies in arthropod physiology.

    Science.gov (United States)

    Clusella-Trullas, Susana; Chown, Steven L

    2008-10-01

    Several controversies currently dominate the fields of arthropod metabolic rate, gas exchange and water balance, including the extent to which modulation of gas exchange reduces water loss, the origins of discontinuous gas exchange, the relationship between metabolic rate and life-history strategies, and the causes of Palaeozoic gigantism. In all of these areas, repeated calls have been made for the investigation of groups that might most inform the debates, especially of taxa in key phylogenetic positions. Here we respond to this call by investigating metabolic rate, respiratory water loss and critical oxygen partial pressure (Pc) in the onychophoran Peripatopsis capensis, a member of a group basal to the arthropods, and by synthesizing the available data on the Onychophora. The rate of carbon dioxide release (VCO2) at 20 degrees C in P. capensis is 0.043 ml CO2 h(-1), in keeping with other onychophoran species; suggesting that low metabolic rates in some arthropod groups are derived. Continuous gas exchange suggests that more complex gas exchange patterns are also derived. Total water loss in P. capensis is 57 mg H2O h(-1) at 20 degrees C, similar to modern estimates for another onychophoran species. High relative respiratory water loss rates ( approximately 34%; estimated using a regression technique) suggest that the basal condition in arthropods may be a high respiratory water loss rate. Relatively high Pc values (5-10% O2) suggest that substantial safety margins in insects are also a derived condition. Curling behaviour in P. capensis appears to be a strategy to lower energetic costs when resting, and the concomitant depression of water loss is a proximate consequence of this behaviour.

  7. Ecohydrology of saltcedar (Tamarix spp.) in the western United States and implications of water balance following a biocontrol agent introduction

    Science.gov (United States)

    Nagler, P. L.; Glenn, E. P.

    2012-12-01

    With increased demand on water sources for human use and likely diminished supplies due to climate change, it is important to understand the variation in evapotranspiration (ET) and vegetation water use by transpiration (T) in arid and semi-arid zone riparian areas in the western U.S. Understanding riparian plant water use is critical for accuracy of climate models, predictions used in water resources management, and assessment of land use change impacts on the water balance of ecosystems. Moore and Heilman (2011) suggested the following three principles for predicting when vegetation changes will impact the local or regional water budget: (i) variation will result if energy balance partitioning has been altered, (ii) if deeper or shallower active rooting depth has changed the amount of soil moisture accessible to plants, or (iii) if temporary changes in water use add up over longer time scales. They note that large changes in vegetation types do not necessarily result in changes in water discharge. We will use these principles to consider the case of saltcedar (Tamarix spp.) on western U.S. rivers. Once considered a high-water-use plant that out-competed native trees, research over the past two decades has shown that saltcedar water use is low to moderate, and less than native trees. Consequently, the prospects of salvaging water for human use by replacing saltcedar with native trees, once thought to be bright, now appear questionable. Furthermore, saltcedar has come to occupy ecohydrological niches on altered river systems that are no longer available to native plants. However, with the widespread introduction and spread of saltcedar leaf beetles (Diorhabda carinulata) on western rivers, introduced in part to reduce riparian water use through reduction of saltcedar abundance, saltcedar ecology has now entered a new phase. The talk will present a synthesis of the recent literature on saltcedar water use and provide an overview of saltcedar ecohydrology in terms of

  8. Fena Valley Reservoir watershed and water-balance model updates and expansion of watershed modeling to southern Guam

    Science.gov (United States)

    Rosa, Sarah N.; Hay, Lauren E.

    2017-12-01

    measured values for the gaging stations on the Almagosa, Maulap, and Imong Rivers—tributaries to the Fena Valley Reservoir—with Nash-Sutcliffe efficiency values of 0.87 or higher. The southern Guam watershed model simulated the total volume of the critical dry season (January to May) streamflow for the entire simulation period within –0.54 percent at the Almagosa River, within 6.39 percent at the Maulap River, and within 6.06 percent at the Imong River.The recalibrated water-balance model of the Fena Valley Reservoir generally simulated monthly reservoir storage volume with reasonable accuracy. For the calibration and verification periods, errors in end-of-month reservoir-storage volume ranged from 6.04 percent (284.6 acre-feet or 92.7 million gallons) to –5.70 percent (–240.8 acre-feet or –78.5 million gallons). Monthly simulation bias ranged from –0.48 percent for the calibration period to 0.87 percent for the verification period; relative error ranged from –0.60 to 0.88 percent for the calibration and verification periods, respectively. The small bias indicated that the model did not consistently overestimate or underestimate reservoir storage volume.In the entirety of southern Guam, the watershed model has a “satisfactory” to “very good” rating when simulating monthly mean streamflow for all but one of the gaged watersheds during the verification period. The southern Guam watershed model uses a more sophisticated climate-distribution scheme than the older model to make use of the sparse climate data, as well as includes updated land-cover parameters and the capability to simulate closed depression areas.The new Fena Valley Reservoir water-balance model is useful as an updated tool to forecast short-term changes in the surface-water resources of Guam. Furthermore, the now spatially complete southern Guam watershed model can be used to evaluate changes in streamflow and recharge owing to climate or land-cover changes. These are substantial

  9. Environmental Monitoring, Water Quality - Total Maximum Daily Load (TMDL)

    Data.gov (United States)

    NSGIC Education | GIS Inventory — The Clean Water Act Section 303(d) establishes the Total Maximum Daily Load (TMDL) program. The purpose of the TMDL program is to identify sources of pollution and...

  10. Beverage Consumption Habits and Association with Total Water and Energy Intakes in the Spanish Population: Findings of the ANIBES Study

    Directory of Open Access Journals (Sweden)

    Mariela Nissensohn

    2016-04-01

    Full Text Available Background: Inadequate hydration is a public health issue that imposes a significant economic burden. In Spain, data of total water intake (TWI are scarce. There is a clear need for a national study that quantifies water and beverage intakes and explores associations between the types of beverages and energy intakes. Methods: The Anthropometry, Intake and Energy Balance Study ANIBES is a national survey of diet and nutrition conducted among a representative sample of 2285 healthy participants aged 9–75 years in Spain. Food and beverage intakes were assessed in a food diary over three days. Day and time of beverage consumption were also recorded. Results: On average, TWI was 1.7 L (SE 21.2 for men and 1.6 L (SE 18.9 for women. More than 75% of participants had inadequate TWI, according to European Food Safety Authority (EFSA recommendations. Mean total energy intake (EI was 1810 kcal/day (SE 11.1, of which 12% was provided by beverages. Water was the most consumed beverage, followed by milk. The contribution of alcoholic drinks to the EI was near 3%. For caloric soft drinks, a relatively low contribution to the EI was obtained, only 2%. Of eight different types of beverages, the variety score was positively correlated with TWI (r = 0.39 and EI (r = 0.23, suggesting that beverage variety is an indicator of higher consumption of food and drinks. Conclusions: The present study demonstrates that well-conducted surveys such as the ANIBES study have the potential to yield rich contextual value data that can emphasize the need to undertake appropriate health and nutrition policies to increase the total water intake at the population level promoting a healthy Mediterranean hydration pattern.

  11. Beverage Consumption Habits and Association with Total Water and Energy Intakes in the Spanish Population: Findings of the ANIBES Study

    Science.gov (United States)

    Nissensohn, Mariela; Sánchez-Villegas, Almudena; Ortega, Rosa M.; Aranceta-Bartrina, Javier; Gil, Ángel; González-Gross, Marcela; Varela-Moreiras, Gregorio; Serra-Majem, Lluis

    2016-01-01

    Background: Inadequate hydration is a public health issue that imposes a significant economic burden. In Spain, data of total water intake (TWI) are scarce. There is a clear need for a national study that quantifies water and beverage intakes and explores associations between the types of beverages and energy intakes. Methods: The Anthropometry, Intake and Energy Balance Study ANIBES is a national survey of diet and nutrition conducted among a representative sample of 2285 healthy participants aged 9–75 years in Spain. Food and beverage intakes were assessed in a food diary over three days. Day and time of beverage consumption were also recorded. Results: On average, TWI was 1.7 L (SE 21.2) for men and 1.6 L (SE 18.9) for women. More than 75% of participants had inadequate TWI, according to European Food Safety Authority (EFSA) recommendations. Mean total energy intake (EI) was 1810 kcal/day (SE 11.1), of which 12% was provided by beverages. Water was the most consumed beverage, followed by milk. The contribution of alcoholic drinks to the EI was near 3%. For caloric soft drinks, a relatively low contribution to the EI was obtained, only 2%. Of eight different types of beverages, the variety score was positively correlated with TWI (r = 0.39) and EI (r = 0.23), suggesting that beverage variety is an indicator of higher consumption of food and drinks. Conclusions: The present study demonstrates that well-conducted surveys such as the ANIBES study have the potential to yield rich contextual value data that can emphasize the need to undertake appropriate health and nutrition policies to increase the total water intake at the population level promoting a healthy Mediterranean hydration pattern. PMID:27104564

  12. Typical balance exercises or exergames for balance improvement?

    Science.gov (United States)

    Gioftsidou, Asimenia; Vernadakis, Nikolaos; Malliou, Paraskevi; Batzios, Stavros; Sofokleous, Polina; Antoniou, Panagiotis; Kouli, Olga; Tsapralis, Kyriakos; Godolias, George

    2013-01-01

    Balance training is an effective intervention to improve static postural sway and balance. The purpose of the present study was to investigate the effectiveness of the Nintendo Wii Fit Plus exercises for improving balance ability in healthy collegiate students in comparison with a typical balance training program. Forty students were randomly divided into two groups, a traditional (T group) and a Nintendo Wii group (W group) performed an 8 week balance program. The "W group" used the interactive games as a training method, while the "T group" used an exercise program with mini trampoline and inflatable discs (BOSU). Pre and Post-training participants completed balance assessments. Two-way repeated measures analyses of variance (ANOVAs) were conducted to determine the effect of training program. Analysis of the data illustrated that both training program groups demonstrated an improvement in Total, Anterior-posterior and Medial Lateral Stability Index scores for both limbs. Only at the test performed in the balance board with anterior-posterior motion, the improvement in balance ability was greater in the "T group" than the "W group", when the assessment was performed post-training (p=0.023). Findings support the effectiveness of using the Nintendo Wii gaming console as a balance training intervention tool.

  13. Evaluation of a distributed catchment scale water balance model

    Science.gov (United States)

    Troch, Peter A.; Mancini, Marco; Paniconi, Claudio; Wood, Eric F.

    1993-01-01

    The validity of some of the simplifying assumptions in a conceptual water balance model is investigated by comparing simulation results from the conceptual model with simulation results from a three-dimensional physically based numerical model and with field observations. We examine, in particular, assumptions and simplifications related to water table dynamics, vertical soil moisture and pressure head distributions, and subsurface flow contributions to stream discharge. The conceptual model relies on a topographic index to predict saturation excess runoff and on Philip's infiltration equation to predict infiltration excess runoff. The numerical model solves the three-dimensional Richards equation describing flow in variably saturated porous media, and handles seepage face boundaries, infiltration excess and saturation excess runoff production, and soil driven and atmosphere driven surface fluxes. The study catchments (a 7.2 sq km catchment and a 0.64 sq km subcatchment) are located in the North Appalachian ridge and valley region of eastern Pennsylvania. Hydrologic data collected during the MACHYDRO 90 field experiment are used to calibrate the models and to evaluate simulation results. It is found that water table dynamics as predicted by the conceptual model are close to the observations in a shallow water well and therefore, that a linear relationship between a topographic index and the local water table depth is found to be a reasonable assumption for catchment scale modeling. However, the hydraulic equilibrium assumption is not valid for the upper 100 cm layer of the unsaturated zone and a conceptual model that incorporates a root zone is suggested. Furthermore, theoretical subsurface flow characteristics from the conceptual model are found to be different from field observations, numerical simulation results, and theoretical baseflow recession characteristics based on Boussinesq's groundwater equation.

  14. QSPR modeling of octanol/water partition coefficient of antineoplastic agents by balance of correlations.

    Science.gov (United States)

    Toropov, Andrey A; Toropova, Alla P; Raska, Ivan; Benfenati, Emilio

    2010-04-01

    Three different splits into the subtraining set (n = 22), the set of calibration (n = 21), and the test set (n = 12) of 55 antineoplastic agents have been examined. By the correlation balance of SMILES-based optimal descriptors quite satisfactory models for the octanol/water partition coefficient have been obtained on all three splits. The correlation balance is the optimization of a one-variable model with a target function that provides both the maximal values of the correlation coefficient for the subtraining and calibration set and the minimum of the difference between the above-mentioned correlation coefficients. Thus, the calibration set is a preliminary test set. Copyright (c) 2009 Elsevier Masson SAS. All rights reserved.

  15. Evaluating the potential of improving residential water balance at building scale.

    Science.gov (United States)

    Agudelo-Vera, Claudia M; Keesman, Karel J; Mels, Adriaan R; Rijnaarts, Huub H M

    2013-12-15

    Earlier results indicated that, for an average household, self-sufficiency in water supply can be achieved by following the Urban harvest Approach (UHA), in a combination of demand minimization, cascading and multi-sourcing. To achieve these results, it was assumed that all available local resources can be harvested. In reality, however, temporal, spatial and location-bound factors pose limitations to this harvest and, thus, to self-sufficiency. This article investigates potential spatial and temporal limitations to harvest local water resources at building level for the Netherlands, with a focus on indoor demand. Two building types were studied, a free standing house (one four-people household) and a mid-rise apartment flat (28 two-person households). To be able to model yearly water balances, daily patterns considering household occupancy and presence of water using appliances were defined per building type. Three strategies were defined. The strategies include demand minimization, light grey water (LGW) recycling, and rainwater harvesting (multi-sourcing). Recycling and multi-sourcing cater for toilet flushing and laundry machine. Results showed that water saving devices may reduce 30% of the conventional demand. Recycling of LGW can supply 100% of second quality water (DQ2) which represents 36% of the conventional demand or up to 20% of the minimized demand. Rainwater harvesting may supply approximately 80% of the minimized demand in case of the apartment flat and 60% in case of the free standing house. To harvest these potentials, different system specifications, related to the household type, are required. Two constraints to recycle and multi-source were identified, namely i) limitations in the grey water production and available rainfall; and ii) the potential to harvest water as determined by the temporal pattern in water availability, water use, and storage and treatment capacities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Joint atmospheric-terrestrial water balances for East Africa: a WRF-Hydro case study for the upper Tana River basin

    Science.gov (United States)

    Kerandi, Noah; Arnault, Joel; Laux, Patrick; Wagner, Sven; Kitheka, Johnson; Kunstmann, Harald

    2018-02-01

    For an improved understanding of the hydrometeorological conditions of the Tana River basin of Kenya, East Africa, its joint atmospheric-terrestrial water balances are investigated. This is achieved through the application of the Weather Research and Forecasting (WRF) and the fully coupled WRF-Hydro modeling system over the Mathioya-Sagana subcatchment (3279 km2) and its surroundings in the upper Tana River basin for 4 years (2011-2014). The model setup consists of an outer domain at 25 km (East Africa) and an inner one at 5-km (Mathioya-Sagana subcatchment) horizontal resolution. The WRF-Hydro inner domain is enhanced with hydrological routing at 500-m horizontal resolution. The results from the fully coupled modeling system are compared to those of the WRF-only model. The coupled WRF-Hydro slightly reduces precipitation, evapotranspiration, and the soil water storage but increases runoff. The total precipitation from March to May and October to December for WRF-only (974 mm/year) and coupled WRF-Hydro (940 mm/year) is closer to that derived from the Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) data (989 mm/year) than from the TRMM (795 mm/year) precipitation product. The coupled WRF-Hydro-accumulated discharge (323 mm/year) is close to that observed (333 mm/year). However, the coupled WRF-Hydro underestimates the observed peak flows registering low but acceptable NSE (0.02) and RSR (0.99) at daily time step. The precipitation recycling and efficiency measures between WRF-only and coupled WRF-Hydro are very close and small. This suggests that most of precipitation in the region comes from moisture advection from the outside of the analysis domain, indicating a minor impact of potential land-precipitation feedback mechanisms in this case. The coupled WRF-Hydro nonetheless serves as a tool in quantifying the atmospheric-terrestrial water balance in this region.

  17. BALANCE OF ENERGY AND COMPONENTS OF VOLTAGE DURING THE ELECTROTECHNICAL MODIFICATION OF PHYSICOCHEMICAL PARAMETERS OF WATER

    Directory of Open Access Journals (Sweden)

    Stiopka O.G

    2006-04-01

    Full Text Available The paper is dealing with results of theoretical and experimental investigations related to the balance of energy and voltage distribution in units for electrochemical units for water treatment. The electrical energy conversion mechanism in electrochemical units equipped with ionic selective membrane is analyzed. The obtained results could be used for design of electrochemical units for the water conditioning for diverse technological processes in agriculture and biotechnology.

  18. Effect of water intake on the nitrogen balance of sheep fed a low or a ...

    African Journals Online (AJOL)

    Effect of water intake on the nitrogen balance of sheep fed a low or a medium protein diet. JG van der Walt, EA Boomker, A Meintjes, WA Schultheiss. Abstract. No Abstract. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  19. The effect of water storage change in ET estimation in humid catchments based on water balance models and Budyko framework

    Science.gov (United States)

    Wang, Tingting; Sun, Fubao; Liu, Changming; Liu, Wenbin; Wang, Hong

    2017-04-01

    An accurate estimation of ET in humid catchments is essential in water-energy budget research and water resource management etc, while it remains a huge challenge and there is no well accepted explanation for the difficulty of annual ET estimation in humid catchments so far. Here we presents the ET estimation in 102 humid catchments over China based on the Budyko framework and two hydrological models: abcd model and Xin'anjiang mdoel, in comparison with ET calculated from the water balance equation (ETwb) on the ground that the ΔS is approximately zero at multiannual and annual time scale. We provides a possible explanation for this poorly annual ET estimation in humid catchments as well. The results show that at multi-annual timescale, the Budyko framework works fine in ET estimation in humid catchments, while at annual time scale, neither the Budyko framework nor the hydrological models can estimate ET well. The major cause for this poorly estimated annual ET in humid catchments is the neglecting of the ΔS in ETwb since it enlarge the variability of real actual evapotranspiration. Much improvement has been made when compared estimated ET + ΔS with those ETwb, and the bigger the catchment area is, the better this improvement is. It provides a reasonable explanation for the poorly estimated annual ET in humid catchments and reveals the important role of the ΔS in ET estimation and validation. We highlight that the annual ΔS shouldn't be taken as zero in water balance equation in humid catchments.

  20. Estimation of air-water gas exchange coefficient in a shallow lagoon based on 222Rn mass balance.

    Science.gov (United States)

    Cockenpot, S; Claude, C; Radakovitch, O

    2015-05-01

    The radon-222 mass balance is now commonly used to quantify water fluxes due to Submarine Groundwater Discharge (SGD) in coastal areas. One of the main loss terms of this mass balance, the radon evasion to the atmosphere, is based on empirical equations. This term is generally estimated using one among the many empirical equations describing the gas transfer velocity as a function of wind speed that have been proposed in the literature. These equations were, however, mainly obtained from areas of deep water and may be less appropriate for shallow areas. Here, we calculate the radon mass balance for a windy shallow coastal lagoon (mean depth of 6m and surface area of 1.55*10(8) m(2)) and use these data to estimate the radon loss to the atmosphere and the corresponding gas transfer velocity. We present new equations, adapted to our shallow water body, to express the gas transfer velocity as a function of wind speed at 10 m height (wind range from 2 to 12.5 m/s). When compared with those from the literature, these equations fit particularly well with the one of Kremer et al. (2003). Finally, we emphasize that some gas transfer exchange may always occur, even for conditions without wind. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. A mass balance study of the phytoremediation of perchloroethylene-contaminated groundwater

    International Nuclear Information System (INIS)

    Andrew James, C.; Xin Gang; Doty, Sharon L.; Muiznieks, Indulis; Newman, Lee; Strand, Stuart E.

    2009-01-01

    A mass balance study was performed under controlled field conditions to investigate the phytoremediation of perchloroethylene (PCE) by hybrid poplar trees. Water containing 7-14 mg L -1 PCE was added to the test bed. Perchloroethylene, trichloroethylene, and cis-dichloroethylene were detected in the effluent at an average of 0.12 mg L -1 , 3.9 mg L -1 , and 1.9 mg L -1 , respectively. The total mass of chlorinated ethenes in the water was reduced by 99%. Over 95% of the recovered chlorine was as free chloride in the soil, indicating near-complete dehalogenation of the PCE. Transpiration, volatilization, and accumulation in the trees were all found to be minor loss mechanisms. In contrast, 98% of PCE applied to an unplanted soil chamber was recovered as PCE in the effluent water or volatilized into the air. These results suggest that phytoremediation can be an effective method for treating PCE-contaminated groundwater in field applications. - A chlorine balance performed on a planted test bed with PCE-contaminated water demonstrated VOC mass reduction of 99% and complete dechlorination.

  2. A mass balance study of the phytoremediation of perchloroethylene-contaminated groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Andrew James, C. [University of Washington, Department of Civil and Environmental Engineering, Seattle, WA (United States); Xin Gang [Hydranautics, 401 Jones Rd., Oceanside, CA 92058 (United States); Doty, Sharon L.; Muiznieks, Indulis [University of Washington, College of Forest Resources, Seattle, WA (United States); Newman, Lee [Brookhaven National Laboratory, Biology Department, Upton, NY (United States); Strand, Stuart E., E-mail: sstrand@u.washington.ed [University of Washington, Department of Civil and Environmental Engineering, Seattle, WA (United States)

    2009-08-15

    A mass balance study was performed under controlled field conditions to investigate the phytoremediation of perchloroethylene (PCE) by hybrid poplar trees. Water containing 7-14 mg L{sup -1} PCE was added to the test bed. Perchloroethylene, trichloroethylene, and cis-dichloroethylene were detected in the effluent at an average of 0.12 mg L{sup -1}, 3.9 mg L{sup -1}, and 1.9 mg L{sup -1}, respectively. The total mass of chlorinated ethenes in the water was reduced by 99%. Over 95% of the recovered chlorine was as free chloride in the soil, indicating near-complete dehalogenation of the PCE. Transpiration, volatilization, and accumulation in the trees were all found to be minor loss mechanisms. In contrast, 98% of PCE applied to an unplanted soil chamber was recovered as PCE in the effluent water or volatilized into the air. These results suggest that phytoremediation can be an effective method for treating PCE-contaminated groundwater in field applications. - A chlorine balance performed on a planted test bed with PCE-contaminated water demonstrated VOC mass reduction of 99% and complete dechlorination.

  3. Total mercury in water, sediments, and animals along the Indian Coast

    Digital Repository Service at National Institute of Oceanography (India)

    Sanzgiri, S.; Mesquita, A.; Kureishy, T.W.

    Total mercury (Hg) in water, sediments and animals along the coast of India is estimated. Water samples were collected on board of R.V. Gaveshani.The zooplankton samples were collected by Indian Ocean Standard Net and Heron Tranter nets of 500 mesh...

  4. Validation of doubly labeled water for measuring energy expenditure during parenteral nutrition

    International Nuclear Information System (INIS)

    Schoeller, D.A.; Kushner, R.F.; Jones, P.J.

    1986-01-01

    The doubly labeled water method was compared with intake-balance for measuring energy expenditure in five patients receiving total parenteral nutrition (TPN). Because parenteral solutions were isotopically different from local water, patients had to be placed on TPN at least 10 days before the metabolic period. Approximately 0.1 g 2H2O and 0.25 g H2(18)O per kg total body water were given orally. We collected saliva before, 3 h, and 4 h after the dose for measurement of total body water and urine before, 1 day, and 14 days after the dose for measurement of isotope eliminations. On day 14, total body weight was remeasured and change in body energy stores was calculated, assuming constant hydration. Intake was assessed from weights of TPN fluids plus dietary record for any oral intake. Energy expenditure from doubly labeled water (+/- SD) averaged 3 +/- 6% greater than intake-balance. Doubly labeled water method is a noninvasive, nonrestrictive method for measuring energy expenditure in patients receiving TPN

  5. Heat balance characteristics and water use efficiency of soybean community

    International Nuclear Information System (INIS)

    Lee, Y.S.; Im, J.N.

    1990-01-01

    A field experiment was conducted to study seasonal evapotranspiration above soybean canopy and its relationship with dry matter production by the Bowen ratio-energy balance method. The soybean ''Paldalkong'' was sown with the space of 40 * 10 cm at Suwon on May 27, 1988. The daily net radiation ranged from 59 to 76 percents of the total shortwave radiation under cloudless conditions, which was lower than cloud overcast condition with record 63 to 83 percents. The latent heat flux under overcast condition was sometimes larger than the sum of net radiation, implying transportation of energy by advection of ambient air

  6. Effect of sulfite treatment on total antioxidant capacity, total oxidant status, lipid hydroperoxide, and total free sulfydryl groups contents in normal and sulfite oxidase-deficient rat plasma.

    Science.gov (United States)

    Herken, Emine Nur; Kocamaz, Erdogan; Erel, Ozcan; Celik, Hakim; Kucukatay, Vural

    2009-08-01

    Sulfites, which are commonly used as preservatives, are continuously formed in the body during the metabolism of sulfur-containing amino acids. Sulfite oxidase (SOX) is an essential enzyme in the pathway of the oxidative degradation of sulfite to sulfate protecting cells from sulfite toxicity. This article investigated the effect of sulfite on total antioxidant capacity (TAC), total oxidant status, lipid hydroperoxide (LOOH), and total free sulfydryl groups (-SH) levels in normal and SOX-deficient male albino rat plasma. For this purpose, rats were divided into four groups: control, sulfite-treated, SOX-deficient, and sulfite-treated SOX-deficient groups. SOX deficiency was established by feeding rats a low molybdenum diet and adding to their drinking water 200 ppm tungsten. Sulfite (70 mg/kg) was administered to the animals via their drinking water. SOX deficiency together with sulfite treatment caused a significant increase in the plasma LOOH and total oxidant status levels. -SH content of rat plasma significantly decreased by both sulfite treatment and SOX deficiency compared to the control. There was also a significant decrease in plasma TAC level by sulfite treatment. In conclusion, sulfite treatment affects the antioxidant/oxidant balance of the plasma cells of the rats toward oxidants in SOX-deficient groups.

  7. Water and Energy Balance in Response to the Removal of Invasive Phragmites Australis in a Riparian Wetland

    Science.gov (United States)

    Mykleby, P.; Lenters, J. D.; Cutrell, G. J.; Herrman, K.; Istanbulluoglu, E.; Scott, D.

    2011-12-01

    Vegetation plays an important role in the surface energy and water balance of wetlands. Transpiration from phreatophytes, in particular, withdraws water directly from groundwater, often impacting streamflow rates in adjacent tributaries. In the Republican River basin of the Central Plains (USA), streamflow has declined significantly in the past 30-40 years. Invasive vegetation species (such as Phragmites australis) have been removed from portions of the riparian corridor in an effort to halt or reverse the downward trend in streamflow. In this study, we investigated the energy and water balance of a P. australis-dominated riparian wetland in south-central Nebraska to assess the potential effectiveness of such an approach. Evapotranspiration (ET) rates were measured during two growing seasons - one being 2009, when the P. australis was at full growth, and the other during 2010, after the vegetation had been sprayed with herbicide (and remained only as dead, standing biomass). Energy balance measurements at the field site included net radiation, heat storage rates in the canopy, soil, and standing water, and sensible heat flux, which was measured using a large-aperture scintillometer (LAS). Latent heat flux (i.e., ET) was calculated as a residual of the energy balance, and comparisons were made between the two growing seasons. As a result of the spraying of the P. australis vegetation, season-mean ET rates dropped from 4.4 mm day-1 in 2009 to 3.0 mm day-1 in 2010. This decrease in ET was associated with a large increase in sensible heat flux, which more than doubled between the two years (from 33 W m-2 in 2009 to 76 W m-2 in 2010). Meteorological conditions at the site were slightly different from one year to the next, but the differences were not large enough to account for the dramatic changes in latent and sensible heat flux that were observed. We conclude, therefore, that the majority of the ~30% decrease in ET (and ~130% increase in sensible heat flux) was the

  8. Water balance, nutrient and carbon export from a heath forest catchment in central Amazonia, Brazil

    NARCIS (Netherlands)

    Zanchi, F. .B.; Waterloo, M.J.; Tapia, A.P.; Alvarado Barrientos, M.S.; Bolson, M.A.; Luizao, F.J.; Manzi, A.O.; Dolman, A.J.

    2015-01-01

    Carbon storage values in the Amazon basin have been studied through different approaches in the last decades in order to clarify whether the rainforest ecosystem is likely to act as a sink or source for carbon in the near future. This water balance, dissolved organic carbon (DOC) and nutrient export

  9. Wii Fit balance training or progressive balance training in patients with chronic stroke: a randomised controlled trial

    Science.gov (United States)

    Yatar, Gozde Iyigun; Yildirim, Sibel Aksu

    2015-01-01

    [Purpose] The aim of this study was to compare the effects of Wii Fit balance training (WBT) and progressive balance training (PBT) approaches on balance functions, balance confidence, and activities of daily living in chronic stroke patients. [Subjects] A total of 30 patients were randomized into the WBT (n=15) and PBT (n=15) groups. [Methods] All of the subjects received exercise training based on a neurodevelopemental approach in addition to either Wii Fit or progressive balance training for total of 1 hour a day, 3 days per week for 4 weeks. Primary measurements were static balance function measured with a Wii Balance Board and dynamic balance function assessed with the Berg Balance Scale, Timed Up and Go test, Dynamic Gait Index, and Functional Reach Test. Secondary measures were balance confidence assessed with the Activities-specific Balance Confidence scale and activities of daily living evaluated with the Frenchay Activity Index. [Results] There was not remarkable difference between the two treatments in dynamic balance functions, balance confidence, and activities of daily living. [Conclusion] Although both of the approaches were found to be effective in improving the balance functions, balance confidence, and activities of daily living, neither of them were more preferable than the other for the treatment of balance in patients with chronic stroke. PMID:25995576

  10. Wii Fit balance training or progressive balance training in patients with chronic stroke: a randomised controlled trial.

    Science.gov (United States)

    Yatar, Gozde Iyigun; Yildirim, Sibel Aksu

    2015-04-01

    [Purpose] The aim of this study was to compare the effects of Wii Fit balance training (WBT) and progressive balance training (PBT) approaches on balance functions, balance confidence, and activities of daily living in chronic stroke patients. [Subjects] A total of 30 patients were randomized into the WBT (n=15) and PBT (n=15) groups. [Methods] All of the subjects received exercise training based on a neurodevelopemental approach in addition to either Wii Fit or progressive balance training for total of 1 hour a day, 3 days per week for 4 weeks. Primary measurements were static balance function measured with a Wii Balance Board and dynamic balance function assessed with the Berg Balance Scale, Timed Up and Go test, Dynamic Gait Index, and Functional Reach Test. Secondary measures were balance confidence assessed with the Activities-specific Balance Confidence scale and activities of daily living evaluated with the Frenchay Activity Index. [Results] There was not remarkable difference between the two treatments in dynamic balance functions, balance confidence, and activities of daily living. [Conclusion] Although both of the approaches were found to be effective in improving the balance functions, balance confidence, and activities of daily living, neither of them were more preferable than the other for the treatment of balance in patients with chronic stroke.

  11. Mass balance of nutrients during the filling phase of two reservoirs of Sistema Produtor Alto Tietê (SPAT - doi: 10.4025/actascibiolsci.v33i1.7313 Mass balance of nutrients during the filling phase of two reservoirs of Sistema Produtor Alto Tietê (SPAT - doi: 10.4025/actascibiolsci.v33i1.7313

    Directory of Open Access Journals (Sweden)

    Adalberto José Monteiro Junior

    2011-02-01

    Full Text Available Paraitinga and Biritiba reservoirs are part of Sistema Produtor Alto Tietê and they play an important role at the public water supply. The purpose of this study is to understand the mass balance of nitrogen and phosphorus that can influence the eutrophication process in reservoirs during the filling phase, and provide information for the implementation of mechanisms to manage water quality. Water samples were collected from August 2005 until May 2006. Concentrations of total phosphorus (PT and total nitrogen (NT were measured and the mass balance and loads were estimated. Paraitinga reservoir presented retention of NT and PT during the dry season and export during the rainy season; whilst at Biritiba reservoir we evidenced retention of NT and PT for both dry and rainy seasons. The annual balance demonstrated that during the reservoirs filling process, the systems retain NT and PT. The retention of nutrients into the system indicates that the environments have been modified leading to eutrophication and its consequences, and that it is necessary to outline strategies in order to mitigate the problem and suggest implementation of techniques to reduce the diffuse load.Paraitinga and Biritiba reservoirs are part of Sistema Produtor Alto Tiet�� and they play an important role at the public water supply. The purpose of this study is to understand the mass balance of nitrogen and phosphorus that can influence the eutrophication process in reservoirs during the filling phase, and provide information for the implementation of mechanisms to manage water quality. Water samples were collected from August 2005 until May 2006. Concentrations of total phosphorus (PT and total nitrogen (NT were measured and the mass balance and loads were estimated. Paraitinga reservoir presented retention of NT and PT during the dry season and export during the rainy season; whilst at Biritiba reservoir we evidenced retention of NT and PT for both dry and rainy seasons

  12. A water stress index based on water balance modelling for discrimination of grapevine quality and yield

    Directory of Open Access Journals (Sweden)

    Rémi Gaudin

    2014-01-01

    Significance and impact of the study: This water stress index is a valuable tool for explaining the variations in grape yield and quality among various locations and years because it reflects the vineyard water stress history in relation to rainfall regime and soil conditions. Improvement would come from the simulation of FTSW during winter, notably for soils of high Total Transpirable Soil Water. One potential application is the quantification of water stress change brought by irrigation in Mediterranean vineyards, and its relation to grapevine production.

  13. Energy balance in tearing modes

    International Nuclear Information System (INIS)

    Wesson, J.A.

    1993-01-01

    The energy balance in tearing modes is described in terms of exact separate energy balance equations. Each of these equations describes identified physical processes, and their sum gives the conservation of total energy. One of the energy balance equations corresponds to Furth's description. (Author)

  14. Ponds' water balance and runoff of endorheic watersheds in the Sahel

    Science.gov (United States)

    Gal, Laetitia; Grippa, Manuela; Kergoat, Laurent; Hiernaux, Pierre; Mougin, Eric; Peugeot, Christophe

    2015-04-01

    The Sahel has been characterized by a severe rainfall deficit since the mid-twentieth century, with extreme droughts in the early seventies and again in the early eighties. These droughts have strongly impacted ecosystems, water availability, fodder resources, and populations living in these areas. However, an increase of surface runoff has been observed during the same period, such as higher "summer discharge" of Sahelian's rivers generating local floods, and a general increase in pond's surface in pastoral areas of central and northern Sahel. This behavior, less rain but more surface runoff is generally referred to as the "Sahelian paradox". Various hypotheses have been put forward to explain this paradoxical situation. The leading role of increase in cropped areas, often cited for cultivated Sahel, does not hold for pastoral areas in central and northern Sahel. Processes such as degradation of vegetation subsequent to the most severe drought events, soils erosion and runoff concentration on shallow soils, which generate most of the water ending up in ponds, seem to play an important role. This still needs to be fully understood and quantified. Our study focuses on a model-based approach to better understand the hydrological changes that affected the Agoufou watershed (Gourma, Mali), typical of the central, non-cultivated Sahel. Like most of the Sahelian basins, the Agoufou watershed is ungauged. Therefore we used indirect data to provide the information required to validate a rainfall-runoff model approach. The pond volume was calculated by combining in-situ water level measurements with pond's surface estimations derived by remote sensing. Using the pond's water balance equation, the variations of pond volume combined to estimates of open water bodies' evaporation and infiltration determined an estimation for the runoff supplying the pond. This estimation highlights a spectacular runoff increase over the last sixty years on the Agoufou watershed. The runoff

  15. Water and salt balance in young male football players in training during the holy month of Ramadan.

    Science.gov (United States)

    Shirreffs, Susan M; Maughan, Ronald J

    2008-12-01

    The aim of this study was to assess water and salt balance in young football players in training during Ramadan. Measurements were made in 92 young male football players before and during the month of Ramadan. Fifty-five participants were observing Ramadan fasting, while the other 37 participants were eating and drinking without restriction. In week 3 of Ramadan, water and salt balance measures were made during a training session of 60-70 min duration that was performed at an ambient temperature of 25-28 degrees C and relative humidity of 50-53%. Body mass was recorded before and after training. Fluid intake was assessed in non-fasting players by weighing drink bottles before and after training, and the volume of any urine output was recorded. Sweat composition was estimated from absorbent patches applied to four skin sites for the duration of training. Mean sweat loss of players amounted to 1.41 litres (s = 0.36) in fasting players and 1.61 litres (s = 0.51) in non-fasting players (P = 0.038). Mean fluid intake during training in non-fasting players was 1.92 litres (s = 0.66). Sweat sodium concentration was 20 mmol . l(-1) (s = 8) in fasting players and 17 mmol . l(-1) (s = 7) in non-fasting players, and total sweat sodium loss during training was 0.67 g (s = 0.41) and 0.65 g (s = 0.37) [corresponding to a salt loss of 1.7 g (s = 1.1) and 1.7 g (s = 0.9)] respectively, with no difference between fasting and non-fasting players. Sweat sodium loss was not related to estimated dietary sodium intake (r = -0.07). These descriptive data show large individual variations in all measured parameters with relatively little difference in sweat parameters between fasting and non-fasting individuals.

  16. Can tritiated water-dilution space accurately predict total body water in chukar partridges

    International Nuclear Information System (INIS)

    Crum, B.G.; Williams, J.B.; Nagy, K.A.

    1985-01-01

    Total body water (TBW) volumes determined from the dilution space of injected tritiated water have consistently overestimated actual water volumes (determined by desiccation to constant mass) in reptiles and mammals, but results for birds are controversial. We investigated potential errors in both the dilution method and the desiccation method in an attempt to resolve this controversy. Tritiated water dilution yielded an accurate measurement of water mass in vitro. However, in vivo, this method yielded a 4.6% overestimate of the amount of water (3.1% of live body mass) in chukar partridges, apparently largely because of loss of tritium from body water to sites of dissociable hydrogens on body solids. An additional source of overestimation (approximately 2% of body mass) was loss of tritium to the solids in blood samples during distillation of blood to obtain pure water for tritium analysis. Measuring tritium activity in plasma samples avoided this problem but required measurement of, and correction for, the dry matter content in plasma. Desiccation to constant mass by lyophilization or oven-drying also overestimated the amount of water actually in the bodies of chukar partridges by 1.4% of body mass, because these values included water adsorbed onto the outside of feathers. When desiccating defeathered carcasses, oven-drying at 70 degrees C yielded TBW values identical to those obtained from lyophilization, but TBW was overestimated (0.5% of body mass) by drying at 100 degrees C due to loss of organic substances as well as water

  17. Water requirement and total body water estimation as affected by species, pregnancy and lactation using tritiated water

    International Nuclear Information System (INIS)

    Kamal, T.H.; El Banna, I.M.; Ayad, M.A.; Kotby, E.A.

    1978-01-01

    Radiotracer dilution technique was used to determine total body water (TBW) and the water turnover rate (WTR) estimate of water requirements in water buffaloe, Red Dannish cattle, fat tailed Osemi sheep and Camellus Dromedarius. Water buffaloes were found to have highest TBW, followed by camels, sheep and cattle in a descending order. The WTR ranking was highest for sheep followed by water buffaloe endurance to heat was found inseperable to high water usage, while in camels, an intericate water retention mechanism help animals to thrive in deserts. Fat tailled Osemi sheep and cattle failed to cope with high environmental temperature resulting in temporary dehydration. TBW was 17% and 6% higher in pregnant cattle and sheep than non-pregnant animals respectively, while there was no observed change in pregnant buffaloes. Water retention of pregnant cattle was associated with an appriciable increase in WTR, which was not noticable in buffaloe or sheep. Lactating buffaloe have had a higher TBW and WTR than lactating cattle. Milk yield per day during the period of measurement was higher in buffalo than cattle. Wallowing of buffalo in water pools during grazing, represents a behavioural adaptation for life in hot regions, aside of tendency for higher WTR with concomitant water retention

  18. Annual and Intra-Annual Water Balance Components of a Short Rotation Poplar Coppice Based on Sap Flow and Micrometeorological and Hydrological Approaches

    Czech Academy of Sciences Publication Activity Database

    Fischer, Milan; Orság, Matěj; Trnka, Miroslav; Pohanková, Eva; Hlavinka, Petr; Tripathi, Abishek; Žalud, Zdeněk

    2013-01-01

    Roč. 991, JUN 04-07 (2013), s. 401-408 ISSN 0567-7572 Institutional support: RVO:67179843 Keywords : short rotation poplar coppice * water balance * sap flow * Bowen ratio and energy balance method * modeling Subject RIV: EH - Ecology, Behaviour

  19. Characterization of yield reduction in Ethiopia using a GIS-based crop water balance model

    Science.gov (United States)

    Senay, G.B.; Verdin, J.

    2003-01-01

    In many parts of sub-Saharan Africa, subsistence agriculture is characterized by significant fluctuations in yield and production due to variations in moisture availability to staple crops. Widespread drought can lead to crop failures, with associated deterioration in food security. Ground data collection networks are sparse, so methods using geospatial rainfall estimates derived from satellite and gauge observations, where available, have been developed to calculate seasonal crop water balances. Using conventional crop production data for 4 years in Ethiopia (1996-1999), it was found that water-limited and water-unlimited growing regions can be distinguished. Furthermore, maize growing conditions are also indicative of conditions for sorghum. However, another major staple, teff, was found to behave sufficiently differently from maize to warrant studies of its own.

  20. Assessment of structural model and parameter uncertainty with a multi-model system for soil water balance models

    Science.gov (United States)

    Michalik, Thomas; Multsch, Sebastian; Frede, Hans-Georg; Breuer, Lutz

    2016-04-01

    Water for agriculture is strongly limited in arid and semi-arid regions and often of low quality in terms of salinity. The application of saline waters for irrigation increases the salt load in the rooting zone and has to be managed by leaching to maintain a healthy soil, i.e. to wash out salts by additional irrigation. Dynamic simulation models are helpful tools to calculate the root zone water fluxes and soil salinity content in order to investigate best management practices. However, there is little information on structural and parameter uncertainty for simulations regarding the water and salt balance of saline irrigation. Hence, we established a multi-model system with four different models (AquaCrop, RZWQM, SWAP, Hydrus1D/UNSATCHEM) to analyze the structural and parameter uncertainty by using the Global Likelihood and Uncertainty Estimation (GLUE) method. Hydrus1D/UNSATCHEM and SWAP were set up with multiple sets of different implemented functions (e.g. matric and osmotic stress for root water uptake) which results in a broad range of different model structures. The simulations were evaluated against soil water and salinity content observations. The posterior distribution of the GLUE analysis gives behavioral parameters sets and reveals uncertainty intervals for parameter uncertainty. Throughout all of the model sets, most parameters accounting for the soil water balance show a low uncertainty, only one or two out of five to six parameters in each model set displays a high uncertainty (e.g. pore-size distribution index in SWAP and Hydrus1D/UNSATCHEM). The differences between the models and model setups reveal the structural uncertainty. The highest structural uncertainty is observed for deep percolation fluxes between the model sets of Hydrus1D/UNSATCHEM (~200 mm) and RZWQM (~500 mm) that are more than twice as high for the latter. The model sets show a high variation in uncertainty intervals for deep percolation as well, with an interquartile range (IQR) of

  1. Virtual water and water self-sufficiency in agricultural and livestock products in Brazil.

    Science.gov (United States)

    da Silva, Vicente de Paulo R; de Oliveira, Sonaly D; Braga, Célia C; Brito, José Ivaldo B; de Sousa, Francisco de Assis S; de Holanda, Romildo M; Campos, João Hugo B C; de Souza, Enio P; Braga, Armando César R; Rodrigues Almeida, Rafaela S; de Araújo, Lincoln E

    2016-12-15

    Virtual water trade is often considered a solution for restricted water availability in many regions of the world. Brazil is the world leader in the production and export of various agricultural and livestock products. The country is either a strong net importer or a strong net exporter of these products. The objective of this study is to determine the volume of virtual water contained in agricultural and livestock products imported/exported by Brazil from 1997 to 2012, and to define the water self-sufficiency index of agricultural and livestock products in Brazil. The indexes of water scarcity (WSI), water dependency (WDI) and water self-sufficiency (WSSI) were calculated for each Brazilian state. These indexes and the virtual water balance were calculated following the methodology developed by Chapagain and Hoekstra (2008) and Hoekstra and Hung (2005). The total water exports and imports embedded in agricultural and livestock products were 5.28 × 10 10 and 1.22 × 10 10  Gm 3  yr -1 , respectively, which results in positive virtual water balance of 4.05 × 10 10  Gm 3  yr -1 . Brazil is either a strong net importer or a strong net exporter of agricultural and livestock products among the Mercosur countries. Brazil has a positive virtual water balance of 1.85 × 10 10  Gm 3  yr -1 . The indexes used in this study reveal that Brazil is self-sufficient in food production, except for a few products such as wheat and rice. Horticultural products (tomato, onion, potato, cassava and garlic) make up a unique product group with negative virtual water balance in Brazil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Studying Basin Water Balance Variations at Inter- and Intra-annual Time Scales Based On the Budyko Hypothesis and GRACE Gravimetry Satellite Observations

    Science.gov (United States)

    Shen, H.

    2017-12-01

    Increasing intensity in global warming and anthropogenic activities has triggered significant changes over regional climates and landscapes, which, in turn, drive the basin water cycle and hydrological balance into a complex and unstable state. Budyko hypothesis is a powerful tool to characterize basin water balance and hydrological variations at long-term average scale. However, due to the absence of basin water storage change, applications of Budyko theory to the inter-annual and intra-annual time scales has been prohibited. The launch of GRACE gavimetry satellites provides a great opportunity to quantify terrestrial water storage change, which can be further introduced into the Budyko hypothesis to reveal the inter- and intra-annual response of basin water components under impacts of climate variability and/or human activities. This research targeted Hai River Basin (in China) and Murray-Darling Basin (in Australia), which have been identified with a continuous groundwater depletion trend as well as impacts by extreme climates in the past decade. This can help us to explore how annual or seasonal precipitation were redistributed to evapotranspiration and runoff via changing basin water storage. Moreover, the impacts of vegetation on annual basin water balance will be re-examined. Our results are expected to provide deep insights about the water cycle and hydrological behaviors for the targeted basins, as well as a proof for a consideration of basin water storage change into the Budyko model at inter- or intra-annual time steps.

  3. Results and Conclusions from the NASA Isokinetic Total Water Content Probe 2009 IRT Test

    Science.gov (United States)

    Reehorst, Andrew; Brinker, David

    2010-01-01

    The NASA Glenn Research Center has developed and tested a Total Water Content Isokinetic Sampling Probe. Since, by its nature, it is not sensitive to cloud water particle phase nor size, it is particularly attractive to support super-cooled large droplet and high ice water content aircraft icing studies. The instrument comprises the Sampling Probe, Sample Flow Control, and Water Vapor Measurement subsystems. Results and conclusions are presented from probe tests in the NASA Glenn Icing Research Tunnel (IRT) during January and February 2009. The use of reference probe heat and the control of air pressure in the water vapor measurement subsystem are discussed. Several run-time error sources were found to produce identifiable signatures that are presented and discussed. Some of the differences between measured Isokinetic Total Water Content Probe and IRT calibration seems to be caused by tunnel humidification and moisture/ice crystal blow around. Droplet size, airspeed, and liquid water content effects also appear to be present in the IRT calibration. Based upon test results, the authors provide recommendations for future Isokinetic Total Water Content Probe development.

  4. The Effect of Nitrogen Cross-Over on Water Balance Measurements in Proton Exchange Membrane Fuel Cell Using Constant Temperature Anemometry

    DEFF Research Database (Denmark)

    Al Shakhshir, Saher; Berning, Torsten; Kær, Søren Knudsen

    2016-01-01

    A novel method to obtain an ad-hoc and real time electrical signal of the PEMFC water balance by employing a constant temperature hot wire anemometry has been developed by our fuel cell research group. In this work, the effect of nitrogen-cross over on this method is experimentally demonstrated...... by introducing 1% of nitrogen concentration to the dry and humidified hydrogen flow simulating the PEMFC anode outlet. The hot wire voltage is measured with and without nitrogen and it was slightly lower with the presence of nitrogen. The effect of the voltage reduction on the measured water balance is small...

  5. Implementation and evaluation of a monthly water balance model over the US on an 800 m grid

    Science.gov (United States)

    Hostetler, Steven W.; Alder, Jay R.

    2016-01-01

    We simulate the 1950–2010 water balance for the conterminous U.S. (CONUS) with a monthly water balance model (MWBM) using the 800 m Parameter-elevation Regression on Independent Slopes Model (PRISM) data set as model input. We employed observed snow and streamflow data sets to guide modification of the snow and potential evapotranspiration components in the default model and to evaluate model performance. Based on various metrics and sensitivity tests, the modified model yields reasonably good simulations of seasonal snowpack in the West (range of bias of ±50 mm at 68% of 713 SNOTEL sites), the gradients and magnitudes of actual evapotranspiration, and runoff (median correlation of 0.83 and median Nash-Sutcliff efficiency of 0.6 between simulated and observed annual time series at 1427 USGS gage sites). The model generally performs well along the Pacific Coast, the high elevations of the Basin and Range and over the Midwest and East, but not as well over the dry areas of the Southwest and upper Plains regions due, in part, to the apportioning of direct versus delayed runoff. Sensitivity testing and application of the MWBM to simulate the future water balance at four National Parks when driven by 30 climate models from the Climate Model Intercomparison Program Phase 5 (CMIP5) demonstrate that the model is useful for evaluating first-order, climate driven hydrologic change on monthly and annual time scales.

  6. Water-balance response of Rhinella arenarum (Hensel, 1867 tadpoles to graduated increase in environmental osmolarity

    Directory of Open Access Journals (Sweden)

    L. Ferrari

    Full Text Available The water balance and the upper limit of osmotic tolerance of premetamorphic Rhinella arenarum larvae (Gosner's stage 26 was evaluated after semistatic incubation in electrolyte (NaCl and non-electrolyte (mannitol media following a protocol of progressively increased osmotic pressure. Wet and dry weights were measured to calculate the water content as a derived variable indicative of the hydric balance. Statistical analysis was performed using univariate and integrated multivariate analysis. Tadpoles survived in electrolyte and non-electrolyte solutions up to 200 mOsm. The discriminant function was the best tool to describe the responses of the animals to external environmental stress under experimental conditions. The results were compared with those obtained in previous studies using a protocol of acute exposure to the same media used in this study. It was concluded that a multivariate analysis is an appropriate approach to describe the responses of tadpoles to changes in the environmental physicochemical parameters, and b progressive and acute acclimation to the experimental solutions induced similar responses.

  7. Superior long-term survival for fixed bearing compared with mobile bearing in ligament-balanced total knee arthroplasty.

    Science.gov (United States)

    Heesterbeek, P J C; van Houten, A H; Klenk, J S; Eijer, H; Christen, B; Wymenga, A B; Schuster, A J

    2018-05-01

    Only few long-term data on ligament-balanced cruciate-retaining total knee arthroplasty (CR TKA) are currently available. Either a mobile- or fixed-bearing insert can be chosen, which showed good mid-term outcome and few complications and revisions. This multi-centre retrospective cross-sectional cohort study investigated the 12-year results of primary TKA using a balancing gap technique and compared survival and clinical outcome between fixed and mobile inserts. In this retrospective cross-sectional cohort study, 557 cases of three clinics (2 Swiss, 1 Dutch) operated between 1998 and 2003 with the first series of a TKA implanted with a balanced gap technique (433 (77.7%) fixed, 124 (22.3%) mobile (anterior-posterior gliding (7-9 mm) and rotational (15°) degrees of freedom) inserts) were included for survival analysis (Kaplan-Meier, by insert type). At the 12-year follow-up (FU) examination of 189 cases, range of motion, knee society score (KSS), numeric rating scale (NRS) for pain and satisfaction were determined and radiographs were evaluated by median tests, by insert type. Of 521 cases available for analysis, 28 (5.4%; 11 fixed, 17 mobile bearing) were revised. Mean cumulative survival after 12.4 years was 97.0% (95% CI 94.7-98.4) for fixed bearings and 85.4% (95% CI 77.5-90.7) after 12.2 years for mobile bearings, p bearings. This study showed a superior survival for fixed bearing compared with mobile bearing in a CR TKA using a ligament-balanced technique after more than 12 years. Clinical outcomes are excellent to good after long-term follow-up, and similar for fixed and mobile bearing. Therapeutic studies-retrospective cohort study, Level III.

  8. Characterizing the Water Balance of the Sooke Reservoir, British Columbia over the Last Century

    Directory of Open Access Journals (Sweden)

    Arelia T. Werner

    2015-03-01

    Full Text Available Infrastructure such as dams and reservoirs are critical water-supply features in several regions of the world. However, ongoing population growth, increased demand and climate variability/change necessitate the better understanding of these systems, particularly in terms of their long-term trends. The Sooke Reservoir (SR of British Columbia, Canada is one such reservoir that currently supplies water to ~300,000 people, and is subject to considerable inter and intra-annual climatic variations. The main objectives of this study are to better understand the characteristics of the SR through an in-depth assessment of the contemporary water balance when the basin was intensively monitored (1996–2005, to use standardized runoff to select the best timescale to compute the Standard Precipitation (SPI and Standard Precipitation Evaporation Indices (SPEI to estimate trends in water availability over 1919 to 2005. Estimates of runoff and evaporation were validated by comparing simulated change in storage, computed by adding inputs and subtracting outputs from the known water levels by month, to observed change in storage. Water balance closure was within ±11% of the monthly change in storage on average when excluding months with spill pre-2002. The highest evaporation, dry season (1998 and lowest precipitation, wet season (2000/2001 from the intensively monitored period were used to construct a worst-case scenario to determine the resilience of the SR to drought. Under such conditions, the SR could support Greater Victoria until the start of the third wet season. The SPEI and SPI computed on a three-month timescale had the highest correlation with the standardized runoff, R2 equaled 0.93 and 0.90, respectively. A trend toward drier conditions was shown by SPEI over 1919 to 2005, while moistening over the same period was shown by SPI, although trends were small in magnitude. This study contributes a validated application of SPI and SPEI, giving more

  9. Radiation chemistry of water at low dose rates with emphasis on the energy balance

    International Nuclear Information System (INIS)

    Fletcher, J.W.

    1982-09-01

    There has been considerable interest in absorbed dose water calorimetry. In order to accurately relate the temperature change to the absorbed dose, the energy balance of the overall chemistry of the system must be known. The radiolytic products and their yields are affected by dose rate, dose and added solutes. The yields of the radiolytic products have been calculated using a computer program developed at Atomic Energy of Canada. The chemical energy balance was determined as a function of dose for various dose rates and initial concentrations of hydrogen (H 2 ), oxygen (O 2 ), and hydrogen peroxide (H 2 O 2 ). In solutions containing H 2 O 2 or O 2 and H 2 the chemical reactions were exothermic; in other cases they were endothermic. Approach to equilibrium and equilbrium conditions are discussed

  10. EU Water Governance: Striking the Right Balance between Regulatory Flexibility and Enforcement?

    Directory of Open Access Journals (Sweden)

    Olivia O. Green

    2013-06-01

    Full Text Available Considering the challenges and threats currently facing water management and the exacerbation of uncertainty by climate change, the need for flexible yet robust and legitimate environmental regulation is evident. The European Union took a novel approach toward sustainable water resource management with the passage of the EU Water Framework Directive in 2000. The Directive promotes sustainable water use through long-term protection of available water resources, progressively reduces discharges of hazardous substances in ground and surface waters, and mitigates the effects of floods and droughts. The lofty goal of achieving good status of all waters requires strong adaptive capacity, given the large amounts of uncertainty in water management. Striking the right balance between flexibility in local implementation and robust and enforceable standards is essential to promoting adaptive capacity in water governance, yet achieving these goals simultaneously poses unique difficulty. Applied resilience science reveals a conceptual framework for analyzing the adaptive capacity of governance structures that includes multiple overlapping levels of control or coordination, information flow horizontally and vertically, meaningful public participation, local capacity building, authority to respond to changed circumstances, and robust monitoring, system feedback, and enforcement. Analyzing the Directive through the lens of resilience science, we highlight key elements of modern European water management and their contribution to the resilience of the system and conclude that the potential lack of enforcement and adequate feedback of monitoring results does not promote managing for resilience. However, the scale-appropriate governance aspects of the EU approach promotes adaptive capacity by enabling vertical and horizontal information flow, building local capacity, and delegating control at multiple relevant scales.

  11. Total energy and potential enstrophy conserving schemes for the shallow water equations using Hamiltonian methods - Part 1: Derivation and properties

    Science.gov (United States)

    Eldred, Christopher; Randall, David

    2017-02-01

    The shallow water equations provide a useful analogue of the fully compressible Euler equations since they have similar characteristics: conservation laws, inertia-gravity and Rossby waves, and a (quasi-) balanced state. In order to obtain realistic simulation results, it is desirable that numerical models have discrete analogues of these properties. Two prototypical examples of such schemes are the 1981 Arakawa and Lamb (AL81) C-grid total energy and potential enstrophy conserving scheme, and the 2007 Salmon (S07) Z-grid total energy and potential enstrophy conserving scheme. Unfortunately, the AL81 scheme is restricted to logically square, orthogonal grids, and the S07 scheme is restricted to uniform square grids. The current work extends the AL81 scheme to arbitrary non-orthogonal polygonal grids and the S07 scheme to arbitrary orthogonal spherical polygonal grids in a manner that allows for both total energy and potential enstrophy conservation, by combining Hamiltonian methods (work done by Salmon, Gassmann, Dubos, and others) and discrete exterior calculus (Thuburn, Cotter, Dubos, Ringler, Skamarock, Klemp, and others). Detailed results of the schemes applied to standard test cases are deferred to part 2 of this series of papers.

  12. Vegetation water stress monitoring with remote sensing-based energy balance modelling

    Science.gov (United States)

    González-Dugo, Maria P.; Andreu, Ana; Carpintero, Elisabet; Gómez-Giráldez, Pedro; José Polo, María

    2014-05-01

    Drought is one of the major hazards faced by agroforestry systems in southern Europe, and an increase in frequency is predicted under the conditions of climate change for the region. Timely and accurate monitoring of vegetation water stress using remote sensing time series may assist early-warning services, helping to assess drought impacts and the design of management actions leading to reduce the economic and environmental vulnerability of these systems. A holm oak savanna, known as dehesa in Spain and montado in Portugal, is an agro-silvo-pastoral system occupying more than 3 million hectares the Iberian Peninsula and Greece. It consists of widely-spaced oak trees (mostly Quercus ilex L.), combined with crops, pasture and Mediterranean shrubs, and it is considered an example of sustainable land use, with great importance in the rural economy. Soil water dynamics is known to have a central role in current tree decline and the reduction of the forested area that is threatening its conservation. A two-source thermal-based evapotranspiration model (TSEB) has been applied to monitor the effect on vegetation water use of soil moisture stress in a dehesa located in southern Spain. The TSEB model separates the soil and canopy contributions to the radiative temperature and to the exchange of surface energy fluxes, so it is especially suited for partially vegetated landscapes. The integration of remotely sensed data in this model may support an evaluation of the whole ecosystem state at a large scale. During two consecutive summers, in 2012 and 2013, time series of optical and thermal MODIS images, with 250m and 1 km of spatial resolution respectively, have been combined with meteorological data provided by a ground station to monitor the evapotranspiration (ET) of the system. An eddy covariance tower (38°12' N; 4°17' W, 736 m a.s.l), equipped with instruments to measure all the components of the energy balance and 1 km of homogeneous fetch in the predominant wind

  13. Application of Tank Model for Predicting Water Balance and Flow Discharge Components of Cisadane Upper Catchment

    Directory of Open Access Journals (Sweden)

    Nana Mulyana Arifjaya

    2012-01-01

    Full Text Available The concept of hydrological tank model was well described into four compartments (tanks. The first tank (tank A comprised of one vertical (qA0 and two lateral (qA1 and qA2 water flow components and tank B comprised of one vertical (qB0 and one lateral (qB1 water flow components. Tank C comprised of one vertical (qC0 and one lateral (qC1 water flow components, whereas tank D comprised of one lateral water flow component (qD1.  These vertical water flows would also contribute to the depletion of water flow in the related tanks but would replenish tanks in the deeper layers. It was assumed that at all lateral water flow components would finally accumulate in one stream, summing-up of the lateral water flow, much or less, should be equal to the water discharge (Qo at specified time concerns. Tank A received precipitation (R and evapo-transpiration (ET which was its gradientof (R-ET over time would become the driving force for the changes of water stored in the soil profiles and thosewater flows leaving the soil layer.  Thus tank model could describe th vertical and horizontal water flow withinthe watershed. The research site was Cisadane Upper Catchment, located at Pasir Buncir Village of CaringinSub-District within the Regency of Bogor in West Java Province.  The elevations ranged 512 –2,235 m above sealevel, with a total drainage area of 1,811.5 ha and total length of main stream of 14,340.7 m.  The land cover wasdominated by  forest  with a total of 1,044.6 ha (57.67%,  upland agriculture with a total of 477.96 ha (26.38%,mixed garden with a total of 92.85 ha(5.13% and semitechnical irigated rice field with a total of 196.09 ha (10,8%.  The soil was classified as hydraquent (96.6% and distropept (3.4%.  Based on the calibration of tank model application in the study area, the resulting coefficient of determination (R2 was 0.72 with model efficiency (NSEof= 0.75, thus tank model could well illustrate the water flow distribution of

  14. Land surface temperature representativeness in a heterogeneous area through a distributed energy-water balance model and remote sensing data

    Directory of Open Access Journals (Sweden)

    C. Corbari

    2010-10-01

    Full Text Available Land surface temperature is the link between soil-vegetation-atmosphere fluxes and soil water content through the energy water balance. This paper analyses the representativeness of land surface temperature (LST for a distributed hydrological water balance model (FEST-EWB using LST from AHS (airborne hyperspectral scanner, with a spatial resolution between 2–4 m, LST from MODIS, with a spatial resolution of 1000 m, and thermal infrared radiometric ground measurements that are compared with the representative equilibrium temperature that closes the energy balance equation in the distributed hydrological model.

    Diurnal and nocturnal images are analyzed due to the non stable behaviour of the thermodynamic temperature and to the non linear effects induced by spatial heterogeneity.

    Spatial autocorrelation and scale of fluctuation of land surface temperature from FEST-EWB and AHS are analysed at different aggregation areas to better understand the scale of representativeness of land surface temperature in a hydrological process.

    The study site is the agricultural area of Barrax (Spain that is a heterogeneous area with a patchwork of irrigated and non irrigated vegetated fields and bare soil. The used data set was collected during a field campaign from 10 to 15 July 2005 in the framework of the SEN2FLEX project.

  15. Water balance creates a threshold in soil pH at the global scale

    Science.gov (United States)

    Slessarev, E. W.; Lin, Y.; Bingham, N. L.; Johnson, J. E.; Dai, Y.; Schimel, J. P.; Chadwick, O. A.

    2016-12-01

    Soil pH regulates the capacity of soils to store and supply nutrients, and thus contributes substantially to controlling productivity in terrestrial ecosystems. However, soil pH is not an independent regulator of soil fertility—rather, it is ultimately controlled by environmental forcing. In particular, small changes in water balance cause a steep transition from alkaline to acid soils across natural climate gradients. Although the processes governing this threshold in soil pH are well understood, the threshold has not been quantified at the global scale, where the influence of climate may be confounded by the effects of topography and mineralogy. Here we evaluate the global relationship between water balance and soil pH by extracting a spatially random sample (n = 20,000) from an extensive compilation of 60,291 soil pH measurements. We show that there is an abrupt transition from alkaline to acid soil pH that occurs at the point where mean annual precipitation begins to exceed mean annual potential evapotranspiration. We evaluate deviations from this global pattern, showing that they may result from seasonality, climate history, erosion and mineralogy. These results demonstrate that climate creates a nonlinear pattern in soil solution chemistry at the global scale; they also reveal conditions under which soils maintain pH out of equilibrium with modern climate.

  16. 75 FR 14607 - Small Entity Compliance Guide: Bottled Water: Total Coliform and E. coli

    Science.gov (United States)

    2010-03-26

    ...] Small Entity Compliance Guide: Bottled Water: Total Coliform and E. coli; Availability AGENCY: Food and... the availability of a guidance for industry entitled ``Bottled Water: Total Coliform and E. coli... determine whether any of the coliform organisms are Escherichia coli (E. coli), an indicator of fecal...

  17. Well-Balanced Second-Order Approximation of the Shallow Water Equations With Friction via Continuous Galerkin Finite Elements

    Science.gov (United States)

    Quezada de Luna, M.; Farthing, M.; Guermond, J. L.; Kees, C. E.; Popov, B.

    2017-12-01

    The Shallow Water Equations (SWEs) are popular for modeling non-dispersive incompressible water waves where the horizontal wavelength is much larger than the vertical scales. They can be derived from the incompressible Navier-Stokes equations assuming a constant vertical velocity. The SWEs are important in Geophysical Fluid Dynamics for modeling surface gravity waves in shallow regimes; e.g., in the deep ocean. Some common geophysical applications are the evolution of tsunamis, river flooding and dam breaks, storm surge simulations, atmospheric flows and others. This work is concerned with the approximation of the time-dependent Shallow Water Equations with friction using explicit time stepping and continuous finite elements. The objective is to construct a method that is at least second-order accurate in space and third or higher-order accurate in time, positivity preserving, well-balanced with respect to rest states, well-balanced with respect to steady sliding solutions on inclined planes and robust with respect to dry states. Methods fulfilling the desired goals are common within the finite volume literature. However, to the best of our knowledge, schemes with the above properties are not well developed in the context of continuous finite elements. We start this work based on a finite element method that is second-order accurate in space, positivity preserving and well-balanced with respect to rest states. We extend it by: modifying the artificial viscosity (via the entropy viscosity method) to deal with issues of loss of accuracy around local extrema, considering a singular Manning friction term handled via an explicit discretization under the usual CFL condition, considering a water height regularization that depends on the mesh size and is consistent with the polynomial approximation, reducing dispersive errors introduced by lumping the mass matrix and others. After presenting the details of the method we show numerical tests that demonstrate the well-balanced

  18. Seasonal changes in total body water; body composition and water turnover in reindeer

    Directory of Open Access Journals (Sweden)

    Terje S. Larsen

    1985-05-01

    Full Text Available Total body water and water turnover were measured at different times throughout the year in 3 captive Norwegian reindeer, using a tritiated water dilution method (Holleman et al. 1982. Total body water (percent of body weight increased during late autumn and winter, from 59.1 ± 1.5 % in October to 72.5 ± 2.0 % in April. Using the equatation by Pace and Rathbun (1945 for predicting total body fat (% fat = 100 - % water/0.732, this increase in total body water indicates a concomitant reduction in body fat, from a maximum value of 18.9 ± 2.6 % (of body weight in October to a minimum of 0.9 ± 2.7 % in April. During summer, on the other hand, fat content increased at the expense of a reduced percentage of body water. Water turnover was low in winter (December - April, ranging between 30.8 ± 5.2and43.6 ± 13.5ml.d-'. kg-1, but increased nearly fourfold during summer (June-August with a maximum of 117.7 ± 5.9 ml.d-1. kg-1 in August. Positive correlations between water turnover and food intake and between water turnover and ambient temperature were found, the latter probably resulting from an incidental correlation between food intake and ambient temperature.Sesongmessige forandringer i totalt kroppsvann, kropps-sammensetning og vannomsetning hos reinsdyr.Abstract in Norwegian / Sammendrag: Totalt kroppsvann og vannomsetning av vann ble målt til forskjellige årstider i 3 norske reinsdyr ved hjelp av utvasking av tritiert vann (Holleman et al. 1982. Totalt kroppsvann (prosent av kroppsvekt økte utover høsten og vinteren, fra 59.1 ± 1.5 % i oktober til 72.5 ± 2.0 % i april. Ved hjelp av en ligning som er gitt av Pace og Rathbun (1945 for beregning av totalt kroppsfett (% fett = 100 - % vann/0.732, fant en at denne økningen i vanninnhold tilsvarte en samtidig reduksjon i fettinnhold, fra en maksimums-verdi på 18.9 ± 2.6 % av kroppsvekt i oktober til et minimum på 0.9 ± 2.7 % i april. Utover sommeren økte derimot innholdet av fett p

  19. Alleviating the water scarcity in the North China Plain: the role of virtual water and real water transfer

    Science.gov (United States)

    Zhang, Zhuoying; Yang, Hong; Shi, Minjun

    2016-04-01

    The North China Plain is the most water scarce region in China. Its water security is closely relevant to interregional water movement, which can be realized by real water transfers and/or virtual water transfers. This study investigates the roles of virtual water trade and real water transfer using Interregional Input-Output model. The results show that the region is receiving 19.4 billion m3/year of virtual water from the interregional trade, while exporting 16.4 billion m3/year of virtual water in the international trade. In balance, the region has a net virtual water gain of 3 billion m3/year from outside. Its virtual water inflow is dominated by agricultural products from other provinces, totalling 16.6 billion m3/year, whilst its virtual water export is dominated by manufacturing sectors to other countries, totalling 11.7 billion m3/year. Both virtual water import and real water transfer from South to North Water Diversion Project are important water supplements for the region. The results of this study provide useful scientific references for the establishment of combating strategies to deal with the water scarcity in the future.

  20. Attribution of changes in the water balance of a tropical catchment to land use change using the SWAT model

    NARCIS (Netherlands)

    Marhaento, Hero; Booij, Martijn J.; Rientjes, T. H.M.; Hoekstra, Arjen Y.

    2017-01-01

    Changes in the water balance of the Samin catchment (277.9 km2) on Java, Indonesia, can be attributed to land use change using the Soil Water Assessment Tool model. A baseline-altered method was used in which the simulation period 1990–2013 was divided into 4 equal periods to represent baseline

  1. Applying hot-wire anemometry to directly measure the water balance in a proton exchange membrane fuel cell

    DEFF Research Database (Denmark)

    Al Shakhshir, Saher; Andreasen, Søren Juhl; Berning, Torsten

    2016-01-01

    In order to better understand and more accurately measure the water balance in a proton exchange membrane fuel cell, our group has recently proposed to apply hot wire anemometry in the fuel cell's anode outlet. It was theoretically shown that the electrical signal obtained from the hot wire sensor...... can be directly converted into the fuel cell water balance. In this work an ex-situ experimental investigation is performed to examine the effect of the wire diameter and the outlet pipe diameter on the voltage signal. For a laboratory fuel cell where the mass flow rate the anode outlet is small...... number Nu range between m = 0.137 and m = 0.246. In general, it is shown that applying hot wire anemometry yields in fact very clear voltage readings with high frequency, and it can be used as a diagnosis tool in various fuel cell applications....

  2. Modeling of seasonal water balance for crop production in Bangladesh with implications for future projection

    Directory of Open Access Journals (Sweden)

    Mohammed R. Karim

    2012-05-01

    Full Text Available Expecting the projected regional or global climate change, weather could have a significant effect on soil moisture and thereby affecting the plant growth. Water deficiency is considered as one of the major climatic restraints for crop production in Bangladesh, especially in the dry season. To better understand the crop responses to moisture variation, a quantitative analysis is done for major water balance components named, potential evapotranspiration (PET, actual evapotranspiration (AET, soil moisture storage (ST, water deficiency (WD and water surplus (WS with the use of Thornthwaite monthly water balance program. Analyses were carried out for three different seasons, together with interannual variability for 12 major rice growing districts of Bangladesh representing the north, central, southern and coastal zones. Hindcasted monthly average surface air temperature and precipitation data were collected from Bangladesh meteorological department during 1986 to 2006. Results suggested, trend of PET was same in every station and generally higher values were observed in the month of July and August. Khulna, the coastal station had the highest annual average PET of 1369 mm. The lowest annual AET of 1108 mm was estimated for Teknaf, while Dinajpur stood in second lowest position. ST was found almost at field capacity from July to September and, the southern station Chittagong experienced the highest average monthly ST. Maximum WD was found in Bogra and second highest shortage was in Dinajpur. The assessment of average WD of 178 mm yr-1 in northern Bangladesh reflected the worst situation among all regions, besides focusing the winter as the most crucial season regarding the water scarcity. Least amount of WS was noticed for the southern station Khulna. Significant positive relationship (p<0.05 between soil moisture and current rice yields proved the importance of surplus water conservation for the drought prone zone of Bangladesh. To boost up the

  3. N balance of different N application rate of winter wheat under water-saving condition

    International Nuclear Information System (INIS)

    Li Shijuan; Zhu Yeping; Sun Kaimeng; E Yue

    2003-01-01

    N uptake and N balance of different N rate applied to wheat under water-saving condition were investigated with 15 N tracer technique and the dynamic N uptake of economic N treatment under two irrigation conditions was compared. The results showed that (1) compared with conventional n treatment, the N loss of economic N treatment reduced while NUE and N residue in soil improved under water-saving condition; (2) Use efficiency of fertilizer applied as basal fertilizer was higher than that as top-dressing fertilizer under water-saving condition; (3) The fertilizer N residue rate was from 29% to 41%, and 60% of N residue, which distributed in 1 m depth soil concentrated in 0-20 cm surface layer; (4) In whole growing stage of wheat, fertilizer N hadn't leach to 130 cm depth; (5) NUE of economic N treatment under conventional irrigation decreased by 16.6% compared with the same n treatment under water-saving condition

  4. Effects of feed loading on nitrogen balances and fish performance in replicated recirculating aquaculture systems

    DEFF Research Database (Denmark)

    Pedersen, Lars-Flemming; Suhr, Karin Isabel; Dalsgaard, Anne Johanne Tang

    2012-01-01

    This study investigated the effects of applying four fixed feed loadings to three replicated recirculating aquaculture systems (RAS) on water quality changes, nitrogenous balances and growth performance of rainbow trout (Oncorhynchus mykiss).Feed loadings ranged from 1.6 to 6.3kgfeed/m3 make-up...... water, with a constant make-up water renewal of 4.7% of total water volume per day in all twelve RAS. Fish densities ranged from 14 to 92kg/m3 during the prolonged trial of 10weeks. Selected water quality parameters were measured during two intensive sampling campaigns, evaluating biofilter...

  5. [Total drinking water intake and sources of children and adolescent in one district of Shenzhen].

    Science.gov (United States)

    Du, Songming; Hu, Xiaoqi; Zhang, Qian; Wang, Xiaojun; Liu, Ailing; Pan, Hui; He, Shuang; Ma, Guansheng

    2013-05-01

    To describe total drinking water intake among primary and middle school students in one district of Shenzhen and to provide scientific evidence for adequate intakes of drinking water for different people in China. A total of 816 students from three primary and middle schools of Shenzhen was selected using three-stage random sampling method. The information on amounts and types of daily drinking water was recorded by subjects for seven consecutive days using a 24 hours measurement. The amounts and types of daily drinking water among different ages and between boys and girls were analyzed. The average total drinking water of subjects was (1225+/-557) ml/d, and the consumption of total drinking water in boys ((1303+/-639) ml/d) was significantly higher than that in girls ((1134+/-478) ml/d, Pwater of secondary school students ((1389+/-541) ml/d) and high school student ((1318+/-641) ml/d) was no statistically difference, but was higher than primary school students ((1097+/-525) ml/d, Pwater and beverages of the subjects was (818+/-541) ml/d and (407+/-294) ml/d respectively. Major of fluid intake comes from drinking water in children and adolescenct of Shenzhen. The knowledge of drinking water of primary school students is need to comprehensive enough.

  6. Restoration of the water balance in the lignite mining areas of central Germany and Lusatia; Sanierung des Wasserhaushalts in den Braunkohlenbergbaugebieten Mitteldeutschlands und der Lausitz

    Energy Technology Data Exchange (ETDEWEB)

    Benthaus, Friedrich-Carl [Lausitzer und Mitteldeutsche Bergbau-Verwaltungsgesellschaft mbH (LMBV), Senftenberg (Germany). Ingenieurbereich Sanierung, Strategie und Entwicklung; Scholz, Eckhard [Lausitzer und Mitteldeutsche Bergbau-Verwaltungsgesellschaft mbH (LMBV), Senftenberg (Germany). Ingenieurbereich Sanierung; Uhlig, Christiane [Lausitzer und Mitteldeutsche Bergbau-Verwaltungsgesellschaft mbH (LMBV), Senftenberg (Germany). Ingenieurbereich Sanierung, Geotechnik Mitteldeutschland; Heine, Rudi [Lausitzer und Mitteldeutsche Bergbau-Verwaltungsgesellschaft mbH (LMBV), Senftenberg (Germany). Ingenieurbereich Sanierung, Planung Wasserbau Lausitz; Totsche, Oliver [Lausitzer und Mitteldeutsche Bergbau-Verwaltungsgesellschaft mbH (LMBV), Senftenberg (Germany). Ingenieurbereich Sanierung, Geotechnik Lausitz

    2010-10-15

    The lignite mining industry in central Germany and Lusatia has interfered with the water balance in the regions by long-standing lowering of the ground water and changing of the surface waters. The restoration is aimed at re-establishment of a largely self-regulating water balance by flooding and aftercare. The planning of the linkage of the 220 lakes in the aftermath of the mining industry to the public waterway network should be based on the conditions prevailing after abandonment of the mining industry. Innovative geochemical and biological processes are being further developed to improve the water quality, which is characterised by oxidation of the iron sulphides. (orig.)

  7. Ideal femoral head size in total hip arthroplasty balances stability and volumetric wear.

    Science.gov (United States)

    Cross, Michael B; Nam, Denis; Mayman, David J

    2012-10-01

    Over the last several years, a trend towards increasing femoral head size in total hip arthroplasty to improve stability and impingement free range of motion has been observed. The specific questions we sought to answer in our review were: (1) What are the potential advantages and disadvantages of metal-on-metal, ceramic-on-ceramic, and metal-on-polyethylene bearings? (2) What is effect that femoral head size has on joint kinematics? (3) What is the effect that large femoral heads have on bearing surface wear? A PubMed search and a review of 2012 Orthopaedic Research Society abstracts was performed and articles were chosen that directly answered components of the specific aims and that reported outcomes with contemporary implant designs or materials. A review of the literature suggests that increasing femoral head size decreases the risk of postoperative dislocation and improves impingement free range of motion; however, volumetric wear increases with large femoral heads on polyethylene and increases corrosion of the stem in large metal-on-metal modular total hip arthroplasty (THA); however, the risk of potentially developing osteolysis or adverse reactions to metal debris respectively is still unknown. Further, the effect of large femoral heads with ceramic-on-ceramic THA is unclear, due to limited availability and published data. Surgeons must balance the benefits of larger head size with the increased risk of volumetric wear when determining the appropriate head size for a given patient.

  8. An inexpensive optical sensor system for monitoring total suspended solids in water

    International Nuclear Information System (INIS)

    Sami Gumaan Daraigan; Mohd Zubir Matjafri; Khiruddin Abdullah; Azlan Abdul Aziz; Abdul Aziz Tajuddin; Mohd Firdaus Othman

    2005-01-01

    The objectives of this work are to design and develop an optical transsmissometer sensor for measuring total suspended solids TSS concentrations in water samples. The proposed optical sensor has the advantages of being relatively inexpensive, and easy to make and operate. An optical algorithm has been developed and used for the measurement of total suspended solids concentrations. The developed optical sensor components include light emitting diodes LEDs that are used for measuring transmitted light. The concentrations of total suspended solids TSS are determined from transmitted light through the water samples. The transmitted light is measured in terms of the output voltage of the photodetector of the sensor system. The readings are measured using a digital multimeter. The results indicate that the level of the photocurrent is linearly proportional to the total suspended solids concentration. The proposed algorithm produces a high correlation coefficient and low root mean square error. (Author)

  9. Water-filled training tubes increase core muscle activation and somatosensory control of balance during squat.

    Science.gov (United States)

    Ditroilo, Massimiliano; O'Sullivan, Rory; Harnan, Brian; Crossey, Aislinn; Gillmor, Beth; Dardis, William; Grainger, Adam

    2018-09-01

    This study examined trunk muscle activation, balance and proprioception while squatting with a water-filled training tube (WT) and a traditional barbell (BB), with either closed (CE) or open eyes (OE). Eighteen male elite Gaelic footballers performed an isometric squat under the following conditions: BB-OE, BB-CE, WT-OE and WT-CE. The activity of rectus abdominis (RA), external oblique (EO) and multifidus (MF) was measured using electromyography, along with sway of the centre of pressure (CoP) using a force platform. Only the EO and the MF muscles exhibited an increased activity with WT (p velocity and range of the CoP increased significantly with WT (p velocity of the CoP was marginally reduced (d = 0.29). WT elicited a greater level core muscle activation and created a greater challenge to postural stability when compared to a BB. It appears that WT does not benefit from vision but emphasises the somatosensory control of balance. The use of WT may be beneficial in those sports requiring development of somatosensory/proprioceptive contribution to balance control.

  10. Testing the generalized complementary relationship of evaporation with continental-scale long-term water-balance data

    Science.gov (United States)

    Szilagyi, Jozsef; Crago, Richard; Qualls, Russell J.

    2016-09-01

    The original and revised versions of the generalized complementary relationship (GCR) of evaporation (ET) were tested with six-digit Hydrologic Unit Code (HUC6) level long-term (1981-2010) water-balance data (sample size of 334). The two versions of the GCR were calibrated with Parameter-Elevation Regressions on Independent Slopes Model (PRISM) mean annual precipitation (P) data and validated against water-balance ET (ETwb) as the difference of mean annual HUC6-averaged P and United States Geological Survey HUC6 runoff (Q) rates. The original GCR overestimates P in about 18% of the PRISM grid points covering the contiguous United States in contrast with 12% of the revised version. With HUC6-averaged data the original version has a bias of -25 mm yr-1 vs the revised version's -17 mm yr-1, and it tends to more significantly underestimate ETwb at high values than the revised one (slope of the best fit line is 0.78 vs 0.91). At the same time it slightly outperforms the revised version in terms of the linear correlation coefficient (0.94 vs 0.93) and the root-mean-square error (90 vs 92 mm yr-1).

  11. Do Work-Life Balance Policies Increase a Firm's Total Factor Productivity?: Evidence from panel data of Japanese firms (Japanese)

    OpenAIRE

    YAMAMOTO Isamu; MATSUURA Toshiyuki

    2011-01-01

    This paper examines how firms' policies for workers' work-life balance (WLB) affect total factor productivity (TFP) in the long run, by using panel data of Japanese firms from the 1990s. Although we observed a positive correlation between firms' WLB policies and their TFP, once controlling for unobserved firm heterogeneity, we found no causal relationship where WLB policies increase a firm's TFP in the long run. Under the following conditions, however, WLB policies would likely improve a firm...

  12. Hydrological functioning and water balance in a heavily modified hydrographic system

    Science.gov (United States)

    Carbonnel, Vincent; Brion, Natacha; Elskens, Marc; Claeys, Philippe; Verbanck, Michel A.

    2017-04-01

    Rivers and canals are often the location for the historical settlement of cities and the backbone for their expansion, as they permit the transport of goods and people, the access to water for industrial activities and energy production, and the evacuation of the domestic and industrial wastewaters. In turn, human activities can result in modifications of the natural river systems to allow for instance ship transport or protection against flooding. The complex interconnected hydrographic network composed of the Zenne and the parallel Charleroi-Brussels-Scheldt Canal, which supports the development of the economy and urbanization of Brussels Metropolitan Area (Belgium), is a good example of such an altered system. The natural water course has been profoundly modified by the deviation of rivers to feed the canal, the control of the water flow in the canal by locks and pumps and the overflow exchange of water between the river and the canal for flood protection purposes. Also, the functioning of this system is strongly impacted by urban hydrology in Brussels, which results in amounts of wastewater discharged in the Zenne River that are nearly equivalent to the natural riverine flow. Water and water quality management in such complex and altered systems correspond to difficult tasks. They require, as a first step, a deep understanding of their hydrological functioning. Building an accurate water budget is also a necessary step in the investigation of the pollution sources, sinks, dynamics and mass-balance. In order to assess the water quality and provide insights for water management in the Zenne-Canal hydrographic network (cf. other contributions in this session), we established a detailed box-model representation of the water budget for the whole system, with a particular interest on the importance and the effects of the exchanges of water between the river and the canal. A particularity of this study is that, in contrast to the widespread use of hydrological

  13. Employing Hot Wire Anemometry to Directly Measure the Water Balance of a Proton Exchange Membrane Fuel Cell

    DEFF Research Database (Denmark)

    Shakhshir, Saher Al; Berning, Torsten

    Proton exchange membrane fuel cells (PEMFC’s) are currently being commercialized for various applications ranging from automotive to stationary such as powering telecom back-up units. In PEMFC’s, oxygen from air is internally combined with hydrogen to form water and produce electricity and waste......-hoc and real time electrical signal of the fuel cell water balance by employing hot wire anemometry. The hot wire sensor is placed into a binary mixture of hydrogen and water vapour, and the voltage signal received gives valuable insight into heat and mass transfer phenomena in a PEMFC. A central question...

  14. Regional water balance for the Waste Isolation Pilot Plant (WIPP) site and surrounding area

    International Nuclear Information System (INIS)

    Hunter, R.L.

    1985-12-01

    The WIPP water-balance study area defined here comprises approx.2000 mi 2 in Eddy and Lea Counties, southeastern New Mexico. Inflows to the study area are precipitation (roughly 1.47 x 10 6 ac-ft/y), surface water (roughly 1.1 x 10 5 ac-ft/y), water imported by municipalities and industries (roughly 3 x 10 4 ac-ft/y), and ground water (volume not estimated). Outflows from the area are evapotranspiration (roughly 1.5 x 10 6 ac-ft/y), surface water (roughly 1.2 x 10 5 ac-ft/y), and possibly some ground water. The volume of surface and ground water in storage in Nash Draw has increased since the beginning of potash refining. Regional ground-water flow in aquifers above the Salado Formation is from the northeast to the southwest, although this pattern is interrupted by Clayton Basin, Nash Draw, and San Simon Swale. The Pecos River is the only important perennial stream. Most of the area has no integrated surface-water drainage. The available data suggest that approx.1600 mi 2 of the study area are hydrologically separate from Nash Draw and the WIPP site. Ground water north of Highway 180 apparently discharges into Clayton Basin and evaporates. Water in San Simon Swale apparently percolates downward and flows to the southeast. Data are inadequate to create a water budget for the Nash Draw-WIPP site hydrologic system alone, although an attempt to do so can provide guidance for further study

  15. Determination of metal balance shift induced in small fresh water fish by X-ray irradiation using PIXE analysis

    International Nuclear Information System (INIS)

    Yukawa, M.; Aoki, K.; Iso, H.; Kodama, K.; Imaseki, H.; Ishikawa, Y.

    2005-01-01

    suitable tool for this subject owing to its high sensitivity to detect elements and capability to analyze many elements in small samples simultaneously, One of the purposes of this study is to show the usefulness of PIXE method in determination of the elemental balance shift. The fishes were irradiated with X-ray in a plastic dish containing 5 mm depth of water using X-ray irradiation equipment (PANTAK-320S) at 200 kV and 20 mA. The dose rate was 224 R/min and the total dose was 17 Gy. The LD 50/30 (50% Lethal Dose within 30 days) of this fish is 20 Gy. The X-ray irradiation did not induce any stressful behavior in this experimental period, about 3 weeks. After the X-ray irradiation, on the 2nd day, the 9th day and the 16th day, fishes were dissected and essential elements such as P, S, Ca, Mn, Fe, Cu and Zn in liver, gall bladder, kidney, spleen, heart, gill and brain in the fish were measured by PIXE method. And the contents in each organ were compared with those of the control fish to determine the effect of the stresses. Just after the X-ray irradiation, various changes of the elemental contents were observed depending on the organs. Brain showed less change of metal balance comparing to the other organs. Increases of P and Fe were observed in many organs. On the contrary, S showed the decreasing tendency. Recovery from the stress loading was also observed during 16 days. The result will be reported in this paper.

  16. Method validation to determine total alpha beta emitters in water samples using LSC

    International Nuclear Information System (INIS)

    Al-Masri, M. S.; Nashawati, A.; Al-akel, B.; Saaid, S.

    2006-06-01

    In this work a method was validated to determine gross alpha and beta emitters in water samples using liquid scintillation counter. 200 ml of water from each sample were evaporated to 20 ml and 8 ml of them were mixed with 12 ml of the suitable cocktail to be measured by liquid scintillation counter Wallac Winspectral 1414. The lower detection limit by this method (LDL) was 0.33 DPM for total alpha emitters and 1.3 DPM for total beta emitters. and the reproducibility limit was (± 2.32 DPM) and (±1.41 DPM) for total alpha and beta emitters respectively, and the repeatability limit was (±2.19 DPM) and (±1.11 DPM) for total alpha and beta emitters respectively. The method is easy and fast because of the simple preparation steps and the large number of samples that can be measured at the same time. In addition, many real samples and standard samples were analyzed by the method and showed accurate results so it was concluded that the method can be used with various water samples. (author)

  17. Water flow and energy balance for a tropical dry semideciduous forest

    Science.gov (United States)

    Andrade, J. L.; Garruña-Hernandez, R.; Leon-Palomo, M.; Us-Santamaria, R.; Sima, J. L.

    2013-05-01

    Tropical forests cool down locally because increase water evaporation from the soil to the atmosphere, reduce albedo and help forming clouds that reflect solar radiation back to the atmosphere; this, aligned to the carbon catchment, increase forests value. We will present an estimation of the sap flow and energy balance for the tropical dry semideciduous forest at Kiuic, Yucatan, Mexico during a year. We use a meteorological tower equipped with a rain gauge, temperature and relative humidity, heat flow plates, thermocouples and volumetric soil water content. We recorded net radiation and soil heat flux and estimated sensible heat and latent heat. Besides, we estimated latent heat by measuring sap flow directly in tres using disispation constant heat probes during the rainy season. Results show the influence of the seasonality on net radiation, air temperatura and vapor pressure deficit, because during the dry season his variables were higher and with more duation than during the rainy and early dry season. Sap flow was different for trees belonging to the family Fabaceae compared to trees from other families.

  18. 40 CFR 130.7 - Total maximum daily loads (TMDL) and individual water quality-based effluent limitations.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Total maximum daily loads (TMDL) and individual water quality-based effluent limitations. 130.7 Section 130.7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.7 Total...

  19. A synthesis of thermokarst lake water balance in high-latitude regions of North America from isotope tracers

    Science.gov (United States)

    MacDonald, Lauren A.; Wolfe, Brent B.; Turner, Kevin W.; Anderson, Lesleigh; Arp, Christopher D.; Birks, Jean; Bouchard, Frédéric; Edwards, Thomas W.D.; Farquharson, Nicole; Hall, Roland I.; McDonald, Ian; Narancic, Biljana; Ouimet, Chantal; Pienitz, Reinhard; Tondu, Jana; White, Hilary

    2017-01-01

    Numerous studies utilizing remote sensing imagery and other methods have documented that thermokarst lakes are undergoing varied hydrological transitions in response to recent climate changes, from surface area expansion to drainage and evaporative desiccation. Here, we provide a synthesis of hydrological conditions for 376 lakes of mainly thermokarst origin across high-latitude North America. We assemble surface water isotope compositions measured during the past decade at five lake-rich landscapes including Arctic Coastal Plain (Alaska), Yukon Flats (Alaska), Old Crow Flats (Yukon), northwestern Hudson Bay Lowlands (Manitoba), and Nunavik (Quebec). These landscapes represent the broad range of thermokarst environments by spanning gradients in meteorological, permafrost, and vegetation conditions. An isotope framework was established based on flux-weighted long-term averages of meteorological conditions for each lake to quantify water balance metrics. The isotope composition of source water and evaporation-to-inflow ratio for each lake were determined, and the results demonstrated a substantial array of regional and subregional diversity of lake hydrological conditions. Controls on lake water balance and how these vary among the five landscapes and with differing environmental drivers are assessed. Findings reveal that lakes in the Hudson Bay Lowlands are most vulnerable to evaporative desiccation, whereas those in Nunavik are most resilient. However, we also identify the complexity in predicting hydrological responses of these thermokarst landscapes to future climate change.

  20. [Soil moisture dynamics and water balance of Salix psammophila shrubs in south edge of Mu Us Sandy Land].

    Science.gov (United States)

    An, Hui; An, Yu

    2011-09-01

    Taking the artificial sand-fixing Salix psammophila shrubs with different plant density (0.2, 0.6, and 0.8 plants x m(-2)) in Mu Us Sandy Land as test objects, this paper studied the soil moisture dynamics and evapotranspiration during growth season. There existed obvious differences in the soil moisture dynamics and evapotranspiration among the shrubs. The soil moisture content changed in single-hump-shape with the increase of plant density, and in "S" shape during growth season, being closely correlated with precipitation. The evapotranspiration was the highest (114.5 mm) in the shrubs with a density 0.8 plants x m(-1), accounting for 90.8% of the total precipitation during growth season, and the lowest (109.7 mm) in the shrubs with a density 0.6 plants x m(-2) Based on the soil moisture dynamics and water balance characteristics, the appropriate planting density of S. psammophila shrubs in Mu Us Sandy Land could be 0.6 plants x m(-2).

  1. High purity heavy water production: need for total organic carbon determination in process water streams

    International Nuclear Information System (INIS)

    Ayushi; Kumar, Sangita D.; Reddy, A.V.R.; Vithal, G.K.

    2009-01-01

    In recent times, demand for high purity heavy water (99.98% pure) in industries and laboratories has grown by manifold. Its application started in nuclear industry with the design of CANDU reactor, which uses natural uranium as fuel. In this reactor the purest grade of heavy water is used as the moderator and the primary coolant. Diverse industrial applications like fibre optics, medicine, semiconductors etc. use high purity heavy water extensively to achieve better performance of the specific material. In all these applications there is a stringent requirement that the total organic carbon content (TOC) of high purity heavy water should be very low. This is because the presence of TOC can lead to adverse interactions in different applications. To minimize the TOC content in the final product there is a need to monitor and control the TOC content at each and every stage of heavy water production. Hence a simple, rapid and accurate method was developed for the determination of TOC content in process water samples. The paper summarizes the results obtained for the TOC content in the water samples collected from process streams of heavy water production plant. (author)

  2. Interchangeability of the Wii Balance Board for Bipedal Balance Assessment.

    Science.gov (United States)

    Bonnechère, Bruno; Jansen, Bart; Omelina, Lubos; Rooze, Marcel; Van Sint Jan, Serge

    2015-08-27

    Since 2010, an increasing interest in more portable and flexible hardware for balance and posture assessment led to previously published studies determining whether or not the Wii Balance Board could be used to assess balance and posture, both scientifically and clinically. However, no previous studies aimed at comparing results from different Wii Balance Boards for clinical balance evaluation exist. The objective of this crossover study is to assess the interchangeability of the Wii Balance Board. A total of 6 subjects participated in the study and their balance was assessed using 4 different Wii Balance Boards. Trials were recorded simultaneously with Wii Balance Boards and with a laboratory force plate. Nine relevant clinical parameters were derived from center of pressure displacement data obtained from Wii Balance Board and force plate systems. Intraclass correlation coefficients (ICC), F tests, and Friedman tests were computed to assess the agreement between trials and to compare the Wii Balance Board and force plate results. Excellent correlations were found between the Wii Balance Board and force plate (mean ρ =.83). With the exception of 2 parameters, strong to excellent agreements were found for the 7 remaining parameters (ICC=.96). No significant differences were found between trials recorded with different Wii Balance Boards. Our results indicate that for most of the parameters analyzed, balance and posture assessed with one Wii Balance Board were statistically similar to results obtained from another. Furthermore, the good correlation between the Wii Balance Board and force plate results shows that Wii Balance Boards can be reliably used for scientific assessment using most of the parameters analyzed in this study. These results also suggest that the Wii Balance Board could be used in multicenter studies and therefore, would allow for the creation of larger populations for clinical studies. Ethical Committee of the Erasme Hospital (CCB B406201215142

  3. Soil Water Balance and Recharge Monitoring at the Hanford Site - FY09 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Rockhold, Mark L.; Saunders, Danielle L.; Strickland, Christopher E.; Waichler, Scott R.; Clayton, Ray E.

    2009-09-28

    Recharge provides the primary driving force for transporting contaminants from the vadose zone to underlying aquifer systems. Quantification of recharge rates is important for assessing contaminant transport and fate and for evaluating remediation alternatives. This report describes the status of soil water balance and recharge monitoring performed by Pacific Northwest National Laboratory at the Hanford Site for Fiscal Year 2009. Previously reported data for Fiscal Years 2004 - 2008 are updated with data collected in Fiscal Year 2009 and summarized.

  4. Water Balance of the Eğirdir Lake and the Influence of Budget Components, Isparta,Turkey

    Directory of Open Access Journals (Sweden)

    Ayşen DAVRAZ

    2014-09-01

    Full Text Available Water budget of lakes must be determined regarding to their sustainable usage as for all water resources. One of the major problems in the management of lakes is the estimation of water budget components. The lack of regularly measured data is the biggest problem in calculation of hydrological balance of a lake. A lake water budget is computed by measuring or estimating all of the lake’s water gains and losses and measuring the corresponding changes in the lake volume over the same time period. Eğirdir Lake is one of the most important freshwater lakes in Turkey and is the most important surface water resources in the region due to different usages. Recharge of the Eğirdir Lake is supplied from especially precipitation, surface and subsurface water inflow. The discharge components of the lake are evaporation and water intake for irrigation, drinking and energy purposes. The difference between recharge and discharge of the lake was calculated as 7.78 hm3 for 1970-2010 period. According to rainfall, evaporation and the lake water level relations, rainfall is dominantly effective on the lake water level such as direct recharge to the lake and indirect recharge with groundwater flow

  5. Water cut measurement of oil–water flow in vertical well by combining total flow rate and the response of a conductance probe

    International Nuclear Information System (INIS)

    Chen, Jianjun; Xu, Lijun; Cao, Zhang; Zhang, Wen; Liu, Xingbin; Hu, Jinhai

    2015-01-01

    In this paper, a conductance probe-based well logging instrument was developed and the total flow rate is combined with the response of the conductance probe to estimate the water cut of the oil–water flow in a vertical well. The conductance probe records the time-varying electrical characteristics of the oil–water flow. Linear least squares regression (LSR) and nonlinear support vector regression (SVR) were used to establish models to map the total flow rate and features extracted from the probe response onto the water cut, respectively. Principal component analysis (PCA) and partial least squares analysis (PLSA) techniques were employed to reduce data redundancy within the extracted features. An experiment was carried out in a vertical pipe with an inner diameter of 125 mm and a height of 24 m in an experimental multi-phase flow setup, Daqing Oilfield, China. In the experiment, oil–water flow was used and the total flow rate varied from 10 to 200 m 3 per day and the water cut varied from 0% to 100%. As a direct comparison, the cases were also studied when the total flow rate was not used as an independent input to the models. The results obtained demonstrate that: (1) the addition of the total flow rate as an input to the regression models can greatly improve the accuracy of water cut prediction, (2) the nonlinear SVR model performs much better than the linear LSR model, and (3) for the SVR model with the total flow rate as an input, the adoption of PCA or PLSA not only decreases the dimensions of inputs, but also increases prediction accuracy. The SVR model with five PCA-treated features plus the total flow rate achieves the best performance in water cut prediction, with a coefficient of determination (R 2 ) as high as 0.9970. The corresponding root mean squared error (RMSE) and mean quoted error (MQE) are 0.0312% and 1.99%, respectively. (paper)

  6. Contrasts between estimates of baseflow help discern multiple sources of water contributing to rivers

    Science.gov (United States)

    Cartwright, I.; Gilfedder, B.; Hofmann, H.

    2014-01-01

    This study compares baseflow estimates using chemical mass balance, local minimum methods, and recursive digital filters in the upper reaches of the Barwon River, southeast Australia. During the early stages of high-discharge events, the chemical mass balance overestimates groundwater inflows, probably due to flushing of saline water from wetlands and marshes, soils, or the unsaturated zone. Overall, however, estimates of baseflow from the local minimum and recursive digital filters are higher than those based on chemical mass balance using Cl calculated from continuous electrical conductivity measurements. Between 2001 and 2011, the baseflow contribution to the upper Barwon River calculated using chemical mass balance is between 12 and 25% of the annual discharge with a net baseflow contribution of 16% of total discharge. Recursive digital filters predict higher baseflow contributions of 19 to 52% of discharge annually with a net baseflow contribution between 2001 and 2011 of 35% of total discharge. These estimates are similar to those from the local minimum method (16 to 45% of annual discharge and 26% of total discharge). These differences most probably reflect how the different techniques characterise baseflow. The local minimum and recursive digital filters probably aggregate much of the water from delayed sources as baseflow. However, as many delayed transient water stores (such as bank return flow, floodplain storage, or interflow) are likely to be geochemically similar to surface runoff, chemical mass balance calculations aggregate them with the surface runoff component. The difference between the estimates is greatest following periods of high discharge in winter, implying that these transient stores of water feed the river for several weeks to months at that time. Cl vs. discharge variations during individual flow events also demonstrate that inflows of high-salinity older water occurs on the rising limbs of hydrographs followed by inflows of low

  7. Effect of water stress on total biomass, tuber yield, harvest index and water use efficiency in Jerusalem artichoke

    Science.gov (United States)

    The objectives of this study were to determine the effect of drought on tuber yield, total biomass, harvest index, water use efficiency of tuber yield (WUEt) and water use efficiency of biomass (WUEb), and to evaluate the differential responses of Jerusalem artichoke (JA) varieties under drought str...

  8. Trends of total water vapor column above the Arctic from satellites observations

    Science.gov (United States)

    Alraddawi, Dunya; Sarkissian, Alain; Keckhut, Philippe; Bock, Olivier; Claud, Chantal; Irbah, Abdenour

    2016-04-01

    Atmospheric water vapor (H2O) is the most important natural (as opposed to man-made) greenhouse gas, accounting for about two-thirds of the natural greenhouse effect. Despite this importance, its role in climate and its reaction to climate change are still difficult to assess. Many details of the hydrological cycle are poorly understood, such as the process of cloud formation and the transport and release of latent heat contained in the water vapor. In contrast to other important greenhouse gases like carbon dioxide (CO2) and methane, water vapor has a much higher temporal and spatial variability. Total precipitable water (TPW) or the total column of water vapor (TCWV) is the amount of liquid water that would result if all the water vapor in the atmospheric column of unit area were condensed. TCWV distribution contains valuable information on the vigor of the hydrological processes and moisture transport in the atmosphere. Measurement of TPW can be obtained based on atmospheric water vapor absorption or emission of radiation in the spectral range from UV to MW. TRENDS were found over the terrestrial Arctic by means of TCWV retrievals (using Moderate Resolution Imaging Spectro-radiometer (MODIS) near-infrared (2001-2015) records). More detailed approach was made for comparisons with ground based instruments over Sodankyla - Finland (TCWV from: SCIAMACHY 2003-2011, GOME-2A 2007-2011, SAOZ 2003-2011, GPS 2003-2011, MODIS 2003-2011)

  9. Summertime influences of tidal energy advection on the surface energy balance in a mangrove forest

    Directory of Open Access Journals (Sweden)

    J. G. Barr

    2013-01-01

    Full Text Available Mangrove forests are ecosystems susceptible to changing water levels and temperatures due to climate change as well as perturbations resulting from tropical storms. Numerical models can be used to project mangrove forest responses to regional and global environmental changes, and the reliability of these models depends on surface energy balance closure. However, for tidal ecosystems, the surface energy balance is complex because the energy transport associated with tidal activity remains poorly understood. This study aimed to quantify impacts of tidal flows on energy dynamics within a mangrove ecosystem. To address the research objective, an intensive 10-day study was conducted in a mangrove forest located along the Shark River in the Everglades National Park, FL, USA. Forest–atmosphere turbulent exchanges of energy were quantified with an eddy covariance system installed on a 30-m-tall flux tower. Energy transport associated with tidal activity was calculated based on a coupled mass and energy balance approach. The mass balance included tidal flows and accumulation of water on the forest floor. The energy balance included temporal changes in enthalpy, resulting from tidal flows and temperature changes in the water column. By serving as a net sink or a source of available energy, flood waters reduced the impact of high radiational loads on the mangrove forest. Also, the regression slope of available energy versus sink terms increased from 0.730 to 0.754 and from 0.798 to 0.857, including total enthalpy change in the water column in the surface energy balance for 30-min periods and daily daytime sums, respectively. Results indicated that tidal inundation provides an important mechanism for heat removal and that tidal exchange should be considered in surface energy budgets of coastal ecosystems. Results also demonstrated the importance of including tidal energy advection in mangrove biophysical models that are used for predicting ecosystem

  10. Errors in potassium balance

    International Nuclear Information System (INIS)

    Forbes, G.B.; Lantigua, R.; Amatruda, J.M.; Lockwood, D.H.

    1981-01-01

    Six overweight adult subjects given a low calorie diet containing adequate amounts of nitrogen but subnormal amounts of potassium (K) were observed on the Clinical Research Center for periods of 29 to 40 days. Metabolic balance of potassium was measured together with frequent assays of total body K by 40 K counting. Metabolic K balance underestimated body K losses by 11 to 87% (average 43%): the intersubject variability is such as to preclude the use of a single correction value for unmeasured losses in K balance studies

  11. Impacts of Cropland Changes on Water Balance, Sediment and Nutrient Transport in Eden River, UK

    Science.gov (United States)

    Huang, Yumei; Quinn, Paul; Liang, Qiuhua; Adams, Russell

    2017-04-01

    Water is the key to food and human life. Farming is the main part of economic and society in Eden, with approximately 2000 farms which covers 95% of under crops. However, with the growth of farming practice and global climate changes, Eden has presented great challenges and bringing uncertainty in the water quality caused by the agricultural diffuse pollution. This expected to reduce negative impacts of the water diffuse pollution from agriculture in Eden. Therefore, there is a high need to ensure effective water resource management to enhance water quality, to address the flow pathways and sediment transport in different farming practice and cropland changes. Hence we need to understand nutrient and the hydrological flow pathways from soil to Hillslope to channel. The aim of this research is to evaluate the impacts of different cropland changes on water balance, sediment and nutrient transport. By using the hydrological models Soil and Water Assessment Tool (SWAT) and the Catchment Runoff Attenuation Flux Tool (CRAFT), it can show the sediment and nutrient export from the load for each flow pathways (overland flow, soil water flow and ground water flow). We will show results from a small research catchment (10km2) area to the whole of Eden (800km2) at a daily time step.

  12. Cyber-physical system for a water reclamation plant: Balancing aeration, energy, and water quality to maintain process resilience

    Science.gov (United States)

    Zhu, Junjie

    Aeration accounts for a large fraction of energy consumption in conventional water reclamation plants (WRPs). Although process operations at older WRPs can satisfy effluent permit requirements, they typically operate with excess aeration. More effective process controls at older WRPs can be challenging as operators work to balance higher energy costs and more stringent effluent limitations while managing fluctuating loads. Therefore, understandings of process resilience or ability to quickly return to original operation conditions at a WRP are important. A state-of-art WRP should maintain process resilience to deal with different kinds of perturbations even after optimization of energy demands. This work was to evaluate the applicability and feasibility of cyber-physical system (CPS) for improving operation at Metropolitan Water Reclamation District of Greater Chicago (MWRDGC) Calumet WRP. In this work, a process model was developed and used to better understand the conditions of current Calumet WRP, with additional valuable information from two dissolved oxygen field measurements. Meanwhile, a classification system was developed to reveal the pattern of historical influent scenario based on cluster analysis and cross-tabulation analysis. Based on the results from the classification, typical process control options were investigated. To ensure the feasibility of information acquisition, the reliability and flexibility of soft sensors were assessed to typical influent conditions. Finally, the process resilience was investigated to better balance influent perturbations, energy demands, and effluent quality for long-term operations. These investigations and evaluations show that although the energy demands change as the influent conditions and process controls. In general, aeration savings could be up to 50% from the level of current consumption; with a more complex process controls, the saving could be up to 70% in relatively steady-state conditions and at least 40

  13. Corrosion product balances for the Ringhals PWR plants based on extensive fuel crud and water chemistry measurements

    International Nuclear Information System (INIS)

    Lundgren, K.; Wikmark, G.; Bengtsson, B.

    2010-01-01

    The corrosion product balance in a PWR plant is of great importance for the fuel performance as well as for the radiation field buildup. This balance is of special concern in connection to steam generator replacement (SGR) and power uprate projects. The Ringhals PWRs are all of Westinghouse design. Two of the plants have performed Steam Generator Replacement (SGR) to I-690 SG tubes and such a replacement is being planned in the third and last unit in 2011. Two of the units are in different phases of power uprate projects. The plants are all on 10-14-months cycles operating with medium to high fuel duty. Water chemistry is controlled by a pH300 in the range ∼7.2 to 7.4 from beginning of cycle to end of cycle (BOC-EOC) in the units with new SGs while kept at a coordinated pH of 7.2 in the one still using I-600. The maximum Li content has recently been increased to about 4.5 to 5 ppm in all units. In order to be able to improve the assessment of corrosion product balances in the plants, comprehensive fuel crud measurements were performed in 2007. Improved integrated reactor water sampling techniques have also been introduced in order to make accurate mass balances possible. The corrosion products covered in the study are the main constituents, Ni, Fe and Cr in the primary circuit Inconel and stainless steel, together with Co. The activated corrosion products, Co-58, Co-60, Cr-51, Fe-59 and Mn-54, are all mainly produced through neutron irradiation of the covered corrosion products. The main results of the corrosion product balances are presented. Observed differences between the plants, indicating significant impact of pH control and SG tube materials, are presented and discussed. The importance of accurate sampling techniques is especially addressed in this paper. (author)

  14. Assimilation of a thermal remote sensing-based soil moisture proxy into a root-zone water balance model

    Science.gov (United States)

    Crow, W. T.; Kustas, W. P.

    2006-05-01

    Two types of Soil Vegetation Atmosphere Transfer (SVAT) modeling approaches are commonly applied to monitoring root-zone soil water availability. Water and Energy Balance (WEB) SVAT modeling are based forcing a prognostic water balance model with precipitation observations. In constrast, thermal Remote Sensing (RS) observations of canopy radiometric temperatures can be integrated into purely diagnostic SVAT models to predict the onset of vegetation water stress due to low root-zone soil water availability. Unlike WEB-SVAT models, RS-SVAT models do not require observed precipitation. Using four growings seasons (2001 to 2004) of profile soil moisture, micro-meteorology, and surface radiometric temperature observations at the USDA's OPE3 site, root-zone soil moisture predictions made by both WEB- and RS-SVAT modeling approaches are intercompared with each other and availible root- zone soil moisture observations. Results indicate that root-zone soil moisture estimates derived from a WEB- SVAT model have slightly more skill in detecting soil moisture anomalies at the site than comporable predictions from a competing RS-SVAT modeling approach. However, the relative advantage of the WEB-SVAT model disappears when it is forced with lower-quality rainfall information typical of continental and global-scale rainfall data sets. Most critically, root-zone soil moisture errors associated with both modeling approaches are sufficiently independent such that the merger of both information from both proxies - using either simple linear averaging or an Ensemble Kalman filter - creates a merge soil moisture estimate that is more accurate than either of its parent components.

  15. Effect of balance training on postural balance control and risk of fall in children with diplegic cerebral palsy.

    Science.gov (United States)

    El-Shamy, Shamekh Mohamed; Abd El Kafy, Ehab Mohamed

    2014-01-01

    The purpose of this study was to evaluate the effects of balance training on postural control and fall risk in children with diplegic cerebral palsy. Thirty spastic diplegic cerebral palsied children (10-12 years) were included in this study. Children were randomly assigned into two equal-sized groups: control and study groups. Participants in both groups received a traditional physical therapy exercise program. The study group additionally received balance training on the Biodex balance system. Treatment was provided 30 min/d, 3 d/week for 3 successive months. To evaluate the limit of stability and fall risk, participated children received baseline and post-treatment assessments using the Biodex balance system. Overall directional control, total time to complete the test, overall stability index of the fall risk test and total score of the pediatric balance scale were measured. Children in both groups showed significant improvements in the mean values of all measured variables post-treatment (p control group (p postural balance control in children with diplegic cerebral palsy.

  16. Nitrogen balance in a hilly semi-agricultural watershed in Northern Italy

    Directory of Open Access Journals (Sweden)

    Linda Pieri

    2011-03-01

    Full Text Available The research was carried out for 7 years, 1998-2005, in a semi-agricultural watershed, called Centonara, set within a natural regional park and situated in the hills surrounding Bologna, northern Italy. This area is characterized by one of the most interesting badlands complexes in Europe and represents one of the main points of naturalistic interest. The watershed is partially cultivated (about 30% of the total area with arable crops, mostly cereals and alfalfa. To evaluate the impact of agricultural activity on the eco-sustainability of this area, the nitrogen (N balance was computed. Although it is only an estimation of the potential environmental damage, the nitrogen balance is a useful indicator of the risk posed to the environment from excessive nitrogen and can be useful to understand the possible effects of a certain type of agricultural and environmental management and policy. The balance was calculated by computing the difference between all inputs and all outputs. The nitrogen balance of the watershed was found to be sustainable, with an annual nitrogen balance ranging between –2.3 and +4.4 kg ha–1. Despite the limited presence of arable lands, the agricultural management played the main role in determining the sustainability of the watershed, strongly influencing both the principal N sources and sinks. In fact, major N inputs derived from inorganic fertilization (8.1-15.5 kg ha–1yr–1 and biological fixation (8.3-14.3 kg ha–1yr–1. On the other hand, plant removal constituted the most important output (17.7-25.6 kg ha–1yr–1. N losses in the drainage water were limited (3.0-9.5 kg ha–1yr–1 and the Centonara stream water was found to be unpolluted, with a nitrate concentration always below the EU limit for drinking water. The similar magnitude of total N inputs and outputs indicated that the crop management, especially the crop rotation and the N fertilization, in the Centonara watershed has reached a good level of

  17. Fluid balance concepts in medicine: Principles and practice

    Science.gov (United States)

    Roumelioti, Maria-Eleni; Glew, Robert H; Khitan, Zeid J; Rondon-Berrios, Helbert; Argyropoulos, Christos P; Malhotra, Deepak; Raj, Dominic S; Agaba, Emmanuel I; Rohrscheib, Mark; Murata, Glen H; Shapiro, Joseph I; Tzamaloukas, Antonios H

    2018-01-01

    The regulation of body fluid balance is a key concern in health and disease and comprises three concepts. The first concept pertains to the relationship between total body water (TBW) and total effective solute and is expressed in terms of the tonicity of the body fluids. Disturbances in tonicity are the main factor responsible for changes in cell volume, which can critically affect brain cell function and survival. Solutes distributed almost exclusively in the extracellular compartment (mainly sodium salts) and in the intracellular compartment (mainly potassium salts) contribute to tonicity, while solutes distributed in TBW have no effect on tonicity. The second body fluid balance concept relates to the regulation and measurement of abnormalities of sodium salt balance and extracellular volume. Estimation of extracellular volume is more complex and error prone than measurement of TBW. A key function of extracellular volume, which is defined as the effective arterial blood volume (EABV), is to ensure adequate perfusion of cells and organs. Other factors, including cardiac output, total and regional capacity of both arteries and veins, Starling forces in the capillaries, and gravity also affect the EABV. Collectively, these factors interact closely with extracellular volume and some of them undergo substantial changes in certain acute and chronic severe illnesses. Their changes result not only in extracellular volume expansion, but in the need for a larger extracellular volume compared with that of healthy individuals. Assessing extracellular volume in severe illness is challenging because the estimates of this volume by commonly used methods are prone to large errors in many illnesses. In addition, the optimal extracellular volume may vary from illness to illness, is only partially based on volume measurements by traditional methods, and has not been determined for each illness. Further research is needed to determine optimal extracellular volume levels in several

  18. Gamma-spectrometric and total alpha-beta counting methods for radioactivity analysis of deuterium depleted water

    International Nuclear Information System (INIS)

    Ferdes, Ov. S.; Mladin, C.; Vladu, Mihaela; Bulubasa, G.; Bidica, N.

    2008-01-01

    According to national regulations, as well as to the EU directive on the quality of drinking water, the radionuclide concentrations represent some of the drinking water quality parameters. Among the most important radioactivity content parameters are: the total alpha and total beta concentration (Bq/l); K-40 content, and the gamma-nuclides volume activities. The paper presents the measuring methods for low-level total alpha and/or beta counting of volume samples, as well as the high-resolution gamma-ray spectrometric method used to measure the volume activity of nuclides in drinking water. These methods are applied to monitor the radioactivity content and quality of the QLARIVIA brand of Deuterium depleted water (DDW). There are discussed the performances of these applied methods as well as some preliminary results. (authors)

  19. Experimental study on total dissolved gas supersaturation in water

    Directory of Open Access Journals (Sweden)

    Lu Qu

    2011-12-01

    Full Text Available More and more high dams have been constructed and operated in China. The total dissolved gas (TDG supersaturation caused by dam discharge leads to gas bubble disease or even death of fish. Through a series of experiments, the conditions and requirements of supersaturated TDG generation were examined in this study. The results show that pressure (water depth, aeration, and bubble dissolution time are required for supersaturated TDG generation, and the air-water contact area and turbulence intensity are the main factors that affect the generation rate of supersaturated TDG. The TDG supersaturation levels can be reduced by discharging water to shallow shoals downstream of the dam or using negative pressure pipelines. Furthermore, the TDG supersaturation levels in stilling basins have no direct relationship with those in reservoirs. These results are of great importance for further research on the prediction of supersaturated TDG generation caused by dam discharge and aquatic protection.

  20. Total Water Level Fun Facts: The Relative Contribution of Extreme Total Water Levels Along the US West Coast

    Science.gov (United States)

    Serafin, K.; Ruggiero, P.; Stockdon, H. F.

    2016-02-01

    In the fall of 2014, parts of the US West Coast endured some of the highest monthly mean sea level anomalies on record, likely due to the presence of "the blob" (Bond et al., 2015), an anomalously warm water mass in the NE Pacific. However, despite the significantly above average water levels, the coastline experienced only marginal coastal flooding and erosion hazards because the ensuing winter lacked significant storms, underscoring the fact that extreme total water levels (TWLs) are compound events. To better understand how several individual processes combine to cause devastating coastal hazards, we investigate the relative contribution that each component (waves, tides, and non-tidal residuals) has on extreme TWLs on sandy beaches. Water level records along the US West Coast are decomposed into mean sea level, astronomical tide, and non-tidal residuals (NTRs). The NTR is further split into an intra-annual seasonal signal, monthly mean sea level anomalies (inter-annual variability), and meteorological surge. TWL time series are then generated by combining water levels with wave runup, computed using wave data and beach morphology. We use this data-driven, structural function approach to investigate the spatial variability of the relative contribution of each component to the maximum TWL event on record. We also use a probabilistic, full simulation TWL model (Serafin and Ruggiero, 2014) to generate multiple, synthetic TWL records, to explore the relative contribution of each component to extreme TWL return levels. We assess the sensitivity to local beach morphology by computing TWLs for a range of observed beach slopes. Extreme TWLs are higher in Oregon and Washington than in California. Wave runup typically comprises > 50% of the TWL signal, while NTRs often compose < 5%, illustrating the importance wave climate has on the potential for extreme TWLs. While waves are typically larger in the North, California experiences greater contributions to extreme TWLs from

  1. A simulation study of the effect of soil water balance andwater stress on winter wheat production under different climate change scenarios

    Czech Academy of Sciences Publication Activity Database

    Eitzinger, J.; Šťastná, M.; Žalud, Z.; Dubrovský, Martin

    2003-01-01

    Roč. 61, - (2003), s. 195-217 ISSN 0378-3774 R&D Projects: GA ČR GA521/99/D040 Institutional research plan: CEZ:AV0Z3042911 Keywords : water stress effect * soil water balance * DSSAT crop model Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 0.865, year: 2003

  2. Balancing Water Uptake and Loss through the Coordinated Regulation of Stomatal and Root Development.

    Directory of Open Access Journals (Sweden)

    Christopher Hepworth

    Full Text Available Root development is influenced by nutrient and water availabilities. Plants are able to adjust many attributes of their root in response to environmental signals including the size and shape of the primary root, lateral roots and root hairs. Here we investigated the response of roots to changes in the levels of leaf transpiration associated with altered stomatal frequency. We found that plants with high stomatal density and conductance produce a larger rooting area and as a result have enhanced phosphate uptake capacity whereas plants with low stomatal conductance produce a smaller root. Manipulating the growth environment of plants indicated that enhanced root growth is most likely a result of an increased demand for water rather than phosphate. Plants manipulated to have an increase or reduction in root hair growth show a reduction or increase respectively, in stomatal conductance and density. Our results demonstrate that plants can balance their water uptake and loss through coordinated regulation of both stomatal and root development.

  3. Present Day and Future Population Dynamics of the Dengue Vector Mosquito Aedes aegypti Using a Water Container Energy Balance Model

    Science.gov (United States)

    Steinhoff, D.

    2017-12-01

    Dengue infections are estimated to total nearly 400 million per year worldwide, with both the geographic range and the magnitude of infections having increased in the past 50 years. The primary dengue vector mosquito Aedes aegypti is closely associated with humans. It lives exclusively in urban and semi-urban areas, preferentially bites humans, and spends its developmental stages in artificial water containers. Climate regulates the development of Ae. aegypti immature mosquitoes in artificial containers. Potential containers for Ae. aegypti immature development include, but are not limited to, small sundry items (e.g., bottles, cans, plastic containers), buckets, tires, barrels, tanks, and cisterns. Successful development of immature mosquitoes from eggs to larvae, pupae, and adults is largely dependent on the availability of water and the thermal properties of the water in the containers. An energy balance container model termed the Water Height And Temperature in Container Habitats Energy Model (WHATCH'EM) solves for water temperature and height for user-specified containers with readily available meteorological data. Output from WHATCH'EM is used to estimate development parameters for the immature life stages of the Ae. aegypti mosquito, allowing for assessment of habitat suitability across varying natural environments. Variability amongst different artificial containers (e.g., size, color, material, shape), shading scenarios, and water availability scenarios is also addressed. WHATCH'EM is also coupled with an Ae. aegypti life cycle model to include the effects of the aforementioned factors on survival. Projections of future climate scenarios that take into account changes not only in temperature but also precipitation, humidity, and radiative effects are used in WHATCH'EM to estimate how Ae. aegypti population dynamics may change.

  4. Water-tunnel studies of heat balance in swimming mako sharks.

    Science.gov (United States)

    Bernal, D; Sepulveda, C; Graham, J B

    2001-12-01

    The mako shark (Isurus oxyrinchus) has specialized vascular networks (retia mirabilia) forming counter-current heat exchangers that allow metabolic heat retention in certain regions of the body, including the aerobic, locomotor red muscle and the viscera. Red muscle, white muscle and stomach temperatures were measured in juvenile (5-13.6 kg) makos swimming steadily in a water tunnel and exposed to stepwise square-wave changes in ambient temperature (T(a)) to estimate the rates of heat transfer and to determine their capacity for the activity-independent control of heat balance. The rates of heat gain of red muscle during warming were significantly higher than the rates of heat loss during cooling, and neither the magnitude of the change in T(a) nor the direction of change in T(a) had a significant effect on red muscle latency time. Our findings for mako red muscle are similar to those recorded for tunas and suggest modulation of retial heat-exchange efficiency as the underlying mechanism controlling heat balance. However, the red muscle temperatures measured in swimming makos (0.3-3 degrees C above T(a)) are cooler than those measured previously in larger decked makos. Also, the finding of non-stable stomach temperatures contrasts with the predicted independence from T(a) recorded in telemetry studies of mako and white sharks. Our studies on live makos provide new evidence that, in addition to the unique convergent morphological properties between makos and tunas, there is a strong functional similarity in the mechanisms used to regulate heat transfer.

  5. Using Terrain Analysis and Remote Sensing to Improve Snow Mass Balance and Runoff Prediction

    Science.gov (United States)

    Venteris, E. R.; Coleman, A. M.; Wigmosta, M. S.

    2010-12-01

    Approximately 70-80% of the water in the international Columbia River basin is sourced from snowmelt. The demand for this water has competing needs, as it is used for agricultural irrigation, municipal, hydro and nuclear power generation, and environmental in-stream flow requirements. Accurate forecasting of water supply is essential for planning current needs and prediction of future demands due to growth and climate change. A significant limitation on current forecasting is spatial and temporal uncertainty in snowpack characteristics, particularly snow water equivalent. Currently, point measurements of snow mass balance are provided by the NRCS SNOTEL network. Each site consists of a snow mass sensor and meteorology station that monitors snow water equivalent, snow depth, precipitation, and temperature. There are currently 152 sites in the mountains of Oregon and Washington. An important step in improving forecasts is determining how representative each SNOTEL site is of the total mass balance of the watershed through a full accounting of the spatiotemporal variability in snowpack processes. This variation is driven by the interaction between meteorological processes, land cover, and landform. Statistical and geostatistical spatial models relate the state of the snowpack (characterized through SNOTEL, snow course measurements, and multispectral remote sensing) to terrain attributes derived from digital elevation models (elevation, aspect, slope, compound topographic index, topographic shading, etc.) and land cover. Time steps representing the progression of the snow season for several meteorologically distinct water years are investigated to identify and quantify dominant physical processes. The spatially distributed snow balance data can be used directly as model inputs to improve short- and long-range hydrologic forecasts.

  6. Thermal Balance in the Process of Fresh Water Production from Atmospheric Air Using the Sea Waves Renewable Energy

    Directory of Open Access Journals (Sweden)

    Mironov Victor

    2018-01-01

    Full Text Available Climatic changes and man-induced environmental load cause to a shortage of drinking quality fresh water. Upon that, fresh water sufficiency is one of the preconditions for quality assurance in adequate living standards as well as for domestic and foreign political stability especially in developing countries. A lot of technologies of fresh drinking water production are known today. Most of them involve significant power consumption and endanger to environment. As a rule these technologies use non-renewable hydrocarbons as power source. The author-developed technology of fresh drinking water obtaining from atmospheric air involves the use of clean renewable energy of the sea. This article bases the method of water production from the air. It is also describes technology implementation energy balance.

  7. Near-real-time Estimation and Forecast of Total Precipitable Water in Europe

    Science.gov (United States)

    Bartholy, J.; Kern, A.; Barcza, Z.; Pongracz, R.; Ihasz, I.; Kovacs, R.; Ferencz, C.

    2013-12-01

    Information about the amount and spatial distribution of atmospheric water vapor (or total precipitable water) is essential for understanding weather and the environment including the greenhouse effect, the climate system with its feedbacks and the hydrological cycle. Numerical weather prediction (NWP) models need accurate estimations of water vapor content to provide realistic forecasts including representation of clouds and precipitation. In the present study we introduce our research activity for the estimation and forecast of atmospheric water vapor in Central Europe using both observations and models. The Eötvös Loránd University (Hungary) operates a polar orbiting satellite receiving station in Budapest since 2002. This station receives Earth observation data from polar orbiting satellites including MODerate resolution Imaging Spectroradiometer (MODIS) Direct Broadcast (DB) data stream from satellites Terra and Aqua. The received DB MODIS data are automatically processed using freely distributed software packages. Using the IMAPP Level2 software total precipitable water is calculated operationally using two different methods. Quality of the TPW estimations is a crucial question for further application of the results, thus validation of the remotely sensed total precipitable water fields is presented using radiosonde data. In a current research project in Hungary we aim to compare different estimations of atmospheric water vapor content. Within the frame of the project we use a NWP model (DBCRAS; Direct Broadcast CIMSS Regional Assimilation System numerical weather prediction software developed by the University of Wisconsin, Madison) to forecast TPW. DBCRAS uses near real time Level2 products from the MODIS data processing chain. From the wide range of the derived Level2 products the MODIS TPW parameter found within the so-called mod07 results (Atmospheric Profiles Product) and the cloud top pressure and cloud effective emissivity parameters from the so

  8. Energy balances 2000

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    The energy balances of the Danish Statistical Office are the designation of the goods balances, which are tabulated for each energy article in both physical entities (quantities) and in base rates (values). The balance concept is connected to the definition supply = use, which is the basis for the construction of the system. The supply is determined as the sum of two items: import and production while the total use is the sum of 138 items: export, waste and transmission loss, stock increase, input in lack of the 130 industries, and private consumption divided into 5 consumption groups. The statistical analysis is performed yearly in both quantities and values for 35 energy articles. Values are computed for base rates, profits, taxes, VAT and market prices (buyer's price), respectively. The energy balances from 1975 to 2000 are presented for comparison. (EHS)

  9. Monitoring Recent Fluctuations of the Southern Pool of Lake Chad Using Multiple Remote Sensing Data: Implications for Water Balance Analysis

    Directory of Open Access Journals (Sweden)

    Wenbin Zhu

    2017-10-01

    Full Text Available The drought episodes in the second half of the 20th century have profoundly modified the state of Lake Chad and investigation of its variations is necessary under the new circumstances. Multiple remote sensing observations were used in this paper to study its variation in the recent 25 years. Unlike previous studies, only the southern pool of Lake Chad (SPLC was selected as our study area, because it is the only permanent open water area after the serious lake recession in 1973–1975. Four satellite altimetry products were used for water level retrieval and 904 Landsat TM/ETM+ images were used for lake surface area extraction. Based on the water level (L and surface area (A retrieved (with coinciding dates, linear regression method was used to retrieve the SPLC’s L-A curve, which was then integrated to estimate water volume variations ( Δ V . The results show that the SPLC has been in a relatively stable phase, with a slight increasing trend from 1992 to 2016. On annual average scale, the increase rate of water level, surface area and water volume is 0.5 cm year−1, 0.14 km2 year−1 and 0.007 km3 year−1, respectively. As for the intra-annual variations of the SPLC, the seasonal variation amplitude of water level, lake area and water volume is 1.38 m, 38.08 km2 and 2.00 km3, respectively. The scatterplots between precipitation and Δ V indicate that there is a time lag of about one to two months in the response of water volume variations to precipitation, which makes it possible for us to predict Δ V . The water balance of the SPLC is significantly different from that of the entire Lake Chad. While evaporation accounts for 96% of the lake’s total water losses, only 16% of the SPLC’s losses are consumed by evaporation, with the other 84% offset by outflow.

  10. Century-scale variability in global annual runoff examined using a water balance model

    Science.gov (United States)

    McCabe, G.J.; Wolock, D.M.

    2011-01-01

    A monthly water balance model (WB model) is used with CRUTS2.1 monthly temperature and precipitation data to generate time series of monthly runoff for all land areas of the globe for the period 1905 through 2002. Even though annual precipitation accounts for most of the temporal and spatial variability in annual runoff, increases in temperature have had an increasingly negative effect on annual runoff after 1980. Although the effects of increasing temperature on runoff became more apparent after 1980, the relative magnitude of these effects are small compared to the effects of precipitation on global runoff. ?? 2010 Royal Meteorological Society.

  11. Using Water and Agrochemicals in the Soil, Crop and Vadose Environment (WAVE Model to Interpret Nitrogen Balance and Soil Water Reserve Under Different Tillage Managements

    Directory of Open Access Journals (Sweden)

    Zare Narjes

    2014-10-01

    Full Text Available Applying models to interpret soil, water and plant relationships under different conditions enable us to study different management scenarios and then to determine the optimum option. The aim of this study was using Water and Agrochemicals in the soil, crop and Vadose Environment (WAVE model to predict water content, nitrogen balance and its components over a corn crop season under both conventional tillage (CT and direct seeding into mulch (DSM. In this study a corn crop was cultivated at the Irstea experimental station in Montpellier, France under both CT and DSM. Model input data were weather data, nitrogen content in both the soil and mulch at the beginning of the season, the amounts and the dates of irrigation and nitrogen application. The results show an appropriate agreement between measured and model simulations (nRMSE < 10%. Using model outputs, nitrogen balance and its components were compared with measured data in both systems. The amount of N leaching in validation period were 10 and 8 kgha–1 in CT and DSM plots, respectively; therefore, these results showed better performance of DSM in comparison with CT. Simulated nitrogen leaching from CT and DSM can help us to assess groundwater pollution risk caused by these two systems.

  12. The Impact of Para Rubber Expansion on Streamflow and Other Water Balance Components of the Nam Loei River Basin, Thailand

    Directory of Open Access Journals (Sweden)

    Winai Wangpimool

    2016-12-01

    Full Text Available At present, Para rubber is an economical crop which provides a high priced product and is in demand by global markets. Consequently, the government of Thailand is promoting the expansion of Para rubber plantations throughout the country. Traditionally, Para rubber was planted and grown only in the southern areas of the country. However, due to the Government’s support and promotion as well as economic reasons, the expansion of Para rubber plantations in the northeast has increased rapidly. This support has occurred without accounting for suitable cultivation of Para rubber conditions, particularly in areas with steep slopes and other factors which have significant impacts on hydrology and water quality. This study presents the impacts of Para rubber expansion by applying the Soil and Water Assessment Tool (SWAT hydrological model on the hydrology and water balance of the Nam Loei River Basin, Loei Province. The results showed that the displacement of original local field crops and disturbed forest land by Para rubber production resulted in an overall increase of evapotranspiration (ET of roughly 3%. The major factors are the rubber canopy and precipitation. Moreover, the water balance results showed an annual reduction of about 3% in the basin average water yield, especially during the dry season.

  13. [Simulation for balanced effect of soil and water resources on cultivated land in Naoli River Basin, Northeast China under the RCPs climate scene].

    Science.gov (United States)

    Zhou, Hao; Lei, Guo Ping; Yang, Xue Xin; Zhao, Yu Hui; Zhang, Ji Xin

    2018-04-01

    Under the scenarios of climate change, balancing the land and water resources is one of the key problems needed to be solved in land development. To reveal the water dynamics of the cultivated land in Naoli River Basin, we simulated the future scenarios by using the future land use simulation model based on Landsat Satellite images, the DEM data and the meteorological data. Results showed that the growth rate of cultivated land gradually decreased. It showed different changing characteristics in different time periods, which led to different balancing effect between land and water resources. In 1990, the water dynamics of the cultivated land resources was in good state, At the same time, the adjustment of crops structure caused the paddy fields increased dramatically. During 2002 to 2014, the cultivated land that in moderate and serious moisture shortage state increased slightly, the water deficit was deteriorating to a certain degree, and maintained sound development of water profit and loss situation gradually. By comparing the simulation accuracy with different spatial resolutions and time scales, we selected 200 m as the spatial resolution of the simulation, and simulated the land use status in 2038. The simulation results showed that the cultivated land's water profit and loss degree in the river basin showed significant polarization characteristic, in that the water profit and loss degree of the cultivated land would be further intensified, the area with the higher grades of moisture profit and loss degree would distribute more centralized, and partially high evaluated grades for the moisture shortage would expand. It is needed to develop the cultivated land irrigation schemes and adjust the cultivated land in Naoli River Basin to balance soil and water resources.

  14. Feasibility of retrieving dust properties and total column water vapor from solar spectra measured using a lander camera on Mars

    Science.gov (United States)

    Manago, Naohiro; Noguchi, Katsuyuki; Hashimoto, George L.; Senshu, Hiroki; Otobe, Naohito; Suzuki, Makoto; Kuze, Hiroaki

    2017-12-01

    Dust and water vapor are important constituents in the Martian atmosphere, exerting significant influence on the heat balance of the atmosphere and surface. We have developed a method to retrieve optical and physical properties of Martian dust from spectral intensities of direct and scattered solar radiation to be measured using a multi-wavelength environmental camera onboard a Mars lander. Martian dust is assumed to be composed of silicate-like substrate and hematite-like inclusion, having spheroidal shape with a monomodal gamma size distribution. Error analysis based on simulated data reveals that appropriate combinations of three bands centered at 450, 550, and 675 nm wavelengths and 4 scattering angles of 3°, 10°, 50°, and 120° lead to good retrieval of four dust parameters, namely, aerosol optical depth, effective radius and variance of size distribution, and volume mixing ratio of hematite. Retrieval error increases when some of the observational parameters such as color ratio or aureole are omitted from the retrieval. Also, the capability of retrieving total column water vapor is examined through observations of direct and scattered solar radiation intensities at 925, 935, and 972 nm. The simulation and error analysis presented here will be useful for designing an environmental camera that can elucidate the dust and water vapor properties in a future Mars lander mission.

  15. How accurately are climatological characteristics and surface water and energy balances represented for the Colombian Caribbean Catchment Basin?

    Science.gov (United States)

    Hoyos, Isabel; Baquero-Bernal, Astrid; Hagemann, Stefan

    2013-09-01

    In Colombia, the access to climate related observational data is restricted and their quantity is limited. But information about the current climate is fundamental for studies on present and future climate changes and their impacts. In this respect, this information is especially important over the Colombian Caribbean Catchment Basin (CCCB) that comprises over 80 % of the population of Colombia and produces about 85 % of its GDP. Consequently, an ensemble of several datasets has been evaluated and compared with respect to their capability to represent the climate over the CCCB. The comparison includes observations, reconstructed data (CPC, Delaware), reanalyses (ERA-40, NCEP/NCAR), and simulated data produced with the regional climate model REMO. The capabilities to represent the average annual state, the seasonal cycle, and the interannual variability are investigated. The analyses focus on surface air temperature and precipitation as well as on surface water and energy balances. On one hand the CCCB characteristics poses some difficulties to the datasets as the CCCB includes a mountainous region with three mountain ranges, where the dynamical core of models and model parameterizations can fail. On the other hand, it has the most dense network of stations, with the longest records, in the country. The results can be summarised as follows: all of the datasets demonstrate a cold bias in the average temperature of CCCB. However, the variability of the average temperature of CCCB is most poorly represented by the NCEP/NCAR dataset. The average precipitation in CCCB is overestimated by all datasets. For the ERA-40, NCEP/NCAR, and REMO datasets, the amplitude of the annual cycle is extremely high. The variability of the average precipitation in CCCB is better represented by the reconstructed data of CPC and Delaware, as well as by NCEP/NCAR. Regarding the capability to represent the spatial behaviour of CCCB, temperature is better represented by Delaware and REMO, while

  16. Modeling the monthly mean soil-water balance with a statistical-dynamical ecohydrology model as coupled to a two-component canopy model

    Directory of Open Access Journals (Sweden)

    J. P. Kochendorfer

    2010-10-01

    Full Text Available The statistical-dynamical annual water balance model of Eagleson (1978 is a pioneering work in the analysis of climate, soil and vegetation interactions. This paper describes several enhancements and modifications to the model that improve its physical realism at the expense of its mathematical elegance and analytical tractability. In particular, the analytical solutions for the root zone fluxes are re-derived using separate potential rates of transpiration and bare-soil evaporation. Those potential rates, along with the rate of evaporation from canopy interception, are calculated using the two-component Shuttleworth-Wallace (1985 canopy model. In addition, the soil column is divided into two layers, with the upper layer representing the dynamic root zone. The resulting ability to account for changes in root-zone water storage allows for implementation at the monthly timescale. This new version of the Eagleson model is coined the Statistical-Dynamical Ecohydrology Model (SDEM. The ability of the SDEM to capture the seasonal dynamics of the local-scale soil-water balance is demonstrated for two grassland sites in the US Great Plains. Sensitivity of the results to variations in peak green leaf area index (LAI suggests that the mean peak green LAI is determined by some minimum in root zone soil moisture during the growing season. That minimum appears to be close to the soil matric potential at which the dominant grass species begins to experience water stress and well above the wilting point, thereby suggesting an ecological optimality hypothesis in which the need to avoid water-stress-induced leaf abscission is balanced by the maximization of carbon assimilation (and associated transpiration. Finally, analysis of the sensitivity of model-determined peak green LAI to soil texture shows that the coupled model is able to reproduce the so-called "inverse texture effect", which consists of the observation that natural vegetation in dry climates tends

  17. Caspian Sea water balance and dynamics studies using anthropogenic radionuclides: Implications for environmental changes

    International Nuclear Information System (INIS)

    Oregioni, B.; Gastaud, J.; Pham, M.K.; Povinec, P.P.

    2002-01-01

    Full text: Environmental changes in the Caspian Sea have recently become of great interest in connection with fluctuations in sea level changes. Radioactive and stable isotopes have been used as powerful tracers to investigate water balance and dynamics and have contributed significantly to understanding climatically driven environmental changes in the Caspian Sea. The Caspian Sea is the world largest inland water body with a surface area of about 386000 km 2 and a volume of about 67000 km 3 , located in a large continental depression about 28 m below sea level. With no surface outlet, the Caspian Sea is particularly sensitive to climatic variations. The drainage area of the Caspian Sea is approximately 3.7 million square kilometers. The Volga, Ural and Terek empty into the North Caspian, with their combined annual flow accounting for 88% of all water entering the sea. The Sulak, Samur, Kura and a number of small rivers contribute about 7% of the inflow, the remainder comes from the rivers of the Iranian shore. The Caspian Sea is divided into three basins with approximately the same surface. The North Caspian Basin, maximum depth 15 m, average depth 5 m, contains 1% of the total water. The Middle Caspian (or Central) Basin has a maximum depth of 800 m and contains 22% of the total water. The South Caspian Basin, maximum depth 1024 m, average depth 330 m, contains 77% of the total Caspian Sea water. Recently there have been concerns over the environmental conditions of the Caspian Sea, especially over observed sea level changes, which have had a strong impact on the region. Anthropogenic radionuclides like 90 Sr, 137 Cs and 239 , 240 Pu are particularly useful tracers for the investigation of water dynamics. Two research-training cruises were carried out in September 1995 and August-September 1996. At every station, 60-70 liters samples of seawater from different depths were processed for sequential separation of plutonium, cesium and strontium isotopes. This was

  18. A differential absorption technique to estimate atmospheric total water vapor amounts

    Science.gov (United States)

    Frouin, Robert; Middleton, Elizabeth

    1990-01-01

    Vertically integrated water-vapor amounts can be remotely determined by measuring the solar radiance reflected by the earth's surface with satellites or aircraft-based instruments. The technique is based on the method by Fowle (1912, 1913) and utilizes the 0.940-micron water-vapor band to retrieve total-water-vapor data that is independent of surface reflectance properties and other atmospheric constituents. A channel combination is proposed to provide more accurate results, the SE-590 spectrometer is used to verify the data, and the effects of atmospheric photon backscattering is examined. The spectrometer and radiosonde data confirm the accuracy of using a narrow and a wide channel centered on the same wavelength to determine water vapor amounts. The technique is suitable for cloudless conditions and can contribute to atmospheric corrections of land-surface parameters.

  19. Utility of remote sensing-based surface energy balance models to track water stress in rain-fed switchgrass under dry and wet conditions

    Science.gov (United States)

    The ability of remote sensing-based surface energy balance (SEB) models to track water stress in rain-fed switchgrass has not been explored yet. In this paper, the theoretical framework of crop water stress index (CWSI) was utilized to estimate CWSI in rain-fed switchgrass (Panicum virgatum L.) usin...

  20. Analysis of shallow-groundwater dynamic responses to water supply change in the Haihe River plain

    Science.gov (United States)

    Lin, Z.; Lin, W.; Pengfei, L.

    2015-05-01

    When the middle route of the South-to-North Water Diversion Project is completed, the water supply pattern of the Haihe River plain in North China will change significantly due to the replenishment of water sources and groundwater-exploitation control. The water-cycle-simulation model - MODCYCLE, has been used in simulating the groundwater dynamic balance for 2001-2010. Then different schemes of water supply in 2020 and 2030 were set up to quantitatively simulate the shallow-groundwater dynamic responses in the future. The results show that the total shallow-groundwater recharge is mainly raised by the increases in precipitation infiltration and surface-water irrigation infiltration. Meanwhile, the decrease of groundwater withdrawal contributes to reduce the total discharge. The recharge-discharge structure of local groundwater was still in a negative balance but improved gradually. The shallow-groundwater level in most parts was still falling before 2030, but more slowly. This study can benefit the rational exploitation of water resources in the Haihe River plain.

  1. Employing Hot Wire Anemometry to Directly Measure the Water Balance of a Commercial Proton Exchange Membrane Fuel Cell Stack

    DEFF Research Database (Denmark)

    Shakhshir, Saher Al; Berning, Torsten

    2016-01-01

    Proton exchange membrane fuel cells (PEMFC’s) are currently being commercialized for various applications ranging from automotive (e.g. the Toyota Mirai) to stationary such as powering telecom backup units. In PEMFC’s, oxygen from air is internally combined with hydrogen to form water and produce...... and increased degradation rates. Clearly, a fundamental understanding of all aspects of water management in PEMFC is imperative. This includes the fuel cell water balance, i.e. which fraction of the product water leaves the fuel cell via the anode channels versus the cathode channel. Our research group...... signal received gives valuable insight into heat and mass transfer phenomena in a PEMFC....

  2. Total mercury concentrations in surface water and sediments from Danube Delta lakes

    Directory of Open Access Journals (Sweden)

    TEODOROF Liliana

    2007-10-01

    Full Text Available The samples were collected from surface water and sediments of Danube Delta lakes, during april and may 2006. The sediments were digested with nitric acid, and the surface water with real aqua, at Microwave Oven Anton Paar and analised at FIMS 400 Perkin Elmer. The results show that the total mercury is compared with the maximum allowed limits according with Normative 161/2006.

  3. The groundwater balance in alluvial plain aquifer at Dehgolan, Kurdistan, Iran

    Science.gov (United States)

    Amini, Ata; Homayounfar, Vafa

    2017-10-01

    In this research, groundwater balance in Dehgolan plain, Kurdistan, Iran was carried out to assess changes in the level and volume of groundwater and water resources management. For this purpose, water resources supplies and consumption data, amount of charging and discharge and water level data recorded from wells and piezometers from 2010 to 2011 water year were gathered and analyzed. Rainfall and water losses of the study area were determined and required maps, including Iso-maps of the temperature, the evaporation, the groundwater level and the aquifer conductivity, were drawn by GIS software. Using the information and drawn maps and the equality of inputs and outputs data, the aquifer water balance was calculated. The results of balance equations showed that the balance is negative indicated a notably decline of groundwater equal to 15.029 million cubic meter (MCM). Such rate of decline is due to the large number of agricultural wells in the region, without considering the hydrological potential of the aquifer.

  4. Use of geomorphic, hydrologic, and nitrogen mass balance data to model ecosystem nitrate retention in tidal freshwater wetlands

    Directory of Open Access Journals (Sweden)

    E. D. Seldomridge

    2012-07-01

    Full Text Available Geomorphic characteristics have been used as scaling parameters to predict water and other fluxes in many systems. In this study, we combined geomorphic analysis with in-situ mass balance studies of nitrate retention (NR to evaluate which geomorphic scaling parameters best predicted NR in a tidal freshwater wetland ecosystem. Geomorphic characteristics were measured for 267 individual marshes that constitute the freshwater tidal wetland ecosystem of the Patuxent River, Maryland. Nitrate retention was determined from mass balance measurements conducted at the inlets of marshes of varying size (671, 5705, and 536 873 m2 over a period of several years. Mass balance measurements indicate that NR is proportional to total water flux over the tidal cycle. Relationships between estimated tidal prism (calculated water volume for spring tides and various geomorphic parameters (marsh area, total channel length, and inlet width were defined using measurements from air photos and compared to field data. From these data, NR equations were determined for each geomorphic parameter, and used to estimate NR for all marshes in the ecosystem for a reference spring (high tide. The resulting ecosystem NR estimates were evaluated for (a accuracy and completeness of geomorphic data, (b relationship between the geomorphic parameters and hydrologic flux, and (c the ability to adapt the geomorphic parameter to varying tidal conditions. This analysis indicated that inlet width data were the most complete and provided the best estimate of ecosystem nitrate retention. Predictions based on marsh area were significantly lower than the inlet width-based predictions. Cumulative probability distributions of nitrate retention indicate that the largest 3–4% of the marshes retained half of the total nitrate for the ecosystem.

  5. Critical discussion on the "observed" water balances of five sub-basins in the Everest region

    Science.gov (United States)

    Chevallier, P.; Eeckman, J.; Nepal, S.; Delclaux, F.; Wagnon, P.; Brun, F.; Koirala, D.

    2017-12-01

    The hydrometeorological components of five Dudh Koshi River sub-basins on the Nepalese side of the Mount Everest have been monitored during four hydrological years (2013-2017), with altitudes ranging from 2000 m to Everest top, areas between 4.65 and 1207 km², and proportions of glaciated areas between nil and 45%. This data set is completed with glacier mass balance observations. The analysis of the observed data and the resulting water balances show large uncertainties of different types: aleatory, epistemic or semantic, following the classification proposed by Beven (2016). The discussion is illustrated using results from two modeling approaches, physical (ISBA, Noilhan and Planton, 1996) and conceptual (J2000, Krause, 2001), as well as large scale glacier mass balances obtained by the way of a recent remote sensing processing method. References: Beven, K., 2016. Facets of uncertainty: epistemic uncertainty, non-stationarity, likelihood, hypothesis testing, and communication. Hydrological Sciences Journal 61, 1652-1665. doi:10.1080/02626667.2015.1031761 Krause, P., 2001. Das hydrologische Modellsystem J2000: Beschreibung und Anwendung in groen Flueinzugsgebieten, Schriften des Forschungszentrum Jülich. Reihe Umwelt/Environment; Band 29. Noilhan, J., Planton, S., 1989. A single parametrization of land surface processes for meteorological models. Monthly Weather Review 536-549.

  6. Magnetic hydrophilic-lipophilic balance sorbent for efficient extraction of chemical warfare agents from water samples.

    Science.gov (United States)

    Singh, Varoon; Purohit, Ajay Kumar; Chinthakindi, Sridhar; Goud D, Raghavender; Tak, Vijay; Pardasani, Deepak; Shrivastava, Anchal Roy; Dubey, Devendra Kumar

    2016-02-19

    Magnetic hydrophilic-lipophilic balance (MHLB) hybrid resin was prepared by precipitation polymerization using N-vinylpyrrolidone (PVP) and divinylbenzene (DVB) as monomers and Fe2O3 nanoparticles as magnetic material. These resins were successfully applied for the extraction of chemical warfare agents (CWAs) and their markers from water samples through magnetic dispersive solid-phase extraction (MDSPE). By varying the ratios of monomers, resin with desired hydrophilic-lipophilic balance was prepared for the extraction of CWAs and related esters of varying polarities. Amongst different composites Fe2O3 nanoparticles coated with 10% PVP+90% DVB exhibited the best recoveries varying between 70.32 and 97.67%. Parameters affecting the extraction efficiencies, such as extraction time, desorption time, nature and volume of desorption solvent, amount of extraction sorbent and the effect of salts on extraction were investigated. Under the optimized conditions, linearity was obtained in the range of 0.5-500 ng mL(-1) with correlation ranging from 0.9911-0.9980. Limits of detection and limits of quantification were 0.5-1.0 and 3.0-5.0 ng mL(-1) respectively with RSDs varying from 4.88-11.32% for markers of CWAs. Finally, the developed MDSPE method was employed for extraction of analytes from water samples of various sources and the OPCW proficiency test samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. The energy balance within a bubble column evaporator

    Science.gov (United States)

    Fan, Chao; Shahid, Muhammad; Pashley, Richard M.

    2018-05-01

    Bubble column evaporator (BCE) systems have been studied and developed for many applications, such as thermal desalination, sterilization, evaporative cooling and controlled precipitation. The heat supplied from warm/hot dry bubbles is to vaporize the water in various salt solutions until the solution temperature reaches steady state, which was derived into the energy balance of the BCE. The energy balance and utilization involved in each BCE process form the fundamental theory of these applications. More importantly, it opened a new field for the thermodynamics study in the form of heat and vapor transfer in the bubbles. In this paper, the originally derived energy balance was reviewed on the basis of its physics in the BCE process and compared with new proposed energy balance equations in terms of obtained the enthalpy of vaporization (Δ H vap) values of salt solutions from BCE experiments. Based on the analysis of derivation and Δ H vap values comparison, it is demonstrated that the original balance equation has high accuracy and precision, within 2% over 19-55 °C using improved systems. Also, the experimental and theoretical techniques used for determining Δ H vap values of salt solutions were reviewed for the operation conditions and their accuracies compared to the literature data. The BCE method, as one of the most simple and accurate techniques, offers a novel way to determine Δ H vap values of salt solutions based on its energy balance equation, which had error less than 3%. The thermal energy required to heat the inlet gas, the energy used for water evaporation in the BCE and the energy conserved from water vapor condensation were estimated in an overall energy balance analysis. The good agreement observed between input and potential vapor condensation energy illustrates the efficiency of the BCE system. Typical energy consumption levels for thermal desalination for producing pure water using the BCE process was also analyzed for different inlet air

  8. Accounting for hydro-climatic and water use variability in the assessment of past and future water balance at the basin scale

    Directory of Open Access Journals (Sweden)

    J. Fabre

    2015-06-01

    Full Text Available This study assesses water stress by 2050 in river basins facing increasing human and climatic pressures, by comparing the impacts of various combinations of possible future socio-economic and climate trends. A modelling framework integrating human and hydro-climatic dynamics and accounting for interactions between resource and demand at a 10-day time step was developed and applied in two basins of different sizes and with contrasted water uses: the Herault (2500 km2, France and the Ebro (85 000 km2, Spain basins. Natural streamflow was evaluated using a conceptual hydrological model (GR4j. A demand-driven reservoir management model was designed to account for streamflow regulations from the main dams. Urban water demand was estimated from time series of population and monthly unit water consumption data. Agricultural water demand was computed from time series of irrigated area, crop and soil data, and climate forcing. Indicators comparing water supply to demand at strategic resource and demand nodes were computed. This framework was successfully calibrated and validated under non-stationary human and hydro-climatic conditions over the last 40 years before being applied under four combinations of climatic and water use scenarios to differentiate the impacts of climate- and human-induced changes on streamflow and water balance. Climate simulations from the CMIP5 exercise were used to generate 18 climate scenarios at the 2050 horizon. A baseline water use scenario for 2050 was designed based on demographic and local socio-economic trends. Results showed that projected water uses are not sustainable under climate change scenarios.

  9. Recharge Estimation Using Water, Chloride and Isotope Mass Balances

    Science.gov (United States)

    Dogramaci, S.; Firmani, G.; Hedley, P.; Skrzypek, G.; Grierson, P. F.

    2014-12-01

    Discharge of surplus mine water into ephemeral streams may elevate groundwater levels and alter the exchange rate between streams and underlying aquifers but it is unclear whether volumes and recharge processes are within the range of natural variability. Here, we present a case study of an ephemeral creek in the semi-arid subtropical Hamersley Basin that has received continuous mine discharge for more than five years. We used a numerical model coupled with repeated measurements of water levels, chloride concentrations and the hydrogen and oxygen stable isotope composition (δ2H and δ18O) to estimate longitudinal evapotranspiration and recharge rates along a 27 km length of Weeli Wolli Creek. We found that chloride increased from 74 to 120 mg/L across this length, while δ18O increased from -8.24‰ to -7.00‰. Groundwater is directly connected to the creek for the first 13 km and recharge rates are negligible. Below this point, the creek flows over a highly permeable aquifer and water loss by recharge increases to a maximum rate of 4.4 mm/d, which accounts for ~ 65% of the total water discharged to the creek. Evapotranspiration losses account for the remaining ~35%. The calculated recharge from continuous flow due to surplus water discharge is similar to that measured for rainfall-driven flood events along the creek. Groundwater under the disconnected section of the creek is characterised by a much lower Cl concentration and more depleted δ18O value than mining discharge water but is similar to flood water generated by large episodic rainfall events. Our results suggest that the impact of recharge from continuous flow on the creek has not extended beyond 27 km from the discharge point. Our approach using a combination of hydrochemical and isotope methods coupled with classical surface flow hydraulic modelling allowed evaluation of components of water budget otherwise not possible in a highly dynamic system that is mainly driven by infrequent but large episodic

  10. Hydrological balancing as applied to shallow ground disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Kobera, P.; Dlouhy, Z.

    1984-02-01

    Shallow ground repositories are suitable disposal means for low and intermediate level radioactive wastes which offer an adequate form of containment of relatively short-lived radionuclides. The majority of safety related problems are connected with occurrence of water at the site. These problems include water accumulation in the disposal modules, high water table, hydrogeological complexity, water erosion, etc. In this context a simple technique is proposed for water balancing in the region of interest which would be relatively inexpensive and could supply large amounts of pertinent information. In the paper several balancing techniques based on water and/or energy balance methods are discussed. The results of a static evaluation of long term water balance averages are presented for the regions of planned shallow ground repositories near Dukovany and Mochovce in the CSSR. Hydrological processes and elements taking part in different hydrological cycles are treated from the dynamical point of view. The calculation methods for application of the kinematic approach are briefly touched. The results may be acquired at relatively low costs

  11. Research concerning the balancing of a plane mechanism

    Science.gov (United States)

    Bădoiu, D.; Petrescu, M. G.; Antonescu, N. N.; Toma, G.

    2018-01-01

    By statically balancing of the plane mechanisms and especially those functioning at high speeds is being pursued the decrease of the value of the resultant force of all inertia forces that work on the component elements, thus obtaining a significant decrease in vibrations and shocks during the functioning. On the other hand, the existence of balancing masses which ensure the balancing of the mechanism leads to increased gauge and its mass. In this paper are presented some possibilities of statically balancing a plane mechanism which is composed of three independent contours. First is analyzed the case when the mechanism is totally balanced. Then a solution is proposed for a partial balancing of the mechanism based on the balancing of the first harmonic of the inertia force developed in a piston of the mechanism. Finally, are presented some simulation results concerning the variation of the value of the resultant inertia force during a cinematic cycle when the mechanism is unbalanced and when it is partially balanced. Also, it is analyzed the variation of the motor moment when the mechanism is unbalanced and when is totally and partially balanced.

  12. Optical Algorithms at Satellite Wavelengths for Total Suspended Matter in Tropical Coastal Waters

    OpenAIRE

    Ouillon, Sylvain; Douillet, Pascal; Petrenko, Anne; Neveux, Jacques; Dupouy, C?cile; Froidefond, Jean-Marie; Andr?fou?t, Serge; Mu?oz-Caravaca, Alain

    2008-01-01

    Is it possible to derive accurately Total Suspended Matter concentration or its proxy, turbidity, from remote sensing data in tropical coastal lagoon waters? To investigate this question, hyperspectral remote sensing reflectance, turbidity and chlorophyll pigment concentration were measured in three coral reef lagoons. The three sites enabled us to get data over very diverse environments: oligotrophic and sediment-poor waters in the southwest lagoon of New Caledonia, eutrophic waters in the C...

  13. Long-term energy balance and vegetation water stress monitoring of Mediterranean oak savanna using satellite thermal data

    Science.gov (United States)

    González-Dugo, Maria P.; Chen, Xuelong; Andreu, Ana; Carpintero, Elisabet; Gómez-Giraldez, Pedro; Su, Z.(Bob)

    2017-04-01

    Drought is one of the major hazards faced by natural and cropped vegetation in the Mediterranean Sea Basin. Water scarcity is likely to be worsened under the predicted conditions of climate change, which is expected to make this region both warmer and drier. A Holm oak savanna, known as dehesa in Spain and montado in Portugal, is an agro-silvo-pastoral system occupying more than 3 million hectares the Iberian Peninsula and Greece. It consists of widely-spaced oak trees (mostly Quercus ilex L.), combined with crops, pasture and Mediterranean shrubs. This ecosystem is considered an example of sustainable land use, supporting a large number of species and diversity of habitats and for its importance in rural economy. A similar ecosystem is worldwide distributed in areas with Mediterranean climate (as California or South Africa) and shares structural and functional properties with tropical savannas in Africa, Australia and South America. Remote sensing time series can assist the monitoring of the energy balance components, with special attention to the evapotranspiration and vegetation water stress over these areas. Long-term data analysis may improve our understanding of the functioning of the system, helping to assess drought impacts and leading to reduce the economic and environmental vulnerability of this ecosystem. This work analyzes the evolution the surface energy balance components, mapping the evapotranspiration and moisture stress of holm oak woodlands of Spain and Portugal during the last 15 years (2001-2015). The surface energy balance model (SEBS) has been applied over the Iberian Peninsula on a monthly time scale and 0.05° spatial resolution, using multi-satellite and meteorological forcing data. Modelled energy and water fluxes have been validated using ground measurements of two eddy covariance towers located in oak savanna sites during 3 years, resulting in moderate deviations from observations (10-25 W/m2). The departure of actual ET from the

  14. Estimation of total body water by bioelectrical impedance analysis

    International Nuclear Information System (INIS)

    Kushner, R.F.; Schoeller, D.A.

    1986-01-01

    Total body water (TBW) measured by bioelectrical impedance analysis (BIA) was directly compared with deuterium-isotope dilution in a total of 58 subjects. First, sex-specific and group equations were developed by multiple regression analysis in (10 each) obese and nonobese men and women. Height/resistive impedance was the most significant variable used to predict deuterium-dilution space (D2O-TBW) and, combined with weight, yielded R = 0.99 and SE of estimate = 1.75 L. Equations predicted D2O-TBW equally well for obese and nonobese subjects. Second, the equations were prospectively tested in a heterogeneous group of 6 males and 12 females. Sex-specific equations predicted D2O-TBW with good correlation coefficients (0.96 and 0.93), total error (2.34 and 2.89 L), and a small difference between mean predicted and measured D2O-TBW (-1.4 +/- 2.05 and -0.48 +/- 2.83 L). BIA predicts D2O-TBW more accurately than weight, height, and/or age. A larger population is required to validate the applicability of our equations

  15. Empirical Estimation of Total Nitrogen and Total Phosphorus Concentration of Urban Water Bodies in China Using High Resolution IKONOS Multispectral Imagery

    Directory of Open Access Journals (Sweden)

    Jiaming Liu

    2015-11-01

    Full Text Available Measuring total nitrogen (TN and total phosphorus (TP is important in managing heavy polluted urban waters in China. This study uses high spatial resolution IKONOS imagery with four multispectral bands, which roughly correspond to Landsat/TM bands 1–4, to determine TN and TP in small urban rivers and lakes in China. By using Lake Cihu and the lower reaches of Wen-Rui Tang (WRT River as examples, this paper develops both multiple linear regressions (MLR and artificial neural network (ANN models to estimate TN and TP concentrations from high spatial resolution remote sensing imagery and in situ water samples collected concurrently with overpassing satellite. The measured and estimated values of both MLR and ANN models are in good agreement (R2 > 0.85 and RMSE < 2.50. The empirical equations selected by MLR are more straightforward, whereas the estimated accuracy using ANN model is better (R2 > 0.86 and RMSE < 0.89. Results validate the potential of using high resolution IKONOS multispectral imagery to study the chemical states of small-sized urban water bodies. The spatial distribution maps of TN and TP concentrations generated by the ANN model can inform the decision makers of variations in water quality in Lake Cihu and lower reaches of WRT River. The approaches and equations developed in this study could be applied to other urban water bodies for water quality monitoring.

  16. The relevance of ligament balancing in total knee arthroplasty: how important is it? A systematic review of the literature

    Directory of Open Access Journals (Sweden)

    Sina Babazadeh

    2009-11-01

    Full Text Available Ligament balancing affects many of the postoperative criteria for a successful knee replacement. A balanced knee contributes to improved alignment and stability. Ligament balancing helps reduce wear and loosening of the joint. A patient with a balanced knee is more likely to have increased range of motion and proprioception, and decreased pain. All these factors help minimize the need for revision surgery. Complications associated with ligament balancing can include instability caused by over-balancing and the possibility of neurovascular damage during or as a result of ligament balancing. This article attempts to summarize the literature, to define a balanced knee, and outline the benefits and possible complications of ligament balancing. Different techniques, sequences, and tools used in ligament balancing, and their relevance in correcting various deformities are reviewed.

  17. Human Water and Electrolyte Balance

    National Research Council Canada - National Science Library

    Montain, S. J; Cheuvront, S. N; Carter, R; Sawka, M. N

    2006-01-01

    .... Sweat losses, if not replaced, reduce body water volume and electrolyte content. Excessive body water or electrolyte losses can disrupt physiological homeostasis and threaten both health and performance...

  18. Viability of human periodontal ligament fibroblasts in milk, Hank's balanced salt solution and coconut water as storage media.

    Science.gov (United States)

    Souza, B D M; Lückemeyer, D D; Reyes-Carmona, J F; Felippe, W T; Simões, C M O; Felippe, M C S

    2011-02-01

    To evaluate the effectiveness of various storage media at 5 °C for maintaining the viability of human periodontal ligament fibroblasts (PDLF). Plates with PDLF were soaked in recently prepared Hank's balanced salt solution (HBSS), skimmed milk, whole milk, Save-A-Tooth(®) system's HBSS (Save), natural coconut water, industrialized coconut water or tap water (negative control) at 5 °C for 3, 6, 24, 48, 72, 96 and 120 h. Minimum essential medium (MEM) at 37 °C served as the positive control. PDL cell viability was determined by MTT assay. Data were statistically analysed by Kruskal-Wallis test complemented by the Scheffé test (α=5%). The greatest number of viable cells was observed for MEM. Skimmed and whole milk, followed by natural coconut water and HBSS, were the most effective media in maintaining cell viability (Pmilk had the greatest capacity to maintain PDLF viability when compared with natural coconut water, HBSS, Save, industrialized coconut water and tap water. © 2010 International Endodontic Journal.

  19. Cold-water immersion alters muscle recruitment and balance of basketball players during vertical jump landing.

    Science.gov (United States)

    Macedo, Christiane de Souza Guerino; Vicente, Rafael Chagas; Cesário, Mauricio Donini; Guirro, Rinaldo Roberto de Jesus

    2016-01-01

    The purpose of this study was to evaluate the effects of cold-water immersion on the electromyographic (EMG) response of the lower limb and balance during unipodal jump landing. The evaluation comprised 40 individuals (20 basketball players and 20 non-athletes). The EMG response in the lateral gastrocnemius, tibialis anterior, fibular longus, rectus femoris, hamstring and gluteus medius; amplitude and mean speed of the centre of pressure, flight time and ground reaction force (GRF) were analysed. All volunteers remained for 20 min with their ankle immersed in cold-water, and were re-evaluated immediately post and after 10, 20 and 30 min of reheating. The Shapiro-Wilk test, Friedman test and Dunn's post test (P lower for the athletes. Lower jump flight time and GRF, greater amplitude and mean speed of centre of pressure were predominant in the athletes. Cold-water immersion decreased the EMG activity of the lower limb, flight time and GRF and increased the amplitude and mean speed of centre of pressure.

  20. Estimating the actual ET from a pecan farm using the OPEC energy-balance and Penman- Monteith methods

    Science.gov (United States)

    Debele, B.; Bawazir, S. A.

    2006-12-01

    Accurate estimation of ET from field crops/orchards is the basis for better irrigation water management. In areas like Mesilla Valley, NM, where water is scarce, it is even more important to precisely determine the crop ET. An OPEC energy balance system was run for 117 days (June 22 October 14, 2001) in a matured pecan farm at Mesilla Valley, NM. The actual evapotranspiration (ET) from pecan orchards was determined from the surface energy balance as a residual, having measured the net radiation, soil heat flux, and sensible heat components using the OPEC method. Since pecans are large trees, we have also examined the effect of including thermal energies stored in the air (Ga) and plant canopy (Gc), on top of the commonly used thermal energy stored in the soil (Gs), on surface energy balance, and hence ET. The results indicate that incorporating thermal energies stored in the air and canopy has a significant effect on total energy storage for shorter temporal resolutions, such as 30-minutes and an hour. Conversely, for longer temporal resolutions (e.g., diurnal and monthly averages), the effect of including thermal energies stored in the air and vegetation on total thermal energy storage is negligible. Our results also showed that the bulk of the total thermal energy storage (G = Gs + Ga + Gc) in the surface energy balance was stored in the soil (Gs). In addition, we have also determined the crop coefficient (Kc) of pecan by combining the actual ET obtained from the OPEC method and potential ET (ET0) calculated using weather data in the surrounding area. Our average pecan Kc values were comparable with the ones reported by other researchers using different methods. We conclude that the OPEC energy balance method can be used to calculate Kc values for pecan whereby farmers and extension agents use the calculated Kc values in combination with ET0 to determine the consumptive use of pecan trees.

  1. Probabilistic modelling and uncertainty analysis of flux and water balance changes in a regional aquifer system due to coal seam gas development.

    Science.gov (United States)

    Sreekanth, J; Cui, Tao; Pickett, Trevor; Rassam, David; Gilfedder, Mat; Barrett, Damian

    2018-09-01

    Large scale development of coal seam gas (CSG) is occurring in many sedimentary basins around the world including Australia, where commercial production of CSG has started in the Surat and Bowen basins. CSG development often involves extraction of large volumes of water that results in depressurising aquifers that overlie and/or underlie the coal seams thus perturbing their flow regimes. This can potentially impact regional aquifer systems that are used for many purposes such as irrigation, and stock and domestic water. In this study, we adopt a probabilistic approach to quantify the depressurisation of the Gunnedah coal seams and how this impacts fluxes to, and from the overlying Great Artesian Basin (GAB) Pilliga Sandstone aquifer. The proposed method is suitable when effects of a new resource development activity on the regional groundwater balance needs to be assessed and account for large scale uncertainties in the groundwater flow system and proposed activity. The results indicated that the extraction of water and gas from the coal seam could potentially induce additional fluxes from the Pilliga Sandstone to the deeper formations due to lowering pressure heads in the coal seams. The median value of the rise in the maximum flux from the Pilliga Sandstone to the deeper formations is estimated to be 85ML/year, which is considered insignificant as it forms only about 0.29% of the Long Term Annual Average Extraction Limit of 30GL/year from the groundwater management area. The probabilistic simulation of the water balance components indicates only small changes being induced by CSG development that influence interactions of the Pilliga Sandstone with the overlying and underlying formations and with the surface water courses. The current analyses that quantified the potential maximum impacts of resource developments and how they influences the regional water balance, would greatly underpin future management decisions. Copyright © 2018 Elsevier B.V. All rights

  2. Global modeling of land water and energy balances. Part III: Interannual variability

    Science.gov (United States)

    Shmakin, A.B.; Milly, P.C.D.; Dunne, K.A.

    2002-01-01

    The Land Dynamics (LaD) model is tested by comparison with observations of interannual variations in discharge from 44 large river basins for which relatively accurate time series of monthly precipitation (a primary model input) have recently been computed. When results are pooled across all basins, the model explains 67% of the interannual variance of annual runoff ratio anomalies (i.e., anomalies of annual discharge volume, normalized by long-term mean precipitation volume). The new estimates of basin precipitation appear to offer an improvement over those from a state-of-the-art analysis of global precipitation (the Climate Prediction Center Merged Analysis of Precipitation, CMAP), judging from comparisons of parallel model runs and of analyses of precipitation-discharge correlations. When the new precipitation estimates are used, the performance of the LaD model is comparable to, but not significantly better than, that of a simple, semiempirical water-balance relation that uses only annual totals of surface net radiation and precipitation. This implies that the LaD simulations of interannual runoff variability do not benefit substantially from information on geographical variability of land parameters or seasonal structure of interannual variability of precipitation. The aforementioned analyses necessitated the development of a method for downscaling of long-term monthly precipitation data to the relatively short timescales necessary for running the model. The method merges the long-term data with a reference dataset of 1-yr duration, having high temporal resolution. The success of the method, for the model and data considered here, was demonstrated in a series of model-model comparisons and in the comparisons of modeled and observed interannual variations of basin discharge.

  3. Flow cytometry total cell counts : A field study assessing microbiological water quality and growth in unchlorinated drinking water distribution systems

    NARCIS (Netherlands)

    Liu, G.; Van der Mark, E.J.; Verberk, J.Q.; Van Dijk, J.C.

    2013-01-01

    e objective of this study was to evaluate the application of flow cytometry total cell counts (TCCs) as a parameter to assess microbial growth in drinking water distribution systems and to determine the relationships between different parameters describing the biostability of treated water. A

  4. Hydrological Balance of Lake Tana, Upper Blue Nile Basin, Ethiopia

    NARCIS (Netherlands)

    Rientjes, T.H.M.; Perera, Janaka B.U.; Haile, Alemseged T.; Haile, A.T.; Gieske, Ambro S.M.; Booij, Martijn J.; Reggiani, Paolo; Melesse, Assefa M.

    2011-01-01

    In recent years, few studies are presented on the water balance of Lake Tana. In these studies, the water balance is closed by unknown runoff contributions from ungauged catchments. Studies relied on simple procedures of area comparison to estimate runoff from ungauged catchments. In this study,

  5. Analysis of total and dissolved heavy metals in surface water of a Mexican polluted river by total reflection X-ray fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zarazua, G. [Instituto Nacional de Investigaciones Nucleares, Gerencia de Ciencias Ambientales, Apartado Postal 18-1027, Mexico D.F., C.P. 11801 (Mexico)]. E-mail: gzo@nuclear.inin.mx; Avila-Perez, P. [Instituto Nacional de Investigaciones Nucleares, Gerencia de Ciencias Ambientales, Apartado Postal 18-1027, Mexico D.F., C.P. 11801 (Mexico); Tejeda, S. [Instituto Nacional de Investigaciones Nucleares, Gerencia de Ciencias Ambientales, Apartado Postal 18-1027, Mexico D.F., C.P. 11801 (Mexico); Barcelo-Quintal, I. [Universidad Autonoma Metropolitana, Unidad Azcapotzalco, Mexico, D.F. (Mexico); Martinez, T. [Universidad Nacional Autonoma de Mexico, Facultad de Quimica, Mexico, D.F. (Mexico)

    2006-11-15

    The present area of study is located in the Upper Course of the Lerma River (UCLR). The Lerma is one of the most important rivers of Mexico, where it drains highly populated and industrialized regions. The aim of the present study is to determine the heavy metal concentration of Cr, Mn, Fe, Cu and Pb in dissolved and total phases of the UCLR by means of Total Reflection X-ray Fluorescence Spectrometry (TXRF). The surface water samples were collected at 8 sites distributed following the stream flow direction of the river. Four sampling campaigns were carried out in each site in a 1-year period. A sample preparation method was applied in order to obtain the total and dissolved fraction and to destroy the organic matter. The total heavy metal average concentration decrease in the following order: Fe (2566 {mu}g/L) > Mn (300 {mu}g/L) > Cu (66 {mu}g/L) > Cr (21 {mu}g/L) > Pb (15 {mu}g/L). In general, the heavy metal concentrations in water of the UCLR are below the maximum permissible limits.

  6. Analysis of total and dissolved heavy metals in surface water of a Mexican polluted river by total reflection X-ray fluorescence spectrometry

    Science.gov (United States)

    Zarazua, G.; Ávila-Pérez, P.; Tejeda, S.; Barcelo-Quintal, I.; Martínez, T.

    2006-11-01

    The present area of study is located in the Upper Course of the Lerma River (UCLR). The Lerma is one of the most important rivers of Mexico, where it drains highly populated and industrialized regions. The aim of the present study is to determine the heavy metal concentration of Cr, Mn, Fe, Cu and Pb in dissolved and total phases of the UCLR by means of Total Reflection X-ray Fluorescence Spectrometry (TXRF). The surface water samples were collected at 8 sites distributed following the stream flow direction of the river. Four sampling campaigns were carried out in each site in a 1-year period. A sample preparation method was applied in order to obtain the total and dissolved fraction and to destroy the organic matter. The total heavy metal average concentration decrease in the following order: Fe (2566 μg/L) > Mn (300 μg/L) > Cu (66 μg/L) > Cr (21 μg/L) > Pb (15 μg/L). In general, the heavy metal concentrations in water of the UCLR are below the maximum permissible limits.

  7. Analysis of total and dissolved heavy metals in surface water of a Mexican polluted river by total reflection X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Zarazua, G.; Avila-Perez, P.; Tejeda, S.; Barcelo-Quintal, I.; Martinez, T.

    2006-01-01

    The present area of study is located in the Upper Course of the Lerma River (UCLR). The Lerma is one of the most important rivers of Mexico, where it drains highly populated and industrialized regions. The aim of the present study is to determine the heavy metal concentration of Cr, Mn, Fe, Cu and Pb in dissolved and total phases of the UCLR by means of Total Reflection X-ray Fluorescence Spectrometry (TXRF). The surface water samples were collected at 8 sites distributed following the stream flow direction of the river. Four sampling campaigns were carried out in each site in a 1-year period. A sample preparation method was applied in order to obtain the total and dissolved fraction and to destroy the organic matter. The total heavy metal average concentration decrease in the following order: Fe (2566 μg/L) > Mn (300 μg/L) > Cu (66 μg/L) > Cr (21 μg/L) > Pb (15 μg/L). In general, the heavy metal concentrations in water of the UCLR are below the maximum permissible limits

  8. A regional mass balance model based on total ammoniacal nitrogen for estimating ammonia emissions from beef cattle in Alberta Canada

    Science.gov (United States)

    Chai, Lilong; Kröbel, Roland; Janzen, H. Henry; Beauchemin, Karen A.; McGinn, Sean M.; Bittman, Shabtai; Atia, Atta; Edeogu, Ike; MacDonald, Douglas; Dong, Ruilan

    2014-08-01

    Animal feeding operations are primary contributors of anthropogenic ammonia (NH3) emissions in North America and Europe. Mathematical modeling of NH3 volatilization from each stage of livestock manure management allows comprehensive quantitative estimates of emission sources and nutrient losses. A regionally-specific mass balance model based on total ammoniacal nitrogen (TAN) content in animal manure was developed for estimating NH3 emissions from beef farming operations in western Canada. Total N excretion in urine and feces was estimated from animal diet composition, feed dry matter intake and N utilization for beef cattle categories and production stages. Mineralization of organic N, immobilization of TAN, nitrification, and denitrification of N compounds in manure, were incorporated into the model to account for quantities of TAN at each stage of manure handling. Ammonia emission factors were specified for different animal housing (feedlots, barns), grazing, manure storage (including composting and stockpiling) and land spreading (tilled and untilled land), and were modified for temperature. The model computed NH3 emissions from all beef cattle sub-classes including cows, calves, breeding bulls, steers for slaughter, and heifers for slaughter and replacement. Estimated NH3 emissions were about 1.11 × 105 Mg NH3 in Alberta in 2006, with a mean of 18.5 kg animal-1 yr-1 (15.2 kg NH3-N animal-1 yr-1) which is 23.5% of the annual N intake of beef cattle (64.7 kg animal-1 yr-1). The percentage of N intake volatilized as NH3-N was 50% for steers and heifers for slaughter, and between 11 and 14% for all other categories. Steers and heifers for slaughter were the two largest contributors (3.5 × 104 and 3.9 × 104 Mg, respectively) at 31.5 and 32.7% of total NH3 emissions because most growing animals were finished in feedlots. Animal housing and grazing contributed roughly 63% of the total NH3 emissions (feedlots, barns and pastures contributed 54.4, 0.2 and 8.1% of

  9. Effects of simulated microgravity on surfactant and water balance of lung in animals with different resistance to stress

    Science.gov (United States)

    Bryndina, Irina; Vasilieva, Natalia

    Weightlessness is accompanied by redistribution of blood flow in lung, changes of lung volumes and gas exchange (Prisk et al., 2002; Grigoriev, Baranov, 2003). On the other hand, it is known that microgravity is considered as a kind of moderate stress (Grigoriev et al., 2004). Stress response may differ in animals resistant or vulnerable to stress (Sudakov, 2007). To study the effects of simulated microgravity upon lung, we used 20 male albino rats tested for behavior in the "open field" and than divided into active (stress resistant - SR ) and passive (stress vulnerable - CV) groups. Two mouse lines were used with similar goal - C57Bl/6 and BALB/c mice (n=16). According to data obtained earlier, BALB/c mice referred as more stress vulnerable, in contrast to C57BL/6 mice, which are considered to be relatively stress resistant (Flint et al., 2007). We have previously shown that changes in lung surfactant system after psychosocial stress or long-term immobilization are less pronounced in stress resistant rats (Vasilieva, Bryndina, 2012). The aim of this work is to study the properties and biochemical composition of pulmonary surfactant and lung water balance in rats and mice with different stress resistance in antiorthostatic suspension (AOS) of short and long duration. Simulated microgravity was reproduced according to procedure of Ilyin-Novikov in modification of Morey-Holton. The duration of exposure was 10 days for rats and 30 days for mice. The properties of pulmonary surfactant were assessed by the evaluation of surface activity (surface tension - ST), the content of total phospholipids (PL) and their fractions. Simultaneously we calculated the gravimetric water balance indices: lung coefficient, "dry residue" and wet-to-dry ratio. Total and extravascular lung fluid and pulmonary blood supply were estimated as well. The experiments demonstrated that there was a decrease of surface tension of surfactant films after 10-day AOS in both groups of rats (to a greater

  10. Total phenol content and antioxidant activity of water solutions of plant extracts

    Directory of Open Access Journals (Sweden)

    Mirela Kopjar

    2009-01-01

    Full Text Available Water solutions of extracts were investigated for total phenol content, flavonoid content and antioxidant activity. Susceptibility to degradation of water solutions of plant extracts, under light and in the dark, during storage at room temperature was investigated in order to determine their stability prior to their application for fortification of food products. Large dispersion of total phenol (TP content in the investigated model solutions of selected extracts (olive leaves, green tea, red grape, red wine, pine bark PE 5:1, pine bark PE 95 %, resveratrol, ranging from 11.10 mg GAE/100 mL to 92.19 mg GAE/100 mL was observed. Consequently, large dispersion of total flavonoids (TF content (8.89 mg to 61.75 mg CTE/100 mL was also observed. Since phenols have been mostly responsible for antioxidant activity of extracts, in most cases, antioxidant activity followed the TP content. That was proven by estimation of correlation coefficient between the total phenol content and antioxidant activity. Correlation coefficients between investigated parameters ranged from 0.5749 to 0.9604. During storage of 5 weeks at room temperature loss of phenols and flavonoids occurred. Antioxidant activity decreased with the decrease of TP and TF content. Degradations of phenols and flavonoids were more pronounced in samples stored at light.

  11. Quality of recovery from anesthesia of patients undergoing balanced or total intravenous general anesthesia. Prospective randomized clinical trial.

    Science.gov (United States)

    Moro, Eduardo Toshiyuki; Leme, Fábio Caetano Oliveira; Noronha, Bernardo Roveda; Saraiva, Gustavo Farinha Pinto; de Matos Leite, Nathália Vianna; Navarro, Laís Helena Camacho

    2016-12-01

    The aim of the present study was to assess the quality of recovery from anesthesia of patients subjected to otorhinolaryngological (ORL) surgery under balanced or total intravenous general anesthesia by means of Quality of Recovery-40 (QoR-40) questionnaire. Prospective randomized clinical trial. The setting is at an operating room, a postoperative recovery area, and a hospital ward. One-hundred thirty American Society of Anesthesiologists physical status I or II patients scheduled to undergo general anesthesia for ORL interventions under remifentanil, in combination with sevoflurane (balanced technique) or propofol (total intravenous anesthesia). Occurrence of nausea, vomiting, body temperature less than 36°C, and length of stay in the postanesthesia care unit were recorded. The QoR-40 was administered by an investigator blind to group allocation 24 hours after surgery. The quality of recovery, as assessed by the score on the QoR-40, was compared between the groups. There is no difference regarding the QoR-40 score among intravenous and inhalation anesthesia groups (190.5 vs 189.5, respectively; P=.33). Similarly, among the 5 dimensions of the QoR-40, the scores were comparable between the groups. Incidence of hypothermia (P=.58), nauseas or vomits (P=.39), and length of surgery (P=.16) were similar among groups. The evaluation of pain intensity (P=.80) and dose of morphine use in the postanesthesia care unit (P=.4) was also comparable between groups. The quality of recovery from anesthesia assessed based on the patients' perception did not differ between the ones subjected to either inhalation or intravenous general anesthesia for ORL surgery based on QoR-40 questionnaire assessment. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. How well are the climate indices related to the GRACE-observed total water storage changes in China?

    Science.gov (United States)

    Devaraju, B.; Vishwakarma, B.; Sneeuw, N. J.

    2017-12-01

    The fresh water availability over land masses is changing rapidly under the influence of climate change and human intervention. In order to manage our water resources and plan for a better future, we need to demarcate the role of climate change. The total water storage change in a region can be obtained from the GRACE satellite mission. On the other hand, many climate change indicators, for example ENSO, are derived from sea surface temperature. In this contribution we investigate the relationship between the total water storage change over China with the climate indices using statistical time-series decomposition techniques, such as Seasonal and Trend decomposition using Loess (STL), Principal Component Analysis (PCA) and Canonical Correlation Analysis (CCA). The anomalies in climate variables, such as sea surface temperature, are responsible for anomalous precipitation and thus an anomalous total water storage change over land. Therefore, it is imperative that we use a GRACE product that can capture anomalous water storage changes with unprecedented accuracy. Since filtering decreases the sensitivity of GRACE products substantially, we use the data-driven method of deviation for recovering the signal lost due to filtering. To this end, we are able to obtain the spatial fingerprint of individual climate index on total water storage change observed over China.

  13. Comparison of dynamic balance in collegiate field hockey and football players using star excursion balance test.

    Science.gov (United States)

    Bhat, Rashi; Moiz, Jamal Ali

    2013-09-01

    The preliminary study aimed to compare dynamic balance between collegiate athletes competing or training in football and hockey using star excursion balance test. A total thirty university level players, football (n = 15) and field hockey (n = 15) were participated in the study. Dynamic balance was assessed by using star excursion balance test. The testing grid consists of 8 lines each 120 cm in length extending from a common point at 45° increments. The subjects were instructed to maintain a stable single leg stance with the test leg with shoes off and to reach for maximal distance with the other leg in each of the 8 directions. A pencil was used to point and read the distance to which each subject's foot reached. The normalized leg reach distances in each direction were summed for both limbs and the total sum of the mean of summed normalized distances of both limbs were calculated. There was no significant difference in all the directions of star excursion balance test scores in both the groups. Additionally, composite reach distances of both groups also found non-significant (P=0.5). However, the posterior (P=0.05) and lateral (P=0.03) normalized reach distances were significantly more in field hockey players. Field hockey players and football players did not differ in terms of dynamic balance.

  14. The role of succulent halophytes in the water balance of salt marsh rodents.

    Science.gov (United States)

    Coulombe, Harry N

    1970-09-01

    The role of succulent halophytes in the water balance and ecology of salt marsh rodents is dependent upon an evaluation of the composition of the available sources and the physiological properties of their potential consumers. Studies of the osmotic properties of succulent halophytes from southern California coastal salt marshes are presented, together with experiments regarding the utilization of Common Pickleweed (Salicornia virginica L.) by indigenous populations of cricetid rodents (harvest mouse Reithrodontomys megalotis limicola Von Bloecker, and meadow-mouse Microtus californicus stephensi Von Bloecker). These data are discussed in relation to other available information concerning the ecology of coastal salt marshes, particularly in western North America.Extruded sap of Common Pickleweed was found to have a mean total osmotic pressure (TOP) of 1,450 mOsm/liter, with an average chloride ion content of 876 mEq/liter (about 70% of the TOP). A related species, Salicornia subterminale, had a slightly lower TOP (1,300 mOsm/liter), of which about 29% was accounted for by chloride ion concentration. Sea Blight (Suaeda fruticosa) was the only species in which the TOP correlated with the distance from the tide level; sap TOP increased away from the lagoon's edge. In both Sea Blight and Common Pickle weed, TOP was not directly related to chloride content, indicating the importance of other osmotically active solutes.Harvest mice were placed on three experimental regimes: 1) millet seeds only, 2) pickleweed only, and 3) pickleweed and millet seed. Meadow mice were tested on the last regime only. Harvest mice survived best on a strict millet seed diet; when Salicornia was consumed to a detectable extent, the mice did not survive. Meadow mice, however, could survive using Salicornia as a dietary source in conjunction with seeds. Kidney electrolyte concentrating abilities indicated that harvest mice should be able to utilize pickleweed; this was not confirmed in my

  15. Water and energy balance in the cultivated and bake soil in a montane area in Paraiba, Brazil; Balanco hidrico e de energia em solo cultivado e sem vegetacao, para as condicoes do brejo paraibano

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Jose Romualdo de Sousa

    2004-02-01

    In the areas of rain fed agriculture it is very important to quantify losses of water by evapotranspiration and soil evaporation. The methods used for measuring evapotranspiration and/or evaporation varies from direct measurements techniques, using lysimeters, to measurements of the water and energy balances. The precision lysimeters have high cost, being only used for research purposes. The water and energy balances methods have been very used due the simplicity, robustness and lower cost. Therefore, the objective of this study was to assess the water and energy balance components in the soil cultivated with cowpea (Vigna unguiculata (L) Walp) and without vegetation, besides comparing the methods used to determine the cowpea evapotranspiration. Two experiments (2002 and 2003) were performed in the 4 ha area of the Centro de Ciencias Agrarias, UFPB, municipality of Areia, Paraiba State (6 deg C 58 S, 5 deg C 41 W). To determine the energy balance, the area was instrumented with a rain gauge, a pyrano meter, a net radiometer, and sensors for measuring air temperature and humidity, and wind speed in two levels. Two locals, in the soil, were instrumented with two temperature sensors located at 2.0 cm and 8.0 cm below soil surface and one heat flux plate placed at 5.0 cm below soil surface. The measurements were recorded every 30 minutes on a data logger. To determine the water balance, three plots were installed, composed one-meter access tube for neutron probe measurements, and 8 tensiometers. The results show very good correlation between the aerodynamic method and the Bowen ration energy balance method, for all atmospherics and soil water conditions. For the two years, in average 72% of the net radiation was used by crop evapotranspiration. The energy and water balance can be used, the determine the crop evapotranspiration and soil evaporation, and regardless of the method used, the major water use by crop occurred in the reproductive stage. In the year of 2002

  16. Cold induced changes in the water balance affect immunocytolocalization pattern of one of the aquaporins in the vascular system in the leaves of maize (Zea mays L.).

    Science.gov (United States)

    Bilska-Kos, Anna; Szczepanik, Jarosław; Sowiński, Paweł

    2016-10-20

    Chilling stress is known to affect the water balance in plants, which often manifests itself in the decrease of the water potential in different organs. Relationships between chilling, assimilate transport and water balance are far from being understood. Although aquaporins play a key role in regulating water balance in plants, especially under stress conditions, the role of individual aquaporins in stress response remains unclear. In this report we show the specific localization within plasma membranes of one of the aquaporins (PIP2;3) in the leaves of two maize inbred lines differing in their chilling-sensitivity. This form of aquaporin has been also observed in thick-walled sieve elements - an additional type of sieve tubes of unclear function found only in monocotyledons. Moderate chilling (about 15°C) caused significant reduction of labelling in these cells accompanied by a steep decrease in the water potential in leaves of chilling-sensitive maize line. Our results suggest that both PIP2;3 and thick-walled sieve tubes may be an unknown element of the mechanism of the response of maize to cold stress. Copyright © 2016 Elsevier GmbH. All rights reserved.

  17. A Water Rehabilitation Program in Patients with Hip Osteoarthritis Before and After Total Hip Replacement.

    Science.gov (United States)

    Łyp, Marek; Kaczor, Ryszard; Cabak, Anna; Tederko, Piotr; Włostowska, Ewa; Stanisławska, Iwona; Szypuła, Jan; Tomaszewski, Wiesław

    2016-07-25

    BACKGROUND Pain associated with coxarthrosis, typically occurring in middle-aged and elderly patients, very commonly causes considerable limitation of motor fitness and dependence on pharmacotherapy. This article provides an assessment of a rehabilitation program with tailored water exercises in patients with osteoarthritis before and after total hip replacement. MATERIAL AND METHODS A total of 192 patients (the mean age 61.03±10.89) suffering from hip osteoarthritis (OA) were evaluated before and after total hip replacement (THR). The clinical study covered measurements of hip active ranges of motion (HAROM) and the forces generated by pelvis stabilizer muscles. Pain intensity was assessed according to analogue-visual scale of pain (VAS) and according to the Modified Laitinen Questionnaire. The patients were divided into 6 groups (4 treatment and 2 control). We compared 2 rehabilitation programs using kinesitherapy and low-frequency magnetic field. One of them also had specially designed exercises in the water. Statistical analysis was carried out at the significance level α=0.05. This was a cross-sectional study. RESULTS A positive effect of water exercises on a number of parameters was found in patients with OA both before and after total hip replacement surgery. We noted a significant reduction of pain (pwater exercises most significantly reduced pain in patients with OA before and after total hip replacement surgery. 2. Inclusion of water exercises in a rehabilitation program can reduce the use of medicines in patient with OA and after THR.

  18. Lake Chad Total Surface Water Area as Derived from Land Surface Temperature and Radar Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Frederick Policelli

    2018-02-01

    Full Text Available Lake Chad, located in the middle of the African Sahel belt, underwent dramatic decreases in the 1970s and 1980s leaving less than ten percent of its 1960s surface water extent as open water. In this paper, we present an extended record (dry seasons 1988–2016 of the total surface water area of the lake (including both open water and flooded vegetation derived using Land Surface Temperature (LST data (dry seasons 2000–2016 from the NASA Terra MODIS sensor and EUMETSAT Meteosat-based LST measurements (dry seasons 1988–2001 from an earlier study. We also examine the total surface water area for Lake Chad using radar data (dry seasons 2015–2016 from the ESA Sentinel-1a mission. For the limited number of radar data sets available to us (18 data sets, we find on average a close match between the estimates from these data and the corresponding estimates from LST, though we find spatial differences in the estimates using the two types of data. We use these spatial differences to adjust the record (dry seasons 2000–2016 from MODIS LST. Then we use the adjusted record to remove the bias of the existing LST record (dry seasons 1988–2001 derived from Meteosat measurements and combine the two records. From this composite, extended record, we plot the total surface water area of the lake for the dry seasons of 1988–1989 through 2016–2017. We find for the dry seasons of 1988–1989 to 2016–2017 that the maximum total surface water area of the lake was approximately 16,800 sq. km (February and May, 2000, the minimum total surface water area of the lake was approximately 6400 sq. km (November, 1990, and the average was approximately 12,700 sq. km. Further, we find the total surface water area of the lake to be highly variable during this period, with an average rate of increase of approximately 143 km2 per year.

  19. Water and Energy Balances of Loblolly Pine Plantation Forests during a Full Stand Rotation

    Science.gov (United States)

    Sun, G.; Mitra, B.; Domec, J. C.; Gavazi, M.; Yang, Y.; Tian, S.; Zietlow, D.; McNulty, S.; King, J.; Noormets, A.

    2017-12-01

    Loblolly pine (Pinus taeda) plantations in the southern U.S. are well recognized for their ecosystem services in supplying clean and stable water and mitigating climate change through carbon sequestration and solar energy partitioning. Since 2004, we have monitored energy, water, and carbon fluxes in a chronosequence of three drained loblolly pine plantations using integrated methods that include eddy covariance, sap flux, watershed hydrometeorology, remote sensing, and process-based simulation modeling. Study sites were located on the eastern North Carolina coastal plain, representing highly productive ecosystems with high groundwater table, and designated in the Ameriflux network as NC1 (0-10 year old), NC2 (12-25 year old) and NC3 (0-3 years old). The 13-year study spanned a wide range of annual precipitation (900-1600 mm/yr) including two exceptionally dry years during 2007-2008. We found that the mature stand (NC2) had higher net radiation (Rn) flux due to its lower albedo (α =0.11-12), compared with the young stands (NC1, NC3) (α=0.15-0.18). Annually about 75%-80% of net radiation was converted to latent heat in the pine plantations. In general, the mature stand had higher latent heat flux (LE) (i.e. evapotranspiration (ET)) rates than the young stands, but ET rates were similar during wet years when the groundwater table was at or near the soil surface. During a historic drought period (i.e., 2007-2008), total stand annual ET exceeded precipitation, but decreased about 30% at NC2 when compared to a normal year (e.g., 2006). Field measurements and remote sensing-based modeling suggested that annual ET rates increased linearly from planting age (about 800 mm) to age 15 (about 1050 mm) and then stabilized as stand leaf area index leveled-off. Over a full stand rotation, approximately 70% (young stand) to 90% (mature stand) of precipitation was returned to the atmosphere through ET. We conclude that both climatic variability and canopy structure controlled the

  20. The modelled liquid water balance of the Greenland Ice Sheet

    Science.gov (United States)

    Steger, Christian R.; Reijmer, Carleen H.; van den Broeke, Michiel R.

    2017-11-01

    Recent studies indicate that the surface mass balance will dominate the Greenland Ice Sheet's (GrIS) contribution to 21st century sea level rise. Consequently, it is crucial to understand the liquid water balance (LWB) of the ice sheet and its response to increasing surface melt. We therefore analyse a firn simulation conducted with the SNOWPACK model for the GrIS and over the period 1960-2014 with a special focus on the LWB and refreezing. Evaluations of the simulated refreezing climate with GRACE and firn temperature observations indicate a good model-observation agreement. Results of the LWB analysis reveal a spatially uniform increase in surface melt (0.16 m w.e. a-1) during 1990-2014. As a response, refreezing and run-off also indicate positive changes during this period (0.05 and 0.11 m w.e. a-1, respectively), where refreezing increases at only half the rate of run-off, implying that the majority of the additional liquid input runs off the ice sheet. This pattern of refreeze and run-off is spatially variable. For instance, in the south-eastern part of the GrIS, most of the additional liquid input is buffered in the firn layer due to relatively high snowfall rates. Modelled increase in refreezing leads to a decrease in firn air content and to a substantial increase in near-surface firn temperature. On the western side of the ice sheet, modelled firn temperature increases are highest in the lower accumulation zone and are primarily caused by the exceptional melt season of 2012. On the eastern side, simulated firn temperature increases are more gradual and are associated with the migration of firn aquifers to higher elevations.

  1. Bromide space, total body water, and sick cell syndrome

    International Nuclear Information System (INIS)

    Schober, O.; Hundeshagen, H.; Lehr, L.

    1982-01-01

    Displacements of the bromide space (Br-82-C, as a marker for the extracellular fluid compartment) are caused by an enhanced anatomical space and/or increased permeability of cells to bromide. The ratio Br-82-C: total body water (TBW) was evaluated to be 0.83 +- 0.17 in critically ill patients (n = 38) compared with the normal value of 0.46 +- 0.04 (n = 10). Because of normal TBW in critically ill patients (TBW = 505 +- 68 ml/kg), an increased bromide penetration into cells seems to be responsible for the enlarged ratio Br-82-C: TBW. Taking into consideration measurements in patients with malabsorption (Br-82-C: TBW = 0.56 +- 0.13; n = 13) and carcinoma of the rectum and colon (Br-82-C: TBW = 0.66 +- 0.24; n = 18) we think that the bromide space is a good measurement of the effective extracellular water. (orig.)

  2. Total glucosides of peony ameliorates Sjögren's syndrome by affecting Th1/Th2 cytokine balance.

    Science.gov (United States)

    Wu, Guolin; Wu, Nayuan; Li, Tianyi; Lu, Wenwen; Yu, Guoyou

    2016-03-01

    The present study aimed to investigate the molecular mechanisms underlying the effects of total glucosides of peony (TGP) in the treatment of Sjögren's syndrome (SS). A total of 40 mice with SS were evenly assigned into four groups, including: Control group; TGP group, receiving 1 mg TGP daily; hydroxychloroquine (HCQ) group, receiving 0.25 mg HCQ daily; and a combined group, receiving 1 mg TGP and 0.25 mg HCQ daily. After 8 weeks, quantitative polymerase chain reaction and an enzyme-linked immunosorbent assay were used to detect the levels of interferon-γ (IFN-γ), interleukin-4 (IL-4), Fas and FasL in each group of mice. In addition, immunohistochemical analysis was used to determine the expression levels of IFN-γ and IL-4. IFN-γ, IL-4, Fas and FasL levels were significantly increased in the control group compared with the other three groups (PTGP and combined groups compared with the control group (PTGP ameliorates SS by affecting the Th1/Th2 cytokine balance and decreasing the expression levels of IFN-γ, IL-4, Fas and FasL. Therefore, TGP may represent a potential novel therapeutic agent for the treatment of SS.

  3. Resilience Through Disturbance: Effects of Wildfire on Vegetation and Water Balance in the Sierra Nevadas

    Science.gov (United States)

    Boisrame, G. F. S.; Thompson, S. E.; Stephens, S.; Collins, B.; Tague, N.

    2015-12-01

    A century of fire suppression in the Western United States has drastically altered the historically fire-adapated ecology in California's Sierra Nevada Mountains. Fire suppression is understood to have increased the forest cover, as well as the stem density, canopy cover and water demand of montane forests, reducing resilience of the forests to drought, and increasing the risk of catastrophic fire by drying the landscape and increasing fuel loads. The potential to reverse these trends by re-introducing fire into the Sierra Nevada is highly promising, but the likely effects on vegetation structure and water balance are poorly quantified. The Illilouette Creek Basin in Yosemite National Park represents a unique experiment in the Sierra Nevada, in which managers have moved from fire suppression to allowing a near-natural fire regime to prevail since 1972. Changes in vegetation structure in the Illilouette since the restoration of natural burning provides a unique opportunity to examine how frequent, mixed severity fires can reshape the Sierra Nevada landscape. We characterize these changes from 1969 to the present using a combination of Landsat products and high-resolution aerial imagery. We describe how the landscape structure has changed in terms of vegetation composition and its spatial organization, and explore the drivers of different post-fire vegetation type transitions (e.g. forest to shrubland vs. forest to meadow). By upscaling field data using vegetation maps and Landsat wetness indices, we explore how these vegetation transitions have impacted the water balance of the Illilouette Creek Basin, potentially increasing its resilience in the face of drought, climate change, and catastrophic fire. In a region that is adapted to frequent disturbance from fire, this work helps us understand how allowing such natural disturbances to take place can increase the sustainability of diverse landscapes in the long term.

  4. CAMEX-4 DC-8 NEVZOROV TOTAL CONDENSED WATER CONTENT SENSOR V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nevzorov probe is an instrument that measures the total water content of the sample of air which passes through it. It flew on the NASA DC-8 during the CAMEX-4...

  5. Water reuse potential in truck wash using a Rotating Biological Contactor

    Directory of Open Access Journals (Sweden)

    Eduardo Lucas Subtil

    2016-11-01

    Full Text Available This study evaluated the water reuse potential for truck washing using the effluent treated by a Rotating Biological Contactor (RBC operated in full scale. In order to evaluate the reuse potential, a mass balance was performed for the reuse system taking into account the concentration of Total Dissolved Solids as the critical contaminant. The treatment system produced an effluent with average concentration of color, turbidity, TDS and BOD5 of 45 ± 14 uC, 15 ± 6.0 NTU, 244 ± 99 mg TDS / L and 14 ± 7.3 mg O2 / L, respectively. Based on the mass balance, and considering the TDS concentration established in NBR 13.696, if the final rinse does not use clean water, the potential for effluent reuse can reach 40%. However, if clean water is used as 30% of the total rinsing volume, it would be possible to reuse 70% of the treated effluent without compromising truck washing performance. This water reuse approach would result in an operational cost reduction of R$ 2,590.75/month.

  6. THE USE OF DRINKING WATER IN THE CONDITIONS OF MAINTAINING ECOLOGICAL BALANCE

    Directory of Open Access Journals (Sweden)

    Avtandil SILAGADZE

    2016-02-01

    pipelines. Thus, there is proposed a model of bacteriological pure underground artesian water supply from Georgia to Europe in the conditions of maintaining ecological balance. This model takes into account the analysis of water pipeline alternatives, “Georgia-Europe” pipeline construction, as Europe's population is in need of high-quality drinking water, and Georgia is interested in its export.

  7. Using Multiple Monthly Water Balance Models to Evaluate Gridded Precipitation Products over Peninsular Spain

    Directory of Open Access Journals (Sweden)

    Javier Senent-Aparicio

    2018-06-01

    Full Text Available The availability of precipitation data is the key driver in the application of hydrological models when simulating streamflow. Ground weather stations are regularly used to measure precipitation. However, spatial coverage is often limited in low-population areas and mountain areas. To overcome this limitation, gridded datasets from remote sensing have been widely used. This study evaluates four widely used global precipitation datasets (GPDs: The Tropical Rainfall Measuring Mission (TRMM 3B43, the Climate Forecast System Reanalysis (CFSR, the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN, and the Multi-Source Weighted-Ensemble Precipitation (MSWEP, against point gauge and gridded dataset observations using multiple monthly water balance models (MWBMs in four different meso-scale basins that cover the main climatic zones of Peninsular Spain. The volumes of precipitation obtained from the GPDs tend to be smaller than those from the gauged data. Results underscore the superiority of the national gridded dataset, although the TRMM provides satisfactory results in simulating streamflow, reaching similar Nash-Sutcliffe values, between 0.70 and 0.95, and an average total volume error of 12% when using the GR2M model. The performance of GPDs highly depends on the climate, so that the more humid the watershed is, the better results can be achieved. The procedures used can be applied in regions with similar case studies to more accurately assess the resources within a system in which there is scarcity of recorded data available.

  8. Beverage Consumption Habits in Italian Population: Association with Total Water Intake and Energy Intake

    Directory of Open Access Journals (Sweden)

    Lorenza Mistura

    2016-10-01

    Full Text Available Background: The aim of this study was to investigate total water intake (TWI from water, beverages and foods among Italian adults and the elderly. Methods: Data of 2607 adults and the elderly, aged 18–75 years from the last national food consumption survey, INRAN-SCAI 2005-06, were used to evaluate the TWI. The INRAN-SCAI 2005-06 survey was conducted on a representative sample of 3323 individuals aged 0.1 to 97.7 years. A 3-day semi-structured diary was used for participants to record the consumption of all foods, beverages and nutritional supplements. Results: On average, TWI was 1.8 L for men and 1.7 L for women. More than 75% of women and 90% of men did not comply with the European Food Safety Authority (EFSA Adequate Intake. The contribution of beverages to the total energy intake (EI was 6% for the total sample. Water was the most consumed beverage, followed by alcoholic beverages for men and hot beverages for women. Conclusion: According to the present results, adults and elderly Italians do not reach the adequate intake for water as suggested by the EFSA and by the national reference level of nutrient and energy intake. Data on water consumption should also be analyzed in single socio-demographic groups in order to identify sub-groups of the population that need more attention and to plan more targeted interventions.

  9. Preozonation Effect on Total Organic Carbon Removal in Surface Water Treatment

    Directory of Open Access Journals (Sweden)

    Ali Torabian

    2006-06-01

    Full Text Available In drinking water treatment, preozonation is often applied in order to control the microorganisms and taste and odor causing materials, which may influence organics removal by preoxidation and adsorption. Using commercial and natural water humic substances, the positive effect of preozonation as an aid to coagulation-flocculation of these compounds was confirmed by removal of TOC removal in Tehranpars Water Treatment Plant in Tehran. These experiments were conducted as bench-scale studies through a series of jar tests using different pH coagulant dosages and total organic carbon concentration of approximately 4, 8 and 12 mg/L. In addition to TOC removal, the existence of an optimum preozonation dose (OPZD was also confirmed. Experiments show that preozonation can improve coagulation and flocculation depending on influent TOC concentration of raw water. The results demonstrate different effects of preozonation on removal of influent TOC. Preozonation showed a positive effect on a system with low influent TOC and very low molecular weight (noncolloidal humic substances.

  10. Total petroleum hydrocarbon degradation by hybrid electrobiochemical reactor in oilfield produced water

    International Nuclear Information System (INIS)

    Mousa, Ibrahim E.

    2016-01-01

    The crude oil drilling and extraction operations are aimed to maximize the production may be counterbalanced by the huge production of contaminated produced water (PW). PW is conventionally treated through different physical, chemical, and biological technologies. The efficiency of suggested hybrid electrobiochemical (EBC) methods for the simultaneous removal of total petroleum hydrocarbon (TPH) and sulfate from PW generated by petroleum industry is studied. Also, the factors that affect the stability of PW quality are investigated. The results indicated that the effect of biological treatment is very important to keep control of the electrochemical by-products and more TPH removal in the EBC system. The maximum TPH and sulfate removal efficiency was achieved 75% and 25.3%, respectively when the detention time was about 5.1 min and the energy consumption was 32.6 mA/cm 2 . However, a slight increasing in total bacterial count was observed when the EBC compact unit worked at a flow rate of average 20 L/h. Pseudo steady state was achieved after 30 min of current application in the solution. Also, the results of the study indicate that when the current intensity was increased above optimum level, no significant results occurred due to the release of gases. - Highlights: • The hybrid electrolytic biological cell was used for degradation of oilfield produced water. • Decomposition of Total Petroleum Hydrocarbon with or without the biofilter. • High saline water with the high chloride and sulfate ions content treatment. • The removal of electrochemical by-products is a phase change technique that requires the maintenance the biofilm on the filter media, which is sensitive and a complex operation. • Biofilter is efficient for the degradation of PW bye products, the critical drawback to their utility in full-scale operations is high TDS water content and detention time of treatment.

  11. Biological effects of drinking-water mineral composition on calcium balance and bone remodeling markers.

    Science.gov (United States)

    Roux, S; Baudoin, C; Boute, D; Brazier, M; De La Guéronniere, V; De Vernejoul, M C

    2004-01-01

    To compare the effects of 2 drinking waters containing similar calcium (Ca) concentration in order to analyze the role of ions other than Ca on bone metabolism. These mineral drinking-waters differed by their mineral composition primarily concerning the concentration of bicarbonate (HCO3-), high in the HB, and sulfate, high in HS water. Of 60 included women, 39 completed the study. Patients were randomly assigned to an intake of 1 liter per day of mineral water HB or HS for 28 d, followed by cross-over to the alternative drinking-water for a further 28 d. At baseline and after each period of one month, Ca metabolism parameters, acid-base status, and bone remodeling markers were measured. Changes in Ca metabolism were significant in the HB group where the ionized Ca increased and the PTH decreased. Serum pH showed a similar increase whatever the used drinking water compared to baseline. In the HB group, significant increase in urine pH, and significant decrease in AT-HCO3- and NH4+ were observed. Bone resorption markers, urinary CTx/Cr, Pyr/Cr, and D-Pyr/Cr, significantly decreased in the HB group compared to baseline, and were not significantly modified in the HS group. These results showed a beneficial effect of the bicarbonaterich HB water on bone metabolism. This may account for a better bioavailability of the Ca, a greater alkalinization, and a larger decrease in PTH level secondary to a higher ionized Ca level. The higher content of silica in HB water may have also participated to the positive action on bone balance that was observed. In this short term study, these data underlined the potential role of the mineral drinking water composition on bone metabolism.

  12. Impacts of deforestation on water balance components of a watershed on the Brazilian East Coast

    Directory of Open Access Journals (Sweden)

    Donizete dos Reis Pereira

    2014-08-01

    Full Text Available The Brazilian East coast was intensely affected by deforestation, which drastically cut back the original biome. The possible impacts of this process on water resources are still unknown. The purpose of this study was an evaluation of the impacts of deforestation on the main water balance components of the Galo creek watershed, in the State of Espírito Santo, on the East coast of Brazil. Considering the real conditions of the watershed, the SWAT model was calibrated with data from 1997 to 2000 and validated for the period between 2001 and 2003. The calibration and validation processes were evaluated by the Nash-Sutcliffe efficiency coefficient and by the statistical parameters (determination coefficient, slope coefficient and F test of the regression model adjusted for estimated and measured flow data. After calibration and validation of the model, new simulations were carried out for three different land use scenarios: a scenario in compliance with the law (C1, assuming the preservation of PPAs (permanent preservation areas; an optimistic scenario (C2, which considers the watershed to be almost entirely covered by native vegetation; and a pessimistic scenario (C3, in which the watershed would be almost entirely covered by pasture. The scenarios C1, C2 and C3 represent a soil cover of native forest of 76, 97 and 0 %, respectively. The results were compared with the simulation, considering the real scenario (C0 with 54 % forest cover. The Nash-Sutcliffe coefficients were 0.65 and 0.70 for calibration and validation, respectively, indicating satisfactory results in the flow simulation. A mean reduction of 10 % of the native forest cover would cause a mean annual increase of approximately 11.5 mm in total runoff at the watershed outlet. Reforestation would ensure minimum flows in the dry period and regulate the maximum flow of the main watercourse of the watershed.

  13. Beverage consumption habits "24/7" among British adults: association with total water intake and energy intake.

    Science.gov (United States)

    Gibson, Sigrid; Shirreffs, Susan M

    2013-01-10

    Various recommendations exist for total water intake (TWI), yet it is seldom reported in dietary surveys. Few studies have examined how real-life consumption patterns, including beverage type, variety and timing relate to TWI and energy intake (EI). We analysed weighed dietary records from the National Diet and Nutrition Survey of 1724 British adults aged 19-64 years (2000/2001) to investigate beverage consumption patterns over 24 hrs and 7 days and associations with TWI and EI. TWI was calculated from the nutrient composition of each item of food and drink and compared with reference values. Mean TWI was 2.53 L (SD 0.86) for men and 2.03 L (SD 0.71) for women, close to the European Food Safety Authority "adequate Intake" (AI) of 2.5 L and 2 L, respectively. However, for 33% of men and 23% of women TWI was below AI and TWI:EI ratio was Beverages accounted for 75% of TWI. Beverage variety was correlated with TWI (r 0.34) and more weakly with EI (r 0.16). Beverage consumption peaked at 0800 hrs (mainly hot beverages/ milk) and 2100 hrs (mainly alcohol). Total beverage consumption was higher at weekends, especially among men. Overall, beverages supplied 16% of EI (men 17%, women 14%), alcoholic drinks contributed 9% (men) and 5% (women), milk 5-6%, caloric soft drinks 2%, and fruit juice 1%.In multi-variable regression (adjusted for sex, age, body weight, smoking, dieting, activity level and mis-reporting), replacing 100 g of caloric beverages (milk, fruit juice, caloric soft drinks and alcohol) with 100 g non-caloric drinks (diet soft drinks, hot beverages and water) was associated with a reduction in EI of 15 kcal, or 34 kcal if food energy were unchanged. Using within-person data (deviations from 7-day mean) each 100 g change in caloric beverages was associated with 29 kcal change in EI or 35 kcal if food energy were constant. By comparison the calculated energy content of caloric drinks consumed was 47 kcal/100 g. TWI and beverage consumption are closely related

  14. Wii Fit Balance Board Playing Improves Balance and Gait in Parkinson Disease

    Science.gov (United States)

    Mhatre, Priya V.; Vilares, Iris; Stibb, Stacy M.; Albert, Mark V.; Pickering, Laura; Marciniak, Christina M.; Kording, Konrad; Toledo, Santiago

    2014-01-01

    Objective To assess the effect of exercise training by using the Nintendo Wii Fit video game and balance board system on balance and gait in adults with Parkinson disease (PD). Design A prospective interventional cohort study. Setting An outpatient group exercise class. Participants Ten subjects with PD, Hoehn and Yahr stages 2.5 or 3, with a mean age of 67.1 years; 4 men, 6 women. Interventions The subjects participated in supervised group exercise sessions 3 times per week for 8 weeks by practicing 3 different Wii balance board games (marble tracking, skiing, and bubble rafting) adjusted for their individualized function level. The subjects trained for 10 minutes per game, a total of 30 minutes training per session. Main Outcome Measurements Pre-and postexercise training, a physical therapist evaluated subjects’ function by using the Berg Balance Scale, Dynamic Gait Index, and Sharpened Romberg with eyes open and closed. Postural sway was assessed at rest and with tracking tasks by using the Wii balance board. The subjects rated their confidence in balance by using the Activities-specific Balance Confidence scale and depression on the Geriatric Depression Scale. Results Balance as measured by the Berg Balance Scale improved significantly, with an increase of 3.3 points (P = .016). The Dynamic Gait Index improved as well (mean increase, 2.8; P = .004), as did postural sway measured with the balance board (decreased variance in stance with eyes open by 31%; P = .049). Although the Sharpened Romberg with eyes closed increased by 6.85 points and with eyes opened by 3.3 points, improvements neared significance only for eyes closed (P = .07 versus P = .188). There were no significant changes on patient ratings for the Activities-specific Balance Confidence (mean decrease, −1%; P = .922) or the Geriatric Depression Scale (mean increase, 2.2; P = .188). Conclusions An 8-week exercise training class by using the Wii Fit balance board improved selective measures of

  15. Determination of total arsenic and arsenic species in drinking water, surface water, wastewater, and snow from Wielkopolska, Kujawy-Pomerania, and Lower Silesia provinces, Poland.

    Science.gov (United States)

    Komorowicz, Izabela; Barałkiewicz, Danuta

    2016-09-01

    Arsenic is a ubiquitous element which may be found in surface water, groundwater, and drinking water. In higher concentrations, this element is considered genotoxic and carcinogenic; thus, its level must be strictly controlled. We investigated the concentration of total arsenic and arsenic species: As(III), As(V), MMA, DMA, and AsB in drinking water, surface water, wastewater, and snow collected from the provinces of Wielkopolska, Kujawy-Pomerania, and Lower Silesia (Poland). The total arsenic was analyzed by inductively coupled plasma mass spectrometry (ICP-MS), and arsenic species were analyzed with use of high-performance liquid chromatography inductively coupled plasma mass spectrometry (HPLC/ICP-MS). Obtained results revealed that maximum total arsenic concentration determined in drinking water samples was equal to 1.01 μg L(-1). The highest concentration of total arsenic in surface water, equal to 3778 μg L(-1) was determined in Trująca Stream situated in the area affected by geogenic arsenic contamination. Total arsenic concentration in wastewater samples was comparable to those determined in drinking water samples. However, significantly higher arsenic concentration, equal to 83.1 ± 5.9 μg L(-1), was found in a snow sample collected in Legnica. As(V) was present in all of the investigated samples, and in most of them, it was the sole species observed. However, in snow sample collected in Legnica, more than 97 % of the determined concentration, amounting to 81 ± 11 μg L(-1), was in the form of As(III), the most toxic arsenic species.

  16. Dew contribution to the water balance in a semiarid coastal steppe ecosystem (Cabo de Gata, SE Spain)

    International Nuclear Information System (INIS)

    Moro, M. J.; Were, A.; Morillas, L.; Villagarcia, L.; Canton, Y.; Lazaro, R.; Serrano-Ortiz, P.; Kowalski, A. S.; Domingo, F.

    2009-01-01

    Dewfall deposition can be a significant source of moisture in arid and semiarid ecosystems, thus contribution to improve daily and annual water balances. Occurrence, frequency and amount of dewfall were measured in the Balsa Blanca site (Cabo de Gata, Almeria, Spain) from January 2007 to May 2008. this area has a sparse vegetation cover dominated by Stipa tenacissima combined with bare soil and biological soil crusts. (Author) 3 refs.

  17. A Mass Balance Model of Lyell and Maclure Glaciers in Yosemite National Park

    Science.gov (United States)

    Mendoza, K. A.; Stock, G. M.; Sharping, J. E.

    2015-12-01

    The Lyell and Maclure glaciers, two historically important glaciers of Yosemite National Park, have been rapidly retreating since the late 1800's. I attempted to quantify the water balance of two basins containing these glaciers. Water inputs were calculated by applying snow pillow data and two precipitation vs. elevation slope models. Water outputs consisted of a simplified evapotranspiration model and stream runoff data. Fifty-six linear combinations of precipitation and evaporation were used to develop water balance models. Most of these models predicted melt rates from the two glaciers outside of empirical observations. However, both the Lyell Glacier Basin and the Lyell Fork of the Tuolumne Basin water balance spreads had notable Kolmogorov-Smirnov test statistics: Lyell Glacier with p = 0.34 for 2013 and p = 0.37 for 2014, and Lyell Fork with p = 0.45 for 2009. The basin containing Lyell Glacier had a water balance spread of between -1,105×10^3m^3 and +58×10^3m^3+ (interquartile range) with a mean of -564×10^3m^3 for the 2013 hydrologic year, and between -1,137×10^3m^3 and +21×10^3m^3 (interquartile range) with a mean of-583×10^3m^3 for the 2014 hydrologic year. The Lyell fork of the Tuolumne basin containing both Lyell and Maclure Glaciers had a water balance spread of between-14,350×10^3m^3 and +7,454×10^3m^3 (interquartile range) with a mean of -2,426×10^3m^3 for the 2009 hydrologic year. Variations observed in water balance models for Lyell Glacier in this study are an order of magnitude larger than the expected melt signal, and two orders of magnitude for the Lyell Fork of the Tuolumne water balance models.

  18. Cerebral water and ion balance remains stable when humans are exposed to acute hypoxic exercise

    DEFF Research Database (Denmark)

    Avnstorp, Magnus B; Rasmussen, Peter; Brassard, Patrice

    2015-01-01

    both circumstances. No cerebral net exchange of Na(+) or K(+) was evident. Likewise, no significant net-exchange of water over the brain was demonstrated and the arterial and jugular venous hemoglobin concentrations were similar. CONCLUSION: Challenging exercise in hypoxia for 30 min affected muscle......Avnstorp, Magnus B., Peter Rasmussen, Patrice Brassard, Thomas Seifert, Morten Overgaard, Peter Krustrup, Niels H. Secher, and Nikolai B. Nordsborg. Cerebral water and ion balance remains stable when humans are exposed to acute hypoxic exercise. High Alt Med Biol 16:000-000, 2015.-Background...... intense exercise is carried out in hypoxia and monitored the influence of muscle metabolism for changes in arterial variables. METHODS: On two separate days, in random order, 30 min cycling exercise was performed in either hypoxia (10% O2) or normoxia at an intensity that was exhaustive in the hypoxic...

  19. Novel indirect enzyme-linked immunosorbent assay (ELISA) method to detect Total E. coli in water environment

    International Nuclear Information System (INIS)

    Wang Na; He Miao; Shi Hanchang

    2007-01-01

    In order to establish ELISA (enzyme-linked immunosorbent assay) method to detect Total E. coli in water environment, E. coli multi-characters antigens in water environment were prepared according to the characters of kinds of E. coli serotypes, including antigen of whole cell, antigen of disrupted whole cell, somatic antigen, flagellar antigen and fimbrial antigen. Total E. coli polyclonal antibodies were obtained from the New Zealand rabbits immunized with these five antigens, respectively. Antibodies generated in this research are with high titers and good purity, can conjugate with antigens, specifically, stably and strongly. Indirect ELISA shows the titers of antibody of whole cell and antibody of disrupted whole cell are both over 1 x 10 5 . The cross-reactivity of the antibody is from 12 to 30% which indicate the specificity of the antibody against Total E. coli. Based on these antibodies, we established indirect ELISA method to detect Total E. coli in water environment. The matrix effects were studied and the results show that there is no significant influence by all the factors. The ELISA result shows that the detection limitation could be 10 4 CFU (colony forming units) L -1 . The indirect ELISA method developed in this study is well suited for Total E. coli analysis in real water samples as a rapid screen method

  20. Carbon sequestration capacity in a semiarid ecosystem: A carbon balance approach

    International Nuclear Information System (INIS)

    Almagro, M.; Lopez, J.; Boix-Fayos, C.; Albaladejo, J.; Martinez-Mena, M.

    2009-01-01

    Here, we used two C balance approaches to estimate total below ground C allocation (TBCA) in three representative land uses in a Mediterranean ecosystem (late-successional forest, abandoned agricultural field, rainfed olive grove). Our objectives were: 1) to asses the response of TBCA and its components to changes in land use; 2) to evaluate how soil water erosion and changes in C stored in roots, soil and litter layer altered our estimates of TBCA; 3) to determine annual net ecosystem productivity, and examine C allocation patterns at each land use. (Author) 4 refs.

  1. Spatiotemporal characteristics and water budget of water cycle elements in different seasons in northeast China

    International Nuclear Information System (INIS)

    Zhou Jie; Zhao Jun-Hu; He Wen-Ping; Zhi-Qiang Gong

    2015-01-01

    In this paper, we study the spatiotemporal characteristics of precipitable water, precipitation, evaporation, and water–vapor flux divergence in different seasons over northeast China and the water balance of that area. The data used in this paper is provided by the European Center for Medium-Range Weather Forecasts (ECMWF). The results show that the spatial distributions of precipitable water, precipitation, and evaporation feature that the values of elements above in the southeastern area are larger than those in the northwestern area; in summer, much precipitation and evaporation occur in the Changbai Mountain region as a strong moisture convergence region; in spring and autumn, moisture divergence dominates the northeast of China; in winter, the moisture divergence and convergence are weak in this area. From 1979 to 2010, the total precipitation of summer and autumn in northeast China decreased significantly; especially from 1999 to 2010, the summer precipitation always demonstrated negative anomaly. Additionally, other elements in different seasons changed in a truly imperceptible way. In spring, the evaporation exceeded the precipitation in northeast China; in summer, the precipitation was more prominent; in autumn and winter, precipitation played a more dominating role than the evaporation in the northern part of northeast China, while the evaporation exceeded the precipitation in the southern part.The Interim ECMWF Re-Analysis (ERA-Interim) data have properly described the water balance of different seasons in northeast China. Based on ERA-Interim data, the moisture sinks computed through moisture convergence and moisture local variation are quite consistent with those computed through precipitation and evaporation, which proves that ERA-Interim data can be used in the research of water balance in northeast China. On a seasonal scale, the moisture convergence has a greater influence than the local moisture variation on a moisture sink, and the latter is

  2. Spatiotemporal characteristics and water budget of water cycle elements in different seasons in northeast China

    Institute of Scientific and Technical Information of China (English)

    周杰; 赵俊虎; 何文平; 龚志强

    2015-01-01

    In this paper, we study the spatiotemporal characteristics of precipitable water, precipitation, evaporation, and water–vapor flux divergence in different seasons over northeast China and the water balance of that area. The data used in this paper is provided by the European Center for Medium-Range Weather Forecasts (ECMWF). The results show that the spatial distributions of precipitable water, precipitation, and evaporation feature that the values of elements above in the southeastern area are larger than those in the northwestern area;in summer, much precipitation and evaporation occur in the Changbai Mountain region as a strong moisture convergence region;in spring and autumn, moisture divergence dominates the northeast of China;in winter, the moisture divergence and convergence are weak in this area. From 1979 to 2010, the total precipitation of summer and autumn in northeast China decreased significantly; especially from 1999 to 2010, the summer precipitation always demonstrated negative anomaly. Additionally, other elements in different seasons changed in a truly imperceptible way. In spring, the evaporation exceeded the precipitation in northeast China; in summer, the precipitation was more prominent;in autumn and winter, precipitation played a more dominating role than the evaporation in the northern part of northeast China, while the evaporation exceeded the precipitation in the southern part. The Interim ECMWF Re-Analysis (ERA-Interim) data have properly described the water balance of different seasons in northeast China. Based on ERA-Interim data, the moisture sinks computed through moisture convergence and moisture local variation are quite consistent with those computed through precipitation and evaporation, which proves that ERA-Interim data can be used in the research of water balance in northeast China. On a seasonal scale, the moisture convergence has a greater influence than the local moisture variation on a moisture sink, and the latter is

  3. Determination of the water use and water use response of canola to solar radiation and temperature by using heat balance stem flow gauges

    International Nuclear Information System (INIS)

    Angadi, S.V.; Cutforth, H.W.; McConkey, B.G.

    2003-01-01

    Sap flow gauges using a heat balance have been reliable for measuring real-time transpiration in a number of crops. However, information on the accuracy of sap flow gauges in canola is lacking. Therefore, a study was conducted to validate the sap flow system in canola and to observe sap flow response to variations in temperature and solar radiation. There were strong relationships between sap flow measured with sap flow gauges and actual transpiration measured by the gravimetric method over short periods of 1 h (r 2 = 0.93 and RMSE = 2.34 g h -1 ), and over longer periods of 1 d (r 2 0.83 and RMSE = 48 g d -1 ), although sap flow slightly overestimated transpiration. In both cases the slope was not significantly different from 1. Water use in canola, estimated with sap flow gauges or from actual transpiration measurement, was dependent upon temperature (r 2 = 0.94 to 0.96). Water use increased until daytime temperatures reached 36 o C, after which water use decreased. Sap flow followed solar radiation trends in the field. Heat is lost or dissipated from the gauges convectively as the sap flows through the stem, conductively through the solid stem material, and radially into the surrounding air. As the convective proportion of the heat loss from the gauge increased, the accuracy of the water use estimation using the sap flow gauges increased. For sunny days, convective heat loss through sap flow accounted for a major portion of the total heat input to the gauges, while on cloudy days radial heat loss from the gauges accounted for a, major portion of the heat input. Thus, at low sap flow rates during cloudy days, the possibility of error in the sap flow system was high. Overall, sap flow in canola was strongly related to daily solar radiation (r 2 = 0.92). The sensitive response to weather variations and the possibility of improving the accuracy at high flow rates in the field makes the use of sap flow gauges a viable option for measuring real-time transpiration in

  4. Water use efficiency and crop water balance of rainfed wheat in a semi-arid environment: sensitivity of future changes to projected climate changes and soil type

    Science.gov (United States)

    Yang, Yanmin; Liu, De Li; Anwar, Muhuddin Rajin; O'Leary, Garry; Macadam, Ian; Yang, Yonghui

    2016-02-01

    Wheat production is expected to be affected by climate change through changing components of the crop water balance such as rainfall, evapotranspiration (ET), runoff and drainage. We used the Agricultural Production Systems Simulator (APSIM)-wheat model to simulate the potential impact of climate change on field water balance, ET and water use efficiency (WUE) under the SRES A2 emissions scenario. We ran APSIM with daily climate data statistically downscaled from 18 Global Circulation Models (GCMs). Twelve soil types of varying plant available water holding capacity (PAWC) at six sites across semi-arid southeastern Australia were considered. Biases in the GCM-simulated climate data were bias-corrected against observations for the 1961-1999 baseline period. However, biases in the APSIM output data relative to APSIM simulations forced with climate observations remained. A secondary bias correction was therefore performed on the APSIM outputs. Bias-corrected APSIM outputs for a future period (2021-2040) were compared with APSIM outputs generated using observations for the baseline period to obtain future changes. The results show that effective rainfall was decreased over all sites due to decreased growing season rainfall. ET was decreased through reduced soil evaporation and crop transpiration. There were no significant changes in runoff at any site. The variation in deep drainage between sites was much greater than for runoff, ranging from less than a few millimetres at the drier sites to over 100 mm at the wetter. However, in general, the averaged drainage over different soil types were not significantly different between the baseline (1961-1999) and future period of 2021-2040 ( P > 0.05). For the wetter sites, the variations in the future changes in drainage and runoff between the 18 GCMs were larger than those of the drier sites. At the dry sites, the variation in drainage decreased as PAWC increased. Overall, water use efficiency based on transpiration (WUE

  5. Water Budget Closure Based on GRACE Measurements and Reconstructed Evapotranspiration Using GLDAS and Water Use Data over the Yellow River and Changjiang River Basins

    Science.gov (United States)

    Lv, M.; Ma, Z.; Yuan, X.

    2017-12-01

    It is important to evaluate the water budget closure on the basis of the currently available data including precipitation, evapotranspiration (ET), runoff, and GRACE-derived terrestrial water storage change (TWSC) before using them to resolve water-related issues. However, it remains challenging to achieve the balance without the consideration of human water use (e.g., inter-basin water diversion and irrigation) for the estimation of other water budget terms such as the ET. In this study, the terrestrial water budget closure is tested over the Yellow River Basin (YRB) and Changjiang River Basin (CJB, Yangtze River Basin) of China. First, the actual ET is reconstructed by using the GLDAS-1 land surface models, the high quality observation-based precipitation, naturalized streamflow, and the irrigation water (hereafter, ETrecon). The ETrecon, evaluated using the mean annual water-balance equation, is of good quality with the absolute relative errors less than 1.9% over the two studied basins. The total basin discharge (Rtotal) is calculated as the residual of the water budget among the observation-based precipitation, ETrecon, and the GRACE-TWSC. The value of the Rtotal minus the observed total basin discharge is used to evaluate the budget closure, with the consideration of inter-basin water diversion. After the ET reconstruction, the mean absolute imbalance value reduced from 3.31 cm/year to 1.69 cm/year and from 15.40 cm/year to 1.96 cm/year over the YRB and CJB, respectively. The estimation-to-observation ratios of total basin discharge improved from 180.8% to 86.8% over the YRB, and from 67.0% to 101.1% over the CJB. The proposed ET reconstruction method is applicable to other human-managed river basins to provide an alternative estimation.

  6. Determination of heavy metals in Damascus drinking water using total reflection x-ray fluorescence

    International Nuclear Information System (INIS)

    Bakraji, E. H.; Karajo, J.

    2000-01-01

    Total reflection x-ray fluorescence spectrometry and chemical preconcentration have applied for multi-elemental analysis of Damascus drinking water. Water was taken directly from taps of several city sectors and analyzed for the following trace elements: Ti, V, Cr, Fe, Co, Ni, Cu, Zn, Se and Pb. The detection limits were found to be in the range of 0.1 to 0.4 μg/l. The mean levels of trace elements in the Damascus drinking water were below the World Health Organization drinking water quality guidelines. (author)

  7. Does plant diversity affect the water balance of established grassland systems?

    Science.gov (United States)

    Leimer, Sophia; Bischoff, Sebastian; Blaser, Stefan; Boch, Steffen; Busch, Verena; Escher, Peter; Fischer, Markus; Kaupenjohann, Martin; Kerber, Katja; Klaus, Valentin; Michalzik, Beate; Prati, Daniel; Schäfer, Deborah; Schmitt, Barbara; Schöning, Ingo; Schwarz, Martin T.; Siemens, Jan; Thieme, Lisa; Wilcke, Wolfgang

    2017-04-01

    The water cycle drives nutrient cycles and plant productivity. The impact of land use on the water cycle has been extensively studied and there is experimental evidence that biodiversity modifies the water cycle in grasslands. However, the combined influences of land-use and associated biodiversity on the water cycle in established land-use systems are unclear. Therefore, we investigated how evapotranspiration (ETa), downward water flux (DF), and capillary rise (CR) in topsoil and subsoil are related to land-use and plant diversity in established, commercially managed grassland and compared these results to findings from experiments where plant diversity was manipulated. In three Central European regions ("Biodiversity Exploratories"), we studied 29 grassland plots (50 m x 50 m; 9-11 plots per region) from 2010 to 2015. The land-use types cover pasture, mown pasture, and meadow in at least triplicate per region. On each plot, we measured soil water contents, meteorological data (hourly resolution), cumulative precipitation (biweekly), plant species richness, the number of plants in the functional groups of grasses, herbs, and legumes (annually), and root biomass (once). Potential evapotranspiration (ETp) was calculated from meteorological data per plot. Missing data points of ETp and soil water contents were estimated with Bayesian hierarchical models. ETa, DF, and CR were calculated for two soil layers with a soil water balance model. The model is based on changes in soil water storage between subsequent observation dates and ETp, which was partitioned between soil layers according to root distribution. Water fluxes in annual resolution were statistically analyzed for land-use and biodiversity effects using repeated-measures analysis of variance (ANOVA). Land-use type did not affect water fluxes. Species richness did not influence DF and CR. DF from topsoil was higher on plots with more grass species, which is opposite to the results from a manipulative

  8. The relevance of ligament balancing in total knee arthroplasty: how important is it? A systematic review of the literature

    OpenAIRE

    Babazadeh, Sina; Stoney, James D.; Lim, Keith; Choong, Peter F.M.

    2009-01-01

    Ligament balancing affects many of the postoperative criteria for a successful knee replacement. A balanced knee contributes to improved alignment and stability. Ligament balancing helps reduce wear and loosening of the joint. A patient with a balanced knee is more likely to have increased range of motion and proprioception, and decreased pain. All these factors help minimize the need for revision surgery. Complications associated with ligament balancing can include instability caused by over...

  9. Diagnosing the decline in climatic mass balance of glaciers in Svalbard over 1957-2014

    Science.gov (United States)

    Ims Østby, Torbjørn; Vikhamar Schuler, Thomas; Ove Hagen, Jon; Hock, Regine; Kohler, Jack; Reijmer, Carleen H.

    2017-01-01

    Estimating the long-term mass balance of the high-Arctic Svalbard archipelago is difficult due to the incomplete geodetic and direct glaciological measurements, both in space and time. To close these gaps, we use a coupled surface energy balance and snow pack model to analyse the mass changes of all Svalbard glaciers for the period 1957-2014. The model is forced by ERA-40 and ERA-Interim reanalysis data, downscaled to 1 km resolution. The model is validated using snow/firn temperature and density measurements, mass balance from stakes and ice cores, meteorological measurements, snow depths from radar profiles and remotely sensed surface albedo and skin temperatures. Overall model performance is good, but it varies regionally. Over the entire period the model yields a climatic mass balance of 8.2 cm w. e. yr-1, which corresponds to a mass input of 175 Gt. Climatic mass balance has a linear trend of -1.4 ± 0.4 cm w. e. yr-2 with a shift from a positive to a negative regime around 1980. Modelled mass balance exhibits large interannual variability, which is controlled by summer temperatures and further amplified by the albedo feedback. For the recent period 2004-2013 climatic mass balance was -21 cm w. e. yr-1, and accounting for frontal ablation estimated by Błaszczyk et al.(2009) yields a total Svalbard mass balance of -39 cm w. e. yr-1 for this 10-year period. In terms of eustatic sea level, this corresponds to a rise of 0.037 mm yr-1. Refreezing of water in snow and firn is substantial at 22 cm w. e. yr-1 or 26 % of total annual accumulation. However, as warming leads to reduced firn area over the period, refreezing decreases both absolutely and relative to the total accumulation. Negative mass balance and elevated equilibrium line altitudes (ELAs) resulted in massive reduction of the thick (> 2 m) firn extent and an increase in the superimposed ice, thin (ice extents. Atmospheric warming also leads to a marked change in the thermal regime, with cooling of the

  10. WORK / LIFE BALANCE REFLECTIONS ON EMPLOYEE SATISFACTION

    Directory of Open Access Journals (Sweden)

    Selvarani

    2011-03-01

    Full Text Available The aim of this research is to analyze the relationship between employee satisfaction andwork/life balance. The construct used for this research consists of career opportunity, recognition,work tasks, payments, benefits, superior subordinate relationship, employee satisfaction, andwork/life balance. The study was conducted on a total of 210 respondents working in IT organization.This study makes a contribution to join two distinct research streams, namely employee satisfaction,and work/life balance. Findings suggest that high correlation exists between work task and employeesatisfaction with a mediator variable namely work-life balance.

  11. Research of the Landscape Structure of the Water Balance of the Trialeti Range Northern Slope according to the Natural Recreation Resources

    International Nuclear Information System (INIS)

    Beritashvili, B.; Meskhia, R.; Savishvili, N.; Kartvelishvili, L.; Mikautadze, D.; Chikhladze, N.

    2006-01-01

    The work deals with the landscape-differentiated analysis of the water balance elements of the rivers on the Northern slope of the Trialeti Range using the 1961-2000 years observation data. Regularities of their variation are given according to the altitude. (author)

  12. Utility of remote sensing-based surface energy balance models to track water stress in rain-fed switchgrass under dry and wet conditions

    Science.gov (United States)

    Bhattarai, Nishan; Wagle, Pradeep; Gowda, Prasanna H.; Kakani, Vijaya G.

    2017-11-01

    The ability of remote sensing-based surface energy balance (SEB) models to track water stress in rain-fed switchgrass (Panicum virgatum L.) has not been explored yet. In this paper, the theoretical framework of crop water stress index (CWSI; 0 = extremely wet or no water stress condition and 1 = extremely dry or no transpiration) was utilized to estimate CWSI in rain-fed switchgrass using Landsat-derived evapotranspiration (ET) from five remote sensing based single-source SEB models, namely Surface Energy Balance Algorithm for Land (SEBAL), Mapping ET with Internalized Calibration (METRIC), Surface Energy Balance System (SEBS), Simplified Surface Energy Balance Index (S-SEBI), and Operational Simplified Surface Energy Balance (SSEBop). CWSI estimates from the five SEB models and a simple regression model that used normalized difference vegetation index (NDVI), near-surface temperature difference, and measured soil moisture (SM) as covariates were compared with those derived from eddy covariance measured ET (CWSIEC) for the 32 Landsat image acquisition dates during the 2011 (dry) and 2013 (wet) growing seasons. Results indicate that most SEB models can predict CWSI reasonably well. For example, the root mean square error (RMSE) ranged from 0.14 (SEBAL) to 0.29 (SSEBop) and the coefficient of determination (R2) ranged from 0.25 (SSEBop) to 0.72 (SEBAL), justifying the added complexity in CWSI modeling as compared to results from the simple regression model (R2 = 0.55, RMSE = 0.16). All SEB models underestimated CWSI in the dry year but the estimates from SEBAL and S-SEBI were within 7% of the mean CWSIEC and explained over 60% of variations in CWSIEC. In the wet year, S-SEBI mostly overestimated CWSI (around 28%), while estimates from METRIC, SEBAL, SEBS, and SSEBop were within 8% of the mean CWSIEC. Overall, SEBAL was the most robust model under all conditions followed by METRIC, whose performance was slightly worse and better than SEBAL in dry and wet years

  13. Data Descriptor: TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015

    Science.gov (United States)

    John T. Abatzoglou; Solomon Z. Dobrowski; Sean A. Parks; Katherine C. Hegewisch

    2018-01-01

    We present TerraClimate, a dataset of high-spatial resolution (1/24°, ~4-km) monthly climate and climatic water balance for global terrestrial surfaces from 1958–2015. TerraClimate uses climatically aided interpolation, combining high-spatial resolution climatological normals from the WorldClim dataset, with coarser resolution time varying (i.e., monthly) data from...

  14. Iodide-assisted total lead measurement and determination of different lead fractions in drinking water samples.

    Science.gov (United States)

    Zhang, Yuanyuan; Ng, Ding-Quan; Lin, Yi-Pin

    2012-07-01

    Lead and its compounds are toxic and can harm human health, especially the intelligence development in children. Accurate measurement of total lead present in drinking water is crucial in determining the extent of lead contamination and human exposure due to drinking water consumption. The USEPA method for total lead measurement (no. 200.8) is often used to analyze lead levels in drinking water. However, in the presence of high concentration of the tetravalent lead corrosion product PbO(2), the USEPA method was not able to fully recover particulate lead due to incomplete dissolution of PbO(2) particles during strong acid digestion. In this study, a new procedure that integrates membrane separation, iodometric PbO(2) measurement, strong acid digestion and ICP-MS measurement was proposed and evaluated for accurate total lead measurement and quantification of different lead fractions including soluble Pb(2+), particulate Pb(II) carbonate and PbO(2) in drinking water samples. The proposed procedure was evaluated using drinking water reconstituted with spiked Pb(2+), spiked particulate Pb(II) carbonate and in situ formed or spiked PbO(2). Recovery tests showed that the proposed procedure and the USEPA method can achieve 93-112% and 86-103% recoveries respectively for samples containing low PbO(2) concentrations (0.018-0.076 mg Pb per L). For samples containing higher concentrations of PbO(2) (0.089-1.316 mg Pb per L), the USEPA method failed to meet the recovery requirement for total lead (85-115%) while the proposed method can achieve satisfactory recoveries (91-111%) and differentiate the soluble Pb(2+), particulate Pb(II) carbonate and PbO(2).

  15. Study of the total uranium in underground water in the city of Jimenez, Chihuahua

    International Nuclear Information System (INIS)

    Renteria V, M.

    2004-01-01

    Samples of water of wells in the city of Jimenez, Chihuahua were analyzed, and its were determined the content of total uranium. It was used the technique of extraction of uranium from water adding Bis ( 2- ethylexyl) phosphate and scintillating Beta plate Hi safe, and the measures of the activities were carried out in the portable scintillation detector Thiathler- O Y HIDEX. The obtained interval of concentrations was 0.12 to 0.26 Bq/l that it is finds below the maximum permissible limits that it manages the Mexican regulation. It was found a significant correlation among the concentration of uranium and those total solid dissolved present in the samples. (Author)

  16. Newton's Third Law on a Scale Balance

    Science.gov (United States)

    Nopparatjamjomras, Suchai; Panijpan, Bhinyo; Huntula, Jiradawan

    2009-01-01

    We propose a series of experiments involving balance readings of an object naturally floating or forced to be partially or fully immersed in water contained in a beaker sitting on an electronic scale balance. Students were asked to predict, observe and explain each case. The teacher facilitated the learning by asking probing questions, giving…

  17. Patella position is not a determinant for anterior knee pain 10 years after balanced gap total knee arthroplasty.

    Science.gov (United States)

    van Houten, Albert H; Heesterbeek, Petra J C; Wymenga, Ate B

    2016-08-01

    Incidence of anterior knee pain after total knee arthroplasty (TKA) is reported to be between 4 and 49 %. The incidence of AKP at long-term follow-up and possible determinants after cruciate cruciate-retaining TKA were investigated. A 10-year follow-up of a cohort of 55 patients (63 TKAs), who received the balanSys™ cruciate-retaining total knee system (Mathys Ltd, Bettlach, Switzerland) between 1999 and 2002, was performed. Patients had undergone the balanced gap technique, with either a fixed bearing or an AP-glide bearing. Standardised diagnostic questions regarding AKP were collected and categorised into two groups: those with and without AKP. The lateral patellar tilt, patellar displacement measurement and modified Insall-Salvati ratio were used for patella position evaluation on skyline radiographs. The Knee Society Score (KSS), the Knee Osteoarthritis Outcome Score (KOOS) and Numerical Rating Scales (NRS) for pain and satisfaction were obtained at follow-up. Sixteen patients in the study population experienced AKP. Incidence of AKP (fixed bearing 13/44; AP-glide bearing baring 3/17) was not dependent on type of insert (n.s.). There were no statistical differences in patella position and tibiofemoral contact point between the AKP group and the no AKP group (n.s.). KSS, KOOS, NRS-pain and NRS-satisfaction were significantly lower for the patients with AKP (all p years after balanced gap TKA. Postoperative patella positioning was not found to be a determinant for anterior knee pain after TKA. However, patellar displacement does not seem completely favourable. Moreover, type of bearing was not found a determinant for AKP at long-term follow-up. Lower quality prospective cohort study (<80 % follow-up, patients enrolled at different time points in disease), Level II.

  18. Revisiting the total ion yield x-ray absorption spectra of liquid water microjets

    International Nuclear Information System (INIS)

    Saykally, Richard J; Cappa, Chris D.; Smith, Jared D.; Wilson, Kevin R.; Saykally, Richard J.

    2008-01-01

    Measurements of the total ion yield (TIY) x-ray absorption spectrum (XAS) of liquid water by Wilson et al. (2002 J. Phys.: Condens. Matter 14 L221 and 2001 J. Phys. Chem. B 105 3346) have been revisited in light of new experimental and theoretical efforts by our group. Previously, the TIY spectrum was interpreted as a distinct measure of the electronic structure of the liquid water surface. However, our new results indicate that the previously obtained spectrum may have suffered from as yet unidentified experimental artifacts. Although computational results indicate that the liquid water surface should exhibit a TIY-XAS that is fundamentally distinguishable from the bulk liquid XAS, the new experimental results suggest that the observable TIY-XAS is actually nearly identical in appearance to the total electron yield (TEY-)XAS, which is a bulk probe. This surprising similarity between the observed TIY-XAS and TEY-XAS likely results from large contributions from x-ray induced electron stimulated desorption of ions, and does not necessarily indicate that the electronic structure of the bulk liquid and liquid surface are identical

  19. Evaporation estimates from the Dead Sea and their implications on its water balance

    Science.gov (United States)

    Oroud, Ibrahim M.

    2011-12-01

    The Dead Sea (DS) is a terminal hypersaline water body situated in the deepest part of the Jordan Valley. There is a growing interest in linking the DS to the open seas due to severe water shortages in the area and the serious geological and environmental hazards to its vicinity caused by the rapid level drop of the DS. A key issue in linking the DS with the open seas would be an accurate determination of evaporation rates. There exist large uncertainties of evaporation estimates from the DS due to the complex feedback mechanisms between meteorological forcings and thermophysical properties of hypersaline solutions. Numerous methods have been used to estimate current and historical (pre-1960) evaporation rates, with estimates differing by ˜100%. Evaporation from the DS is usually deduced indirectly using energy, water balance, or pan methods with uncertainty in many parameters. Accumulated errors resulting from these uncertainties are usually pooled into the estimates of evaporation rates. In this paper, a physically based method with minimum empirical parameters is used to evaluate historical and current evaporation estimates from the DS. The more likely figures for historical and current evaporation rates from the DS were 1,500-1,600 and 1,200-1,250 mm per annum, respectively. Results obtained are congruent with field observations and with more elaborate procedures.

  20. Wii Fit balance board playing improves balance and gait in Parkinson disease.

    Science.gov (United States)

    Mhatre, Priya V; Vilares, Iris; Stibb, Stacy M; Albert, Mark V; Pickering, Laura; Marciniak, Christina M; Kording, Konrad; Toledo, Santiago

    2013-09-01

    To assess the effect of exercise training by using the Nintendo Wii Fit video game and balance board system on balance and gait in adults with Parkinson disease (PD). A prospective interventional cohort study. An outpatient group exercise class. Ten subjects with PD, Hoehn and Yahr stages 2.5 or 3, with a mean age of 67.1 years; 4 men, 6 women. The subjects participated in supervised group exercise sessions 3 times per week for 8 weeks by practicing 3 different Wii balance board games (marble tracking, skiing, and bubble rafting) adjusted for their individualized function level. The subjects trained for 10 minutes per game, a total of 30 minutes training per session. Pre-and postexercise training, a physical therapist evaluated subjects' function by using the Berg Balance Scale, Dynamic Gait Index, and Sharpened Romberg with eyes open and closed. Postural sway was assessed at rest and with tracking tasks by using the Wii balance board. The subjects rated their confidence in balance by using the Activities-specific Balance Confidence scale and depression on the Geriatric Depression Scale. Balance as measured by the Berg Balance Scale improved significantly, with an increase of 3.3 points (P = .016). The Dynamic Gait Index improved as well (mean increase, 2.8; P = .004), as did postural sway measured with the balance board (decreased variance in stance with eyes open by 31%; P = .049). Although the Sharpened Romberg with eyes closed increased by 6.85 points and with eyes opened by 3.3 points, improvements neared significance only for eyes closed (P = .07 versus P = .188). There were no significant changes on patient ratings for the Activities-specific Balance Confidence (mean decrease, -1%; P = .922) or the Geriatric Depression Scale (mean increase, 2.2; P = .188). An 8-week exercise training class by using the Wii Fit balance board improved selective measures of balance and gait in adults with PD. However, no significant changes were seen in mood or