WorldWideScience

Sample records for total reactive nitrogen

  1. TRANC - a novel fast-response converter to measure total reactive atmospheric nitrogen

    Science.gov (United States)

    Marx, O.; Brümmer, C.; Ammann, C.; Wolff, V.; Freibauer, A.

    2012-05-01

    The input and loss of plant available nitrogen (reactive nitrogen: Nr) from/to the atmosphere can be an important factor for the productivity of ecosystems and thus for its carbon and greenhouse gas exchange. We present a novel converter for reactive nitrogen (TRANC: Total Reactive Atmospheric Nitrogen Converter), which offers the opportunity to quantify the sum of all airborne reactive nitrogen compounds (∑Nr) in high time resolution. The basic concept of the TRANC is the full conversion of all Nr to nitrogen monoxide (NO) within two reaction steps. Initially, reduced Nr compounds are being oxidised, and oxidised Nr compounds are thermally converted to lower oxidation states. Particulate Nr is being sublimated and oxidised or reduced afterwards. In a second step, remaining higher nitrogen oxides or those generated in the first step are catalytically converted to NO with carbon monoxide used as reduction gas. The converter is combined with a fast response chemiluminescence detector (CLD) for NO analysis and its performance was tested for the most relevant gaseous and particulate Nr species under both laboratory and field conditions. Recovery rates during laboratory tests for NH3 and NO2 were found to be 95 and 99%, respectively, and 97% when the two gases were combined. In-field longterm stability over an 11-month period was approved by a value of 91% for NO2. Effective conversion was also found for ammonium and nitrate containing particles. The recovery rate of total ambient Nr was tested against the sum of individual measurements of NH3, HNO3, HONO, NH4+, NO3-, and NOx using a combination of different well-established devices. The results show that the TRANC-CLD system precisely captures fluctuations in ∑Nr concentrations and also matches the sum of all individual Nr compounds measured by the different single techniques. The TRANC features a specific design with very short distance between the sample air inlet and the place where the thermal and catalytic

  2. TRANC – a novel fast-response converter to measure total reactive atmospheric nitrogen

    Directory of Open Access Journals (Sweden)

    V. Wolff

    2012-05-01

    Full Text Available The input and loss of plant available nitrogen (reactive nitrogen: Nr from/to the atmosphere can be an important factor for the productivity of ecosystems and thus for its carbon and greenhouse gas exchange. We present a novel converter for reactive nitrogen (TRANC: Total Reactive Atmospheric Nitrogen Converter, which offers the opportunity to quantify the sum of all airborne reactive nitrogen compounds (∑Nr in high time resolution. The basic concept of the TRANC is the full conversion of all Nr to nitrogen monoxide (NO within two reaction steps. Initially, reduced Nr compounds are being oxidised, and oxidised Nr compounds are thermally converted to lower oxidation states. Particulate Nr is being sublimated and oxidised or reduced afterwards. In a second step, remaining higher nitrogen oxides or those generated in the first step are catalytically converted to NO with carbon monoxide used as reduction gas. The converter is combined with a fast response chemiluminescence detector (CLD for NO analysis and its performance was tested for the most relevant gaseous and particulate Nr species under both laboratory and field conditions. Recovery rates during laboratory tests for NH3 and NO2 were found to be 95 and 99%, respectively, and 97% when the two gases were combined. In-field longterm stability over an 11-month period was approved by a value of 91% for NO2. Effective conversion was also found for ammonium and nitrate containing particles. The recovery rate of total ambient Nr was tested against the sum of individual measurements of NH3, HNO3, HONO, NH4+, NO3−, and NOx using a combination of different well-established devices. The results show that the TRANC-CLD system precisely captures fluctuations in ∑Nr concentrations and also matches the sum of all individual Nr compounds measured by the different single techniques. The TRANC features a specific design with very short distance between the sample air inlet and the place where the thermal

  3. Fluxes of total reactive atmospheric nitrogen (ΣNr using eddy covariance above arable land

    Directory of Open Access Journals (Sweden)

    Christophe R. Flechard

    2013-02-01

    Full Text Available The amount and timing of reactive nitrogen exchange between agricultural land and the atmosphere play a key role in evaluating ecosystem productivity and in addressing atmospheric nitrogen budgets and transport. With the recent development of the Total Reactive Atmospheric Nitrogen Converter (TRANC apparatus, a methodology has been provided for continuous measurement of the sum of all airborne nitrogen containing species (ΣNr allowing for diurnal and seasonal investigations. We present ΣNr concentration and net flux data from an 11-month field campaign conducted at an arable field using the TRANC system within an eddy-covariance setup. Clear diurnal patterns of both ΣNr concentrations and fluxes with significant dependencies on atmospheric stability and stomatal regulation were observed in the growing season. TRANC data were compared with monthly-averaged concentrations and dry deposition rates of selected Nr compounds using DELTA denuders and ensemble-averages of four inferential models, respectively. Similar seasonal trends were found for Nr concentrations from DELTA and TRANC measurements with values from the latter being considerably higher than those of DELTA denuders. The variability of the difference between these two systems could be explained by seasonally changing source locations of NOx contributions to the TRANC signal. As soil and vegetation Nr emissions to the atmosphere are generally not treated by inferential (dry deposition models, TRANC data showed lower monthly deposition rates than those obtained from inferential modelling. Net ΣNr exchange was almost neutral (~0.072 kg N ha−1 at the end of the observation period. However, during most parts of the year, slight but permanent net ΣNr deposition was found. Our measurements demonstrate that fertilizer addition followed by substantial ΣNr emissions plays a crucial role in a site's annual atmospheric nitrogen budget. As long-term Nr measurements with high temporal

  4. Exchange of reactive nitrogen compounds: concentrations and fluxes of total ammonium and total nitrate above a spruce canopy

    Directory of Open Access Journals (Sweden)

    V. Wolff

    2010-05-01

    Full Text Available Total ammonium (tot-NH4+ and total nitrate (tot-NO3 provide chemically conservative quantities in the measurement of surface exchange of reactive nitrogen compounds ammonia (NH3, particulate ammonium (NH4+, nitric acid (HNO3, and particulate nitrate (NO3, using the aerodynamic gradient method. Total fluxes were derived from concentration differences of total ammonium (NH3 and NH4+ and total nitrate (HNO3 and NO3 measured at two levels. Gaseous species and related particulate compounds were measured selectively, simultaneously and continuously above a spruce forest canopy in south-eastern Germany in summer 2007. Measurements were performed using a wet-chemical two-point gradient instrument, the GRAEGOR. Median concentrations of NH3, HNO3, NH4+, and NO3 were 0.57, 0.12, 0.76, and 0.48 μg m−3, respectively. Total ammonium and total nitrate fluxes showed large variations depending on meteorological conditions, with concentrations close to zero under humid and cool conditions and higher concentrations under dry conditions. Mean fluxes of total ammonium and total nitrate in September 2007 were directed towards the forest canopy and were −65.77 ng m−2 s−1 and −41.02 ng m−2 s−1 (in terms of nitrogen, respectively. Their deposition was controlled by aerodynamic resistances only, with very little influence of surface resistances. Including measurements of wet deposition and findings of former studies on occult deposition (fog water interception at the study site, the total N deposition in September 2007 was estimated to 5.86 kg ha−1.

  5. Micrometeorological measurements of ammonia and total reactive nitrogen exchange over semi-natural peatland

    Science.gov (United States)

    Brümmer, Christian; Richter, Undine; Schrader, Frederik; Kutsch, Werner

    2015-04-01

    Intensive agriculture generates a substantial atmospheric burden for nitrogen-limited ecosystems such as peatlands when the latter are located in close vicinity to arable sites and animal houses. The exchange of reactive nitrogen compounds between these bog ecosystems and the atmosphere is still not very well understood due to the lack of suitable measurement techniques. With recent advancements in laser spectrometry, we used a quantum cascade laser spectrometer as well as a custom-built total reactive atmospheric nitrogen (ΣNr) converter (TRANC) coupled to a fast-response chemiluminescence detector to measure NH3 and ΣNr concentrations, respectively. The analyzers' high temporal resolution allowed for determination of the respective nitrogen exchange within eddy covariance-based setups. Field campaigns were conducted at a northwestern German peatland site that is surrounded by an area of highly fertilized agricultural land and intensive livestock production (~1 km distance). The field site is part of a natural park with a very small remaining protected zone of less than 2 km x 2 km. Ammonia and ΣNr concentrations were highly variable between 2 to 110 ppb and 10 to 120 ppb, respectively. Peak values coincided with main fertilization periods on the neighboring agricultural land in early spring and fall. The trend in weekly averaged ΣNr concentrations from TRANC measurements was in good agreement with results from KAPS denuder filter systems when the latter were combined with the missing and apparently highly variable NOx contribution. Wind direction and land use in the closer vicinity clearly regulated whether ΣNr concentrations were NH3 or NOx-dominated. Ammonia uptake rates between 40 ng N m-2 s-1 and near-neutral exchange were observed. The cumulative net uptake for the period of investigation was ~700 g N ha-1 resulting in a dry net deposition of ~4 kg N ha-1 when extrapolated to an entire year, whereas KAPS denuder measurements in combination with dry

  6. A reactive nitrogen budget for Lake Michigan

    Science.gov (United States)

    The reactive nitrogen budget for Lake Michigan was reviewed and updated, making use of recent estimates of watershed and atmospheric nitrogen loads. The updated total N load to Lake Michigan was approximately double the previous estimate from the Lake Michigan Mass Balance study ...

  7. Deposition of reactive nitrogen during the Rocky Mountain Airborne Nitrogen and Sulfur (RoMANS) study

    International Nuclear Information System (INIS)

    Beem, Katherine B.; Raja, Suresh; Schwandner, Florian M.; Taylor, Courtney; Lee, Taehyoung; Sullivan, Amy P.; Carrico, Christian M.; McMeeking, Gavin R.; Day, Derek; Levin, Ezra; Hand, Jenny; Kreidenweis, Sonia M.; Schichtel, Bret; Malm, William C.; Collett, Jeffrey L.

    2010-01-01

    Increases in reactive nitrogen deposition are a growing concern in the U.S. Rocky Mountain west. The Rocky Mountain Airborne Nitrogen and Sulfur (RoMANS) study was designed to improve understanding of the species and pathways that contribute to nitrogen deposition in Rocky Mountain National Park (RMNP). During two 5-week field campaigns in spring and summer of 2006, the largest contributor to reactive nitrogen deposition in RMNP was found to be wet deposition of ammonium (34% spring and summer), followed by wet deposition of nitrate (24% spring, 28% summer). The third and fourth most important reactive nitrogen deposition pathways were found to be wet deposition of organic nitrogen (17%, 12%) and dry deposition of ammonia (14%, 16%), neither of which is routinely measured by air quality/deposition networks operating in the region. Total reactive nitrogen deposition during the spring campaign was determined to be 0.45 kg ha -1 and more than doubled to 0.95 kg ha -1 during the summer campaign. - The reactive nitrogen deposition budget for Rocky Mountain National Park.

  8. Recent changes in anthropogenic reactive nitrogen compounds

    Science.gov (United States)

    Andronache, Constantin

    2014-05-01

    Significant anthropogenic perturbations of the nitrogen cycle are the result of rapid population growth, with mounting need for food and energy production. The increase of reactive nitrogen compounds (such as NOx, HNO3, NH3, and N2O) has a significant impact on human health, environment, and climate. NOx emissions contribute to O3 chemistry, aerosol formation and acidic precipitation. Ammonia is a notable atmospheric pollutant that may deteriorate ecosystems and contribute to respiratory problems. It reacts with acidic gases to form aerosols or is deposited back to ecosystems. The application of fertilizers accounts for most of the N2O production, adding to greenhouse gas emissions. We analyze the change of some reactive nitrogen compounds based on observations, in eastern United States. Results show that the control of NOx and SO2 emissions over the last decades caused a significant decrease of acidic deposition. The nitrate deposition is highest in eastern US, while the ammonium ion concentration is highest in central US regions. Overall, the inorganic nitrogen wet deposition from nitrate and ammonium is enhanced in central, and eastern US. Research shows that sensitive ecosystems in northeastern regions exhibit a slow recovery from the accumulated effects of acidic deposition. Given the growing demand for nitrogen in agriculture and industry, we discuss possible pathways to reduce the impact of excess reactive nitrogen on the environment.

  9. Total Nitrogen in Surface Water

    Data.gov (United States)

    U.S. Environmental Protection Agency — Excess nitrogen in surface water can result in eutrophication. TOTALN is reported in kilograms/hectare/year. More information about these resources, including the...

  10. Reactive nitrogen impacts on ecosystem services

    Science.gov (United States)

    The Ecosystem Services Research Program (ESRP) is a new, multi-year research initiative under development by the Environmental Protection Agency (EPA). As one of its components, ESRP has chosen to focus on reactive Nitrogen (Nr) for stressor-specific ecosystem research through a...

  11. Reactive nitrogen deposition to South East Asian rainforest

    Science.gov (United States)

    di Marco, Chiara F.; Phillips, Gavin J.; Thomas, Rick; Tang, Sim; Nemitz, Eiko; Sutton, Mark A.; Fowler, David; Lim, Sei F.

    2010-05-01

    Deposition Network to estimate the total annual atmospheric reactive nitrogen deposition to this tropical forest ecosystem and to quantify the relative contribution of the different chemical compounds.

  12. Global reactive nitrogen deposition from lightning NOx

    NARCIS (Netherlands)

    Shepon, A.; Gildor, H.; Labrador, L.J.; Butler, T.; Ganzeveld, L.N.; Lawrence, M.G.

    2007-01-01

    We present results of the deposition of nitrogen compounds formed from lightning (LNO x ) using the global chemical transport Model of Atmospheric Transport and Chemistry¿Max Planck Institute for Chemistry version. The model indicates an approximately equal deposition of LNO x in both terrestrial

  13. Environmental and human impacts of reactive nitrogen. Chapter 1.

    Science.gov (United States)

    Many ecological problems occur with increased inputs of reactive nitrogen (Nr) into the environment. Excessive Nr is directly associated with the need for food production. The importance of managing Nr is quite broad and extends to numerous issues associated with excessive Nr in the environment. ...

  14. Reactive Nitrogen Monitoring Gaps: Issues, Activities and Needs

    Science.gov (United States)

    In this article we demonstrate the importance of ammonia and organic nitrogen to total N deposition budgets and review the current activities to close these monitoring gaps. Finally, remaining monitoring needs and issues are discussed.

  15. Measurements of total OH reactivity during PROPHET-AMOS 2016

    Science.gov (United States)

    Rickly, P.; Sakowski, J.; Bottorff, B.; Lew, M.; Stevens, P. S.; Sklaveniti, S.; Locoge, N.; Dusanter, S.

    2017-12-01

    As one of the main oxidant in the atmosphere, the hydroxyl radical (OH) initiates the oxidation of volatile organic compounds that can lead to the formation of ozone and secondary organic aerosols. Understanding both the sources and sinks of OH is therefore important to address issues related to air quality and climate change. Measurements of total OH reactivity can provide an important test of our understanding of the OH radical budget. Recent measurements of total reactivity in many environments have been greater than calculated based on the measured concentration of VOCs, suggesting that important OH sinks in these environments are not well characterized. Measurements of total OH reactivity were performed in a forested environment during the PROPHET - AMOS field campaign (Program for Research on Oxidants: PHotochemisty, Emissions, and Transport - Atmospheric Measurements of Oxidants in Summer) using the Comparative Reactivity Method (CRM) and the Total OH Loss Rate Method (TOHLM). The site is characterized by large emissions of isoprene and monoterpenes and low anthropogenic influence. Measurements of total OH reactivity using these two techniques agree to within their respective uncertainties, giving confidence in the measured OH reactivity. In addition, measurements of trace gases (VOCs, NOx, O3) were used to perform a comprehensive apportionment of OH sinks. These measurements are used in a chemical model using the Master Chemical Mechanism to calculate the expected OH reactivity. The results will be compared to previous measurements of total OH reactivity at this site.

  16. Evaluation of the reactive nitrogen budget of the remote atmosphere in global models using airborne measurements

    Science.gov (United States)

    Murray, L. T.; Strode, S. A.; Fiore, A. M.; Lamarque, J. F.; Prather, M. J.; Thompson, C. R.; Peischl, J.; Ryerson, T. B.; Allen, H.; Blake, D. R.; Crounse, J. D.; Brune, W. H.; Elkins, J. W.; Hall, S. R.; Hintsa, E. J.; Huey, L. G.; Kim, M. J.; Moore, F. L.; Ullmann, K.; Wennberg, P. O.; Wofsy, S. C.

    2017-12-01

    Nitrogen oxides (NOx ≡ NO + NO2) in the background atmosphere are critical precursors for the formation of tropospheric ozone and OH, thereby exerting strong influence on surface air quality, reactive greenhouse gases, and ecosystem health. The impact of NOx on atmospheric composition and climate is sensitive to the relative partitioning of reactive nitrogen between NOx and longer-lived reservoir species of the total reactive nitrogen family (NOy) such as HNO3, HNO4, PAN and organic nitrates (RONO2). Unfortunately, global chemistry-climate models (CCMs) and chemistry-transport models (CTMs) have historically disagreed in their reactive nitrogen budgets outside of polluted continental regions, and we have lacked in situ observations with which to evaluate them. Here, we compare and evaluate the NOy budget of six global models (GEOS-Chem CTM, GFDL AM3 CCM, GISS E2.1 CCM, GMI CTM, NCAR CAM CCM, and UCI CTM) using new observations of total reactive nitrogen and its member species from the NASA Atmospheric Tomography (ATom) mission. ATom has now completed two of its four planned deployments sampling the remote Pacific and Atlantic basins of both hemispheres with a comprehensive suite of measurements for constraining reactive photochemistry. All six models have simulated conditions climatologically similar to the deployments. The GMI and GEOS-Chem CTMs have in addition performed hindcast simulations using the MERRA-2 reanalysis, and have been sampled along the flight tracks. We evaluate the performance of the models relative to the observations, and identify factors contributing to their disparate behavior using known differences in model oxidation mechanisms, heterogeneous loss pathways, lightning and surface emissions, and physical loss processes.

  17. Chlorophyll meter reading and total nitrogen content applied as ...

    African Journals Online (AJOL)

    Ana Mascarello

    The present study was aimed to assess the relationship between the reading of the chlorophyll meter and the total nitrogen (N) content ... devices to measure chlorophyll index (SPAD) and N content in the leaf. The nitrogen levels were found ... absorption of other nutrients and the production of carbohydrates. The methods ...

  18. Chlorophyll meter reading and total nitrogen content applied as ...

    African Journals Online (AJOL)

    The present study was aimed to assess the relationship between the reading of the chlorophyll meter and the total nitrogen (N) content in the leaf in different parts of the crambe plant, depending on the doses of nitrogen applied to the canopy. Randomized block design in a split plot experimental design was used. The plots ...

  19. Regulatory Drivers of Multimedia Reactive Nitrogen Research (Invited)

    Science.gov (United States)

    Shaw, S. L.; Knipping, E.; Kumar, N.

    2010-12-01

    The presence of nitrogenous compounds can impact biogeochemical processes in the atmosphere, oceans and freshwater, and land surfaces. As a result, a number of regulations exist that are intended to control the amount and forms of nitrogen present in the environment. These range from the newly proposed Transport Rule, both the primary and secondary National Ambient Air Quality Standards (NAAQS) for nitrogen oxide targeted at ozone and particulate matter formation and nitrogen deposition, and waterbody requirements such as the Total Maximum Daily Load. This talk will cover a subset of research activities at EPRI that inform environmental nitrogen concerns. A multimedia modeling framework has facilitated effect studies of atmospheric loadings on ecosystems. Improvements in emissions estimates, such as for mobile sources, suggest large current underestimates that will substantially impact air quality modeling of nitrogen oxides. Analyses of wintertime nitrate formation in the northern U.S. are demonstrating the roles of NH3 and NOx in particle formation there. Novel measurements of power plant stack emissions suggest operating configurations can influence the isotopic composition of emitted NOx. Novel instruments for ambient measurements of nitrogen, and suggestions for improved deposition estimates, are being developed. EPRI results suggest that multimedia solutions across multiple economic sectors, such as electrification of a wide variety of engines and water quality treatment and trading, have the potential to improve environmental quality effectively.

  20. Toxicological and pathophysiological roles of reactive oxygen and nitrogen species

    International Nuclear Information System (INIS)

    Roberts, Ruth A.; Smith, Robert A.; Safe, Stephen; Szabo, Csaba; Tjalkens, Ronald B.; Robertson, Fredika M.

    2010-01-01

    'Oxidative and Nitrative Stress in Toxicology and Disease' was the subject of a symposium held at the EUROTOX meeting in Dresden 15th September 2009. Reactive oxygen (ROS) and reactive nitrogen species (RNS) produced during tissue pathogenesis and in response to viral or chemical toxicants, induce a complex series of downstream adaptive and reparative events driven by the associated oxidative and nitrative stress. As highlighted by all the speakers, ROS and RNS can promote diverse biological responses associated with a spectrum of disorders including neurodegenerative/neuropsychiatric and cardiovascular diseases. Similar pathways are implicated during the process of liver and skin carcinogenesis. Mechanistically, reactive oxygen and nitrogen species drive sustained cell proliferation, cell death including both apoptosis and necrosis, formation of nuclear and mitochondrial DNA mutations, and in some cases stimulation of a pro-angiogenic environment. Here we illustrate the pivotal role played by oxidative and nitrative stress in cell death, inflammation and pain and its consequences for toxicology and disease pathogenesis. Examples are presented from five different perspectives ranging from in vitro model systems through to in vivo animal model systems and clinical outcomes.

  1. Total OH Reactivity Measurements in the Boreal Forest

    Science.gov (United States)

    Praplan, A. P.; Hellén, H.; Hakola, H.; Hatakka, J.

    2015-12-01

    INTRODUCTION Atmospheric total OH reactivity (Rtotal) can be measured (Kovacs and Brune, 2001; Sinha et al., 2008) or it can be calculated according to Rtotal = ∑i kOH+X_i [Xi] where kOH+X_i corresponds to the reaction rate coefficient for the reaction of OH with a given compound Xi and [Xi] its concentration. Studies suggest that in some environments a large fraction of missing reactivity, comparing calculated Rtotal with ambient total OH reactivity measurements (Di Carlo et al., 2004; Hofzumahaus et al., 2009). In this study Rtotal has been measured using the Comparative Reactivity Method (Sinha et al., 2008). Levels of the reference compound (pyrrole, C4H5N) are monitored by gas chromatography every 2 minutes and Rtotal is derived from the difference of reactivity between zero and ambient air. RESULTS Around 36 hours of preliminary total OH reactivity data (30 May until 2 June 2015) are presented in Fig. 1. Its range matches previous studies for this site (Nölscher et al., 2012; Sinha et al., 2010) and is similar to values in another pine forest (Nakashima et al., 2014). The setup used during the period presented here has been updated and more recent data will be presented, as well as a comparison with calculated OH reactivity from measured individual species. ACKNOWLEDGEMENTS This work was supported by Academy of Finland (Academy Research Fellowship No. 275608). The authors acknowledge Juuso Raine for technical support. REFERENCES Di Carlo et al. (2004). Science 304, 722-725.Hofzumahaus et al. (2009). Science 324, 1702-1704.Kovacs and Brune (2001). J. Atmos. Chem. 39, 105-122.Nakashima et al. (2014). Atmos. Env. 85, 1-8.Nölscher et al. (2012). Atmos. Chem. Phys. 12, 8257-8270.Sinha et al. (2008). Atmos. Chem. Phys. 8, 2213-2227.Sinha et al. (2010). Environ. Sci. Technol. 44, 6614-6620.

  2. Governing processes for reactive nitrogen compounds in the European atmosphere

    Directory of Open Access Journals (Sweden)

    O. Hertel

    2012-12-01

    Full Text Available Reactive nitrogen (Nr compounds have different fates in the atmosphere due to differences in the governing processes of physical transport, deposition and chemical transformation. Nr compounds addressed here include reduced nitrogen (NHx: ammonia (NH3 and its reaction product ammonium (NH4+, oxidized nitrogen (NOy: nitrogen monoxide (NO + nitrogen dioxide (NO2 and their reaction products as well as organic nitrogen compounds (organic N. Pollution abatement strategies need to take into account the differences in the governing processes of these compounds when assessing their impact on ecosystem services, biodiversity, human health and climate. NOx (NO + NO2 emitted from traffic affects human health in urban areas where the presence of buildings increases the residence time in streets. In urban areas this leads to enhanced exposure of the population to NOx concentrations. NOx emissions generally have little impact on nearby ecosystems because of the small dry deposition rates of NOx. These compounds need to be converted into nitric acid (HNO3 before removal through deposition is efficient. HNO3 sticks quickly to any surface and is thereby either dry deposited or incorporated into aerosols as nitrate (NO3. In contrast to NOx compounds, NH3 has potentially high impacts on ecosystems near the main agricultural sources of NH3 because of its large ground-level concentrations along with large dry deposition rates. Aerosol phase NH4+ and NO3 contribute significantly to background PM2.5 and PM10 (mass of aerosols with an aerodynamic diameter of less than 2.5 and 10 μm, respectively with an impact on radiation balance as well as potentially on human

  3. Total Nitrogen and Available Phosphorus Dynamics in Soils ...

    African Journals Online (AJOL)

    Total nitrogen and available phosphorus concentration of soils in three secondary forest fields aged 1, 5 and 10 years of age regenerating from degraded abandoned rubber plantation (Hevea brasiliensis) and a mature forest in the west African Rainforest belt in southern Nigeria were investigated in order to determine the ...

  4. Estimating Soil Bulk Density and Total Nitrogen from Catchment ...

    African Journals Online (AJOL)

    Even though data on soil bulk density (BD) and total nitrogen (TN) are essential for planning modern farming techniques, their data availability is limited for many applications in the developing word. This study is designed to estimate BD and TN from soil properties, land-use systems, soil types and landforms in the ...

  5. Comparative changes in monthly blood urea nitrogen, total protein ...

    African Journals Online (AJOL)

    The objective of this study was to determine the comparative changes in the monthly blood urea nitrogen (BUN) concentration, total protein (TP) concentration in blood serum and the body condition score of Nguni cows and heifers raised on sweetveld. Twenty-four clinically healthy animals in different parities, namely Parity ...

  6. The global impact of biomass burning on tropospheric reactive nitrogen

    International Nuclear Information System (INIS)

    Levy, H. II; Moxim, W.J.; Kasibhatla, P.S.; Logan, J.A.

    1991-01-01

    In this chapter the authors first review their current understanding of both the anthropogenic and natural sources of reactive nitrogen compounds in the troposphere. Then the available observations of both surface concentration and wet deposition are summarized for regions with significant sources, for locations downwind of strong sources, and for remote sites. The obvious sparsity of the data leads to the next step: an attempt to develop a more complete global picture of surface concentrations and deposition of NO y with the help of global chemistry transport model (GCTM). The available source data are inserted into the GCTM and the resulting simulations compared with surface observations. The impact of anthropogenic sources, both downwind and at remote locations, is discussed and the particular role of biomass burning is identified

  7. Impacts of reactive nitrogen on climate change in China

    Science.gov (United States)

    Shi, Yalan; Cui, Shenghui; Ju, Xiaotang; Cai, Zucong; Zhu, Yong-Guan

    2015-01-01

    China is mobilizing the largest anthropogenic reactive nitrogen (Nr) in the world due to agricultural, industrial and urban development. However, the climate effects related to Nr in China remain largely unclear. Here we comprehensively estimate that the net climate effects of Nr are −100 ± 414 and 322 ± 163 Tg CO2e on a GTP20 and a GTP100 basis, respectively. Agriculture contributes to warming at 187 ± 108 and 186 ± 56 Tg CO2e on a 20-y and 100-y basis, respectively, dominated by long-lived nitrous oxide (N2O) from fertilized soils. On a 20-y basis, industry contributes to cooling at −287 ± 306 Tg CO2e, largely owing to emissions of nitrogen oxides (NOx) altering tropospheric ozone, methane and aerosol concentrations. However, these effects are short-lived. The effect of industry converts to warming at 136 ± 107 Tg CO2e on a 100-y basis, mainly as a result of the reduced carbon (C) sink from the NOx-induced ozone effect on plant damage. On balance, the warming effects of gaseous Nr are partly offset by the cooling effects of N-induced carbon sequestration in terrestrial ecosystems. The large mitigation potentials through reductions in agricultural N2O and industrial NOx will accompany by a certain mitigation pressure from limited N-induced C sequestration in the future. PMID:25631557

  8. Impacts of reactive nitrogen on climate change in China.

    Science.gov (United States)

    Shi, Yalan; Cui, Shenghui; Ju, Xiaotang; Cai, Zucong; Zhu, Yong-Guan

    2015-01-29

    China is mobilizing the largest anthropogenic reactive nitrogen (Nr) in the world due to agricultural, industrial and urban development. However, the climate effects related to Nr in China remain largely unclear. Here we comprehensively estimate that the net climate effects of Nr are -100 ± 414 and 322 ± 163 Tg CO₂e on a GTP₂₀ and a GTP₁₀₀ basis, respectively. Agriculture contributes to warming at 187 ± 108 and 186 ± 56 Tg CO₂e on a 20-y and 100-y basis, respectively, dominated by long-lived nitrous oxide (N2O) from fertilized soils. On a 20-y basis, industry contributes to cooling at -287 ± 306 Tg CO₂e, largely owing to emissions of nitrogen oxides (NOx) altering tropospheric ozone, methane and aerosol concentrations. However, these effects are short-lived. The effect of industry converts to warming at 136 ± 107 Tg CO₂e on a 100-y basis, mainly as a result of the reduced carbon (C) sink from the NOx-induced ozone effect on plant damage. On balance, the warming effects of gaseous Nr are partly offset by the cooling effects of N-induced carbon sequestration in terrestrial ecosystems. The large mitigation potentials through reductions in agricultural N₂O and industrial NOx will accompany by a certain mitigation pressure from limited N-induced C sequestration in the future.

  9. Reactive nitrogen oxides and ozone above a taiga woodland

    Science.gov (United States)

    Bakwin, Peter S.; Jacob, Daniel J.; Wofsy, Steven C.; Munger, J. William; Daube, Bruce C.; Bradshaw, John D.; Sandholm, Scott T.; Talbot, Robert W.; Singh, Hanwant B.; Gregory, Gerald L.

    1994-01-01

    Measurements of reactive nitrogen oxides (NO(x) and NO(y)) and ozone (O3) were made in the planetary boundary layer (PBL) above a taiga woodland in northern Quebec, Canada, during June-August, 1990, as part of NASA Artic Boundary Layer Expedition (ABLE) 3B. Levels of nitrogen oxides and O3 were strongly modulated by the synoptic scale meteorology that brought air from various source regions to the site. Industrial pollution from the Great Lakes region of the U.S. and Canada appears to be a major source for periodic elevation of NO(x), and NO(y) and O3. We find that NO/NO2 ratios at this site at midday were approximately 50% those expected from a simple photochemical steady state between NO(x) and O3, in contrast to our earlier results from the ABLE 3A tundra site. The difference between the taiga and tundra sites is likely due to much larger emissions of biogenic hydrocarbons (particularly isoprene) from the taiga vegetation. Hydrocarbon photooxidation leads to relatively rapid production of peroxy radicals, which convert NO to NO2, at the taiga site. Ratios of NO(x) to NO(y) were typically 2-3 times higher in the PBL during ABLE 3B than during ABLE 3A. This is probably the result of high PAN levels and suppressed formation of HNO3 from NO2 due to high levels of biogenic hydrocarbons at the ABLE 3B site.

  10. In Situ Denitrification and Biological Nitrogen Fixation Under Enhanced Atmospheric Reactive Nitrogen Deposition in UK Peatlands

    Science.gov (United States)

    Ullah, Sami; Saiz Val, Ernesto; Sgouridis, Fotis; Peichl, Matthias; Nilsson, Mats

    2017-04-01

    Dinitrogen (N2) and nitrous oxide (N2O) losses due to denitrification and biological N2 fixation (BNF) are the most uncertain components of the nitrogen (N) cycle in peatlands under enhanced atmospheric reactive nitrogen (Nr) deposition. This uncertainty hampers our ability to assess the contribution of denitrification to the removal of biologically fixed and/or atmospherically deposited Nr in peatlands. This uncertainty emanates from the difficulty in measuring in situ soil N2 and N2O production and consumption in peatlands. In situ denitrification and its contribution to total N2O flux was measured monthly between April 2013 and October 2014 in peatlands in two UK catchments. An adapted 15N-Gas Flux method1 with low level addition of 15N tracer (0.03 ± 0.005 kg 15N ha-1) was used to measure denitrification and its contribution to net N2O production (DN2O/TN2O). BNF was measured in situ through incubation of selected sphagnum species under 15N2 gas tracer. Denitrification2 varied temporally and averaged 8 kg N-N2 ha-1 y-1. The contribution of denitrification was about 48% to total N2O flux3 of 0.05 kg N ha-1 y-1. Soil moisture, temperature, ecosystem respiration, pH and mineral N content mainly regulated the flux of N2 and N2O. Preliminary results showed suppression of BNF, which was 1.8 to 7 times lower in peatland mosses exposed to ˜15 to 20 kg N ha-1 y-1 Nr deposition in the UK than in peatland mosses in northern Sweden with background Nr deposition. Overall, the contribution of denitrification to Nr removal in the selected peatlands was ˜50% of the annual Nr deposition rates, making these ecosystems vulnerable to chronic N saturation. These results point to a need for a more comprehensive annual BNF measurement to more accurately account for total Nr input into peatlands and its atmospheric loss due to denitrification. References Sgouridis F, Stott A & Ullah S, 2016. Application of the 15N-Gas Flux method for measuring in situ N2 and N2O fluxes due to

  11. Determination of nitrite, nitrate and total nitrogen in vegetable samples

    Directory of Open Access Journals (Sweden)

    Manas Kanti Deb

    2007-04-01

    Full Text Available Yellow diazonium cation formed by reaction of nitrite with 6-amino-1-naphthol-3-sulphonic acid is coupled with β-naphthol in strong alkaline medium to yield a pink coloured azo dye. The azo-dyes shows absorption maximum at 510 nm with molar absorptivity of 2.5 ×104 M-1 cm-1. The dye product obeys Beer's law (correlation coefficient = 0.997, in terms of nitrite concentration, up to 2.7 μg NO2 mL-1. The above colour reaction system has been applied successfully for the determination of nitrite, nitrate and total nitrogen in vegetable samples. Unreduced samples give direct measure for nitrite whilst reduction of samples by copperized-cadmium column gives total nitrogen content and their difference shows nitrate content in the samples. Variety of vegetables have been tested for their N-content (NO2-/NO3-/total-N with % RSD ranging between 1.5 to 2.5 % for nitrite determination. The effects of foreign ions in the determination of the nitrite, nitrate, and total nitrogen have been studied. Statistical comparison of the results with those of reported method shows good agreement and indicates no significant difference in precision.

  12. Mitochondrial Signaling in Plants Under Hypoxia: Use of Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS)

    DEFF Research Database (Denmark)

    Hebelstrup, Kim; Møller, Ian Max

    2015-01-01

    Hypoxia commonly occurs in roots in water-saturated soil and in maturing and germinating seeds. We here review the role of the mitochondria in the cellular response to hypoxia with an emphasis on the turnover of Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS) and their potential...

  13. Protein Losses and Urea Nitrogen Underestimate Total Nitrogen Losses in Peritoneal Dialysis and Hemodialysis Patients.

    Science.gov (United States)

    Salame, Clara; Eaton, Simon; Grimble, George; Davenport, Andrew

    2018-04-28

    Muscle wasting is associated with increased mortality and is commonly reported in dialysis patients. Hemodialysis (HD) and peritoneal dialysis (PD) treatments lead to protein losses in effluent dialysate. We wished to determine whether changes in current dialysis practice had increased therapy-associated nitrogen losses. Cross-sectional cohort study. Measurement of total protein, urea and total nitrogen in effluent dialysate from 24-hour collections from PD patients, and during haemodiafiltration (HDF) and haemodialysis (HD) sessions. One hundred eight adult dialysis patients. Peritoneal dialysis, high-flux haemodialysis and haemodiafiltration. Total nitrogen and protein losses. Dialysate protein losses were measured in 68 PD and 40 HD patients. Sessional losses of urea (13.9 [9.2-21.1] vs. 4.8 [2.8-7.8] g); protein (8.6 [7.2-11.1] vs. 6.7 [3.9-11.1] g); and nitrogen (11.5 [8.7-17.7] vs. 4.9 [2.6-9.5] g) were all greater for HD than PD, P losses were lower with HD 25.9 (21.5-33.4) versus 46.6 (27-77.6) g/week, but nitrogen losses were similar. We found no difference between high-flux HD and HDF: urea (13.5 [8.8-20.6] vs. 15.3 [10.5-25.5] g); protein (8.8 [7.3-12.2] vs. 7.6 [5.8-9.0] g); and total nitrogen (11.6 [8.3-17.3] vs. 10.8 [8.9-22.5] g). Urea nitrogen (UN) only accounted for 45.1 (38.3-51.0)% PD and 63.0 (55.3-62.4)% HD of total nitrogen losses. Although sessional losses of protein and UN were greater with HD, weekly losses were similar between modalities. We found no differences between HD and HDF. However, total nitrogen losses were much greater than the combination of protein and UN, suggesting greater nutritional losses with dialysis than previously reported. Copyright © 2018 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  14. Reactive nitrogen losses from China's food system for the shared socioeconomic pathways (SSPs)

    NARCIS (Netherlands)

    Wang, Mengru; Kroeze, Carolien; Strokal, Maryna; Ma, Lin

    2017-01-01

    Food production in China has been changing fast as a result of socio-economic development. This resulted in an increased use of nitrogen (N) in food production, and also to increased reactive nitrogen (Nr) losses to the environment, causing nitrogen pollution. Our study is the first to quantify

  15. Reactive nitrogen in the environment and its effect on climate change

    NARCIS (Netherlands)

    Erisman, J.W.; Galloway, J.N.; Seitzinger, S.; Bleeker, A.; Butterbach-Bahl, K.

    2011-01-01

    Humans have doubled levels of reactive nitrogen in circulation, largely as a result of fertilizer application and fossil fuel burning. This massive alteration of the nitrogen cycle affects climate, food security, energy security, human health and ecosystem services. Our estimates show that nitrogen

  16. Dose equivalent distributions in the AAEC total body nitrogen facility

    International Nuclear Information System (INIS)

    Allen, B.J.; Bailey, G.M.; McGregor, B.J.

    1985-01-01

    The incident neutron dose equivalent in the AAEC total body nitrogen facility is measured by a calibrated remmeter. Dose equivalent rates and distributions are calculated by Monte Carlo techniques which take account of the secondary neutron flux from the collimator. Experiment and calculation are found to be in satisfactory agreement. The effective dose equivalent per exposure is determined by weighting organ doses, and the potential detriment per exposure is calculated from ICRP risk factors

  17. Management of Excess Reactive Nitrogen in the Environment

    Science.gov (United States)

    Galloway, J. N.; Theis, T.; Doering, O.

    2011-12-01

    Managing the impacts of excessive reactive nitrogen (Nr) in the environment is a complex problem that begins with the recognition of the obligate dietary need for Nr by all living populations. The human solution to this need has been to devise ways to bring Nr into the biosphere (via the Haber-Bosch process) to grow food. Other Nr is created as a by-product of fossil-fuel combustion. The net result is the introduction of more than five times the Nr created by natural processes in the U.S., only a fraction of which is converted back to diatomic nitrogen through denitrification. This presentation summarizes findings and recommendations of the newly-released US EPA Science Advisory Board's Integrated Nitrogen Committee report, "Reactive Nitrogen in the United States: An Analysis of Flows, Consequences, and Management Options", that deal specifically with approaches for solving the excess Nr problem. These can be grouped into four general areas: (1) Recognition of the Problem. Until there is recognition that excess Nr is a serious problem with economic, health, and societal consequences, there will be little willingness to expend resources on this issue. Education, communication and outreach are critically important to engender in regulators, and the public at large, sufficient will to undertake the large scale effort needed to reduce Nr in the environment. (2) Development of Integrated Regulatory Approaches. Given what is known about the way Nr behaves, efforts to deal with excess Nr must be organized in a way that reflects the nature of the problem. Unfortunately, most approaches tend to conceive of Nr issues within a narrowly focused disciplinary model, and our policy and regulatory institutions are often bound by enabling legislation that stresses source-by-source, chemical-by-chemical, and media-by-media. The resulting regulatory structure that has evolved for problems such as Nr that affect human health and the environment is apt to miss the complex nature of the

  18. Reactive transport modeling of nitrogen in Seine River sediments

    Science.gov (United States)

    Akbarzadeh, Z.; Laverman, A.; Raimonet, M.; Rezanezhad, F.; Van Cappellen, P.

    2016-02-01

    Biogeochemical processes in sediments have a major impact on the fate and transport of nitrogen (N) in river systems. Organic matter decomposition in bottom sediments releases inorganic N species back to the stream water, while denitrification, anammox and burial of organic matter remove bioavailable N from the aquatic environment. To simulate N cycling in river sediments, a multi-component reactive transport model has been developed in MATLAB®. The model includes 3 pools of particulate organic N, plus pore water nitrate, nitrite, nitrous oxide and ammonium. Special attention is given to the production and consumption of nitrite, a N species often neglected in early diagenetic models. Although nitrite is usually considered to be short-lived, elevated nitrite concentrations have been observed in freshwater streams, raising concerns about possible toxic effects. We applied the model to sediment data sets collected at two locations in the Seine River, one upstream, the other downstream, of the largest wastewater treatment plant (WWTP) of the Paris conurbation. The model is able to reproduce the key features of the observed pore water depth profiles of the different nitrogen species. The modeling results show that the presence of oxygen in the overlying water plays a major role in controlling the exchanges of nitrite between the sediments and the stream water. In August 2012, sediments upstream of the WWTP switch from being a sink to a source of nitrite as the overlying water becomes anoxic. Downstream sediments remain a nitrite sink in oxic and anoxic conditions. Anoxic bottom waters at the upstream location promote denitrification, which produces nitrite, while at the downstream site, anammox and DNRA are important removal processes of nitrite.

  19. Soil emissions of gaseous reactive nitrogen from North American arid lands: an overlooked source.

    Science.gov (United States)

    Sparks, J. P.; McCalley, C. K.; Strahm, B. D.

    2008-12-01

    The biosphere-atmosphere exchange and transformation of nitrogen has important ramifications for both terrestrial biogeochemistry and atmospheric chemistry. Several important mechanisms within this process (e.g., photochemistry, nitrogen deposition, aerosol formation) are strongly influenced by the emission of reactive nitrogen compounds from the Earth's surface. Therefore, a quantification of emission sources is a high priority for future conceptual understanding. One source largely overlooked in most global treatments are the soil emissions from arid and semi-arid landscapes worldwide. Approximately 35-40% of global terrestrial land cover is aridland and emission of reactive nitrogen from soils in these regions has the potential to strongly influence both regional and global biogeochemistry. Here we present estimates of soil emission of oxidized (NO, total NOy including NO2 and HONO) and reduced (NH3) forms of reactive nitrogen from two North American arid regions: the Mojave Desert and the Colorado Plateau. Soil fluxes in these regions are highly dependent on soil moisture conditions. Soil moisture is largely driven by pulsed rain events with fluxes increasing 20-40 fold after a rain event. Using field measurements made across seasons under an array of moisture conditions, precipitation records, and spatially explicit cover type information we have estimated annual estimates for the Mojave Desert (1.5 ± 0.7 g N ha-1 yr-1), the shale derived (1.4 ± 0.9 g N ha-1 yr-1), and sandy soil derived (2.8 ± 1.2 g N ha-1 yr-1) regions of the Colorado Plateau. The chemical composition of soil emissions varies significantly both with season and soil moisture content. Emissions from dry soils tend to be dominated by ammonia and forms of NOy other than NO. In contrast, NO becomes a dominant portion of the flux post rain events (~30% of the total flux). This variability in chemical form has significant implications for the tropospheric fate of the emitted N. NO and other

  20. Nitrification inhibitors mitigated reactive gaseous nitrogen intensity in intensive vegetable soils from China.

    Science.gov (United States)

    Fan, Changhua; Li, Bo; Xiong, Zhengqin

    2018-01-15

    Nitrification inhibitors, a promising tool for reducing nitrous oxide (N 2 O) losses and promoting nitrogen use efficiency by slowing nitrification, have gained extensive attention worldwide. However, there have been few attempts to explore the broad responses of multiple reactive gaseous nitrogen emissions of N 2 O, nitric oxide (NO) and ammonia (NH 3 ) and vegetable yield to nitrification inhibitor applications across intensive vegetable soils in China. A greenhouse pot experiment with five consecutive vegetable crops was performed to assess the efficacies of two nitrification inhibitors, namely, nitrapyrin and dicyandiamide on reactive gaseous nitrogen emissions, vegetable yield and reactive gaseous nitrogen intensity in four typical vegetable soils representing the intensive vegetable cropping systems across mainland China: an Acrisol from Hunan Province, an Anthrosol from Shanxi Province, a Cambisol from Shandong Province and a Phaeozem from Heilongjiang Province. The results showed soil type had significant influences on reactive gaseous nitrogen intensity, with reactive gaseous nitrogen emissions and yield mainly driven by soil factors: pH, nitrate, C:N ratio, cation exchange capacity and microbial biomass carbon. The highest reactive gaseous nitrogen emissions and reactive gaseous nitrogen intensity were in Acrisol while the highest vegetable yield occurred in Phaeozem. Nitrification inhibitor applications decreased N 2 O and NO emissions by 1.8-61.0% and 0.8-79.5%, respectively, but promoted NH 3 volatilization by 3.2-44.6% across all soils. Furthermore, significant positive correlations were observed between inhibited N 2 O+NO and stimulated NH 3 emissions with nitrification inhibitor additions across all soils, indicating that reduced nitrification posed the threat of NH 3 losses. Additionally, reactive gaseous nitrogen intensity was significantly reduced in the Anthrosol and Cambisol due to the reduced reactive gaseous nitrogen emissions and increased

  1. Integrated reactive nitrogen budgets and future trends in China.

    Science.gov (United States)

    Gu, Baojing; Ju, Xiaotang; Chang, Jie; Ge, Ying; Vitousek, Peter M

    2015-07-14

    Reactive nitrogen (Nr) plays a central role in food production, and at the same time it can be an important pollutant with substantial effects on air and water quality, biological diversity, and human health. China now creates far more Nr than any other country. We developed a budget for Nr in China in 1980 and 2010, in which we evaluated the natural and anthropogenic creation of Nr, losses of Nr, and transfers among 14 subsystems within China. Our analyses demonstrated that a tripling of anthropogenic Nr creation was associated with an even more rapid increase in Nr fluxes to the atmosphere and hydrosphere, contributing to intense and increasing threats to human health, the sustainability of croplands, and the environment of China and its environs. Under a business as usual scenario, anthropogenic Nr creation in 2050 would more than double compared with 2010 levels, whereas a scenario that combined reasonable changes in diet, N use efficiency, and N recycling could reduce N losses and anthropogenic Nr creation in 2050 to 52% and 64% of 2010 levels, respectively. Achieving reductions in Nr creation (while simultaneously increasing food production and offsetting imports of animal feed) will require much more in addition to good science, but it is useful to know that there are pathways by which both food security and health/environmental protection could be enhanced simultaneously.

  2. Integrated reactive nitrogen budgets and future trends in China

    Science.gov (United States)

    Gu, Baojing; Ju, Xiaotang; Chang, Jie; Ge, Ying; Vitousek, Peter M.

    2015-01-01

    Reactive nitrogen (Nr) plays a central role in food production, and at the same time it can be an important pollutant with substantial effects on air and water quality, biological diversity, and human health. China now creates far more Nr than any other country. We developed a budget for Nr in China in 1980 and 2010, in which we evaluated the natural and anthropogenic creation of Nr, losses of Nr, and transfers among 14 subsystems within China. Our analyses demonstrated that a tripling of anthropogenic Nr creation was associated with an even more rapid increase in Nr fluxes to the atmosphere and hydrosphere, contributing to intense and increasing threats to human health, the sustainability of croplands, and the environment of China and its environs. Under a business as usual scenario, anthropogenic Nr creation in 2050 would more than double compared with 2010 levels, whereas a scenario that combined reasonable changes in diet, N use efficiency, and N recycling could reduce N losses and anthropogenic Nr creation in 2050 to 52% and 64% of 2010 levels, respectively. Achieving reductions in Nr creation (while simultaneously increasing food production and offsetting imports of animal feed) will require much more in addition to good science, but it is useful to know that there are pathways by which both food security and health/environmental protection could be enhanced simultaneously. PMID:26124118

  3. Total dissolved atmospheric nitrogen deposition in the anoxic Cariaco basin

    Science.gov (United States)

    Rasse, R.; Pérez, T.; Giuliante, A.; Donoso, L.

    2018-04-01

    Atmospheric deposition of total dissolved nitrogen (TDN) is an important source of nitrogen for ocean primary productivity that has increased since the industrial revolution. Thus, understanding its role in the ocean nitrogen cycle will help assess recent changes in ocean biogeochemistry. In the anoxic Cariaco basin, the place of the CARIACO Ocean Time-Series Program, the influence of atmospherically-deposited TDN on marine biogeochemistry is unknown. In this study, we measured atmospheric TDN concentrations as dissolved organic (DON) and inorganic (DIN) nitrogen (TDN = DIN + DON) in atmospheric suspended particles and wet deposition samples at the northeast of the basin during periods of the wet (August-September 2008) and dry (March-April 2009) seasons. We evaluated the potential anthropogenic N influences by measuring wind velocity and direction, size-fractionated suspended particles, chemical traces and by performing back trajectories. We found DIN and DON concentration values that ranged between 0.11 and 0.58 μg-N m-3 and 0.11-0.56 μg-N m-3 in total suspended particles samples and between 0.08 and 0.54 mg-N l-1 and 0.02-1.3 mg-N l-1 in wet deposition samples, respectively. Continental air masses increased DON and DIN concentrations in atmospheric suspended particles during the wet season. We estimate an annual TDN atmospheric deposition (wet + particles) of 3.6 × 103 ton-N year-1 and concluded that: 1) Atmospheric supply of TDN plays a key role in the C and N budget of the basin because replaces a fraction of the C (20% by induced primary production) and N (40%) removed by sediment burial, 2) present anthropogenic N could contribute to 30% of TDN atmospheric deposition in the basin, and 3) reduced DON (gas + particles) should be a significant component of bulk N deposition.

  4. Does high reactive nitrogen input from the atmosphere decrease the carbon sink strength of a peatland?

    Science.gov (United States)

    Brümmer, Christian; Zöll, Undine; Hurkuck, Miriam; Schrader, Frederik; Kutsch, Werner

    2017-04-01

    Mid-latitude peatlands are often exposed to high atmospheric nitrogen deposition when located in close vicinity to agricultural land. As the impacts of altered deposition rates on nitrogen-limited ecosystems are poorly understood, we investigated the surface-atmosphere exchange of several nitrogen and carbon compounds using multiple high-resolution measurement techniques and modeling. Our study site was a protected semi-natural bog ecosystem. Local wind regime and land use in the adjacent area clearly regulated whether total reactive nitrogen (ΣNr) concentrations were ammonia (NH3) or NOx-dominated. Eddy-covariance measurements of NH3 and ΣNr revealed concentration, temperature and surface wetness-dependent deposition rates. Intermittent periods of NH3 and ΣNr emission likely attributed to surface water re-emission and soil efflux, respectively, were found, thereby indicating nitrogen oversaturation in this originally N-limited ecosystem. Annual dry plus wet deposition resulted in 20 to 25 kg N ha-1 depending on method and model used, which translated into a four- to fivefold exceedance of the ecosystem-specific critical load. As the bog site had likely been exposed to the observed atmospheric nitrogen burden over several decades, a shift in grass species' composition towards a higher number of nitrophilous plants was already visible. Three years of CO2 eddy flux measurements showed that the site was a small net sink in the range of 33 to 268 g CO2 m-2 yr-1. Methane emissions of 32 g CO2-eq were found to partly offset the sequestered carbon through CO2. Our study indicates that the sink strength of the peatland has likely been decreased through elevated N deposition over the past decades. It also demonstrates the applicability of novel micrometeorological measurement techniques in biogeochemical sciences and stresses the importance of monitoring long-term changes in vulnerable ecosystems under anthropogenic pressure and climate change.

  5. Dry Deposition of Reactive Nitrogen From Satellite Observations of Ammonia and Nitrogen Dioxide Over North America

    Science.gov (United States)

    Kharol, S. K.; Shephard, M. W.; McLinden, C. A.; Zhang, L.; Sioris, C. E.; O'Brien, J. M.; Vet, R.; Cady-Pereira, K. E.; Hare, E.; Siemons, J.; Krotkov, N. A.

    2018-01-01

    Reactive nitrogen (Nr) is an essential nutrient to plants and a limiting element for growth in many ecosystems, but it can have harmful effects on ecosystems when in excess. Satellite-derived surface observations are used together with a dry deposition model to estimate the dry deposition flux of the most abundant short-lived nitrogen species, NH3 and NO2, over North America during the 2013 warm season. These fluxes demonstrate that the NH3 contribution dominates over NO2 for most regions (comprising 85% of their sum in Canada and 65% in the U.S.), with some regional exceptions (e.g. Alberta and northeastern U.S.). Nationwide, 51 t of N from these species were dry deposited in the U.S., approximately double the 28 t in Canada over this period. Forest fires are shown to be the major contributor of dry deposition of Nr from NH3 in northern latitudes, leading to deposition fluxes 2-3 times greater than from expected amounts without fires.

  6. Decadal changes in summertime reactive oxidized nitrogen and surface ozone over the Southeast United States

    Science.gov (United States)

    Li, Jingyi; Mao, Jingqiu; Fiore, Arlene M.; Cohen, Ronald C.; Crounse, John D.; Teng, Alex P.; Wennberg, Paul O.; Lee, Ben H.; Lopez-Hilfiker, Felipe D.; Thornton, Joel A.; Peischl, Jeff; Pollack, Ilana B.; Ryerson, Thomas B.; Veres, Patrick; Roberts, James M.; Neuman, J. Andrew; Nowak, John B.; Wolfe, Glenn M.; Hanisco, Thomas F.; Fried, Alan; Singh, Hanwant B.; Dibb, Jack; Paulot, Fabien; Horowitz, Larry W.

    2018-02-01

    Widespread efforts to abate ozone (O3) smog have significantly reduced emissions of nitrogen oxides (NOx) over the past 2 decades in the Southeast US, a place heavily influenced by both anthropogenic and biogenic emissions. How reactive nitrogen speciation responds to the reduction in NOx emissions in this region remains to be elucidated. Here we exploit aircraft measurements from ICARTT (July-August 2004), SENEX (June-July 2013), and SEAC4RS (August-September 2013) and long-term ground measurement networks alongside a global chemistry-climate model to examine decadal changes in summertime reactive oxidized nitrogen (RON) and ozone over the Southeast US. We show that our model can reproduce the mean vertical profiles of major RON species and the total (NOy) in both 2004 and 2013. Among the major RON species, nitric acid (HNO3) is dominant (˜ 42-45 %), followed by NOx (31 %), total peroxy nitrates (ΣPNs; 14 %), and total alkyl nitrates (ΣANs; 9-12 %) on a regional scale. We find that most RON species, including NOx, ΣPNs, and HNO3, decline proportionally with decreasing NOx emissions in this region, leading to a similar decline in NOy. This linear response might be in part due to the nearly constant summertime supply of biogenic VOC emissions in this region. Our model captures the observed relative change in RON and surface ozone from 2004 to 2013. Model sensitivity tests indicate that further reductions of NOx emissions will lead to a continued decline in surface ozone and less frequent high-ozone events.

  7. Decadal changes in summertime reactive oxidized nitrogen and surface ozone over the Southeast United States

    Directory of Open Access Journals (Sweden)

    J. Li

    2018-02-01

    Full Text Available Widespread efforts to abate ozone (O3 smog have significantly reduced emissions of nitrogen oxides (NOx over the past 2 decades in the Southeast US, a place heavily influenced by both anthropogenic and biogenic emissions. How reactive nitrogen speciation responds to the reduction in NOx emissions in this region remains to be elucidated. Here we exploit aircraft measurements from ICARTT (July–August 2004, SENEX (June–July 2013, and SEAC4RS (August–September 2013 and long-term ground measurement networks alongside a global chemistry–climate model to examine decadal changes in summertime reactive oxidized nitrogen (RON and ozone over the Southeast US. We show that our model can reproduce the mean vertical profiles of major RON species and the total (NOy in both 2004 and 2013. Among the major RON species, nitric acid (HNO3 is dominant (∼ 42–45 %, followed by NOx (31 %, total peroxy nitrates (ΣPNs; 14 %, and total alkyl nitrates (ΣANs; 9–12 % on a regional scale. We find that most RON species, including NOx, ΣPNs, and HNO3, decline proportionally with decreasing NOx emissions in this region, leading to a similar decline in NOy. This linear response might be in part due to the nearly constant summertime supply of biogenic VOC emissions in this region. Our model captures the observed relative change in RON and surface ozone from 2004 to 2013. Model sensitivity tests indicate that further reductions of NOx emissions will lead to a continued decline in surface ozone and less frequent high-ozone events.

  8. Interactive effects of reactive nitrogen and climate change on US water resources

    Science.gov (United States)

    Baron, J.; Bernhardt, E. S.; Finlay, J. C.; Chan, F.; Nolan, B. T.; Howarth, B.; Hall, E.; Boyer, E. W.

    2011-12-01

    Water resources and aquatic ecosystems are increasingly strained by withdrawals for agriculture and drinking water supply, nitrogen and other pollutant inputs, and climate change. We describe current and projected effects of the interactions of reactive nitrogen (N) and climate change on water resources of the United States. As perturbations to the N cycle intensify in a warmer less predictable climate, interactions will negatively affect the services we expect of our water resources. There are also feedbacks to the climate system itself through the production of greenhouse gases. We conclude: 1. Nitrogen concentrations will increase in the nation's waters from increased N loading and higher N mineralization rates. N export from terrestrial to aquatic ecosystems exhibits a high sensitivity to climate variations. 2. Consequences range from eutrophication and acidification, which reduce natural biodiversity and harm economically valuable fisheries, to adverse impacts on human health. 3. Extreme flood events have the potential to transport N rapidly long distances downstream from its source. 4. A recent national assessment found 67% of streams derived more than 37% of their total nitrate load from base flow often derived from groundwater. Long residence times for groundwater nitrate below agricultural fields may cause benefits from proper N management practices to take decades to be realized under current and future climates. 5. Streams, wetlands, rivers, lakes, estuaries and continental shelves are hotspots for denitrification. Maintenance of N removal capacity thus a critical component of eutrophication management under changing climate and land use conditions. 6. The amount of N inputs from fertilizer and manure use, human population, and deposition is tightly coupled with hydrology to influence the rates and proportion of N emitted to the atmosphere as N2O. About 20% of global N2O emissions come from groundwater, lakes, rivers, and estuaries; stream and wetland

  9. Total mixed ration in exercising horse: digestibility and nitrogen metabolism

    Directory of Open Access Journals (Sweden)

    L. Magni

    2010-04-01

    Full Text Available The aim of this study was to evaluate the apparent digestibility of a total mixed ration (TMR versus a traditional mixed hay/cereals diet. Four adult trained Standardbred geldings – BW = 478±37 kg - were used. The two diets consisted of 20 kg of a commercial TMR - corn silage, alfalfa hay, wet brewers’ grain, oat, apple pomace, molasses cane, soybean oil and mineral/vitamin supplement - (Diet 1 or 7 kg of meadow hay and 4.5 kg of cereal-mix - corn, oat, barley and protein/mineral/vitamin supplement - (Diet 2. The trial was conducted according to a Latin Square design (2x2. After an adaptation period of four weeks, total faeces and urine were collected for 6 days. Both feed and faeces samples were analysed for DM, OM, CP, EE, CF, NDF, ADF, cellulose, hemicellulose, ADL and GE. Data were analysed by ANOVA. The apparent digestibility and nitrogen balance of the two diets were compared. DM, OM, CP and GE apparent digestibility were significantly different between the diets, with higher values for unifeed diet than traditional diet. Energy requirement was satisfied by both diets (96.54 vs 95.55 MJ. Nitrogen balance showed negative values in both diets (- 61.67 vs - 9.05, but the hay/cereals supplemented diet showed the best protein utilisation.

  10. Rapid cycling of reactive nitrogen in the marine boundary layer.

    Science.gov (United States)

    Ye, Chunxiang; Zhou, Xianliang; Pu, Dennis; Stutz, Jochen; Festa, James; Spolaor, Max; Tsai, Catalina; Cantrell, Christopher; Mauldin, Roy L; Campos, Teresa; Weinheimer, Andrew; Hornbrook, Rebecca S; Apel, Eric C; Guenther, Alex; Kaser, Lisa; Yuan, Bin; Karl, Thomas; Haggerty, Julie; Hall, Samuel; Ullmann, Kirk; Smith, James N; Ortega, John; Knote, Christoph

    2016-04-28

    Nitrogen oxides are essential for the formation of secondary atmospheric aerosols and of atmospheric oxidants such as ozone and the hydroxyl radical, which controls the self-cleansing capacity of the atmosphere. Nitric acid, a major oxidation product of nitrogen oxides, has traditionally been considered to be a permanent sink of nitrogen oxides. However, model studies predict higher ratios of nitric acid to nitrogen oxides in the troposphere than are observed. A 'renoxification' process that recycles nitric acid into nitrogen oxides has been proposed to reconcile observations with model studies, but the mechanisms responsible for this process remain uncertain. Here we present data from an aircraft measurement campaign over the North Atlantic Ocean and find evidence for rapid recycling of nitric acid to nitrous acid and nitrogen oxides in the clean marine boundary layer via particulate nitrate photolysis. Laboratory experiments further demonstrate the photolysis of particulate nitrate collected on filters at a rate more than two orders of magnitude greater than that of gaseous nitric acid, with nitrous acid as the main product. Box model calculations based on the Master Chemical Mechanism suggest that particulate nitrate photolysis mainly sustains the observed levels of nitrous acid and nitrogen oxides at midday under typical marine boundary layer conditions. Given that oceans account for more than 70 per cent of Earth's surface, we propose that particulate nitrate photolysis could be a substantial tropospheric nitrogen oxide source. Recycling of nitrogen oxides in remote oceanic regions with minimal direct nitrogen oxide emissions could increase the formation of tropospheric oxidants and secondary atmospheric aerosols on a global scale.

  11. Sources of reactive nitrogen in marine aerosol over the Northwest Pacific Ocean in spring

    Science.gov (United States)

    Luo, Li; Kao, Shuh-Ji; Bao, Hongyan; Xiao, Huayun; Xiao, Hongwei; Yao, Xiaohong; Gao, Huiwang; Li, Jiawei; Lu, Yangyang

    2018-05-01

    Atmospheric deposition of long-range transport of anthropogenic reactive nitrogen (Nr, mainly comprised of NHx, NOy and water-soluble organic nitrogen, WSON) from continents may have profound impact on marine biogeochemistry. In addition, surface ocean dissolved organic nitrogen (DON) may also contribute to aerosol WSON in the overlying atmosphere. Despite the importance of off-continent dispersion and Nr interactions at the atmosphere-ocean boundary, our knowledge of the sources of various nitrogen species in the atmosphere over the open ocean remains limited due to insufficient observations. We conducted two cruises in the spring of 2014 and 2015 from the coast of China through the East China seas (ECSs, i.e. the Yellow Sea and East China Sea) to the open ocean (i.e. the Northwest Pacific Ocean, NWPO). Concentrations of water-soluble total nitrogen (WSTN), NO3- and NH4+, as well as the δ15N of WSTN and NO3- in marine aerosol, were measured during both cruises. In the spring of 2015, we also analysed the concentrations and δ15N of NO3- and the DON of surface seawater (SSW; at a depth of 5 m) along the cruise track. Aerosol NO3-, NH4+ and WSON decreased logarithmically (1-2 orders of magnitude) with distance from the shore, reflecting strong anthropogenic emission sources of NO3-, NH4+ and WSON in China. Average aerosol NO3- and NH4+ concentrations were significantly higher in 2014 (even in the remote NWOP) than in 2015 due to the stronger wind field in 2014, underscoring the role of the Asian winter monsoon in the seaward transport of anthropogenic NO3- and NH4+. However, the background aerosol WSON over the NWPO in 2015 (13.3 ± 8.5 nmol m-3) was similar to that in 2014 (12.2 ± 6.3 nmol m-3), suggesting an additional non-anthropogenic WSON source in the open ocean. Obviously, marine DON emissions should be considered in model and field assessments of net atmospheric WSON deposition in the open ocean. This study contributes information on parallel isotopic

  12. Sources of reactive nitrogen in marine aerosol over the Northwest Pacific Ocean in spring

    Directory of Open Access Journals (Sweden)

    L. Luo

    2018-05-01

    Full Text Available Atmospheric deposition of long-range transport of anthropogenic reactive nitrogen (Nr, mainly comprised of NHx, NOy and water-soluble organic nitrogen, WSON from continents may have profound impact on marine biogeochemistry. In addition, surface ocean dissolved organic nitrogen (DON may also contribute to aerosol WSON in the overlying atmosphere. Despite the importance of off-continent dispersion and Nr interactions at the atmosphere–ocean boundary, our knowledge of the sources of various nitrogen species in the atmosphere over the open ocean remains limited due to insufficient observations. We conducted two cruises in the spring of 2014 and 2015 from the coast of China through the East China seas (ECSs, i.e. the Yellow Sea and East China Sea to the open ocean (i.e. the Northwest Pacific Ocean, NWPO. Concentrations of water-soluble total nitrogen (WSTN, NO3− and NH4+, as well as the δ15N of WSTN and NO3− in marine aerosol, were measured during both cruises. In the spring of 2015, we also analysed the concentrations and δ15N of NO3− and the DON of surface seawater (SSW; at a depth of 5 m along the cruise track. Aerosol NO3−, NH4+ and WSON decreased logarithmically (1–2 orders of magnitude with distance from the shore, reflecting strong anthropogenic emission sources of NO3−, NH4+ and WSON in China. Average aerosol NO3− and NH4+ concentrations were significantly higher in 2014 (even in the remote NWOP than in 2015 due to the stronger wind field in 2014, underscoring the role of the Asian winter monsoon in the seaward transport of anthropogenic NO3− and NH4+. However, the background aerosol WSON over the NWPO in 2015 (13.3 ± 8.5 nmol m−3 was similar to that in 2014 (12.2 ± 6.3 nmol m−3, suggesting an additional non-anthropogenic WSON source in the open ocean. Obviously, marine DON emissions should be considered in model and field assessments of net atmospheric WSON deposition in the open ocean. This

  13. Governing processes for reactive nitrogen compounds in the European atmosphere

    DEFF Research Database (Denmark)

    Hertel, Ole; Skjøth, Carsten Ambelas; Reis, S.

    2012-01-01

    +)), oxidized nitrogen (NOy: nitrogen monoxide (NO) + nitrogen dioxide (NO2) and their reaction products) as well as organic nitrogen compounds (organic N). Pollution abatement strategies need to take into account the differences in the governing processes of these compounds when assessing their impact...... on ecosystem services, biodiversity, human health and climate. NOx (NO+NO2) emitted from traffic affects human health in urban areas where the presence of buildings increases the residence time in streets. In urban areas this leads to enhanced exposure of the population to NOx concentrations. NOx emissions.......5 and PM10 (mass of aerosols with an aerodynamic diameter of less than 2.5 and 10 mu m, respectively) with an impact on radiation balance as well as potentially on human health. Little is known quantitatively and qualitatively about organic N in the atmosphere, other than that it contributes a significant...

  14. Impact of Front Range sources on reactive nitrogen concentrations and deposition in Rocky Mountain National Park

    Directory of Open Access Journals (Sweden)

    Katherine B. Benedict

    2018-05-01

    Full Text Available Human influenced atmospheric reactive nitrogen (RN is impacting ecosystems in Rocky Mountain National Park (ROMO. Due to ROMO’s protected status as a Class 1 area, these changes are concerning, and improving our understanding of the contributions of different types of RN and their sources is important for reducing impacts in ROMO. In July–August 2014 the most comprehensive measurements (to date of RN were made in ROMO during the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ. Measurements included peroxyacetyl nitrate (PAN, C1–C5 alkyl nitrates, and high-time resolution NOx, NOy, and ammonia. A limited set of measurements was extended through October. Co-located measurements of a suite of volatile organic compounds provide information on source types impacting ROMO. Specifically, we use ethane as a tracer of oil and gas operations and tetrachloroethylene (C2Cl4 as an urban tracer to investigate their relationship with RN species and transport patterns. Results of this analysis suggest elevated RN concentrations are associated with emissions from oil and gas operations, which are frequently co-located with agricultural production and livestock feeding areas in the region, and from urban areas. There also are periods where RN at ROMO is impacted by long-range transport. We present an atmospheric RN budget and a nitrogen deposition budget with dry and wet components. Total deposition for the period (7/1–9/30 was estimated at 1.58 kg N/ha, with 87% from wet deposition during this period of above average precipitation. Ammonium wet deposition was the dominant contributor to total nitrogen deposition followed by nitrate wet deposition and total dry deposition. Ammonia was estimated to be the largest contributor to dry deposition followed by nitric acid and PAN (other species included alkyl nitrates, ammonium and nitrate. All three species are challenging to measure routinely, especially at high time resolution.

  15. Radiation induced changes in plasma total protein nitrogen and urinary total nitrogen in desert rodent and albino rats subjected to dietary protein deficiency

    International Nuclear Information System (INIS)

    Roushdy, H.; El-Husseini, M.; Saleh, F.

    1986-01-01

    The effect of gamma-irradiation on plasma total protein nitrogen and urinary total nitrogen was studied in the desert rodent, psammomy obesus obesus and albino rats subjected to dietary protein deficiency. In albino rats kept on high protein diet, the radiation syndrome resulted in urine retention, while in those kept on non-protein diet, such phenomenon was recorded only with the high radiation level of 1170r. Radiation exposure to 780 and 1170r caused remarkable diuresis in psammomys obesus obesus whereas they induced significant urine retention in albino rats. The levels of plasma total protein nitrogen and urinary total nitrogen were higher in albino rats maintained on high protein diet than in those kept on non-protein diet. Radiation exposure caused an initial drop in plasma total protein nitrogen concentration, concomitant with an initial rise in total urinary nitrogen, radiation exposure of psammomys obesus obesus caused significant increase in the levels of plasma protein nitrogen and urinary total nitrogen. Psammomys obesus obesus seemed to be more affected by radiation exposure than did the albino rats

  16. On the export of reactive nitrogen from Asia: NOx partitioning and effects on ozone

    Directory of Open Access Journals (Sweden)

    T. H. Bertram

    2013-05-01

    Full Text Available The partitioning of reactive nitrogen (NOy was measured over the remote North Pacific during spring 2006. Aircraft observations of NO, NO2, total peroxy nitrates (ΣPNs, total alkyl and multi-functional nitrates (ΣANs and nitric acid (HNO3, made between 25° and 55° N, confirm a controlling role for peroxyacyl nitrates in NOx production in aged Asian outflow. ΣPNs account for more than 60% of NOy above 5 km, while thermal dissociation limits their contribution to less than 10% in the lower troposphere. Using simultaneous observations of NOx, ΣPNs, ΣANs, HNO3 and average wind speed, we calculate the flux of reactive nitrogen through the meridional plane of 150° W (between 20° and 55° N to be 0.007 ± 0.002 Tg N day−1, which provides an upper limit of 23 ± 6.5% on the transport efficiency of NOy from East Asia. Observations of NOx, and HOx are used to constrain a 0-D photochemical box model for the calculation of net photochemical ozone production or tendency (Δ O3 as a function of aircraft altitude and NOx concentrations. The model analysis indicates that the photochemical environment of the lower troposphere (altitude 3 destruction, with an experimentally determined crossover point between net O3 destruction and net O3 production of 60 pptv NOx. Qualitative indicators of integrated net O3 production derived from simultaneous measurements of O3 and light alkanes (Parrish et al., 1992, also indicate that the north Pacific is, on average, a region of net O3 destruction.

  17. Reactivity of amino acid anions with nitrogen and oxygen atoms.

    Science.gov (United States)

    Wang, Zhe-Chen; Li, Ya-Ke; He, Sheng-Gui; Bierbaum, Veronica M

    2018-02-14

    For many decades, astronomers have searched for biological molecules, including amino acids, in the interstellar medium; this endeavor is important for investigating the hypothesis of the origin of life from space. The space environment is complex and atomic species, such as nitrogen and oxygen atoms, are widely distributed. In this work, the reactions of eight typical deprotonated amino acids (glycine, alanine, cysteine, proline, aspartic acid, histidine, tyrosine, and tryptophan) with ground state nitrogen and oxygen atoms are studied by experiment and theory. These amino acid anions do not react with nitrogen atoms. However, the reactions of these ions with oxygen atoms show an intriguing variety of ionic products and the reaction rate constants are of the order of 10 -10 cm 3 s -1 . Density functional calculations provide detailed mechanisms of the reactions, and demonstrate that spin conversion is essential for some processes. Our study provides important data and insights for understanding the kinetic and dynamic behavior of amino acids in space environments.

  18. Total nitrogen and total phosphorus removal from brackish aquaculture wastewater using effective microorganism

    Science.gov (United States)

    Mohamad, K. A.; Mohd, S. Y.; Sarah, R. S.; Mohd, H. Z.; Rasyidah, A.

    2017-09-01

    Aquaculture is one of dominant food based industry in the world with 8.3% annual growth rate and its development had led to adverse effect on the environment. High nutrient production in form of nitrogenous compound and phosphorus contributed to environmental deterioration such as eutrophication and toxicity to the industry. Usage of Effective Microorganism (EM), one of the biological approaches to remove Total Nitrogen (TN) and Total Phosphorus (TP) in aquaculture pond was proposed. Samples were obtained from the Sea Bass intensive brackish aquaculture wastewater (AW) from fish farm at Juru, Penang and the parameters used to measure the removal of nitrogenous compounds include, pH, EM dosage, shaking, contact time and optimum variable conditions. From the study, for effective contact time, day 6 is the optimum contact time for both TN and TP with 99.74% and 62.78% removal respectively while in terms of optimum pH, the highest TN removal was at pH 7 with 66.89 %. The optimum dosage of EM is 1.5 ml with ratio 1:166 for 81.5 % TN removal was also found appropriate during the experiment. At varied optimum conditions of EM, the removal efficiency of TN and TP were 81.53% and 38.94% respectively while the removal mechanism of TN was highly dependent on the decomposition rate of specific bacteria such as Nitrobacter bacteria, Yeast and Bacillus Subtilis sp. The study has established the efficacy of EM's ability to treat excessive nutrient of TN and TP from AW.

  19. Reactive nitrogen in the environment and its effect on climate change

    International Nuclear Information System (INIS)

    Erisman, J.W.; Bleeker, A.; Galloway, J.; Seitzinger, S.; Butterbach-Bahl, K.

    2011-01-01

    Humans have doubled levels of reactive nitrogen in circulation, largely as a result of fertilizer application and fossil fuel burning. This massive alteration of the nitrogen cycle affects climate, food security, energy security, human health and ecosystem services. Our estimates show that nitrogen currently leads to a net-cooling effect on climate with very high uncertainty. The many complex warming and cooling interactions between nitrogen and climate need to be better assessed, taking also into account the other effects of nitrogen on human health, environment and ecosystem services. Through improved nitrogen management substantial reductions in atmospheric greenhouse gas concentrations could be generated, also allowing for other co-benefits, including improving human health and improved provision of ecosystem services, for example clean air and water, and biodiversity.

  20. Free amino nitrogen concentration correlates to total yeast assimilable nitrogen concentration in apple juice.

    Science.gov (United States)

    Boudreau, Thomas F; Peck, Gregory M; O'Keefe, Sean F; Stewart, Amanda C

    2018-01-01

    Yeast assimilable nitrogen (YAN) is essential for yeast growth and metabolism during apple ( Malus x domestica Borkh.) cider fermentation. YAN concentration and composition can impact cider fermentation kinetics and the formation of volatile aroma compounds by yeast. The YAN concentration and composition of apples grown in Virginia, USA over the course of two seasons was determined through analysis of both free amino nitrogen (FAN) and ammonium ion concentration. FAN was the largest fraction of YAN, with a mean value of 51 mg N L -1 FAN compared to 9 mg N L -1 ammonium. Observed YAN values ranged from nine to 249 mg N L -1 , with a mean value of 59 mg N L -1 . Ninety-four percent of all samples analyzed in this study contained yeast to fully utilize all of the fermentable sugars. FAN concentration was correlated with total YAN concentration, but ammonium concentration was not. Likewise, there was no correlation between FAN and ammonium concentration.

  1. Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations

    Science.gov (United States)

    Kalyanaraman, Balaraman; Darley-Usmar, Victor; Davies, Kelvin J.A.; Dennery, Phyllis A.; Forman, Henry Jay; Grisham, Matthew B.; Mann, Giovanni E.; Moore, Kevin; Roberts, L. Jackson; Ischiropoulos, Harry

    2013-01-01

    The purpose of this position paper is to present a critical analysis of the challenges and limitations of the most widely used fluorescent probes for detecting and measuring reactive oxygen and nitrogen species. Where feasible, we have made recommendations for the use of alternate probes and appropriate analytical techniques that measure the specific products formed from the reactions between fluorescent probes and reactive oxygen and nitrogen species. We have proposed guidelines that will help present and future researchers with regard to the optimal use of selected fluorescent probes and interpretation of results. PMID:22027063

  2. Total Nitrogen Deposition (wet+dry) from the Atmosphere

    Data.gov (United States)

    U.S. Environmental Protection Agency — Oxides of Nitrogen are emitted primarily as by-products of combustion. Sources include power plants, industrial boilers, and automobiles. In addition, agricultural...

  3. Total Protein Content Determination of Microalgal Biomass by Elemental Nitrogen Analysis and a Dedicated Nitrogen-to-Protein Conversion Factor

    Energy Technology Data Exchange (ETDEWEB)

    Laurens, Lieve M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Olstad-Thompson, Jessica L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Templeton, David W [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-04-02

    Accurately determining protein content is important in the valorization of algal biomass in food, feed, and fuel markets, where these values are used for component balance calculations. Conversion of elemental nitrogen to protein is a well-accepted and widely practiced method, but depends on developing an applicable nitrogen-to-protein conversion factor. The methodology reported here covers the quantitative assessment of the total nitrogen content of algal biomass and a description of the methodology that underpins the accurate de novo calculation of a dedicated nitrogen-to-protein conversion factor.

  4. Nitrogen fertilization of Cabernet Sauvignon grapevines: yield, total nitrogen content in the leaves and must composition

    Directory of Open Access Journals (Sweden)

    Felipe Lorensini

    2015-08-01

    Full Text Available Grapevines grown on sandy soils are subjected to the application of supplemental nitrogen (N; however, there is little information available regarding the impact of these applications on yield, plant nutritional state and must composition. The aim of this study was to evaluate the yield, nutritional state and must composition of grapevines subjected to N fertilization. Cabernet Sauvignon grapevines were subjected to annual applications of 0, 10, 15, 20, 40, 80 and 120 kg N ha-1 in 2008, 2009 and 2010. During the 2008/09, 2009/10 and 2010/11 harvest seasons, leaves were collected during full flowering and when the berries changed color, and the total N content was analyzed. The grape yield and the enological characteristics of the must were evaluated. The response to applied N was low, and the highest Cabernet Sauvignon grape yield was obtained in response to an application of 20 kg N ha-1 year-1. The application of N increased the nutrient content in the leaf collected at full flowering, but it had little effect on the total nutrient content in the must, and it did not affect the enological characteristics of the must, such as soluble solids, pH, total acidity, malic acid and tartaric acid.

  5. Cost of reactive nitrogen release from human activities to the environment in the United States

    Science.gov (United States)

    The leakage of reactive nitrogen (N) from human activities to the environment can cause human health and ecological problems. Often these harmful effects are not reflected in the costs of food, fuel, and fiber that derive from N use. Spatial analyses of economic costs and benef...

  6. Reactivity of niobium cluster anions with nitrogen and carbon monoxide

    Science.gov (United States)

    Mwakapumba, Joseph; Ervin, Kent M.

    1997-02-01

    Reactions of small niobium cluster anions, Nbn-(n = 2-7), with CO and N2 are investigated using a flow tube reactor (flowing afterglow) apparatus. Carbon monoxide chemisorption on niobium cluster anions occurs with faster reaction rates than nitrogen chemisorption on corresponding cluster sizes. N2 addition to niobium cluster anions is much more size-selective than is CO addition. These general trends follow those reported in the literature for reactions of neutral and cationic niobium clusters with CO and N2. Extensive fragmentation of the clusters is observed upon chemisorption. A small fraction of the larger clusters survive and sequentially add multiple CO or N2 units without fragmentation. However, chemisorption saturation is not reached at the experimentally accessible pressure and reagent concentration ranges. The thermochemistry of the adsorption processes and the nature of the adsorbed species, molecular or dissociated, are discussed.

  7. Formation of reactive nitrogen oxides from urban grime photochemistry

    Science.gov (United States)

    Baergen, Alyson M.; Donaldson, D. James

    2016-05-01

    Impervious surfaces are ubiquitous in urban environments and constitute a substrate onto which atmospheric constituents can deposit and undergo photochemical and oxidative processing, giving rise to "urban grime" films. HNO3 and N2O5 are important sinks for NOx in the lower atmosphere and may be deposited onto these films, forming nitrate through surface hydrolysis. Although such deposition has been considered as a net loss of NOx from the atmosphere, there is increasing evidence that surface-associated nitrate undergoes further reaction. Here, we examine the gas phase products of the photochemistry of real, field-collected urban grime using incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS). Gas phase nitrogen oxides are emitted upon illumination of grime samples and their production increases with ambient relative humidity (RH) up to 35 % after which the production becomes independent of RH. These results are discussed in the context of water uptake onto and evaporation from grime films.

  8. Total OH reactivity study from VOC photochemical oxidation in the SAPHIR chamber

    Science.gov (United States)

    Yu, Z.; Tillmann, R.; Hohaus, T.; Fuchs, H.; Novelli, A.; Wegener, R.; Kaminski, M.; Schmitt, S. H.; Wahner, A.; Kiendler-Scharr, A.

    2015-12-01

    It is well known that hydroxyl radicals (OH) act as a dominant reactive species in the degradation of VOCs in the atmosphere. In recent field studies, directly measured total OH reactivity often showed poor agreement with OH reactivity calculated from VOC measurements (e.g. Nölscher et al., 2013; Lu et al., 2012a). This "missing OH reactivity" is attributed to unaccounted biogenic VOC emissions and/or oxidation products. The comparison of total OH reactivity being directly measured and calculated from single component measurements of VOCs and their oxidation products gives us a further understanding on the source of unmeasured reactive species in the atmosphere. This allows also the determination of the magnitude of the contribution of primary VOC emissions and their oxidation products to the missing OH reactivity. A series of experiments was carried out in the atmosphere simulation chamber SAPHIR in Jülich, Germany, to explore in detail the photochemical degradation of VOCs (isoprene, ß-pinene, limonene, and D6-benzene) by OH. The total OH reactivity was determined from the measurement of VOCs and their oxidation products by a Proton Transfer Reaction Time of Flight Mass Spectrometer (PTR-TOF-MS) with a GC/MS/FID system, and directly measured by a laser-induced fluorescence (LIF) at the same time. The comparison between these two total OH reactivity measurements showed an increase of missing OH reactivity in the presence of oxidation products of VOCs, indicating a strong contribution to missing OH reactivity from uncharacterized oxidation products.

  9. Statistically extracted fundamental watershed variables for estimating the loads of total nitrogen in small streams

    Science.gov (United States)

    Kronholm, Scott C.; Capel, Paul D.; Terziotti, Silvia

    2016-01-01

    Accurate estimation of total nitrogen loads is essential for evaluating conditions in the aquatic environment. Extrapolation of estimates beyond measured streams will greatly expand our understanding of total nitrogen loading to streams. Recursive partitioning and random forest regression were used to assess 85 geospatial, environmental, and watershed variables across 636 small (monitoring may be beneficial.

  10. A New GIS-Nitrogen Trading Tool Concept to Minimize Reactive Nitrogen losses to the Environment

    Science.gov (United States)

    Nitrogen (N) is an essential element which is needed to maximize agricultural production and sustainability of worldwide agroecosystems. N losses to the environment are impacting water and air quality that has become an environmental concern for the future generations. It has led to the need for dev...

  11. Biogeochemical reactive transport of carbon, nitrogen and iron in the hyporheic zone

    Science.gov (United States)

    Dwivedi, D.; Steefel, C. I.; Newcomer, M. E.; Arora, B.; Spycher, N.; Hammond, G. E.; Moulton, J. D.; Fox, P. M.; Nico, P. S.; Williams, K. H.; Dafflon, B.; Carroll, R. W. H.

    2017-12-01

    To understand how biogeochemical processes in the hyporheic zone influence carbon and nitrogen cycling as well as stream biogeochemistry, we developed a biotic and abiotic reaction network and integrated it into a reactive transport simulator - PFLOTRAN. Three-dimensional reactive flow and transport simulations were performed to describe the hyporheic exchange of fluxes from and within an intra-meander region encompassing two meanders of East River in the East Taylor watershed, Colorado. The objectives of this study were to quantify (1) the effect of transience on the export of carbon, nitrogen, and iron; and (2) the biogeochemical transformation of nitrogen and carbon species as a function of the residence time. The model was able to capture reasonably well the observed trends of nitrate and dissolved oxygen values that decreased as well as iron (Fe (II)) values that increased along the meander centerline away from the stream. Hyporheic flow paths create lateral redox zonation within intra-meander regions, which considerably impact nitrogen export into the stream system. Simulation results further demonstrated that low water conditions lead to higher levels of dissolved iron in groundwater, which (Fe (II)> 80%) is exported to the stream on the downstream side during high water conditions. An important conclusion from this study is that reactive transport models representing spatial and temporal heterogeneities are required to identify important factors that contribute to the redox gradients at riverine scales.

  12. Identification of Reactive and Refractory Components of Dissolved Organic Nitrogen by FT-ICR Mass Spectrometry

    Science.gov (United States)

    Cooper, W. T.; Podgorski, D. C.; Osborne, D. M.; Corbett, J.; Chanton, J.

    2010-12-01

    Dissolved organic nitrogen is an often overlooked but potentially significant bioavailable component of dissolved organic matter. Studies of bulk DON turnover have been reported, but the compositions of the reactive and refractory components of DON are largely unknown. Here we show the unique ability of atmospheric pressure photoionization (APPI) coupled to ultrahigh resolution mass spectrometry to identify the reactive and refractory components of DON. Figure 1 is an isolated 0.30 m/z window from an ultrahigh resolution APPI FT-ICR mass spectrum of DON in surface waters draining an agricultural area in South Florida. Using this optimized, negative-ion APPI strategy we have been able to identify the reactive and refractory components of DON in these nitrogen-rich waters. Similar results were observed with samples from soil porewaters in sedge-dominated fens and sphagnum-dominated bogs within the Glacial Lake Agassiz Peatlands (GLAP) of northern Minnesota. Surprisingly, microbes appear to initially use similar enzymatic pathways to degrade DON and DOC, often with little release of nitrogen. Figure 1. Isolated 0.30 m/z window at nominal mass 432 from negative-ion APPI FT-ICR mass spectrum of DOM from waters draining an agricultural area in South Florida. Peaks marked contain nitrogen.

  13. Free amino nitrogen concentration correlates to total yeast assimilable nitrogen concentration in apple juice

    OpenAIRE

    Boudreau, Thomas F.; Peck, Gregory M.; O'Keefe, Sean F.; Stewart, Amanda C.

    2017-01-01

    Abstract Yeast assimilable nitrogen (YAN) is essential for yeast growth and metabolism during apple (Malus x domestica Borkh.) cider fermentation. YAN concentration and composition can impact cider fermentation kinetics and the formation of volatile aroma compounds by yeast. The YAN concentration and composition of apples grown in Virginia, USA over the course of two seasons was determined through analysis of both free amino nitrogen (FAN) and ammonium ion concentration. FAN was the largest f...

  14. Feed-derived volatile basic nitrogen increases reactive oxygen species production of blood leukocytes in lactating dairy cows.

    Science.gov (United States)

    Tsunoda, Ei; Gross, Josef J; Kawashima, Chiho; Bruckmaier, Rupert M; Kida, Katsuya; Miyamoto, Akio

    2017-01-01

    The present study investigated over 9 months the changes of fermentative quality of total mixed rations (TMR) containing grass silage (GS) as a major component, associated with changes in the volatile basic nitrogen (VBN) levels in an experimental dairy farm. Effects of VBN levels in TMR on metabolic parameters, reactive oxygen species (ROS) production by blood polymorphonuclear leukocytes (PMNs) and conception rates for dairy cows were analyzed. According to VBN levels in TMR during survey periods, three distinct phases were identified; phase A with low VBN; phase B with high VBN; and phase C with mid-VBN. Metabolic parameters in blood were all within normal range. However, during phases B and C, nitrogen metabolic indices such as blood urea nitrogen and milk urea nitrogen showed higher levels compared to those in phase A, and a simultaneous increase in ROS production by blood PMNs and the load on hepatic function in metabolic parameters was observed in the cows with a lower conception rate. This suggests that feeding TMR with elevated VBN levels due to poor fermented GS results in stimulation of ROS production by PMNs by ammonia, and negatively affects metabolism and reproductive performance in lactating dairy cow. © 2016 Japanese Society of Animal Science.

  15. Distribution of total nitrogen and N-15 labelled nitrogen applied to apple trees

    International Nuclear Information System (INIS)

    Calvache, Marcelo.

    1990-01-01

    The efficiency of nitrogen fertilization from one year's application was studied in apple trees. Urea enriched with 1,5% N-15 a.e. was applied to 2 years old apple trees. Two irrigation treatments were studied, Al approx. 200mm/week and A2 approx. 100 mm/week. The distribution of N in the different parts of the trees was determined after 2 months of fertilization and after the experimental trees were excavated. The recovery of labelled fertilizer N was different in the trees in both treatments (Al = 1,2% and A2 = 3,1%). However, the distribution in the tree's parts was similar: 46% in leaves, 34% in branches and 20% in roots. We also determined that sampling only 20% of leaves at the beginning and the end of the experiment it is possible to know the quantity of nitrogen from fertilizer, without the excavation trees

  16. Changes in the content of total nitrogen and mineral nitrogen in the basil herb depending on the cultivar and nitrogen nutrition

    Directory of Open Access Journals (Sweden)

    Katarzyna Dzida

    2013-04-01

    Full Text Available Among fundamental nutrients, nitrogen fertilization is considered one of the most effective factors affecting both the yield and the quality of plant material. Nitrogen form used for fertilizing is also of great importance. The aim of this study was to investigate the impact of nitrogen nutrition (calcium nitrate, ammonium nitrate, and urea as well as (green, purple, and‘Fino Verde’ on the chemical composition and yielding of basil (Ocimum basilicumL.. After drying the plant material at a temperature of 60°C and milling, total nitrogen was determined by means of Kjeldahl method, while mineral nitrogen content (N-NH 4, N-NO 3 was analyzed in 2% acetic acid extract. Yield of fresh basil matter depended significantly on the variety grown. The highest yields were obtained from a cultivar of ‘Fino Verde’ fertilized with ammonium nitrate. The purple variety plants fertilized with urea were characterized by a largest amount of total nitrogen. The‘Fino Verde’cultivar fertilized with urea accumulated the least quantities of nitrates in the basil herb.

  17. Where the rubber meets the road: What is needed to sustainably manage reactive nitrogen in the United States?

    Science.gov (United States)

    Reactive nitrogen (N) is essential for food, fuel and fiber production of a growing human population. Intensification of reactive N (defined as any N compound other than N2) release to the environment, however, has resulted in important and mounting impacts on human health and e...

  18. Effect of polyunsaturated fatty acids on the reactive oxygen and nitrogen species production by raw 264.7 macrophages

    Czech Academy of Sciences Publication Activity Database

    Ambrožová, Gabriela; Pekarová, Michaela; Lojek, Antonín

    2010-01-01

    Roč. 49, č. 3 (2010), s. 133-139 ISSN 1436-6207 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : polyunsaturated fatty acids * reactive oxygen species * reactive nitrogen species Subject RIV: BO - Biophysics Impact factor: 3.343, year: 2010

  19. Thin films of amorphous nitrogenated carbon a-CN{sub x}: Electron transfer and surface reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Tamiasso-Martinhon, P.; Cachet, H.; Debiemme-Chouvy, C.; Deslouis, C. [Universite Pierre et Marie Curie-Paris 6, Laboratoire Interfaces et Systemes Electrochimiques, CNRS, UPR15-LISE, 4 Place Jussieu, Paris F-75005 (France)

    2008-08-01

    The electrochemical behaviour of thin films of nitrogenated amorphous carbon a-CN{sub x} is similar to that of boron-doped diamond, with a wide potential window in aqueous media. They are elaborated by cathodic sputtering of a graphite target in an Ar-N{sub 2} active plasma for varying nitrogen contents, determined by XPS (0.06 {<=} x {<=} 0.39). Their electrochemical reactivity is sensitive to the surface state. The present study reports on the influence of electrochemical pre treatment on the electronic transfer rate of a fast redox system ferri-ferrocyanide, by focusing on the direction of the potential excursion. On the other hand, the role of both the pH and the potential on the interfacial capacitance in the presence of Na{sub 2}SO{sub 4} without redox species is documented. The results show up the sensitivity of the film surface to the electrochemical conditions. (author)

  20. Total mineral material, acidity, sulphur, and nitrogen in rain and snow at Kentville, Nova Scotia

    Energy Technology Data Exchange (ETDEWEB)

    Herman, F A; Gorham, E

    1957-01-01

    Analyses of total ash, sulphur, ph, ammonia, and nitrate nitrogen have been made on 23 monthly precipitation samples and 17 individual snow samples collected between June 1952 and May 1954 at Kentville, Nova Scotia, in a predominantly agricultural area. Mean annual supply of total mineral ash was 95 kg/ha, of sulphur 9.1 hg/ha, of ammonia nitrogen 2.8 kg/ha, and of nitrate nitrogen 1.1 kg/ha. Average pH was 5.7, and rains more acid than this exhibited higher levels of both nitrate and sulphur, and a marked correlation between the latter and ammonia. Snow samples had much lower concentrations of ash, sulphur, and nitrogen than rain samples collected in the same months, which may perhaps indicate a lower efficiency of snow flakes in removing materials from the atmosphere.

  1. Strategies for measuring flows of reactive nitrogen at the landscape scale

    DEFF Research Database (Denmark)

    Theobald, M.R.; Akkal, N.; Bienkowski, J.

    2011-01-01

    Within a rural landscape there are flows of reactive nitrogen (Nr) through and between the soil, vegetation, atmosphere and hydrological systems as well as transfer as a result of agricultural activities. Measurements of these flows and transfers have generally been limited to individual media (e.......g., hydrological flows) or the interface between two media (e.g., exchange between the soil and the atmosphere). However, the study of flows of Nr at the landscape scale requires a more integrated approach that combines measurement techniques to quantify the flows from one medium to the next. This paper discusses...

  2. Nitrogen-rich heterocycles as reactivity retardants in shocked insensitive explosives.

    Science.gov (United States)

    Manaa, M Riad; Reed, Evan J; Fried, Laurence E; Goldman, Nir

    2009-04-22

    We report the first quantum-based multiscale simulations to study the reactivity of shocked perfect crystals of the insensitive energetic material triaminotrinitrobenzene (TATB). Tracking chemical transformations of TATB experiencing overdriven shock speeds of 9 km/s for up to 0.43 ns and 10 km/s for up to 0.2 ns reveal high concentrations of nitrogen-rich heterocyclic clusters. Further reactivity of TATB toward the final decomposition products of fluid N(2) and solid carbon is inhibited due to the formation of these heterocycles. Our results thus suggest a new mechanism for carbon-rich explosive materials that precedes the slow diffusion-limited process of forming the bulk solid from carbon clusters and provide fundamental insight at the atomistic level into the long reaction zone of shocked TATB.

  3. Trifluoperazine inhibits acetaminophen-induced hepatotoxicity and hepatic reactive nitrogen formation in mice and in freshly isolated hepatocytes

    Directory of Open Access Journals (Sweden)

    Sudip Banerjee

    Full Text Available The hepatotoxicity of acetaminophen (APAP occurs by initial metabolism to N-acetyl-p-benzoquinone imine which depletes GSH and forms APAP-protein adducts. Subsequently, the reactive nitrogen species peroxynitrite is formed from nitric oxide (NO and superoxide leading to 3-nitrotyrosine in proteins. Toxicity occurs with inhibited mitochondrial function. We previously reported that in hepatocytes the nNOS (NOS1 inhibitor NANT inhibited APAP toxicity, reactive nitrogen and oxygen species formation, and mitochondrial dysfunction. In this work we examined the effect of trifluoperazine (TFP, a calmodulin antagonist that inhibits calcium induced nNOS activation, on APAP hepatotoxicity and reactive nitrogen formation in murine hepatocytes and in vivo. In freshly isolated hepatocytes TFP inhibited APAP induced toxicity, reactive nitrogen formation (NO, GSNO, and 3-nitrotyrosine in protein, reactive oxygen formation (superoxide, loss of mitochondrial membrane potential, decreased ATP production, decreased oxygen consumption rate, and increased NADH accumulation. TFP did not alter APAP induced GSH depletion in the hepatocytes or the formation of APAP protein adducts which indicated that reactive metabolite formation was not inhibited. Since we previously reported that TFP inhibits the hepatotoxicity of APAP in mice without altering hepatic APAP-protein adduct formation, we examined the APAP treated mouse livers for evidence of reactive nitrogen formation. 3-Nitrotyrosine in hepatic proteins and GSNO were significantly increased in APAP treated mouse livers and decreased in the livers of mice treated with APAP plus TFP. These data are consistent with a hypothesis that APAP hepatotoxicity occurs with altered calcium metabolism, activation of nNOS leading to increased reactive nitrogen formation, and mitochondrial dysfunction. Keywords: Acetaminophen, Neuronal nitric oxide, Oxidative stress, Mitochondria

  4. Observational constraints for the source strengths, transport and partitioning of reactive nitrogen on regional and global scales

    Science.gov (United States)

    Bertram, Timothy Hugh

    Reactive nitrogen (NOy) exerts control over the production of tropospheric ozone (O3) and the destruction of stratospheric O 3, plays an important role in the formation of secondary organic aerosol and represents a critical link between the atmosphere and biosphere. Accurate estimates of the spatial and temporal distribution of nitrogen oxide (NO x) emissions and their subsequent transport and chemical processing are critical to furthering our understanding of these processes. In this dissertation, several new approaches to understanding the role of nitrogen oxides in atmospheric chemistry are developed. Most of the observations and analyses presented are based on aircraft measurements used to describe and understand the distribution of NOx from the surface to the upper troposphere (UT) and to provide an understanding of the accuracy of satellite measurements. First, new experiments to establish the absolute accuracy and long term precision of the standards maintained at the National Institute of Standards and Technology (NIST) are described. These standards serve as the references upon which calibration of the instruments used to make atmospheric measurements of O3, nitric oxide (NO) and nitrogen dioxide (NO2) are based. Gas-phase titration of ozone with nitric oxide was used to show that the O3, NO and NO2 standards are self-consistent to within 1%. Prior experiments had only established these three to be self-consistent to 4%. Following this, the implementation of the Thermal Dissociation - Laser Induced Fluorescence (TD-LIF) Technique for measurements of NO2, total peroxy nitrates (SigmaPNs), total alkyl nitrates (SigmaANs) and nitric acid (HNO3) from an aircraft platform is discussed and the measurements obtained are compared directly to analogous measurements made aboard the same aircraft or different aircraft during in-flight comparisons. Detailed observations of the partitioning of reactive nitrogen in the upper troposphere, during a period of intense

  5. Vertical distribution of total carbon, nitrogen and phosphorus in sediments of Drug Spring Lake, Wudalianchi

    Science.gov (United States)

    Zeng, Ying; Yang, Chen

    2018-02-01

    The content of total organic carbon, total nitrogen and total phosphorus in sediments of Drug Spring Lake was detected and their vertical distribution characteristic was analysed. Results showed that there were significant changes to the content of total organic carbon, total nitrogen and total phosphorus in different depth of the columnar sediments. Their highest content both appeared in the interval of 10cm to 25cm corresponding to the period of 1980s to 1990s, when the tourism of Wudalianchi scenic area began to develop. It reflected the impact of human activities on the Drug Spring Lake. That means the regulation was still not enough, although a series of pollution control measures adopted by the government in recent years had initial success.

  6. In vivo Prompt Gamma Neutron Activation Analysis Facility for Total Body Nitrogen and Cd

    International Nuclear Information System (INIS)

    Munive, Marco; Revilla, Angel; Solis, Jose L.

    2007-01-01

    A Prompt Gamma Neutron Activation Analysis (PGNAA) system has been designed and constructed to measure the total body nitrogen and Cd for in vivo studies. An aqueous solution of KNO 3 was used as phantom for system calibration. The facility has been used to monitor total body nitrogen (TBN) of mice and found that is related to their diet. Some mice swallowed diluted water with Cl 2 Cd, and the presence of Cd was detected in the animals. The minimum Cd concentration that the system can detect was 20 ppm

  7. Reactive nitrogen losses from China's food system for the shared socioeconomic pathways (SSPs).

    Science.gov (United States)

    Wang, Mengru; Kroeze, Carolien; Strokal, Maryna; Ma, Lin

    2017-12-15

    Food production in China has been changing fast as a result of socio-economic development. This resulted in an increased use of nitrogen (N) in food production, and also to increased reactive nitrogen (Nr) losses to the environment, causing nitrogen pollution. Our study is the first to quantify future Nr losses from China's food system for the Shared Socio-economic Pathways (SSPs). We show that Nr losses differ largely among SSPs. We first qualitatively described the five SSP storylines for China with a focus on food production and consumption. Next, we interpreted these SSP scenarios quantitatively for 2030 and 2050, using the NUFER (NUtrient Flows in Food chains, Environment and Resources use) model to project the Nr losses from China's food system. The results indicate that Nr losses from future food system in China are relatively low for SSP1 and SSP2, and relatively high for SSP3 and SSP4. In SSP5 Nr losses from China's food system are projected to be slightly lower than the level of today. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Global modelling of the total OH reactivity: investigations on the “missing” OH sink and its atmospheric implications

    Directory of Open Access Journals (Sweden)

    V. Ferracci

    2018-05-01

    Full Text Available The hydroxyl radical (OH plays a crucial role in the chemistry of the atmosphere as it initiates the removal of most trace gases. A number of field campaigns have observed the presence of a missing OH sink in a variety of regions across the planet. A comparison of direct measurements of the OH loss frequency, also known as total OH reactivity (kOH, with the sum of individual known OH sinks (obtained via the simultaneous detection of species such as volatile organic compounds and nitrogen oxides indicates that, in some cases, up to 80 % of kOH is unaccounted for. In this work, the UM-UKCA chemistry-climate model was used to investigate the wider implications of the missing reactivity on the oxidising capacity of the atmosphere. Simulations of the present-day atmosphere were performed and the model was evaluated against an array of field measurements to verify that the known OH sinks were reproduced well, with a resulting good agreement found for most species. Following this, an additional sink was introduced to simulate the missing OH reactivity as an emission of a hypothetical molecule, X, which undergoes rapid reaction with OH. The magnitude and spatial distribution of this sink were underpinned by observations of the missing reactivity. Model runs showed that the missing reactivity accounted for on average 6 % of the total OH loss flux at the surface and up to 50 % in regions where emissions of the additional sink were high. The lifetime of the hydroxyl radical was reduced by 3 % in the boundary layer, whilst tropospheric methane lifetime increased by 2 % when the additional OH sink was included. As no OH recycling was introduced following the initial oxidation of X, these results can be interpreted as an upper limit of the effects of the missing reactivity on the oxidising capacity of the troposphere. The UM-UKCA simulations also allowed us to establish the atmospheric implications of the newly characterised reactions of peroxy

  9. Concentration and flux of total and dissolved phosphorus, total nitrogen, chloride, and total suspended solids for monitored tributaries of Lake Champlain, 1990-2012

    Science.gov (United States)

    Medalie, Laura

    2014-01-01

    Annual and daily concentrations and fluxes of total and dissolved phosphorus, total nitrogen, chloride, and total suspended solids were estimated for 18 monitored tributaries to Lake Champlain by using the Weighted Regressions on Time, Discharge, and Seasons regression model. Estimates were made for 21 or 23 years, depending on data availability, for the purpose of providing timely and accessible summary reports as stipulated in the 2010 update to the Lake Champlain “Opportunities for Action” management plan. Estimates of concentration and flux were provided for each tributary based on (1) observed daily discharges and (2) a flow-normalizing procedure, which removed the random fluctuations of climate-related variability. The flux bias statistic, an indicator of the ability of the Weighted Regressions on Time, Discharge, and Season regression models to provide accurate representations of flux, showed acceptable bias (less than ±10 percent) for 68 out of 72 models for total and dissolved phosphorus, total nitrogen, and chloride. Six out of 18 models for total suspended solids had moderate bias (between 10 and 30 percent), an expected result given the frequently nonlinear relation between total suspended solids and discharge. One model for total suspended solids with a very high bias was influenced by a single extreme value; however, removal of that value, although reducing the bias substantially, had little effect on annual fluxes.

  10. Reactive Oxygen and Nitrogen Species in the Development of Pulmonary Hypertension

    Directory of Open Access Journals (Sweden)

    David J.R. Fulton

    2017-07-01

    Full Text Available Pulmonary arterial hypertension (PAH is a progressive disease of the lung vasculature that involves the loss of endothelial function together with inappropriate smooth muscle cell growth, inflammation, and fibrosis. These changes underlie a progressive remodeling of blood vessels that alters flow and increases pulmonary blood pressure. Elevated pressures in the pulmonary artery imparts a chronic stress on the right ventricle which undergoes compensatory hypertrophy but eventually fails. How PAH develops remains incompletely understood and evidence for the altered production of reactive oxygen and nitrogen species (ROS, RNS respectively in the pulmonary circulation has been well documented. There are many different types of ROS and RNS, multiple sources, and collective actions and interactions. This review summarizes past and current knowledge of the sources of ROS and RNS and how they may contribute to the loss of endothelial function and changes in smooth muscle proliferation in the pulmonary circulation.

  11. Detection and Characterization of Reactive Oxygen and Nitrogen Species in Biological Systems by Monitoring Species-Specific Products.

    Science.gov (United States)

    Hardy, Micael; Zielonka, Jacek; Karoui, Hakim; Sikora, Adam; Michalski, Radosław; Podsiadły, Radosław; Lopez, Marcos; Vasquez-Vivar, Jeannette; Kalyanaraman, Balaraman; Ouari, Olivier

    2018-05-20

    Since the discovery of the superoxide dismutase enzyme, the generation and fate of short-lived oxidizing, nitrosating, nitrating, and halogenating species in biological systems has been of great interest. Despite the significance of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in numerous diseases and intracellular signaling, the rigorous detection of ROS and RNS has remained a challenge. Recent Advances: Chemical characterization of the reactions of selected ROS and RNS with electron paramagnetic resonance (EPR) spin traps and fluorescent probes led to the establishment of species-specific products, which can be used for specific detection of several forms of ROS and RNS in cell-free systems and in cultured cells in vitro and in animals in vivo. Profiling oxidation products from the ROS and RNS probes provides a rigorous method for detection of those species in biological systems. Formation and detection of species-specific products from the probes enables accurate characterization of the oxidative environment in cells. Measurement of the total signal (fluorescence, chemiluminescence, etc.) intensity does not allow for identification of the ROS/RNS formed. It is critical to identify the products formed by using chromatographic or other rigorous techniques. Product analyses should be accompanied by monitoring of the intracellular probe level, another factor controlling the yield of the product(s) formed. More work is required to characterize the chemical reactivity of the ROS/RNS probes, and to develop new probes/detection approaches enabling real-time, selective monitoring of the specific products formed from the probes. Antioxid. Redox Signal. 28, 1416-1432.

  12. Assessing future reactive nitrogen inputs into global croplands based on the shared socioeconomic pathways

    Science.gov (United States)

    Mogollón, J. M.; Lassaletta, L.; Beusen, A. H. W.; van Grinsven, H. J. M.; Westhoek, H.; Bouwman, A. F.

    2018-04-01

    Reactive nitrogen (N) inputs in agriculture strongly outpace the outputs at the global scale due to inefficiencies in cropland N use. While improvement in agricultural practices and environmental legislation in developed regions such as Western Europe have led to a remarkable increase in the N use efficiency since 1985, this lower requirement for reactive N inputs via synthetic fertilizers has yet to occur in many developing and transition regions. Here, we explore future N input requirements and N use efficiency in agriculture for the five shared socioeconomic pathways. Results show that under the most optimistic sustainability scenario, the global synthetic fertilizer use in croplands stabilizes and even shrinks (85 Tg N yr‑1 in 2050) regardless of the increase in crop production required to feed the larger estimated population. This scenario is highly dependent on projected increases in N use efficiency, particularly in South and East Asia. In our most pessimistic scenario, synthetic fertilization application rates are expected to increase almost threefold by 2050 (260 Tg N yr‑1). Excepting the sustainability scenario, all other projected scenarios reveal that the areal N surpluses will exceed acceptable limits in most of the developing regions.

  13. Evaluation of the accuracy of thermal dissociation CRDS and LIF techniques for atmospheric measurement of reactive nitrogen species

    Science.gov (United States)

    Womack, Caroline C.; Neuman, J. Andrew; Veres, Patrick R.; Eilerman, Scott J.; Brock, Charles A.; Decker, Zachary C. J.; Zarzana, Kyle J.; Dube, William P.; Wild, Robert J.; Wooldridge, Paul J.; Cohen, Ronald C.; Brown, Steven S.

    2017-05-01

    The sum of all reactive nitrogen species (NOy) includes NOx (NO2 + NO) and all of its oxidized forms, and the accurate detection of NOy is critical to understanding atmospheric nitrogen chemistry. Thermal dissociation (TD) inlets, which convert NOy to NO2 followed by NO2 detection, are frequently used in conjunction with techniques such as laser-induced fluorescence (LIF) and cavity ring-down spectroscopy (CRDS) to measure total NOy when set at > 600 °C or speciated NOy when set at intermediate temperatures. We report the conversion efficiency of known amounts of several representative NOy species to NO2 in our TD-CRDS instrument, under a variety of experimental conditions. We find that the conversion efficiency of HNO3 is highly sensitive to the flow rate and the residence time through the TD inlet as well as the presence of other species that may be present during ambient sampling, such as ozone (O3). Conversion of HNO3 at 400 °C, nominally the set point used to selectively convert organic nitrates, can range from 2 to 6 % and may represent an interference in measurement of organic nitrates under some conditions. The conversion efficiency is strongly dependent on the operating characteristics of individual quartz ovens and should be well calibrated prior to use in field sampling. We demonstrate quantitative conversion of both gas-phase N2O5 and particulate ammonium nitrate in the TD inlet at 650 °C, which is the temperature normally used for conversion of HNO3. N2O5 has two thermal dissociation steps, one at low temperature representing dissociation to NO2 and NO3 and one at high temperature representing dissociation of NO3, which produces exclusively NO2 and not NO. We also find a significant interference from partial conversion (5-10 %) of NH3 to NO at 650 °C in the presence of representative (50 ppbv) levels of O3 in dry zero air. Although this interference appears to be suppressed when sampling ambient air, we nevertheless recommend regular

  14. Measurement of total-body oxygen, nitrogen, and carbon in vivo by photon activation analysis

    International Nuclear Information System (INIS)

    Ulin, K.

    1984-01-01

    With the aim of assessing nutritional status, the feasibility of measuring the total body quantities of the major body elements, i.e. oxygen, nitrogen, and carbon, using the photon beam of a 45 MV betatron and a whole-body counter, has been evaluated in detail. Following photon activation a single energy γ-radiation (.511 MeV) is observed from all three elements to be measured. The half-lives of 15 O, 13 N, and 11 C, however, are sufficiently different (20.5 min, 10.0 min, and 20.4 min. respectively) to permit their measurement from an analysis of the measured decay curve. Following corrections for interfering reactions, a computer curve-fitting algorithm is used to resolve the data into 15 O, 13 N, and 11 C components. Measurements of O, N, and C have been made both in phantoms and in live and dead rats. A comparison of the body composition results from this technique with results from chemical analysis indicates that measured carbon can quite accurately predict total body fat. The comparison of the total body nitrogen measurement by photon activation with total body protein by chemical analysis was inconclusive and suggests that further work be done to verify the estimated accuracy of the nitrogen measurement

  15. Efficient Total Nitrogen Removal in an Ammonia Gas Biofilter through High-Rate OLAND

    DEFF Research Database (Denmark)

    De Clippeleir, Haydée; Courtens, Emilie; Mosquera, Mariela

    2012-01-01

    Ammonia gas is conventionally treated in nitrifying biofilters; however, addition of organic carbon to perform post-denitrification is required to obtain total nitrogen removal. Oxygen-limited autotrophic nitrification/denitrification (OLAND), applied in full-scale for wastewater treatment, can...... offer a cost-effective alternative for gas treatment. In this study, the OLAND application thus was broadened toward ammonia loaded gaseous streams. A down flow, oxygen-saturated biofilter (height of 1.5 m; diameter of 0.11 m) was fed with an ammonia gas stream (248 ± 10 ppmv) at a loading rate of 0...... at water flow rates of 1.3 ± 0.4 m3 m–2 biofilter section d–1. Profile measurements revealed that 91% of the total nitrogen activity was taking place in the top 36% of the filter. This study demonstrated for the first time highly effective and sustainable autotrophic ammonia removal in a gas biofilter...

  16. Phosphorus, and nitrogen co-doped carbon dots as a fluorescent probe for real-time measurement of reactive oxygen and nitrogen species inside macrophages.

    Science.gov (United States)

    Gong, Yunqian; Yu, Bin; Yang, Wen; Zhang, Xiaoling

    2016-05-15

    Phosphorus and nitrogen doped carbon dots (PN-CDs) were conveniently prepared by carbonization of adenosine-5'-triphosphate using a hydrothermal treatment. The PN-CDs with P/C atomic ratio of ca. 9.2/100 emit blue luminescence with high quantum yields of up to 23.5%. The PN-CDs were used as a novel sensing platform for live cell imaging of reactive oxygen species (ROS) and reactive nitrogen species (RNS), including ClO(-), ONOO(-), and NO in macrophages. The nanosensor design is based on our new finding that the strong fluorescence of the PN-CDs can be sensitively and selectively quenched by ROS and RNS both in vitro and in vivo. These results reveal that the PN-CDs can serve as a sensitive sensor for rapid imaging of ROS and RNS signaling with high selectivity and contrast. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Mechanistic modeling of reactive soil nitrogen emissions across agricultural management practices

    Science.gov (United States)

    Rasool, Q. Z.; Miller, D. J.; Bash, J. O.; Venterea, R. T.; Cooter, E. J.; Hastings, M. G.; Cohan, D. S.

    2017-12-01

    The global reactive nitrogen (N) budget has increased by a factor of 2-3 from pre-industrial levels. This increase is especially pronounced in highly N fertilized agricultural regions in summer. The reactive N emissions from soil to atmosphere can be in reduced (NH3) or oxidized (NO, HONO, N2O) forms, depending on complex biogeochemical transformations of soil N reservoirs. Air quality models like CMAQ typically neglect soil emissions of HONO and N2O. Previously, soil NO emissions estimated by models like CMAQ remained parametric and inconsistent with soil NH3 emissions. Thus, there is a need to more mechanistically and consistently represent the soil N processes that lead to reactive N emissions to the atmosphere. Our updated approach estimates soil NO, HONO and N2O emissions by incorporating detailed agricultural fertilizer inputs from EPIC, and CMAQ-modeled N deposition, into the soil N pool. EPIC addresses the nitrification, denitrification and volatilization rates along with soil N pools for agricultural soils. Suitable updates to account for factors like nitrite (NO2-) accumulation not addressed in EPIC, will also be made. The NO and N2O emissions from nitrification and denitrification are computed mechanistically using the N sub-model of DAYCENT. These mechanistic definitions use soil water content, temperature, NH4+ and NO3- concentrations, gas diffusivity and labile C availability as dependent parameters at various soil layers. Soil HONO emissions found to be most probable under high NO2- availability will be based on observed ratios of HONO to NO emissions under different soil moistures, pH and soil types. The updated scheme will utilize field-specific soil properties and N inputs across differing manure management practices such as tillage. Comparison of the modeled soil NO emission rates from the new mechanistic and existing schemes against field measurements will be discussed. Our updated framework will help to predict the diurnal and daily variability

  18. Treatment of methyl orange by nitrogen non-thermal plasma in a corona reactor: The role of reactive nitrogen species

    Energy Technology Data Exchange (ETDEWEB)

    Cadorin, Bruno Mena, E-mail: brunomenacadorin@gmail.com [Department of Chemistry, Universidade Federal de Santa Catarina (Brazil); Tralli, Vitor Douglas [Department of Chemistry, Universidade Federal de Santa Catarina (Brazil); Ceriani, Elisa [Department of Chemical Sciences, Università di Padova (Italy); Benetoli, Luís Otávio de Brito [Department of Chemistry, Universidade Federal de Santa Catarina (Brazil); Marotta, Ester, E-mail: ester.marotta@unipd.it [Department of Chemical Sciences, Università di Padova (Italy); Ceretta, Claudio [Department of Industrial Engineering, Università di Padova (Italy); Debacher, Nito Angelo [Department of Chemistry, Universidade Federal de Santa Catarina (Brazil); Paradisi, Cristina [Department of Chemical Sciences, Università di Padova (Italy)

    2015-12-30

    Highlights: • Nitration of methyl orange is one of the main processes in treatment with N{sub 2}-plasma. • MS/MS analysis shows preferred nitration of methyl orange in ortho position. • N{sub 2} plasma, N{sub 2}-PAW, reaction with NO{sub 2}{sup −} or NO{sub 2}{sup −}/H{sub 2}O{sub 2} at pH 2 give the same products. - Abstract: Methyl orange (MO) azo dye served as model organic pollutant to investigate the role of reactive nitrogen species (RNS) in non-thermal plasma (NTP) induced water treatments. The results of experiments in which MO aqueous solutions were directly exposed to N{sub 2}-NTP are compared with those of control experiments in which MO was allowed to react with nitrite, nitrate and hydrogen peroxide, which are species formed in water exposed to N{sub 2}-NTP. Treatment of MO was also performed in PAW, Plasma Activated Water, that is water previously exposed to N{sub 2}-NTP. Both direct N{sub 2}-NTP and N{sub 2}-PAW treatments induced the rapid decay of MO. No appreciable reaction was instead observed when MO was treated with NO{sub 3}{sup −} and H{sub 2}O{sub 2} either under acidic or neutral pH. In contrast, in acidic solutions MO decayed rapidly when treated with NO{sub 2}{sup −} and with a combination of NO{sub 2}{sup −} and H{sub 2}O{sub 2}. Thorough product analysis was carried out by HPLC coupled with UV–vis and ESI–MS/MS detectors. In all experiments in which MO reaction was observed, the major primary product was a derivative nitro-substituted at the ortho position with respect to the N,N-dimethylamino group of MO. The reactions of RNS are discussed and a mechanism for the observed nitration products is proposed.

  19. Influence of total beam current on HRTEM image resolution in differentially pumped ETEM with nitrogen gas

    International Nuclear Information System (INIS)

    Bright, A.N.; Yoshida, K.; Tanaka, N.

    2013-01-01

    Environmental transmission electron microscopy (ETEM) enables the study of catalytic and other reaction processes as they occur with Angstrom-level resolution. The microscope used is a dedicated ETEM (Titan ETEM, FEI Company) with a differential pumping vacuum system and apertures, allowing aberration corrected high-resolution transmission electron microscopy (HRTEM) imaging to be performed with gas pressures up to 20 mbar in the sample area and with significant advantages over membrane-type E-cell holders. The effect on image resolution of varying the nitrogen gas pressure, electron beam current density and total beam current were measured using information limit (Young's fringes) on a standard cross grating sample and from silicon crystal lattice imaging. As expected, increasing gas pressure causes a decrease in HRTEM image resolution. However, the total electron beam current also causes big changes in the image resolution (lower beam current giving better resolution), whereas varying the beam current density has almost no effect on resolution, a result that has not been reported previously. This behavior is seen even with zero-loss filtered imaging, which we believe shows that the drop in resolution is caused by elastic scattering at gas ions created by the incident electron beam. Suitable conditions for acquiring high resolution images in a gas environment are discussed. Lattice images at nitrogen pressures up to 16 mbar are shown, with 0.12 nm information transfer at 4 mbar. -- Highlights: ► ETEM images with point resolution of 0.12 nm in 4 mbar of nitrogen gas. ► Clear Si lattice imaging with 16 mbar of nitrogen gas. ► ETEM image resolution in gas can be much improved by decreasing total beam current. ► Beam current density (beam convergence) has no effect on the image resolution.

  20. Modeling of multi-phase interactions of reactive nitrogen between snow and air in Antarctica

    Science.gov (United States)

    McCrystall, M.; Chan, H. G. V.; Frey, M. M.; King, M. D.

    2016-12-01

    In polar and snow-covered regions, the snowpack is an important link between atmospheric, terrestrial and oceanic systems. Trace gases, including nitrogen oxides, produced via photochemical reactions in snow are partially released to the lower atmosphere with considerable impact on its composition. However, the post-depositional processes that change the chemical composition and physical properties of the snowpack are still poorly understood. Most current snow chemistry models oversimplify as they assume air-liquid interactions and aqueous phase chemistry taking place at the interface between the snow grain and air. Here, we develop a novel temperature dependent multi-phase (gas-liquid-ice) physical exchange model for reactive nitrogen. The model is validated with existing year-round observations of nitrate in the top 0.5-2 cm of snow and the overlying atmosphere at two very different Antarctic locations: Dome C on the East Antarctic Plateau with very low annual mean temperature (-54ºC) and accumulation rate (rate and high background level of sea salt aerosol. We find that below the eutectic temperature of the H2O/dominant ion mixture the surface snow nitrate is controlled by kinetic adsorption onto the surface of snow grains followed by grain diffusion. Above the eutectic temperature, in addition to the former two processes, thermodynamic equilibrium of HNO3 between interstitial air and liquid water pockets, possibly present at triple junctions or grooves at grain boundaries, greatly enhances the nitrate uptake by snow in agreement with the concentration peak observed in summer.

  1. Estimation of Total Nitrogen and Phosphorus in New England Streams Using Spatially Referenced Regression Models

    Science.gov (United States)

    Moore, Richard Bridge; Johnston, Craig M.; Robinson, Keith W.; Deacon, Jeffrey R.

    2004-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Environmental Protection Agency (USEPA) and the New England Interstate Water Pollution Control Commission (NEIWPCC), has developed a water-quality model, called SPARROW (Spatially Referenced Regressions on Watershed Attributes), to assist in regional total maximum daily load (TMDL) and nutrient-criteria activities in New England. SPARROW is a spatially detailed, statistical model that uses regression equations to relate total nitrogen and phosphorus (nutrient) stream loads to nutrient sources and watershed characteristics. The statistical relations in these equations are then used to predict nutrient loads in unmonitored streams. The New England SPARROW models are built using a hydrologic network of 42,000 stream reaches and associated watersheds. Watershed boundaries are defined for each stream reach in the network through the use of a digital elevation model and existing digitized watershed divides. Nutrient source data is from permitted wastewater discharge data from USEPA's Permit Compliance System (PCS), various land-use sources, and atmospheric deposition. Physical watershed characteristics include drainage area, land use, streamflow, time-of-travel, stream density, percent wetlands, slope of the land surface, and soil permeability. The New England SPARROW models for total nitrogen and total phosphorus have R-squared values of 0.95 and 0.94, with mean square errors of 0.16 and 0.23, respectively. Variables that were statistically significant in the total nitrogen model include permitted municipal-wastewater discharges, atmospheric deposition, agricultural area, and developed land area. Total nitrogen stream-loss rates were significant only in streams with average annual flows less than or equal to 2.83 cubic meters per second. In streams larger than this, there is nondetectable in-stream loss of annual total nitrogen in New England. Variables that were statistically significant in the total

  2. Seasonal changes in amino acids, protein and total nitrogen in needles of fertilized Scots pine trees.

    Science.gov (United States)

    Näsholm, T; Ericsson, A

    1990-09-01

    Seasonal changes in amino acids, protein and total nitrogen in needles of 30-year-old, fertilized Scots pine (Pinus sylvestris L.) trees growing in Northern Sweden were investigated over two years in field experiments. The studied plots had been fertilized annually for 17 years with (i) a high level of N, (ii) a medium level of N, or (iii) a medium level of N, P and K. Trees growing on unfertilized plots served as controls. In control trees, glutamine, glutamic acid, gamma-aminobutyric acid, aspartic acid and proline represented 50-70% of the total free amino acids determined. Arginine was present only in low concentrations in control trees throughout the year, but it was usually the most abundant amino acid in fertilized trees. Glutamine concentrations were high during the spring and summer in both years of study, whereas proline concentrations were high in the spring but otherwise low throughout the year. In the first year of study, glutamic acid concentrations were high during the spring and summer, whereas gamma-aminobutyric acid was present in high concentrations during the winter months. This pattern was less pronounced in the second year of investigation. The concentrations of most amino acids, except glutamic acid, increased in response to fertilization. Nitrogen fertilization increased the foliar concentration of arginine from trees to a maximum of 110 micromol g(dw) (-1). Trees fertilized with nitrogen, phosphorus and potassium had significantly lower arginine concentrations than trees fertilized with the same amount of nitrogen only. Protein concentrations were similar in all fertilized trees but higher than those in control trees. For all treatments, protein concentrations were high in winter and at a minimum in early spring. In summer, the protein concentration remained almost constant except for a temporary decrease which coincided with the expansion of new shoots. Apart from arginine, the amino acid composition of proteins was similar in all

  3. Nitrogen

    Science.gov (United States)

    Apodaca, L.E.

    2010-01-01

    Ammonia was produced by 13 companies at 23 plants in 16 states during 2009. Sixty percent of all U.S. ammonia production capacity was centered in Louisiana. Oklahoma and Texas because of those states' large reserves of natural gas, the dominant domestic feedstock. In 2009, U.S. producers operated at about 83 percent of their rated capacity (excluding plants that were idle for the entire year). Five companies — Koch Nitrogen Co.; Terra Industries Inc.; CF Industries Inc.; PCS Nitrogen Inc. and Agrium Inc., in descending order — accounted for 80 percent of the total U.S. ammonia production capacity. U.S. production was estimated to be 7.7 Mt (8.5 million st) of nitrogen (N) content in 2009 compared with 7.85 Mt (8.65 million st) of N content in 2008. Apparent consumption was estimated to have decreased to 12.1 Mt (13.3 million st) of N, a 10-percent decrease from 2008. The United States was the world's fourth-ranked ammonia producer and consumer following China, India and Russia. Urea, ammonium nitrate, ammonium phosphates, nitric acid and ammonium sulfate were the major derivatives of ammonia in the United States, in descending order of importance.

  4. Carbon Nitrogen Co-Doped P25: Parameter Study on Photodegradation of Reactive Red 4

    Directory of Open Access Journals (Sweden)

    Azami M. S.

    2016-01-01

    Full Text Available Photocatalytic degradation rate of reactive red 4 (RR4 using carbon coated nitrogen doped TiO2 (C N co-doped TiO2 in photocatalysis process is main goal on this research. The main operating the parameters such as effect of initial dye concentration, catalyst loading, aeration flow rate and initial pH on degradation of RR4 under 45 W fluorescent lamp was investigated. photocatalytic activity of RR4 dye decreased with increasing RR4 dye concentration. The optimum loading is around 0.04 g and optimum aeration rate is about 25 mL min-1 of C N co-doped TiO2. Effect of pH was conducted based on the optimum loading and conclude that the photocatalytic degradation of RR4 became faster at pH 2 - 7. For the future work, the modification of doping with others element like non-metal or metal with C N co-doped TiO2 can be enhanced toward the higher efficieny of photodegradation under visible light. Moreover, the immobilized technique can be used in future to overcome the difficulty of filtration on suspension.

  5. Targeting reactive nitrogen species: a promising therapeutic strategy for cerebral ischemia-reperfusion injury.

    Science.gov (United States)

    Chen, Xing-miao; Chen, Han-sen; Xu, Ming-jing; Shen, Jian-gang

    2013-01-01

    Ischemic stroke accounts for nearly 80% of stroke cases. Recanalization with thrombolysis is a currently crucial therapeutic strategy for re-building blood supply, but the thrombolytic therapy often companies with cerebral ischemia-reperfusion injury, which are mediated by free radicals. As an important component of free radicals, reactive nitrogen species (RNS), including nitric oxide (NO) and peroxynitrite (ONOO(-)), play important roles in the process of cerebral ischemia-reperfusion injury. Ischemia-reperfusion results in the production of nitric oxide (NO) and peroxynitrite (ONOO(-)) in ischemic brain, which trigger numerous molecular cascades and lead to disruption of the blood brain barrier and exacerbate brain damage. There are few therapeutic strategies available for saving ischemic brains and preventing the subsequent brain damage. Recent evidence suggests that RNS could be a therapeutic target for the treatment of cerebral ischemia-reperfusion injury. Herein, we reviewed the recent progress regarding the roles of RNS in the process of cerebral ischemic-reperfusion injury and discussed the potentials of drug development that target NO and ONOO(-) to treat ischemic stroke. We conclude that modulation for RNS level could be an important therapeutic strategy for preventing cerebral ischemia-reperfusion injury.

  6. Spatial analysis and hazard assessment on soil total nitrogen in the middle subtropical zone of China

    Science.gov (United States)

    Lu, Peng; Lin, Wenpeng; Niu, Zheng; Su, Yirong; Wu, Jinshui

    2006-10-01

    Nitrogen (N) is one of the main factors affecting environmental pollution. In recent years, non-point source pollution and water body eutrophication have become increasing concerns for both scientists and the policy-makers. In order to assess the environmental hazard of soil total N pollution, a typical ecological unit was selected as the experimental site. This paper showed that Box-Cox transformation achieved normality in the data set, and dampened the effect of outliers. The best theoretical model of soil total N was a Gaussian model. Spatial variability of soil total N at NE60° and NE150° directions showed that it had a strip anisotropic structure. The ordinary kriging estimate of soil total N concentration was mapped. The spatial distribution pattern of soil total N in the direction of NE150° displayed a strip-shaped structure. Kriging standard deviations (KSD) provided valuable information that will increase the accuracy of total N mapping. The probability kriging method is useful to assess the hazard of N pollution by providing the conditional probability of N concentration exceeding the threshold value, where we found soil total N>2.0g/kg. The probability distribution of soil total N will be helpful to conduct hazard assessment, optimal fertilization, and develop management practices to control the non-point sources of N pollution.

  7. ORGANIC CARBON AND TOTAL NITROGEN IN THE DENSIMETRIC FRACTIONS OF ORGANIC MATTER UNDER DIFFERENT SOIL MANAGEMEN

    Directory of Open Access Journals (Sweden)

    MARCELO RIBEIRO VILELA PRADO

    2016-01-01

    Full Text Available The evaluation of land use and management by the measurement of soil organic matter and its fractions has gained attention since it helps in the understanding of the dynamics of their contribution to soil productivity, especially in tropical environments. This study was conducted in the municipality of Colorado do Oeste, state of Rondônia, Brazil and its aim was to determinethe quantity of organic carbon and total nitrogen in the light and heavy fractions of organic matter in the surface layers of a typic hapludalf under different land use systems: Native Forest: open evergreen forest, reference environment; Agroforestry System 1: teak (Tectona grandis LF and kudzu (Pueraria montana; Agroforestry System 2: coffee (Coffea canephora, marandu palisade grass (Brachiaria brizantha cv. Marandu, “pinho cuiabano” (Parkia multijuga, teak and kudzu.; Agroforestry System 3: teak and cocoa (Theobroma cacao; Silvopasture System: teak, cocoa and marandu palisade grass; and Extensive Grazing System: marandu palisade grass. The experimental design was a randomized block in split-split plots (use systems versus soil layers of 0-0.05 and 0.05-0.10 m with three replications. The results showed that relative to Native Forest, the Agroforestry System 2 had equal- and greater amounts of organic carbon and total nitrogen respectively (light and heavy fractions in the soil organic matter, with the light fraction being responsible for storage of approximately 45% and 70% of the organic carbon and total nitrogen, respectively. Therefore, the light densimetric fraction proved to be useful in the early identification of the general decline of the soil organic matter in the land use systems evaluated.

  8. Characterization of the compounds of nitrogen and total suspended particles in the municipality Regla, Havana

    International Nuclear Information System (INIS)

    Wallo Vazquez, Antonio; Cuesta Santos, Osvaldo

    2006-01-01

    The questions related with the atmospheric contamination in urban areas every day they charge bigger importance for the affectations that it can take place so much in the health of the human beings as in the materials, constructions, etc. In the city of Havana those made up of nitrogen and the particles suspended totals are of the pollutants whose concentrations are elevated in the atmosphere. Inside this context, the present work intends the analysis of the behavior of this concentrations, taken as experimental polygon the municipality Regla in city of Havana

  9. An Efficient Computational Model to Predict Protonation at the Amide Nitrogen and Reactivity along the C–N Rotational Pathway

    Science.gov (United States)

    Szostak, Roman; Aubé, Jeffrey

    2015-01-01

    N-protonation of amides is critical in numerous biological processes, including amide bonds proteolysis and protein folding, as well as in organic synthesis as a method to activate amide bonds towards unconventional reactivity. A computational model enabling prediction of protonation at the amide bond nitrogen atom along the C–N rotational pathway is reported. Notably, this study provides a blueprint for the rational design and application of amides with a controlled degree of rotation in synthetic chemistry and biology. PMID:25766378

  10. Tracking Reactive Nitrogen Sources, Chemistry and Deposition in Urban Environments Using Stable Isotopes

    Science.gov (United States)

    Hastings, M. G.; Clark, S. C.; Chai, J.; Joyce, E.; Miller, D. J.; Schiebel, H.; Walters, W.

    2017-12-01

    Reactive nitrogen (Nr) includes compounds such as nitrogen oxides (NOx, HONO), ammonia (NH3), nitrate (NO3-), ammonium (NH4+), and organic nitrates. These compounds serve major roles in controlling the composition of our atmosphere, and have a direct impact on ecosystem health and water quality. Our research is focused on using stable isotopes of Nr to investigate variations in sources, chemistry, atmospheric transport, and deposition. Our aim is to fingerprint distinct emission sources - such as vehicles, power plants, aircraft, agriculature, wildfires, and lightning - and track their influence in the environment. We have recently characterized vehicle emission plumes, emissions from agricultural soils under different management practices, and (in the near future) wildfire plumes in the western U.S. Our approach targets characterizing the isotopic composition of NOx, HONO, and NH3 at both the emissions source and the plume scale. In contrast to large ranges found for individual tailpipe emissions of NOx, on-road plumes in the U.S. have a mean δ15N of -4.7 ± 1.7‰. The plume scale approach integrates across the typical U.S. fleet giving a representative value that can be used for tracking the impact of this emission source in the environment. NH3 also tends towards a narrow isotopic range when considered at the roadside scale compared to individual vehicles. In agricultural settings, the isotopes of NOx and HONO released from soils under different fertilizer practices is typically very negative in δ15N (-40 to -10‰) and appears to vary most with soil N properties rather than meteorology. Our work is now extending to discern sources influencing Nr deposition in an urban area at the head of New England's largest estuary. National monitoring of N deposition shows decreases in NO3- (but not NH4+) deposition over the last two decades, following better controls on NOx emissions. Wet deposition collected in an urban area exhibits N concentrations that are often 3

  11. Growth and characterization of nitrogen-doped TiO2 thin films prepared by reactive pulsed laser deposition

    International Nuclear Information System (INIS)

    Sauthier, G.; Ferrer, F.J.; Figueras, A.; Gyoergy, E.

    2010-01-01

    Nitrogen-doped titanium dioxide (TiO 2 ) thin films were grown on (001) SiO 2 substrates by reactive pulsed laser deposition. A KrF* excimer laser source (λ = 248 nm, τ FWHM ≅ 10 ns, ν = 10 Hz) was used for the irradiations of pressed powder targets composed by both anatase and rutile phase TiO 2 . The experiments were performed in a controlled reactive atmosphere consisting of oxygen or mixtures of oxygen and nitrogen gases. The obtained thin film crystal structure was investigated by X-ray diffraction, while their chemical composition as well as chemical bonding states between the elements were studied by X-ray photoelectron spectroscopy. An interrelation was found between nitrogen concentration, crystalline structure, bonding states between the elements, and the formation of titanium oxinitride compounds. Moreover, as a result of the nitrogen incorporation in the films a continuous red-shift of the optical absorption edge accompanied by absorption in the visible spectral range between 400 and 500 nm wavelength was observed.

  12. Influence of total beam current on HRTEM image resolution in differentially pumped ETEM with nitrogen gas.

    Science.gov (United States)

    Bright, A N; Yoshida, K; Tanaka, N

    2013-01-01

    Environmental transmission electron microscopy (ETEM) enables the study of catalytic and other reaction processes as they occur with Angstrom-level resolution. The microscope used is a dedicated ETEM (Titan ETEM, FEI Company) with a differential pumping vacuum system and apertures, allowing aberration corrected high-resolution transmission electron microscopy (HRTEM) imaging to be performed with gas pressures up to 20 mbar in the sample area and with significant advantages over membrane-type E-cell holders. The effect on image resolution of varying the nitrogen gas pressure, electron beam current density and total beam current were measured using information limit (Young's fringes) on a standard cross grating sample and from silicon crystal lattice imaging. As expected, increasing gas pressure causes a decrease in HRTEM image resolution. However, the total electron beam current also causes big changes in the image resolution (lower beam current giving better resolution), whereas varying the beam current density has almost no effect on resolution, a result that has not been reported previously. This behavior is seen even with zero-loss filtered imaging, which we believe shows that the drop in resolution is caused by elastic scattering at gas ions created by the incident electron beam. Suitable conditions for acquiring high resolution images in a gas environment are discussed. Lattice images at nitrogen pressures up to 16 mbar are shown, with 0.12 nm information transfer at 4 mbar. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Mapping soil total nitrogen of cultivated land at county scale by using hyperspectral image

    Science.gov (United States)

    Gu, Xiaohe; Zhang, Li Yan; Shu, Meiyan; Yang, Guijun

    2018-02-01

    Monitoring total nitrogen content (TNC) in the soil of cultivated land quantitively and mastering its spatial distribution are helpful for crop growing, soil fertility adjustment and sustainable development of agriculture. The study aimed to develop a universal method to map total nitrogen content in soil of cultivated land by HSI image at county scale. Several mathematical transformations were used to improve the expression ability of HSI image. The correlations between soil TNC and the reflectivity and its mathematical transformations were analyzed. Then the susceptible bands and its transformations were screened to develop the optimizing model of map soil TNC in the Anping County based on the method of multiple linear regression. Results showed that the bands of 14th, 16th, 19th, 37th and 60th with different mathematical transformations were screened as susceptible bands. Differential transformation was helpful for reducing the noise interference to the diagnosis ability of the target spectrum. The determination coefficient of the first order differential of logarithmic transformation was biggest (0.505), while the RMSE was lowest. The study confirmed the first order differential of logarithm transformation as the optimal inversion model for soil TNC, which was used to map soil TNC of cultivated land in the study area.

  14. AMPK signaling in skeletal muscle during exercise: Role of reactive oxygen and nitrogen species.

    Science.gov (United States)

    Morales-Alamo, David; Calbet, Jose A L

    2016-09-01

    Reactive oxygen and nitrogen species (RONS) are generated during exercise depending on intensity, duration and training status. A greater amount of RONS is released during repeated high-intensity sprint exercise and when the exercise is performed in hypoxia. By activating adenosine monophosphate-activated kinase (AMPK), RONS play a critical role in the regulation of muscle metabolism but also in the adaptive responses to exercise training. RONS may activate AMPK by direct an indirect mechanisms. Directly, RONS may activate or deactivate AMPK by modifying RONS-sensitive residues of the AMPK-α subunit. Indirectly, RONS may activate AMPK by reducing mitochondrial ATP synthesis, leading to an increased AMP:ATP ratio and subsequent Thr(172)-AMPK phosphorylation by the two main AMPK kinases: LKB1 and CaMKKβ. In presence of RONS the rate of Thr(172)-AMPK dephosphorylation is reduced. RONS may activate LKB1 through Sestrin2 and SIRT1 (NAD(+)/NADH.H(+)-dependent deacetylase). RONS may also activate CaMKKβ by direct modification of RONS sensitive motifs and, indirectly, by activating the ryanodine receptor (Ryr) to release Ca(2+). Both too high (hypoxia) and too low (ingestion of antioxidants) RONS levels may lead to Ser(485)-AMPKα1/Ser(491)-AMPKα2 phosphorylation causing inhibition of Thr(172)-AMPKα phosphorylation. Exercise training increases muscle antioxidant capacity. When the same high-intensity training is applied to arm and leg muscles, arm muscles show signs of increased oxidative stress and reduced mitochondrial biogenesis, which may be explained by differences in RONS-sensing mechanisms and basal antioxidant capacities between arm and leg muscles. Efficient adaptation to exercise training requires optimal exposure to pulses of RONS. Inappropriate training stimulus may lead to excessive RONS formation, oxidative inactivation of AMPK and reduced adaptation or even maladaptation. Theoretically, exercise programs should be designed taking into account the

  15. A NEW GIS NITROGEN TRADING TOOL CONCEPT FOR CONSERVATION AND REDUCTION OF REACTIVE NITROGEN LOSSES TO THE ENVIRONMENT

    Science.gov (United States)

    Nitrogen inputs to agricultural systems are important for their sustainability. However, when N inputs are unnecessarily high, the excess can contribute to greater agricultural N losses that impact air, surface water and groundwater quality. It is paramount to reduce off-site transport of N by using...

  16. Intercomparison of the comparative reactivity method (CRM) and pump-probe technique for measuring total OH reactivity in an urban environment

    Science.gov (United States)

    Hansen, R. F.; Blocquet, M.; Schoemaecker, C.; Léonardis, T.; Locoge, N.; Fittschen, C.; Hanoune, B.; Stevens, P. S.; Sinha, V.; Dusanter, S.

    2015-10-01

    The investigation of hydroxyl radical (OH) chemistry during intensive field campaigns has led to the development of several techniques dedicated to ambient measurements of total OH reactivity, which is the inverse of the OH lifetime. Three techniques are currently used during field campaigns, including the total OH loss rate method, the pump-probe method, and the comparative reactivity method. However, no formal intercomparison of these techniques has been published so far, and there is a need to ensure that measurements of total OH reactivity are consistent among the different techniques. An intercomparison of two OH reactivity instruments, one based on the comparative reactivity method (CRM) and the other based on the pump-probe method, was performed in October 2012 in a NOx-rich environment, which is known to be challenging for the CRM technique. This study presents an extensive description of the two instruments, the CRM instrument from Mines Douai (MD-CRM) and the pump-probe instrument from the University of Lille (UL-FAGE), and highlights instrumental issues associated with the two techniques. It was found that the CRM instrument used in this study underestimates ambient OH reactivity by approximately 20 % due to the photolysis of volatile organic compounds (VOCs) inside the sampling reactor; this value is dependent on the position of the lamp within the reactor. However, this issue can easily be fixed, and the photolysis of VOCs was successfully reduced to a negligible level after this intercomparison campaign. The UL-FAGE instrument may also underestimate ambient OH reactivity due to the difficulty to accurately measure the instrumental zero. It was found that the measurements are likely biased by approximately 2 s-1, due to impurities in humid zero air. Two weeks of ambient sampling indicate that the measurements performed by the two OH reactivity instruments are in agreement, within the measurement uncertainties for each instrument, for NOx mixing ratios

  17. Observations of atmosphere-biosphere exchange of total and speciated peroxynitrates: nitrogen fluxes and biogenic sources of peroxynitrates

    Directory of Open Access Journals (Sweden)

    K.-E. Min

    2012-10-01

    Full Text Available Peroxynitrates are responsible for global scale transport of reactive nitrogen. Recent laboratory observations suggest that they may also play an important role in delivery of nutrients to plant canopies. We measured eddy covariance fluxes of total peroxynitrates (ΣPNs and three individual peroxynitrates (APNs ≡ PAN + PPN + MPAN over a ponderosa pine forest during the Biosphere Effects on AeRosols and Photochemistry EXperiment 2009 (BEARPEX 2009. Concentrations of these species were also measured at multiple heights above and within the canopy. While the above-canopy daytime concentrations are nearly identical for ΣPNs and APNs, we observed the downward flux of ΣPNs to be 30–60% slower than the flux of APNs. The vertical concentration gradients of ΣPNs and APNs vary with time of day and exhibit different temperature dependencies. These differences can be explained by the production of peroxynitrates other than PAN, PPN, and MPAN within the canopy (presumably as a consequence of biogenic VOC emissions and upward fluxes of these PN species. The impact of this implied peroxynitrate flux on the interpretation of NOx fluxes and ecosystem N exchange is discussed.

  18. Reactivity Of Radiolytically-Produced Nitrogen Oxide Radicals Toward Aromatic Compounds

    International Nuclear Information System (INIS)

    Elias, Gracy

    2010-01-01

    radiolysis of the modifier (Cs-7SB), which solvates both metal complexes, is responsible for this change. These reactions presumably occur due to reactions with radiolytically-produced nitrogen-centered radicals like (sm b ullet)NO, (sm b ullet)NO 2 and (sm b ullet)NO 3 . Anisole (C 6 H 5 -OCH 3 ) was used in this study as a surrogate for Cs-7SB, since both are aryl ethers. Toluene was used as a surrogate for Cs-7SB because of the alkyl group on the benzene ring in both molecules. Anisole, highly reactive in acids, is a small molecule compared to Cs-7SB and the nitration products are easier to identify compared to those for the larger Cs-7SB molecule. Toluene is less reactive than anisole. Therefore, the highly reactive anisole and the less reactive toluene were considered in this study as model compounds to compare the reaction mechanisms and the nitrated products in acidic media under irradiation. Experiments were designed to elucidate the mechanism of the nitration of aromatic rings in γ-irradiated aqueous nitric acid. Since a suite of radical and ionic reactive species are produced in this condensed-phase system, solutions of nitric acid, neutral nitrate and neutral nitrite were irradiated in separate experiments to isolate selected reactive species. Product nitration species were assessed by high performance liquid chromatography (HPLC) with a reversed phase C-18 column and photodiode array detector. The nitrated anisole product distributions were the same with and without radiation in acidic solution, although more products were formed with radiation. In the irradiated acidic condensed phase, radiation-enhanced nitrous acid-catalyzed nitrosonium ion electrophilic aromatic substitution followed by oxidation reactions dominated over radical addition reactions. In contrast, the distribution of nitrated derivatives for toluene showed nitronium ion electrophilic substitution in the unirradiated acidic medium as a result of thermal nitration only at elevated temperatures

  19. Total OH reactivity measurements using a new fast Gas Chromatographic Photo-Ionization Detector (GC-PID

    Directory of Open Access Journals (Sweden)

    V. Sinha

    2012-12-01

    Full Text Available The primary and most important oxidant in the atmosphere is the hydroxyl radical (OH. Currently OH sinks, particularly gas phase reactions, are poorly constrained. One way to characterize the overall sink of OH is to measure directly the ambient loss rate of OH, the total OH reactivity. To date, direct measurements of total OH reactivity have been either performed using a Laser-Induced Fluorescence (LIF system ("pump-and-probe" or "flow reactor" or the Comparative Reactivity Method (CRM with a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS. Both techniques require large, complex and expensive detection systems. This study presents a feasibility assessment for CRM total OH reactivity measurements using a new detector, a Gas Chromatographic Photoionization Detector (GC-PID. Such a system is smaller, more portable, less power consuming and less expensive than other total OH reactivity measurement techniques.

    Total OH reactivity is measured by the CRM using a competitive reaction between a reagent (here pyrrole with OH alone and in the presence of atmospheric reactive molecules. The new CRM method for total OH reactivity has been tested with parallel measurements of the GC-PID and the previously validated PTR-MS as detector for the reagent pyrrole during laboratory experiments, plant chamber and boreal field studies. Excellent agreement of both detectors was found when the GC-PID was operated under optimum conditions. Time resolution (60–70 s, sensitivity (LOD 3–6 s−1 and overall uncertainty (25% in optimum conditions for total OH reactivity were similar to PTR-MS based total OH reactivity measurements. One drawback of the GC-PID system was the steady loss of sensitivity and accuracy during intensive measurements lasting several weeks, and a possible toluene interference. Generally, the GC-PID system has been shown to produce closely comparable results to the PTR-MS and thus in suitable environments (e.g. forests it

  20. Nitrogen

    Science.gov (United States)

    Apodaca, Lori E.

    2013-01-01

    The article presents an overview of the nitrogen chemical market as of July 2013, including the production of ammonia compounds. Industrial uses for ammonia include fertilizers, explosives, and plastics. Other topics include industrial capacity of U.S. ammonia producers CF Industries Holdings Inc., Koch Nitrogen Co., PCS Nitrogen, Inc., and Agrium Inc., the impact of natural gas prices on the nitrogen industry, and demand for corn crops for ethanol production.

  1. Atmospheric reactive nitrogen concentrations at ten sites with contrasting land use in an arid region of central Asia

    Directory of Open Access Journals (Sweden)

    K. H. Li

    2012-10-01

    Full Text Available Atmospheric concentrations of reactive nitrogen (Nr species from 2009 to 2011 are reported for ten sites in Xinjiang, China, an arid region of central Asia. Concentrations of NH3, NO2, particulate ammonium and nitrate (pNH4+ and pNO3 showed large spatial and seasonal variation and averaged 7.71, 9.68, 1.81 and 1.13 μg N m−3, and PM10 concentrations averaged 249.2 μg m−3 across all sites. Lower NH3 concentrations and higher NO2, pNH4+ and pNO3 concentrations were found in winter, reflecting serious air pollution due to domestic heating in winter and other anthropogenic sources such as increased emissions from motor traffic and industry. The increasing order of total concentrations of Nr species was alpine grassland; desert, desert-oasis ecotone; desert in an oasis; farmland; suburban and urban ecosystems. Lower ratios of secondary particles (NH4+ and NO3 were found in the desert and desert-oasis ecotone, while urban and suburban areas had higher ratios, which implied that anthropogenic activities have greatly influenced local air quality and must be controlled.

  2. Sugar composition, total nitrogen and accumulation of C-14 assimilates in floral nectaries of Protea species

    International Nuclear Information System (INIS)

    Cowling, R.M.; Mitchell, D.T.

    1981-01-01

    Sugar composition of nectar of six species of Protea was analysed by gas-liquid chromatography and consisted of sucrose, fructose and glucose in varying proportions. Total nitrogen content of nectar of P. repens and P. neriifolia was very low. Evidence is presented that nectar produced by inflorescences (e.g. P. repens and P. neriifolia) which are bird-pollinated are dominated by fructose and glucose whereas nectar of putatively rodent-pollinated inflorescences (e.g. P. tenax, P. humiflora and P. denticulata) contain mixtures of sucrose, fructose and glucose. By exposing leaves of flowering shoots of P. neriifolia to 14 CO 2 , studies revealed that bracts accumulate C- 14 assimilates and translocation of compounds from the leaves to the floral nectaries was not affected by night and day incubation periods [af

  3. Finite Element Simulation of Total Nitrogen Transport in Riparian Buffer in an Agricultural Watershed

    Directory of Open Access Journals (Sweden)

    Xiaosheng Lin

    2016-03-01

    Full Text Available Riparian buffers can influence water quality in downstream lakes or rivers by buffering non-point source pollution in upstream agricultural fields. With increasing nitrogen (N pollution in small agricultural watersheds, a major function of riparian buffers is to retain N in the soil. A series of field experiments were conducted to monitor pollutant transport in riparian buffers of small watersheds, while numerical model-based analysis is scarce. In this study, we set up a field experiment to monitor the retention rates of total N in different widths of buffer strips and used a finite element model (HYDRUS 2D/3D to simulate the total N transport in the riparian buffer of an agricultural non-point source polluted area in the Liaohe River basin. The field experiment retention rates for total N were 19.4%, 26.6%, 29.5%, and 42.9% in 1,3,4, and 6m-wide buffer strips, respectively. Throughout the simulation period, the concentration of total N of the 1mwide buffer strip reached a maximum of 1.27 mg/cm3 at 30 min, decreasing before leveling off. The concentration of total N about the 3mwide buffer strip consistently increased, with a maximum of 1.05 mg/cm3 observed at 60 min. Under rainfall infiltration, the buffer strips of different widths showed a retention effect on total N transport, and the optimum effect was simulated in the 6mwide buffer strip. A comparison between measured and simulated data revealed that finite element simulation could simulate N transport in the soil of riparian buffer strips.

  4. Simulating the reactive transport of nitrogen species in a regional irrigated agricultural groundwater system

    Science.gov (United States)

    Bailey, R. T.; Gates, T. K.

    2011-12-01

    The fate and transport of nitrogen (N) species in irrigated agricultural groundwater systems is governed by irrigation patterns, cultivation practices, aquifer-surface water exchanges, and chemical reactions such as oxidation-reduction, volatilization, and sorption, as well as the presence of dissolved oxygen (O2). We present results of applying the newly-developed numerical model RT3D-AG to a 50,400-ha regional study site within the Lower Arkansas River Valley in southeastern Colorado, where elevated concentrations of NO3 have been observed in both groundwater and surface water during the recent decade. Furthermore, NO3 has a strong influence on the fate and transport of other contaminants in the aquifer system such as selenium (Se) through inhibition of reduction of dissolved Se as well as oxidation of precipitate Se from outcropped and bedrock shale. RT3D-AG, developed by appending the multi-species reactive transport finite-difference model RT3D with modular packages that account for variably-saturated transport, the cycling of carbon (C) and N, and the fate and transport of O2 within the soil and aquifer system, simulates organic C and organic N decomposition and mineralization, oxidation-reduction reactions, and sorption. System sources/sinks consist of applied fertilizer and manure; crop uptake of ammonium (NH4) and NO3 during the growing season; mass of O2, NO3, and NH4 associated with irrigation water and canal seepage; mass of O2, NO3, and NH4 transferred to canals and the Arkansas River from the aquifer; and dead root mass and after-harvest stover mass incorporated into the soil organic matter at the end of the growing season. Chemical reactions are simulated using first-order Monod kinetics, wherein the rate of reaction is dependent on the concentration of the reactants as well as temperature and water content of the soil. Fertilizer and manure application timing and loading, mass of seasonal crop uptake, and end-of-season root mass and stover mass are

  5. Highly functionalized organic nitrates in the southeast United States: Contribution to secondary organic aerosol and reactive nitrogen budgets

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ben H.; Mohr, Claudia; Lopez-Hilfiker, Felipe D.; Lutz, Anna; Hallquist, Mattias; Lee, Lance; Romer, Paul; Cohen, Ronald C.; Iyer, Siddharth; Kurtén, Theo; Hu, Weiwei; Day, Douglas A.; Campuzano-Jost, Pedro; Jimenez, Jose L.; Xu, Lu; Ng, Nga Lee; Guo, Hongyu; Weber, Rodney J.; Wild, Robert J.; Brown, Steven S.; Koss, Abigail; de Gouw, Joost; Olson, Kevin; Goldstein, Allen H.; Seco, Roger; Kim, Saewung; McAvey, Kevin; Shepson, Paul B.; Starn, Tim; Baumann, Karsten; Edgerton, Eric S.; Liu, Jiumeng; Shilling, John E.; Miller, David O.; Brune, William; Schobesberger, Siegfried; D' Ambro, Emma L.; Thornton, Joel A.

    2016-01-25

    and Aerosol Study (SOAS). We compare these speciated measurements to total unspeciated particulate organic nitrate measured by three independent methods, and analyze using a zero-dimensional box model the diel cycles of individual components to elucidate differential source and sink terms. Biogenic volatile organic compounds (VOCs), including isoprene, monoterpenes, and sesquiterpenes appear to dominate the ON sources during SOAS. We show that the molecular compositions that dominate the particle-phase are significantly more oxygenated than the most abundant gas-phase counterparts, consistent with volatility and solubility driven partitioning requirements. However, the detailed mechanisms by which most of these ON arise are not yet clear. These speciated measurements put a strong constraint on the extent to which ON directly contribute to SOA in regions with high biogenic hydrocarbon emissions, and illustrate that the fate of particulate ON can have significant implications for SOA and the reactive nitrogen budget.

  6. Lanthanide ions (III) as sensitizers of melatonin oxidation in reaction mixtures providing reactive species of oxygen and nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Kaczmarek, Małgorzata, E-mail: mkaczmar@amu.edu.pl

    2015-06-15

    Chemiluminescence (CL) of the reactive systems providing strong oxidants (reactive species of oxygen and nitrogen) containing lanthanide ions (III) and melatonin, was studied. Kinetic curves of emission decay and spectral distributions of chemiluminescence were obtained. Analysis of differences in the intensity of chemiluminescence and CL spectra proved that excitation of Tb(III) and Dy(III) ions takes place with the energy transfer from the products of melatonin oxidation: N{sup 1}-acetyl-N{sup 2}-formyl-5-methoxykynuramine (AFMK) and N{sup 1}-acetyl-5-methoxykynuramine (AMK) to the lanthanide ions. In the system Fe(II)/Fe(III)–H{sub 2}O{sub 2}–Mel–Tb(III) a linear correlation was established between the integrated CL intensity and melatonin concent. - Highlights: • Chemiluminescence (CL) of melatonin (Mel) oxidation by reactive species of oxygen and nitrogen. • Tb(III) and Dy(III) ions as sensitizers of a melatonin oxidation process. • New CL method for determination of melatonin in pharmaceutical preparations based on CL of Fe(II)/Fe(III)–H{sub 2}O{sub 2}–Mel–Tb(III) system.

  7. Biosphere-atmosphere exchange of reactive nitrogen and greenhouse gases at the NitroEurope core flux measurement sites: Measurement strategy and first data sets

    DEFF Research Database (Denmark)

    Skiba, U.; Drewer, J.; Tang, Y.S.

    2009-01-01

    The NitroEurope project aims to improve understanding of the nitrogen (N) cycle at the continental scale and quantify the major fluxes of reactive N by a combination of reactive N measurements and modelling activities. As part of the overall measurement strategy, a network of 13 flux ‘super sites...

  8. Leaching behavior of total organic carbon, nitrogen, and phosphorus from banana peel.

    Science.gov (United States)

    Jiang, Ruixue; Sun, Shujuan; Xu, Yan; Qiu, Xiudong; Yang, Jili; Li, Xiaochen

    2015-01-01

    The leaching behavior of organic carbon and nutrient compounds from banana peel (BP) was investigated in batch assays with respect to particle size, contact time, pH value, and temperature. The granularity, contact time, pH, and temperature caused no significant effects on the leaching of total phosphorus (TP) from the BP. The maximum leached total nitrogen (TN) content was found at pH 5.0 and 90 minutes, while no significant effects were caused by the granularity and temperature. The maximum leached total organic carbon (TOC) content was found by using a powder of 40 mesh, 150 minutes and at pH 6.0, while the temperature had no effect on the TOC leaching. The proportions of the TN, TP, and TOC contents leached from the dried BP ranged from 33.6% to 40.9%, 60.4% to 72.7%, and 8.2% to 9.9%, respectively, indicating that BP could be a potential pollution source for surface and ground water if discharged as domestic waste or reutilized without pretreatment.

  9. Piling up reactive nitrogen and declining nitrogen use efficiency in Pakistan: a challenge not challenged (1961-2013)

    Science.gov (United States)

    Raza, Sajjad; Zhou, Jianbin; Aziz, Tariq; Rahil Afzal, Muhammad; Ahmed, Muneer; Javaid, Shahbaz; Chen, Zhujun

    2018-03-01

    Excessive nitrogen (N) application and reduced nitrogen use efficiency (NUE) are the key reasons behind N notoriety worldwide, including in Pakistan. We estimated the changes in NUE of Pakistan by calculating the N budget of Pakistan’s agriculture during the last 53 years (1961-2013). A more than ten-fold increase in N input (including N fertilizer, biological N fixation, manure, and atmospheric deposition) from 408 GgNyr-1 (1961-1965) to 4636 GgNyr-1 (2009-2013) highlights the fact that Pakistan is experiencing a massive expansion of N consumption. Significantly declining NUE (from 58% to 23%) and sharply increasing surplus N (171 GgNyr-1 to 3581 GgNyr-1) may cause N-related environment problems in the future if not handled immediately. Escalating gaseous N emissions of NH3, N2O, and NO (70, 10, and 1 GgNyr-1 to 1023, 155, and 46 GgNyr-1, respectively) is already posing a serious threat in terms of impaired air quality. There is a dire need to devise/adapt strategies and consistent policies for improving NUE, using proper management approaches at the grass root level and applying appropriate legislative measures for judicious N use as per crops requirements. Moreover, promotion of a balanced use of fertilizers would help in improving NUE in agriculture.

  10. Regulation of reactive oxygen and nitrogen species by salicylic acid in rice plants under salinity stress conditions

    Science.gov (United States)

    Mun, Bong-Gyu; Khan, Abdul Latif; Waqas, Muhammad; Kim, Hyun-Ho; Shahzad, Raheem; Imran, Muhammad

    2018-01-01

    This study investigated the regulatory role of exogenous salicylic acid (SA) in rice and its effects on toxic reactive oxygen and nitrogen species during short-term salinity stress. SA application (0.5 and 1.0 mM) during salinity-induced stress (100 mM NaCl) resulted in significantly longer shoot length and higher chlorophyll and biomass accumulation than with salinity stress alone. NaCl-induced reactive oxygen species production led to increased levels of lipid peroxidation in rice plants, which were significantly reduced following SA application. A similar finding was observed for superoxide dismutase; however, catalase (CAT) and ascorbate peroxidase (APX) were significantly reduced in rice plants treated with SA and NaCl alone and in combination. The relative mRNA expression of OsCATA and OsAPX1 was lower in rice plants during SA stress. Regarding nitrogenous species, S-nitrosothiol (SNO) was significantly reduced initially (one day after treatment [DAT]) but then increased in plants subjected to single or combined stress conditions. Genes related to SNO biosynthesis, S-nitrosoglutathione reductase (GSNOR1), NO synthase-like activity (NOA), and nitrite reductase (NIR) were also assessed. The mRNA expression of GSNOR1 was increased relative to that of the control, whereas OsNOA was expressed at higher levels in plants treated with SA and NaCl alone relative to the control. The mRNA expression of OsNR was decreased in plants subjected to single or combination treatment, except at 2 DAT, compared to the control. In conclusion, the current findings suggest that SA can regulate the generation of NaCl-induced oxygen and nitrogen reactive species in rice plants. PMID:29558477

  11. Evaluation of nitrogen status and total chlorophyll in longkong (Aglaia dookkoo Griff. leaves under water stress using a chlorophyll meter

    Directory of Open Access Journals (Sweden)

    Sdoodee, S.

    2005-07-01

    Full Text Available A chlorophyll meter (SPAD-502 was used to assess nitrogen status and total chlorophyll in longkong leaves, leaves from twelve of 10-year-old trees grown in the experimental plot at Prince of Songkla University, Songkhla province. The relationship between SPAD-502 meter reading and nitrogen status and total chlorophyll content analyzed in the laboratory was evaluated during 8 months (May-December 2003. It was found that the trend of the relationships in each month was similar. There was no significant differenceamong regression linears of all months. The data of 8 months showed that SPAD-reading and nitrogen content, and SPAD-reading and total chlorophyll content were related in a positive manner. They were Y = 0.19X+10.10, r = 0.76** (n = 240, and Y = 0.43X-7.89, r = 0.79** (n = 400, respectively. The SPAD-502 was then used to assess total nitrogen and total chlorophyll content during imposed water stress. Fifteen 4-yearold plants were grown in pots (each pot containing 50 kg soil volume. The experiment was arranged in acompletely randomized design with 3 treatments: (1 daily watering (2 once watering on day 7 (3 no watering with 5 replications during 14 days of the experimental period. Measurements showed a continuous decrease of SPAD-reading in the treatment of no watering. On day 14, a significant difference of SPAD- reading values between the treatment of daily watering and no watering was found. Then, the values of nitrogen content and total chlorophyll were assessed by using the linear regression equations. From the result, it is suggested that the measurement by chlorophyll meter is a rapid technique for the evaluation of total chlorophyll and nitrogen status in longkong leaves during water stress.

  12. Evaluation of body composition and nitrogen content of renal patients on chronic dialysis as determined by total body neutron activation

    International Nuclear Information System (INIS)

    Cohn, S.H.; Brennan, B.L.; Yasumura, S.; Vartsky, D.; Vaswani, A.N.; Ellis, K.J.

    1983-01-01

    Total body protein (nitrogen), body cell mass (potassium), fat, and water were measured in 15 renal patients on maintenance hemodialysis (MHD). Total body nitrogen was measured by means of prompt γ neutron activation analysis; total body water was determined with tritium labeled water; total body potassium was measured by whole body counting. The extracellular water was determined by a technique utilizing the measurement of total body chloride and plasma chloride. When compared with corresponding values of a control group of the same age, sex, and height, the protein content, body cell mass, and total body fat of the MHD patients were within the normal range. The only significant change was an increase in the extracellular water/body cell mass ratio in the male MHD patients compared to the control. The lack of significant difference of the nitrogen values of the MHD patients compared to matched controls suggests that dialysis minimizes any residual effects of uremic toxicity or protein-calorie malnutrition. These findings further suggest that there is a need to reevaluate the traditional anthropometric and biochemical standards of nutritional status for MHD patients. It was concluded that it is particularly important to measure protein stores of MHD patients with low protein intake to ascertain nutritional status. Finally, in vivo measurement of total body nitrogen and potassium for determination of body composition provides a simple, direct, and accurate assessment of the nutritional status of MHD patients

  13. Total Nitrogen Sources of the Three Gorges Reservoir--A Spatio-Temporal Approach.

    Directory of Open Access Journals (Sweden)

    Chunping Ren

    Full Text Available Understanding the spatial and temporal variation of nutrient concentrations, loads, and their distribution from upstream tributaries is important for the management of large lakes and reservoirs. The Three Gorges Dam was built on the Yangtze River in China, the world's third longest river, and impounded the famous Three Gorges Reservoir (TGR. In this study, we analyzed total nitrogen (TN concentrations and inflow data from 2003 till 2010 for the main upstream tributaries of the TGR that contribute about 82% of the TGR's total inflow. We used time series analysis for seasonal decomposition of TN concentrations and used non-parametric statistical tests (Kruskal-Walli H, Mann-Whitney U as well as base flow segmentation to analyze significant spatial and temporal patterns of TN pollution input into the TGR. Our results show that TN concentrations had significant spatial heterogeneity across the study area (Tuo River> Yangtze River> Wu River> Min River> Jialing River>Jinsha River. Furthermore, we derived apparent seasonal changes in three out of five upstream tributaries of the TGR rivers (Kruskal-Walli H ρ = 0.009, 0.030 and 0.029 for Tuo River, Jinsha River and Min River in sequence. TN pollution from non-point sources in the upstream tributaries accounted for 68.9% of the total TN input into the TGR. Non-point source pollution of TN revealed increasing trends for 4 out of five upstream tributaries of the TGR. Land use/cover and soil type were identified as the dominant driving factors for the spatial distribution of TN. Intensifying agriculture and increasing urbanization in the upstream catchments of the TGR were the main driving factors for non-point source pollution of TN increase from 2003 till 2010. Land use and land cover management as well as chemical fertilizer use restriction were needed to overcome the threats of increasing TN pollution.

  14. In vivo prompt gamma activation analysis facility for total body nitrogen and cadmium

    International Nuclear Information System (INIS)

    Munive, Marco; Solis, Jose; Revilla, Angel

    2008-01-01

    Full text: Prompt Neutron Activation Analysis (PGNAA) is a technique that could have medical applications, like determination of body's contents of protein and heavy metals in vivo. The in vivo PGNAA facility, contains a neutron source (Cf-252) with safety device, a compartment for animal irradiation, and a gamma rays detecting system based on the NaI(Tl) detector with an analytical software. The prompt gamma rays were emitted after 10 -15 s of the interaction, so they don't produce radioactive waste, and have a characteristics energy for each element, i.e. a strong peak at 2.24 MeV is observed for H. The facility has been used with laboratory mice. Water-filled phantom placed in the neutron beam was used to system calibration. Three study groups of 5 mice each one were selected and were feed with a different diet and the total body nitrogen (TBN) of the mice was monitored with the facility. The diet produced a different TBN for each group. Some mice drunk diluted water with Cl 2 Cd, so the presence of Cd was detected in the mouse. The minimum Cd concentration that the system can detect was 20 ppm. The total dose (neutron and gamma dose was measured from TLDs and simulated by MNCP-4B in the sample compartment during the irradiation time (5 minutes) is less than 2.5 mSv. This total dose is low than the dose from other analytical radiological techniques (25 a 50 mSv). (author)

  15. Potential for chlorate interference in ion chromatographic determination of total nitrogen in natural waters following alkaline persulfate digestion.

    Science.gov (United States)

    Halstead, J A; Edwards, J; Soracco, R J; Armstrong, R W

    1999-10-01

    Determination of total nitrogen in aqueous samples after thermal potassium peroxydisulfate (persulfate) digestion is a commonly used alternative to the tedious Kjeldahl procedure. When ion chromatography is used to quantify the nitrate formed during digestion, there is a potential for interference from a chlorate peak if the digested sample initially contained chloride in concentrations close to or greater than the concentration of nitrogen. It was determined that this interference can be avoided either by using chromatographic conditions which cleanly resolve the nitrate and chlorate peaks (e.g., the Dionex AG9-HG column) or by using digestion reagent concentrations chosen to maintain a high pH throughout the digestion. The second alternative is not a viable option for investigators using a single digestion for both total nitrogen (TN) and total phosphorus (TP) analysis.

  16. Effect of gamma irradiation on the total nitrogen and protein content in body during different stages of silkworm development

    International Nuclear Information System (INIS)

    Petkov, N.; Malinova, K.; Binkh, N.T.

    1996-01-01

    The aim was to determine the effect of gamma irradiation of eggs of silk moth in B 2 stage in doses of 1.00, 2.00 and 3.00 Gy on the changes of total nitrogen and protein content during different stages of Bombyx mori L. development. Highest levels of total nitrogen and protein were found in silk gland 14.032-14.355 mg%, followed by pupae - 7.448-8.092 and 46.550-48.906 mg%, moths after egg laying - 6.650-7.825 and 41.563-48.906 mg% and silkworm hemolymph - 6.920-6.980 and 43.250-43.625 mg%, respectively. The irradiation of eggs with 2.00 and 3,00 Gy gamma rays stimulated the increase of total nitrogen and protein content in silk gland by 6.66-7.3% compared to non-irradiated eggs of the same breed. 14 refs., 3 tabs. (author)

  17. [Accumulation of soil organic carbon and total nitrogen in Pinus yunnanensis forests at different age stages].

    Science.gov (United States)

    Miao, Juan; Zhou, Chuan-Yan; Li, Shi-Jie; Yan, Jun-Hua

    2014-03-01

    Taking three Pinus yunnanensis forests at different ages (19, 28 and 45 a) in Panxian County of Guizhou Province as test objects, we investigated vertical distributions and accumulation rates of soil organic carbon (SOC) and total nitrogen (TN), as well as their relationships with soil bulk density. For the three forests at different age stages, SOC and TN changed consistently along the soil profile, declining with the soil depth. Both SOC and TN storage increased with the forest age. The SOC and TN storage amounts were 96.24, 121.65 and 148.13 t x hm(-2), and 10.76, 12.96 and 13.08 t x hm(-2) for the forest stands with 19 a, 28 a and 45 a, respectively. SOC had a significant positive correlation with soil TN, while both of them had a significant negative relationship with the soil bulk density. The accumulation rates of both SOC and TN storage at different growth periods were different, and the rate in the period from age 19 to 28 was higher than in the period from age 28 to 45.

  18. NOxTOy: A miniaturised new instrument for reactive nitrogen oxides in the atmosphere

    International Nuclear Information System (INIS)

    Dommen, J.; Prevot, A.S.H.; Neininger, B.; Clark, N.

    2000-01-01

    Emission of nitrogen oxides (NO, NO 2 ) and hydrocarbons into the atmosphere lead, under sunlight, to the formation of ozone and other photo oxidants. To better understand the ozone forming processes, the production and concentration of the nitrogen containing reaction products like nitric acid (HNO 3 ) or peroxyacetylnitrate (PAN) have to be determined. In a joint project with other research institutions and a private enterprise a miniaturised instrument was developed under a KTI contract. It is possible to measure several nitrogen oxides, NO 2 , NO x , NO y , PAN, HNO 3 and O x simultaneously. The dimensions and the power consumption of the instrument are suited for the operation in a motor glider and in a van. First measurements have been successfully performed and are presented. (authors)

  19. Specific and total N-nitrosamines formation potentials of nitrogenous micropollutants during chloramination.

    Science.gov (United States)

    Piazzoli, Andrea; Breider, Florian; Aquillon, Caroline Gachet; Antonelli, Manuela; von Gunten, Urs

    2018-05-15

    N-nitrosamines are a group of potent human carcinogens that can be formed during oxidative treatment of drinking water and wastewater. Many tertiary and quaternary amines present in consumer products (e.g., pharmaceuticals, personal care and household products) are known to be N-nitrosodimethylamine (NDMA) precursors during chloramination, but the formation of other N-nitrosamines has been rarely studied. This study investigates the specific and total N-nitrosamine (TONO) formation potential (FP) of various precursors from nitrogen-containing micropollutants (chlorhexidine, metformin, benzalkonium chloride and cetyltrimethylammonium chloride) and tertiary and quaternary model amines (trimethyl amine, N,N-dimethylbutyl amine, N,N-dimethylbenzyl amine and tetramethyl ammonium). All the studied nitrogenous micropollutants displayed quantifiable TONO FP, with molar yields in the range 0.04-11.92%. However, the observed TONO pools constituted mostly of uncharacterized species, not included in US-EPA 8270 N-nitrosamines standard mix. Only the quaternary ammonium compound benzalkonium chloride showed quantifiable NDMA FP (0.56% molar yield), however, explaining only a minor fraction of the observed TONO FP. The studied model amines showed molar NDMA yields from 0.10% (trimethyl amine) to 5.05% (N,N-dimethylbenzyl amine), very similar to the molar TONO yields. The comparison of the FPs of micropollutants and model compounds showed that the presence of electron donating functional groups (such as a benzyl group) in tertiary and quaternary amine precursors leads to a higher formation of NDMA and uncharacterized N-nitrosamines, respectively. LC-qTOF screening of a list of proposed N-nitrosamine structures has enabled to identify a novel N-nitrosamine (N-nitroso-N-methyldodecylamine) from the chloramination of benzalkonium chloride. This finding supports the hypothesis that different functional groups in quaternary amines can act as leaving groups during chloramination and

  20. Estimation of In-canopy Flux Distributions of Reactive Nitrogen and Sulfur within a Mixed Hardwood Forest in Southern Appalachia

    Science.gov (United States)

    Wu, Z.; Walker, J. T.; Chen, X.; Oishi, A. C.; Duman, T.

    2017-12-01

    Estimating the source/sink distribution and vertical fluxes of air pollutants within and above forested canopies is critical for understanding biological, physical, and chemical processes influencing the soil-vegetation-atmosphere exchange. The vertical source-sink profiles of reactive nitrogen and sulfur were examined using multiple inverse modeling methods in a mixed hardwood forest in the southern Appalachian Mountains where the ecosystem is highly sensitive to loads of pollutant from atmospheric depositions. Measurements of the vertical concentration profiles of ammonia (NH3), nitric acid (HNO3), sulfur dioxide (SO2), and ammonium (NH4+), nitrate (NO3-), and sulfate (SO42-) in PM2.5 were measured during five study periods between May 2015 and August 2016. The mean concentration of NH3 decreased with height in the upper canopy and increased below the understory toward the forest floor, indicating that the canopy was a sink for NH3 but the forest floor was a source. All other species exhibited patterns of monotonically decreasing concentration from above the canopy to the forest floor. Using the measured concentration profiles, we simulated the within-canopy flow fields and estimated the vertical source-sink flux profiles using three inverse approaches: a Eulerian high-order closure model (EUL), a Lagrangian localized near-field (LNF) model, and a new full Lagrangian stochastic model (LSM). The models were evaluated using the within- and above-canopy eddy covariance flux measurements of heat, CO2 and H2O. Differences between models were analyzed and the flux profiles were used to investigate the origin and fate of reactive nitrogen and sulfur compounds within the canopy. The knowledge gained in this study will benefit the development of soil-vegetation-atmosphere models capable of partitioning canopy-scale deposition of nitrogen and sulfur to specific ecosystem compartments.

  1. PRODUCTION, MANAGEMENT AND THE ENVIRONMENT SYMPOSIUM: Measurement and mitigation of reactive nitrogen species from swine and poultry production.

    Science.gov (United States)

    Powers, W; Capelari, M

    2017-05-01

    Reactive nitrogen (Nr) species include oxides of nitrogen [N; nitric oxide, nitrogen dioxide and nitrous oxide (NO)], anions (nitrate and nitrite), and amine derivatives [ammonia (NH), ammonium salts and urea]. Of the different Nr species, air emissions from swine and poultry facilities are predominantly NH followed by NO. Excreta emissions are NH, ammonium ions, and urea with trace amounts of nitrate and nitrite. Farm systems and practices that handle manure as a wet product without pH modification favor almost exclusive NH production. Systems and practices associated with dry manure handling and bedded systems emit more NH than NO. Results from a turkey grow-out study estimated that just under 1% of consumed N was emitted as NO from housing, compared with just under 11% emitted as NH. Despite generally less NO emissions from animal housing compared with crop field emissions, NO emissions from housing are often greater than estimated. Lagoon systems emit more NO than either slurry or deep pit swine systems. Deep pit swine buildings emit only one-third the NO that is emitted from deep bedded swine systems. Laying hen, broiler chicken, and turkey buildings emit over 4 times as much NO as swine housing, on a weight-adjusted basis. Critical control points for mitigation center on: 1) reducing the amount of N excreted and, therefore, excreted N available for loss to air or water during housing, manure storage, or following land application of manures; 2) capturing excreted N to prevent release of N-containing compounds to air, water, or soil resources; or 3) conversion or treatment of N-containing compounds to non-reactive N gas.

  2. Structural, optical and electrical properties of reactively sputtered CrxNy films: Nitrogen influence on the phase formation

    Directory of Open Access Journals (Sweden)

    Mirjana Novaković

    2017-03-01

    Full Text Available The properties of various CrxNy films grown by direct current (DC reactive sputtering process with different values of nitrogen partial pressures (0, 2×10-4, 3.5×10-4 and 5×10-4 mbar were studied. The structural analysis of the samples was performed by using X-ray diffraction and transmission electron microscopy (TEM, while an elemental analysis was realized by means of Rutherford backscattering spectrometry. By varying nitrogen partial pressure the pure Cr layer, mixture of Cr, Cr2N and CrN phases, or single-phase CrN was produced. TEM analysis showed that at pN2 = 2×10-4 mbar the layer has dense microstructure. On the other hand, the layer deposited at the highest nitrogen partial pressure exhibits pronounced columnar structure. The optical properties of CrxNy films were evaluated from spectroscopic ellipsometry data by the Drude or combined Drude and Tauc-Lorentz model. It was found that both refractive index and extinction coefficient are strongly dependent on the dominant phase formation (Cr, Cr2N, CrN during the deposition process. Finally, the electrical studies indicated the metallic character of Cr2N phase and semiconducting behaviour of CrN.

  3. Reactive nitrogen in the United States: How certain are we about sources and fluxes?

    Science.gov (United States)

    Human alteration of the nitrogen (N) cycle has produced benefits for health and well-being, but excess N has altered many ecosystems and degraded air and water quality. US regulations mandate protection of the environment in terms that directly connect to ecosystem services. Here...

  4. Generation and Role of Reactive Oxygen and Nitrogen Species Induced by Plasma, Lasers, Chemical Agents, and Other Systems in Dentistry

    Science.gov (United States)

    Jha, Nayansi; Ryu, Jae Jun

    2017-01-01

    The generation of reactive oxygen and nitrogen species (RONS) has been found to occur during inflammatory procedures, during cell ischemia, and in various crucial developmental processes such as cell differentiation and along cell signaling pathways. The most common sources of intracellular RONS are the mitochondrial electron transport system, NADH oxidase, and cytochrome P450. In this review, we analyzed the extracellular and intracellular sources of reactive species, their cell signaling pathways, the mechanisms of action, and their positive and negative effects in the dental field. In dentistry, ROS can be found—in lasers, photosensitizers, bleaching agents, cold plasma, and even resin cements, all of which contribute to the generation and prevalence of ROS. Nonthermal plasma has been used as a source of ROS for biomedical applications and has the potential for use with dental stem cells as well. There are different types of dental stem cells, but their therapeutic use remains largely untapped, with the focus currently on only periodontal ligament stem cells. More research is necessary in this area, including studies about ROS mechanisms with dental cells, along with the utilization of reactive species in redox medicine. Such studies will help to provide successful treatment modalities for various diseases. PMID:29204250

  5. Total recovery of nitrogen and phosphorus from three wetland plants by fast pyrolysis technology.

    Science.gov (United States)

    Liu, Wu-Jun; Zeng, Fan-Xin; Jiang, Hong; Yu, Han-Qing

    2011-02-01

    Fast pyrolysis of three wetland plants (Alligator weed, Oenanthe javanica and Typha angustifolia) in a vertical drop fixed bed reactor was investigated in this study. The experiments were carried out at different pyrolysis temperatures, and the maximum bio-oil yields achieved were 42.3%, 40.2% and 43.6% for Alligator weed, Oenanthe javanica and Typha angustifolia, respectively. The elemental composition of the bio-oil and char were analyzed, and the results show that a low temperature was appropriate for the nitrogen and phosphorus enrichment in char. GC-MS analysis shows that nitrogenous compounds, phenols and oxygenates were the main categories in the bio-oil. A series of leaching tests were carried out to examine the recovery of the nitrogen and phosphorus in the char, and the results indicate that significant fractions of nitrogen and phosphorus could be recovered by leaching process. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Relationships between Concentrations of Phytoplankton Chlorophyll a and Total Nitrogen in Ten U.S. Estuaries

    Science.gov (United States)

    This presentation focuses on the summertime response of phytoplankton chlorophyll to nitrogen concentrations in the upper water columns of ten U.S. estuaries. Using publicly available data from monitoring programs, regression relationships have been developed between summer surfa...

  7. Ecosystem-scale trade-offs between impacts of ozone and reactive nitrogen

    Science.gov (United States)

    Rowe, Ed; Hayes, Felicity; Sawicka, Kasia; Mills, Gina; Jones, Laurence; Moldan, Filip; Sereina, Bassin; van Dijk, Netty; Evans, Chris

    2015-04-01

    Nitrogen (N) deposition stimulates plant productivity in many terrestrial ecosystems. This is clearly beneficial for production agriculture and forestry, but increased litterfall and decreased ground-level light availability reduce the suitability of habitats for many biota (Jones et al., 2014). This mechanism (Hautier et al., 2009), together with the acidifying effects of N (Stevens et al., 2010), has caused considerable biodiversity loss at global scale. Ozone, by contrast, has the effect of reducing plant production, and a simple assessment would suggest that this might mitigate the effects of N pollution. We explored the interactions between ozone and nitrogen at mechanistic level using a version of the MADOC model (Rowe et al., 2014) modified to include effects of ozone. The model was tested against data from long-term monitoring and experimental sites with a focus on nitrogen and/or ozone effects. Effects on biodiversity were assessed by coupling the MADOC model to the MultiMOVE plant species model. We used this model-chain to explore trade-offs and synergies between the impacts of nitrogen and ozone on biodiversity and ecosystem biogeochemistry. In a review of the effects of ozone on ecosystem processes, two consistent effects were found: decreased net primary production due to damage to photosynthetic mechanisms; and an increase in litter nitrogen apparently caused by interference of ozone with the retranslocation process (Mills, in prep.). Insufficient evidence was found to justify inclusion of posited interactive mechanisms such as increased ozone susceptibility with greater nitrogen supply. However, the MADOC model illustrated emergent ozone-nitrogen interactions at ecosystem scale, for example an increase in N leaching due to decreased plant demand and greater litter N content. Empirical evidence for interactive effects of nitrogen and ozone at ecosystem scale is severely lacking, but simulated results were consistent with soil and soil solution

  8. Boron-nitrogen based hydrides and reactive composites for hydrogen storage

    DEFF Research Database (Denmark)

    Jepsen, Lars H.; Ley, Morten B.; Lee, Young-Su

    2014-01-01

    Hydrogen forms chemical compounds with most other elements and forms a variety of different chemical bonds. This fascinating chemistry of hydrogen has continuously provided new materials and composites with new prospects for rational design and the tailoring of properties. This review highlights...... a range of new boron and nitrogen based hydrides and illustrates how hydrogen release and uptake properties can be improved. © 2014 Elsevier Ltd....

  9. Synthesis and reactivity of compounds containing ruthenium-carbon, -nitrogen, and -oxygen bonds

    International Nuclear Information System (INIS)

    Hartwig, J.F.

    1990-12-01

    The products and mechanisms of the thermal reactions of several complexes of the general structure (PMe 3 ) 4 Ru(X)(Y) and (DMPM) 2 Ru(X)(Y) where X and Y are hydride, aryl, and benzyl groups, have been investigated. The mechanism of decomposition depends critically on the structure of the complex and the medium in which the thermolysis is carried out. The alkyl hydride complexes are do not react with alkane solvent, but undergo C-H activation processes with aromatic solvents by several different mechanisms. Thermolysis of (PMe 3 ) 4 Ru(Ph)(Me) or (PMe 3 ) 4 Ru(Ph) 2 leads to the ruthenium benzyne complex (PMe 3 ) 4 Ru(η 2 -C 6 H 4 ) (1) by a mechanism which involves reversible dissociation of phosphine. In many ways its chemistry is analogous to that of early rather than late organo transition metal complexes. The synthesis, structure, variable temperature NMR spectroscopy and reactivity of ruthenium complexes containing aryloxide or arylamide ligands are reported. These complexes undergo cleavage of a P-C bond in coordinated trimethylphosphine, insertion of CO and CO 2 and hydrogenolysis. Mechanistic studies on these reactions are described. The generation of a series of reactive ruthenium complexes of the general formula (PMe 3 ) 4 Ru(R)(enolate) is reported. Most of these enolates have been shown to bind to the ruthenium center through the oxygen atom. Two of the enolate complexes 8 and 9 exist in equilibrium between the O- and C-bound forms. The reactions of these compounds are reported, including reactions to form oxygen-containing metallacycles. The structure and reactivity of these ruthenium metallacycles is reported, including their thermal chemistry and reactivity toward protic acids, electrophiles, carbon monoxide, hydrogen and trimethylsilane. 243 refs., 10 tabs

  10. Synthesis and reactivity of compounds containing ruthenium-carbon, -nitrogen, and -oxygen bonds

    Energy Technology Data Exchange (ETDEWEB)

    Hartwig, J.F.

    1990-12-01

    The products and mechanisms of the thermal reactions of several complexes of the general structure (PMe{sub 3}){sub 4}Ru(X)(Y) and (DMPM){sub 2}Ru(X)(Y) where X and Y are hydride, aryl, and benzyl groups, have been investigated. The mechanism of decomposition depends critically on the structure of the complex and the medium in which the thermolysis is carried out. The alkyl hydride complexes are do not react with alkane solvent, but undergo C-H activation processes with aromatic solvents by several different mechanisms. Thermolysis of (PMe{sub 3}){sub 4}Ru(Ph)(Me) or (PMe{sub 3}){sub 4}Ru(Ph){sub 2} leads to the ruthenium benzyne complex (PMe{sub 3}){sub 4}Ru({eta}{sup 2}-C{sub 6}H{sub 4}) (1) by a mechanism which involves reversible dissociation of phosphine. In many ways its chemistry is analogous to that of early rather than late organo transition metal complexes. The synthesis, structure, variable temperature NMR spectroscopy and reactivity of ruthenium complexes containing aryloxide or arylamide ligands are reported. These complexes undergo cleavage of a P-C bond in coordinated trimethylphosphine, insertion of CO and CO{sub 2} and hydrogenolysis. Mechanistic studies on these reactions are described. The generation of a series of reactive ruthenium complexes of the general formula (PMe{sub 3}){sub 4}Ru(R)(enolate) is reported. Most of these enolates have been shown to bind to the ruthenium center through the oxygen atom. Two of the enolate complexes 8 and 9 exist in equilibrium between the O- and C-bound forms. The reactions of these compounds are reported, including reactions to form oxygen-containing metallacycles. The structure and reactivity of these ruthenium metallacycles is reported, including their thermal chemistry and reactivity toward protic acids, electrophiles, carbon monoxide, hydrogen and trimethylsilane. 243 refs., 10 tabs.

  11. Unravelling chemical priming machinery in plants: the role of reactive oxygen-nitrogen-sulfur species in abiotic stress tolerance enhancement.

    Science.gov (United States)

    Antoniou, Chrystalla; Savvides, Andreas; Christou, Anastasis; Fotopoulos, Vasileios

    2016-10-01

    Abiotic stresses severely limit crop yield and their detrimental effects are aggravated by climate change. Chemical priming is an emerging field in crop stress management. The exogenous application of specific chemical agents before stress events results in tolerance enhancement and reduction of stress impacts on plant physiology and growth. However, the molecular mechanisms underlying the remarkable effects of chemical priming on plant physiology remain to be elucidated. Reactive oxygen, nitrogen and sulfur species (RONSS) are molecules playing a vital role in the stress acclimation of plants. When applied as priming agents, RONSS improve stress tolerance. This review summarizes the recent knowledge on the role of RONSS in cell signalling and gene regulation contributing to abiotic stress tolerance enhancement. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. The interactive effects of excess reactive nitrogen and climate change on aquatic ecosystems and water resources of the United States

    Science.gov (United States)

    Baron, Jill S.; Hall, E.K.; Nolan, B.T.; Finlay, J.C.; Bernhardt, E.S.; Harrison, J.A.; Chan, F.; Boyer, E.W.

    2012-01-01

    Nearly all freshwaters and coastal zones of the US are degraded from inputs of excess reactive nitrogen (Nr), sources of which are runoff, atmospheric N deposition, and imported food and feed. Some major adverse effects include harmful algal blooms, hypoxia of fresh and coastal waters, ocean acidification, long-term harm to human health, and increased emissions of greenhouse gases. Nitrogen fluxes to coastal areas and emissions of nitrous oxide from waters have increased in response to N inputs. Denitrification and sedimentation of organic N to sediments are important processes that divert N from downstream transport. Aquatic ecosystems are particularly important denitrification hotspots. Carbon storage in sediments is enhanced by Nr, but whether carbon is permanently buried is unknown. The effect of climate change on N transport and processing in fresh and coastal waters will be felt most strongly through changes to the hydrologic cycle, whereas N loading is mostly climate-independent. Alterations in precipitation amount and dynamics will alter runoff, thereby influencing both rates of Nr inputs to aquatic ecosystems and groundwater and the water residence times that affect Nr removal within aquatic systems. Both infrastructure and climate change alter the landscape connectivity and hydrologic residence time that are essential to denitrification. While Nr inputs to and removal rates from aquatic systems are influenced by climate and management, reduction of N inputs from their source will be the most effective means to prevent or to minimize environmental and economic impacts of excess Nr to the nation’s water resources.

  13. Combined effect of protein and oxygen on reactive oxygen and nitrogen species in the plasma treatment of tissue

    Science.gov (United States)

    Gaur, Nishtha; Szili, Endre J.; Oh, Jun-Seok; Hong, Sung-Ha; Michelmore, Andrew; Graves, David B.; Hatta, Akimitsu; Short, Robert D.

    2015-09-01

    The influence of protein and molecular, ground state oxygen (O2) on the plasma generation, and transport of reactive oxygen and nitrogen species (RONS) in tissue are investigated. A tissue target, comprising a 1 mm thick gelatin film (a surrogate for real tissue), is placed on top of a 96-well plate; each well is filled with phosphate buffered saline (PBS, pH 7.4) containing one fluorescent or colorimetric reporter that is specific for one of three RONS (i.e., H2O2, NO2-, or OH•) or a broad spectrum reactive oxygen species reporter (2,7-dichlorodihydrofluorescein). A helium cold atmospheric plasma (CAP) jet contacts the top of the gelatin surface, and the concentrations of RONS generated in PBS are measured on a microplate reader. The data show that H2O2, NO2-, or OH• are generated in PBS underneath the target. Independently, measurements are made of the O2 concentration in the PBS with and without the gelatin target. Adding bovine serum albumin protein to the PBS or gelatin shows that protein either raises or inhibits RONS depending upon the O2 concentration. Our results are discussed in the context of plasma-soft tissue interactions that are important in the development of CAP technology for medicine, biology, and food manufacturing.

  14. Experimental determination of the total isothermal reactivity feedback coefficient for the University of Arizona TRIGA research reactor

    International Nuclear Information System (INIS)

    Spriggs, Gregory D.; Nelson, George W.

    1976-01-01

    An experiment was performed to measure the total isothermal (or bath) feedback coefficient of reactivity for the University of Arizona TRIGA Research Reactor (UARR). It was found that the bath coefficient was temperature-dependent and may be represented by the expression α iso .2634 x 10 -2 + .3428 x 10 -3 T - 2.471 x 10 -5 T 2 + 3.476 x 10 -7 T 3 for the temperature range of 7 C to 43 C. (author)

  15. Atmospheric redistribution of reactive nitrogen and phosphorus by wildfires and implications for global carbon cycling

    Science.gov (United States)

    Randerson, J. T.; Xu, L.; Wiggins, E. B.; Chen, Y.; Riley, W. J.; Mekonnen, Z. A.; Pellegrini, A.; Mahowald, N. M.

    2017-12-01

    Fires are an important process regulating the redistribution of nutrients within terrestrial ecosystems. Frequently burning ecosystems such as savannas are a net source of N and P to the atmosphere each year, with atmospheric transport and dry and wet deposition increasing nutrient availability in downwind ecosystems and over the open ocean. Transport of N and P aerosols from savanna fires within the Hadley circulation contributes to nutrient deposition over tropical forests, yielding an important cross-biome nutrient transfer. Pyrodenitrification of reactive N increases with fire temperature and modified combustion efficiency, generating a global net biospheric loss of approximately 14 Tg N per year. Here we analyze atmospheric N and P redistribution using the Global Fire Emissions Database version 4s and the Accelerated Climate Modeling for Energy earth system model. We synthesize literature estimates of N and P concentrations in fire-emitted aerosols and ecosystem mass balance measurements to help constrain model estimates of these biosphere-atmosphere fluxes. In our analysis, we estimate the fraction of terrestrial net primary production (NPP) that is sustained by fire-emitted P and reactive N from upwind ecosystems. We then evaluate how recent global declines in burned area in savanna and grassland ecosystems may be changing nutrient availability in downwind ecosystems.

  16. Assessing total nitrogen in surface-water samples--precision and bias of analytical and computational methods

    Science.gov (United States)

    Rus, David L.; Patton, Charles J.; Mueller, David K.; Crawford, Charles G.

    2013-01-01

    The characterization of total-nitrogen (TN) concentrations is an important component of many surface-water-quality programs. However, three widely used methods for the determination of total nitrogen—(1) derived from the alkaline-persulfate digestion of whole-water samples (TN-A); (2) calculated as the sum of total Kjeldahl nitrogen and dissolved nitrate plus nitrite (TN-K); and (3) calculated as the sum of dissolved nitrogen and particulate nitrogen (TN-C)—all include inherent limitations. A digestion process is intended to convert multiple species of nitrogen that are present in the sample into one measureable species, but this process may introduce bias. TN-A results can be negatively biased in the presence of suspended sediment, and TN-K data can be positively biased in the presence of elevated nitrate because some nitrate is reduced to ammonia and is therefore counted twice in the computation of total nitrogen. Furthermore, TN-C may not be subject to bias but is comparatively imprecise. In this study, the effects of suspended-sediment and nitrate concentrations on the performance of these TN methods were assessed using synthetic samples developed in a laboratory as well as a series of stream samples. A 2007 laboratory experiment measured TN-A and TN-K in nutrient-fortified solutions that had been mixed with varying amounts of sediment-reference materials. This experiment identified a connection between suspended sediment and negative bias in TN-A and detected positive bias in TN-K in the presence of elevated nitrate. A 2009–10 synoptic-field study used samples from 77 stream-sampling sites to confirm that these biases were present in the field samples and evaluated the precision and bias of TN methods. The precision of TN-C and TN-K depended on the precision and relative amounts of the TN-component species used in their respective TN computations. Particulate nitrogen had an average variability (as determined by the relative standard deviation) of 13

  17. Analisis Kadar Protein Total Dan Non Protein Nitrogen Pada Air Dan Daging Buah Kelapa (Cocos Nucifera L.) Dengan Metode Kjeldahl

    OpenAIRE

    Margata, Linda

    2015-01-01

    In Indonesia, coconut palm is one of the big contributors for the economy of the people and nation. As food, coconut water and coconut meat contain some nutrients such as carbohydrates, fats, and also proteins. During maturation, changes in protein content of coconut water and coconut meat may happen. The purpose of this study was to determine the concentration of total protein and non protein nitrogen (NPN) in coconut water and coconut meat, and their changes in young and mature coconuts....

  18. Chemical reactivity of hydrogen, nitrogen, and oxygen atoms at temperatures below 100 k

    Science.gov (United States)

    Mcgee, H. A., Jr.

    1973-01-01

    The synthesis of unusual compounds by techniques employing cryogenic cooling to retard their very extreme reactivity was investigated. Examples of such species that were studied are diimide (N2H2), cyclobutadiene (C4H4), cyclopropanone (C3H4O), oxirene (C2H2O), and many others. Special purpose cryogenically cooled inlet arrangements were designed such that the analyses incurred no warm-up of the cold, and frequently explosively unstable, compounds. Controlled energy electron impact techniques were used to measure critical potentials and to develop the molecular energetics and thermodynamics of these molecules and to gain some insight into their kinetic characteristics as well. Three and four carbon strained ring molecules were studied. Several reactions of oxygen and hydrogen atoms with simple molecules of H, N, C, and O in hard quench configurations were studied. And the quench stabilization of BH3 was explored as a model system in cryochemistry.

  19. [Prediction of total nitrogen and alkali hydrolysable nitrogen content in loess using hyperspectral data based on correlation analysis and partial least squares regression].

    Science.gov (United States)

    Liu, Xiu-ying; Wang, Li; Chang, Qing-rui; Wang, Xiao-xing; Shang, Yan

    2015-07-01

    Wuqi County of Shaanxi Province, where the vegetation recovering measures have been carried out for years, was taken as the study area. A total of 100 loess samples from 24 different profiles were collected. Total nitrogen (TN) and alkali hydrolysable nitrogen (AHN) contents of the soil samples were analyzed, and the soil samples were scanned in the visible/near-infrared (VNIR) region of 350-2500 nm in the laboratory. The calibration models were developed between TN and AHN contents and VNIR values based on correlation analysis (CA) and partial least squares regression (PLS). Independent samples validated the calibration models. The results indicated that the optimum model for predicting TN of loess was established by using first derivative of reflectance. The best model for predicting AHN of loess was established by using normal derivative spectra. The optimum TN model could effectively predict TN in loess from 0 to 40 cm, but the optimum AHN model could only roughly predict AHN at the same depth. This study provided a good method for rapidly predicting TN of loess where vegetation recovering measures have been adopted, but prediction of AHN needs to be further studied.

  20. Sibutramine provokes apoptosis of aortic endothelial cells through altered production of reactive oxygen and nitrogen species.

    Science.gov (United States)

    Morikawa, Yoshifumi; Shibata, Akinobu; Okumura, Naoko; Ikari, Akira; Sasajima, Yasuhide; Suenami, Koichi; Sato, Kiyohito; Takekoshi, Yuji; El-Kabbani, Ossama; Matsunaga, Toshiyuki

    2017-01-01

    Overdose administration of sibutramine, a serotonin-noradrenalin reuptake inhibitor, is considered to elicit severe side effects including hypertension, whose pathogenic mechanism remains unclear. Here, we found that 48-h incubation with >10μM sibutramine provokes apoptosis of human aortic endothelial (HAE) cells. Treatment with the lethal concentration of sibutramine facilitated production of reactive oxygen species (ROS), altered expression of endoplasmic reticulum stress response genes (heat shock protein 70 and C/EBP homologous protein), and inactivated 26S proteasome-based proteolysis. The treatment also decreased cellular level of nitric oxide (NO) through lowering of expression and activity of endothelial NO synthase. These results suggest that ROS production and depletion of NO are crucial events in the apoptotic mechanism and may be linked to the pathogenesis of vasoconstriction elicited by the drug. Compared to sibutramine, its metabolites (N-desmethylsibutramine and N-didesmethylsibutramine) were much less cytotoxic to HAE cells, which hardly metabolized sibutramine. In contrast, both the drug and metabolites showed low cytotoxicity to hepatic HepG2 cells with high metabolic potency and expression of cytochrome P450 (CYP) 3A4. The cytotoxicity of sibutramine to HepG2 and Chang Liver cells was remarkably augmented by inhibition and knockdown of CYP3A4. This study also suggests an inverse relationship between sibutramine cytotoxicity and CYP3A4-mediated metabolism into the N-desmethyl metabolites. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Secondary targets of nitrite-derived reactive nitrogen species: nitrosation/nitration pathways, antioxidant defense mechanisms and toxicological implications.

    Science.gov (United States)

    d'Ischia, Marco; Napolitano, Alessandra; Manini, Paola; Panzella, Lucia

    2011-12-19

    Nitrite, the primary metabolite of nitric oxide (NO) and a widely diffused component of human diet, plays distinct and increasingly appreciated roles in human physiology. However, when exposed to acidic environments, typically in the stomach, or under oxidative stress conditions, it may be converted to a range of reactive nitrogen species (RNS) which in turn can target a variety of biomolecules. Typical consequences of toxicological relevance include protein modification, DNA base deamination and the formation of N-nitrosamines, among the most potent mutagenic and carcinogenic compounds for humans. Besides primary biomolecules, nitrite can cause structural modifications to a variety of endogenous and exogenous organic compounds, ranging from polyunsaturated fatty acids to estrogens, tocopherol, catecholamines, furans, retinoids, dietary phenols, and a range of xenobiotics. The study of the interactions between nitrite and key food components, including phenolic antioxidants, has therefore emerged as an area of great promise for delineating innovative strategies in cancer chemoprevention. Depending on substrates and conditions, diverse reaction pathways may compete to determine product features and distribution patterns. These include nitrosation and nitration but also oxidation, via electron transfer to nitrosonium ion or nitrogen dioxide. This contribution aims to provide an overview of the main classes of compounds that can be targeted by nitrite and to discuss at chemical levels the possible reaction mechanisms under conditions that model those occurring in the stomach. The toxicological implications of the nitrite-modified molecules are finally addressed, and a rational chemical approach to the design of potent antinitrosing agents is illustrated. © 2011 American Chemical Society

  2. Data Analysis of Minima Total Cross-sections of Nitrogen-14 on JENDL-3.2Nuclear Data File

    International Nuclear Information System (INIS)

    Suwoto; Pandiangan, Tumpal; Ferhat-Aziz

    2000-01-01

    The integral tests of neutron cross-section for shielding material suchas nitrogen-14 contained in JENDL-3.2 file have been performed. Analysis ofthe calculation for nitrogen-14 was based on the MAEKER's ORNL-BroomstickExperiment at ORNL-USA. For the data comparison, the calculation analysiswith JENDL-3.1 file, ENDF/B-IV file, ENDF/B-VI file and JEF2.2 have also beencarried out. The overall calculation results by using JENDL-3.2 evaluationshowed good agreement with the experimental data, as well as those with theENDF/B-VI evaluation. In particular, the JENDL-3.2 evaluation gave betterresults than JENDL-3.1 evaluation and ENDF/B-IV. It was been concluded thatthe total cross-sections of Nitrogen-14 contained in JENDL-3.2 file is invery good agreement with the experimental results, although the totalcross-section in the energy range between 0.5 MeV and 0.9 MeV on fileJENDL-3.2 was small (about 4% lower), and minima of total cross-sections wasdeeper. (author)

  3. Long-term reactive nitrogen loading alters soil carbon and microbial community properties in a subalpine forest ecosystem

    Science.gov (United States)

    Boot, Claudia M.; Hall, Ed K.; Denef, Karolien; Baron, Jill S.

    2016-01-01

    Elevated nitrogen (N) deposition due to increased fossil fuel combustion and agricultural practices has altered global carbon (C) cycling. Additions of reactive N to N-limited environments are typically accompanied by increases in plant biomass. Soil C dynamics, however, have shown a range of different responses to the addition of reactive N that seem to be ecosystem dependent. We evaluated the effect of N amendments on biogeochemical characteristics and microbial responses of subalpine forest organic soils in order to develop a mechanistic understanding of how soils are affected by N amendments in subalpine ecosystems. We measured a suite of responses across three years (2011–2013) during two seasons (spring and fall). Following 17 years of N amendments, fertilized soils were more acidic (control mean 5.09, fertilized mean 4.68), and had lower %C (control mean 33.7% C, fertilized mean 29.8% C) and microbial biomass C by 22% relative to control plots. Shifts in biogeochemical properties in fertilized plots were associated with an altered microbial community driven by reduced arbuscular mycorrhizal (control mean 3.2 mol%, fertilized mean 2.5 mol%) and saprotrophic fungal groups (control mean 17.0 mol%, fertilized mean 15.2 mol%), as well as a decrease in N degrading microbial enzyme activity. Our results suggest that decreases in soil C in subalpine forests were in part driven by increased microbial degradation of soil organic matter and reduced inputs to soil organic matter in the form of microbial biomass.

  4. Sibutramine provokes apoptosis of aortic endothelial cells through altered production of reactive oxygen and nitrogen species

    Energy Technology Data Exchange (ETDEWEB)

    Morikawa, Yoshifumi [Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu 500-8501 (Japan); Shibata, Akinobu; Okumura, Naoko; Ikari, Akira [Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196 (Japan); Sasajima, Yasuhide; Suenami, Koichi; Sato, Kiyohito; Takekoshi, Yuji [Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu 500-8501 (Japan); El-Kabbani, Ossama [Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Matsunaga, Toshiyuki, E-mail: matsunagat@gifu-pu.ac.jp [Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196 (Japan)

    2017-01-01

    Overdose administration of sibutramine, a serotonin-noradrenalin reuptake inhibitor, is considered to elicit severe side effects including hypertension, whose pathogenic mechanism remains unclear. Here, we found that 48-h incubation with > 10 μM sibutramine provokes apoptosis of human aortic endothelial (HAE) cells. Treatment with the lethal concentration of sibutramine facilitated production of reactive oxygen species (ROS), altered expression of endoplasmic reticulum stress response genes (heat shock protein 70 and C/EBP homologous protein), and inactivated 26S proteasome-based proteolysis. The treatment also decreased cellular level of nitric oxide (NO) through lowering of expression and activity of endothelial NO synthase. These results suggest that ROS production and depletion of NO are crucial events in the apoptotic mechanism and may be linked to the pathogenesis of vasoconstriction elicited by the drug. Compared to sibutramine, its metabolites (N-desmethylsibutramine and N-didesmethylsibutramine) were much less cytotoxic to HAE cells, which hardly metabolized sibutramine. In contrast, both the drug and metabolites showed low cytotoxicity to hepatic HepG2 cells with high metabolic potency and expression of cytochrome P450 (CYP) 3A4. The cytotoxicity of sibutramine to HepG2 and Chang Liver cells was remarkably augmented by inhibition and knockdown of CYP3A4. This study also suggests an inverse relationship between sibutramine cytotoxicity and CYP3A4-mediated metabolism into the N-desmethyl metabolites. - Highlights: • Treatment with sibutramine, an anorexiant, induces endothelial cell apoptosis. • The apoptotic mechanism includes induction of ROS and NO depletion. • There is an inverse relationship between sibutramine cytotoxicity and its metabolism.

  5. Combined nitrogen limitation and cadmium stress stimulate total carbohydrates, lipids, protein and amino acid accumulation in Chlorella vulgaris (Trebouxiophyceae).

    Science.gov (United States)

    Chia, Mathias Ahii; Lombardi, Ana Teresa; da Graça Gama Melão, Maria; Parrish, Christopher C

    2015-03-01

    Metals have interactive effects on the uptake and metabolism of nutrients in microalgae. However, the effect of trace metal toxicity on amino acid composition of Chlorella vulgaris as a function of varying nitrogen concentrations is not known. In this research, C. vulgaris was used to investigate the influence of cadmium (10(-7) and 2.0×10(-8)molL(-1) Cd) under varying nitrogen (2.9×10(-6), 1.1×10(-5) and 1.1×10(-3)molL(-1)N) concentrations on its growth rate, biomass and biochemical composition. Total carbohydrates, total proteins, total lipids, as well as individual amino acid proportions were determined. The combination of Cd stress and N limitation significantly inhibited growth rate and cell density of C. vulgaris. However, increasing N limitation and Cd stress stimulated higher dry weight and chlorophyll a production per cell. Furthermore, biomolecules like total proteins, carbohydrates and lipids increased with increasing N limitation and Cd stress. Ketogenic and glucogenic amino acids were accumulated under the stress conditions investigated in the present study. Amino acids involved in metal chelation like proline, histidine and glutamine were significantly increased after exposure to combined Cd stress and N limitation. We conclude that N limitation and Cd stress affects the physiology of C. vulgaris by not only decreasing its growth but also stimulating biomolecule production. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Flow analysis methods for the direct ultra-violet spectrophotometric measurement of nitrate and total nitrogen in freshwaters

    Energy Technology Data Exchange (ETDEWEB)

    Gentle, Brady S.; Ellis, Peter S.; Grace, Michael R. [Water Studies Centre, School of Chemistry, Monash University, Victoria 3800 (Australia); McKelvie, Ian D., E-mail: iandm@unimelb.edu.au [School of Chemistry, University of Melbourne, Victoria 3010 (Australia); School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)

    2011-10-17

    Highlights: {yields} Second derivative UV spectrophotometry has been used to determine nitrate and total N using flow analysis techniques. {yields} A simple flow system with a single-reflection flow-through cell was used for the UV measurement of nitrate. {yields} Total N was determined after on-line UV photooxidation with alkaline peroxodisulfate. {yields} Analyses carried out using the developed flow systems show a high degree of agreement with comparative analyses. {yields} This method requires no colorimetric reagents and eliminates the requirement for a toxic cadmium reduction column. - Abstract: Second derivative ultra-violet spectrophotometric methods are described for the measurement of nitrate and total nitrogen in freshwaters using flow analysis techniques. A simple flow system consisting of a peristaltic pump and a single-reflection flow-through cell was used for the measurement of nitrate. Quantification of total nitrogen using alkaline peroxodisulfate photo-digestion was achieved by incorporating an ultra-violet photo-reactor, a hollow-fibre filter and a debubbler into the flow system. The nitrate system featured a limit of detection of 0.04 mg N L{sup -1}, 0.4%RSD (1 mg N L{sup -1} as nitrate, n = 10), a coefficient of determination (R{sup 2}) of 0.9995 over the calibration range 0.0-2.0 mg N L{sup -1}, and a data acquisition time of 1.5 s per spectrum. The total nitrogen system featured a limit of detection of 0.05 mg N L{sup -1}, 1%RSD (1 mg N L{sup -1} as ammonium chloride, n = 10), a coefficient of determination of 0.9989 over the calibration range 0.0-2.0 mg N L{sup -1}, and a throughput of 5 sample h{sup -1} measured in triplicate. Digestions of five model nitrogen compounds returned recoveries of >88%. Determinations carried out using the developed systems show a high degree of agreement with data obtained using reference methods. These methods require no colorimetric reagents and eliminate the requirement for a toxic cadmium reduction column

  7. Flow analysis methods for the direct ultra-violet spectrophotometric measurement of nitrate and total nitrogen in freshwaters

    International Nuclear Information System (INIS)

    Gentle, Brady S.; Ellis, Peter S.; Grace, Michael R.; McKelvie, Ian D.

    2011-01-01

    Highlights: → Second derivative UV spectrophotometry has been used to determine nitrate and total N using flow analysis techniques. → A simple flow system with a single-reflection flow-through cell was used for the UV measurement of nitrate. → Total N was determined after on-line UV photooxidation with alkaline peroxodisulfate. → Analyses carried out using the developed flow systems show a high degree of agreement with comparative analyses. → This method requires no colorimetric reagents and eliminates the requirement for a toxic cadmium reduction column. - Abstract: Second derivative ultra-violet spectrophotometric methods are described for the measurement of nitrate and total nitrogen in freshwaters using flow analysis techniques. A simple flow system consisting of a peristaltic pump and a single-reflection flow-through cell was used for the measurement of nitrate. Quantification of total nitrogen using alkaline peroxodisulfate photo-digestion was achieved by incorporating an ultra-violet photo-reactor, a hollow-fibre filter and a debubbler into the flow system. The nitrate system featured a limit of detection of 0.04 mg N L -1 , 0.4%RSD (1 mg N L -1 as nitrate, n = 10), a coefficient of determination (R 2 ) of 0.9995 over the calibration range 0.0-2.0 mg N L -1 , and a data acquisition time of 1.5 s per spectrum. The total nitrogen system featured a limit of detection of 0.05 mg N L -1 , 1%RSD (1 mg N L -1 as ammonium chloride, n = 10), a coefficient of determination of 0.9989 over the calibration range 0.0-2.0 mg N L -1 , and a throughput of 5 sample h -1 measured in triplicate. Digestions of five model nitrogen compounds returned recoveries of >88%. Determinations carried out using the developed systems show a high degree of agreement with data obtained using reference methods. These methods require no colorimetric reagents and eliminate the requirement for a toxic cadmium reduction column. The overlap of chloride and nitrate spectra in seawater is

  8. Is nitrogen the next carbon?

    Science.gov (United States)

    Battye, William; Aneja, Viney P.; Schlesinger, William H.

    2017-09-01

    Just as carbon fueled the Industrial Revolution, nitrogen has fueled an Agricultural Revolution. The use of synthetic nitrogen fertilizers and the cultivation of nitrogen-fixing crops both expanded exponentially during the last century, with most of the increase occurring after 1960. As a result, the current flux of reactive, or fixed, nitrogen compounds to the biosphere due to human activities is roughly equivalent to the total flux of fixed nitrogen from all natural sources, both on land masses and in the world's oceans. Natural fluxes of fixed nitrogen are subject to very large uncertainties, but anthropogenic production of reactive nitrogen has increased almost fivefold in the last 60 years, and this rapid increase in anthropogenic fixed nitrogen has removed any uncertainty on the relative importance of anthropogenic fluxes to the natural budget. The increased use of nitrogen has been critical for increased crop yields and protein production needed to keep pace with the growing world population. However, similar to carbon, the release of fixed nitrogen into the natural environment is linked to adverse consequences at local, regional, and global scales. Anthropogenic contributions of fixed nitrogen continue to grow relative to the natural budget, with uncertain consequences.

  9. Combined nitrogen limitation and cadmium stress stimulate total carbohydrates, lipids, protein and amino acid accumulation in Chlorella vulgaris (Trebouxiophyceae)

    Energy Technology Data Exchange (ETDEWEB)

    Chia, Mathias Ahii, E-mail: chia28us@yahoo.com [Department of Botany, Federal University of São Carlos, Rodovia Washington Luis km 235, São Carlos, SP Cep 13565905 (Brazil); Lombardi, Ana Teresa [Department of Botany, Federal University of São Carlos, Rodovia Washington Luis km 235, São Carlos, SP Cep 13565905 (Brazil); Graça Gama Melão, Maria da [Department of Hydrobiology, Federal University of São Carlos, Rodovia Washington Luis km 235, São Carlos, SP Cep 13565905 (Brazil); Parrish, Christopher C. [Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, Newfoundland A1C 5S7 (Canada)

    2015-03-15

    Highlights: • Chlorella vulgaris was exposed to Cd under varying N concentrations. • Growth rate and cell density decreased with increasing Cd stress and N limitation. • Dry weight, chlorophyll a, total lipid, carbohydrate and protein were accumulated. • Amino acids like proline and glutamine were accumulated under N and Cd stress. • Changes in amino acid composition are sensitive biomarkers for Cd and N stress. - Abstract: Metals have interactive effects on the uptake and metabolism of nutrients in microalgae. However, the effect of trace metal toxicity on amino acid composition of Chlorella vulgaris as a function of varying nitrogen concentrations is not known. In this research, C. vulgaris was used to investigate the influence of cadmium (10{sup −7} and 2.0 × 10{sup −8} mol L{sup −1} Cd) under varying nitrogen (2.9 × 10{sup −6}, 1.1 × 10{sup −5} and 1.1 × 10{sup −3} mol L{sup −1} N) concentrations on its growth rate, biomass and biochemical composition. Total carbohydrates, total proteins, total lipids, as well as individual amino acid proportions were determined. The combination of Cd stress and N limitation significantly inhibited growth rate and cell density of C. vulgaris. However, increasing N limitation and Cd stress stimulated higher dry weight and chlorophyll a production per cell. Furthermore, biomolecules like total proteins, carbohydrates and lipids increased with increasing N limitation and Cd stress. Ketogenic and glucogenic amino acids were accumulated under the stress conditions investigated in the present study. Amino acids involved in metal chelation like proline, histidine and glutamine were significantly increased after exposure to combined Cd stress and N limitation. We conclude that N limitation and Cd stress affects the physiology of C. vulgaris by not only decreasing its growth but also stimulating biomolecule production.

  10. How Does Recycling of Livestock Manure in Agroecosystems Affect Crop Productivity, Reactive Nitrogen Losses, and Soil Carbon Balance?

    Science.gov (United States)

    Xia, Longlong; Lam, Shu Kee; Yan, Xiaoyuan; Chen, Deli

    2017-07-05

    Recycling of livestock manure in agroecosystems to partially substitute synthetic fertilizer nitrogen (N) input is recommended to alleviate the environmental degradation associated with synthetic N fertilization, which may also affect food security and soil greenhouse gas (GHG) emissions. However, how substituting livestock manure for synthetic N fertilizer affects crop productivity (crop yield; crop N uptake; N use efficiency), reactive N (Nr) losses (ammonia (NH 3 ) emission, N leaching and runoff), GHG (methane, CH 4 ; and nitrous oxide, N 2 O; carbon dioxide) emissions and soil organic carbon (SOC) sequestration in agroecosystems is not well understood. We conducted a global meta-analysis of 141 studies and found that substituting livestock manure for synthetic N fertilizer (with equivalent N rate) significantly increased crop yield by 4.4% and significantly decreased Nr losses via NH 3 emission by 26.8%, N leaching by 28.9% and N runoff by 26.2%. Moreover, annual SOC sequestration was significantly increased by 699.6 and 401.4 kg C ha -1 yr -1 in upland and paddy fields, respectively; CH 4 emission from paddy field was significantly increased by 41.2%, but no significant change of that was observed from upland field; N 2 O emission was not significantly affected by manure substitution in upland or paddy fields. In terms of net soil carbon balance, substituting manure for fertilizer increased carbon sink in upland field, but increased carbon source in paddy field. These results suggest that recycling of livestock manure in agroecosystems improves crop productivity, reduces Nr pollution and increases SOC storage. To attenuate the enhanced carbon source in paddy field, appropriate livestock manure management practices should be adopted.

  11. Lipoteichoic acid from Staphylococcus aureus induces lung endothelial cell barrier dysfunction: role of reactive oxygen and nitrogen species.

    Directory of Open Access Journals (Sweden)

    Amy Barton Pai

    Full Text Available Tunneled central venous catheters (TCVCs are used for dialysis access in 82% of new hemodialysis patients and are rapidly colonized with Gram-positive organism (e.g. Staphylococcus aureus biofilm, a source of recurrent infections and chronic inflammation. Lipoteichoic acid (LTA, a cell wall ribitol polymer from Gram-positive organisms, mediates inflammation through the Toll-like receptor 2 (TLR2. The effect of LTA on lung endothelial permeability is not known. We tested the hypothesis that LTA from Staphylococcus aureus induces alterations in the permeability of pulmonary microvessel endothelial monolayers (PMEM that result from activation of TLR2 and are mediated by reactive oxygen/nitrogen species (RONS. The permeability of PMEM was assessed by the clearance rate of Evans blue-labeled albumin, the activation of the TLR2 pathway was assessed by Western blot, and the generation of RONS was measured by the fluorescence of oxidized dihydroethidium and a dichlorofluorescein derivative. Treatment with LTA or the TLR2 agonist Pam((3CSK((4 induced significant increases in albumin permeability, IκBα phosphorylation, IRAK1 degradation, RONS generation, and endothelial nitric oxide synthase (eNOS activation (as measured by the p-eNOS(ser1177:p-eNOS(thr495 ratio. The effects on permeability and RONS were effectively prevented by co-administration of the superoxide scavenger Tiron, the peroxynitrite scavenger Urate, or the eNOS inhibitor L-NAME and these effects as well as eNOS activation were reduced or prevented by pretreatment with an IRAK1/4 inhibitor. The results indicate that the activation of TLR2 and the generation of ROS/RNS mediates LTA-induced barrier dysfunction in PMEM.

  12. Empirical Estimation of Total Nitrogen and Total Phosphorus Concentration of Urban Water Bodies in China Using High Resolution IKONOS Multispectral Imagery

    Directory of Open Access Journals (Sweden)

    Jiaming Liu

    2015-11-01

    Full Text Available Measuring total nitrogen (TN and total phosphorus (TP is important in managing heavy polluted urban waters in China. This study uses high spatial resolution IKONOS imagery with four multispectral bands, which roughly correspond to Landsat/TM bands 1–4, to determine TN and TP in small urban rivers and lakes in China. By using Lake Cihu and the lower reaches of Wen-Rui Tang (WRT River as examples, this paper develops both multiple linear regressions (MLR and artificial neural network (ANN models to estimate TN and TP concentrations from high spatial resolution remote sensing imagery and in situ water samples collected concurrently with overpassing satellite. The measured and estimated values of both MLR and ANN models are in good agreement (R2 > 0.85 and RMSE < 2.50. The empirical equations selected by MLR are more straightforward, whereas the estimated accuracy using ANN model is better (R2 > 0.86 and RMSE < 0.89. Results validate the potential of using high resolution IKONOS multispectral imagery to study the chemical states of small-sized urban water bodies. The spatial distribution maps of TN and TP concentrations generated by the ANN model can inform the decision makers of variations in water quality in Lake Cihu and lower reaches of WRT River. The approaches and equations developed in this study could be applied to other urban water bodies for water quality monitoring.

  13. Characterization of a catalyst-based conversion technique to measure total particulate nitrogen and organic carbon and comparison to a particle mass measurement instrument

    Science.gov (United States)

    Stockwell, Chelsea E.; Kupc, Agnieszka; Witkowski, Bartłomiej; Talukdar, Ranajit K.; Liu, Yong; Selimovic, Vanessa; Zarzana, Kyle J.; Sekimoto, Kanako; Warneke, Carsten; Washenfelder, Rebecca A.; Yokelson, Robert J.; Middlebrook, Ann M.; Roberts, James M.

    2018-05-01

    The chemical composition of aerosol particles is a key aspect in determining their impact on the environment. For example, nitrogen-containing particles impact atmospheric chemistry, air quality, and ecological N deposition. Instruments that measure total reactive nitrogen (Nr = all nitrogen compounds except for N2 and N2O) focus on gas-phase nitrogen and very few studies directly discuss the instrument capacity to measure the mass of Nr-containing particles. Here, we investigate the mass quantification of particle-bound nitrogen using a custom Nr system that involves total conversion to nitric oxide (NO) across platinum and molybdenum catalysts followed by NO-O3 chemiluminescence detection. We evaluate the particle conversion of the Nr instrument by comparing to mass-derived concentrations of size-selected and counted ammonium sulfate ((NH4)2SO4), ammonium nitrate (NH4NO3), ammonium chloride (NH4Cl), sodium nitrate (NaNO3), and ammonium oxalate ((NH4)2C2O4) particles determined using instruments that measure particle number and size. These measurements demonstrate Nr-particle conversion across the Nr catalysts that is independent of particle size with 98 ± 10 % efficiency for 100-600 nm particle diameters. We also show efficient conversion of particle-phase organic carbon species to CO2 across the instrument's platinum catalyst followed by a nondispersive infrared (NDIR) CO2 detector. However, the application of this method to the atmosphere presents a challenge due to the small signal above background at high ambient levels of common gas-phase carbon compounds (e.g., CO2). We show the Nr system is an accurate particle mass measurement method and demonstrate its ability to calibrate particle mass measurement instrumentation using single-component, laboratory-generated, Nr-containing particles below 2.5 µm in size. In addition we show agreement with mass measurements of an independently calibrated online particle-into-liquid sampler directly coupled to the

  14. Investigations of nitrogen oxide plasmas: Fundamental chemistry and surface reactivity and monitoring student perceptions in a general chemistry recitation

    Science.gov (United States)

    Blechle, Joshua M.

    Part I of this dissertation focuses on investigations of nitrogen oxide plasma systems. With increasing concerns over the environmental presence of NxOy species, there is growing interest in utilizing plasma-assisted conversion techniques. Advances, however, have been limited because of the lack of knowledge regarding the fundamental chemistry of these plasma systems. Understanding the kinetics and thermodynamics of processes in these systems is vital to realizing their potential in a range of applications. Unraveling the complex chemical nature of these systems, however, presents numerous challenges. As such, this work serves as a foundational step in the diagnostics and assessment of these NxOy plasmas. The partitioning of energy within the plasma system is essential to unraveling these complications as it provides insight into both gas and surface reactivity. To obtain this information, techniques such as optical emission spectroscopy (OES), broadband absorption spectroscopy (BAS), and laser induced fluorescence (LIF) were utilized to determine species energetics (vibrational, rotational, translational temperatures). These temperature data provide mechanistic insight and establish the relationships between system parameters and energetic outcomes. Additionally, these data are also correlated to surface reactivity data collected with the Imaging of Radicals Interacting with Surfaces (IRIS) technique. IRIS data demonstrate the relationship between internal temperatures of radicals and their observed surface scatter coefficients (S), the latter of which is directly related to surface reactivity (R) [R = 1-S]. Furthermore, time-resolved (TR) spectroscopic techniques, specifically TR-OES, revealed kinetic trends in NO and N2 formation from a range of precursors (NO, N2O, N2/O2). By examining the rate constants associated with the generation and destruction of various plasma species we can investigate possible mechanistic implications. All told, such data provides

  15. Long-term trends in total inorganic nitrogen and sulfur deposition in the US from 1990 to 2010

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2018-06-01

    Full Text Available Excess deposition (including both wet and dry deposition of nitrogen and sulfur is detrimental to ecosystems. Recent studies have investigated the spatial patterns and temporal trends of nitrogen and sulfur wet deposition, but few studies have focused on dry deposition due to the scarcity of dry deposition measurements. Here, we use long-term model simulations from the coupled Weather Research and Forecasting and the Community Multiscale Air Quality (WRF-CMAQ model covering the period from 1990 to 2010 to study changes in spatial distribution as well as temporal trends in total (TDEP, wet (WDEP, and dry deposition (DDEP of total inorganic nitrogen (TIN and sulfur (TS in the United States (US. We first evaluate the model's performance in simulating WDEP over the US by comparing the model results with observational data from the US National Atmospheric Deposition Program. The coupled model generally underestimates the WDEP of both TIN (including both the oxidized nitrogen deposition, TNO3, and the reduced nitrogen deposition, NHx and TS, with better performance in the eastern US than the western US. The underestimation of the wet deposition by the model is mainly caused by the coarse model grid resolution, missing lightning NOx emissions, and the poor temporal and spatial representation of NH3 emissions. TDEP of both TIN and TS shows significant decreases over the US, especially in the east, due to the large emission reductions that occurred in that region. The decreasing trends of TIN TDEP are caused by decreases in TNO3, and the increasing trends of TIN deposition over the Great Plains and Tropical Wet Forests (Southern Florida Coastal Plain regions are caused by increases in NH3 emissions, although it should be noted that these increasing trends are not significant. TIN WDEP shows decreasing trends throughout the US, except for the Marine West Coast Forest region. TIN DDEP shows significant decreasing trends in the Eastern Temperate Forests

  16. Total Monte-Carlo method applied to the assessment of uncertainties in a reactivity-initiated accident

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, D.F. da; Rochman, D.; Koning, A.J. [Nuclear Research and Consultancy Group NRG, Petten (Netherlands)

    2014-07-01

    The Total Monte-Carlo (TMC) method has been applied extensively since 2008 to propagate the uncertainties in nuclear data for reactor parameters and fuel inventory, and for several types of advanced nuclear systems. The analyses have been performed considering different levels of complexity, ranging from a single fuel rod to a full 3-D reactor core at steady-state. The current work applies the TMC method for a full 3-D pressurized water reactor core model under steady-state and transient conditions, considering thermal-hydraulic feedback. As a transient scenario the study focused on a reactivity-initiated accident, namely a control rod ejection accident initiated by a mechanical failure of the control rod drive mechanism. The uncertainties on the main reactor parameters due to variations in nuclear data for the isotopes {sup 235},{sup 238}U, {sup 239}Pu and thermal scattering data for {sup 1}H in water were quantified. (author)

  17. Sleep deprived and sweating it out: the effects of total sleep deprivation on skin conductance reactivity to psychosocial stress.

    Science.gov (United States)

    Liu, Jean C J; Verhulst, Silvan; Massar, Stijn A A; Chee, Michael W L

    2015-01-01

    We examined how sleep deprivation alters physiological responses to psychosocial stress by evaluating changes in skin conductance. Between-subjects design with one group allocated to 24 h of total sleep deprivation and the other to rested wakefulness. The study took place in a research laboratory. Participants were 40 healthy young adults recruited from a university. Sleep deprivation and feedback. Electrodermal activity was monitored while participants completed a difficult perceptual task with false feedback. All participants showed increased skin conductance levels following stress. However, compared to well-rested participants, sleep deprived participants showed higher skin conductance reactivity with increasing stress levels. Our results suggest that sleep deprivation augments allostatic responses to increasing psychosocial stress. Consequentially, we propose sleep loss as a risk factor that can influence the pathogenic effects of stress. © 2014 Associated Professional Sleep Societies, LLC.

  18. Quantitative biomonitoring of nitrogen deposition with TONIS (Total N Input Biomonitoring System)

    International Nuclear Information System (INIS)

    Mohr, Karsten; Suda, Jerzy

    2017-01-01

    Monitoring of air pollutants is an important instrument to detect threats and to observe temporal trends of emissions. Determining the spatial distribution of oxidized and reduced N species via modelling requires sufficient knowledge about innumerous small sources from traffic, settlements and agriculture. Empirical studies are required to validate the model data but measurements of the total N deposition (e.g. micrometeorological measurements) are very expensive. Against this background, the TONIS, a new suitable technique which combines a biomonitoring with plants and technical measurements was developed. During 6 exposures between 2012 and 2016 at different polluted sites in Northwest Germany, TONIS accumulated between 17 and 25 kg N ha-1 yr −1 t. The results are feasible compared to simultaneously measured NH 3 and NO 2 concentration and bulk N deposition. At one site within a peat bog the accumulated N in TONIS was found to be in the range of total N deposition derived from a micrometeorological approach. - Highlights: • A new suitable biomonitoring technique is presented to determine N deposition rates relating to low-growing vegetation on nutrient-poor sites. • TONIS combines the advantages of biomonitoring and technical measurements. • The results of 6 exposures between 2012 and 2016 are feasible compared to technical measurements and modelled data.

  19. Effect of Cover Crops and Nitrogen Fertilizer on Total Production of Forage Corn and Dry Weight of Weeds

    Directory of Open Access Journals (Sweden)

    R Fakhari

    2014-10-01

    Full Text Available To evaluate the effect of cover crops, split application of nitrogen and control weeds on forage corn and weed biomass a factorial experiment based on randomized complete block design with three replications and three factors was conducted at the Agricultural Research Station of Ardabil (Iran during 2012 crop year. The first factor was cover crops (consisting of winter rye, hairy vetch, berseem clover, with and without weeding as controls. The second factor was two levels of split application of 225 kg.ha-1 urea at two growth stages forage corn: the first level (N1= 1/2 at planting and 1/2 at 8-10 leaf stage, second level (N2= 1/3 at planting, 1/3 at 8-10 leaf and 1/3 one week before tasselling stage. The third factor consisted of two levels of weed control: weeding at 8 leaves and weeding one week before tasselling. Results showed that winter rye, hairy vetch and berseem clover cover crops decreased total weed dry weights up to 87, 82 and 65 % respectively as compared to control (without weeding. Cover crops and nitrogen application time had a significant effect on yield of fresh forage corn and cover crops. Based on the advantages of effective weed control and higher forage production of hairy vetch it can be recommended as proper cover crop.

  20. Enhancement of total lipid yield by nitrogen, carbon, and iron supplementation in isolated microalgae.

    Science.gov (United States)

    Sivaramakrishnan, Ramachandran; Incharoensakdi, Aran

    2017-08-01

    The biochemical contents and biodiesel production ability of three microalgal strains grown under different sodium nitrate, sodium carbonate, and ferric ammonium citrate (iron) levels were investigated. The highest biomass and lipid contents were found in Scenedesmus sp., Chlorella sp., and Chlamydomonas sp. when grown in normal BG-11 containing sodium carbonate concentration at 0.03 g · L -1 , and in normal BG-11 containing iron concentration (IC) at 0.009 or 0.012 g · L -1 . Increasing the sodium nitrate level increased the biomass content, but decreased the lipid content in all three microalgae. Among the three microalgae, Scenedesmus sp. showed the highest total lipid yield of 0.69 g · L -1 under the IC of 0.012 g · L -1 . Palmitic and oleic acids were the major fatty acids of Scenedesmus sp. and Chlamydomonas sp. lipids. On the other hand, Chlorella sp. lipids were rich in palmitic, oleic, and linolenic acids, and henceforth contributing to poor biodiesel properties below the standard limits. The three isolated strains had a potential for biodiesel production. Nevertheless, Scenedesmus sp. from stone quarry pond water was the most suitable source for biodiesel production with tolerance toward the high concentration of sodium carbonate without the loss of its biodiesel properties. © 2017 Phycological Society of America.

  1. Measurements of Nitrogen Dioxide Total Column Amounts using a Brewer Double Spectrophotometer in Direct Sun Mode

    Science.gov (United States)

    Cede, Alexander; Herman, Jay; Richter, Andreas; Krotkov, Nickolay; Burrows, John

    2006-01-01

    NO2 column amounts were measured for the past 2 years at Goddard Space Flight Center, Greenbelt, Maryland, using a Brewer spectrometer in direct Sun mode. A new bootstrap method to calibrate the instrument is introduced and described. This technique selects the cleanest days from the database to obtain the solar reference spectrum. The main advantage for direct Sun measurements is that the conversion uncertainty from slant column to vertical column is negligible compared to the standard scattered light observations where it is typically on the order of 100% (2sigma) at polluted sites. The total 2sigma errors of the direct Sun retrieved column amounts decrease with solar zenith angle and are estimated at 0.2 to 0.6 Dobson units (DU, 1 DU approx. equal to 2.7 10(exp 16) molecules cm(exp -2)), which is more accurate than scattered light measurements for high NO2 amounts. Measured NO2 column amounts, ranging from 0 to 3 DU with a mean of 0.7 DU, show a pronounced daily course and a strong variability from day to day. The NO2 concentration typically increases from sunrise to noon. In the afternoon it decreases in summer and stays constant in winter. As expected from the anthropogenic nature of its source, NO2 amounts on weekends are significantly reduced. The measurements were compared to satellite retrievals from Scanning Image Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY). Satellite data give the same average NO2 column and show a seasonal cycle that is similar to the ground data in the afternoon. We show that NO2 must be considered when retrieving aerosol absorption properties, especially for situations with low aerosol optical depth.

  2. Agricultural Fires in the Southeastern U.S. During SEAC4RS: Emissions of Trace Gases and Particles and Evolution of Ozone, Reactive Nitrogen, and Organic Aerosol

    Science.gov (United States)

    Liu, X.; Zhang, Y.; Huey, L. G.; Yokelson, R. J.; Wang, Y.; Jimenez, J. L.; Campuzano-Jost, P.; Beyersdorf, A. J.; Blake, D. R.; Choi, Y.; hide

    2016-01-01

    Emissions from 15 agricultural fires in the southeastern U.S. were measured from the NASA DC-8 research aircraft during the summer 2013 Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) campaign. This study reports a detailed set of emission factors (EFs) for 25 trace gases and 6 fine particle species. The chemical evolution of the primary emissions in seven plumes was examined in detail for 1.2 h. A Lagrangian plume cross-section model was used to simulate the evolution of ozone (O3), reactive nitrogen species, and organic aerosol (OA). Observed EFs are generally consistent with previous measurements of crop residue burning, but the fires studied here emitted high amounts of SO2 and fine particles, especially primary OA and chloride. Filter-based measurements of aerosol light absorption implied that brown carbon (BrC) was ubiquitous in the plumes. In aged plumes, rapid production of O3, peroxyacetyl nitrate (PAN), and nitrate was observed with (Delta)O3/(Delta)CO, (Delta)PAN/(Delta)NOy, and (Delta)nitrate/(Delta)NOy reaching approx. 0.1, approx. 0.3, and approx.0.3. For five selected cases, the model reasonably simulated O3 formation but underestimated PAN formation. No significant evolution of OA mass or BrC absorption was observed. However, a consistent increase in oxygen-to-carbon (O/C) ratios of OA indicated that OA oxidation in the agricultural fire plumes was much faster than in urban and forest fire plumes. Finally, total annual SO2, NOx, and CO emissions from agricultural fires in Arkansas, Louisiana, Mississippi, and Missouri were estimated (within a factor of approx. 2) to be equivalent to approx. 2% SO2 from coal combustion and approx. 1% NOx and approx. 9% CO from mobile sources.

  3. Perceptual and Brain Response to Odors Is Associated with Body Mass Index and Postprandial Total Ghrelin Reactivity to a Meal.

    Science.gov (United States)

    Sun, Xue; Veldhuizen, Maria G; Babbs, Amanda E; Sinha, Rajita; Small, Dana M

    2016-03-01

    Animal studies have shown that olfactory sensitivity is greater when fasted than when fed. However, human research has generated inconsistent results. One possible explanation for these conflicting findings is metabolic health. Many metabolic peptides, including ghrelin, are moderated by adiposity and influence olfaction and olfactory-guided behaviors. We tested whether the effect of a meal on the perceived intensity of suprathreshold chemosensory stimuli is influenced by body mass index and/or metabolic response to a meal. We found that overweight or obese (n = 13), but not healthy weight (n = 20) subjects perceived odors, but not flavored solutions, as more intense when hungry than when sated. This effect was correlated with reduced postprandial total ghrelin suppression (n = 23) and differential brain response to odors in the cerebellum, as measured with functional magnetic resonance imaging. In contrast, it was unrelated to circulating leptin, glucose, insulin, triglycerides, or free fatty acids; or to odor pleasantness or sniffing (n = 24). These findings demonstrate that the effect of a meal on suprathreshold odor intensity perception is associated with metabolic measures such as body weight and total ghrelin reactivity, supporting endocrine influences on olfactory perception. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Biological variation and reference intervals for circulating osteopontin, osteoprotegerin, total soluble receptor activator of nuclear factor kappa B ligand and high-sensitivity C-reactive protein

    DEFF Research Database (Denmark)

    Sennels, H P; Jacobsen, Søren; Jensen, T

    2007-01-01

    Objective. Monitoring inflammatory diseases and osteoclastogenesis with osteopontin (OPN), osteoprotegerin (OPG), total soluble receptor activator of nuclear factor kappa B ligand (total sRANKL) and high-sensitivity C-reactive protein (hsCRP) has recently attracted increased interest. The purpose...

  5. Spatial Variation of Soil Organic Carbon and Total Nitrogen in the Coastal Area of Mid-Eastern China.

    Science.gov (United States)

    Xu, Yan; Pu, Lijie; Liao, Qilin; Zhu, Ming; Yu, Xue; Mao, Tianying; Xu, Chenxing

    2017-07-14

    Soils play an important role in sequestrating atmospheric CO₂. Coastal tidal flats have been intensively reclaimed for food security and living spaces worldwide. We aimed to identify the changes of soil organic carbon (SOC) and total nitrogen (TN) following coastal reclamation and their spatial variation in the coastal area of mid-Eastern China to provide information for coastal cropland management. We measured SOC and TN of 463 soil samples in the coastal plain of mid-Eastern China. The results showed that SOC and TN increased highly from the uncultivated coastal tidal flat (2.49 g·kg -1 and 0.21 g·kg -1 , respectively) to the cropland (10.73 g·kg -1 and 1.3 g·kg -1 , respectively). After long-term cultivation, SOC and TN in the old farmland (12.98 g·kg -1 and 1.49 g·kg -1 , respectively) were greater than those in the young farmland (5.76 g·kg -1 and 0.86 g·kg -1 , respectively). The density of SOC in the uncultivated coastal tidal flat, young farmland, and old farmland were 0.68 kg·C·m -2 , 1.52 kg·C·m -2 , and 3.31 kg·C·m -2 , respectively. The density of TN in the uncultivated coastal tidal flat, young farmland and old farmland were 0.05 kg·N·m -2 , 0.23 kg·N·m -2 , and 0.38 kg·N·m -2 , respectively. The C/N (11.17) in the uncultivated coastal tidal flat was highest comparing to that in the young and old farmland due to lower nitrogen. The C/N increased from 6.78 to 8.71 following cultivation. Reclaimed coastal tidal flats had high carbon and nitrogen sequestration potential that not only mitigated the threat of global warming, but also improved soil fertility for crop production. Coastal management of cropland should consider the spatial distribution of SOC and TN to improve ecosystem services of coastal soils.

  6. Total belowground carbon flux in subalpine forests is related to leaf area index, soil nitrogen, and tree height

    Science.gov (United States)

    Berryman, Erin Michele; Ryan, Michael G.; Bradford, John B.; Hawbaker, Todd J.; Birdsey, R.

    2016-01-01

    In forests, total belowground carbon (C) flux (TBCF) is a large component of the C budget and represents a critical pathway for delivery of plant C to soil. Reducing uncertainty around regional estimates of forest C cycling may be aided by incorporating knowledge of controls over soil respiration and TBCF. Photosynthesis, and presumably TBCF, declines with advancing tree size and age, and photosynthesis increases yet C partitioning to TBCF decreases in response to high soil fertility. We hypothesized that these causal relationships would result in predictable patterns of TBCF, and partitioning of C to TBCF, with natural variability in leaf area index (LAI), soil nitrogen (N), and tree height in subalpine forests in the Rocky Mountains, USA. Using three consecutive years of soil respiration data collected from 22 0.38-ha locations across three 1-km2 subalpine forested landscapes, we tested three hypotheses: (1) annual soil respiration and TBCF will show a hump-shaped relationship with LAI; (2) variability in TBCF unexplained by LAI will be related to soil nitrogen (N); and (3) partitioning of C to TBCF (relative to woody growth) will decline with increasing soil N and tree height. We found partial support for Hypothesis 1 and full support for Hypotheses 2 and 3. TBCF, but not soil respiration, was explained by LAI and soil N patterns (r2 = 0.49), and the ratio of annual TBCF to TBCF plus aboveground net primary productivity (ANPP) was related to soil N and tree height (r2 = 0.72). Thus, forest C partitioning to TBCF can vary even within the same forest type and region, and approaches that assume a constant fraction of TBCF relative to ANPP may be missing some of this variability. These relationships can aid with estimates of forest soil respiration and TBCF across landscapes, using spatially explicit forest data such as national inventories or remotely sensed data products.

  7. Effects of fuel properties, temperature, and pressure on fuel reactivity, formation and destruction of nitrogen oxides, and release of alkalis

    International Nuclear Information System (INIS)

    Aho, M.

    1998-01-01

    This study assists in the development of advanced combustion technologies (PFBC, IGCC) with high efficiency of electricity production from solid fuels (η = 47 - 50%) and in minimizing emissions of nitrogen oxides in atmospheric and pressurised FB combustion. In addition to the work done within the LIEKKI 2 programme, research work has been carried out inside the Joule 2 programme of EU. The research work may be divided into three parts: (1) Study of N x O y formation and destruction, (2) Study of fuel reactivity at elevated pressures, and (3) Study on alkali release from different coals. Experimental work was carried out utilizing a novel pressurized entrained flow reactor (PEFR) completed in VTT Energy in the autumn 1992. The device was unique in the world between 1992 and 1995. The effects of fuel properties on the formation of N 2 O and NO at conditions typical to FB combustion were studied for a large number of fuels including different coals, coal-derived char, peat, and bark. This work started before 1993 and was completed in 1995. FTIR technology was utilized for on-line gas analysis of N 2 O, NO, and NO 2 . The ratio fuel-O/fuel-N was found to be the most important fuel factor determining the formation of N 2 O and NO from volatile fuel-N. Only a small part of N 2 O is formed from char-N. The effect of pressure (0.2 - 2.0 MPa) on the formation of N 2 O, NO, and NO 2 , and destruction of NO with ammonia (Thermal DeNO x , experiments at 0.2, 0.5, and 1.5 MPa) and urea (NO x Out, experiments at 0.5 MPa) were studied in cooperation with Aabo Akademi University (AaAU). VTT performed the experimental work and AaAU the kinetic modelling. A part of these results are presented in the report by AaAU. Increase of pressure decreases NO formation and increases NO 2 formation. The behaviour of N 2 O is more complex. Both destruction processes for NO seem to operate well at elevated pressure, although clear effects of pressure on the temperature window of Thermal DeNO x

  8. Comparison between Random Forests, Artificial Neural Networks and Gradient Boosted Machines Methods of On-Line Vis-NIR Spectroscopy Measurements of Soil Total Nitrogen and Total Carbon

    Directory of Open Access Journals (Sweden)

    Said Nawar

    2017-10-01

    Full Text Available Accurate and detailed spatial soil information about within-field variability is essential for variable-rate applications of farm resources. Soil total nitrogen (TN and total carbon (TC are important fertility parameters that can be measured with on-line (mobile visible and near infrared (vis-NIR spectroscopy. This study compares the performance of local farm scale calibrations with those based on the spiking of selected local samples from both fields into an European dataset for TN and TC estimation using three modelling techniques, namely gradient boosted machines (GBM, artificial neural networks (ANNs and random forests (RF. The on-line measurements were carried out using a mobile, fiber type, vis-NIR spectrophotometer (305–2200 nm (AgroSpec from tec5, Germany, during which soil spectra were recorded in diffuse reflectance mode from two fields in the UK. After spectra pre-processing, the entire datasets were then divided into calibration (75% and prediction (25% sets, and calibration models for TN and TC were developed using GBM, ANN and RF with leave-one-out cross-validation. Results of cross-validation showed that the effect of spiking of local samples collected from a field into an European dataset when combined with RF has resulted in the highest coefficients of determination (R2 values of 0.97 and 0.98, the lowest root mean square error (RMSE of 0.01% and 0.10%, and the highest residual prediction deviations (RPD of 5.58 and 7.54, for TN and TC, respectively. Results for laboratory and on-line predictions generally followed the same trend as for cross-validation in one field, where the spiked European dataset-based RF calibration models outperformed the corresponding GBM and ANN models. In the second field ANN has replaced RF in being the best performing. However, the local field calibrations provided lower R2 and RPD in most cases. Therefore, from a cost-effective point of view, it is recommended to adopt the spiked European dataset

  9. A regional mass balance model based on total ammoniacal nitrogen for estimating ammonia emissions from beef cattle in Alberta Canada

    Science.gov (United States)

    Chai, Lilong; Kröbel, Roland; Janzen, H. Henry; Beauchemin, Karen A.; McGinn, Sean M.; Bittman, Shabtai; Atia, Atta; Edeogu, Ike; MacDonald, Douglas; Dong, Ruilan

    2014-08-01

    Animal feeding operations are primary contributors of anthropogenic ammonia (NH3) emissions in North America and Europe. Mathematical modeling of NH3 volatilization from each stage of livestock manure management allows comprehensive quantitative estimates of emission sources and nutrient losses. A regionally-specific mass balance model based on total ammoniacal nitrogen (TAN) content in animal manure was developed for estimating NH3 emissions from beef farming operations in western Canada. Total N excretion in urine and feces was estimated from animal diet composition, feed dry matter intake and N utilization for beef cattle categories and production stages. Mineralization of organic N, immobilization of TAN, nitrification, and denitrification of N compounds in manure, were incorporated into the model to account for quantities of TAN at each stage of manure handling. Ammonia emission factors were specified for different animal housing (feedlots, barns), grazing, manure storage (including composting and stockpiling) and land spreading (tilled and untilled land), and were modified for temperature. The model computed NH3 emissions from all beef cattle sub-classes including cows, calves, breeding bulls, steers for slaughter, and heifers for slaughter and replacement. Estimated NH3 emissions were about 1.11 × 105 Mg NH3 in Alberta in 2006, with a mean of 18.5 kg animal-1 yr-1 (15.2 kg NH3-N animal-1 yr-1) which is 23.5% of the annual N intake of beef cattle (64.7 kg animal-1 yr-1). The percentage of N intake volatilized as NH3-N was 50% for steers and heifers for slaughter, and between 11 and 14% for all other categories. Steers and heifers for slaughter were the two largest contributors (3.5 × 104 and 3.9 × 104 Mg, respectively) at 31.5 and 32.7% of total NH3 emissions because most growing animals were finished in feedlots. Animal housing and grazing contributed roughly 63% of the total NH3 emissions (feedlots, barns and pastures contributed 54.4, 0.2 and 8.1% of

  10. Total particulate and reactive gaseous mercury in ambient air on the eastern slope of the Mt. Gongga area, China

    International Nuclear Information System (INIS)

    Fu Xuewu; Feng Xinbin; Zhu Wanze; Zheng Wei; Wang Shaofeng; Lu, Julia Y.

    2008-01-01

    Total particulate mercury (TPM) and reactive gaseous mercury (RGM) concentrations in ambient air on the eastern slope of the Mt. Gongga area, Sichuan Province, Southwestern China were monitored from 25 May, 2005 to 29 April, 2006. Simultaneously, Hg concentrations in rain samples were measured from January to December, 2006. The average TPM and RGM concentrations in the study site were 30.7 and 6.2 pg m -3 , which are comparable to values observed in remote areas in Northern America and Europe, but much lower than those reported in some urban areas in China. The mean seasonal RGM concentration was slightly higher in spring (8.0 pg m -3 ) while the minimum mean concentration was observed in winter (4.0 pg m -3 ). TPM concentrations ranged across two orders of magnitude from 5.2 to 135.7 pg m -3 and had a clear seasonal variation: winter (74.1 pg m -3 ), autumn (22.5 pg m -3 ), spring (15.3 pg m -3 ) and summer (10.8 pg m -3 ), listed in decreasing order. The annual wet deposition was 9.1 μg m -2 and wet deposition in the rainy season (May-October) represented over 80% of the annual total. The temporal distribution of TPM and RGM suggested distinguishable dispersion characteristics of these Hg species on a regional scale. Elevated TPM concentration in winter was probably due to regional and local enhanced coal burning and low wet deposition velocity. The RGM distribution pattern is closely related to daily variation in UV radiation observed during the winter sampling period indicating that photo-oxidation processes and diurnal changes in meteorology play an important role in RGM generation

  11. Total particulate and reactive gaseous mercury in ambient air on the eastern slope of the Mt. Gongga area, China

    Energy Technology Data Exchange (ETDEWEB)

    Fu, X.W.; Feng, X.B.; Zhu, W.Z.; Zheng, W.; Wang, S.F.; Lu, J.Y. [Chinese Academy of Sciences, Guiyang (China)

    2008-03-15

    Total particulate mercury (TPM) and reactive gaseous mercury (RGM) concentrations in ambient air on the eastern slope of the Mt. Gongga area, Sichuan Province, Southwestern China were monitored from 25 May, 2005 to 29 April, 2006. Simultaneously, Hg concentrations in rain samples were measured from January to December, 2006. The average TPM and RGM concentrations in the study site were 30.7 and 6.2 pg m{sup -3}, which are comparable to values observed in remote areas in Northern America and Europe, but much lower than those reported in some urban areas in China. The mean seasonal RGM concentration was slightly higher in spring (8.0 pg m{sup -3}) while the minimum mean concentration was observed in winter (4.0 pg m{sup -3}). TPM concentrations ranged across two orders of magnitude from 5.2 to 135.7 Pg m{sup -3} and had a clear seasonal variation: winter (74.1 pg m{sup -3}), autumn (22.5 Pg m{sup -3}), spring (15.3 Pg m{sup -3}) and summer (10.8 Pg m{sup -3}), listed in decreasing order. The annual wet deposition was 9.1 {mu} g m{sup -2} and wet deposition in the rainy season (May-October) represented over 80% of the annual total. The temporal distribution of TPM and RGM suggested distinguishable dispersion characteristics of these Hg species on a regional scale. Elevated TPM concentration in winter was probably due to regional and local enhanced coal burning and low wet deposition velocity. The RGM distribution pattern is closely related to daily variation in UV radiation observed during the winter sampling period indicating that photo-oxidation processes and diurnal changes in meteorology play an important role in RGM generation.

  12. Total particulate and reactive gaseous mercury in ambient air on the eastern slope of the Mt. Gongga area, China

    Energy Technology Data Exchange (ETDEWEB)

    Fu Xuewu [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002 (China); Graduate University of the Chinese Academy Sciences, Beijing 100049 (China); Feng Xinbin [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002 (China)], E-mail: fengxinbin@vip.skleg.cn; Zhu Wanze [Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041 (China); Zheng Wei; Wang Shaofeng [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002 (China); Graduate University of the Chinese Academy Sciences, Beijing 100049 (China); Lu, Julia Y. [Department of Chemistry and Biology, Ryerson University, Toronto, Ont., M5B 2K3 (Canada)

    2008-03-15

    Total particulate mercury (TPM) and reactive gaseous mercury (RGM) concentrations in ambient air on the eastern slope of the Mt. Gongga area, Sichuan Province, Southwestern China were monitored from 25 May, 2005 to 29 April, 2006. Simultaneously, Hg concentrations in rain samples were measured from January to December, 2006. The average TPM and RGM concentrations in the study site were 30.7 and 6.2 pg m{sup -3}, which are comparable to values observed in remote areas in Northern America and Europe, but much lower than those reported in some urban areas in China. The mean seasonal RGM concentration was slightly higher in spring (8.0 pg m{sup -3}) while the minimum mean concentration was observed in winter (4.0 pg m{sup -3}). TPM concentrations ranged across two orders of magnitude from 5.2 to 135.7 pg m{sup -3} and had a clear seasonal variation: winter (74.1 pg m{sup -3}), autumn (22.5 pg m{sup -3}), spring (15.3 pg m{sup -3}) and summer (10.8 pg m{sup -3}), listed in decreasing order. The annual wet deposition was 9.1 {mu}g m{sup -2} and wet deposition in the rainy season (May-October) represented over 80% of the annual total. The temporal distribution of TPM and RGM suggested distinguishable dispersion characteristics of these Hg species on a regional scale. Elevated TPM concentration in winter was probably due to regional and local enhanced coal burning and low wet deposition velocity. The RGM distribution pattern is closely related to daily variation in UV radiation observed during the winter sampling period indicating that photo-oxidation processes and diurnal changes in meteorology play an important role in RGM generation.

  13. Examination of the relation between periodontal health status and cardiovascular risk factors: serum total and high density lipoprotein cholesterol, C-reactive protein, and plasma fibrinogen.

    Science.gov (United States)

    Wu, T; Trevisan, M; Genco, R J; Falkner, K L; Dorn, J P; Sempos, C T

    2000-02-01

    Using data from the Third National Health and Nutrition Examination Survey (1988-1994), the authors examined the relation between periodontal health and cardiovascular risk factors: serum total and high density lipoprotein cholesterol, C-reactive protein, and plasma fibrinogen. A total of 10,146 participants were included in the analyses of cholesterol and C-reactive protein and 4,461 in the analyses of fibrinogen. Periodontal health indicators included the gingival bleeding index, calculus index, and periodontal disease status (defined by pocket depth and attachment loss). While cholesterol and fibrinogen were analyzed as continuous variables, C-reactive protein was dichotomized into two levels. The results show a significant relation between indicators of poor periodontal status and increased C-reactive protein and fibrinogen. The association between periodontal status and total cholesterol level is much weaker. No consistent association between periodontal status and high density lipoprotein cholesterol was detectable. Similar patterns of association were observed for participants aged 17-54 years and those 55 years and older. In conclusion, this study suggests that total cholesterol, C-reactive protein, and fibrinogen are possible intermediate factors that may link periodontal disease to elevated cardiovascular risk.

  14. Dry deposition of reactive nitrogen to European ecosystems: a comparison of inferential models across the NitroEurope network

    Directory of Open Access Journals (Sweden)

    C. R. Flechard

    2011-03-01

    Full Text Available Inferential models have long been used to determine pollutant dry deposition to ecosystems from measurements of air concentrations and as part of national and regional atmospheric chemistry and transport models, and yet models still suffer very large uncertainties. An inferential network of 55 sites throughout Europe for atmospheric reactive nitrogen (Nr was established in 2007, providing ambient concentrations of gaseous NH3, NO2, HNO3 and HONO and aerosol NH4+ and NO3 as part of the NitroEurope Integrated Project.

    Network results providing modelled inorganic Nr dry deposition to the 55 monitoring sites are presented, using four existing dry deposition routines, revealing inter-model differences and providing ensemble average deposition estimates. Dry deposition is generally largest over forests in regions with large ambient NH3 concentrations, exceeding 30–40 kg N ha−1 yr−1 over parts of the Netherlands and Belgium, while some remote forests in Scandinavia receive less than 2 kg N ha−1 yr−1. Turbulent Nr deposition to short vegetation ecosystems is generally smaller than to forests due to reduced turbulent exchange, but also because NH3 inputs to fertilised, agricultural systems are limited by the presence of a substantial NH3 source in the vegetation, leading to periods of emission as well as deposition.

    Differences between models reach a factor 2–3 and are often greater than differences between monitoring sites. For soluble Nr gases such as NH3 and HNO3, the non-stomatal pathways are responsible for most of the annual uptake over many surfaces, especially the non-agricultural land uses, but parameterisations of the sink strength vary considerably among models. For aerosol NH4

  15. Application of a Chemiluminescence Detector for the Measurement of Total Oxides of Nitrogen and Ammonia in the Atmosphere

    Science.gov (United States)

    Hodgeson, J. A.; Bell, J. P.; Rehme, K. A.; Krost, K. J.; Stevens, R. K.

    1971-01-01

    By means of the thermal conversion of nitrogen dioxide to the nitric oxide, the chemiluminescent nitric oxide monitor, based on the nitric oxide plus ozone reaction, may be used for monitoring nitrogen dioxide plus nitric oxide (NO(x)). Under conditions previously described, ammonia is also converted to nitric oxide and therefore interferes. A metal surface, gold wool or stainless steel, operated at two different temperatures has been used to convert only nitrogen dioxide or nitrogen dioxide plus ammonia. Quantitative conversion of nitrogen dioxide to nitric oxide has been obtained at temperatures as low as 200 C. Conversion of ammonia is effected at temperatures of 300 C or higher. By the addition of a converter the basic nitric oxide monitor may be used for measuring NO(x) or NO(x) plus ammonia. As an alternate mode, for a fixed high temperature, a specific scrubber is described for removing NH3 without affecting NO2 concentrations.

  16. Profile of Rumen Fermentation and Blood Urea Nitrogen Concentration of Kacang Goat Fed Total Mixed Ration Vs. Roughage

    Science.gov (United States)

    Adiwinarti, R.; Kustantinah; Budisatria, I. G. S.; Rusman; Indarto, E.

    2018-02-01

    Kacang goat is usually reared traditionally fed natural grass and having inferior performance. Many researches had been done to improve the performance. Total mixed ration (TMR) containing soybean meal (SBM) and fish meal (FM) could increase the performance of Kacang goat, but the profile of rumen fermentation has not been published. Therefore, this study investigated the profile of rumen fermentation and blood urea Nitrogen concentration (BUN) in Kacang goat fed natural grass (roughage) and TMR. Twelve yearling Kacang buck, 15.2-19.6 kg were arranged in completely randomized design. The treatments were NG (natural grass), FM (TMR containing FM), and SBM (TMR containing SBM). The TMR were formulated containing 15% crude protein and 56-58% TDN. Data were analyzed by one way ANOVA. Rumen pH 6 hours after feeding of NG (7.4) was higher (P<0.01) than that of FM (6.2) and SBM (6.4). This lowering pH of TMR was caused by increasing volatile fatty acids (VFA). The VFA total of FM (129.7 mmol/l) and SBM (153.1 mmol/l) were higher than that of NG (86.4 mmol/l). At 3 and 6 hours after feeding, ammonia in the rumen of SBM was higher than that of NG and FM, indicating higher degraded protein. The BUN at 3 hours after feeding of SBM was higher than that of NG. It can be concluded that protein in SBM was degraded higher than others and the lower pH in rumen of TMR goats was caused by higher VFA produced by TMR goats compared to NG goats.

  17. Determinants of urea nitrogen production in sepsis. Muscle catabolism, total parenteral nutrition, and hepatic clearance of amino acids.

    Science.gov (United States)

    Pittiruti, M; Siegel, J H; Sganga, G; Coleman, B; Wiles, C E; Placko, R

    1989-03-01

    The major determinants of urea production were investigated in 26 patients with multiple trauma (300 studies). The body clearances (CLRs) of ten amino acids (AAs) were estimated as a ratio of muscle-released AAs plus total parenteral nutrition-infused AAs to their extracellular pool. While clinically septic trauma (ST) patients without multiple-organ failure syndrome (MOFS) had a higher level of urea nitrogen production (25.6 +/- 13.4 g of N per day) compared with nonseptic trauma (NST) patients (14 +/- 7.5 g of N per day) and with ST patients with MOFS (4.28 +/- 1.5 g of N per day), in all groups urea N production was found to be a function of muscle protein degradation (catabolism), total parenteral nutrition-administered AAs, and the ratio between leucine CLR and tyrosine CLR (L/T) (r2 = .82, P less than .0001). Since tyrosine is cleared almost exclusively by the liver, the L/T ratio may be regarded as an index of hepatic function. The significant differences between urea N production in ST and NST patients lay in an increased positive dependence on muscle catabolism and increased negative correlation with L/T in the ST group. At any L/T ratio, urea N production was increased in ST patients over NST patients, but in ST patients with MOFS, it fell to or below levels of NST patients. These data show that the ST process is associated with enhancement of ureagenesis, due to increased hepatic CLR of both exogenous and endogenous AAs. In sepsis with MOFS, a marked inhibition of urea synthesis occurs, partially explained by a decreased hepatic CLR of non-branched-chain AAs.

  18. Conductometric titration to determine total volatile basic nitrogen (TVB-N) for post-mortem interval (PMI).

    Science.gov (United States)

    Xia, Zhiyuan; Zhai, Xiandun; Liu, Beibei; Mo, Yaonan

    2016-11-01

    Precise measurement of cadaver decomposition rate is the basis to accurate post-mortem interval (PMI) estimation. There are many approaches explored in recent years, however, it is still unsolved completely. Total volatile basic nitrogen (TVB-N), which is an important index to predict meat freshness and shelf life in food science, could serve as an indicator for measuring PMI associated decomposition rate of cadavers. The aim of this work was to establish a practical method to determine TVB-N in cadaver soft tissues (mainly skeletal muscle) for measuring decomposition rate. Determination of TVB-N in the simulation and animal experiments was conducted by steam distillation and conductometric titration using Kjeldahl distillation unit and conductivity meter. In simulation, standard concentrations of ammonium were used as TVB analogies, TVB-N contents were determined and the recovery rates of nitrogen were calculated. In animal experiment, TVB-N in skeletal muscle of forty-two rats was determined at different PMIs for 312 h at 24 °C ± 1 °C. The relationship between PMI and TVB-N was investigated also. The method showed high precision with 99%-100% recovery rates. TVB-N in skeletal muscle changed significantly with PMI especially after 24 h, and the data fit well to y = 3.35 E -5 x 3 -2.17 E -2 x 2 +6.13x-85.82 (adj. R 2  = 0.985). EC i (initial electrical conductivity in the samples just before titration) had positive linear relationship to final measured TVB-N values, y = 1.98x+16.16 (adj. R 2  = 0.985). The overall results demonstrated that the method is accurate, rapid and flexible, which could be expected as a basic technique for measuring decomposition rate in later PMI-estimation researches. Further studies are needed to validate our findings. Copyright © 2016 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  19. Modelling and mapping long-term risks due to reactive nitrogen effects: An overview of LRTAP convention activities

    International Nuclear Information System (INIS)

    Spranger, T.; Hettelingh, J.-P.; Slootweg, J.; Posch, M.

    2008-01-01

    Long-range transboundary air pollution has caused severe environmental effects in Europe. European air pollution abatement policy, in the framework of the UNECE Convention on Long-range Transboundary Air Pollution (LRTAP Convention) and the European Union Clean Air for Europe (CAFE) programme, has used critical loads and their exceedances by atmospheric deposition to design emission abatement targets and strategies. The LRTAP Convention International Cooperative Programme on Modelling and Mapping Critical Loads and Levels and Air Pollution Effects, Risks and Trends (ICP M and M) generates European critical loads datasets to enable this work. Developing dynamic nitrogen flux models and using them for a prognosis and assessment of nitrogen effects remains a challenge. Further research is needed on links between nitrogen deposition effects, climate change, and biodiversity. - Sustainable targets for European air pollution abatement policy are defined using critical loads in an effects-based approach

  20. Predicting major subsurface transport pathways as a key to understand spatial dynamics of reactive nitrogen in stream water

    DEFF Research Database (Denmark)

    Kraft, P.; Dalgaard, Tommy; Schelde, Kirsten

    Process based modelling of nitrogen turnover and transport is mainly focused on the plot and field scale. However, scaling up to the landscape level with sufficient topographic gradient and conductivities, Nr is relocated in the landscape through surface runoff, interflow as well as lateral...... groundwater movement. Cause and effects of Nr Approach can therefore be spatially disaggregated, i.e. leached Nr applied uphill on agricultural land can for example lead to gaseous N emissions downhill in riparian plains. In the Danish NitroEurope study landscape, lateral translocation of dissolved nitrogen...

  1. Effect of various nitrogen flow ratios on the optical properties of (Hf:N-DLC films prepared by reactive magnetron sputtering

    Directory of Open Access Journals (Sweden)

    Meng Qi

    2017-08-01

    Full Text Available Hf and N co-doped diamond-like carbon [(Hf:N-DLC] films were deposited on 316L stainless steel and glass substrates through reactive magnetron sputtering of hafnium and carbon targets at various nitrogen flow ratios (R=N2/[N2+CH4+Ar]. The effects of chemical composition and crystal structure on the optical properties of the (Hf:N-DLC films were studied. The obtained films consist of uniform HfN nanocrystallines embedded into the DLC matrix. The size of the graphite clusters with sp2 bonds (La and the ID/IG ratio increase to 2.47 nm and 3.37, respectively, with increasing R. The optical band gap of the films decreases from 2.01 eV to 1.84 eV with increasing R. This finding is consistent with the trends of structural transformations and could be related to the increase in the density of π-bonds due to nitrogen incorporation. This paper reports the influence of nitrogen flow ratio on the correlation among the chemical composition, crystal structure, and optical properties of (Hf:N-DLC films.

  2. Role of reactive nitrogen species generated via inducible nitric oxide synthase in vesicant-induced lung injury, inflammation and altered lung functioning

    Energy Technology Data Exchange (ETDEWEB)

    Sunil, Vasanthi R., E-mail: sunilvr@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States); Shen, Jianliang; Patel-Vayas, Kinal; Gow, Andrew J. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States)

    2012-05-15

    Pulmonary toxicity induced by sulfur mustard and related vesicants is associated with oxidative stress. In the present studies we analyzed the role of reactive nitrogen species (RNS) generated via inducible nitric oxide synthase (iNOS) in lung injury and inflammation induced by vesicants using 2-chloroethyl ethyl sulfide (CEES) as a model. C57Bl/6 (WT) and iNOS −/− mice were sacrificed 3 days or 14 days following intratracheal administration of CEES (6 mg/kg) or control. CEES intoxication resulted in transient (3 days) increases in bronchoalveolar lavage (BAL) cell and protein content in WT, but not iNOS −/− mice. This correlated with expression of Ym1, a marker of oxidative stress in alveolar macrophages and epithelial cells. In contrast, in iNOS −/− mice, Ym1 was only observed 14 days post-exposure in enlarged alveolar macrophages, suggesting that they are alternatively activated. This is supported by findings that lung tumor necrosis factor and lipocalin Lcn2 expression, mediators involved in tissue repair were also upregulated at this time in iNOS −/− mice. Conversely, CEES-induced increases in the proinflammatory genes, monocyte chemotactic protein-1 and cyclooxygenase-2, were abrogated in iNOS −/− mice. In WT mice, CEES treatment also resulted in increases in total lung resistance and decreases in compliance in response to methacholine, effects blunted by loss of iNOS. These data demonstrate that RNS, generated via iNOS play a role in the pathogenic responses to CEES, augmenting oxidative stress and inflammation and suppressing tissue repair. Elucidating inflammatory mechanisms mediating vesicant-induced lung injury is key to the development of therapeutics to treat mustard poisoning. -- Highlights: ► Lung injury, inflammation and oxidative stress are induced by the model vesicant CEES ► RNS generated via iNOS are important in the CEES-induced pulmonary toxicity ► iNOS −/− mice are protected from CEES-induced lung toxicity and

  3. Greenhouse gas emissions and reactive nitrogen releases during the life-cycles of staple food production in China and their mitigation potential.

    Science.gov (United States)

    Xia, Longlong; Ti, Chaopu; Li, Bolun; Xia, Yongqiu; Yan, Xiaoyuan

    2016-06-15

    Life-cycle analysis of staple food (rice, flour and corn-based fodder) production and assessments of the associated greenhouse gas (GHG) and reactive nitrogen (Nr) releases, from environmental and economic perspectives, help to develop effective mitigation options. However, such evaluations have rarely been executed in China. We evaluated the GHG and Nr releases per kilogram of staple food production (carbon and Nr footprints) and per unit of net economic benefit (CO2-NEB and Nr-NEB), and explored their mitigation potential. Carbon footprints of food production in China were obviously higher than those in some developed countries. There was a high spatial variation in the footprints, primarily attributable to differences in synthetic N use (or CH4 emissions) per unit of food production. Provincial carbon footprints had a significant linear relationship with Nr footprints, attributed to large contribution of N fertilizer use to both GHG and Nr releases. Synthetic N fertilizer applications and CH4 emissions dominated the carbon footprints, while NH3 volatilization and N leaching were the main contributors to the Nr footprints. About 564 (95% uncertainty range: 404-701) TgCO2eqGHG and 10 (7.4-12.4) Tg Nr-N were released every year during 2001-2010 from staple food production. This caused the total damage costs of 325 (70-555) billion ¥, equivalent to nearly 1.44% of the Gross Domestic Product of China. Moreover, the combined damage costs and economic input costs, accounted for 66%-80% of the gross economic benefit generated from food production. A reduction of 92.7TgCO2eqyr(-1) and 2.2TgNr-Nyr(-1) could be achieved by reducing synthetic N inputs by 20%, increasing grain yields by 5% and implementing off-season application of straw and mid-season drainage practices for rice cultivation. In order to realize these scenarios, an ecological compensation scheme should be established to incentivize farmers to gradually adopt knowledge-based managements. Copyright © 2016

  4. Greenhouse gas emissions and reactive nitrogen releases during the life-cycles of staple food production in China and their mitigation potential

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Longlong [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Ti, Chaopu [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Li, Bolun [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xia, Yongqiu [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Yan, Xiaoyuan, E-mail: yanxy@issas.ac.cn [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China)

    2016-06-15

    Life-cycle analysis of staple food (rice, flour and corn-based fodder) production and assessments of the associated greenhouse gas (GHG) and reactive nitrogen (Nr) releases, from environmental and economic perspectives, help to develop effective mitigation options. However, such evaluations have rarely been executed in China. We evaluated the GHG and Nr releases per kilogram of staple food production (carbon and Nr footprints) and per unit of net economic benefit (CO{sub 2-NEB} and Nr{sub -NEB}), and explored their mitigation potential. Carbon footprints of food production in China were obviously higher than those in some developed countries. There was a high spatial variation in the footprints, primarily attributable to differences in synthetic N use (or CH{sub 4} emissions) per unit of food production. Provincial carbon footprints had a significant linear relationship with Nr footprints, attributed to large contribution of N fertilizer use to both GHG and Nr releases. Synthetic N fertilizer applications and CH{sub 4} emissions dominated the carbon footprints, while NH{sub 3} volatilization and N leaching were the main contributors to the Nr footprints. About 564 (95% uncertainty range: 404–701) Tg CO{sub 2} eq GHG and 10 (7.4–12.4) Tg Nr-N were released every year during 2001–2010 from staple food production. This caused the total damage costs of 325 (70–555) billion ¥, equivalent to nearly 1.44% of the Gross Domestic Product of China. Moreover, the combined damage costs and economic input costs, accounted for 66%-80% of the gross economic benefit generated from food production. A reduction of 92.7 Tg CO{sub 2} eq yr{sup −1} and 2.2 Tg Nr-N yr{sup −1} could be achieved by reducing synthetic N inputs by 20%, increasing grain yields by 5% and implementing off-season application of straw and mid-season drainage practices for rice cultivation. In order to realize these scenarios, an ecological compensation scheme should be established to incentivize

  5. Greenhouse gas emissions and reactive nitrogen releases during the life-cycles of staple food production in China and their mitigation potential

    International Nuclear Information System (INIS)

    Xia, Longlong; Ti, Chaopu; Li, Bolun; Xia, Yongqiu; Yan, Xiaoyuan

    2016-01-01

    Life-cycle analysis of staple food (rice, flour and corn-based fodder) production and assessments of the associated greenhouse gas (GHG) and reactive nitrogen (Nr) releases, from environmental and economic perspectives, help to develop effective mitigation options. However, such evaluations have rarely been executed in China. We evaluated the GHG and Nr releases per kilogram of staple food production (carbon and Nr footprints) and per unit of net economic benefit (CO 2-NEB and Nr -NEB ), and explored their mitigation potential. Carbon footprints of food production in China were obviously higher than those in some developed countries. There was a high spatial variation in the footprints, primarily attributable to differences in synthetic N use (or CH 4 emissions) per unit of food production. Provincial carbon footprints had a significant linear relationship with Nr footprints, attributed to large contribution of N fertilizer use to both GHG and Nr releases. Synthetic N fertilizer applications and CH 4 emissions dominated the carbon footprints, while NH 3 volatilization and N leaching were the main contributors to the Nr footprints. About 564 (95% uncertainty range: 404–701) Tg CO 2 eq GHG and 10 (7.4–12.4) Tg Nr-N were released every year during 2001–2010 from staple food production. This caused the total damage costs of 325 (70–555) billion ¥, equivalent to nearly 1.44% of the Gross Domestic Product of China. Moreover, the combined damage costs and economic input costs, accounted for 66%-80% of the gross economic benefit generated from food production. A reduction of 92.7 Tg CO 2 eq yr −1 and 2.2 Tg Nr-N yr −1 could be achieved by reducing synthetic N inputs by 20%, increasing grain yields by 5% and implementing off-season application of straw and mid-season drainage practices for rice cultivation. In order to realize these scenarios, an ecological compensation scheme should be established to incentivize farmers to gradually adopt knowledge

  6. Effect of in situ hypothermic perfusion on intrahepatic pO(2) and reactive oxygen species formation after partial hepatectomy under total hepatic vascular exclusion in pigs

    NARCIS (Netherlands)

    Heijnen, Bob H. M.; Straatsburg, Irene H.; Kager, Liesbeth M.; van der Kleij, Ad J.; Gouma, Dirk J.; van Gulik, Thomas M.

    2003-01-01

    Aim: This study examined attenuation of ischemia and reperfusion (I/R) induced liver injury during liver resections by hypothermic perfusion of the liver under total hepatic vascular exclusion (THVE). Method: Reactive oxygen species (ROS) formation, microcirculatory integrity and endothelial cell

  7. Investigations of Nitrogen Oxide Plasmas: Fundamental Chemistry and Surface Reactivity and Monitoring Student Perceptions in a General Chemistry Recitation

    Science.gov (United States)

    Blechle, Joshua M.

    2016-01-01

    Part I of this dissertation focuses on investigations of nitrogen oxide plasma systems. With increasing concerns over the environmental presence of NxOy species, there is growing interest in utilizing plasma-assisted conversion techniques. Advances, however, have been limited because of the lack of knowledge regarding the fundamental chemistry of…

  8. Artificial neural network modelling for organic and total nitrogen removal of aerobic granulation under steady-state condition.

    Science.gov (United States)

    Gong, H; Pishgar, R; Tay, J H

    2018-04-27

    Aerobic granulation is a recent technology with high level of complexity and sensitivity to environmental and operational conditions. Artificial neural networks (ANNs), computational tools capable of describing complex non-linear systems, are the best fit to simulate aerobic granular bioreactors. In this study, two feedforward backpropagation ANN models were developed to predict chemical oxygen demand (Model I) and total nitrogen removal efficiencies (Model II) of aerobic granulation technology under steady-state condition. Fundamentals of ANN models and the steps to create them were briefly reviewed. The models were respectively fed with 205 and 136 data points collected from laboratory-, pilot-, and full-scale studies on aerobic granulation technology reported in the literature. Initially, 60%, 20%, and 20%, and 80%, 10%, and 10% of the points in the corresponding datasets were randomly chosen and used for training, testing, and validation of Model I, and Model II, respectively. Overall coefficient of determination (R 2 ) value and mean squared error (MSE) of the two models were initially 0.49 and 15.5, and 0.37 and 408, respectively. To improve the model performance, two data division methods were used. While one method is generic and potentially applicable to other fields, the other can only be applied to modelling the performance of aerobic granular reactors. R 2 value and MSE were improved to 0.90 and 2.54, and 0.81 and 121.56, respectively, after applying the new data division methods. The results demonstrated that ANN-based models were capable simulation approach to predict a complicated process like aerobic granulation.

  9. The budget between transportation and accumulation of organic carbon and total nitrogen in black soil at a sloping farmland

    International Nuclear Information System (INIS)

    Fang Huajun; Zhang Xiaoping; Liang Aizhen

    2006-01-01

    Based on the rate of soil redistribution at a sloping farmland using 137 Cs tracer technique and spatial variation of soil organic carbon (SOC) and total nitrogen (TN), the spatial distribution of SOC and TN loss and the budget between transportation and accumulation for recently 50 years was calculated. The results showed that the rate of soil redistribution ranged from -24.61 t/hm 2 /a to 33.56 t/hm 2 /a, most of study area was in medium and weakly erosion phase and accounted for 83.66%; and the area of soil deposition accounted for 15.62%; The variation of the loss of SOC and TN was consistent with that of soil redistribution, shoulder-slope had the most serious loss with the rate of 407.57 kg/hm 2 /a for SOC and 39.94 kg/hm 2 /a for TN, back-slope and summit had the secondly loss with the average rate of 244.2 kg/hm 2 /a for SOC and -20.56 kg/hm 2 /a for TN. For the whole area, relative loss of SOC and TN more than 50% accounted for 10.45% and 11.21%, respectively; The net loss of sediment in the study area was 45.54 t/a for recent 48 years, among which SOC and TN were 612.62 kg/a and 47.20 kg/a, respectively, which was 52% more than that of without consideration of the enrichment of sediment on soil organic matter. (authors)

  10. Predicting Soil Organic Carbon and Total Nitrogen in the Russian Chernozem from Depth and Wireless Color Sensor Measurements

    Science.gov (United States)

    Mikhailova, E. A.; Stiglitz, R. Y.; Post, C. J.; Schlautman, M. A.; Sharp, J. L.; Gerard, P. D.

    2017-12-01

    Color sensor technologies offer opportunities for affordable and rapid assessment of soil organic carbon (SOC) and total nitrogen (TN) in the field, but the applicability of these technologies may vary by soil type. The objective of this study was to use an inexpensive color sensor to develop SOC and TN prediction models for the Russian Chernozem (Haplic Chernozem) in the Kursk region of Russia. Twenty-one dried soil samples were analyzed using a Nix Pro™ color sensor that is controlled through a mobile application and Bluetooth to collect CIEL*a*b* (darkness to lightness, green to red, and blue to yellow) color data. Eleven samples were randomly selected to be used to construct prediction models and the remaining ten samples were set aside for cross validation. The root mean squared error (RMSE) was calculated to determine each model's prediction error. The data from the eleven soil samples were used to develop the natural log of SOC (lnSOC) and TN (lnTN) prediction models using depth, L*, a*, and b* for each sample as predictor variables in regression analyses. Resulting residual plots, root mean square errors (RMSE), mean squared prediction error (MSPE) and coefficients of determination ( R 2, adjusted R 2) were used to assess model fit for each of the SOC and total N prediction models. Final models were fit using all soil samples, which included depth and color variables, for lnSOC ( R 2 = 0.987, Adj. R 2 = 0.981, RMSE = 0.003, p-value < 0.001, MSPE = 0.182) and lnTN ( R 2 = 0.980 Adj. R 2 = 0.972, RMSE = 0.004, p-value < 0.001, MSPE = 0.001). Additionally, final models were fit for all soil samples, which included only color variables, for lnSOC ( R 2 = 0.959 Adj. R 2 = 0.949, RMSE = 0.007, p-value < 0.001, MSPE = 0.536) and lnTN ( R 2 = 0.912 Adj. R 2 = 0.890, RMSE = 0.015, p-value < 0.001, MSPE = 0.001). The results suggest that soil color may be used for rapid assessment of SOC and TN in these agriculturally important soils.

  11. Is the characterisation of the total nitrogen in industrial waste water always correct? Study of a case; Es siempre correcta la caracterizacion del nitrogeno total en las aguas residuales industriales?. Estudio de un caso

    Energy Technology Data Exchange (ETDEWEB)

    Torrijos, M.; Carrera, J.; Lafuente, J. [Universitat Autonoma de Barcelona (Spain)

    2003-07-01

    This paper intends to advise about the possibility of wrong industrial wastewater characterisations related to the Total Kjeldahl Nitrogen (TKN), in order to avoid inaccurate design and management of the system. During the study of the high strength nitrogen removal process in a pharmaceutical wastewater treatment plant, an abnormality was observed in the nitrogen mass balance of the system. The most popular method for TKN determination was modified in order to assess properly the TKN of the effluent. This modification has demonstrated that there are some organic nitrified compounds with complex structure that cannot be completely chemically hydrolysed. This could be the reason for wrong characterisations in industrial wastewaters with similar compounds. (Author) 6 refs.

  12. Achieving low effluent NO3-N and TN concentrations in low influent chemical oxygen demand (COD) to total Kjeldahl nitrogen (TKN) ratio without using external carbon source

    Science.gov (United States)

    Cao, Jiashun; Oleyiblo, Oloche James; Xue, Zhaoxia; Otache, Y. Martins; Feng, Qian

    2015-07-01

    Two mathematical models were used to optimize the performance of a full-scale biological nutrient removal (BNR) activated treatment plant, a plug-flow bioreactors operated in a 3-stage phoredox process configuration, anaerobic anoxic oxic (A2/O). The ASM2d implemented on the platform of WEST2011 software and the BioWin activated sludge/anaerobic digestion (AS/AD) models were used in this study with the aim of consistently achieving the designed effluent criteria at a low operational cost. Four ASM2d parameters (the reduction factor for denitrification , the maximum growth rate of heterotrophs (µH), the rate constant for stored polyphosphates in PAOs ( q pp), and the hydrolysis rate constant ( k h)) were adjusted. Whereas three BioWin parameters (aerobic decay rate ( b H), heterotrophic dissolved oxygen (DO) half saturation ( K OA), and Y P/acetic) were adjusted. Calibration of the two models was successful; both models have average relative deviations (ARD) less than 10% for all the output variables. Low effluent concentrations of nitrate nitrogen (N-NO3), total nitrogen (TN), and total phosphorus (TP) were achieved in a full-scale BNR treatment plant having low influent chemical oxygen demand (COD) to total Kjeldahl nitrogen (TKN) ratio (COD/TKN). The effluent total nitrogen and nitrate nitrogen concentrations were improved by 50% and energy consumption was reduced by approximately 25%, which was accomplished by converting the two-pass aerobic compartment of the plug-flow bioreactor to anoxic reactors and being operated in an alternating mode. Findings in this work are helpful in improving the operation of wastewater treatment plant while eliminating the cost of external carbon source and reducing energy consumption.

  13. Effect of deposition temperature on the properties of nitrogen-doped AZO thin films grown on glass by rf reactive magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Shinho, E-mail: scho@silla.ac.kr [Center for Green Fusion Technology and Department of Electronic Materials Engineering, Silla University, Busan 617-736 (Korea, Republic of); Kim, Heetae [Backlight Technology, LCD Division, Samsung Electronics Co., Ltd., Asan 336-841 (Korea, Republic of)

    2010-09-15

    Nitrogen-doped aluminum zinc oxide (NAZO) thin films were deposited on glass substrates at various deposition temperatures by rf reactive magnetron sputtering. The NAZO film deposited at 400 deg. C shows a strongly c-axis preferred orientation and n-type conduction with a resistivity of 2.1 x 10{sup -2} {Omega} cm, Hall mobility of 7.7 cm{sup 2} V{sup -1} s{sup -1}, and electron concentration of 3.8 x 10{sup 19} cm{sup -3}. The optimum crystallographic structure occurs at a deposition temperature of 400 deg. C, where a considerable crystallinity enhancement of the films is observed. The band gap energies of the NAZO films, obtained by using Tauc model and parabolic bands, are found to significantly depend on the deposition temperature, along with the band gap narrowing at higher deposition temperature due to renormalization effects.

  14. Gelidium elegans, an edible red seaweed, and hesperidin inhibit lipid accumulation and production of reactive oxygen species and reactive nitrogen species in 3T3-L1 and RAW264.7 cells.

    Science.gov (United States)

    Jeon, Hui-Jeon; Seo, Min-Jung; Choi, Hyeon-Son; Lee, Ok-Hwan; Lee, Boo-Yong

    2014-11-01

    Gelidium elegans is an edible red alga native to the intertidal area of northeastern Asia. We investigated the effect of G. elegans extract and its main flavonoids, rutin and hesperidin, on lipid accumulation and the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in 3T3-L1 and RAW264.7 cells. Our data show that G. elegans extract decreased lipid accumulation and ROS/RNS production in a dose-dependent manner. The extract also inhibited the mRNA expression of adipogenic transcription factors, such as peroxisome proliferator-activated receptor gamma and CCAAT/enhancer-binding protein alpha, while enhancing the protein expression of the antioxidant enzymes superoxide dismutases 1 and 2, glutathione peroxidase, and glutathione reductase compared with controls. In addition, lipopolysaccharide-induced nitric oxide production was significantly reduced in G. elegans extract-treated RAW264.7 cells. In analysis of the effects of G. elegans flavonoids on lipid accumulation and ROS/RNS production, only hesperidin showed an inhibitory effect on lipid accumulation and ROS production; rutin did not affect adipogenesis and ROS status. The antiadipogenic effect of hesperidin was evidenced by the downregulation of peroxisome proliferator-activated receptor gamma, CCAAT/enhancer-binding protein alpha, and fatty acid binding protein 4 gene expression. Collectively, our data suggest that G. elegans is a potential food source containing antiobesity and antioxidant constituents. Copyright © 2014 John Wiley & Sons, Ltd.

  15. Export of reactive nitrogen from coal-fired power plants in the U.S.: Estimates from a plume-in-grid modeling study - article no. D04308

    Energy Technology Data Exchange (ETDEWEB)

    Vijayaraghavan, K.; Zhang, Y.; Seigneur, C.; Karamchandani, P.; Snell, H.E.

    2009-02-15

    The export of reactive nitrogen (nitrogen oxides and their oxidation products, collectively referred to as NOy) from coal-fired power plants in the U.S. to the rest of the world could have a significant global contribution to ozone. Traditional Eulerian gridded air quality models cannot characterize accurately the chemistry and transport of plumes from elevated point sources such as power plant stacks. A state-of-the-science plume-in-grid (PinG) air quality model, a reactive plume model embedded in an Eulerian gridded model, is used to estimate the export of NOy from 25 large coal-fired power plants in the U. S. (in terms of NOx and SO{sub 2} emissions) in July 2001 to the global atmosphere. The PinG model used is the Community Multiscale Air Quality Model with Advanced Plume Treatment (CMAQ-APT). A benchmark simulation with only the gridded model, CMAQ, is also conducted for comparison purposes. The simulations with and without advanced plume treatment show differences in the calculated export of NOy from the 25 plants considered reflecting the effect of using a detailed and explicit treatment of plume transport and chemistry. The advanced plume treatment results in 31% greater simulated export of NOy compared to the purely grid-based modeling approach. The export efficiency of NOy (the fraction of NOy emitted that is exported) is predicted to be 21% without APT and 27% with APT. When considering only export through the eastern boundary across the Atlantic, CMAQ-APT predicts that the export efficiency is 24% and that 2% of NOy is exported as NOx, 49% as inorganic nitrate, and 25% as PAN. These results are in reasonably good agreement with an analysis reported in the literature of aircraft measurements over the North Atlantic.

  16. Optimizing shoot culture media for Rubus germplasm: the effects of NH4+, NO3-, and total nitrogen

    Science.gov (United States)

    The nitrogen components of Murashige and Skoog (MS) medium were significant factors for improved growth in our earlier study that modeled the effects of mineral nutrition on growth and development of micropropagated red raspberry(Rubus idaeus L.). In this study, a mixture component design was applie...

  17. Influence of substrate biasing on the growth of c-axis oriented AlN thin films by RF reactive sputtering in pure nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Monteagudo-Lerma, L.; Naranjo, F.B.; Gonzalez-Herraez, M. [Departamento de Electronica, Escuela Politecnica, Universidad de Alcala, Campus Universitario, 28871 Alcala de Henares (Spain); Fernandez, S. [Departamento de Energias Renovables, Energia Solar Fotovoltaica, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Avda. Complutense 22, 28040 Madrid (Spain)

    2012-03-15

    We report on the investigation of the influence of deposition conditions on structural, morphological and optical properties of AlN thin films deposited on sapphire (Al{sub 2}O{sub 3}) substrates by radio-frequency (RF) reactive sputtering. The deposition parameters studied are RF power, substrate temperature and substrate bias, while using pure nitrogen as reactive gas. The effect of such deposition parameters on AlN film properties are analyzed by different characterization methods as high resolution X-ray diffraction (HRXRD), field emission scanning electron microscopy (FESEM) and linear optical transmission. AlN thin films with a full-width at half-maximum (FWHM) of the rocking curve obtained for the (0002) diffraction peak of 1.2 are achieved under optimized conditions. The time resolved evolution of the self and externally-induced biasing of the substrate during deposition process is monitored and analyzed in terms of the rate of atomic species incorporation into the layer. The bias-induced change of the atomic incorporation leads to an enhancement in the structural quality of the layer and an increase of the deposition rate. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Stress Sensitivity Is Associated with Differential Accumulation of Reactive Oxygen and Nitrogen Species in Maize Genotypes with Contrasting Levels of Drought Tolerance

    Science.gov (United States)

    Yang, Liming; Fountain, Jake C.; Wang, Hui; Ni, Xinzhi; Ji, Pingsheng; Lee, Robert D.; Kemerait, Robert C.; Scully, Brian T.; Guo, Baozhu

    2015-01-01

    Drought stress decreases crop growth, yield, and can further exacerbate pre-harvest aflatoxin contamination. Tolerance and adaptation to drought stress is an important trait of agricultural crops like maize. However, maize genotypes with contrasting drought tolerances have been shown to possess both common and genotype-specific adaptations to cope with drought stress. In this research, the physiological and metabolic response patterns in the leaves of maize seedlings subjected to drought stress were investigated using six maize genotypes including: A638, B73, Grace-E5, Lo964, Lo1016, and Va35. During drought treatments, drought-sensitive maize seedlings displayed more severe symptoms such as chlorosis and wilting, exhibited significant decreases in photosynthetic parameters, and accumulated significantly more reactive oxygen species (ROS) and reactive nitrogen species (RNS) than tolerant genotypes. Sensitive genotypes also showed rapid increases in enzyme activities involved in ROS and RNS metabolism. However, the measured antioxidant enzyme activities were higher in the tolerant genotypes than in the sensitive genotypes in which increased rapidly following drought stress. The results suggest that drought stress causes differential responses to oxidative and nitrosative stress in maize genotypes with tolerant genotypes with slower reaction and less ROS and RNS production than sensitive ones. These differential patterns may be utilized as potential biological markers for use in marker assisted breeding. PMID:26492235

  19. Stress Sensitivity Is Associated with Differential Accumulation of Reactive Oxygen and Nitrogen Species in Maize Genotypes with Contrasting Levels of Drought Tolerance

    Directory of Open Access Journals (Sweden)

    Liming Yang

    2015-10-01

    Full Text Available Drought stress decreases crop growth, yield, and can further exacerbate pre-harvest aflatoxin contamination. Tolerance and adaptation to drought stress is an important trait of agricultural crops like maize. However, maize genotypes with contrasting drought tolerances have been shown to possess both common and genotype-specific adaptations to cope with drought stress. In this research, the physiological and metabolic response patterns in the leaves of maize seedlings subjected to drought stress were investigated using six maize genotypes including: A638, B73, Grace-E5, Lo964, Lo1016, and Va35. During drought treatments, drought-sensitive maize seedlings displayed more severe symptoms such as chlorosis and wilting, exhibited significant decreases in photosynthetic parameters, and accumulated significantly more reactive oxygen species (ROS and reactive nitrogen species (RNS than tolerant genotypes. Sensitive genotypes also showed rapid increases in enzyme activities involved in ROS and RNS metabolism. However, the measured antioxidant enzyme activities were higher in the tolerant genotypes than in the sensitive genotypes in which increased rapidly following drought stress. The results suggest that drought stress causes differential responses to oxidative and nitrosative stress in maize genotypes with tolerant genotypes with slower reaction and less ROS and RNS production than sensitive ones. These differential patterns may be utilized as potential biological markers for use in marker assisted breeding.

  20. Regulation of Cys-based protein tyrosine phosphatases via reactive oxygen and nitrogen species in mast cells and basophils

    Czech Academy of Sciences Publication Activity Database

    Heneberg, Petr; Dráber, Petr

    2005-01-01

    Roč. 12, č. 16 (2005), s. 1859-1871 ISSN 0929-8673 R&D Projects: GA ČR(CZ) GA204/03/0594; GA ČR(CZ) GA301/03/0596; GA AV ČR(CZ) IAA5052310; GA MZd(CZ) NR8079; GA MŠk(CZ) 1M0506; GA MŠk(CZ) 1P04OE158 Institutional research plan: CEZ:AV0Z50520514 Keywords : mast cell * tyrosine phosphatase * reactive oxygen species Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.904, year: 2005

  1. Biochemical characteristics of a free cyanide and total nitrogen assimilating Fusarium oxysporum EKT01/02 isolate from cyanide contaminated soil

    OpenAIRE

    Akinpelu, Enoch A.; Adetunji, Adewole T.; Ntwampe, Seteno K.O.; Nchu, Felix; Mekuto, Lukhanyo

    2017-01-01

    Sustainability of nutrient requirements for microbial proliferation on a large scale is a challenge in bioremediation processes. This article presents data on biochemical properties of a free cyanide resistant and total nitrogen assimilating fungal isolate from the rhizosphere of Zea mays (maize) growing in soil contaminated with a cyanide-based pesticide. DNA extracted from this isolate were PCR amplified using universal primers; TEF1-α and ITS. The raw sequence files are available on the NC...

  2. Determinação das formas de nitrogênio e nitrogênio total em rochas-reservatório de petróleo por destilação com arraste de vapor e método do indofenol Determination of nitrogen forms and total nitrogen in petroleum reservoir rocks by steam distillation and the indophenol method

    Directory of Open Access Journals (Sweden)

    Lílian Irene Dias da Silva

    2006-02-01

    Full Text Available Several extraction procedures are described for the determination of exchangeable and fixed ammonium, nitrate + nitrite, total exchangeable nitrogen and total nitrogen in certified reference soils and petroleum reservoir rock samples by steam distillation and indophenol method. After improvement of the original distillation system, an increase in worker safety, a reduction in time consumption, a decrease of 73% in blank value and an analysis without ammonia loss, which could possibly occur, were achieved. The precision (RSD < 8%, n = 3 and the detection limit (9 mg kg-1 NH4+-N are better than those of published procedures.

  3. The effects of operating factors on the removal of total ammonia nitrogen and florfenicol antibiotic from synthetic trout fish farm wastewater through nanofiltration

    International Nuclear Information System (INIS)

    Cheshmberah, F.; Solaimany Nazar, A.R.; Farhadian, M.

    2016-01-01

    An aquaculture system can be a potentially significant source of antibacterial compounds and ammonia in an aquatic environment. In this study, the removal of total ammonia nitrogen and florfenicol antibiotic from synthetic aqueous wastewater was assessed by applying a commercial thin film composite polyamide nanofilter. The effects of p H (6.5-8.5), pressure (4-10 bar), concentration of total ammonia nitrogen (1-9 mg/L), and florfenicol (0.2-5 mg/L) on the removal efficiency of the nanofilter were studied at a constant 70% recovery rate. It was found that by increasing the p H within the range of 6.5 to 8.5, it enhanced the removal efficiency by up to 98% and 100% for total ammonia nitrogen and florfenicol, respectively. With an increase in pressure from 4 to 7 bar, the removal percentage increased and then, it decreased from 7 to 10 bar. The interactions factors did not have significant effects on the both pollutants removal efficiencies. To obtain optimal removal efficiencies, an experimental design and statistical analysis via the response surface method were adopted.

  4. Using SPAD-502 to evaluate the total chlorophyll and nitrogen status in leaves of longkong (Aglaia dookkoo Griff. and rambutan (Nephelium lappaseum L.

    Directory of Open Access Journals (Sweden)

    Chanaweerawan, S.

    2002-01-01

    Full Text Available Total chlorophyll and nitrogen status in leaves of longkong and rambutan were evaluated by using the SPAD-502 meter. Leaves of both species were sampled from 10 year-old trees grown in an experimental plot at Prince of Songkla University, Hat Yai campus. The relationship between SPAD-502 meter reading (SPAD and total chlorophyll content analyzed in the laboratory was evaluated in longkong and rambutan, and they were y = -2.68+0.21x, r2 = 0.77** and y = -1.11+0.18x, r2 = 0.77**, respectively. The data recorded by SPAD were also linearly related in a positive manner to nitrogen status in longkong (y = 1.27+0.20x, r2 = 0.82** and rambutan (y = 1.17+0.02x, r2 = 0.79**. The results show that using the SPAD-502 meter is convenient and fast for the evaluation of total chlorophyll and nitrogen status in leaves of longkong and rambutan.

  5. The effects of operating factors on the removal of total ammonia nitrogen and florfenicol antibiotic from synthetic trout fish farm wastewater through nanofiltration

    Directory of Open Access Journals (Sweden)

    Ali Reza Solaimany Nazar

    2016-04-01

    Full Text Available An aquaculture system can be a potentially significant source of antibacterial compounds and ammonia in an aquatic environment. In this study, the removal of total ammonia nitrogen and florfenicol antibiotic from synthetic aqueous wastewater was assessed by applying a commercial TFC (thin film composite polyamide nanofilter. The effects of pH (6.5-8.5, pressure (4-10 bar, concentration of total ammonia nitrogen (1-9 mg/L, and florfenicol (0.2-5 mg/L on the removal efficiency of the nanofilter were studied at a constant 70% recovery rate. It was found that by increasing the pH within the range of 6.5 to 8.5, it enhanced the removal efficiency by up to 98% and 100% for total ammonia nitrogen and florfenicol, respectively. With an increase in pressure from 4 to 7 bar, the removal percentage increased and then, it decreased from 7 to 10 bar. The interactions factors did not have significant effects on the both pollutants removal efficiencies. To obtain optimal removal efficiencies, an experimental design and statistical analysis via the response surface method were adopted.

  6. Thermal mineralization behavior of PFOA, PFHxA, and PFOS during reactivation of granular activated carbon (GAC) in nitrogen atmosphere.

    Science.gov (United States)

    Watanabe, Nobuhisa; Takata, Mitsuyasu; Takemine, Shusuke; Yamamoto, Katsuya

    2018-03-01

    Waste disposal site is one of the important sinks of chemicals. A significant amount of perfluoroalkyl and polyfluoroalkyl substances (PFASs) such as perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), and perfluorohexanoic acid (PFHxA) have been brought into it. Because of their aqueous solubility, PFASs are released to landfill effluent waters, from which PFASs are efficiently collected by adsorption technique using granular activated carbon (GAC). The exhausted GAC is reactivated by heating processes. The mineralization of PFASs during the reactivation process was studied. Being thermally treated in N 2 atmosphere, the recovery rate of mineralized fluorine and PFC homologues including short-chained perfluorocarboxylic acids was determined. If the reagent form of PFOA, PFHxA, and PFOS were treated at 700 °C, the recovery of mineralized fluorine was less than 30, 46, and 72 %, respectively. The rate increased to 51, 74, and 70 %, if PFASs were adsorbed onto GAC in advance; moreover, addition of excess sodium hydroxide (NaOH) improved the recovery to 74, 91, and 90 %. Residual PFAS homologue was less than 1 % of the original amount. Steamed condition did not affect destruction. The significant role of GAC was to suppress volatile release of PFASs from thermal ambient, whereas NaOH enhanced destruction and retained mineralized fluorine on the GAC surface. Comparing the recovery of mineralized fluorine, the degradability of PFOS was considered to be higher than PFOA and PFHxA. Whole mass balance missing 9~26 % of initial amount suggested formation of some volatile organofluoro compounds beyond analytical coverage.

  7. Efficacy of reactive mineral-based sorbents for phosphate, bacteria, nitrogen and TOC removal--column experiment in recirculation batch mode.

    Science.gov (United States)

    Nilsson, Charlotte; Lakshmanan, Ramnath; Renman, Gunno; Rajarao, Gunaratna Kuttuva

    2013-09-15

    Two mineral-based materials (Polonite and Sorbulite) intended for filter wells in on-site wastewater treatment were compared in terms of removal of phosphate (PO4-P), total inorganic nitrogen (TIN), total organic carbon (TOC) and faecal indicator bacteria (Escherichia coli and Enterococci). Using an innovative, recirculating system, septic tank effluent was pumped at a hydraulic loading rate of 3000 L m(2) d(-1) into triplicate bench-scale columns of each material over a 90-day period. The results showed that Polonite performed better with respect to removal of PO4-P, retaining on average 80% compared with 75% in Sorbulite. This difference was attributed to higher CaO content in Polonite and its faster dissolution. Polonite also performed better in terms of removal of bacteria because of its higher pH value. The total average reduction in E. coli was 60% in Polonite and 45% in Sorbulite, while for Enterococci the corresponding value was 56% in Polonite and 34% in Sorbulite. Sorbulite removed TIN more effectively, with a removal rate of 23%, while Polonite removed 11% of TIN, as well as TOC. Organic matter (measured as TOC) was accumulated in the filter materials but was also released periodically. The results showed that Sorbulite could meet the demand in removing phosphate and nitrogen with reduced microbial release from the wastewater treatment process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Reactive template synthesis of nitrogen-doped graphene-like carbon nanosheets derived from hydroxypropyl methylcellulose and dicyandiamide as efficient oxygen reduction electrocatalysts

    Science.gov (United States)

    Hu, Chun; Zhou, Yao; Ma, Ruguang; Liu, Qian; Wang, Jiacheng

    2017-03-01

    Oxygen reduction reaction (ORR) plays a dominant role in proton exchange membrane fuel cells (PEMFCs). Thus, the design and preparation of efficient ORR electrocatalysts is of high importance. In this work, we successfully prepared a series of nitrogen-doped graphene-like carbon nanosheets (NCNSs) with large pore volumes of up to 1.244 cm3 g-1 and high level of N dopants (5.3-6.8 at%) via a one-step, in-situ reactive template strategy by co-pyrolysis of hydroxypropyl methylcellulose (HPMC) and dicyandiamide (DICY) as the precursors at 1000 °C. The DICY-derived graphitic carbon nitride (g-C3N4) nanosheets could act as the hard template for the confined growth of 2D carbon nanosheets, and the further increase in the pyrolysis temperature could directly remove off the g-C3N4 template by complete decomposition and simultaneously dope N atoms within the carbon nanosheets. The pyridinic and graphitic nitrogen groups are dominant among various N functional groups in the NCNSs. The NCNS_1:10 prepared with the HPMC/DICY mass ratio of 1/10 can be used as the metal-free ORR electrocatalysts with optimal activity (onset potential: -0.1 V vs. SCE; limiting current density: 4.8 mA cm-2) in O2-saturated 0.1 M KOH electrolyte among the NCNSs. Moreover, the NCNS_1:10 demonstrates a dominant four-electron reduction process, as well as excellent long-term operation stability and outstanding methanol crossover resistance. The excellent ORR activity of the NCNS_1:10 should be mainly owing to high contents of pyridinic and graphitic N dopants, large pore volume, hierarchical structures, and microstructural defects.

  9. Effect of Freeze-Thaw Cycles on Soil Nitrogen Reactive Transport in a Polygonal Arctic Tundra Ecosystem at Barrow AK Using 3-D Coupled ALM-PFLOTRAN

    Science.gov (United States)

    Yuan, F.; Wang, G.; Painter, S. L.; Tang, G.; Xu, X.; Kumar, J.; Bisht, G.; Hammond, G. E.; Mills, R. T.; Thornton, P. E.; Wullschleger, S. D.

    2017-12-01

    In Arctic tundra ecosystem soil freezing-thawing is one of dominant physical processes through which biogeochemical (e.g., carbon and nitrogen) cycles are tightly coupled. Besides hydraulic transport, freezing-thawing can cause pore water movement and aqueous species gradients, which are additional mechanisms for soil nitrogen (N) reactive-transport in Tundra ecosystem. In this study, we have fully coupled an in-development ESM(i.e., Advanced Climate Model for Energy, ACME)'s Land Model (ALM) aboveground processes with a state-of-the-art massively parallel 3-D subsurface thermal-hydrology and reactive transport code, PFLOTRAN. The resulting coupled ALM-PFLOTRAN model is a Land Surface Model (LSM) capable of resolving 3-D soil thermal-hydrological-biogeochemical cycles. This specific version of PFLOTRAN has incorporated CLM-CN Converging Trophic Cascade (CTC) model and a full and simple but robust soil N cycle. It includes absorption-desorption for soil NH4+ and gas dissolving-degasing process as well. It also implements thermal-hydrology mode codes with three newly-modified freezing-thawing algorithms which can greatly improve computing performance in regarding to numerical stiffness at freezing-point. Here we tested the model in fully 3-D coupled mode at the Next Generation Ecosystem Experiment-Arctic (NGEE-Arctic) field intensive study site at the Barrow Environmental Observatory (BEO), AK. The simulations show that: (1) synchronous coupling of soil thermal-hydrology and biogeochemistry in 3-D can greatly impact ecosystem dynamics across polygonal tundra landscape; and (2) freezing-thawing cycles can add more complexity to the system, resulting in greater mobility of soil N vertically and laterally, depending upon local micro-topography. As a preliminary experiment, the model is also implemented for Pan-Arctic region in 1-D column mode (i.e. no lateral connection), showing significant differences compared to stand-alone ALM. The developed ALM-PFLOTRAN coupling

  10. Effect of nitrogen incorporation on the structural, optical and dielectric properties of reactive sputter grown ITO films

    Energy Technology Data Exchange (ETDEWEB)

    Gartner, M.; Stroescu, H. [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Marin, A., E-mail: alexmarin@icf.ro [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Osiceanu, P. [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Anastasescu, M., E-mail: manastasescu@icf.ro [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Stoica, M.; Nicolescu, M.; Duta, M.; Preda, S. [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Aperathitis, E.; Pantazis, A.; Kampylafka, V. [FORTH-IESL, Crete (Greece); Modreanu, M. [Tyndall National Institute, University College Cork, Cork (Ireland); Zaharescu, M. [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania)

    2014-09-15

    Highlights: • Graded optical model for ITON films is presented. • ITON thin films retain an amorphous structure even after RTA at 500 °C in N{sub 2} ambient. • The lowest resistivity was 2 × 10{sup −3} Ω cm for films deposited in 75%N{sub 2} and RTA at 500 °C. • Films deposited in 75% N{sub 2} and RTA at 500 °C have degenerate semiconductor behavior. • Chemical composition before and after RTA has been analyzed by XPS depth profiling. - Abstract: The changes in the optical, microstructural and electrical properties, following the nitrogen incorporation into indium tin oxide thin films are investigated. The films are formed by r.f. sputtering from an indium-tin-oxide (80% In{sub 2}O{sub 3}–20% SnO{sub 2}) target in a mixture of Ar and N{sub 2} plasma (75% N{sub 2}–25% Ar and 100% N{sub 2} respectively) on fused silica glass substrate. The impact of rapid thermal annealing (up to 500 °C, in N{sub 2} ambient) on the properties of indium tin oxynitride (ITON) thin films is also reported. The UV–vis–NIR ellipsometry (SE) characterization of ITON films was performed assuming several realistic approaches based on various oscillator models, using a chemical composition gradient depth profiling, in agreement with the X-ray photoelectron spectroscopy measurements. The Hall measurements show that the ITON films prepared by r.f. sputtering in 75% N{sub 2} and annealed at 500 °C behave as degenerate semiconductors. X-ray diffraction analysis proved that ITON thin films retain an amorphous structure even after RTA at 500 °C in N{sub 2} ambient and atomic force microscopy showed the formation of continuous and smooth ITON thin films, with a morphology consisting in quasispherical nanometric particles.

  11. Total-ozone and nitrogen-dioxide measurements at the Molodezhnaya and Mirnyi Antarctic stations during spring 1987-autumn 1988

    Energy Technology Data Exchange (ETDEWEB)

    Elokhov, A.S.; Gruzdev, A.N. (AN SSSR, Institut Fiziki Atmosfery, Moscow, (USSR))

    1991-09-01

    Results of measurements of the total-ozone and NO2 content during November-December (Molodezhnaya) and February-April 1988 (Mirnyi) are reported. During the November-December period an irregular total ozone increase was observed, which characterized the filling up of the ozone hole. Stratospheric warming and the total NO2 increase occurred simultaneously. During the summer-autumn period the total NO2 content decreased gradually. The evening total NO2 content was systematically greater than the morning one, which reflects changes in the NO2 abundance from day to night. 12 refs.

  12. Chemical properties and reactive oxygen and nitrogen species quenching activities of dry sugar-amino acid maillard reaction mixtures exposed to baking temperatures.

    Science.gov (United States)

    Chen, Xiu-Min; Liang, Ningjian; Kitts, David D

    2015-10-01

    Maillard reaction products (MRPs) derived from 10 different, dry sugar-amino acid reaction model systems were examined for changes in color index (E), sugar loss, and formation of α-dicarbonyl compounds; the changes were correlated with relative activities to quench both reactive oxygen (ROS) and reactive nitrogen (RNS) species. Reducing sugars, xylose, ribose, fructose, glucose, and non-reducing sucrose were reacted with glycine (Xyl-Gly, Rib-Gly, Fru-Gly, Glc-Gly, and Suc-Gly), or lysine (Xyl-Lys, Rib-Lys, Fru-Lys, Glc-Lys, and Suc-Lys), respectively, at temperatures of 150°C and 180°C for time periods ranging from 5 to 60min. ROS quenching capacity was negatively correlated with color index (E) (r=-0.604, P<0.001), and positively correlated with sugar loss (r=0.567, P<0.001). MRPs also exhibited activity to quench RNS as assessed by nitric oxide (NO) inhibition in differentiated Caco-2 cells that were induced with interferon-γ (IFN-γ) and phorbol ester (PMA) cocktail. We also showed a correlation between RNS and color index, sugar loss, and ROS quenching activities for MR mixtures that were heated for a short time (e.g. 10min) at 150°C. MRP quenching of ROS was largely influenced by sugar type, whereas, RNS quenching was dependent more so on the interaction between reactants and reaction conditions used to generate MRPs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Production and correlation of reactive oxygen and nitrogen species in gas- and liquid-phase generated by helium plasma jets under different pulse widths

    Science.gov (United States)

    Liu, Zhijie; Zhou, Chunxi; Liu, Dingxin; Xu, Dehui; Xia, Wenjie; Cui, Qingjie; Wang, Bingchuan; Kong, Michael G.

    2018-01-01

    In this paper, we present the effects of the pulse width (PW) on the plasma jet's discharge characteristics, particularly focusing on the production and correlation of the reactive oxygen and nitrogen species (RONS) in gas- and liquid-phase. It is found that the length of plasma jet plume first increases before the PW of 10 μs, then gradually decreases and finally almost remains unchanged beyond 150 μs. The plasma bullet disappears after the falling edge of the voltage pulse at low PW, while it terminates far ahead of the falling edge of voltage pulse at high PW. This is mainly attributed to accumulation of space charges that lead to weakening of the reduced electric field with an increase of PW from low to high. More important, it is found that the excited reactive species, the positive and negative ions from plasma jet, and the concentrations of NO2- and NO3- in deionized water exposed to plasma jet also display the first increasing and then decreasing change trend with increase of PW, while the concentration of H2O2 in water almost displays the linearly increasing trend. This mainly results from the formation of the H3O+ and HO2-, as well as their ion water clusters that can produce more OH radicals to be converted into H2O2, while the NO2- and NO3- in gas phase can transport into water and exist most stably in water. The water cluster formation at gas-liquid interface is an important key process that can affect the chemical nature and dose of aqueous RONS in water; this is beneficial for understanding how the RONS are formed in liquid-phase.

  14. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology

    International Nuclear Information System (INIS)

    Graves, David B

    2012-01-01

    Reactive oxygen species (ROS) and the closely related reactive nitrogen species (RNS) are often generated in applications of atmospheric pressure plasmas intended for biomedical purposes. These species are also central players in what is sometimes referred to as ‘redox’ or oxidation-reduction biology. Oxidation-reduction biochemistry is fundamental to all of aerobic biology. ROS and RNS are perhaps best known as disease-associated agents, implicated in diabetes, cancer, heart and lung disease, autoimmune disease and a host of other maladies including ageing and various infectious diseases. These species are also known to play active roles in the immune systems of both animals and plants and are key signalling molecules, among many other important roles. Indeed, the latest research has shown that ROS/RNS play a much more complex and nuanced role in health and ageing than previously thought. Some of the most potentially profound therapeutic roles played by ROS and RNS in various medical interventions have emerged only in the last several years. Recent research suggests that ROS/RNS are significant and perhaps even central actors in the actions of antimicrobial and anti-parasite drugs, cancer therapies, wound healing therapies and therapies involving the cardiovascular system. Understanding the ways ROS/RNS act in established therapies may help guide future efforts in exploiting novel plasma medical therapies. The importance of ROS and RNS to plant biology has been relatively little appreciated in the plasma biomedicine community, but these species are just as important in plants. It appears that there are opportunities for useful applications of plasmas in this area as well. (topical review)

  15. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology

    Science.gov (United States)

    Graves, David B.

    2012-07-01

    Reactive oxygen species (ROS) and the closely related reactive nitrogen species (RNS) are often generated in applications of atmospheric pressure plasmas intended for biomedical purposes. These species are also central players in what is sometimes referred to as ‘redox’ or oxidation-reduction biology. Oxidation-reduction biochemistry is fundamental to all of aerobic biology. ROS and RNS are perhaps best known as disease-associated agents, implicated in diabetes, cancer, heart and lung disease, autoimmune disease and a host of other maladies including ageing and various infectious diseases. These species are also known to play active roles in the immune systems of both animals and plants and are key signalling molecules, among many other important roles. Indeed, the latest research has shown that ROS/RNS play a much more complex and nuanced role in health and ageing than previously thought. Some of the most potentially profound therapeutic roles played by ROS and RNS in various medical interventions have emerged only in the last several years. Recent research suggests that ROS/RNS are significant and perhaps even central actors in the actions of antimicrobial and anti-parasite drugs, cancer therapies, wound healing therapies and therapies involving the cardiovascular system. Understanding the ways ROS/RNS act in established therapies may help guide future efforts in exploiting novel plasma medical therapies. The importance of ROS and RNS to plant biology has been relatively little appreciated in the plasma biomedicine community, but these species are just as important in plants. It appears that there are opportunities for useful applications of plasmas in this area as well.

  16. Nitrogen doping on NiO by reactive magnetron sputtering: A new pathway to dynamically tune the optical and electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Keraudy, Julien, E-mail: julien.keraudy@liu.se [Institut de Recherche Technologique (IRT), Chemin du Chaffault, 44340, Bouguenais (France); Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, CNRS, 2 rue de la Houssinière, BP32229, 44322, Nantes Cedex 3 (France); Plasma & Coatings Physics Division, IFM Materials Physics, Linköping University, Linköping, SE 581-83 (Sweden); Ferrec, Axel; Richard-Plouet, Mireille; Hamon, Jonathan; Goullet, Antoine; Jouan, Pierre-Yves [Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, CNRS, 2 rue de la Houssinière, BP32229, 44322, Nantes Cedex 3 (France)

    2017-07-01

    Highlights: • Nitrogen doping into NiO lattice (4 at.%) is achieved by only monitoring the N{sub 2}/O{sub 2} gas ratio in the plasma. • The replacement of O by N leads to a narrowing of the optical band-gap energy from 3.6 to 2.3 eV. • The origin of the narrowing is explained by the presence of an intermediate band and the introduction of occupied N 2p states. • Electrical conductivity of NiO:N samples depends on the amount of nickel vacancies and the nitrogen doping. - Abstract: N-doped nickel oxide (NiO:N) thin films were deposited on glass and silicon substrates by reactive DC magnetron sputtering in Ar/O{sub 2}/N{sub 2} gas atmosphere with a series of N{sub 2}/O{sub 2} gas ratio ranging from 0 to 80%. X-ray diffraction measurements have revealed that the films are constituted of Ni{sub 1-x}O grains and showed enhanced polycrystalline features with increasing N-doping concentration. For the first time, we report here that N-doping in the Ni-deficient NiO (Ni{sub 1-x}O) film leads to a band-gap narrowing from 3.6 to 2.3 eV. X-ray photoelectron spectroscopy (XPS) measurements proved that up to 4 atomic percent (at.%) nitrogen can be incorporated at least at the surface of the NiO:N samples. In addition, XPS valence band spectra and UV–vis transmission measurements have demonstrated that the band-gap narrowing may originates from the contribution of an intermediate band (IB) ∼2.4 eV just above the valence band maximum and the up-shifting of the valence band edge (∼0.3 eV) due to the introduction of occupied N 2p states. Local I–V measurements, carried out by conductive AFM (C-AFM), have revealed that the extrinsic doping of N atoms within the oxide can be a good way to precisely control the electrical conductivity of such p-type materials.

  17. Reactive Nitrogen, Ozone and Ozone Production in the Arctic Troposphere and the Impact of Stratosphere-Troposphere Exchange

    Science.gov (United States)

    Liang, Q.; Rodriquez, J. M.; Douglass, A. R.; Crawford, J. H.; Apel, E.; Bian, H.; Blake, D. R.; Brune, W.; Chin, M.; Colarco, P. R.; hide

    2011-01-01

    We analyze the aircraft observations obtained during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellite (ARCTAS) mission together with the GEOS-5 CO simulation to examine O3 and NOy in the Arctic and sub-Arctic region and their source attribution. Using a number of marker tracers and their probability density distributions, we distinguish various air masses from the background troposphere and examine their contribution to NOx, O3, and O3 production in the Arctic troposphere. The background Arctic troposphere has mean O3 of approximately 60 ppbv and NOx of approximately 25 pptv throughout spring and summer with CO decreases from approximately 145 ppbv in spring to approximately 100 ppbv in summer. These observed CO, NOx and O3 mixing ratios are not notably different from the values measured during the 1988 ABLE-3A and the 2002 TOPSE field campaigns despite the significant changes in the past two decades in processes that could have changed the Arctic tropospheric composition. Air masses associated with stratosphere-troposphere exchange are present throughout the mid and upper troposphere during spring and summer. These air masses with mean O3 concentration of 140-160 ppbv are the most important direct sources of O3 in the Arctic troposphere. In addition, air of stratospheric origin is the only notable driver of net O3 formation in the Arctic due to its sustainable high NOx (75 pptv in spring and 110 pptv in summer) and NOy (approximately 800 pptv in spring and approximately 1100 pptv in summer) levels. The ARCTAS measurements present observational evidence suggesting significant conversion of nitrogen from HNO3 to NOx and then to PAN (a net formation of approximately 120 pptv PAN) in summer when air of stratospheric origin is mixed with tropospheric background during stratosphere-to-troposphere transport. These findings imply that an adequate representation of stratospheric O3 and NOy input are essential in accurately simulating O3

  18. Myeloid-derived suppressor cells in murine AIDS inhibit B-cell responses in part via soluble mediators including reactive oxygen and nitrogen species, and TGF-β

    Energy Technology Data Exchange (ETDEWEB)

    Rastad, Jessica L. [Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756 (United States); Green, William R., E-mail: William.R.Green@dartmouth.edu [Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756 (United States); Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756 (United States)

    2016-12-15

    Monocytic myeloid-derived suppressor cells (M-MDSCs) were increased during LP-BM5 retroviral infection, and were capable of suppressing not only T-cell, but also B-cell responses. In addition to previously demonstrating iNOS- and VISTA-dependent M-MDSC mechanisms, in this paper, we detail how M-MDSCs utilized soluble mediators, including the reactive oxygen and nitrogen species superoxide, peroxynitrite, and nitric oxide, and TGF-β, to suppress B cells in a predominantly contact-independent manner. Suppression was independent of cysteine-depletion and hydrogen peroxide production. When two major mechanisms of suppression (iNOS and VISTA) were eliminated in double knockout mice, M-MDSCs from LP-BM5-infected mice were able to compensate using other, soluble mechanisms in order to maintain suppression of B cells. The IL-10 producing regulatory B-cell compartment was among the targets of M-MDSC-mediated suppression. -- Highlights: •LP-BM5-expanded M-MDSCs utilized soluble mediators nitric oxide, superoxide, peroxynitrite, and TGF-β to suppress B cells. •When two major mechanisms of suppression were eliminated through knockouts, M-MDSCs maintained suppression. •M-MDSCs from LP-BM5-infected mice decreased proliferation of IL-10 producing regulatory B cells.

  19. Myeloid-derived suppressor cells in murine AIDS inhibit B-cell responses in part via soluble mediators including reactive oxygen and nitrogen species, and TGF-β

    International Nuclear Information System (INIS)

    Rastad, Jessica L.; Green, William R.

    2016-01-01

    Monocytic myeloid-derived suppressor cells (M-MDSCs) were increased during LP-BM5 retroviral infection, and were capable of suppressing not only T-cell, but also B-cell responses. In addition to previously demonstrating iNOS- and VISTA-dependent M-MDSC mechanisms, in this paper, we detail how M-MDSCs utilized soluble mediators, including the reactive oxygen and nitrogen species superoxide, peroxynitrite, and nitric oxide, and TGF-β, to suppress B cells in a predominantly contact-independent manner. Suppression was independent of cysteine-depletion and hydrogen peroxide production. When two major mechanisms of suppression (iNOS and VISTA) were eliminated in double knockout mice, M-MDSCs from LP-BM5-infected mice were able to compensate using other, soluble mechanisms in order to maintain suppression of B cells. The IL-10 producing regulatory B-cell compartment was among the targets of M-MDSC-mediated suppression. -- Highlights: •LP-BM5-expanded M-MDSCs utilized soluble mediators nitric oxide, superoxide, peroxynitrite, and TGF-β to suppress B cells. •When two major mechanisms of suppression were eliminated through knockouts, M-MDSCs maintained suppression. •M-MDSCs from LP-BM5-infected mice decreased proliferation of IL-10 producing regulatory B cells.

  20. Biochemical characteristics of a free cyanide and total nitrogen assimilating Fusarium oxysporum EKT01/02 isolate from cyanide contaminated soil

    Directory of Open Access Journals (Sweden)

    Enoch A. Akinpelu

    2017-10-01

    Full Text Available Sustainability of nutrient requirements for microbial proliferation on a large scale is a challenge in bioremediation processes. This article presents data on biochemical properties of a free cyanide resistant and total nitrogen assimilating fungal isolate from the rhizosphere of Zea mays (maize growing in soil contaminated with a cyanide-based pesticide. DNA extracted from this isolate were PCR amplified using universal primers; TEF1-α and ITS. The raw sequence files are available on the NCBI database. Characterisation using biochemical data was obtained using colorimetric reagents analysed with VITEK® 2 software version 7.01. The data will be informative in selection of biocatalyst for environmental engineering application.

  1. Biochemical characteristics of a free cyanide and total nitrogen assimilating Fusarium oxysporum EKT01/02 isolate from cyanide contaminated soil.

    Science.gov (United States)

    Akinpelu, Enoch A; Adetunji, Adewole T; Ntwampe, Seteno K O; Nchu, Felix; Mekuto, Lukhanyo

    2017-10-01

    Sustainability of nutrient requirements for microbial proliferation on a large scale is a challenge in bioremediation processes. This article presents data on biochemical properties of a free cyanide resistant and total nitrogen assimilating fungal isolate from the rhizosphere of Zea mays (maize) growing in soil contaminated with a cyanide-based pesticide. DNA extracted from this isolate were PCR amplified using universal primers; TEF1-α and ITS. The raw sequence files are available on the NCBI database. Characterisation using biochemical data was obtained using colorimetric reagents analysed with VITEK ® 2 software version 7.01. The data will be informative in selection of biocatalyst for environmental engineering application.

  2. Capturing the externalities: National and watershed scale damages from release of reactive nitrogen beyond the farm, factory, tailpipe and table

    Science.gov (United States)

    Compton, J.; Sobota, D. J.; McCrackin, M. L.; Harrison, J.

    2014-12-01

    Human demand for food, fuel, and industrial products results in the release of 61% of the newly fixed anthropogenic N to the environment in the US each year. This 15.8 Tg N yr-1 input to air, land and water has important social, economic and environmental consequences, yet little research clearly links this N release to the full suite of effects. Here we connect the biogeochemical fluxes of N with existing data on N-associated damages in order to quantify the externalities of N release related to human health, ecosystems and climate regulation for the US at national and watershed scales. Release of N to the environment was estimated circa 2000 with models describing N inputs by source, nutrient uptake efficiency, leaching losses, and gaseous emissions at the scale of 8-digit US Geologic Survey Hydrologic Unit Codes (HUC8s). Potential damages or benefits of anthropogenic N leaked to the environment were calculated by scaling specific N fluxes with the costs associated with human health, agriculture, ecosystems, and the climate system. For the US, annual damage costs of anthropogenic N leaked to the environment in 2000 totaled 289 billion USD. Approximately 57% of the total damages were associated with fossil fuel combustion, driven by the human respiratory health impacts of NOx as a precursor of ozone and a component of particulates. Another 37% of the damage costs were associated with agricultural N. Damages associated with agriculture were 85.5 billion, largely through eutrophication and harmful effects on aquatic habitat. Through aggressive but tangible improvements in atmospheric emissions, agricultural N use and wastewater treatment, we could reduce N export to the coast by nearly 25% within 30 years. These improvements would reduce the externalities associated with the leakage of N beyond its intended uses in agriculture, transportation and energy with minimal impact to these sectors dependent on anthropogenic N fixation.

  3. Diversity of total and functional microbiome of anammox reactors fed with complex and synthetic nitrogen-rich wastewaters

    DEFF Research Database (Denmark)

    Gülay, Arda; Pellicer i Nàcher, Carles; Mutlu, Ayten Gizem

    diversity than the bioreactors treating synthetic wastewaters inferred from observed OTUs0.03, Chao1, Shannon index and Phylogenetic distance calculations. Differences in total microbial diversity agreed with the ecological theory concerning the positive correlation between substrate complexity...

  4. Spatial pattern of soil organic carbon and total nitrogen, and analysis of related factors in an agro-pastoral zone in Northern China

    Science.gov (United States)

    Wang, Xuyang; Chen, Yinping; Lian, Jie; Luo, Yongqing; Niu, Yayi; Gong, Xiangwen

    2018-01-01

    The spatial pattern of soil organic carbon (SOC) and total nitrogen (TN) densities plays a profound important role in estimating carbon and nitrogen budgets. Naiman Banner located in northern China was chosen as research site, a total of 332 soil samples were taken in a depth of 100 cm from the low hilly land in the southern part, sandy land in the middle part and an alluvial plain in the northern part of the county. The results showed that SOC and TN density initially decreased and then increased from the north to the south, The highest densities, were generally in the south, with the lowest generally in the middle part. The SOC and TN densities in cropland were significantly greater than those in woodland and grassland in the alluvial plains and for Naiman as a whole. The woodland SOC and TN density were higher than those of grassland in the low hilly land, and higher densities of SOC and TN in grassland than woodland in the sandy land and low hilly land. There were significant differences in SOC and TN densities among the five soil types of Cambisols, Arenosols, Gleysols, Argosols, and Kastanozems. In addition, SOC and TN contents generally decreased with increasing soil depth, but increased below a depth of 40 cm in the Cambisols and became roughly constant at this depth in the Kastanozems. There is considerable potential to sequester carbon and nitrogen in the soil via the conversion of degraded sandy land into woodland and grassland in alluvial plain, and more grassland should be established in sandy land and low hilly land. PMID:29771979

  5. Dynamics of N-NH4 +, N-NO3 -, and total soil nitrogen in paddy field with azolla and biochar

    Science.gov (United States)

    Dewi, W. S.; Wahyuningsih, G. I.; Syamsiyah, J.; Mujiyo

    2018-03-01

    Nitrogen (N) is one of macronutrients which is dynamic in the soil and becomes constraint factor for rice crops. The addition of nitrogen fertilizers and its absorption in paddy field causes the dynamics of nitrogen, thus declines of N absorption efficiency. The aim of this research is to know influence Azolla, biochar and different varieties application on N-NH4 +, N-NO3 -, and total soil N in paddy field. This research was conducted in a screen house located in Jumantono Laboratory, Faculty of Agriculture, Universitas Sebelas Maret (UNS) with altitude 170 m asl from April to June 2016. Treatment factors that were examined consisted of azolla (0 and 10 tons/ha), biochar (0 and 2 tons/ha), and rice varieties (Cisadane, Memberamo, Ciherang, IR64). The results of this research showed that there was no interaction between azolla, biochar and varieties. Nevertheless, azolla treatment with dose of 10 tons/ha increased soil NH4 + content (41 days after planting, DAP) by 13.4% but tend to decrease at 70 and 90 DAP. Biochar treatment with dose of 2 ton/ha increases NO3 - soil content (70 DAP) by 1.7% but decreases total N soil by 5.8% (41 DAP) and 4.7% (90 DAP). Different rice varieties generated different soil NH4 + content (41 DAP) and rice root volume. Cisadane variety can increase soil NH4 + content (41 DAP) by 52.08% and root volume by 51.80% (90 DAP) compared with Ciherang variety. Organic rice field management with azolla and biochar affects the availability of N in the soil and increase N absorption efficiency through its role in increasing rice root volume.

  6. Total maximum allocated load calculation of nitrogen pollutants by linking a 3D biogeochemical-hydrodynamic model with a programming model in Bohai Sea

    Science.gov (United States)

    Dai, Aiquan; Li, Keqiang; Ding, Dongsheng; Li, Yan; Liang, Shengkang; Li, Yanbin; Su, Ying; Wang, Xiulin

    2015-12-01

    The equal percent removal (EPR) method, in which pollutant reduction ratio was set as the same in all administrative regions, failed to satisfy the requirement for water quality improvement in the Bohai Sea. Such requirement was imposed by the developed Coastal Pollution Total Load Control Management. The total maximum allocated load (TMAL) of nitrogen pollutants in the sea-sink source regions (SSRs) around the Bohai Rim, which is the maximum pollutant load of every outlet under the limitation of water quality criteria, was estimated by optimization-simulation method (OSM) combined with loop approximation calculation. In OSM, water quality is simulated using a water quality model and pollutant load is calculated with a programming model. The effect of changes in pollutant loads on TMAL was discussed. Results showed that the TMAL of nitrogen pollutants in 34 SSRs was 1.49×105 ton/year. The highest TMAL was observed in summer, whereas the lowest in winter. TMAL was also higher in the Bohai Strait and central Bohai Sea and lower in the inner area of the Liaodong Bay, Bohai Bay and Laizhou Bay. In loop approximation calculation, the TMAL obtained was considered satisfactory for water quality criteria as fluctuation of concentration response matrix with pollutant loads was eliminated. Results of numerical experiment further showed that water quality improved faster and were more evident under TMAL input than that when using the EPR method

  7. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Normalized Atmospheric Deposition for 2002, Total Inorganic Nitrogen

    Science.gov (United States)

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the average normalized atmospheric (wet) deposition, in kilograms per square kilometer multiplied by 100, of Total Inorganic Nitrogen for the year 2002 compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). Estimates of Total Inorganic Nitrogen deposition are based on National Atmospheric Deposition Program (NADP) measurements (B. Larsen, U.S. Geological Survey, written. commun., 2007). De-trending methods applied to the year 2002 are described in Alexander and others, 2001. NADP site selection met the following criteria: stations must have records from 1995 to 2002 and have a minimum of 30 observations. The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  8. Total nitrogen and suspended-sediment loads and identification of suspended-sediment sources in the Laurel Hill Creek watershed, Somerset County, Pennsylvania, water years 2010-11

    Science.gov (United States)

    Sloto, Ronald A.; Gellis, Allen C.; Galeone, Daniel G.

    2012-01-01

    Laurel Hill Creek is a watershed of 125 square miles located mostly in Somerset County, Pennsylvania, with small areas extending into Fayette and Westmoreland Counties. The upper part of the watershed is on the Pennsylvania Department of Environmental Protection 303(d) list of impaired streams because of siltation, nutrients, and low dissolved oxygen concentrations. The objectives of this study were to (1) estimate the annual sediment load, (2) estimate the annual nitrogen load, and (3) identify the major sources of fine-grained sediment using the sediment-fingerprinting approach. This study by the U.S. Geological Survey (USGS) was done in cooperation with the Somerset County Conservation District. Discharge, suspended-sediment, and nutrient data were collected at two streamflow-gaging stations—Laurel Hill Creek near Bakersville, Pa., (station 03079600) and Laurel Hill Creek at Ursina, Pa., (station 03080000)—and one ungaged stream site, Laurel Hill Creek below Laurel Hill Creek Lake at Trent (station 03079655). Concentrations of nutrients generally were low. Concentrations of ammonia were less than 0.2 milligrams per liter (mg/L), and concentrations of phosphorus were less than 0.3 mg/L. Most concentrations of phosphorus were less than the detection limit of 0.02 mg/L. Most water samples had concentrations of nitrate plus nitrite less than 1.0 mg/L. At the Bakersville station, concentrations of total nitrogen ranged from 0.63 to 1.3 mg/L in base-flow samples and from 0.57 to 1.5 mg/L in storm composite samples. Median concentrations were 0.88 mg/L in base-flow samples and 1.2 mg/L in storm composite samples. At the Ursina station, concentrations of total nitrogen ranged from 0.25 to 0.92 mg/L in base-flow samples; the median concentration was 0.57 mg/L. The estimated total nitrogen load at the Bakersville station was 262 pounds (lb) for 11 months of the 2010 water year (November 2009 to September 2010) and 266 lb for the 2011 water year. Most of the total

  9. A seasonal nitrogen deposition budget for Rocky Mountain National Park.

    Science.gov (United States)

    Benedict, K B; Carrico, C M; Kreidenweis, S M; Schichtel, B; Malm, W C; Collett, J L

    2013-07-01

    Nitrogen deposition is a concern in many protected ecosystems around the world, yet few studies have quantified a complete reactive nitrogen deposition budget including all dry and wet, inorganic and organic compounds. Critical loads that identify the level at which nitrogen deposition negatively affects an ecosystem are often defined using incomplete reactive nitrogen budgets. Frequently only wet deposition of ammonium and nitrate are considered, despite the importance of other nitrogen deposition pathways. Recently, dry deposition pathways including particulate ammonium and nitrate and gas phase nitric acid have been added to nitrogen deposition budgets. However, other nitrogen deposition pathways, including dry deposition of ammonia and wet deposition of organic nitrogen, still are rarely included. In this study, a more complete seasonal nitrogen deposition budget was constructed based on observations during a year-long study period from November 2008 to November 2009 at a location on the east side of Rocky Mountain National Park (RMNP), Colorado, USA. Measurements included wet deposition of ammonium, nitrate, and organic nitrogen, PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 microm, nitrate, and ammonium) concentrations of ammonium, nitrate, and organic nitrogen, and atmospheric gas phase concentrations of ammonia, nitric acid, and NO2. Dry deposition fluxes were determined from measured ambient concentrations and modeled deposition velocities. Total reactive nitrogen deposition by all included pathways was found to be 3.65 kg N x ha(-1) yr(-1). Monthly deposition fluxes ranged from 0.06 to 0.54 kg N x ha(-1)yr(-1), with peak deposition in the month of July and the least deposition in December. Wet deposition of ammonium and nitrate were the two largest deposition pathways, together contributing 1.97 kg N x ha(-1)yr(-1) or 54% of the total nitrogen deposition budget for this region. The next two largest deposition pathways were wet

  10. Stability and Application of Reactive Nitrogen and Oxygen Species-Induced Hemoglobin Modifications in Dry Blood Spots As Analyzed by Liquid Chromatography Tandem Mass Spectrometry.

    Science.gov (United States)

    Chen, Hauh-Jyun Candy; Fan, Chih-Huang; Yang, Ya-Fen

    2016-12-19

    Dried blood spot (DBS) is an emerging microsampling technique for the bioanalysis of small molecules, including fatty acids, metabolites, drugs, and toxicants. DBS offers many advantages as a sample format including easy sample collection and cheap sample shipment. Hemoglobin adducts have been recognized as a suitable biomarker for monitoring chemical exposure. We previously reported that certain modified peptides in hemoglobin derived from reactive chlorine, nitrogen, and oxygen species are associated with factors including smoking, diabetes mellitus, and aging. However, the stability of these oxidation-induced modifications of hemoglobin remains unknown and whether they can be formed artifactually during storage of DBS. To answer these questions, globin extracted from the DBS cards was analyzed, and the stability of the modifications was evaluated. After storage of the DBS cards at 4 °C or room temperature up to 7 weeks, we isolated globin from a quarter of the spot every week. The extents of 11 sites and types of post-translational modifications (PTMs), including nitration and nitrosylation of tyrosine and oxidation of cysteine and methionine residues, in human hemoglobin were measured in the trypsin digest by nanoflow liquid chromatography-nanospray ionization tandem mass spectrometry (nanoLC-NSI/MS/MS) using selected reaction monitoring. The extents of all these PTMs are stable within 14 days when stored on DBS at room temperature and at 4 °C, while those from direct extraction of fresh blood are stable for at least 8 weeks when stored as an aqueous solution at -20 °C. Extraction of globin from a DBS card is of particular importance for hemolytic blood samples. To our knowledge, this is the first report on the stability of oxidative modifications of hemoglobin on DBSs, which are stable for 14 days under ambient conditions (room temperature, in air). Therefore, it is feasible and convenient to analyze these hemoglobin modifications from DBSs in studies

  11. Concentration, flux, and the analysis of trends of total and dissolved phosphorus, total nitrogen, and chloride in 18 tributaries to Lake Champlain, Vermont and New York, 1990–2011

    Science.gov (United States)

    Medalie, Laura

    2013-01-01

    Annual concentration, flux, and yield for total phosphorus, dissolved phosphorus, total nitrogen, and chloride for 18 tributaries to Lake Champlain were estimated for 1990 through 2011 using a weighted regression method based on time, tributary streamflows (discharges), and seasonal factors. The weighted regression method generated two series of daily estimates of flux and concentration during the period of record: one based on observed discharges and a second based on a flow-normalization procedure that removes random variation due to year-to-year climate-driven effects. The flownormalized estimate for a given date is similar to an average estimate of concentration or flux that would be made if all of the observed discharges for that date were equally likely to have occurred. The flux bias statistic showed that 68 of the 72 flux regression models were minimally biased. Temporal trends in the concentrations and fluxes were determined by calculating percent changes in flow-normalized annual fluxes for the full period of analysis (1990 through 2010) and for the decades 1990–2000 and 2000–2010. Basinwide, flow-normalized total phosphorus flux decreased by 42 metric tons per year (t/yr) between 1990 and 2010. This net result reflects a basinwide decrease in flux of 21 metric tons (t) between 1990 and 2000, followed by a decrease of 20 t between 2000 and 2010; both results were largely influenced by flux patterns in the large tributaries on the eastern side of the basin. A comparison of results for total phosphorus for the two separate decades of analysis found that more tributaries had decreasing concentrations and flux rates in the second decade than the first. An overall reduction in dissolved phosphorus flux of 0.7 t/yr was seen in the Lake Champlain Basin during the full period of analysis. That very small net change in flux reflects substantial reductions between 1990 and 2000 from eastern tributaries, especially in Otter Creek and the LaPlatte and Winooski

  12. Effects of combustion temperature on air emissions and support fuel consumption in full scale fluidized bed sludge incineration: with particular focus on nitrogen oxides and total organic carbon.

    Science.gov (United States)

    Löschau, Margit

    2018-04-01

    This article describes a pilot test at a sewage sludge incineration plant and shows its results considering the impacts of reducing the minimum combustion temperature from 850°C to 800°C. The lowering leads to an actual reduction of the average combustion temperature by 25 K and a significant reduction in the fuel oil consumption for support firing. The test shall be used for providing evidence that the changed combustion conditions do not result in higher air pollutant emissions. The analysis focusses on the effects of the combustion temperature on nitrogen oxides (NO x ) and total organic carbon emissions. The evaluation of all continuously monitored emissions shows reduced emission levels compared to the previous years, especially for NO x .

  13. Total replacement of corn by mesquite pod meal considering nutritional value, performance, feeding behavior, nitrogen balance, and microbial protein synthesis of Holstein-Zebu crossbred dairy steers.

    Science.gov (United States)

    de Oliveira Moraes, Gláucia Sabrine; de Souza, Evaristo Jorge Oliveira; Véras, Antonia Sherlânea Chaves; de Paula Almeida, Marina; da Cunha, Márcio Vieira; Torres, Thaysa Rodrigues; da Silva, Camila Sousa; Pereira, Gerfesson Felipe Cavalcanti

    2016-10-01

    The objective of the present study to assess the effects of mesquite pod addition replacing corn (0, 250, 500, 750, and 1000 g/kg in the dry matter basis) on nutrient intake, animal performance, feeding behavior, nutrient digestibility, nitrogen balance, and microbial protein synthesis. Twenty-five Holstein-Zebu crossbred dairy steers at 219 ± 22 kg initial body weight and 18 months of age were used. The experiment lasted 84 days, divided into three periods of 28 days. A completely randomized design was used, and data were submitted to analysis using PROC GLM for analysis of variance and PROC REG for regression analysis using the software Statistical Analysis Systems version 9.1. Experimental diets were composed of Tifton 85 hay, soybean meal, ground corn, mesquite pod meal, and mineral salt. Samples of food offered were collected during the last 3 days of each period, and the leftovers were collected daily, with samples bulked per week. At the end of each 28-day period, the remaining animals were weighed to determine total weight gain and average daily gain. The assessment of behavioral patterns was performed through instantaneous scans in 5-min intervals for three consecutive 12-h days. A single urine sample from each animal was collected on the last day of each collection period at about 4 h after the first feeding. The replacement of corn by mesquite pod meal did not significantly influence treatments regarding nutrients intake, animal performance, and feeding behavior. Retained and consumed nitrogen ratio did not statistically differ between replacement levels. Likewise, there were no statistical differences regarding microbial protein synthesis and efficiency between replacement levels. Mesquite pod meal can be used in Holstein-Zebu crossbred dairy steers' diet with total corn replacement.

  14. Prediction of purine derivatives, creatinine and total nitrogen concentrations in urine by FT-Near-lnfrared Reflectance spectroscopy (FT-NIR)

    International Nuclear Information System (INIS)

    Susmel, P.; Piani, B.; Toso, B.; Stefanon, B.

    2004-01-01

    The objective of this study was to provide an alternative method for the determination of purine derivatives (PD, which include allantoin, uric acid, hypoxanthine and xanthine), creatinine and total nitrogen (N) concentrations in urine. About 180 urine samples from cattle, buffaloes and rabbit were collected and analyzed for PD by HPLC, creatinine by spectrophotometry and N by Kjeldahl method. The urine samples were then analyzed by Fourier Transformed Near Infrared Reflectance Spectroscopy (FT-NIR) to find conformity between this technique and the HPLC and colorimetric methods. FT-NIR can predict allantoin, uric acid, hypoxanthine, xanthine, creatinine, total N and sum of N in both allantoin and uric acid with a satisfactory level of accuracy: the determination coefficient (r 2 ) of validation ranged from 0.888% for uric acid to 0.982% for total N. The coefficients of determination for allantoin, creatinine and sum of N in both allantoin and uric acid were 0.92, 0.894 and 0.90%, respectively. Hypoxanthine and xanthine in urine samples were not detectable by NIRS, probably because of their low concentrations, and therefore they were not considered for instrumental calibration. (author)

  15. Effect of Atorvastatin on Serum Levels of Total Cholesterol and High-Sensitivity C-reactive Protein in High-Risk Patients with Atrial Fibrillation in Asia.

    Science.gov (United States)

    Shi, Ming Yu; Xue, Feng Hua; Teng, Shi Chao; Jiang, Li; Zhu, Jing; Yin, Feng; Gu, Hong Yue

    2015-08-01

    The aim of this meta-analysis was to investigate the effects of atorvastatin on serum levels of high-sensitivity C-reactive protein (hs-CRP) and total cholesterol in atrial fibrillation (AF) patients in Asia. By searching English and Chinese language-based electronic databases (ie, PubMed, EBSCO, Ovid, SpringerLink, Wiley, Web of Science, Wanfang database, China National Knowledge Infrastructure, and VIP database), we identified 13 studies relevant to our topic of interest. Data were collected from the 13 studies and analyzed with Comprehensive Meta-Analysis software (version 2.0, Biostat Inc., Englewood, New Jersey). Initially, our database searches retrieved 356 studies (45 in English, 311 in Chinese). Thirteen studies were selected for the meta-analysis following stringent criteria. The data included 1239 patients with AF, of whom 634 were treated with atorvastatin and included in the treatment group, and 605 patients were treated with conventional treatment and included in the control group. The results of our meta-analysis suggested that the serum levels of hs-CRP (mg/L) and total cholesterol (mmol/L) in the treatment group were significantly lower than those of the control group (hs-CRP: standardized mean difference = 0.962; 95% CI, 0.629-1.295, P < 0.001; total cholesterol: standardized mean difference = 1.400; 95% CI, 0.653-2.146, P < 0.001). The findings of this study suggest that atorvastatin may be very effective in decreasing serum levels of hs-CRP and total cholesterol to prevent cardiovascular events. Copyright © 2015 Elsevier HS Journals, Inc. All rights reserved.

  16. Spatial and temporal regulation of the metabolism of reactive oxygen and nitrogen species during the early development of pepper (Capsicum annuum) seedlings.

    Science.gov (United States)

    Airaki, Morad; Leterrier, Marina; Valderrama, Raquel; Chaki, Mounira; Begara-Morales, Juan C; Barroso, Juan B; del Río, Luis A; Palma, José M; Corpas, Francisco J

    2015-09-01

    The development of seedlings involves many morphological, physiological and biochemical processes, which are controlled by many factors. Some reactive oxygen and nitrogen species (ROS and RNS, respectively) are implicated as signal molecules in physiological and phytopathological processes. Pepper (Capsicum annuum) is a very important crop and the goal of this work was to provide a framework of the behaviour of the key elements in the metabolism of ROS and RNS in the main organs of pepper during its development. The main seedling organs (roots, hypocotyls and green cotyledons) of pepper seedlings were analysed 7, 10 and 14 d after germination. Activity and gene expression of the main enzymatic antioxidants (catalase, ascorbate-glutathione cycle enzymes), NADP-generating dehydrogenases and S-nitrosoglutathione reductase were determined. Cellular distribution of nitric oxide ((·)NO), superoxide radical (O2 (·-)) and peroxynitrite (ONOO(-)) was investigated using confocal laser scanning microscopy. The metabolism of ROS and RNS during pepper seedling development was highly regulated and showed significant plasticity, which was co-ordinated among the main seedling organs, resulting in correct development. Catalase showed higher activity in the aerial parts of the seedling (hypocotyls and green cotyledons) whereas roots of 7-d-old seedlings contained higher activity of the enzymatic components of the ascorbate glutathione cycle, NADP-isocitrate dehydrogenase and NADP-malic enzyme. There is differential regulation of the metabolism of ROS, nitric oxide and NADP dehydrogenases in the different plant organs during seedling development in pepper in the absence of stress. The metabolism of ROS and RNS seems to contribute significantly to plant development since their components are involved directly or indirectly in many metabolic pathways. Thus, specific molecules such as H2O2 and NO have implications for signalling, and their temporal and spatial regulation contributes

  17. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory : evaluation of alkaline persulfate digestion as an alternative to Kjeldahl digestion for determination of total and dissolved nitrogen and phosphorus in water

    Science.gov (United States)

    Patton, Charles J.; Kryskalla, Jennifer R.

    2003-01-01

    Alkaline persulfate digestion was evaluated and validated as a more sensitive, accurate, and less toxic alternative to Kjeldahl digestion for routine determination of nitrogen and phosphorus in surface- and ground-water samples in a large-scale and geographically diverse study conducted by U.S. Geological Survey (USGS) between October 1, 2001, and September 30, 2002. Data for this study were obtained from about 2,100 surface- and ground-water samples that were analyzed for Kjeldahl nitrogen and Kjeldahl phosphorus in the course of routine operations at the USGS National Water Quality Laboratory (NWQL). These samples were analyzed independently for total nitrogen and total phosphorus using an alkaline persulfate digestion method developed by the NWQL Methods Research and Development Program. About half of these samples were collected during nominally high-flow (April-June) conditions and the other half were collected during nominally low-flow (August-September) conditions. The number of filtered and whole-water samples analyzed from each flow regime was about equal.By operational definition, Kjeldahl nitrogen (ammonium + organic nitrogen) and alkaline persulfate digestion total nitrogen (ammonium + nitrite + nitrate + organic nitrogen) are not equivalent. It was necessary, therefore, to reconcile this operational difference by subtracting nitrate + nitrite concentra-tions from alkaline persulfate dissolved and total nitrogen concentrations prior to graphical and statistical comparisons with dissolved and total Kjeldahl nitrogen concentrations. On the basis of two-population paired t-test statistics, the means of all nitrate-corrected alkaline persulfate nitrogen and Kjeldahl nitrogen concentrations (2,066 paired results) were significantly different from zero at the p = 0.05 level. Statistically, the means of Kjeldahl nitrogen concentrations were greater than those of nitrate-corrected alkaline persulfate nitrogen concentrations. Experimental evidence strongly

  18. Effects of elevated root zone CO2 and air temperature on photosynthetic gas exchange, nitrate uptake, and total reduced nitrogen content in aeroponically grown lettuce plants.

    Science.gov (United States)

    He, Jie; Austin, Paul T; Lee, Sing Kong

    2010-09-01

    Effects of elevated root zone (RZ) CO(2) and air temperature on photosynthesis, productivity, nitrate (NO(3)(-)), and total reduced nitrogen (N) content in aeroponically grown lettuce plants were studied. Three weeks after transplanting, four different RZ [CO(2)] concentrations [ambient (360 ppm) and elevated concentrations of 2000, 10,000, and 50,000 ppm] were imposed on plants grown at two air temperature regimes of 28 degrees C/22 degrees C (day/night) and 36 degrees C/30 degrees C. Photosynthetic CO(2) assimilation (A) and stomatal conductance (g(s)) increased with increasing photosynthetically active radiation (PAR). When grown at 28 degrees C/22 degrees C, all plants accumulated more biomass than at 36 degrees C/30 degrees C. When measured under a PAR >or=600 micromol m(-2) s(-1), elevated RZ [CO(2)] resulted in significantly higher A, lower g(s), and higher midday leaf relative water content in all plants. Under elevated RZ [CO(2)], the increase of biomass was greater in roots than in shoots, causing a lower shoot/root ratio. The percentage increase in growth under elevated RZ [CO(2)] was greater at 36 degrees C/30 degrees C although the total biomass was higher at 28 degrees C/22 degrees C. NO(3)(-) and total reduced N concentrations of shoot and root were significantly higher in all plants under elevated RZ [CO(2)] than under ambient RZ [CO(2)] of 360 ppm at both temperature regimes. At each RZ [CO(2)], NO(3)(-) and total reduced N concentration of shoots were greater at 28 degrees C/22 degrees C than at 36 degrees C/30 degrees C. At all RZ [CO(2)], roots of plants at 36 degrees C/30 degrees C had significantly higher NO(3)(-) and total reduced N concentrations than at 28 degrees C/22 degrees C. Since increased RZ [CO(2)] caused partial stomatal closure, maximal A and maximal g(s) were negatively correlated, with a unique relationship for each air temperature. However, across all RZ [CO(2)] and temperature treatments, there was a close correlation between

  19. Analysis of the nitrogen problem in the Netherlands. A first outline; Analyse van de stikstofproblematiek in Nederland. Een eerste verkenning

    Energy Technology Data Exchange (ETDEWEB)

    Erisman, J.W. [ECN Schoon Fossiel, Petten (Netherlands); De Vries, W.; Kros, J.; Oenema, O. [Alterra, Research Instituut voor de groene ruimte, Wageningen (Netherlands); Van der Eerden, L.J. [Plant Research International, Wageningen (Netherlands); Van Zeijts, H. [Centrum voor Landbouw en Milieu CLM, Utrecht (Netherlands)

    2000-03-01

    This report contains the results of an integrated analysis to reach an integrated policy for the nitrogen problem in the Netherlands. First, an analysis is made of the current policy, and the instruments necessary for an integrated analysis are determined. The results of the analysis are used to derive options for an integrated policy. The main conclusion is that the total amount of reactive nitrogen should be used as the basis for a new policy. Solutions should be aimed at reducing the total amount of reactive nitrogen, not emission levels. 35 refs.

  20. Mitigating the Effects of Xuebijing Injection on Hematopoietic Cell Injury Induced by Total Body Irradiation with γ rays by Decreasing Reactive Oxygen Species Levels

    Directory of Open Access Journals (Sweden)

    Deguan Li

    2014-06-01

    Full Text Available Hematopoietic injury is the most common side effect of radiotherapy. However, the methods available for the mitigating of radiation injury remain limited. Xuebijing injection (XBJ is a traditional Chinese medicine used to treat sepsis in the clinic. In this study, we investigated the effects of XBJ on the survival rate in mice with hematopoietic injury induced by γ ray ionizing radiation (IR. Mice were intraperitoneally injected with XBJ daily for seven days after total body irradiation (TBI. Our results showed that XBJ (0.4 mL/kg significantly increased 30-day survival rates in mice exposed to 7.5 Gy TBI. This effect may be attributable to improved preservation of white blood cells (WBCs and hematopoietic cells, given that bone marrow (BM cells from XBJ-treated mice produced more granulocyte-macrophage colony forming units (CFU-GM than that in the 2 Gy/TBI group. XBJ also decreased the levels of reactive oxygen species (ROS by increasing glutathione (GSH and superoxide dismutase (SOD levels in serum and attenuated the increased BM cell apoptosis caused by 2 Gy/TBI. In conclusion, these findings suggest that XBJ enhances the survival rate of irradiated mice and attenuates the effects of radiation on hematopoietic injury by decreasing ROS production in BM cells, indicating that XBJ may be a promising therapeutic candidate for reducing hematopoietic radiation injury.

  1. Determination of total iron-reactive phenolics, anthocyanins and tannins in wine grapes of skins and seeds based on near-infrared hyperspectral imaging.

    Science.gov (United States)

    Zhang, Ni; Liu, Xu; Jin, Xiaoduo; Li, Chen; Wu, Xuan; Yang, Shuqin; Ning, Jifeng; Yanne, Paul

    2017-12-15

    Phenolics contents in wine grapes are key indicators for assessing ripeness. Near-infrared hyperspectral images during ripening have been explored to achieve an effective method for predicting phenolics contents. Principal component regression (PCR), partial least squares regression (PLSR) and support vector regression (SVR) models were built, respectively. The results show that SVR behaves globally better than PLSR and PCR, except in predicting tannins content of seeds. For the best prediction results, the squared correlation coefficient and root mean square error reached 0.8960 and 0.1069g/L (+)-catechin equivalents (CE), respectively, for tannins in skins, 0.9065 and 0.1776 (g/L CE) for total iron-reactive phenolics (TIRP) in skins, 0.8789 and 0.1442 (g/L M3G) for anthocyanins in skins, 0.9243 and 0.2401 (g/L CE) for tannins in seeds, and 0.8790 and 0.5190 (g/L CE) for TIRP in seeds. Our results indicated that NIR hyperspectral imaging has good prospects for evaluation of phenolics in wine grapes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Changes in soil organic carbon and total nitrogen in croplands converted to walnut-based agroforestry systems and orchards in southeastern Loess Plateau of China.

    Science.gov (United States)

    Lu, Sen; Meng, Ping; Zhang, Jinsong; Yin, Changjun; Sun, Shiyou

    2015-11-01

    Limited information is available on the effects of agroforestry system practices on soil properties in the Loess Plateau of China. Over the last decade, a vegetation restoration project has been conducted in this area by converting cropland into tree-based agroforestry systems and orchards to combat soil erosion and degradation. The objective of the present study was to determine the effects of land use conversion on soil organic carbon and total nitrogen in southeastern Loess Plateau. The experiment included three treatments: walnut intercropping system (AF), walnut orchard (WO), and traditional cropland (CR). After 7 years of continual management, soil samples were collected at 0-10, 10-30, and 30-50-cm depths for three treatments, and soil organic carbon (SOC) and total nitrogen (TN) were measured. Results showed that compared with the CR and AF treatments, WO treatment decreased both SOC and TN concentrations in the 0-50-cm soil profile. However, similar patterns of SOC and TN concentrations were observed in the AF and CR treatments across the entire profile. The SOC stocks at 0-50-cm depth were 5.42, 5.52, and 4.67 kg m(-2) for CR, AF, and WO treatments, respectively. The calculated TN stocks at 0-50-cm depth were 0.63, 0.62, and 0.57 kg m(-2) for CR, AF, and WO treatments, respectively. This result demonstrated that the stocks of SOC and TN in WO were clearly lower than those of AF and CR and that the walnut-based agroforestry system was more beneficial than walnut monoculture in terms of SOC and TN sequestration. Owing to the short-term intercropping practice, the changes in SOC and TN stocks were slight in AF compared with those in CR. However, a significant decrease in SOC and TN stocks was observed during the conversion of cropland to walnut orchard after 7 years of management. We also found that land use types had no significant effect on soil C/N ratio. These findings demonstrated that intercropping between walnut rows can potentially maintain

  3. Digestibilidade total e balanço de nitrogênio em cabritos recebendo rações contendo levedura seca = Total digestibility and nitrogen balance in kid goats receiving diets containing dry yeast

    Directory of Open Access Journals (Sweden)

    Claudete Regina Alcalde

    2011-07-01

    Full Text Available O experimento foi conduzido com o objetivo de avaliar a ingestão,digestibilidade da matéria seca e dos nutrientes, o balanço de nitrogênio e estimar os nutrientes digestíveis totais de rações com a inclusão da levedura seca (0, 25, 50, 75 e 100% da MS em substituição ao farelo de soja nas rações para cabritos. Foram utilizados cinco cabritos SRD alojados em gaiolas metabólicas distribuídos em delineamento quadrado latino 5 x 5. As ingestões de matéria seca e de carboidratos totais não foram alteradas com ainclusão de levedura, no entanto, para a ingestão de matéria orgânica, proteína bruta, extrato etéreo e fibra em detergente neutro foi observado efeito quadrático. A digestibilidade do extrato etéreo apresentou efeito linear decrescente, porém, para digestibilidade da matéria seca, matéria orgânica, proteína bruta, carboidratos totais, fibra em detergente neutro e nutrientes digestíveis totais houve efeito quadrático. O balanço de nitrogênio não foi alterado em função da substituição do farelo de soja. A levedura seca pode ser incluída nas rações de cabritos como fonte proteica sem alterar a ingestão de matéria seca e o balanço de nitrogênio, porém, a inclusão acima de 5,9% de levedura seca nas rações reduz a digestibilidade da matéria seca.The assay was carried out to evaluate feed intake, dry matter andnutrient digestibility, nitrogen balance, and to estimate total digestible nutrients of diets with inclusion of dry yeast (0, 25, 50, 75, 100% of DM replacing soybean meal in diets for kid goats. Five goats were allotted in a 5 x 5 Latin square design and housed in digestibility cages. Dry matter intake and total carbohydrates were unchanged with inclusion of dry yeast; however, for organic matter, crude protein, ether extract and neutral detergent fiber, intake showed a quadratic effect. The digestibility of ether extract showed decreasing linear effect; however, for dry matter, organic matter

  4. Influence of reactive gas admixture on transition metal cluster nucleation in a gas aggregation cluster source

    Science.gov (United States)

    Peter, Tilo; Polonskyi, Oleksandr; Gojdka, Björn; Mohammad Ahadi, Amir; Strunskus, Thomas; Zaporojtchenko, Vladimir; Biederman, Hynek; Faupel, Franz

    2012-12-01

    We quantitatively assessed the influence of reactive gases on the formation processes of transition metal clusters in a gas aggregation cluster source. A cluster source based on a 2 in. magnetron is used to study the production rate of titanium and cobalt clusters. Argon served as working gas for the DC magnetron discharge, and a small amount of reactive gas (oxygen and nitrogen) is added to promote reactive cluster formation. We found that the cluster production rate depends strongly on the reactive gas concentration for very small amounts of reactive gas (less than 0.1% of total working gas), and no cluster formation takes place in the absence of reactive species. The influence of discharge power, reactive gas concentration, and working gas pressure are investigated using a quartz micro balance in a time resolved manner. The strong influence of reactive gas is explained by a more efficient formation of nucleation seeds for metal-oxide or nitride than for pure metal.

  5. Uptake of fertilizer nitrogen and soil nitrogen by rice using 15N-labelled nitrogen fertilizer

    International Nuclear Information System (INIS)

    Reddy, K.R.; Patrick, W.H. Jr.

    1980-01-01

    Data from five field experiments using labelled nitrogen fertilizer were used to determine the relative effects of soil nitrogen and fertilizer nitrogen on rice yield. Yield of grain was closely correlated with total aboveground nitrogen uptake (soil + fertilizer), less closely correlated with soil nitrogen uptake and not significantly correlated with fertilizer nitrogen uptake. When yield increase rather than yield was correlated with fertilizer nitrogen uptake, the correlation coefficient was statistically significant. (orig.)

  6. Nondestructive measurement of total volatile basic nitrogen (TVB-N) in pork meat by integrating near infrared spectroscopy, computer vision and electronic nose techniques.

    Science.gov (United States)

    Huang, Lin; Zhao, Jiewen; Chen, Quansheng; Zhang, Yanhua

    2014-02-15

    Total volatile basic nitrogen (TVB-N) content is an important reference index for evaluating pork freshness. This paper attempted to measure TVB-N content in pork meat using integrating near infrared spectroscopy (NIRS), computer vision (CV), and electronic nose (E-nose) techniques. In the experiment, 90 pork samples with different freshness were collected for data acquisition by three different techniques, respectively. Then, the individual characteristic variables were extracted from each sensor. Next, principal component analysis (PCA) was used to achieve data fusion based on these characteristic variables from 3 different sensors data. Back-propagation artificial neural network (BP-ANN) was used to construct the model for TVB-N content prediction, and the top principal components (PCs) were extracted as the input of model. The result of the model was achieved as follows: the root mean square error of prediction (RMSEP) = 2.73 mg/100g and the determination coefficient (R(p)(2)) = 0.9527 in the prediction set. Compared with single technique, integrating three techniques, in this paper, has its own superiority. This work demonstrates that it has the potential in nondestructive detection of TVB-N content in pork meat using integrating NIRS, CV and E-nose, and data fusion from multi-technique could significantly improve TVB-N prediction performance. Copyright © 2013. Published by Elsevier Ltd.

  7. Productivity, total and utilized nitrogen and water use efficiency of soybean grown in reclaimed sandy soil as affected by water regime

    International Nuclear Information System (INIS)

    Abdallah, A.A.G.; Thabet, E.M.A.

    2002-01-01

    Field experiment was performed at the experimental farm, Inshas, atomic energy authority, Egypt, in tafla and sand mixture soil (1:7). The experiment was laid out using sprinkler irrigation system with a line source which allows a gradual variation of irrigation from high to low irrigation, whereas the calculated amount of irrigation water levels were 1565, 1050 and 766.5 (m 3 / feddan). Two soybean varieties (crawford and giza 35) were planted. The obtained results indicated that: a) irrigation with high (1562 m 3 /fed.) and medium (1050 m 3 /fed.) water levels increased total seed wield of the two soybean varieties. b) the highest value of water use efficiency was observed when both soybean varieties irrigated with water level of 1050 m 3 /fed. c) seed protein content in crawford variety was higher in giza 35 variety at the irrigation level of 1562 m 3 /fed. d) seeds of both two soybean varieties showed increase of its atom excess percentage at high and medium water levels, and reflecting increase of nitrogen use efficiency. e) significant increment in seed yield kg/plot. Has been indicated by irrigation with water level of 1050 m 3 /fed. As compared to higher and lower water levels

  8. Effect of branched chain amino acid enrichment of total parenteral nutrition on nitrogen sparing and clinical outcome of sepsis and trauma: a prospective randomized double blind trial

    NARCIS (Netherlands)

    von Meyenfeldt, M. F.; Soeters, P. B.; Vente, J. P.; van Berlo, C. L.; Rouflart, M. M.; de Jong, K. P.; van der Linden, C. J.; Gouma, D. J.

    1990-01-01

    Administration of extra branched chain amino acids (BCAA) has been associated with a nitrogen sparing effect in septic and traumatized patients. Whether nitrogen sparing is associated with decreased morbidity and mortality rates is unknown. We therefore undertook a prospective, randomized, double

  9. C-reactive protein and serum amyloid A as early-phase and prognostic indicators of acute radiation exposure in nonhuman primate total-body irradiation model

    Energy Technology Data Exchange (ETDEWEB)

    Ossetrova, N.I., E-mail: ossetrova@afrri.usuhs.mil [Armed Forces Radiobiology Research Institute, 8901 Wisconsin Avenue, Bldg. 42, Bethesda, MD 20889-5603 (United States); Sandgren, D.J.; Blakely, W.F. [Armed Forces Radiobiology Research Institute, 8901 Wisconsin Avenue, Bldg. 42, Bethesda, MD 20889-5603 (United States)

    2011-09-15

    Terrorist radiological attacks or nuclear accidents could expose large numbers of people to ionizing radiation. In mass-casualty radiological incidents early medical-management requires triage tools for first-responders to quantitatively identify individuals exposed to life-threatening radiation doses and for early initiation (i.e., within one day after radiation exposure) of cytokine therapy for treatment of bone marrow acute radiation syndrome. Herein, we present results from 30 rhesus macaques total-body irradiated (TBI) to a broad dose range of 1-8.5 Gy with {sup 60}Co {gamma}-rays (0.55 Gy min{sup -1}) and demonstrate dose- and time-dependent changes in blood of C-reactive protein (CRP), serum amyloid A (SAA), and interleukin 6 (IL-6) measured by enzyme linked immunosorbent assay (ELISA). CRP and SAA dose-response results are consistent with {approx}1 Gy and {approx}0.2 Gy thresholds for photon-exposure at 24 h after TBI, respectively. Highly significant elevations of CRP and SAA (p = 0.00017 and p = 0.0024, respectively) were found in animal plasma at 6 h after all TBI doses suggesting their potential use as early-phase biodosimeters. Results also show that the dynamics and content of CRP and SAA levels reflect the course and severity of the acute radiation sickness (ARS) and may function as prognostic indicators of ARS outcome. These results demonstrate proof-of-concept that these radiation-responsive proteins show promise as a complementary approach to conventional biodosimetry for early assessment of radiation exposures and may also contribute as diagnostic indices in the medical management of radiation accidents.

  10. Prospective associations of C-reactive protein (CRP) levels and CRP genetic risk scores with risk of total knee and hip replacement for osteoarthritis in a diverse cohort.

    Science.gov (United States)

    Shadyab, A H; Terkeltaub, R; Kooperberg, C; Reiner, A; Eaton, C B; Jackson, R D; Krok-Schoen, J L; Salem, R M; LaCroix, A Z

    2018-05-22

    To examine associations of high-sensitivity C-reactive protein (CRP) levels and polygenic CRP genetic risk scores (GRS) with risk of end-stage hip or knee osteoarthritis (OA), defined as incident total hip (THR) or knee replacement (TKR) for OA. This study included a cohort of postmenopausal white, African American, and Hispanic women from the Women's Health Initiative. Women were followed from baseline to date of THR or TKR, death, or December 31, 2014. Medicare claims data identified THR and TKR. Hs-CRP and genotyping data were collected at baseline. Three CRP GRS were constructed: 1) a 4-SNP GRS comprised of genetic variants representing variation in the CRP gene among European populations; 2) a multilocus 18-SNP GRS of genetic variants significantly associated with CRP levels in a meta-analysis of genome-wide association studies; and 3) a 5-SNP GRS of genetic variants significantly associated with CRP levels among African American women. In analyses conducted separately among each race and ethnic group, there were no significant associations of ln hs-CRP with risk of THR or TKR, after adjusting for age, body mass index, lifestyle characteristics, chronic diseases, hormone therapy use, and non-steroidal anti-inflammatory drug use. CRP GRS were not associated with risk of THR or TKR in any ethnic group. Serum levels of ln hs-CRP and genetically-predicted CRP levels were not associated with risk of THR or TKR for OA among a diverse cohort of women. Copyright © 2018 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  11. [Storages and distributed patterns of soil organic carbon and total nitrogen during the succession of artificial sand-binding vegetation in arid desert ecosystem].

    Science.gov (United States)

    Jia, Xiao-Hong; Li, Xin-Rong; Zhou, Yu-Yan; Li, Yuan-Shou

    2012-03-01

    Soil carbon pool acts as the largest one of carbon pools in the terrestrial ecosystem. The storages and distributed patterns of soil organic carbon (SOC) and total nitrogen (TN) evaluated accurately are helpful to predict the feedback between the terrestrial ecosystem and climate changes. Based on the data about bulk density, content of SOC and TN at 0-100 cm soil profile, the density of SOC and TN at the temporal (chronosequence of artificial vegetation) and spatial (vertical) distributed patterns have been estimated. The results indicated that storages of SOC and TN at 0-100 cm depth increased with the chronosequence of artificial vegetation. The storages of SOC and TN showed the same tendency with the succession time of artificial vegetation. Storages of SOC and TN significantly increased at the early stage of banding sand by artificially vegetation ( 25 a). The variation of storages mainly occurred in the 0-20 cm depth. The storages decreased with the soil vertical depth. At the early stage of banding sand, increase in storage included every depth (0-100 cm). Whereas, at the later stage, increase in storage at 0-20 cm depth was main, and increase in the 20-100 cm was inconspicuous. The accumulation of storage at the shallow soil depth was more notability with the succession of artificial vegetation. The distributed pattern of storage in SOC and TN has been confirmed in arid desert regions below 200 mm annual precipitation. This was beneficial to understand the carbon cycle and to predict the feedback relationship between desert ecosystem and climate changes.

  12. A nitrogen mass balance for California

    Science.gov (United States)

    Liptzin, D.; Dahlgren, R. A.

    2010-12-01

    Human activities have greatly altered the global nitrogen cycle and these changes are apparent in water quality, air quality, ecosystem and human health. However, the relative magnitude of the sources of new reactive nitrogen and the fate of this nitrogen is not well established. Further, the biogeochemical aspects of the nitrogen cycle are often studied in isolation from the economic and social implications of all the transformations of nitrogen. The California Nitrogen Assessment is an interdisciplinary project whose aim is evaluating the current state of nitrogen science, practice, and policy in the state of California. Because of the close proximity of large population centers, highly productive and diverse agricultural lands and significant acreage of undeveloped land, California is a particularly interesting place for this analysis. One component of this assessment is developing a mass balance of nitrogen as well as identifying gaps in knowledge and quantifying uncertainty. The main inputs of new reactive nitrogen to the state are 1) synthetic nitrogen fertilizer, 2) biological nitrogen fixation, and 3) atmospheric nitrogen deposition. Permanent losses of nitrogen include 1) gaseous losses (N2, N2O, NHx, NOy), 2) riverine discharge, 3) wastewater discharge to the ocean, and 4) net groundwater recharge. A final term is the balance of food, feed, and fiber to support the human and animal populations. The largest input of new reactive nitrogen to California is nitrogen fertilizer, but both nitrogen fixation and atmospheric deposition contribute significantly. Non-fertilizer uses, such as the production of nylon and polyurethane, constitutes about 5% of the synthetic N synthesized production. The total nitrogen fixation in California is roughly equivalent on the 400,000 ha of alfalfa and the approximately 40 million ha of natural lands. In addition, even with highly productive agricultural lands, the large population of livestock, in particular dairy cows

  13. A comparison of total bound nitrogen with the sum of inorganic nitrogen in the present partice in the German Water Regulation Act for monitoring of nitrogen compounds; Ein Vergleich des gesamten gebundenen Stickstoffs mit der Summe des anorganischen Stickstoffs in der derzeitigen Gesetzespraxis zur Ueberwachung auf Stickstoffverbindungen

    Energy Technology Data Exchange (ETDEWEB)

    Rinne, D.; Seckert-Knopp, W. [Landesamt fuer Wasserwirtschaft Rheinland-Pfalz, Mainz (Germany)

    1997-11-01

    The results of the analysis of nitrate, nitrite, ammonia, and total bound nitrogen (TN{sub b}) from 331 samples of municipal and 322 samples of industrial waste water effluents were compiled in the years 1990 to 1994. These data were evaluated due to - the comparison of the sum of inorganic nitrogen ({Sigma} N{sub anorg.}) of nitrate, nitrite, and ammonia to TN{sub b} in view of a planned exchange in the German Waste Water Regulation Act - the calculation of organic bound nitrogen (N{sub org.}) - the usefulness to generate sufficient data for balancing the `content of nitrogen` in water systems. The results of our investigations are: The analytical results from the sum of inorganic nitrogen and TN{sub b} are in very good agreement. In most cases the TN{sub b} values were higher than those of {Sigma} N{sub anorg.} This is plausible because most samples contain a certain amount of organic bound nitrogen. Therefore the differences between the results of this two analytical parameters should express the term `organic bound nitrogen` (N{sub org.}). This substraction is an excellent method to estimate this value without a further analytical procedure. The data from our investigation underline this quite clearly. In contrary to the determination of the single compounds ammonia, nitrate, and nitrite the TN{sub b} as a sum parameter is fast, instrument based, can be automated and shows a sufficient limit of determination. This method allows the evaluation of a high data density for water monitoring and balancing the `content of nitrogen` in water systems. A further advantage is the minimizing of errors when applying only one analytical method instead of three. (orig.) [Deutsch] Die Analysenergebnisse der Parameter Nitrit, Nitrat, Ammonium sowie die davon abgeleiteten Parameter `Summe anorganischer Stickstoff` ({Sigma} N{sub anorg.}) und `gesamter gebundener Stickstoff` (TN{sub b}) wurden fuer 331 Proben kommunaler und 322 Proben industrieller Abwasseranlagen aus den Jahren

  14. The long-term impact of urbanization on nitrogen patterns and dynamics in Shanghai, China

    International Nuclear Information System (INIS)

    Gu Baojing; Dong Xiaoli; Peng Changhui; Luo Weidong; Chang Jie; Ge Ying

    2012-01-01

    Urbanization is an important process that alters the regional and global nitrogen biogeochemistry. In this study, we test how long-term urbanization (1952–2004) affects the nitrogen flows, emissions and drivers in the Greater Shanghai Area (GSA) based on the coupled human and natural systems (CHANS) approach. Results show that: (1) total nitrogen input to the GSA increased from 57.7 to 587.9 Gg N yr −1 during the period 1952–2004, mainly attributing to fossil fuel combustion (43%), Haber–Bosch nitrogen fixation (31%), and food/feed import (26%); (2) per capita nitrogen input increased from 13.5 to 45.7 kg N yr −1 , while per gross domestic product (GDP) nitrogen input reduced from 22.2 to 0.9 g N per Chinese Yuan, decoupling of nitrogen with GDP; (3) emissions of reactive nitrogen to the environment transformed from agriculture dominated to industry and human living dominated, especially for air pollution. This study provides decision-makers a novel view of nitrogen management. - Highlights: ► Major Nr emission source shifts from agriculture to industry alongside urbanization. ► Decoupling of nitrogen with GDP and urban expansion arises alongside urbanization. ► Nitrogen fluxes increase with population growth and living standard promotion. - Major nitrogen emission source shifts from agriculture to industry and human, and decoupling of nitrogen with GDP and urban expansion arises alongside urbanization.

  15. Effect of nitrogen flow rate on structural, morphological and optical properties of In-rich In{sub x}Al{sub 1−x}N thin films grown by plasma-assisted dual source reactive evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Alizadeh, M., E-mail: alizadeh_kozerash@yahoo.com [Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Ganesh, V.; Goh, B.T. [Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Dee, C.F.; Mohmad, A.R. [Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, Bangi, Selangor (Malaysia); Rahman, S.A., E-mail: saadah@um.edu.my [Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2016-08-15

    Highlights: • In-rich In{sub x}Al{sub 1−x}N films were grown by Plasma-aided reactive evaporation. • Effect of nitrogen flow rate on the films properties was investigated. • The band gap of the films was varied from 1.17 to 0.90 eV. • By increasing N{sub 2} flow rate the In{sub x}Al{sub 1−x}N films tend to turn into amorphous state. • At higher N{sub 2} flow rate agglomeration of the particles is highly enhanced. - Abstract: In-rich In{sub x}Al{sub 1−x}N thin films were deposited on quartz substrate at various nitrogen flow rates by plasma-assisted dual source reactive evaporation technique. The elemental composition, surface morphology, structural and optical properties of the films were investigated by X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), Raman spectroscopy, X-ray diffraction (XRD), UV–vis spectrophotometer and photoluminescence (PL) measurements. XPS results revealed that the indium composition (x) of the In{sub x}Al{sub 1−x}N films increases from 0.90 to 0.97 as the nitrogen flow rate is increased from 40 to 100 sccm, respectively. FESEM images of the surface and cross-sectional microstructure of the In{sub x}Al{sub 1−x}N films showed that by increasing the N{sub 2} flow rate, the grown particles are highly agglomerated. Raman and XRD results indicated that by increasing nitrogen flow rate the In-rich In{sub x}Al{sub 1−x}N films tend to turn into amorphous state. It was found that band gap energy of the films are in the range of 0.90–1.17 eV which is desirable for the application of full spectra solar cells.

  16. Stream Water, Carbon and Total Nitrogen Load Responses to a Simulated Emerald Ash Borer Infestation in Black Ash Dominated Headwater Wetlands

    Science.gov (United States)

    Van Grinsven, M. J.; Shannon, J.; Noh, N. J.; Kane, E. S.; Bolton, N. W.; Davis, J.; Wagenbrenner, J.; Sebestyen, S. D.; Kolka, R.; Pypker, T. G.

    2017-12-01

    The rapid and extensive expansion of emerald ash borer (EAB) is considered an important ecological and economic disturbance, and will likely affect critical ecosystem services associated with black ash wetlands. It is unknown how EAB-induced disturbance in wetlands dominated with black ash will impact stream water, dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) export dynamics. We hypothesized that loads of water, DOC and TDN exported from black ash wetlands would be elevated following an EAB-induced disturbance. Stream water, DOC and TDN loads exiting two black ash wetlands in headwater watersheds in Michigan were quantified over a four-year period, and were combined with wetland soil temperature and soil decomposition rate monitoring to better understand the biogeochemical implications of an EAB-induced disturbance. After a two-year baseline monitoring period, an EAB disturbance was simulated by felling (ash-cut) all black ash trees with diameters greater than 2.5-cm in one wetland. When compared to the unaltered control, stream water DOC and TDN concentrations exiting the ash-cut wetland were significantly larger by 39% and 38%, respectively during the post-treatment study period. The significantly elevated DOC and TDN concentrations were likely associated with the higher soil temperatures and increased rates of soil decomposition detected in the ash-cut site during the post-treatment period. No significant mean daily stream discharge differences were detected between treatments during the pre-treatment period, however the 0.46 mm d-1 mean daily stream discharge exiting the ash-cut wetland was significantly smaller than the 1.07 mm d-1 exiting the unaltered control during the post-treatment study period. The significantly smaller daily stream discharge in the ash-cut site likely contributed to the fact no significant differences between treatments for either mean daily DOC loads or TDN loads were detected during the post-treatment period

  17. Surface engineering of nanoparticles with macromolecules for epoxy curing: Development of super-reactive nitrogen-rich nanosilica through surface chemistry manipulation

    Science.gov (United States)

    Jouyandeh, Maryam; Jazani, Omid Moini; Navarchian, Amir H.; Shabanian, Meisam; Vahabi, Henri; Saeb, Mohammad Reza

    2018-07-01

    Curing behavior of epoxy-based nanocomposites depends on dispersion state of nanofillers and their physical and chemical interactions with the curing moieties. In this work, a systematic approach was introduced for chemical functionalization of nanoparticles with macromolecules in order to enrich crosslinking potential of epoxy/amine systems, particularly at late stages of cure where the curing is diffusion-controlled. Super-reactive hyperbranched polyethylenimine (PEI)-attached nanosilica was materialized in this work to facilitate epoxy-amine curing. Starting from coupling [3-(2,3-epoxypropoxy) propyl] trimethoxysilane (EPPTMS) with hyperbranched PEI, a super-reactive macromolecule was obtained and subsequently grafted onto the nanosilica surface. Eventually, a thermally-stable highly-curable nanocomposite was attained by replacement of amine and imine groups of the PEI with imide and amide groups through the reaction with pyromellitic acid dianhydride. Fourier-transform infrared spectrophotometry, X-ray diffractometry, X-ray photoelectron spectroscopy and transmission electron microscopy approved successful grafting of polymer chains onto the nanosilica surface. Thermogravimetric analyses approved a relatively high grafting ratio of ca. 21%. Curing potential of the developed super-reactive nanoparticle was uncovered through nonisothermal differential scanning calorimetry signifying an enthalpy rise of ca. 120 J/g by addition of 2 wt.% to epoxy at 5 °C/min heating rate. Even at low concentration of 0.5 wt.%, the glass transition temperature of epoxy increased from 128 to 156 °C, demonstrating prolonged crosslinking.

  18. Anaerobic ammonium oxidation and its contribution to nitrogen removal in China’s coastal wetlands

    Science.gov (United States)

    Hou, Lijun; Zheng, Yanling; Liu, Min; Li, Xiaofei; Lin, Xianbiao; Yin, Guoyu; Gao, Juan; Deng, Fengyu; Chen, Fei; Jiang, Xiaofen

    2015-01-01

    Over the past several decades, human activities have caused substantial enrichment of reactive nitrogen in China’s coastal wetlands. Although anaerobic ammonium oxidation (anammox), the process of oxidizing ammonium into dinitrogen gas through the reduction of nitrite, is identified as an important process for removing reactive nitrogen, little is known about the dynamics of anammox and its contribution to nitrogen removal in nitrogen-enriched environments. Here, we examine potential rates of anammox and associate them with bacterial diversity and abundance across the coastal wetlands of China using molecular and isotope tracing techniques. High anammox bacterial diversity was detected in China’s coastal wetlands and included Candidatus Scalindua, Kuenenia, Brocadia, and Jettenia. Potential anammox rates were more closely associated with the abundance of anammox bacteria than to their diversity. Among all measured environmental variables, temperature was a key environmental factor, causing a latitudinal distribution of the anammox bacterial community composition, biodiversity and activity along the coastal wetlands of China. Based on nitrogen isotope tracing experiments, anammox was estimated to account for approximately 3.8–10.7% of the total reactive nitrogen removal in the study area. Combined with denitrification, anammox can remove 20.7% of the total external terrigenous inorganic nitrogen annually transported into China’s coastal wetland ecosystems. PMID:26494435

  19. Carbono orgânico e nitrogênio total do solo e suas relações com os espaçamentos de plantio de cafeeiro Soil organic carbon and total nitrogen as related with coffee spacing

    Directory of Open Access Journals (Sweden)

    Otacílio José Passos Rangel

    2008-10-01

    L. trees and tree rows. The experiment was carried out from 1992 to 2004 on an experimental farm of EPAMIG, in Machado (Minas Gerais State, Brazil. The treatments consisted of the combination of four distances between tree rows (2.0; 2.5; 3.0 and 3.5 m, three in-row distances (0.5; 0.75 and 1.0 m and two management systems of crop residues (interline - IL and canopy projection - CP, totaling 24 treatments, arranged randomly in the field in blocks, in 4x3x2 factorial design, with three replications. The soil organic carbon (OC and total nitrogen (TN contents were measured, apart from the OC/TN ratio. In samples collected in IL, the OC and TN contents were higher than those measured in CP. The cropping spacing influenced the OC contents; highest values were verified when distance between rows was 3.5 m and in-row distances 0.75 and 0.5 m, in the 0-0.05 m layer. Higher accumulation of plant residues, low soil disruption, and, consequently, higher contents of organic matter favors more OC and TN in the IL. Deforestation and coffee cropping for 11 years resulted in decreasing OC contents from 26 % to 38 %, in IL and CP, respectively, and an average reduction of 25 % for TN.

  20. Atmospheric ammonia measurements at low concentration sites in the northeastern USA: implications for total nitrogen deposition and comparison with CMAQ estimates

    Science.gov (United States)

    We evaluated the relative importance of dry deposition of ammonia (NH3) gas at several headwater areas of the Susquehanna River, the largest single source of nitrogen pollution to Chesapeake Bay, including three that are remote from major sources of NH3 emissions (CTH, ARN, and K...

  1. Nitrogen Fixation in the Intertidal Sediments of the Yangtze Estuary: Occurrence and Environmental Implications

    Science.gov (United States)

    Hou, Lijun; Wang, Rong; Yin, Guoyu; Liu, Min; Zheng, Yanling

    2018-03-01

    Nitrogen fixation is a microbial-mediated process converting atmospheric dinitrogen gas to biologically available ammonia or other molecules, and it plays an important role in regulating nitrogen budgets in coastal marine ecosystems. In this study, nitrogen fixation in the intertidal sediments of the Yangtze Estuary was investigated using nitrogen isotope tracing technique. The abundance of nitrogen fixation functional gene (nifH) was also quantified. The measured rates of sediment nitrogen fixation ranged from 0.37 to 7.91 nmol N g-1 hr-1, while the abundance of nifH gene varied from 2.28 × 106 to 1.28 × 108 copies g-1 in the study area. The benthic nitrogen fixation was correlated closely to the abundance of nifH gene and was affected significantly by salinity, pH, and availability of sediment organic carbon and ammonium. It is estimated that sediment nitrogen fixation contributed approximately 9.3% of the total terrigenous inorganic nitrogen transported annually into the Yangtze estuarine and coastal environment. This result implies that the occurrence of benthic nitrogen fixation acts as an important internal source of reactive nitrogen and to some extent exacerbates nitrogen pollution in this aquatic ecosystem.

  2. Response to Reactive Nitrogen Intermediates in Mycobacterium tuberculosis: Induction of the 16-Kilodalton α-Crystallin Homolog by Exposure to Nitric Oxide Donors

    OpenAIRE

    Garbe, T. R.; Hibler, N. S.; Deretic, V.

    1999-01-01

    In contrast to the apparent paucity of Mycobacterium tuberculosis response to reactive oxygen intermediates, this organism has evolved a specific response to nitric oxide challenge. Exposure of M. tuberculosis to NO donors induces the synthesis of a set of polypeptides that have been collectively termed Nox. In this work, the most prominent Nox polypeptide, Nox16, was identified by immunoblotting and by N-terminal sequencing as the α-crystallin-related, 16-kDa small heat shock protein, sHsp16...

  3. A landscape-scale study of land use and parent material effects on soil organic carbon and total nitrogen in the Konya Basin, Turkey

    Science.gov (United States)

    Mayes, M. T.; Marin-Spiotta, E.; Ozdogan, M.; Erdogan, M. A.

    2011-12-01

    In ecosystems where intensive farming and grazing have been occurring for millennia, there is poor understanding of how present-day soil biogeochemical properties relate to factors associated with soil parent materials (e.g. texture, mineralogy), and the net effects of long-term land use practices. Soil organic carbon (SOC) and total soil nitrogen (TN) are important for their roles in maintaining soil structure, moisture, fertility and contributing to carbon sequestration. Our research used a state factor approach (Jenny 1981) to study effects of soil parent materials and land use practices on SOC, TN, and other properties across thirty-five sites in the Konya Basin, an arid region in south-central Turkey farmed and grazed for over 8,000 years. This project is one of the first to study land use impacts on soils at a landscape scale (500 km2) in south-central Turkey, and incorporate geospatial data (e.g. a satellite imagery-derived land cover map we developed) to aid selection of field sites. Focusing on the plough layer (0-25cm) in two depth intervals, we compared effects of agriculture, orchard cultivation and grazing land use practices and clay-loam alluvial, sandy-loam volcanic and lacustrine clay soils on soil properties using standard least squares regression analyses. SOC and TN depended strongly on parent materials, but not on land use. Averaged across both depth intervals, alluvial soil SOC and TN concentrations (19.4 ± 1.32 Mg/ha SOC, 2.86 ± 1.23 Mg/ha TN) were higher and significantly different than lacustrine (9.72 ± 3.01 Mg/ha SOC, 1.57 ± 0.69 Mg/ha TN) and volcanic soil concentrations (7.40 ± 1.72 Mg/ha SOC, 1.02 ± 0.35 Mg/ha TN). Land use significantly affected SOC and TN on alluvial soils, but not on volcanic or lacustrine soils. Our results demonstrate the potential for land use to have different effects on different soils in this region. Our data on SOC, TN and other soil properties illustrate patterns in regional SOC and TN variability not

  4. Validation of the extension of the range of application and of the single system of injection for the determination of total nitrogen in petroleum and its derivatives by chemiluminescence; Validacao da ampliacao da faixa de aplicacao e do sistema unico de injecao para a determinacao de nitrogenio total em petroleos e derivados por quimiluminescencia

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Maria de Fatima Pereira dos [Fundacao Gorceix, Ouro Preto, MG(Brazil)]. E-mail: santos@cenpes.petrobras.com.br; Tamanqueira, Juliana Boechat [Universidade Federal Fluminense, Niteroi, RJ (Brazil); Magalhaes, Julio Cesar Dias [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas. Avaliacao de Petroleo; Oliveira, Elcio Cruz de [Transpetro, Rio de Janeiro, RJ (Brazil). Logistica e Planejamento; Vaitsman, Delmo Santiago [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Quimica. Dept. de Quimica Analitica

    2003-12-01

    With the objectives of using a single system of injection and of extending the range of application for the method ASTM D4629/02 'Total Nitrogen in Petroleum Derivatives by the System of Injection with a Syringe and Detection by Chemo- Luminescence', it was studied a procedure by statistical validation with the objective of guaranteeing the analytical reliability of the assay and allowing the inclusion of samples of petroleum and heavy derivatives in one single methodology. The determination of total nitrogen for petroleum and derivatives is traditionally assayed using the method of Kjeldahl - a time-consuming methodology that requires a large amount of time for giving the final result, at the same time that is not recommended for concentrations below 0.1%w/w, which does not meet the requirements for the specifications of the product, in the petroleum industry. An alternative for the method of Kjeldahl is the pyro-chemo luminescence, which allows the achievement of more repetitive results for total nitrogen. In the detection of nitrogen, the technique combines the reliability of oxidative combustion with the sensitivity of chemiluminescence. Therefore, it was developed a protocol of validation in the methodology ASTM D4629/02 for the validation of the extension of the range of application and for the evaluation of the performance of the equipment in analytical conditions, according to the calibration curve. (author)

  5. The nitrogen cycle.

    Science.gov (United States)

    Stein, Lisa Y; Klotz, Martin G

    2016-02-08

    Nitrogen is the fourth most abundant element in cellular biomass, and it comprises the majority of Earth's atmosphere. The interchange between inert dinitrogen gas (N2) in the extant atmosphere and 'reactive nitrogen' (those nitrogen compounds that support, or are products of, cellular metabolism and growth) is entirely controlled by microbial activities. This was not the case, however, in the primordial atmosphere, when abiotic reactions likely played a significant role in the inter-transformation of nitrogen oxides. Although such abiotic reactions are still important, the extant nitrogen cycle is driven by reductive fixation of dinitrogen and an enzyme inventory that facilitates dinitrogen-producing reactions. Prior to the advent of the Haber-Bosch process (the industrial fixation of N2 into ammonia, NH3) in 1909, nearly all of the reactive nitrogen in the biosphere was generated and recycled by microorganisms. Although the Haber-Bosch process more than quadrupled the productivity of agricultural crops, chemical fertilizers and other anthropogenic sources of fixed nitrogen now far exceed natural contributions, leading to unprecedented environmental degradation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Application of heterogeneous photocatalysis solar and artificial for removal of ammonia nitrogen and total phosphorus in sanitary waste water; Aplicacao da fotocatalise heterogenea solar na remocao de nitrogenio amoniacal e fosforo total em esgoto sanitario

    Energy Technology Data Exchange (ETDEWEB)

    Francisco, Adriana Ribeiro; Paterniani, Jose Euclides Stipp [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Engenharia Agricola], E-mail: z_drica@yahoo.com.br; Kuwakino, Adriana Yuri [Universidade Estadual de Campinas (UNICAMP), Limeira, SP (Brazil). Fac. de Tecnologia

    2010-07-01

    The advanced oxidative processes (AOP) contribute or to polishing a plenty of effluent treatment, or improvement at any stage of treatment, being heterogeneous photocatalysis the most used among AOP. This study aimed to compare the heterogeneous photocatalysis in solar and artificial wastewater treatment according to the removal of ammonia nitrogen and phosphorus. The photocatalytic reactor using titanium dioxide (TiO{sub 2}) as semiconductor photocatalytic process. The heterogeneous photocatalysis using solar UV consisted material of PET bottles and the sample was added TiO{sub 2} in constant aeration for a period of 360 minutes. In the case of reactor artificial UV light protected by a quartz tube, the process was made in a Pyrex glass reactor, where the sample was undergoing 180 minutes of aeration. The photocatalytic tests for removal of ammonia nitrogen showed more favorable in the photocatalysis of artificial UV than the solar, coming achieve average efficiency of 51% and 32%, respectively. In the case of phosphorus, the situation was reversed, the solar UV photocatalytic average efficiency reached 51% and artificial UV 32 %. (author)

  7. Nitrogen footprints: past, present and future

    Science.gov (United States)

    Galloway, James N.; Winiwarter, Wilfried; Leip, Adrian; Leach, Allison M.; Bleeker, Albert; Willem Erisman, Jan

    2014-11-01

    The human alteration of the nitrogen cycle has evolved from minimal in the mid-19th century to extensive in the present time. The consequences to human and environmental health are significant. While much attention has been given to the extent and impacts of the alteration, little attention has been given to those entities (i.e., consumers, institutions) that use the resources that result in extensive reactive nitrogen (Nr) creation. One strategy for assessment is the use of nitrogen footprint tools. A nitrogen footprint is generally defined as the total amount of Nr released to the environment as a result of an entity’s consumption patterns. This paper reviews a number of nitrogen footprint tools (N-Calculator, N-Institution, N-Label, N-Neutrality, N-Indicator) that are designed to provide that attention. It reviews N-footprint tools for consumers as a function of the country that they live in (N-Calculator, N-Indicator) and the products they buy (N-Label), for the institutions that people work in and are educated in (N-Institution), and for events and decision-making regarding offsets (N-Neutrality). N footprint tools provide a framework for people to make decisions about their resource use and show them how offsets can be coupled with behavior change to decrease consumer/institution contributions to N-related problems.

  8. Nitrogen footprints: past, present and future

    International Nuclear Information System (INIS)

    Galloway, James N; Leach, Allison M; Winiwarter, Wilfried; Leip, Adrian; Bleeker, Albert; Erisman, Jan Willem

    2014-01-01

    The human alteration of the nitrogen cycle has evolved from minimal in the mid-19th century to extensive in the present time. The consequences to human and environmental health are significant. While much attention has been given to the extent and impacts of the alteration, little attention has been given to those entities (i.e., consumers, institutions) that use the resources that result in extensive reactive nitrogen (Nr) creation. One strategy for assessment is the use of nitrogen footprint tools. A nitrogen footprint is generally defined as the total amount of Nr released to the environment as a result of an entity’s consumption patterns. This paper reviews a number of nitrogen footprint tools (N-Calculator, N-Institution, N-Label, N-Neutrality, N-Indicator) that are designed to provide that attention. It reviews N-footprint tools for consumers as a function of the country that they live in (N-Calculator, N-Indicator) and the products they buy (N-Label), for the institutions that people work in and are educated in (N-Institution), and for events and decision-making regarding offsets (N-Neutrality). N footprint tools provide a framework for people to make decisions about their resource use and show them how offsets can be coupled with behavior change to decrease consumer/institution contributions to N-related problems. (paper)

  9. Generation and reactivity of the phenyl cation in cryogenic argon matrices: monitoring the reactions with nitrogen and carbon monoxide directly by IR spectroscopy.

    Science.gov (United States)

    Winkler, Michael; Sander, Wolfram

    2006-08-18

    The phenyl cation 1 has been prepared by co-deposition of iodobenzene 6 or bromobenzene 7 with a microwave-induced argon plasma and characterized by IR spectroscopy in cryogenic argon matrices. The cation can clearly be identified by its strongest absorption at 3110 cm(-1) that is rapidly bleached upon visible light irradiation. This characteristic band is observed neither in the conventional photochemistry of 6 or 7 nor in discharge experiments with alkyl halides or chlorobenzene. The latter finding is in line with energetic considerations. According to density functional theory (DFT) computations, the strongest absorption of 1 is caused by a C-H stretching vibration that involves almost entirely the ortho-hydrogens. This is confirmed by isotopic labeling experiments. Co-deposition of halobenzene/N2 mixtures leads to a decrease of the 3110 cm(-1) absorption, whereas several new signals are detected in the 2200-2400 cm(-1) range of the IR spectrum. Annealing of a matrix that contains 1 and 1% N2 leads to an increase of a broad band at 2260 cm(-1) that is assigned to the benzenediazonium ion 2. A sharp signal at 2327 cm(-1) that had previously been assigned to the N-N stretching vibration of 2 is due to molecular nitrogen. The mechanism that triggers the IR activity of N2 is not yet understood. Annealing of a matrix that contains 1 and 0.5% CO leads to an increase of a broad band at 2217 cm(-1) that is considerably stronger than the 2260 cm(-1) absorption of 2. This signal is assigned to the C-O stretching vibration of the benzoyl cation 12, in excellent agreement with previous investigations of 12 in superacidic media. Some consequences of the measured frequencies with regard to bonding in 2 and 12 are discussed.

  10. Simultaneous determination of reactive oxygen and nitrogen species in mitochondrial compartments of apoptotic HepG2 cells and PC12 cells based on microchip electrophoresis-laser-induced fluorescence.

    Science.gov (United States)

    Chen, Zhenzhen; Li, Qingling; Sun, Qianqian; Chen, Hao; Wang, Xu; Li, Na; Yin, Miao; Xie, Yanxia; Li, Hongmin; Tang, Bo

    2012-06-05

    Determination of intracellular bioactive species will afford beneficial information related to cell metabolism, signal transduction, cell function, and disease treatment. In this study, the first application of a microchip electrophoresis-laser-induced fluorescence (MCE-LIF) method for concurrent determination of reactive oxygen species (ROS) and reactive nitrogen species (RNS), i.e., superoxide (O(2)(-•)) and nitric oxide (NO) in mitochondria, was developed using fluorescent probes 2-chloro-1,3-dibenzothiazolinecyclohexene (DBZTC) and 3-amino,4-aminomethyl-2',7'-difluorescein (DAF-FM), respectively. Potential interference of intracellular dehydroascorbic acid (DHA) and ascorbic acid (AA) for NO detection with DAF-FM was eliminated through oxidation of AA with the addition of ascorbate oxidase, followed by subsequent MCE separation. Fluorescent products of O(2)(-•) and NO, DBZTC oxide (DBO), and DAF-FM triazole (DAF-FMT) showed excellent baseline separation within 1 min with a running buffer of 40 mM Tris solution (pH 7.4) and a separating electric field of 500 V/cm. The levels of DBO and DAF-FMT in mitochondria isolated from normal HepG2 cells and PC12 cells were evaluated using this method. Furthermore, the changes of DBO and DAF-FMT levels in mitochondria isolated from apoptotic HepG2 cells and PC12 cells could also be detected. The current approach was proved to be simple, fast, reproducible, and efficient. Measurement of the two species with the method will be beneficial to understand ROS/RNS distinctive functions. In addition, it will provide new insights into the role that both species play in biological systems.

  11. Measurement of the nitrogen total cross section from 0.5 eV to 50 MeV, and analysis of the 433-keV resonance

    International Nuclear Information System (INIS)

    Harvey, J.A.; Hill, N.W.; Larson, N.M.; Larson, D.C.

    1991-01-01

    High-resolution neutron transmission measurements have been made on several thicknesses of nitrogen gas samples from 0.5 eV to 50 MeV at the Oak Ridge Electron Linear Accelerator (ORELA). A preliminary R-matrix analysis has been done for resonances up to 800 keV. An R-matrix analysis of previous data was done by LANL and ENDF/B-VI, including the lowest energy resonance in 14 N at 433 keV. They found a spin of 3/2 (with ell = 1) and a peak cross section of 7.0 b. Analysis of the present data yield a spin of 7/2 (requiring ell ≥ 2) and a peak cross section of 11.5 b for this resonance. These results are important for transport calculations of neutrons through air. Scattering measurements are planned to determine the parity of this resonance. 6 refs., 2 figs

  12. Measuring arrangement for simultaneous and continuous determination of the total and radioactive amounts of reactive matters in flowing inert gases. Pt. 1

    International Nuclear Information System (INIS)

    Figge, K.; Martinen, H.; Schulz, W.

    1976-01-01

    In order to investigate the metabolism behaviour of radiocarbon-labelled substances, a special apparatus has been designed which enables a fully automatic as well as continuous and simultaneous determination of the total and the 14 C-labelled carbon dioxide (CO 2 ) in the respiratory air of small animals. The CO 2 which is exhaled by the experimental animals is absorbed quantitatively in a novel absorber-scintillator cocktail. The quantity of combined total CO 2 is then determined by measuring the specific conductivity whereas the amount of radioactive CO 2 is assessed via scintillation measurement. The measuring accuracy achieved is around 10 N cm 3 or about 5 nCi, whereas the CO 2 recovery is above 98%. In addition to the recording in a linear recorder, the data are transferred to punching tapes and can be evaluated in an EDP unit. (orig.) [de

  13. Nitrogen in rock: Occurrences and biogeochemical implications

    Science.gov (United States)

    Holloway, J.M.; Dahlgren, R.A.

    2002-01-01

    There is a growing interest in the role of bedrock in global nitrogen cycling and potential for increased ecosystem sensitivity to human impacts in terrains with elevated background nitrogen concentrations. Nitrogen-bearing rocks are globally distributed and comprise a potentially large pool of nitrogen in nutrient cycling that is frequently neglected because of a lack of routine analytical methods for quantification. Nitrogen in rock originates as organically bound nitrogen associated with sediment, or in thermal waters representing a mixture of sedimentary, mantle, and meteoric sources of nitrogen. Rock nitrogen concentrations range from trace levels (>200 mg N kg -1) in granites to ecologically significant concentrations exceeding 1000 mg N kg -1 in some sedimentary and metasedimentary rocks. Nitrate deposits accumulated in arid and semi-arid regions are also a large potential pool. Nitrogen in rock has a potentially significant impact on localized nitrogen cycles. Elevated nitrogen concentrations in water and soil have been attributed to weathering of bedrock nitrogen. In some environments, nitrogen released from bedrock may contribute to nitrogen saturation of terrestrial ecosystems (more nitrogen available than required by biota). Nitrogen saturation results in leaching of nitrate to surface and groundwaters, and, where soils are formed from ammonium-rich bedrock, the oxidation of ammonium to nitrate may result in soil acidification, inhibiting revegetation in certain ecosystems. Collectively, studies presented in this article reveal that geologic nitrogen may be a large and reactive pool with potential for amplification of human impacts on nitrogen cycling in terrestrial and aquatic ecosystems.

  14. Redução do tempo de digestão na determinação de nitrogênio em solos Reduction of digestion time in the determination of total nitrogen in soils

    Directory of Open Access Journals (Sweden)

    Flávio Verlengia

    1968-01-01

    Full Text Available Foi estudada a redução do tempo de digestão na determinação do nitrogênio total em solos, assim como a perda dêsse nutriente durante a sua determinação. Procurou-se comparar o efeito de alguns catalisadores, como sulfato de cobre, óxido de mercúrio e selênio. Diversos tempos de ataques foram estudados, desde 10 até 960 minutos (16 horas. Verificou-se que as maiores reduções de tempo foram obtidas com o selênio, utilizado como catalisador, em presença de óxido de mercúrio, particularmente em solos onde o ataque se mostrou mais difícil. O catalisador tradicional - sulfato de cobre - foi o menos eficiente. A utilização do selênio, não provocou perda de nitrogênio durante a digestão.By using the Kjeldahl method in the determination of total nitrogen in soils, the effect of various catalysts related with digestion time and with possible nitrogen losses was studied. The experiment was carried out by using the catalysts CuSO4.5H2O; HgO and Se in six treatments. Results indicated that a pronounced reduction on digestion time was obtained by using selenium as catalyst. Best results, however, were obtained by using a mixture of selenium and mercury oxide, principally for soils of very difficult digestion (organic soil and "terra roxa" soil. In all treatments CuSO4.5H2O was the less efficient. Use of selenium did not cause loss of nitrogen.

  15. Virtual Nitrogen Losses from Organic Food Production

    Science.gov (United States)

    Cattell Noll, L.; Galloway, J. N.; Leach, A. M.; Seufert, V.; Atwell, B.; Shade, J.

    2015-12-01

    Reactive nitrogen (Nr) is necessary for crop and animal production, but when it is lost to the environment, it creates a cascade of detrimental environmental impacts. The nitrogen challenge is to maximize the food production benefits of Nr, while minimizing losses to the environment. The first nitrogen footprint tool was created in 2012 to help consumers learn about the Nr losses to the environment that result from an individual's lifestyle choices. The nitrogen lost during food production was estimated with virtual nitrogen factors (VNFs) that quantify the amount of nitrogen lost to the environment per unit nitrogen consumed. Alternative agricultural systems, such as USDA certified organic farms, utilize practices that diverge from conventional production. In order to evaluate the potential sustainability of these alternative agricultural systems, our team calculated VNFs that reflect organic production. Initial data indicate that VNFs for organic grains and organic starchy roots are comparable to, but slightly higher than conventional (+10% and +20% respectively). In contrast, the VNF for organic vegetables is significantly higher (+90%) and the VNF for organic legumes is significantly lower (-90%). Initial data on organic meat production shows that organic poultry and organic pigmeat are comparable to conventional production (both <5% difference), but that the organic beef VNF is significantly higher (+30%). These data show that in some cases organic and conventional production are comparable in terms of nitrogen efficiency. However, since conventional production relies heavily on the creation of new reactive nitrogen (Haber-Bosch, biological nitrogen fixation) and organic production primarily utilizes already existing reactive nitrogen (manure, crop residue, compost), the data also show that organic production contributes less new reactive nitrogen to the environment than conventional production (approximately 70% less). Therefore, we conclude that on a local

  16. Treating water-reactive wastes

    International Nuclear Information System (INIS)

    Lussiez, G.W.

    1993-01-01

    Some compounds and elements, such as lithium hydride, magnesium, sodium, and calcium react violently with water to generate much heat and produce hydrogen. The hydrogen can ignite or even form an explosive mixture with air. Other metals may react rapidly only if they are finely divided. Some of the waste produced at Los Alamos National Laboratory includes these metals that are contaminated with radioactivity. By far the greatest volume of water-reactive waste is lithium hydride contaminated with depleted uranium. Reactivity of the water-reactive wastes is neutralized with an atmosphere of humid nitrogen, which prevents the formation of an explosive mixture of hydrogen and air. When we adjust the temperature of the nitrogen and the humidifier, the nitrogen can be more or less humid, and the rate of reaction can be adjusted and controlled. Los Alamos has investigated the rates of reaction of lithium hydride as a function of the temperature and humidity, and, as anticipated, they in with in temperature and humidity. Los Alamos will investigate other variables. For example, the nitrogen flow will be optimized to conserve nitrogen and yet keep the reaction rates high. Reaction rates will be determined for various forms of lithium waste, from small chips to powder. Bench work will lead to the design of a skid-mounted process for treating wastes. Other water-reactive wastes will also be investigated

  17. The nitrogen footprint tool network: a multi-institution program to reduce nitrogen pollution

    Science.gov (United States)

    Anthropogenic sources of reactive nitrogen have local and global impacts on air and water quality and detrimental effects on human and ecosystem health. This paper uses the nitrogen footprint tool (NFT) to determine the amount of nitrogen (N) released as a result of institutional...

  18. Temporal Change of Interleukin-6, C-Reactive Protein, and Skin Temperature after Total Knee Arthroplasty Using Triclosan-Coated Sutures

    Directory of Open Access Journals (Sweden)

    Shih-Jie Lin

    2018-01-01

    Full Text Available The risk of surgical site infections (SSIs after total knee arthroplasty (TKA can never be eliminated. Antimicrobial sutures containing triclosan have been used to decrease SSIs, but whether triclosan-coated sutures are effective with TKA is unclear. Between 2011 and 2012, 102 patients randomly assigned to a triclosan or a control group were prospectively assessed. The incidence of SSI within 3 months of surgery, length of hospital stay, pain scale, functional scores, wound condition, and serum inflammatory markers during hospitalization and within 3 months postoperatively were compared. At the final follow-up, there were 2 patients with superficial infections (3.9% in the control group but none in the triclosan group. Lower serum IL-6 was detected in the triclosan group at 4 weeks and 3 months. The local skin temperature of the knees—recorded at 3 months using infrared thermography—was lower in the triclosan group than in the control group. More precise analytical measurements are needed to investigate local and systemic complications, especially in the early subclinical stage. This prospective, randomized, open-label clinical trial is in the public registry: ClinicalTrials.gov (NCT02533492.

  19. Second row transition metal sulfides for the hydrotreatment of coal-derived naphtha. 1. Catalyst preparation, characterization and comparison of rate of simultaneous removal of total sulfur, nitrogen and oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Raje, A.P.; Liaw, S.-J.; Srinivasan, R.; Davis, B.H. [University of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    1997-03-13

    Naphtha derived from an Illinois No. 6 coal contains appreciable quantities of sulfur-, nitrogen- and oxygen-containing compounds. The hydrotreatment of this naphtha was evaluated over unsupported transition metal sulfide catalysts (Ru, Rh, Mo, Pd, Zr, Mb). The catalysts were prepared by a room temperature precipitation reaction. Surface areas, crystalline phase and particle size distributions were determined by Brunauer-Emmet-Teller (BET), X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. A comparison of average particle sizes calculated from these three techniques has enable the understanding of the morphology of the transition metal sulfides. The catalysts exhibit a so-called volcano plot for the HDS of dibenzothiophene. Similar so-called volcano plots are also exhibited for the simultaneous hydrodesulfurization (HDS), hydrodenitrogenation (HDN) and the hydrodeoxygenation (HDO) of the coal-derived naphtha containing a mixture of heteroatoms. The order of reactivity of the transition metal catalysts is the same for all three of the processes. Ruthenium sulfide is the most active catalyst for HDS, HDN and HDO of the coal-derived naphtha. 22 refs., 3 figs., 4 tabs.

  20. Changes in body weight, C-reactive protein, and total adiponectin in non-obese women after 12 months of a small-volume, home-based exercise program.

    Science.gov (United States)

    Mediano, Mauro Felippe Felix; Neves, Fabiana Alves; Cunha, Alessandra Cordeiro de Souza Rodrigues; Souza, Erica Patricia Garcia de; Moura, Anibal Sanchez; Sichieri, Rosely

    2013-01-01

    Our objective was to evaluate the effects of small-volume, home-based exercise combined with slight caloric restriction on the inflammatory markers C-reactive protein and adiponectin. In total, 54 women were randomly assigned to one of two groups for exercise intervention: the control or home-based exercise groups. Weight, waist and hip circumferences, and inflammatory markers were measured at baseline and after 6 and 12 months. Women allocated to the home-based exercise group received a booklet explaining the physical exercises to be practiced at home at least 3 times per week, 40 minutes per session, at low-to-moderate intensity. All participants received dietary counseling aimed at reducing caloric intake by 100-300 calories per day, with a normal distribution of macro-nutrients (26-28% of energy as fat). Clinicaltrials.gov: NCT01206413 RESULTS: The home-based exercise group showed a significantly greater reduction in weight and body mass index at six months, but no difference between groups was observed thereafter. With regard to the inflammatory markers, a greater but non-statistically significant reduction was found for C-reactive protein in the home-based exercise group at six months; however, this difference disappeared after adjusting for weight change. No differences in adiponectin were found at the 6- or 12-month follow-up. Small-volume, home-based exercise did not promote changes in inflammatory markers independent of weight change.

  1. Determinação não destrutiva do nitrogênio total em plantas por espectroscopia de reflectância difusa no infravermelho próximo Non-destructive determination of total nitrogen in plants by diffuse reflectance near infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Kássio M. G. Lima

    2008-01-01

    Full Text Available Diffuse reflectance near-infrared (DR-NIR spectroscopy associated with partial least squares (PLS multivariate calibration is proposed for a direct, non-destructive, determination of total nitrogen in wheat leaves. The procedure was developed for an Analytical Instrumental Analysis course, carried out at the Institute of Chemistry of the State University of Campinas. The DR-NIR results are in good agreement with those obtained by the Kjeldhal standard procedure, with a relative error of less than ± 3% and the method may be used for teaching purposes as well as for routine analysis.

  2. The long-term impact of urbanization on nitrogen patterns and dynamics in Shanghai, China.

    Science.gov (United States)

    Gu, Baojing; Dong, Xiaoli; Peng, Changhui; Luo, Weidong; Chang, Jie; Ge, Ying

    2012-12-01

    Urbanization is an important process that alters the regional and global nitrogen biogeochemistry. In this study, we test how long-term urbanization (1952-2004) affects the nitrogen flows, emissions and drivers in the Greater Shanghai Area (GSA) based on the coupled human and natural systems (CHANS) approach. Results show that: (1) total nitrogen input to the GSA increased from 57.7 to 587.9 Gg N yr(-1) during the period 1952-2004, mainly attributing to fossil fuel combustion (43%), Haber-Bosch nitrogen fixation (31%), and food/feed import (26%); (2) per capita nitrogen input increased from 13.5 to 45.7 kg N yr(-1), while per gross domestic product (GDP) nitrogen input reduced from 22.2 to 0.9 g N per Chinese Yuan, decoupling of nitrogen with GDP; (3) emissions of reactive nitrogen to the environment transformed from agriculture dominated to industry and human living dominated, especially for air pollution. This study provides decision-makers a novel view of nitrogen management. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Milk production, nutrient digestibility and nitrogen balance in lactating cows fed total mixed ration silages containing steam-flaked brown rice as substitute for steam-flaked corn, and wet food by-products.

    Science.gov (United States)

    Miyaji, Makoto; Matsuyama, Hiroki; Hosoda, Kenji; Nonaka, Kazuhisa

    2013-06-01

    The objective of this study was to evaluate the effect of substituting brown rice grain for corn grain in total mixed ration (TMR) silage containing food by-products on the milk production, whole-tract nutrient digestibility and nitrogen balance in dairy cows. Six multiparous Holstein cows were used in a crossover design with two dietary treatments: a diet containing 30.9% steam-flaked corn (corn TMR) or 30.9% steam-flaked brown rice (rice TMR) with wet soybean curd residue and wet soy sauce cake. Dietary treatment did not affect the dry matter intake, milk yield and compositions in dairy cows. The dry matter and starch digestibility were higher, and the neutral detergent fiber digestibility was lower for rice TMR than for corn TMR. The urinary nitrogen (N) excretion as a proportion of the N intake was lower for rice TMR than for corn TMR with no dietary effect on N secretion in milk and fecal N excretion. These results indicated that the replacement of corn with brown rice in TMR silage relatively reduced urinary N loss without adverse effects on feed intake and milk production, when food by-products such as soybean curd residue were included in the TMR silage as dietary crude protein sources. © 2013 Japanese Society of Animal Science.

  4. Nitrogen-neutrality: a step towards sustainability

    Science.gov (United States)

    Leip, Adrian; Leach, Allison; Musinguzi, Patrick; Tumwesigye, Trust; Olupot, Giregon; Tenywa, John Stephen; Mudiope, Joseph; Hutton, Olivia; Cordovil, Claudia M. d. S.; Bekunda, Mateete; Galloway, James

    2014-11-01

    We propose a novel indicator measuring one dimension of the sustainability of an entity in modern societies: Nitrogen-neutrality. N-neutrality strives to offset Nr releases an entity exerts on the environment from the release of reactive nitrogen (Nr) to the environment by reducing it and by offsetting the Nr releases elsewhere. N-neutrality also aims to increase awareness about the consequences of unintentional releases of nitrogen to the environment. N-neutrality is composed of two quantified elements: Nr released by an entity (e.g. on the basis of the N footprint) and Nr reduction from management and offset projects (N offset). It includes management strategies to reduce nitrogen losses before they occur (e.g., through energy conservation). Each of those elements faces specific challenges with regard to data availability and conceptual development. Impacts of Nr releases to the environment are manifold, and the impact profile of one unit of Nr release depends strongly on the compound released and the local susceptibility to Nr. As such, N-neutrality is more difficult to conceptualize and calculate than C-neutrality. We developed a workable conceptual framework for N-neutrality which was adapted for the 6th International Nitrogen Conference (N2013, Kampala, November 2013). Total N footprint of the surveyed meals at N2013 was 66 kg N. A total of US 3050 was collected from the participants and used to offset the conference’s N footprint by supporting the UN Millennium Village cluster Ruhiira in South-Western Uganda. The concept needs further development in particular to better incorporate the spatio-temporal variability of impacts and to standardize the methods to quantify the required N offset to neutralize the Nr releases impact. Criteria for compensation projects need to be sharply defined to allow the development of a market for N offset certificates.

  5. Nitrogen-neutrality: a step towards sustainability

    International Nuclear Information System (INIS)

    Leip, Adrian; Leach, Allison; Hutton, Olivia; Galloway, James; Musinguzi, Patrick; Tumwesigye, Trust; Olupot, Giregon; Stephen Tenywa, John; Mudiope, Joseph; Cordovil, Claudia M d S; Bekunda, Mateete

    2014-01-01

    We propose a novel indicator measuring one dimension of the sustainability of an entity in modern societies: Nitrogen-neutrality. N-neutrality strives to offset Nr releases an entity exerts on the environment from the release of reactive nitrogen (Nr) to the environment by reducing it and by offsetting the Nr releases elsewhere. N-neutrality also aims to increase awareness about the consequences of unintentional releases of nitrogen to the environment. N-neutrality is composed of two quantified elements: Nr released by an entity (e.g. on the basis of the N footprint) and Nr reduction from management and offset projects (N offset). It includes management strategies to reduce nitrogen losses before they occur (e.g., through energy conservation). Each of those elements faces specific challenges with regard to data availability and conceptual development. Impacts of Nr releases to the environment are manifold, and the impact profile of one unit of Nr release depends strongly on the compound released and the local susceptibility to Nr. As such, N-neutrality is more difficult to conceptualize and calculate than C-neutrality. We developed a workable conceptual framework for N-neutrality which was adapted for the 6th International Nitrogen Conference (N2013, Kampala, November 2013). Total N footprint of the surveyed meals at N2013 was 66 kg N. A total of US$ 3050 was collected from the participants and used to offset the conference’s N footprint by supporting the UN Millennium Village cluster Ruhiira in South-Western Uganda. The concept needs further development in particular to better incorporate the spatio-temporal variability of impacts and to standardize the methods to quantify the required N offset to neutralize the Nr releases impact. Criteria for compensation projects need to be sharply defined to allow the development of a market for N offset certificates. (paper)

  6. Measurements of the total energy lost per electron-ion pair lost in low-pressure inductive argon, helium, oxygen and nitrogen discharge

    International Nuclear Information System (INIS)

    Lee, Young-Kwang; Ku, Ju-Hwan; Chung, Chin-Wook

    2011-01-01

    Experimental measurements of the total energy lost per electron-ion pair lost, ε T , were performed in a low-pressure inductive atomic gases (Ar, He) and molecular gases (O 2 , N 2 ) discharge. The value of ε T was determined from a power balance based on the electropositive global (volume-averaged) model. A floating harmonic method was employed to measure ion fluxes and electron temperatures at the discharge wall. In the pressure range 5-50 mTorr, it was found that the measured ε T ranged from about 70 to 150 V for atomic gases, but from about 180 to 1300 V for molecular gases. This difference between atomic and molecular discharge is caused by additional collisional energy losses of molecular gases. For argon discharge, the stepwise ionization effect on ε T was observed at relatively high pressures. For different gases, the measured ε T was evaluated with respect to the electron temperature, and then compared with the calculation results, which were derived from collisional and kinetic energy loss. The measured ε T and their calculations showed reasonable agreement.

  7. Mineral commodity profiles: nitrogen

    Science.gov (United States)

    Kramer, Deborah A.

    2004-01-01

    Overview -- Nitrogen (N) is an essential element of life and a part of all animal and plant proteins. As a part of the DNA and RNA molecules, nitrogen is an essential constituent of each individual's genetic blueprint. As an essential element in the chlorophyll molecule, nitrogen is vital to a plant's ability to photosynthesize. Some crop plants, such as alfalfa, peas, peanuts, and soybeans, can convert atmospheric nitrogen into a usable form by a process referred to as 'fixation.' Most of the nitrogen that is available for crop production, however, comes from decomposing animal and plant waste or from commercially produced fertilizers. Commercial fertilizers contain nitrogen in the form of ammonium and/or nitrate or in a form that is quickly converted to the ammonium or nitrate form once the fertilizer is applied to the soil. Ammonia is generally the source of nitrogen in fertilizers. Anhydrous ammonia is commercially produced by reacting nitrogen with hydrogen under high temperatures and pressures. The source of nitrogen is the atmosphere, which is almost 80 percent nitrogen. Hydrogen is derived from a variety of raw materials, which include water, and crude oil, coal, and natural gas hydrocarbons. Nitrogen-based fertilizers are produced from ammonia feedstocks through a variety of chemical processes. Small quantities of nitrates are produced from mineral resources principally in Chile. In 2002, anhydrous ammonia and other nitrogen materials were produced in more than 70 countries. Global ammonia production was 108 million metric tons (Mt) of contained nitrogen. With 28 percent of this total, China was the largest producer of ammonia. Asia contributed 46 percent of total world ammonia production, and countries of the former U.S.S.R. represented 13 percent. North America also produced 13 percent of the total; Western Europe, 9 percent; the Middle East, 7 percent; Central America and South America, 5 percent; Eastern Europe, 3 percent; and Africa and Oceania

  8. UN ECE-Convention on long-range transboundary air pollution. Task Force on Reactive Nitrogen. Systematic cost-benefit analysis of mitigation measures for agricultural ammonia emissions, supporting national costing analysis; UN ECE-Luftreinhaltekonvention. Task Force on Reactive Nitrogen. Systematische Kosten-Nutzen-Analyse von Minderungsmassnahmen fuer Ammoniakemissionen in der Landwirtschaft fuer nationale Kostenabschaetzung

    Energy Technology Data Exchange (ETDEWEB)

    Doehler, Helmut; Eurich-Menden, Brigitte; Roessler, Regina; Vandre, Robert; Wulf, Sebastian [Kuratorium fuer Technik und Bauwesen in der Landwirtschaft e.V. (KTBL), Darmstadt (Germany)

    2011-07-01

    In this project, the methods for the determination of the expenses for the reduction of agricultural ammonia emissions were updated, and the costs of selected, representative mitigation measures suitable for Germany's agriculture were newly calculated. The reduction costs are determined based on the ratio of the extra costs for the reduction measure and the emission reduction in comparison with a reference system. Protein-adapted feeding in pig fattening generally leads to lower expenses for feedstuff, which provides negative reduction costs (- Euro 3.5 to - Euro 13.5 per kg of NH{sub 3} depending on the reference system). Pig fattening in naturally ventilated housing causes reduction costs of Euro 9.2 per kg of NH{sub 3} as compared with forced-ventilated animal houses. However, this amount cannot always be exclusively attributed to ammonia emission reduction (allocation) because naturally ventilated houses are generally built for the improvement of animal welfare and animal health. Single and multiple-stage air purification techniques in forced-ventilated pig fattening houses are a technically efficient, though costintensive reduction measure (Euro 4,6 - Euro 8,6 per kg of NH{sub 3}). Solid covers for pig slurry stores (concrete ceiling, tent) are characterized by high investment expenses and a long service life causes moderate reduction costs (Euro 1.1 - Euro 2.5 per kg of NH{sub 3}). Floating covers (plastic sheet, granules) are almost cost-neutral given reduction costs of Euro 0.3 to Euro 0.9 per kg of NH{sub 3} (pig slurry) if the fertilizer value of the conserved nitrogen is included in the calculation. Cattle slurry requires significantly higher extra costs for the covering of slurry stores because the natural floating cover itself reduces emissions (Euro 1.3 to Euro 12 per kg of NH{sub 3}). If annual spreading performances are low (1,000 to 3,000 m{sup 3}/a), only promptly incorporation of cattle and pig slurry is cost-effective. If spreading

  9. Effects of Synchronization of Carbohydrate and Protein Supply in Total Mixed Ration with Korean Rice Wine Residue on Ruminal Fermentation, Nitrogen Metabolism and Microbial Protein Synthesis in Holstein Steers

    Directory of Open Access Journals (Sweden)

    Min Yu Piao

    2012-11-01

    Full Text Available Three Holstein steers in the growing phase, each with a ruminal cannula, were used to test the hypothesis that the synchronization of the hourly rate of carbohydrate and nitrogen (N released in the rumen would increase the amount of retained nitrogen for growth and thus improve the efficiency of microbial protein synthesis (EMPS. In Experiment 1, in situ degradability coefficients of carbohydrate and N in feeds including Korean rice wine residue (RWR were determined. In Experiment 2, three total mixed ration (TMR diets having different rates of carbohydrate and N release in the rumen were formulated using the in situ degradability of the feeds. All diets were made to contain similar contents of crude protein (CP and neutral detergent fiber (NDF but varied in their hourly pattern of nutrient release. The synchrony index of the three TMRs was 0.51 (LS, 0.77 (MS and 0.95 (HS, respectively. The diets were fed at a restricted level (2% of the animal’s body weight in a 3×3 Latin-square design. Synchronizing the hourly supply of energy and N in the rumen did not significantly alter the digestibility of dry matter, organic matter, crude protein, NDF or acid detergent fiber (ADF (p>0.05. The ruminal NH3-N content of the LS group at three hours after feeding was significantly higher (p0.05. In addition, the purine derivative (PD excretion in urine and microbial-N production (MN among the three groups were not significantly different (p>0.05. In conclusion, synchronizing dietary energy and N supply to the rumen did not have a major effect on nutrient digestion or microbial protein synthesis (MPS in Holstein steers.

  10. Measurements of HOx radicals and the total OH reactivity (kOH) in the planetary boundary layer over southern Finland aboard the Zeppelin NT airship during the PEGASOS field campaign.

    Science.gov (United States)

    Broch, Sebastian; Gomm, Sebastian; Fuchs, Hendrik; Hofzumahaus, Andreas; Holland, Frank; Bachner, Mathias; Bohn, Birger; Häseler, Rolf; Jäger, Julia; Kaiser, Jennifer; Keutsch, Frank; Li, Xin; Lohse, Insa; Rohrer, Franz; Thayer, Mitchell; Tillmann, Ralf; Wegener, Robert; Mentel, Thomas F.; Kiendler-Scharr, Astrid; Wahner, Andreas

    2014-05-01

    The concentration of hydroxyl (OH) and hydroperoxy (HO2) radicals (also named HOx) and the total OH reactivity were measured over southern Finland and during transfer flights over Germany, Denmark and Sweden aboard the Zeppelin NT airship within the framework of the Pan-European Gas-AeroSOls-climate interaction Study (PEGASOS) field campaign in 2013. The measurements were performed with a remotely controlled Laser Induced Fluorescence (LIF) instrument which was installed on top of the airship. Together with a comprehensive set of trace gas (O3, CO, NO, NO2, HCHO, HONO, VOCs), photolysis frequencies and aerosol measurements as well as the measurement of meteorological parameters, these data provide the possibility to test the current understanding of the chemical processes in the planetary boundary layer (PBL) over different landscapes and in different chemical regimes. The unique flight performance of the Zeppelin NT allowed us to measure transects at a constant altitude as well as vertical profiles within the range of 80 m to 1000 m above ground. The transect flights show changes in the HOx distribution and kOH while crossing different chemical regimes on the way from Friedrichshafen, Germany to Jämijärvi, Finland over Germany, Denmark and Sweden. Vertical profile flights over the boreal forest close to Jämijärvi and Hyytiälä (both Finland) gave the opportunity to investigate the layering of the PBL and with that the vertical distribution of HOx and kOH with a high spatial and temporal resolution. Gradients in the HOx concentration and kOH were measured between the different layers during the early morning hours. The maximum radical concentrations found during the campaign were 1.0 x 107 cm-3 for OH and 1.0 x 109 cm-3 for HO2. The total OH reactivity measured in Finland was much lower than what was reported before in the literature from ground based measurements and ranged from 1 s-1 to 6 s-1. Acknowledgement: PEGASOS project funded by the European

  11. OH reactivity of the urban air in Helsinki, Finland, during winter

    Science.gov (United States)

    Praplan, Arnaud P.; Pfannerstill, Eva Y.; Williams, Jonathan; Hellén, Heidi

    2017-11-01

    A new instrument to measure total OH reactivity in ambient air based on the Comparative Reactivity Method (CRM) has been built and characterized at the Finnish Meteorological Institute in Helsinki, Finland. The system is based on the detection of pyrrole by a gas chromatograph with a photoionization detector and designed for long term studies. It was tested in a container close to the SMEAR III semi-urban station in Helsinki during the winter in February 2016. The sampling location next to the delivery area of the institute was influenced by local vehicle emissions and cannot be considered representative of background conditions in Helsinki. However, effects of nitrogen oxides on the measurements could be investigated there. During this campaign, 56 compounds were measured individually by 1) an in-situ gas chromatograph coupled to a mass spectrometer (GC/MS) and by 2) off-line sampling in canisters and on adsorbent filled cartridges taken at the container and subsequently analysed by GC-FID and liquid chromatography, respectively. In addition, nitrogen oxides were measured at the same location, while ozone, carbon monoxide and sulfur dioxide concentrations have been retrieved from the SMEAR III mast data. The comparison between the total OH reactivity measured and the OH reactivity derived from individual compound measurements are in better agreement for lower reactivity levels. Possible explanations for the differences are discussed in detail.

  12. Reducing human nitrogen use for food production.

    Science.gov (United States)

    Liu, Junguo; Ma, Kun; Ciais, Philippe; Polasky, Stephen

    2016-07-22

    Reactive nitrogen (N) is created in order to sustain food production, but only a small fraction of this N ends up being consumed as food, the rest being lost to the environment. We calculated that the total N input (TN) of global food production was 171 Tg N yr(-1) in 2000. The production of animal products accounted for over 50% of the TN, against 17% for global calories production. Under current TN per unit of food production and assuming no change in agricultural practices and waste-to-food ratios, we estimate that an additional TN of 100 Tg N yr(-1) will be needed by 2030 for a baseline scenario that would meet hunger alleviation targets for over 9 billion people. Increased animal production will have the largest impact on increasing TN, which calls for new food production systems with better N-recycling, such as cooperation between crop and livestock producing farms. Increased N-use efficiency, healthier diet and decreased food waste could mitigate this increase and even reduce TN in 2030 by 8% relative to the 2000 level. Achieving a worldwide reduction of TN is a major challenge that requires sustained actions to improve nitrogen management practices and reduce nitrogen losses into the environment.

  13. Nitrogen concentrations in mosses indicate the spatial distribution of atmospheric nitrogen deposition in Europe

    International Nuclear Information System (INIS)

    Harmens, H.; Norris, D.A.; Cooper, D.M.; Mills, G.; Steinnes, E.; Kubin, E.; Thoeni, L.; Aboal, J.R.; Alber, R.; Carballeira, A.; Coskun, M.; De Temmerman, L.; Frolova, M.; Gonzalez-Miqueo, L.

    2011-01-01

    In 2005/6, nearly 3000 moss samples from (semi-)natural location across 16 European countries were collected for nitrogen analysis. The lowest total nitrogen concentrations in mosses ( 2 = 0.91) linear relationship was found between the total nitrogen concentration in mosses and measured site-specific bulk nitrogen deposition rates. The total nitrogen concentrations in mosses complement deposition measurements, helping to identify areas in Europe at risk from high nitrogen deposition at a high spatial resolution. - Highlights: → Nitrogen concentrations in mosses were determined at ca. 3000 sites across Europe. → Moss concentrations were compared with EMEP modelled nitrogen deposition. → The asymptotic relationship for Europe showed saturation at ca. 15 kg N ha -1 y -1 . → Linear relationships were found with measured nitrogen deposition in some countries. → Moss concentrations complement deposition measurements at high spatial resolution. - Mosses as biomonitors of atmospheric nitrogen deposition in Europe.

  14. Improvements to the Characterization of Organic Nitrogen Chemistry

    Science.gov (United States)

    Excess atmospheric nitrogen deposition can cause significant harmful effects to ecosystems. Organic nitrogen deposition can be an important contributor to the total nitrogen budget, contributing 10-30%, however there are large uncertainties in the chemistry and deposition of thes...

  15. Reactive Arthritis

    Directory of Open Access Journals (Sweden)

    Eren Erken

    2013-06-01

    Full Text Available Reactive arthritis is an acute, sterile, non-suppurative and inflammatory arthropaty which has occured as a result of an infectious processes, mostly after gastrointestinal and genitourinary tract infections. Reiter syndrome is a frequent type of reactive arthritis. Both reactive arthritis and Reiter syndrome belong to the group of seronegative spondyloarthropathies, associated with HLA-B27 positivity and characterized by ongoing inflammation after an infectious episode. The classical triad of Reiter syndrome is defined as arthritis, conjuctivitis and urethritis and is seen only in one third of patients with Reiter syndrome. Recently, seronegative asymmetric arthritis and typical extraarticular involvement are thought to be adequate for the diagnosis. However, there is no established criteria for the diagnosis of reactive arthritis and the number of randomized and controlled studies about the therapy is not enough. [Archives Medical Review Journal 2013; 22(3.000: 283-299

  16. Options for including nitrogen management in climate policy

    International Nuclear Information System (INIS)

    Erisman, J.W.

    2010-12-01

    The outline of the presentation is as follows: Climate change and nitrogen; Nitrogen and climate interlinkages; Options for nitrogen management; Report, workshop and IPCC; and Conclusions. The concluding remarks are: Fertilizing the biosphere with reactive nitrogen compounds lead to ecosystem, health, water and climate impacts; Nitrogen deposition can lead to additional carbon sequestration and to impacts on biodiversity and ecosystem services; Nitrogen addition to the biosphere might have a net cooling effect of 1 W/m 2 ; Life Cycle Analysis is needed to show the full impact; and Nitrogen management is essential for the environment and can have a positive effect on the net GHG exchange.

  17. Stabilization of organic matter and nitrogen immobilization during mechanical-biological treatment and landfilling of residual municipal solid waste

    International Nuclear Information System (INIS)

    Heiss-Ziegler, C.

    2000-04-01

    Synthesis of humic substances and nitrogen immobilization during mechanical-biological treatment of waste and the behavior of biologically stabilized waste under anaerobic landfill conditions were investigated. Samples were taken from a large-scale treatment plant. Anaerobic conditions were simulated in lab scale test cells. Humic substances were analyzed photometrically and gravimetrically. The nitrogen immobilization was investigated by sequential leaching tests and by analyzing the non acid hydrolyzable nitrogen. Humic acids were mainly synthesized during the beginning of the intensive rotting phase. Later on in the process no significant changes occurred. The humic acid content rose up to 6,8 % DS org. It correlated well with the stability parameters respiration activity and accumulated gas production. In the coarse of the treatment the nitrogen load emitted during the consecutive leaching tests dropped from 50 % down to less than 20 % total nitrogen. The non acid hydrolyzable nitrogen rose from 17 up to 42 % Kjeldahl nitrogen content. Nevertheless the mechanical-biological treatment is not significantly shortening the aftercare period of a landfill concerning liquid nitrogen emissions. The reduced nitrogen emission potential is released more slowly. When reactive waste material was exposed to anaerobic conditions, humic and fulvic acids were synthesized up to the point when intensive gas production started and then were remineralized. Stabilized waste materials after treatment of various intensity behaved differently under anaerobic conditions. Steady and decreasing humic acid contents were observed. (author)

  18. Effects of adding food by-products mainly including noodle waste to total mixed ration silage on fermentation quality, feed intake, digestibility, nitrogen utilization and ruminal fermentation in wethers.

    Science.gov (United States)

    Ishida, Kyohei; Yani, Srita; Kitagawa, Masayuki; Oishi, Kazato; Hirooka, Hiroyuki; Kumagai, Hajime

    2012-11-01

    Four wethers were used in a 4 × 4 Latin square design experiment to evaluate the applicability of two types of total mixed ration (TMR) silage with food by-products. Four food by-products (i.e., potato waste, soy sauce cake, soybean curd residue and noodle waste) were obtained and mixed with commercial concentrate (CC) as TMR silage. The two types of TMR silage, T1 and T2, each contained CC, in addition to all by-products for T1 (TRE1), and soy sauce cake and noodle waste for T2 (TRE2) on a dry matter (DM) basis. The silage was well-fermented with low pH values and high lactic acid concentration. As the experimental treatments, T1, T2 and CC (CTL) were fed with a basal diet. The result showed that the digestibility of DM and organic matter (OM) were higher for T1 than for CC (P < 0.05), while crude protein digestibility was not significantly different among T1, T2 and CC. The retained nitrogen was not affected by inclusion of food by-products. Ruminal pH in TRE1 and TRE2 immediately decreased compared to that in CTL. The study suggested that the two types of TMR silage, including food by-products, might be used as a substitute for commercial concentrate. © 2012 The Authors. Animal Science Journal © 2012 Japanese Society of Animal Science.

  19. Human Decisions: Nitrogen Footprints and Environmental Effects

    Science.gov (United States)

    Leach, A. M.; Bleeker, A.; Galloway, J. N.; Erisman, J.

    2012-12-01

    Human consumption choices are responsible for growing losses of reactive nitrogen (Nr) to the environment. Once in the environment, Nr can cause a cascade of negative impacts such as smog, acid rain, coastal eutrophication, climate change, and biodiversity loss. Although all humans must consume nitrogen as protein, the food production process releases substantial Nr to the environment. This dilemma presents a challenge: how do we feed a growing population while reducing Nr? Although top-down strategies to reduce Nr losses (e.g., emissions controls) are necessary, the bottom-up strategies focusing on personal consumption patterns will be imperative to solve the nitrogen challenge. Understanding the effects of different personal choices on Nr losses and the environment is an important first step for this strategy. This paper will utilize information and results from the N-Calculator, a per capita nitrogen footprint model (www.N-Print.org), to analyze the impact of different food consumption patterns on a personal food nitrogen footprint and the environment. Scenarios will analyze the impact of the following dietary patterns on the average United States (28 kg Nr/cap/yr) food nitrogen footprint: 1) Consuming only the recommended protein as defined by the WHO and the USDA; 2) Reducing food waste by 50%; 3) Consuming a vegetarian diet; 4) Consuming a vegan diet; 5) Consuming a demitarian diet (replacing half of animal protein consumption with vegetable protein); 6) Substituting chicken (a more efficient animal protein) with beef (a less efficient animal protein); 7) Consuming sustainably-produced food; and 8) Using advanced wastewater treatment. Preliminary results suggest that widespread advanced wastewater treatment with nutrient removal technology and halving food waste would each reduce the US personal food nitrogen footprint by 13%. In addition, reducing protein consumption to the recommended levels would reduce the footprint by about 42%. Combining these measures

  20. Enhanced nitrogen deposition over China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xuejun; Zhang, Ying; Han, Wenxuan; Tang, Aohan; Shen, Jianlin; Cui, Zhenling; Christie, Peter; Zhang, Fusuo [College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193 (China); Vitousek, Peter [Department of Biology, Stanford University, Stanford, California 94305 (United States); Erisman, Jan Willem [VU University Amsterdam, 1081 HV Amsterdam (Netherlands); Goulding, Keith [The Sustainable Soils and Grassland Systems Department, Rothamsted Research, Harpenden AL5 2JQ (United Kingdom); Fangmeier, Andreas [Institute of Landscape and Plant Ecology, University of Hohenheim, 70593 Stuttgart (Germany)

    2013-02-28

    China is experiencing intense air pollution caused in large part by anthropogenic emissions of reactive nitrogen. These emissions result in the deposition of atmospheric nitrogen (N) in terrestrial and aquatic ecosystems, with implications for human and ecosystem health, greenhouse gas balances and biological diversity. However, information on the magnitude and environmental impact of N deposition in China is limited. Here we use nationwide data sets on bulk N deposition, plant foliar N and crop N uptake (from long-term unfertilized soils) to evaluate N deposition dynamics and their effect on ecosystems across China between 1980 and 2010. We find that the average annual bulk deposition of N increased by approximately 8 kilograms of nitrogen per hectare (P < 0.001) between the 1980s (13.2 kilograms of nitrogen per hectare) and the 2000s (21.1 kilograms of nitrogen per hectare). Nitrogen deposition rates in the industrialized and agriculturally intensified regions of China are as high as the peak levels of deposition in northwestern Europe in the 1980s, before the introduction of mitigation measures. Nitrogen from ammonium (NH4+) is the dominant form of N in bulk deposition, but the rate of increase is largest for deposition of N from nitrate (NO3-), in agreement with decreased ratios of NH3 to NOx emissions since 1980. We also find that the impact of N deposition on Chinese ecosystems includes significantly increased plant foliar N concentrations in natural and semi-natural (that is, non-agricultural) ecosystems and increased crop N uptake from long-term-unfertilized croplands. China and other economies are facing a continuing challenge to reduce emissions of reactive nitrogen, N deposition and their negative effects on human health and the environment.

  1. Adding a nitrogen footprint to Colorado State University’s sustainability plan

    Science.gov (United States)

    Kimiecik, Jacob; Baron, Jill S.; Weinmann, Timothy; Taylor, Emily

    2017-01-01

    As a large land grant university with more than 32,000 students, Colorado State University has both on-campus non-agricultural and agricultural sources of nitrogen (N) released to the environment. We used the Nitrogen Footprint Tool to estimate the amount of N released from different sectors of the university for the CSU 2014 academic year. The largest on campus sources were food production, utilities (heating, cooling, electricity), and research animals. The total on-campus N footprint in 2014 was 287 metric tons. This value was equivalent to the nitrogen footprint of agricultural experiment stations and other agricultural facilities, whose nitrogen footprint was 273 metric tons. CSU has opportunities to reduce its on-campus footprint through educational programs promoting low-meat diets and commuting by bicycle or bus. There is also an opportunity to advance ideas of agricultural best management practices, including precision farming and better livestock management. This article describes the planned and ongoing efforts to educate CSU about how societal activities release nitrogen to the environment, contributing to global change. It offers personal and institutional options for taking action, which would ultimately reduce CSU’s excess reactive nitrogen loss to the environment. The N-footprint for CSU, including scenarios of possible future nitrogen reductions, is also discussed.

  2. Silicon oxynitride films deposited by reactive high power impulse magnetron sputtering using nitrous oxide as a single-source precursor

    Energy Technology Data Exchange (ETDEWEB)

    Hänninen, Tuomas, E-mail: tuoha@ifm.liu.se; Schmidt, Susann; Jensen, Jens; Hultman, Lars; Högberg, Hans [Thin Film Physics Division, Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping SE-581 83 (Sweden)

    2015-09-15

    Silicon oxynitride thin films were synthesized by reactive high power impulse magnetron sputtering of silicon in argon/nitrous oxide plasmas. Nitrous oxide was employed as a single-source precursor supplying oxygen and nitrogen for the film growth. The films were characterized by elastic recoil detection analysis, x-ray photoelectron spectroscopy, x-ray diffraction, x-ray reflectivity, scanning electron microscopy, and spectroscopic ellipsometry. Results show that the films are silicon rich, amorphous, and exhibit a random chemical bonding structure. The optical properties with the refractive index and the extinction coefficient correlate with the film elemental composition, showing decreasing values with increasing film oxygen and nitrogen content. The total percentage of oxygen and nitrogen in the films is controlled by adjusting the gas flow ratio in the deposition processes. Furthermore, it is shown that the film oxygen-to-nitrogen ratio can be tailored by the high power impulse magnetron sputtering-specific parameters pulse frequency and energy per pulse.

  3. The relation between the production efficiency of nitrogen atoms and the electrical characteristics of a dielectric barrier discharge

    NARCIS (Netherlands)

    Peeters, F.J.J.; Yang, R.; van de Sanden, M.C.M.

    2015-01-01

    In a nitrogen plasma jet, atomic nitrogen is the longest lived radical species and, through recombination, gives rise to highly reactive excited nitrogen species. In this paper, the atomic nitrogen concentration in the effluent of a nitrogen-fed dielectric barrier discharge (DBD) is determined by

  4. Nitrogen footprints: Regional realities and options to reduce nitrogen loss to the environment Ambio

    NARCIS (Netherlands)

    Shibata, H.; Galloway, J.N.; Leach, A.M.; Noll, C.; Erisman, J.W.

    2016-01-01

    Nitrogen (N) management presents a sustainability dilemma: N is strongly linked to energy and food production, but excess reactive N causes environmental pollution. The N footprint is an indicator that quantifies reactive N losses to the environment from consumption and production of food and the

  5. Substantial nitrogen pollution embedded in international trade

    Science.gov (United States)

    Oita, Azusa; Malik, Arunima; Kanemoto, Keiichiro; Geschke, Arne; Nishijima, Shota; Lenzen, Manfred

    2016-02-01

    Anthropogenic emissions of reactive nitrogen to the atmosphere and water bodies can damage human health and ecosystems. As a measure of a nation’s contribution to this potential damage, a country’s nitrogen footprint has been defined as the quantity of reactive nitrogen emitted during the production, consumption and transportation of commodities consumed within that country, whether those commodities are produced domestically or internationally. Here we use global emissions databases, a global nitrogen cycle model, and a global input-output database of domestic and international trade to calculate the nitrogen footprints for 188 countries as the sum of emissions of ammonia, nitrogen oxides and nitrous oxide to the atmosphere, and of nitrogen potentially exportable to water bodies. Per-capita footprints range from under 7 kg N yr-1 in some developing countries to over 100 kg N yr-1 in some wealthy nations. Consumption in China, India, the United States and Brazil is responsible for 46% of global emissions. Roughly a quarter of the global nitrogen footprint is from commodities that were traded across country borders. The main net exporters have significant agricultural, food and textile exports, and are often developing countries, whereas important net importers are almost exclusively developed economies. We conclude that substantial local nitrogen pollution is driven by demand from consumers in other countries.

  6. The Global Nitrogen Cycle

    Science.gov (United States)

    Galloway, J. N.

    2003-12-01

    transfer depended on the reactivity of the emitted material. At the lower extreme of reactivity are the noble gases, neon and argon. Most neon and argon emitted during the degassing of the newly formed Earth is still in the atmosphere, and essentially none has been transferred to the hydrosphere or crust. At the other extreme are carbon and sulfur. Over 99% of the carbon and sulfur emitted during degassing are no longer in the atmosphere, but reside in the hydrosphere or the crust. Nitrogen is intermediate. Of the ˜6×106 TgN in the atmosphere, hydrosphere, and crust, ˜2/3 is in the atmosphere as N2 with most of the remainder in the crust. The atmosphere is a large nitrogen reservoir primarily, because the triple bond of the N2 molecule requires a significant amount of energy to break. In the early atmosphere, the only sources of such energy were solar radiation and electrical discharges.At this point we had an earth with mostly N2 and devoid of life. How did we get to an earth with mostly N2 and teeming with life? First, N2 had to be converted into reactive N (Nr). (The term reactive nitrogen (Nr) includes all biologically active, photochemically reactive, and radiatively active nitrogen compounds in the atmosphere and biosphere of the Earth. Thus, Nr includes inorganic reduced forms of nitrogen (e.g., NH3 and NH4+), inorganic oxidized forms (e.g., NOx, HNO3, N2O, and NO3-), and organic compounds (e.g., urea, amines, and proteins).) The early atmosphere was reducing and had limited NH3. However, NH3 was a necessary ingredient in forming early organic matter. One possibility for NH3 generation was the cycling of seawater through volcanics (Holland, 1984). Under such a process, NH3 could then be released to the atmosphere where, when combined with CH4, H2, H2O, and electrical energy, organic molecules including amino acids could be formed (Miller, 1953). In essence, electrical discharges and UV radiation can convert mixtures of reduced gases into mixtures of organic

  7. Reactive Systems

    DEFF Research Database (Denmark)

    Aceto, Luca; Ingolfsdottir, Anna; Larsen, Kim Guldstrand

    A reactive system comprises networks of computing components, achieving their goals through interaction among themselves and their environment. Thus even relatively small systems may exhibit unexpectedly complex behaviours. As moreover reactive systems are often used in safety critical systems......, the need for mathematically based formal methodology is increasingly important. There are many books that look at particular methodologies for such systems. This book offers a more balanced introduction for graduate students and describes the various approaches, their strengths and weaknesses, and when...... they are best used. Milner's CCS and its operational semantics are introduced, together with the notions of behavioural equivalences based on bisimulation techniques and with recursive extensions of Hennessy-Milner logic. In the second part of the book, the presented theories are extended to take timing issues...

  8. Stocks of carbon, total nitrogen and humic substances in soil under different cropping systemsEstoques de carbono e nitrogênio totais nas substâncias húmicas do solo sob diferentes sistemas de manejo

    Directory of Open Access Journals (Sweden)

    Diovany Doffinger Ramos

    2013-10-01

    Full Text Available This study aimed to evaluate total carbon and nitrogen and stocks of the humic fractions of soil organic matter under different cropping systems at the experimental farm at the Federal University at Grande Dourados – UFGD. Soil samples were collected from two layers (0-10 and 10-20 cm from an oxisol with a clay texture. The systems studied were as follows: non-tillage (NTS, tillage (TS, eucalyptus and pasture. Natural vegetation from Dourados, Mato Grosso do Sul, Brazil was used for comparison. For statistical analysis of the C and N stocks, the model: Y = ? + Ai + rep (A ik + Eijk was used. The replacement of TN one for CT decreased the total organic carbon and C in the stocks of humic substances (fulvic acid, humic acid and humin in the soil just three years after adoption, especially in the 0-10 cm layer. However, soils under eucalyptus trees acquired increased carbon stock in the most active fractions, such as the fractions of fulvic and humic acids (0-20 cm layer. Regardless of the cropping system, the largest C and N stocks were measured for the humin fraction, followed by humic acid and fulvic acid. The total N and humic and fulvic acid levels under the conditions of maintenance of TN for 15 years increased when compared with CT, but not in soils under eucalyptus trees.O objetivo deste trabalho foi determinar os estoques de C e N totais nas frações húmicas da matéria orgânica, em diferentes sistemas de manejo do solo na fazenda experimental da Universidade Federal da Grande Dourados – UFGD. Para isso, foram coletadas amostras (0-10 e 10-20 cm em um Latossolo Vermelho distroférrico, textura argilosa, nos sistemas de plantio direto (SPD e convencional (SPC, e os solos cultivados com pastagem e com eucalipto, como referência foi utilizado solo coletado em área de floresta nativa, em Dourados-MS. Para análise estatística dos estoques de C e N foi utilizado o modelo estatístico: Y = ? + Ai + rep(Aik + Eijk. A substituição do

  9. Effects of 3-week total meal replacement vs. typical food-based diet on human brain functional magnetic resonance imaging food-cue reactivity and functional connectivity in people with obesity.

    Science.gov (United States)

    Kahathuduwa, Chanaka Nadeeshan; Davis, Tyler; O'Boyle, Michael; Boyd, Lori Ann; Chin, Shao-Hua; Paniukov, Dmitrii; Binks, Martin

    2018-01-01

    Calorie restriction via total meal replacement (TMR) results in greater reduction of food cravings compared to reduced-calorie typical diet (TD). Direct evidence of the impact of these interventions on human brain fMRI food-cue reactivity (fMRI-FCR) and functional connectivity is absent. We examined the effects of a 3-week 1120 kcal/d TMR intervention as compared to an iso-caloric TD intervention using an fMRI-FCR paradigm. Thirty-two male and female subjects with obesity (19-60 years; 30-39.9 kg/m 2 ) participated in a randomized two-group repeated measures dietary intervention study consisting of 1120 kcal/d from either 1) TMR (shakes), 2) TD (portion control). Pre-intervention and following the 3-week diet fMRI-FCR, functional connectivity, food cravings (Food Craving Inventory) and weight were considered. Compared to TD, TMR showed increased fMRI-FCR of the bilateral dorsolateral prefrontal (dlPFC), orbitofrontal, anterior cingulate, primary motor and left insular cortices and bilateral nucleus accumbens regions in the post-intervention state relative to the pre-intervention state. Compared to TD, TMR was also associated with negative modulation of fMRI-FCR of the nucleus accumbens, orbitofrontal cortex and amygdala by dlPFC. Reduced body weight (4.87 kg, P food cravings (0.41, P = 0.047) were seen in the TMR group. In the TD group reduced body weight (2.37 kg, P = 0.004) and body fat (1.64 kg, P = 0.002) were noted. Weight loss was significantly greater in TMR versus TD (2.50 kg, P = 0.007). Greater weight loss and reduced cravings, coupled with stronger activations and potential negative modulation of the food reward related regions by the dlPFC during exposure to visual food cues is consistent with increased executive control in TMR vs. TD. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Global sensitivity analysis for identifying important parameters of nitrogen nitrification and denitrification under model uncertainty and scenario uncertainty

    Science.gov (United States)

    Chen, Zhuowei; Shi, Liangsheng; Ye, Ming; Zhu, Yan; Yang, Jinzhong

    2018-06-01

    Nitrogen reactive transport modeling is subject to uncertainty in model parameters, structures, and scenarios. By using a new variance-based global sensitivity analysis method, this paper identifies important parameters for nitrogen reactive transport with simultaneous consideration of these three uncertainties. A combination of three scenarios of soil temperature and two scenarios of soil moisture creates a total of six scenarios. Four alternative models describing the effect of soil temperature and moisture content are used to evaluate the reduction functions used for calculating actual reaction rates. The results show that for nitrogen reactive transport problem, parameter importance varies substantially among different models and scenarios. Denitrification and nitrification process is sensitive to soil moisture content status rather than to the moisture function parameter. Nitrification process becomes more important at low moisture content and low temperature. However, the changing importance of nitrification activity with respect to temperature change highly relies on the selected model. Model-averaging is suggested to assess the nitrification (or denitrification) contribution by reducing the possible model error. Despite the introduction of biochemical heterogeneity or not, fairly consistent parameter importance rank is obtained in this study: optimal denitrification rate (Kden) is the most important parameter; reference temperature (Tr) is more important than temperature coefficient (Q10); empirical constant in moisture response function (m) is the least important one. Vertical distribution of soil moisture but not temperature plays predominant role controlling nitrogen reaction. This study provides insight into the nitrogen reactive transport modeling and demonstrates an effective strategy of selecting the important parameters when future temperature and soil moisture carry uncertainties or when modelers face with multiple ways of establishing nitrogen

  11. Role of reactive species in the photocatalytic degradation of ...

    Indian Academy of Sciences (India)

    2017-12-06

    Dec 6, 2017 ... Nitrogen doping; photocatalysis; visible light active; reactive species; ... Of a variety of semiconductors, tungsten oxide (WO3) ... sodium chloride (NaCl, Chameleon reagent), sodium nitrate ..... Ammonium. No ion .... produced.

  12. Consumo, digestibilidade total, produção de proteína microbiana e balanço de nitrogênio em dietas com subprodutos de frutas para ruminantes Intake, total digestibility, microbial protein production and the nitrogen balance in diets with fruit by-products for ruminants

    Directory of Open Access Journals (Sweden)

    José Augusto Gomes Azevêdo

    2011-05-01

    -product of fresh fruit (pineapple, guava, papaya, mango and passion fruit used in the diet for bovines partly replacing corn silage on intake and total nutrient digestibility, on the production of microbial protein and the nitrogen balance and on prediction of digestible fractions and total digestible nutrients (TDN of these by-products. All animals received corn silage and the urea/ammonium sulfate (9:1 mixture so diets would remain isonitrogenous. The intakes of dry matter (DM (kg/day, organic matter (OM, crude protein (CP, neutral detergent fiber (NDF and TDN, and the digestibility of CP, non-fibrous carbohydrates (NFC and ether extract (EE were affected by the source of the by-product. There was an effect for the level of inclusion of products in the digestibility of CP and EE. The by-products of papaya, mango and pineapple showed energy values of 23.1, 18.0 and 7.1% respectively, higher than corn silage. The source of the by-product influenced urinary excretion of derived from total purine, purine absorbed and production of microbial protein, in addition to the intake (g/day, the excretion in feces and urine (g/day of nitrogen compounds and nitrogen balance (g/day. The level of inclusion of the by-product in the diet affect the urinary excretion of derived from total purine, purine absorbed and microbial protein production. The by-products of pineapple, papaya and mango have energy value higher than corn silage and they can partly replace energy concentrates in diets for ruminants. The by-product of passion fruit has the potential to partly replace roughage in the diets of ruminants. The by-product of guava has use limitations in diets of ruminants.

  13. Cascading costs: an economic nitrogen cycle.

    Science.gov (United States)

    Moomaw, William R; Birch, Melissa B L

    2005-09-01

    The chemical nitrogen cycle is becoming better characterized in terms of fluxes and reservoirs on a variety of scales. Galloway has demonstrated that reactive nitrogen can cascade through multiple ecosystems causing environmental damage at each stage before being denitrified to N(2). We propose to construct a parallel economic nitrogen cascade (ENC) in which economic impacts of nitrogen fluxes can be estimated by the costs associated with each stage of the chemical cascade. Using economic data for the benefits of damage avoided and costs of mitigation in the Chesapeake Bay basin, we have constructed an economic nitrogen cascade for the region. Since a single ton of nitrogen can cascade through the system, the costs also cascade. Therefore evaluating the benefits of mitigating a ton of reactive nitrogen released needs to consider the damage avoided in all of the ecosystems through which that ton would cascade. The analysis reveals that it is most cost effective to remove a ton of nitrogen coming from combustion since it has the greatest impact on human health and creates cascading damage through the atmospheric, terrestrial, aquatic and coastal ecosystems. We will discuss the implications of this analysis for determining the most cost effective policy option for achieving environmental quality goals.

  14. Isotope studies on the comparative efficiency of nitrogenous sources

    Energy Technology Data Exchange (ETDEWEB)

    Dev, G; Rennie, D A [Saskatchewan Univ., Saskatoon (Canada). Dept. of Soil Science

    1979-03-01

    In a growth chamber experiment with /sup 15/N-labelled potassium nitrate, ammonium sulphate and urea at 75 and 150kg nitrogen/ha and ammonium nitrate at 150kg nitrogen/ha, nitrogen application produced significant responses of dry matter yield and total nitrogen uptake by shoot and root of barley in chernozemic dark brown Elstow silt loam and deep black Hoey clay soil. Total nitrogen removal per pot and isotope-derived criteria, viz. percentage nitrogen derived from fertilizer, 'A' value and percentage fertilizer nitrogen utilization, indicated that potassium nitrate was the most efficient and urea the least.

  15. Nitrogen tank

    CERN Multimedia

    2006-01-01

    Wanted The technical file about the pressure vessel RP-270 It concerns the Nitrogen tank, 60m3, 22 bars, built in 1979, and installed at Point-2 for the former L3 experiment. If you are in possession of this file, or have any files about an equivalent tank (probably between registered No. RP-260 and -272), please contact Marc Tavlet, the ALICE Glimos.

  16. Use of stable nitrogen isotope 15N in investigating nitrogen uptake by plants from allylisothiocyanate decomposition products

    International Nuclear Information System (INIS)

    Dolejskova, J.; Kovar, J.

    1976-01-01

    The assimilability of nitrogen from allylisothiocyanate or from its nitrogenous decomposition products by plants was investigated using 15 N-labelled allylisothiocyanate. The results show that plant nitrogen assimilation from allylisothiocyanate is the higher, the lower the total nitrogen content of the nutritive medium. (author)

  17. Replaceable liquid nitrogen piping

    International Nuclear Information System (INIS)

    Yasujima, Yasuo; Sato, Kiyoshi; Sato, Masataka; Hongo, Toshio

    1982-01-01

    This liquid nitrogen piping with total length of about 50 m was made and installed to supply the liquid nitrogen for heat insulating shield to three superconducting magnets for deflection and large super-conducting magnet for detection in the π-meson beam line used for high energy physics experiment in the National Laboratory for High Energy Physics. The points considered in the design and manufacture stages are reported. In order to minimize the consumption of liquid nitrogen during transport, vacuum heat insulation method was adopted. The construction period and cost were reduced by the standardization of the components, the improvement of welding works and the elimination of ineffective works. For simplifying the maintenance, spare parts are always prepared. The construction and the procedure of assembling of the liquid nitrogen piping are described. The piping is of double-walled construction, and its low temperature part was made of SUS 316L. The super-insulation by aluminum vacuum evaporation and active carbon were attached on the external surface of the internal pipe. The final leak test and the heating degassing were performed. The tests on evacuation, transport capacity and heat entry are reported. By making the internal pipe into smaller size, the piping may be more efficient. (Kako, I.)

  18. Surface reactivity and layer analysis of chemisorbed reaction films in ...

    Indian Academy of Sciences (India)

    Administrator

    Surface reactivity and layer analysis of chemisorbed reaction films in ... in the nitrogen environment. Keywords. Surface reactivity ... sium (Na–K) compounds in the coating or core of the ..... Barkshire I R, Pruton M and Smith G C 1995 Appl. Sur.

  19. Isotope investigation of nitrogen in the hydrosphere

    International Nuclear Information System (INIS)

    Heaton, T.H.E.

    1985-01-01

    Compounds of nitrogen are essential, often limiting nutrients, and the nitrogen cycle is therefore one of the most important of the earth's major elements cycles. Of all the cycles, however, the nitrogen cycle is also probably the one most influenced by human activity. This activity has resulted in the increase in reactive nitrogen compounds to such an extent that they now present major forms of pollution. Any strategies aimed at counteracting these disturbances require a better understanding of the sources and reaction processes for nitrogen compounds, and studies of natural variations in 15 N/ 14 N ratio are now being used for this purpose in all parts of the hydrosphere. This paper reviews the isotopic method for tracing sources of nitrate in ground and surface waters

  20. Total protein

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003483.htm Total protein To use the sharing features on this page, please enable JavaScript. The total protein test measures the total amount of two classes ...

  1. Nitrogen concentrations in mosses indicate the spatial distribution of atmospheric nitrogen deposition in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Harmens, H., E-mail: hh@ceh.ac.uk [Centre for Ecology and Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd LL57 2UW (United Kingdom); Norris, D.A., E-mail: danor@ceh.ac.uk [Centre for Ecology and Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd LL57 2UW (United Kingdom); Cooper, D.M., E-mail: cooper@ceh.ac.uk [Centre for Ecology and Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd LL57 2UW (United Kingdom); Mills, G., E-mail: gmi@ceh.ac.uk [Centre for Ecology and Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd LL57 2UW (United Kingdom); Steinnes, E., E-mail: Eiliv.Steinnes@chem.ntnu.no [Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim (Norway); Kubin, E., E-mail: Eero.Kubin@metla.fi [Finnish Forest Research Institute, Kirkkosaarentie 7, 91500 Muhos (Finland); Thoeni, L., E-mail: lotti.thoeni@fub-ag.ch [FUB-Research Group for Environmental Monitoring, Alte Jonastrasse 83, 8640 Rapperswil (Switzerland); Aboal, J.R., E-mail: jesusramon.aboal@usc.es [University of Santiago de Compostela, Faculty of Biology, Department of Ecology, 15782 Santiago de Compostela (Spain); Alber, R., E-mail: Renate.Alber@provinz.bz.it [Environmental Agency of Bolzano, 39055 Laives (Italy); Carballeira, A., E-mail: alejo.carballeira@usc.es [University of Santiago de Compostela, Faculty of Biology, Department of Ecology, 15782 Santiago de Compostela (Spain); Coskun, M., E-mail: coskunafm@yahoo.com [Canakkale Onsekiz Mart University, Faculty of Medicine, Department of Medical Biology, 17100 Canakkale (Turkey); De Temmerman, L., E-mail: ludet@var.fgov.be [Veterinary and Agrochemical Research Centre, Tervuren (Belgium); Frolova, M., E-mail: marina.frolova@lvgma.gov.lv [Latvian Environment, Geology and Meteorology Agency, Riga (Latvia); Gonzalez-Miqueo, L., E-mail: lgonzale2@alumni.unav.es [Univ. of Navarra, Irunlarrea No 1, 31008 Pamplona (Spain)

    2011-10-15

    In 2005/6, nearly 3000 moss samples from (semi-)natural location across 16 European countries were collected for nitrogen analysis. The lowest total nitrogen concentrations in mosses (<0.8%) were observed in northern Finland and northern UK. The highest concentrations ({>=}1.6%) were found in parts of Belgium, France, Germany, Slovakia, Slovenia and Bulgaria. The asymptotic relationship between the nitrogen concentrations in mosses and EMEP modelled nitrogen deposition (averaged per 50 km x 50 km grid) across Europe showed less scatter when there were at least five moss sampling sites per grid. Factors potentially contributing to the scatter are discussed. In Switzerland, a strong (r{sup 2} = 0.91) linear relationship was found between the total nitrogen concentration in mosses and measured site-specific bulk nitrogen deposition rates. The total nitrogen concentrations in mosses complement deposition measurements, helping to identify areas in Europe at risk from high nitrogen deposition at a high spatial resolution. - Highlights: > Nitrogen concentrations in mosses were determined at ca. 3000 sites across Europe. > Moss concentrations were compared with EMEP modelled nitrogen deposition. > The asymptotic relationship for Europe showed saturation at ca. 15 kg N ha{sup -1} y{sup -1}. > Linear relationships were found with measured nitrogen deposition in some countries. > Moss concentrations complement deposition measurements at high spatial resolution. - Mosses as biomonitors of atmospheric nitrogen deposition in Europe.

  2. The Nitrogen Footprint Tool for Institutions: Comparing Results for a Diverse Group of Institutions

    Science.gov (United States)

    Castner, E.; Leach, A. M.; Galloway, J. N.; Hastings, M. G.; Lantz-Trissel, J.; Leary, N.; Kimiecik, J.; de la Reguera, E.

    2015-12-01

    Anthropogenic production of reactive nitrogen (Nr) has drastically altered the nitrogen cycle over the past few decades by causing it to accumulate in the environment. A nitrogen footprint (NF) estimates the amount of Nr released to the environment as a result of an entity's activities. The Nitrogen Footprint Tool (NFT) for universities and institutions provides a standardized method for quantifying the NF for the activities and operations of these entities. The NFT translates data on energy use, food purchasing, sewage treatment, and fertilizer use to the amount of Nr lost to the environment using NOx and N2O emission factors, virtual nitrogen factors (VNFs) for food production, N reduction rates from wastewater treatment, and nitrogen uptake factors for fertilizer. As part of the Nitrogen Footprint Project supported by the EPA, seven institutions (colleges, universities, and research institutions) have completed NFT assessments: University of Virginia, University of New Hampshire, Brown University, Dickinson College, Colorado State University, Eastern Mennonite University, and the Marine Biological Laboratory. The results of these assessments reveal the magnitude of impacts on the global nitrogen cycle by different activities and sectors, and will allow these institutions to set NF reduction goals along with management decisions based on scenarios and projections in the NFT. The trends revealed in early analysis of the results include geographic differences based on regional energy sources and local sewage treatment, as well as operational differences that stem from institution type and management. As an example of the impact of management, the amount and type of food served directly impacts the food production NF, which is a large percentage of the total NF for all institutions (35-75%). Comparison of these first NF results will shed light on the primary activities of institutions that add Nr to the environment and examine the differences between them.

  3. IMMUNOLOGICAL REACTIVITY IN PATIENTS WITH UROLOGICAL PROFILE UNDER COMBINED THERAPY

    Directory of Open Access Journals (Sweden)

    A. V. Esipov

    2017-01-01

    Full Text Available Prevention and treatment of postoperative purulent-inflammatory complications in urological practice remains a subject for study and improvement in all medical centers. The principle of evidence must be taken as a basis of effectiveness of therapy. In this study the quality criteria of demonstrated therapy are immunological parameters.The purpose of this study is to identify the effectiveness of using monooxidase (NO containing a gas stream replenishing the deficiency of endogenous NO in a group of patients; and to investigate immunological reactivity in patients under complex therapy included nitrogen monoxide and immunomodulators.Materials and methods. In this experimental study we determined the functioning of the main links of the patient’s immunological system. They were determined on the basis of the levels of general T-lymphocytes (T-total, T-helper (T-h, T-suppressor (T-s, natural killer (NK, B-lymphocyte and immunoglobulin G, M, A, circulating immune complexes (CIC.Results. Based on the obtained data, we concluded that the traditional treatment of patients with postoperative complications was less effective than the one proposed in our study. Immunological picture of patient’s condition come back to normal almost from the first day of treatment, and under traditional treatment it was only on the 7th day. Under using complex treatment with nitrogen monoxide, parameters of humoral immunity corresponded to the norm already on the 7–14th day from the beginning of treatment.Conclusion. NO-containing gas flow application in complex prevention of purulent-inflammatory complications made possible to eliminate wound infection in shorter terms and to shorten the period of patient’s hospitalization. The best results were obtained in terms of immunological reactivity in a clinical trial in patients who received complex therapy included nitrogen monoxide and lymphotropic administration of the immunomodulators.

  4. Inorganic nitrogen in precipitation and atmospheric sediments

    Energy Technology Data Exchange (ETDEWEB)

    Matheson, D H

    1951-01-01

    In an investigation covering 18 months, daily determinations were made of the inorganic nitrogen contained in precipitation and atmospheric sediments collected at Hamilton, Ont. The nitrogen fall for the whole period averaged 5.8 lb. N per acre per year. Sixty-one per cent of the total nitrogen was collected on 25% of the days when precipitation occurred. The balance, occurring on days without precipitation, is attributable solely to the sedimentation of dust. Ammonia nitrogen averaged 56% of the total, but the proportion for individual days varied widely.

  5. [Nitrogen Fraction Distributions and Impacts on Soil Nitrogen Mineralization in Different Vegetation Restorations of Karst Rocky Desertification].

    Science.gov (United States)

    Hu, Ning; Ma, Zhi-min; Lan, Jia-cheng; Wu, Yu-chun; Chen, Gao-qi; Fu, Wa-li; Wen, Zhi-lin; Wang, Wen-jing

    2015-09-01

    In order to illuminate the impact on soil nitrogen accumulation and supply in karst rocky desertification area, the distribution characteristics of soil nitrogen pool for each class of soil aggregates and the relationship between aggregates nitrogen pool and soil nitrogen mineralization were analyzed in this study. The results showed that the content of total nitrogen, light fraction nitrogen, available nitrogen and mineral nitrogen in soil aggregates had an increasing tendency along with the descending of aggregate-size, and the highest content was occurred in 5mm and 2-5 mm classes, and the others were the smallest. With the positive vegetation succession, the weight percentage of > 5 mm aggregate-size classes was improved and the nitrogen storage of macro-aggregates also was increased. Accordingly, the capacity of soil supply mineral nitrogen and storage organic nitrogen were intensified.

  6. Apple wine processing with different nitrogen contents

    Directory of Open Access Journals (Sweden)

    Aline Alberti

    2011-06-01

    Full Text Available The aim of this work was to evaluate the nitrogen content in different varieties of apple musts and to study the effect of different nitrogen concentrations in apple wine fermentation. The average total nitrogen content in 51 different apples juices was 155.81 mg/L, with 86.28 % of the values above 100 mg/L. The apple must with 59.0, 122.0 and 163.0 mg/L of total nitrogen content showed the maximum population of 2.05x 10(7; 4.42 x 10(7 and 8.66 x 10(7 cell/mL, respectively. Therefore, the maximum fermentation rates were dependent on the initial nitrogen level, corresponding to 1.4, 5.1 and 9.2 g/L.day, respectively. The nitrogen content in the apple musts was an important factor of growth and fermentation velocity.

  7. Improvements to the characterization of organic nitrogen chemistry and deposition in CMAQ (CMAS Presentation)

    Science.gov (United States)

    Excess atmospheric nitrogen deposition can cause significant harmful effects to ecosystems. Organic nitrogen deposition can be an important contributor to the total nitrogen budget, contributing 10-30%, however there are large uncertainties in the chemistry and deposition of thes...

  8. Improvements to the treatment of organic nitrogen chemistry & deposition in CMAQ

    Science.gov (United States)

    Excess atmospheric nitrogen deposition can cause significant harmful effects to ecosystems. Organic nitrogen deposition can be an important contributor to the total nitrogen budget, contributing 10-30%, however there are large uncertainties in the chemistry and deposition of thes...

  9. Improvements to the characterization of organic nitrogen chemistry and deposition in CMAQ

    Science.gov (United States)

    Excess atmospheric nitrogen deposition can cause significant harmful effects to ecosystems. Organic nitrogen deposition can be an important contributor to the total nitrogen budget, contributing 10-30%, however there are large uncertainties in the chemistry and deposition of thes...

  10. The reactivity meter and core reactivity

    International Nuclear Information System (INIS)

    Siltanen, P.

    1999-01-01

    This paper discussed in depth the point kinetic equations and the characteristics of the point kinetic reactivity meter, particularly for large negative reactivities. From a given input signal representing the neutron flux seen by a detector, the meter computes a value of reactivity in dollars (ρ/β), based on inverse point kinetics. The prompt jump point of view is emphasised. (Author)

  11. Total algorithms

    NARCIS (Netherlands)

    Tel, G.

    We define the notion of total algorithms for networks of processes. A total algorithm enforces that a "decision" is taken by a subset of the processes, and that participation of all processes is required to reach this decision. Total algorithms are an important building block in the design of

  12. Mean age distribution of inorganic soil-nitrogen

    Science.gov (United States)

    Woo, Dong K.; Kumar, Praveen

    2016-07-01

    Excess reactive nitrogen in soils of intensively managed landscapes causes adverse environmental impact, and continues to remain a global concern. Many novel strategies have been developed to provide better management practices and, yet, the problem remains unresolved. The objective of this study is to develop a model to characterize the "age" of inorganic soil-nitrogen (nitrate, and ammonia/ammonium). We use the general theory of age, which provides an assessment of the time elapsed since inorganic nitrogen has been introduced into the soil system. We analyze a corn-corn-soybean rotation, common in the Midwest United States, as an example application. We observe two counter-intuitive results: (1) the mean nitrogen age in the topsoil layer is relatively high; and (2) mean nitrogen age is lower under soybean cultivation compared to corn although no fertilizer is applied for soybean cultivation. The first result can be explained by cation-exchange of ammonium that retards the leaching of nitrogen, resulting in an increase in the mean nitrogen age near the soil surface. The second result arises because the soybean utilizes the nitrogen fertilizer left from the previous year, thereby removing the older nitrogen and reducing mean nitrogen age. Estimating the mean nitrogen age can thus serve as an important tool to disentangle complex nitrogen dynamics by providing a nuanced characterization of the time scales of soil-nitrogen transformation and transport processes.

  13. Increasing importance of deposition of reduced nitrogen in the United States

    Science.gov (United States)

    Yi Li; Bret A. Schichtel; John T. Walker; Donna B. Schwede; Xi Chen; Christopher M. B. Lehmann; Melissa A. Puchalski; David A. Gay; Jeffrey L. Collett

    2016-01-01

    Rapid development of agriculture and fossil fuel combustion greatly increased US reactive nitrogen emissions to the atmosphere in the second half of the 20th century, resulting in excess nitrogen deposition to natural ecosystems. Recent efforts to lower nitrogen oxides emissions have substantially decreased nitrate wet deposition. Levels of wet ammonium...

  14. Tightening the nitrogen cycle

    OpenAIRE

    Christensen, B.T.

    2004-01-01

    The availability of nitrogen to crop plants is a universally important aspect of soil quality, and often nitrogen represents the immediate limitation to crop productivity in modern agriculture. Nitrogen is decisive for the nutritive value of plant products and plays a key role in the environmental impact of agricultural production. The fundamental doctrine of nitrogen management is to optimise the nitrogen use efficiency of both introduced and native soil nitrogen by increasing the temporal a...

  15. PROCEEDINGS: MULTIPOLLUTANT SORBENT REACTIVITY ...

    Science.gov (United States)

    The report is a compilation of technical papers and visual aids presented by representatives of industry, academia, and government agencies at a workshop on multipollutant sorbent reactivity that was held at EPA's Environmental Research Center in Research Triangle Park, NC, on July 19-20, 1994. There were 16 technical presentations in three sessions, and a panel discussion between six research experts. The workshop was a forum for the exchange of ideas and information on the use of sorbents to control air emissions of acid gases (sulfur dioxide, nitrogen oxides, and hydrogen chloride); mercury and dioxins; and toxic metals, primarily from fossil fuel combustion. A secondary purpose for conducting the workshop was to help guide EPA's research planning activities. A general theme of the workshop was that a strategy of controlling many pollutants with a single system rather than systems to control individual pollutants should be a research goal. Some research needs cited were: hazardous air pollutant removal by flue gas desulfurization systems, dioxin formation and control, mercury control, waste minimization, impact of ash recycling on metals partitioning, impact of urea and sorbents on other pollutants, high temperature filtration, impact of coal cleaning on metals partitioning, and modeling dispersion of sorbents in flue gas. information

  16. Modeling the Syn-Disposition of Nitrogen Donors in Non-Heme Diiron Enzymes. Synthesis, Characterization, and Hydrogen Peroxide Reactivity of Diiron(III) Complexes with the Syn N-Donor Ligand H2BPG2DEV

    Science.gov (United States)

    Friedle, Simone; Kodanko, Jeremy J.; Morys, Anna J.; Hayashi, Takahiro; Moënne-Loccoz, Pierre; Lippard, Stephen J.

    2009-01-01

    In order to model the syn disposition of histidine residues in carboxylate-bridged non-heme diiron enzymes, we prepared a new dinucleating ligand, H2BPG2DEV, that provides this geometric feature. The ligand incorporates biologically relevant carboxylate functionalities, which have not been explored as extensively as nitrogen-only analogs. Three novel oxo-bridged diiron(III) complexes [Fe2(μ-O)(H2O)2-(BPG2DEV)](ClO4)2 (6), [Fe2(μ-O)(μ-O CAriPrO)(BPG2DEV)](ClO4) (7), and [Fe2(μ-O)(μ-CO3)(BPG2DEV)] (8) were prepared. Single crystal X-ray structural characterization confirms that two pyridines are bound syn with respect to the Fe–Fe vector in these compounds. The carbonato-bridged complex 8 forms quantitatively from 6 in a rapid reaction with gaseous CO2 in organic solvents. A common maroon-colored intermediate (λmax = 490 nm; ε = 1500 M−1 cm−1) forms in reactions of 6, 7, or 8 with H2O2 and NEt3 in CH3CN/H2O solutions. Mass spectrometric analyses of this species, formed using 18O-labeled H2O2, indicate the presence of a peroxide ligand bound to the oxo-bridged diiron(III) center. The Mössbauer spectrum at 90 K of the EPR-silent intermediate exhibits a quadrupole doublet with δ. = 0.58 mm/s and ΔEQ = 0.58 mm/s. The isomer shift is typical for a peroxodiiron(III) species, but the quadrupole splitting parameter is unusually small compared to related complexes. These Mössbauer parameters are comparable to those observed for a peroxo intermediate formed in the reaction of reduced toluene/o-xylene monooxygenase hydroxylase (ToMOH) with dioxygen. Resonance Raman studies reveal an unusually low-energy O–O stretching mode in the peroxo intermediate that is consistent with a short diiron distance. Although peroxodiiron(III) intermediates generated from 6, 7, and 8 are poor O-atom transfer catalysts, they display highly efficient catalase activity, with turnover numbers up to 10,000. In contrast to hydrogen peroxide reactions of diiron(III) complexes that lack

  17. Period meter output in response to terminated ramps of reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Cummins, J D [Dynamics Group, Control and Instrumentation Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1962-07-15

    The time behaviour of the period meter output has been determined for a range of total reactivity injections and reactivity rates. Some results which are directly applicable to graphite gas cooled reactors are given. (author)

  18. [Hyper-reactive malarial splenomegaly].

    Science.gov (United States)

    Maazoun, F; Deschamps, O; Barros-Kogel, E; Ngwem, E; Fauchet, N; Buffet, P; Froissart, A

    2015-11-01

    Hyper-reactive malarial splenomegaly is a rare and severe form of chronic malaria. This condition is a common cause of splenomegaly in endemic areas. The pathophysiology of hyper-reactive malarial splenomegaly involves an intense immune reaction (predominantly B cell-driven) to repeated/chronic infections with Plasmodium sp. The diagnosis may be difficult, due to a poorly specific clinical presentation (splenomegaly, fatigue, cytopenias), a long delay between residence in a malaria-endemic area and onset of symptoms, and a frequent absence of parasites on conventional thin and thick blood smears. A strongly contributive laboratory parameter is the presence of high levels of total immunoglobulin M. When the diagnostic of hyper-reactive malarial splenomegaly is considered, search for anti-Plasmodium antibodies and Plasmodium nucleic acids (genus and species) by PCR is useful. Diagnosis of hyper-reactive malarial splenomegaly relies on the simultaneous presence of epidemiological, clinical, biological and follow-up findings. Regression of both splenomegaly and hypersplenism following antimalarial therapy allows the differential diagnosis with splenic lymphoma, a common complication of hyper-reactive malarial splenomegaly. Although rare in Western countries, hyper-reactive malarial splenomegaly deserves increased medical awareness to reduce the incidence of incorrect diagnosis, to prevent progression to splenic lymphoma and to avoid splenectomy. Copyright © 2015 Société nationale française de médecine interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  19. Year 2020: Consequences of population growth and development on deposition of oxidized nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Galloway, J N [Environmental Sciences Dept., Univ. of Virginia, Charlottesville, VA (United States); Levy, H; Kasibhatla, P S [NOAA Geophysical Fluid Dynamics Lab., Princeton, NJ (United States)

    1994-01-01

    With a current world population of 5.3 billion, fossil fuel and biomass burning have already greatly increased the emission of fixed nitrogen to the global atmosphere. In 2020, with a projected population of 8.5 billion and an assumed 100% increase in per capita energy consumption relative to 1980 by the lesser developed countries, we predict an approximate 25% increase in total nitrogen deposition in the more developed country source regions such as North America. In addition, reactive nitrogen deposition will at least double in less developed regions, such as SE Asia and Latin America, and will increase by more than 50% over the oceans of the Northern Hemisphere. Although we also predict significant increases in the deposition of nitrogen from fossil-fuel sources over most of the Southern Hemisphere, particularly Africa, the tropical eastern Pacific, and the southern Atlantic and Indian Oceans, biomass burning and the natural sources of nitrogen oxides (lightning and biogenic soil emissions) are also important in these regions. This increased deposition has the potential to fertilize both terrestrial and marine ecosystems, resulting in the sequestering of carbon. Increases in nitrogen deposition have also been shown not only to acidify ecosystems but also to increase emissions of nitric oxide (NO), nitrous oxide (N[sub 2]O), carbonyl sulfide (COS), and carbon+sulfur (CS[sub 2]) to the atmosphere and decrease methane (CH[sub 4]) consumption in forest soils. We also find that the atmospheric levels of nitrogen oxides increase significantly throughout much of the Northern Hemisphere and populated regions of the Southern Hemisphere. This increase may lead to larger ozone concentrations with resulting increases in the oxidative capacity of the remote atmosphere and its ability to absorb IR radiation. 31 refs, 3 figs, 1 tab

  20. Year 2020: Consequences of population growth and development on deposition of oxidized nitrogen

    International Nuclear Information System (INIS)

    Galloway, J.N.; Levy, H.; Kasibhatla, P.S.

    1994-01-01

    With a current world population of 5.3 billion, fossil fuel and biomass burning have already greatly increased the emission of fixed nitrogen to the global atmosphere. In 2020, with a projected population of 8.5 billion and an assumed 100% increase in per capita energy consumption relative to 1980 by the lesser developed countries, we predict an approximate 25% increase in total nitrogen deposition in the more developed country source regions such as North America. In addition, reactive nitrogen deposition will at least double in less developed regions, such as SE Asia and Latin America, and will increase by more than 50% over the oceans of the Northern Hemisphere. Although we also predict significant increases in the deposition of nitrogen from fossil-fuel sources over most of the Southern Hemisphere, particularly Africa, the tropical eastern Pacific, and the southern Atlantic and Indian Oceans, biomass burning and the natural sources of nitrogen oxides (lightning and biogenic soil emissions) are also important in these regions. This increased deposition has the potential to fertilize both terrestrial and marine ecosystems, resulting in the sequestering of carbon. Increases in nitrogen deposition have also been shown not only to acidify ecosystems but also to increase emissions of nitric oxide (NO), nitrous oxide (N 2 O), carbonyl sulfide (COS), and carbon+sulfur (CS 2 ) to the atmosphere and decrease methane (CH 4 ) consumption in forest soils. We also find that the atmospheric levels of nitrogen oxides increase significantly throughout much of the Northern Hemisphere and populated regions of the Southern Hemisphere. This increase may lead to larger ozone concentrations with resulting increases in the oxidative capacity of the remote atmosphere and its ability to absorb IR radiation. 31 refs, 3 figs, 1 tab

  1. Odd nitrogen production by meteoroids

    Science.gov (United States)

    Park, C.; Menees, G. P.

    1978-01-01

    The process by which odd nitrogen species (atomic nitrogen and nitric oxide) are formed during atmospheric entry of meteoroids is analyzed theoretically. An ablating meteoroid is assumed to be a point source of mass with a continuum regime evolving in its wake. The amounts of odd nitrogen species, produced by high-temperature reactions of air in the continuum wake, are calculated by numerical integration of chemical rate equations. Flow properties are assumed to be uniform across the wake, and 29 reactions involving five neutral species and five singly ionized species are considered, as well as vibrational and electron temperature nonequilibrium phenomena. The results, when they are summed over the observed mass, velocity, and entry-angle distribution of meteoroids, provide odd-nitrogen-species annual global production rates as functions of altitude. The peak production of nitric oxide is found to occur at an altitude of about 85 km; atomic nitrogen production peaks at about 95 km. The total annual rate for nitric oxide is 40 million kg; for atomic nitrogen it is 170 million kg.

  2. Physical-chemical processes of astrophysical interest: nitrogen chemistry

    International Nuclear Information System (INIS)

    Loison, Jean-Christophe; Hickson, Kevin; Hily-Blant, Pierre; Faure, Alexandre; Vuitton, Veronique; Bacmann, A.; Maret, Sebastien; Legal, Romane; Rist, Claire; Roncero, Octavio; Larregaray, Pascal; Hochlaf, Majdi; Senent, M. L.; Capron, Michael; Biennier, Ludovic; Carles, Sophie; Bourgalais, Jeremy; Le Picard, Sebastien; Cordier, Daniel; Guillemin, Jean-Claude; Trolez, Yann; Bertin, M.; Poderoso, H.A.M.; Michaut, X.; Jeseck, P.; Philippe, L.; Fillion, J.H.; Fayolle, E.C.; Linnartz, H.; Romanzin, C.; Oeberg, K.I.; Roueff, Evelyne; Pagani, Laurent; Padovani, Marco; Wakelam, Veronique; Honvault, Beatrice; Zvereva-Loete, Natalia; Ouk, Chanda-Malis; Scribano, Yohann; Hartmann, J.M.; Pineau des Forets, Guillaume; Hernandez, Mario; Lique, Francois; Kalugina, Yulia N.; Stoecklin, T.; Hochlaf, M.; Crespos, C.; Larregaray, P.; Martin-Gondre, L.; Petuya, R.; Quintas Sanchez, E.L.; Zanchet, Alexandre; Rodriguez-Lazcano, Yamilet; Mate, Belen

    2013-06-01

    This document contains the programme and abstracts of contributions to a workshop on nitrogen chemistry within an astrophysical perspective. These contributions have been presented in sessions: Introduction (opening lecture, experimental approaches to molecular astrophysics, theoretical approaches to astrophysics, observations in molecular astrophysics), Physical-chemical theory of the gas phase (time-dependent approach in elementary activity, statistic approach in elementary activity in the case of the N+H_2 reaction, potential energy surfaces for inelastic and reactive collisions, collision rate for N_2H"+, ortho/para selection rules in the chemistry of nitrogen hydrides, cyanides/iso-cyanides excitation in the ISM, CN excitation, radiative association with N_2H as new interstellar anion, ro-vibratory excitation of HCN) Laboratory astrophysics (measurement of reaction products in the CRESUSOL project, reactivity of the CN- anion, N_2 photo-desorption in ices, CRESU study of nitrogen chemistry, chemistry of nitrogen complex molecules), Observations and chemistry of astrophysical media (the problem of interstellar nitrogen fractioning, abundance of N_2 in proto-stellar cores, HNC in Titan atmosphere and nitrogen-related mechanisms in hot Jupiters, HCN and HNC in dark clouds or how theoretical modelling helps in interpreting observations, nitrogen chemistry in cold clouds, deuteration of nitrogen hydrides, nitrogen in interstellar ices, biochemical molecules on Titan, coupling between excitation and chemistry, radiative transfer of nitrogen hydrides, ortho/para chemistry of nitrogen hydrides), Physical-chemical theory of gas-grain interactions (nitrogen reactivity on surfaces, IR spectra of ices of NH_3 and NH_3/N_2 mixtures)

  3. Effect of different nitrogen application types on nitrogen utilization efficiency and fate of fertilizer for sugacane

    International Nuclear Information System (INIS)

    Wei Jianfeng; Wei Dongping; Liu Huanyu; Chen Chaojun; Lan Libin; Liang He

    2013-01-01

    A pot experiment in greenhouse was conducted with "1"5N-labeled urea 5 g/pot (equal to 450 kg · hm"-"2) total nitrogen by three kinds of treatments of disposable bottom application nitrogen before sowing (T1), 50% nitrogen before sowing and 50% nitrogrn during tillering stage (T2), and 30% nitrogen before sowing, 30% nitrogen during tillering stage and 40% nitrogen applied during elongation stage (T3) to investigate the use efficiency and fate of fertilizer nitrogen using the sugarcane cultivar ROC22. Results showed that almost 18% ∼ 29% of total N uptake by sugarcane was supplied by fertilizer, and 71% ∼ 82% N derived from soil and seed-stem. Nitrogen use efficiency ranged from 21.0% to 34.52%, with "1"5N-fertilizer residue of 37.61% ∼ 44.13%, and "1"5N-fertilizer loss of 21.35% ∼ 41.39% among three treatments. Under the three levels of nitrogen application, residual was "1"5N-fertilizer was mainly distributed in 0 ∼ 20 cm top soil. The uptake of nitrogen and the proportion of total N from fertilizer in sugarcane plant, the yield of stalk and sugar after the nitrogen applied, and the use efficiency and residue ratio of "1"5N-fertilizer increased significantly over time, while loss rate of "1"5N-fertilizer decreased significantly with a slight decline trend of nitrogen distribution and sucrose accumulation in stalk. The results also indicated that after the nitrogen applied the amounts "1"5N-fertilizer residue in 0 ∼ 20 cm top soil showed a rising trend, but dropped in 20 ∼ 40 cm soil profile. From the viewpoints of economic benefit and ecological benefit, the nitrogen fertilizer applied of T3 could be optimal treatment. (authors)

  4. Silsesquioxane nanoparticles with reactive internal functional groups

    Energy Technology Data Exchange (ETDEWEB)

    Brozek, Eric M . [University of Utah, Department of Chemistry (United States); Washton, Nancy M.; Mueller, Karl T. [Environmental Molecular Sciences Laboratory (United States); Zharov, Ilya, E-mail: i.zharov@utah.edu [University of Utah, Department of Chemistry (United States)

    2017-02-15

    A series of silsesquioxane nanoparticles containing reactive internal organic functionalities throughout the entire particle body have been synthesized using a surfactant-free method with organosilanes as the sole precursors and a base catalyst. The organic functional groups incorporated are vinyl, allyl, mercapto, cyanoethyl, and cyanopropyl groups. The sizes and morphologies of the particles were characterized using SEM and nitrogen adsorption, while the compositions were confirmed using TGA, FT-IR, solid state NMR, and elemental analysis. The accessibility and reactivity of the functional groups inside the particles were demonstrated by performing bromination and reduction reactions in the interior of the particles.

  5. Totally James

    Science.gov (United States)

    Owens, Tom

    2006-01-01

    This article presents an interview with James Howe, author of "The Misfits" and "Totally Joe". In this interview, Howe discusses tolerance, diversity and the parallels between his own life and his literature. Howe's four books in addition to "The Misfits" and "Totally Joe" and his list of recommended books with lesbian, gay, bisexual, transgender,…

  6. Carbono orgânico, nitrogênio total, biomassa e atividade microbiana do solo em duas cronosseqüências de reabilitação após a mineração de bauxita Soil organic carbon, total nitrogen, microbial biomass and activity in two rehabilitation chronosequences after bauxite mining

    Directory of Open Access Journals (Sweden)

    Marco Aurélio Carbone Carneiro

    2008-04-01

    reas de referência a partir do primeiro ano, enquanto para o CO e o Nt estes só foram alcançados de modo consistente em períodos mais longos de reabilitação (18 anos. O coeficiente metabólico (qCO2 foi indicativo do estresse provocado pela mineração, mas não diferenciou os diferentes tempos de reabilitação. Os resultados deste estudo mostram que os atributos essenciais ao funcionamento adequado do solo são recuperáveis pela revegetação.Mining is a human activity with a harsh impact on ecosystems. The degradation degree depends on the intensity of soil impact, exploited soil volume and amount of mine spoil. Soil microbial activities are responsible for key functions in ecosystems and can indicate the degree of rehabilitation of mined areas. The purpose of this study was to evaluate the impact of bauxite mining in two chronosequences with different rehabilitation strategies (revegetation on the following soil attributes: organic carbon (C org, total nitrogen (Nt, microbial biomass and respiration, and enzymatic activities. The study was developed in mining areas owned by Alcoa S/A in two different environments: (a areas originally covered by a tropical prairie vegetation called "campo", at elevations up to 1,000 masl, and (b in hilly areas, on the plateau top, including remnants of the native vegetation cover, represented by a subtropical decidous forest, at elevations about 1.600 masl, called "serra". Rehabilitation differed depending on strategies and time, varying from recent mining to 19 years of rehabilitation. Composite samples were collected in eight "campo" and nine "serra" areas, in two layers (0-10 and 10-20 cm in the winter as well as in the summer, in three replicates. Bauxite mining caused a negative impact on org C, Nt and microbial biomass (C, N and P. The values of these attributes were reduced by up to 99 % in comparison with those in reference areas (native vegetation. In both "campo" and "serra", the C org, Nt, microbial biomass and

  7. Nitrogen-containing steels and thermomechanical treatment

    International Nuclear Information System (INIS)

    Kaputkina, L.; Prokoshkina, V.G.; Svyazhin, G.

    2004-01-01

    The strengthening of nitrogen-containing corrosion-resistant steels resulting from alloying and thermomechanical treatment have been investigated using X-ray diffraction analysis, light microscopy, hardness measurements and tensile testing. Combined data have been obtained for nitrogen interaction with alloying elements , peculiarities of deformed structure and short-range of nitrogen-containing steels of various structural classes. The higher nitrogen and total alloying element contents, the higher deformation strengthening. Prospects of use the steels with not high nitrogen content and methods of their thermomechanical strengthening are shown. High temperature thermomechanical treatment (HTMT) is very effective for obtaining high and thermally stable constructional strength of nitrogen-containing steels of all classes. The HTMT is most effective if used in a combination with dispersion hardening for aging steels or in the case of mechanically unstable austenitic steels. (author)

  8. Quantitative determination of heavy nitrogen by spectroscopy

    International Nuclear Information System (INIS)

    Kumazawa, Kikuo

    1974-01-01

    Explanation is made on the merits of the determination with heavy nitrogen, the principle and apparatus used for the determination, the method of production of discharge tubes, and the application of the method to several special cases. The spectra belonging to the 2nd positive system are used for the analysis of heavy nitrogen by emission spectroscopy. The spectra near 2980 A are used most often. The bandheads utilizable for the determination are 2976.8 for 14 N 2 , 2982.9 for 14 N 15 N, and 2988.6 A for 15 N 2 , respectively. The sample must be sealed in a discharge tube as nitrogen gas, at first. Mixing of impurities lowers the sensitivity of the determination. The gas pressure is adjusted 10 1-6 Torr. The preparation of gaseous nitrogen is made by either the Rittenberg or the Dumas method. When the amount of a given sample is more than 50 mg, and nitrogen is present as ammonium salt, NH 3 is converted to nitrogen by the reaction with sodium hypobromite. When nitrogen is not present as ammonium salt, Dumas' method is adopted. The amount of heavy nitrogen in the aminoacid separated by thin layer chromatography with silica gel was successfully determined by this method. Simultaneous determination of heavy nitrogen and total nitrogen was also possible by this method. (Fukutomi, T.)

  9. Reactive pulsed laser deposition with gas jet

    International Nuclear Information System (INIS)

    Rakowski, R.; Bartnik, A.; Fiedorowicz, H.; Jarocki, R.; Kostecki, J.; Szczurek, M.

    2001-01-01

    Different metal (Sn, Al, steel, Cu, W) thin films were synthesized by reactive pulsed laser deposition on steel, copper and glass wafers. In our work pulsed Nd:glass (10 J, 800μs) laser system was used. Jet of gas was created by electromagnetic valve perpendicularly to the laser beam. Nitrogen, oxygen and argon were used. We used several to tens laser shots to obtain visible with the naked eye layers. Thin layers were observed under an optical microscope. (author)

  10. Reactive Kripke semantics

    CERN Document Server

    Gabbay, Dov M

    2013-01-01

    This text offers an extension to the traditional Kripke semantics for non-classical logics by adding the notion of reactivity. Reactive Kripke models change their accessibility relation as we progress in the evaluation process of formulas in the model. This feature makes the reactive Kripke semantics strictly stronger and more applicable than the traditional one. Here we investigate the properties and axiomatisations of this new and most effective semantics, and we offer a wide landscape of applications of the idea of reactivity. Applied topics include reactive automata, reactive grammars, rea

  11. Irrigation and nitrogen level affect lettuce yield in greenhouse ...

    African Journals Online (AJOL)

    This study was conducted to investigate the effect of different irrigation and nitrogen levels on lettuce yield characteristics in greenhouse condition from December 2006 to March 2007. Irrigation levels of 100% of total class A pan (S1), 80% of total class A pan (S2), 60% of total class A pan (S3) and nitrogen levels of 0 kg ...

  12. Target surface condition during reactive glow discharge sputtering of copper

    International Nuclear Information System (INIS)

    Depla, D; Haemers, J; Gryse, R De

    2002-01-01

    During reactive glow discharge sputtering of copper in an argon/nitrogen plasma, we noticed an abrupt change of the target voltage and the deposition rate when the nitrogen concentration in the plasma exceeds a critical value. To explain this behaviour, the target surface after reactive glow discharge sputtering was examined by x-ray photoelectron spectroscopy (XPS). An experimental arrangement was constructed that allows direct transfer of the glow discharge cathode to the XPS analysis chamber without air exposure. These XPS measurements revealed that several different chemical states of nitrogen are present in the layer that forms on the target surface. The relative concentration of these different states changes when the critical nitrogen concentration in the plasma is exceeded

  13. Evaluation of the Impact of Alveolar Nitrogen Excretion on Indices Derived from Multiple Breath Nitrogen Washout

    Science.gov (United States)

    Nielsen, Niklas; Nielsen, Jorgen G.; Horsley, Alex R.

    2013-01-01

    Background A large body of evidence has now accumulated describing the advantages of multiple breath washout tests over conventional spirometry in cystic fibrosis (CF). Although the majority of studies have used exogenous sulphur hexafluoride (SF6) as the tracer gas this has also led to an increased interest in nitrogen washout tests, despite the differences between these methods. The impact of body nitrogen excreted across the alveoli has previously been ignored. Methods A two-compartment lung model was developed that included ventilation heterogeneity and dead space (DS) effects, but also incorporated experimental data on nitrogen excretion. The model was used to assess the impact of nitrogen excretion on washout progress and accuracy of functional residual capacity (FRC) and lung clearance index (LCI) measurements. Results Excreted nitrogen had a small effect on accuracy of FRC (1.8%) in the healthy adult model. The error in LCI calculated with true FRC was greater (6.3%), and excreted nitrogen contributed 21% of the total nitrogen concentration at the end of the washout. Increasing DS and ventilation heterogeneity both caused further increase in measurement error. LCI was increased by 6–13% in a CF child model, and excreted nitrogen increased the end of washout nitrogen concentration by 24–49%. Conclusions Excreted nitrogen appears to have complex but clinically significant effects on washout progress, particularly in the presence of abnormal gas mixing. This may explain much of the previously described differences in washout outcomes between SF6 and nitrogen. PMID:24039916

  14. A Compilation of Global Soil Microbial Biomass Carbon, Nitrogen, and Phosphorus Data

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides the concentrations of soil microbial biomass carbon (C), nitrogen (N) and phosphorus (P), soil organic carbon, total nitrogen, and total...

  15. Reactive perforating collagenosis

    Directory of Open Access Journals (Sweden)

    Yadav Mukesh

    2009-01-01

    Full Text Available Reactive perforating collagenosis is a rare cutaneous disorder of unknown etiology. We hereby describe a case of acquired reactive perforating collagenosis in a patient of diabetes and chronic renal failure.

  16. Reactivity on the Web

    OpenAIRE

    Bailey, James; Bry, François; Eckert, Michael; Patrânjan, Paula Lavinia

    2005-01-01

    Reactivity, the ability to detect simple and composite events and respond in a timely manner, is an essential requirement in many present-day information systems. With the emergence of new, dynamic Web applications, reactivity on the Web is receiving increasing attention. Reactive Web-based systems need to detect and react not only to simple events but also to complex, real-life situations. This paper introduces XChange, a language for programming reactive behaviour on the Web,...

  17. Exogenous trehalose improves growth under limiting nitrogen through upregulation of nitrogen metabolism.

    Science.gov (United States)

    Lin, Yingchao; Zhang, Jie; Gao, Weichang; Chen, Yi; Li, Hongxun; Lawlor, David W; Paul, Matthew J; Pan, Wenjie

    2017-12-19

    The trehalose (Tre) pathway has strong effects on growth and development in plants through regulation of carbon metabolism. Altering either Tre or trehalose 6-phosphate (T6P) can improve growth and productivity of plants as observed under different water availability. As yet, there are no reports of the effects of modification of Tre orT6P on plant performance under limiting nutrition. Here we report that nitrogen (N) metabolism is positively affected by exogenous application of Tre in nitrogen-deficient growing conditions. Spraying foliage of tobacco (Nicotiana tabacum) with trehalose partially alleviated symptoms of nitrogen deficiency through upregulation of nitrate and ammonia assimilation and increasing activities of nitrate reductase (NR), glycolate oxidase (GO), glutamine synthetase (GS) and glutamine oxoglutarate aminotransferase (GOGAT) with concomitant changes in ammonium (NH 4 + ) and nitrate (NO 3 - ) concentrations, glutamine and amino acids. Chlorophyll and total nitrogen content of leaves and rates of photosynthesis were increased compared to nitrogen-deficient plants without applied Tre. Total plant biomass accumulation was also higher in Tre -fed nitrogen-deficient plants, with a smaller proportion of dry weight partitioned to roots, compared to nitrogen-deficient plants without applied Tre. Consistent with higher nitrogen assimilation and growth, Tre application reduced foliar starch. Minimal effects of Tre feeding were observed on nitrogen-sufficient plants. The data show, for the first time, significant stimulatory effects of exogenous Tre on nitrogen metabolism and growth in plants growing under deficient nitrogen. Under such adverse conditions metabolism is regulated for survival rather than productivity. Application of Tre can alter this regulation towards maintenance of productive functions under low nitrogen. This has implications for considering approaches to modifying the Tre pathway for to improve crop nitrogen-use efficiency and

  18. How intensive agriculture affects surface-atmosphere exchange of nitrogen and carbon compounds over peatland

    Science.gov (United States)

    Bruemmer, C.; Richter, U.; Schrader, F.; Hurkuck, M.; Kutsch, W. L.

    2016-12-01

    Mid-latitude peatlands are often exposed to high atmospheric nitrogen deposition when located in close vicinity to agricultural land. As the impacts of altered deposition rates on nitrogen-limited ecosystems are poorly understood, we investigated the surface-atmosphere exchange of several nitrogen and carbon compounds using multiple high-resolution measurement techniques and modeling. Our study site was a protected semi-natural bog ecosystem. Local wind regime and land use in the adjacent area clearly regulated whether total reactive nitrogen (∑Nr) concentrations were ammonia (NH3) or NOx-dominated. Eddy-covariance measurements of NH3 and ∑Nr revealed concentration, temperature and surface wetness-dependent deposition rates. Intermittent periods of NH3 and ∑Nr emission likely attributed to surface water re-emission and soil efflux, respectively, were found, thereby indicating nitrogen oversaturation in this originally N-limited ecosystem. Annual dry plus wet deposition resulted in 20 to 25 kg N ha-1 depending on method and model used, which translated into a four- to fivefold exceedance of the ecosystem-specific critical load. As the bog site had likely been exposed to the observed atmospheric nitrogen burden over several decades, a shift in grass species' composition towards a higher number of nitrophilous plants was already visible. Three years of CO2 eddy flux measurements showed that the site was a small net sink in the range of 33 to 268 g CO2 m-2 yr-1. Methane emissions of 32 g CO2-eq were found to partly offset the sequestered carbon through CO2. Our study demonstrates the applicability of novel micrometeorological measurement techniques in biogeochemical sciences and stresses the importance of monitoring long-term changes in vulnerable ecosystems under anthropogenic pressure and climate change.

  19. Monadic Functional Reactive Programming

    NARCIS (Netherlands)

    A.J. van der Ploeg (Atze); C Shan

    2013-01-01

    htmlabstractFunctional Reactive Programming (FRP) is a way to program reactive systems in functional style, eliminating many of the problems that arise from imperative techniques. In this paper, we present an alternative FRP formulation that is based on the notion of a reactive computation: a

  20. Digital reactivity meter

    International Nuclear Information System (INIS)

    Akkus, B.; Anac, H.; Alsan, S.; Erk, S.

    1991-01-01

    Nowadays, various digital methods making use of microcomputers for neutron detector signals and determining the reactivity by numerical calculations are used in reactor control systems in place of classical reactivity meters. In this work, a calculation based on the ''The Time Dependent Transport Equation'' has been developed for determining the reactivity numerically. The reactivity values have been obtained utilizing a computer-based data acquisition and control system and compared with the analog reactivity meter values as well as the values calculated from the ''Inhour Equation''

  1. Gas phase reactions of nitrogen oxides with olefins

    Energy Technology Data Exchange (ETDEWEB)

    Altshuller, A P; Cohen, I

    1961-01-01

    The nature of the condensation products formed in the gas phase reactions of nitrogen dioxide and nitric oxide with pentene-1, 2-methylbutene-2, and 2-methylbutadiene-1,3 was investigated. The reactants were combined at partial pressures in the range of 0.1 to 2.5 mm with the total pressure at one atmosphere. The products were determined by infrared and ultraviolet spectroscopy and colorimetry. The condensates included primary and secondary nitro compounds and alkyl nitrates. Strong hydroxyl and single bond carbon to oxygen stretching vibrations indicate the presence of either nitroalcohols or simple aliphatic alcohols formed through oxidation reactions. Carbonyl stretching frequencies observable in some of the reactions support the conclusion that a portion of the reactants disappear by oxidation rather than by nitration processes. The available results do not indicate the presence of appreciable amounts of tert.-nitro compounds, conjugated nitro-olefins, or gem-dinitro-alkanes. The reactivities of the olefins with the nitrogen oxides are in the decreasing order: 2-methyl-butadiene-1,3, 2-methylbutene-2, pentene-1. 20 references.

  2. A robust nitrifying community in a bioreactor at 50°C opens up the path for thermophilic nitrogen removal

    NARCIS (Netherlands)

    Courtens, E.N.P.; Spieck, E.; Vilchez-Vargas, R.; Bodé, S.; Boeckx, P.; Schouten, S.; Jáuregui, R.; Pieper, D.H.; Vlaeminck, S.E.; Boon, N.

    2016-01-01

    The increasing production of nitrogen-containing fertilizers is crucial to meet the global food demand, yet high losses of reactive nitrogen associated with the food production/consumption chain progressively deteriorate the natural environment. Currently, mesophilic nitrogen-removing microbes

  3. Method of controlling reactivity

    International Nuclear Information System (INIS)

    Tochihara, Hiroshi.

    1982-01-01

    Purpose: To improve the reactivity controlling characteristics by artificially controlling the leakage of neutron from a reactor and providing a controller for controlling the reactivity. Method: A reactor core is divided into several water gaps to increase the leakage of neutron, its reactivity is reduced, a gas-filled control rod or a fuel assembly is inserted into the gap as required, the entire core is coupled in a system to reduce the leakage of the neutron, and the reactivity is increased. The reactor shutdown is conducted by the conventional control rod, and to maintain critical state, boron density varying system is used together. Futher, a control rod drive is used with that similar to the conventional one, thereby enabling fast reactivity variation, and the positive reactivity can be obtained by the insertion, thereby improving the reactivity controlling characteristics. (Yoshihara, H.)

  4. (4 + 3) Cycloadditions of Nitrogen-Stabilized Oxyallyl Cations

    Science.gov (United States)

    Lohse, Andrew G.; Hsung, Richard P.

    2011-01-01

    The use of heteroatom-substituted oxyallyl cations in (4 + 3) cycloadditions has had a tremendous impact on the development of cycloaddition chemistry. Extensive efforts have been exerted toward investigating the effect of oxygen-, sulfur-, and halogen-substituents on the reactivity of oxyallyl cations. Most recently, the use of nitrogen-stabilized oxyallyl cations has gained prominence in the area of (4 + 3) cycloadditions. The following article will provide an overview of this concept utilizing nitrogen-stabilized oxyallyl cations. PMID:21384451

  5. Synthetic biology approaches to engineering the nitrogen symbiosis in cereals.

    Science.gov (United States)

    Rogers, Christian; Oldroyd, Giles E D

    2014-05-01

    Nitrogen is abundant in the earth's atmosphere but, unlike carbon, cannot be directly assimilated by plants. The limitation this places on plant productivity has been circumvented in contemporary agriculture through the production and application of chemical fertilizers. The chemical reduction of nitrogen for this purpose consumes large amounts of energy and the reactive nitrogen released into the environment as a result of fertilizer application leads to greenhouse gas emissions, as well as widespread eutrophication of aquatic ecosystems. The environmental impacts are intensified by injudicious use of fertilizers in many parts of the world. Simultaneously, limitations in the production and supply of chemical fertilizers in other regions are leading to low agricultural productivity and malnutrition. Nitrogen can be directly fixed from the atmosphere by some bacteria and Archaea, which possess the enzyme nitrogenase. Some plant species, most notably legumes, have evolved close symbiotic associations with nitrogen-fixing bacteria. Engineering cereal crops with the capability to fix their own nitrogen could one day address the problems created by the over- and under-use of nitrogen fertilizers in agriculture. This could be achieved either by expression of a functional nitrogenase enzyme in the cells of the cereal crop or through transferring the capability to form a symbiotic association with nitrogen-fixing bacteria. While potentially transformative, these biotechnological approaches are challenging; however, with recent advances in synthetic biology they are viable long-term goals. This review discusses the possibility of these biotechnological solutions to the nitrogen problem, focusing on engineering the nitrogen symbiosis in cereals.

  6. Ruthenium sulfoxides structure and reactivity with nitrogen heterocyclic bases

    International Nuclear Information System (INIS)

    Oliveira, Denise de.

    1990-01-01

    Ruthenium (II) sulfoxides are compounds of great interest in oxidative catalysis and in chemotherapy. In order to contribute for the understanding of the chemistry and electronic structure of this class of compounds, it has been studied a series of [Ru Cl 2 (S-DMSO) 2 L x ] complexes, where x = 1 (polymeric compounds) or 2 (monomers) and L N-heterocyclic ligands (pyridine, pyrazine and imidazole derivatives). The nature of N-heterocyclic ligand and their coordination are of great relevance to the stability, spectroscopic and electrochemical characteristics of the complexes. The trans-interactions are extremely important in this series, influencing the strength of the Ru(II)-> S-DMSO and Ru(II)-> L π-back donation. The DMSO and L ligands are π-acceptors. The metal-> ligand π-back donation is strengthened when the ligand is trans to chloride, which is π-donor, due to trans-cooperative interactions of the type: π-donor -> Ru(II) π-acceptor. Another interesting aspect in the series of [Ru Cl 2 (S-DMSO) 2 L 2 ] complexes is the occurrence of dissociative equilibria in the solution, due to the existence of three types of ligands. It was observed that the trans-N isomer of 2,6-dimethyl pyrazine derivative undergoes thermal substitution, with preferential liabilization of the N-heterocyclic ligand. Chloride ion is the most inert ligand in this complex. (author). 145 refs., 76 figs., 21 tabs

  7. Thermogravimetric study on the influence of structural, textural and chemical properties of biomass chars on CO2 gasification reactivity

    International Nuclear Information System (INIS)

    Bouraoui, Zeineb; Jeguirim, Mejdi; Guizani, Chamseddine; Limousy, Lionel; Dupont, Capucine; Gadiou, Roger

    2015-01-01

    The present investigation aims to examine the influence of textural, structural and chemical properties of biomass chars on the CO 2 gasification rate. Various lignocellulosic biomass chars were prepared under the same conditions. Different analytical techniques were used to determine the char properties such as Scanning Electronic Microscopy, nitrogen adsorption manometry, Raman spectroscopy and X Ray Fluorescence. Gasification tests were carried out in a thermobalance under 20% CO 2 in nitrogen at 800 °C. Significant differences of the total average reactivity were observed with a factor of 2 between the prepared chars. Moreover, different behaviors of gasification rate profiles versus conversion were obtained. This difference of behavior appeared to be correlated with the biomass char properties. Hence, up to 70% of conversion, the gasification rate was shown to depend on the char external surface and the potassium content. At higher conversion ratio, a satisfactory correlation between the Catalytic Index and the average gasification rate was identified. The results highlight the importance of knowing both textural and structural properties and mineral contents of biomass chars to predict fuel reactivity during CO 2 gasification processes. Such behavior prediction is highly important in the gasifiers design for char conversion. - Highlights: • CO 2 gasification reactivity of various lignocellulosic chars were examined. • Chars properties affect strongly samples gasification behavior. • Initial gasification rate is affected by external surface, K content and D3/G ratio. • Gasification rate behavior depends on the Alkali index at high conversion

  8. Band gap engineering of indium zinc oxide by nitrogen incorporation

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, J.J., E-mail: jjosila@hotmail.com [Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calzada Solidaridad esq. Paseo la Bufa, Fracc. Progreso, C.P. 98060 Zacatecas (Mexico); Doctorado Institucional de Ingeniería y Ciencia de Materiales, Universidad Autónoma de San Luis Potosí, Av. Salvador Nava, Zona Universitaria, C.P. 78270 San Luis Potosí (Mexico); Aguilar-Frutis, M.A.; Alarcón, G. [Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del Instituto Politécnico Nacional, Unidad Legaría, Calz. Legaría No. 694, Col. Irrigación, C.P. 11500 México D.F. (Mexico); Falcony, C. [Departamento de Física, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional campus Zacatenco, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P. 07360 México D.F. (Mexico); and others

    2014-09-15

    Highlights: • IZON thin films were deposited by RF reactive sputtering at room temperature. • The effects of nitrogen on physical properties of IZO were analyzed. • Optical properties of IZON were studied by SE and UV–vis spectroscopy. • Adachi and classical parameters were quantitative and qualitatively congruent. • Nitrogen induces a gradual narrowing band gap from 3.5 to 2.5 eV on IZON films. - Abstract: The effects of nitrogen incorporation in indium zinc oxide films, as grown by RF reactive magnetron sputtering, on the structural, electrical and optical properties were studied. It was determined that the variation of the N{sub 2}/Ar ratio, in the reactive gas flux, was directly proportional to the nitrogen percentage measured in the sample, and the incorporated nitrogen, which substituted oxygen in the films induces changes in the band gap of the films. This phenomenon was observed by measurement of absorption and transmission spectroscopy in conjunction with spectral ellipsometry. To fit the ellipsometry spectra, the classical and Adachi dispersion models were used. The obtained optical parameters presented notable changes related to the increment of the nitrogen in the film. The band gap narrowed from 3.5 to 2.5 eV as the N{sub 2}/Ar ratio was increased. The lowest resistivity obtained for these films was 3.8 × 10{sup −4} Ω cm with a carrier concentration of 5.1 × 10{sup 20} cm{sup −3}.

  9. Band gap engineering of indium zinc oxide by nitrogen incorporation

    International Nuclear Information System (INIS)

    Ortega, J.J.; Aguilar-Frutis, M.A.; Alarcón, G.; Falcony, C.

    2014-01-01

    Highlights: • IZON thin films were deposited by RF reactive sputtering at room temperature. • The effects of nitrogen on physical properties of IZO were analyzed. • Optical properties of IZON were studied by SE and UV–vis spectroscopy. • Adachi and classical parameters were quantitative and qualitatively congruent. • Nitrogen induces a gradual narrowing band gap from 3.5 to 2.5 eV on IZON films. - Abstract: The effects of nitrogen incorporation in indium zinc oxide films, as grown by RF reactive magnetron sputtering, on the structural, electrical and optical properties were studied. It was determined that the variation of the N 2 /Ar ratio, in the reactive gas flux, was directly proportional to the nitrogen percentage measured in the sample, and the incorporated nitrogen, which substituted oxygen in the films induces changes in the band gap of the films. This phenomenon was observed by measurement of absorption and transmission spectroscopy in conjunction with spectral ellipsometry. To fit the ellipsometry spectra, the classical and Adachi dispersion models were used. The obtained optical parameters presented notable changes related to the increment of the nitrogen in the film. The band gap narrowed from 3.5 to 2.5 eV as the N 2 /Ar ratio was increased. The lowest resistivity obtained for these films was 3.8 × 10 −4 Ω cm with a carrier concentration of 5.1 × 10 20 cm −3

  10. Stable Isotopic Composition of Dissolved Organic Nitrogen Fueling Brown Tide in a Semi-Arid Texas Estuary

    Science.gov (United States)

    Campbell, J.; Felix, J. D. D.; Wetz, M.; Cira, E.

    2017-12-01

    Harmful algal blooms (HABs) have the potential to adversely affect the water quality of estuaries and, consequently, their ability to support healthy and diverse ecosystems. Since the early 1990s, Baffin Bay, a semi-arid south Texas estuary, has progressively experienced harmful algal blooms. The primary species of HAB native to the Baffin Bay region, Aureoumbra lagunensis, is unable to utilize nitrate as a nutrient source, but instead relies on forms of reduced nitrogen (such as dissolved organic nitrogen (DON) and ammonium (NH4+)) for survival. DON levels in Baffin Bay (77 ± 10 µM) exceed the DON concentrations of not only typical Texas estuaries, but estuaries worldwide. Additionally, DON accounts for 90% of the total dissolved nitrogen (TDN) in Baffin Bay, followed by NH4+ at 8%, and NO3-+NO2- contributing 2%. Due to the dependence of A. lagunensis on the reduced forms of nitrogen as an energy source and the elevated concentrations of DON throughout the bay, it is important to identify the origin of this nitrogen as well as how it's being processed as it cycles through the ecosystem. The presented work investigates the stable isotopic composition of reactive nitrogen (Nr) (δ15N-DON, δ15N-NH4+, and δ15N-NO3-) in Baffin Bay samples collected monthly at nine stations over the period of one year. The work provides preliminary evidence of Nr sources and mechanisms driving favorable conditions for HAB proliferation. This information can be useful and applicable to estuarine ecosystems in various settings, advancing scientific progress towards mitigating blooms. Additionally, since the elevated concentrations of DON make Baffin Bay uniquely suited to investigate its sources and processing, this project will aid in characterizing the role of this largely unstudied form of Nr, which could provide insight and change perceptions about the role of DON in nitrogen dynamics.

  11. Marine nitrogen cycle

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.W.A.

    ) such as the Marine nitrogen cycle The marine nitrogen cycle. ‘X’ and ‘Y’ are intra-cellular intermediates that do not accumulate in water column. (Source: Codispoti et al., 2001) Page 1 of 3Marine nitrogen cycle - Encyclopedia of Earth 11/20/2006http://www... and nitrous oxide budgets: Moving targets as we enter the anthropocene?, Sci. Mar., 65, 85-105, 2001. Page 2 of 3Marine nitrogen cycle - Encyclopedia of Earth 11/20/2006http://www.eoearth.org/article/Marine_nitrogen_cycle square6 Gruber, N.: The dynamics...

  12. Plant species richness enhances nitrogen retention in green roof plots.

    Science.gov (United States)

    Johnson, Catherine; Schweinhart, Shelbye; Buffam, Ishi

    2016-10-01

    Vegetated (green) roofs have become common in many cities and are projected to continue to increase in coverage, but little is known about the ecological properties of these engineered ecosystems. In this study, we tested the biodiversity-ecosystem function hypothesis using commercially available green roof trays as replicated plots with varying levels of plant species richness (0, 1, 3, or 6 common green roof species per plot, using plants with different functional characteristics). We estimated accumulated plant biomass near the peak of the first full growing season (July 2013) and measured runoff volume after nearly every rain event from September 2012 to September 2013 (33 events) and runoff fluxes of inorganic nutrients ammonium, nitrate, and phosphate from a subset of 10 events. We found that (1) total plant biomass increased with increasing species richness, (2) green roof plots were effective at reducing storm runoff, with vegetation increasing water retention more than soil-like substrate alone, but there was no significant effect of plant species identity or richness on runoff volume, (3) green roof substrate was a significant source of phosphate, regardless of presence/absence of plants, and (4) dissolved inorganic nitrogen (DIN = nitrate + ammonium) runoff fluxes were different among plant species and decreased significantly with increasing plant species richness. The variation in N retention was positively related to variation in plant biomass. Notably, the increased biomass and N retention with species richness in this engineered ecosystem are similar to patterns observed in published studies from grasslands and other well-studied ecosystems. We suggest that more diverse plantings on vegetated roofs may enhance the retention capacity for reactive nitrogen. This is of importance for the sustained health of vegetated roof ecosystems, which over time often experience nitrogen limitation, and is also relevant for water quality in receiving waters

  13. Total Thyroidectomy

    Directory of Open Access Journals (Sweden)

    Lopez Moris E

    2016-06-01

    Full Text Available Total thyroidectomy is a surgery that removes all the thyroid tissue from the patient. The suspect of cancer in a thyroid nodule is the most frequent indication and it is presume when previous fine needle puncture is positive or a goiter has significant volume increase or symptomes. Less frequent indications are hyperthyroidism when it is refractory to treatment with Iodine 131 or it is contraindicated, and in cases of symptomatic thyroiditis. The thyroid gland has an important anatomic relation whith the inferior laryngeal nerve and the parathyroid glands, for this reason it is imperative to perform extremely meticulous dissection to recognize each one of these elements and ensure their preservation. It is also essential to maintain strict hemostasis, in order to avoid any postoperative bleeding that could lead to a suffocating neck hematoma, feared complication that represents a surgical emergency and endangers the patient’s life.It is essential to run a formal technique, without skipping steps, and maintain prudence and patience that should rule any surgical act.

  14. Significance of isolated reactive treponemal chemiluminescence immunoassay results.

    Science.gov (United States)

    Hunter, Michael G; Robertson, Peter W; Post, Jeffrey J

    2013-05-01

    Isolated reactive serum treponemal chemiluminescence immunoassay (CIA) specimens cause clinical uncertainty. Sera were screened by CIA, and reactive samples underwent reflex testing with rapid plasma reagin (RPR), Treponema pallidum particle agglutination (TPPA), and fluorescent treponemal antibody absorption (FTA Abs) assays. Samples reactive only on the CIA were deemed "isolated" reactive CIA samples. We undertook detailed review of a subset of subjects with isolated reactive CIA specimens. Of 28 261 specimens, 1171 (4.1%) were reactive on CIA, of which 133 (11.3%) had isolated CIA reactivity. Most subjects (66 of 82 [80.5%]) with isolated reactive CIA specimens were from high-prevalence populations. We found evidence of CIA, TPPA, and FTA Abs seroreversion. The median chemiluminescent signal-to-cutoff ratio was similar for isolated reactive CIA sera and sera that were reactive on either FTA Abs or TPPA assays (2.19 vs 2.32; P = .15) but lower than for sera reactive on both FTA Abs and TPPA assays (12.37; P < .001) or for sera reactive on RPR assays (25.53; P < .001). A total of 11 of 20 patients (55%) with an isolated reactive CIA specimen who underwent medical record review had previous or subsequent evidence of syphilis infection. Isolated reactive CIA specimens may represent true T. pallidum infection and may be found after seroreversion of traditional treponemal assays.

  15. Nitrogen Cascade: An Opportunity to Integrate Biogeochemistry and Policy

    Science.gov (United States)

    Galloway, J. N.; Moomaw, W. R.; Theis, T. L.

    2008-12-01

    It began with micro-organisms millions of years ago, was enhanced by the burning of fossil carbon in the last several hundred years, and was magnified by a patent filed one hundred years ago. Today, the combined actions of cultivation-induced biological nitrogen fixation, fossil fuel combustion and the Haber-Bosch process have exceeded natural terrestrial processes in converting N22 to nitrogen compounds that are biologically, chemically or physically reactive (reactive nitrogen, Nr). While the benefits of Nr are well understood, many of the adverse consequences of excessive Nr are invisible from a policy perspective. Over the past century, the fundamental knowledge on nitrogen processes has advanced to the point where we have a good understanding of nitrogen's biogeochemical cycle, the role of humans in altering the cycle, and the consequences of the alterations. This knowledge has collectively led us to two conclusions-the consequences of intensive human influence on the nitrogen cycle leads to a cascade of ecosystem and human effects which need to be managed. Secondly, the management is complicated by the facts that it not only has to be integrated, but it also has to take into account that the management should not lower the ability of managed ecosystems to produce food for the world's peoples. The framework of the nitrogen cascade provides us with a structure for better identifying intervention points, and more effective policies, technologies and measures to prevent or mitigate the adverse impacts of reactive nitrogen, while enhancing its beneficial uses. We can now begin to use our understanding of science to set priorities and craft new policy strategies. For many regions of the world, the science is strong enough to manage nitrogen and there are existing tools to do so. However, the tools are not integrated, critical tools are missing and most importantly, there are nitrogen-rich regions of the world where the science is lacking, and nitrogen-poor regions

  16. Nitrogen fractions in the microbial biomass in soils of southern Brazil

    Directory of Open Access Journals (Sweden)

    F. A.O. Camargo

    1999-03-01

    Full Text Available The reaction of nitrogen compounds with ninhydrin can be used as an indicator of cytoplasmic materials released from microbial cells killed by fumigation. Total-N, ninhydrin-reactive-N (NR-N, ammonium-N (A-N, and α-amino-N in the microbial biomass of soils from the State of Rio Grande do Sul, Brazil, were determined, in 1996, in 0.5 mol L-1 K2SO4 extracts of fumigated and non-fumigated soils. Total-N varied from 20.3 to 104.4 mg kg-1 and the ninhydrin-reactive-N corresponded, in average, to 27% of this. The ninhydrin-reactive-N was made up of 67% ammonium-N and 33% aminoacids with the amino group at the α-carbon position. It was concluded that colorimetric analysis of NR-N and A-N may be used as a direct measure of microbial N in soil. This simple and rapid procedure is adequate for routine analyses.

  17. Substituição total do farelo de soja por uréia ou amiréia, em dietas com alto teor de concentrado, sobre a amônia ruminal, os parâmetros sangüíneos e o metabolismo do nitrogênio em bovinos de corte Total replacement of soybean meal by urea or starea in high grain diets on nitrogen metabolism, ruminal ammonia-N concentration and blood parameters in beef cattle

    Directory of Open Access Journals (Sweden)

    Reinaldo Cunha de Oliveira Junior

    2004-06-01

    Full Text Available Seis novilhos da raça Nelore, não castrados, com peso médio inicial de 420 kg, distribuídos em delineamento em quadrado latino 3x3 duplicado, foram utilizados para avaliar a substituição total de uma fonte de proteína verdadeira (farelo de soja, em uma dieta deficiente em proteína degradável no rúmen (PDR, por uréia ou amiréia (fontes de nitrogênio não protéico, ambas em uma dieta adequada em PDR. As dietas foram isoprotéicas (13,0% utilizando-se o bagaço de cana-de-açúcar in natura (BIN como única fonte de volumoso (20% da MS. Foram avaliados: a concentração de amônia ruminal, nitrogênio uréico plasmático, glicose plasmática e o metabolismo do nitrogênio. Os tratamentos foram: 1 farelo de soja (FS; 2 uréia e 3 amiréia (A-150S. A concentração de nitrogênio amoniacal no fluido ruminal foi superior no tratamento com uréia, comparado ao tratamento com farelo de soja, sendo que o tratamento com amiréia não diferiu dos demais. O tratamento com amiréia apresentou maior perda de N urinário. A retenção de N (g/d e % do consumido e o valor biológico da proteína (N retido, % do N digerido foram superiores para o tratamento com uréia, comparado aos demais. A concentração de nitrogênio uréico no plasma e a concentração de glicose plasmática foram similares entre os tratamentos. A substituição total do farelo de soja por uréia, ajustando a PDR na dieta de bovinos de corte, demonstrou ser viável. A uréia na forma convencional apresentou vantagens em relação à amiréia.Six Nellore bulls, with initial body weight of 420 kg, were assigned to a duplicated 3x3 Latin square design to evaluate the effects of replacing a true protein source (soybean meal, of high biological value, in a rumen degradable protein (RDP deficient diet, by urea or starea (a supposedly slow release nonprotein nitrogen source, both in a RDP adjusted diet. In natura sugarcane bagasse as the only source of forage (20% of DM. Evaluated

  18. Aerobic decolourization of two reactive azo dyes under varying ...

    African Journals Online (AJOL)

    Bacillus cereus isolated from dye industrial waste, that is, effluent and soil samples was screened for its ability to decolourize two reactive azo dye – cibacron black PSG and cibacron red P4B under aerobic conditions at pH 7 and incubated at 35°C over a five day period. Different carbon and nitrogen sources were used for ...

  19. Reactive Programming in Java

    CERN Document Server

    CERN. Geneva

    2017-01-01

    Reactive Programming in gaining a lot of excitement. Many libraries, tools, and frameworks are beginning to make use of reactive libraries. Besides, applications dealing with big data or high frequency data can benefit from this programming paradigm. Come to this presentation to learn about what reactive programming is, what kind of problems it solves, how it solves them. We will take an example oriented approach to learning the programming model and the abstraction.

  20. BN600 reactivity definition

    International Nuclear Information System (INIS)

    Zheltyshev, V.; Ivanov, A.

    2000-01-01

    Since 1980, the fast BN600 reactor with sodium coolant has been operated at Beloyarsk Nuclear Power Plant. The periodic monitoring of the reactivity modifications should be implemented in compliance with the standards and regulations applied in nuclear power engineering. The reactivity measurements are carried out in order to confirm the basic neutronic features of a BN600 reactor. The reactivity measurements are aimed to justify that nuclear safety is provided in course of the in-reactor installation of the experimental core components. Two reactivity meters are to be used on BN600 operation: 1. Digital on-line reactivity calculated under stationary reactor operation on power (approximation of the point-wise kinetics is applied). 2. Second reactivity meter used to define the reactor control rod operating components efficiency under reactor startup and take account of the changing efficiency of the sensor, however, this is more time-consumptive than the on-line reactivity meter. The application of two reactivity meters allows for the monitoring of the reactor reactivity under every operating mode. (authors)

  1. Combined effects of nitrogen to phosphorus ratios and nitrogen speciation on cyanobacterial metabolite concentrations in eutrophic Midwestern USA reservoirs.

    NARCIS (Netherlands)

    Harris, T.D.; Smith, V.H.; Graham, J.L.; Van de Waal, D.B.; Tedesco, L.P.; Clercin, N.

    2016-01-01

    Recent studies have shown that the total nitrogen to total phosphorus (TN:TP) ratio and nitrogen oxidation state may have substantial effects on secondary metabolite (e.g., microcystins) production in cyanobacteria. We investigated the relationship between the water column TN:TP ratio and the

  2. Microbial nitrogen cycling in Arctic snowpacks

    International Nuclear Information System (INIS)

    Larose, Catherine; Vogel, Timothy M; Dommergue, Aurélien

    2013-01-01

    Arctic snowpacks are often considered as chemical reactors for a variety of chemicals deposited through wet and dry events, but are overlooked as potential sites for microbial metabolism of reactive nitrogen species. The fate of deposited species is critical since warming leads to the transfer of contaminants to snowmelt-fed ecosystems. Here, we examined the role of microorganisms and the potential pathways involved in nitrogen cycling in the snow. Next generation sequencing data were used to follow functional gene abundances and a 16S rRNA (ribosomal ribonucleic acid) gene microarray was used to follow shifts in microbial community structure during a two-month spring-time field study at a high Arctic site, Svalbard, Norway (79° N). We showed that despite the low temperatures and limited water supply, microbial communities inhabiting the snow cover demonstrated dynamic shifts in their functional potential to follow several different pathways of the nitrogen cycle. In addition, microbial specific phylogenetic probes tracked different nitrogen species over time. For example, probes for Roseomonas tracked nitrate concentrations closely and probes for Caulobacter tracked ammonium concentrations after a delay of one week. Nitrogen cycling was also shown to be a dominant process at the base of the snowpack. (letter)

  3. Nitrogen distribution and cycling through water flows in a subtropical bamboo forest under high level of atmospheric deposition.

    Science.gov (United States)

    Tu, Li-hua; Hu, Ting-xing; Zhang, Jian; Huang, Li-hua; Xiao, Yin-long; Chen, Gang; Hu, Hong-ling; Liu, Li; Zheng, Jiang-kun; Xu, Zhen-Feng; Chen, Liang-hua

    2013-01-01

    The hydrological cycle is an important way of transportation and reallocation of reactive nitrogen (N) in forest ecosystems. However, under a high level of atmospheric N deposition, the N distribution and cycling through water flows in forest ecosystems especially in bamboo ecosystems are not well understood. In order to investigate N fluxes through water flows in a Pleioblastus amarus bamboo forest, event rainfall/snowfall (precipitation, PP), throughfall (TF), stemflow (SF), surface runoff (SR), forest floor leachate (FFL), soil water at the depth of 40 cm (SW1) and 100 cm (SW2) were collected and measured through the whole year of 2009. Nitrogen distribution in different pools in this ecosystem was also measured. Mean N pools in vegetation and soil (0-1 m) were 351.7 and 7752.8 kg ha(-1). Open field nitrogen deposition at the study site was 113.8 kg N ha(-1) yr(-1), which was one of the highest in the world. N-NH4(+), N-NO3(-) and dissolved organic N (DON) accounted for 54%, 22% and 24% of total wet N deposition. Net canopy accumulated of N occurred with N-NO3(-) and DON but not N-NH4(+). The flux of total dissolved N (TDN) to the forest floor was greater than that in open field precipitation by 17.7 kg N ha(-1) yr(-1), due to capture of dry and cloudwater deposition net of canopy uptake. There were significant negative exponential relationships between monthly water flow depths and monthly mean TDN concentrations in PP, TF, SR, FFL and SW1. The open field nitrogen deposition through precipitation is very high over the world, which is the main way of reactive N input in this bamboo ecosystem. The water exchange and N consume mainly occurred in the litter floor layer and topsoil layer, where most of fine roots of bamboo distributed.

  4. Nitrogen distribution and cycling through water flows in a subtropical bamboo forest under high level of atmospheric deposition.

    Directory of Open Access Journals (Sweden)

    Li-hua Tu

    Full Text Available BACKGROUND: The hydrological cycle is an important way of transportation and reallocation of reactive nitrogen (N in forest ecosystems. However, under a high level of atmospheric N deposition, the N distribution and cycling through water flows in forest ecosystems especially in bamboo ecosystems are not well understood. METHODOLOGY/PRINCIPAL FINDINGS: In order to investigate N fluxes through water flows in a Pleioblastus amarus bamboo forest, event rainfall/snowfall (precipitation, PP, throughfall (TF, stemflow (SF, surface runoff (SR, forest floor leachate (FFL, soil water at the depth of 40 cm (SW1 and 100 cm (SW2 were collected and measured through the whole year of 2009. Nitrogen distribution in different pools in this ecosystem was also measured. Mean N pools in vegetation and soil (0-1 m were 351.7 and 7752.8 kg ha(-1. Open field nitrogen deposition at the study site was 113.8 kg N ha(-1 yr(-1, which was one of the highest in the world. N-NH4(+, N-NO3(- and dissolved organic N (DON accounted for 54%, 22% and 24% of total wet N deposition. Net canopy accumulated of N occurred with N-NO3(- and DON but not N-NH4(+. The flux of total dissolved N (TDN to the forest floor was greater than that in open field precipitation by 17.7 kg N ha(-1 yr(-1, due to capture of dry and cloudwater deposition net of canopy uptake. There were significant negative exponential relationships between monthly water flow depths and monthly mean TDN concentrations in PP, TF, SR, FFL and SW1. CONCLUSIONS/SIGNIFICANCE: The open field nitrogen deposition through precipitation is very high over the world, which is the main way of reactive N input in this bamboo ecosystem. The water exchange and N consume mainly occurred in the litter floor layer and topsoil layer, where most of fine roots of bamboo distributed.

  5. Reactivation with productivity

    International Nuclear Information System (INIS)

    Garcia, Carlos Hernando

    2002-01-01

    A market to five years that it will move near $63.000 millions, starting from the production of 254.000 reserves that Ecopetrol requires for its maintenance and operation, it was projected with base in the offer study and it demands that they carried out the universities Javeriana and Industrial of Santander for the Colombian Company of Petroleum around the metal mechanic sector. In accordance with the figures of the report, Ecopetrol, like one of the state entities selected by the national government to design pilot programs, guided to reactivate the Colombian industry; it is projecting a good perspective for the Colombian economy and the invigoration of the national productive sector. In practical terms, the report points out that Ecopetrol, in its different operative centers, will require in next five years the quantity of had restored before mentioned in the lines of mechanical stamps, centrifugal bombs, inter chambers of heat, compressors and valves of security; pieces that are elaborated by international makers in 99%. To produce them nationally would represent to the company an economy of 52% of the total value of the purchases in next five years and a reduction of time of delivery of 17 weeks to one week

  6. Fractionation of Nitrogen and Oxygen Isotopes and Roles of Bacteria during Denitrification

    Science.gov (United States)

    Kang, J.; Buyanjargal, A.; Jeen, S. W.

    2017-12-01

    Nitrate in groundwater can cause health and environmental problems when not properly treated. The purpose of this study was to develop a treatment method for nitrate in groundwater using organic carbon-based reactive mixtures (i.e., wood chips and gravel) through column experiments and to evaluate reaction mechanisms responsible for the treatment. The column experiments were operated for a total of 19 months. The results from the geochemical analyses for the experiments suggest that cultures of denitrifying bacteria used organic carbon while utilizing nitrate as their electron acceptor via denitrification process. Proteobacteria was the most abundant phylum in all samples, accounting for 45.7% of the bacterial reads, followed by Firmicutes (22.6%) and Chlorobi (10.6%). Bacilli, Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Actinobacteria_c consisted of 32, 30, 23, 11, and 2% of denitrifying bacteria class. The denitrification process caused fractionation of nitrogen and oxygen isotopes of nitrate while nitrate concentration decreased. When fitted to the Rayleigh's fractionation model, enrichment factors (ɛ) were 11.5‰ and 5.6‰ for 15N and 18O isotopes, respectively. Previous studies suggested that nitrogen isotope enrichment factors of denitrification are within the range of 4.7 to 40‰ and oxygen isotopic enrichment factors are between 8 and 18.3‰. This study shows that nitrate in groundwater can be effectively treated using passive treatment systems, such as permeable reactive barriers (PRBs), and denitrificaton is the dominant process reponsible for the removal of nitrate.

  7. Electrospinning of reactive mesogens

    NARCIS (Netherlands)

    Yao, J.; Picot, O.T.; Hughes-Brittain, N.F.; Bastiaansen, C.W.M.; Peijs, T.

    2016-01-01

    The reinforcement potential of reactive liquid crystals or reactive mesogens (RMs) in electrospun fibers was investigated through the blending of two types of RMs (RM257 and RM82) with two types of thermoplastics; polyamide 6 (PA6) and poly(methyl methacrylate) (PMMA). Polymer/RM blends were

  8. Impacts of atmospheric nitrogen deposition on vegetation and soils in Joshua Tree National Park

    Science.gov (United States)

    E.B. Allen; L. Rao; R.J. Steers; A. Bytnerowicz; M.E. Fenn

    2009-01-01

    The western Mojave Desert is downwind of nitrogen emissions from coastal and inland urban sources, especially automobiles. The objectives of this research were to measure reactive nitrogen (N) in the atmosphere and soils along a N-deposition gradient at Joshua Tree National Park and to examine its effects on invasive and native plant species. Atmospheric nitric acid (...

  9. Synthesis and review: Tackling the nitrogen management challenge: from global to local scales

    Science.gov (United States)

    Reis, Stefan; Bekunda, Mateete; Howard, Clare M.; Karanja, Nancy; Winiwarter, Wilfried; Yan, Xiaoyuan; Bleeker, Albert; Sutton, Mark A.

    2016-12-01

    One of the ‘grand challenges’ of this age is the anthropogenic impact exerted on the nitrogen cycle. Issues of concern range from an excess of fixed nitrogen resulting in environmental pressures for some regions, while for other regions insufficient fixed nitrogen affects food security and may lead to health risks. To address these issues, nitrogen needs to be managed in an integrated fashion, at a variety of scales (from global to local). Such management has to be based on a thorough understanding of the sources of reactive nitrogen released into the environment, its deposition and effects. This requires a comprehensive assessment of the key drivers of changes in the nitrogen cycle both spatially, at the field, regional and global scale and over time. In this focus issue, we address the challenges of managing reactive nitrogen in the context of food production and its impacts on human and ecosystem health. In addition, we discuss the scope for and design of management approaches in regions with too much and too little nitrogen. This focus issue includes several contributions from authors who participated at the N2013 conference in Kampala in November 2013, where delegates compiled and agreed upon the ‘Kampala Statement-for-Action on Reactive Nitrogen in Africa and Globally’. These contributions further underline scientifically the claims of the ‘Kampala Statement’, that simultaneously reducing pollution and increasing nitrogen available in the food system, by improved nitrogen management offers win-wins for environment, health and food security in both developing and developed economies. The specific messages conveyed in the Kampala Statement focus on improving nitrogen management (I), including the reduction of nitrogen losses from agriculture, industry, transport and energy sectors, as well as improving waste treatment and informing individuals and institutions (II). Highlighting the need for innovation and increased awareness among stakeholders (III

  10. Sensitivity of nitrogen dioxide concentrations to oxides of nitrogen controls in the United Kingdom

    International Nuclear Information System (INIS)

    Dixon, J.

    2001-01-01

    There is a possibility of further controls on emissions to the atmosphere of nitrogen dioxides to meet air quality objectives in the UK. Data in the National Air Quality Archive were used to calculate the likely sensitivity of hourly concentrations of nitrogen dioxide in ambient urban air to changes in the total oxides of nitrogen. Since the role of atmospheric chemical reactions is to make the responses non-linearly dependent on the emissions control, we seek to establish the magnitude and sign of the effects that this non-linearity might cause. We develop a quantitative approach to analysing the non-linearity in the data. Polynomial fits have been developed for the empirical ratio NO 2 :NO x (the 'yield'). They describe nitrogen dioxide concentrations using total oxides of nitrogen. The new functions have the important feature of increased yield in winter episodes. Simpler functions tend to omit this feature of the yields at the highest hourly concentrations. Based on this study, the hourly nitrogen dioxide objective in the UK may require emissions control of no more than about 50% on total oxides of nitrogen at the most polluted sites: other sites require less or even no control. (Author)

  11. Nitrogen and protein contents in some aquatic plant species

    Directory of Open Access Journals (Sweden)

    Krystyna Bytniewska

    2015-01-01

    Full Text Available Nitrogen and protein contents in higher aquatic plants deriving from a natural habitat were determined. The following plants were examined: Spirodela polyrrhiza (L. Schleid., Elodea canadensis Rich., Riccia fluitans L. Total nitrogen and nitrogen of respective fractions were determined by the Kjeldahl method. Nitrogen compounds were fractionated according to Thimann et al. Protein was extracted after Fletcher and Osborne and fractionated after Osborne. It was found, that total protein content in the plants under examination constitutes 18 to 25%o of dry matter. Albumins and glutelins are the most abundant protein fractions.

  12. total nitrogen and available phosphorus dynamics in soils

    African Journals Online (AJOL)

    Osondu

    2012-02-15

    Feb 15, 2012 ... kilometers from Warri in Delta State Nigeria, is located between .... deciduous forest in Kade, Ghana, but fall within the range ... North eastern Australia – 0.59% and 0.45% respectively for ... This pattern may be attributed to increasing tree density as age .... Molindo, W.A.; Usifo, A.E. and Akoma, O.C.. (2009).

  13. Comparative changes in monthly blood urea nitrogen, total protein ...

    African Journals Online (AJOL)

    Sibanda M

    2015-03-29

    Mar 29, 2015 ... Twenty-four clinically healthy animals in different parities, namely Parity 1 ..... In the dry spell there is low protein intake because of high fibrous diets from dry forage materials. (MacDonald .... Prentice Hall, Malaysia. Mapekula ...

  14. Analysis of the temporal evolution of total column nitrogen dioxide ...

    African Journals Online (AJOL)

    The Quasi Biennial Oscillation (QBO) is the main phenomenon behind the oscillating biennial feature exhibited by NO2 and O3 interannual trend. The study shows that NO2 and O3 are increasing at annual average rates of about 0.27% and 0.46% per year compared to mean values, respectively. Daily variation of both NO2 ...

  15. Total Ammonia Nitrogen (TAN) - Live Hauling of Fish

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In certain markets, live fish can be sold for substantially higher prices than fresh dressed fish. A significant live-haul industry has developed in the U.S. and...

  16. Estimating Soil Bulk Density and Total Nitrogen from Catchment ...

    African Journals Online (AJOL)

    Bheema

    The SMR analysis showed overall model coefficients of determination (R ..... Fe & Zn. SMR, stepwise multiple regression; GLM, generalized linear model; n is ... spectrophotometer, while Na and K were determined by flame photometry (Black.

  17. Total carbon and nitrogen in the soils of the world

    NARCIS (Netherlands)

    Batjes, N.H.

    2014-01-01

    The soil is important in sequestering atmospheric CO2 and in emitting trace gases (e.g. CO2, CH4 and N2O) that are radiatively active and enhance the ‘greenhouse’ effect. Land use changes and predicted global warming, through their effects on net primary productivity, the plant community and soil

  18. Developments in nitrogen generators

    International Nuclear Information System (INIS)

    Ayres, C.L.; Abrardo, J.M.; Himmelberger, L.M.

    1984-01-01

    Three process cycles for the production of nitrogen by the cryogenic separation of air are described in detail. These cycles are: (1) a waste expander cycle; (2) an air expander cycle; and (3) a cycle for producing large quantities of gaseous nitrogen. Each cycle has distinct advantages for various production ranges and delivery pressures. A dicussion of key parameters that must be considered when selecting a cycle to meet specific product requirements is presented. The importance of high plant reliability and a dependable liquid nitrogen back up system is also presented. Lastly, a discussion of plant safety dealing with the hazards of nitrogen, enriched oxygen, and hydrocarbons present in the air is reviewed

  19. Glutamine nitrogen and ammonium nitrogen supplied as a nitrogen source is not converted into nitrate nitrogen of plant tissues of hydroponically grown pak-choi (Brassica chinensis L.).

    Science.gov (United States)

    Wang, H-J; Wu, L-H; Tao, Q-N; Miller, D D; Welch, R M

    2009-03-01

    Many vegetables, especially leafy vegetables, accumulate NO(-) (3)-N in their edible portions. High nitrate levels in vegetables constitute a health hazard, such as cancers and blue baby syndrome. The aim of this study was to determine if (1) ammonium nitrogen (NH(+) (4)-N) and glutamine-nitrogen (Gln-N) absorbed by plant roots is converted into nitrate-nitrogen of pak-choi (Brassica chinensis L.) tissues, and (2) if nitrate-nitrogen (NO(-) (3)-N) accumulation and concentration of pak-choi tissues linearly increase with increasing NO(-) (3)-N supply when grown in nutrient solution. In experiment 1, 4 different nitrogen treatments (no nitrogen, NH(+) (4)-N, Gln-N, and NO(-) (3)-N) with equal total N concentrations in treatments with added N were applied under sterile nutrient medium culture conditions. In experiment 2, 5 concentrations of N (from 0 to 48 mM), supplied as NO(-) (3)-N in the nutrient solution, were tested. The results showed that Gln-N and NH(+) (4)-N added to the nutrient media were not converted into nitrate-nitrogen of plant tissues. Also, NO(-) (3)-N accumulation in the pak-choi tissues was the highest when plants were supplied 24 mM NO(-) (3)-N in the media. The NO(-) (3)-N concentration in plant tissues was quadratically correlated to the NO(-) (3)-N concentration supplied in the nutrient solution.

  20. Consequences of human modification of the global nitrogen cycle

    NARCIS (Netherlands)

    Erisman, J.W.; Galloway, J.; Seitzinger, S.; Bleeker, A.; Dise, N.B.; Roxana Petrescu, A.M.; Leach, A.M.; Vries, de W.

    2013-01-01

    The demand for more food is increasing fertilizer and land use, and the demand for more energy is increasing fossil fuel combustion, leading to enhanced losses of reactive nitrogen (Nr) to the environment. Many thresholds for human and ecosystem health have been exceeded owing to Nr pollution,

  1. Consequences of human modification of the global nitrogen cycle.

    NARCIS (Netherlands)

    Erisman, J.W.; Galloway, J.N.; Seitzinger, S.; Bleeker, A.; Dise, N.B.; Petrescu, R.; Leach, A.M.; de Vries, W.

    2013-01-01

    The demand for more food is increasing fertilizer and land use, and the demand for more energy is increasing fossil fuel combustion, leading to enhanced losses of reactive nitrogen (Nr) to the environment. Many thresholds for human and ecosystem health have been exceeded owing to Nr pollution,

  2. Benefits of nitrogen for food, fibre and industrial production

    NARCIS (Netherlands)

    Stoumann Jensen, L.; Schjoerring, J.K.; Hoek, K.W. van der; Damgaard Poulsen, H.; Zevenbergen, J.F.; Pallière, C.; Lammel, J.; Brentrup, F.; Jongbloed, A.W.; Willems, J.; Grinsven, H. van

    2011-01-01

    Nature of the issue • Reactive nitrogen (N r ) has well-documented positive eff ects in agricultural and industrial production systems, human nutrition and food security. Limited N r supply was a key constraint to European food and industrial production, which has been overcome by Nr from the

  3. Nitrogen doped carbon nanotubes : synthesis, characterization and catalysis

    NARCIS (Netherlands)

    van Dommele, S.

    2008-01-01

    Nitrogen containing Carbon Nanotubes (NCNT) have altered physical- and chemical properties with respect to polarity, conductivity and reactivity as compared to conventional carbon nanotubes (CNT) and have potential for use in electronic applications or catalysis. In this thesis the incorporation of

  4. Deposition of silicon films in presence of nitrogen plasma— A ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. A design, development and validation work of plasma based 'activated reactive evaporation (ARE) system' is implemented for the deposition of the silicon films in presence of nitrogen plasma on substrate maintained at room temperature. This plasma based deposition system involves evaporation of pure silicon by.

  5. Differential Sensitivity of Nitrogen-Fixing, Azolla Microphylla to ...

    African Journals Online (AJOL)

    Michael Horsfall

    photosynthesizing and nitrogen fixing micro-organisms contributing significantly ... Pesticide treatment with increasing doses accelerated the formation of reactive ... increased amount of proline in all the insecticide treated concentrations was .... monitoring the nitrite formation from ... centrifuged for 10 minutes in high speed.

  6. The nitrogen footprint of food products in the European Union

    NARCIS (Netherlands)

    Leip, A.; Weiss, F.; Lesschen, J.P.; Westhoek, H.

    2014-01-01

    Nitrogen (N) is an essential element for plants and animals. Due to large inputs of mineral fertilizer, crop yields and livestock production in Europe have increased markedly over the last century, but as a consequence losses of reactive N to air, soil and water have intensified as well. Two

  7. Therapeutic journery of nitrogen mustard as alkylating anticancer agents: Historic to future perspectives.

    Science.gov (United States)

    Singh, Rajesh K; Kumar, Sahil; Prasad, D N; Bhardwaj, T R

    2018-05-10

    Cancer is considered as one of the most serious health problems today. The discovery of nitrogen mustard as an alkylating agent in 1942, opened a new era in the cancer chemotherapy. This valuable class of alkylating agent exerts its biological activity by binding to DNA, cross linking two strands, preventing DNA replication and ultimate cell death. At the molecular level, nitrogen lone pairs of nitrogen mustard generate a strained intermediate "aziridinium ion" which is very reactive towards DNA of tumor cell as well as normal cell resulting in various adverse side effects alogwith therapeutic implications. Over the last 75 years, due to its high reactivity and peripheral cytotoxicity, numerous modifications have been made in the area of nitrogen mustard to improve its efficacy as well as enhancing drug delivery specifically to tumor cells. This review mainly discusses the medicinal chemistry aspects in the development of various classes of nitrogen mustards (mechlorethamine, chlorambucil, melphalan, cyclophosphamide and steroidal based nitrogen mustards). The literature collection includes the historical and the latest developments in these areas. This comprehensive review also attempted to showcase the recent progress in the targeted delivery of nitrogen mustards that includes DNA directed nitrogen mustards, antibody directed enzyme prodrug therapy (ADEPT), gene directed enzyme prodrug therapy (GDEPT), nitrogen mustard activated by glutathione transferase, peptide based nitrogen mustards and CNS targeted nitrogen mustards. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  8. Nitrogen fixation, denitrification, and ecosystem nitrogen pools in relation to vegetation development in the Subarctic

    DEFF Research Database (Denmark)

    Sørensen, Pernille Lærkedal; Jonasson, Sven Evert; Michelsen, Anders

    2006-01-01

    Nitrogen (N) fixation, denitrification, and ecosystem pools of nitrogen were measured in three subarctic ecosystem types differing in soil frost-heaving activity and vegetation cover. N2-fixation was measured by the acetylene reduction assay and converted to absolute N ecosystem input by estimates...... of conversion factors between acetylene reduction and 15N incorporation. One aim was to relate nitrogen fluxes and nitrogen pools to the mosaic of ecosystem types of different stability common in areas of soil frost movements. A second aim was to identify abiotic controls on N2-fixation by simultaneous...... measurements of temperature, light, and soil moisture. Nitrogen fixation rate was high with seasonal input estimated at 1.1 g N m2 on frostheaved sorted circles, which was higher than the total plant N content and exceeded estimated annual plant N uptake several-fold but was lower than the microbial N content...

  9. A comparative evaluation of nitrogen compounds in petroleum distillates

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Dheer; Chopra, Anju; Patel, Mitra Bhanu; Sarpal, Amarjit Singh [Indian Oil Corporation Limited, Faridabad (India). Research and Development Centre

    2011-07-15

    Although the concentration of nitrogen compounds in crude oil is relatively low, they can become more concentrated in petroleum distillates and poison the catalysts used in refining processes. They cause undesirable deposits, color formation and odor in products; they also contribute to air pollution and some are highly carcinogenic. The poisoned catalyst becomes deactivated for hydrodesulfurization and unable to remove sulfur from middle distillates. In order to understand the effect on catalytic processes, it is desirable to identify the nitrogen compounds in various petroleum distillates. This paper compares the nitrogen species profiles in different petroleum distillates using a nitrogen chemiluminescence detector. In addition, four different petroleum distillate samples from different refineries were analyzed to find the variation in their nitrogen profiles. The nitrogen compounds in petroleum distillate samples were identified as anilines, quinolines, indoles, and carbazoles and their alkyl derivatives. Quantitation was carried out against known reference standards. The quantitative data were compared to the total nitrogen content determined by elemental analysis. (orig.)

  10. Influence of nitrogen doping in sumanene framework toward hydrogen storage: A computational study.

    Science.gov (United States)

    Reisi-Vanani, Adel; Shamsali, Fatemeh

    2017-09-01

    Two conditions are important to obtain appropriate substances for hydrogen storage; high surface area and fitting binding energy (BE). Doping is a key strategy that improves BE. We investigated hydrogen adsorption onto twenty six nitrogen disubstituted isomers of sumanene (C 19 N 2 H 12 ) by MP2/6-311++G(d,p)//B3LYP/6-31+G(d) and M06-2X/6-31+G(d) levels of theory. Effect of nitrogen doping in different positions of sumanene was checked. To obtain better BE, basis set superposition error (BSSE) and zero point energy (ZPE) corrections were used. Anticipating of adsorption sites and extra details about adsorption process was done by molecular electrostatic potential (MEP) surfaces. Various types of density of state (DOS) diagrams such as total DOS (TDOS), projected DOS (PDOS) and overlap population DOS (OPDOS) and natural bond orbital (NBO) analysis were used to find better insight on the adsorption properties. In addition of temperature depending of the BE, HOMO-LUMO gap (HLG), dipole moment, reactivity and stability, bowl depth and natural population analysis (NPA) of the isomers were studied. A physisorption mechanism for adsorption was proposed and a trivial change was seen. Place of nitrogen atoms in sumanene frame causes to binding energy increases or decreases compared with pristine sumanene. The best and the worst isomers and category of isomers were suggested. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Nitrogen trading tool

    Science.gov (United States)

    The nitrogen cycle is impacted by human activities, including those that increase the use of nitrogen in agricultural systems, and this impact can be seen in effects such as increased nitrate (NO3) levels in groundwater or surface water resources, increased concentration of nitrous oxide (N2O) in th...

  12. Nitrogen use efficiency (NUE)

    NARCIS (Netherlands)

    Oenema, O.

    2015-01-01

    There is a need for communications about resource use efficiency and for measures to increase the use efficiency of nutrients in relation to food production. This holds especially for nitrogen. Nitrogen (N) is essential for life and a main nutrient element. It is needed in relatively large

  13. Nitrogen in Chinese coals

    Science.gov (United States)

    Wu, D.; Lei, J.; Zheng, B.; Tang, X.; Wang, M.; Hu, Jiawen; Li, S.; Wang, B.; Finkelman, R.B.

    2011-01-01

    Three hundred and six coal samples were taken from main coal mines of twenty-six provinces, autonomous regions, and municipalities in China, according to the resource distribution and coal-forming periods as well as the coal ranks and coal yields. Nitrogen was determined by using the Kjeldahl method at U. S. Geological Survey (USGS), which exhibit a normal frequency distribution. The nitrogen contents of over 90% Chinese coal vary from 0.52% to 1.41% and the average nitrogen content is recommended to be 0.98%. Nitrogen in coal exists primarily in organic form. There is a slight positive relationship between nitrogen content and coal ranking. ?? 2011 Science Press, Institute of Geochemistry, CAS and Springer Berlin Heidelberg.

  14. Enhancing biological nitrogen fixation

    Energy Technology Data Exchange (ETDEWEB)

    Danso, S.K.A.; Eskew, D.L. (Joint FAO/IAEA Div. of Isotope and Radiation Applications of Atomic Energy for Food and Agricultural Development, Vienna (Austria))

    1984-06-01

    Several co-ordinated research programmes (CRPs) conducted by the Soil Fertility, Irrigation and Crop Production Section of the Joint FAO/IAEA Division have concentrated on finding the most efficient way of applying nitrogen fertilizers to various crops, using nitrogen-15 (/sup 15/N) as a tracer. The findings of these studies have been adopted in many countries around the world, resulting in savings of nitrogen fertilizers worth many millions of dollars every year. More recently, the Section's CRPs have focused on enhancing the natural process of biological di-nitrogen fixation. The /sup 15/N isotope technique has proven to be very valuable in studies of the legume-Rhizobium symbiosis, allowing many more experiments than before to be done and yielding much new practical information. The Soils Section is now working to extend the use of the technique to other nitrogen-fixing symbioses.

  15. Studies on nitrogen metabolism of soybean plants, (4)

    International Nuclear Information System (INIS)

    Kato, Yasumasa; Kitada, Subaru

    1979-01-01

    Nitrogen that came from cotyledons and nitrogen ( 15 N) pulse-fed at 5 different times during the growth of young soybean plants were studied for 33-days after germination. Cotyledons furnished nitrogen to primary leaves, stems, and roots for the first 8 days, but thereafter principally to 1 st and 2 nd trifoliate leaves. Redistribution of the cotyledon-derived nitrogen from primary leaves commenced from the 14 th day after germination when their total nitrogen was still increasing. At the end of the experiment, the cotyledon-derived nitrogen was distributed approximately uniformly among 6 expanded leaves, and very small amount was found in 3 immature leaves. It was shown that soybean leaves took up 15 N (via roots) throughout the entire period of their life, and from their near-mature stage onwards, uptake and redistribution of nitrogen were observed simultaneously. Thus, the nitrogen in mature leaves was partially being renewed constantly. Considering this fact, the nitrogen supplying capacity of soybean leaves was estimated to be about two times as large as that estimated conventionally from the net loss of nitrogen during their senescence. The turnover of leaf nitrogen was closely related to the turnover of leaf protein. Influx of nitrogen was invariably accompanied by the simultaneous synthesis of leaf protein, and conversely, efflux by the simultaneous breakdown of leaf protein. Sink removal (topping treatment) prevented the breakdown of leaf protein (as measured from the rate of release of label after the pulse feeding) as well as the export of nitrogen from the leaves. The nitrogen supplying function of soybean leaves was discussed in relation to the nitrogen and protein turnover of leaves. (Kaihara, S.)

  16. Demonstrating Paramagnetism Using Liquid Nitrogen.

    Science.gov (United States)

    Simmonds, Ray; And Others

    1994-01-01

    Describes how liquid nitrogen is attracted to the poles of neodymium magnets. Nitrogen is not paramagnetic, so the attraction suggests that the liquid nitrogen contains a small amount of oxygen, which causes the paramagnetism. (MVL)

  17. Digital reactivity meter

    International Nuclear Information System (INIS)

    Jiang Zongbing

    1996-02-01

    The importance and the usual methods of reactivity measurement in a nuclear reactor are presented. Emphasis is put upon the calculation principle, software and hardware components, main specifications, application, as well as the features of the digital reactivity meter. The test results of operation in various reactors shown that the meter possess the following features: high accuracy, short response time, low output noise, high resolution, wide measuring range, simple and flexible to operate, high stability and reliability. In addition, the reactivity meter can save the measuring data automatically and have a perfect capability of self-verifying. It not only meet the requirement of the reactivity measurement in nuclear power plant, but also can be applied to various types of reactors. (1 tab.)

  18. Stress Reactivity in Insomnia.

    Science.gov (United States)

    Gehrman, Philip R; Hall, Martica; Barilla, Holly; Buysse, Daniel; Perlis, Michael; Gooneratne, Nalaka; Ross, Richard J

    2016-01-01

    This study examined whether individuals with primary insomnia (PI) are more reactive to stress than good sleepers (GS). PI and GS (n = 20 per group), matched on gender and age, completed three nights of polysomnography. On the stress night, participants received a mild electric shock and were told they could receive additional shocks during the night. Saliva samples were obtained for analysis of cortisol and alpha amylase along with self-report and visual analog scales (VAS). There was very little evidence of increased stress on the stress night, compared to the baseline night. There was also no evidence of greater stress reactivity in the PI group for any sleep or for salivary measures. In the GS group, stress reactivity measured by VAS scales was positively associated with an increase in sleep latency in the experimental night on exploratory analyses. Individuals with PI did not show greater stress reactivity compared to GS.

  19. Structure, Reactivity and Dynamics

    Indian Academy of Sciences (India)

    Understanding structure, reactivity and dynamics is the core issue in chemical ... functional theory (DFT) calculations, molecular dynamics (MD) simulations, light- ... between water and protein oxygen atoms, the superionic conductors which ...

  20. Taskable Reactive Agent Communities

    National Research Council Canada - National Science Library

    Myers, Karen

    2002-01-01

    The focus of Taskable Reactive Agent Communities (TRAC) project was to develop mixed-initiative technology to enable humans to supervise and manage teams of agents as they perform tasks in dynamic environments...

  1. Exhaustive Conversion of Inorganic Nitrogen to Nitrogen Gas Based on a Photoelectro-Chlorine Cycle Reaction and a Highly Selective Nitrogen Gas Generation Cathode.

    Science.gov (United States)

    Zhang, Yan; Li, Jinhua; Bai, Jing; Shen, Zhaoxi; Li, Linsen; Xia, Ligang; Chen, Shuai; Zhou, Baoxue

    2018-02-06

    A novel method for the exhaustive conversion of inorganic nitrogen to nitrogen gas is proposed in this paper. The key properties of the system design included an exhaustive photoelectrochemical cycle reaction in the presence of Cl - , in which Cl· generated from oxidation of Cl - by photoholes selectively converted NH 4 + to nitrogen gas and some NO 3 - or NO 2 - . The NO 3 - or NO 2 - was finally reduced to nitrogen gas on a highly selective Pd-Cu-modified Ni foam (Pd-Cu/NF) cathode to achieve exhaustive conversion of inorganic nitrogen to nitrogen gas. The results indicated total nitrogen removal efficiencies of 30 mg L -1 inorganic nitrogen (NO 3 - , NH 4 + , NO 3 - /NH 4 + = 1:1 and NO 2 - /NO 3 - /NH 4 + = 1:1:1) in 90 min were 98.2%, 97.4%, 93.1%, and 98.4%, respectively, and the remaining nitrogen was completely removed by prolonging the reaction time. The rapid reduction of nitrate was ascribed to the capacitor characteristics of Pd-Cu/NF that promoted nitrate adsorption in the presence of an electric double layer, eliminating repulsion between the cathode and the anion. Nitrate was effectively removed with a rate constant of 0.050 min -1 , which was 33 times larger than that of Pt cathode. This system shows great potential for inorganic nitrogen treatment due to the high rate, low cost, and clean energy source.

  2. Reactive sputter deposition

    CERN Document Server

    Mahieu, Stijn

    2008-01-01

    In this valuable work, all aspects of the reactive magnetron sputtering process, from the discharge up to the resulting thin film growth, are described in detail, allowing the reader to understand the complete process. Hence, this book gives necessary information for those who want to start with reactive magnetron sputtering, understand and investigate the technique, control their sputtering process and tune their existing process, obtaining the desired thin films.

  3. An autonomous organic reaction search engine for chemical reactivity

    Science.gov (United States)

    Dragone, Vincenza; Sans, Victor; Henson, Alon B.; Granda, Jaroslaw M.; Cronin, Leroy

    2017-06-01

    The exploration of chemical space for new reactivity, reactions and molecules is limited by the need for separate work-up-separation steps searching for molecules rather than reactivity. Herein we present a system that can autonomously evaluate chemical reactivity within a network of 64 possible reaction combinations and aims for new reactivity, rather than a predefined set of targets. The robotic system combines chemical handling, in-line spectroscopy and real-time feedback and analysis with an algorithm that is able to distinguish and select the most reactive pathways, generating a reaction selection index (RSI) without need for separate work-up or purification steps. This allows the automatic navigation of a chemical network, leading to previously unreported molecules while needing only to do a fraction of the total possible reactions without any prior knowledge of the chemistry. We show the RSI correlates with reactivity and is able to search chemical space using the most reactive pathways.

  4. Pay-as-bid based reactive power market

    International Nuclear Information System (INIS)

    Amjady, N.; Rabiee, A.; Shayanfar, H.A.

    2010-01-01

    In energy market clearing, the offers are stacked in increasing order and the offer that intersects demand curve, determines the market clearing price (MCP). In reactive power market, the location of reactive power compensator is so important. A low cost reactive producer may not essentially be favorable if it is far from the consumer. Likewise, a high cost local reactive compensator at a heavily loaded demand center of network could be inevitably an alternative required to produce reactive power to maintain the integrity of power system. Given the background, this paper presents a day-ahead reactive power market based on pay-as-bid (PAB) mechanism. Generators expected payment function (EPF) is used to construct a bidding framework. Then, total payment function (TPF) of generators is used as the objective function of optimal power flow (OPF) problem to clear the PAB based market. The CIGRE-32 bus test system is used to examine the effectiveness of the proposed reactive power market.

  5. Pay-as-bid based reactive power market

    Energy Technology Data Exchange (ETDEWEB)

    Amjady, N. [Department of Electrical Engineering, Semnan University, Semnan (Iran, Islamic Republic of); Rabiee, A., E-mail: Rabiee@iust.ac.i [Center of Excellence for Power System Automation and Operation, Department of Electrical Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Shayanfar, H.A. [Center of Excellence for Power System Automation and Operation, Department of Electrical Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)

    2010-02-15

    In energy market clearing, the offers are stacked in increasing order and the offer that intersects demand curve, determines the market clearing price (MCP). In reactive power market, the location of reactive power compensator is so important. A low cost reactive producer may not essentially be favorable if it is far from the consumer. Likewise, a high cost local reactive compensator at a heavily loaded demand center of network could be inevitably an alternative required to produce reactive power to maintain the integrity of power system. Given the background, this paper presents a day-ahead reactive power market based on pay-as-bid (PAB) mechanism. Generators expected payment function (EPF) is used to construct a bidding framework. Then, total payment function (TPF) of generators is used as the objective function of optimal power flow (OPF) problem to clear the PAB based market. The CIGRE-32 bus test system is used to examine the effectiveness of the proposed reactive power market.

  6. Interactive Effects of Nitrogen and Climate Change on Biodiversity

    Science.gov (United States)

    Porter, E. M.; Bowman, W. D.; Clark, C. M.; Compton, J. E.; Pardo, L. H.; Soong, J.

    2011-12-01

    Biodiversity has been described as the diversity of life on earth within species, between species and in ecosystems. Biodiversity contributes to regulating ecosystem services like climate, flood, disease, and water quality regulation. Biodiversity also supports and sustains ecosystem services that provide material goods like food, fiber, fuel, timber and water, and to non-material benefits like educational, recreational, spiritual, and aesthetic ecosystem services. The Millennium Ecosystem Assessment estimated that the rate of biodiversity loss due to human activity in the last 50 years has been more rapid than at any other time in human history, and that many of the drivers of biodiversity loss are increasing. The strongest drivers of biodiversity loss include habitat loss, overexploitation, invasive species, climate change, and pollution, including pollution from reactive nitrogen. Of these stressors, climate change and reactive nitrogen from anthropogenic activities are causing some of the most rapid changes. Climate change is causing warming trends that result in consistent patterns of poleward and elevational range shifts of flora and fauna, causing changes in biodiversity. Warming has also resulted in changes in phenology, particularly the earlier onset of spring events, migration, and lengthening of the growing season, disrupting predator-prey and plant-pollinator interactions. In addition to warming, elevated carbon dioxide by itself can affect biodiversity by influencing plant growth, soil water, tissue stoichiometry, and trophic interactions. Nitrogen enrichment also impacts ecosystems and biodiversity in a variety of ways. Nitrogen enhances plant growth, but has been shown to favor invasive, fast-growing species over native species adapted to low nitrogen conditions. Although there have been a limited number of empirical studies on climate change and nitrogen interactions, inferences can be drawn from observed responses to each stressor by itself. For

  7. Accounting for the biogeochemical cycle of nitrogen in input-output life cycle assessment.

    Science.gov (United States)

    Singh, Shweta; Bakshi, Bhavik R

    2013-08-20

    Nitrogen is indispensable for sustaining human activities through its role in the production of food, animal feed, and synthetic chemicals. This has encouraged significant anthropogenic mobilization of reactive nitrogen and its emissions into the environment resulting in severe disruption of the nitrogen cycle. This paper incorporates the biogeochemical cycle of nitrogen into the 2002 input-output model of the U.S. economy. Due to the complexity of this cycle, this work proposes a unique classification of nitrogen flows to facilitate understanding of the interaction between economic activities and various flows in the nitrogen cycle. The classification scheme distinguishes between the mobilization of inert nitrogen into its reactive form, use of nitrogen in various products, and nitrogen losses to the environment. The resulting inventory and model of the US economy can help quantify the direct and indirect impacts or dependence of economic sectors on the nitrogen cycle. This paper emphasizes the need for methods to manage the N cycle that focus not just on N losses, which has been the norm until now, but also include other N flows for a more comprehensive view and balanced decisions. Insight into the N profile of various sectors of the 2002 U.S. economy is presented, and the inventory can also be used for LCA or Hybrid LCA of various products. The resulting model is incorporated in the approach of Ecologically-Based LCA and available online.

  8. Fertilizer nitrogen fixation in plants and its transmutation in soils in case of annual application

    International Nuclear Information System (INIS)

    Shilova, E.I.; Smirnov, P.M.; Khon, N.I.

    1974-01-01

    Using certain combinations of 15 N labeled and unlabeled nitrogen-containing fertilizers data were obtained for direct determination of nitrogen balance in the year of fertilization and subsequently. Annual and total (for 3 years) increment in utilization of soil nitrogen resulting from repeated fertilization was also determined. Coefficient of nitrogen utilization by barley decreased over the 3-year period after additional application of ammonium sulfate while biological immobilization of nitrogen tended to increase. Application of straw during the first year of the experiment did not significantly affect the nitrogen balance in the following years. The total coefficient of nitrogen utilization for the 2 to 3-year period was higher than that of the first year while biological immobilization was relatively lower. Additional utilization of soil nitrogen as compared to the control was the same over the whole 3-year period; additional mobilization (annual and total) was relatively higher due to lower removal of soil nitrogen in the subsequent years. Utilization of previously immobilized nitrogen was higher in the case of repeated fertilization than without application of nitrogen fertilizers. The content of newly immobilized nitrogen during 3 years in the hydrolyzable undistilable fraction (nitrogen of bounded amino acids) was relatively lower and this was accompanied by the growth of hydrolyzable distilable and unhydrolyzable nitrogen

  9. VOC reactivity and its effect on ozone production during the HaChi summer campaign

    Directory of Open Access Journals (Sweden)

    L. Ran

    2011-05-01

    Full Text Available Measurements of ozone and its precursors conducted within the HaChi (Haze in China project in summer 2009 were analyzed to characterize volatile organic compounds (VOCs and their effects on ozone photochemical production at a suburban site in the North China Plain (NCP. Ozone episodes, during which running 8-h average ozone concentrations exceeding 80 ppbv lasted for more than 4 h, occurred on about two thirds of the observational days during the 5-week field campaign. This suggests continuous ozone exposure risks in this region in the summer. Average concentrations of nitrogen oxides (NOx and VOCs are about 20 ppbv and 650 ppbC, respectively. On average, total VOC reactivity is dominated by anthropogenic VOCs. The contribution of biogenic VOCs to total ozone-forming potential, however, is also considerable in the daytime. Key species associated with ozone photochemical production are 2-butenes (18 %, isoprene (15 %, trimethylbenzenes (11 %, xylenes (8.5 %, 3-methylhexane (6 %, n-hexane (5 % and toluene (4.5 %. Formation of ozone is found to be NOx-limited as indicated by measured VOCs/NOx ratios and further confirmed by a sensitivity study using a photochemical box model NCAR_MM. The Model simulation suggests that ozone production is also sensitive to changes in VOC reactivity under the NOx-limited regime, although this sensitivity depends strongly on how much NOx is present.

  10. Dissolved organic nitrogen recalcitrance and bioavailable nitrogen quantification for effluents from advanced nitrogen removal wastewater treatment facilities.

    Science.gov (United States)

    Fan, Lu; Brett, Michael T; Jiang, Wenju; Li, Bo

    2017-10-01

    The objective of this study was to determine the composition of nitrogen (N) in the effluents of advanced N removal (ANR) wastewater treatment plants (WWTPs). This study also tested two different experimental protocols for determining dissolved N recalcitrance. An analysis of 15 effluent samples from five WWTPs, showed effluent concentrations and especially effluent composition varied greatly from one system to the other, with total nitrogen (TN) ranging between 1.05 and 8.10 mg L -1 . Nitrate (NO 3 - ) accounted for between 38 ± 32% of TN, and ammonium accounted for a further 29 ± 28%. All of these samples were dominated by dissolved inorganic nitrogen (DIN; NO 3 -  + NH 4 + ), and uptake experiments indicated the DIN fraction was as expected highly bioavailable. Dissolved organic N (DON) accounted for 20 ± 11% for the total dissolved N in these effluents, and uptake experiments indicated the bioavailability of this fraction varied between 27 ± 26% depending on the WWTP assessed. These results indicate near complete DIN removal should be the primary goal of ANR treatment systems. The comparison of bioavailable nitrogen (BAN) quantification protocols showed that the dissolved nitrogen uptake bioassay approach was clearly a more reliable way to determine BAN concentrations compared to the conventional cell yield protocol. Moreover, because the nitrogen uptake experiment was much more sensitive, this protocol made it easier to detect extrinsic factors (such as biological contamination or toxicity) that could affect the accuracy of these bioassays. Based on these results, we recommend the nitrogen uptake bioassay using filtered and autoclaved samples to quantify BAN concentrations. However, for effluent samples indicating toxicity, algal bioassays will not accurately quantify BAN. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Gross Nitrogen Mineralization in Surface Sediments of the Yangtze Estuary

    Science.gov (United States)

    Liu, Min; Li, Xiaofei; Yin, Guoyu; Zheng, Yanling; Deng, Fengyu

    2016-01-01

    Nitrogen mineralization is a key biogeochemical process transforming organic nitrogen to inorganic nitrogen in estuarine and coastal sediments. Although sedimentary nitrogen mineralization is an important internal driver for aquatic eutrophication, few studies have investigated sedimentary nitrogen mineralization in these environments. Sediment-slurry incubation experiments combined with 15N isotope dilution technique were conducted to quantify the potential rates of nitrogen mineralization in surface sediments of the Yangtze Estuary. The gross nitrogen mineralization (GNM) rates ranged from 0.02 to 5.13 mg N kg-1 d-1 in surface sediments of the study area. The GNM rates were generally higher in summer than in winter, and the relative high rates were detected mainly at sites near the north branch and frontal edge of this estuary. The spatial and temporal distributions of GNM rates were observed to depend largely on temperature, salinity, sedimentary organic carbon and nitrogen contents, and extracellular enzyme (urease and L-glutaminase) activities. The total mineralized nitrogen in the sediments of the Yangtze Estuary was estimated to be about 6.17 × 105 t N yr-1, and approximately 37% of it was retained in the estuary. Assuming the retained mineralized nitrogen is totally released from the sediments into the water column, which contributed 12–15% of total dissolved inorganic nitrogen (DIN) sources in this study area. This result indicated that the mineralization process is a significant internal nitrogen source for the overlying water of the Yangtze Estuary, and thus may contribute to the estuarine and coastal eutrophication. PMID:26991904

  12. Nitrogen-to-Protein Conversion Factors for Three Edible Insects

    NARCIS (Netherlands)

    Janssen, Renske H.; Vincken, Jean Paul; Broek, van den Lambertus A.M.; Fogliano, Vincenzo; Lakemond, Catriona M.M.

    2017-01-01

    Insects are considered a nutritionally valuable source of alternative proteins, and their efficient protein extraction is a prerequisite for large-scale use. The protein content is usually calculated from total nitrogen using the nitrogen-to-protein conversion factor (Kp) of 6.25. This factor

  13. The influence of different forms and concentrations of nitrogen on ...

    African Journals Online (AJOL)

    Reports the results of a study conducted to compare the growth and total reduced nitrogen content of the above ground components of Digitaria eriantha and Chloris gayana plants grown in saline conditions and supplied with different levels of nitrogen in the form of nitrate and ammonia; Chloris gayana and Digitaria ...

  14. Modeling nitrogen fluxes in Germany - where does the nitrogen go?

    Science.gov (United States)

    Klement, Laura; Bach, Martin; Breuer, Lutz

    2016-04-01

    patterns of the groundwater bodies which fail the good WFD status, the N-surplus or the measured data. The parameters for denitrification and the percolation rate seemed to have a higher model sensitivity than the nitrogen surplus. MoRE was previously validated only for the total N load from groundwater into surface water but the modeling concept for nitrate concentration was seemingly never fitted to observed data and needs refinements. A literature research showed that no groundwater concentrations modeled with MoRE or MONERIS have been published for Germany until now. Instead, only the concentration in percolating water was shown - sometimes misleadingly labeled so that the reader could presume the map displayed groundwater concentrations. According to the MoRE approach, model parameters such as the percolation rate and denitrification intensity are more sensitive than the N surplus. The surplus can indicate only a potential leaching risk, while the actual threat varies substantially with regional soil and climate conditions. Consequently, the use of the nitrogen surplus as a sole indicator for nitrate leaching should be critically examined. For conception of nitrate reduction programs obviously the regionally varying site conditions cannot be disregarded.

  15. Reactive power compensator

    Science.gov (United States)

    El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.; Chen, Mingliang; Andexler, George; Huang, Tony

    1992-01-01

    A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation.

  16. Reactive power compensator

    Energy Technology Data Exchange (ETDEWEB)

    El-Sharkawi, Mohamed A. (Renton, WA); Venkata, Subrahmanyam S. (Woodinville, WA); Chen, Mingliang (Kirkland, WA); Andexler, George (Everett, WA); Huang, Tony (Seattle, WA)

    1992-01-01

    A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation.

  17. Dissolved organic nitrogen recalcitrance and bioavailable nitrogen quantification for effluents from advanced nitrogen removal wastewater treatment facilities

    International Nuclear Information System (INIS)

    Fan, Lu; Brett, Michael T.; Jiang, Wenju; Li, Bo

    2017-01-01

    The objective of this study was to determine the composition of nitrogen (N) in the effluents of advanced N removal (ANR) wastewater treatment plants (WWTPs). This study also tested two different experimental protocols for determining dissolved N recalcitrance. An analysis of 15 effluent samples from five WWTPs, showed effluent concentrations and especially effluent composition varied greatly from one system to the other, with total nitrogen (TN) ranging between 1.05 and 8.10 mg L −1 . Nitrate (NO 3 − ) accounted for between 38 ± 32% of TN, and ammonium accounted for a further 29 ± 28%. All of these samples were dominated by dissolved inorganic nitrogen (DIN; NO 3 −  + NH 4 + ), and uptake experiments indicated the DIN fraction was as expected highly bioavailable. Dissolved organic N (DON) accounted for 20 ± 11% for the total dissolved N in these effluents, and uptake experiments indicated the bioavailability of this fraction varied between 27 ± 26% depending on the WWTP assessed. These results indicate near complete DIN removal should be the primary goal of ANR treatment systems. The comparison of bioavailable nitrogen (BAN) quantification protocols showed that the dissolved nitrogen uptake bioassay approach was clearly a more reliable way to determine BAN concentrations compared to the conventional cell yield protocol. Moreover, because the nitrogen uptake experiment was much more sensitive, this protocol made it easier to detect extrinsic factors (such as biological contamination or toxicity) that could affect the accuracy of these bioassays. Based on these results, we recommend the nitrogen uptake bioassay using filtered and autoclaved samples to quantify BAN concentrations. However, for effluent samples indicating toxicity, algal bioassays will not accurately quantify BAN. - Highlights: • DIN was the dominated N pool for most of the tested effluent samples. • DON bioavailability considerably varied depending on the WWTP assessed.

  18. A roadmap for OH reactivity research

    Science.gov (United States)

    Williams, Jonathan; Brune, William

    2015-04-01

    A fundamental property of the atmosphere is the frequency of gas-phase reactions with the OH radical, the atmosphere's primary oxidizing agent. This reaction frequency is called the OH reactivity and is the inverse the lifetime of the OH radical itself, which varies from a few seconds in the clean upper troposphere to below 10 ms in forests and polluted city environments. Ever since the discovery of the OH radical's importance to tropospheric chemistry, the characterization of its overall loss rate (OH reactivity) has remained a key question. At first, this property was assessed by summing the reactivity contributions of individually measured compounds; however, as improving analytical technology revealed ever more reactive species in ambient air, it became clear that this approach could provide only a lower limit. Approximately 15 years ago, the direct measurement of total OH reactivity was conceived independently by two groups. The first publications demonstrated direct OH reactivity measurements in the laboratory (Calpini et al., 1999) based on LIDAR and in the ambient air (Kovacs and Brune, 2001) based on in situ laser induced fluorescence detection of OH.

  19. Influence of temperature upon the mobilization of nitrogen in peat

    Directory of Open Access Journals (Sweden)

    Armi Kaila

    1953-01-01

    Full Text Available The preliminary experiments the results of which are recorded in the present paper, have been carried out in order to obtain some information on the microbiological and chemical mobilization of peat nitrogen at various temperatures. In the incubation experiment at 5°, 20°, 35°, 50°, and 65CC the accumulation of ammonia nitrogen increased with a rising temperature except in the limed series where a minimum was found at 20°. The maximum of nitrate-nitrogen lay at 20 in both the series. The amount of nitrite-nitrogen was almost negligible in all the samples. The mineral nitrogen in the samples incubated at 50° and 65° represented 10—20 % of the total nitrogen. Thus, the organic nitrogen in peat soils can be mobilized to a marked extent, if the conditions are favourable. Accumulation of mineral nitrogen could be stated also at the lower temperatures where the reutilization of released nitrogen in the synthesis of new microbial substance is always more intensive than in the range of thermophilic organisms. Even at 5° a release of nitrogen was noticable. In these experiments liming did not show any beneficial effect upon the accumulation of mineral nitrogen, on the contrary, the values for total nitrogen and ammonia nitrogen were lower in the limed series. The nitrate formation was generally somewhat higher in the limed samples than in the corresponding unlimed ones. It was supposed that the considerable increase in the ammonia content of the samples incubated at 50° and 65° was partly due to purely chemical transformations, since the mere heating of moist samples at 75° for two hours brought about a marked accumulation of ammonia nitrogen. The treatment with dry heat was less effective except when the temperature was raised to 200° in which case a carbonization of the peat took place. The losses of organic matter and of total nitrogen due to the heating were almost negligible at the temperatures below 150°. At 150° and at 200

  20. Digital reactivity meter

    International Nuclear Information System (INIS)

    Copie, M.; Valantic, B.

    1978-01-01

    Digital reactivity meters (DRM) are mostly used as measuring instruments, e.g. for calibration of control rods, and there are only a few cases of their incorporation into the control systems of the reactors. To move in this direction there is more development work needed. First of all, fast algorithms are needed for inverse kinetics equations to relieve the computer for more important tasks of reactor model solving in real time. The next problem, currently under investigation, is the incorporation of the reactor thermal-hydraulic model into the DRM so that it can be used in the power range. Such an extension of DHM allows presentation not only of the instantaneous reactivity of the system, but also the inserted reactivity can be estimated from the temperature reactivity feed-backs. One of the applications of this concept is the anomalous digital reactivity monitor (ADRN) as part of the reactor protection system. As a solution of the first problem, a fast algorithm for solving the inverse kinetics equations has been implemented in the off-line program RODCAL on CDC 1700 computer and tested for its accuracy by performing different control rod calibrations on the reactor TRIGA

  1. Commercial Nitrogen Fertilizer Purchased

    Data.gov (United States)

    U.S. Environmental Protection Agency — Amounts of fertilizer nitrogen (N) purchased by states in individual years 2003, 2005, 2007, 2009 and 2011, and the % change in average amounts purchased per year...

  2. Inorganic nitrogenous air pollutants, atmospheric nitrogen deposition and their potential ecological impacts in remote areas of western North America (Invited)

    Science.gov (United States)

    Bytnerowicz, A.; Fenn, M. E.; Fraczek, W.; Johnson, R.; Allen, E. B.

    2013-12-01

    Dry deposition of gaseous inorganic nitrogenous (N) air pollutants plays an important role in total atmospheric N deposition and its ecological effects in the arid and semi-arid ecosystems. Passive samplers and denuder/ filter pack systems have been used for determining ambient concentrations of ammonia (NH3), nitric oxide (NO), nitrogen dioxide (NO2), and nitric acid vapor (HNO3) in the topographically complex remote areas of the western United States and Canada. Concentrations of the measured pollutants varied significantly between the monitoring areas. Highest NH3, NO2 and HNO3 levels occurred in southern California areas downwind of the Los Angeles Basin and in the western Sierra Nevada impacted by emissions from the California Central Valley and the San Francisco Bay area. Strong spatial gradients of N pollutants were also present in southeastern Alaska due to cruise ship emissions and in the Athabasca Oil Sands Region in Canada affected by oil exploitation. Distribution of these pollutants has been depicted by maps generated by several geostatistical methodologies within the ArcGIS Geostatistical Analyst (ESRI, USA). Such maps help to understand spatial and temporal changes of air pollutants caused by various anthropogenic activities and locally-generated vs. long range-transported air pollutants. Pollution distribution maps for individual N species and gaseous inorganic reactive nitrogen (Nr) have been developed for the southern portion of the Sierra Nevada, Lake Tahoe Basin, San Bernardino Mountains, Joshua Tree National Park and the Athabasca Oil Sands Region. The N air pollution data have been utilized for estimates of dry and total N deposition by a GIS-based inferential method specifically developed for understanding potential ecological impacts in arid and semi-arid areas. The method is based on spatial and temporal distribution of concentrations of major drivers of N dry deposition, their surface deposition velocities and stomatal conductance values

  3. Comparison of five organic wastes regarding their behaviour during composting: Part 2, nitrogen dynamic

    International Nuclear Information System (INIS)

    Guardia, A. de; Mallard, P.; Teglia, C.; Marin, A.; Le Pape, C.; Launay, M.; Benoist, J.C.; Petiot, C.

    2010-01-01

    This paper aimed to compare household waste, separated pig solids, food waste, pig slaughterhouse sludge and green algae regarding processes ruling nitrogen dynamic during composting. For each waste, three composting simulations were performed in parallel in three similar reactors (300 L), each one under a constant aeration rate. The aeration flows applied were comprised between 100 and 1100 L/h. The initial waste and the compost were characterized through the measurements of their contents in dry matter, total carbon, Kjeldahl and total ammoniacal nitrogen, nitrite and nitrate. Kjeldahl and total ammoniacal nitrogen and nitrite and nitrate were measured in leachates and in condensates too. Ammonia and nitrous oxide emissions were monitored in continue. The cumulated emissions in ammonia and in nitrous oxide were given for each waste and at each aeration rate. The paper focused on process of ammonification and on transformations and transfer of total ammoniacal nitrogen. The parameters of nitrous oxide emissions were not investigated. The removal rate of total Kjeldahl nitrogen was shown being closely tied to the ammonification rate. Ammonification was modelled thanks to the calculation of the ratio of biodegradable carbon to organic nitrogen content of the biodegradable fraction. The wastes were shown to differ significantly regarding their ammonification ability. Nitrogen balances were calculated by subtracting nitrogen losses from nitrogen removed from material. Defaults in nitrogen balances were assumed to correspond to conversion of nitrate even nitrite into molecular nitrogen and then to the previous conversion by nitrification of total ammoniacal nitrogen. The pool of total ammoniacal nitrogen, i.e. total ammoniacal nitrogen initially contained in waste plus total ammoniacal nitrogen released by ammonification, was calculated for each experiment. Then, this pool was used as the referring amount in the calculation of the rates of accumulation, stripping and

  4. Nitrate-induced changes and effect of varying total nitrogen to total ...

    African Journals Online (AJOL)

    Microcystis aeruginosa, a common cyanobacterium in Lake Chivero, did not assume dominance in any of the treatments. From an application perspective it is interesting that varying nitrate loadings in microcosms favoured chlorophytes rather than increasing undesirable cyanobacteria. Nutrient manipulation can be used as ...

  5. Modelling the ecosystem effects of nitrogen deposition: Model of Ecosystem Retention and Loss of Inorganic Nitrogen (MERLIN

    Directory of Open Access Journals (Sweden)

    B. J. Cosby

    1997-01-01

    Full Text Available A catchment-scale mass-balance model of linked carbon and nitrogen cycling in ecosystems has been developed for simulating leaching losses of inorganic nitrogen. The model (MERLIN considers linked biotic and abiotic processes affecting the cycling and storage of nitrogen. The model is aggregated in space and time and contains compartments intended to be observable and/or interpretable at the plot or catchment scale. The structure of the model includes the inorganic soil, a plant compartment and two soil organic compartments. Fluxes in and out of the ecosystem and between compartments are regulated by atmospheric deposition, hydrological discharge, plant uptake, litter production, wood production, microbial immobilization, mineralization, nitrification, and denitrification. Nitrogen fluxes are controlled by carbon productivity, the C:N ratios of organic compartments and inorganic nitrogen in soil solution. Inputs required are: 1 temporal sequences of carbon fluxes and pools- 2 time series of hydrological discharge through the soils, 3 historical and current external sources of inorganic nitrogen; 4 current amounts of nitrogen in the plant and soil organic compartments; 5 constants specifying the nitrogen uptake and immobilization characteristics of the plant and soil organic compartments; and 6 soil characteristics such as depth, porosity, bulk density, and anion/cation exchange constants. Outputs include: 1 concentrations and fluxes of NO3 and NH4 in soil solution and runoff; 2 total nitrogen contents of the organic and inorganic compartments; 3 C:N ratios of the aggregated plant and soil organic compartments; and 4 rates of nitrogen uptake and immobilization and nitrogen mineralization. The behaviour of the model is assessed for a combination of land-use change and nitrogen deposition scenarios in a series of speculative simulations. The results of the simulations are in broad agreement with observed and hypothesized behaviour of nitrogen

  6. Brucella, nitrogen and virulence.

    Science.gov (United States)

    Ronneau, Severin; Moussa, Simon; Barbier, Thibault; Conde-Álvarez, Raquel; Zuniga-Ripa, Amaia; Moriyon, Ignacio; Letesson, Jean-Jacques

    2016-08-01

    The brucellae are α-Proteobacteria causing brucellosis, an important zoonosis. Although multiplying in endoplasmic reticulum-derived vacuoles, they cause no cell death, suggesting subtle but efficient use of host resources. Brucellae are amino-acid prototrophs able to grow with ammonium or use glutamate as the sole carbon-nitrogen source in vitro. They contain more than twice amino acid/peptide/polyamine uptake genes than the amino-acid auxotroph Legionella pneumophila, which multiplies in a similar vacuole, suggesting a different nutritional strategy. During these two last decades, many mutants of key actors in nitrogen metabolism (transporters, enzymes, regulators, etc.) have been described to be essential for full virulence of brucellae. Here, we review the genomic and experimental data on Brucella nitrogen metabolism and its connection with virulence. An analysis of various aspects of this metabolism (transport, assimilation, biosynthesis, catabolism, respiration and regulation) has highlighted differences and similarities in nitrogen metabolism with other α-Proteobacteria. Together, these data suggest that, during their intracellular life cycle, the brucellae use various nitrogen sources for biosynthesis, catabolism and respiration following a strategy that requires prototrophy and a tight regulation of nitrogen use.

  7. Modelling atmospheric OH-reactivity in a boreal forest ecosystem

    DEFF Research Database (Denmark)

    Mogensen, D.; Smolander, S.; Sogachev, Andrey

    2011-01-01

    We have modelled the total atmospheric OH-reactivity in a boreal forest and investigated the individual contributions from gas phase inorganic species, isoprene, monoterpenes, and methane along with other important VOCs. Daily and seasonal variation in OH-reactivity for the year 2008 was examined...

  8. Investigation on the Assimilation of Nitrogen by Maize Roots and the Transport of Some Major Nitrogen Compounds by Xylem Sap

    DEFF Research Database (Denmark)

    Ivanko, S.; Ingversen, J.

    1971-01-01

    The uptake and assimilation of nitrate and ammonia have been studied in Zea mays. Nitrogen-starved maize roots are capable of accumulating a potential capacity for nitrogen uptake and assimilation. Reestablishment of nitrogen supply leads to intense uptake, reaching 154 % of the reference variant...... level after 24 hours when nitrate is supplied, and 121 % when ammonia is supplied. After 24 hours the insoluble nitrogen fraction accounts for 80, 54 and 55 % of the total taken up in the PK + NO3-, PK + NH4+ and NPK variants respectively....

  9. Life-cycle evaluation of nitrogen-use in rice-farming systems: implications for economically-optimal nitrogen rates

    Directory of Open Access Journals (Sweden)

    Y. Xia

    2011-11-01

    Full Text Available Nitrogen (N fertilizer plays an important role in agricultural systems in terms of food yield. However, N application rates (NARs are often overestimated over the rice (Oryza sativa L. growing season in the Taihu Lake region of China. This is largely because negative externalities are not entirely included when evaluating economically-optimal nitrogen rate (EONR, such as only individual N losses are taken into account, or the inventory flows of reactive N have been limited solely to the farming process when evaluating environmental and economic effects of N fertilizer. This study integrates important material and energy flows resulting from N use into a rice agricultural inventory that constitutes the hub of the life-cycle assessment (LCA method. An economic evaluation is used to determine an environmental and economic NAR for the Taihu Lake region. The analysis reveals that production and exploitation processes consume the largest proportion of resources, accounting for 77.2 % and 22.3 % of total resources, respectively. Regarding environmental impact, global warming creates the highest cost with contributions stemming mostly from fertilizer production and farming processes. Farming process incurs the biggest environmental impact of the three environmental impact categories considered, whereas transportation has a much smaller effect. When taking account of resource consumption and environmental cost, the marginal benefit of 1 kg rice would decrease from 2.4 to only 1.05 yuan. Accordingly, our current EONR has been evaluated at 187 kg N ha−1 for a single rice-growing season. This could enhance profitability, as well as reduce the N losses associated with rice growing.