WorldWideScience

Sample records for total organic chlorine

  1. Effect of temperature and pH on dehalogenation of total organic chlorine, bromine and iodine in drinking water.

    Science.gov (United States)

    Abusallout, Ibrahim; Rahman, Shamimur; Hua, Guanghui

    2017-11-01

    Disinfection byproduct (DBP) concentrations in drinking water distribution systems and indoor water uses depend on competitive formation and degradation reactions. This study investigated the dehalogenation kinetics of total organic chlorine (TOCl), bromine (TOBr) and iodine (TOI) produced by fulvic acid under different pH and temperature conditions, and total organic halogen (TOX) variations in a treated drinking water under simulated distribution system and heating scenarios. TOX dehalogenation rates were generally in the order of TOI ≅ TOCl(NH 2 Cl) > TOBr > TOCl(Cl 2 ). The half-lives of different groups of TOX compounds formed by fulvic acid varied between 27 and 139 days during incubation at 20 °C and 0.98-2.17 days during heating at 55 °C. Base-catalyzed reactions played a major role in TOX degradation as evidenced by enhanced dehalogenation under high pH conditions. The results of heating of a treated water in the presence of residuals showed that TOX concentrations of chlorinated samples increased rapidly when chlorine residuals were present and then gradually decreased after chlorine residuals were exhausted. The final TOX concentrations of chlorinated samples after heating showed moderate decreases with increasing ambient water ages. Chloraminated samples with different ambient water ages exhibited similar final TOX concentrations during simulated distribution system and heating experiments. This study reinforces the importance of understanding DBP variations in indoor water uses as wells as in distribution systems to provide more accurate DBP information for exposure assessment and regulatory determination. Published by Elsevier Ltd.

  2. Chlorine disinfection of grey water for reuse: effect of organics and particles.

    Science.gov (United States)

    Winward, Gideon P; Avery, Lisa M; Stephenson, Tom; Jefferson, Bruce

    2008-01-01

    Adequate disinfection of grey water prior to reuse is important to prevent the potential transmission of disease-causing microorganisms. Chlorine is a widely utilised disinfectant and as such is a leading contender for disinfection of grey water intended for reuse. This study examined the impact of organics and particles on chlorine disinfection of grey water, measured by total coliform inactivation. The efficacy of disinfection was most closely linked with particle size. Larger particles shielded total coliforms from inactivation and disinfection efficacy decreased with increasing particle size. Blending to extract particle-associated coliforms (PACs) following chlorine disinfection revealed that up to 91% of total coliforms in chlorinated grey water were particle associated. The organic concentration of grey water affected chlorine demand but did not influence the disinfection resistance of total coliforms when a free chlorine residual was maintained. Implications for urban water reuse are discussed and it is recommended that grey water treatment systems target suspended solids removal to ensure removal of PACs prior to disinfection.

  3. Development and evaluation of analytical techniques for total chlorine in burner fuels

    International Nuclear Information System (INIS)

    Gaskill, A. Jr.; Estes, E.D.; Hardison, D.L.; Friedman, P.H.

    1987-01-01

    A current EPA regulation prohibits the sale for burning in non-industrial boilers of used oils and oil fuels contaminated above specified levels with certain metals and total chlorine. When burned as fuel in a small boiler, the contaminants may be emitted to the ambient air at hazardous levels. This regulation establishes a rebuttable presumption that used oil containing more than 1,000 ppm total chlorine has been mixed with halogenated solvents and is a hazardous waste. Rebutting the presumption requires the seller of the oil to prove that this chlorine is not due to halogenated solvents or other hazardous halogenated organics. If the rebuttal is successful, the oil can be sold as fuel up to a level of 4000 ppm total chlorine. Analytical techniques for determination of total chlorine were evaluated or developed to provide regulatory agencies and the regulated community with appropriate chlorine test methods. The techniques evaluated included chemical titrations following oxygen bomb combustion, disposable field test kits, instrumental microcoulometry, and x-ray fluorescence spectrometry. These candidate techniques were subjected to interlaboratory testing to estimate their precision, accuracy, sensitivity, and susceptibility to matrix effects. Information on ease of use and analysis costs was also collected. Based on this pilot study, test methods will be written for the most promising techniques and subjected to a formal collaborative study to generate precision and accuracy data for each method. These methods are to be proposed in the Federal Register as mandatory for compliance with the existing used oil regulation

  4. Chlorination of cooling water: a source of chlorine-containing organic compounds with possible environmental significance

    International Nuclear Information System (INIS)

    Jolley, R.L.; Gehrs, C.W.; Pitt, W.W. Jr.

    1976-01-01

    Chlorination of cooling waters may be a source of environmentally significant pollutants. Many water-soluble chlorine-containing organic compounds of low volatility were found in a sample of cooling water chlorinated to a 2-mg/l chlorine concentration in the laboratory. The compounds were separated and detected using a coupled 36 Cl-tracer--high-resolution liquid chromatographic technique developed at the Oak Ridge National Laboratory for determination of chlorinated organics in process effluents. For a chlorination contact time of 75 min at 25 0 C, the yield of chlorine in the form of chloro-organics amounted to 0.78% of the chlorine dosage. It is estimated that the yield is about 0.5% under typical reaction conditions in the electric power plant cooling system chosen for study. Because chlorine is commonly used to remove slime films from the cooling systems of electric power plants, as a means of maintaining high operational efficiency, it is estimated that several hundred tons of chlorinated organics are produced annually in the nation by this antifoulant process. The chromatographic elution positions of some of the separated constituents correspond to those of compounds separated and partially identified from chlorinated sewage treatment plant effluents. The results of this study indicate the formation of chloro-organics during the chlorination of cooling waters should be thoroughly examined, particularly with respect to their identification and determination of possible toxicological properties

  5. Organic chloramines in chlorine-based disinfected water systems: A critical review.

    Science.gov (United States)

    How, Zuo Tong; Kristiana, Ina; Busetti, Francesco; Linge, Kathryn L; Joll, Cynthia A

    2017-08-01

    This paper is a critical review of current knowledge of organic chloramines in water systems, including their formation, stability, toxicity, analytical methods for detection, and their impact on drinking water treatment and quality. The term organic chloramines may refer to any halogenated organic compounds measured as part of combined chlorine (the difference between the measured free and total chlorine concentrations), and may include N-chloramines, N-chloramino acids, N-chloraldimines and N-chloramides. Organic chloramines can form when dissolved organic nitrogen or dissolved organic carbon react with either free chlorine or inorganic chloramines. They are potentially harmful to humans and may exist as an intermediate for other disinfection by-products. However, little information is available on the formation or occurrence of organic chloramines in water due to a number of challenges. One of the biggest challenges for the identification and quantification of organic chloramines in water systems is the lack of appropriate analytical methods. In addition, many of the organic chloramines that form during disinfection are unstable, which results in difficulties in sampling and detection. To date research has focussed on the study of organic monochloramines. However, given that breakpoint chlorination is commonly undertaken in water treatment systems, the formation of organic dichloramines should also be considered. Organic chloramines can be formed from many different precursors and pathways. Therefore, studying the occurrence of their precursors in water systems would enable better prediction and management of their formation. Copyright © 2017. Published by Elsevier B.V.

  6. Anaerobic biodegradability and toxicity of wastewaters from chlorine and total chlorine-free bleaching of eucalyptus kraft pulps.

    NARCIS (Netherlands)

    Vidal, G.; Soto, M.; Field, J.; Mendez-Pampin, R.; Lema, J.M.

    1997-01-01

    Chlorine bleaching effluents are problematic for anaerobic wastewater treatment due to their high methanogenic toxicity and low biodegradability. Presently, alternative bleaching processes are being introduced, such as elemental chlorine-free (ECF) and total chlorine-free (TCF) bleaching. The

  7. Chlorine isn't Just for Swimming Pools Anymore... Chlorination of Organic Compounds in the Arctic

    Science.gov (United States)

    Han, A.; Raab, T. K.

    2013-12-01

    The cycling of chlorine between its organic and inorganic forms is known to occur in forest soils, but little is known about the generality of this mechanism, which soil components chlorine attaches to, and at what rate chlorination occurs. The study uses peat-rich tundra soils from Barrow, Alaska varying in age since formation of 50 yrs - 5500 yrs BP, and seeks to measure the rate at which organic molecules are chlorinated and to understand what changes those molecules undergo once chlorinated. Soil abundance of chlorine and bromine was estimated in soils of varying age using X-ray fluorescence, and org-Cl levels were measured using pyro-hydrolysis [Table 1]. We considered activity of the enzyme Chloroperoxidase, and data was gathered using absorbance scans of the organic molecule monochlorodimedone to determine whether it had been chlorinated and if so, at what rate. Additional information was gathered from the chlorination of small organic components of the macromolecule lignin, whose constituent molecules make up a large portion of humic materials critical to soil health, through emission scans and fluorescence scans. The results showed that the enzyme chloroperoxidase, which is found in nature and is associated with fungi or bacteria, attaches a chlorine atom to monochlorodimedone and that similar enzymes found in Arctic soils act on it, as well as the lignin model subunits cinnamaldehyde ((2E)-3-phenylprop-2-enal) and naringenin-7-rhamnoglucoside. The results may provide more information on chlorination rates in the Arctic and may contribute to an understanding of how and at what rate chlorine changes form in nature, and answer questions about ozone deterioration or anthropogenic chlorine impact(s) on the environment.Average Halogen Abundance in Arctic Soils xrf=Energy Dispersive X-Ray Fluorescencepyro= TOX Pyro-Hydrolysis

  8. Short-term organic carbon migration from polymeric materials in contact with chlorinated drinking water.

    Science.gov (United States)

    Mao, Guannan; Wang, Yingying; Hammes, Frederik

    2018-02-01

    Polymeric materials are widely used in drinking water distribution systems. These materials could release organic carbon that supports bacterial growth. To date, the available migration assays for polymeric materials have not included the potential influence of chlorination on organic carbon migration behavior. Hence, we established a migration and growth potential protocol specifically for analysis of carbon migration from materials in contact with chlorinated drinking water. Four different materials were tested, including ethylene propylene dienemethylene (EPDM), poly-ethylene (PEX b and PEX c) and poly-butylene (PB). Chlorine consumption rates decreased gradually over time for EPDM, PEXc and PB. In contrast, no free chlorine was detected for PEXb at any time during the 7 migration cycles. Total organic carbon (TOC) and assimilable organic carbon (AOC) was evaluated in both chlorinated and non-chlorinated migrations. TOC concentrations for EPDM and PEXb in chlorinated migrations were significantly higher than non-chlorinated migrations. The AOC results showed pronounced differences among tested materials. AOC concentrations from chlorinated migration waters of EPDM and PB were higher compared to non-chlorinated migrations, whereas the opposite trend was observed for PEXb and PEXc. There was also a considerable difference between tested materials with regards to bacterial growth potential. The results revealed that the materials exposed to chlorine-influenced migration still exhibited a strong biofilm formation potential. The overall results suggested that the choice in material would make a considerable difference in chlorine consumption and carbon migration behavior in drinking water distribution systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Normal levels of total body sodium and chlorine by neutron activation analysis

    International Nuclear Information System (INIS)

    Kennedy, N.S.J.; Eastell, R.; Smith, M.A.; Tothill, P.

    1983-01-01

    In vivo neutron activation analysis was used to measure total body sodium and chlorine in 18 male and 18 female normal adults. Corrections for body size were developed. Normalisation factors were derived which enable the prediction of the normal levels of sodium and chlorine in a subject. The coefficient of variation of normalised sodium was 5.9% in men and 6.9% in women, and of normalised chlorine 9.3% in men and 5.5% in women. In the range examined (40-70 years) no significant age dependence was observed for either element. Total body sodium was correlated with total body chlorine and total body calcium. Sodium excess, defined as the amount of body sodium in excess of that associated with chlorine, also correlated well with total body calcium. In females there was a mean annual loss of sodium excess of 1.2% after the menopause, similar to the loss of calcium. (author)

  10. Chlorinated organic pesticides in marketed food: Barcelona, 2001-06

    International Nuclear Information System (INIS)

    Fontcuberta, M.; Arques, J.F.; Villalbi, J.R.; Martinez, M.; Centrich, F.; Serrahima, E.; Pineda, L.; Duran, J.; Casas, C.

    2008-01-01

    This paper reports concentration levels of 22 chlorinated organic compounds (both primary compounds and metabolites) in food marketed in the city of Barcelona (Catalonia, Spain) in 2001-06. Samples included meat products, fish and seafood, eggs, milk and dairy, vegetal oils, cereal products and derivates, vegetables, fresh fruits, dry fruits, spices, formula and baby food, tea and wine. Levels of chlorinated organic compounds were determined by gas chromatography with selective detectors: electron capture (ECD), flame photometric (FPD) and confirmation with mass-spectrometry. Chlorinated organic pesticides were detected in 7 of the 1,484 samples analyzed in the 2001-06 period (0.5%): 1 dairy product, 1 fruit, 1 olive oil and 4 vegetables. Specific pesticides detected are lindane and endosulfan α, β or sulphate. A decrease in both the proportion of samples with detectable residues and in the variety of chlorinated pesticides found is visible when comparing these results with those of the previous 1989-2000 period. These results suggest the gradual disappearance of regulated chlorinated organic pesticides as a consequence of the growing worldwide implementation of current regulatory agreements

  11. Effects of short-chain chlorinated paraffins on soil organisms.

    Science.gov (United States)

    Bezchlebová, Jitka; Cernohlávková, Jitka; Kobeticová, Klára; Lána, Jan; Sochová, Ivana; Hofman, Jakub

    2007-06-01

    Despite the fact that chlorinated paraffins have been produced in relatively large amounts, and high concentrations have been found in sewage sludge applied to soils, there is little information on their concentrations in soils and the effect on soil organisms. The aim of this study was to investigate the toxicity of chlorinated paraffins in soils. The effects of short-chain chlorinated paraffins (64% chlorine content) on invertebrates (Eisenia fetida, Folsomia candida, Enchytraeus albidus, Enchytraeus crypticus, Caenorhabditis elegans) and substrate-induced respiration of indigenous microorganisms were studied. Differences were found in the sensitivity of the tested organisms to short-chain chlorinated paraffins. F. candida was identified as the most sensitive organism with LC(50) and EC(50) values of 5733 and 1230 mg/kg, respectively. Toxicity results were compared with available studies and the predicted no effect concentration (PNEC) of 5.28 mg/kg was estimated for the soil environment, based on our data.

  12. Characterization and monitoring of total organic chloride vapors

    International Nuclear Information System (INIS)

    Anheier, N.C. Jr.; Evans, J.C. Jr.; Olsen, K.B.

    1992-07-01

    Chemical sensors are being developed intermediate highly selective and broadly selective methods. PNL is developing an optical-emission based TOCl (total organic chlorinated compounds) sensor (Halosnif) which is capable of measuring TOCl in real time on an extracted gas sample over a wide linear dynamic range. Halosnif employs an atomic emission sensor that is broadly selective for any moderately volatile organic hclorinated vapor but does not distinguish between classes of chlorinated compounds. A rf-induced He plasma is used to excite the chlorine atoms, causing light emission at 837.6 nm. The sensitivity ranges from 1-2 ppM up to at least 10,000 ppM. Field tests were conducted at Tinker AFB in areas of high TCE contamination, in two boreholes at Savannah River, and at Hanford CCl 4 vapor extraction system. This sensor is briefly compared with acoustic wave sensors being developed by SNL (PAWS). 4 figs

  13. Degradation kinetics of organic chloramines and formation of disinfection by-products during chlorination of creatinine.

    Science.gov (United States)

    Zhang, Tianyang; Xu, Bin; Wang, Anqi; Cui, Changzheng

    2018-03-01

    Organic chloramines can interfere with the measurement of effective combined chlorine in chlorinated water and are potential intermediate products of highly toxic disinfection by-products (DBPs). In order to know more about the degradation and transformation of organic chloramines, a typical organic chloramine precursor creatinine was selected for investigation and a corresponding individual organic chloramine chlorocreatinine was prepared in this study. The preparation condition of chlorocreatinine by chlorination was established as chlorine/creatinine = 1 M/M, reaction time = 2 h and pH = 7.0. Then the degradation kinetics of chlorocreatinine during further chlorination was studied, and a second-order rate constant of 1.16 (±0.14) M -1 s -1 was obtained at pH 7.0. Solution pH significantly influenced the degradation rate, and the elementary rate constants of chlorocreatinine with HOCl+H + , HOCl, OCl - and chlorocreatinine - with OCl - were calculated as 2.43 (±1.55) × 10 4  M -2  s -1 , 1.05 (±0.09) M -1 s -1 , 2.86 (±0.30) M -1 s -1 and 3.09 (±0.24) M -1 s -1 , respectively. Besides, it was found that chlorocreatinine could be further converted into several C-DBPs (chloroform and trichloroacetone) and N-DBPs (dichloroacetonitrile (DCAN) and trichloronitromethane (TCNM)) during chlorination. The total yield of DBPs increased obviously with increasing pH, especially for TCNM. In addition, the presence of humic acid in creatinine solution could increase the formation of DCAN obviously during chlorination. Based on the UPLC-Q-TOF-MS analysis, the conversion pathways of chlorocreatinine were proposed. Several kinds of intermediate products were also identified as organic chloramines and some of them could even exist stably during the further chlorination. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Study of organic chlorine in soils and formation in biotic and abiotic conditions

    International Nuclear Information System (INIS)

    Osswald, Aurelie

    2016-01-01

    Chlorine has long been considered as the predominantly chlorine form present in the environment. However, recent studies have shown that chlorine is retained in the soil as an organic form and is formed by a natural process of chlorination mainly from the microbial activity of the soil still poorly documented. The aim of this study is to estimate the organic and inorganic forms of chlorine in contrasting soil and highlight the evolution of these forms according to certain environmental parameters or terms of incubations and to the activity of microorganisms. For this, the organo-mineral horizons of contrasting soil were studied (i) in situ: The amounts of chlorine and physico-chemical and microbiological parameters of soil were measured; (ii) in two experimental devices incubations under different conditions. Measurements of chlorine levels between the beginning and the end of the first experiment were measured by AOX analyzer. For the second experiment, the soil was previously enriched with Na 37 Cl and 37 Cl levels were measured by HR ICP MS. Soil samples from these incubations were analyzed by Xanes spectrometry to identify the speciation of chlorine forms in soils. Soil non-extractable organic chlorine contents represent almost all of the chlorine. The parameters that influence the distribution of chlorine contents in soils correspond to vegetation cover, pH, organic carbon content and quantities of microorganisms. The chlorine contents measured by AOX analyzer and by HR ICP MS highlight an organic chlorine formation over time in relation to the microorganisms in the soil. The measures carried out by HR ICP MS show also an organic chlorine formation in abiotic conditions. Conversely, XANES spectrometry measurements have shown any organic chlorine formation. In conclusion, the parameters that influence the distribution of chlorine contents in soils have been targeted. Similarly, the microbial origin of the chlorination process has been demonstrated, although a

  15. Chlorine determination in (U, Pu)C fuel by total reflection X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Misra, Nand Lal; Dhara, Sangita; Mudher, Khush Dev Singh; Aggarwal, Suresh K.; Thakur, Uday Kumar; Shah, Dipti; Sawant, R.M.; Ramakumar, K.L.

    2007-01-01

    A Total Reflection X-ray Fluorescence (TXRF) method for the determination of chlorine in (U,Pu)C has been developed. The method involves calibration of the instrument with standard solutions and validation of TXRF determination of chlorine using synthetic standard solutions. Cl K α line excited with W L α source was used for TXRF determinations of chlorine. Chlorine present in trace amounts in (U,Pu)C samples was first separated by pyro hydrolysis. The evolved chlorine, in form of HCl, was collected in 5 mM NaOH solution. This solution was analyzed for chlorine by Total Reflection X-ray Fluorescence Spectrometry using cobalt as an internal standard. The TXRF detection limit of chlorine was found to be 3.6 pg with sample size of 30 μL. In order to assess the applicability of TXRF method for chlorine determinations in other nuclear materials, one U 3 O 8 trace element standard was also analyzed for chlorine in similar way. The precision of the method was found to be 25% (1 σ) at ng level in most of the cases. (author)

  16. Determination of organic-bound chlorine and bromine in human body fluids by neutron activation analysis

    International Nuclear Information System (INIS)

    McKinney, J.D.; Abusamra, A.; Reed, J.H.

    1983-01-01

    The levels of organic-bound chlorine and bromine in human milk and serum are determined by neutron activation analysis. Desalted milk and serum fractions are irradiated with neutrons in a nuclear reactor and the resulting γ-rays of 38 Cl and 80 Br are measured. The desalting procedure, achieved by using Bio-Gel molecular sieves, virtually removes all ionic chloride and bromides from milk and serum. Radioactive tracer studies with polychlorinated biphenyl- 14 C indicate a recovery of 90% through the Bio-Gel column. The total organic chlorine in 2.2-(4-chlorophenyl)-1,1-dichloroethane spiked milk and heptachlor spiked milk, determined after being desalted and irradiated according to this procedure, substantiates a good recovery of the added spike. The lower limits of detection of organic-bound chlorine and bromine in milk or serum are 50 and 5 parts per billion (ppb), respectively

  17. Determination of the total amount of organically bound chlorine, bromine and iodine in environmental samples by instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gether, J; Lunde, G [Central Institute for Industrial Research, Oslo (Norway); Steinnes, E [Institutt for Atomenergi, Kjeller (Norway)

    1979-07-01

    The determination of chlorine, bromine and iodine present as non-polar, hydrophobic hydrocarbons in environmental samples is reported. The organohalogen compounds are seprated from water into an organic phase by on-site liquid-liquid extraction, and form biological material by procedures based on lipid phase extraction and codistillation. After removal of inorganic halides by washing with water and concentration of the sample by evaporation of the solvent, the resulting extracts are analyzed for their chlorine, bromine and iodine contents by instrumental neutron activation analysus. Strict attention is paid to the possibility of contamination in every step of the procedure. Background values in routine analysis are approximately 100-200 ng of chlorine, <5 ng of bromine and <3 ng of iodine.

  18. Formation of assimilable organic carbon during oxidation of natural waters with ozone, chlorine dioxide, chlorine, permanganate, and ferrate.

    Science.gov (United States)

    Ramseier, Maaike K; Peter, Andreas; Traber, Jacqueline; von Gunten, Urs

    2011-02-01

    Five oxidants, ozone, chlorine dioxide, chlorine, permanganate, and ferrate were studied with regard to the formation of assimilable organic carbon (AOC) and oxalate in absence and presence of cyanobacteria in lake water matrices. Ozone and ferrate formed significant amounts of AOC, i.e. more than 100 μg/L AOC were formed with 4.6 mg/L ozone and ferrate in water with 3.8 mg/L dissolved organic carbon. In the same water samples chlorine dioxide, chlorine, and permanganate produced no or only limited AOC. When cyanobacterial cells (Aphanizomenon gracile) were added to the water, an AOC increase was detected with ozone, permanganate, and ferrate, probably due to cell lysis. This was confirmed by the increase of extracellular geosmin, a substance found in the selected cyanobacterial cells. AOC formation by chlorine and chlorine dioxide was not affected by the presence of the cells. The formation of oxalate upon oxidation was found to be a linear function of the oxidant consumption for all five oxidants. The following molar yields were measured in three different water matrices based on oxidant consumed: 2.4-4.4% for ozone, 1.0-2.8% for chlorine dioxide and chlorine, 1.1-1.2% for ferrate, and 11-16% for permanganate. Furthermore, oxalate was formed in similar concentrations as trihalomethanes during chlorination (yield ∼ 1% based on chlorine consumed). Oxalate formation kinetics and stoichiometry did not correspond to the AOC formation. Therefore, oxalate cannot be used as a surrogate for AOC formation during oxidative water treatment. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Removal of chlorinated organic compounds from gas phase using electron beam technology

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Y.; Bulka, S.; Zimek, A. [Institute of Nuclear Chemistry and Technology, Warsaw (Poland); Chmielewski, A. G. [Institute of Nuclear Chemistry and Technology, Warsaw (Poland); Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw (Poland)

    2011-07-01

    Selected chlorinated organic compounds (Cl-HC), which are emitted from coal fired power plants, waste incinerators, chemical industry etc., are very harmful to the environment and human’s health. Some of them are listed as carcinogenic compounds by USA EPA. Recent studies show that some chlorinated organic compounds are suspected to be precursors for dioxins formation. Chlorinated organic compounds decomposition in air in an electron beam (EB) generated plasma reactor technology was studied. We selected cis-dichloroethylene (cis-DCE), 1,4-dichlorobenznene(1,4-DCB), 1-chloronaphthalene as studied objects. It is found that chlorinated organic compounds can be decomposed in an electron beam generated plasma reactor. The order of decomposition efficiency of these compounds are: cis-DCE > 1,4-DCB> 1-chloronaphthalene. (author)

  20. Effects of UV irradiation and UV/chlorine co-exposure on natural organic matter in water

    International Nuclear Information System (INIS)

    Liu, Wei; Zhang, Zaili; Yang, Xin; Xu, Yiyue; Liang, Yongmei

    2012-01-01

    The effects of co-exposure to ultraviolet (UV) irradiation (with either low- or medium-pressure UV lamps) and free chlorine (chloramine) at practical relevant conditions on changes in natural organic matter (NOM) properties were investigated using four waters. The changes were characterized using the specific disinfection by-product formation potential (SDBPFP), specific total organic halogen formation potential (STOXFP), differential UV absorbance (∆UVA), and size-exclusion chromatography (SEC). The results for exposure to UV irradiation alone and for samples with no exposure were also obtained. The SDBPFPs in all UV-irradiated NOM waters observed were higher than those of non-irradiated samples. UV irradiation led to increases in STOXFPs as a result of chlorination, but no changes, or only small decreases, from chloramination. UV irradiation alone led to positive ∆UVA spectra of the four NOM waters; co-exposure to UV and chlorine gave larger negative ∆UVA spectra than those obtained by chlorine exposure alone. No obvious changes in SEC results were observed for samples only irradiated with UV light; co-exposure gave no detectable changes in the abundances of small fractions for exposure to chlorine only. Both UV photooxidation and photocatalytic oxidation appear to affect the reactivity of the NOM toward subsequent chlorination, and the magnitude of the changes is generally greater for medium-pressure lamps than for low-pressure lamps. These results suggest that applying UV disinfection technology to a particular source may not always be disinfection by-product-problem-free, and the interactions between UV light, chlorine, and NOM may need to be considered. - Highlights: ► We discussed the effects of co-exposure to UV light and chlorine on properties of natural organic matters in waters. ► UV irradiation led to increases in SDBPFP and STOXFP of NOM waters from chlorination. ► We suggest that applying an UV disinfection technology to a particular

  1. Microbial chlorination of organic matter in forest soil: investigation using 36Cl-chloride and its methodology.

    Science.gov (United States)

    Rohlenová, J; Gryndler, M; Forczek, S T; Fuksová, K; Handova, V; Matucha, M

    2009-05-15

    Chloride, which comes into the forest ecosystem largely from the sea as aerosol (and has been in the past assumed to be inert), causes chlorination of soil organic matter. Studies of the chlorination showed that the content of organically bound chlorine in temperate forest soils is higher than that of chloride, and various chlorinated compounds are produced. Our study of chlorination of organic matter in the fermentation horizon of forest soil using radioisotope 36Cl and tracer techniques shows that microbial chlorination clearly prevails over abiotic, chlorination of soil organic matter being enzymatically mediated and proportional to chloride content and time. Long-term (>100 days) chlorination leads to more stable chlorinated substances contained in the organic layer of forest soil (overtime; chlorine is bound progressively more firmly in humic acids) and volatile organochlorines are formed. Penetration of chloride into microorganisms can be documented by the freezing/thawing technique. Chloride absorption in microorganisms in soil and in litter residues in the fermentation horizon complicates the analysis of 36Cl-chlorinated soil. The results show that the analytical procedure used should be tested for every soil type under study.

  2. Persistence of pharmaceuticals and other organic compounds in chlorinated drinking water as a function of time

    Science.gov (United States)

    Gibs, J.; Stackelberg, P.E.; Furlong, E.T.; Meyer, M.; Zaugg, S.D.; Lippincott, R.L.

    2007-01-01

    Ninety eight pharmaceuticals and other organic compounds (POOCs) that were amended to samples of chlorinated drinking-water were extracted and analyzed 1, 3, 6, 8, and 10 days after amendment to determine whether the total chlorine residual reacted with the amended POOCs in drinking water in a time frame similar to the residence time of drinking water in a water distribution system. Results indicated that if all 98 were present in the finished drinking water from a drinking-water treatment plant using free chlorine at 1.2??mg/L as the distribution system disinfectant residual, 52 POOCs would be present in the drinking water after 10??days at approximately the same concentration as in the newly finished drinking water. Concentrations of 16 POOCs would be reduced by 32% to 92%, and 22 POOCs would react completely with residual chlorine within 24??h. Thus, the presence of free chlorine residual is an effective means for transforming some POOCs during distribution. ?? 2006 Elsevier B.V. All rights reserved.

  3. Catalytic destruction of organics and chlorinated organics with TEES II

    International Nuclear Information System (INIS)

    Baker, E.G.; Elliot, D.C.; Sealock, L.J. Jr.; Neuenschwander, G.G.

    1991-06-01

    A catalytic process is being developed at Pacific Northwest Laboratory (PNL) for destroying hazardous organics and chlorinated organics, including spent solvents, in aqueous waste streams. Experiments have been conducted in a batch reactor, a bench-scale continuous-stirred tank reactor (CSTR), and an continuous-flow tubular reactor. A 5-gal/h developmental unit is under construction and will be operational in 1991. The Thermochemical Environmental Energy System 2 can destroy a wide variety of organics and chlorinated organics by thermocatalytic treatment at 300 degrees C to 350 degrees C and 2000 to 3000 psig. This paper summarizes the batch reactor and CSTR results and presents new results obtained in the tubular reactor. The high levels of destruction achieved in the tubular reactor show that kinetic data obtained in CSTR can be used to design large-scale tubular reactors with little scaleup risk. Corrosion studies were completed, and it appears that less expensive materials of construction can be used in many applications, which will make the process more cost effective. Cost estimates for larger- scale facilities have been prepared by Onsite*Ofsite, Inc., who is working with PNL to transfer the technology to industry. 5 refs., 4 tabs., 1 fig

  4. Impact of bromide on halogen incorporation into organic moieties in chlorinated drinking water treatment and distribution systems.

    Science.gov (United States)

    Tan, J; Allard, S; Gruchlik, Y; McDonald, S; Joll, C A; Heitz, A

    2016-01-15

    The impact of elevated bromide concentrations (399 to 750 μg/L) on the formation of halogenated disinfection by-products (DBPs), namely trihalomethanes, haloacetic acids, haloacetonitriles, and adsorbable organic halogen (AOX), in two drinking water systems was investigated. Bromine was the main halogen incorporated into all of the DBP classes and into organic carbon, even though chlorine was present in large excess to maintain a disinfectant residual. Due to the higher reactivity of bromine compared to chlorine, brominated DBPs were rapidly formed, followed by a slower increase in chlorinated DBPs. Higher bromine substitution and incorporation factors for individual DBP classes were observed for the chlorinated water from the groundwater source (lower concentration of dissolved organic carbon (DOC)), which contained a higher concentration of bromide, than for the surface water source (higher DOC). The molar distribution of adsorbable organic bromine to chlorine (AOBr/AOCl) for AOX in the groundwater distribution system was 1.5:1 and almost 1:1 for the surface water system. The measured (regulated) DBPs only accounted for 16 to 33% of the total organic halogen, demonstrating that AOX measurements are essential to provide a full understanding of the formation of halogenated DBPs in drinking waters. In addition, the study demonstrated that a significant proportion (up to 94%) of the bromide in source waters can be converted AOBr. An evaluation of AOBr and AOCl through a second groundwater treatment plant that uses conventional treatment processes for DOC removal produced 70% of AOX as AOBr, with 69% of the initial source water bromide converted to AOBr. Exposure to organobromine compounds is suspected to result in greater adverse health consequences than their chlorinated analogues. Therefore, this study highlights the need for improved methods to selectively reduce the bromide content in source waters. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Fast and Simple Analytical Method for Direct Determination of Total Chlorine Content in Polyglycerol by ICP-MS.

    Science.gov (United States)

    Jakóbik-Kolon, Agata; Milewski, Andrzej; Dydo, Piotr; Witczak, Magdalena; Bok-Badura, Joanna

    2018-02-23

    The fast and simple method for total chlorine determination in polyglycerols using low resolution inductively coupled plasma mass spectrometry (ICP-MS) without the need for additional equipment and time-consuming sample decomposition was evaluated. Linear calibration curve for 35 Cl isotope in the concentration range 20-800 µg/L was observed. Limits of detection and quantification equaled to 15 µg/L and 44 µg/L, respectively. This corresponds to possibility of detection 3 µg/g and determination 9 µg/g of chlorine in polyglycerol using studied conditions (0.5% matrix-polyglycerol samples diluted or dissolved with water to an overall concentration of 0.5%). Matrix effects as well as the effect of chlorine origin have been evaluated. The presence of 0.5% (m/m) of matrix species similar to polyglycerol (polyethylene glycol-PEG) did not influence the chlorine determination for PEGs with average molecular weights (MW) up to 2000 Da. Good precision and accuracy of the chlorine content determination was achieved regardless on its origin (inorganic/organic). High analyte recovery level and low relative standard deviation values were observed for real polyglycerol samples spiked with chloride. Additionally, the Combustion Ion Chromatography System was used as a reference method. The results confirmed high accuracy and precision of the tested method.

  6. Data for comparison of chlorine dioxide and chlorine disinfection power in a real dairy wastewater effluent

    Directory of Open Access Journals (Sweden)

    Maliheh Akhlaghi

    2018-06-01

    Full Text Available Disinfection of water refers to a special operation that is doing to kill or disable causative organisms (i.e. Pathogens and in particular, intestinal bacteria. The aim of this pilot study is comparison of disinfection power of Chlorine dioxide and chlorine in a real dairy wastewater effluent. In this regard, firstly prepared two 220-l tanks made of polyethylene as reaction tanks and filled by effluent of a dairy wastewater treatment plant. Both tanks were equipped with mechanical stirrer. Then a Diaphragm dosing pumps with the maximum capacity of 3.9 l per hour were used for the chlorine dioxide and chlorine (Calcium hypochlorite 0.5 up to 3 ppm injection. Residual level of Chlorine dioxide and Chlorine were measured by portable photometric method DT4B kit, Germany. Finally, the Multiple-Tube Fermentation, Brilliant Green Bile Broth (BGB and Eosin methylene blue Agar (EMB technique was used for microbial analysis and the results were reported as the most probable number index (MPN respectively. The data showed that the residual of chlorine dioxide could stood more active than residual of chlorine in the aqueous environment significantly. Therefore, Use of chlorine dioxide is more effective than chlorine for removal fecal and total coliform from dairy wastewater effluent. Keywords: Disinfection, Chlorine dioxide, Chlorine, Total coliform, Fecal coliform

  7. Unintentional production of persistent chlorinated and brominated organic pollutants during iron ore sintering processes.

    Science.gov (United States)

    Li, Sumei; Liu, Guorui; Zheng, Minghui; Liu, Wenbin; Li, Jinhui; Wang, Mei; Li, Changliang; Chen, Yuan

    2017-06-05

    Iron ore sintering (SNT) processes are major sources of unintentionally produced chlorinated persistent organic pollutants (POPs), including polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs), and polychlorinated naphthalenes (PCNs). However, few studies of emissions of brominated POPs, such as polybrominated dibenzo-p-dioxins/dibenzofurans (PBDD/Fs) and polybrominated diphenyl ethers (PBDEs), during SNT have been performed. Stack gas and fly ash samples from six typical SNT plants in China were collected and analyzed to determine the concentrations and profiles of PCDD/Fs, PCBs, PCNs, PBDD/Fs, and PBDEs, as well as any correlations among these compounds. The PCDD/F, PCB, PCN, PBDD/F, and PBDE emission factors were 2.47, 0.61, 552, 0.32, and 107μgt -1 , respectively (109, 4.07, 10.4, 4.41 and 0.02ng toxic equivalents t -1 , respectively). PCBs were the most abundant compounds by mass, while PCNs were the next most abundant, contributing 51% and 42% to the total POP concentration, respectively. However, PCDD/Fs were the dominant contributors to the chlorinated and brominated POP toxic equivalent concentrations, contributing 89% to the total toxic equivalent concentration. The PCDD/F and other chlorinated and brominated POP concentrations were positively correlated, indicating that chlorinated and brominated POP emissions could be synergistically decreased using the best available technologies/best environmental practices already developed for PCDD/Fs. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Chlorinated pesticides in stream sediments from organic, integrated and conventional farms

    International Nuclear Information System (INIS)

    Shahpoury, Pourya; Hageman, Kimberly J.; Matthaei, Christoph D.; Magbanua, Francis S.

    2013-01-01

    To determine if current sheep/beef farming practices affect pesticide residues in streams, current-use and legacy chlorinated pesticides were quantified in 100 sediment samples from 15 streams on the South Island of New Zealand. The study involved five blocks of three neighboring farms, with each block containing farms managed by organic, integrated and conventional farming practices. Significantly higher concentrations of dieldrin, ∑ endosulfans, ∑ current-use pesticides, and ∑ chlorinated pesticides were measured in sediments from conventional farms compared to organic and integrated farms. However, streams in the latter two farming categories were not pesticide-free and sometimes contained relatively high concentrations of legacy pesticides. Comparison of measured pesticide concentrations with sediment quality guidelines showed that, regardless of farming practice, mean pesticide concentrations were below the recommended toxicity thresholds. However, up to 23% of individual samples contained chlorpyrifos, endosulfan sulfate, ∑ DDT, dieldrin, or ∑ chlordane concentrations above these thresholds. -- Highlights: •Pesticides were measured in streams in organic, integrated, and conventional farms. •Higher concentrations of some pesticides were found in conventional sites. •Streams in organic and integrated sites were not pesticide free. •Mean pesticide concentrations were below the recommended toxicity thresholds. -- Higher concentrations of several chlorinated pesticides were found in conventional farms; however, organic and integrated practices were not pesticide-free

  9. Effects of assimilable organic carbon and free chlorine on bacterial growth in drinking water.

    Directory of Open Access Journals (Sweden)

    Xiaolu Liu

    Full Text Available Assimilable organic carbon (AOC is one of the most important factors affecting the re-growth of microorganisms in drinking water. High AOC concentrations result in biological instability, but disinfection kills microbes to ensure the safety of drinking water. Free chlorine is an important oxidizing agent used during the disinfection process. Therefore, we explored the combined effects of AOC and free chlorine on bacterial growth in drinking water using flow cytometry (FCM. The initial AOC concentration was 168 μg.L(-1 in all water samples. Without free chlorine, the concentrations of intact bacteria increased but the level of AOC decreased. The addition of sodium hypochlorite caused an increase and fluctuation in AOC due to the oxidation of organic carbon. The concentrations of intact bacteria decreased from 1.1 × 10(5 cells.mL(-1 to 2.6 × 10(4 cells.mL(-1 at an initial free chlorine dose of 0.6 mg.L(-1 to 4.8 × 10(4 cells.mL(-1 at an initial free chlorine dose of 0.3 mg.L(-1 due to free chlorine originating from sodium hypochlorite. Additionally, free chlorine might be more obviously affected AOC concentrations than microbial growth did. These results suggested that AOC and free chlorine might have combined effects on microbial growth. In this study, our results showed concentrations determined by FCM were higher than those by HPC, which indicated that some E. coli detected by FCM might not be detected using HPC in drinking water. The level of free chlorine might restrain the consumption of AOC by inhibiting the growth of E. coli; on the other hand, chlorination might increase the level of AOC, thereby increase the potential for microbial growth in the drinking water network.

  10. Temperature sensitivity indicates that chlorination of organic matter in forest soil is primarily biotic.

    Science.gov (United States)

    Bastviken, David; Svensson, Teresia; Karlsson, Susanne; Sandén, Per; Oberg, Gunilla

    2009-05-15

    Old assumptions that chloride is inert and that most chlorinated organic matter in soils is anthropogenic have been challenged by findings of naturally formed organochlorines. Such natural chlorination has been recognized for several decades, but there are still very few measurements of chlorination rates or estimates of the quantitative importance of terrestrial chlorine transformations. While much is known about the formation of specific compounds, bulk chlorination remains poorly understood in terms of mechanisms and effects of environmental factors. We quantified bulk chlorination rates in coniferous forest soil using 36Cl-chloride in tracer experiments at different temperatures and with and without molecular oxygen (O2). Chlorination was enhanced by the presence of O2 and had a temperature optimum at 20 degrees C. Minimum rates were found at high temperatures (50 degrees C) or under anoxic conditions. The results indicate (1) that most of the chlorination between 4 and 40 degrees C was biotic and driven by O2 dependent enzymes, and (2) that there is also slower background chlorination occurring under anoxic conditions at 20 degrees C and under oxic conditions at 50 degrees C. Hence, while oxic and biotic chlorination clearly dominated, chlorination by other processes including possible abiotic reactions was also detected.

  11. DBP formation from degradation of DEET and ibuprofen by UV/chlorine process and subsequent post-chlorination.

    Science.gov (United States)

    Aghdam, Ehsan; Xiang, Yingying; Sun, Jianliang; Shang, Chii; Yang, Xin; Fang, Jingyun

    2017-08-01

    The formation of disinfection by-products (DBPs) from the degradation of N,N-diethyl-3-methyl benzoyl amide (DEET) and ibuprofen (IBP) by the ultraviolet irradiation (UV)/chlorine process and subsequent post-chlorination was investigated and compared with the UV/H 2 O 2 process. The pseudo first-order rate constants of the degradation of DEET and IBP by the UV/chlorine process were 2 and 3.1 times higher than those by the UV/H 2 O 2 process, respectively, under the tested conditions. This was due to the significant contributions of both reactive chlorine species (RCS) and hydroxyl radicals (HO) in the UV/chlorine process. Trichloromethane, 1,1,1-trichloro-2-propanone and dichloroacetic acid were the major known DBPs formed after 90% of both DEET and IBP that were degraded by the UV/chlorine process. Their yields increased by over 50% after subsequent 1-day post-chlorination. The detected DBPs after the degradation of DEET and IBP comprised 13.5% and 19.8% of total organic chlorine (TOCl), respectively, and the proportions increased to 19.8% and 33.9% after subsequent chlorination, respectively. In comparison to the UV/H 2 O 2 process accompanied with post-chlorination, the formation of DBPs and TOCl in the UV/chlorine process together with post-chlorination was 5%-63% higher, likely due to the generation of more DBP precursors from the attack of RCS, in addition to HO. Copyright © 2017. Published by Elsevier B.V.

  12. ASCORBIC ACID REDUCTION OF ACTIVE CHLORINE PRIOR TO DETERMINING AMES MUTAGENICITY OF CHLORINATED NATURAL ORGANIC MATTER (NOM)

    Science.gov (United States)

    Many potable water disinfection byproducts (DBPs) that result from the reaction of natural organic matter (NOM) with oxidizing chlorine are known or suspected to be carcinogenic and mutagenic. The Ames assay is routinely used to assess an overall level of mutagenicity for all com...

  13. The formation and fate of chlorinated organic substances in temperate and boreal forest soils.

    Science.gov (United States)

    Clarke, Nicholas; Fuksová, Kvetoslava; Gryndler, Milan; Lachmanová, Zora; Liste, Hans-Holger; Rohlenová, Jana; Schroll, Reiner; Schröder, Peter; Matucha, Miroslav

    2009-03-01

    Chlorine is an abundant element, commonly occurring in nature either as chloride ions or as chlorinated organic compounds (OCls). Chlorinated organic substances were long considered purely anthropogenic products; however, they are, in addition, a commonly occurring and important part of natural ecosystems. Formation of OCls may affect the degradation of soil organic matter (SOM) and thus the carbon cycle with implications for the ability of forest soils to sequester carbon, whilst the occurrence of potentially toxic OCls in groundwater aquifers is of concern with regard to water quality. It is thus important to understand the biogeochemical cycle of chlorine, both inorganic and organic, to get information about the relevant processes in the forest ecosystem and the effects on these from human activities, including forestry practices. A survey is given of processes in the soil of temperate and boreal forests, predominantly in Europe, including the participation of chlorine, and gaps in knowledge and the need for further work are discussed. Chlorine is present as chloride ion and/or OCls in all compartments of temperate and boreal forest ecosystems. It contributes to the degradation of SOM, thus also affecting carbon sequestration in the forest soil. The most important source of chloride to coastal forest ecosystems is sea salt deposition, and volcanoes and coal burning can also be important sources. Locally, de-icing salt can be an important chloride input near major roads. In addition, anthropogenic sources of OCls are manifold. However, results also indicate the formation of chlorinated organics by microorganisms as an important source, together with natural abiotic formation. In fact, the soil pool of OCls seems to be a result of the balance between chlorination and degradation processes. Ecologically, organochlorines may function as antibiotics, signal substances and energy equivalents, in descending order of significance. Forest management practices can affect

  14. Influences of chlorine content on emission of HCl and organic compounds in waste incineration using fluidized beds.

    Science.gov (United States)

    Wey, M Y; Liu, K Y; Yu, W J; Lin, C L; Chang, F Y

    2008-01-01

    HCl and some organic compounds are the precursors of polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) in municipal solid waste incinerators. In this work, a lab-scale fluidized bed incinerator is adopted to study the relationship between the organic and the inorganic chlorine contents of artificial wastes and the emissions of HCl and organic compounds. The lower threshold limit (LTL) of chlorine content below which HCl and organic compounds are not generated is studied. Experimental results showed that organic chlorides had a greater potential to release chlorine than inorganic chlorides. The generation of organic pollutants fell, but the emissions of HCl increased with the temperature. The concentrations of chlorophenols (CPs)/chlorobenzenes (CBs) increased with chlorine contents. No LTL existed for HCl regardless of whether CaO was added. The LTL for CPs was between 0.1 and 0.3wt% of inorganic chloride, but there was none for organic sources. For CBs, the LTL was between 0.5 and 1.0wt% for inorganics at 700 and 800 degrees C, but 0.1-0.3 wt% at 700 degrees C and 0.3-0.5 wt% at 800 degrees C for organics. The production of PAHs and benzene, toluene, ethylbenzene and xylene (BTEX) was related to the surplus hydrogen ions that were not reacted with the chlorine. Adding CaO inhibited the production of HCl, CBs and CPs, but did not seriously affect PAHs and BTEX.

  15. Degradation of natural organic matter by UV/chlorine oxidation: Molecular decomposition, formation of oxidation byproducts and cytotoxicity.

    Science.gov (United States)

    Wang, Wen-Long; Zhang, Xue; Wu, Qian-Yuan; Du, Ye; Hu, Hong-Ying

    2017-11-01

    The degradation of natural organic matters (NOMs) by the combination of UV and chlorine (UV/chlorine) was investigated in this study. UV/chlorine oxidation can effectively degrade NOMs, with the degradation of chromophores (∼80%) and fluorophores (76.4-80.8%) being more efficient than that of DOC (15.1-18.6%). This effect was attributed to the chromophores and fluorophores (double bonds, aromatic groups and phenolic groups) being preferentially degraded by UV/chlorine oxidation, particularly reactive groups with high electron donating capacity. Radical species •OH and •Cl were generated during UV/chlorine oxidation, with the contribution of •OH 1.4 times as high as that of •Cl. The degradation kinetics of different molecular weight (MW) fractions suggests that UV/chlorine oxidation degrades high MW fractions into low MW fractions, with the degradation rates of high MW fractions (>3000 Da) 4.5 times of those of medium MW fractions (1000-3000 Da). In comparison with chlorination alone, UV/chlorine oxidation did not increase the formation (30 min) and formation potential (24 h) of trihalomethanes, but instead promoted the formation and formation potential of haloacetic acids and chloral hydrate. Adsorbable organic halogen (AOX) formed from UV/chlorine oxidation of NOM were 0.8 times higher than those formed from chlorination. Cytotoxicity studies indicated that the cytotoxicity of NOM increased after both chlorination and UV/chlorine oxidation, which may be due to the formation of AOX. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Clean Bleaching Engineering Practice for Bagasse Pulp: Totally Chlorine-Free and Elemental Chlorine-Free Bleaching Realized with the Same Production Line

    Directory of Open Access Journals (Sweden)

    Zhi Li

    2015-03-01

    Full Text Available The experimental research, process design principles, and engineering practice of a bagasse pulp production line that could run both totally chlorine-free (OPQ(PO and elemental chlorine-free (OPD(EOP bleaching sequences are discussed in this paper. Under specified process conditions, the oxygen delignification rate was up to 50% and the brightness of unbleached pulp increased. The (OPQ(PO sequence bleached pulp had a brightness of 83.1% ISO and an intrinsic viscosity of 888 mL/g, and the (OPD(EOP sequence bleached pulp had a brightness of 85.7% ISO and an intrinsic viscosity of 905 mL/g. Pulp quality produced from both bleaching sequences was better than pulp bleached by the chlorination, alkaline extraction, and hypochlorite (CEH sequence. The wastewater was discharged only from the Q or D stage, and the chemical oxygen demand (COD of Q or D stage was about 650 mg/L or 1100 mg/L, respectively. It was easy to alternate between these two bleaching sequences, and the bleached pulp quality from these sequences was stable.

  17. Degradation of Organic UV filters in Chlorinated Seawater Swimming Pools: Transformation Pathways and Bromoform Formation.

    Science.gov (United States)

    Manasfi, Tarek; Coulomb, Bruno; Ravier, Sylvain; Boudenne, Jean-Luc

    2017-12-05

    Organic ultraviolet (UV) filters are used in sunscreens and other personal-care products to protect against harmful effects of exposure to UV solar radiation. Little is known about the fate of UV filters in seawater swimming pools disinfected with chlorine. The present study investigated the occurrence and fate of five commonly used organic UV filters, namely dioxybenzone, oxybenzone, avobenzone, 2-ethylhexyl-4-methoxycinnamate, and octocrylene, in chlorinated seawater swimming pools. Pool samples were collected to monitor the variation of UV filter concentrations during pool opening hours. Furthermore, laboratory-controlled chlorination experiments were conducted in seawater spiked with UV filters to investigate the reactivity of UV filters. Extracts of chlorination reaction samples were analyzed using high-resolution mass spectrometry and electron-capture detection to identify the potentially formed byproducts. In the collected pool samples, all the UV filters except dioxybenzone were detected. Chlorination reactions showed that only octocrylene was stable in chlorinated seawater. The four reactive UV filters generated brominated transformation products and disinfection byproducts. This formation of brominated products resulted from reactions between the reactive UV filters and bromine, which is formed rapidly when chlorine is added to seawater. Based on the identified byproducts, the transformation pathways of the reactive UV filters were proposed for the first time. Bromoform was generated by all the reactive UV filters at different yields. Bromal hydrate was also detected as one of the byproducts generated by oxybenzone and dioxybenzone.

  18. Chlorine in the stratosphere

    OpenAIRE

    VON CLARMANN, T.

    2013-01-01

    This paper reviews the various aspects of chlorine compounds in the stratosphere, both their roles as reactants and as tracers of dynamical processes. In the stratosphere, reactive chlorine is released from chlorofluorocarbons and other chlorine-containing organic source gases. To a large extent reactive chlorine is then sequestered in reservoir species ClONO2 and HCl. Re-activation of chlorine happens predominantly in polar winter vortices by heterogeneous reaction in combination with sunlig...

  19. Comparative evaluation of effects of ozonated and chlorinated thermal discharges on estuarine and freshwater organisms

    Energy Technology Data Exchange (ETDEWEB)

    Guerra, C.R.; Sugam, R.; Meldrim, J.W.; Holmstrom, E.R.; Balog, G.E.

    1980-08-01

    As a part of a program at PSE and G designed to examine the feasibility of ozonation as an alternative to chlorination for control of biofouling in once-through cooling systems, the biological effects of ozonated and chlorinated thermal discharges were evaluated with estuarine and freshwater organisms. Mortality at salinities between 0.5 to 2.5 ppt with mummichog and white perch indicated greater toxicity for chlorine while the alewife, spottail shiner, rainbow trout and white perch in freshwater were more sensitive to ozone. Behavioral and physograhic results were consistent with those observed in toxicity studies. Initial cough response and avoidance concentrations of mummicog and white perch in estuarine waters were lower when exposed to chlorine than to ozone. In freshwater, blueback herring, alewife, rainbow trout, spottail shiner, banded killifish, and white perch avoided lower concentrations of ozone than chlorine.

  20. Measurement of total body chlorine by prompt gamma in vivo neutron activation analysis

    International Nuclear Information System (INIS)

    Beddoe, A.H.; Streat, S.J.; Hill, G.L.

    1987-01-01

    A method of measuring total body chlorine (TBCl) by prompt gamma in vivo neutron activation analysis is described depending on the same NaI(Tl) spectra used for determinations of total body nitrogen. Ratios of chlorine to hydrogen are derived and TBCl determined using a model of body composition depending on measured body weight, total body water (by tritium dilution) and protein (6.25 x nitrogen) as well as estimated body minerals and glycogen. The precision of the method based on scanning an anthropomorphic phantom is approximately 9% (SD), for a patient dose equivalent of less than 0.30 mSv. Spectra collected from 67 normal volunteers (32 male, 35 female) yielded mean values of TBCl of 72 +- 19 (SD) g in males and 53.6 +- 15 g in females, in broad agreement with values reported by workers using delayed gamma methods. Results are presented for two human cadavers analysed by neutron activation and conventional chemical analysis; the ratios of TBCl (neutron activation) to TBCl (chemical) were 0.980 +- 0.028 (SEM) and 0.91 +- 0.09. It is suggested that an improvement in precision will be achieved by increasing the scanning time (thereby increasing the radiation dose equivalent) and by adding two more detectors. (author)

  1. Removal of trihalomethane from chlorinated seawater using gamma radiation.

    Science.gov (United States)

    Rajamohan, R; Natesan, Usha; Venugopalan, V P; Rajesh, Puspalata; Rangarajan, S

    2015-12-01

    Chlorine addition as a biocide in seawater results in the formation of chlorination by-products such as trihalomethanes (THMs). Removal of THMs is of importance as they are potential mutagenic and carcinogenic agents. In this context, a study was conducted that used ionizing radiation to remove THMs from chlorinated (1, 3, and 5 mg/L) seawater by applying various dosages (0.4-5.0 kGy) of gamma radiation. Bromoform (BF) showed a faster rate of degradation as compared to other halocarbons such as bromodichloromethane (BDCM) and dibromochloromethane (DBCM). In chlorine-dosed seawater, total irradiation dose of 0.4 to 5 kGy caused percentage reduction in the range of 6.9 to 76.7%, 2.3 to 99.6%, and 45.7 to 98.3% for BDCM, DBCM, and BF, respectively. During the irradiation process, pH of the chlorinated seawater decreased with increase in the absorbed dose; however, no change in total organic carbon (TOC) was observed. The results show that gamma dose of 2.5 kGy was adequate for maximum degradation of THM; but for complete mineralization, higher dose would be required.

  2. Development and evaluation of analytical techniques for total chlorine in used oils and oil fuels

    International Nuclear Information System (INIS)

    Gaskill, A. Jr.; Estes, E.D.; Hardison, D.L.; Friedman, P.H.

    1990-01-01

    A current EPA regulation prohibits the sale for burning in nonindustrial boilers of used oils and oil fuels. This paper discusses how analytical techniques for determining total chlorine were evaluated to provide regulatory agencies and the regulated community with appropriate chlorine test methods. The techniques evaluated included oxygen bomb combustion followed by chemical titration or ion chromatography, instrumental microcoulometry, field test kits, and instrumental furnace/specific ion electrode determinator, a device based on the Beilstein reaction, and x-ray fluorescence spectrometry. These techniques were subjected to interlaboratory testing to estimate their precision, accuracy, and sensitivity. Virgin and used crankcase oils, hydraulic and metalworking oils, oil fuels and oil fuel blends with used oils were tested. The bomb techniques, one of the test kits, microcoulometry and all but one x-ray analyzer were found to be suitable for this application. The chlorine furnace and the Beilstein device were found to be inapplicable at the levels of interest

  3. Chlorination of some eliphatic organic compounds in liquid and gas phase

    International Nuclear Information System (INIS)

    Hassan, A.A.

    1990-01-01

    The photochlorination of different organic compounds and the relative slectivities of different positions have been investigated in both gaseous and liquid phases at different temperatures. The results have shown that the relative selectivity generally decreased with increasing temperature and in the gas phase has a higher value. Polar solvents increase the selectivity relative to the chlorination of pure liquid phases. The differences in activation energy between two positions were much higher in the gas phases chlorination, relative to that in the liquid phase. It was also found that the functional groups have great influence on the rate of chlorine free radical attack on different positions, for example the electron withdrawing groups decreasing the selectivity on the first position, but the electron donating groups increase the selectivity on the first position, but the electron donating groups increase the selectivity on the first position. Furthermore it was found that the polar solvents, which stabilize the resonance between oxygen and carbon atoms, increases the selectivity on that position. 23 tabs.; 16 figs.; 50 refs

  4. The effect of chlorine and combined chlorine/UV treatment on coliphages in drinking water disinfection.

    Science.gov (United States)

    Zyara, Alyaa M; Torvinen, Eila; Veijalainen, Anna-Maria; Heinonen-Tanski, Helvi

    2016-08-01

    Chlorine disinfection is a globally used method to ensure the safety of drinking water. However, it has not always been successful against viruses and, therefore, it is important to find new methods to disinfect water. Seventeen different coliphages were isolated from the treated municipal wastewater. These coliphages and MS2 were treated with different dosages of chlorine in drinking water, and a combined chlorine/ultraviolet irradiation treatment for the chlorine-resistant coliphages. Chlorine disinfection with 0.3-0.5 mg/L total chlorine (free Cl-dosage 0.12-0.21 mg/L) for 10 min achieved 2.5-5.7 Log10-reductions for 11 sensitive coliphages. The six most resistant coliphages showed no reduction with these chlorine concentrations. MS2 was intermediate in chlorine resistance, and thus it is not a good indicator for viruses in chlorine disinfection. In the combined treatment total chlorine of 0.05-0.25 mg/L (free Cl-dosage 0.02-0.08 mg/L) and ultraviolet irradiation (14-22 mWs/cm(2)) were more effective than chlorine alone, and 3-5 Log10-reductions were achieved for the chlorine-resistant strains. The chlorination efficiency could be increased by higher dosages and longer contact times, but this could increase the formation of disinfection by-products. Therefore, the combination treatment is a recommended disinfection method.

  5. Chlorinated and Non chlorinated-Volatile Organic Compounds (Vocs) in Drinking Water of Peninsular Malaysia

    International Nuclear Information System (INIS)

    Mohd Pauzi Abdullah; Chian, S.S.

    2011-01-01

    A survey undertaken in Peninsular Malaysia has shown that volatile organic compounds (VOCs), both chlorinated and non-chlorinated, are present in selected drinking water samples. In this study, analyses of VOCs were performed by means of solid phase micro extraction (SPME) with a 100 μm polydimethylsiloxane (PDMS) fibre followed by gas chromatography - mass spectrometry detector (GC-MSD). Samples from different points of the distribution system networks were taken and analysed for 54 VOCs of different chemical families. The results of the study indicated that chloroform constituted the major portion of the VOCs in all samples analysed. In addition to trihalo methanes (THMs), other abundant compounds detected were cis and trans-1,2-dichloroethylene, trichloroethylene, 1,2-dibromoethane, benzene, toluene, ethylbenzene, chlorobenzene, 1,4-dichlorobenzene and 1,2-dichlorobenzene. However, the measured concentrations did not exceed the National Guideline for Drinking Water Quality 2000 in any case. No clear relationship between the status of development of a state in Malaysia to the levels and types of VOCs detected in its drinking water was noted. Nevertheless, the finding of anthropogenic chemicals, even at low concentrations, gave credibility to the viewpoint that improper development and disposal practices threatened the purity of the drinking water. (author)

  6. Optimization of Chlorination Process for Mature Leachate Disinfection Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Hamzeh Ali Jamali1

    2014-06-01

    Full Text Available Background: leachate from landfill contains high level of microbial pathogens which is considered as one of the most important threats for the environment. One of the common and simple methods for water and wastewater disinfection is chlorination, but it rarely has been used for leachate disinfection. The objective of this study was evaluating the efficiency of chlorine for leachate disinfection and optimization of the effect of concentration and contact time on the death of total and fecal coliforms, as a microbial contamination index. Methods: In this descriptive-analysis study, microbial indices monitoring in leachates initiated from landfill of Qazvin city were conducted for one year. After pre-tests, the range of chlorine concentration and contact time on the inactivation of microbial indices were determined. Central composite design (CCD and response surface methodology (RSM were applied to optimize chlorine concentration and contact time parameters effect on microbial inactivation. 13 runs of tests were performed on samples. Tests were included BOD, COD, total and fecal coliforms. All analytical experiments were according to the standard methods for the examination of water and wastewater. Results: Results of the study showed that microbial indices had relatively high sensitivity to inactivation by chlorination, which in the chlorine concentration of 2 mg/L and contact time of 9 min, and chlorine concentration of 0.5 mg/L and contact time of 12 min, 100% of total and fecal coliforms inactivated, respectively. The RSM method was used for analysis of bacterial inactivation. Analyses showed that in contact time of 9.4 min and chlorine concentration of 2.99 mg/L, the inactivation efficiency of total and fecal coliforms were 89.16% and 100%, respectively. Conclusions: Chlorine could be used for leachate disinfection. However, in high concentrations of organic matter in leachates, due to production potential of chlorination by-products, health

  7. The role of chlorine and additives of PVC-plastic in combustion

    International Nuclear Information System (INIS)

    Mattila, H.

    1991-01-01

    The PVC differs from other common plastics due to the chlorine content. As the PVC is combusted, the chlorine is released mainly as hydrogen chloride. The content of chlorinated hydrocarbons is small, but these can also contain polychlorinated dibenzofuranes and dibenzodioxines, which are extremely poisonous. The aim of this study was to find out, what is the portion of PVC combustion in total emission of chlorinated hydrocarbons. Additionally, the amounts chlorine coming into combustion process with ordinary fuels have been estimated, and they are compared with the amounts of PVC. The chloride content of municipal wastes vary in between 0.4-0.9 %. The portion of plastics is about 30 % of the total, and the rest being from paper, food , wood and garden wastes an textiles. Both organic and inorganic chlorine form gaseous hydrogen chlorid in combustion processes. HCl can then react with oxygen and produce caseous chlorine. This can react with unreacted carbon of the smoke and produce different kinds of chlorinated hydrocarbons. The portion of PVC of the chlorine going into combustion in Finland has been estimated to be about 1-2 %. Combustion tests were made using coal and bark and plastic waste as additional fuel. It was noticed that addition of plastic decreased the amount of polyaromatic hydrocarbons in the smoke. Chlorinated dioxins and furans occurred a little less in the gases of combustion of plastic mixtures not containing PVC than in reference tests, but they increased when PVC containing plastic mixture was combusted, but more chlorinated dioxins and furans were absorbed into fly ash, so the emissions remained almost the same

  8. Heat-Activated Persulfate Oxidation of Chlorinated Solvents in Sandy Soil

    Directory of Open Access Journals (Sweden)

    Jialu Liu

    2014-01-01

    Full Text Available Heat-activated persulfate oxidative treatment of chlorinated organic solvents containing chlorinated ethenes and ethanes in soil was investigated with different persulfate dosages (20 g/L, 40 g/L, and 60 g/L and different temperatures (30°C, 40°C, and 50°C. Chlorinated organic solvents removal was increased as persulfate concentration increase. The persulfate dosage of 20 g/L with the highest OE (oxidant efficiency value was economically suitable for chlorinated organic solvents removal. The increasing temperature contributed to the increasing depletion of chlorinated organic solvents. Chlorinated ethenes were more easily removed than chlorinated ethanes. Moreover, the persulfate depletion followed the pseudo-first-order reaction kinetics (kps=0.0292 [PS]0+0.0008, R2=0.9771. Heat-activated persulfate appeared to be an effective oxidant for treatment of chlorinated hydrocarbons.

  9. Biogas from MSW landfill: Composition and determination of chlorine content with the AOX (adsorbable organically bound halogens) technique

    International Nuclear Information System (INIS)

    Rey, M.D.; Font, R.; Aracil, I.

    2013-01-01

    An exhaustive characterization of the biogas from some waste disposal facilities has been carried out. The analysis includes the main components (methane, carbon dioxide, nitrogen and oxygen) as well as trace components such as hydrogen sulphide, ammonia and VOCs (volatile organic compounds) including siloxanes and halogenated compounds. VOCs were measured by GC/MS (Gas Chromatography/Mass Spectrometry) using two different procedures: thermal desorption of the Tenax TA and Carbotrap 349 tubes and SPME (Solid Phase Micro-Extraction). A method has been established to measure the total halogen content of the biogas with the AOX (adsorbable organically bound halogens) technique. The equipment used to analyze the samples was a Total Organic Halogen Analyzer (TOX-100). Similar results were obtained when comparing the TOX (Total Organic Halogen) values with those obtained by GC/MS. The halogen content in all the samples was under 22 mg Cl/Nm 3 which is below the limit of 150 mg/Nm 3 proposed in the Spanish Regulations for any use of the biogas. The low chlorine content in the biogas studied, as well as the low content of other trace compounds, makes it suitable for use as a fuel for electricity generating engines

  10. Chlorine demand and residual chlorine decay kinetics of Kali river water at Kaiga project area

    International Nuclear Information System (INIS)

    Krishna Bhat, D.; Prakash, T.R.; Thimme Gowda, B.; Sherigara, B.S.; Khader, A.M.A.

    1995-01-01

    The nuclear power plant at Kaiga would use Kali river water for condenser cooling. This necessitated studies on the chemistry of chlorination such as chlorine demand, kinetics of chlorination and other water characteristics aimed at obtaining base line data. The study revealed significant seasonal variation of chlorine demand ranging from 0.5 ppm to 1.7 ppm (3.0 ppm dose, 30 min contact time) and total consumption of 5.0 ppm (10.0 ppm dose, 48 hours contact time). The reaction follows first order kinetics in chlorine. High correlation of chlorine demand with chlorophyll a, suspended matter, turbidity, silica, nitrite, phosphate and sulphate indicated that chlorine demand is greatly influenced by water quality. (author). 3 refs., 1 tab

  11. Biological Chlorine Cycling in Arctic Peat Soils

    Science.gov (United States)

    Zlamal, J. E.; Raab, T. K.; Lipson, D.

    2014-12-01

    Soils of the Arctic tundra near Barrow, Alaska are waterlogged and anoxic throughout most of the profile due to underlying permafrost. Microbial communities in these soils are adapted for the dominant anaerobic conditions and are capable of a surprising diversity of metabolic pathways. Anaerobic respiration in this environment warrants further study, particularly in the realm of electron cycling involving chlorine, which preliminary data suggest may play an important role in arctic anaerobic soil respiration. For decades, Cl was rarely studied outside of the context of solvent-contaminated sites due to the widely held belief that it is an inert element. However, Cl has increasingly become recognized as a metabolic player in microbial communities and soil cycling processes. Organic chlorinated compounds (Clorg) can be made by various organisms and used metabolically by others, such as serving as electron acceptors for microbes performing organohalide respiration. Sequencing our arctic soil samples has uncovered multiple genera of microorganisms capable of participating in many Cl-cycling processes including organohalide respiration, chlorinated hydrocarbon degradation, and perchlorate reduction. Metagenomic analysis of these soils has revealed genes for key enzymes of Cl-related metabolic processes such as dehalogenases and haloperoxidases, and close matches to genomes of known organohalide respiring microorganisms from the Dehalococcoides, Dechloromonas, Carboxydothermus, and Anaeromyxobacter genera. A TOX-100 Chlorine Analyzer was used to quantify total Cl in arctic soils, and these data were examined further to separate levels of inorganic Cl compounds and Clorg. Levels of Clorg increased with soil organic matter content, although total Cl levels lack this trend. X-ray Absorption Near Edge Structure (XANES) was used to provide information on the structure of Clorg in arctic soils, showing great diversity with Cl bound to both aromatic and alkyl groups

  12. Alternative methods for chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Fiessinger, F; Rook, J J; Duguet, J P

    1985-12-01

    Existing disinfectants are oxidative agents which all present negative effects on subsequent treatment processes. None of them has decisive advantages over chlorine, although chlorine-dioxide and chloramines might at times be preferable. Optimum treatment practices will improve the removal of organic precursors before final disinfection which could then consist in a light chlorine addition. A philosophy of radical change in water treatment technology encompassing physical treatment without chemicals such as membrane filtration, solid disinfectants is presented.

  13. Altitude profiles of total chlorinated paraffins in humus and spruce needles from the Alps (MONARPOP).

    Science.gov (United States)

    Iozza, Saverio; Schmid, Peter; Oehme, Michael; Bassan, Rodolfo; Belis, Claudio; Jakobi, Gert; Kirchner, Manfred; Schramm, Karl-Werner; Kräuchi, Norbert; Moche, Wolfgang; Offenthaler, Ivo; Weiss, Peter; Simoncic, Primoz; Knoth, Wilhelm

    2009-12-01

    Chlorinated paraffins (CPs) are toxic, bioaccumulative, persistent, and ubiquitously present in the environment. CPs were analyzed in humus and needle samples, which were taken within the Monitoring Network in the Alpine Region for Persistent and other Organic Pollutants (MONARPOP) at sampling sites of 7 different altitude profiles in the Alps. Gas chromatography combined with electron ionization tandem mass spectrometry (EI-MS/MS) was used for the determination of total CPs (sum of short, medium and long chain CPs). CPs were found in all samples; the concentrations varied between 7 and 199 ng g(-1) dry weight (dw) and within 26 and 460 ng g(-1) dw in humus and needle samples, respectively. A clear vertical tendency within the individual altitude profiles could not be ascertained. Within all altitude profiles, elevated concentrations were observed in humus samples taken between 700 and 900 m and between 1300 and 1500 m. In the needle samples no similar correlation could be observed due to higher variation of the data.

  14. Behavior of chlorine in lake water

    International Nuclear Information System (INIS)

    Sriraman, A.K.

    2006-01-01

    Water from monsoon fed Sagre lake is being used as a source of raw water for Tarapur Atomic Power Station (TAPS--1 and 2). The raw water from the lake is initially pumped to Sagre water treatment plant (SWTP) operated by Maharashtra Industrial Development Corporation (MIDC) from where, the processed water is sent to cater the needs of both the units of TAPS-1 and 2, townships of TAPS and MIDC, and the nearby villages. At the SWTP the raw water is treated with alum to remove the turbidity, filtered and chlorinated using bleaching powder. All these years the raw water is chlorinated in such a way whereby a residual chlorine level of 0.5-1.0 mg/l, is maintained at the outlet of water treatment plant. The adequacy of the current chlorination practice was investigated, at the request of the NPC-500 MWe group during 1990, so that the future requirements of raw water for TAPP-3 and 4, can be met from the expanded SWTP. In this connection experiments on chlorine dose -- residual chlorine relationship and the decay pattern of chlorine with time was carried out in the lake water (with low value of total dissolved solids and total hardness 3 sample at the site. The total bacterial count in the raw water observed to be 10 7 counts/ml originally came down to 10 3 counts/ml at the end of one-hour exposure time to chlorine. It was found that the chlorine demand of the water was around 6 mg/l. In addition Jar test to evaluate the aluminum dose was also carried out. Based on these experiments a chlorine dose of 6 mg/l for one hour contact time was arrived at. The experimental findings were in agreement with the current chlorination practices. (author)

  15. Chlorination and dechlorination rates in a forest soil — A combined modelling and experimental approach

    Energy Technology Data Exchange (ETDEWEB)

    Montelius, Malin, E-mail: malin.montelius@liu.se [Department of Thematic Studies — Environmental Change, Linköping University, 581 83 Linköping (Sweden); Svensson, Teresia [Department of Thematic Studies — Environmental Change, Linköping University, 581 83 Linköping (Sweden); Lourino-Cabana, Beatriz [EDF, Laboratoire National d' Hydraulique et Environnement, 78401 Chatou (France); Thiry, Yves [Andra, Research and Development Division, Parc de la Croix Blanche, 1/7 rue Jean Monnet, 92298 Châtenay-Malabry Cedex (France); Bastviken, David [Department of Thematic Studies — Environmental Change, Linköping University, 581 83 Linköping (Sweden)

    2016-06-01

    Much of the total pool of chlorine (Cl) in soil consists of naturally produced organic chlorine (Cl{sub org}). The chlorination of bulk organic matter at substantial rates has been experimentally confirmed in various soil types. The subsequent fates of Cl{sub org} are important for ecosystem Cl cycling and residence times. As most previous research into dechlorination in soils has examined either single substances or specific groups of compounds, we lack information about overall bulk dechlorination rates. Here we assessed bulk organic matter chlorination and dechlorination rates in coniferous forest soil based on a radiotracer experiment conducted under various environmental conditions (additional water, labile organic matter, and ammonium nitrate). Experiment results were used to develop a model to estimate specific chlorination (i.e., fraction of Cl{sup −} transformed to Cl{sub org} per time unit) and specific dechlorination (i.e., fraction of Cl{sub org} transformed to Cl{sup −} per time unit) rates. The results indicate that chlorination and dechlorination occurred simultaneously under all tested environmental conditions. Specific chlorination rates ranged from 0.0005 to 0.01 d{sup −1} and were hampered by nitrogen fertilization but were otherwise similar among the treatments. Specific dechlorination rates were 0.01–0.03 d{sup −1} and were similar among all treatments. This study finds that soil Cl{sub org} levels result from a dynamic equilibrium between the chlorination and rapid dechlorination of some Cl{sub org} compounds, while another Cl{sub org} pool is dechlorinated more slowly. Altogether, this study demonstrates a highly active Cl cycling in soils. - Highlights: • Chlorination and dechlorination rates in soil were revealed by a radiotracer method. • Chlorination was hampered by nitrogen addition. • Both Cl{sup −} and many Cl{sub org} compounds are highly reactive in soils. • Some formed Cl{sub org} seem to be refractory.

  16. Effects of operating conditions on THMs and HAAs formation during wastewater chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Sun Yingxue; Wu Qianyuan [Environmental Simulation and Pollution Control State Key Joint Laboratory, Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China); Hu Hongying, E-mail: hyhu@tsinghua.edu.cn [Environmental Simulation and Pollution Control State Key Joint Laboratory, Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China); Tian Jie [Environmental Simulation and Pollution Control State Key Joint Laboratory, Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2009-09-15

    Disinfection is the last barrier of wastewater reclamation process to protect ecosystem safety and human health. However, the chlorination process results in the formation of mutagenic/carcinogenic disinfection by-products (DBPs) deriving from the reaction of the chlorine with organic compounds in wastewater. The effects of operating conditions (chlorine dose, contact time, reaction temperature and pH value) of chlorination on the formation of trihalomethanes (THMs) and haloacetic acids (HAAs) in biologically treated wastewater samples were investigated in this study. The results indicated that the total THMs (TTHM) and total HAAs (THAA) increased exponentially with increasing chlorine dose, but there are discrepancies between the formation rates of TTHM and THAA. The THAA reached a peak at contact time of 2 h and thereafter decreased with extended time. The formation time of THMs depends on the wastewater content of quick or slow formers. The yields of bromated HAAs (as MBAA, BCAA, and BDCAA) would decrease markedly after the contact time over 2 h during wastewater chlorination, and were favored in low pH values of 4 and high pH values of 9 under certain contact time. In addition, the formation of MBAA, BCAA, BDCAA decreased gradually as reaction temperature increased from 4 to 30 deg. C in the chlorination of wastewater containing a certain concentration of bromide. The effects of operating conditions on THMs and HAAs formation during wastewater chlorination were completely different from those of surface water disinfection.

  17. Effects of operating conditions on THMs and HAAs formation during wastewater chlorination

    International Nuclear Information System (INIS)

    Sun Yingxue; Wu Qianyuan; Hu Hongying; Tian Jie

    2009-01-01

    Disinfection is the last barrier of wastewater reclamation process to protect ecosystem safety and human health. However, the chlorination process results in the formation of mutagenic/carcinogenic disinfection by-products (DBPs) deriving from the reaction of the chlorine with organic compounds in wastewater. The effects of operating conditions (chlorine dose, contact time, reaction temperature and pH value) of chlorination on the formation of trihalomethanes (THMs) and haloacetic acids (HAAs) in biologically treated wastewater samples were investigated in this study. The results indicated that the total THMs (TTHM) and total HAAs (THAA) increased exponentially with increasing chlorine dose, but there are discrepancies between the formation rates of TTHM and THAA. The THAA reached a peak at contact time of 2 h and thereafter decreased with extended time. The formation time of THMs depends on the wastewater content of quick or slow formers. The yields of bromated HAAs (as MBAA, BCAA, and BDCAA) would decrease markedly after the contact time over 2 h during wastewater chlorination, and were favored in low pH values of 4 and high pH values of 9 under certain contact time. In addition, the formation of MBAA, BCAA, BDCAA decreased gradually as reaction temperature increased from 4 to 30 deg. C in the chlorination of wastewater containing a certain concentration of bromide. The effects of operating conditions on THMs and HAAs formation during wastewater chlorination were completely different from those of surface water disinfection.

  18. A variable reaction rate model for chlorine decay in drinking water due to the reaction with dissolved organic matter.

    Science.gov (United States)

    Hua, Pei; Vasyukova, Ekaterina; Uhl, Wolfgang

    2015-05-15

    A second order kinetic model for simulating chlorine decay in bulk water due to the reaction with dissolved organic matter (DOM) was developed. It takes into account the decreasing reactivity of dissolved organic matter using a variable reaction rate coefficient (VRRC) which decreases with an increasing conversion. The concentration of reducing species is surrogated by the maximum chlorine demand. Temperature dependency, respectively, is described by the Arrhenius-relationship. The accuracy and adequacy of the proposed model to describe chlorine decay in bulk water were evaluated and shown for very different waters and different conditions such as water mixing or rechlorination by applying statistical tests. It is thus very well suited for application in water quality modeling for distribution systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. CHLORPYRIFOS TRANSFORMATION BY AQUEOUS CHLORINE IN THE PRESENCE OF BROMIDE AND NATURAL ORGANIC MATTER

    Science.gov (United States)

    The aqueous chlorination of chlorpyrifos (CP) was investigated in the presence of bromide and natural organic matter (NOM), which were identified as naturally occurring aqueous constituents that could impact CP transformation rates to the toxic product chlorpyrifos oxon (CPO). Br...

  20. Identification and measurement of chlorinated organic pesticides in water by electron-capture gas chromatography

    Science.gov (United States)

    Lamar, William L.; Goerlitz, Donald F.; Law, LeRoy M.

    1965-01-01

    Pesticides, in minute quantities, may affect the regimen of streams, and because they may concentrate in sediments, aquatic organisms, and edible aquatic foods, their detection and their measurement in the parts-per-trillion range are considered essential. In 1964 the U.S. Geological Survey at Menlo Park, Calif., began research on methods for monitoring pesticides in water. Two systems were selected--electron-capture gas chromatography and microcoulometric-titration gas chromatography. Studies on these systems are now in progress. This report provides current information on the development and application of an electron-capture gas chromatographic procedure. This method is a convenient and extremely sensitive procedure for the detection and measurement of organic pesticides having high electron affinities, notably the chlorinated organic pesticides. The electron-affinity detector is extremely sensitive to these substances but it is not as sensitive to many other compounds. By this method, the chlorinated organic pesticide may be determined on a sample of convenient size in concentrations as low as the parts-per-trillion range. To insure greater accuracy in the identifications, the pesticides reported were separated and identified by their retention times on two different types of gas chromatographic columns.

  1. Radiolytic removal of trihalomethane in chlorinated seawater

    International Nuclear Information System (INIS)

    Rajamohan, R.; Rajesh, Puspalata; Venugopalan, V.P.; Rangarajan, S.; Natesan, Usha

    2015-01-01

    Biofouling is one of the major operational problems in seawater cooling systems. It is controlled by application of chlorine based biocides in the range of 0.5-2.0 mg L -1 . The bromide in seawater reacts with the added chlorine and forms hypobromous acid. The brominated residual biocides react with natural organic matter present in the seawater, resulting in the formation of trihalomethanes (THM) such as bromoform (CHBr 3 ), dibromochloromethane (CHBr 2 Cl) bromodichloromethane (CHBrCl 2 ). Though THMs represent a small fraction of the added chlorine, they are relatively more persistent than residual chlorine, and hence pose a potential hazard to marine life because of their reported mutagenicity. There have been few reports on removal of THMs from chlorinated seawater. In this work, the efficacy of gamma irradiation technique for the removal of THMs from chlorine-dosed seawater was investigated. Experiments were carried out using seawater collected from Kalpakkam. Irradiation study was conducted in chlorinated (1, 3, and 5 mg L -1 of Cl 2 ) seawater by applying various dosages (0.4-5.0 kGy) of gamma radiation using a 60 Co Gamma Chamber 5000. Bromoform showed a faster rate of degradation as compared to other halocarbons like bromodichloromethane and dibromochloromethane. This shows the change in total THM concentration with variation in the radiation dose and initial Cl 2 dosing. When the percentage degradation of all the three trihalomethane species was compared with applied doses, it was found that the maximum reduction occurred at a dose of 2.5 kGy. The reduction was almost similar for all the three doses (1, 3, 5 ppm of Cl 2 ) used for chlorination. With a further increase in radiation dose to 5.0 kGy, a slight increase in reduction was observed

  2. Chlorination and chloramines formation

    International Nuclear Information System (INIS)

    Yee, Lim Fang; Mohd Pauzi Abdullah; Sadia Ata; Abbas Abdullah; Basar IShak; Khairul Nidzham

    2008-01-01

    Chlorination is the most important method of disinfection in Malaysia which aims at ensuring an acceptable and safe drinking water quality. The dosing of chlorine to surface water containing ammonia and nitrogen compounds may form chloramines in the treated water. During this reaction, inorganic and organic chloramines are formed. The recommended maximum acceptable concentration (MAC) for chloramines in drinking water is 3000 μg/L. The production of monochloramine, dichloramine and trichloramine is highly dependent upon pH, contact time and the chlorine to ammonia molar ratio. The purpose of this study is to examine the formation of chloramines that occur upon the chlorination during the treatment process. Chloramines were determined using the N,N-diethyl-p-phenylenediamine (DPD) colorimetric method. The influences of ammonia, pH and chlorine dosage on the chloramines formation were also studied. This paper presents a modeling approach based on regression analysis which is designed to estimate the formation of chloramines. The correlation between the concentration of chloramines and the ammonia, pH and chlorine dosage was examined. In all cases, the quantity of chloramines formed depended linearly upon the amount of chlorine dosage. On the basis of this study it reveals that the concentration of chloramines is a function of chlorine dosage and the ammonia concentration to the chlorination process. PH seems to not significantly affect the formation of chloramines. (author)

  3. Relation between chlorine with the quality of crude water

    International Nuclear Information System (INIS)

    Lim, Fang Yee; Mohd Pauzi Abdullah

    2008-01-01

    Chlorine as disinfection agent in drinking water was used widely since it was successfully been practiced in drinking water in Jersey City, 1908. Mostly, water treatment plants in Malaysia were using chlorine as disinfection agent to kill pathogen and contaminated materials that can be dangerous to consumer. Because of chlorine was a strongly disinfection agent, it also can react with another chemical components such as manganese, hydrogen, sulfides, ammonia and phenol in water. These reactions happen very fast, and chlorine will not react as disinfection agent unless all the organic and inorganic substitution presented in water reacts with chlorine. These reactions between components will increase demand of chlorine in water. The demand of chlorine in water must be filled before the free radical chlorine occurred. These free radical chlorine will decay into hypochlorous acid and hypochlorite ion that so important in disinfection process to kill pathogens and pollutants in water. Most of water treatment plant to maintain free chlorine up to 0.2 mg/ L in distribution system to consumer. These researches involved determination of parameters that can be trusted to react with the chlorine in nine sampling station along Semenyih River and four stations in water treatment plants. These parameters were determined from ammonia, cyanides, sulfides, phenol, phosphorus, nitrite, manganese, iron and sum of organic carbons. Overall, these researches concluded that ammonia and sum of organic carbons were the most compounds that react with the chlorine to produce tryhalometane and chloramines. Besides that, the concentration of cyanides compounds, sulfide, phenol, phosphorus, nitrite, manganese and iron also decrease after the chlorination process. Results can used to evaluate demanding levels of chlorine in Semenyih River. (author)

  4. DEVELOP NEW TOTAL ORGANIC CARBON/SPECIFIC UV ...

    Science.gov (United States)

    The purpose of this project is to provide a total organic carbon (TOC)/specific ultraviolet absorbance (SUVA) method that will be used by the Office of Ground Water and Drinking Water (OGWDW) to support monitoring requirements of the Stage 2 Disinfectant/Disinfection By-products (D/DBP) Rule. The Stage 2 Rule requires that enhanced water treatment be used if the source water is high in aquatic organic matter prior to the application of a disinfectant. Disinfectants (chlorine, ozone, etc.) are used in the production of drinking water in order to reduce the risk of microbial disease. These disinfectants react with the organic material that is naturally present in the source water to form disinfection by-products (DBPs). Exposure to some of these by-products may pose a long term health risk. The number and nature of DBPs make it impossible to fully characterize all of the by-products formed during the treatment of drinking water and it is more cost effective to reduce formation of DBPs than to remove them from the water after they are formed. Two measurements (TOC and SUVA) are believed to be predictive of the amount of by-products that can be formed during the disinfection of drinking water and are considered to be surrogates for DBP precursors. SUVA is calculated as the ultraviolet absorption at 254nm (UV254) in cm-1 divided by the mg/L dissolved organic carbon (DOC) concentration (measured after filtration of the water through a 0.45um pore-diameter filte

  5. Formation of Emerging Disinfection By-products by Chlorination/Chloramination of Seawater Impacted by Algal Organic Matter

    KAUST Repository

    Nihemaiti, Maolida; Le Roux, Julien; Croue, Jean-Philippe

    2015-01-01

    The aim of this work was to study the formation of haloacetamides (HAcAms) and other DBPs during chlorination and chloramination of algal organic matter (AlOM). The HAcAms formation potentials of different precursors (amino acids, simulated algal blooms grown in the Red Sea) were evaluated. Experiments with simulated algal blooms were conducted in the presence of bromide ion (synthetic seawater containing 800 μg/L Br−) to assess the formation of brominated analogues of HAcAms in conditions close to the disinfection of real seawater. Chlorination produced more HAcAms than chloramination from real algae (Synecococcus sp.), thus indicating that the nitrogen of HAcAms comes predominantly from DON through the decarboxylation of amino acids rather than from NH2Cl. Dibrominated species of DBPs (i.e., DBAcAm, DBAA and DBAN) were the dominant species formed by both chlorination and chloramination of algal bloom samples. Chloramination of the amino acid asparagine produced an important amount of DCAcAm as compared to chlorination, indicating the existence of a specific reaction pathway.

  6. Formation of Emerging Disinfection By-products by Chlorination/Chloramination of Seawater Impacted by Algal Organic Matter

    KAUST Repository

    Nihemaiti, Maolida

    2015-08-31

    The aim of this work was to study the formation of haloacetamides (HAcAms) and other DBPs during chlorination and chloramination of algal organic matter (AlOM). The HAcAms formation potentials of different precursors (amino acids, simulated algal blooms grown in the Red Sea) were evaluated. Experiments with simulated algal blooms were conducted in the presence of bromide ion (synthetic seawater containing 800 μg/L Br−) to assess the formation of brominated analogues of HAcAms in conditions close to the disinfection of real seawater. Chlorination produced more HAcAms than chloramination from real algae (Synecococcus sp.), thus indicating that the nitrogen of HAcAms comes predominantly from DON through the decarboxylation of amino acids rather than from NH2Cl. Dibrominated species of DBPs (i.e., DBAcAm, DBAA and DBAN) were the dominant species formed by both chlorination and chloramination of algal bloom samples. Chloramination of the amino acid asparagine produced an important amount of DCAcAm as compared to chlorination, indicating the existence of a specific reaction pathway.

  7. Development of a Chlorine Dosing Strategy for Fresh Produce Washing Process to Maintain Microbial Food Safety and Minimize Residual Chlorine.

    Science.gov (United States)

    Chen, Xi; Hung, Yen-Con

    2018-05-22

    The residual free chlorine level in fresh produce wash solution is closely correlated to the chemical and microbial safety of produce. Excess amount of free chlorine can quickly react with organic matters to form hazardous disinfection by-products (DBPs) above EPA-permitted levels, whereas deficiency of residual chlorine in produce wash solution may result in incompletely removing pathogens on produce. The purpose of this study was to develop a chlorine dosing strategy to optimize the chlorine dosage during produce washing process without impacting the microbial safety of fresh produce. Prediction equations were developed to estimate free chlorine needed to reach targeted residual chlorine at various sanitizer pH and organic loads, and then validated using fresh-cut iceberg lettuce and whole strawberries in an automated produce washer. Validation results showed that equations successfully predicted the initial chlorine concentration needed to achieve residual chlorine at 10, 30, 60, and 90 mg/L for both lettuce and strawberry washing processes, with the root mean squared error at 4.45 mg/L. The Escherichia coli O157:H7 reductions only slightly increased on iceberg lettuce and strawberries with residual chlorine increasing from 10 to 90 mg/L, indicating that lowering residual chlorine to 10 mg/L would not compromise the antimicrobial efficacy of chlorine-based sanitizer. Based on the prediction equations and E. coli O157:H7 reduction results, a chlorine dosing strategy was developed to help the produce industry to maintain microbial inactivation efficacy without adding excess amount of free chlorine. The chlorine dosing strategy can be used for fresh produce washing process to enhance the microbial food safety and minimize the DBPs formation potential. © 2018 Institute of Food Technologists®.

  8. Combined toxicity effects of chlorine, ammonia, and temperature on marine plankton. Progress report, November 1976--31 January 1978

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, J. C.

    1978-02-01

    Studies on the effects of chlorine, chloramines, and temperature on marine plankton have been carried out for three years. Species studied include marine phytoplankton, lobster larvae (Homarus americanus), oyster larvae (Crassostrea virginica), copepods (Acartia tonsa), rotifers (Brachionas plicatilis), grass shrimp (Palamonetes pugio) summer flounder larvae (Paralichthys dentatus), larval and juvenile killifish (Fundulus heteroclitus), juvenile scup (Stenotomus versicolor), and juvenile winter flounder (Pseudopleuronectes americanus). In addition extensive studies on chlorine chemistry in seawater have been carried out. The major conclusions are that entrainment effects on permanent plankton such as phytoplankton, copepods, and rotifers are temporary, that is those organisms surviving chlorination and temperature shocks are capable of renewed and unrestricted growth once returned to the receiving water. Because chlorine is only applied for short periods daily in most power plants, the total population of the above organisms actually exposed to chlorine is small and the effects may be hardly measurable in receiving waters. However, chlorination effects on larval species that spawn intermittently could be catastrophic. In addition, there are many unanswered questions regarding the fate of chlorine that is dissipated in marine waters. Are the losses real and, if so, do they pose a toxicity threat to marine biota.

  9. Formation of emerging DBPs from the chlorination and chloramination of seawater algal organic matter and related model compounds

    KAUST Repository

    Nihemaiti, Maolida

    2014-05-01

    Limited studies focused on reactions occurring during disinfection and oxidation processes of seawater. The aim of this work was to investigate disinfection by-products (DBPs) formation from the chlorination and chloramination of seawater algal organic matter and related model compounds. Simulated algal blooms directly growing in Red Sea, red tide samples collected during an algal bloom event and Hymenomonas sp. monoculture were studied as algal organic matter sources. Experiments were conducted in synthetic seawater containing bromide ion. A variety of DBPs was formed from the chlorination and chloramination of algal organic matter. Brominated DBPs (bromoform, DBAA, DBAN and DBAcAm) were the dominant species. Iodinated DBPs (CIAcAm and iodinated THMs) were detected, which are known to be highly toxic compared to their chlorinated or brominated analogues. Algal organic matter was found to incorporate important precursors of nitrogenous DBPs (N-DBPs), which have been reported to be more toxic than regulated THMs and HAAs. Isotopically-labeled monochloramine (15N- NH2Cl) was used in order to investigate the nitrogen source in N-DBPs. High formation of N-DBPs was found from Hymenomonas sp. sample in exponential growth phase, which was enriched in nitrogen-containing organic compounds. High inorganic nitrogen incorporation was found from the algal samples enriched in humic-like compounds. HAcAms formation was studied from chlorination and chloramination of amino acids. Asparagine, aspartic acid and other amino acids with an aromatic structure were found to be important precursors of HAcAms and DCAN. Factors affecting HAcAms formation (Cl2/ amino acid molar ratio and pH) were evaluated. Studies on the formation kinetics of DCAcAm and DCAN from asparagine suggested a rapid formation of DCAcAm from organic nitrogen (amide group) and a slower incorporation of inorganic nitrogen coming from monochloramine to form DCAN. High amounts of DCAN and DCAcAm were detected from the

  10. Organohalogen products from chlorination of cooling water at nuclear power stations

    International Nuclear Information System (INIS)

    Bean, R.M.

    1983-10-01

    Eight nuclear power units at seven locations in the US were studied to determine the effects of chlorine, added as a biocide, on the composition of cooling water discharge. Water, sediment and biota samples from the sites were analyzed for total organic halogen and for a variety of organohalogen compounds. Haloforms were discharged from all plants studied, at concentrations of a few μg/L (parts-per-billion). Evidence was obtained that power plants with cooling towers discharge a significant portion of the haloforms formed during chlorination to the atmosphere. A complex mixture of halogenated phenols was found in the cooling water discharges of the power units. Cooling towers can act to concentrate halogenated phenols to levels approaching those of the haloforms. Examination of samples by capillary gas chromatography/mass spectrometry did not result in identification of any significant concentrations of lipophilic base-neutral compounds that could be shown to be formed by the chlorination process. Total concentrations of lipophilic (Bioabsorbable) and volatile organohalogen material discharged ranged from about 2 to 4 μg/L. Analysis of sediment samples for organohalogen material suggests that certain chlorination products may accumulate in sediments, although no tissue bioaccumulation could be demonstrated from analysis of a limited number of samples. 58 references, 25 figures, 31 tables

  11. Oxidative elimination of cyanotoxins: comparison of ozone, chlorine, chlorine dioxide and permanganate.

    Science.gov (United States)

    Rodríguez, Eva; Onstad, Gretchen D; Kull, Tomas P J; Metcalf, James S; Acero, Juan L; von Gunten, Urs

    2007-08-01

    As the World Health Organization (WHO) progresses with provisional Drinking Water Guidelines of 1 microg/L for microcystin-LR and a proposed Guideline of 1 microg/L for cylindrospermopsin, efficient treatment strategies are needed to prevent cyanotoxins such as these from reaching consumers. A kinetic database has been compiled for the oxidative treatment of three cyanotoxins: microcystin-LR (MC-LR), cylindrospermopsin (CYN), and anatoxin-a (ANTX) with ozone, chlorine, chlorine dioxide and permanganate. This kinetic database contains rate constants not previously reported and determined in the present work (e.g. for permanganate oxidation of ANTX and chlorine dioxide oxidation of CYN and ANTX), together with previously published rate constants for the remaining oxidation processes. Second-order rate constants measured in pure aqueous solutions of these toxins could be used in a kinetic model to predict the toxin oxidation efficiency of ozone, chlorine, chlorine dioxide and permanganate when applied to natural waters. Oxidants were applied to water from a eutrophic Swiss lake (Lake Greifensee) in static-dose testing and dynamic time-resolved experiments to confirm predictions from the kinetic database, and to investigate the effects of a natural matrix on toxin oxidation and by-product formation. Overall, permanganate can effectively oxidize ANTX and MC-LR, while chlorine will oxidize CYN and MC-LR and ozone is capable of oxidizing all three toxins with the highest rate. The formation of trihalomethanes (THMs) in the treated water may be a restriction to the application of sufficiently high-chlorine doses.

  12. Novel Fe-Pd/SiO2 catalytic materials for degradation of chlorinated organic compounds in water

    Science.gov (United States)

    Novel reactive materials for catalytic degradation of chlorinated organic compounds in water at ambient conditions have been prepared on the basis of silica-supported Pd-Fe nanoparticles. Nanoscale Fe-Pd particles were synthesized inside porous silica supports using (NH4

  13. In situ remediation of chlorinated solvent-contaminated groundwater using ZVI/organic carbon amendment in China: field pilot test and full-scale application.

    Science.gov (United States)

    Yang, Jie; Meng, Liang; Guo, Lin

    2018-02-01

    Chlorinated solvents in groundwater pose threats to human health and the environment due to their carcinogenesis and bioaccumulation. These problems are often more severe in developing countries such as China. Thus, methods for chlorinated solvent-contaminated groundwater remediation are urgently needed. This study presents a technique of in situ remediation via the direct-push amendment injection that enhances the reductive dechlorination of chlorinated solvents in groundwater in the low-permeability aquifer. A field-based pilot test and a following real-world, full-scale application were conducted at an active manufacturing facility in Shanghai, China. The chlorinated solvents found at the clay till site included 1,1,1-trichloroethane (1,1,1-TCA), 1,1-dichloroethane (1,1-DCA), 1,1-dichloroethylene (1,1-DCE), vinyl chloride (VC), and chloroethane (CA). A commercially available amendment (EHC ® , Peroxychem, Philadelphia, PA) combining zero-valent iron and organic carbon was used to treat the above pollutants. Pilot test results showed that direct-push EHC injection efficiently facilitated the in situ reductive remediation of groundwater contaminated with chlorinated solvents. The mean removal rates of 1,1,1-TCA, 1,1-DCA, and 1,1-DCE at 270 days post-injection were 99.6, 99.3, and 73.3%, respectively, which were obviously higher than those of VC and CA (42.3 and 37.1%, respectively). Clear decreases in oxidation-reduction potential and dissolved oxygen concentration, and increases in Fe 2+ and total organic carbon concentration, were also observed during the monitoring period. These indicate that EHC promotes the anaerobic degradation of chlorinated hydrocarbons primarily via long-term biological reductive dechlorination, with instant chemical reductive dechlorination acting as a secondary pathway. The optimal effective time of EHC injection was 0-90 days, and its radius of influence was 1.5 m. In full-scale application, the maximum concentrations of 1,1,1-TCA

  14. Altitude profiles of total chlorinated paraffins in humus and spruce needles from the Alps (MONARPOP)

    Energy Technology Data Exchange (ETDEWEB)

    Iozza, Saverio, E-mail: saverio.iozza@empa.c [Empa, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for Analytical Chemistry, Uberlandstrasse 129, CH-8600 Duebendorf (Switzerland); University of Basel, Department of Chemistry, St. Johanns-Ring 19, CH-4056 Basel (Switzerland); Schmid, Peter, E-mail: peter.schmid@empa.c [Empa, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for Analytical Chemistry, Uberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Oehme, Michael, E-mail: michael.oehme@unibas.c [University of Basel, Department of Chemistry, St. Johanns-Ring 19, CH-4056 Basel (Switzerland); Bassan, Rodolfo [Regional Agency for Environmental Prevention and Protection of Veneto (Italy); Belis, Claudio [Regional Agency for Environmental Protection of Lombardia (Italy); Jakobi, Gert; Kirchner, Manfred; Schramm, Karl-Werner [GSF-National Research Centre for Environment and Health (Germany); Kraeuchi, Norbert [Swiss Federal Institute for Forest, Snow and Landscape Research (Switzerland); Moche, Wolfgang; Offenthaler, Ivo; Weiss, Peter [Federal Environment Agency Ltd. (Austria); Simoncic, Primoz [Slovenian Forestry Institute (Slovenia); Knoth, Wilhelm [Federal Environment Agency (Germany)

    2009-12-15

    Chlorinated paraffins (CPs) are toxic, bioaccumulative, persistent, and ubiquitously present in the environment. CPs were analyzed in humus and needle samples, which were taken within the Monitoring Network in the Alpine Region for Persistent and other Organic Pollutants (MONARPOP) at sampling sites of 7 different altitude profiles in the Alps. Gas chromatography combined with electron ionization tandem mass spectrometry (EI-MS/MS) was used for the determination of total CPs (sum of short, medium and long chain CPs). CPs were found in all samples; the concentrations varied between 7 and 199 ng g{sup -1} dry weight (dw) and within 26 and 460 ng g{sup -1} dw in humus and needle samples, respectively. A clear vertical tendency within the individual altitude profiles could not be ascertained. Within all altitude profiles, elevated concentrations were observed in humus samples taken between 700 and 900 m and between 1300 and 1500 m. In the needle samples no similar correlation could be observed due to higher variation of the data. - For the first time, CP levels of humus and spruce needle samples from the Alps (MONARPOP) were presented including the evaluation of altitude profiles.

  15. Kinetics of Adsorbable Organic Halides (AOX Reduction in Laccase-Aided Chlorine Dioxide Bleaching of Bagasse Pulp

    Directory of Open Access Journals (Sweden)

    Xueping Song

    2016-07-01

    Full Text Available This paper presents a kinetic model of the laccase-aided chlorine dioxide bleaching of bagasse pulp. The kinetic model was based on the rate of reduction of adsorbed organic halogen (AOX. The effects of the laccase enzyme dosage, the mediator 1-hydroxybenzotriazole (HBT dosage, and the reaction temperature on the AOX content of the bleaching effluent are discussed. Good fits were obtained for the experimental data obtained from the different laccase enzyme dosages, HBT dosages, and reaction temperatures, indicating the feasibility of the kinetic model as a means of predicting the optimal operation conditions for the laccase-aided chlorine dioxide bleaching of bagasse pulp in the future.

  16. The natural chlorine cycle - Formation of the carcinogenic and greenhouse gas compound chloroform in drinking water reservoirs.

    Science.gov (United States)

    Forczek, Sándor T; Pavlík, Milan; Holík, Josef; Rederer, Luděk; Ferenčík, Martin

    2016-08-01

    Chlorine cycle in natural ecosystems involves formation of low and high molecular weight organic compounds of living organisms, soil organic matter and atmospherically deposited chloride. Chloroform (CHCl3) and adsorbable organohalogens (AOX) are part of the chlorine cycle. We attempted to characterize the dynamical changes in the levels of total organic carbon (TOC), AOX, chlorine and CHCl3 in a drinking water reservoir and in its tributaries, mainly at its spring, and attempt to relate the presence of AOX and CHCl3 with meteorological, chemical or biological factors. Water temperature and pH influence the formation and accumulation of CHCl3 and affect the conditions for biological processes, which are demonstrated by the correlation between CHCl3 and ΣAOX/Cl(-) ratio, and also by CHCl3/ΣAOX, CHCl3/AOXLMW, CHCl3/ΣTOC, CHCl3/TOCLMW and CHCl3/Cl(-) ratios in different microecosystems (e.g. old spruce forest, stagnant acidic water, humid and warm conditions with high biological activity). These processes start with the biotransformation of AOX from TOC, continue via degradation of AOX to smaller molecules and further chlorination, and finish with the formation of small chlorinated molecules, and their subsequent volatilization and mineralization. The determined concentrations of chloroform result from a dynamic equilibrium between its formation and degradation in the water; in the Hamry water reservoir, this results in a total amount of 0.1-0.7 kg chloroform and 5.2-15.4 t chloride. The formation of chloroform is affected by Cl(-) concentration, by concentrations and ratios of biogenic substrates (TOC and AOX), and by the ratios of the substrates and the product (feedback control by chloroform itself). Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Chemical aspects of incinerating highly chlorinated and actinide α contaminated organic waste: application to the Iris process

    International Nuclear Information System (INIS)

    Lemort, F.; Cames, B.

    2000-01-01

    A fraction of the waste produced by nuclear activities is combustible, and thus suitable for incineration to produce gases, ash and fines. A typical composition representative of actual organic waste mixtures was defined for the purpose of investigating possible heat treatment processes; the composition is identified according to components Table 1 and elements Table II. The high polyvinyl chloride (PVC) content is responsible for the high chlorine potential in the process equipment. The quantity and quality of the resulting solid residue depends entirely on the inorganic load of the organic waste, whose behavior is entirely conditioned by the process conditions. For example, pure polyethylene is totally converted to gases (water and carbon dioxide), while the composition shown in Table II produces a range of oxides and chlorides. The high chlorine content results in partial chlorination of the inorganic compounds, but can also lead to interactions with the process equipment. The temperature dependent variation of the chlorination equilibrium constants of various metals clearly shows that all the elements of technological alloys may be subject to active corrosion by hydrochloric acid. However, the corresponding oxides-notably alumina-are much less sensitive to corrosion; aluminum-based alloys are therefore preferred for incinerator construction and to limit corrosion by hydrochloric acid. Thermodynamic and kinetic studies led to the development of the IRIS three-step process. Gas emissions occurring during processing of solid materials are completely oxidized in the after-burning step at 1100 deg C, and are then ducted to a HERA filtration system capable of retaining all the actinide α radionuclides. Although corrosion-related problems are attenuated in the two-step process chlorine can combine with the inorganic waste material to form chlorides with potentially damaging effects on the system; this is the case for zinc chloride and for volatile chlorides in

  18. Toxicity on aquatic organisms exposed to secondary effluent disinfected with chlorine, peracetic acid, ozone and UV radiation.

    Science.gov (United States)

    da Costa, Juliana Berninger; Rodgher, Suzelei; Daniel, Luiz Antonio; Espíndola, Evaldo Luiz Gaeta

    2014-11-01

    The toxic potential of four disinfectant agents (chlorine, ozone, peracetic acid and UV radiation), used in the disinfection of urban wastewater, was evaluated with respect to four aquatic organisms. Disinfection assays were carried out with wastewater from the city of Araraquara (São Paulo State, Brazil), and subsequently, toxicity bioassays were applied in order to verify possible adverse effects to the cladocerans (Ceriodaphnia silvestrii and Daphnia similis), midge larvae Chironomus xanthus and fish (Danio rerio). Under the experimental conditions tested, all the disinfectants were capable of producing harmful effects on the test organisms, except for C. xanthus. The toxicity of the effluent to C. silvestrii was observed to increase significantly as a result of disinfection using 2.5 mg L(-1) chlorine and 29.9 mg L(-1) ozone. Ozonation and chlorination significantly affected the survival of D. similis and D. rerio, causing mortality of 60 to 100 % in comparison to the non-disinfected effluent. In experiments with effluent treated with peracetic acid (PAA) and UV radiation, a statistically significant decrease in survival was only detected for D. rerio. This investigation suggested that the study of the ideal concentrations of disinfectants is a research need for ecologically safe options for the treatment of wastewater.

  19. Monte Carlo study of a flexible device for in situ PGNAA using 241Am-Be source: application to total chlorine determination

    International Nuclear Information System (INIS)

    Khelifi, R.; Bode, P.

    2016-01-01

    MCNP5 has been used to optimize the design of a Prompt gamma ray neutron activation analysis (PGNAA) facility, which was subsequently constructed for quantification of total chlorine in water to simulate neutron transport from an 241 AmBe source into a PGNAA set-up. Modeling calculations were performed to optimize the experimental set-up for Cl measurements in water. The optimization with MCNP5 was focused on maximizing the thermal neutrons flux which leads to improving the gamma prompt production after neutron capture in a water sample. The influence of dimensions and materials for the neutron collimation as well as the dimensions of the sample together were studied. A PGNAA facility with an 241 AmBe neutron source was built based on the optimized configuration and used to determine chlorine concentration. Measured values of the chlorine count rate were plotted versus the NaCl in water. The count rate versus amount of chlorine show a good coefficient of correlation of the linear fit. The result permits PGNAA to be a valuable diagnostic tool for getting an indication of the salinity contamination of water. (author)

  20. Development of a Site-Specific Kinetic Model for Chlorine Decay and the Formation of Chlorination By-Products in Seawater

    Directory of Open Access Journals (Sweden)

    Suhur Saeed

    2015-07-01

    Full Text Available Chlorine is used commonly to prevent biofouling in cooling water systems. The addition of chlorine poses environmental risks in natural systems due to its tendency to form chlorination by-products (CBPs when exposed to naturally-occurring organic matter (NOM. Some of these CBPs can pose toxic risks to aquatic and benthic species in the receiving waters. It is, therefore, important to study the fate of residual chlorine and CBPs to fully understand the potential impacts of chlorination to the environment. The goal of this study was to develop improved predictions of how chlorine and CBP concentrations in seawater vary with time, chlorine dose and temperature. In the present study, chlorination of once-through cooling water at Ras Laffan Industrial City (RLIC, Qatar, was studied by collecting unchlorinated seawater from the RLIC cooling water system intake, treating it with chlorine and measuring time series of chlorine and CBP concentrations. Multiple-rate exponential curves were used to represent fast and slow chlorine decay and CBP formation, and site-specific chlorine kinetic relationships were developed. Through extensive analysis of laboratory measurements, it was found that only some of the control parameters identified in the literature were important for predicting residual chlorine and CBP concentrations for this specific location. The new kinetic relationships were able to significantly improve the predictability and validity of Generalized Environmental Modeling System for Surfacewaters (GEMSS-chlorine kinetics module (CKM, a three-dimensional hydrodynamic and chlorine kinetics and transport model when applied for RLIC outfall studies using actual field measurements.

  1. Epidemiological evidence of carcinogenicity of chlorinated organics in drinking water.

    Science.gov (United States)

    Cantor, K P

    1982-12-01

    Concern has recently been voiced over possible chronic toxicity associated with chlorination of public drinking water supplies in the United States. This paper reviews the available evidence and the studies underway to further evaluate hypothesized associations between cancer risk and byproducts of chlorination. Preliminary data from measures of halogenated volatiles and personal exposure histories from respondents in a large epidemiologic study of bladder cancer are presented. These data support the use in epidemiologic studies of categorical measures of exposure and suggest that results from completed case-control studies, based on death certificates, may have underestimated the true risk of exposure to chlorination by-products. The current generation of studies which use a case-control interview design offer many advantages over earlier efforts to evaluate this issue.

  2. Re-evaluation of solid-phase adsorption and desorption techniques for isolation of trace organic pollutants from chlorinated water.

    Science.gov (United States)

    Onodera, S; Nagatsuka, A; Rokuhara, T; Asakura, T; Hirayama, N; Suzuki, S

    1993-07-16

    Amberlite XAD resin and activated carbon columns were tested for their abilities to concentrate trace organic pollutants in chlorinated water. Both XAD-2 and XAD-7 resin columns (20 ml) were capable of adsorbing about 30% of total organic halogen (TOX) present in 20 l of drinking water (pH 7) containing about 100 micrograms/l of TOX, whereas the carbon column (10 ml) adsorbed over 90% of TOX. The adsorption capacity of XAD-7 resin was found to be strongly dependent on the solution pH, as compared with those of XAD-2 and carbon adsorbents. Soxhlet and sonication extractions were also evaluated for their abilities to recover the adsorbed organics from the adsorbents, by measurements of TOX, chromatographable compounds and mutagenicity in the eluates. Soxhlet extraction gave higher recoveries than sonication, as measured with the above indices, but these differences were generally small (ca. 20%), with exception of the carbon extracts. The XAD-2 and XAD-7 extracts of drinking water also showed about 3-4 times higher mutagenic activity than the carbon extracts.

  3. Chlorinated hydrocarbons and PCBs in field soils, sediments and sewage sludges

    International Nuclear Information System (INIS)

    Schaaf, H.

    1992-01-01

    As requested by the Ministry of Agriculture of the FRG, the 'Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten (VDLUFA)' built up a data collection over chlorinated hydrocarbons and PCBs in field soils, sediments, sewage sludges. Nearly 70.000 samples were collected and statistically evaluated. The results of these investigations will be described. The major constituents of the chlorinated hydrocarbons generally were Lindane, DDT(total) and HCB. In sewage sludges PCBs could be detected in nearly every sample. The contents of PCBs in field soils are smaller than in sewage sludges. Rather 'high contents', greater than 100-200 μg/kg d.m./organic pollutants, were detected only in 2% of the samples. 7 refs., 5 figs., 2 tabs

  4. Epidemiological evidence of carcinogenicity of chlorinated organics in drinking water.

    OpenAIRE

    Cantor, K P

    1982-01-01

    Concern has recently been voiced over possible chronic toxicity associated with chlorination of public drinking water supplies in the United States. This paper reviews the available evidence and the studies underway to further evaluate hypothesized associations between cancer risk and byproducts of chlorination. Preliminary data from measures of halogenated volatiles and personal exposure histories from respondents in a large epidemiologic study of bladder cancer are presented. These data sup...

  5. Does Chlorination of Seawater Reverse Osmosis Membranes Control Biofouling?

    KAUST Repository

    Khan, Muhammad Tariq; Hong, Pei-Ying; Nada, Nabil; Croue, Jean Philippe

    2015-01-01

    Biofouling is the major problem of reverse osmosis (RO) membranes used for desalting seawater (SW). The use of chlorine is a conventional and common practice to control/prevent biofouling. Unlike polyamide RO membranes, cellulose triacetate (CTA) RO membranes display a high chlorine tolerance. Due to this characteristic, CTA membranes are used in most of the RO plants located in the Middle East region where the elevated seawater temperature and water quality promote the risk of membrane biofouling. However, there is no detailed study on the investigation/characterization of CTA-RO membrane fouling. In this investigation, the fouling profile of a full–scale SWRO desalination plant operating with not only continuous chlorination of raw seawater but also intermittent chlorination of CTA-RO membranes was studied. Detailed water quality and membrane fouling analyses were conducted. Profiles of microbiological, inorganic, and organic constituents of analysed fouling layers were extensively discussed. Our results clearly identified biofilm development on these membranes. The incapability of chlorination on preventing biofilm formation on SWRO membranes could be assigned to its failure in effectively reaching throughout the different regions of the permeators. This failure could have occurred due to three main factors: plugging of membrane fibers, chlorine consumption by organics accumulated on the front side fibers, or chlorine adaptation of certain bacterial populations.

  6. Does Chlorination of Seawater Reverse Osmosis Membranes Control Biofouling?

    KAUST Repository

    Khan, Muhammad Tariq

    2015-04-01

    Biofouling is the major problem of reverse osmosis (RO) membranes used for desalting seawater (SW). The use of chlorine is a conventional and common practice to control/prevent biofouling. Unlike polyamide RO membranes, cellulose triacetate (CTA) RO membranes display a high chlorine tolerance. Due to this characteristic, CTA membranes are used in most of the RO plants located in the Middle East region where the elevated seawater temperature and water quality promote the risk of membrane biofouling. However, there is no detailed study on the investigation/characterization of CTA-RO membrane fouling. In this investigation, the fouling profile of a full–scale SWRO desalination plant operating with not only continuous chlorination of raw seawater but also intermittent chlorination of CTA-RO membranes was studied. Detailed water quality and membrane fouling analyses were conducted. Profiles of microbiological, inorganic, and organic constituents of analysed fouling layers were extensively discussed. Our results clearly identified biofilm development on these membranes. The incapability of chlorination on preventing biofilm formation on SWRO membranes could be assigned to its failure in effectively reaching throughout the different regions of the permeators. This failure could have occurred due to three main factors: plugging of membrane fibers, chlorine consumption by organics accumulated on the front side fibers, or chlorine adaptation of certain bacterial populations.

  7. A new kind of Molotov? Gasoline-pool chlorinator mixtures.

    Science.gov (United States)

    Hutches, Katherine; Lord, James

    2012-07-01

    This paper investigates the reaction between pool chlorinators and gasoline. In particular, the propensity for self-ignition and the resulting chemical products were studied. An organic pool chlorinator was combined with gasoline in varying proportions in an attempt to form a hypergolic mixture. None of the combinations resulted in self-ignition, but larger quantities of chlorinator produced vigorous light-colored smoke and a solid mass containing isocyanuric acid and copper chloride. Additionally, the chlorinating abilities of different commercially available pool chlorinators were explored. When Ca(ClO)(2) and sodium dichloro-s-triazinetrione-based chlorinators were used, the presence of gasoline was still visible after 10 days, despite limited chlorination. The trichloro-s-triazinetrione-based chlorinator, however, caused efficient chlorination of the C(2)- and C(3)-alkylbenzenes, making gasoline no longer identifiable. 2012 American Academy of Forensic Sciences. Published 2012. This article is a U.S. Government work and is in the public domain in the U.S.A.

  8. [Toxicity and influencing factors of liquid chlorine on chironomid larvae].

    Science.gov (United States)

    Sun, Xing-Bin; Cui, Fu-Yi; Zhang, Jin-Song; Guo, Zhao-Hai; Xu, Feng; Liu, Li-Jun

    2005-09-01

    The excessive propagation of Chironomid larvae (red worm) in the sedimentation tanks is a difficult problem for the normal function of waterworks. The toxic effect of liquid chlorine on the different instar larvae of Chironomid was studied using distilled water as test sample. Furthermore, the effect of pH value, organic matter content, ammonia nitrogen, and algae content on toxicity of liquid chlorine was observed. The results show that the tolerance of Chironomid larvae to liquid chlorine is strengthened with the increase in instar. The 24h semi-lethal concentration (LC50) of liquid chlorine to the 4th instar larvae of Chironomid is 3.39 mg/L. Low pH value and high algae content are helpful to improve the toxic effect of liquid chlorine to Chironomid larvae. In neutral water body, the increase in organic matter content results in the decrease in the death rate of Chironomid larvae. The toxicity of liquid chlorine differs greatly in different concentrations of ammonia nitrogen. The death rate of the 4th instar larvae of Chironomid in raw water is higher by contrast with that in sedimentation tanks water for 24h disposal with various amount of liquid chlorine.

  9. Toxicity evaluation of chlorinated organic compounds using immortalized rat hepatocytes; Fushika rat kansaibo wo mochiita yuki enso kagobutsu no dokusei hyoka no kokoromi

    Energy Technology Data Exchange (ETDEWEB)

    Sone, H; Nakajima, M; Yonemoto, J [National Institute for Environmental Studies, Tsukuba (Japan)

    1997-11-10

    Chlorinated organic compounds has high priority for toxicity screening among environmental hazardous chemicals. In the present study, we used immortalized rat hepatocytes as a liver model in vitro to evaluate the toxicity of nine chlorinated organic compounds. Toxicity of nine chlorinated organic compounds were evaluated to cellular viability of immortalized rat hapatocytes. The potency of the toxicity based on 50% inhibitory concentration (IC50) value was in the following order: triclocalban>triclosan>3,4-dichloroaniline>2,5-diclorophenol> 2,5-dichloroanisole>p-dichlorobenzene> p-chloroaniline>o-dichlorobenzene=tris (2-chloroethyl) phosphate. The rank order of cytotoxic potency of nine chemicals was compared with toxicity information using animals. The rank order of cytotoxic potency did not relative to the order referenced mean lethal dose (LD50) as an index of acute toxicity of rats or mice. However, the rank order of cytotoxic potency relatively correlated non-observed adverse effect level (NOAEL) under the exposure duration adjusted for chronic toxicity in vivo. These data suggests that the origin of testing cell had better to make match target organ of toxic chemicals for extrapolation from data of bioassay in vitro to in vivo. 16 refs., 2 figs., 3 tabs.

  10. Transformation of methylparaben during water chlorination: Effects of bromide and dissolved organic matter on reaction kinetics and transformation pathways.

    Science.gov (United States)

    Yoom, Hoonsik; Shin, Jaedon; Ra, Jiwoon; Son, Heejong; Ryu, Dongchoon; Kim, Changwon; Lee, Yunho

    2018-09-01

    The reaction kinetics, products, and pathways of methylparaben (MeP) during water chlorination with and without bromide (Br - ) were investigated to better understand the fate of parabens in chlorinated waters. During the chlorination of MeP-spiked waters without Br - , MeP was transformed into mono-Cl-MeP and di-Cl-MeP with apparent second-order rate constants (k app ) of 64M -1 s -1 and 243M -1 s -1 at pH7, respectively, while further chlorination of di-Cl-MeP was relatively slower (k app =1.3M -1 s -1 at pH7). With increasing Br - concentration, brominated MePs, such as mono-Br-MeP, Br-Cl-MeP, and di-Br-MeP, became major transformation products. The di-halogenated MePs (di-Cl-MeP, Br,Cl-MeP, and di-Br-MeP) showed relatively low reactivity to chlorine at pH7 (k app =1.3-4.6M -1 s -1 ) and bromine (k app =32-71M -1 s -1 ), which explains the observed high stability of di-halogenated MePs in chlorinated waters. With increasing pH from 7 to 8.5, the transformation of di-halogenated MePs was further slowed due to the decreasing reactivity of di-MePs to chlorine. The formation of the di-halogenated MePs and their further transformation become considerably faster at Br - concentrations higher than 0.5μM (40μg/L). Nonetheless, the accelerating effect of Br - diminishes in the presence of dissolved organic matter (DOM) extract (Suwannee River humic acid (SRHA)) due to a more rapid consumption of bromine by DOM than chlorine. The effect of Br - on the fate of MeP was less in the tested real water matrices, possibly due to a more rapid bromine consumption by the real water DOM compared to SRHA. A kinetic model was developed based on the determined species-specific second-order rate constants for chlorination/bromination of MeP and its chlorinated and brominated MePs and the transformation pathway information, which could reasonably simulate the transformation of MePs during the chlorination of water in the presence of Br - and selected DOM. Copyright © 2017 Elsevier B

  11. Methylated silicates may explain the release of chlorinated methane from Martian soil

    Science.gov (United States)

    Bak, Ebbe N.; Jensen, Svend J. Knak; Nørnberg, Per; Finster, Kai

    2016-01-01

    The only organic compounds that have been detected in the Martian soil are simple chlorinated compounds released from heated surface material. However, the sources of the organic carbon are in dispute. Wind abraded silicates, which are widespread on the Martian surface, can sequester atmospheric methane which generates methylated silicates and thus could provide a mechanism for accumulation of reduced carbon in the surface soil. In this study we show that thermal volatilization of methylated silicates in the presence of perchlorate leads to the production of chlorinated methane. Thus, methylated silicates could be a source of the organic carbon released as chlorinated methane upon thermal volatilization of Martian soil samples. Further, our experiments show that the ratio of the different chlorinated compounds produced is dependent on the mass ratio of perchlorate to organic carbon in the soil.

  12. Characterization of the bacterial community in shower water before and after chlorination

    KAUST Repository

    Peters, Marjolein C. F. M.

    2017-12-22

    Bathers release bacteria in swimming pool water, but little is known about the fate of these bacteria and potential risks they might cause. Therefore, shower water was characterized and subjected to chlorination to identify the more chlorine-resistant bacteria that might survive in a chlorinated swimming pool and therefore could form a potential health risk. The total community before and after chlorination (1 mg Cl2 L−1 for 30 s) was characterized. More than 99% of the bacteria in the shower water were Gram-negative. The dominant bacterial families with a relative abundance of ≥10% of the total (non-chlorinated and chlorinated) communities were Flavobacteriaceae (24–21%), Xanthomonadaceae (23–24%), Moraxellaceae (12–11%) and Pseudomonadaceae (10–22%). The relative abundance of Pseudomonadaceae increased after chlorination and increased even more with longer contact times at 1 mg Cl2L−1. Therefore, Pseudomonadaceae were suggested to be relatively more chlorine resistant than the other identified bacteria. To determine which bacteria could survive chlorination causing a potential health risk, the relative abundance of the intact cell community was characterized before and after chlorination. The dominant bacterial families in the intact community (non-chlorinated and chlorinated) were Xanthomonadaceae (21–17%) and Moraxellaceae (48–57%). Moraxellaceae were therefore more chlorine resistant than the other identified intact bacteria present.

  13. Effectiveness of chlorine, organic acids and UV treatments in reducing Escherichia coli O157:H7 and Yersinia enterocolitica on apples.

    Science.gov (United States)

    Escudero, M E; Velázquez, L; Favier, G; de Guzmán, A M

    2003-06-01

    This study assessed the effectiveness of 200 and 500 ppm of chlorine and organic acids (0.5% lactic acid and 0.5% citric acid) in wash solutions, and UV radiation for reducing Escherichia coli O157:H7 and Yersinia enterocolitica on apples contaminated by two different methods. Residual levels of these pathogens after different treatments were compared. On dip inoculated apples, Y. enterocolitica reductions of 2.66 and 2.77 logs were obtained with 200 and 500 ppm chlorine combined with 0.5% lactic acid, respectively. The E. coli O157:H7 population decreased 3.35 log with 0.5% lactic acid wash solution, and 2.72 and 2.62 logs after 500 ppm chlorine and 500 ppm chlorine plus 0.5% lactic acid treatments, respectively. Similar reductions were obtained with UV radiation. On spot inoculated apples, significant (p acid treatment as compared with the control. In sectioned apples, microorganisms infiltrated in inner core region and pulp were not significantly (p apples. Reductions such as those obtained with 500 ppm chlorine plus 0.5% lactic acid solution were very proximal to the 5-log score required by FDA for apple disinfection.

  14. Studies with solid chlorine chemical for chlorination of sea water systems

    International Nuclear Information System (INIS)

    Sankar, N.; Kumaraswamy, P.; Santhanam, V.S.; Jeena, P.; Hari Krishna, K.; Rajendran, D.

    2015-01-01

    Chlorination is one of the conventional methods to control biofouling of condenser cooling water systems using either river water, reservoir water or sea water. However, there are many safety concerns associated with handling, storage and application of gaseous chlorine. Studies were carried out with suitable alternative chlorine chemical compounds which do not involve majority of these concerns but meet the functional requirement of gas chlorine. Trichloroisocyanuric Acid (TCCA) is one of the suitable alternatives to Gas chlorine. TCCA is a chlorine stabilized compound, stabilized with Cyanuric acid, thus similar to Gas Chlorine in its functions except that it is available in solid form. Release of chlorine is a gradual process in TCCA unlike Gaseous chlorine. Field studies with TCCA indicated gradual and near uniform release rate of chlorine, for longer duration with the requisite free residual chlorine levels (FRC). Thus, use of TCCA could be considered as a suitable alternative for gas chlorine for regular chlorination requirements. (author)

  15. Uranium extraction from high content chlorine leach liquor

    International Nuclear Information System (INIS)

    Fatemi, K.

    1998-01-01

    In this work uranium solution has been leached out by leaching process of uranium ores from Bandar-Ab bass port using sea water, since fresh water could not be available when it is processed in large scale. Two samples of different batches containing 11 and 20 gr./lit chlorine underwent two stages of precipitation by lead nitrate. As the result of this treatment the chlorine removed and its final concentration reduced to 530 p.p.m. which is well below allowances. Then, the uranium of this recent dechlorinated solu ton has been extracted by T.B.P. Uranium in organic phase was stripped out into inorganic phase by sodium carbonate and precipitated in a form of yellow cake and converted to U3o8. The total recovery of U, was well above 90% and the purity of the conc. U was better than 94%. The lead used at the beginning of the process was recovered for next use

  16. Trihalomethanes formation in marine environment in front of Nuweibaa desalination plant as a result of effluents loaded by chlorine residual

    Directory of Open Access Journals (Sweden)

    Mohamed A. Hamed

    2017-03-01

    Full Text Available Trihalomethanes have been identified as the most important disinfection byproducts resulted from using chlorine in desalination plants. Nuweibaa desalination plant was chosen to study their effluents impacts on the marine environment in front of the plant in the coastal area of Gulf of Aqaba. Surface and bottom Water Samples were collected from nine locations in the outfall area of this desalination plant during spring and autumn 2014, and analyzed for water temperature, pH value, Salinity, Dissolved Oxygen, Biological oxygen demand, Oxidizible organic matter, Total, fixed and volatile suspended matter, residual chlorine (free and combined and trihalomethanes. High total chlorine dosage discharged from the desalination plant achieved high levels of trihalomethanes in the receiving seawater of the outfall area. It has been estimated that about 14524.65671 kg of BOD, 74123.4 kg of OOM, 166896.4375 kg of total suspended solids, 623.634 kg of free chlorine, 469.21 kg of combined chlorine, 206.64 kg of chloroform and 76.48 kg of bromoform are discharged annually from this plant into the Gulf of Aqaba affecting the marine ecosystems. The results of THMs showed that the two main forms of THMs formed in the receiving seawater were chloroform and bromoform and ranged between (5.09–156.59, (2.82–566.06 μg/L respectively. High pH and High combined chlorine concentrations favored the formation of high concentrations of chloroform.

  17. Transformations of dissolved organic matter induced by UV photolysis, Hydroxyl radicals, chlorine radicals, and sulfate radicals in aqueous-phase UV-Based advanced oxidation processes.

    Science.gov (United States)

    Varanasi, Lathika; Coscarelli, Erica; Khaksari, Maryam; Mazzoleni, Lynn R; Minakata, Daisuke

    2018-05-15

    Considering the increasing identification of trace organic contaminants in natural aquatic environments, the removal of trace organic contaminants from water or wastewater discharge is an urgent task. Ultraviolet (UV) and UV-based advanced oxidation processes (AOPs), such as UV/hydrogen peroxide (UV/H 2 O 2 ), UV/free chlorine and UV/persulfate, are attractive and promising approaches for the removal of these contaminants due to the high reactivity of active radical species produced in these UV-AOPs with a wide variety of organic contaminants. However, the removal efficiency of trace contaminants is greatly affected by the presence of background dissolved organic matter (DOM). In this study, we use ultrahigh resolution mass spectrometry to evaluate the transformation of a standard Suwanee River fulvic acid DOM isolate in UV photolysis and UV-AOPs. The use of probe compounds allows for the determination of the steady-state concentrations of active radical species in each UV-AOP. The changes in the H/C and O/C elemental ratios, double bond equivalents, and the low-molecular-weight transformation product concentrations of organic acids reveal that different DOM transformation patterns are induced by each UV-AOP. By comparison with the known reactivities of each radical species with specific organic compounds, we mechanistically and systematically elucidate the molecular-level DOM transformation pathways induced by hydroxyl, chlorine, and sulfate radicals in UV-AOPs. We find that there is a distinct transformation in the aliphatic components of DOM due to HO• in UV/H 2 O 2 and UV/free chlorine. Cl• induced transformation of olefinic species is also observed in the UV/free chlorine system. Transformation of aromatic and olefinic moieties by SO 4 •- are the predominant pathways in the UV/persulfate system. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Ecological impact of chloro-organics produced by chlorination of cooling tower waters

    International Nuclear Information System (INIS)

    Jolley, R.L.; Cumming, R.B.; Pitt, W.W.; Taylor, F.G.; Thompson, J.E.; Hartmann, S.J.

    1977-01-01

    Experimental results of the initial assessment of chlorine-containing compounds in the blowdown from cooling towers and the possible mutagenic activity of these compounds are reported. High-resolution liquid chromatographic separations were made on concentrates of the blowdown from the cooling tower at the High Flux Isotope Reactor (HFIR) and from the recirculating water system for the cooling towers at the Oak Ridge Gaseous Diffusion Plant (ORGDP), Oak Ridge, Tennessee. The chromatograms of chlorinated cooling waters contained numerous uv-absorbing and cerate-oxidizable constituents that are now being processed through a multicomponent identification procedure. Concentrates of the chlorinated waters are also being examined for mutagenic activity

  19. Production and distribution of chlorination by-products in the cooling water system of a coastal power station

    International Nuclear Information System (INIS)

    Vinnitha, E.; Rajamohan, R.; Venugopalan, V.P.; Narasimhan, S.V.

    2008-01-01

    Employing chlorination as antifouling agent in cooling water circuits of coastal power plants can lead to the production of chlorination by-products (CBP), mainly due to chlorine's reactions with the organic compounds present in natural seawater. Important among the by products are trihalomethane, haloacetonitriles, halo acetic acids, halo phenols etc., with trihalomethanes (THM) generally being the predominant compounds. The THM species that are commonly observed are chloroform, mono bromodichloromethane, dibromochloro-methane and bromoform. The present work was carried out to understand the production and distribution of chlorination by products (mainly trihalomethanes) in the cooling water systems of Madras Atomic Power Station (MAPS). Field studies were carried out in which samples collected from the intake, forebay pump house, out fall point and mixing point were analysed for THM using gas chromatograph with electron capture detector. The results showed that bromoform was the dominant THM formed as a result of chlorination, followed by dibromochloromethane. Mono bromodichloromethane and chloroform were not observed in seawater throughout the study period. Moreover, no THM could be detected at the intake point. The total THM values at other stations ranged between 25-250 μgL -1 , the highest values were observed at the process seawater pump outlet and the lowest at the mixing point. The concentrations of CBP's formed were found to be related to the chlorine residuals measured. In addition, laboratory experiments were carried out to understand CBP formation as a function of chlorine dose and contact time. Chlorine doses ranging from 1 to 10 mgL -1 were added to unfiltered seawater and the various THMs formed were analysed after different time intervals. The results confirmed that bromoform was the dominant THM species, followed by dibromochloromethane, as observed in the field studies. As the chlorine doses increased, the other THMs, namely, mono

  20. Chlorination for biofouling control in power plant cooling water system - a review

    International Nuclear Information System (INIS)

    Satpathy, K.K.; Ruth Nithila, S.D.

    2008-01-01

    Fresh water is becoming a rare commodity day by day and thus power plant authorities are turning into sea to make use of the copious amount of seawater available at an economical rate for condenser cooling. Unfortunately, biofouling; the growth and colonization of marine organisms affect the smooth operation of power plant cooling water systems. This is more so, if the plant is located in tropical climate having clean environment, which enhances the variety and density of organisms. Thus, biofouling needs to be controlled for efficient operation of the power plant. Biocide used for biofouling control is decided based on three major criteria viz: it should be economically, operationally and environmentally acceptable to the power plant authorities. Chlorine among others stands out on the top and meets all the above requirements in spite of a few shortcomings. Therefore it is no wonder that still chlorine rules the roost and chlorination remains the most common method of biofouling control in power plant cooling water system all over the world. Although, it is easier said than done, a good amount of R and D work is essential before a precise chlorination regime is put into pragmatic use. This paper discusses in details the chemistry of chlorination such as chlorine demand, chlorine decay, break point chlorination, speciation of chlorine residual and role of temperature and ammonia on chlorination in biofouling control. Moreover, targeted and pulse chlorination are also discussed briefly. (author)

  1. Two-phase ozonation of chlorinated organics

    International Nuclear Information System (INIS)

    Bhattacharyya, D.; Freshour, A.; West, D.

    1995-01-01

    In the last few years the amount of research being conducted in the field of single-phase ozonation has grown extensively. However, traditional aqueous-phase ozonation systems are limited by a lack of selective oxidation potential, low ozone solubility in water, and slow intermediate decomposition rates. Furthermore, ozone may decompose before it can be utilized for pollutant destruction since ozone can be highly unstable in aqueous solutions. Naturally occurring compounds such as NaHCO 3 also affect ozone reactions by inhibiting the formation of OH-free radicals. To compensate for these factors, excess ozone is typically supplied to a reactor. Since ozone generation requires considerable electric power consumption (16 - 24 kWh/kg of O 3 ), attempts to enhance the ozone utilization rate and stability should lead to more efficient application of this process to hazardous waste treatment. To improve the process, ozonation may be more efficiently carried out in a two-phase system consisting of an inert solvent (saturated with O 3 ) contacted with an aqueous phase containing pollutants. The non-aqueous phase must meet the following criteria: (1) non-toxic, (2) very low vapor pressure, (3) high density (for ease of separation), (4) complete insolubility in water, (5) reusability, (6) selective pollutant extractability, (7) high oxidant solubility, and (8) extended O 3 stability. Previously published studies (1) have indicated that a number of fluorinated hydrocarbon compounds fit these criteria. For this project, FC40 (a product of 3M Co.) was chosen due to its low vapor pressure (3 mm Hg) and high specific gravity (1.9). The primary advantages of the FC40 solvent are that it is non-toxic, reusable, has an ozone solubility 10 times that of water, and that 85 % of the ozone remains in the solvent even after 2 hours. This novel two-phase process has been utilized to study the rapid destruction of organic chlorine compounds and organic mixtures

  2. Organochlorine compounds and the biogeochemical cycle of chlorine in soils: A review

    Science.gov (United States)

    Vodyanitskii, Yu. N.; Makarov, M. I.

    2017-09-01

    Chloride ions in soil may interact with soil organic matter and form organochlorine compounds in situ. The biotic chlorination of soil organic substances takes places under aerobic conditions with participation of H2O2 forming from peroxidases released by soil microorganisms (in particular, by microscopic fungi). The abiotic chlorination results also from the redox reactions with the participation of Fe3+/Fe2+ system, but it develops several times slower. Chlorination of soil organic substances is favored by Cl- coming to soil both from natural (salinized soil-forming rocks and groundwater, sea salt) and anthropogenic sources of chlorides, i.e., spills of saline water at oil production, road deicing chemicals, mineral fertilizers, etc. The study of the biogeochemical chlorine cycle should take into account the presence of organochlorine compounds in soils, in addition to transformation and migration of chloride ions.

  3. Evaluation of solid polymeric organic materials for use in bioreactive sediment capping to stimulate the degradation of chlorinated aliphatic hydrocarbons

    NARCIS (Netherlands)

    Atashgahi, S.; Maphosa, F.; Vrieze, de J.; Haest, P.J.; Boon, N.; Smidt, H.; Springael, D.; Dejonghe, W.

    2014-01-01

    In situ bioreactive capping is a promising technology for mitigation of surface water contamination by discharging polluted groundwater. Organohalide respiration (OHR) of chlorinated ethenes in bioreactive caps can be stimulated through incorporation of solid polymeric organic materials (SPOMs) that

  4. Accumulation of chlorinated benzenes in earthworms

    Science.gov (United States)

    Beyer, W.N.

    1996-01-01

    Chlorinated benzenes are widespread in the environment. Hexachlorobenzene, pentachlorobenzene and all isomers of dichlorobenzenes, trichlorobenzenes, and tetrachlorobenzenes, have been detected in fish, water, and sediments from the Great Lakes. This paper describes a long-term (26 week) experiment relating the concentrations of chlorinated benzenes in earthworms to 1) the length of exposure, and it describes three 8-week experiments relating concentrations of chlorinated benzenes in earthworms to 2) their concentration in soil 3) the soil organic matter content and, 4) the degree of chlorination. In the 26-week experiment, the concentration of 1,2,4 - trichlorobenzene in earthworms fluctuated only slightly about a mean of 0.63 ppm (Fig. 1). Although a statistically significant decrease can be demonstrated over the test (Pearson correlation coefficient, r = -0.62 p earthworms showed a cyclical trend that coincided with replacement of the media, and a slight but statistically significant tendency to increase from about 2 to 3 ppm over the 26 weeks (r = 0.55, p earthworms increased as the concentrations in the soil increased (Fig. 2), but leveled off at the highest soil concentrations. The most surprising result of this study was the relatively low concentrations in earthworms compared to those in soils. The average concentration of each of the six isomers of trichlorobenzene and tetrachlorobenzene in earthworms was only about 1 ppm (Table 2); the isomeric structure did not affect accumulation. The concentration of organic matter in soil had a prominent effect on hexachlorobenzene concentrations in earthworms (Fig. 3). Hexachlorobenzene concentrations decreased steadily from 9.3 ppm in earthworms kept in soil without any peat moss added to about 1 ppm in soil containing 16 or 32% organic matter.

  5. Release of chlorine from biomass at gasification conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerkman, E.; Stroemberg, B. [TPS Termiska Processer AB, Nykoeping (Sweden)

    1997-05-01

    The objective of the project was to investigate the influence of different gasifying atmospheres on the release of chlorine from biomass during gasification conditions. Furthermore, the purpose was also to try and identify the formed chloro compounds. The results showed that O{sub 2}, H{sub 2}O and CO{sub 2} had negligible effect on the chlorine release at temperatures under 700 deg C. At temperatures above 800 deg C the reactivity towards CO{sub 2} increased and could be seen as higher chlorine release and less solid residue. No chloro organic compounds (aliphatic one to six carbons or aromatic one to two rings) could be detected in the tar or the fuel gas produced during pyrolysis/gasifying. On the other hand, comparable amounts of chlorinated benzenes were found in the cooling section during combustion of lucerne and of synthetic waste, indicating that oxygen is essential for chlorination reactions. 11 refs, 4 figs, 1 tab

  6. Release of chlorine from biomass at gasification conditions

    International Nuclear Information System (INIS)

    Bjoerkman, E.; Stroemberg, B.

    1997-05-01

    The objective of the project was to investigate the influence of different gasifying atmospheres on the release of chlorine from biomass during gasification conditions. Furthermore, the purpose was also to try and identify the formed chloro compounds. The results showed that O 2 , H 2 O and CO 2 had negligible effect on the chlorine release at temperatures under 700 deg C. At temperatures above 800 deg C the reactivity towards CO 2 increased and could be seen as higher chlorine release and less solid residue. No chloro organic compounds (aliphatic one to six carbons or aromatic one to two rings) could be detected in the tar or the fuel gas produced during pyrolysis/gasifying. On the other hand, comparable amounts of chlorinated benzenes were found in the cooling section during combustion of lucerne and of synthetic waste, indicating that oxygen is essential for chlorination reactions. 11 refs, 4 figs, 1 tab

  7. Removal of endocrine disruptors and non-steroidal anti-inflammatory drugs through wastewater chlorination: the effect of pH, total suspended solids and humic acids and identification of degradation by-products.

    Science.gov (United States)

    Noutsopoulos, Constantinos; Koumaki, Elena; Mamais, Daniel; Nika, Maria-Christina; Bletsou, Anna A; Thomaidis, Nikolaos S

    2015-01-01

    Endocrine disrupting chemicals (EDCs) and non-steroidal anti-inflammatory drugs (NSAIDs) are two groups of emerging pollutants the significance of which rests on their persistent detection in the aquatic environment and their possible adverse effects. Wastewater treatment plants are one of the major ways for transporting such chemicals in the aquatic environment. Chlorination is usually the last stage of treatment before wastewater being disposed to the aquatic environment. This work focuses on the evaluation of the effect of chlorine dose and specific wastewater characteristics (pH, total suspended solids and humic acids) on the removal of target EDCs and NSAIDs through chlorination. Another objective of this study is the identification of chlorination by-products of specific EDCs and NSAIDs and their dependence on contact time. Based on the results it is concluded that the effect of chlorine dose and humic acids concentration on the degradation of target compounds during chlorination is minimal. On the contrary, pH is a critical parameter which highly affects process performance. Moreover, it is concluded that not only the free available chlorine species, but also the properties of EDCs and NSAIDs under different pH conditions can affect chlorination process performance. The effect of TSS on the degradation of the target compounds during chlorination is more profound for chemicals with high Kow values and therefore higher affinity to partition to the particulate phase (i.e. nonylphenols, triclosan). Several degradation by-products were identified through chlorination of nonylphenol, bisphenol A and diclofenac. The dependence of these by-products on chlorination contact time is also demonstrated. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Effect of peracetic acid, ultraviolet radiation, nanofiltration-chlorine in the disinfection of a non conventional source of water (Tula Valley).

    Science.gov (United States)

    Trujillo, J; Barrios, J A; Jimenez, B

    2008-01-01

    Water supply for human consumption requires certain quality that reduces health risks to consumers. In this sense, the process of disinfection plays an important role in the elimination of pathogenic microorganisms. Even though chlorination is the most applied process based on its effectiveness and cost, its application is being questioned considering the formation of disinfection by-products (DBPs). Therefore, alternative disinfectants are being evaluated and some treatment processes have been proposed to remove DBPs precursors (organic matter. This paper reports the results of disinfection of a non conventional source of water (aquifer recharged unintentionally with raw wastewater) with peracetic acid (PAA) and ultraviolet radiation (UV) as well as nanofiltration (NF) followed by chlorination to produce safe drinking water. The results showed that a dose of 2 mg/L PAA was needed to eliminate total and faecal coliforms. For UV light, a dose of 12.40 mWs/cm2 reduced total and faecal coliforms below the detection limit. On the other hand, chlorine demand of water before NF was 1.1-1.3 mg/L with a trihalomethane formation potential (THMFP) of 118.62 microg/L, in contrast with chlorination after NF where the demand was 0.5 mg/L and THMFP of 17.64 microg/L. The recommended scheme is nanofiltration + chlorination.

  9. Formation of chlorinated organic compounds in fluidized bed combustion of recycled fuels

    International Nuclear Information System (INIS)

    Vesterinen, R.; Kallio, M.; Kirjalainen, T.; Kolsi, A.; Merta, M.

    1997-01-01

    Four tests of co-combustion of recycled fuels (REP) with peat and coal in the 15 kW fluidized bed reactor were performed. The recycled fuel was so-called dry fraction in four vessels sampling at Keltinmaeki. In three tests a part of peat energy was replaced with coal. The mixtures were prepared so that in all mixtures 25 % of energy was recycled fuel and 75 % was either peat or the mixture of peat and coal. The concentrations of polyaromatic hydrocarbons (PAH), polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) and chlorophenols decreased with increasing part of coal due to the increasing sulphur/chlorine ratio. Principal Component Analysis (PCA) and Partial Least Square regression analysis (PLS) showed that the chlorine, copper and sulphur contents of the fuel effected most on the concentrations of chlorophenols, chlorobenzenes, PCBs and PCDDs/PCDFs. Other variables influencing on a model were the lead concentration and the sulphur/chlorine ratio in fuel and the hydrogen chloride concentration of the flue gas. The concentrations of chlorophenols and chlorobenzenes were also significant for PCDD/PCDF concentrations in flue gas. The sulphur, chlorine, copper and chromium contents in fly ash and the temperature of the reactor influenced on the chlorophenol, chlorobenzene, PCB and PCDD/PCDF concentrations in fly ash. The chlorophenol and chlorobenzene contents in fly ash, the sulphur/chlorine ratio and the lead content in fuel, the sulphur dioxide, hydrogen chloride and carbon monoxide concentrations in flue gas had also influence on PCDD/PCDF concentrations in fly ash

  10. Impact of vegetation and ecosystems on chlorine(-36) cycling and its modeling: from simplified approaches towards more complex biogeochemical tools

    Science.gov (United States)

    Thiry, Yves; Redon, Paul-Olivier; Gustafsson, Malin; Marang, Laura; Bastviken, David

    2013-04-01

    Chlorine is very soluble at a global scale with chloride (Cl-), the dominating form. Because of its high mobility, chlorine is usually perceived as a good conservative tracer in hydrological studies and by analogy as little reactive in biosphere. Since 36Cl can be considered to have the same behaviour than stable Cl, a good knowledge of chlorine distribution between compartments of terrestrial ecosystems is sufficient to calibrate a specific activity model which supposes rapid dilution of 36Cl within the large pool of stable Cl and isotopic equilibrium between compartments. By assuming 36Cl redistribution similar to that of stable Cl at steady-state, specific activity models are simplified interesting tools for regulatory purposes in environmental safety assessment, especially in case of potential long term chronic contamination of agricultural food chain (IAEA, 2010). In many other more complex scenarios (accidental acute release, intermediate time frame, and contrasted natural ecosystems), new information and tools are necessary for improving (radio-)ecological realism, which entails a non-conservative behavior of chlorine. Indeed observed dynamics of chlorine in terrestrial ecosystems is far from a simple equilibrium notably because of natural processes of organic matter (SOM) chlorination mainly occurring in surface soils (Öberg, 1998) and mediated by microbial activities on a large extent (Bastviken et al. 2007). Our recent studies have strengthened the view that an organic cycle for chlorine should now be recognized, in addition to its inorganic cycle. Major results showed that: organochlorine (Clorg) formation occurs in all type of soils and ecosystems (culture, pasture, forest), leading to an average fraction of the total Cl pool in soil of about 80 % (Redon et al., 2012), chlorination in more organic soils over time leads to a larger Clorg pool and in turn to a possible high internal supply of inorganic chlorine (Clin) upon dechlorination. (Gustafsson et

  11. Electrochemical production and use of free chlorine for pollutant removal: an experimental design approach.

    Science.gov (United States)

    Antonelli, Raissa; de Araújo, Karla Santos; Pires, Ricardo Francisco; Fornazari, Ana Luiza de Toledo; Granato, Ana Claudia; Malpass, Geoffroy Roger Pointer

    2017-10-28

    The present paper presents the study of (1) the optimization of electrochemical-free chlorine production using an experimental design approach, and (2) the application of the optimum conditions obtained for the application in photo-assisted electrochemical degradation of simulated textile effluent. In the experimental design the influence of inter-electrode gap, pH, NaCl concentration and current was considered. It was observed that the four variables studied are significant for the process, with NaCl concentration and current being the most significant variables for free chlorine production. The maximum free chlorine production was obtained at a current of 2.33 A and NaCl concentrations in 0.96 mol dm -3 . The application of the optimized conditions with simultaneous UV irradiation resulted in up to 83.1% Total Organic Carbon removal and 100% of colour removal over 180 min of electrolysis. The results indicate that a systematic (statistical) approach to the electrochemical treatment of pollutants can save time and reagents.

  12. Chlorine Dioxide: The State of Science, Regulatory, Environmental Issues, and Case Histories

    National Research Council Canada - National Science Library

    Burton, Dennis

    2001-01-01

    The use of chlorine by electric utilities and other surface water users to inhibit biofouling and the chlorination of wastewater by POTWs to eliminate the discharge of pathogenic organisms are widespread practices...

  13. Distribution of nonionic organic compounds (highly volatile chlorinated hydrocarbons) in the unsaturated zone

    Energy Technology Data Exchange (ETDEWEB)

    Grathwohl, P.

    1988-01-01

    Nonpolar pollutants, e.g. highly volatile chlorinated hydrocarbons (HVCH) are more or less equally distributed among all three soil phases (solids, water, air) in the unsaturated zone. The sorption of HVCH on soil solids depends on the amount and type of organic matter in the soil. For wet material an additional sorption on mineral surfaces can be neglected, since all possible sites for sorption are occupied by water. Provided the partition-coefficients or sorption-constants are known the contamination of the whole system can be evaluated from the pollutant concentration in the soil air; in addition it is possible to estimate a groundwater risk.

  14. Properties of cellulose nanocrystals from oil palm trunk isolated by total chlorine free method.

    Science.gov (United States)

    Lamaming, Junidah; Hashim, Rokiah; Leh, Cheu Peng; Sulaiman, Othman

    2017-01-20

    Cellulose nanocrystals were isolated from oil palm trunk by total chlorine free method. The samples were either water pre-hydrolyzed or non-water pre-hydrolyzed, subjected to soda pulping, acidified and ozone bleached. Cellulose and cellulose nanocrystal (CNC) physical, chemical, thermal properties, and crystallinity index were investigated by composition analysis, scanning electron microscopy, transmission electron microscopy, fourier transform infrared, thermogravimetric analysis and X-ray diffraction. Water pre-hydrolysis reduced lignin (process compared to non-fibrillated of non-water pre-hydrolyzed cellulose. Water pre-hydrolysis improved final CNC crystallinity (up to 75%) compared to CNC without water pre-hydrolysis crystallinity (69%). Cellulose degradation was found to occur during ozone bleaching stage but CNC showed an increase in crystallinity after acid hydrolysis. Thus, oil palm trunk CNC can be potentially applied in pharmaceutical, food, medical and nanocomposites. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Removal of Intermediate Aromatic Halogenated DBPs by Activated Carbon Adsorption: A New Approach to Controlling Halogenated DBPs in Chlorinated Drinking Water.

    Science.gov (United States)

    Jiang, Jingyi; Zhang, Xiangru; Zhu, Xiaohu; Li, Yu

    2017-03-21

    During chlorine disinfection of drinking water, chlorine may react with natural organic matter (NOM) and bromide ion in raw water to generate halogenated disinfection byproducts (DBPs). To mitigate adverse effects from DBP exposure, granular activated carbon (GAC) adsorption has been considered as one of the best available technologies for removing NOM (DBP precursor) in drinking water treatment. Recently, we have found that many aromatic halogenated DBPs form in chlorination, and they act as intermediate DBPs to decompose and form commonly known DBPs including trihalomethanes and haloacetic acids. In this work, we proposed a new approach to controlling drinking water halogenated DBPs by GAC adsorption of intermediate aromatic halogenated DBPs during chlorination, rather than by GAC adsorption of NOM prior to chlorination (i.e., traditional approach). Rapid small-scale column tests were used to simulate GAC adsorption in the new and traditional approaches. Significant reductions of aromatic halogenated DBPs were observed in the effluents with the new approach; the removals of total organic halogen, trihalomethanes, and haloacetic acids by the new approach always exceeded those by the traditional approach; and the effluents with the new approach were considerably less developmentally toxic than those with the traditional approach. Our findings indicate that the new approach is substantially more effective in controlling halogenated DBPs than the traditional approach.

  16. Photodynamic tissue adhesion with chlorin(e6) protein conjugates.

    Science.gov (United States)

    Khadem, J; Veloso, A A; Tolentino, F; Hasan, T; Hamblin, M R

    1999-12-01

    To test the hypothesis that a photodynamic laser-activated tissue solder would perform better in sealing scleral incisions when the photosensitizer was covalently linked to the protein than when it was noncovalently mixed. Conjugates and mixtures were prepared between the photosensitizer chlorin(e6) and various proteins (albumin, fibrinogen, and gelatin) in different ratios and used to weld penetrating scleral incisions made in human cadaveric eyes. A blue-green (488-514 nm) argon laser activated the adhesive, and the strength of the closure was measured by increasing the intraocular pressure until the wound showed leakage. Both covalent conjugates and noncovalent mixtures showed a light dose-dependent increase in leaking pressure. A preparation of albumin chlorin(e6) conjugate with additional albumin added (2.5 protein to chlorin(e6) molar ratio) showed significantly higher weld strength than other protein conjugates and mixtures. This is the first report of dye-protein conjugates as tissue solders. These conjugates may have applications in ophthalmology.

  17. Formation of bromate and halogenated disinfection byproducts during chlorination of bromide-containing waters in the presence of dissolved organic matter and CuO

    KAUST Repository

    Liu, Chao; Croue, Jean-Philippe

    2015-01-01

    Previous studies showed that significant bromate (BrO3-) can be formed via the CuO-catalyzed disproportionation of hypobromous acid (HOBr) pathway. In this study, the influence of CuO on the formation of BrO3- and halogenated disinfection byproducts (DBPs) (e.g., trihalomethanes, THMs and haloacetic acids, HAAs) during chlorination of six dissolved organic matter (DOM) isolates was investigated. Only in the presence of slow reacting DOM (from treated Colorado River water, i.e., CRW-BF-HPO), significant BrO3- formation is observed, which competes with bromination of DOM (i.e., THM and HAA formation). Reactions between HOBr and 12 model compounds in the presence of CuO indicates that CuO-catalyzed HOBr disproportionation is completely inhibited by fast reacting phenols, while it predominates in the presence of practically unreactive compounds (acetone, butanol, propionic, and butyric acids). In the presence of slow reacting di- and tri-carboxylic acids (oxalic, malonic, succinic, and citric acids), BrO3- formation varies, depending on its competition with bromoform and dibromoacetic acid formation (i.e., bromination pathway). The latter pathway can be enhanced by CuO due to the activation of HOBr. Therefore, increasing CuO dose (0-0.2 g L-1) in a reaction system containing chlorine, bromide, and CRW-BF-HPO enhances the formation of BrO3-, total THMs and HAAs. Factors including pH and initial reactant concentrations influence the DBP formation. These novel findings have implications for elevated DBP formation during transportation of chlorinated waters in copper-containing distribution systems.

  18. Formation of bromate and halogenated disinfection byproducts during chlorination of bromide-containing waters in the presence of dissolved organic matter and CuO

    KAUST Repository

    Liu, Chao

    2015-12-02

    Previous studies showed that significant bromate (BrO3-) can be formed via the CuO-catalyzed disproportionation of hypobromous acid (HOBr) pathway. In this study, the influence of CuO on the formation of BrO3- and halogenated disinfection byproducts (DBPs) (e.g., trihalomethanes, THMs and haloacetic acids, HAAs) during chlorination of six dissolved organic matter (DOM) isolates was investigated. Only in the presence of slow reacting DOM (from treated Colorado River water, i.e., CRW-BF-HPO), significant BrO3- formation is observed, which competes with bromination of DOM (i.e., THM and HAA formation). Reactions between HOBr and 12 model compounds in the presence of CuO indicates that CuO-catalyzed HOBr disproportionation is completely inhibited by fast reacting phenols, while it predominates in the presence of practically unreactive compounds (acetone, butanol, propionic, and butyric acids). In the presence of slow reacting di- and tri-carboxylic acids (oxalic, malonic, succinic, and citric acids), BrO3- formation varies, depending on its competition with bromoform and dibromoacetic acid formation (i.e., bromination pathway). The latter pathway can be enhanced by CuO due to the activation of HOBr. Therefore, increasing CuO dose (0-0.2 g L-1) in a reaction system containing chlorine, bromide, and CRW-BF-HPO enhances the formation of BrO3-, total THMs and HAAs. Factors including pH and initial reactant concentrations influence the DBP formation. These novel findings have implications for elevated DBP formation during transportation of chlorinated waters in copper-containing distribution systems.

  19. Chlorination or monochloramination: Balancing the regulated trihalomethane formation and microbial inactivation in marine aquaculture waters

    KAUST Repository

    Sanawar, Huma

    2017-08-15

    Disinfection methods like chlorination are increasingly used to sanitize the water, equipment, tools and surfaces in aquaculture facilities. This is to improve water quality, and to maintain a hygienic environment for the well-being of aquatic organisms. However, chlorination can result in formation of regulated disinfection byproducts (DBPs) that can be carcinogenic and toxic. This study aims to evaluate if an optimal balance can be achieved between minimal regulated DBP formation and effective microbial inactivation with either chlorination or monochloramination for application in the Red Sea aquaculture waters. Upon chlorination, the concentration of total trihalomethanes (THMs), primarily bromoform, exceeded the regulatory limit of 80μg/L even at the lowest tested concentration of chlorine (1mg/L) and contact time (1h). Comparatively, regulated THMs concentration was only detectable at 30μg/L level in one of the three sets of monochloraminated marine aquaculture waters. The average log reduction of antibiotic-resistant bacteria (ARB) by chlorine ranged from 2.3-log to 3.2-log with different contact time. The average log reduction of ARB by monochloramine was comparatively lower at 1.9 to 2.9-log. Although viable Staphylococcus aureus was recovered from monochloraminated samples as opposed to chlorinated samples, the abundance of S. aureus was not high enough to result in any significant microbial risks. Both chlorination and monochloramination did not provide any significant improvement in the reduction of antibiotic resistance genes (ARGs). This study demonstrates that a systematic evaluation is needed to determine the optimal disinfectant required to balance both microbial and chemical risks. Compared to chlorine, monochloramine may be a more appropriate disinfection strategy for the treatment of aquaculture effluents prior to discharge or for recirculatory use in the aquaculture facility.

  20. Chloroxyanion residues in cantaloupe and tomatoes after chlorine dioxide gas sanitation

    Science.gov (United States)

    Chlorine dioxide gas is effective at cleansing fruits and vegetables of bacterial pathogens and(or) rot organisms, but few data are available on chemical residues remaining subsequent to chlorine gas treatment. Therefore, studies were conducted to quantify chlorate and perchlorate residues after tom...

  1. Chlorination Revisited: Does Cl- Serve as a Catalyst in the Chlorination of Phenols?

    Science.gov (United States)

    Lau, Stephanie S; Abraham, Sonali M; Roberts, A Lynn

    2016-12-20

    The aqueous chlorination of (chloro)phenols is one of the best-studied reactions in the environmental literature. Previous researchers have attributed these reactions to two chlorine species: HOCl (at circum-neutral and high pH) and H 2 OCl + (at low pH). In this study, we seek to examine the roles that two largely overlooked chlorine species, Cl 2 and Cl 2 O, may play in the chlorination of (chloro)phenols. Solution pH, chloride concentration, and chlorine dose were systematically varied in order to assess the importance of different chlorine species as chlorinating agents. Our findings indicate that chlorination rates at pH pH 6.0 and a chlorine dose representative of drinking water treatment, Cl 2 O is predicted to have at best a minor impact on chlorination reactions, whereas Cl 2 may contribute more than 80% to the overall chlorination rate depending on the (chloro)phenol identity and chloride concentration. While it is not possible to preclude H 2 OCl + as a chlorinating agent, we were able to model our low-pH data by considering Cl 2 only. Even traces of chloride can generate sufficient Cl 2 to influence chlorination kinetics, highlighting the role of chloride as a catalyst in chlorination reactions.

  2. [Chlorine speciation and concentration in cultivated soil in the northeastern China studied by X-ray absorption near edge structure].

    Science.gov (United States)

    Li, Jing; Lang, Chun-Yan; Ma, Ling-Ling; Xu, Dian-Dou; Zheng, Lei; Lu, Yu-Nanz; Cui Li-Rui; Zhang, Xiao-Meng

    2014-10-01

    A procedure has been proposed to determine chlorine speciation and concentration in soil with X-ray absorption near edge structure (XANES), and this method was applied to study the cultivated soil (bog, dark brown and black cultivated soil) in the Northeastern China. Qualitative analysis was carried out by least-squares fitting of sample spectra with standard spectra of three model compounds (NaCl, 3-chloropropionic acid, chlorophenol red). Linear correlation between the absolute fluorescence intensity of a series of NaCl standards and the Cl concentration was used as quantification standard for measuring the total Cl concentration in samples. The detection limits,relative standard deviation (RSD), recoveries were 2 mg · kg(-1), 0%-5% and 77%-133%, respectively. The average concentration of total Cl was 19 mg · kg(-1). The average relative content was as high as 61% of organochlorine with the concentration of 1-2 times as high as the concentration of inorganic chloride. The distribution trend of the total Cl, inorganic chloride and organic chlorine in different types of soil was: bog arable soil > dark brown soil > black soil. In conclusion, XANES is a reliable method to nondestructively characterize the speciation and concentration of chlorine in soil, which would provide some basic data for the future study of the chlorine's biogeochemical transformations.

  3. A review of potential neurotoxic mechanisms among three chlorinated organic solvents

    International Nuclear Information System (INIS)

    Bale, Ambuja S.; Barone, Stan; Scott, Cheryl Siegel; Cooper, Glinda S.

    2011-01-01

    The potential for central nervous system depressant effects from three widely used chlorinated solvents, trichloroethylene (TCE), perchloroethylene (PERC), and dichloromethane (DCM), has been shown in human and animal studies. Commonalities of neurobehavioral and neurophysiological changes for the chlorinated solvents in in vivo studies suggest that there is a common mechanism(s) of action in producing resultant neurotoxicological consequences. The purpose of this review is to examine the mechanistic studies conducted with these chlorinated solvents and to propose potential mechanisms of action for the different neurological effects observed. Mechanistic studies indicate that this solvent class has several molecular targets in the brain. Additionally, there are several pieces of evidence from animal studies indicating this solvent class alters neurochemical functions in the brain. Although earlier evidence indicated that these three chlorinated solvents perturb the lipid bilayer, more recent data suggest an interaction between several specific neuronal receptors produces the resultant neurobehavioral effects. Collectively, TCE, PERC, and DCM have been reported to interact directly with several different classes of neuronal receptors by generally inhibiting excitatory receptors/channels and potentiating the function of inhibitory receptors/channels. Given this mechanistic information and available studies for TCE, DCM, and PERC, we provide hypotheses on primary targets (e.g. ion channel targets) that appear to be most influential in producing the resultant neurological effects. - Research highlights: → Comparison of neurological effects among TCE, PERC, and DCM. → Correlation of mechanistic findings to neurological effects. → Data support that TCE, PERC, and DCM interact with several ion channels to produce neurological changes.

  4. [Formation mechanism and chemical safety of nonintentional chemical substances present in chlorinated drinking water and wastewater].

    Science.gov (United States)

    Onodera, Sukeo

    2010-09-01

    This paper reviews the formation mechanism and chemical safety of nonintentional chemical substances (NICS) present in chlorine-treated water containing organic contaminants. Undesirable compounds, i.e., NICS, may be formed under certain conditions when chlorine reacts with organic matter. The rate and extent of chlorine consumption with organics are strongly dependent on their chemical structures, particularly whether double bonds or sulfur and nitrogen atoms occur in the molecules. Organothiophosphorus pesticides (P=S type) are easily oxidized to their phosphorus compounds (P=O type) in chlorinated water containing HOCl as little as 0.5 mg/l, resulting in an increase in cholinesterase-inhibitory activity. Chlorination of phenols in water also produces a series of highly chlorinated compounds, including chlorophenols, chloroquinones, chlorinated carboxylic acids, and polychlorinated phenoxyphenols (PCPPs). In some of these chloroquinones, 2,6-dichloroalkylsemiquinones exhibit a strong mutagenic response as do positive controls used in the Ames test. 2-phenoxyphenols in these PCPPs are particularly interesting, as they are present in the chlorine-treated phenol solution and they are also precursors (predioxins) of the highly toxic chlorinated dioxins. Polynuclear aromatic hydrocarbons (PAHs) were found to undergo chemical changes due to hypochlorite reactions to give chloro-substituted PAHs, oxygenated (quinones) and hydroxylated (phenols) compounds, but they exhibit a lower mutagenic response. In addition, field work was performed in river water and drinking water to obtain information on chemical distribution and their safety, and the results are compared with those obtained in the model chlorination experiments.

  5. Constraining wintertime sources of inorganic chlorine over the northeast United States

    Science.gov (United States)

    Haskins, J.; Jaegle, L.; Shah, V.; Lopez-Hilfiker, F.; Lee, B. H.; Campuzano Jost, P.; Schroder, J. C.; Day, D. A.; Fiddler, M. N.; Holloway, J. S.; Sullivan, A.; Veres, P. R.; Weber, R. J.; Dibb, J. E.; Brown, S. S.; Jimenez, J. L.; Thornton, J. A.

    2017-12-01

    Wintertime multiphase chlorine chemistry is thought to play a significant role in the regional distribution of oxidants, the lifetime of VOCs, and the transport of NOx downwind of urban sources. However, the sources and chemistry of reactive chlorine remain highly uncertain. During the WINTER 2015 aircraft campaign, the inorganic chlorine budget was dominated by HCl (g) and total particulate chloride, accounting for greater than 85% of the total chlorine budget within the boundary layer. The total concentration of inorganic chlorine compounds found over marine regions was 1014 pptv and 609 pptv over continental regions with variability found to be driven by changes in meteorological conditions, particle liquid water content, particle pH, and proximity to large anthropogenic sources. However, displacement of particle chloride was often not a large enough source to fully explain the concentrations of gas phase Cly compounds. We use the GEOS-Chem global chemical transport model to simulate the emissions, gas-particle partitioning, and downwind transport and deposition of Cly during winter. Simulated concentrations of HCl, particle chloride, and other dominant Cly compounds are compared to measurements made during the WINTER aircraft campaign. The relative roles of Cly sources from sea-salt aerosol and anthropogenic sources such as power plants, biomass burning and road salt are explored.

  6. The formation and fate of chlorinated organic substances in temperate and boreal forest soils

    Czech Academy of Sciences Publication Activity Database

    Clarke, N.; Fuksová, Květoslava; Gryndler, Milan; Lachmanová, Z.; Liste, H. H.; Rohlenová, Jana; Schroll, R.; Schröder, P.; Matucha, Miroslav

    2009-01-01

    Roč. 16, č. 2 (2009), s. 127-143 ISSN 0944-1344 Institutional research plan: CEZ:AV0Z50380511; CEZ:AV0Z50200510 Keywords : Carbon cycle * Chlorination * Chlorine biogeochemistry Subject RIV: GK - Forestry Impact factor: 2.411, year: 2009

  7. Vanadium Chloroperoxidases: The Missing Link in the Formation of Chlorinated Compounds and Chloroform in the Terrestrial Environment?

    Science.gov (United States)

    Wever, Ron; Barnett, Phil

    2017-08-17

    It is well established that the majority of chlorinated organic substances found in the terrestrial environment are produced naturally. The presence of these compounds in soils is not limited to a single ecosystem. Natural chlorination is also a widespread phenomenon in grasslands and agricultural soils typical for unforested areas. These chlorinated compounds are formed from chlorination of natural organic matter consisting of very complex chemical structures, such as lignin. Chlorination of several lignin model compounds results in the intermediate formation of trichloroacetyl-containing compounds, which are also found in soils. These decay, in general, through a haloform-type reaction mechanism to CHCl 3 . Upon release into the atmosphere, CHCl 3 will produce chlorine radicals through photolysis, which will, in turn, lead to natural depletion of ozone. There is evidence that fungal chloroperoxidases able to produce HOCl are involved in the chlorination of natural organic matter. The objective of this review is to clarify the role and source of the various chloroperoxidases involved in the natural formation of CHCl 3 . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Aerobic biodegradation of a mixture of chlorinated organics in ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-07-04

    Jul 4, 2008 ... DCM; and 0.232 – 0.588 week-1 for DCA in both water microcosms with higher degradation generally observed in New ... Key words: Bioaugmentation, biodegradation, biostimulation, chlorinated aliphatic hydrocarbons, microcosms. ... culture (OD of 1 at λ600) of the consortia was added separately to.

  9. Potential for formation of disinfection by-products from storage of chlorinated surface water in the Basalt aquifer near Fallon, Nevada

    Science.gov (United States)

    Fram, Miranda S.; Maurer, Douglas K.; Lico, Michael S.

    2005-01-01

    Increased pumpage from a basalt aquifer near Fallon, Nevada, has caused its water levels to decline and has induced changes in the quality of water pumped from the basalt. The aquifer is the sole source of water for municipal supply to the city of Fallon, the Naval Air Station Fallon, and the Fallon Paiute-Shoshone Tribe. These changes may be mitigated by storage of surface water in the basalt for subsequent use. Because chlorination of the surface water may be required for storage, the U.S. Geological Survey, in cooperation with the Fallon Paiute-Shoshone Tribe, made laboratory tests using laboratory carbon-organic-free water, surface-water, ground-water, and basaltic-rock samples to determine the potential for formation of disinfection by-products. Experiments with water samples only (no rock and no chlorine) indicated no change in dissolved-organic-carbon (DOC) concentrations over a 20-day reaction period; whereas, all experiments using rock, water, and no chlorine indicated an increase in DOC concentrations. The greatest increase in DOC concentrations for all three water samples occurred in experiments with the rock samples from outcrops on Rattlesnake Hill. Experiments with water only and chlorine yielded a total trihalomethane (THM) concentration of 97.4 ?g/L for the ground-water sample and 347 ?g/L for the surface-water sample. Experiments with mixtures of water, rocks, and chlorine indicated that reactions with the rock consumed chlorine and released significant amounts of organic carbon from the rock, increasing the DOC concentration in the water. The organic carbon in the rocks likely is associated with the secondary clay minerals that line vesicles and fractures in the rocks. THM concentrations were greatest, from 335 to 909 ?g/L, for surface water equilibrated with rock samples from Rattlesnake Hill. However, the concentration of chlorine required to produce these high THM concentrations ranged from 18 to 84 mg/L. The results of the experiments suggest

  10. Bacterial Community Shift Drives Antibiotic Resistance Promotion during Drinking Water Chlorination.

    Science.gov (United States)

    Jia, Shuyu; Shi, Peng; Hu, Qing; Li, Bing; Zhang, Tong; Zhang, Xu-Xiang

    2015-10-20

    For comprehensive insights into the effects of chlorination, a widely used disinfection technology, on bacterial community and antibiotic resistome in drinking water, this study applied high-throughput sequencing and metagenomic approaches to investigate the changing patterns of antibiotic resistance genes (ARGs) and bacterial community in a drinking water treatment and distribution system. At genus level, chlorination could effectively remove Methylophilus, Methylotenera, Limnobacter, and Polynucleobacter, while increase the relative abundance of Pseudomonas, Acidovorax, Sphingomonas, Pleomonas, and Undibacterium in the drinking water. A total of 151 ARGs within 15 types were detectable in the drinking water, and chlorination evidently increased their total relative abundance while reduced their diversity in the opportunistic bacteria (p < 0.05). Residual chlorine was identified as the key contributing factor driving the bacterial community shift and resistome alteration. As the dominant persistent ARGs in the treatment and distribution system, multidrug resistance genes (mainly encoding resistance-nodulation-cell division transportation system) and bacitracin resistance gene bacA were mainly carried by chlorine-resistant bacteria Pseudomonas and Acidovorax, which mainly contributed to the ARGs abundance increase. The strong correlation between bacterial community shift and antibiotic resistome alteration observed in this study may shed new light on the mechanism behind the chlorination effects on antibiotic resistance.

  11. Fate of chlorinated fatty acids in migrating sockeye salmon and their transfer to arctic grayling

    DEFF Research Database (Denmark)

    Mu, Huiling; Ewald, G.; Nilsson, E.

    2004-01-01

    To investigate whether biotransport constitutes an entry route into pristine ecosystems for nonpersistent, nonvolatile xenobiotic compounds, extractable organically bound halogen in sockeye salmon (Oncorhynchus nerka) from Alaska was determined before and after spawning migration. The major...... organohalogen compounds in the salmon were halogenated fatty acids, predominantly chlorinated species that accounted for up to 35% of the extractable, organically bound chlorine (EOCl) in the fish tissues. The amount of chlorinated fatty acids in the salmon muscle decreased as a result of spawning migration....... The decrease was correlated with that of triacylglycerols in the salmon muscle, indicating the chlorinated fatty acids to be mobilized and metabolized to approximately the same extent as the other fatty acids. Chlorinated fatty acids were also transferred to the maturing roe in a manner similar...

  12. Fraction of organic carbon predicts labile desorption rates of chlorinated organic pollutants in laboratory-spiked geosorbents.

    Science.gov (United States)

    Ginsbach, Jake W; Killops, Kato L; Olsen, Robert M; Peterson, Brittney; Dunnivant, Frank M

    2010-05-01

    The resuspension of large volumes of sediments that are contaminated with chlorinated pollutants continues to threaten environmental quality and human health. Whereas kinetic models are more accurate for estimating the environmental impact of these events, their widespread use is substantially hampered by the need for costly, time-consuming, site-specific kinetics experiments. The present study investigated the development of a predictive model for desorption rates from easily measurable sorbent and pollutant properties by examining the relationship between the fraction of organic carbon (fOC) and labile release rates. Duplicate desorption measurements were performed on 46 unique combinations of pollutants and sorbents with fOC values ranging from 0.001 to 0.150. Labile desorption rate constants indicate that release rates predominantly depend upon the fOC in the geosorbent. Previous theoretical models, such as the macro-mesopore and organic matter (MOM) diffusion model, have predicted such a relationship but could not accurately predict the experimental rate constants collected in the present study. An empirical model was successfully developed to correlate the labile desorption rate constant (krap) to the fraction of organic material where log(krap)=0.291-0.785 . log(fOC). These results provide the first experimental evidence that kinetic pollution releases during resuspension events are governed by the fOC content in natural geosorbents. Copyright (c) 2010 SETAC.

  13. Uptake, turnover and distribution of chlorinated fatty acids in aquatic biota

    Energy Technology Data Exchange (ETDEWEB)

    Bjoern, Helena

    1999-09-01

    Chlorinated fatty acids (CIFAs) are the major contributors of extractable, organically bound chlorine in fish lipids. A known anthropogenic source of CIFAs is chlorine bleached pulp production. Additional anthropogenic sources may exist, e.g., chlorine-containing discharge from industrial and household waste and they may also occur naturally. CIFAs have a wide geographic distribution. They have, for instance, been identified in fish both from Alaskan and Scandinavian waters. In toxicological studies of CIFAs, the most pronounced effects have been found in reproductive related processes. CIFAs have also been shown to disrupt cell membrane functions. The present study was carried out to further characterise the ecotoxicological properties of CIFAs and their presence in biota. To investigate the biological stability of CIFAs, two experiments were carried out using radiolabelled chlorinated and non-chlorinated fatty acids. In both experiments, CIFAs were taken up from food by fish and assimilated to lipids. From the first experiment it was concluded that the chlorinated fatty acid investigated was turned over in the fish to a lower degree than the non-chlorinated analogue. In the second experiment, the transfer of a chlorinated fatty acid was followed over several trophic levels and the chlorinated fatty acid was transferred to the highest trophic level. In samples with differing loads of persistent organic pollutants (POPs) from both fish and marine mammals, high concentrations and diversity of CIFAs were detected. This was also observed in samples with low POP concentration. Chlorohydroxy fatty acids made up a considerable portion of the CIFAs in certain samples, both from limnic fish and marine mammals. CIFAs in fish were found to be bound in complex lipids such as triacylglycerols (storage lipids) and phospholipids, as well as in acyl sterols (membrane lipids). In the marine mammals investigated, high concentrations of CIFAs were mainly bound in phospholipids. If

  14. Induction of prophage lambda by chlorinated organics: Detection of some single-species/single-site carcinogens

    Energy Technology Data Exchange (ETDEWEB)

    DeMarini, D.M.; Brooks, H.G. (Environmental Protection Agency, Research Triangle Park, NC (United States))

    1992-01-01

    Twenty-eight chlorinated organic compounds were evaluated for their ability to induce DNA damage using the Microscreen prophage-induction assay in Escherichia coli. Comparison of the performance characteristics of the prophage-induction and Salmonella assays to rodent carcinogenicity assays showed that the prophage-induction assay had a somewhat higher specificity than did the Salmonella assay (70% vs. 50%); sensitivity, concordance, and positive and negative predictivity were similar for the two microbial assays. The Microscreen prophage-induction assay failed to detect eight carcinogens, perhaps due to toxicity or other unknown factors; five of these eight carcinogens were detected by the Salmonella assay. However, the prophage-induction assay did detect six carcinogens that were not detected by the Salmonella assay, and five of these were single-species, single-site carcinogens, mostly mouse liver carcinogens. Some of these carcinogens, such as the chloroethanes, produce free radicals, which may be the basis for their carcinogenicity and ability to induce prophage. The prophage-induction (or other SOS) assay may be useful in identifying some genotoxic chlorinated carcinogens that induce DNA damage that do not revert the standard Salmonella tester strains.

  15. Chlorine levels and species in fine and size resolved atmospheric particles by X-ray absorption near-edge structure spectroscopy analysis in Beijing, China.

    Science.gov (United States)

    Ouyang, Jie; Yang, Guo-Sheng; Ma, Ling-Ling; Luo, Min; Zheng, Lei; Huo, Qing; Zhao, Yi-Dong; Hu, Tian-Dou; Cai, Zhen-Feng; Xu, Dian-Dou

    2018-04-01

    An understanding of the species of chlorine is crucial in the metropolis-Beijing, which is suffering serious haze pollution with high frequency. Particulate Matters (PMs) with five different sizes were collected in Beijing from July 2009 to March 2016, and characterized non-destructively by X-ray absorption near edge structure spectroscopy. PM 2.5 contributed for the major PMs mass in spring and summer, PM 0.5-1.0 and PM 1.0-2.5 contributed for the major PMs mass in autumn and winter. The concentrations of the three chlorine species were in the order of inorganic chlorine (Cl inorg ) > aliphatic chlorine (Cl ali ) > aromatic chlorine (Cl aro ), indicating that Cl inorg constituted the primary chlorine fraction and less toxic Cl ali constituted the primary total organic chlorine (Cl ali  + Cl aro , abbreviated as Cl org ) in the PMs in Beijing. In addition, these three chlorine species exhibited identical seasonal variation in PM 2.5 : winter > autumn > spring > summer. Wet precipitation is an important factor to result in the lower mass concentrations of these three chlorine species in summer. The temporal variations of both size resolved PM mass concentrations and chlorine species concentrations suggested that the air pollution prevention and control in Beijing has just won initial success. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Health effects from swimming training in chlorinated pools and the corresponding metabolic stress pathways.

    Directory of Open Access Journals (Sweden)

    Jiang-Hua Li

    Full Text Available Chlorination is the most popular method for disinfecting swimming pool water; however, although pathogens are being killed, many toxic compounds, called disinfection by-products (DBPs, are formed. Numerous epidemiological publications have associated the chlorination of pools with dysfunctions of the respiratory system and with some other diseases. However, the findings concerning these associations are not always consistent and have not been confirmed by toxicological studies. Therefore, the health effects from swimming in chlorinated pools and the corresponding stress reactions in organisms are unclear. In this study, we show that although the growth and behaviors of experimental rats were not affected, their health, training effects and metabolic profiles were significantly affected by a 12-week swimming training program in chlorinated water identical to that of public pools. Interestingly, the eyes and skin are the organs that are more directly affected than the lungs by the irritants in chlorinated water; instead of chlorination, training intensity, training frequency and choking on water may be the primary factors for lung damage induced by swimming. Among the five major organs (the heart, liver, spleen, lungs and kidneys, the liver is the most likely target of DBPs. Through metabolomics analysis, the corresponding metabolic stress pathways and a defensive system focusing on taurine were presented, based on which the corresponding countermeasures can be developed for swimming athletes and for others who spend a lot of time in chlorinated swimming pools.

  17. Characterization of the bacterial community in shower water before and after chlorination

    KAUST Repository

    Peters, Marjolein C. F. M.; Keuten, Maarten G. A.; Knezev, Aleksandra; van Loosdrecht, Mark C. M.; Vrouwenvelder, Johannes S.; Rietveld, Luuk C.; de Kreuk, Merle K.

    2017-01-01

    Gram-negative. The dominant bacterial families with a relative abundance of ≥10% of the total (non-chlorinated and chlorinated) communities were Flavobacteriaceae (24–21%), Xanthomonadaceae (23–24%), Moraxellaceae (12–11%) and Pseudomonadaceae (10

  18. Chlorine and bromine contents in tobacco and tobacco smoke

    International Nuclear Information System (INIS)

    Haesaenen, E.; Manninen, P.K.G.; Himberg, K.; Vaeaetaeinen, V.

    1990-01-01

    The chlorine and bromine contents in tobacco and tobacco smoke in both the particulate and gaseous phases were studied by neutron activation analysis. Eleven popular brands of western filter cigarettes were tested. Methyl chloride and methyl bromide concentrations were measured in the gaseous phase in two leading brands in Finland. The results suggest that the mainstream smoke from one cigarette conveys into the lungs about 150 μg chlorine and about 5 μg bromine. Probably most of the chlorine and bromine is in the form of organic compounds and the main components are methyl chloride and methyl bromide. (author) 14 refs.; 1 tab

  19. Bacterial communities in the collection and chlorinated distribution sections of a drinking water system in Budapest, Hungary.

    Science.gov (United States)

    Homonnay, Zalán G; Török, György; Makk, Judit; Brumbauer, Anikó; Major, Eva; Márialigeti, Károly; Tóth, Erika

    2014-07-01

    Bacterial communities of a bank-filtered drinking water system were investigated by aerobic cultivation and clone library analysis. Moreover, bacterial communities were compared using sequence-aided terminal restriction fragment length polymorphism (T-RFLP) fingerprinting at ten characteristic points located at both the collecting and the distributing part of the water supply system. Chemical characteristics of the samples were similar, except for the presence of chlorine residuals in the distribution system and increased total iron concentration in two of the samples. Assimilable organic carbon (AOC) concentration increased within the collection system, it was reduced by chlorination and it increased again in the distribution system. Neither fecal indicators nor pathogens were detected by standard cultivation techniques. Chlorination reduced bacterial diversity and heterotrophic plate counts. Community structures were found to be significantly different before and after chlorination: the diverse communities in wells and the collection system were dominated by chemolithotrophic (e.g., Gallionella and Nitrospira) and oligocarbophilic-heterotrophic bacteria (e.g., Sphingomonas, Sphingopyxis, and Bradyrhizobium). After chlorination in the distribution system, the most characteristic bacterium was related to the facultative methylotrophic Methylocella spp. Communities changed within the distribution system too, Mycobacterium spp. or Sphingopyxis spp. became predominant in certain samples. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Chlorinated drinking water for lightweight laying hens

    Directory of Open Access Journals (Sweden)

    A.F. Schneider

    Full Text Available ABSTRACT The study aimed to evaluate the effect of different levels of chlorine in drinking water of laying hens on zootechnical performance, eggs shell quality, hemogasometry levels and calcium content in tibia. 144 Hy-Line laying hens, 61 weeks old, were used distributed in 24 metabolism cages. They were subjected to water diets, for a period of 28 days, using sodium hypochlorite as a chlorine source in order to obtain the following concentrations: 5ppm (control, 20ppm, 50ppm, and 100ppm. Their performance was evaluated through water consumption, feed intake, egg production and weight, egg mass, feed conversion. Shell quality was measured by specific gravity. At the end of the experiment, arterial blood was collected for blood gas level assessment and a poultry of each replicate was sacrificed to obtain tibia and calcium content measurement. There was a water consumption reduction from 20ppm of chlorine and feed intake reduction in poultry receiving water with 100ppm of chlorine. The regression analysis showed that the higher the level of chlorine in water, the higher the reduction in consumption. There were no differences in egg production and weight, egg mass, feed conversion, specific gravity, tibia calcium content, and hemogasometry levels (hydrogenionic potential, carbon dioxide partial pressure, oxygen partial pressure, sodium, potassium, chloride, bicarbonate, carbon dioxide total concentration, anion gap and oxygen saturation. The use of levels above 5ppm of chlorine is not recommended in the water of lightweight laying hens.

  1. Correlation between Soil Organic Matter, Total Organic Matter and ...

    African Journals Online (AJOL)

    A total of four sites distributed in different soils of Kelantan State, Malaysia was identified for the study. Soils were collected by depth interval of 0-10cm, 10-20cm and 20-30cm. The correlation of soil organic matter (SOM) content, total organic carbon (TOC) content, water content and soils texture for industrial area at ...

  2. Development of a comprehensive analytical method for the determination of chlorinated paraffins in spruce needles applied in passive air sampling

    International Nuclear Information System (INIS)

    Iozza, Saverio; Schmid, Peter; Oehme, Michael

    2009-01-01

    Conifer needles are used for the monitoring of atmospheric persistent organic pollutants. The objective of the present study was to develop a method for the detection of airborne chlorinated paraffins (CPs) using spruce needles as a passive sampler. The method is based on liquid extraction of the cuticular wax layer followed by chromatographic fractionation and detection of CPs using two different GCMS techniques. Total CP concentrations (sum of short (SCCP), medium (MCCP) and long chain CPs (LCCP)) were determined by EI-MS/MS. SCCP and MCCP levels as well as congener group patterns (n-alkane chain length, chlorine content) could be evaluated using ECNI-LRMS. For the first time, data on environmental airborne CPs on spruce needles taken within the Monitoring Network in the Alpine Region for Persistent and other Organic Pollutants (MONARPOP) are presented providing evidence that spruce needles are a suitable passive sampling system for the monitoring of atmospheric CPs. - A developed method for chlorinated paraffins (CPs) provided evidence that spruce needles are a suitable passive sampling system for the monitoring of atmospheric CPs.

  3. Evaluation of Organic Proxies for Quantifying Past Primary Productivity

    Science.gov (United States)

    Raja, M.; Rosell-Melé, A.; Galbraith, E.

    2017-12-01

    Ocean primary productivity is a key element of the marine carbon cycle. However, its quantitative reconstruction in the past relies on the use of biogeochemical models as the available proxy approaches are qualitative at best. Here, we present an approach that evaluates the use of phytoplanktonic biomarkers (i.e. chlorins and alkenones) as quantitative proxies to reconstruct past changes in marine productivity. We compare biomarkers contents in a global suite of core-top sediments to sea-surface chlorophyll-a abundance estimated by satellites over the last 20 years, and the results are compared to total organic carbon (TOC). We also assess satellite data and detect satellite limitations and biases due to the complexity of optical properties and the actual defined algorithms. Our findings show that sedimentary chlorins can be used to track total sea-surface chlorophyll-a abundance as an indicator for past primary productivity. However, degradation processes restrict the application of this proxy to concentrations below a threshold value (1µg/g). Below this threshold, chlorins are a useful tool to identify reducing conditions when used as part of a multiproxy approach to assess redox sedimentary conditions (e.g. using Re, U). This is based on the link between anoxic/disoxic conditions and the flux of organic matter from the sea-surface to the sediments. We also show that TOC is less accurate than chlorins for estimating sea-surface chlorophyll-a due to the contribution of terrigenous organic matter, and the different degradation pathways of all organic compounds that TOC includes. Alkenones concentration also relates to primary productivity, but they are constrained by different processes in different regions. In conclusion, as lons as specific constraints are taken into account, our study evaluates the use of chlorins and alkenones as quantitative proxies of past primary productivity, with more accuracy than by using TOC.

  4. Evaluation of Chlorine Treatment Levels for Inactivation of Human Norovirus and MS2 Bacteriophage during Sewage Treatment.

    Science.gov (United States)

    Kingsley, David H; Fay, Johnna P; Calci, Kevin; Pouillot, Régis; Woods, Jacquelina; Chen, Haiqiang; Niemira, Brendan A; Van Doren, Jane M

    2017-12-01

    This study examined the inactivation of human norovirus (HuNoV) GI.1 and GII.4 by chlorine under conditions mimicking sewage treatment. Using a porcine gastric mucin-magnetic bead (PGM-MB) assay, no statistically significant loss in HuNoV binding (inactivation) was observed for secondary effluent treatments of ≤25 ppm total chlorine; for both strains, 50 and 100 ppm treatments resulted in ≤0.8-log 10 unit and ≥3.9-log 10 unit reductions, respectively. Treatments of 10, 25, 50, and 100 ppm chlorine inactivated 0.31, 1.35, >5, and >5 log 10 units, respectively, of the norovirus indicator MS2 bacteriophage. Evaluation of treatment time indicated that the vast majority of MS2 and HuNoV inactivation occurred in the first 5 min for 0.2-μm-filtered, prechlorinated secondary effluent. Free chlorine measurements of secondary effluent seeded with MS2 and HuNoV demonstrated substantial oxidative burdens. With 25, 50, and 100 ppm treatments, free chlorine levels after 5 min of exposure ranged from 0.21 to 0.58 ppm, from 0.28 to 16.7 ppm, and from 11.6 to 53 ppm, respectively. At chlorine treatment levels of >50 ppm, statistically significant differences were observed between reductions for PGM-MB-bound HuNoV (potentially infectious) particles and those for unbound (noninfectious) HuNoV particles or total norovirus particles. While results suggested that MS2 and HuNoV (measured as PGM-MB binding) behave similarly, although not identically, both have limited susceptibility to chlorine treatments of ≤25 ppm total chlorine. Since sewage treatment is performed at ≤25 ppm total chlorine, targeting free chlorine levels of 0.5 to 1.0 ppm, these results suggest that traditional chlorine-based sewage treatment does not inactivate HuNoV efficiently. IMPORTANCE HuNoV is ubiquitous in sewage. A receptor binding assay was used to assess inactivation of HuNoV by chlorine-based sewage treatment, given that the virus cannot be routinely propagated in vitro Results reported here

  5. Inactivation of Giardia muris cysts by free chlorine.

    OpenAIRE

    Leahy, J G; Rubin, A J; Sproul, O J

    1987-01-01

    The chlorine resistance of cysts of the flagellate protozoan Giardia muris was examined. This organism, which is pathogenic to mice, is being considered as a model for the inactivation of the human pathogen Giardia lamblia. Excystation was used as the criterion for cyst viability. Experiments were performed at pH 5, 7, and 9 at 25 degrees C and pH 7 at 5 degrees C. Survival curves were "stepladder"-shaped, but concentration-time data generally conformed to Watson's Law. Chlorine was most effe...

  6. Decomposition of dilute residual active chlorine in sea-water

    International Nuclear Information System (INIS)

    Yoshinaga, Tetsutaro; Kawano, Kentaro; Yanagase, Kenjiro; Shiga, Akira

    1985-01-01

    Coastal industries such as power stations require enormous quantities of sea-water for cooling, but the marine organisms in it often result in fouling and/or blockade of the circulating water condenser and pipeworks. To prevent this, chlorine, or hypochlorite by the direct electrolysis of sea-water have been added. Environmental concerns, however, dictate that the residual chlorine concentration at the outlet should be less than the regulated value (0.02 ppm). Methods for decomposing dilute residual chlorine solutions were therefore studied. It was found that: 1) The addition of (raw) sea-water to the sea-water which passed through the condenser lowered the residual chlorine concentration to an greater extent than could be expected by dilution only. 2) Ozonation of the residual chlorine solution led to degradation of OCl - , but in solutions with a residual chlorine concentrations of less than 3 -- 4 ppm, ozonation had no effect. 3) Irradiation with ultra violet light (254 nm) decomposed the residual chlorine. Under the present work conditions (25 0 C: pH 8; depth 10 mm), nearly first order kinetics were to hold [da/dt = ksub((1)) (1-a)sup(n)]. There is a proportional relationship between the kinetic constant (k) and illuminous intensity (L), i.e., ksub((1))[C 0 sup(Cl 2 ): 10 ppm] = 6.56 x 10 -5 L (L = 0 -- 1000 lx). Thus, the use of both sea-water addition and UV irradiation provides a probable method for decomposing a residual chlorine to the expected concentration. (author)

  7. The geochemistry of stable chlorine and bromine isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Eggenkamp, Hans [Onderzock and Beleving, Bussum (Netherlands)

    2014-11-01

    First book solely dedicated to the geochemistry of chlorine and bromine isotopes. Detailed description of analytical techniques, including their advantages and disadvantages. Indication of research fields where measurement of these isotopes is especially useful. This book provides detailed information on the history, analysis and applications of chlorine and bromine isotope geochemistry. Chlorine and bromine are geochemically unique as they prefer to exist as single charged negative ions. For this reason isotope fractionation reflects mostly processes that are not related to changes in the redox state and this fractionation is generally modest. The book will describe the processes that are most easily detected using these isotopes. Also isotope variations, and processes that cause them, measured in oxidised species such as perchlorates and in organic molecules will be described in this book.

  8. Control of fouling organisms in estuarine cooling water systems by chlorine and bromine chloride

    International Nuclear Information System (INIS)

    Burton, D.T.; Margrey, S.L.

    1979-01-01

    The study described was initiated to evaluate the antifouling effectiveness of chlorine and bromine chloride in low velocity flow areas where estuarine waters are used for cooling purposes. The relative antifouling effectiveness of chlorine and bromine chloride under intermittent and continuous modes of application in low velocity flow areas was evaluated at an estuarine power plant located on the Chesapeake Bay

  9. Bacterial repopulation of drinking water pipe walls after chlorination.

    Science.gov (United States)

    Mathieu, Laurence; Francius, Grégory; El Zein, Racha; Angel, Edith; Block, Jean-Claude

    2016-09-01

    The short-term kinetics of bacterial repopulation were evaluated after chlorination of high-density polyethylene (HDPE) colonized with drinking water biofilms and compared with bare HDPE surfaces. The effect of chlorination was partial as a residual biofilm persisted and was time-limited as repopulation occurred immediately after water resupply. The total number of bacteria reached the same levels on both the bare and chlorinated biofilm-fouled HDPE after a seven-day exposure to drinking water. Due to the presence of a residual biofilm, the hydrophobicity of chlorinated biofilm-fouled surface exhibited much lower adhesion forces (2.1 nN) compared to bare surfaces (8.9 nN). This could explain the rapid repopulation after chlorination, with a twofold faster bacterial accumulation rate on the bare HDPE surface. γ-Proteobacteria dominated the early stages of repopulation of both surfaces and a shift in the dominance occurred over the colonization time. Such observations define a timescale for cleaning frequency in industrial environments and guidelines for a rinsing procedure using drinking water.

  10. Short-term toxicity study in rats of chlorinated cake flour.

    Science.gov (United States)

    Fisher, N; Berry, R; Hardy, J

    1983-08-01

    Male and female Wistar rats were fed for 28 days on a diet containing either chlorinated (1257 or 2506 ppm chlorine) or unchlorinated flour. No significant differences between groups in body weight were observed in the males. A significant inverse correlation between body weight and treatment level, attributable to a corresponding trend in food intakes, was found for the females only. No significant differences between absolute organ weights were found, but when the weights were adjusted for covariance with body weight, dose-related increases in kidney weight (males) and liver weight (both sexes) were found. Histopathological examination revealed no pathological tissue changes attributable to the chlorination of the flour.

  11. Estimating persistence of brominated and chlorinated organic pollutants in air, water, soil, and sediments with the QSPR-based classification scheme.

    Science.gov (United States)

    Puzyn, T; Haranczyk, M; Suzuki, N; Sakurai, T

    2011-02-01

    We have estimated degradation half-lives of both brominated and chlorinated dibenzo-p-dioxins (PBDDs and PCDDs), furans (PBDFs and PCDFs), biphenyls (PBBs and PCBs), naphthalenes (PBNs and PCNs), diphenyl ethers (PBDEs and PCDEs) as well as selected unsubstituted polycyclic aromatic hydrocarbons (PAHs) in air, surface water, surface soil, and sediments (in total of 1,431 compounds in four compartments). Next, we compared the persistence between chloro- (relatively well-studied) and bromo- (less studied) analogs. The predictions have been performed based on the quantitative structure-property relationship (QSPR) scheme with use of k-nearest neighbors (kNN) classifier and the semi-quantitative system of persistence classes. The classification models utilized principal components derived from the principal component analysis of a set of 24 constitutional and quantum mechanical descriptors as input variables. Accuracies of classification (based on an external validation) were 86, 85, 87, and 75% for air, surface water, surface soil, and sediments, respectively. The persistence of all chlorinated species increased with increasing halogenation degree. In the case of brominated organic pollutants (Br-OPs), the trend was the same for air and sediments. However, we noticed that the opposite trend for persistence in surface water and soil. The results suggest that, due to high photoreactivity of C-Br chemical bonds, photolytic processes occurring in surface water and soil are able to play significant role in transforming and removing Br-OPs from these compartments. This contribution is the first attempt of classifying together Br-OPs and Cl-OPs according to their persistence, in particular, environmental compartments.

  12. Technology assessment: Chlorine chemistry

    International Nuclear Information System (INIS)

    Wolff, H.; Alwast, H.; Buttgereit, R.

    1994-01-01

    Chlorine is not just one of many chemical feedstocks which is used in a few definitely harmful products like PVC or CFC but is irrelevant in all other respects. Just the opposite is true: There is hardly any product line of the chemical industry that can do without chlorine, from herbicides and pesticides to dyes, plastics, pharmaceuticals, photographic atricles, and cosmetics. Chlorine is not only a key element of chemical production but also an ubiquitous element of everyday life in civilisation. There are even many who would agree that the volume of chlorine production is an indicator of the competitive strength and national wealth of a modern society. By now, however, it has become evident that the unreflected use of chlorine is no longer ecologically acceptable. The consequences of a chlorine phase-out as compared to the continued chlorine production at the present level were investigated scientifically by a PROGNOS team. They are presented in this book. (orig.) [de

  13. Risk Assessment of Total Coliform in X WTP’s Water Production Using Failure Mode And Effect Analysis Method

    Directory of Open Access Journals (Sweden)

    Bella Apriliani Amanda

    2017-07-01

    Full Text Available The greatest risk of drinking water supply is a failure to provide safe drinking water for communities. Based on IPA Kedunguling testing report on March 2016 noted that sample exceeding the quality standart of Peraturan Menteri Kesehatan RI No 492/2010 for the total coliform quality standart. The presence of total coliforms indicating water contamination by pathogen means the water is not safe to consume. The disinfection process has an importance rule in pathogen inactivation. Disinfectant performance is influenced by temperature, pH, turbidity, and the presence of organic materials. One way to control the quality of water produced by using a risk management approach Failure Modes and Effect Analysis (FMEA methods. The potential risks should be measured to determine causes of the problems and find the appropriate risk reduction. The risk assessment is using Risk Priority Number (RPN scale as a basis prioritization of remedial action on issues. Based on identification and risk analysis using FMEA known that the greatest risk of failure is the stipulation of chlorine dose and organic substances (category of high risk level; residual chlorine (category of moderate risk level; turbidity and pH (very low risk level category. Improvement proposal that can be done to reduce total coliforms presence in IPA Kedunguling is by increasing residual chlorine to 0.6 mg/l, set a daily chlorine level, controlling DBPs forming by lowering the concentration of organic precursor using granular activated carbon (GAC or aeration, by lowering the dose of disinfectant, set aside DBPs after the compound is formed using granular activated carbon (GAC, turbidity and pH monitoring, and regularly washing the filters

  14. Occurrences of nitrosamines in chlorinated and chloraminated drinking water in three representative cities, China

    International Nuclear Information System (INIS)

    Luo, Qian; Wang, Donghong; Wang, Zijian

    2012-01-01

    An investigation of the occurrence of nine nitrosamines in drinking water following different water treatment processes was conducted using samples from seven drinking water treatment plants in three cities and tap waters in one city in China. The total nitrosamine levels ranged from not detected (n.d.) to 43.45 ng/L. The species and concentrations of the nine nitrosamines varied with disinfection methods and source waters. N-nitrosodimethylamine (NDMA), which is the nitrosamines of greatest concern, was identified in raw water, disinfecting water, finished water and tap water samples, ranging from 0.8 to 21.6, 0.12 to 24.2, n.d. to 8.8, and n.d. to 13.3 ng/L, respectively. Chloramination alone produced the most significant amounts of NDMA, while ozonation followed by chloramination led to moderately reduced levels. Additionally, chlorination produced relatively less NDMA, while low pressure ultraviolet radiation followed by chlorination could also significantly reduce them. Total organic carbon is one of the most important factors influencing nitrosamines formation in disinfecting water. In contrast, the addition of chlorine following any other disinfection was found to increase the formation of the other eight species of nitrosamines. The three nitrosamines recommended for monitoring by the US EPA were detected in the tap water samples, but most were present at levels below those that pose a risk to human health. Nevertheless, the occurrence and concentration of nitrosamines regulated in the Drinking Water Contaminant Candidate List could cause some potential human effects and therefore warrant attention. Highlights: ► Nitrosamines in disinfected drinking water in three Chinese cities were investigated. ► Some nitrosamines could be detected in raw water. ► Advanced treatment affects nitrosamine levels both positively and negatively. ► Organic matters contribute to increased nitrosamine level. ► Nitrosamine levels in this study were below the EPA MAC but

  15. Kinetics of membrane damage to high (HNA) and low (LNA) nucleic acid bacterial clusters in drinking water by ozone, chlorine, chlorine dioxide, monochloramine, ferrate(VI), and permanganate.

    Science.gov (United States)

    Ramseier, Maaike K; von Gunten, Urs; Freihofer, Pietro; Hammes, Frederik

    2011-01-01

    Drinking water was treated with ozone, chlorine, chlorine dioxide, monochloramine, ferrate(VI), and permanganate to investigate the kinetics of membrane damage of native drinking water bacterial cells. Membrane damage was measured by flow cytometry using a combination of SYBR Green I and propidium iodide (SGI+PI) staining as indicator for cells with permeabilized membranes and SGI alone to measure total cell concentration. SGI+PI staining revealed that the cells were permeabilized upon relatively low oxidant exposures of all tested oxidants without a detectable lag phase. However, only ozonation resulted in a decrease of the total cell concentrations for the investigated reaction times. Rate constants for the membrane damage reaction varied over seven orders of magnitude in the following order: ozone > chlorine > chlorine dioxide ≈ ferrate > permanganate > chloramine. The rate constants were compared to literature data and were in general smaller than previously measured rate constants. This confirmed that membrane integrity is a conservative and therefore safe parameter for disinfection control. Interestingly, the cell membranes of high nucleic acid (HNA) content bacteria were damaged much faster than those of low nucleic acid (LNA) content bacteria during treatment with chlorine dioxide and permanganate. However, only small differences were observed during treatment with chlorine and chloramine, and no difference was observed for ferrate treatment. Based on the different reactivity of these oxidants it was suggested that HNA and LNA bacterial cell membranes have a different chemical constitution. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Characterization of unknown iodinated disinfection byproducts during chlorination/chloramination using ultrahigh resolution mass spectrometry

    International Nuclear Information System (INIS)

    Wang, Xin; Wang, Juan; Zhang, Yahe; Shi, Quan; Zhang, Haifeng; Zhang, Yu; Yang, Min

    2016-01-01

    Iodinated disinfection byproducts (I-DBPs), formed from the reaction of disinfectant(s) with organic matter in the presence of iodide in raw water, have recently been focused because of their more cytotoxic and genotoxic properties than their chlorinated or brominated analogues. To date, only a few I-DBPs in drinking water have been identified. In this study, C18 solid phase extraction coupled with electrospray ionization ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) was used to characterize unknown I-DBPs in chloraminated/chlorinated water spiked with iodide and humic substances. In total, 178 formulas for one-iodine-containing products, 13 formulas for two-iodine-containing products, and 15 formulas for one-chlorine and one-iodine-containing products were detected in the chloraminated water sample, while only 9 formulas for one-iodine-containing products and 6 formulas for one-chlorine and one-iodine-containing products were found in the chlorinated water sample. Most I-DBPs have corresponding chlorine-containing analogues with identical CHO compositions. As indicated by the modified aromaticity index (AI mod ), in the C18 extracts, more than 68% of the I-DBPs have aromatic structures or polycyclic aromatic structures. This result demonstrates that the use of chloramination as an alternative disinfection method may lead to the formation of abundant species of I-DBPs in the presence of iodide. Thus, the suitability of adopting chloramination as an alternative disinfection method should be reevaluated, particularly when iodide is present in raw water. - Highlights: • The formulas of 206 iodinated DBPs in chloraminated drinking water were proposed. • More than 68% of the I-DBPs might have aromatic or polycyclic aromatic structures. • Precursors with high aromaticity is preferential to form iodinated DBPs.

  17. Characterization of unknown iodinated disinfection byproducts during chlorination/chloramination using ultrahigh resolution mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin; Wang, Juan [State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Zhang, Yahe; Shi, Quan [State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249 (China); Zhang, Haifeng; Zhang, Yu [State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Yang, Min, E-mail: yangmin@rcees.ac.cn [State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China)

    2016-06-01

    Iodinated disinfection byproducts (I-DBPs), formed from the reaction of disinfectant(s) with organic matter in the presence of iodide in raw water, have recently been focused because of their more cytotoxic and genotoxic properties than their chlorinated or brominated analogues. To date, only a few I-DBPs in drinking water have been identified. In this study, C18 solid phase extraction coupled with electrospray ionization ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) was used to characterize unknown I-DBPs in chloraminated/chlorinated water spiked with iodide and humic substances. In total, 178 formulas for one-iodine-containing products, 13 formulas for two-iodine-containing products, and 15 formulas for one-chlorine and one-iodine-containing products were detected in the chloraminated water sample, while only 9 formulas for one-iodine-containing products and 6 formulas for one-chlorine and one-iodine-containing products were found in the chlorinated water sample. Most I-DBPs have corresponding chlorine-containing analogues with identical CHO compositions. As indicated by the modified aromaticity index (AI{sub mod}), in the C18 extracts, more than 68% of the I-DBPs have aromatic structures or polycyclic aromatic structures. This result demonstrates that the use of chloramination as an alternative disinfection method may lead to the formation of abundant species of I-DBPs in the presence of iodide. Thus, the suitability of adopting chloramination as an alternative disinfection method should be reevaluated, particularly when iodide is present in raw water. - Highlights: • The formulas of 206 iodinated DBPs in chloraminated drinking water were proposed. • More than 68% of the I-DBPs might have aromatic or polycyclic aromatic structures. • Precursors with high aromaticity is preferential to form iodinated DBPs.

  18. Decontamination of Pangasius fish (Pangasius hypophthalmus) with chlorine or peracetic acid in the laboratory and in a Vietnamese processing company.

    Science.gov (United States)

    Tong Thi, Anh Ngoc; Sampers, Imca; Van Haute, Sam; Samapundo, Simbarashe; Ly Nguyen, Binh; Heyndrickx, Marc; Devlieghere, Frank

    2015-09-02

    This study evaluated the decontamination of Pangasius fillets in chlorine or peracetic acid treated wash water. First, the decontamination efficacy of the washing step with chlorinated water applied by a Vietnamese processing company during trimming of Pangasius fillets was evaluated and used as the basis for the experiments performed on a laboratory scale. As chlorine was only added at the beginning of the batch and used continuously without renewal for 239min; a rapid increase of the bacterial counts and a fast decrease of chlorine in the wash water were found. This could be explained by the rapid accumulation of organic matter (ca. 400mg O2/L of COD after only 24min). Secondly, for the experiments performed on a laboratory scale, a single batch approach (one batch of wash water for treating a fillet) was used. Chlorine and PAA were evaluated at 10, 20, 50 and 150ppm at contact times of 10, 20 and 240s. Washing with chlorine and PAA wash water resulted in a reduction of Escherichia coli on Pangasius fish which ranged from 0-1.0 and 0.4-1.4logCFU/g, respectively while less to no reduction of total psychrotrophic counts, lactic acid bacteria and coliforms on Pangasius fish was observed. However, in comparison to PAA, chlorine was lost rapidly. As an example, 53-83% of chlorine and 15-17% of PAA were lost after washing for 40s (COD=238.2±66.3mg O2/L). Peracetic acid can therefore be an alternative sanitizer. However, its higher cost will have to be taken into consideration. Where (cheaper) chlorine is used, the processors have to pay close attention to the residual chlorine level, pH and COD level during treatment for optimal efficacy. Copyright © 2015. Published by Elsevier B.V.

  19. Chlorine decay and DBP formation under different flow regions in PVC and ductile iron pipes: Preliminary results on the role of flow velocity and radial mass transfer

    Science.gov (United States)

    A systematic experimental study was conducted using a pilot-scale drinking water distribution system simulator to quantify the effect of hydrodynamics, total organic carbon (TOC), initial disinfectant levels, and pipe materials on chlorine decay and disinfection by-product (DBP) ...

  20. Degradation of lipid regulators by the UV/chlorine process: Radical mechanisms, chlorine oxide radical (ClO•)-mediated transformation pathways and toxicity changes.

    Science.gov (United States)

    Kong, Xiujuan; Wu, Zihao; Ren, Ziran; Guo, Kaiheng; Hou, Shaodong; Hua, Zhechao; Li, Xuchun; Fang, Jingyun

    2018-06-15

    Degradation of three lipid regulators, i.e., gemfibrozil, bezafibrate and clofibric acid, by a UV/chlorine treatment was systematically investigated. The chlorine oxide radical (ClO • ) played an important role in the degradation of gemfibrozil and bezafibrate with second-order rate constants of 4.2 (±0.3) × 10 8  M -1  s -1 and 3.6 (±0.1) × 10 7  M -1  s -1 , respectively, whereas UV photolysis and the hydroxyl radical (HO • ) mainly contributed to the degradation of clofibric acid. The first-order rate constants (k') for the degradation of gemfibrozil and bezafibrate increased linearly with increasing chlorine dosage, primarily due to the linear increase in the ClO • concentration. The k' values for gemfibrozil, bezafibrate, and clofibric acid degradation decreased with increasing pH from 5.0 to 8.4; however, the contribution of the reactive chlorine species (RCS) increased. Degradation of gemfibrozil and bezafibrate was enhanced in the presence of Br - , whereas it was inhibited in the presence of natural organic matter (NOM). The presence of ammonia at a chlorine: ammonia molar ratio of 1:1 resulted in decreases in the k' values for gemfibrozil and bezafibrate of 69.7% and 7%, respectively, but led to an increase in that for clofibric acid of 61.8%. Degradation of gemfibrozil by ClO • was initiated by hydroxylation and chlorine substitution on the benzene ring. Then, subsequent hydroxylation, bond cleavage and chlorination reactions led to the formation of more stable products. Three chlorinated intermediates were identified during ClO • oxidation process. Formation of the chlorinated disinfection by-products chloral hydrate and 1,1,1-trichloropropanone was enhanced relative to that of other by-products. The acute toxicity of gemfibrozil to Vibrio fischeri increased significantly when subjected to direct UV photolysis, whereas it decreased when oxidized by ClO • . This study is the first to report the transformation pathway of a

  1. Chlorination and chloramination of aminophenols in aqueous solution: oxidant demand and by-product formation.

    Science.gov (United States)

    Mehrez, O Abou; Dossier-Berne, F; Legube, B

    2015-01-01

    Chlorination and monochloramination of aminophenols (AP) were carried out in aqueous solution at 25°C and at pH 8.5. Oxidant demand and disinfection by-product formation were determined in excess of oxidant. Experiments have shown that chlorine consumption of AP was 40-60% higher than monochloramine consumption. Compared with monochloramination, chlorination of AP formed more chloroform and haloacetic acids (HAA). Dichloroacetic acid was the major species of HAA. Chloroform and HAA represented, respectively, only 1-8% and 14-15% of adsorbable organic halides (AOX) by monochloramination but up to 29% and 39% of AOX by chlorination.

  2. The role of bound chlorine in the brightness reversion of bleached hardwood kraft pulp

    Directory of Open Access Journals (Sweden)

    Kátia Maria Morais Eiras

    2009-01-01

    Full Text Available Our previous paper showed fragmentary evidence that pulp brightness reversion may be negatively affected by its organically bound chlorine (OX content. A thorough investigation on eucalyptus kraft pulp led to the conclusion that OX increases reversion of certain pulps but this trend is not universal. Alkaline bleaching stages decrease reversion regardless of pulp OX content. Pulps bleached with high temperature chlorine dioxide revert less than those bleached with conventional chlorine dioxide in sequences ending with a chlorine dioxide stage but similarly in sequences ending with a final peroxide stage. The use of secondary condensate for pulp washing decreases reversion.

  3. Enhanced salmonella reduction on tomatoes washed in chlorinated water with wash aid T-128

    Science.gov (United States)

    Chlorine is widely used by the fresh and fresh-cut produce industries to reduce microbial populations and to prevent potential pathogen cross contamination during produce washing. However, the organic materials released from produce quickly react with chlorine and degrade its efficacy for pathogen i...

  4. Effect of medium-pressure UV-lamp treatment on disinfection by-products in chlorinated seawater swimming pool waters.

    Science.gov (United States)

    Cheema, Waqas A; Manasfi, Tarek; Kaarsholm, Kamilla M S; Andersen, Henrik R; Boudenne, Jean-Luc

    2017-12-01

    Several brominated disinfection by-products (DBPs) are formed in chlorinated seawater pools, due to the high concentration of bromide in seawater. UV irradiation is increasingly employed in freshwater pools, because UV treatment photodegrades harmful chloramines. However, in freshwater pools it has been reported that post-UV chlorination promotes the formation of other DBPs. To date, UV-based processes have not been investigated for DBPs in seawater pools. In this study, the effects of UV, followed by chlorination, on the concentration of three groups of DBPs were investigated in laboratory batch experiments using a medium-pressure UV lamp. Chlorine consumption increased following post-UV chlorination, most likely because UV irradiation degraded organic matter in the pool samples to more chlorine-reactive organic matter. Haloacetic acid (HAA) concentrations decreased significantly, due to photo-degradation, but the concentrations of trihalomethanes (THMs) and haloacetonitriles (HANs) increased with post-UV chlorination. Bromine incorporation in HAAs was significantly higher in the control samples chlorinated without UV irradiation but decreased significantly with UV treatment. Bromine incorporation was promoted in THM and HAN after UV and chlorine treatment. Overall, the accumulated bromine incorporation level in DBPs remained essentially unchanged in comparison with the control samples. Toxicity estimates increased with single-dose UV and chlorination, mainly due to increased HAN concentrations. However, brominated HANs are known in the literature to degrade following further UV treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Manganese dioxide nanosheets as an optical probe for photometric determination of free chlorine

    International Nuclear Information System (INIS)

    Yu, Haili; Zheng, Lei

    2016-01-01

    We report on a colorimetric assay for free chlorine using MnO 2 nanosheets as an optical probe. In the absence of free chlorine, the addition of ascorbic acid (AA) causes the chemical dissolution of MnO 2 nanosheets via a redox reaction to result in low absorbance. However, if a solution containing free chlorine is added to the system, AA will be oxidized by free chlorine and the MnO 2 nanosheets will not longer be dissolved. Hence, the AA-induced decoloration will not take place and solution will remain yellow. Under optimized experimental conditions, there is a linear relationship between the change in absorbance at 370 nm and the concentration of free chlorine in the 0.2 to 10 μM concentration range, with an 80 nM detection limit. The detection limit for visual evaluation is 8.0 μM. The assay is fairly selective for free chlorine over common inorganic ions and small organic substances. It was applied to the determination of free chlorine in tap water using the standard addition method. (author)

  6. Experimental cancer studies of chlorinated by-products

    International Nuclear Information System (INIS)

    Komulainen, Hannu

    2004-01-01

    Chlorinated drinking water contains a number of different by-products formed during the chlorination process from organic matter. The carcinogenicity of only a fraction of them have been evaluated in experimental animals. The focus has been on compounds and groups of compounds that are most abundant in chlorinated drinking water or the in vitro toxicity data have suggested genotoxic potential. From trihalomethanes, chloroform causes liver tumors in mice and female rats and renal tumors in male mice and rats. Tumor formation by chloroform is strongly associated with cytotoxicity and regenerative cell proliferation in tissues and that has been considered to be one determinant of its carcinogenicity. From halogenic acetic acids, dichloroacetic acid (DCA) and trichlotoacetic acid (TCA) are hepatocarcinogenic in mice and DCA in male rats. Their genotoxicity is equivocal and nongenotoxic mechanisms, such as peroxisome proliferation and hypomethylation of DNA in the liver, likely contribute to tumor development. From chlorinated furanones (CHFs), 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX) is a multisite carcinogen in rats (e.g. in thyroid glands and liver) and it has caused DNA damage in vivo. MX may be a complete carcinogen because it also has promoter properties in vitro. Chlorinated drinking water may also contain brominated by-products providing the raw water contains bromide. At least some of them (bromodichloromethane, bromoform) have been shown to be carcinogenic in laboratory animals. Altogether, although several by-products have been shown to have carcinogenic potential in laboratory animals, it not yet possible to state which compounds or groups of by-products cause the cancer risk in chlorinated drinking water. The cellular mechanisms of their effects and these effects at low concentrations are still poorly understood. The few studies with mixtures of these by-products suggest that the mixture effects may be complex and unpredictable (inhibitory

  7. Bromination vis-a-vis chlorination as a biocide feasibility study

    International Nuclear Information System (INIS)

    Upadhyay, S.K.; Nagaigh, N.; Mittal, S.

    2000-01-01

    Water is used extensively as a cooling medium in various heat transfer equipment's of a power industry such as condenser, heat exchangers and cooling towers. At elevated temperature, the breeding of microbiological growth can form slimes, underneath of this, accelerated corrosion can take place resulting into sudden and catastrophic failure of equipment's. The microbiological growth unchecked in the various systems especially in low velocity areas can lead to large growth of micro organisms such as algae which can even reduce the flow of the fluid thus affecting the efficiency of plant equipment's. Therefore, chlorination is a mandatory requirement in industrial cooling water to reduce biofouling in heat transfer equipment's. The chlorination in drinking water produces germicidal effect and thus reduces the bacterial counts. At NAPS the water quality is good and mild doses of chlorine (5 ppm) two times a day, as envisaged in design is noticed to be satisfactory. The chlorination of recirculating condenser cooling water presently is being done with the established doses for a fixed time twice a day. Some of the problems noticed with the chlorination process are : Corrosion of constructional material of chlorination plant and equipment's and pipelines causing large input of efforts on maintenance for keeping high availability of the chlorination plant. In addition to this, the leakages in the equipment could be a potential safety hazard. The effectiveness of chlorine is observed to be less in alkaline pH (above 9.0) as encountered at NAPS. This results is large quantities of chlorine injection for extended periods. The cost of chlorine and bleaching powder keeps fluctuating in the market as noticed in past few years. Many a times this results in scarcity of chlorine/bleaching powder causing interruption in biofouling control programme. Hence it was felt prudent to work on the alternative biocides which could be cost effective, non-polluting and nature and user

  8. Pepspectives of chlorine application in metallurgy of vanadium

    International Nuclear Information System (INIS)

    Korshunov, B.G.; Kutsenko, S.A.

    1983-01-01

    The most expedient variants of reprocessing of vanadium technical oxide (5), ferrovanadium and converter slags by chlorine technology with production of pure metal are considered. It is shown that production of vanadium by the way of electro- or metallothermal reduction of chlorides provides more plastic metal in comparison with reduction from oxides. The methods of production of VOCl 3 , VCl 4 and vanadium lowest chlorides are considered. Necessity of expansion of production of vanadium chlorine derivatives is dictated as well by their increasing application in different areas of national economy, in particular, as catalysts in organic synthesis

  9. Formation of aryl-chlorinated aromatic acids and precursors for chloroform in chlorination of humic acid

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Leer, E.W.B. de; Galan, L.

    1985-01-01

    The formation of chloroform when humic substances are chlorinated is well known. Other chlorinated products that may be formed are chloral, di- and trichloroacetic acid, chlorinated C-4 diacids, and α-chlorinated aliphatic acids. Several of these compounds are formed in molar yields comparable

  10. [Contamination characteristics of short-chain chlorinated paraffins in edible fish of Shanghai].

    Science.gov (United States)

    Jiang, Guo; Chen, Lai-guo; He, Qiu-sheng; Meng, Xiang-zhou; Feng, Yong-bin; Huang, Yu-mei; Tang, Cai-ming

    2013-09-01

    According to the local habit of eating fish, in a total of 68 samples, 8 kinds of different trophic levels of edible fish collected in Shanghai were determined in terms of concentration and distribution profile of short chain chlorinated paraffin (SCCPs) in muscles to investigate the pollution status of SCCPs in edible fish from the Yangtze River Delta region. The results indicated that the concentrations (dw) of SCCPs in edible fish were in the range of 36-801 ng x g(-1). With the increase in carbon chain length, the concentration of SCCPs decreased. In addition, lower chlorinated (Cl6-Cl8) and shorter chain (Cl10, C11) congeners were the dominant chlorine and carbon homologues groups, respectively, contributing a total relative abundance of 61.46%-82.50% to the total abundance of SCCPs. The levels of SCCPs in fish of Shanghai were in the medium level worldwide, and the distribution pattern was in line with those of the domestic and foreign studies.

  11. Impacts of the physiochemical properties of chlorinated solvents on the sorption of trichloroethylene to the roots of Typha latifolia

    Energy Technology Data Exchange (ETDEWEB)

    Ma Xingmao [Department of Civil and Environmental Engineering, Southern Illinois University Carbondale, 1230 Lincoln Drive, Carbondale, IL 62901 (United States)], E-mail: ma@engr.siu.edu; Wang Chen [Department of Civil and Environmental Engineering, Southern Illinois University Carbondale, 1230 Lincoln Drive, Carbondale, IL 62901 (United States)

    2009-03-15

    Sorption to plant roots is the first step for organic contaminants to enter plant tissues. Mounting evidence is showing that sorption to plant roots is nonlinear and competitive. The objective of this study was to investigate the effects of physiochemical properties of homologous chlorinated ethenes and ethanes on the competitive sorption of trichloroethylene (TCE) to the roots of Typha latifolia (cattail). The results showed that chlorinated ethenes exerted significantly stronger competition on the sorption of TCE than chlorinated ethanes. Individual physiochemical properties of organic compounds could be related to the competitive capacity of chlorinated ethenes, but the roles appeared secondary, with molecular structures showing primary effects. Based on these observations, a two-step sorption mechanism was proposed, consisting of the interactions between organic compounds and functional groups on the root surface and subsequent pore filling and absorption to the hydrophobic domains in the composition of roots. - Molecular structures and physiochemical properties of homologous chlorinated aliphatics are important factors affecting competitive sorption of TCE to plant roots.

  12. Impacts of the physiochemical properties of chlorinated solvents on the sorption of trichloroethylene to the roots of Typha latifolia

    International Nuclear Information System (INIS)

    Ma Xingmao; Wang Chen

    2009-01-01

    Sorption to plant roots is the first step for organic contaminants to enter plant tissues. Mounting evidence is showing that sorption to plant roots is nonlinear and competitive. The objective of this study was to investigate the effects of physiochemical properties of homologous chlorinated ethenes and ethanes on the competitive sorption of trichloroethylene (TCE) to the roots of Typha latifolia (cattail). The results showed that chlorinated ethenes exerted significantly stronger competition on the sorption of TCE than chlorinated ethanes. Individual physiochemical properties of organic compounds could be related to the competitive capacity of chlorinated ethenes, but the roles appeared secondary, with molecular structures showing primary effects. Based on these observations, a two-step sorption mechanism was proposed, consisting of the interactions between organic compounds and functional groups on the root surface and subsequent pore filling and absorption to the hydrophobic domains in the composition of roots. - Molecular structures and physiochemical properties of homologous chlorinated aliphatics are important factors affecting competitive sorption of TCE to plant roots

  13. Bioremediation of chlorinated ethenes in aquifer thermal energy storage

    NARCIS (Netherlands)

    Ni, Z.

    2015-01-01

    Subjects: bioremediation; biodegradation; environmental biotechnology, subsurface and groundwater contamination; biological processes; geochemistry; microbiology

    The combination of enhanced natural attenuation (ENA) of chlorinated volatile organic compounds

  14. Chlorine Decay and DBP formation under Different Flow Regions in PVC and Ductile Iron Pipes: Preliminary Results on the Role of flow Velocity and Radial Mass Transfer - Paper

    Science.gov (United States)

    A systematic experimental study was conducted using a pilot-scale drinking water distribution system simulator to quantify the effect of hydrodynamics, total organic carbon (TOC), initial disinfectant levels, and pipe materials on chlorine decay and disinfection by-product (DBP) ...

  15. Formation of brominated trihalomethanes in chlorinated drinking-water from Lake Constance

    International Nuclear Information System (INIS)

    Petri, M.; Stabel, H.H.

    1994-01-01

    The formation of trihalomethanes (THMs) in raw water and drinking water from Lake Constance containing low amounts of DOC and bromide was studied with special emphasis on brominated trihalomethanes (Br-THMs). If the raw water was ozonated prior to chlorination, the formation of THMs was reduced by 37%, and if a rapid sandfiltration was interposed, the THM-formation was again slightly enhanced. The percentage of Br-THMs on total-THMs increased from 16% to 35% during the treatment process. In the drinking water distribution system of BWV the formation of Br-THMs and CHCl 3 was studied with respect to residence time and post-chlorination. Unless the post-chlorination was performed, the THM-formation in the distribution system resembled that obtained from laboratory studies, except for small amounts of THMs being purged due to transport in the mains and residence in the reservoirs. Post-chlorination increased CHCl 3 - and the CHBrCl 2 -formation, but there was no effect on the formation of CHBr 2 Cl and CHBr 3 . However, the total THM-concentration in the drinking water never exceeded the German drinking water standard of 10 μg/L. (orig.) [de

  16. Transformation mechanism of benzophenone-4 in free chlorine promoted chlorination disinfection.

    Science.gov (United States)

    Xiao, Ming; Wei, Dongbin; Yin, Junxia; Wei, Guohua; Du, Yuguo

    2013-10-15

    The UV-filter BP-4 (2-hydroxy-4-methoxybenzophenone-5-sulfonic acid) has been frequently observed in the environment, showing high potentials to invade drinking water, swimming water, or wastewater reclamation treatment systems. With the help of high performance liquid chromatography-high resolution mass spectrometry and nuclear magnetic resonance spectroscopy, 10 new products from free chlorine-promoted BP-4 disinfection have been disclosed and their possible transformation routes have been investigated. The first route is chlorine substitution of BP-4 and its transformation products, forming mono-, di-, and tri-chlorinated BP-4 analogs. The second is Baeyer-Villiger-Type oxidation, converting diphenyl ketone to phenyl ester derivatives. The third is ester hydrolysis, generating corresponding phenolic and benzoic products. The fourth is decarboxylation, replacing the carboxyl group by chloride in the benzoic-type intermediate. The fifth is desulfonation, degrading the sulfonic group through an alternative chlorine substitution on the benzene ring. Orthogonal experiments have been established to investigate the species transformed from BP-4 at different pH values and free available chlorine (FAC) dosages. The reaction pathways are strongly dependent on pH conditions, while an excessive amount of FAC eliminates BP-4 to the smaller molecules. The initial transformation of BP-4 in chlorination system follows pseudo-first-order kinetics, and its half-lives ranged from 7.48 s to 1.26 × 10(2) s. More importantly, we have observed that the FAC-treated BP-4 aqueous solution might increase the genotoxic potentials due to the generation of chlorinated disinfection by-products. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Study on removing chlorin by conversion-aborption of chlorin resin

    International Nuclear Information System (INIS)

    Huang Yunbai; Zhao Jinfang; Tang Zhijuan; Huang Qijin; Deng Jianguo

    2012-01-01

    Theon version of chlorin resin and the reclamation of acid and uranium in converting solution were investigated. The results indicated the residual chlorin can meet the requirement after converting, acid and uranium in converting solution can be reclaimed. (authors)

  18. Chloric organic compound

    International Nuclear Information System (INIS)

    Moalem, F.

    2000-01-01

    Since many years ago, hazardous and toxic refuses which are results of human activities has been carelessly without any Biological and Engineering facts and knowledge discharged into our land and water. The effects of discharging those materials in environment are different. Some of refuse materials shows short and other has long-time adverse effects in our environment, Among hazardous organic chemical materials, chlorine, consider, to be the main element. Organic materials with chlorine is called chlorine hydrocarbon as a hazardous compound. This paper discuss the hazardous materials especially chloric organic compound and their misuse effects in environment and human being

  19. Impact of wastewater infrastructure upgrades on the urban water cycle: Reduction in halogenated reaction byproducts following conversion from chlorine gas to ultraviolet light disinfection

    Energy Technology Data Exchange (ETDEWEB)

    Barber, Larry B. [U.S. Geological Survey, 3215 Marine St., Boulder, CO 80303 (United States); Hladik, Michelle L. [U.S. Geological Survey, 6000 J Street Placer Hall, Sacramento, CA 95819 (United States); Vajda, Alan M. [University of Colorado, Department of Integrative Biology, CB 171, Denver, CO 80217 (United States); Fitzgerald, Kevin C. [U.S. Geological Survey, 3215 Marine St., Boulder, CO 80303 (United States); AECOM, 500 West Jefferson St., Ste. 1600, Louisville, KY 40202 (United States); Douville, Chris [City of Boulder, 4049 75th Street, Boulder, CO 80301 (United States)

    2015-10-01

    The municipal wastewater treatment facility (WWTF) infrastructure of the United States is being upgraded to expand capacity and improve treatment, which provides opportunities to assess the impact of full-scale operational changes on water quality. Many WWTFs disinfect their effluent prior to discharge using chlorine gas, which reacts with natural and synthetic organic matter to form halogenated disinfection byproducts (HDBPs). Because HDBPs are ubiquitous in chlorine-disinfected drinking water and have adverse human health implications, their concentrations are regulated in potable water supplies. Less is known about the formation and occurrence of HDBPs in disinfected WWTF effluents that are discharged to surface waters and become part of the de facto wastewater reuse cycle. This study investigated HDBPs in the urban water cycle from the stream source of the chlorinated municipal tap water that comprises the WWTF inflow, to the final WWTF effluent disinfection process before discharge back to the stream. The impact of conversion from chlorine-gas to low-pressure ultraviolet light (UV) disinfection at a full-scale (68,000 m{sup 3} d{sup −1} design flow) WWTF on HDBP concentrations in the final effluent was assessed, as was transport and attenuation in the receiving stream. Nutrients and trace elements (boron, copper, and uranium) were used to characterize the different urban source waters, and indicated that the pre-upgrade and post-upgrade water chemistry was similar and insensitive to the disinfection process. Chlorinated tap water during the pre-upgrade and post-upgrade samplings contained 11 (mean total concentration = 2.7 μg L{sup −1}; n = 5) and 10 HDBPs (mean total concentration = 4.5 μg L{sup −1}), respectively. Under chlorine-gas disinfection conditions 13 HDBPs (mean total concentration = 1.4 μg L{sup −1}) were detected in the WWTF effluent, whereas under UV disinfection conditions, only one HDBP was detected. The chlorinated WWTF effluent had

  20. Impact of wastewater infrastructure upgrades on the urban water cycle: Reduction in halogenated reaction byproducts following conversion from chlorine gas to ultraviolet light disinfection

    International Nuclear Information System (INIS)

    Barber, Larry B.; Hladik, Michelle L.; Vajda, Alan M.; Fitzgerald, Kevin C.; Douville, Chris

    2015-01-01

    The municipal wastewater treatment facility (WWTF) infrastructure of the United States is being upgraded to expand capacity and improve treatment, which provides opportunities to assess the impact of full-scale operational changes on water quality. Many WWTFs disinfect their effluent prior to discharge using chlorine gas, which reacts with natural and synthetic organic matter to form halogenated disinfection byproducts (HDBPs). Because HDBPs are ubiquitous in chlorine-disinfected drinking water and have adverse human health implications, their concentrations are regulated in potable water supplies. Less is known about the formation and occurrence of HDBPs in disinfected WWTF effluents that are discharged to surface waters and become part of the de facto wastewater reuse cycle. This study investigated HDBPs in the urban water cycle from the stream source of the chlorinated municipal tap water that comprises the WWTF inflow, to the final WWTF effluent disinfection process before discharge back to the stream. The impact of conversion from chlorine-gas to low-pressure ultraviolet light (UV) disinfection at a full-scale (68,000 m 3 d −1 design flow) WWTF on HDBP concentrations in the final effluent was assessed, as was transport and attenuation in the receiving stream. Nutrients and trace elements (boron, copper, and uranium) were used to characterize the different urban source waters, and indicated that the pre-upgrade and post-upgrade water chemistry was similar and insensitive to the disinfection process. Chlorinated tap water during the pre-upgrade and post-upgrade samplings contained 11 (mean total concentration = 2.7 μg L −1 ; n = 5) and 10 HDBPs (mean total concentration = 4.5 μg L −1 ), respectively. Under chlorine-gas disinfection conditions 13 HDBPs (mean total concentration = 1.4 μg L −1 ) were detected in the WWTF effluent, whereas under UV disinfection conditions, only one HDBP was detected. The chlorinated WWTF effluent had greater relative

  1. Kinetics of molybdenum and chlorine interaction

    International Nuclear Information System (INIS)

    Zelikman, A.N.; Nazarov, Yu.N.; Sarkarov, T.Eh.; Tulyakov, N.V.

    1977-01-01

    The kinetics is studied of molybdenite chlorination with gaseous chlorine. The time dependences of the depth and degree of molybdenite chlorination are given along with the dependence on chlorine concentration of molybdenite chlorination rate. Active interaction is shown to take place at 450-470 deg C. At 350-435 deg C, chlorination occurs in the kinetic range, the apparent activation energy being equal to 22.2 kcal/mole and the order of reaction by chlorine to 0.77. At 435-610 deg C, the process takes place in the diffusion range and is restricted by dissipation of the reaction products (activation energy - 4.05 kcal/mole; order of reaction by chlorine - 0.6)

  2. New model of chlorine-wall reaction for simulating chlorine concentration in drinking water distribution systems.

    Science.gov (United States)

    Fisher, Ian; Kastl, George; Sathasivan, Arumugam

    2017-11-15

    Accurate modelling of chlorine concentrations throughout a drinking water system needs sound mathematical descriptions of decay mechanisms in bulk water and at pipe walls. Wall-reaction rates along pipelines in three different systems were calculated from differences between field chlorine profiles and accurately modelled bulk decay. Lined pipes with sufficiently large diameters (>500 mm) and higher chlorine concentrations (>0.5 mg/L) had negligible wall-decay rates, compared with bulk-decay rates. Further downstream, wall-reaction rate consistently increased (peaking around 0.15 mg/dm 2 /h) as chlorine concentration decreased, until mass-transport to the wall was controlling wall reaction. These results contradict wall-reaction models, including those incorporated in the EPANET software, which assume wall decay is of either zero-order (constant decay rate) or first-order (wall-decay rate reduces with chlorine concentration). Instead, results are consistent with facilitation of the wall reaction by biofilm activity, rather than surficial chemical reactions. A new model of wall reaction combines the effect of biofilm activity moderated by chlorine concentration and mass-transport limitation. This wall reaction model, with an accurate bulk chlorine decay model, is essential for sufficiently accurate prediction of chlorine residuals towards the end of distribution systems and therefore control of microbial contamination. Implementing this model in EPANET-MSX (or similar) software enables the accurate chlorine modelling required for improving disinfection strategies in drinking water networks. New insight into the effect of chlorine on biofilm can also assist in controlling biofilm to maintain chlorine residuals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Technological process and optimum design of organic materials vacuum pyrolysis and indium chlorinated separation from waste liquid crystal display panels

    Energy Technology Data Exchange (ETDEWEB)

    Ma, En; Xu, Zhenming, E-mail: zmxu@sjtu.edu.cn

    2013-12-15

    Highlights: • The vacuum pyrolysis–vacuum chlorinated separation system was proposed to recover the waste LCD panel. • The system can recycle the whole waste LCD panels efficiently without negative effects to environment. • The 82.03% of the organic materials was reclaimed. All pyrolysis products can be utilized by a reasonable way. • The separation of indium was optimized by the central composite design (CCD) under response surface methodology (RSM). • The recovery ratio of indium was further increased to 99.97%. -- Abstract: In this study, a technology process including vacuum pyrolysis and vacuum chlorinated separation was proposed to convert waste liquid crystal display (LCD) panels into useful resources using self-design apparatuses. The suitable pyrolysis temperature and pressure are determined as 300 °C and 50 Pa at first. The organic parts of the panels were converted to oil (79.10 wt%) and gas (2.93 wt%). Then the technology of separating indium was optimized by central composite design (CCD) under response surface methodology (RSM). The results indicated the indium recovery ratio was 99.97% when the particle size is less than 0.16 mm, the weight percentage of NH{sub 4}Cl to glass powder is 50 wt% and temperature is 450 °C. The research results show that the organic materials, indium and glass of LCD panel can be recovered during the recovery process efficiently and eco-friendly.

  4. The quantification of short-chain chlorinated paraffins in sediment samples using comprehensive two-dimensional gas chromatography with μECD detection.

    Science.gov (United States)

    Muscalu, Alina M; Morse, Dave; Reiner, Eric J; Górecki, Tadeusz

    2017-03-01

    The analysis of persistent organic pollutants in environmental samples is a challenge due to the very large number of compounds with varying chemical and physical properties. Chlorinated paraffins (CPs) are complex mixtures of chlorinated n-alkanes with varying chain lengths (C 10 to C 30 ) and degree of chlorination (30 to 70% by weight). Their physical-chemical properties make these compounds persistent in the environment and able to bioaccumulate in living organisms. Comprehensive two-dimensional gas chromatography (GC × GC) coupled with micro-electron capture detection (μECD) was used to separate and quantify short-chain chlorinated paraffins (SCCP) in sediment samples. Distinct ordered bands were observed in the GC × GC chromatograms pointing to group separation. Using the Classification function of the ChromaTOF software, summary tables were generated to determine total area counts to set up multilevel-calibration curves for different technical mixes. Fortified sediment samples were analyzed by GC × GC-μECD with minimal extraction and cleanup. Recoveries ranged from 120 to 130%. To further validate the proposed method for the analysis of SCCPs, the laboratory participated in interlaboratory studies for the analysis of standards and sediment samples. The results showed recoveries between 75 and 95% and z-score values <2, demonstrating that the method is suitable for the analysis of SCCPs in soil/sediment samples. Graphical abstract Quantification of SCCPs by 2D-GC-μECD.

  5. Simultaneous counter-flow of chlorinated volatile organic compounds across the saturated-unsaturated interface region of an aquifer.

    Science.gov (United States)

    Ronen, Daniel; Lev-Wiener, Hagit; Graber, Ellen R; Dahan, Ofer; Weisbrod, Noam

    2010-04-01

    Concentrations of chlorinated volatile organic compounds (Cl-VOCs) at the saturated-unsaturated interface region (SUIR; depth of approximately 18m) of a sandy phreatic aquifer were measured in two monitoring wells located 25m apart. The concentrations of the Cl-VOCs obtained above and below the water table along a 413-day period are interpreted to depict variable, simultaneous and independent movement of trichlorothene, tetrachloroethene, 1,1-dichloroethene, cis-1,2-dichloroethene, 1,1,1-trichloroethane, chloroform and 1,1-dichloroethane vapors in opposite directions across the SUIR. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  6. Impact of wastewater infrastructure upgrades on the urban water cycle: Reduction in halogenated reaction byproducts following conversion from chlorine gas to ultraviolet light disinfection

    Science.gov (United States)

    Barber, Larry B.; Hladik, Michelle; Vajda, Alan M.; Fitzgerald, Kevin C.; Douville, Chris

    2015-01-01

    The municipal wastewater treatment facility (WWTF) infrastructure of the United States is being upgraded to expand capacity and improve treatment, which provides opportunities to assess the impact of full-scale operational changes on water quality. Many WWTFs disinfect their effluent prior to discharge using chlorine gas, which reacts with natural and synthetic organic matter to form halogenated disinfection byproducts (HDBPs). Because HDBPs are ubiquitous in chlorine-disinfected drinking water and have adverse human health implications, their concentrations are regulated in potable water supplies. Less is known about the formation and occurrence of HDBPs in disinfected WWTF effluents that are discharged to surface waters and become part of the de facto wastewater reuse cycle. This study investigated HDBPs in the urban water cycle from the stream source of the chlorinated municipal tap water that comprises the WWTF inflow, to the final WWTF effluent disinfection process before discharge back to the stream. The impact of conversion from chlorine-gas to low-pressure ultraviolet light (UV) disinfection at a full-scale (68,000 m3 d−1 design flow) WWTF on HDBP concentrations in the final effluent was assessed, as was transport and attenuation in the receiving stream. Nutrients and trace elements (boron, copper, and uranium) were used to characterize the different urban source waters, and indicated that the pre-upgrade and post-upgrade water chemistry was similar and insensitive to the disinfection process. Chlorinated tap water during the pre-upgrade and post-upgrade samplings contained 11 (mean total concentration = 2.7 μg L−1; n=5) and 10 HDBPs (mean total concentration = 4.5 μg L−1), respectively. Under chlorine-gas disinfection conditions 13 HDBPs (mean total concentration = 1.4 μg L−1) were detected in the WWTF effluent, whereas under UV disinfection conditions, only one HDBP was detected. The chlorinated WWTF effluent had greater relative

  7. Occurrences of nitrosamines in chlorinated and chloraminated drinking water in three representative cities, China.

    Science.gov (United States)

    Luo, Qian; Wang, Donghong; Wang, Zijian

    2012-10-15

    An investigation of the occurrence of nine nitrosamines in drinking water following different water treatment processes was conducted using samples from seven drinking water treatment plants in three cities and tap waters in one city in China. The total nitrosamine levels ranged from not detected (n.d.) to 43.45 ng/L. The species and concentrations of the nine nitrosamines varied with disinfection methods and source waters. N-nitrosodimethylamine (NDMA), which is the nitrosamines of greatest concern, was identified in raw water, disinfecting water, finished water and tap water samples, ranging from 0.8 to 21.6, 0.12 to 24.2, n.d. to 8.8, and n.d. to 13.3 ng/L, respectively. Chloramination alone produced the most significant amounts of NDMA, while ozonation followed by chloramination led to moderately reduced levels. Additionally, chlorination produced relatively less NDMA, while low pressure ultraviolet radiation followed by chlorination could also significantly reduce them. Total organic carbon is one of the most important factors influencing nitrosamines formation in disinfecting water. In contrast, the addition of chlorine following any other disinfection was found to increase the formation of the other eight species of nitrosamines. The three nitrosamines recommended for monitoring by the US EPA were detected in the tap water samples, but most were present at levels below those that pose a risk to human health. Nevertheless, the occurrence and concentration of nitrosamines regulated in the Drinking Water Contaminant Candidate List could cause some potential human effects and therefore warrant attention. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Chlorination and Carbochlorination of Cerium Oxide

    International Nuclear Information System (INIS)

    Esquivel, Marcelo; Bohe, Ana; Pasquevich, Daniel

    2000-01-01

    The chlorination and carbochlorination of cerium oxide were studied by thermogravimetry under controlled atmosphere (TG) in the 700 0 C 950 0 C temperature range.Both reactants and products were analyzed by X-ray diffraction (RX), scanning electronic microscopy (SEM) and energy dispersive spectroscopy (EDS). Thermodynamic calculations were performed by computer assisted software.The chlorination starts at a temperature close to 800 0 C.This reaction involves the simultaneous formation and evaporation of CeCl3.Both processes control the reaction rate and their kinetic may not be easily separated.The apparent chlorination activation energy in the 850 0 C-950 0 C temperature range is 172 to 5 kJ/ mole.Carbon transforms the CeO2-Cl2 into a more reactive system: CeO2-C-Cl2, where the effects of the carbon content, total flow rate and temperature were analyzed.The carbochlorination starting temperature is 700 0 C.This reaction is completed in one step controlled by mass transfer with an apparent activation energy of 56 to 5 kJ/mole in the 850 0 C-950 0 C temperature range

  9. Hydrogeologic characterization and assessment of bioremediation of chlorinated benzenes and benzene in wetland areas, Standard Chlorine of Delaware, Inc. Superfund Site, New Castle County, Delaware, 2009-12

    Science.gov (United States)

    Lorah, Michelle M.; Walker, Charles W.; Baker, Anna C.; Teunis, Jessica A.; Emily Majcher,; Brayton, Michael J.; Raffensperger, Jeff P.; Cozzarelli, Isabelle M.

    2015-01-01

    desorption from the sediments.When highly reducing, methanogenic, or sulfate-reducing conditions existed in the wetland groundwater, molar composition of the volatile organic compounds (VOCs) showed that chlorobenzene and benzene were predominant, indicating biodegradation of the chlorinated benzenes through reductive dechlorination pathways. Temporal changes in redox conditions between 2009 and 2011–12 have shifted the locations in the wetland study area where reductive dechlorination is evident. Microbial community analyses of sediment showed relatively high cell numbers and diversity of populations (Dehalococcoides, Dehalobacter, Desulfitobacterium, and Geobacter) that are known to contain species capable of reductive dechlorination, confirming groundwater geochemistry evidence of the occurrence of reductive dechlorination. Natural attenuation was not sufficient, however, to reduce total VOC concentrations along upward groundwater flowpaths in the wetland sediments, most likely due to the additional source of contaminants in the upper sediments. In situ microcosms that were unamended except for the addition of 13C-labeled contaminants in some treatments, confirmed that the native microbial community was able to biodegrade the higher chlorinated benzenes through reductive dechlorination and that 1,2-dichlorobenzene, chlorobenzene, and benzene could be degraded to carbon dioxide through oxidation pathways. Microcosms that were bioaugmented with the anaerobic dechlorinating consortium WBC-2 and deployed in the wetland sediments showed reductive dechlorination of tri-, di-, and monochlorobenzene, and 13C-chlorobenzene treatments showed complete degradation of chlorobenzene to carbon dioxide under anaerobic conditions.Experiments with a continuous flow, fixed-film bioreactor seeded with native microorganisms in groundwater from the wetland area showed both aerobic and anaerobic biodegradation of dichlorobenzenes, monochlorobenzene, and benzene, although

  10. Evaluating the effects of granular and membrane filtrations on chlorine demand in drinking water.

    Science.gov (United States)

    Jegatheesan, Veeriah; Kim, Seung Hyun; Joo, C K; Gao, Baoyu

    2009-01-01

    In this study, chlorine decay experiments were conducted for the raw water from Nakdong River that is treated by Chilseo Water Treatment Plant (CWTP) situated in Haman, Korea as well as the effluents from sand and granular activated carbon (GAC) filters of CWTP and fitted using a chlorine decay model. The model estimated the fast and slow reacting nitrogenous as well as organic/inorganic compounds that were present in the water. It was found that the chlorine demand due to fast and slow reacting (FRA and SRA) organic/inorganic substances was not reduced significantly by sand as well as GAC filters. However, the treated effluents from those filters contained FRA and SRA that are less reactive and had small reaction rate constants. For the effluents from microfiltration, ultrafiltration, and nanofiltration the chlorine demand because FRA and SRA were further reduced but the reaction rate constants were larger compared to those of sand and GAC filter effluents. This has implications in the formation of disinfection by products (DBPs). If DBPs are assumed to form due to the interactions between chlorine and SRA, then it is possible that the DBP formation potential in the effluents from membrane filtrations could be higher than that in the effluents from granular media filters.

  11. Where does Chlorine-36 go?

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    Chlorine-36 and Iodine-129 are the unique long-life radionuclides in the halogen family and halogens are known to be very mobile in the environment. Chlorine-36 is present in slight quantities in radioactive wastes containing carbon or issued from spent fuel reprocessing. The migration of Chlorine-36 in the environment has been very little studied, so a collaboration between the French institute of protection and nuclear safety (IPSN) and the Ukrainian institute for agricultural radioecology (UIAR) has been launched. IPSN will study the migration of Chlorine-36 in soils and UIAR will be in charge of studying the transfer of Chlorine-36 from soil to plants. (A.C.)

  12. Effect of selection of pH in swimming pool on formation of chlorination by-products

    DEFF Research Database (Denmark)

    Hansen, Kamilla Marie Speht; Willach, Sarah; Mosbæk, Hans

    2011-01-01

    Chlorine is used as disinfection agent in public swimming pools, but also reacts with organic matter in the water forming chlorinat ed disinfection by-products. In order to evaluate the effect of choice of pHsetpoint in the pool we investigated the effect of chlorination of artificial body fluid...

  13. Occurrences of nitrosamines in chlorinated and chloraminated drinking water in three representative cities, China

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Qian; Wang, Donghong; Wang, Zijian

    2012-10-15

    An investigation of the occurrence of nine nitrosamines in drinking water following different water treatment processes was conducted using samples from seven drinking water treatment plants in three cities and tap waters in one city in China. The total nitrosamine levels ranged from not detected (n.d.) to 43.45 ng/L. The species and concentrations of the nine nitrosamines varied with disinfection methods and source waters. N-nitrosodimethylamine (NDMA), which is the nitrosamines of greatest concern, was identified in raw water, disinfecting water, finished water and tap water samples, ranging from 0.8 to 21.6, 0.12 to 24.2, n.d. to 8.8, and n.d. to 13.3 ng/L, respectively. Chloramination alone produced the most significant amounts of NDMA, while ozonation followed by chloramination led to moderately reduced levels. Additionally, chlorination produced relatively less NDMA, while low pressure ultraviolet radiation followed by chlorination could also significantly reduce them. Total organic carbon is one of the most important factors influencing nitrosamines formation in disinfecting water. In contrast, the addition of chlorine following any other disinfection was found to increase the formation of the other eight species of nitrosamines. The three nitrosamines recommended for monitoring by the US EPA were detected in the tap water samples, but most were present at levels below those that pose a risk to human health. Nevertheless, the occurrence and concentration of nitrosamines regulated in the Drinking Water Contaminant Candidate List could cause some potential human effects and therefore warrant attention. Highlights: Black-Right-Pointing-Pointer Nitrosamines in disinfected drinking water in three Chinese cities were investigated. Black-Right-Pointing-Pointer Some nitrosamines could be detected in raw water. Black-Right-Pointing-Pointer Advanced treatment affects nitrosamine levels both positively and negatively. Black-Right-Pointing-Pointer Organic matters

  14. Cl app: android-based application program for monitoring the residue chlorine in water

    Science.gov (United States)

    Intaravanne, Yuttana; Sumriddetchkajorn, Sarun; Porntheeraphat, Supanit; Chaitavon, Kosom; Vuttivong, Sirajit

    2015-07-01

    A farmer usually uses a cheap chemical material called chlorine to destroy the cell structure of unwanted organisms and remove some plant effluents in a baby shrimp farm. A color changing of the reaction between chlorine and chemical indicator is used to monitor the residue chlorine in water before releasing a baby shrimp into a pond. To get rid of the error in color reading, our previous works showed how a smartphone can be functioned as a color reader for estimating the chlorine concentration in water. In this paper, we show the improvement of interior configuration of our prototype and the distribution to several baby shrimp farms. In the future, we plan to make it available worldwide through the online market as well as to develop more application programs for monitoring other chemical substances.

  15. Reaction of bromine and chlorine with phenolic compounds and natural organic matter extracts--Electrophilic aromatic substitution and oxidation.

    Science.gov (United States)

    Criquet, Justine; Rodriguez, Eva M; Allard, Sebastien; Wellauer, Sven; Salhi, Elisabeth; Joll, Cynthia A; von Gunten, Urs

    2015-11-15

    Phenolic compounds are known structural moieties of natural organic matter (NOM), and their reactivity is a key parameter for understanding the reactivity of NOM and the disinfection by-product formation during oxidative water treatment. In this study, species-specific and/or apparent second order rate constants and mechanisms for the reactions of bromine and chlorine have been determined for various phenolic compounds (phenol, resorcinol, catechol, hydroquinone, phloroglucinol, bisphenol A, p-hydroxybenzoic acid, gallic acid, hesperetin and tannic acid) and flavone. The reactivity of bromine with phenolic compounds is very high, with apparent second order rate constants at pH 7 in the range of 10(4) to 10(7) M(-1) s(-1). The highest value was recorded for the reaction between HOBr and the fully deprotonated resorcinol (k = 2.1 × 10(9) M(-1) s(-1)). The reactivity of phenolic compounds is enhanced by the activating character of the phenolic substituents, e.g. further hydroxyl groups. With the data set from this study, the ratio between the species-specific rate constants for the reactions of chlorine versus bromine with phenolic compounds was confirmed to be about 3000. Phenolic compounds react with bromine or chlorine either by oxidation (electron transfer, ET) or electrophilic aromatic substitution (EAS) processes. The dominant process mainly depends on the relative position of the hydroxyl substituents and the possibility of quinone formation. While phenol, p-hydroxybenzoic acid and bisphenol A undergo EAS, hydroquinone, catechol, gallic acid and tannic acid, with hydroxyl substituents in ortho or para positions, react with bromine by ET leading to quantitative formation of the corresponding quinones. Some compounds (e.g. phloroglucinol) show both partial oxidation and partial electrophilic aromatic substitution and the ratio observed for the pathways depends on the pH. For the reaction of six NOM extracts with bromine, electrophilic aromatic substitution

  16. Evaluation of sea water chlorine demand in condenser cooling water at TAPS 1 and 2

    International Nuclear Information System (INIS)

    Papachan, Deepa; Gupta, P.K.; Patil, D.P.; Save, C.B.; Anilkumar, K.R.

    2008-01-01

    To prevent microbiological growth in the condenser tubes, condenser cooling water chlorination is very important. For effective chlorination, chlorine dose rate and frequency of dosing has to be determined on the basis of sea water chlorine demand. TAPS 1 and 2 is located near Arabian sea and draws water from this sea for its condenser cooling. The present practice of chlorine dosing at TAPS 1 and 2, based on the analysis carried out by GE in 1969, is 2500 kg/day/CWpump and 90 kg/day/SSWpump for a contact period of 25 minutes. Normal frequency of dosing is once per 8 hour and booster dose is once in a week at the same rate for 1 hour. The criteria of effective chlorination is to get residual chlorine of 2-3 ppm at the condenser water box outlet during chlorination at water box inlet/CW pump suction header in the recommended dose rate. The other option of chlorination was continuous dosing to get 0.5 ppm residual chlorine. This option has its own limitations as it is more expensive and also that micro organisms get immune to chlorine eventually due to continuous dosing. Nevertheless higher chlorine dosing is detrimental to AI-brass condenser tubes. Therefore the second option was not adopted at TAPS 1 and 2. Tarapur Atomic Power Station-1 is in the process of replacement of condenser tubes due to frequent condenser tube failures in the recent years. It was essential to analyse the present sea water chlorine demand and re-determine the chlorine dose rate because of development of industries under Maharashtra Industrial Development Corporation (MIDC) and simultaneous population growth around this area over a period of three decades. This paper discusses the experimental observations regarding significant change in sea water chlorine demand over this period and the effect of seasonal changes on sea water chlorine demand. (author)

  17. Potassium chloride production by microcline chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Orosco, Pablo, E-mail: porosco@unsl.edu.ar [Instituto de Investigaciones en Tecnología Química (INTEQUI), Chacabuco y Pedernera, San Luis (Argentina); Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco y Pedernera, San Luis (Argentina); Ruiz, María del Carmen [Instituto de Investigaciones en Tecnología Química (INTEQUI), Chacabuco y Pedernera, San Luis (Argentina)

    2015-08-10

    Highlights: • Use of chlorination for the KCl production. • The reagents used were microcline, hydromagnesite and chlorine. • Isothermal and non-isothermal assays were performed in Cl{sub 2}–N{sub 2} mixture. • The chlorination generated KCl at 700 °C. • The chlorination products promote KCl formation. - Abstract: The potassium chloride is one of the most important fertilizers used in agriculture. The current demand of this salt makes interesting the study of potassium chloride production from unconventional potassium resources. In this work the potassium chloride production by chlorination of microcline was investigated. The starting reagents were microcline, hydromagnesite and chlorine. Non-isothermal and isothermal chlorination assays were carried out in a thermogravimetric device adapted to work in corrosive atmospheres. The temperature effect on potassium extraction and the phase transformations produced during chlorination of microcline were studied. The reagents and reaction products were analyzed by X-ray fluorescence (XRF) and X-ray diffraction (XRD). The experimental results indicated that by chlorination of microcline an important extraction of potassium in the temperature range from 800 to 900 °C was produced. Moreover, at 800 °C the forsterite, enstatite and magnesium aluminate spinel phases were generated.

  18. The effects of low level chlorination and chlorine dioxide on biofouling control in a once-through service water system

    International Nuclear Information System (INIS)

    Garrett, W.E. Jr.; Laylor, M.M.

    1995-01-01

    Continuous chlorination has been successfully used for the control of Corbicula at a nuclear power plant located on the Chattahoochee River in southeastern Alabama, since 1986. The purpose of this study was to investigate further minimization of chlorine usage and determine if chlorine dioxide is a feasible alternative. Four continuous biocide treatments were evaluated for macro and microfouling control effectiveness, operational feasibility, and environmental acceptability. One semi-continuous chlorination treatment was also evaluated for macrofouling control effectiveness. Higher treatment residuals were possible with chlorine dioxide than with chlorination due to the river discharge limitations. At the levels tested, continuous chlorine dioxide was significantly more effective in providing both macro and microfouling control. Semi-continuous chlorination was just as effective as continuous chlorination for controlling macrofouling. The Corbicula treatment programs that were tested should all provide sufficient control for zebra mussels. Chlorine dioxide was not as cost effective as chlorination for providing macrofouling control. The semi-continuous treatment save 50% on chemical usage and will allow for the simultaneous treatment of two service water systems. Chlorite levels produced during the chlorine dioxide treatments were found to be environmentally acceptable. Levels of trihalomethanes in the chlorinated service water were less than the maximum levels allowed in drinking water

  19. The study of chlorination of nickel oxide by chlorine and calcium chloride in the presence of active additives

    OpenAIRE

    Ilic, Ilija; Krstev, Boris; Stopic, Srecko; Cerovic, K

    1997-01-01

    Chlorination of nickel oxide by chlorine and calcium chloride in the presence of C, BaS and S were studied, both experimentally and theoretically. Chlorination of nickel oxide by chlorine was carried out in the temperature range 573-873 K and by calcium chloride in the temperature range 1023-1223 K. The results obtained of the chlorination of nickel oxide by chlorine showed that C has the strongest and S the weakest effect on the process. Addition of BaS has a favorable effect on the chlorina...

  20. Chlorine dioxide as phenol and H2S scavenger - formation of halogenated phenols and subsequent environmental risk

    Energy Technology Data Exchange (ETDEWEB)

    Melbye, Alf G.; Faksness, Liv-Guri; Knudsen, Boerre Leif

    2006-03-15

    Formation of halogenated phenols as side products from treatment of produced water with aqueous chlorine dioxide has been investigated. The literature describes formation of halogenated hydrocarbons in effluent treatment using chlorine, hypochlorite and chlorine dioxide. A new chlorine dioxide product, originally intended as a H2S scavenger in the oil and gas industry, has been tested both as a phenol scavenger and H2S-scavenger for produced water applications. The concern about the possible formation of halogenated by-products initiated laboratory testing of chlorine dioxide as phenol and H2S scavenger for produced water applications. The tests also included synthetic matrixes containing phenols, and the tests show that halogenated phenols, mainly brominated species, are found in produced water after treatment with chlorine dioxide. Due to potential environmental risk from halogenated organic contaminants, the use of chlorine dioxide as phenol and H2S scavenger is not recommended. (Author)

  1. Simultaneous determination of low-molecular-weight organic acids and chlorinated acid herbicides in environmental water by a portable CE system with contactless conductivity detection.

    Science.gov (United States)

    Xu, Yan; Wang, Weilong; Li, Sam Fong Yau

    2007-05-01

    This report describes a method to simultaneously determine 11 low-molecular-weight (LMW) organic acids and 16 chlorinated acid herbicides within a single run by a portable CE system with contactless conductivity detection (CCD) in a poly(vinyl alcohol) (PVA)-coated capillary. Under the optimized condition, the LODs of CE-CCD ranged from 0.056 to 0.270 ppm, which were better than for indirect UV (IUV) detection of the 11 LMW organic acids or UV detection of the 16 chlorinated acid herbicides. Combined with an on-line field-amplified sample stacking (FASS) procedure, sensitivity enhancement of 632- to 1078-fold was achieved, with satisfactory reproducibility (RSDs of migration times less than 2.2%, and RSDs of peak areas less than 5.1%). The FASS-CE-CCD method was successfully applied to determine the two groups of acidic pollutants in two kinds of environmental water samples. The portable CE-CCD system shows advantages such as simplicity, cost effectiveness, and miniaturization. Therefore, the method presented in this report has great potential for onsite analysis of various pollutants at the trace level.

  2. Separation of chlorinated diastereomers of decarboxy-betacyanins in myeloperoxidase catalyzed chlorinated Beta vulgaris L. extract.

    Science.gov (United States)

    Wybraniec, Sławomir; Starzak, Karolina; Szneler, Edward; Pietrzkowski, Zbigniew

    2016-11-15

    A comparative chromatographic evaluation of chlorinated decarboxylated betanins and betanidins generated under activity of hypochlorous acid exerted upon these highly antioxidative potent decarboxylated pigments derived from natural sources was performed by LC-DAD-ESI-MS/MS. Comparison of the chromatographic profiles of the chlorinated pigments revealed two different directions of retention changes in relation to the corresponding substrates. Chlorination of all betacyanins that are decarboxylated at carbon C-17 results in an increase of their retention times. In contrast, all other pigments (the non-decarboxylated betacyanins as well as 2-decarboxy- and 15-decarboxy-derivatives) exhibit lower retention after chlorination. During further chromatographic experiments based upon chemical transformation of the related pigments (decarboxylation and deglucosylation), the compounds' structures were confirmed. The elaborated method for determination of chlorinated pigments enabled analysis of a chlorinated red beet root extract that was submitted to the MPO/H 2 O 2 /Cl - system acting under inflammation-like conditions (pH 5). This indicates a promising possibility for measurement of these chlorinated pigments as indicators of specific inflammatory states wherein betacyanins and decarboxylated betacyanins act as hypochlorite scavengers. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Phenotypic and genetic diversity of chlorine-resistant Methylobacterium strains isolated from various environments.

    Science.gov (United States)

    Hiraishi, A; Furuhata, K; Matsumoto, A; Koike, K A; Fukuyama, M; Tabuchi, K

    1995-01-01

    Strains of pink-pigmented facultative methylotrophs which were isolated previously from various environments and assigned tentatively to the genus Methylobacterium were characterized in comparison with authentic strains of previously known species of this genus. Most of the isolates derived from chlorinated water supplies exhibited resistance to chlorine, whereas 29 to 40% of the isolates from air, natural aquatic environments, and clinical materials were chlorine resistant. None of the tested authentic strains of Methylobacterium species obtained from culture collections exhibited chlorine resistance. Numerical analysis of phenotypic profiles showed that the test organisms tested were separated from each other except M. organophilum and M. rhodesianum. The chlorine-resistant isolates were randomly distributed among all clusters. The 16S ribosomal DNA (rDNA) sequence-based phylogenetic analyses showed that representatives of the isolates together with known Methylobacterium species formed a line of descent distinct from that of members of related genera in the alpha-2 subclass of the Proteobacteria and were divided into three subclusters within the Methylobacterium group. These results demonstrate that there is phenotypic and genetic diversity among chlorine-resistant Methylobacterium strains within the genus. PMID:7793931

  4. Phenotypic and genetic diversity of chlorine-resistant Methylobacterium strains isolated from various environments.

    Science.gov (United States)

    Hiraishi, A; Furuhata, K; Matsumoto, A; Koike, K A; Fukuyama, M; Tabuchi, K

    1995-06-01

    Strains of pink-pigmented facultative methylotrophs which were isolated previously from various environments and assigned tentatively to the genus Methylobacterium were characterized in comparison with authentic strains of previously known species of this genus. Most of the isolates derived from chlorinated water supplies exhibited resistance to chlorine, whereas 29 to 40% of the isolates from air, natural aquatic environments, and clinical materials were chlorine resistant. None of the tested authentic strains of Methylobacterium species obtained from culture collections exhibited chlorine resistance. Numerical analysis of phenotypic profiles showed that the test organisms tested were separated from each other except M. organophilum and M. rhodesianum. The chlorine-resistant isolates were randomly distributed among all clusters. The 16S ribosomal DNA (rDNA) sequence-based phylogenetic analyses showed that representatives of the isolates together with known Methylobacterium species formed a line of descent distinct from that of members of related genera in the alpha-2 subclass of the Proteobacteria and were divided into three subclusters within the Methylobacterium group. These results demonstrate that there is phenotypic and genetic diversity among chlorine-resistant Methylobacterium strains within the genus.

  5. [Development of lipids and carbohydrates metabolism disorders caused by drinkable water with high content of chlorine organic compounds].

    Science.gov (United States)

    Luzhetsky, K P; Ustinova, O Yu; Shur, P Z; Kiryanov, D A; Dolgikh, O V; Chigvintsev, v M; Perevalov, A Ya

    2015-01-01

    Evaluation of effects caused by environmental peroral exposure to chlorine organic compounds revealed that individuals with AG variation of HTR2A gene are a community with increased sensitivity to chloroform and a risk group for lipid and carbohydrates metabolism disorders. Individual risk of endocrine disorders (ICD: E67.8 excessive nutrition and E66.0 obesity) in these individuals is higher than in general population exposed to chloroform at residence (HQ1.72). Serum serotonin level, that is functionally connected with HTR2A gene, is 1.3 times lower vs. the reference group value.

  6. Influence of nitrogen source on NDMA formation during chlorination of diuron.

    Science.gov (United States)

    Chen, Wei-Hsiang; Young, Thomas M

    2009-07-01

    N-Nitrosodimethylamine (NDMA) is formed during chlorination of water containing the herbicide diuron (N'-(3,4-dichlorophenyl)-N,N-dimethylurea) but formation is greatly enhanced in the presence of ammonia (chloramination). Groundwater impacted by agricultural runoff may contain diuron and relatively high total nitrogen concentrations; this study examines the impact of the nitrogen form (ammonium, nitrite or nitrate) on NDMA formation during chlorination of such waters. NDMA formation during chlorination of diuron increased in the order nitriteNDMA formation in the presence of ammonium. Nitrate unexpectedly enhanced nitrosation of diuron derivatives to form NDMA compared to the cases of no added nitrogen or nitrite addition. Nitrite addition is less effective because it consumes more chlorine and produces intermediates that react rapidly with diuron and its aromatic byproducts. Differences between surface water and groundwater in nitrogen forms and concentrations and disinfection approaches suggest strategies to reduce NDMA formation should vary with drinking water source.

  7. Influence of Nitrogen Source on NDMA Formation during Chlorination of Diuron

    Science.gov (United States)

    Chen, Wei-Hsiang; Young, Thomas M.

    2009-01-01

    N-Nitrosodimethylamine (NDMA) is formed during chlorination of water containing the herbicide diuron (N′-(3,4-dichlorophenyl)-N, N-dimethylurea) but formation is greatly enhanced in the presence of ammonia (chloramination). Groundwater impacted by agricultural runoff may contain diuron and relatively high total nitrogen concentrations; this study examines the impact of the nitrogen form (ammonium, nitrite or nitrate) on NDMA formation during chlorination of such waters. NDMA formation during chlorination of diuron increased in the order nitrite diuron dose. Formation of dichloramine seemed to fully explain enhanced NDMA formation in the presence of ammonium. Nitrate unexpectedly enhanced nitrosation of diuron derivatives to form NDMA compared to the cases of no added nitrogen or nitrite addition. Nitrite addition is less effective because it consumes more chlorine and produces intermediates that react rapidly with diuron and its aromatic byproducts. Differences between surface and groundwater in nitrogen forms and concentrations and disinfection approaches, suggest strategies to reduce NDMA formation should vary with drinking water source. PMID:19457535

  8. Transfer of chlorine from the environment to agricultural foodstuffs

    International Nuclear Information System (INIS)

    Kashparov, V.; Colle, C.; Levchuk, S.; Yoschenko, V.; Svydynuk, N.

    2007-01-01

    The factors governing chlorine transfer from Phaeozem and Greyzem soils to various important crop species (foodstuff and forage) were determined in natural conditions in the Kiev region of Ukraine. The stable chlorine concentration ratio (CR) values were the lowest in apple (0.5 ± 0.3) and strawberry (2 ± 1), higher in vegetables (5 ± 3), seeds (15 ± 7) and reached a maximum in straw (187 ± 90). The average CR values of 36 Cl were estimated for the most important crops using all experimental data on 36 Cl and stable chlorine transfer into plants from various soils. It was experimentally shown that boiling potatoes in water leads to an equilibrium between 36 Cl specific content in the water and moisture in the cooked potato. The 36 Cl processing factor (PF) for boiling various foodstuffs is equal to the ratio of water mass in the cooked foodstuff to the total water mass (in the food and the decoction). 36 Cl PF for cereal flour can be estimated as 1. The 36 Cl processing factor for dairy products is equal to the ratio of residual water mass in the product to initial water mass in milk. At a 36 Cl specific activity in soil of 1 Bq kg -1 , the estimated annual dietary 36 Cl intake into human organism (adult man) is about 10 kBq. Sixty to seventy percent of the above amount will be taken in via milk and dairy products, 7-16% via meat, 14-16% via bread and bakery items and 8-12% via vegetables. The highest annual 36 Cl intake, 10.7 kBq, is predicted for 1-year-old children. The expected effective doses from annual 36 Cl intake are higher for younger age groups, increasing from 0.008 mSv in adults to 0.12 mSv in 1-year-old children

  9. Effectiveness of chlorination and ozonation methods on pure ...

    African Journals Online (AJOL)

    Other oxidants, such as ozone, could be used for bulking control. In view of the fact that chlorine and ozone are both non-selective chemical agents affecting filamentous and floc-forming micro-organisms, the determination of optimum dosage conditions becomes essential to minimise the impact produced on the activated ...

  10. Reactions of phenylurea compounds with aqueous chlorine: Implications for herbicide transformation during drinking water disinfection

    International Nuclear Information System (INIS)

    Chusaksri, Sarinma; Sutthivaiyakit, Somyote; Sedlak, David L.; Sutthivaiyakit, Pakawadee

    2012-01-01

    Highlights: ► Mechanism of chlorine reaction with phenylurea compounds has been studied. ► It depends on both chlorinating species and substitutents on the compounds. ► Main products were identified using LC–MS/MS and authentic standards. ► Their transformation under normal drinking water disinfection was predicted. - Abstract: Phenylurea herbicides have been known to contaminate surface waters serving as potable supplies. To access the potential for transformation of these compounds during drinking water treatment, reactions of phenylurea compounds with aqueous chlorine at different pHs were investigated. The effect of substitution at the amino-N on the rate of transformation depends upon pH. Under acidic conditions, all of the phenylurea studied except 3,4-dichloro-3′-N-methylphenylurea (3,4-DCMPU) exhibited third-order kinetics, second order with respect to chlorine and first order with respect to phenylurea, while the reactions of 3,4-DCMPU were first order with respect to both chlorine and the organic compound. Under neutral and alkaline conditions, all compounds exhibited second-order kinetics that was first order with respect to chlorine and the organic compound. Apparent second-order rate constants at 25 °C and pH 7 were 0.76 ± 0.16, 0.52 ± 0.11, 0.39 ± 0.02, 0.27 ± 0.04 and 0.23 ± 0.05 M −1 s −1 for phenylurea, 3, 4-dichlorophenylurea, 3, 4-DCMPU, metoxuron and monuron, respectively. Studies of the chlorination products, monitored by LC/MS/MS, under different pH values indicated the reaction to take place at both N atoms and also at ortho- and para- positions of the phenylurea aromatic group. The main chlorinating species were found to be different in different pH ranges. Under conditions typically encountered in drinking water treatment systems, transformation of these compounds by chlorine will be incomplete.

  11. Effect of Temperature on the Survival of F-Specific RNA Coliphage, Feline Calicivirus, and Escherichia coli in Chlorinated Water

    Directory of Open Access Journals (Sweden)

    Sagar M. Goyal

    2005-12-01

    Full Text Available We compared the survival of F-specific RNA coliphage MS2, feline calicivirus, and E. coli in normal tap water and in tap water treated to an initial concentration of 50 ppm free chlorine and held at 4°C, 25°C, or 37°C for up to 28 days. Our aim was to determine which of these two organisms (coliphage or E. coli was better at indicating norovirus survival under the conditions of the experiment. There was a relatively rapid decline of FCV and E. coli in 50 ppm chlorine treated water and both organisms were undetectable within one day irrespective of the temperature. In contrast, FRNA phage survived for 7 to 14 days in 50 ppm chlorine treated water at all temperatures. All organisms survived for 28 days in tap water at 4°C, but FCV was undetectable on day 21 and day 7 at 25°C and 37°C, respectively. Greater survival of FRNA phage compared to E. coli in 50 ppm chlorine treated water suggests that these organisms should be further investigated as indicators of norovirus in depurated shellfish, sanitized produce, and treated wastewater which are all subject to high-level chlorine treatment.

  12. Kinetics of AOX Formation in Chlorine Dioxide Bleaching of Bagasse Pulp

    Directory of Open Access Journals (Sweden)

    Shuangxi Nie

    2014-07-01

    Full Text Available In this paper, a kinetic model of the first chlorine dioxide bleaching stage (D0 in an elemental chlorine-free (ECF bleaching sequence is presented for bagasse pulps. The model is based on the rate of adsorbable organic halogen (AOX formation. The effects of the chlorine dioxide dosage, the sulfuric acid dosage, and the reaction temperature on the AOX content of wastewater are examined. The reaction of AOX formation could be divided into two periods. A large amount of AOX was formed rapidly within the first 10 min. Ten minutes later, the AOX formation rate significantly decreased. The kinetics could be expressed as: dW⁄dt=660.8•e^(-997.98/T 〖•[ClO〗_2 ]^0.877•[H2SO4 ]^0.355•W^(-1.065, where W is the AOX content, t is the bleaching time (min, T is the temperature (K, [ClO2] is the dosage of chlorine dioxide (kg/odt, and [H2SO4] is the dosage of sulfuric acid (kg/odt. The fit of the experiment results obtained for different temperatures, initial chlorine dioxide dosages, initial sulfuric acid dosages, and AOX content were very good, revealing the ability of the model to predict typical mill operating conditions.

  13. Minimization of zirconium chlorinator residues

    International Nuclear Information System (INIS)

    Green, G.K.; Harbuck, D.D.

    1995-01-01

    Zirconium chlorinator residues contain an array of rare earths, scandium, unreacted coke, and radioactive thorium and radium. Because of the radioactivity, the residues must be disposed in special waste containment facilities. As these sites become more congested, and with stricter environmental regulations, disposal of large volumes of wastes may become more difficult. To reduce the mass of disposed material, the US Bureau of Mines (USBM) developed technology to recover rare earths, thorium and radium, and unreacted coke from these residues. This technology employs an HCl leach to solubilize over 99% of the scandium and thorium, and over 90% of the rare earths. The leach liquor is processed through several solvent extraction stages to selectively recover scandium, thorium, and rare earths. The leach residue is further leached with an organic acid to solubilize radium, thus allowing unreacted coke to be recycled to the chlorinator. The thorium and radium waste products, which comprise only 2.1% of the original residue mass, can then be sent to the radioactive waste facility

  14. Chemical additive to enhance antimicrobial efficacy of chlorine and control cross-contamination during immersion chill of broiler carcasses.

    Science.gov (United States)

    Schambach, B T; Berrang, M E; Harrison, M A; Meinersmann, R J

    2014-09-01

    Immersion chilling of broiler carcasses can be a site for cross-contamination between the occasional highly contaminated carcass and those that are co-chilled. Chlorine is often used as an antimicrobial but can be overcome by organic material. A proprietary chlorine stabilizer (T-128) based on phosphoric acid-propylene glycol was tested as a chill tank additive in experiments simulating commercial broiler chilling. In bench-scale experiments, 0.5% T-128 was compared with plain water (control), 50 ppm of chlorine, and the combination of 0.5% T-128 with 50 ppm of chlorine to control transfer of Salmonella and Campylobacter from inoculated wing drummettes to co-chilled uninoculated drummettes. Both chlorine and T-128 lessened cross-contamination with Salmonella (P additional experiment demonstrated that the antimicrobial effect of T-128 was not due merely to a lower pH. In commercial broiler chilling, a pH close to 6.0 is preferred to maximize chlorine effectiveness, while maintaining water-holding capacity of the meat. In a set of pilot-scale experiments with T-128, a near-ideal pH of 6.3 was achieved by using tap water instead of the distilled water used in bench-scale experiments. Pilot-scale chill tanks were used to compare the combination of 0.5% T-128 and 50 ppm of chlorine with 50 ppm of plain chlorine for control of cross-contamination between whole carcasses inoculated with Salmonella and Campylobacter and co-chilled uninoculated carcasses. The T-128 treatment resulted in significantly less crosscontamination by either direct contact or water transfer with both organisms compared with plain chlorine treatment. T-128 may have use in commercial broiler processing to enhance the effectiveness of chlorine in processing water.

  15. Differences in Field Effectiveness and Adoption between a Novel Automated Chlorination System and Household Manual Chlorination of Drinking Water in Dhaka, Bangladesh: A Randomized Controlled Trial

    Science.gov (United States)

    Pickering, Amy J.; Crider, Yoshika; Amin, Nuhu; Bauza, Valerie; Unicomb, Leanne; Davis, Jennifer; Luby, Stephen P.

    2015-01-01

    The number of people served by networked systems that supply intermittent and contaminated drinking water is increasing. In these settings, centralized water treatment is ineffective, while household-level water treatment technologies have not been brought to scale. This study compares a novel low-cost technology designed to passively (automatically) dispense chlorine at shared handpumps with a household-level intervention providing water disinfection tablets (Aquatab), safe water storage containers, and behavior promotion. Twenty compounds were enrolled in Dhaka, Bangladesh, and randomly assigned to one of three groups: passive chlorinator, Aquatabs, or control. Over a 10-month intervention period, the mean percentage of households whose stored drinking water had detectable total chlorine was 75% in compounds with access to the passive chlorinator, 72% in compounds receiving Aquatabs, and 6% in control compounds. Both interventions also significantly improved microbial water quality. Aquatabs usage fell by 50% after behavioral promotion visits concluded, suggesting intensive promotion is necessary for sustained uptake. The study findings suggest high potential for an automated decentralized water treatment system to increase consistent access to clean water in low-income urban communities. PMID:25734448

  16. Differences in field effectiveness and adoption between a novel automated chlorination system and household manual chlorination of drinking water in Dhaka, Bangladesh: a randomized controlled trial.

    Science.gov (United States)

    Pickering, Amy J; Crider, Yoshika; Amin, Nuhu; Bauza, Valerie; Unicomb, Leanne; Davis, Jennifer; Luby, Stephen P

    2015-01-01

    The number of people served by networked systems that supply intermittent and contaminated drinking water is increasing. In these settings, centralized water treatment is ineffective, while household-level water treatment technologies have not been brought to scale. This study compares a novel low-cost technology designed to passively (automatically) dispense chlorine at shared handpumps with a household-level intervention providing water disinfection tablets (Aquatab), safe water storage containers, and behavior promotion. Twenty compounds were enrolled in Dhaka, Bangladesh, and randomly assigned to one of three groups: passive chlorinator, Aquatabs, or control. Over a 10-month intervention period, the mean percentage of households whose stored drinking water had detectable total chlorine was 75% in compounds with access to the passive chlorinator, 72% in compounds receiving Aquatabs, and 6% in control compounds. Both interventions also significantly improved microbial water quality. Aquatabs usage fell by 50% after behavioral promotion visits concluded, suggesting intensive promotion is necessary for sustained uptake. The study findings suggest high potential for an automated decentralized water treatment system to increase consistent access to clean water in low-income urban communities.

  17. Quantifying Short-Chain Chlorinated Paraffin Congener Groups

    NARCIS (Netherlands)

    Yuan, Bo; Bogdal, Christian; Berger, Urs; MacLeod, Matthew; Gebbink, Wouter A.; Alsberg, Tomas; Wit, de Cynthia A.

    2017-01-01

    Accurate quantification of short-chain chlorinated paraffins (SCCPs) poses an exceptional challenge to analytical chemists. SCCPs are complex mixtures of chlorinated alkanes with variable chain length and chlorination level; congeners with a fixed chain length (n) and number of chlorines (m) are

  18. The treatment of iodine and chlorine chemistry in the risk assessment of deep radioactive waste disposal

    International Nuclear Information System (INIS)

    Jones, Michael A.

    1992-01-01

    The predicted contribution from 129 I, 131 I and 36 Cl to the radiological risk from a radioactive waste repository may be enhanced by the assumption of limited retardation in the near field and geosphere. However, migration of these radionuclides may be affected by their chemical speciation and retarded by a range of sorption processes. The chemical behaviour of iodine and chlorine is determined emphasizing i) aqueous speciations, ii) sorption onto inorganic substrates, and iii) the role of organic matter and microbes. Recommendations to enhance the methodology include i) consideration of aqueous speciation of iodine, both metal and organic complexes, ii) mechanistic simulation of iodine sorption by ion exchange and electrostatic/covalent adsorption, iii) simulation of enzymatically enhanced sorption of iodine and chlorine onto organic substrates, iv) enhancement of HMIP K d databases to include iodine and chlorine data for the geosphere and biosphere. A well defined programme of additional data collection, modelling studies and experimental investigations is recommended to achieve these enhancements. (author)

  19. The use of field redox measurements in assessing remediation of ground water containing petroleum hydrocarbons and chlorinated organic compounds

    International Nuclear Information System (INIS)

    Warner, S.D.; Gallinatti, J.D.; Honniball, J.H.

    1995-01-01

    Field measurements of the reduction-oxidation (redox) condition of ground water were used to assess the effects of in situ remediation of ground water affected by petroleum hydrocarbons and chlorinated organic compounds at multiple sites in northern California. The redox condition of ground water, traditionally measured quickly and inexpensively using a meter that measures electrode potential (Eh), is a valuable parameter by which to assess the conditions that affect the relative stability of various chemicals in ground water. Although not specific to a given redox couple measurements obtained using the traditional Eh meter give a sense of the relative tendency for a ground water to be reducing or oxidizing by providing a measurement of the system Eh. Two cases demonstrate the use of ground water Eh measurements in assessing the effects of in situ ground water remediation. In the first case, ground water affected by petroleum hydrocarbons-gasoline (TPHg), and benzene, toluene, ethylbenzene, and xylenes (BTEX) (ambient Eh of -100 to +100 millivolts [mv]) was treated by injecting hydrogen peroxide to supply oxygen to the subsurface environment and stimulate microbial activity. The second case involved remediation of ground water containing chlorinated organic compounds. In this case, a subsurface permeable ground water treatment wall containing granular iron was installed across the flow path of the affected ground water. The in situ chemical treatment, which successfully dechlorinates compounds such as trichloroethylene, 1,2-dichloroethylene, and vinyl chloride, caused reducing conditions in the ground water, which resulted in the decrease in ground water Eh from am ambient reading of about -50 mv to about -400 mv

  20. Effectiveness of chlorination and ozonation methods on pure ...

    African Journals Online (AJOL)

    2005-01-16

    Jan 16, 2005 ... dising agents on the metabolic activity and the viability of the micro-organisms. Ozone was found to ..... the antimicrobial action of ozone and chlorine. This strain was ... The pH of the culture medium was adjusted to 7.0 with ..... indicated that lysis of the cells can result for high concentrations or extended ...

  1. Studies on chlorinated bromide salt for microfouling control

    International Nuclear Information System (INIS)

    Satpathy, K.K.; Rajmohan, R.; Rao, T.S.; Nair, K.V.K.; Mathur, P.K.

    1995-01-01

    The Fast Breeder Test reactor (FBTR) at Kalpakkam has been facing various problems in cooling water systems in spite of intermittent chlorination.Effects of chlorinated-bromide mixture was evaluated against heterotrophic bacteria (TVC) and iron oxidising bacteria (IOB) vis-a-vis chlorine. Results indicated that chlorinated-bromide mixture was far superior (2 orders of magnitude for TVC and 2 times for IOB) to chlorine in microfouling control. Results also showed that at bromide to chlorine ratio of one effectiveness of chlorinated-bromide was at its maximum. (author). 9 refs., 1 tab

  2. Inactivation of antibiotic resistance genes in municipal wastewater effluent by chlorination and sequential UV/chlorination disinfection

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingying; Zhuang, Yao; Geng, Jinju, E-mail: jjgeng@nju.edu.cn; Ren, Hongqiang, E-mail: hqren@nju.edu.cn; Zhang, Yan; Ding, Lili; Xu, Ke

    2015-04-15

    This study investigated disinfection methods including chlorination, ultraviolet (UV) irradiation and sequential UV/chlorination treatment on the inactivation of antibiotic resistance genes (ARGs). ARGs including sul1, tetX, tetG, intI1, and 16S rRNA genes in municipal wastewater treatment plant (MWTP) effluent were examined. The results indicated a positive correlation between the removal of ARGs and chlorine dosage (p = 0.007–0.014, n = 6),as well as contact time (p = 0.0001, n = 10). Greater free chlorine (FC) dosage leads to higher removal for all the genes and the maximum removal (1.30–1.49 logs) could be achieved at FC dosage of 30 mg L{sup −1}. The transformation kinetic data for ARGs removal (log C{sub 0} / C) followed the second-order reaction kinetic model with FC dosage (R{sup 2} = 0.6829–0.9999) and contact time (R{sup 2} = 0.7353–8634), respectively. Higher ammonia nitrogen (NH{sub 3}–N) concentration was found to lead to lower removal of ARGs at the same chlorine dosage. When the applied Cl{sub 2}:NH{sub 3}–N ratio was over 7.6:1, a significant reduction of ARGs (1.20–1.49 logs) was achieved. By using single UV irradiation, the log removal values of tetX and 16Ss rRNA genes were 0.58 and 0.60, respectively, while other genes were 0.36–0.40 at a fluence of 249.5 mJ cm{sup −2}, which was observed to be less effective than chlorination. With sequential UV/chlorination treatment, 0.006 to 0.31 log synergy values of target genes were observed under different operation parameters. - Highlights: • Chlorine is more effective than UV irradiation in removing ARGs from MWTP effluent. • The chlorination reaction followed the second-order reaction kinetic model. • Higher NH{sub 3}–N contents result in lower ARGs removal in the chlorination process. • FC is more effective than CC on the inactivation of ARGs. • UV irradiation followed by chlorination shows high efficiency in removing ARGs.

  3. Chlorination of irradiated polyethylene single crystals

    International Nuclear Information System (INIS)

    Grimm, H.J.

    1978-01-01

    The chlorination of electron beam-irradiation polyethylene (PE) single crystals was studied for a range of irradiation doses, temperatures, and chlorine interaction times. The results presented show that PE chlorination was quite extensive, even in unirradiated PE single crystals at 25 0 C in the dark. Electron Spin Resonance (ESR, EPR) was used in this study in order to determine the alkyl radical concentration, decay constant, and diffusivity for (unchlorinated) specimens. An alkyl radical diffusivity D/sub a/ = 1.6 x 10 -17 cm 2 /sec at 25 0 C was estimated from ESR data and alkyl radical migration as one-dimensional unsteady-state diffusion process. In irradiated PE, chlorination occurred mainly via chain reactions which were initiated by the irradiation-produced free radicals. Chlorine content values were determined by X-ray Energy Spectroscopy (XES). It was found that the magnitude of the chlorine uptake increased with increasing dose, and decreased with decreasing temperature at constant dose. Otherwise the observed PE chlorination phenomena was quite similar for all of the doses and temperatures studied here, consisting of a two step mechanism: a fast uptake which occurred between time tCl 2 = 0 - 5 minutes and a slower, approximately first-order rate of uptake which occurred between times tCl 2 = 5 - 120 minutes. Chlorination was essentially complete by time tCl 2 = 120 minutes. The rapid uptake probably occurred in the amorphous surface zones where Cl 2 is relatively high and the second, slower step was probably attributable to Cl 2 diffusion into the crystalline regions and subsequent chlorination there. Inasmuch as the PE density decreases with increasing dose (for 1-600 Mrad), Cl 2 diffusivity was enhanced, resulting in higher chlorine uptake values at higher doses

  4. Chlorine: Is it really so bad and what are the alternatives?

    African Journals Online (AJOL)

    driniev

    bromine can be lost in side reactions with any organic matter present in the .... Nature 354, 255. ANDREWS ... CHRISTMAN K (2004) Report to the Chlorine Chemistry Council. ... (1992) Full-litter Resorptions Caused by Low-molecular wieght.

  5. Organohalogens in chlorinated cooling waters discharged from nuclear power stations

    International Nuclear Information System (INIS)

    Bean, R.M.; Mann, D.C.; Neitzel, D.A.

    1983-01-01

    For the power plant discharges studied to date, measured concentrations of trihalomethanes are lower than might be expected, particularly in cooling tower water, which can lose THMs to the atmosphere. In the cooling towers, where chlorine was added in higher concentrations and for longer residence times, halogenated phenols can contribute significantly to the total organic halogen content of the discharge. The way in which cooling towers are operated may also influence the production of halogenated phenols because they concentrate the incoming water by a factor of 4 or 5. In addition, the phenols, which act as a substrate for the halogenating agent, are also probably concentrated by the cooling tower operation and may be prevented from being biodegraded by addition of the same biocide that produces the halogenated phenols. 8 references, 4 tables

  6. Robust Chemiresistive Sensor for Continuous Monitoring of Free Chlorine Using Graphene-like Carbon.

    Science.gov (United States)

    Aryasomayajula, Aditya; Wojnas, Caroline; Divigalpitiya, Ranjith; Selvaganapathy, Ponnambalam Ravi; Kruse, Peter

    2018-02-23

    Free chlorine is widely used in industry as a bleaching and oxidizing agent. Its concentration is tightly monitored to avoid environmental contamination and deleterious human health effects. Here, we demonstrate a solid state chemiresistive sensor using graphene like carbon (GLC) to detect free chlorine in water. A 15-20 nm thick GLC layer on a PET substrate was modified with a redox-active aniline oligomer (phenyl-capped aniline tetramer, PCAT) to increase sensitivity, improve selectivity, and impart fouling resistance. Both the bare GLC sensor and the PCAT-modified GLC sensor can detect free chlorine continuously and, unlike previous chemiresistive sensors, do not require a reset. The PCAT-modified sensor showed a linear response with a slope of 13.89 (mg/L) -1 to free chlorine concentrations between 0.2 and 0.8 mg/L which is relevant for free chlorine monitoring for drinking water and wastewater applications. The PCAT-modified GLC sensors were found to be selective and showed less than 0.5% change in current in response to species such as nitrates, phosphates and sulfates in water. They also were resistant to fouling from organic material and showed only a 2% loss in signal. Tap water samples from residential area were tested using this sensor which showed good agreement with standard colorimetric measurement methods. The GLC and PCAT-GLC sensors show high sensitivity and excellent selectivity to free chlorine and can be used for continuous automated monitoring of free chlorine.

  7. First Derivative UV Spectra of Surface Water as a Monitor of Chlorination in Drinking Water Treatment

    Directory of Open Access Journals (Sweden)

    V. Zitko

    2001-01-01

    Full Text Available Many countries require the presence of free chlorine at about 0.1 mg/l in their drinking water supplies. For various reasons, such as cast-iron pipes or long residence times in the distribution system, free chlorine may decrease below detection limits. In such cases it is important to know whether or not the water was chlorinated or if nonchlorinated water entered the system by accident. Changes in UV spectra of natural organic matter in lakewater were used to assess qualitatively the degree of chlorination in the treatment to produce drinking water. The changes were more obvious in the first derivative spectra. In lakewater, the derivative spectra have a maximum at about 280 nm. This maximum shifts to longer wavelengths by up to 10 nm, decreases, and eventually disappears with an increasing dose of chlorine. The water treatment system was monitored by this technique for over 1 year and changes in the UV spectra of water samples were compared with experimental samples treated with known amounts of chlorine. The changes of the UV spectra with the concentration of added chlorine are presented. On several occasions, water, which received very little or no chlorination, may have entered the drinking water system. The results show that first derivative spectra are potentially a tool to determine, in the absence of residual chlorine, whether or not surface water was chlorinated during the treatment to produce potable water.

  8. UV/chlorine treatment of carbamazepine: Transformation products and their formation kinetics.

    Science.gov (United States)

    Pan, Yanheng; Cheng, ShuangShuang; Yang, Xin; Ren, Jingyue; Fang, Jingyun; Shang, Chii; Song, Weihua; Lian, Lushi; Zhang, Xinran

    2017-06-01

    Carbamazepine (CBZ) is one of the pharmaceuticals most frequently detected in the aqueous environment. This study investigated the transformation products when CBZ is degraded by chlorine under ultraviolet (UV) irradiation (the UV/chlorine process). Detailed pathways for the degradation of CBZ were elucidated using ultra-high performance liquid chromatography (UHPLC)-quadrupole time-of-flight mass spectrometry (QTOF-MS). CBZ is readily degraded by hydroxyl radicals (HO) and chlorine radicals (Cl) in the UV/chlorine process, and 24 transformation products were identified. The products indicate that the 10,11-double bond and aromatic ring in CBZ are the sites most susceptible to attack by HO and Cl. Subsequent reaction produces hydroxylated and chlorinated aromatic ring products. Four specific products were quantified and their evolution was related with the chlorine dose, pH, and natural organic matter concentration. Their yields showed an increase followed by a decreasing trend with prolonged reaction time. CBZ-10,11-epoxide (I), the main quantified transformation product from HO oxidation, was observed with a peak transformation yield of 3-32% depending on the conditions. The more toxic acridine (IV) was formed involving both HO and Cl with peak transformation yields of 0.4-1%. All four quantified products together amounted to a peak transformation yield of 34.5%. The potential toxicity of the transformation products was assayed by evaluating their inhibition of the bioluminescence of the bacterium Vibrio Fischeri. The inhibition increased at first and the decreased at longer reaction times, which was in parallel with the evolution of transformation products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Application of compound specific 13C isotope investigations of chlorinated hydrocarbons in contaminated groundwaters

    International Nuclear Information System (INIS)

    Osenbrueck, K.; Heidinger, M.; Voropaev, A.; Ertl, S.; Eichinger, L.

    2002-01-01

    Full text: Chlorinated hydrocarbons are one of the most common pollutants found in groundwater. Due to complex contamination situations with overlapping contamination plumes the assessment of the organic contaminants requires the installation of expensive observation wells and high analytical effort. Here the determination of the stable isotope ratio 13 C/ 12 C of the organic compounds offers a promising and efficient tool to investigate the origin and the biodegradation characteristics of the chlorinated hydrocarbons in groundwater. The application of the method is based on characteristic isotope fingerprints, differing in chlorinated solvents. This isotope fingerprint is derived from different production pathways and is not influenced by transport or by retardation processes in the underground. Due to the fact, that two different contaminations can easily be distinguished by isotope ratios, an improved distinction of spatially and temporally different contamination plumes might be possible. In course of biologically mediated degradation processes a shift of the isotope ratios between the precursor and the product can frequently be observed, such as with denitrification or sulfate reduction processes. The isotope fractionation is due to a preferential reaction of the bonds formed by the lighter isotopes and leads to a progressive enrichment of the heavy isotopes in the precursor while the product becomes depleted in the heavy isotopes. Biological degradation of the highly chlorinated hydrocarbons is due to a co-metabolic dechlorinisation. Tetrachloroethene (PCE) for example degrades under anoxic conditions via trichloroethene (TCE) to cis-1,2-dichloroethene (cDCE). Subsequent degradation to vinyl chloride (VC) and ethene may appear under aerobic as well as reducing environments depending on the site specific conditions. In several laboratory studies it has been shown, that biodegradation of the chlorinated hydrocarbons is accompanied by an isotope fractionation of

  10. Chlorine toxicity to copepods: implications in the context of zooplankton entrainment in power plants

    International Nuclear Information System (INIS)

    Ershath, M.; Altaff, K.; Sriyutha Murthy, P.; Venugopalan, V.P.

    2008-01-01

    Full text: Experiments were conducted to assess the effects of chlorine on zooplankton, such as those entrained into cooling water circuits of power stations. Three copepod groups (Calanoida, Cyclopoida and Harpacticoida) and copepod naupliar stages were chosen for the study. Percentage mortality of the different groups of copepods and the naupliar stages was assessed after 5, 15, 30, 45 and 60 min of exposure to chlorine residuals of 0.2, 0.5, 0.8 and 1.0 mg/1. Mortality increased with increase in exposure time and concentration of the biocide. Calanoids were relatively more tolerant to chlorine compared to the other groups. Chlorine toxicity may be classified (from more tolerant to less tolerant) as calanoids > cyclopoida > harpacticoids > naupliar stages. Continuous chlorination (with total chlorine residuals of 0.1 - 0.3 mg/l at the discharge) is the general practice adopted in tropical power stations. Considering this, results of the present study indicate and expected percentage mortality of the different groups as: calanoids - 7.9%, cyclopoids - 11.1%, harpacticoids - 10.2% and naupliar stages - 21.6%. However, the data need to be verified under actual plant conditions. (author)

  11. Characterisation of Chlorine Behavior in French Graphite

    International Nuclear Information System (INIS)

    Blondel, A.; Moncoffre, N.; Toulhoat, N.; Bererd, N.; Petit, L.; Laurent, G.; Lamouroux, C.

    2016-01-01

    Chlorine 36 is one of the main radionuclides of concern for French graphite waste disposal. In order to help the understanding of its leaching behaviour under disposal conditions, the respective impact of temperature, irradiation and gas radiolysis on chlorine release in reactor has been studied. Chlorine 36 has been simulated through chlorine 37 ion implantation in virgin nuclear graphite samples. Results show that part of chlorine is highly mobile in graphite in the range of French reactors operating temperatures in relation with graphite structural recovering. Ballistic damage generated by irradiation also promotes chlorine release whereas no clear impact of the coolant gas radiolysis was observed in the absence of graphite radiolytic corrosion. (author)

  12. Biodegradation of Chlorinated Solvents: Reactions near DNAPL and Enzyme Function

    Energy Technology Data Exchange (ETDEWEB)

    McCarty, P. L.; Spormann, Alfred M.; Criddle, Craig, S.

    2003-12-11

    Chlorinated solvents are among the most widespread groundwater contaminants in the country, contamination which is also among the most difficult and expensive for remediation. These solvents are biodegradable in the absence of oxygen, but this biodegradation requires both a food source for the organisms (electron donor) and the presence of chlorinated solvent biodegrading organisms. These two requirements are present naturally at some contamination sites, leading to natural attenuation of the solvents. If one or both requirements are absent, then engineered bioremediation either through addition of an external electron donor or through bioaugmentation with appropriate microorganisms, or both, may be used for site remediation. The most difficult case for cleanup is when a large residual of undissolved chlorinated solvents are present, residing as dense -non-aqueous-phase- liquid ( DNAPL). A major focus of this study was on the potential for biodegradation of the solvents when pre sent as DNAPL where concentrations are very high and potential for toxicity to microorganisms exist. Another focus was on a better understanding of the biological mechanisms involved in chlorinated solvent biodegradation . These studies were directed towards the chlorinated solvents, trichloroethene (TCE), tetrachloroethene or perchloroethene (PCE), and carbon tetrachloride (CT). The potential for biodegradation of TCE and PCE DNAPL was clearly demonstrated in this research. From column soil studies and batch studies we found there to be a clear advantage in focusing efforts at bioremediation near the DNAPL. Here, chlorinated solvent concentrations are the highest, both because of more favorable reaction kinetics and because such high solvent concentrations are toxic to microorganisms, such as methanogens, which compete with dehalogenators for the electron donor. Additionally, biodegradation near a PCE DNAPL results in an enhanced dissolution rate for the chlorinated solvent, by factors of

  13. Biodegradation of Chlorinated Solvents: Reactions near DNAPL and Enzyme Function

    International Nuclear Information System (INIS)

    McCarty, P. L.; Spormann, Alfred M.; Criddle, Craig S.

    2003-01-01

    Chlorinated solvents are among the most widespread groundwater contaminants in the country, contamination which is also among the most difficult and expensive for remediation. These solvents are biodegradable in the absence of oxygen, but this biodegradation requires both a food source for the organisms (electron donor) and the presence of chlorinated solvent biodegrading organisms. These two requirements are present naturally at some contamination sites, leading to natural attenuation of the solvents. If one or both requirements are absent, then engineered bioremediation either through addition of an external electron donor or through bioaugmentation with appropriate microorganisms, or both, may be used for site remediation. The most difficult case for cleanup is when a large residual of undissolved chlorinated solvents are present, residing as dense -non-aqueous-phase- liquid ( DNAPL). A major focus of this study was on the potential for biodegradation of the solvents when pre sent as DNAPL where concentrations are very high and potential for toxicity to microorganisms exist. Another focus was on a better understanding of the biological mechanisms involved in chlorinated solvent biodegradation . These studies were directed towards the chlorinated solvents, trichloroethene (TCE), tetrachloroethene or perchloroethene (PCE), and carbon tetrachloride (CT). The potential for biodegradation of TCE and PCE DNAPL was clearly demonstrated in this research. From column soil studies and batch studies we found there to be a clear advantage in focusing efforts at bioremediation near the DNAPL. Here, chlorinated solvent concentrations are the highest, both because of more favorable reaction kinetics and because such high solvent concentrations are toxic to microorganisms, such as methanogens, which compete with dehalogenators for the electron donor. Additionally, biodegradation near a PCE DNAPL results in an enhanced dissolution rate for the chlorinated solvent, by factors of

  14. METHODS FOR THE DETERMINATION OF TOTAL ORGANIC ...

    Science.gov (United States)

    Organic matter in soils and sediments is widely distributed over the earth's surface occurring in almost all terrestrial and aquatic environments (Schnitzer, 1978). Soils and sediments contain a large variety of organic materials ranging from simple sugars and carbohydrates to the more complex proteins, fats, waxes, and organic acids. Important characteristics of the organic matter include their ability to: form water-soluble and water- insoluble complexes with metal ions and hydrous oxides; interact with clay minerals and bind particles together; sorb and desorb both naturally-occurring and anthropogenically-introduced organic compounds; absorb and release plant nutrients; and hold water in the soil environment. As a result of these characteristics, the determination of total organic carbon (a measure of one of the chemical components of organic matter that is often used as an indicator of its presence in a soil or sediment) is an essential part of any site characterization since its presence or absence can markedly influence how chemicals will react in the soil or sediment. Soil and sediment total organic carbon (TOC) determinations are typically requested with contaminant analyses as part of an ecological risk assessment data package. TOC contents may be used qualitatively to assess the nature of the sampling location (e.g., was it a depositional area) or may be used to normalize portions of the analytical chemistry data set (e.g., equilibrium partitioning).

  15. Dechlorination of chlorinated phenols by subnanoscale Pd{sup 0}/Fe{sup 0} intercalated in smectite: pathway, reactivity, and selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Hanzhong; Wang, Chuanyi, E-mail: jiahz0143@aliyun.com

    2015-12-30

    Graphical abstract: Dechlorination process of pentachlorophenol (PCP) by smectite-templated Pd{sup 0}/Fe{sup 0}. - Highlights: • Smectite was employed as templated matrix to prepare subnanoscale Pd{sup 0}/Fe{sup 0} particles. • Dechlorination rate depends linearly on the Pd content as its loadings <0.065 wt.%. • Dechlorination rates correlate with the total charge of C on chlorinated phenols. • The dechlorination selectivity relies on charges of individual C in aromatic ring. - Abstract: Smectite clay was employed as templated matrix to prepare subnanoscale Pd{sup 0}/Fe{sup 0} particles, and their components as well as intercalated architectures were well characterized by X-ray energy dispersive spectroscopy (X-EDS) and X-ray diffraction (XRD). Furthermore, as-prepared Pd{sup 0}/Fe{sup 0} subnanoscale nanoparticles were evaluated for their dechlorination effect using chlorinated phenols as model molecules. As a result, pentachlorophenol (PCP) is selectively transformed to phenol in a stepwise dechlorination pathway within 6 h, and the dechlorination rate constants show linearly relationship with contents of Pd as its loadings <0.065%. Comparing with PCP, other chlorinated phenols display similar degradation pattern but within much shorter time frame. The dechlorination rate of chlorinated phenols increases with decreasing in number of -Cl attached to aromatic ring, which can be predicted by the total charge of the aromatic ring, exhibiting an inversely linear relationship with the dechlorination rates. While the selectivity of dechlorination depends on the charges associated with the individual aromatic carbon. Chloro-functional groups at the ortho-position are easier to be dechlorinated than that at meta- and para- positions yielding primarily 3,4,5-TCP as intermediate from PCP, further to phenol. The effective dechlorination warrants their potential utilizations in development of in-situ remediation technologies for organic pollutants in contaminated

  16. Chlorine-36 investigations of salt lakes

    International Nuclear Information System (INIS)

    Chivas, A.R.; Kiss, E.

    1987-01-01

    The first chlorine-36 measurements are reported for surficial halite in lakes from a west-to-east traverse in Western Australia and from Lake Amadeus NT. Measurements of chlorine-36 were made using a 14 MV tandem accelerator. Isotopic chlorine ratios ranged from 8 to 53 x 10 exp-15, with no clear evidence for bomb-spike chlorine-36. The Western Australian samples have values close to secular equilibrium values for typical granite and groundwaters in this rock type. Studies are aimed at calculating the residence time of chloride in the surficial environment. 1 tab

  17. Differences in field effectiveness and adoption between a novel automated chlorination system and household manual chlorination of drinking water in Dhaka, Bangladesh: a randomized controlled trial.

    Directory of Open Access Journals (Sweden)

    Amy J Pickering

    Full Text Available The number of people served by networked systems that supply intermittent and contaminated drinking water is increasing. In these settings, centralized water treatment is ineffective, while household-level water treatment technologies have not been brought to scale. This study compares a novel low-cost technology designed to passively (automatically dispense chlorine at shared handpumps with a household-level intervention providing water disinfection tablets (Aquatab, safe water storage containers, and behavior promotion. Twenty compounds were enrolled in Dhaka, Bangladesh, and randomly assigned to one of three groups: passive chlorinator, Aquatabs, or control. Over a 10-month intervention period, the mean percentage of households whose stored drinking water had detectable total chlorine was 75% in compounds with access to the passive chlorinator, 72% in compounds receiving Aquatabs, and 6% in control compounds. Both interventions also significantly improved microbial water quality. Aquatabs usage fell by 50% after behavioral promotion visits concluded, suggesting intensive promotion is necessary for sustained uptake. The study findings suggest high potential for an automated decentralized water treatment system to increase consistent access to clean water in low-income urban communities.

  18. Reduced Efficiency of Chlorine Disinfection of Naegleria fowleri in a Drinking Water Distribution Biofilm.

    Science.gov (United States)

    Miller, Haylea C; Wylie, Jason; Dejean, Guillaume; Kaksonen, Anna H; Sutton, David; Braun, Kalan; Puzon, Geoffrey J

    2015-09-15

    Naegleria fowleri associated with biofilm and biological demand water (organic matter suspended in water that consumes disinfectants) sourced from operational drinking water distribution systems (DWDSs) had significantly increased resistance to chlorine disinfection. N. fowleri survived intermittent chlorine dosing of 0.6 mg/L for 7 days in a mixed biofilm from field and laboratory-cultured Escherichia coli strains. However, N. fowleri associated with an attached drinking water distribution biofilm survived more than 30 times (20 mg/L for 3 h) the recommended concentration of chlorine for drinking water. N. fowleri showed considerably more resistance to chlorine when associated with a real field biofilm compared to the mixed laboratory biofilm. This increased resistance is likely due to not only the consumption of disinfectants by the biofilm and the reduced disinfectant penetration into the biofilm but also the composition and microbial community of the biofilm itself. The increased diversity of the field biofilm community likely increased N. fowleri's resistance to chlorine disinfection compared to that of the laboratory-cultured biofilm. Previous research has been conducted in only laboratory scale models of DWDSs and laboratory-cultured biofilms. To the best of our knowledge, this is the first study demonstrating how N. fowleri can persist in a field drinking water distribution biofilm despite chlorination.

  19. Chlorine trifluoride (1963)

    International Nuclear Information System (INIS)

    Vincent, L.M.; Gillardeau, J.

    1963-01-01

    This monograph on chlorine trifluoride may be considered as a working tool useful in gaseous diffusion research. It consists of data gathered from the literature and includes furthermore a certain amount of original data. This monograph groups together the physical, chemical and physiological properties of chlorine trifluoride, as well as the preparation and analytical methods. It has been thought wise to add some technological information, and the safety regulations governing its use. (authors) [fr

  20. Chlorine solar neutrino experiment

    International Nuclear Information System (INIS)

    Rowley, J.K.; Cleveland, B.T.; Davis, R. Jr.

    1984-01-01

    The chlorine solar neutrino experiment in the Homestake Gold Mine is described and the results obtained with the chlorine detector over the last fourteen years are summarized and discussed. Background processes producing 37 Ar and the question of the constancy of the production rate of 37 Ar are given special emphasis

  1. Internal chlorination of Ni-Cr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Berztiss, D.; Hennesen, K.; Grabke, H.J. [Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany)

    1998-12-31

    In contrast to internal oxidation, sulfidation and carburization, very little information is available regarding internal chlorination, especially diffusion of chlorine in metallic alloys. This paper describes results of experiments on Ni-Cr alloys (<10 wt% Cr) exposed in an atmosphere containing radioactive HCl. The diffusion of chlorine in the alloy can be determined by measurement of residual {beta}-activity from the sample surface. Successively thin layers (0.5-10 {mu}m) of the alloy were removed by lapping and the surface activity was measured to obtain a depth profile. Both single and polycrystalline materials were tested. Through this work it should be determined if there is in fact solubility and diffusion of chlorine in Ni-based alloys as some authors have proposed or if the ingress of chlorine is mainly a grain boundary phenomenon. (orig.)

  2. Comprehensive Model for Enhanced Biodegradation of Chlorinated Solvents in Groundwater

    Science.gov (United States)

    Kouznetsova, I.; Gerhard, J. I.; Mao, X.; Robinson, C.; Barry, A. D.; Harkness, M.; Mack, E. E.; Dworatzek, S.

    2007-12-01

    SABRE (Source Area BioREmediation) is a public/private consortium whose charter is to de-termine if enhanced anaerobic bioremediation can result in effective treatment of chlorinated solvent DNAPL source areas. The focus of this 4-year, $5.7 million research and development project is a field site in the United Kingdom containing TCE DNAPL. A comprehensive numerical model for simulating dehalogenation of chlorinated ethenes has been developed. The model considers the kinetic dissolution of DNAPL and nonaqueous organic amendments, bacterial growth and decay, and the interaction of biological and geochemical reactions that might influence biological activity. The model accounts for inhibitory effects of high chlorin-ated solvent concentrations as well as the link between fermentation and dehalogenation due to dynamic hydrogen concentration (the direct electron donor). In addition to the standard biodegradation pathways, sulphate reduction, mineral dissolution and precipitation kinetics are incorporated. These latter processes influence the soil buffering capacity and thus the net acidity generated. One-dimensional simulations were carried out to reproduce the data from columns packed with site soil and groundwater exhibiting both intermediate (250 mg/L) and near solubility (1100 mg/L) TCE concentrations. The modelling aims were to evaluate the key processes underpinning bioremediation success and provide a tool for investigating field sys-tem sensitivity to site data and design variables. This paper will present the model basis and validation and examine sensitivity to key processes including chlorinated ethene partitioning into soybean oil, sulphate reduction, and geochemical influences such as pH and the role of buffering in highly dechlorinating systems.

  3. Destruction of Salmonellae on poultry meat with lysozyme, EDTA, x ray, microwave, and chlorine

    International Nuclear Information System (INIS)

    Teotia, J.S.; Miller, B.F.

    1975-01-01

    Lysozyme, ethylenediaminetetracetic acid, chlorine, x-irradiation and microwaves were used in experimental attempts to eliminate Salmonella senftenberg 775W or Salmonella typhimurium from turkey drumsticks and whole carcasses. Turkey drumsticks or whole carcasses were artificially contaminated with S. senfenberg 775W or S. typhimurium in concentrations ranging between 5 x 10 5 to 8 x 10 5 viable cells per ml. of contaminating fluid. After each treatment, samples were cultured, plated, and tested according to standard methods to determine the susceptibility of Salmonella organisms to the particular treatment. A 0.1 percent solution of lysozyme eliminated the S. senftenberg 775W at 22 0 C within three hours. A 0.5 percent solution of ethylenediaminetetracetic acid failed to destroy the test organism under the same conditions. Eighty thousand rads of X-ray eliminated the test organism on turkey drumsticks but failed to remove it from whole turkey carcasses. Microwaves eliminated the S. senftenberg 775W in 150 seconds from turkey drumsticks and ten minutes from broiler chicken carcasses. Aqueous solutions containing 3400 and 2125 ppM chlorine failed to destroy the test organism on turkey drumsticks at 21 0 C. in 9 and 24 hours. None of the treatments changed the appearance of the skin or meat, except microwaves produced a partially-cooked appearance. Chlorine produced off-color drumsticks

  4. Levels and distribution patterns of short chain chlorinated paraffins in sewage sludge of wastewater treatment plants in China.

    Science.gov (United States)

    Zeng, Lixi; Wang, Thanh; Ruan, Ting; Liu, Qian; Wang, Yawei; Jiang, Guibin

    2012-01-01

    Short chain chlorinated paraffins (SCCPs) are listed as persistent organic pollutant candidates in the Stockholm Convention and are receiving more and more attentions worldwide. In general, concentrations of contaminants in sewage sludge can give an important indication on their pollution levels at a local/regional basis. In this study, SCCPs were investigated in sewage sludge samples collected from 52 wastewater treatment plants in China. Concentrations of total SCCPs (ΣSCCPs) in sludge were in the range of 0.80-52.7 μg/g dry weight (dw), with a mean value of 10.7 μg/g dw. Most of SCCPs in the sludge samples showed a similar congener distribution patterns, and C(11) and Cl(7,8) were identified as the dominant carbon and chlorine congener groups. Significant linear relationships were found among different SCCP congener groups (r(2) ≥ 0.9). High concentrations of SCCPs in sewage sludge imply that SCCPs are widely present in China. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Levels and distribution patterns of short chain chlorinated paraffins in sewage sludge of wastewater treatment plants in China

    International Nuclear Information System (INIS)

    Zeng Lixi; Wang Thanh; Ruan Ting; Liu Qian; Wang Yawei; Jiang Guibin

    2012-01-01

    Short chain chlorinated paraffins (SCCPs) are listed as persistent organic pollutant candidates in the Stockholm Convention and are receiving more and more attentions worldwide. In general, concentrations of contaminants in sewage sludge can give an important indication on their pollution levels at a local/regional basis. In this study, SCCPs were investigated in sewage sludge samples collected from 52 wastewater treatment plants in China. Concentrations of total SCCPs (ΣSCCPs) in sludge were in the range of 0.80–52.7 μg/g dry weight (dw), with a mean value of 10.7 μg/g dw. Most of SCCPs in the sludge samples showed a similar congener distribution patterns, and C 11 and Cl 7,8 were identified as the dominant carbon and chlorine congener groups. Significant linear relationships were found among different SCCP congener groups (r 2 ≥ 0.9). High concentrations of SCCPs in sewage sludge imply that SCCPs are widely present in China. - Highlights: ► Levels and distribution patterns of SCCPs were studied in sewage sludge in China. ► Concentrations of total SCCPs in sludge ranged from 0.8 to 52.7 μg/g dry weight. ► C 11 and Cl 7,8 were identified as the dominant congener groups within SCCPs. ► Significant linear relationships were found among SCCP congener groups (r 2 ≥ 0.9). ► SCCPs are present in household products and can be exposing to human. - High levels of short chain chlorinated paraffins in sewage sludge of wastewater treatment plants in China have been found.

  6. Formation of chlorinated organic compounds in fluidized bed combustion of recycled fuels; Kloorattujen orgaanisten yhdisteiden muodostuminen kierraetyspolttoaineiden leijukerrospoltossa

    Energy Technology Data Exchange (ETDEWEB)

    Vesterinen, R.; Kallio, M.; Kirjalainen, T.; Kolsi, A.; Merta, M. [VTT Energy, Jyvaeskylae (Finland)

    1997-10-01

    Four tests of co-combustion of recycled fuels (REP) with peat and coal in the 15 kW fluidized bed reactor were performed. The recycled fuel was so-called dry fraction in four vessels sampling at Keltinmaeki. In three tests a part of peat energy was replaced with coal. The mixtures were prepared so that in all mixtures 25 % of energy was recycled fuel and 75 % was either peat or the mixture of peat and coal. The concentrations of polyaromatic hydrocarbons (PAH), polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) and chlorophenols decreased with increasing part of coal due to the increasing sulphur/chlorine ratio. Principal Component Analysis (PCA) and Partial Least Square regression analysis (PLS) showed that the chlorine, copper and sulphur contents of the fuel effected most on the concentrations of chlorophenols, chlorobenzenes, PCBs and PCDDs/PCDFs. Other variables influencing on a model were the lead concentration and the sulphur/chlorine ratio in fuel and the hydrogen chloride concentration of the flue gas. The concentrations of chlorophenols and chlorobenzenes were also significant for PCDD/PCDF concentrations in flue gas. The sulphur, chlorine, copper and chromium contents in fly ash and the temperature of the reactor influenced on the chlorophenol, chlorobenzene, PCB and PCDD/PCDF concentrations in fly ash. The chlorophenol and chlorobenzene contents in fly ash, the sulphur/chlorine ratio and the lead content in fuel, the sulphur dioxide, hydrogen chloride and carbon monoxide concentrations in flue gas had also influence on PCDD/PCDF concentrations in fly ash

  7. Chlorine

    Science.gov (United States)

    ... your clothing, rapidly wash your entire body with soap and water, and get medical care as quickly as possible. Removing and disposing of clothing: Quickly take off clothing that has liquid chlorine on it. Any clothing that has to ...

  8. Examining the interrelationship between DOC, bromide and chlorine dose on DBP formation in drinking water--a case study.

    Science.gov (United States)

    Bond, Tom; Huang, Jin; Graham, Nigel J D; Templeton, Michael R

    2014-02-01

    During drinking water treatment aqueous chlorine and bromine compete to react with natural organic matter (NOM). Among the products of these reactions are potentially harmful halogenated disinfection by-products, notably four trihalomethanes (THM4) and nine haloacetic acids (HAAs). Previous research has concentrated on the role of bromide in chlorination reactions under conditions of a given NOM type and/or concentration. In this study different concentrations of dissolved organic carbon (DOC) from U.K. lowland water were reacted with varying amounts of bromide and chlorine in order to examine the interrelationship between the three reactants in the formation of THM4, dihaloacetic acids (DHAAs) and trihaloacetic acids (THAAs). Results showed that, in general, molar yields of THM4 increased with DOC, bromide and chlorine concentrations, although yields did fluctuate versus chlorine dose. In contrast both DHAA and THAA yields were mainly independent of changes in bromide and chlorine dose at low DOC (1 mg·L(-1)), but increased with chlorine dose at higher DOC concentrations (4 mg·L(-1)). Bromine substitution factors reached maxima of 0.80, 0.67 and 0.65 for the THM4, DHAAs and THAAs, respectively, at the highest bromide/chlorine ratio studied. These results suggest that THM4 formation kinetics depend on both oxidation and halogenation steps, whereas for DHAAs and THAAs oxidation steps are more important. Furthermore, they indicate that high bromide waters may prove more problematic for water utilities with respect to THM4 formation than for THAAs or DHAAs. While mass concentrations of all three groups increased in response to increased bromide incorporation, only the THMs also showed an increase in molar yield. Overall, the formation behaviour of DHAA and THAA was more similar than that of THM4 and THAA. © 2013.

  9. A comparative study on the radiation induced degradation of chlorinated organics and water

    International Nuclear Information System (INIS)

    Bekboelet, M.; Balcioglu, A.I.; Getoff, N.

    1998-01-01

    Complete text of publication follows. Radiation induced degradation of chlorinated benzaldehydes has been studied by the application of UV-photolysis, UV-assisted catalytic oxidation and gamma radiolysis processes. The degradation was followed in terms of the substrate removal and formation of the decomposition products such as chloride and formaldehyde. Formation of the acidic compounds were also determined by the pH decrease during irradiation periods. The below given table summarizes the obtained results in terms of photochemical G (G PH )values. The main idea of this paper was to evaluate the applied processes in relation to the end products rather and to compare the efficiency of the methods. Besides, chloride and formaldehyde formation, the substrate degradation and formation of the stable end products, were followed by HPLC analyses. Hydroxylated parent compounds chlorophenols, benzaldehyde were also detected. Formation of muconic acid through ring opening as well as the formation of lower molecular weight organic acids by decomposition such as oxalic, citric, tartaric and formic acids were observed with respect the applied oxidation process. Depending on the formed stable end products and the related probable reaction mechanisms, isomeric positions were found to be selective toward oxidative degradation

  10. Oxidation of sulfamethoxazole (SMX) by chlorine, ozone and permanganate--a comparative study.

    Science.gov (United States)

    Gao, Shanshan; Zhao, Zhiwei; Xu, Yongpeng; Tian, Jiayu; Qi, Hong; Lin, Wei; Cui, Fuyi

    2014-06-15

    Sulfamethoxazole (SMX), a typical sulfonamide antibiotic, has been widely detected in secondary wastewater effluents and surface waters. In this work we investigated the oxidative degradation of SMX by commonly used oxidants of chlorine, ozone and permanganate. Chlorine and ozone were shown to be more effective for the removal of SMX (0.05-5.0mg/L), as compared with permanganate. Higher pH enhanced the oxidation of SMX by ozone and permanganate, but decreased the removal by chlorine. Moreover, the ozonation of SMX was significantly influenced by the presence of humic acid (HA), which exhibited negligible influence on the oxidation by chlorine and permanganate. Fairly lower mineralization of SMX occurred during the oxidation reactions, with the highest dissolved organic carbon (DOC) removal of 13% (for ozone). By using LC-MS/MS, 7, 5 and 5 oxidation products were identified for chlorine, ozone and permanganate and possible transformation pathways were proposed. It was shown that different oxidants shared some common pathways, such as the cleavage of SN bond, the hydroxylation of the benzene ring, etc. On the other hand, each of the oxidants also exhibited exclusive degradation mechanisms, leading to the formation of different transformation products (TPs). This work may provide useful information for the selection of oxidants in water treatment processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Engineered Approaches to In Situ Bioremediation of Chlorinated Solvents: Fundamentals and Field Applications

    National Research Council Canada - National Science Library

    Fiedler, Linda

    2000-01-01

    Halogenated volatile organic compounds, including chlorinated solvents, are the most frequently-occurring type of soil and groundwater contaminant at Superfund and other hazardous waste sites in the United States. The U.S...

  12. Toxic effects of chlorinated cake flour in rats.

    Science.gov (United States)

    Cunningham, H M; Lawrence, G A; Tryphonas, L

    1977-05-01

    Four experiments were conducted using weanling Wistar rats to determine whether chlorinated cake flour or its constituents were toxic. Levels of 0.2 and 1.0% chlorine added to unbleached cake flour significantly (p less than 0.01) reduced growth rate by 20.7 and 85.2% and increased liver weight relative to body weight by 16.7 and 25.3%, respectively. Lipids extracted from flour chlorinated at the same levels had similar effects. Rat chow diets containing 0.2 and 0.6% chlorine in the form of chlorinated wheat gluten reduced growth rate and increased liver weight as a percentage of body weight. A rat chow diet containing 0.2% chlorine as chlorinated flour lipids increased absolute liver weight by 40%, kidney by 20%, and heart by 10% compared to pair-fed controls.

  13. Turbidity and chlorine demand reduction using alum and moringa flocculation before household chlorination in developing countries.

    Science.gov (United States)

    Preston, Kelsey; Lantagne, Daniele; Kotlarz, Nadine; Jellison, Kristen

    2010-03-01

    Over 1.1 billion people in the world lack access to improved drinking water. Diarrhoeal and other waterborne diseases cause an estimated 1.87 million deaths per year. The Safe Water System (SWS) is a household water treatment intervention that reduces diarrhoeal disease incidence among users in developing countries. Turbid waters pose a particular challenge to implementation of SWS programmes; although research shows that a 3.75 mg l(-1) sodium hypochlorite dose effectively treats turbid waters, users sometimes object to the strong chlorine taste and prefer to drink water that is more aesthetically pleasing. This study investigated the efficacy of two locally available chemical water treatments-alum and Moringa oleifera flocculation-to reduce turbidity and chlorine demand at turbidities of 10, 30, 70, 100 and 300 NTU. Both treatments effectively reduced turbidity (alum flocculation 23.0-91.4%; moringa flocculation 14.2-96.2%). Alum flocculation effectively reduced chlorine demand compared with controls at 30, 70, 100 and 300 NTU (p=0.01-0.06). Moringa flocculation increased chlorine demand to the point where adequate free chlorine residual was not maintained for 24 hours after treatment. Alum pretreatment is recommended in waters>or=30 NTU for optimum water disinfection. Moringa flocculation is not recommended before chlorination.

  14. Zirconia concentrate chlorination

    International Nuclear Information System (INIS)

    Costa, N.G.; Albuquerque Brocchi, E. de

    1990-01-01

    Chlorination experiments were conducted in order to study the kinetics of gasification of the zirconium oxide present in the zirconia concentrate. The variables studied are temperature (1173 to 1373 K), percentage of reducing agent (12 to 36%) and porosity (22 to 30%). The results indicated a greater influence of temperature and percentage of reducing agent as well as allowed the conclusion that a balance between the levels of these variables is an important factor in the appropriate chlorination conditions. (author)

  15. Stratospheric chlorine: Blaming it on nature

    International Nuclear Information System (INIS)

    Taube, G.

    1993-01-01

    Much of the bitter public debate over ozone depletion has centered on the claim that chlorofluorocarbons (CFCs) pale into insignificance alongside natural sources of chlorine in the stratosphere. If so, goes the argument, chlorine could not be depleting ozone as atmospheric scientists claim, because the natural sources have been around since time immemorial, and the ozone layer is still there. The claim, put forward in a book by Rogelio Maduro and Ralf Schauerhammer, has since been touted by former Atomic Energy Commissioner Dixy Lee Ray and talk-show host Rush Limbaugh, and it forms the basis of much of the backlash now being felt by atmospheric scientists. The argument is simple: Maduro and Schauerhammer calculate that 600 million tons of chlorine enters the atmosphere annually from seawater, 36 million tons from volcanoes, 8.4 million tons from biomass burning, and 5 million tons from ocean biota. In contrast, CFCs account for a mere 750,000 tons of atmospheric chlorine a year. Besides disputing the numbers, scientists have both theoretical and observational bases for doubting that much of this chlorine is getting into the stratosphere, where it could affect the ozone layer. Linwood Callis of the National Aeronautics and Space Administration's (NASA) Langley Research Center points out one crucial problem with the argument: Chlorine from natural sources is soluble, and so it gets rained out of the lower atmosphere. CFCs, in contrast, are insoluble and inert and thus make it to the stratosphere to release their chlorine. What's more, observations of stratospheric chemistry don't support the idea that natural sources are contributing much to the chlorine there

  16. Technical and Regulatory Requirements for Enhanced In Situ Bioremediation of Chlorinated Solvents in Groundwater

    National Research Council Canada - National Science Library

    1998-01-01

    Enhanced in situ bioremediation (EISB) of chlorinated solvents in groundwater involves the input of an organic carbon source, nutrients, electron acceptors, and/or microbial cultures to stimulate degradation...

  17. Aerobic cometabolic degradation of chlorinated ethenes in a two step system

    NARCIS (Netherlands)

    Sipkema, EM; Mocoroa, J; de Koning, W; Vlieg, JETV; Ganzeveld, KJ; Beenackers, A A C M; Janssen, D B

    1997-01-01

    Many of the chlorinated ethenes (CEs) can aerobically only be converted by cometabolism, a process in which the organism converts the contaminant that it cannot use for growth as a result of the nonspecificity of one of its enzymes. For bioremediation systems, the methanotroph Methylosinus

  18. Delignification of softwood kraft pulp by chlorine dioxide in a laboratory bleaching liquor displacement reactor

    International Nuclear Information System (INIS)

    Hamzeh, Y.; Izadyar, S.

    2008-01-01

    The chlorine dioxide delignification efficiency of softwood kraft pulp in the laboratory liquor displacement reactor (fixed bed reactor) was investigated and compared with conventional batch reactor. The comparison of two reactors was made based on the effective efficiency and overall efficiency of chlorine dioxide. Effective efficiency corresponds to the oxidizing capacity of chlorine dioxide which consumed by organic materials. Comparison of two reactors based on the effective efficiency showed that the selectivity of delignification significantly enhanced in the displacement reactor in which the primary reaction products are eliminated from reaction zone by displacing flow. On the other hand, the formation of high amounts of chlorate in the reaction zone of displacement reactor reduces the overall efficiency of chlorine dioxide delignification stage. Thus, in spite of significant decrease in useless secondary reactions, this type of reactor would not be cost effective in the industrial scale

  19. Recovery of actinides from actinide-aluminium alloys by chlorination: Part III - Chlorination with HCl(g)

    Science.gov (United States)

    Meier, Roland; Souček, Pavel; Walter, Olaf; Malmbeck, Rikard; Rodrigues, Alcide; Glatz, Jean-Paul; Fanghänel, Thomas

    2018-01-01

    Two steps of a pyrochemical route for the recovery of actinides from spent metallic nuclear fuel are being investigated at JRC-Karlsruhe. The first step consists in electrorefining the fuel in molten salt medium implying aluminium cathodes. The second step is a chlorination process for the separation of actinides (An) from An-Al alloys formed on the cathodes. The chlorination process, in turn, consists of three steps; the distillation of adhered salt (1), the chlorination of An-Al by HCl/Cl2 under formation of AlCl3 and An chlorides (2), and the subsequent sublimation of AlCl3 (3). In the present work UAl2, UAl3, NpAl2, and PuAl2 were chlorinated with HCl(g) in a temperature range between 300 and 400 °C forming UCl4, NpCl4 or PuCl3 as the major An containing phases, respectively. Thermodynamic calculations were carried out to support the experimental work. The results showed a high chlorination efficiency for all used starting materials and indicated that the sublimation step may not be necessary when using HCl(g).

  20. Kinetics of the oxidation of cylindrospermopsin and anatoxin-a with chlorine, monochloramine and permanganate.

    Science.gov (United States)

    Rodríguez, Eva; Sordo, Ana; Metcalf, James S; Acero, Juan L

    2007-05-01

    Cyanobacteria produce toxins that may contaminate drinking water sources. Among others, the presence of the alkaloid toxins cylindrospermopsin (CYN) and anatoxin-a (ANTX) constitutes a considerable threat to human health due to the acute and chronic toxicity of these compounds. In the present study, not previously reported second-order rate constants for the reactions of CYN and ANTX with chlorine and monochloramine and of CYN with potassium permanganate were determined and the influence of pH and temperature was established for the most reactive cases. It was found that the reactivity of CYN with chlorine presents a maximum at pH 7 (rate constant of 1265 M(-1)s(-1)). However, the oxidation of CYN with chloramine and permanganate are rather slow processes, with rate constants chlorination product of CYN was found to be 5-chloro-CYN (5-Cl-CYN), which reacts with chlorine 10-20 times slower than the parent compound. The reactivity of ANTX with chlorine and chloramines is also very low (kchlorine dose of 1.5 mg l(-1) was enough to oxidize CYN almost completely. However, 3 mg l(-1) of chlorine was able to remove only 8% of ANTX, leading to a total formation of trihalomethanes (TTHM) at a concentration of 150 microg l(-1). Therefore, chlorination is a feasible option for CYN degradation during oxidation and disinfection processes but not for ANTX removal. The permanganate dose required for CYN oxidation is very high and not applicable in waterworks.

  1. Determination of chlorine in nuclear-grade uranium compounds

    International Nuclear Information System (INIS)

    Yang Chunqing; Liu Fuyun; Huang Dianfan

    1988-01-01

    The determination of chlorine in nuclear-grade uranium compounds is discribed. Chlorine is separated from uranium oxide pyrohydrolytically with stream of wet oxygen in a furnace at 800 ∼ 900 deg C. Chlorine is volatilized as hydrochloric acid, absorbed in a dilute alkaline solution and measured with chlorine-selective electrode. This method covers the concentration range of 10 ∼ 500 pm chlorine in uranium oxide. Precision of at least ± 10% and recovery of 85 ∼ 108% have been reported

  2. Dechlorination of chlorinated phenols by subnanoscale Pd 0 /Fe 0 intercalated in smectite: pathway, reactivity, and selectivity.

    Science.gov (United States)

    Jia, Hanzhong; Wang, Chuanyi

    2015-12-30

    Smectite clay was employed as templated matrix to prepare subnanoscale Pd(0)/Fe(0) particles, and their components as well as intercalated architectures were well characterized by X-ray energy dispersive spectroscopy (X-EDS) and X-ray diffraction (XRD). Furthermore, as-prepared Pd(0)/Fe(0) subnanoscale nanoparticles were evaluated for their dechlorination effect using chlorinated phenols as model molecules. As a result, pentachlorophenol (PCP) is selectively transformed to phenol in a stepwise dechlorination pathway within 6h, and the dechlorination rate constants show linearly relationship with contents of Pd as its loadings <0.065%. Comparing with PCP, other chlorinated phenols display similar degradation pattern but within much shorter time frame. The dechlorination rate of chlorinated phenols increases with decreasing in number of -Cl attached to aromatic ring, which can be predicted by the total charge of the aromatic ring, exhibiting an inversely linear relationship with the dechlorination rates. While the selectivity of dechlorination depends on the charges associated with the individual aromatic carbon. Chloro-functional groups at the ortho-position are easier to be dechlorinated than that at meta- and para- positions yielding primarily 3,4,5-TCP as intermediate from PCP, further to phenol. The effective dechlorination warrants their potential utilizations in development of in-situ remediation technologies for organic pollutants in contaminated water. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Radiation-Initiated Chlorination of 1, 2-Dichloroethane

    Energy Technology Data Exchange (ETDEWEB)

    Danno, A.; Abe, T.; Washino, M.; Souda, T.; Shimada, K. [Takasaki Radiation Chemistry Research Establishment, Japan Atomic Energy Research Institute, Watanuki-machi, Takasaki-shi, Gunma-ken (Japan)

    1969-12-15

    Radiation-initiated chlorination of 1,2-dichloroethane was carried out with a batch system to study the chlorination reaction in the laboratory and also with a flow system to obtain information on its scale-up. It was found that the direct chlorination of 1,2-dichloroethane in the presence of gamma radiation takes place by a free-radical chain reaction with a high G-value of the order of 10{sup 5}. Successive chlorination of 1,2-dichloroethane gives 1,1, 2-trichloroethane, 1,1,1, 2- and 1,1, 2, 2-tetrachloroethane, pentachloroethane and hexachloroethane. No products other than these polychloro ethanes were detected. The composition of the reaction products depends on the degree of chlorination; it is independent of the dose rate and the chlorine feed rate. A promising application of this process is to produce trichloroethylene and perchloroethylene by thermal dehydrochlorination of a mixture of tetrachloroethane and pentachloroethane. The optimum conditions of producing these compounds with high yields depend on the feed rate of 1, 2-dichloroethane and chlorine gas, the dose rate and the reaction temperature. A pilot experimental facility with a 2-litre reaction vessel has been completed and is now in operation. (author)

  4. Mobilization of lead and other trace elements following shock chlorination of wells

    International Nuclear Information System (INIS)

    Seiler, Ralph L.

    2006-01-01

    Many owners of domestic wells shock chlorinate their wells to treat for bacterial contamination or control bad odors from sulfides. Analysis of well water with four wells from Fallon, Nevada, showed that following recommended procedures for shock chlorinating wells can cause large, short-lasting increases in trace-element concentrations in ground water, particularly for Cu, Fe, Pb, and Zn. Lead concentrations increased up to 745 fold between samples collected just before the well was shock chlorinated and the first sample collected 22-24 h later; Zn concentrations increased up to 252 fold, Fe concentrations increased up to 114 fold, and Cu concentrations increased up to 29 fold. Lead concentrations returned to near background levels following pumping of about one casing volume, however, in one well an estimated 120 mg of excess Pb were pumped before concentrations returned to prechlorination levels. Total Pb concentrations were much greater than filtered (0.45 μm) concentrations, indicating the excess Pb is principally particulate. Recommended procedures for purging treated wells following shock chlorination may be ineffective because a strong NaOCl solution can remain in the casing above the pump even following extended pumping. Only small changes in gross alpha and beta radioactivity occurred following shock chlorination. USEPA has not promulgated drinking-water standards for 21 Pb, however, measured 21 Pb activities in the study area typically were less than the Canadian Maximum Acceptable Concentration of 100 mBq/L. By consuming well water shortly after shock chlorination the public may inadvertently be exposed to levels of Pb, and possibly 21 Pb, that exceed drinking-water standards

  5. Combustion Characteristics of Chlorine-Free Solid Fuel Produced from Municipal Solid Waste by Hydrothermal Processing

    Directory of Open Access Journals (Sweden)

    Kunio Yoshikawa

    2012-11-01

    Full Text Available An experimental study on converting municipal solid waste (MSW into chlorine-free solid fuel using a combination of hydrothermal processing and water-washing has been performed. After the product was extracted from the reactor, water-washing experiments were then conducted to obtain chlorine-free products with less than 3000 ppm total chlorine content. A series of combustion experiments were then performed for the products before and after the washing process to determine the chlorine content in the exhaust gas and those left in the ash after the combustion process at a certain temperature. A series of thermogravimetric analyses were also conducted to compare the combustion characteristics of the products before and after the washing process. Due to the loss of ash and some volatile matter after washing process, there were increases in the fixed carbon content and the heating value of the product. Considering the possible chlorine emission, the washing process after the hydrothermal treatment should be necessary only if the furnace temperature is more than 800 °C.

  6. Developments and interlaboratory study of the analysis of short-chain chlorinated paraffins

    NARCIS (Netherlands)

    van Mourik, L. M.; van der Veen, I.; Crum, S.; de Boer, J.

    To survey the conformity and quality of the results between laboratories for short-chain chlorinated paraffins (SCCPs) determination, we reviewed current and novel analytical methods and organized four worldwide laboratory exercises between 2011 and 2017. Participants were requested to analyse test

  7. Developments and interlaboratory study of the analysis of short-chain chlorinated paraffins

    NARCIS (Netherlands)

    Mourik, van L.M.; Veen, van der I.; Crum, S.; Boer, de J.

    2018-01-01

    To survey the conformity and quality of the results between laboratories for short-chain chlorinated paraffins (SCCPs) determination, we reviewed current and novel analytical methods and organized four worldwide laboratory exercises between 2011 and 2017. Participants were requested to analyse test

  8. Passive remediation of chlorinated volatile organic compounds using barometric pumping

    International Nuclear Information System (INIS)

    Rossabi, J.; Looney, B.B.; Dilek, C.A.E.; Riha, B.; Rohay, V.J.

    1993-01-01

    The purpose of the Savannah River Integrated Demonstration Program, sponsored by the Department of Energy, is to demonstrate new subsurface characterization, monitoring, and remediation technologies. The interbedded clay and sand layers at the Integrated Demonstration Site (IDS) are contaminated with chlorinated volatile organic compounds (CVOCs). Characterization studies show that the bulk of the contamination is located in the approximately 40 m thick vadose zone. The most successful strategy for removing contaminants of this type from this environment is vapor extraction alone or in combination with other methods such as air sparging or enhanced bioremediation. Preliminary work at the IDS has indicated that natural pressure differences between surface and subsurface air caused by surface barometric fluctuations can produce enough gas flow to make barometric pumping a viable method for subsurface remediation. Air flow and pressure were measured in wells that are across three stratigraphic intervals in the vadose zone' The subsurface pressures were correlated to surface pressure fluctuations but were damped and lagging in phase corresponding to depth and stratum permeability. Piezometer wells screened at lower elevations exhibited a greater phase lag and damping than wells screened at higher elevations where the pressure wave from barometric fluctuations passes through a smaller number of low permeable layers. The phase lag between surface and subsurface pressures results in significant fluxes through these wells. The resultant air flows through the subsurface impacts CVOC fate and transport. With the appropriate controls (e.g. solenoid valves) a naturally driven vapor extraction system can be implemented requiring negligible operating costs yet capable of a large CVOC removal rate (as much as 1--2 kg/day in each well at the IDS)

  9. Sorption of iodine, chlorine, technetium and cesium in soil

    International Nuclear Information System (INIS)

    Soederlund, M.; Lusa, M.; Lehto, J.; Hakanen, M.; Vaaramaa, K.

    2011-01-01

    The safety assessment of final disposal of spent nuclear fuel will include an estimate for the behavior of waste nuclides in the biosphere. As a part of this estimate also the sorption of radioactive iodine, chlorine, technetium and cesium in soil is to be considered. The chemistry and the sorption of these radionuclides in soils are described in this literature survey. Behavior of I-129, Cl-36 and Tc-99 in the environment is of great interest because of their long half-lives and relatively high mobilities. The importance of Cs-135 arises from its high content in spent nuclear fuel and long physical half-life, even though it is considered relatively immobile in soil. Factors affecting the migration and sorption of radionuclides in soils can be divided into elemental and soil specific parameters. The most important elemental factor is the speciation of the element, which is influenced by the soil redox potential, pH and complex forming ligands. Soil micro-organisms can either serve as sorbents for radionuclides or affect their speciation by altering the prevailing soil redox conditions. Soil organic matter content and mineral properties have a marked influence on the retention of radionuclides. The sorption of anionic radionuclides such as I-, Cl- and TcO 4 - is pronounced in the presence of organic matter. Clay minerals are known to bound cesium effectively. The effect of speciation of radioactive iodine, chlorine, technetium and cesium in soil is considered in this study, as well as the effect of soil micro-organisms, organic matter and mineral properties. (orig.)

  10. Bulk chlorine uptake by polyamide active layers of thin-film composite membranes upon exposure to free chlorine-kinetics, mechanisms, and modeling.

    Science.gov (United States)

    Powell, Joshua; Luh, Jeanne; Coronell, Orlando

    2014-01-01

    We studied the volume-averaged chlorine (Cl) uptake into the bulk region of the aromatic polyamide active layer of a reverse osmosis membrane upon exposure to free chlorine. Volume-averaged measurements were obtained using Rutherford backscattering spectrometry with samples prepared at a range of free chlorine concentrations, exposure times, and mixing, rinsing, and pH conditions. Our volume-averaged measurements complement previous studies that have quantified Cl uptake at the active layer surface (top ≈ 7 nm) and advance the mechanistic understanding of Cl uptake by aromatic polyamide active layers. Our results show that surface Cl uptake is representative of and underestimates volume-averaged Cl uptake under acidic conditions and alkaline conditions, respectively. Our results also support that (i) under acidic conditions, N-chlorination followed by Orton rearrangement is the dominant Cl uptake mechanism with N-chlorination as the rate-limiting step; (ii) under alkaline conditions, N-chlorination and dechlorination of N-chlorinated amide links by hydroxyl ion are the two dominant processes; and (iii) under neutral pH conditions, the rates of N-chlorination and Orton rearrangement are comparable. We propose a kinetic model that satisfactorily describes Cl uptake under acidic and alkaline conditions, with the largest discrepancies between model and experiment occurring under alkaline conditions at relatively high chlorine exposures.

  11. Chlorinated indium tin oxide electrode by InCl{sub 3} aqueous solution for high-performance organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yun; Wang, Bo; Wang, Zhao-Kui, E-mail: zkwang@suda.edu.cn, E-mail: lsliao@suda.edu.cn; Liao, Liang-Sheng, E-mail: zkwang@suda.edu.cn, E-mail: lsliao@suda.edu.cn [Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123 (China); Zhou, Dong-Ying [Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123 (China); College of Physics, Optoelectronics and Energy, Soochow University, Suzhou, Jiangsu 215123 (China)

    2016-04-11

    The authors develop a facile and effective method to produce the chlorinated indium tin oxide (Cl-ITO) treated by InCl{sub 3} aqueous solution and UV/ozone. The work function of the Cl-ITO achieved by this treatment is as high as 5.69 eV, which is increased by 1.09 eV compared with that of the regular ITO without any treatment. Further investigation proved that the enhancement of the work function is attributed to the formation of In-Cl bonds on the Cl-ITO surface. Green phosphorescent organic light-emitting devices based on the Cl-ITO electrodes exhibit excellent electroluminescence performance, elongating lifetime due to the improvement in hole injection.

  12. Calculation of Physicochemical Properties for Short- and Medium-Chain Chlorinated Paraffins

    Science.gov (United States)

    Glüge, Juliane; Bogdal, Christian; Scheringer, Martin; Buser, Andreas M.; Hungerbühler, Konrad

    2013-06-01

    Short- and medium-chain chlorinated paraffins are potential PBT chemicals (persistent, bioaccumulative, toxic) and short-chain chlorinated paraffins are under review for inclusion in the UNEP Stockholm Convention on Persistent Organic Pollutants. Despite their high production volume of more than one million metric tonnes per year, only few data on their physicochemical properties are available. We calculated subcooled-liquid vapor pressure, subcooled-liquid solubility in water and octanol, Henry's law constant for water and octanol, as well as the octanol-water partition coefficient with the property calculation methods COSMOtherm, SPARC, and EPI Suite™, and compared the results to experimental data from the literature. For all properties, good or very good agreement between calculated and measured data was obtained for COSMOtherm; results from SPARC were in good agreement with the measured data except for subcooled-liquid water solubility, whereas EPI Suite™ showed the largest discrepancies for all properties. After critical evaluation of the three property calculation methods, a final set of recommended property data for short- and medium-chain chlorinated paraffins was derived. The calculated property data show interesting relationships with chlorine content and carbon chain length. Increasing chlorine content does not cause pronounced changes in water solubility and octanol-water partition coefficient (KOW) as long as it is below 55%. Increasing carbon chain length leads to strong increases in KOW and corresponding decreases in subcooled-liquid water solubility. The present data set can be used in further studies to assess the environmental fate and human exposure of this relevant compound class.

  13. 21 CFR 177.2430 - Polyether resins, chlorinated.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyether resins, chlorinated. 177.2430 Section 177... Components of Articles Intended for Repeated Use § 177.2430 Polyether resins, chlorinated. Chlorinated polyether resins may be safely used as articles or components of articles intended for repeated use in...

  14. Chlorine attack in copper/cupronickel heat exchangers tubes in service water system

    International Nuclear Information System (INIS)

    Hortiguela, Ruben; Corchon, Fernando; Villesccas, Gilberto

    2012-09-01

    Santa Maria de Garona is a nuclear power plant design BWR type 3 with an open cooling circuit without cooling towers which outlets to the Ebro river. In November 2006, the presence of zebra mussels was found upstream of the plant intake. The recommended option for the service water system was to install a chlorination treatment using liquid sodium hypochlorite. This recommendation was based primarily on the need to have an effective mitigation system in place at Garona in the summer of 2007. The recommendation was to apply continuous or semi-continuous addition of chlorine to the service water system, preventing any primary attachment of zebra mussels to the service water piping. The chlorine injection system was designed to deliver approximately 0,3 to 0,5 ppm Total Residual Chlorine (TRC) to the service water on continuous basis. The chlorine injection pumps located at the start of the service water system are controlled by the output of a chlorine analyzer located at the end of the service water system just prior to discharge. After four years injecting NaClO, numerous cases of tube failures in heat exchangers made of copper and cupronickel alloys have been detected. The reactions involved are as follows: Corrosion Reactions in Cupronickel alloys Cl 2 + Ni → NiCl 2 E=1.610 V (Pitting Initiator), Cl 2 + Cu → CuCl 2 E=1.023 V. Corrosion Reactions in Copper tubes Cl 2 + Cu → CuCl 2 E=1.023 V. A close examination by optical microscope of the internal wall of the tubes has shown the typical crystals created from chorine corrosion such as: Cu (OH) 2 , CuCl 2 . (2H 2 O),NiCl 2 , [CuCl 3 ] -1 and [CuCl 4 ] -2 Conclusions: The degradation of the material is due to a combination of the following items: - Ageing of material after many years of operation; - Erosion due to poor quality of river water (silica particles, silts, sediments, etc); - Attack from chlorination to base material; The solutions that have been implemented are mainly: - Reduction of chlorine

  15. Chlorine transportation risk assessment

    International Nuclear Information System (INIS)

    Lautkaski, Risto; Mankamo, Tuomas.

    1977-02-01

    An assessment has been made on the toxication risk of the population due to the bulk rail transportation of liquid chlorine in Finland. Fourteen typical rail accidents were selected and their probability was estimated using the accident file of the Finnish State Railways. The probability of a chlorine leak was assessed for each type of accident separately using four leak size categories. The assessed leakage probability was dominated by station accidents, especially by collisions of a chlorine tanker and a locomotive. Toxication hazard areas were estimated for the leak categories. A simple model was constructed to describe the centring of the densely populated areas along the railway line. A comparison was made between the obtained risk and some other risks including those due to nuclear reactor accidents. (author)

  16. Organics.

    Science.gov (United States)

    Chian, Edward S. K.; DeWalle, Foppe B.

    1978-01-01

    Presents water analysis literature for 1978. This review is concerned with organics, and it covers: (1) detergents and surfactants; (2) aliphatic and aromatic hydrocarbons; (3) pesticides and chlorinated hydrocarbons; and (4) naturally occurring organics. A list of 208 references is also presented. (HM)

  17. Interim report on testing of off-gas treatment technologies for abatement of atmospheric emissions of chlorinated volatile organic compounds

    International Nuclear Information System (INIS)

    Haselow, J.S.; Jarosch, T.R.; Rossabi, J.; Burdick, S.; Lombard, K.

    1993-12-01

    The purpose of this report is to briefly summarize the results to date of the off-gas treatment program for atmospheric emissions of chlorinated volatile organic compounds (CVOCs), in particular trichloroethylene (TCE) and perchloroethylene (PCE). This program is part of the Department of Energy's Office of Technology Development's Integrated Demonstration for Treatment of Organics in Soil and Water at a Non-Arid Site. The off-gas treatment program was initiated after testing of in-situ air stripping with horizontal wells was completed. That successful test expectedly produced atmospheric emissions of CVOCs that were unabated. It was decided after that test that an off-gas treatment program would complement the Integrated Demonstration not only because off-gas treatment is an integral portion of remediation of CVOC contamination in groundwater and soil but also because several technologies were being developed across the US to mitigate CVOC emissions. A single platform for testing off-gas treatment technologies would facilitate systematic and unbiased evaluation of the emerging technologies

  18. Skeletal and chlorine effects on 13C-NMR chemical shifts of chlorinated polycyclic systems

    Directory of Open Access Journals (Sweden)

    Costa V.E.U.

    1999-01-01

    Full Text Available In order to establish a comparative analysis of chemical shifts caused by ring compression effects or by the presence of a chlorine atom on strained chlorinated carbons, a series of the chlorinated and dechlorinated polycyclic structures derived from "aldrin" (5 and "isodrin" (14 was studied. Compounds were classified in four different groups, according to their conformation and number of ring such as: endo-exo and endo-endo tetracyclics, pentacyclics and hexacyclics. The 13C chemical shift comparison between the chlorinated and dechlorinated compounds showed that when C-9 and C-10 are olefinic carbons, it occurs a shielding of 0.5-2.4 ppm for endo-endo tetracyclics and of 4.7-7.6 ppm for endo-exo tetracyclic. The chemical shift variation for C-11 reaches 49-53 ppm for endo-exo and endo-endo tetracyclics, 54 ppm for pentacyclic and 56-59 ppm for hexacyclic compounds. From these data, it was possible to observe the influence of ring compression on the chemical shifts.

  19. Direct chlorination of alcohols with chlorodimethylsilane catalyzed by a gallium trichloride/tartrate system under neutral conditions.

    Science.gov (United States)

    Yasuda, Makoto; Shimizu, Kenji; Yamasaki, Satoshi; Baba, Akio

    2008-08-07

    The reaction of secondary alcohols 1 with chlorodimethylsilane (HSiMe(2)Cl) proceeded in the presence of a catalytic amount of GaCl(3)/diethyl tartrate to give the corresponding organic chlorides 3. In the catalytic cycle, the reaction of diethyl tartrate 4a with HSiMe(2)Cl 2 gives the chlorosilyl ether 5 with generation of H(2). Alcohol-exchange between the formed chlorosilyl ether 5 and the substrate alcohol 1 affords alkoxychlorosilane 6, which reacts with catalytic GaCl(3) to give the chlorinated product 3. The moderate Lewis acidity of GaCl(3) facilitates chlorination. Strong Lewis acids did not give product due to excessive affinity for the oxy-functionalities. Although tertiary alcohols were chlorinated by this system even in the absence of diethyl tartrate, certain alcohols that are less likely to give carbocationic species were effectively chlorinated using the GaCl(3)/diethyl tartrate system.

  20. Mini Total Organic Carbon Analyzer (miniTOCA)

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this development is to create a prototype hand-held, 1 to 2 liter size battery-powered Total Organic Carbon Analyzer (TOCA). The majority of...

  1. Kinetic model for predicting the concentrations of active halogens species in chlorinated saline cooling waters. Final report

    International Nuclear Information System (INIS)

    Haag, W.R.; Lietzke, M.H.

    1981-08-01

    A kinetic model has been developed for describing the speciation of chlorine-produced oxidants in seawater as a function of time. The model is applicable under a broad variety of conditions, including all pH range, salinities, temperatures, ammonia concentrations, organic amine concentrations, and chlorine doses likely to be encountered during power plant cooling water chlorination. However, the effects of sunlight are not considered. The model can also be applied to freshwater and recirculating water systems with cooling towers. The results of the model agree with expectation, however, complete verification is not feasible at the present because analytical methods for some of the predicted species are lacking

  2. Kinetic model for predicting the concentrations of active halogens species in chlorinated saline cooling waters. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Haag, W.R.; Lietzke, M.H.

    1981-08-01

    A kinetic model has been developed for describing the speciation of chlorine-produced oxidants in seawater as a function of time. The model is applicable under a broad variety of conditions, including all pH range, salinities, temperatures, ammonia concentrations, organic amine concentrations, and chlorine doses likely to be encountered during power plant cooling water chlorination. However, the effects of sunlight are not considered. The model can also be applied to freshwater and recirculating water systems with cooling towers. The results of the model agree with expectation, however, complete verification is not feasible at the present because analytical methods for some of the predicted species are lacking.

  3. Chlorine inactivation of Tubifex tubifex in drinking water and the synergistic effect of sequential inactivation with UV irradiation and chlorine.

    Science.gov (United States)

    Nie, Xiao-Bao; Li, Zhi-Hong; Long, Yuan-Nan; He, Pan-Pan; Xu, Chao

    2017-06-01

    The inactivation of Tubifex tubifex is important to prevent contamination of drinking water. Chlorine is a widely-used disinfectant and the key factor in the inactivation of T. tubifex. This study investigated the inactivation kinetics of chlorine on T. tubifex and the synergistic effect of the sequential use of chlorine and UV irradiation. The experimental results indicated that the Ct (concentration × time reaction ) concept could be used to evaluate the inactivation kinetics of T. tubifex with chlorine, thus allowing for the use of a simpler Ct approach for the assessment of T. tubifex chlorine inactivation requirements. The inactivation kinetics of T. tubifex by chlorine was found to be well-fitted to a delayed pseudo first-order Chick-Watson expression. Sequential experiments revealed that UV irradiation and chlorine worked synergistically to effectively inactivate T. tubifex as a result of the decreased activation energy, E a , induced by primary UV irradiation. Furthermore, the inactivation effectiveness of T. tubifex by chlorine was found to be affected by several drinking water quality parameters including pH, turbidity, and chemical oxygen demand with potassium permanganate (COD Mn ) concentration. High pH exhibited pronounced inactivation effectiveness and the decrease in turbidity and COD Mn concentrations contributed to the inactivation of T. tubifex. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Process for producing chlorinated polyethylene

    International Nuclear Information System (INIS)

    Nose, Shinji; Takayama, Shin-ichi; Kodama, Takashi.

    1970-01-01

    A process for chlorinated polyethylene by the chlorination of an aqueous suspension of polyethylene without the use catalysts is given, using 5-55% by gel content of cross-linked polyethylene powders. The products have favorable material workability, transparency, impact strength and tensile properties. In the case of peroxide cross-linking, a mixture of peroxides with polyethylene must be ground after heat treatment. The polyethylene may preferably have a gel content of 5-55%. The chlorination temperature may be 40 0 C or more, preferably 60 0 to 160 0 C. In one example, high pressure polymerized fine polyethylene powders of 15μ having a density of 0.935 g/cc, a softening point of 114 0 C, an average molecular weight of 35,000 were irradiated in air with 40 Mrad electron beams from a 2 MV Cockcroft-Walton type accelerator at room temperature. The thus irradiated polyethylene had a gel content of 55% and a softening point of 119 0 C. It was chlorinated upto a chlorine content of 33% at 100 0 C. Products were white crystals having a melting point of 122 0 C and a melting heat value of 32 mcal/mg. A sheet formed from this product showed a tensile strength of 280 kg/cm 2 , an elongation of 370% and a hardness of 90. (Iwakiri, K.)

  5. Combined toxicity effects of chlorine, ammonia, and temperature on marine plankton. Progress report, September 16, 1975--September 30, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, J. C.; Ryther, J. H.

    1976-10-01

    Research on the combined effects of chlorine, ammmonia and temperature on marine plankton have been carried out for 20 months. To date continuous-flow bioassays have been conducted on lobster larvae (Homarus americanus), oyster larvae (Crassostrea virginica), copepods (Acartia tonsa), rotifers (Brachionus plicatilis), three juvenile and larval fish, killifish (Fundulus heteroclitus), scup (Stenotomus versicolor), and winter flounder (Pseudopleuronectes americanus), and phytoplankton (the diatom Phaeodactylum tricornutum). In addition, studies on zooplankton metabolism, filtration rates, and growth were carried out on exposed organisms. In general, the responses of invertebrates were distinctly different than those of fish: increasing mortality with increasing chlorine dose and greater sensitivity to chloramines than free chlorine in the former, and a threshold level of chlorine and greater sensitivity to free chlorine in the latter. Phytoplankton responses indicate that chlorine effects on primary producers are minimal compared to the serious effects on zooplankton, particularly larval forms that spawn intermittently. The overall conclusion of our studies is that chlorine application at power plants must be carried out with extreme caution and that serious consideration should be given to applying dechlorination at all coastal cooling systems.

  6. Electrochemically activated water as an alternative to chlorine for decentralized disinfection

    KAUST Repository

    Ghebremichael, Kebreab A.

    2011-06-01

    Electrochemically activated (ECA) water is being extensively studied and considered as an alternative to chlorine for disinfection. Some researchers claim that ECA is by and large a chlorine solution, while others claim the presence of reactive oxygen species such as ozone and hydroxyl radicals in addition to chlorine. This study compares sodium hypochlorite (NaOCl) and ECA in terms of disinfection efficacy, trihalomethanes (THMs) formation, stability and composition. The studies were carried out under different process conditions (pH 5,7 and 9, disinfectant concentrations of 2-5 mg/L and dissolved organic carbon (DOC) concentration of 2-4 mg/L). The results indicated that in the presence of low DOC (<2 mg/L) ECA showed better disinfection efficacy for Escherichia coli inactivation, formed lower THM and had better stability compared with NaOCl at both pH 5 and 7. Stability studies of stock solutions showed that over a period of 30 days, ECA decayed by only 5% while NaOCl decayed by 37.5% at temperatures of 4 °C. In a fresh ECA of 200 mg/L chlorine, about 5.3 mg/L ozone and 36.9 mg/L ClO2 were detected. The study demonstrates that ECA could be a suitable alternative to NaOCl where decentralized production and use are required. © IWA Publishing 2011.

  7. Features of copper etching in chlorine-argon plasma

    International Nuclear Information System (INIS)

    Efremov, A.M.; Svettsov, V.I.

    1995-01-01

    Chlorine mixtures with inert gases including argon exhibit promise as plasma feed gases for etching metals and semiconductors in the microelectronics industry. It was shown that even strong dilution of reactive gas with an inert gas (up to 80-90% of the latter) has virtually no effect in decreasing the rate of plasma etching of materials such as silicon and gallium arsenide, compared to etching in pure chlorine. The principal reactive species responsible for etching these substrates are chlorine atoms therefore, a possible explanation of the effect is an increase in the rate of bulk generation of chlorine atoms in the presence of argon. In this work the authors studied the influence of argon on the rate of copper etching in chlorine, because copper, unlike the above substrates, reacts effectively not only with the atoms but with the ground-state molecules of chlorine

  8. Phytoscreening as an efficient tool to delineate chlorinated solvent sources at a chlor-alkali facility.

    Science.gov (United States)

    Yung, Loïc; Lagron, Jérôme; Cazaux, David; Limmer, Matt; Chalot, Michel

    2017-05-01

    Chlorinated ethenes (CE) are among the most common volatile organic compounds (VOC) that contaminate groundwater, currently representing a major source of pollution worldwide. Phytoscreening has been developed and employed through different applications at numerous sites, where it was generally useful for detection of subsurface chlorinated solvents. We aimed at delineating subsurface CE contamination at a chlor-alkali facility using tree core data that we compared with soil data. For this investigation a total of 170 trees from experimental zones was sampled and analyzed for perchloroethene (PCE) and trichloroethene (TCE) concentrations, measured by solid phase microextraction gas chromatography coupled to mass spectrometry. Within the panel of tree genera sampled, Quercus and Ulmus appeared to be efficient biomonitors of subjacent TCE and PCE contamination, in addition to the well known and widely used Populus and Salix genera. Among the 28 trees located above the dense non-aqueous phase liquid (DNAPL) phase zone, 19 tree cores contained detectable amounts of CE, with concentrations ranging from 3 to 3000 μg L -1 . Our tree core dataset was found to be well related to soil gas sampling results, although the tree coring data were more informative. Our data further emphasized the need for choosing the relevant tree species and sampling periods, as well as taking into consideration the nature of the soil and its heterogeneity. Overall, this low-invasive screening method appeared useful to delineate contaminants at a small-scale site impacted by multiple sources of chlorinated solvents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Formation of secondary products in water purification. ; Charactarization of chlorination by-products. Josui shori ni okeru fukuseiseibutsu. ; Enso shori ni yoru shodoku fukuseiseibutsu no seisei tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Aizawa, T [The Inst. of Public Health, Tokyo (Japan)

    1993-12-10

    Chlorination of drinking water is an inevitable process for the purification of drinking water. It has been made clear that injected free chlorine reacts with organic matter in water to produce chlorinated by-products. Many of those compounds are toxic, and studies have been made on the international water quality standard. Water quality standard has been revised also in Japan. The sources of organic matter which is the cause for production of chlorinated by-products vary according to the kinds and conditions of the water source for drinking water. Removal of precursors in the original water, removal of by-products, and change in the disinfection system with alternate disinfectant for chlorine are among the measures for decreasing chlorinated by-products at water purification plants, but the first one is employed as the basis method. It is expected that more severe regulation may be imposed on the quality of the water source for drinking water, and more strict oxidation and disinfection systems is inevitable for water management based on the new water quality standard. 10 refs., 5 figs., 2 tabs.

  10. Solid recovered fuel: influence of waste stream composition and processing on chlorine content and fuel quality.

    Science.gov (United States)

    Velis, Costas; Wagland, Stuart; Longhurst, Phil; Robson, Bryce; Sinfield, Keith; Wise, Stephen; Pollard, Simon

    2012-02-07

    Solid recovered fuel (SRF) produced by mechanical-biological treatment (MBT) of municipal waste can replace fossil fuels, being a CO(2)-neutral, affordable, and alternative energy source. SRF application is limited by low confidence in quality. We present results for key SRF properties centered on the issue of chlorine content. A detailed investigation involved sampling, statistical analysis, reconstruction of composition, and modeling of SRF properties. The total chlorine median for a typical plant during summer operation was 0.69% w/w(d), with lower/upper 95% confidence intervals of 0.60% w/w(d) and 0.74% w/w(d) (class 3 of CEN Cl indicator). The average total chlorine can be simulated, using a reconciled SRF composition before shredding to limit for ash content marginally below the 20% w/w(d) deemed suitable for certain power plants; and a lower 95% confidence limit of net calorific value (NCV) at 14.5 MJ kg(ar)(-1). The data provide, for the first time, a high level of confidence on the effects of SRF composition on its chlorine content, illustrating interrelationships with other fuel properties. The findings presented here allow rational debate on achievable vs desirable MBT-derived SRF quality, informing the development of realistic SRF quality specifications, through modeling exercises, needed for effective thermal recovery.

  11. Disinfection byproduct formation in reverse-osmosis concentrated and lyophilized natural organic matter from a drinking water source.

    Science.gov (United States)

    Pressman, Jonathan G; McCurry, Daniel L; Parvez, Shahid; Rice, Glenn E; Teuschler, Linda K; Miltner, Richard J; Speth, Thomas F

    2012-10-15

    Drinking water treatment and disinfection byproduct (DBP) research can be complicated by natural organic matter (NOM) temporal variability. NOM preservation by lyophilization (freeze-drying) has been long practiced to address this issue; however, its applicability for drinking water research has been limited because the selected NOM sources are atypical of most drinking water sources. The purpose of this research was to demonstrate that reconstituted NOM from a lyophilized reverse-osmosis (RO) concentrate of a typical drinking water source closely represents DBP formation in the original NOM. A preliminary experiment assessed DBP formation kinetics and yields in concentrated NOM, which demonstrated that chlorine decays faster in concentrate, in some cases leading to altered DBP speciation. Potential changes in NOM reactivity caused by lyophilization were evaluated by chlorination of lyophilized and reconstituted NOM, its parent RO concentrate, and the source water. Bromide lost during RO concentration was replaced by adding potassium bromide prior to chlorination. Although total measured DBP formation tended to decrease slightly and unidentified halogenated organic formation tended to increase slightly as a result of RO concentration, the changes associated with lyophilization were minor. In lyophilized NOM reconstituted back to source water TOC levels and then chlorinated, the concentrations of 19 of 21 measured DBPs, constituting 96% of the total identified DBP mass, were statistically indistinguishable from those in the chlorinated source water. Furthermore, the concentrations of 16 of 21 DBPs in lyophilized NOM reconstituted back to the RO concentrate TOC levels, constituting 86% DBP mass, were statistically indistinguishable from those in the RO concentrate. This study suggests that lyophilization can be used to preserve concentrated NOM without substantially altering the precursors to DBP formation. Published by Elsevier Ltd.

  12. Influence of chlorine on the susceptibility of striped bass (Morone saxatilis) to Vibrio anguillarum

    Energy Technology Data Exchange (ETDEWEB)

    Hetrick, F M; Hall, Jr, L W; Wolski, S; Graves, W C; Roberson, B S

    1984-09-01

    The subtle effects that low levels of pollutants have on fish populations are probably more important than the effects of large spills, since the effects are less likely to be obvious and the source more difficult to detect in time to save the environment. An experiment was carried out to determine if exposure of striped bass to sublethal concentrations of chlorine affected their susceptibility to bacterial infection. Exposure of striped bass for 96 h to sublethal concentrations of total residual chlorine (TRC) (0.05-0.23 mg/L) did not increase their susceptibility to infection with the bacterial pathogen Vibrio anguillarum. Variables examined were TRC concentrations, length of exposure to chlorine, and the order of exposure to chlorine and the pathogen. Mortalities in the groups exposed to both chlorine and pathogen were not significantly different from those seen in groups receiving the bacteria only. Smaller fish are more susceptible than larger fish, and the LD50 is markedly affected by the ambient temperature in that fewer bacteria are needed to kill fish at lower temperatures. One contributing factor to this increased resistance of fish at higher water temperatures appears to be related to their immune status. 29 references, 5 tables.

  13. Chlorine poisoning

    Science.gov (United States)

    ... gas) Gas released when opening a partially filled industrial container of chlorine tablets that have been sitting ... change in acid level of the blood (pH balance), which leads to damage in all of the ...

  14. Dispersion of chlorine at seven southern California coastal generating stations

    International Nuclear Information System (INIS)

    Grove, R.S.

    1983-01-01

    The objectives of this study were to (1) determine chlorine concentrations and exposure time gradients of chlorine through seven coastal generating stations and (2) assess the dispersion characteristics of chlorine in the receiving waters. Remarkable variability in chlorine injection concentrations, condenser outlet concentrations, outfall concentrations, and dissipation rates between generating stations and, to a lesser extent, between surveys at the same generating station was found in this chlorine monitoring study. Other than quite consistent low injection and correspondingly low outfall concentrations at San Onofre (a generating station that had one of the more rigorous chlorine control and minimization programs in effect at the time), no recognizable patterns of chlorination could be discerned in the data. Over half of the outfall chlorine surveys had chlorine concentrations below 0.08 mg/L, which is the accepted level of detection for the titrator being used in the surveys. The post-outfall dilution calculations further showed that the chlorine that does enter the receiving water is initially diluted with entrained ambient water at a ratio of 5.2:19.0

  15. Chlorination leaching of cadmium

    International Nuclear Information System (INIS)

    Lach, E.; Pajak, I.; Bojanowska, A.

    1978-01-01

    The results of the investigations on chlorination leaching of cadmium from dust coming from dry dust collector of sinter belt, that is leaching with water saturated with gaseous chlorine and leaching with solutions of ammonium chloride and sodium chloride were given. The optimum conditions for these processes were established. It was found, that the method of leaching in the presence of gaseous chlorine is more effective, as it allows to report into the solution over 90% cadmium contained in dust. Owing to technical difficulties, environmental protection and safety conditions more advantageous seems to be the use as leaching agent of the ammonium chloride solutions. When applying 20% NH 4 Cl and temperature of 60 0 C, the time of 2 hours and the ratio of solid to liquid of 1:5, 70% cadmium contained in the dust can be reported into the solution. (auth.)

  16. Comparison of the disinfection efficacy of chlorine-based products for inactivation of viral indicators and pathogenic bacteria in produce wash water.

    Science.gov (United States)

    Chaidez, Cristobal; Moreno, Maria; Rubio, Werner; Angulo, Miguel; Valdez, Benigno

    2003-09-01

    Outbreaks of pathogenic bacteria infections associated with the consumption of fresh produce has occurred with increased frequency in recent years. This study was undertaken to determine the efficacy of three commonly used disinfectants in packing-houses of Culiacan, Mexico (sodium hypochlorite [NaOCl], trichlor-s-triazinetrione [TST] and thrichlormelamine [TCM]) for inactivation of viral indicators and pathogenic bacteria inoculated onto produce wash water. Each microbial challenge consisted of 2 L of water containing approximately 8 log10 bacterial CFU ml(-1), and 8 log10 viral PFU ml(-1) treated with 100 and 300 mg l(-1) of total chlorine with modified turbidity. Water samples were taken after 2 min of contact with chlorine-based products and assayed for the particular microorganisms. TST and NaOCl were found to effectively reduce for bacterial pathogens and viral indicators 8 log10 and 7 log10, respectively (alpha=0.05). The highest inactivation rate was observed when the turbidity was low and the disinfectant was applied at 300 mg l(-1). TCM did not show effective results when compared with the TST and NaOCl (Pturbidity created by the organic and inorganic material present in the water tanks carried by the fresh produce may affect the efficacy of the chlorine-based products.

  17. Susceptibility of chemostat-grown Yersinia enterocolitica and Klebsiella pneumoniae to chlorine dioxide.

    Science.gov (United States)

    Harakeh, M S; Berg, J D; Hoff, J C; Matin, A

    1985-01-01

    The resistance of bacteria to antimicrobial agents could be influenced by growth environment. The susceptibility of two enteric bacteria, Yersinia enterocolitica and Klebsiella pneumoniae, to chlorine dioxide was investigated. These organisms were grown in a defined medium in a chemostat and the influence of growth rate, temperature, and cell density on the susceptibility was studied. All inactivation experiments were conducted with a dose of 0.25 mg of chlorine dioxide per liter in phosphate-buffered saline at pH 7.0 and 23 degrees C. The results indicated that populations grown under conditions that more closely approximate natural aquatic environments, e.g., low temperatures and growth at submaximal rates caused by nutrient limitation, were most resistant. The conclusion from this study is that antecedent growth conditions have a profound effect on the susceptibility of bacteria to disinfectants, and it is more appropriate to use the chemostat-grown bacteria as test organisms to evaluate the efficacy of a certain disinfectant.

  18. Long-Term Effects of Residual Chlorine on Pseudomonas aeruginosa in Simulated Drinking Water Fed With Low AOC Medium

    Directory of Open Access Journals (Sweden)

    Guannan Mao

    2018-05-01

    Full Text Available Residual chlorine is often required to remain present in public drinking water supplies during distribution to ensure water quality. It is essential to understand how bacteria respond to long-term chlorine exposure, especially with the presence of assimilable organic carbon (AOC. This study aimed to investigate the effects of chlorination on Pseudomonas aeruginosa in low AOC medium by both conventional plating and culture-independent methods including flow cytometry (FCM and quantitative PCR (qPCR. In a simulated chlorinated system using a bioreactor, membrane damage and DNA damage were measured by FCM fluorescence fingerprint. The results indicated membrane permeability occurred prior to DNA damage in response to chlorination. A regrowth of P. aeruginosa was observed when the free chlorine concentration was below 0.3 mg/L. The bacterial response to long-term exposure to a constant low level of free chlorine (0.3 mg/L was subsequently studied in detail. Both FCM and qPCR data showed a substantial reduction during initial exposure (0–16 h, followed by a plateau where the cell concentration remained stable (16–76 h, until finally all bacteria were inactivated with subsequent continuous chlorine exposure (76–124 h. The results showed three-stage inactivation kinetics for P. aeruginosa at a low chlorine level with extended exposure time: an initial fast inactivation stage, a relatively stable middle stage, and a final stage with a slower rate than the initial stage. A series of antibiotic resistance tests suggested long-term exposure to low chlorine level led to the selection of antibiotic-resistant P. aeruginosa. The combined results suggest that depletion of residual chlorine in low AOC medium systems could reactivate P. aeruginosa, leading to a possible threat to drinking water safety.

  19. The effect of preparation parameters i thermal decomposition of ruthenium dioxide electrodes on chlorine elctro-catalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Luu, Tran Le; Kim, Choon Soo; Kim, Ji Ye; Kim, Seong Hwan; Yoon, Je Yong [Dept. of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University,Seoul (Korea, Republic of)

    2015-05-15

    When fabricating a RuO{sub 2} electrode, the high electro-catalytic activity in chlorine evolution is considered as one of the most important factors. Thermal decomposition method carried out under various fabrication conditions including the types of solvents, precursors, and calcination times have led to the enhancement electro-catalytic activity of RuO{sub 2} electrode in chlorine evolution. Nevertheless, it has not been fully investigated how these parameters directly affect to the chlorine evolution efficiency in the RuO{sub 2} electrode. Therefore, the aim of this study was to investigate the effect on the chlorine evolution in RuO{sub 2} electrodes, depending upon the preparation parameters including solvents, precursors, and calcination times. As major results, the chlorine evolution efficiency was dominantly affected by these three major preparation parameters. The RuO{sub 2} electrode fabricated with ethanol as the solvent showed highest chlorine evolution efficiency. The choice of Ru(AcAc){sub 3} as precursor and the increase of the calcination time up to 3 h are also the good choices for increasing chlorine electrocatalytic activities. The chlorine evolution efficiency was not significantly related to the total voltammetric charge but to the outer voltammetric charge, which is affected by the morphology of the RuO{sub 2} electrode surface. The size and number of cracks on the electrode surfaces or the outer voltammetric charges increased with easily evaporated solvents, decomposed precursors, and tensile stress from longer thermal treatments.

  20. The effect of preparation parameters i thermal decomposition of ruthenium dioxide electrodes on chlorine elctro-catalytic activity

    International Nuclear Information System (INIS)

    Luu, Tran Le; Kim, Choon Soo; Kim, Ji Ye; Kim, Seong Hwan; Yoon, Je Yong

    2015-01-01

    When fabricating a RuO_2 electrode, the high electro-catalytic activity in chlorine evolution is considered as one of the most important factors. Thermal decomposition method carried out under various fabrication conditions including the types of solvents, precursors, and calcination times have led to the enhancement electro-catalytic activity of RuO_2 electrode in chlorine evolution. Nevertheless, it has not been fully investigated how these parameters directly affect to the chlorine evolution efficiency in the RuO_2 electrode. Therefore, the aim of this study was to investigate the effect on the chlorine evolution in RuO_2 electrodes, depending upon the preparation parameters including solvents, precursors, and calcination times. As major results, the chlorine evolution efficiency was dominantly affected by these three major preparation parameters. The RuO_2 electrode fabricated with ethanol as the solvent showed highest chlorine evolution efficiency. The choice of Ru(AcAc)_3 as precursor and the increase of the calcination time up to 3 h are also the good choices for increasing chlorine electrocatalytic activities. The chlorine evolution efficiency was not significantly related to the total voltammetric charge but to the outer voltammetric charge, which is affected by the morphology of the RuO_2 electrode surface. The size and number of cracks on the electrode surfaces or the outer voltammetric charges increased with easily evaporated solvents, decomposed precursors, and tensile stress from longer thermal treatments

  1. Effect of the temperature and the chlorine pressure, over the aluminium chlorides obtained by direct chlorination of the 6061 alloy

    International Nuclear Information System (INIS)

    Alvarez, Fabiola J.; Bohe, Ana E.; Pasquevich, Daniel M.

    2003-01-01

    The aluminium chloride is synthesized by direct chlorination of aluminium, in agreement with the following reaction: Al(s) + 3/2 Cl 2 AlCl 3 (s,g).The present work focuses on the preparation of aluminium chlorides by two methods: (a) Chlorination of 6061 aluminium alloy with gaseous chlorine in sealed containers, filled with different pressures of gas, from 0.8 to 74 Kpa and in the range of temperature between 200 0 and 500 0 C.(b) Chlorination of the same alloy in chlorine flow between 150 0 and 400 0 C.In the sealed systems, the hexahydrated aluminium trichloride predominated over the anhydrous form. For pressures lower than 14 Kpa and temperatures under 250 0 C, the chloride didn't appear.The residues were rich in aluminium, chlorine and magnesium.In the other systems, the anhydrous chloride was found in the areas of the reactor of temperatures above 100 0 C, for all the thermal treatments. The waste was composed by CrCl 3 and AlCl 3 .6H 2 O.The influence of the chlorine pressures and the heating temperature over the characteristics of the product, was studied.The characterization techniques were x-ray diffraction and energy dispersive spectroscopy, and the evolution of the structure was followed by scanning electron microscopy

  2. Growth and Histological Effects to Protothaca staminea (Littleneck Clam) of Long-Term Exposure to Chlorinated Sea Water

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, C. I.; Hillman, A. E.; Wilkinson, P.; Woodruff, D. L.

    1980-08-01

    There has been considerable concern about the potential for long-term effects to marine organisms from chlorinated sea water. As part of a larger study to investigate the effects of materials resulting from seawater chlorination on marine organisms, groups of littleneck clams, Protothaca staminea, were exposed to sea water that had been chlorinated. Two experiments were conducted. In one test, groups of littleneck clams were exposed to dilutions of chlorinated sea water that had average chlorine produced oxidant (CPO) concentrations of 16 {micro}g/l or less. In the second test, groups of clams were exposed to chlorinated seawater-unchlorinated seawater mixtures that had target CPO concentrations of 0, 6, 12, 25, 50 and 100 {micro}g/l. In the first experiment, length measurements were made on all clams at approximately one-month intervals for three months. In the second test, length, weight, depth, width and edge etching were used to measure growth, and subsamples were harvested and measured at one-month intervals. In addition, clams were preserved for histological examination. The clams in the first experiment all had negative growth. In the second test, growth was inhibited under all conditions through the first four months of exposure. During the last four months, there was positive signs of growth at the 0, 6 and 12 {micro}g/l CPO test conditions. Histological examination indicates that P. staminea does not adapt well to being held in aquaria. Most clams, tram all test and control conditions, showed evidence of necrosis at one month. This condition seemed to improve with longer exposure at lower CPO concentrations but persisted at CPO concentrations of 25 {micro}g/l and higher. Other histological effects were apparent at the higher exposure concentrations as the length of exposure increased.

  3. Short-chain chlorinated paraffins (SCCPs) in surface soil from a background area in China: occurrence, distribution, and congener profiles.

    Science.gov (United States)

    Wang, Xue-Tong; Zhang, Yuan; Miao, Yi; Ma, Ling-Ling; Li, Yuan-Cheng; Chang, Yue-Ya; Wu, Ming-Hong

    2013-07-01

    Short-chain chlorinated paraffins (SCCPs) are extremely complex technical mixtures of polychlorinated n-alkanes with carbon chain lengths from C10 to C13 and chlorine content between 49 and 70%. SCCPs are under consideration for inclusion in the Stockholm Convention on persistent organic pollutants. SCCPs have been used extensively in industrial production, but little is known about the pollution level in soil environment in China. In this study, levels and distribution of SCCPs in soil samples from Chongming Island were analyzed. Concentrations of total SCCPs in soil samples ranged from 0.42 to 420 ng g(-1), with a median of 9.6 ng g(-1). The ubiquitous occurrence of SCCPs in Chongming Island implied that long-range atmospheric transport and soil-air exchange may be the most important pathways for SCCP contamination in the background area. The localized SCCP contamination could be derived from an unidentified source. Hierarchical cluster analysis indicated that C13- and C11-congeners were predominant in most soils and C10- and C12-congeners dominated in the remaining soils. Cl7- and Cl8-congeners were on the average the most dominant chlorine congeners in nearly all soils. Principal component analysis suggested that the separation of even and odd carbon chain congeners occurred during long-range atmospheric transport and aging in soil in the study area.

  4. Derivation of a radionuclide inventory for irradiated graphite-chlorine-36 inventory determination

    International Nuclear Information System (INIS)

    Brown, F.J.; Palmer, J.D.; Wood, P.

    2001-01-01

    The irradiation of materials in nuclear reactors results in neutron activation of component elements. Irradiated graphite wastes arise from their use in UK gas-cooled research and commercial reactor cores, and in fuel element components, where the graphite has acted as the neutron moderator. During irradiation the residual chlorine, which was used to purify the graphite during manufacture, is activated to chlorine-36. This isotope is long-lived and poorly retarded by geological barriers, and may therefore be a key radionuclide with respect to post-closure disposal facilities performance. United Kingdom Nirex Limited, currently responsible for the development of a disposal route for intermediate-level radioactive wastes in the UK, carried out a major research programme to support an overall assessment of the chlorine-36 activity of all wastes including graphite reactor components. The various UK gas cooled reactors reactors have used a range of graphite components made from diverse graphite types; this has necessitated a systematic programme to cover the wide range of graphite and production processes. The programme consisted of: precursor measurements - on the surface and/or bulk of representative samples of relevant materials, using specially developed methods; transfer studies - to quantify the potential for transfer of Cl-36 into and between waste streams during irradiation of graphite; theoretical assessments - to support the calculational methodology; actual measurements - to confirm the modelling. For graphite, a total of 458 measurements on samples from 57 batches were performed, to provide a detailed understanding of the composition of nuclear graphite. The work has resulted in the generation of probability density functions (PDF) for the mean chlorine concentration of three classes of graphite: fuel element graphite; Magnox moderator and reflector graphite and AGR reflector graphite; AGR moderator graphite. Transfer studies have shown that a significant

  5. Dechlorination and chlorine rearrangement of 1,2,5,5,6,9,10-heptachlorodecane mediated by the whole pumpkin seedlings.

    Science.gov (United States)

    Li, Yanlin; Hou, Xingwang; Yu, Miao; Zhou, Qunfang; Liu, Jiyan; Schnoor, Jerald L; Jiang, Guibin

    2017-05-01

    Short chain chlorinated paraffins (SCCPs) are ubiquitously present as persistent organic pollutants in the environment. However, little information on the interaction of SCCPs with plants is currently available. In this work, young pumpkin plants (Cucurbita maxima × C. Moschata) were hydroponically exposed to the congener of chlorinated decane, 1,2,5,5,6,9,10-heptachlorodecane (1,2,5,5,6,9,10-HepCD), to investigate the uptake, translocation and transformation of chlorinated decanes in the intact plants. It was found that parent HepCD was taken up by the pumpkin roots, translocated from root to shoots, and phytovolatilized from pumpkin plants to air via the plant transpiration flux. Our data suggested that dechlorination of 1,2,5,5,6,9,10-HepCD to lower chlorinated decanes and rearrangement of chlorine atoms in the molecule were all mediated by the whole pumpkin seedlings. Chlorinated decanes were found in the shoots and roots of blank controls, indicating that chlorinated decanes in the air could be absorbed by leaves and translocated from shoots to roots. Lower chlorinated congeners (C 10 H 17 Cl 5 ) tended to detain in air compared to higher chlorinated congeners (C 10 H 16 Cl 6 and other C 10 H 15 Cl 7 ). Potential transformation pathway and behavior of 1,2,5,5,6,9,10-HepCD in pumpkin were proposed based on these experiments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Bioremediation of soils containing petroleum hydrocarbons, chlorinated phenols, and polycyclic aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Seech, A.; Burwell, S.; Marvan, I.

    1994-01-01

    Bench-scale treatability investigations, pilot-scale and full-scale bioremediation projects were conducted to evaluate Daramend trademark bioremediation of soils containing petroleum hydrocarbons, heavy oils, paraffins, chlorinated phenols and polycyclic aromatic hydrocarbons (PAHs). Bench-scale investigations were conducted using glass microcosms. Pilot-scale and full-scale demonstrations were conducted at industrial sites and included treatment of excavated soils and sediments in on-site cells constructed using synthetic liners and covered by steel/polyethylene structures as well as in-situ treatment. A total of approximately 5,000 tons of soil was treated. The soil treatment included organic soil amendments, specialized tillage/aeration apparatus, and strict control of soil moisture. The amendments are composed of naturally-occurring organic materials prepared to soil-specific particle size distributions, nutrient profiles, and nutrient-release kinetics. Bench-scale work indicated that in refinery soil containing high concentrations of heavy oils, extractable hydrocarbon concentrations could be rapidly reduced to industrial clean-up criteria, and that the hydrocarbons were fully mineralized with release of CO 2

  7. Inactivation of viruses in municipal effluent by chlorine.

    OpenAIRE

    Hajenian, H. G.; Butler, M.

    1980-01-01

    The influence of pH and temperature on the efficiency of chlorine inactivation of two unrelated picornaviruses in a typical urban wastewater effluent was examined. Temperature, unlike pH, had relatively little effect on the rate of inactivation. The pH effect was complex and the two viruses differed. The f2 coliphage was more sensitive to chlorine at low pH, but at all values there was a threshold above which additional chlorine resulted in very rapid inactivation. The amount of chlorine requ...

  8. Four groups of new aromatic halogenated disinfection byproducts: effect of bromide concentration on their formation and speciation in chlorinated drinking water.

    Science.gov (United States)

    Pan, Yang; Zhang, Xiangru

    2013-02-05

    Bromide is naturally present in source waters worldwide. Chlorination of drinking water can generate a variety of chlorinated and brominated disinfection byproducts (DBPs). Although substantial efforts have been made to examine the effect of bromide concentration on the formation and speciation of halogenated DBPs, almost all previous studies have focused on trihalomethanes and haloacetic acids. Given that about 50% of total organic halogen formed in chlorination remains unknown, it is still unclear how bromide concentration affects the formation and speciation of the new/unknown halogenated DBPs. In this study, chlorinated drinking water samples with different bromide concentrations were prepared, and a novel approach-precursor ion scan using ultra performance liquid chromatography/electrospray ionization-triple quadrupole mass spectrometry-was adopted for the detection and identification of polar halogenated DBPs in these water samples. With this approach, 11 new putative aromatic halogenated DBPs were identified, and they were classified into four groups: dihalo-4-hydroxybenzaldehydes, dihalo-4-hydroxybenzoic acids, dihalo-salicylic acids, and trihalo-phenols. A mechanism for the formation of the four groups of new aromatic halogenated DBPs was proposed. It was found that increasing the bromide concentration shifted the entire polar halogenated DBPs as well as the four groups of new DBPs from being less brominated to being more brominated; these new aromatic halogenated DBPs might be important intermediate DBPs formed in drinking water chlorination. Moreover, the speciation of the four groups of new DBPs was modeled: the speciation patterns of the four groups of new DBPs well matched those determined from the model equations, and the reactivity differences between HOBr and HOCl in reactions forming the four groups of new DBPs were larger than those in reactions forming trihalomethanes and haloacetic acids.

  9. Chlorination and oxidation of sulfonamides by free chlorine: Identification and behaviour of reaction products by UPLC-MS/MS.

    Science.gov (United States)

    Gaffney, Vanessa de Jesus; Cardoso, Vitor Vale; Benoliel, Maria João; Almeida, Cristina M M

    2016-01-15

    Sulfonamides (SAs) are one class of the most widely used antibiotics around the world and have been frequently detected in municipal wastewater and surface water in recent years. Their transformation in waste water treatment plants (WWTP) and in water treatment plants (WTP), as well as, their fate and transport in the aquatic environment are of concern. The reaction of six sulfonamides (sulfamethoxazole, sulfapyridine, sulfamethazine, sulfamerazine, sulfathiazole and sulfadiazine) with free chlorine was investigated at a laboratory scale in order to identify the main chlorination by-products. A previously validated method, liquid chromatography/mass spectrometry, was used to analyse SAs and their chlorination by-products. At room temperature, pH 6-7, reaction times of up to 2 h and an initial concentration of 2 mg/L of free chlorine, the majority of SAs suffered degradation of around 65%, with the exception of sulfamethoxazole and sulfathiazole (20%). The main reaction of SAs with free chlorine occurred in the first minute. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Study for the chlorination of zirconium oxide

    International Nuclear Information System (INIS)

    Seo, E.S.M.; Takiishi, H.; Paschoal, J.O.A.; Andreoli, M.

    1990-12-01

    In the development of new ceramic and metallic materials the chlorination process constitutes step in the formation of several intermediate compounds, such as metallic chlorides, used for the production of high, purity raw materials. Chlorination studies with the aim of fabrication special zirconium-base alloys have been carried out at IPEN. Within this program the chlorination technique has been used for zirconium tetrachloride production from zirconium oxide. In this paper some relevant parameters such as: time and temperature of reaction, flow rate of chloride gas and percentage of the reducing agent which influence the efficiency of chlorination of zirconium oxide are evaluated. Thermodynamical aspects about the reactions involved in the process are also presented. (author)

  11. Cold Incineration of Chlorophenols in Aqueous Solution by Advanced Electrochemical Process Electro-Fenton. Effect of Number and Position of Chlorine Atoms on the Degradation Kinetics

    Science.gov (United States)

    Oturan, Nihal; Panizza, Marco; Oturan, Mehmet A.

    2009-09-01

    This study reports the kinetics of the degradation of several chlorophenols (CPs), such as monochlorophenols (2-chlorophenol and 4-chlorophenol), dichlorophenols (2,4-dichlorophenol and 2,6- dichlorophenol), trichlorophenols (2,3,5- trichlorophenol and 2,4,5-trichlorophenol), 2,3,5,6-tetrachlorophenol, and pentachlorophenol, by the electro-Fenton process using a carbon felt cathode and a Pt anode. The effect of number and the position of the chlorine atoms in the aromatic ring on the oxidative degradation rate was evaluated and discussed. The oxidation reaction of all the CPs with hydroxyl radicals evidenced a pseudo-first-order kinetics and the rate constant decreased with increasing the number of chlorine atoms. The absolute rate constant of second-order reaction kinetics between CPs and •OH was determined by the competition kinetics method in the range of (3.56-7.75) × 109 M-1 s-1 and follows the same sequence of the apparent rate constants. The mineralization of several CPs and of a mixture of all CPs under study was monitored by the total organic carbon (TOC) removal and the chlorine release during mineralization was followed by ion chromatography. Our results demonstrated that more chlorinated phenols are more difficult to mineralize; however for all the tested CPs, almost quantitative release of chloride ions was obtained after 6 h of treatment.

  12. Transformation of cefazolin during chlorination process: Products, mechanism and genotoxicity assessment

    Energy Technology Data Exchange (ETDEWEB)

    Li, Liping, E-mail: lisaleercees807@yahoo.cn; Wei, Dongbin, E-mail: weidb@rcees.ac.cn; Wei, Guohua, E-mail: wgh@rcees.ac.cn; Du, Yuguo, E-mail: duyuguo@rcees.ac.cn

    2013-11-15

    Highlights: • Base-catalyzed electrophilic substitution occurred in cefazolin chlorination. • Oxidation of thioether in cefazolin was found in chlorination process. • The pH conditions impacted on the occurrence of reaction types. • Genotoxicity had an elevation after chlorination of cefazolin. • Reaction pathways of cefazolin chlorination were replayed in surface water matrix. -- Abstract: Large quantities of cephalosporins have entered into aquatic environment in recent years, posing potential adverse effect to human health and ecological safety. In this study, cefazolin, one of widely used cephalosporins, was targeted to explore its transformation behaviors in chlorination disinfection process. With the help of ultra high performance liquid chromatography and high resolution mass spectroscopy, one chlorinated product and four oxidation products were detected in cefazolin chlorination system. The corresponding transformation pathways of cefazolin were proposed. Two kinds of reactions occurred in chlorination system, one was oxidation of thioether-sulfur to sulfoxide and di-sulfoxide, and the other was base-catalyzed electrophilic substitution of alpha-H of amide by chlorine atom. The pH value determined the occurrence of reaction types, and increasing chlorine dose promoted transformation of cefazolin. More importantly, genotoxicity in SOS/umu assay had an elevation after chlorination, which might be attributed to the formation of chlorinated product and sulfoxide during chlorination process.

  13. Transformation of cefazolin during chlorination process: Products, mechanism and genotoxicity assessment

    International Nuclear Information System (INIS)

    Li, Liping; Wei, Dongbin; Wei, Guohua; Du, Yuguo

    2013-01-01

    Highlights: • Base-catalyzed electrophilic substitution occurred in cefazolin chlorination. • Oxidation of thioether in cefazolin was found in chlorination process. • The pH conditions impacted on the occurrence of reaction types. • Genotoxicity had an elevation after chlorination of cefazolin. • Reaction pathways of cefazolin chlorination were replayed in surface water matrix. -- Abstract: Large quantities of cephalosporins have entered into aquatic environment in recent years, posing potential adverse effect to human health and ecological safety. In this study, cefazolin, one of widely used cephalosporins, was targeted to explore its transformation behaviors in chlorination disinfection process. With the help of ultra high performance liquid chromatography and high resolution mass spectroscopy, one chlorinated product and four oxidation products were detected in cefazolin chlorination system. The corresponding transformation pathways of cefazolin were proposed. Two kinds of reactions occurred in chlorination system, one was oxidation of thioether-sulfur to sulfoxide and di-sulfoxide, and the other was base-catalyzed electrophilic substitution of alpha-H of amide by chlorine atom. The pH value determined the occurrence of reaction types, and increasing chlorine dose promoted transformation of cefazolin. More importantly, genotoxicity in SOS/umu assay had an elevation after chlorination, which might be attributed to the formation of chlorinated product and sulfoxide during chlorination process

  14. Chlorine diffusion in uranium dioxide under heavy ion irradiation

    International Nuclear Information System (INIS)

    Pipon, Y.; Bererd, N.; Moncoffre, N.; Peaucelle, C.; Toulhoat, N.; Jaffrezic, H.; Raimbault, L.; Sainsot, P.; Carlot, G.

    2007-01-01

    The radiation enhanced diffusion of chlorine in UO 2 during heavy ion irradiation is studied. In order to simulate the behaviour of 36 Cl, present as an impurity in UO 2 , 37 Cl has been implanted into the samples (projected range 200 nm). The samples were then irradiated with 63.5 MeV 127 I at two fluxes and two temperatures and the chlorine distribution was analyzed by SIMS. The results show that, during irradiation, the diffusion of the implanted chlorine is enhanced and slightly athermal with respect to pure thermal diffusion. A chlorine gain of 10% accumulating near the surface has been observed at 510 K. This corresponds to the displacement of pristine chlorine from a region of maximum defect concentration. This behaviour and the mean value of the apparent diffusion coefficient found for the implanted chlorine, around 2.5 x 10 -14 cm 2 s -1 , reflect the high mobility of chlorine in UO 2 during irradiation with fission products

  15. Chlorine diffusion in uranium dioxide under heavy ion irradiation

    Science.gov (United States)

    Pipon, Y.; Bérerd, N.; Moncoffre, N.; Peaucelle, C.; Toulhoat, N.; Jaffrézic, H.; Raimbault, L.; Sainsot, P.; Carlot, G.

    2007-04-01

    The radiation enhanced diffusion of chlorine in UO2 during heavy ion irradiation is studied. In order to simulate the behaviour of 36Cl, present as an impurity in UO2, 37Cl has been implanted into the samples (projected range 200 nm). The samples were then irradiated with 63.5 MeV 127I at two fluxes and two temperatures and the chlorine distribution was analyzed by SIMS. The results show that, during irradiation, the diffusion of the implanted chlorine is enhanced and slightly athermal with respect to pure thermal diffusion. A chlorine gain of 10% accumulating near the surface has been observed at 510 K. This corresponds to the displacement of pristine chlorine from a region of maximum defect concentration. This behaviour and the mean value of the apparent diffusion coefficient found for the implanted chlorine, around 2.5 × 10-14 cm2 s-1, reflect the high mobility of chlorine in UO2 during irradiation with fission products.

  16. Automatic analyzing device for chlorine ion

    International Nuclear Information System (INIS)

    Sugibayashi, Shinji; Morikawa, Yoshitake; Fukase, Kazuo; Kashima, Hiromasa.

    1997-01-01

    The present invention provides a device of automatically analyzing a trance amount of chlorine ions contained in feedwater, condensate and reactor water of a BWR type power plant. Namely, zero-adjustment or span calibration in this device is conducted as follows. (1) A standard chlorine ion liquid is supplied from a tank to a mixer by a constant volume pump, and the liquid is diluted and mixed with purified water to form a standard liquid. (2) The pH of the standard liquid is adjusted by a pH adjuster. (3) The standard liquid is supplied to an electrode cell to conduct zero adjustment or span calibration. Chlorine ions in a specimen are measured by the device of the present invention as follows. (1) The specimen is supplied to a head tank through a line filter. (2) The pH of the specimen is adjusted by a pH adjuster. (3) The specimen is supplied to an electrode cell to electrically measure the concentration of the chlorine ions in the specimen. The device of the present invention can automatically analyze trance amount of chlorine ions at a high accuracy, thereby capable of improving the sensitivity, reducing an operator's burden and radiation exposure. (I.S.)

  17. Congener-specific distribution and bioaccumulation of short-chain chlorinated paraffins in sediments and bivalves of the Bohai Sea, China.

    Science.gov (United States)

    Ma, Xindong; Chen, Chen; Zhang, Haijun; Gao, Yuan; Wang, Zhen; Yao, Ziwei; Chen, Jiping; Chen, Jingwen

    2014-02-15

    Short-chain chlorinated paraffins (SCCPs) are a new type of persistent organic pollutants that are of great environmental concern because of their wide distribution. In this study, surface sediments and bivalve samples were collected from the coastal area of the Bohai Sea in China. Total SCCP (ΣSCCP) concentrations in surface sediments and bivalves ranged from 97.4 ng g(-1) dry weight (dw) to 1756.7 ng g(-1) dw and 476.4-3269.5 ng g(-1) dw, respectively. C10-CPs and C11-CPs were the predominant homologue groups in all sediments and bivalves. Specific congener composition analysis and correspondence analysis indicated that the local SCCP source mainly came from CP-42 and CP-52 products, and riverine input had an important function. The biota-sediment accumulation factors of ΣSCCPs for bivalves ranged from 1.08 to 1.61, and a significant correlation indicated that the SCCP congener with higher chlorination degree was more likely to be accumulated in bivalves. Copyright © 2014. Published by Elsevier Ltd.

  18. Kinetic modelling of chlorination of nitrided ilmenite using MATLAB

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishnan, Sivakumar, E-mail: srsivakumar@usm.my; Kwok, Teong Chen, E-mail: ctck@live.com; Hamid, Sheikh Abdul Rezan Sheikh Abdul, E-mail: rezanshk@gmail.com [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang (Malaysia)

    2016-07-19

    In the present study, chlorination of nitride ilmenite using 2{sup k} factorial design was investigated. The reduction experiments were carried out in a temperature range of 400°C to 500°C, chlorination duration from 1 hour to 3 hours and using different type of carbon reactant. Phases of raw materials and reduced samples were analyzed by X-ray diffraction (XRD). Ilmenite was reduced to TiO{sub x}C{sub y}N{sub z} through carbothermal and nitridation for further chlorination into titanium tetrachloride. The Design of Experiment analysis suggested that the types of carbon reactant contribute most influence to the extent of chlorination of nitride ilmenite. The extent of chlorination was highest at 500°C with 3 hours chlorination time and carbon nanotube as carbon reactant.

  19. DETERMINATION OF CHLORINATED ORGANIC COMPOUNDS IN THE MAIN DRAINAGE CHANNEL OF KONYA

    Directory of Open Access Journals (Sweden)

    Mehmet Emin AYDIN

    2000-03-01

    Full Text Available The main drainage channel of Konya collects drainage waters from farmlands of Konya and discharges to the salt lake. Since there is not any city municipal sewarage system in Konya sewage of the city also discharged to the main drainage channel. Along the channel, farmers use the channels water for irrigation purposes. Therefore a through examination of wastewater and determination of chlorinated compounds were necessary. In this research, analyses were carried by gas chromatography (GC on water samples collected hourly, daily and monthly from the channel.

  20. Effects of conventional ozonation and electro-peroxone pretreatment of surface water on disinfection by-product formation during subsequent chlorination.

    Science.gov (United States)

    Mao, Yuqin; Guo, Di; Yao, Weikun; Wang, Xiaomao; Yang, Hongwei; Xie, Yuefeng F; Komarneni, Sridhar; Yu, Gang; Wang, Yujue

    2018-03-01

    The electro-peroxone (E-peroxone) process is an emerging ozone-based electrochemical advanced oxidation process that combines conventional ozonation with in-situ cathodic hydrogen peroxide (H 2 O 2 ) production for oxidative water treatment. In this study, the effects of the E-peroxone pretreatment on disinfection by-product (DBP) formation from chlorination of a synthetic surface water were investigated and compared to conventional ozonation. Results show that due to the enhanced transformation of ozone (O 3 ) to hydroxyl radicals (OH) by electro-generated H 2 O 2 , the E-peroxone process considerably enhanced dissolved organic carbon (DOC) abatement and significantly reduced bromate (BrO 3 - ) formation compared to conventional ozonation. However, natural organic matter (NOM) with high UV 254 absorbance, which is the major precursors of chlorination DBPs, was less efficiently abated during the E-peroxone process than conventional ozonation. Consequently, while both conventional ozonation and the E-peroxone process substantially reduced the formation of DBPs (trihalomethanes and haloacetic acids) during post-chlorination, higher DBP concentrations were generally observed during chlorination of the E-peroxone pretreated waters than conventional ozonation treated. In addition, because of conventional ozonation or the E-peroxone treatment, DBPs formed during post-chlorination shifted to more brominated species. The overall yields of brominated DBPs exhibited strong correlations with the bromide concentrations in water. Therefore, while the E-peroxone process can effectively suppress bromide transformation to bromate, it may lead to higher formation of brominated DBPs during post-chlorination compared to conventional ozonation. These results suggest that the E-peroxone process can lead to different DBP formation and speciation during water treatment trains compared to conventional ozonation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Monitoring of the aerobe biodegradation of chlorinated organic solvents by stable isotope analysis

    Science.gov (United States)

    Horváth, Anikó; Futó, István; Palcsu, László

    2014-05-01

    Our chemical-biological basic research aims to eliminate chlorinated environmental contaminants from aquifers around industrial areas in the frame of research program supported by the European Social Fund (TÁMOP-4.2.2.A-11/1/KONV-2012-0043). The most careful and simplest way includes the in situ biodegradation with the help of cultured and compound specific strains. Numerous members of Pseudomonas bacteria are famous about function of bioremediation. They can metabolism the environmental hazardous chemicals like gas oils, dyes, and organic solvents. Our research based on the Pseudomonas putida F1 strain, because its ability to degrade halogenated hydrocarbons such as trichloroethylene. Several methods were investigated to estimate the rate of biodegradation, such as the measurement of the concentration of the pollutant along the contamination pathway, the microcosm's studies or the compound specific stable isotope analysis. In this area in the Transcarpathian basin we are pioneers in the stable isotope monitoring of biodegradation. The main goal is to find stable isotope fractionation factors by stable isotope analysis, which can help us to estimate the rate and effectiveness of the biodegradation. The subsequent research period includes the investigation of the method, testing its feasibility and adaptation in the environment. Last but not least, the research gives an opportunity to identify the producer of the contaminant based on the stable isotope composition of the contaminant.

  2. Combined toxicity of free chlorine, chloramine, and temperature to stage 1 larvae of the American lobster Homarus americanus

    Energy Technology Data Exchange (ETDEWEB)

    Capuzzo, J M; Lawrence, S A; Davidson, J A

    1976-01-01

    The differential effects of free chlorine and chloramine on stage I larvae of the American lobster Homarus americanus have been investigated in continuous flow bioassay units. Applied chloramine was more toxic than corresponding concentrations of applied free chlorine to lobster larvae with estimated LC/sub 50/ values at 25/sup 0/ of 16.30 mg/l applied free chlorine and 2.02 mg/l applied chloramine. The synergistic effect of temperature on the toxicity of both free chlorine and chloramine has also been demonstrated. Exposure to applied free chlorine at 20/sup 0/ resulted in no significant mortality of test organisms, whereas exposure at 30/sup 0/ resulted in an estimated LC/sub 50/ value of 2.50 mg/l. Applied chloramine was considerably more toxic with an estimated LC/sub 50/ value at 20/sup 0/ of 4.08 mg/l and at 30/sup 0/ of 0.56 mg/l. The action of each toxicant appeared to be an alteration of standard metabolic activity as revealed by changes in respiration rates during and after exposure to applied free chlorine and chloramine. Initial respiratory stress was detected during exposure to 0.05 mg/l applied chloramine and 5.00 mg/l applied free chlorine. Reductions in respiration rates 48 h after exposure were observed with exposure to all concentrations tested, similar results being obtained following exposure to 0.05 mg/l applied chloramine and 0.10 mg/l applied free chlorine. These results are indicative of the need for information in addition to that obtained in standard bioassays for an adequate assessment of chlorine toxicity.

  3. Viable-but-Nonculturable Listeria monocytogenes and Salmonella enterica Serovar Thompson Induced by Chlorine Stress Remain Infectious

    Directory of Open Access Journals (Sweden)

    Callum J. Highmore

    2018-04-01

    Full Text Available The microbiological safety of fresh produce is monitored almost exclusively by culture-based detection methods. However, bacterial food-borne pathogens are known to enter a viable-but-nonculturable (VBNC state in response to environmental stresses such as chlorine, which is commonly used for fresh produce decontamination. Here, complete VBNC induction of green fluorescent protein-tagged Listeria monocytogenes and Salmonella enterica serovar Thompson was achieved by exposure to 12 and 3 ppm chlorine, respectively. The pathogens were subjected to chlorine washing following incubation on spinach leaves. Culture data revealed that total viable L. monocytogenes and Salmonella Thompson populations became VBNC by 50 and 100 ppm chlorine, respectively, while enumeration by direct viable counting found that chlorine caused a <1-log reduction in viability. The pathogenicity of chlorine-induced VBNC L. monocytogenes and Salmonella Thompson was assessed by using Caenorhabditis elegans. Ingestion of VBNC pathogens by C. elegans resulted in a significant life span reduction (P = 0.0064 and P < 0.0001, and no significant difference between the life span reductions caused by the VBNC and culturable L. monocytogenes treatments was observed. L. monocytogenes was visualized beyond the nematode intestinal lumen, indicating resuscitation and cell invasion. These data emphasize the risk that VBNC food-borne pathogens could pose to public health should they continue to go undetected.

  4. Evaluation of possible use of disinfectant based on chlorine dioxide in dairy plant

    Directory of Open Access Journals (Sweden)

    Rakić-Martinez Mira

    2009-01-01

    Full Text Available Poor sanitation of food contact surfaces has been a contributing factor in food borne disease outbreaks, especially those involving Listeria monocytogenes, Salmonella spp., Escherichia coli, Staphylococcus aureus etc. The objectives of this study were therefore to: 1. Determine the efficiency of a disinfectant based on chlorine dioxide in suspension in a closed system in a dairy plant. 2. Evaluate the possibility of disinfection of working surfaces with a disinfectant based on chlorine dioxide. In order to determine the germicidal effect of the disinfectant based on chlorine dioxide by suspension test (BSEN 1276:1997; the following test organisms were used: Listeria monocytogenes, Proteus mirabilis, Escherichia coli, Bacillus cereus, Staphylococcus aureus and Pseudomonas aeruginosa clinical isolate. The corrosive properties of the disinfectant based on chlorine dioxide were tested by IDF 077:1977 standard. The efficacy of this disinfectant was investigated in a closed system in a dairy plant. Results indicated a 100% reduction of >108 cfu/ml L. monocytogenes, E. coli, Proteus mirabilis, Pseudomonas aeruginosa, S. aureus, viable count after 1 minute of exposure to 100 ppm of the disinfectant based on chlorine dioxide and 400 ppm for Bacillus cereus. In the presence of 2% skim milk and 4 % skim milk concentrations of 200 and 250 ppm resulted in 100% reduction in numbers of the five of six test microorganisms, respectively. The spore former, Bacillus cereus is less susceptible to the disinfectant. Therefore, the efficient concentration for 100% reduction in viable count after 1 minute exposure was 500 ppm. The corrosive properties of the disinfectant were not determined. In the case of closed system disinfection in a dairy plant, reduction in viable count after 15 minute exposure to 100 ppm of disinfectant based on chlorine dioxide ranged from 80 to 100%.

  5. Effects of Chlorine on Enterovirus RNA Degradation

    Science.gov (United States)

    The primary mechanism of disinfection of waterborne pathogens by chlorine has always been believed to be due to the alteration of proteins by free chlorine and subsequent disruption of their biological structure.

  6. Determination of carbon chlorine and fluorine in uranium dioxide

    International Nuclear Information System (INIS)

    Kijko, N.I.; Timofeev, G.A.

    1983-01-01

    Techniques of chlorine and fluorine determination and simultaneous determination of carbon and chlorine in electrolytic uranium dioxide are described. The method of chlorine and fluorine determination is based on their separation during oxide pyrohydrolysis with subsequent spectrophotometric analysis of condensate. Lower determination limits constitute 1 μg for chlorine, 0.5 μg for fluorine. Relative standard deviation when the content of impurities analyzed is 10 -3 % constitutes 0.05-0.07

  7. Synthesis and spectral properties of novel chlorinated pH fluorescent probes

    International Nuclear Information System (INIS)

    Wu Xianglong; Jin Xilang; Wang Yunxia; Mei Qibing; Li Jianli; Shi Zhen

    2011-01-01

    Eight chlorinated fluoresceins have been synthesized by the reaction of chlorinated resorcinols with 4, 5, 6, 7-tetrachlorophthalic anhydride or 3, 6-dichloro-4-carboxyphthalic anhydride in the presence of methanesulfonic acid. The spectral properties of the chlorinated fluoresceins were studied. It was found that they have absorption and emission maxima at long wavelengths and high fluorescence quantum yields. Emission spectra of chlorinated fluoresceins shifted towards long wavelength with increase in chlorine. pH-dependent properties of chlorinated fluoresceins were studied in detail. These compounds showed a strongly pH-sensitive range of 3.0-7.0. These chlorinated fluoresceins will be used as pH probes for pH measurement of the cell because of the high quantum yield and strong pH-sensitivity. - Research highlights: → Eight chlorinated fluoresceins have been synthesized in the presence of methanesulfonic acid. → Emission spectra of these compounds shifted towards long wavelength with increase in chlorine. → Eight chlorinated fluoresceins showed a strongly pH-sensitive range of 3.0-7.0. → They have emission maxima at long wavelengths and high fluorescence quantum yields.

  8. Release and transformation of chlorine and potassium during pyrolysis of KCl doped biomass

    DEFF Research Database (Denmark)

    Wang, Yang; Wu, Hao; Sárossy, Zsuzsa

    2017-01-01

    –850 °C), and KCl contents (0–5 wt%). The volatiles were collected and analyzed for CH3Cl concentration by GC–MS. The solid residue was analyzed by ICP-OES for the contents of total and water soluble K and Cl. Considerable amounts of CH3Cl, corresponding to 20–50% of the fuel chlorine, were formed......The formation of CH3Cl and the transformation of chlorine and potassium during pyrolysis of biomass were investigated. Model biomass compounds (cellulose, xylan, lignin and pectin) and pine wood doped with KCl were pyrolysed in a TGA at different heating rates (10–1000 °C/min), temperatures (300...

  9. Removal of Chlorinated Chemicals in H2 Feedstock Using Modified Activated Carbon

    Directory of Open Access Journals (Sweden)

    Prapaporn Luekittisup

    2015-01-01

    Full Text Available Activated carbon (GAC was impregnated by sodium and used as adsorbent to remove chlorinated hydrocarbon (CHC gases contaminated in H2 feedstock. The adsorption was carried out in a continuous packed-bed column under the weight hourly space velocity range of 0.8–1.0 hr−1. The adsorption capacity was evaluated via the breakthrough curves. This modified GAC potentially adsorbed HCl and VCM of 0.0681 gHCl/gadsorbent and 0.0026 gVCM/gadsorbent, respectively. It showed higher adsorption capacity than SiO2 and Al2O3 balls for both organic and inorganic CHCs removal. In addition, the kinetic adsorption of chlorinated hydrocarbons on modified GAC fit well with Yoon-Nelson model.

  10. Atmospheric chlorinated polycyclic aromatic hydrocarbons in East Asia.

    Science.gov (United States)

    Kakimoto, Kensaku; Nagayoshi, Haruna; Konishi, Yoshimasa; Kajimura, Keiji; Ohura, Takeshi; Hayakawa, Kazuichi; Toriba, Akira

    2014-09-01

    This study estimates atmospheric concentrations of chlorinated polycyclic aromatic hydrocarbons (ClPAHs) and polycyclic aromatic hydrocarbons (PAHs) in East Asia using a Gas Chromatograph with High Resolution Mass Spectrometer (GC-HRMS). ClPAHs are ubiquitously generated from PAHs through substitution, and some ClPAHs show higher aryl hydrocarbon receptor (AhR)-mediated activities than their parent PAHs. Atmospheric particles were collected using a high-volume air sampler equipped with a quartz-fiber filter. We determined the ClPAH concentrations of atmospheric particles collected in Japan (Sapporo, Sagamihara, Kanazawa, and Kitakyushu), Korea (Busan), and China (Beijing). The concentrations of ClPAHs were highest in the winter Beijing sample, where the total mean concentration was approximately 15-70 times higher than in the winter samples from Japan and Korea. The concentrations of Σ19ClPAHs and Σ9PAHs were significantly correlated in the Kanazawa and the Busan samples. This indicates that within those cities ClPAHs and PAHs share the same origin, implying direct chlorination of parent PAHs. Toxic equivalent concentrations (TEQs) of the total ClPAHs and PAHs were lowest in Kanazawa in the summer, reaching 1.18 and 2610fg-TEQm(-3) respectively, and highest in Beijing in the winter, reaching 627 and 4240000fg-TEQm(-3) respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Compendium of Technical Papers on the Reductive Dechlorination of Chlorinated Solvents.

    Science.gov (United States)

    1997-08-01

    30), was added to cultures atarate of 20 pL (for in Thauer et al. (22) with temperature = 25 °C; pH = 7; HC0 3- = 70 supplement (E0),twas)added0to...34Biotransformation of chlorinated organic solvents in static niicrocosrrs." Environmental Toxicology and Chemistry 4: 739-742. Tandoi, V., T D. DiStefano, R A

  12. Kinetics and mechanism of styrene epoxidation by chlorite: role of chlorine dioxide.

    Science.gov (United States)

    Leigh, Jessica K; Rajput, Jonathan; Richardson, David E

    2014-07-07

    An investigation of the kinetics and mechanism for epoxidation of styrene and para-substituted styrenes by chlorite at 25 °C in the pH range of 5-6 is described. The proposed mechanism in water and water/acetonitrile includes seven oxidation states of chlorine (-I, 0, I, II, III, IV, and V) to account for the observed kinetics and product distributions. The model provides an unusually detailed quantitative mechanism for the complex reactions that occur in mixtures of chlorine species and organic substrates, particularly when the strong oxidant chlorite is employed. Kinetic control of the reaction is achieved by the addition of chlorine dioxide to the reaction mixture, thereby eliminating a substantial induction period observed when chlorite is used alone. The epoxidation agent is identified as chlorine dioxide, which is continually formed by the reaction of chlorite with hypochlorous acid that results from ClO produced by the epoxidation reaction. The overall stoichiometry is the result of two competing chain reactions in which the reactive intermediate ClO reacts with either chlorine dioxide or chlorite ion to produce hypochlorous acid and chlorate or chloride, respectively. At high chlorite ion concentrations, HOCl is rapidly eliminated by reaction with chlorite, minimizing side reactions between HOCl and Cl2 with the starting material. Epoxide selectivity (>90% under optimal conditions) is accurately predicted by the kinetic model. The model rate constant for direct reaction of styrene with ClO2(aq) to produce epoxide is (1.16 ± 0.07) × 10(-2) M(-1) s(-1) for 60:40 water/acetonitrile with 0.20 M acetate buffer. Rate constants for para substituted styrenes (R = -SO3(-), -OMe, -Me, -Cl, -H, and -NO2) with ClO2 were determined. The results support the radical addition/elimination mechanism originally proposed by Kolar and Lindgren to account for the formation of styrene oxide in the reaction of styrene with chlorine dioxide.

  13. Fate of free chlorine in drinking water during distribution in premise plumbing.

    Science.gov (United States)

    Zheng, Muzi; He, Chunguang; He, Qiang

    2015-12-01

    Free chlorine is a potent oxidizing agent and has been used extensively as a disinfectant in processes including water treatment. The presence of free chlorine residual is essential for the prevention of microbial regrowth in water distribution systems. However, excessive levels of free chlorine can cause adverse health effects. It is a major challenge to maintain appropriate levels of free chlorine residual in premise plumbing. As the first effort to assessing the fate of chlorine in premise plumbing using actual premise plumbing pipe sections, three piping materials frequently used in premise plumbing, i.e. copper, galvanized iron, and polyvinyl chloride (PVC), were investigated for their performance in maintaining free chlorine residual. Free chlorine decay was shown to follow first-order kinetics for all three pipe materials tested. The most rapid chlorine decay was observed in copper pipes, suggesting the need for higher chlorine dosage to maintain appropriate levels of free chlorine residual if copper piping is used. PVC pipes exhibited the least reactivity with free chlorine, indicative of the advantage of PVC as a premise plumbing material for maintaining free chlorine residual. The reactivity of copper piping with free chlorine was significantly hindered by the accumulation of pipe deposits. In contrast, the impact on chlorine decay by pipe deposits was not significant in galvanized iron and PVC pipes. Findings in this study are of great importance for the development of effective strategies for the control of free chlorine residual and prevention of microbiological contamination in premise plumbing.

  14. Grundfoss: Chlorination of Swimming Pools

    DEFF Research Database (Denmark)

    Hjorth, Poul G.; Hogan, John; Andreassen, Viggo

    1998-01-01

    Grundfos asked for a model, describing the problem of mixing chemicals, being dosed into water systems, to be developed. The application of the model should be dedicated to dosing aqueous solution of chlorine into swimming pools.......Grundfos asked for a model, describing the problem of mixing chemicals, being dosed into water systems, to be developed. The application of the model should be dedicated to dosing aqueous solution of chlorine into swimming pools....

  15. Post monitoring of a cyclodextrin remeditated chlorinated solvent contaminated aquifer

    Science.gov (United States)

    Blanford, W. J.

    2006-12-01

    Hydroxypropyl-â-cyclodextrin (HPâCD) has been tested successfully in the laboratory and in the field for enhanced flushing of low-polarity contaminants from aquifers. The cyclodextrin molecule forms a toroidal structure, which has a hydrophobic cavity. Within this cavity, organic compounds of appropriate shape and size can form inclusion complexes, which is the basis for the use of cyclodextrin in groundwater remediation. The hydrophilic exterior of the molecule makes cyclodextrin highly water-soluble. The solubility of cyclodextrins can be further enhanced by adding functional groups, such as hydroxypropyl groups, to the cyclodextrin core. The aqueous solubility of HPâCD exceeds 950 g/L. These high solubilities are advantageous for field applications because they permit relatively high concentrations of the flushing agent. In order for cyclodextrin to become a feasible remediative alternative, it must be demonstrate a short term resistance to biodegradation during field application, but ultimately biodegrade so as not to pose a long term presence in the aquifer. The potential for degradation of cyclodextrin as well as changes in the chlorinated solvents and groundwater geochemistry were examined during the post monitoring of a field demonstration in a shallow aquifer at Little Creek Naval Amphibious Base in Virginia. It was found that a portion of the cyclodextrin remaining in the aquifer after the cessation of field activities biodegraded during the 425 days of post monitoring. This degradation also led to the degradation of the chlorinated solvents trichloroethylene and 1,1-trichloroethane through both biological and chemical processes. The aquifer remained anaerobic with average dissolved oxygen levels below 0.5 mg/L. Dissolved nitrate and sulfate concentrations within the cyclodextrin plume decreased due their being used as terminal electron acceptors during the degradation of the cyclodextrin. The concentrations of total iron at the field site showed no

  16. Chlorine isotopes potential as geo-chemical tracers

    Digital Repository Service at National Institute of Oceanography (India)

    Shirodkar, P.V.; Pradhan, U.K.; Banerjee, R.

    The potential of chlorine isotopes as tracers of geo-chemical processes of earth and the oceans is highlighted based on systematic studies carried out in understanding the chlorine isotope fractionation mechanism, its constancy in seawater and its...

  17. Quantifying Short-Chain Chlorinated Paraffin Congener Groups.

    Science.gov (United States)

    Yuan, Bo; Bogdal, Christian; Berger, Urs; MacLeod, Matthew; Gebbink, Wouter A; Alsberg, Tomas; de Wit, Cynthia A

    2017-09-19

    Accurate quantification of short-chain chlorinated paraffins (SCCPs) poses an exceptional challenge to analytical chemists. SCCPs are complex mixtures of chlorinated alkanes with variable chain length and chlorination level; congeners with a fixed chain length (n) and number of chlorines (m) are referred to as a "congener group" C n Cl m . Recently, we resolved individual C n Cl m by mathematically deconvolving soft ionization high-resolution mass spectra of SCCP mixtures. Here we extend the method to quantifying C n Cl m by introducing C n Cl m specific response factors (RFs) that are calculated from 17 SCCP chain-length standards with a single carbon chain length and variable chlorination level. The signal pattern of each standard is measured on APCI-QTOF-MS. RFs of each C n Cl m are obtained by pairwise optimization of the normal distribution's fit to the signal patterns of the 17 chain-length standards. The method was verified by quantifying SCCP technical mixtures and spiked environmental samples with accuracies of 82-123% and 76-109%, respectively. The absolute differences between calculated and manufacturer-reported chlorination degrees were -0.9 to 1.0%Cl for SCCP mixtures of 49-71%Cl. The quantification method has been replicated with ECNI magnetic sector MS and ECNI-Q-Orbitrap-MS. C n Cl m concentrations determined with the three instruments were highly correlated (R 2 > 0.90) with each other.

  18. The recovery of gold from refractory ores by the use of carbon-in-chlorine leaching

    Science.gov (United States)

    Greaves, John N.; Palmer, Glenn R.; White, William W.

    1990-09-01

    Recently, the U.S. Bureau of Mines examined the recovery of gold by chlorination of refractory carbonaceous and sulfidic ores, comparing various treatment methods in which a ground ore pulp is contacted with chlorine gas and activated carbon is added to the pulp for a carbon-in-chlorine leach (CICL). The objective of this research was to demonstrate the basic feasibility of CICL technology. Results showed that the organic carbon deactivating environment of CICL lowers, but does not eliminate, the adsorption of gold on activated carbon. In this environment, the refractory ore is altered, and gold is extracted and then recovered on activated carbon. With highly carbonaceous ores, CICL achieved a higher recovery than with primarily sulfidic refractory ores. Basic cyanide amenability testing of two carbonaceous ores achieved recoveries of only 5.5% and 46%. With CICL treatment, recoveries on carbon were 90% and 92%.

  19. Sildenafil and tadalafil in simulated chlorination conditions: Ecotoxicity of drugs and their derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Temussi, Fabio; DellaGreca, Marina; Pistillo, Paola; Previtera, Lucio; Zarrelli, Armando [UdR Napoli 4 INCA, Dipartimento di Scienze Chimiche, Complesso Universitario di Monte Sant' Angelo, Università Federico II, Via Cintia, I-80126 Napoli (Italy); Criscuolo, Emma; Lavorgna, Margherita; Russo, Chiara [Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Via Vivaldi 43, I-81100 Caserta (Italy); Isidori, Marina, E-mail: marina.isidori@unina2.it [Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Via Vivaldi 43, I-81100 Caserta (Italy)

    2013-10-01

    Chlorination experiments on two drugs (sildenafil and tadalafil) were performed mimicking the conditions of a typical wastewater treatment process. The main transformation products were isolated by chromatographic techniques (Thin Layer Chromatography (TLC), Column Chromatography (CC), High Performance Liquid Chromatography (HPLC)) and fully characterized employing Nuclear Magnetic Resonance (NMR) and Mass Spectrometry (MS) analyses. The environmental effects of the parent compounds and transformation products were evaluated using an overall toxicity approach that considered aquatic acute and chronic toxicity on Brachionus calyciflorus and Ceriodaphnia dubia as well as mutagenesis and genotoxicity on bacterial strains. The results revealed that both parent drugs did not show high acute and chronic toxicity for the organisms utilized in the bioassays while, chronic exposure to chlorine derivatives caused inhibition of growth population on rotifers and crustaceans. A mutagenic potential was found for all the compounds investigated. - Highlights: • Simulated disinfection process of pharmaceuticals was performed. • Toxicity and genotoxicity of sildenafil, tadalafil and their derivatives were evaluated. • Chlorine derivatives caused chronic toxicity on rotifers and crustaceans. • A mutagenic potential was found for all the compounds investigated.

  20. Chain dechlorination of organic chlorinated compounds in alcohol solutions by 60Co gamma-rays, (1)

    International Nuclear Information System (INIS)

    Sawai, Takeshi; Shimokawa, Toshinari; Sawai, Teruko; Hosoda, Ieji; Kondo, Masaharu.

    1975-01-01

    A study was made on radiolytic dechlorination of pentachlorobenzene in alkaline alcohol solutions. The dechlorination yield (G(Cl - )) was found to depend on the alcohols used as solvent and the concentrations of the chlorinated benzene and hydroxide ion. The high yields obtained in alkaline 2-propanol, sec-butanol and ethanol indicate a chain process in the dechlorination reaction. The value of G(Cl - ) was highest in 2-propanol, and the principal products generated were potassium chloride, acetone and the lower chlorinated benzenes, while a decrease was seen in the hydroxide ion concentration. The concentrations produced of potassium chloride and acetone, as well as the decrease in hydroxide ion concentration, are all roughly equal at all doses. With increasing irradiation dose, pentachlorobenzene was dechlorinated to tetra, tri, di and monochlorobenzene. 1,2,4,5-tetrachlorobenzene, 1,2,4-trichlorobenzene and 1,4-dichlorobenzene were main products. A discussion is given of the detailed mechanism of the dechlorination in alkaline alcohols and the effect of alcohols on G(Cl - ). (auth.)

  1. Degradation of acrylamide by the UV/chlorine advanced oxidation process.

    Science.gov (United States)

    Gao, Ze-Chen; Lin, Yi-Li; Xu, Bin; Pan, Yang; Xia, Sheng-Ji; Gao, Nai-Yun; Zhang, Tian-Yang; Chen, Ming

    2017-11-01

    The degradation of acrylamide (AA) during UV/chlorine advanced oxidation process (AOP) was investigated in this study. The degradation of AA was negligible during UV irradiation alone. However, AA could be effectively degraded and mineralized during UV/chlorination due to the generation of hydroxyl radicals (OH). The degradation kinetics of AA during UV/chlorination fitted the pseudo-first order kinetics with the rate constant between AA and OH radicals being determined as 2.11 × 10 9  M -1  s -1 . The degradation rate and mineralization of AA during UV/chlorination were significantly promoted at acidic conditions as well as increasing chlorine dosage. The volatile degradation products of AA during UV/chlorination were identified using gas chromatography-mass spectrometry and the degradation pathways were then proposed accordingly. The formation of disinfection by-products (DBPs) in Milli-Q water and tap water during UV/chlorination of AA was also investigated. The DBPs included chloroform, dichloroacetonitrile, trichloroacetonitrile, 2,2-dichloroacetamide and 2,2,2-trichloroacetamide. Furthermore, the variations of AA degradation during UV/chlorination in different real water samples were evaluated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Supercritical Water Oxidation Total Organic Carbon (TOC) Analysis

    Science.gov (United States)

    The work presented here is the evaluation of the modified wet‐oxidation method described as Supercritical Water Oxidation (SCWO) for the analysis of total organic carbon (TOC) in very difficult oil/gas produced water sample matrices.

  3. Iodate and iodo-trihalomethane formation during chlorination of iodide-containing waters: role of bromide.

    Science.gov (United States)

    Criquet, Justine; Allard, Sebastien; Salhi, Elisabeth; Joll, Cynthia A; Heitz, Anna; von Gunten, Urs

    2012-07-03

    The kinetics of iodate formation is a critical factor in mitigation of the formation of potentially toxic and off flavor causing iodoorganic compounds during chlorination. This study demonstrates that the formation of bromine through the oxidation of bromide by chlorine significantly enhances the oxidation of iodide to iodate in a bromide-catalyzed process. The pH-dependent kinetics revealed species specific rate constants of k(HOBr + IO(-)) = 1.9 × 10(6) M(-1) s(-1), k(BrO(-) + IO(-)) = 1.8 × 10(3) M(-1) s(-1), and k(HOBr + HOI) < 1 M(-1) s(-1). The kinetics and the yield of iodate formation in natural waters depend mainly on the naturally occurring bromide and the type and concentration of dissolved organic matter (DOM). The process of free chlorine exposure followed by ammonia addition revealed that the formation of iodo-trihalomethanes (I-THMs), especially iodoform, was greatly reduced by an increase of free chlorine exposure and an increase of the Br(-)/I(-) ratio. In water from the Great Southern River (with a bromide concentration of 200 μg/L), the relative I-incorporation in I-THMs decreased from 18 to 2% when the free chlorine contact time was increased from 2 to 20 min (chlorine dose of 1 mg Cl(2)/L). This observation is inversely correlated with the conversion of iodide to iodate, which increased from 10 to nearly 90%. Increasing bromide concentration also increased the conversion of iodide to iodate: from 45 to nearly 90% with a bromide concentration of 40 and 200 μg/L, respectively, and a prechlorination time of 20 min, while the I-incorporation in I-THMs decreased from 10 to 2%.

  4. A study on chlorination of uranium metal using ammonium chloride

    International Nuclear Information System (INIS)

    Eun, H.C.; Kim, T.J.; Jang, J.H.; Kim, G.Y.; Lee, S.J.; Hur, J.M.

    2017-01-01

    In this study, the chlorination of uranium metal using ammonium chloride (NH 4 Cl) was conducted to derive an easy and simple uranium chloride production method without impurities. In thermodynamic equilibrium calculations, it was predicted that only uranium chlorides can be produced by the reactions between uranium metal and NH 4 Cl. Experimental conditions for the chlorination of uranium metal were determined using a chlorination test of cerium metal using NH 4 Cl. It was confirmed that UCl 3 and UCl 4 in the form of particles as uranium chlorination products can be obtained from the chlorination method using NH 4 Cl. (author)

  5. Preliminary GRS Measurement of Chlorine Distribution on Surface of Mars

    Science.gov (United States)

    Keller, J. M.; Boynton, W. V.; Taylor, G. J.; Hamara, D.; Janes, D. M.; Kerry, K.

    2003-12-01

    Ongoing measurements with the Gamma Ray Spectrometer (GRS) aboard Mars Odyssey provide preliminary detection of chlorine at the surface of Mars. Summing all data since boom deployment and using a forward calculation model, we estimate values for chlorine concentration at 5° resolution. Rebinning this data and smoothing with a 15-degree-radius boxcar filter reveal regions of noticeable chlorine enrichment at scales larger than the original 5° resolution and allow for preliminary comparison with previous Mars datasets. Analyzing chlorine concentrations within 30 degrees of the equator, we find a negative correlation with thermal inertia (R2=0.55) and positive correlation with albedo (R2=0.52), indicating that chlorine is associated with fine, non-rock surface materials. Although possibly a smoothing artifact, the spatial correlation is more noticeable in the region covering Tharsis and Amazonis than around Arabia and Elysium. Additionally, a noticeable region of chlorine enrichment appears west of Tharsis Montes ( ˜0 to 20N, ˜110 to 150W) and chlorine concentration is estimated to vary in the equatorial region by over a factor of two. A simplified two-component model involving chlorine-poor rocks and a homogenous chlorine-rich fine material requires rock abundance to vary from zero to over 50%, a result inconsistent with previous measurements and models. In addition to variations in rock composition and distribution, substantial variations in chlorine content of various types of fine materials including dust, sand, and duricrust appear important in explaining this preliminary observation. Surprisingly, visual comparison of surface units mapped by Christensen and Moore (1992) does not show enrichment in chlorine associated with regions of indurated surfaces, where cementation has been proposed. Rather, Tharsis, a region of active deposition with proposed mantling of 0.1 to 2 meters of recent dust (Christensen 1986), shows the greatest chlorine signal. In light of

  6. Chloride retention in forest soil by microbial uptake and by natural chlorination of organic matter

    Czech Academy of Sciences Publication Activity Database

    Bastviken, D.; Thomsen, F.; Svensson, T.; Karlsson, S.; Sandén, P.; Shaw, G.; Matucha, Miroslav; Öberg, G.

    2007-01-01

    Roč. 71, č. 13 (2007), s. 3182-3192 ISSN 0016-7037 R&D Projects: GA ČR GA526/05/0636 Institutional research plan: CEZ:AV0Z50380511 Source of funding: V - iné verejné zdroje Keywords : CHLOROACETIC ACIDS * BOUND CHLORINE * DEGRADATION Subject RIV: DF - Soil Science Impact factor: 3.665, year: 2007

  7. Chlorine-containing natural compounds in higher plants

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen

    1986-01-01

    More than 130 chlorine-containing compounds have been isolated from higher plants and ferns; about half are polyacetylenes, thiophenes and sesquiterpene lactones from the Asteraceae. A chlorinated chlorophyll may be an important part of photosystem 1. High biological activity is found in 4...

  8. Effectiveness of Chlorinated Water, Sodium Hypochlorite, Sodium ...

    African Journals Online (AJOL)

    This study evaluated the efficacy of chlorinated water, sodium hypochlorite solution, sodium chloride solution and sterile distilled water in eliminating pathogenic bacteria on the surfaces of raw vegetables. Lettuce vegetables were dipped in different concentrations of chlorinated water, sodium hypochlorite solution, sodium ...

  9. The Synthesis of Carbon Nanomaterials using Chlorinated ...

    African Journals Online (AJOL)

    The effect of chlorine on the morphology of carbon nanotubes (CNTs) prepared from a Fe-Co/CaCO3 catalyst was investigated using chlorobenzene (CB), dichlorobenzene (DCB), trichlorobenzene (TCB), dichloroethane (DCE), trichloroethane (TCE) and tetrachloroethane (TTCE) as chlorine sources using a catalytic ...

  10. Pilot-scale incineration of wastes with high content of chlorinated and non-halogenated organophosphorus flame retardants used as alternatives for PBDEs

    Energy Technology Data Exchange (ETDEWEB)

    Matsukami, Hidenori, E-mail: matsukami.hidenori@nies.go.jp [Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba 305-8506 (Japan); Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8563 (Japan); Kose, Tomohiro [Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1, Higashijima, Akiha-ku, Niigata 956-8603 (Japan); Watanabe, Mafumi [Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba 305-8506 (Japan); Takigami, Hidetaka [Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba 305-8506 (Japan); Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8563 (Japan)

    2014-09-15

    Chlorinated and non-halogenated organophosphorus flame retardants (OPFRs) including tris(2-chloroisopropyl) phosphate (TCIPP), diethylene glycol bis(di(2-chloroisopropyl) phosphate) (DEG-BDCIPP), triphenyl phosphate (TPHP), and bisphenol A bis(diphenyl phosphate) (BPA-BDPP) have been used increasingly as alternatives to polybrominated diphenyl ethers and other brominated flame retardants. For this study, five batches of incineration experiments of wastes containing approximately 1% of TCIPP, DEG-BDCIPP, TPHP, and BPA-BDPP were conducted using a pilot-scale incinerator. Destruction and emission behaviors of OPFRs were investigated along with the effects on behaviors of unintentional persistent organic pollutants (POPs) such as polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), dioxin-like polychlorinated biphenyls (dl-PCBs), hexachlorobenzene (HCB), pentachlorobenzene (PeCB), and pentachlorophenol (PCP). Incineration conditions were chosen according to current regulations for waste incinerators in Japan and UNEP. The OPFRs in the input materials were mainly destroyed in the primary combustion with destruction efficiencies greater than 99.999%. Concentrations of the OPFRs in the exhaust gases and ash were, respectively, < 0.01–0.048 μg m{sup −3} and < 0.5–68 μg kg{sup −1}. Almost all of the total phosphorus in the input materials was partitioned into the ash, but less into final exit gases, indicating negligible emissions of volatile phosphorus compounds during incineration. Inputs of chlorinated OPFRs did not affect the formation markedly. Destruction and emission behaviors of unintentional POPs were investigated. Emissions of such POPs in exhaust gases and the ash were lower than the Japanese and international standards. Results show that even in wastes with high contents of chlorinated and non-halogenated OPFRs, waste incineration by the current regulations for the waste incinerators can control environmental emissions of

  11. Pilot-scale incineration of wastes with high content of chlorinated and non-halogenated organophosphorus flame retardants used as alternatives for PBDEs

    International Nuclear Information System (INIS)

    Matsukami, Hidenori; Kose, Tomohiro; Watanabe, Mafumi; Takigami, Hidetaka

    2014-01-01

    Chlorinated and non-halogenated organophosphorus flame retardants (OPFRs) including tris(2-chloroisopropyl) phosphate (TCIPP), diethylene glycol bis(di(2-chloroisopropyl) phosphate) (DEG-BDCIPP), triphenyl phosphate (TPHP), and bisphenol A bis(diphenyl phosphate) (BPA-BDPP) have been used increasingly as alternatives to polybrominated diphenyl ethers and other brominated flame retardants. For this study, five batches of incineration experiments of wastes containing approximately 1% of TCIPP, DEG-BDCIPP, TPHP, and BPA-BDPP were conducted using a pilot-scale incinerator. Destruction and emission behaviors of OPFRs were investigated along with the effects on behaviors of unintentional persistent organic pollutants (POPs) such as polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), dioxin-like polychlorinated biphenyls (dl-PCBs), hexachlorobenzene (HCB), pentachlorobenzene (PeCB), and pentachlorophenol (PCP). Incineration conditions were chosen according to current regulations for waste incinerators in Japan and UNEP. The OPFRs in the input materials were mainly destroyed in the primary combustion with destruction efficiencies greater than 99.999%. Concentrations of the OPFRs in the exhaust gases and ash were, respectively, < 0.01–0.048 μg m −3 and < 0.5–68 μg kg −1 . Almost all of the total phosphorus in the input materials was partitioned into the ash, but less into final exit gases, indicating negligible emissions of volatile phosphorus compounds during incineration. Inputs of chlorinated OPFRs did not affect the formation markedly. Destruction and emission behaviors of unintentional POPs were investigated. Emissions of such POPs in exhaust gases and the ash were lower than the Japanese and international standards. Results show that even in wastes with high contents of chlorinated and non-halogenated OPFRs, waste incineration by the current regulations for the waste incinerators can control environmental emissions of OPFRs and

  12. Assessing the Impact of Chlorinated-Solvent Sites on Metropolitan Groundwater Resources

    OpenAIRE

    Brusseau, Mark L.; Narter, Matthew

    2013-01-01

    Chlorinated-solvent compounds are among the most common groundwater contaminants in the U.S.A. The majority of the many sites contaminated by chlorinated-solvent compounds are located in metropolitan areas, and most such areas have one or more chlorinated-solvent contaminated sites. Thus, contamination of groundwater by chlorinated-solvent compounds may pose a potential risk to the sustainability of potable water supplies for many metropolitan areas. The impact of chlorinated-solvent sites on...

  13. Scenarios Evaluation Tool for Chlorinated Solvent MNA

    Energy Technology Data Exchange (ETDEWEB)

    Vangelas, Karen; Michael J. Truex; Charles J. Newell; Brian Looney

    2007-02-28

    Over the past three decades, much progress has been made in the remediation of chlorinated solvents from the subsurface. Yet these pervasive contaminants continue to present a significant challenge to the U.S. Department of Energy (DOE), other federal agencies, and other public and private organizations. The physical and chemical properties of chlorinated solvents make it difficult to rapidly reach the low concentrations typically set as regulatory limits. These technical challenges often result in high costs and long remediation time frames. In 2003, the DOE through the Office of Environmental Management funded a science-based technical project that uses the U.S. Environmental Protection Agency's technical protocol (EPA, 1998) and directives (EPA, 1999) on Monitored Natural Attenuation (MNA) as the foundation on which to introduce supporting concepts and new scientific developments that will support remediation of chlorinated solvents based on natural attenuation processes. This project supports the direction in which many site owners want to move to complete the remediation of their site(s), that being to complete the active treatment portion of the remedial effort and transition into MNA. The overarching objective of the effort was to examine environmental remedies that are based on natural processes--remedies such as Monitored Natural Attenuation (MNA) or Enhanced Attenuation (EA). The research program did identify several specific opportunities for advances based on: (1) mass balance as the central framework for attenuation based remedies, (2) scientific advancements and achievements during the past ten years, (3) regulatory and policy development and real-world experience using MNA, and (4) exploration of various ideas for integrating attenuation remedies into a systematic set of ''combined remedies'' for contaminated sites. These opportunities are summarized herein and are addressed in more detail in referenced project documents and

  14. Chlorine release from biomass. Part 6; Kloravgaang fraan biobraenslen. Del 6

    Energy Technology Data Exchange (ETDEWEB)

    Zintl, Frank; Stroemberg, Birgitta [TPS Termiska Processer AB, Nykoeping (Sweden)

    2000-04-01

    Chlorine release from model compounds and different biomass fuels has been studied during thermal treatment in an electric oven in inert atmosphere (N{sub 2}) and with addition of 10% O{sub 2}. The amount of chlorine in all investigated materials has been kept to 2% with addition of KCl solution in methanol. The amount of chlorine was analysed before and after treatment in the decided atmosphere and to the temperature chosen. The influence from different functional groups on the chlorine release at low temperatures has been studied in pyrolysis experiments of simple model compounds with different structures. A good correlation between the chlorine release and the functional groups in the model substances was achieved. Results from the experiments shows that the early chlorine release, is most likely to occur in all biofuels, since all biomass fuels contains biological material with significant amounts of functional groups which can interact with fuel chlorine ( inorganic chlorine)

  15. Handwashing and Ebola virus disease outbreaks: A randomized comparison of soap, hand sanitizer, and 0.05% chlorine solutions on the inactivation and removal of model organisms Phi6 and E. coli from hands and persistence in rinse water.

    Directory of Open Access Journals (Sweden)

    Marlene K Wolfe

    Full Text Available To prevent Ebola transmission, frequent handwashing is recommended in Ebola Treatment Units and communities. However, little is known about which handwashing protocol is most efficacious. We evaluated six handwashing protocols (soap and water, alcohol-based hand sanitizer (ABHS, and 0.05% sodium dichloroisocyanurate, high-test hypochlorite, and stabilized and non-stabilized sodium hypochlorite solutions for 1 efficacy of handwashing on the removal and inactivation of non-pathogenic model organisms and, 2 persistence of organisms in rinse water. Model organisms E. coli and bacteriophage Phi6 were used to evaluate handwashing with and without organic load added to simulate bodily fluids. Hands were inoculated with test organisms, washed, and rinsed using a glove juice method to retrieve remaining organisms. Impact was estimated by comparing the log reduction in organisms after handwashing to the log reduction without handwashing. Rinse water was collected to test for persistence of organisms. Handwashing resulted in a 1.94-3.01 log reduction in E. coli concentration without, and 2.18-3.34 with, soil load; and a 2.44-3.06 log reduction in Phi6 without, and 2.71-3.69 with, soil load. HTH performed most consistently well, with significantly greater log reductions than other handwashing protocols in three models. However, the magnitude of handwashing efficacy differences was small, suggesting protocols are similarly efficacious. Rinse water demonstrated a 0.28-4.77 log reduction in remaining E. coli without, and 0.21-4.49 with, soil load and a 1.26-2.02 log reduction in Phi6 without, and 1.30-2.20 with, soil load. Chlorine resulted in significantly less persistence of E. coli in both conditions and Phi6 without soil load in rinse water (p<0.001. Thus, chlorine-based methods may offer a benefit of reducing persistence in rinse water. We recommend responders use the most practical handwashing method to ensure hand hygiene in Ebola contexts, considering

  16. Use of chlorination, ozonization and GAC adsorption to eliminate triazine pesticides in water supplies

    International Nuclear Information System (INIS)

    Ormad Melero, M. P.; Garcia Castillo, F. J.; Munarriz Cid, B.

    2009-01-01

    This study is focused on the research made between Facsa and Universidad de Zaragoza (Spain) related to the oxidation techniques application by chlorination and ozonization, and their combination with granular activated carbon (GAC) adsorption of mineral origin, in order to control triazine pesticides in water supplies. Experiments are carried out is a pilot plant. Although the chlorination or ozonization can partially degrade pesticides under study (atrazine, simazine, terbutilazine and bromacil), their passing through an adsorption column with GAC mineral, achieves their total removal when their initial concentrations are about 500 ng/l. These concentrations are obtained by fortification of studied sample. (Author) 9 refs

  17. Carboranyl-Chlorin e6 as a Potent Antimicrobial Photosensitizer.

    Directory of Open Access Journals (Sweden)

    Elena O Omarova

    Full Text Available Antimicrobial photodynamic inactivation is currently being widely considered as alternative to antibiotic chemotherapy of infective diseases, attracting much attention to design of novel effective photosensitizers. Carboranyl-chlorin-e6 (the conjugate of chlorin e6 with carborane, applied here for the first time for antimicrobial photodynamic inactivation, appeared to be much stronger than chlorin e6 against Gram-positive bacteria, such as Bacillus subtilis, Staphyllococcus aureus and Mycobacterium sp. Confocal fluorescence spectroscopy and membrane leakage experiments indicated that bacteria cell death upon photodynamic treatment with carboranyl-chlorin-e6 is caused by loss of cell membrane integrity. The enhanced photobactericidal activity was attributed to the increased accumulation of the conjugate by bacterial cells, as evaluated both by centrifugation and fluorescence correlation spectroscopy. Gram-negative bacteria were rather resistant to antimicrobial photodynamic inactivation mediated by carboranyl-chlorin-e6. Unlike chlorin e6, the conjugate showed higher (compared to the wild-type strain dark toxicity with Escherichia coli ΔtolC mutant, deficient in TolC-requiring multidrug efflux transporters.

  18. Susceptibility of Legionella pneumophila to chlorine in tap water.

    Science.gov (United States)

    Kuchta, J M; States, S J; McNamara, A M; Wadowsky, R M; Yee, R B

    1983-11-01

    A study was conducted to compare the susceptibility of legionellae and coliforms to disinfection by chlorine. The chlorine residuals used were similar to concentrations that might be found in the distribution systems of large public potable water supplies. The effects of various chlorine concentrations, temperatures, and pH levels were considered. A number of different Legionella strains, both environmental and clinical, were tested. The results indicate that legionellae are much more resistant to chlorine than are coliform bacteria. At 21 degrees C, pH 7.6, and 0.1 mg of free chlorine residual per liter, a 99% kill of L. pneumophila was achieved within 40 min, compared with less than 1 min for Escherichia coli. The observed resistance is enhanced as conditions for disinfection become less optimal. The required contact time for the removal of L. pneumophilia was twice as long at 4 degrees C than it was at 21 degrees C. These data suggest that legionellae can survive low levels of chlorine for relatively long periods of time.

  19. Selective recovery of uranium from Ca-Mg uranates by chlorination

    International Nuclear Information System (INIS)

    Pomiro, Federico J.; Gaviría, Juan P.; Quinteros, Raúl D.

    2017-01-01

    A chlorination process is proposed for the uranium extraction and separation using Calcium−Magnesium uranates such as starting reactants which were obtained by precipitation from uranyl nitrate solutions with calcium hydroxide. The study is based on thermodynamic and reaction analysis using chlorine gas as chlorination agent. The results showed that the chlorination reaction of Ca uranate is more feasible to occur than the Mg uranate. The products obtained after chlorination reactions were washed with deionized water to remove the chlorides produced and analyzed. The XRD patterns of the washed products indicated that the chlorination between 400 and 500 °C result in a single phase of calcium uranate (CaUO 4 ) as reaction product. The formation of U 3 O 8 and MgU 3 O 10 was observed at temperatures between 600 °C and 700 °C for 8 hs. The optimal conditions to recover uranium were 3 l h −1 of chlorine and 10 hs of reaction at 700 °C being U 3 O 8 the single uranium product obtained. - Highlights: •The chlorination is an effective method for the recovery uranium from Ca-Mg uranates. •The optimal conditions were: 10 hs of reaction time at 700 °C using 3 l/h of Cl 2 (g). •U 3 O 8 is recovery by washing out the chlorination by-products.

  20. Selective recovery of uranium from Ca-Mg uranates by chlorination

    Science.gov (United States)

    Pomiro, Federico J.; Gaviría, Juan P.; Quinteros, Raúl D.; Bohé, Ana E.

    2017-07-01

    A chlorination process is proposed for the uranium extraction and separation using Calciumsbnd Magnesium uranates such as starting reactants which were obtained by precipitation from uranyl nitrate solutions with calcium hydroxide. The study is based on thermodynamic and reaction analysis using chlorine gas as chlorination agent. The results showed that the chlorination reaction of Ca uranate is more feasible to occur than the Mg uranate. The products obtained after chlorination reactions were washed with deionized water to remove the chlorides produced and analyzed. The XRD patterns of the washed products indicated that the chlorination between 400 and 500 °C result in a single phase of calcium uranate (CaUO4) as reaction product. The formation of U3O8 and MgU3O10 was observed at temperatures between 600 °C and 700 °C for 8 hs. The optimal conditions to recover uranium were 3 l h-1 of chlorine and 10 hs of reaction at 700 °C being U3O8 the single uranium product obtained.

  1. Detection of chlorinated aromatic compounds

    Science.gov (United States)

    Ekechukwu, A.A.

    1996-02-06

    A method for making a composition for measuring the concentration of chlorinated aromatic compounds in aqueous fluids, and an optical probe for use with the method are disclosed. The composition comprises a hydrophobic polymer matrix, preferably polyamide, with a fluorescent indicator uniformly dispersed therein. The indicator fluoresces in the presence of the chlorinated aromatic compounds with an intensity dependent on the concentration of these compounds in the fluid of interest, such as 8-amino-2-naphthalene sulfonate. The probe includes a hollow cylindrical housing that contains the composition in its distal end. The probe admits an aqueous fluid to the probe interior for exposure to the composition. An optical fiber transmits excitation light from a remote source to the composition while the indicator reacts with chlorinated aromatic compounds present in the fluid. The resulting fluorescence light signal is reflected to a second optical fiber that transmits the light to a spectrophotometer for analysis. 5 figs.

  2. Chlorinated rubbers with advanced properties for tire industry

    Science.gov (United States)

    Mikhaylov, I. A.; Sukhareva, K. V.; Andriasyan, Yu. O.; Popov, A. A.

    2017-12-01

    The paper investigates the production and processing of halide-modified chlorinated rubbers, such as isobutylene isoprene rubber and ethylene-propylene-diene-monomer rubber (IIR and EPDM), which are perspective in terms of application in rubber industry. Prospects for their production and application are determined by the specific properties of these rubbers (low gas permeability of IIR, high heat and ozone resistance of EPDM). These properties are governed by the structure of both initial IIR and EPDM and chlorinated rubbers (ChIIR and ChEPDM). A new alternative technology of obtaining chlorinated elastomers based on solid-phase mechanochemical halide modification is proposed. Novel chlorinated polyolefin rubbers obtained by the developed technology show good technological properties under industrial production conditions due to enhanced covulcanization.

  3. Determination of non-metallic elements in actinide complexes by oxygen flask combustion (OFC): chlorine and fluorine

    International Nuclear Information System (INIS)

    Ruikar, P.B.; Nagar, M.S.; Subramanian, M.S.

    1989-01-01

    The oxygen flask combustion followed by ion selective electrode measurement has been found to be the most suitable from the point of view of elegance and simplicity for the determination of chlorine and fluorine in actinide complexes. The method has been found to be particularly suitable for glove box adaptation. This report describes the determination of chlorine and fluorine in several uranium complexes, some plutonium complexes and organic analytical standards by this method. The precision and accuracy of the measurements in the milligram level has been found to be quite satisfactory. (author). 16 refs., 11 tabs

  4. Evidence for Perchlorates and the Origin of Chlorinated Hydrocarbons Detected by SAM at the Rocknest Aeolian Deposit in Gale Crater

    Science.gov (United States)

    Glavin, Daniel P.; Freissinet, Caroline; Miller, Kristen E.; Eigenbrode, Jennifer L.; Brunner, Anna E.; Buch, Arnaud; Sutter, Brad; Archer, P. Douglas, Jr.; Atreya, Sushil K.; Brinckerhoff, William B.; hide

    2013-01-01

    A single scoop of the Rocknest aeolian deposit was sieved (less than 150 micrometers), and four separate sample portions, each with a mass of approximately 50 mg, were delivered to individual cups inside the Sample Analysis at Mars (SAM) instrument by the Mars Science Laboratory rover's sample acquisition system. The samples were analyzed separately by the SAM pyrolysis evolved gas and gas chromatograph mass spectrometer analysis modes. Several chlorinated hydrocarbons including chloromethane, dichloromethane, trichloromethane, a chloromethylpropene, and chlorobenzene were identified by SAM above background levels with abundances of approximately 0.01 to 2.3 nmol. The evolution of the chloromethanes observed during pyrolysis is coincident with the increase in O2 released from the Rocknest sample and the decomposition of a product of N-methyl-N-(tert-butyldimethylsilyl)-trifluoroacetamide (MTBSTFA), a chemical whose vapors were released from a derivatization cup inside SAM. The best candidate for the oxychlorine compounds in Rocknest is a hydrated calcium perchlorate (Ca(ClO4)2·nH2O), based on the temperature release of O2 that correlates with the release of the chlorinated hydrocarbons measured by SAM, although other chlorine-bearing phases are being considered. Laboratory analog experiments suggest that the reaction of Martian chlorine from perchlorate decomposition with terrestrial organic carbon from MTBSTFA during pyrolysis can explain the presence of three chloromethanes and a chloromethylpropene detected by SAM. Chlorobenzene may be attributed to reactions of Martian chlorine released during pyrolysis with terrestrial benzene or toluene derived from 2,6-diphenylphenylene oxide (Tenax) on the SAM hydrocarbon trap. At this time we do not have definitive evidence to support a nonterrestrial carbon source for these chlorinated hydrocarbons, nor do we exclude the possibility that future SAM analyses will reveal the presence of organic compounds native to the

  5. Analytical strategy for the determination of various arsenic species in landfill leachate containing high concentrations of chlorine and organic carbon by HPLC-ICPMS

    Science.gov (United States)

    Bae, J.; An, J.; Kim, J.; Jung, H.; Kim, K.; Yoon, C.; Yoon, H.

    2012-12-01

    As a variety of wastes containing arsenic are disposed of in landfills, such facilities can play a prominent role in disseminating arsenic sources to the environment. Since it is widely recognized that arsenic toxicity is highly dependent on its species, accurate determination of various arsenic species should be considered as one of the essential goals to properly account for the potential health risk of arsenic in human and the environment. The inductively coupled plasma mass spectrometry linked to high performance liquid chromatography (HPLC-ICPMS) is acknowledged as one of the most important tools for the trace analysis of metallic speciation because of its superior separation capability and detectability. However, the complexity of matrices can cause severe interferences in the analysis results, which is the problem often encountered with HPLC-ICPMS system. High concentration of organic carbon in a sample solution causes carbon build-up on the skimmer and sampling cone, which reduces analytical sensitivity and requires a high maintenance level for its cleaning. In addition, argon from the plasma and chlorine from the sample matrix may combine to form 40Ar35Cl, which has the same nominal mass to charge (m/z) ratio as arsenic. In this respect, analytical strategy for the determination of various arsenic species (e.g., inorganic arsenite and arsenate, monomethylarsonic acid, dimethylarsinic acid, dimethyldithioarsinic acid, and arsenobetaine) in landfill leachate containing high concentrations of chlorine and organic carbon was developed in the present study. Solid phase extraction disk (i.e., C18 disk), which does not significantly adsorb any target arsenic species, was used to remove organic carbon in sample solutions. In addition, helium (He) gas was injected into the collision reaction cell equipped in ICPMS to collapse 40Ar35Cl into individual 40Ar and 35Cl. Although He gas also decreased arsenic intensity by blocking 75As, its signal to noise ratio

  6. Antiradiation effectiveness of the chlorine C

    International Nuclear Information System (INIS)

    Bubnova, O.M.; Grechka, I.I.; Znamensky, V.V.

    1996-01-01

    At present ever more attention of the experimenters in the field of search of high-effective antiray means - is directed to development of preparations from bio-active substances of a natural origin. In this connection all greater interest is caused by researches of antiray activity of these compounds, distinguished, as a rule, from known preparations of synthetic manufacture of low toxicity, absence of expressed collateral effects and possibility of course application. It has biological (antiray) activity in dozes 5-10 mg/kg and chlorine C which is derivative of chlorophil A. At present it passes tests in oncology. Porphyrines (synthetic and natural) are recently subjected to wide study as potential medicinal means, due to their ability to be accumulated in bodies of the reticulo-endothelial system and proliferous tissues, as well as their physical-chemical characteristics (fluorescence, photosensitizing action, colouring). All this testifies for the benefit of perspective use of porphyrin for treatment and diagnostics of tumors. According to the above described properties of porphyrines there is that fact, that for some of them radioprotective properties are revealed during the injections as well as before and after radiation treatment. The above said has formed the basis for study of antiray properties of the chlorine C during the experiments on small-sized laboratory animals. Antiradiation effectivity of chlorine C was studied on the mice (CBA x C57 B1) F1. Chlorine C was applied in a wide range of dozes with its' use in 3 variants: before radiation treatment, after radiation treatment, combined (before and after radiation treatment). Radioprotective activity of chlorine C reduces at an increase of a time of the injection before radiation treatment and at other ways of injection (intramuscularly, subcutaneously, per os). Studies of medical activity of chlorine C in experiments on mice have shown, that the compound does not possess medical activity. The death of

  7. Factorial analysis of the trihalomethane formation in the reaction of colloidal, hydrophobic, and transphilic fractions of DOM with free chlorine.

    Science.gov (United States)

    Platikanov, Stefan; Tauler, Roma; Rodrigues, Pedro M S M; Antunes, Maria Cristina G; Pereira, Dilson; Esteves da Silva, Joaquim C G

    2010-09-01

    This study focuses on the factors that affect trihalomethane (THMs) formation when dissolved organic matter (DOM) fractions (colloidal, hydrophobic, and transphilic fractions) in aqueous solutions were disinfected with chlorine. DOM fractions were isolated and fractionated from filtered lake water and were characterized by elemental analysis. The investigation involved a screening Placket-Burman factorial analysis design of five factors (DOM concentration, chlorine dose, temperature, pH, and bromide concentration) and a Box-Behnken design for a detailed assessment of the three most important factor effects (DOM concentration, chlorine dose, and temperature). The results showed that colloidal fraction has a relatively low contribution to THM formation; transphilic fraction was responsible for about 50% of the chloroform generation, and the hydrophobic fraction was the most important to the brominated THM formation. When colloidal and hydrophobic fraction solutions were disinfected, the most significant factors were the following: higher DOM fraction concentration led to higher THM concentration, an increase of pH corresponded to higher concentration levels of chloroform and reduced bromoform, higher levels of chlorine dose and temperature produced a rise in the total THM formation, especially of the chlorinated THMs; higher bromide concentration generates higher concentrations of brominated THMs. Moreover, linear models were implemented and response surface plots were obtained for the four THM concentrations and their total sum in the disinfection solution as a function of the DOM concentration, chlorine dose, and temperature. Overall, results indicated that THM formation models were very complex due to individual factor effects and significant interactions among the factors. In order to reduce the concentration of THMs in drinking water, DOM concentrations must be reduced in the water prior to the disinfection. Fractionation of DOM, together with an elemental

  8. Effect of chlorination on the development of marine biofilms dominated by diatoms

    Digital Repository Service at National Institute of Oceanography (India)

    Patil, J.S.; Jagadeesan, V.

    , and Thalassionema did not increase in density after chlorine treatment. It was also demonstrated that diatoms can colonize, grow and photosynthesize on chlorine-treated surfaces. Under pulse chlorination (treatment every 6 h), irrespective of chlorine concentration...

  9. Evaluation on joint toxicity of chlorinated anilines and cadmium to Photobacterium phosphoreum and QSAR analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hao, E-mail: realking163@163.com [School of Life and Chemistry, Jiangsu Second Normal University, Nanjing, Jiangsu 210013 (China); Wang, Chao; Shi, Jiaqi [State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Chen, Lei [School of Life and Chemistry, Jiangsu Second Normal University, Nanjing, Jiangsu 210013 (China)

    2014-08-30

    Highlights: • Cd has different effects on joint toxicity when in different concentrations. • The toxicity of most binary mixtures decreases when Cd concentration rises. • Different QSAR models are developed to predict the joint toxicity. • Descriptors in QSARs can help to elucidate the joint toxicity mechanism. • Van der Waals’ force or complexation may reduce the toxicity of mixtures. - Abstract: The individual IC{sub 50} (the concentrations causing a 50% inhibition of bioluminescence after 15 min exposure) of cadmium ion (Cd) and nine chlorinated anilines to Photobacterium phosphoreum (P. phosphoreum) were determined. In order to evaluate the combined effects of the nine chlorinated anilines and Cd, the toxicities of chlorinated anilines combined with different concentrations of Cd were determined, respectively. The results showed that the number of chlorinated anilines manifesting synergy with Cd decreased with the increasing Cd concentration, and the number manifesting antagonism decreased firstly and then increased. The joint toxicity of mixtures at low Cd concentration was weaker than that of most binary mixtures when combined with Cd at medium and high concentrations as indicated by TU{sub Total}. QSAR analysis showed that the single toxicity of chlorinated anilines was related to the energy of the lowest unoccupied molecular orbital (E{sub LUMO}). When combined with different concentrations of Cd, the toxicity was related to the energy difference (E{sub HOMO} − E{sub LUMO}) with different coefficients. Van der Waals’ force or the complexation between chlorinated anilines and Cd had an impact on the toxicity of combined systems, which could account for QSAR models with different physico-chemical descriptors.

  10. Transformation of Flame Retardant Tetrabromobisphenol A by Aqueous Chlorine and the Effect of Humic Acid.

    Science.gov (United States)

    Gao, Yuan; Pang, Su-Yan; Jiang, Jin; Ma, Jun; Zhou, Yang; Li, Juan; Wang, Li-Hong; Lu, Xue-Ting; Yuan, Li-Peng

    2016-09-06

    In this work, it was found that the most widely used brominated flame retardant tetrabromobisphenol A (TBrBPA) could be transformed by free chlorine over a wide pH range from 5 to 10 with apparent second-order rate constants from 138 to 3210 M(-1)·s(-1). A total of eight products, including one quinone-like compound (i.e., 2,6-dibromoquinone), two dimers, and several simple halogenated phenols (e.g., 4-(2-hydroxyisopropyl)-2,6-dibromophenol, 2,6-dibromohydroquinone, and 2,4,6-tribromophenol), were detected by high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) using a novel precursor ion scan (PIS) approach. A tentative reaction pathway was proposed: chlorine initially oxidized TBrBPA leading to the formation of a phenoxy radical, and then this primary radical and its secondary intermediates (e.g., 2,6-dibromo-4-isopropylphenol carbocation) formed via beta-scission subsequently underwent substitution, dimerization, and oxidation reactions. Humic acid (HA) considerably inhibited the degradation rates of TBrBPA by chlorine even accounting for oxidant consumption. A similar inhibitory effect of HA was also observed in permanganate and ferrate oxidation. This inhibitory effect was possibly attributed to the fact that HA competitively reacted with the phenoxy radical of TBrBPA and reversed it back to parent TBrBPA. This study confirms that chlorine can transform phenolic compounds (e.g., TBrBPA) via electron transfer rather than the well-documented electrophilic substitution, which also have implications on the formation pathway of halo-benzoquinones during chlorine disinfection. These findings can improve the understanding of chlorine chemistry in water and wastewater treatment.

  11. Chloride pyrometallurgy of uranium ore. 1. Chlorination of phosphate ore using solid or gas chlorinating agent and carbon

    International Nuclear Information System (INIS)

    Taki, Tomihiro; Komoto, Shigetoshi; Otomura, Keiichiro; Takenaka, Toshihide; Sato, Nobuaki; Fujino, Takeo.

    1995-01-01

    A thermodynamical and pyrometallurgical study to recover uranium from the phosphate ores was undertaken using the chloride volatilization method. Iron was chlorinated with solid chlorinating agents such as NaCl and CaCl 2 in combination with activated carbon, which will be used for removing this element from the ore, but uranium was not. On the other hand, the chlorination using Cl 2 gas and activated carbon gave a good result at 1,223 K. Not only uranium but also iron, phosphorus, aluminum and silicon were found to form volatile chlorides which vaporized out of the ore, while calcium remained in the ore as non-volatile CaCl 2 . The chlorination condition was studied as functions of temperature, reaction time and carbon content. The volatilization ratio of uranium around 95% was obtained by heating the mixture of the ore and activated carbon (35 wt%) in a mixed gas flow of Cl 2 (200 ml/min) and N 2 (200 ml/min) at 1,223 K for 120 min. (author)

  12. Mass Spectrometry Identification of N-Chlorinated Dipeptides in Drinking Water.

    Science.gov (United States)

    Huang, Guang; Jiang, Ping; Li, Xing-Fang

    2017-04-04

    We report the identification of N-chlorinated dipeptides as chlorination products in drinking water using complementary high-resolution quadrupole time-of-flight (QTOF) and quadrupole ion-trap mass spectrometry techniques. First, three model dipeptides, tyrosylglycine (Tyr-Gly), tyrosylalanine (Tyr-Ala), and phenylalanylglycine (Phe-Gly), reacted with sodium hypochlorite, and these reaction solutions were analyzed by QTOF. N-Cl-Tyr-Gly, N,N-di-Cl-Tyr-Gly, N-Cl-Phe-Gly, N,N-di-Cl-Phe-Gly, N-Cl-Tyr-Ala, and N,N-di-Cl-Tyr-Ala were identified as the major products based on accurate masses, 35 Cl/ 37 Cl isotopic patterns, and MS/MS spectra. These identified N-chlorinated dipeptides were synthesized and found to be stable in water over 10 days except N,N-di-Cl-Phe-Gly. To enable sensitive detection of N-chlorinated dipeptides in authentic water, we developed a high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method with multiple reaction monitoring (MRM) mode. N-Cl-Tyr-Gly, N,N-di-Cl-Tyr-Gly, N-Cl-Phe-Gly, N-Cl-Tyr-Ala, and N,N-di-Cl-Tyr-Ala along with their corresponding dipeptides were detected in authentic tap water samples. The dipeptides were clearly detected in the raw water, but the N-chlorinated dipeptides were at background levels. These results suggest that the N-chlorinated dipeptides are produced by chlorination. This study has identified N-chlorinated dipeptides as new disinfection byproducts in drinking water. The strategy developed in this study can be used to identify chlorination products of other peptides in drinking water.

  13. Selective recovery of uranium from Ca-Mg uranates by chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Pomiro, Federico J., E-mail: pomiro@cab.cnea.gov.ar [Departamento de Fisicoquímica y Control de Calidad, Complejo Tecnológico Pilcaniyeu, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, Av. Bustillo 9500, 8400 S.C. de Bariloche, Río Negro (Argentina); Gaviría, Juan P. [Departamento de Fisicoquímica y Control de Calidad, Complejo Tecnológico Pilcaniyeu, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, Av. Bustillo 9500, 8400 S.C. de Bariloche, Río Negro (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); Quinteros, Raúl D. [Departamento de Fisicoquímica y Control de Calidad, Complejo Tecnológico Pilcaniyeu, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, Av. Bustillo 9500, 8400 S.C. de Bariloche, Río Negro (Argentina); and others

    2017-07-15

    A chlorination process is proposed for the uranium extraction and separation using Calcium−Magnesium uranates such as starting reactants which were obtained by precipitation from uranyl nitrate solutions with calcium hydroxide. The study is based on thermodynamic and reaction analysis using chlorine gas as chlorination agent. The results showed that the chlorination reaction of Ca uranate is more feasible to occur than the Mg uranate. The products obtained after chlorination reactions were washed with deionized water to remove the chlorides produced and analyzed. The XRD patterns of the washed products indicated that the chlorination between 400 and 500 °C result in a single phase of calcium uranate (CaUO{sub 4}) as reaction product. The formation of U{sub 3}O{sub 8} and MgU{sub 3}O{sub 10} was observed at temperatures between 600 °C and 700 °C for 8 hs. The optimal conditions to recover uranium were 3 l h{sup −1} of chlorine and 10 hs of reaction at 700 °C being U{sub 3}O{sub 8} the single uranium product obtained. - Highlights: •The chlorination is an effective method for the recovery uranium from Ca-Mg uranates. •The optimal conditions were: 10 hs of reaction time at 700 °C using 3 l/h of Cl{sub 2}(g). •U{sub 3}O{sub 8} is recovery by washing out the chlorination by-products.

  14. Incidences of mortality of Indian peafowl Pavo cristatus due to pesticide poisoning in India and accumulation pattern of chlorinated pesticides in tissues of the same species collected from Ahmedabad and Coimbatore.

    Science.gov (United States)

    Nambirajan, Kanthan; Muralidharan, Subramanian; Manonmani, Subbian; Kirubhanandhini, Venkatachalam; Ganesan, Kitusamy

    2018-03-23

    Incidences of mortality of Indian peafowl Pavo cristatus, the national bird (Schedule I Indian Wild Life Protection Act 1972), are rampant in India. Between January 2011 and March 2017, around 550 peafowl in 35 incidences were reported dead across the country. Due to the non-availability of fresh carcases, poisoning could not be confirmed. Birds which died due to kite string injuries in Ahmedabad (15) and accidents in Coimbatore (5) were tested for residues of chlorinated pesticides, namely hexachlorocyclohexane (HCH), dichloro-diphenyl-trichloroethane (DDT), endosulfan, heptachlor, dicofol, dieldrin and cholipyrifos. The liver, kidney and muscle were the tissues considered to document pesticide load. Total load ranged from BDL to 388.2 ng/g. DDT (95%) and HCH (80%) were detected more frequently. DDT (40%) and endosulfan (26%) contributed maximum to the total pesticide load followed by HCH (21%). Pesticide accumulation pattern among the organs was in the order of liver (123.9 ng/g) > kidney (91.9 ng/g) > muscle (19.5 ng/g) with significant difference (p pesticide (149.0 ng/g) than birds from Coimbatore (47.8 ng/g). Although varying levels of chlorinated pesticide were detected, they were below reported toxic limits. Nevertheless, persistence of chlorinated pesticides and poisoning due to modern pesticides across the entire distribution range of Peafowl in India is a cause for concern.

  15. 40 CFR 63.1207 - What are the performance testing requirements?

    Science.gov (United States)

    2010-07-01

    ... incinerators only), levels of semivolatile metals, low volatile metals, mercury, and total chlorine (organic... document compliance with the mercury, semivolatile metals, low volatile metals, or hydrogen chloride... purposes of calculating semivolatile metal, low volatile metal, mercury, and total chlorine (organic and...

  16. Inhibition of lipopolysaccharide induced acute inflammation in lung by chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jinshan; Xue, Jinling; Xu, Bi; Xie, Jiani [Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084 (China); Qiao, Juan, E-mail: qjuan@tsinghua.edu.cn [Department of Chemistry, Tsinghua University, Beijing 100084 (China); Lu, Yun, E-mail: luyun@tsinghua.edu.cn [Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084 (China)

    2016-02-13

    Highlights: • Chlorination is effective to reduce the inflammation inducing capacity of LPS in lung. • LAL-detected endotoxin activity is not correlated to the potency of inflammation induction. • Alkyl chain of LPS was chlorinated in chlorination process. • LPS aggregate size decreases after chlorination. - Abstract: Lipopolysaccharide (LPS, also called endotoxin) is a pro-inflammatory constituent of gram negative bacteria and cyanobacteria, which causes a potential health risk in the process of routine urban application of reclaimed water, such as car wash, irrigation, scenic water refilling, etc. Previous studies indicated that the common disinfection treatment, chlorination, has little effect on endotoxin activity removal measured by Limulus amebocyte lysate (LAL) assay. However, in this study, significant decrease of acute inflammatory effects was observed in mouse lung, while LAL assay still presented a moderate increase of endotoxin activity. To explore the possible mechanisms, the nuclear magnetic resonance (NMR) results showed the chlorination happened in alkyl chain of LPS molecules, which could affect the interaction between LPS and LPS-binding protein. Also the size of LPS aggregates was found to drop significantly after treatment, which could be another results of chlorination caused polarity change. In conclusion, our observation demonstrated that chlorination is effective to reduce the LPS induced inflammation in lung, and it is recommended to use health effect-based methods to assess risk removal of water treatment technologies.

  17. Inhibition of lipopolysaccharide induced acute inflammation in lung by chlorination

    International Nuclear Information System (INIS)

    Zhang, Jinshan; Xue, Jinling; Xu, Bi; Xie, Jiani; Qiao, Juan; Lu, Yun

    2016-01-01

    Highlights: • Chlorination is effective to reduce the inflammation inducing capacity of LPS in lung. • LAL-detected endotoxin activity is not correlated to the potency of inflammation induction. • Alkyl chain of LPS was chlorinated in chlorination process. • LPS aggregate size decreases after chlorination. - Abstract: Lipopolysaccharide (LPS, also called endotoxin) is a pro-inflammatory constituent of gram negative bacteria and cyanobacteria, which causes a potential health risk in the process of routine urban application of reclaimed water, such as car wash, irrigation, scenic water refilling, etc. Previous studies indicated that the common disinfection treatment, chlorination, has little effect on endotoxin activity removal measured by Limulus amebocyte lysate (LAL) assay. However, in this study, significant decrease of acute inflammatory effects was observed in mouse lung, while LAL assay still presented a moderate increase of endotoxin activity. To explore the possible mechanisms, the nuclear magnetic resonance (NMR) results showed the chlorination happened in alkyl chain of LPS molecules, which could affect the interaction between LPS and LPS-binding protein. Also the size of LPS aggregates was found to drop significantly after treatment, which could be another results of chlorination caused polarity change. In conclusion, our observation demonstrated that chlorination is effective to reduce the LPS induced inflammation in lung, and it is recommended to use health effect-based methods to assess risk removal of water treatment technologies.

  18. Elements from chlorine to calcium nuclear reactions

    CERN Document Server

    Kunz, Wunibald

    1968-01-01

    Nuclear Tables: Part II Nuclear Reactions, Volume 3: The Elements from Chlorine to Calcium contains tabulations of the nuclear reaction values of elements chlorine, argon, potassium, and calcium. These tabulations provide the calculated Q-values of the elements and their isotopes. This book will be of value to general chemistry researchers.

  19. Determination of chlorinated polycyclic aromatic hydrocarbons in water by solid-phase extraction coupled with gas chromatography and mass spectrometry.

    Science.gov (United States)

    Wang, Xianli; Kang, Haiyan; Wu, Junfeng

    2016-05-01

    Given the potential risks of chlorinated polycyclic aromatic hydrocarbons, the analysis of their presence in water is very urgent. We have developed a novel procedure for determining chlorinated polycyclic aromatic hydrocarbons in water based on solid-phase extraction coupled with gas chromatography and mass spectrometry. The extraction parameters of solid-phase extraction were optimized in detail. Under the optimal conditions, the proposed method showed wide linear ranges (1.0-1000 ng/L) with correlation coefficients ranging from 0.9952 to 0.9998. The limits of detection and the limits of quantification were in the range of 0.015-0.591 and 0.045-1.502 ng/L, respectively. Recoveries ranged from 82.5 to 102.6% with relative standard deviations below 9.2%. The obtained method was applied successfully to the determination of chlorinated polycyclic aromatic hydrocarbons in real water samples. Most of the chlorinated polycyclic aromatic hydrocarbons were detected and 1-monochloropyrene was predominant in the studied water samples. This is the first report of chlorinated polycyclic aromatic hydrocarbons in water samples in China. The toxic equivalency quotients of chlorinated polycyclic aromatic hydrocarbons in the studied tap water were 9.95 ng the toxic equivalency quotient m(-3) . 9,10-Dichloroanthracene and 1-monochloropyrene accounted for the majority of the total toxic equivalency quotients of chlorinated polycyclic aromatic hydrocarbons in tap water. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Chlorination of organophosphorus pesticides in natural waters

    Energy Technology Data Exchange (ETDEWEB)

    Acero, Juan L. [Departamento de Ingenieria Quimica y Energetica, Universidad de Extremadura, 06071 Badajoz (Spain)], E-mail: jlacero@unex.es; Benitez, F. Javier; Real, Francisco J.; Gonzalez, Manuel [Departamento de Ingenieria Quimica y Energetica, Universidad de Extremadura, 06071 Badajoz (Spain)

    2008-05-01

    Unknown second-order rate constants for the reactions of three organophosphorus pesticides (chlorpyrifos, chlorfenvinfos and diazinon) with chlorine were determined in the present study, and the influence of pH and temperature was established. It was found that an increase in the pH provides a negative effect on the pesticides degradation rates. Apparent second-order rate constants at 20 {sup o}C and pH 7 were determined to be 110.9, 0.004 and 191.6 M{sup -1} s{sup -1} for chlorpyrifos, chlorfenvinfos and diazinon, respectively. A higher reactivity of chlorine with the phosphorothioate group (chlorpyrifos and diazinon) than with the phosphate moiety (chlorfenvinfos) could explain these results. Intrinsic rate constant for the elementary reactions of chlorine species with chlorpyrifos and diazinon were also calculated, leading to the conclusion that the reaction between hypochlorous acid and the pesticide is predominant at neutral pH. The elimination of these pesticides in surface waters was also investigated. A chlorine dose of 2.5 mg L{sup -1} was enough to oxidize chlorpyrifos and diazinon almost completely, with a formation of trihalomethanes below the EU standard for drinking water. However, the removal of chlorfenvinfos was not appreciable. Therefore, chlorination is a feasible option for the removal of organophosphorus pesticides with phosphorothioate group during oxidation and disinfection processes, but not for the elimination of pesticides with phosphate moiety.

  1. Chlorination of organophosphorus pesticides in natural waters

    International Nuclear Information System (INIS)

    Acero, Juan L.; Benitez, F. Javier; Real, Francisco J.; Gonzalez, Manuel

    2008-01-01

    Unknown second-order rate constants for the reactions of three organophosphorus pesticides (chlorpyrifos, chlorfenvinfos and diazinon) with chlorine were determined in the present study, and the influence of pH and temperature was established. It was found that an increase in the pH provides a negative effect on the pesticides degradation rates. Apparent second-order rate constants at 20 o C and pH 7 were determined to be 110.9, 0.004 and 191.6 M -1 s -1 for chlorpyrifos, chlorfenvinfos and diazinon, respectively. A higher reactivity of chlorine with the phosphorothioate group (chlorpyrifos and diazinon) than with the phosphate moiety (chlorfenvinfos) could explain these results. Intrinsic rate constant for the elementary reactions of chlorine species with chlorpyrifos and diazinon were also calculated, leading to the conclusion that the reaction between hypochlorous acid and the pesticide is predominant at neutral pH. The elimination of these pesticides in surface waters was also investigated. A chlorine dose of 2.5 mg L -1 was enough to oxidize chlorpyrifos and diazinon almost completely, with a formation of trihalomethanes below the EU standard for drinking water. However, the removal of chlorfenvinfos was not appreciable. Therefore, chlorination is a feasible option for the removal of organophosphorus pesticides with phosphorothioate group during oxidation and disinfection processes, but not for the elimination of pesticides with phosphate moiety

  2. Spatial distribution, temporal variation and risks of parabens and their chlorinated derivatives in urban surface water in Beijing, China

    International Nuclear Information System (INIS)

    Li, Wenhui; Gao, Lihong; Shi, Yali; Wang, Yuan; Liu, Jiemin; Cai, Yaqi

    2016-01-01

    The occurrence and distribution of 13 target compounds, including eight parabens, four chlorinated parabens and p-hydroxybenzoic acid (PHBA), were detected in surface water samples at 35 sampling sites in the Beijing River system, China. The surface water samples were collected from the main rivers and lakes in the urban area monthly from July 2013 to June 2014 (except the frozen period). Laboratory analyses revealed that parabens were ubiquitous in the surface water of Beijing. PHBA was the predominant compound in the surface water samples, with the average concentration of 239 ng L −1 , followed by the total amount of chlorinated parabens (average 50.1 ng/L) and parabens (average 44.3 ng/L). It is noteworthy that octylparaben with longer chain was firstly detected in the surface water. Significant difference was observed for paraben concentrations from different sampling sites, and the highest level of parabens was found in the Xiaotaihou River, which was mainly due to the untreated sewage discharge. Seasonal variation of target compounds in the urban surface water was also studied, and parabens exhibited a different temporal variation from chlorinated derivatives. A combination of factors including high residual chlorine level and water temperature as well as intense ultraviolet radiation might enhance the persistence of chlorinated parabens in chlorinated water during the wet season. Risk assessment showed that parabens and their chlorinated derivatives are not likely to produce biological effects on aquatic ecosystems at current levels in the surface water of Beijing. - Highlights: • Parabens and chlorinated parabens are ubiquitous in surface water in Beijing. • Octylparaben with longer chain was firstly detected in surface water. • Untreated sewage discharge was the main source of parabens in river. • Parabens exhibited a different seasonal variation from chlorinated derivatives. • The risks of target compounds are negligible at environmentally

  3. Spatial distribution, temporal variation and risks of parabens and their chlorinated derivatives in urban surface water in Beijing, China

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wenhui; Gao, Lihong [School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Shi, Yali; Wang, Yuan [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085 (China); Liu, Jiemin, E-mail: liujm@ustb.edu.cn [School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Cai, Yaqi, E-mail: caiyaqi@rcees.ac.cn [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085 (China)

    2016-01-01

    The occurrence and distribution of 13 target compounds, including eight parabens, four chlorinated parabens and p-hydroxybenzoic acid (PHBA), were detected in surface water samples at 35 sampling sites in the Beijing River system, China. The surface water samples were collected from the main rivers and lakes in the urban area monthly from July 2013 to June 2014 (except the frozen period). Laboratory analyses revealed that parabens were ubiquitous in the surface water of Beijing. PHBA was the predominant compound in the surface water samples, with the average concentration of 239 ng L{sup −1}, followed by the total amount of chlorinated parabens (average 50.1 ng/L) and parabens (average 44.3 ng/L). It is noteworthy that octylparaben with longer chain was firstly detected in the surface water. Significant difference was observed for paraben concentrations from different sampling sites, and the highest level of parabens was found in the Xiaotaihou River, which was mainly due to the untreated sewage discharge. Seasonal variation of target compounds in the urban surface water was also studied, and parabens exhibited a different temporal variation from chlorinated derivatives. A combination of factors including high residual chlorine level and water temperature as well as intense ultraviolet radiation might enhance the persistence of chlorinated parabens in chlorinated water during the wet season. Risk assessment showed that parabens and their chlorinated derivatives are not likely to produce biological effects on aquatic ecosystems at current levels in the surface water of Beijing. - Highlights: • Parabens and chlorinated parabens are ubiquitous in surface water in Beijing. • Octylparaben with longer chain was firstly detected in surface water. • Untreated sewage discharge was the main source of parabens in river. • Parabens exhibited a different seasonal variation from chlorinated derivatives. • The risks of target compounds are negligible at

  4. Regiospecific synthesis of polychlorinated dibenzofurans with chlorine-37 excess

    International Nuclear Information System (INIS)

    Yoonseok Chang; Deinzer, M.L.; Oregon State Univ., Corvallis, OR

    1991-01-01

    The synthesis of regiospecifically chlorine-37 labeled di-and trichlorodibenzofurans is described. The strategy for introducing a chlorine-37 label regiospecifically has been to reduce the nitro derivative to the corresponding amine. The amine is converted to the diazonium salt with t-butyl nitrite, and this product is converted to the final product via the Sandmeyer reaction with chlorine-37 labeled cuprous chloride. (author)

  5. Effect of Chlorine on Giardia lamblia Cyst Viability

    OpenAIRE

    Jarroll, Edward L.; Bingham, Alan K.; Meyer, Ernest A.

    1981-01-01

    The effect of chlorine concentration on Giardia lamblia cyst viability was tested under a variety of conditions. The ability of Giardia cysts to undergo excystation was used as the criterion of viability. The experimental variables employed included temperature (25, 15, and 5°C), pH (6, 7, and 8), chlorine-cyst contact time (10, 30, and 60 min), and chlorine concentration (1 to 8 mg/liter). In the pH range studied, cyst survival generally was observed to increase as buffer pH increased. Water...

  6. Thermodynamic analysis and experimental study on the chlorination of uranium oxide by gas-solid reaction

    International Nuclear Information System (INIS)

    Shin, Y.J.; Kim, I.S.; Shin, H.S.; Ro, S.G.; Park, H.S.

    1998-01-01

    In order to determine the operating condition of an uranium chlorination process with U 3 O 8 -C-Cl 2 system, the experimental conditions have been evaluated preliminarily by the thermochemical analysis and experimentally confirmed in this study. The dry-type chlorination of U 3 O 8 occurs as irreversible and exothermic reaction and produces many kinds of chloride compounds such as UCl 3 , UCl 4 , UCl 5 , and UCl 6 in the air and humidity controlled argon environment. Taking account of Gibbs free energy and vapor pressure for various chloride compounds, the proper temperature range of chlorination appears to be 863 to 953 K in aspects of increasing reaction rate and the yield of nonvolatile product. In the course of the experimental confirmation the powder of U 3 O 8 is perfectly converted into uranium chlorides within 4 hours above 863 K, and then the maximum fraction of uranium chloride remaining in the reactor is about 30% of total conversion mass. (author)

  7. Effect of organic on chemical oxidation for biofouling control in pilot-scale seawater cooling towers

    KAUST Repository

    Al-Bloushi, Mohammed

    2017-09-14

    Due to the scarcity of potable water in many regions of the world, the demand for seawater as an alternative evaporative cooling medium in cooling towers (CTs) has increased significantly in recent years. Seawater make-up in CTs is deemed the most feasible because of its unlimited supply in the coastal areas of Gulf and Red Sea. However, the seawater CTs have higher challenges greatly mitigating their performances because it is an open system where biofouling and bio-corrosion occurring within the fillers and piping of recirculation systems. Their pilot-scale CTs were constructed to assess the performance of three types of oxidizing biocides or oxidants, namely chlorine, chlorine dioxide (ClO2) and ozone, for biofouling control. The test results showed that the addition of organic (5mg/L of methanol (MeOH)) increased the bacterial growth in CT basin. All oxidants were effective in keeping the microbial growth to the minimum. Oxidation increased the oxidation-reduction potential (ORP) level from 270 to 600mV. Total residual oxidant (TRO) was increased with oxidation but it was slightly increased with organic addition. Other parameters including pH, dissolved oxygen (DO), conductivity levels were not changed. However, higher formation of disinfection by-products (DBPs) was detected with chlorination and ozonation. This indicates the organic level should be limited in the oxidation for biofouling control in seawater CTs.

  8. Effect of organic on chemical oxidation for biofouling control in pilot-scale seawater cooling towers

    KAUST Repository

    Al-Bloushi, Mohammed; Saththasivam, Jayaprakash; Jeong, Sanghyun; Amy, Gary L.; Leiknes, TorOve

    2017-01-01

    Due to the scarcity of potable water in many regions of the world, the demand for seawater as an alternative evaporative cooling medium in cooling towers (CTs) has increased significantly in recent years. Seawater make-up in CTs is deemed the most feasible because of its unlimited supply in the coastal areas of Gulf and Red Sea. However, the seawater CTs have higher challenges greatly mitigating their performances because it is an open system where biofouling and bio-corrosion occurring within the fillers and piping of recirculation systems. Their pilot-scale CTs were constructed to assess the performance of three types of oxidizing biocides or oxidants, namely chlorine, chlorine dioxide (ClO2) and ozone, for biofouling control. The test results showed that the addition of organic (5mg/L of methanol (MeOH)) increased the bacterial growth in CT basin. All oxidants were effective in keeping the microbial growth to the minimum. Oxidation increased the oxidation-reduction potential (ORP) level from 270 to 600mV. Total residual oxidant (TRO) was increased with oxidation but it was slightly increased with organic addition. Other parameters including pH, dissolved oxygen (DO), conductivity levels were not changed. However, higher formation of disinfection by-products (DBPs) was detected with chlorination and ozonation. This indicates the organic level should be limited in the oxidation for biofouling control in seawater CTs.

  9. Monitoring chlorination practices during operation at TAPS

    International Nuclear Information System (INIS)

    Sriraman, A.K.; Wani, B.N.; Gokhale, A.S.; Yuvaraju, B.

    1995-01-01

    Chlorination of cooling waters is aimed at the condenser surfaces to minimize the biogrowth, while the residual oxidants in the effluents are negligible. This paper describes the fulfillment of the above criteria, as observed during the monitoring of chlorination practices at Tarapur Atomic Power Station (TAPS) during 1990. (author). 4 refs., 2 tabs

  10. Synthesis, characterization and catalytic performance of ZnO-CeO2 nanoparticles in wet oxidation of wastewater containing chlorinated compounds

    Science.gov (United States)

    Anushree; Kumar, S.; Sharma, C.

    2017-11-01

    Here we report the catalytic property of ZnO-CeO2 nanoparticles towards oxidative degradation of organic pollutants present in industrial wastewater. The catalysts were prepared by co-precipitation method without using any surfactant. The physicochemical properties of catalysts were studied by XRD, Raman, XPS, N2-sorption, FE-SEM, TEM and EDX techniques. The characterization results confirmed the formation of porous ZnO-CeO2 nanocatalysts with high surface area, pore volume and oxygen vacancies. ZnO-CeO2 nanocatalysts exhibited appreciable efficiency in CWAO of industrial wastewater under mild conditions. The Ce40Zn60 catalyst was found to be most efficient with 72% color, 64% chemical oxygen demand (COD) and 63% total organic carbon (TOC) removal. Efficient removal of chlorophenolics (CHPs, 59%) and adsorbable organic halides (AOX, 54%) indicated the feasibility of using ZnO-CeO2 nanocatalysts in degradation of non-biodegradable and toxic chlorinated compounds.

  11. Chloroxyanion residue on seeds and sprouts after chlorine dioxide sanitation of alfalfa seed

    Science.gov (United States)

    The effects of a 6-h chlorine dioxide sanitation of alfalfa seed (0, 50, 100, and 200 mg/kg seed) on total coliform bacteria, seed germination, and on the presence of chlorate and perchlorate residues in seed rinse, seed soak, and in alfalfa sprouts was determined. Chlorate residues in 20000 ppm cal...

  12. Inactivation Effect of Antibiotic-Resistant Gene Using Chlorine Disinfection

    Directory of Open Access Journals (Sweden)

    Takashi Furukawa

    2017-07-01

    Full Text Available The aim of this study was to elucidate the inactivation effects on the antibiotic-resistance gene (vanA of vancomycin-resistant enterococci (VRE using chlorination, a disinfection method widely used in various water treatment facilities. Suspensions of VRE were prepared by adding VRE to phosphate-buffered saline, or the sterilized secondary effluent of a wastewater treatment plant. The inactivation experiments were carried out at several chlorine concentrations and stirring time. Enterococci concentration and presence of vanA were determined. The enterococci concentration decreased as chlorine concentrations and stirring times increased, with more than 7.0 log reduction occurring under the following conditions: 40 min stirring at 0.5 mg Cl2/L, 20 min stirring at 1.0 mg Cl2/L, and 3 min stirring at 3.0 mg Cl2/L. In the inactivation experiment using VRE suspended in secondary effluent, the culturable enterococci required much higher chlorine concentration and longer treatment time for complete disinfection than the cases of suspension of VRE. However, vanA was detected in all chlorinated suspensions of VRE, even in samples where no enterococcal colonies were present on the medium agar plate. The chlorine disinfection was not able to destroy antibiotic-resistance genes, though it can inactivate and decrease bacterial counts of antibiotic-resistant bacteria (ARB. Therefore, it was suggested that remaining ARB and/or antibiotic-resistance gene in inactivated bacterial cells after chlorine disinfection tank could be discharged into water environments.

  13. Formation of emerging DBPs from the chlorination and chloramination of seawater algal organic matter and related model compounds

    KAUST Repository

    Nihemaiti, Maolida

    2014-01-01

    Limited studies focused on reactions occurring during disinfection and oxidation processes of seawater. The aim of this work was to investigate disinfection by-products (DBPs) formation from the chlorination and chloramination of seawater algal

  14. Nonaqueous chlorination of uranium metal in tributyl phosphate

    International Nuclear Information System (INIS)

    Buchikhin, E.P.; Kuznetsov, A.Yu.; Shatalov, V.V.; Vidanov, V.L.; Chekmarev, A.M.

    2005-01-01

    Low-temperature (30-50 deg C) chlorination of uranium metal in the TBP-TCE-Cl 2 system (TCE = tetrachloroethylene) was studied. Dissolution of uranium in the dipolar aprotic solvent proceeds with formation of U(IV) compounds. The activation energy of this process is 31.24 kJ mol -1 , and relative reaction order with respect to Cl 2 is 2. The effect of TBP concentration on chlorination was examined. The chlorination rate sharply increases at a water content in the TBP-TCE system of 0.2- 0.6 vol % [ru

  15. Microbial Chlorination of Organic Matter in Forest Soil: Investigation Using Cl-36-Chloride and Its Methodology

    Czech Academy of Sciences Publication Activity Database

    Rohlenová, Jana; Gryndler, Milan; Forczek, Sándor; Fuksová, Květoslava; Handová, V.; Matucha, Miroslav

    2009-01-01

    Roč. 43, č. 10 (2009), s. 3652-3655 ISSN 0013-936X R&D Projects: GA ČR GA526/05/0636 Institutional research plan: CEZ:AV0Z50380511; CEZ:AV0Z50200510 Keywords : BOUND CHLORINE * CHLOROACETIC ACIDS * HUMIC SUBSTANCES Subject RIV: DF - Soil Science Impact factor: 4.630, year: 2009

  16. Hydrochloric acid recycling from chlorinated hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Sowieja, D [Sulzer Escher Wyss GmbH, Ravensburg (Germany); Schaub, M [Sulzer Chemtech Ltd., Winterthur (Switzerland)

    1994-12-31

    Chlorinated hydrocarbons present a major ecological hazard since most of them are only poorly biodegradable. Incineration is an economical process for their destruction, however the usually recovered sodium or calcium chlorides do not present a value and their disposal may even be very costly. Recovery of hydrochloric acid may therefore present an economical solution, mainly were large quantities of highly chlorinated compounds can be processed (author) 6 refs., 4 figs., 1 tab.

  17. Hydrochloric acid recycling from chlorinated hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Sowieja, D. [Sulzer Escher Wyss GmbH, Ravensburg (Germany); Schaub, M. [Sulzer Chemtech Ltd., Winterthur (Switzerland)

    1993-12-31

    Chlorinated hydrocarbons present a major ecological hazard since most of them are only poorly biodegradable. Incineration is an economical process for their destruction, however the usually recovered sodium or calcium chlorides do not present a value and their disposal may even be very costly. Recovery of hydrochloric acid may therefore present an economical solution, mainly were large quantities of highly chlorinated compounds can be processed (author) 6 refs., 4 figs., 1 tab.

  18. Study of the production of zirconium tetrachloride by chlorination of its oxide

    International Nuclear Information System (INIS)

    Seo, E.S.M.

    1983-01-01

    The studies carried out on the production of zirconium tetrachloride by chlorination of pure zirconium oxide with carbon tetrachloride and chlorine in the presence of carbon. In the process of chlorination with carbon tetrachloride, the chlorination efficiency increases with the rise in temperature at intervals between 450 and 750 0 C. The flow of the carbon tetrachloride vapour was 1.50l/min. Higher temperatures of 700 to 850 0 C were used for the zirconium oxide chlorination in the presence of carbon, and the flowrate of the chlorine gas used in the process was 0.50 l/min. Pure zirconium oxide chlorination as well as zirconium oxide - carbon misture chlorination have been studied in connection with the time of reaction at different temperatures and the apparent rate constant, the activation energies, the order of reaction in relation to the concentration of the gases (CCl 4 and Cl 2 ) and the content of carbon in the pellet have all been determined. (Author) [pt

  19. Effects of aging on chlorinated plasma polymers

    Energy Technology Data Exchange (ETDEWEB)

    Turri, Rafael Gustavo; Amorim, Milena Kowalczuk Manosso; Hadich, Tayan Vieira; Fernandes, Isabela Cristina; Fernandes, Gabriel Ferreira; Rossi, Diego; Rangel, Elidiane Cipriano; Durrant, Steven Frederick, E-mail: steve@sorocaba.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Sorocaba, SP (Brazil). Lab. de Plasmas Tecnologicos

    2017-07-15

    Thin films deposited from propanol-chloroform-argon mixtures by plasma enhanced chemical vapor deposition at different partial pressures of chloroform in the feed, C{sub Cl}, were characterized after two years of aging and their characteristics compared with their as-deposited properties. Film thickness decreased and surface roughness increased with aging. Surface contact angles also increased with aging for the chlorinated films. For the film deposited with 40% chloroform in the feed the contact angle increased about 14°. Transmission infrared and Energy dispersive X-ray spectroscopy revealed that the films gain carbonyl and hydroxyl groups and lose chlorine and hydrogen on aging. Chlorination appears to make the films more durable. Delamination was observed for the unchlorinated films. (author)

  20. Blends of caprolactam/caprolactone copolymers and chlorinated polymers

    NARCIS (Netherlands)

    Alberda van Ekenstein, G.O.R.; Deuring, H.; ten Brinke, G.; Ellis, T.S.

    The phase behaviour of blends of chlorinated polyethylene, polyvinyl chloride (PVC) and chlorinated PVC with random copolymers of caprolactone and caprolactam has been investigated and the results correlated with a binary interaction model. The known miscibility of polycaprolactone in the

  1. Pattern Recognition of the Presence and Distribution of Organo chlorine Pesticides in Sediment of Cameron Highlands, Malaysia

    International Nuclear Information System (INIS)

    Md Pauzi Abdullah; Naghmeh Saadati; Wan Mohd Afiq Wan Mohd Khalik

    2015-01-01

    This study aimed to assess the environmental situation of 18 organo chlorine pesticides (OCPs), of which some are members of Persistent Organic Pollutants (POPs) in the sediment of an intensive agriculture area as well as popular tourism destination of Cameron Highlands, Malaysia. A total of 56 surface sediment samples were collected at eight selected sampling points along the two main rivers in the area namely Telom and Bertam Rivers during the dry and wet seasons in 2011. The OCPs levels detected were between 0.41 - 82.16 (mean of 21.33 ± 18.54) ng/ g of dry weight. A total of 15 OCPs namely 4,4' DDT, 4,4' DDD, 4,4' DDE, γ-HCH, β- HCH, aldrin, dieldrin, endrin, endosulfan I, endosulfan II endosulfan sulfate, heptachlor and heptachlor epoxide were detected in all sediment samples. Multivariate analysis of the 15 detected OCPs with respect to the type of land-use shows that endosulfan I was found around the tea plantation areas; γ-HCH was found near vegetable plantation areas; 4,4 ' DDE and aldrin were found near Blue Valley station; and endrin, heptachlor, 4,4 ' DDD, 4,4 ' DDT, and heptachlor epoxide were found in the nearby villages. Four clusters (C1; 1, C2; 1, C3; 2 and C4; 4 stations) were generated using a cluster analysis method. Four latent factors (74.36 % of total variance) were identified by principle component and factor analysis method. Three classifications namely tea plantations, vegetable plantations, and villages provide 83.90 % of the composition pattern of 15 OCPs, whereas 3 OCPs are significant components in discriminating organo chlorine pesticides contamination detected in sediment samples. Pollutants seemed to enter the river through the run-off from agricultural areas and villages. HCH isomer (β-HCH) was mostly found in the downstream stations of the rivers. (author)

  2. Chemical aspects of incinerating highly chlorinated and actinide {alpha} contaminated organic waste: application to the Iris process; Aspects chimiques de l'incineration des dechets organiques fortement charges en chlore et contamines en actinides emetteurs {alpha}. Application au procede IRIS

    Energy Technology Data Exchange (ETDEWEB)

    Lemort, F.; Cames, B. [CEA Valrho, (DCC/DRRV/SCD), 30 - Marcoule (France)

    2000-07-01

    A fraction of the waste produced by nuclear activities is combustible, and thus suitable for incineration to produce gases, ash and fines. A typical composition representative of actual organic waste mixtures was defined for the purpose of investigating possible heat treatment processes; the composition is identified according to components Table 1 and elements Table II. The high polyvinyl chloride (PVC) content is responsible for the high chlorine potential in the process equipment. The quantity and quality of the resulting solid residue depends entirely on the inorganic load of the organic waste, whose behavior is entirely conditioned by the process conditions. For example, pure polyethylene is totally converted to gases (water and carbon dioxide), while the composition shown in Table II produces a range of oxides and chlorides. The high chlorine content results in partial chlorination of the inorganic compounds, but can also lead to interactions with the process equipment. The temperature dependent variation of the chlorination equilibrium constants of various metals clearly shows that all the elements of technological alloys may be subject to active corrosion by hydrochloric acid. However, the corresponding oxides-notably alumina-are much less sensitive to corrosion; aluminum-based alloys are therefore preferred for incinerator construction and to limit corrosion by hydrochloric acid. Thermodynamic and kinetic studies led to the development of the IRIS three-step process. Gas emissions occurring during processing of solid materials are completely oxidized in the after-burning step at 1100 deg C, and are then ducted to a HERA filtration system capable of retaining all the actinide {alpha} radionuclides. Although corrosion-related problems are attenuated in the two-step process chlorine can combine with the inorganic waste material to form chlorides with potentially damaging effects on the system; this is the case for zinc chloride and for volatile chlorides in

  3. THE EFFECTS OF 1‰ STABILIZED LIQUID SOLUTION OF CHLORINE DIOXIDE (ClO2 ON SOME FOOD-BORN BACTERIA

    Directory of Open Access Journals (Sweden)

    Sead Hadziabdić

    2014-03-01

    Full Text Available The conducted research gives an overview of the results obtained after the application of 1‰ solution of stabilized liquid chlorine dioxide on some food-born related bacteria - E. coli, Staphylococcus aureus, S. Enteritidis and C. jejuni.  For this purpose,  reference strains of the aforementioned pathogens in decimal dilutions were exposed to 1 ml of 1‰ solution of stabilized liquid chlorine dioxide for one hour. Reduction of bacteria counts per mililitre (CFU/ml has been noticed for all bacteria, with total reduction of C. jejuni and Staphylococcus aureus in the fourth (1:104, and for S. Enteritidis and E. coli in the sixth (1:106 decimal dilution. Key words: chlorine dioxide, E. coli, S. aureus, S. Enteritidis, C. jejuni

  4. Chlorinated cooling waters in the marine environment: development of effluent guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Capuzzo, J M; Goldman, J C; Davidson, J A; Lawrence, S A

    1977-07-01

    The effects of free chlorine and chloramine on stage I lobster larvae and juvenile killifish were investigated in continuous flow bioassay units. In comparing mortality and changes in standard respiration rates during and after exposure to either chlorine form, significant respiratory stress was observed with exposure to sublethal levels. Sublethal responses to free and combined chlorine should be considered when establishing regulations for chlorine residuals in cooling waters.

  5. Direct Chlorination of Zircon Sand

    International Nuclear Information System (INIS)

    Dwiretnani Sudjoko; Budi Sulistyo; Pristi Hartati; Sunardjo

    2002-01-01

    It was investigated the direct chlorination of zircon sand in a unit chlorination equipment. The process was in semi batch. The product gas was scrubbed in aqueous NaOH. It was search the influence of time, ratio of reactant and size of particle sand to the concentration of Zr and Si in the product. From these research it was found that as the times, ratio of reactant increased, the concentration of Zr increased, but the concentration of Si decreased, while as grain size of zircon sand decreased the concentration of Zr decreased, but the concentration of Si increased. (author)

  6. Detection, formation and occurrence of 13 new polar phenolic chlorinated and brominated disinfection byproducts in drinking water.

    Science.gov (United States)

    Pan, Yang; Wang, Ying; Li, Aimin; Xu, Bin; Xian, Qiming; Shuang, Chendong; Shi, Peng; Zhou, Qing

    2017-04-01

    Recently, 13 new polar phenolic chlorinated and brominated disinfection byproducts (Cl- and Br-DBPs) were identified and quantified in simulated chlorinated drinking water by adopting product ion scan, precursor ion scan, and multiple reaction monitoring (MRM) analyses using ultra performance liquid chromatography/electrospray ionization-triple quadrupole mass spectrometry (UPLC/ESI-tqMS). The 13 new DBPs have been drawing increasing concern not only because they possess significantly higher growth inhibition, developmental toxicity, and chronic cytotoxicity than commonly known aliphatic DBPs, but also because they act as intermediate DBPs that can decompose to form the U.S. EPA regulated DBPs. In this study, through MS parameter optimization of the UPLC/ESI-tqMS MRM analysis, the instrument detection and quantitation limits of the 13 new DBPs were substantially lowered to 0.42-6.44 and 1.35-16.51 μg/L, respectively. The total levels of the 13 new DBPs formed in chlorination were much higher than those formed in chloramination within a contact time of 3 d. In chlorination, the 13 new DBPs formed quickly and decomposed rapidly, and their total concentration kept on decreasing with contact time. In chloramination, the levels of the dominant species (i.e., trihalo-phenols) firstly increased and then decreased with contact time, whereas the levels of the other new DBPs were relatively low and kept on increasing with contact time. An increasing of pH from 6.0 to 9.0 decreased the formation of the 13 new DBPs by 57.8% and 62.3% in chlorination and chloramination, respectively. Gallic acid was found to be present in various simulated and real source water samples and was demonstrated to be a precursor of the 13 new DBPs with elucidated formation pathways. Furthermore, 12 of the 13 new DBPs were detected in 16 tap water samples obtained from major cities in East China, at total levels from 9.5 to 329.8 ng/L. The concentrations of the new DBPs were higher in samples

  7. Laboratory-scale simulations with hydrated lime and organic ...

    African Journals Online (AJOL)

    +27 (18) 299-2508; e-mail: sandra.barnard@nwu.ac.za .... After 5 min exposure, an inverted light microscope was used to ..... Light microscopy images of C. hirundinella cells in source water (a) and the effects of chlorine concentrations after exposure to chlorine .... trations of organic carbon compounds measured during dif-.

  8. Selective synthesis and characterization of chlorins as sensitizers for photodynamic therapy

    Science.gov (United States)

    Montforts, Franz-Peter; Kusch, Dirk; Hoper, Frank; Braun, Stefan; Gerlach, Benjamin; Brauer, Hans-Dieter; Schermann, Guido; Moser, Joerg G.

    1996-04-01

    Chlorin type sensitizers have ideal photophysical properties for an application in PDT. The basic chlorin framework of these sensitizers has to be modified by attachment of lipophilic and hydrophilic residues to achieve a good cell uptake and tumor enrichment. In the present study we describe the selective synthesis of amphiphilic chlorins starting from the readily accessible red blood pigment heme. The photophysical properties of the well defined synthetic chlorins are characterized by photophysical investigations. The kinetic of cell uptake, the localization in the cell and the photodynamic behavior of the amphiphilic sensitizers are demonstrated by incubation of A 375 cancer cell lines with structurally different chlorins.

  9. Determination of chlorine in nuclear-grade uranium compounds by ion-selective electrode

    International Nuclear Information System (INIS)

    Yang Chunqing; Liu Fuyun; Huang Dianfan.

    1989-01-01

    The determination of microamount chlorine in nuclear-grade uranium compounds is described. Chlorine is separated from uranium oxide pyrohydrolytically with stream of wet oxygen in a furnace at 800-900 deg C. Chlorine is volatilized as hydrochloric acid, which then is absorbed in a dilute alkaline solution and measured with chlorine selective electrode. This method covers the concentration range of 10-500 ppm chlorine in uranium oxide. The relative standard diviation is better than 10% and recovery of 85-108% has been reported

  10. Distribution and congener profiles of short-chain chlorinated paraffins in indoor/outdoor glass window surface films and their film-air partitioning in Beijing, China.

    Science.gov (United States)

    Gao, Wei; Wu, Jing; Wang, Yawei; Jiang, Guibin

    2016-02-01

    Short-chain chlorinated paraffins (SCCPs) are a group of n-alkanes with carbon chain length of 10-13. In this work, paired indoor/outdoor samples of organic films on window glass surfaces from urban buildings in Beijing, China, were collected to measure the concentrations and congener distributions of SCCPs. The total SCCP levels ranged from 337 ng/m(2) to 114 μg/m(2), with total organic carbon (TOC) normalized concentrations of 365 μg/m(2)-365 mg/m(2). Overall, the concentrations of SCCPs on the interior films were higher than the concentrations on the exterior films, suggesting an important indoor environmental exposure of SCCPs to the general public. A significant linear relationship was found between the SCCP concentrations and TOC, with a correlation coefficient of R = 0.34 (p film-air partitioning model suggests that the indoor gas-phase SCCPs are related to their corresponding window film levels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Performance of an anaerobic, static bed, fixed film bioreactor for chlorinated solvent treatment

    Science.gov (United States)

    Lorah, Michelle M.; Walker, Charles; Graves, Duane

    2015-01-01

    Anaerobic, fixed film, bioreactors bioaugmented with a dechlorinating microbial consortium were evaluated as a potential technology for cost effective, sustainable, and reliable treatment of mixed chlorinated ethanes and ethenes in groundwater from a large groundwater recovery system. Bench- and pilot-scale testing at about 3 and 13,500 L, respectively, demonstrated that total chlorinated solvent removal to less than the permitted discharge limit of 100 μg/L. Various planned and unexpected upsets, interruptions, and changes demonstrated the robustness and reliability of the bioreactor system, which handled the operational variations with no observable change in performance. Key operating parameters included an adequately long hydraulic retention time for the surface area, a constant supply of electron donor, pH control with a buffer to minimize pH variance, an oxidation reduction potential of approximately −200 millivolts or lower, and a well-adapted biomass capable of degrading the full suite of chlorinated solvents in the groundwater. Results indicated that the current discharge criteria can be met using a bioreactor technology that is less complex and has less downtime than the sorption based technology currently being used to treat the groundwater.

  12. Chemical forms of the fluorine, chlorine, oxygen and carbon in coal fly ash and their correlations with mercury retention

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Shuang [State Key Laboratory of Environmental Criteria and Risk Assessment (China); Research Academy of Environmental Sciences, Beijing 100012 (China); Shu, Yun [Research Academy of Environmental Sciences, Beijing 100012 (China); Li, Songgeng, E-mail: sgli@ipe.ac.cn [State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Tian, Gang; Huang, Jiayu [Research Academy of Environmental Sciences, Beijing 100012 (China); Zhang, Fan, E-mail: zhangfan5188@vip.sina.com [Research Academy of Environmental Sciences, Beijing 100012 (China)

    2016-01-15

    Highlights: • Chlorine and fluorine are present mainly in an inorganic form on ash. • Correlations of carbon–oxygen complexes with mercury retention are established. • Concentrations of carbon–oxygen complexes on ash are related to coal type. • No effect of fluorine on mercury retention is observed. • Chlorine, fluorine and carbon in ash are enriched on surface. - Abstract: Fly ashes recovered from the particulate control devices at six pulverized coal boiler unites of China, are studied using an X-ray photoelectron spectroscopy (XPS) with a particular focus on the functionalities of fluorine (F), chlorine (Cl), carbon and oxygen on fly ash. It is found that the inorganic forms of F and Cl are predominant on the ash surface in comparison with their organics, and the proportion of organic Cl is relatively higher than that of organic F. Similar results are also obtained in the bulk by correlating the F and Cl contents with those of the unburnt carbon and other compositions in ash. Strong correlations of mercury retention with surface carbon–oxygen functional groups indicate that the C=O, OH/C−O and (O−C=O)−O on surface are of significant importance for mercury retention in fly ash. Their surface concentrations are related to coal type. The presence of Cl in fly ash helps with mercury retention. No obvious effect of F is observed.

  13. Dense chlorinated solvents and other DNAPLs in groundwater

    DEFF Research Database (Denmark)

    Broholm, K.

    1996-01-01

    Anmeldelse af Pankow,J.F. & Cherry,J.A.: Dense chlorinated solvents and other DNAPLs in groundwater. Waterloo Press, Portland, Oregon, USA, 1996......Anmeldelse af Pankow,J.F. & Cherry,J.A.: Dense chlorinated solvents and other DNAPLs in groundwater. Waterloo Press, Portland, Oregon, USA, 1996...

  14. How depositional conditions control input, composition, and degradation of organic matter in sediments from the Chilean coastal upwelling region

    DEFF Research Database (Denmark)

    Niggemann, Jutta; Ferdelman, Timothy G.; Lomstein, Bente Aagaard

    2007-01-01

    investigated for excess 210Pb (210Pbxs) activity, total organic and total inorganic carbon concentrations (TOC and TIC, respectively), C/N-ratios, organic carbon isotopic compositions (d13C), chlorin concentrations, Chlorin Indices (CI), and sulfate reduction rates (SRR). Sediment accumulation rates obtained...... m‑2 d‑1), which was partly due to the greater water depth of most of the sediments investigated in the northern region and consistent with a lower quality of the sedimentary OM at 23°S. Reaction rate constants for TOC degradation that were obtained from measured SRR (kSRR; 0.0004‑0.0022 yr‑1) showed...... a good correspondence to kTOC that were derived from the depth profiles of TOC (0.0003‑0.0014 yr‑1). Both, kSRR and kTOC, reflect differences in OM composition. At 36°S they were related to the degradation state of bulk OM (represented by C/N-ratios), whereas near 23°S they were related to the freshness...

  15. Chlorine-Resistant Polyamide Reverse Osmosis Membrane with Monitorable and Regenerative Sacrificial Layers.

    Science.gov (United States)

    Huang, Hai; Lin, Saisai; Zhang, Lin; Hou, Li'an

    2017-03-22

    Improving chlorine stability is a high priority for aromatic polyamide (PA) reverse osmosis (RO) membranes especially in long-term desalination. In this Research Article, PA RO membranes of sustainable chlorine resistance was synthesized. Glycylglycine (Gly) was grafted onto the membrane surface as a regenerative chlorine sacrificial layer, and the zeta-potential was used to monitor the membrane performance and to conduct timely regeneration operations for chlorinated Gly. The Gly-grafted PA membrane exhibited ameliorative chlorine resistance in which the N-H moiety of glycylglycine served as sacrificial pendants against chlorine attacks. Cyclic chlorination experiments, combined with FT-IR and XPS analysis, were carried out to characterize the membrane. Results indicated that the resulting N-halamines could be fast regenerated by a simple alkaline reduction step (pH 10). A synchronous relationship between the zeta-potential and the chlorination extent of the sacrificial layer was observed. This indicated that the zeta-potential can be used as an on-site sensor to conduct a timely regeneration operation. The intrinsic mechanism of the surface sacrificial process was also studied.

  16. ORGANIC CARBON AND TOTAL NITROGEN IN THE DENSIMETRIC FRACTIONS OF ORGANIC MATTER UNDER DIFFERENT SOIL MANAGEMEN

    Directory of Open Access Journals (Sweden)

    MARCELO RIBEIRO VILELA PRADO

    2016-01-01

    Full Text Available The evaluation of land use and management by the measurement of soil organic matter and its fractions has gained attention since it helps in the understanding of the dynamics of their contribution to soil productivity, especially in tropical environments. This study was conducted in the municipality of Colorado do Oeste, state of Rondônia, Brazil and its aim was to determinethe quantity of organic carbon and total nitrogen in the light and heavy fractions of organic matter in the surface layers of a typic hapludalf under different land use systems: Native Forest: open evergreen forest, reference environment; Agroforestry System 1: teak (Tectona grandis LF and kudzu (Pueraria montana; Agroforestry System 2: coffee (Coffea canephora, marandu palisade grass (Brachiaria brizantha cv. Marandu, “pinho cuiabano” (Parkia multijuga, teak and kudzu.; Agroforestry System 3: teak and cocoa (Theobroma cacao; Silvopasture System: teak, cocoa and marandu palisade grass; and Extensive Grazing System: marandu palisade grass. The experimental design was a randomized block in split-split plots (use systems versus soil layers of 0-0.05 and 0.05-0.10 m with three replications. The results showed that relative to Native Forest, the Agroforestry System 2 had equal- and greater amounts of organic carbon and total nitrogen respectively (light and heavy fractions in the soil organic matter, with the light fraction being responsible for storage of approximately 45% and 70% of the organic carbon and total nitrogen, respectively. Therefore, the light densimetric fraction proved to be useful in the early identification of the general decline of the soil organic matter in the land use systems evaluated.

  17. Environmental health sciences center task force review on halogenated organics in drinking water.

    Science.gov (United States)

    Deinzer, M; Schaumburg, F; Klein, E

    1978-06-01

    The disinfection of drinking water by chlorination has in recent years come under closer scrutiny because of the potential hazards associated with the production of stable chlorinated organic chemicals. Organic chemical contaminants are common to all water supplies and it is now well-established that chlorinated by-products are obtained under conditions of disinfection, or during tertiary treatment of sewage whose products can ultimately find their way into drinking water supplies. Naturally occurring humic substances which are invariably present in drinking waters are probably the source of chloroform and other halogenated methanes, and chloroform has shown up in every water supply investigated thus far.The Environmental Protection Agency is charged with the responsibility of assessing the public health effects resulting from the consumption of contaminated drinking water. It has specifically undertaken the task of determining whether organic contaminants or their chlorinated derivatives have a special impact, and if so, what alternatives there are to protect the consumer against bacterial and viral diseases that are transmitted through infected drinking waters. The impetus to look at these chemicals is not entirely without some prima facie evidence of potential trouble. Epidemiological studies suggested a higher incidence of cancer along the lower Mississippi River where the contamination from organic chemicals is particularly high. The conclusions from these studies have, to be sure, not gone unchallenged.The task of assessing the effects of chemicals in the drinking water is a difficult one. It includes many variables, including differences in water supplies and the temporal relationship between contamination and consumption of the finished product. It must also take into account the relative importance of the effects from these chemicals in comparison to those from occupational exposure, ingestion of contaminated foods, inhalation of polluted air, and many

  18. Estimates of Gibbs free energies of formation of chlorinated aliphatic compounds

    NARCIS (Netherlands)

    Dolfing, Jan; Janssen, Dick B.

    1994-01-01

    The Gibbs free energy of formation of chlorinated aliphatic compounds was estimated with Mavrovouniotis' group contribution method. The group contribution of chlorine was estimated from the scarce data available on chlorinated aliphatics in the literature, and found to vary somewhat according to the

  19. Determination of Residual Chlorine and Turbidity in Drinking Water. Instructor's Manual.

    Science.gov (United States)

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    This instructor's guide presents analytical methods for residual chlorine and turbidity. Topics include sample handling, permissable concentration levels, substitution of residual chlorine for bacteriological work, public notification, and the required analytical techniques to determine residual chlorine and turbidity. This publication is intended…

  20. Determination of Residual Chlorine and Turbidity in Drinking Water. Student Manual.

    Science.gov (United States)

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    This student's manual covers analytical methods for residual chlorine and turbidity. Topics include sample handling, permissable concentration levels, substitution of residual chlorine for bacteriological work, public notification, and the required analytical techniques to determine residual chlorine and turbidity. The publication is intended for…

  1. Occurrence and gas/particle partitioning of short- and medium-chain chlorinated paraffins in the atmosphere of Fildes Peninsula of Antarctica

    Science.gov (United States)

    Ma, Xindong; Zhang, Haijun; Zhou, Hongqiang; Na, Guangshui; Wang, Zhen; Chen, Chen; Chen, Jingwen; Chen, Jiping

    2014-06-01

    Chlorinated paraffins (CPs) were measured in air samples at a remote air monitoring site established in Georgia King Island, Fildes Peninsula of Antarctica (Great Wall Station, China) to study the long-range atmospheric transport of these anthropogenic pollutants to the Antarctic. Gas- and particle-phase CPs were collected using polyurethane foam plugs (PUF) and glass fiber filters (GFF) respectively during summertime of 2012. The total atmospheric levels of SCCPs and MCCPs ranged from 9.6 to 20.8 pg m-3 (average: 14.9 pg m-3) and 3.7-5.2 pg m-3 (average: 4.5 pg m-3), respectively. C10 and C11 carbon chain homologues with Cl5 and Cl6 chlorine atoms predominated in SCCP formula groups both in gas- and particle-phase. Significant linear correlation was found between gas/particle partition coefficients (KP) and sub-cooled liquid vapor pressures (pL°) (R2 = 0.437, p chlorinated CPs and overestimate the sorption of highly chlorinated CPs.

  2. Anaerobic treatment of cellulose bleach plant wastewater: chlorinated organics and genotoxicity removal

    Directory of Open Access Journals (Sweden)

    T. R. Chaparro

    2011-12-01

    Full Text Available This study assessed the removal efficiency of organic matter and how it relates to the decrease of toxic and mutagenic effects when an anaerobic reactor is used to treat the bleaching effluent from two kraft pulp mills. Parameters such as COD (chemical oxygen demand, DOC (dissolved organic carbon, AOX (adsorbable organic halogen, ASL (acid soluble lignin, color, chlorides, total phenols and absorbance values in the UV-VIS spectral region were measured. The acute and chronic toxicity and genetic toxicity assessments were performed with Daphnia similis, Ceriodaphnia sp. and Allium cepa L, respectively. The removal efficiency of organic matter measured as COD, ranged from 45% to 55%, while AOX removal ranged from 40% to 45%. The acute toxic and chronic effects, as well as the cytotoxic, genotoxic and mutagenic effects, decrease as the biodegradable fraction of the organics is removed. These results, together with the organic load measurement of the effluents of the anaerobic treatment, indicate that these effluents are recalcitrant but not toxic. As expected, color increased when the anaerobic treatment was applied. However, the colored compounds are of microbial origin and do not cause an increase in genotoxic effects. To discharge the wastewater, it is necessary to apply a physico-chemical or aerobic biological post-treatment to the effluents of the anaerobic reactor.

  3. Recovery of Actinides from Actinide-Aluminium Alloys: Chlorination Route

    International Nuclear Information System (INIS)

    Mendes, E.; Malmbeck, R.; Soucek, P.; Jardin, R.; Glatz, J.P.; Cassayre, L.

    2008-01-01

    A method for recovery of actinides (An) from An-Al alloys formed by electrochemical separation of metallic spent nuclear fuel on solid aluminium electrodes in molten chloride salts is described. The proposed route consists of three main steps: -) vacuum distillation of salt adhered on the electrodes, -) chlorination of An-Al alloy by pure chlorine gas and -) sublimation of formed AlCl 3 . A thermochemical study of the route was performed to determine important chemical reactions and to find optimum experimental conditions for all process steps. Vacuum distillation of the electrode is efficient for complete removal of remaining salt and most fission products, full chlorination of the An-Al alloys is possible at any working temperature and evaporation of AlCl 3 is achieved by heating under argon. Experiments have been carried out using U-Al alloy in order to define parameters providing full alloy chlorination without formation of volatile UCl 5 and UCl 6 . It was shown that full chlorination of An-Al alloys without An losses should be possible at a temperature approx. 150 deg. C. (authors)

  4. Recovery of Actinides from Actinide-Aluminium Alloys: Chlorination Route

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, E.; Malmbeck, R.; Soucek, P.; Jardin, R.; Glatz, J.P. [European Commission, JRC, Institute for Transuranium Elements, Postfach 2340, 76125 Karlsruhe (Germany); Cassayre, L. [Laboratoire de Genie Chimique (LGC), Universite Paul Sabatier, UMR CNRS 5503, 118 route de Narbonne, 31062 Toulouse Cedex 04 (France)

    2008-07-01

    A method for recovery of actinides (An) from An-Al alloys formed by electrochemical separation of metallic spent nuclear fuel on solid aluminium electrodes in molten chloride salts is described. The proposed route consists of three main steps: -) vacuum distillation of salt adhered on the electrodes, -) chlorination of An-Al alloy by pure chlorine gas and -) sublimation of formed AlCl{sub 3}. A thermochemical study of the route was performed to determine important chemical reactions and to find optimum experimental conditions for all process steps. Vacuum distillation of the electrode is efficient for complete removal of remaining salt and most fission products, full chlorination of the An-Al alloys is possible at any working temperature and evaporation of AlCl{sub 3} is achieved by heating under argon. Experiments have been carried out using U-Al alloy in order to define parameters providing full alloy chlorination without formation of volatile UCl{sub 5} and UCl{sub 6}. It was shown that full chlorination of An-Al alloys without An losses should be possible at a temperature approx. 150 deg. C. (authors)

  5. Oak Ridge K-25 Site chlorinated solvent pollution prevention opportunity assessment

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    A pollution prevention opportunity assessment (PPOA) was conducted at the Oak Ridge K-25 Site to identify opportunities to reduce and better manage the use of chlorinated solvents. At the K-25 Site, 67 control areas were examined for their potential use of chlorinated solvents. Of these areas, 27 were found to be using (1) chlorinated solvents for cleaning, degreasing, and lubricating; (2) laboratory standards and solvents; and (3) test medium. Current management practices encourage the identification and use of nonhazardous chemicals, including the use of chlorinated solvents. The main pollution prevention principles are source reduction and recycling, and a number of pollution prevention options based on these principles were identified and evaluated as part of this chlorinated solvent PPOA. Source reduction options evaluated for the K-25 Site include the substitution of chlorinated solvents with nonchlorinated solvents. Recycling was identified for those areas that would benefit most from the reuse of the chlorinated solvents in use. The pollution prevention options that offer the greatest opportunity for success at the K-25 Site are the implementation of substitutes at the 10 control areas using chlorinated solvents for cleaning, degreasing, and lubrication. A change in the process may be all that is needed to eliminate the use of a chlorinated solvent. Once a decision is made to implement a substitution, the information should be communicated to all shops and laboratories. Another option to consider is the installation of recycling units to recycle the large amounts of methylene chloride used in the analytical sampling procedure.

  6. Oak Ridge K-25 Site chlorinated solvent pollution prevention opportunity assessment

    International Nuclear Information System (INIS)

    1994-08-01

    A pollution prevention opportunity assessment (PPOA) was conducted at the Oak Ridge K-25 Site to identify opportunities to reduce and better manage the use of chlorinated solvents. At the K-25 Site, 67 control areas were examined for their potential use of chlorinated solvents. Of these areas, 27 were found to be using (1) chlorinated solvents for cleaning, degreasing, and lubricating; (2) laboratory standards and solvents; and (3) test medium. Current management practices encourage the identification and use of nonhazardous chemicals, including the use of chlorinated solvents. The main pollution prevention principles are source reduction and recycling, and a number of pollution prevention options based on these principles were identified and evaluated as part of this chlorinated solvent PPOA. Source reduction options evaluated for the K-25 Site include the substitution of chlorinated solvents with nonchlorinated solvents. Recycling was identified for those areas that would benefit most from the reuse of the chlorinated solvents in use. The pollution prevention options that offer the greatest opportunity for success at the K-25 Site are the implementation of substitutes at the 10 control areas using chlorinated solvents for cleaning, degreasing, and lubrication. A change in the process may be all that is needed to eliminate the use of a chlorinated solvent. Once a decision is made to implement a substitution, the information should be communicated to all shops and laboratories. Another option to consider is the installation of recycling units to recycle the large amounts of methylene chloride used in the analytical sampling procedure

  7. An in vitro evaluation of the antibacterial efficacy of chlorine dioxide on E. faecalis in bovine incisors.

    Science.gov (United States)

    Eddy, Russell S; Joyce, Anthony P; Roberts, Steven; Buxton, Thomas B; Liewehr, Frederick

    2005-09-01

    This study investigated the ability of chlorine dioxide to eliminate Enterococcus faecalis from dentinal tubules of bovine incisors. Thirty-seven extracted bovine incisor roots were sectioned into seventy-four 5 mm disks. Standardized lumens were filled with either sterile Brain Heart Infusion Broth (contamination controls, n = 10) or BHI containing E. faecalis (1.0 x 10 cfu/ml). Disks were incubated in 5% CO2 at 37 degrees C for 72 h. To simulate endodontic instrumentation the lumens were again enlarged. Sixty disks were randomly divided into four experimental groups and filled with one of the following irrigants: 10% Clidox-S (chlorine dioxide), 13.8% BioClenz (chlorine dioxide), 5.25% Clorox, or saline. The disks were incubated for 30 min and were then frozen, pulverized, serially diluted in phosphate buffered saline, and plated on BHI plates in triplicate. Total colony forming units were counted macroscopically. Statistical analysis of the data was performed with a Kruskal-Wallis one-way ANOVA on ranks (p " denotes significant differences): Saline > Clidox-S = BioClenz > Clorox. All negative controls were sterile. Chlorine dioxide and NaOCL were both effective in eliminating E. faecalis from the dentinal disks within 30 min.

  8. Chlorine inactivation of fungal spores on cereal grains.

    Science.gov (United States)

    Andrews, S; Pardoel, D; Harun, A; Treloar, T

    1997-04-01

    Although 0.4% chlorine for 2 min has been recommended for surface disinfection of food samples before direct plating for fungal enumeration, this procedure may not be adequate for highly contaminated products. The effectiveness of a range of chlorine solutions was investigated using barley samples artificially contaminated with four different concentrations of Aspergillus flavus. A. niger, A. ochraceus, Eurotium repens, Penicillium brevicompactum P. chrysogenum and Cladosporium cladosporioides. At initial contamination levels greater than 10(4)/g, 0.4% chlorine did not inactivate sufficient spores to produce less than 20% contamination. Of the test fungi, ascospores of E. repens were the most resistant to chlorine inactivation, whereas the conidia of C. cladosporioides were the most sensitive. Rinsing the samples with 70% ethanol improved the effectiveness of the recommended surface disinfection procedure. However, some ethanol appears to permeate into the grains and may inactivate sensitive internal fungi, although a minimal effect only was observed on wheat infected with Alternaria.

  9. Thermodynamic consideration on chlorination of uraniferous phosphorite

    International Nuclear Information System (INIS)

    Itagaki, Kimio; Tozawa, Kazuteru; Taki, Tomihiro; Hirono, Shuichiro.

    1989-01-01

    The uranium ore of low grade which has apatite as a main mineral, but is different from the phosphorite used as the raw material for phosphoric acid production, exists in large amount in South America and Africa continents, and the importance of its effective utilization as future uranium resources is recognized. The Power Reactor and Nuclear Fuel Development Corp. took up the establishment of the treatment techniques to make this ore into resources as the subject of a project, and proposed the process of volatilizing the uranium in the ore as the chloride and recovering it, and at present, it attempts the experiment on the chlorination treatment. In this paper, the thermodynamic examination on the feasibility of this process, the optimum condition for leaving calcium existing in a large amount in the ore as the phosphate without chlorination and recovering only uranium by chlorination and volatilization, the phase reaction equilibrium chart and the calculation method according to thermodynamics concerning the behavior of chlorination of accompanying elements such as iron, silicon and aluminum and the effect of moisture in the ore are reported. (K.I.)

  10. Modeling bromide effects on yields and speciation of dihaloacetonitriles formed in chlorinated drinking water.

    Science.gov (United States)

    Roccaro, Paolo; Chang, Hyun-shik; Vagliasindi, Federico G A; Korshin, Gregory V

    2013-10-15

    This study examined effects of bromide on yields and speciation of dihaloacetonitrile (DHAN) species that included dichloro-, bromochloro- and dibromoacetonitriles generated in chlorinated water. Experimental data obtained using two water sources, varying concentrations and characters of Natural Organic Matter (NOM), bromide concentrations, reaction times, chlorine doses, temperatures and pHs were interpreted using a semi-phenomenological model that assumed the presence of three kinetically distinct sites in NOM (denoted as sites S1, S2 and S3) and the occurrence of sequential incorporation of bromine and chlorine into them. One site was found to react very fast with the chlorine and bromine but its contribution in the DHAN generation was very low. The site with the highest contribution to the yield of DHAN (>70%) has the lowest reaction rates. The model introduced dimensionless coefficients (denoted as φ1(DHAN), φ2(DHAN) and φ3(DHAN)) applicable to the initial DHAN generation sites and their monochlorinated and monobrominated products, respectively. These parameters were used to quantify the kinetic preference to bromine incorporation over that of chlorine. Values of these coefficients optimized for DHAN formation were indicative of the strongly preferential incorporation of bromine into the engaged NOM sites. The same set of φ(i)(DHAN) coefficients could be used to model the speciation of DHAN released from their kinetically different precursors. The dimensionless speciation coefficients φ(i)(DHAN) were determined to be site specific and dependent on the NOM content and character as well as pH. The presented model of DHAN formation and speciation can help quantify in more detail the generation of DHAN and provide more insight necessary for further assessment of their potential health effects. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Pourbaix diagrams for the system copper-chlorine at 5-100 deg C

    International Nuclear Information System (INIS)

    Beverskog, B.; Puigdomenech, I.

    1998-04-01

    Pourbaix diagrams for the copper-chlorine system in the temperature interval 5-100 deg C have been revised. Predominance diagrams for dissolved copper containing species have also been calculated. Two different total concentrations of each dissolved element, 10 -4 and 10 -6 molal for copper and 0.2 and 1.5 molal for chlorine have been used in the calculations. Chloride is the predominating chlorine species in aqueous solutions. Presence of chloride increases the corrosion regions of copper at the expense of the immunity and passivity regions in the Pourbaix diagrams. CuCl 2 · 3Cu(OH) 2 is the only copper-chloride solid phase that forms at the concentrations of chlorine studied. However, its stability area decreases with increasing temperature. The ion CuCl 2 - predominates at all temperatures at [Cl(aq)] tot =0.2 molal and this reduces the immunity and passivity areas. A corrosion region exists between the immunity and passivity regions at 100 deg C at [Cu(aq)] tot =10 -6 and [Cl(aq)] tot =0.2 molal. At the chlorine concentration of 1.5 molal the corrosion region exists in the whole temperature range investigated. The ion CuCl 3 2- predominates at 5-25 and 100 deg C, while CuCl 2 - predominates at 50-80 deg C at [Cl(aq)] tot= 1-5 molal. A copper concentration of 10 -4 molal reduces the corrosion areas due to expansion of the immunity and passivity areas. However, a corrosion region still exists between the immunity and passivity regions at all investigated temperatures at pH Τ -6 molal and the chloride concentration of 0.2 molal. However, at 80-100 deg C the equilibrium potentials postulated for the Swedish nuclear repository are dangerously close to a corrosion situation. According to our calculations the copper canisters in the Swedish repository corrode at 80-100 deg C at the chloride concentration of 1.5 molal

  12. Toxic impact of bromide and iodide on drinking water disinfected with chlorine or chloramines.

    Science.gov (United States)

    Yang, Yang; Komaki, Yukako; Kimura, Susana Y; Hu, Hong-Ying; Wagner, Elizabeth D; Mariñas, Benito J; Plewa, Michael J

    2014-10-21

    Disinfectants inactivate pathogens in source water; however, they also react with organic matter and bromide/iodide to form disinfection byproducts (DBPs). Although only a few DBP classes have been systematically analyzed for toxicity, iodinated and brominated DBPs tend to be the most toxic. The objectives of this research were (1) to determine if monochloramine (NH2Cl) disinfection generated drinking water with less toxicity than water disinfected with free chlorine (HOCl) and (2) to determine the impact of added bromide and iodide in conjunction with HOCl or NH2Cl disinfection on mammalian cell cytotoxicity and genomic DNA damage induction. Water disinfected with chlorine was less cytotoxic but more genotoxic than water disinfected with chloramine. For both disinfectants, the addition of Br(-) and I(-) increased cytotoxicity and genotoxicity with a greater response observed with NH2Cl disinfection. Both cytotoxicity and genotoxicity were highly correlated with TOBr and TOI. However, toxicity was weakly and inversely correlated with TOCl. Thus, the forcing agents for cytotoxicity and genotoxicity were the generation of brominated and iodinated DBPs rather than the formation of chlorinated DBPs. Disinfection practices need careful consideration especially when using source waters containing elevated bromide and iodide.

  13. Factorial analysis of the trihalomethanes formation in water disinfection using chlorine

    International Nuclear Information System (INIS)

    Rodrigues, Pedro M.S.M.; Esteves da Silva, Joaquim C.G.; Antunes, Maria Cristina G.

    2007-01-01

    The factors that affect trihalomethane (THM) (chloroform, bromodichloromethane, chlorodibromomethane and bromoform) formation from the chlorination of aqueous solutions of hydrophobic fulvic acids (FA) were investigated in a prototype laboratorial simulation using factorial analysis. This strategy involved a fractional factorial design (16 plus 5 center experiments) of five factors (fulvic acids concentration, chlorine dose, temperature, pH and bromide concentration) and a Box Behnken design (12 plus 3 center experiments) for the detailed analysis of three factors (FA concentration, chlorine dose and temperature). The concentration of THM was determined by headspace analysis by GC-ECD. The most significant factors that affect the four THM productions were the following: chloroform-FA concentration and temperature; bromodichloromethane-FA concentration and chlorine dose; chlorodibromomethane-chlorine dose; and, bromoform-chlorine dose and bromide concentration. Moreover, linear models were obtained for the four THM concentrations in the disinfection solution as function of the FA concentration, chlorine dose and temperature, and it was observed that the complexity of the models (number of significant factors and interactions) increased with increasing bromine atoms in the THM. Also, this study shows that reducing the FA concentration the relative amount of bromated THM increases

  14. Aqueous chemistry of chlorine: chemistry, analysis, and environmental fate of reactive oxidant species

    Energy Technology Data Exchange (ETDEWEB)

    Jolley, R.L.; Carpenter, J.H.

    1982-01-01

    This report reviews (1) the chemistry of chlorine relative to its reactions in fresh, estuarine, and marine waters and the formation of reactive oxidant species; (2) the current status of chemical analysis of reactive chlorine species and chlorine-produced oxidant species relative to analysis of low concentrations (microgram-per-liter range) and determination of accuracy and precision of methods; and (3) the environmental fate of chlorine and chlorine-produced oxidant species.

  15. Prompt gamma analysis of chlorine in concrete for corrosion study

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)]. E-mail: aanaqvi@kfupm.edu.sa; Nagadi, M.M. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Al-Amoudi, O.S.B. [Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2006-02-15

    Measurement of chlorine in concrete is very important for studying of corrosion of reinforcing steel in concrete. Corrosion of reinforcing steel is primarily ascribed to the penetration of chloride ions to the steel surface. Preventive measures for avoiding concrete structure reinforcement corrosion requires monitoring the chloride ion concentration in concrete so that its concentration does not exceed a threshold limit to initiate reinforcement concrete corrosion. An accelerator based prompt gamma neutron activation analysis (PGNAA) setup has been developed for non-destructive analysis of elemental composition of concrete samples. The setup has been used to measure chlorine concentration in concrete samples over a 1-3 wt% concentration range. Although a strong interference has been observed between the chlorine {gamma}-rays and calcium {gamma}-rays from concrete, the chlorine concentration in concrete samples has been successfully measured using the 1.164 and 7.643 MeV chlorine {gamma}-rays. The experimental data were compared with the results of the Monte Carlo simulations. An excellent agreement has been achieved between the experimental data and results of Monte Carlo simulations. The study has demonstrated the successful use of the accelerator-based PGNAA setup in non-destructive analysis of chlorine in concrete samples.

  16. Field data analysis of active chlorine-containing stormwater samples.

    Science.gov (United States)

    Zhang, Qianyi; Gaafar, Mohamed; Yang, Rong-Cai; Ding, Chen; Davies, Evan G R; Bolton, James R; Liu, Yang

    2018-01-15

    Many municipalities in Canada and all over the world use chloramination for drinking water secondary disinfection to avoid DBPs formation from conventional chlorination. However, the long-lasting monochloramine (NH 2 Cl) disinfectant can pose a significant risk to aquatic life through its introduction into municipal storm sewer systems and thus fresh water sources by residential, commercial, and industrial water uses. To establish general total active chlorine (TAC) concentrations in discharges from storm sewers, the TAC concentration was measured in stormwater samples in Edmonton, Alberta, Canada, during the summers of 2015 and 2016 under both dry and wet weather conditions. The field-sampling results showed TAC concentration variations from 0.02 to 0.77 mg/L in summer 2015, which exceeds the discharge effluent limit of 0.02 mg/L. As compared to 2015, the TAC concentrations were significantly lower during the summer 2016 (0-0.24 mg/L), for which it is believed that the higher precipitation during summer 2016 reduced outdoor tap water uses. Since many other cities also use chloramines as disinfectants for drinking water disinfection, the TAC analysis from Edmonton may prove useful for other regions as well. Other physicochemical and biological characteristics of stormwater and storm sewer biofilm samples were also analyzed, and no significant difference was found during these two years. Higher density of AOB and NOB detected in the storm sewer biofilm of residential areas - as compared with other areas - generally correlated to high concentrations of ammonium and nitrite in this region in both of the two years, and they may have contributed to the TAC decay in the storm sewers. The NH 2 Cl decay laboratory experiments illustrate that dissolved organic carbon (DOC) concentration is the dominant factor in determining the NH 2 Cl decay rate in stormwater samples. The high DOC concentrations detected from a downstream industrial sampling location may contribute to a

  17. Fatal chlorine gas exposure at a metal recycling facility: Case report.

    Science.gov (United States)

    Harvey, Robert R; Boylstein, Randy; McCullough, Joel; Shumate, Alice; Yeoman, Kristin; Bailey, Rachel L; Cummings, Kristin J

    2018-06-01

    At least four workers at a metal recycling facility were hospitalized and one died after exposure to chlorine gas when it was accidentally released from an intact, closed-valved cylinder being processed for scrap metal. This unintentional chlorine gas release marks at least the third such incident at a metal recycling facility in the United States since 2010. We describe the fatal case of the worker whose clinical course was consistent with acute respiratory distress syndrome (ARDS) following exposure to high concentrations of chlorine gas. This case report emphasizes the potential risk of chlorine gas exposure to metal recycling workers by accepting and processing intact, closed-valved containers. The metal recycling industry should take steps to increase awareness of this established risk to prevent future chlorine gas releases. Additionally, public health practitioners and clinicians should be aware that metal recycling workers are at risk for chlorine gas exposure. © 2018 Wiley Periodicals, Inc.

  18. Ready-to-eat vegetables production with low-level water chlorination. An evaluation of water quality, and of its impact on end products.

    Science.gov (United States)

    D'Acunzo, Francesca; Del Cimmuto, Angela; Marinelli, Lucia; Aurigemma, Caterina; De Giusti, Maria

    2012-01-01

    We evaluated the microbiological impact of low-level chlorination (1 ppm free chlorine) on the production of ready-to-eat (RTE) vegetables by monitoring the microbiological quality of irrigation and processing water in two production plants over a 4-season period, as well as the microbiological quality of unprocessed vegetables and RTE product. Water samples were also characterized in terms of some chemical and physico-chemical parameters of relevance in chlorination management. Both producers use water with maximum 1 ppm free chlorine for vegetables rinsing, while the two processes differ by the number of washing cycles. Salmonella spp and Campylobacter spp were detected once in two different irrigation water samples out of nine from one producer. No pathogens were found in the vegetable samples. As expected, the procedure encompassing more washing cycles performed slightly better in terms of total mesophilic count (TMC) when comparing unprocessed and RTE vegetables of the same batch. However, data suggest that low-level chlorination may be insufficient in preventing microbial build-up in the washing equipment and/or batch-to batch cross-contamination.

  19. Investigation of molybdenum pentachloride interaction with chlorine

    International Nuclear Information System (INIS)

    Salyulev, A.B.; Vovkotrub, Eh.G.; Strekalovskij, V.N.

    1993-01-01

    In Raman spectra of molybdenum pentachloride solutions in liquid chlorine lines were recorded in case of 397, 312, 410, 217 and 180 cm - 1 vibrations of ν 1 (A 1 '), ν 2 (A 1 '), ν 5 (E'), ν 6 (E') and ν 8 (E'') monomer (symmetry D 3h ) molecules of MoCl 5 . Interaction of molten molybdenum pentachloride with chlorine at increased (up to 6 MPa) pressures of Cl 2 was studied. In Raman spectra of its vapour distillation in liquid chlorine alongside with MoCl 5 lines appearance of new lines at 363 and 272 cm -1 , similar in their frequency to the ones calculated for the vibrations ν 1 (A 1g ) and ν 2 (E g ) of MoCl 6 molecules (symmetry O h ), was observed

  20. Chlorin photosensitizers sterically designed to prevent self-aggregation.

    Science.gov (United States)

    Uchoa, Adjaci F; de Oliveira, Kleber T; Baptista, Mauricio S; Bortoluzzi, Adailton J; Iamamoto, Yassuko; Serra, Osvaldo A

    2011-11-04

    The synthesis and photophysical evaluation of new chlorin derivatives are described. The Diels-Alder reaction between protoporphyrin IX dimethyl ester and substituted maleimides furnishes endo-adducts that completely prevent the self-aggregation of the chlorins. Fluorescence, resonant light scattering (RLS) and (1)H NMR experiments, as well as X-ray crystallographic have demonstrated that the configurational arrangement of the synthesized chlorins prevent π-stacking interactions between macrocycles, thus indicating that it is a nonaggregating photosensitizer with high singlet oxygen (Φ(Δ)) and fluorescence (Φ(f)) quantum yields. Our results show that this type of synthetic strategy may provide the lead to a new generation of PDT photosensitizers.

  1. UASB reactor effluent disinfection by ozone and chlorine

    NARCIS (Netherlands)

    Ribeiro da Silvia, G.H.; Bruning, H.; Gerrity, D.; Daniel, L.A.

    2015-01-01

    This research studied the sequential ozone and chlorine process with respect to, the inactivation of indicator bacteria and the formation of ozone disinfection byproducts in sanitary wastewater effluent. The applied ozone doses were 5, 8 and 10 mg.O3.L-1, followed by chlorine doses of 10, 20 and 30

  2. Endosulfan, pentachlorobenzene and short-chain chlorinated paraffins in background soils from Western Europe

    OpenAIRE

    Halse, Anne Karine; Schlabach, Martin; Schuster, Jasmin K; Jones, Kevin C; Steinnes, Eiliv; Breivik, Knut

    2015-01-01

    Soils are major reservoirs for many persistent organic pollutants (POPs). In this study, “newly” regulated POPs i.e. sum endosulfans (a-endosulfan, b-endosulfan, endosulfan sulfate), pentachlorobenzene (PeCB), and short-chain chlorinated paraffins (SCCPs) were determined in background samples from woodland (WL) and grassland (GL) surface soil, collected along an existing latitudinal UK-Norway transect. Statistical analysis, complemented with plots showing the predicted equilibrium distributio...

  3. State of the art on cyanotoxins in water and their behaviour towards chlorine.

    Science.gov (United States)

    Merel, Sylvain; Clément, Michel; Thomas, Olivier

    2010-04-01

    The occurrence of cyanobacterial blooms is drastically increasing in temperate countries and drinking water resources are threatened. As a result, cyanotoxins should be considered in water treatment to protect human health. This study presents a state of the art on cyanotoxins in water and their behaviour towards chlorination, a common drinking water disinfection process. Chlorination efficiency on cyanotoxins alteration depends on pH, chlorine dose and oxidant nature. Microcystins and cylindrospermopsin are efficiently transformed by chlorine, with respectively 6 and 2 by-products identified. In addition, chlorination of microcystins and cylindrospermopsin is associated with a loss of acute toxicity. Even though they have been less investigated, saxitoxins and nodularins are also altered by chlorine. For these toxins, no by-products have been identified, but the chlorinated mixture does not show acute toxicity. On the contrary, the fact that anatoxin-a has a very slow reaction kinetics suggests that this toxin resists chlorination. Copyright 2009 Elsevier Ltd. All rights reserved.

  4. Influence of the chlorine concentration on the radiation efficiency of a XeCl exciplex lamp

    Energy Technology Data Exchange (ETDEWEB)

    Avtaeva, S. V., E-mail: s_avtaeva@mail.ru [Kyrgyz-Russian Slavic University (Kyrgyzstan); Sosnin, E. A. [Russian Academy of Sciences, Institute of High-Current Electronics, Siberian Branch (Russian Federation); Saghi, B. [Mohamed Boudiaf University of Sciences and Technology, Department of Electronics (Algeria); Panarin, V. A. [Russian Academy of Sciences, Institute of High-Current Electronics, Siberian Branch (Russian Federation); Rahmani, B. [Mohamed Boudiaf University of Sciences and Technology, Department of Electronics (Algeria)

    2013-09-15

    . The total energy deposited in the discharge rises with increasing chlorine concentration due to an increase in the power spent on the heating of positive and negative ions. The power dissipated by electrons decreases with increasing chlorine concentration in the working mixture. Recommendations on the choice of the chlorine content in the mixture for reducing the intensity of VUV radiation of the second continuum of the Xe*{sub 2} excimer without a substantial decrease in the excilamp efficiency are formulated.

  5. Influence of the chlorine concentration on the radiation efficiency of a XeCl exciplex lamp

    International Nuclear Information System (INIS)

    Avtaeva, S. V.; Sosnin, E. A.; Saghi, B.; Panarin, V. A.; Rahmani, B.

    2013-01-01

    The influence of the chlorine concentration on the radiation efficiency of coaxial exciplex lamps (excilamps) excited by a dielectric barrier discharge (DBD) in binary Xe-Cl 2 mixtures at pressures of 240–250 Torr is investigated experimentally and theoretically. The experiments were carried out at Cl 2 concentrations in the range of 0.01–1%. The DBD characteristics were calculated in the framework of a one-dimensional hydrodynamic model at Cl 2 concentrations in the range of 0.1–5%. It is found that the radiation intensities of the emission bands of Xe* 2 (172 nm) and XeCl* (308 nm) are comparable when the chlorine concentration in the mixture is in the range of 0.01–0.1%. In this case, in the mixture, the radiation intensity of the Xe* 2 molecule rapidly decreases with increasing Cl 2 concentration and, at a chlorine concentration of ≥0.2%, the radiation of the B → X band of XeCl* molecules with a peak at 308 nm dominates in the discharge radiation. The radiation efficiency of this band reaches its maximum value at chlorine concentrations in the range of 0.4–0.5%. The calculated efficiencies of DBD radiation exceed those obtained experimentally. This is due to limitations of the one-dimensional model, which assumes the discharge to be uniform in the transverse direction, whereas the actual excilamp discharge is highly inhomogeneous. The influence of the chlorine concentration on the properties of the DBD plasma in binary Xe-Cl 2 mixtures is studied numerically. It is shown that an increase in the Cl 2 concentration in the mixture leads to the attachment of electrons to chlorine atoms and a decrease in the electron density and discharge conductivity. As a result, the electric field and the voltage drop across the discharge gap increase, which, in turn, leads to an increase in the average electron energy and the probability of dissociation of Cl 2 molecules and ionization of Xe atoms and Cl 2 molecules. The total energy deposited in the discharge

  6. Influence of the chlorine concentration on the radiation efficiency of a XeCl exciplex lamp

    Science.gov (United States)

    Avtaeva, S. V.; Sosnin, E. A.; Saghi, B.; Panarin, V. A.; Rahmani, B.

    2013-09-01

    The influence of the chlorine concentration on the radiation efficiency of coaxial exciplex lamps (excilamps) excited by a dielectric barrier discharge (DBD) in binary Xe-Cl2 mixtures at pressures of 240-250 Torr is investigated experimentally and theoretically. The experiments were carried out at Cl2 concentrations in the range of 0.01-1%. The DBD characteristics were calculated in the framework of a one-dimensional hydrodynamic model at Cl2 concentrations in the range of 0.1-5%. It is found that the radiation intensities of the emission bands of Xe*2(172 nm) and XeCl* (308 nm) are comparable when the chlorine concentration in the mixture is in the range of 0.01-0.1%. In this case, in the mixture, the radiation intensity of the Xe*2 molecule rapidly decreases with increasing Cl2 concentration and, at a chlorine concentration of ≥0.2%, the radiation of the B → X band of XeCl* molecules with a peak at 308 nm dominates in the discharge radiation. The radiation efficiency of this band reaches its maximum value at chlorine concentrations in the range of 0.4-0.5%. The calculated efficiencies of DBD radiation exceed those obtained experimentally. This is due to limitations of the one-dimensional model, which assumes the discharge to be uniform in the transverse direction, whereas the actual excilamp discharge is highly inhomogeneous. The influence of the chlorine concentration on the properties of the DBD plasma in binary Xe-Cl2 mixtures is studied numerically. It is shown that an increase in the Cl2 concentration in the mixture leads to the attachment of electrons to chlorine atoms and a decrease in the electron density and discharge conductivity. As a result, the electric field and the voltage drop across the discharge gap increase, which, in turn, leads to an increase in the average electron energy and the probability of dissociation of Cl2 molecules and ionization of Xe atoms and Cl2 molecules. The total energy deposited in the discharge rises with increasing

  7. Non-destructive analysis of chlorine in fly ash cement concrete

    International Nuclear Information System (INIS)

    Naqvi, A.A.; Garwan, M.A.; Nagadi, M.M.; Maslehuddin, M.; Al-Amoudi, O.S.B.; Khateeb-ur-Rehman

    2009-01-01

    Preventive measures against reinforcement corrosion in concrete require increasing concrete density to prevent the diffusion of chloride ions to the steel surface. Pozzolanic materials, such as fly ash (FA), silica fume (SF), and blast furnace slag (BFS) are added to concrete to increase its density. Monitoring the chloride concentration in concrete is required to assess the chances of reinforcement corrosion. In this study, FA was added to Portland cement concrete to increase its density. Prompt gamma neutron activation analysis (PGNAA) technique was utilized to analyze the concentration of chlorine in concrete. The chlorine concentration in the FA cement concrete was evaluated by determining the yield of 1.16, 1.95, 6.11, 6.62, 7.41, 7.79, and 8.58 MeV gamma-rays of chlorine from the FA concrete specimen containing 0.4-3.5 wt% chlorine. An excellent agreement was noted between the experimental yield of the prompt gamma-rays and the calculated yield obtained through the Monte Carlo simulations. The Minimum Detectable Concentration (MDC) of chlorine in FA cement concrete was also calculated. The best value of MDC limit of chlorine in the FA cement concrete was found to be 0.022±0.007 and 0.038±0.017 wt% for 1.16 and 6.11 MeV prompt gamma-rays, respectively. Within the statistical uncertainty, the lower bound of MDC meets the maximum permissible limit of 0.03 wt% of chlorine in concrete set by American Concrete Institute Committee 318.

  8. Non-destructive analysis of chlorine in fly ash cement concrete

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)], E-mail: aanaqvi@kfupm.edu.sa; Garwan, M.A.; Nagadi, M.M. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Maslehuddin, M. [Center for Engineering Research, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Al-Amoudi, O.S.B. [Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Khateeb-ur-Rehman [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2009-08-11

    Preventive measures against reinforcement corrosion in concrete require increasing concrete density to prevent the diffusion of chloride ions to the steel surface. Pozzolanic materials, such as fly ash (FA), silica fume (SF), and blast furnace slag (BFS) are added to concrete to increase its density. Monitoring the chloride concentration in concrete is required to assess the chances of reinforcement corrosion. In this study, FA was added to Portland cement concrete to increase its density. Prompt gamma neutron activation analysis (PGNAA) technique was utilized to analyze the concentration of chlorine in concrete. The chlorine concentration in the FA cement concrete was evaluated by determining the yield of 1.16, 1.95, 6.11, 6.62, 7.41, 7.79, and 8.58 MeV gamma-rays of chlorine from the FA concrete specimen containing 0.4-3.5 wt% chlorine. An excellent agreement was noted between the experimental yield of the prompt gamma-rays and the calculated yield obtained through the Monte Carlo simulations. The Minimum Detectable Concentration (MDC) of chlorine in FA cement concrete was also calculated. The best value of MDC limit of chlorine in the FA cement concrete was found to be 0.022{+-}0.007 and 0.038{+-}0.017 wt% for 1.16 and 6.11 MeV prompt gamma-rays, respectively. Within the statistical uncertainty, the lower bound of MDC meets the maximum permissible limit of 0.03 wt% of chlorine in concrete set by American Concrete Institute Committee 318.

  9. Stratospheric chlorine injection by volcanic eruptions - HCl scavenging and implications for ozone

    Science.gov (United States)

    Tabazadeh, A.; Turco, R. P.

    1993-01-01

    Because the output of volatile chlorine during a major volcanic event can greatly exceed the annual anthropogenic emissions of chlorine to the atmosphere, the fate of volcanic chlorine must be known. Although numerous observations have shown that volcanoes do not significantly contribute to the stratospheric chlorine burden, no quantitative explanation has been published. Hydrogen chloride (HCl) scavenging processes during the early phases of a volcanic eruption are discussed. A plume dynamics and thermodynamics model is used to show that HCl removal in condensed supercooled water can reduce HCl vapor concentrations by up to four orders of magnitude, preventing substantial stratospheric chlorine injection.

  10. Evaluating potential chlorinated methanes degradation mechanisms and treatments in interception trenches filled with concrete-based construction wastes

    Science.gov (United States)

    Rodríguez-Fernandez, Diana; Torrentó, Clara; Rosell, Mònica; Audí-Miró, Carme; Soler, Albert

    2014-05-01

    -3397. Palau, J.; Marchesi, M.: Chambon, J.: Aravena, R.; Canals, A.; Binning, P. J., Bjerg P. L.; Otero, N.; Soler, A. (2014) Multi-isotope (carbon and chlorine) analysis for fingerprinting and site characterization at a fractured bedrock aquifer contaminated by chlorinated ethenes. Science of the Total Environment 475, 61-70. Sagoe-Crentsil, K.K.; Glasser, F.P. (1993) 'Green Rust', Iron Solubility and the Role of Chloride in the Corrosion of Steel at High pH,' Cement and Concrete Research, 23(4), 785-91. Torrentó, C., Audí-Miró, C., Marchesi, M., Otero, N. and Soler, A. (2012) Comparison of four oxidation processes for the treatment of water contaminated with a mixture of chlorinated volatile organic compounds. EGU General Assembly 2012. Vienna. Geophysical Research Abstracts, 14: EGU2012-11310. Torrentó, C.; Audí-Miró, C.; Bordeleau, G.; Marchesi, M.; Rosell, M.; Otero, N.; Soler, A. (2014) The use of alkaline hydrolysis as a novel strategy for chloroform remediation: the feasibility of using construction wastes and evaluation of carbon isotopic fractionation. Environmental Science & Technology, Just Accepted Manuscript (DOI: 10.1021/es403838t)

  11. Chlorination of tramadol: Reaction kinetics, mechanism and genotoxicity evaluation.

    Science.gov (United States)

    Cheng, Hanyang; Song, Dean; Chang, Yangyang; Liu, Huijuan; Qu, Jiuhui

    2015-12-01

    Tramadol (TRA) is one of the most detected analgesics in environmental matrices, and it is of high significance to study the reactivity of TRA during chlorination considering its potential toxicity to the environment. The chlorine/TRA reaction is first order with respect to the TRA concentration, and a combination of first-order and second-order with respect to chlorine concentration. The pH dependence of the observed rate constants (kobs) showed that the TRA oxidation reactivity increased with increasing pH. kobs can be quantitatively described by considering all active species including Cl2, Cl2O and HOCl, and the individual rate constants of HOCl/TRA(0), HOCl/TRAH(+), Cl2/TRA and Cl2O/TRA reactions were calculated to be (2.61±0.29)×10(3)M(-1)s(-1), 14.73±4.17M(-1)s(-1), (3.93±0.34)×10(5)M(-1)s(-1) and (5.66±1.83)×10(6)M(-1)s(-1), respectively. Eleven degradation products were detected with UPLC-Q-TOF-MS, and the corresponding structures of eight products found under various pH conditions were proposed. The amine group was proposed to be the initial attack site under alkaline pH conditions, where reaction of the deprotonated amine group with HOCl is favorable. Under acidic and neutral pH conditions, however, two possible reaction pathways were proposed. One is an electrophilic substitution on the aromatic ring, and another is an electrophilic substitution on the nitrogen, leading to an N-chlorinated intermediate, which can be further oxidized. Finally, the SOS/umu test showed that the genotoxicity of TRA chlorination products increased with increasing dosage of chlorine, which was mostly attributed to the formation of some chlorine substitution products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Determination of chlorine in graphite by combustion-ion chromatography

    International Nuclear Information System (INIS)

    Chen Lianzhong; Watanabe, Kazuo; Itoh, Mitsuo.

    1995-09-01

    A combustion/ion chromatographic method has been studied for the sensitive determination of chlorine in graphite. A graphite sample was burnt at 900degC in a silica reaction tube at an oxygen flow rate of 200 ml/min. Chlorine evolved was absorbed in 20 ml of a 0.1 mM sodium carbonate solution. The solution was evaporated to dryness. The residue was dissolved with a small volume of water. Chlorine in the solution was determined using ion chromatography. The method was applied to JAERI graphite certified reference materials and practical graphite materials. The detection limit was about 0.8 μgCl/g for a 2.0 g sample. The precision was about 2.5% (relative standard deviation) for samples with chlorine content of 70 μg/g level. The method is also usable for coal samples. (author)

  13. Sequential and Simultaneous Applications of UV and Chlorine for Adenovirus Inactivation.

    Science.gov (United States)

    Rattanakul, Surapong; Oguma, Kumiko; Takizawa, Satoshi

    2015-09-01

    Adenoviruses are water-borne human pathogens with high resistance to UV disinfection. Combination of UV treatment and chlorination could be an effective approach to deal with adenoviruses. In this study, human adenovirus 5 (HAdV-5) was challenged in a bench-scale experiment by separate applications of UV or chlorine and by combined applications of UV and chlorine in either a sequential or simultaneous manner. The treated samples were then propagated in human lung carcinoma epithelial cells to quantify the log inactivation of HAdV-5. When the processes were separate, a fluence of 100 mJ/cm(2) and a CT value of 0.02 mg min/L were required to achieve 2 log inactivation of HAdV-5 by UV disinfection and chlorination, respectively. Interestingly, synergistic effects on the HAdV-5 inactivation rates were found in the sequential process of chlorine followed by UV (Cl2-UV) (p simultaneous application of UV/Cl2. This implies that a pretreatment with chlorine may increase the sensitivity of the virus to the subsequent UV disinfection. In conclusion, this study suggests that the combined application of UV and chlorine could be an effective measure against adenoviruses as a multi-barrier approach in water disinfection.

  14. Chlorination of uranium oxides with CCl4 using a mechanochemical method

    Science.gov (United States)

    Kitawaki, Shinichi; Nagai, Takayuki; Sato, Nobuaki

    2013-08-01

    A chlorination method for uranium oxides at low temperature was investigated by using a mechanochemical method. In particular, the possibility of the chlorination of uranium oxides, such as UO2 and U3O8, via mechanochemical reaction with CCl4 was studied using a planetary ball mill. Mechanochemical experiments were conducted to evaluate the effect of milling time, CCl4/uranium oxide molar ratio, and revolution speed on the reaction. The synthesized products were then subjected to X-ray diffraction analysis, and it was found that the chlorination of U3O8 with CCl4 to UOCl2, UCl4, and U2O2Cl5 proceeded. However, the chlorination reaction could not be observed when using UO2 powder as the raw material. The chlorination reaction could not be observed when using UO2 powder as the raw material. The chlorination of U3O8 with CCl4 to form UOCl2, UCl4, and U2O2Cl5 via mechanochemical reaction occurs at room temperature. The ratio of chlorination increases with milling time when the appropriate amount of CCl4 is employed. However, the use of excess liquid CCl4 decreases the mechanochemical effect.

  15. Optimal pH in chlorinated swimming pools - balancing formation of by-products

    DEFF Research Database (Denmark)

    Hansen, Kamilla Marie Speht; Albrechtsen, Hans-Jørgen; Andersen, Henrik Rasmus

    2013-01-01

    In order to identify the optimal pH range for chlorinated swimming pools the formation of trihalomethanes, haloacetonitriles and trichloramine was investigated in the pH-range 6.5–7.5 in batch experiments. An artificial body fluid analogue was used to simulate bather load as the precursor for by-products....... The chlorine-to-precursor ratio used in the batch experiments influenced the amounts of by-products formed, but regardless of the ratio the same trends in the effect of pH were observed. Trihalomethane formation was reduced by decreasing pH but haloacetonitrile and trichloramine formation increased....... To evaluate the significance of the increase and decrease of the investigated organic by-products at the different pH values, the genotoxicity was calculated based on literature values. The calculated genotoxicity was approximately at the same level in the pH range 6.8–7.5 and increased when pH was 6...

  16. Chlorinated tyrosine derivatives in insect cuticle

    DEFF Research Database (Denmark)

    Andersen, Svend Olav

    2004-01-01

    A method for quantitative measurement of 3-monochlorotyrosine and 3,5-dichlorotyrosine in insect cuticles is described, and it is used for determination of their distribution in various cuticular regions in nymphs and adults of the desert locust, Schistocerca gregaria. The two chlorinated tyrosine......, not-yet sclerotized cuticle of adult femur and tibia, the amounts increased rapidly during the first 24 h after ecdysis and more slowly during the next two weeks. Control analyses using stable isotope dilution mass spectrometry have confirmed that the chlorinated tyrosines are not artifacts formed...

  17. Sequential Combination of Electro-Fenton and Electrochemical Chlorination Processes for the Treatment of Anaerobically-Digested Food Wastewater.

    Science.gov (United States)

    Shin, Yong-Uk; Yoo, Ha-Young; Kim, Seonghun; Chung, Kyung-Mi; Park, Yong-Gyun; Hwang, Kwang-Hyun; Hong, Seok Won; Park, Hyunwoong; Cho, Kangwoo; Lee, Jaesang

    2017-09-19

    A two-stage sequential electro-Fenton (E-Fenton) oxidation followed by electrochemical chlorination (EC) was demonstrated to concomitantly treat high concentrations of organic carbon and ammonium nitrogen (NH 4 + -N) in real anaerobically digested food wastewater (ADFW). The anodic Fenton process caused the rapid mineralization of phenol as a model substrate through the production of hydroxyl radical as the main oxidant. The electrochemical oxidation of NH 4 + by a dimensionally stable anode (DSA) resulted in temporal concentration profiles of combined and free chlorine species that were analogous to those during the conventional breakpoint chlorination of NH 4 + . Together with the minimal production of nitrate, this confirmed that the conversion of NH 4 + to nitrogen gas was electrochemically achievable. The monitoring of treatment performance with varying key parameters (e.g., current density, H 2 O 2 feeding rate, pH, NaCl loading, and DSA type) led to the optimization of two component systems. The comparative evaluation of two sequentially combined systems (i.e., the E-Fenton-EC system versus the EC-E-Fenton system) using the mixture of phenol and NH 4 + under the predetermined optimal conditions suggested the superiority of the E-Fenton-EC system in terms of treatment efficiency and energy consumption. Finally, the sequential E-Fenton-EC process effectively mineralized organic carbon and decomposed NH 4 + -N in the real ADFW without external supply of NaCl.

  18. Chlorine dioxide as biocide to prevent biofouling in the hydro technical structures at KKNPP

    International Nuclear Information System (INIS)

    Ganesh, S.; Selvaraj, S.; Balasubramanian, M.R.; Selvavinayagam, P.; Sundar, R.S.

    2008-01-01

    Chlorination is envisaged in the sea water systems of KKNPP to control macro and micro bio-fouling of underwater structures and equipments. KKNPP intake and the fore bay structures are shown in detail. The sodium hypo chlorite required for chlorination is produced in the electro chlorination plant at site by the electrolysis of sea water. It is added in the sea water at the intake structure, tunnels and fore bay on continuous as well as periodic basis. The sea water to chlorination plant is supplied by the pumps located at the main pump house. Chlorination of sea water system by electro-chlorination is possible only after pump house flooding and commissioning of electro-chlorination plant. So for the period from breach of temporary dyke till commissioning of electro chlorination plant, chlorination by temporary method has to be done to prevent the bio-fouling of underwater structures and equipments. The flooding of the pump house subsequent to breach of temporary dyke is done

  19. Analysis of residual chlorine in simple drinking water distribution system with intermittent water supply

    Science.gov (United States)

    Goyal, Roopali V.; Patel, H. M.

    2015-09-01

    Knowledge of residual chlorine concentration at various locations in drinking water distribution system is essential final check to the quality of water supplied to the consumers. This paper presents a methodology to find out the residual chlorine concentration at various locations in simple branch network by integrating the hydraulic and water quality model using first-order chlorine decay equation with booster chlorination nodes for intermittent water supply. The explicit equations are developed to compute the residual chlorine in network with a long distribution pipe line at critical nodes. These equations are applicable to Indian conditions where intermittent water supply is the most common system of water supply. It is observed that in intermittent water supply, the residual chlorine at farthest node is sensitive to water supply hours and travelling time of chlorine. Thus, the travelling time of chlorine can be considered to justify the requirement of booster chlorination for intermittent water supply.

  20. Inhibition of chlorine-induced pulmonary inflammation and edema by mometasone and budesonide

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jing; Mo, Yiqun; Schlueter, Connie F.; Hoyle, Gary W., E-mail: Gary.Hoyle@louisville.edu

    2013-10-15

    Chlorine gas is a widely used industrial compound that is highly toxic by inhalation and is considered a chemical threat agent. Inhalation of high levels of chlorine results in acute lung injury characterized by pneumonitis, pulmonary edema, and decrements in lung function. Because inflammatory processes can promote damage in the injured lung, anti-inflammatory therapy may be of potential benefit for treating chemical-induced acute lung injury. We previously developed a chlorine inhalation model in which mice develop epithelial injury, neutrophilic inflammation, pulmonary edema, and impaired pulmonary function. This model was used to evaluate nine corticosteroids for the ability to inhibit chlorine-induced neutrophilic inflammation. Two of the most potent corticosteroids in this assay, mometasone and budesonide, were investigated further. Mometasone or budesonide administered intraperitoneally 1 h after chlorine inhalation caused a dose-dependent inhibition of neutrophil influx in lung tissue sections and in the number of neutrophils in lung lavage fluid. Budesonide, but not mometasone, reduced the levels of the neutrophil attractant CXCL1 in lavage fluid 6 h after exposure. Mometasone or budesonide also significantly inhibited pulmonary edema assessed 1 day after chlorine exposure. Chlorine inhalation resulted in airway hyperreactivity to inhaled methacholine, but neither mometasone nor budesonide significantly affected this parameter. The results suggest that mometasone and budesonide may represent potential treatments for chemical-induced lung injury. - Highlights: • Chlorine causes lung injury when inhaled and is considered a chemical threat agent. • Corticosteroids may inhibit lung injury through their anti-inflammatory actions. • Corticosteroids inhibited chlorine-induced pneumonitis and pulmonary edema. • Mometasone and budesonide are potential rescue treatments for chlorine lung injury.

  1. Factors affecting the roles of reactive species in the degradation of micropollutants by the UV/chlorine process.

    Science.gov (United States)

    Wu, Zihao; Guo, Kaiheng; Fang, Jingyun; Yang, Xueqin; Xiao, Hong; Hou, Shaodong; Kong, Xiujuan; Shang, Chii; Yang, Xin; Meng, Fangang; Chen, Liwei

    2017-12-01

    The UV/chlorine process is an emerging advanced oxidation process (AOP) that produces various reactive species, such as hydroxyl radicals (HO) and reactive chlorine species (RCS). The effects of the treatment conditions, such as chlorine dosage and pH, and the water matrix components of natural organic matter (NOM), alkalinity, ammonia and halides, on the kinetics and reactive species in the degradation of four micropollutants, metronidazole (MDZ), nalidixic acid (NDA), diethyltoluamide (DEET) and caffeine (CAF), by the UV/chlorine process were investigated. The degradation of MDZ and CAF was primarily attributable to HO and ClO, respectively, while that of NDA was primarily attributable to both ClO and CO 3 - . HO, Cl and CO 3 - are important for the degradation of DEET. The second-order rate constants for ClO with CAF and CO 3 - with NDA were determined to be 5.1 (±0.2) × 10 7  M -1 s -1 and 1.4 (±0.1) × 10 7  M -1 s -1 , respectively. Increasing chlorine dosage slightly changed the contribution of HO but linearly increased that of ClO to micropollutant degradation. Increasing pH decreased the contribution of either HO or Cl but not that of ClO. Both NOM and bicarbonate decreased the contributions of HO and Cl, whereas NOM but not bicarbonate significantly decreased that of ClO. The contribution of either HO or Cl first rose and then fell as the molar ratio of ammonia to chlorine increased from 0 to 1:1, while that of ClO decreased. The co-presence of high concentrations of Cl - and Br - enhanced the contribution of ClBr - and BrCl. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Comparison of permanganate preoxidation and preozonation on algae containing water: cell integrity, characteristics, and chlorinated disinfection byproduct formation.

    Science.gov (United States)

    Xie, Pengchao; Ma, Jun; Fang, Jingyun; Guan, Yinghong; Yue, Siyang; Li, Xuchun; Chen, Liwei

    2013-12-17

    Aqueous suspensions of Microcystis aeruginosa were preoxidized with either ozone or permanganate and then subjected to chlorination under conditions simulating drinking water purification. The impacts of the two oxidants on the algal cells and on the subsequent production of dissolved organic matter and disinfection byproducts were investigated. Preozonation dramatically increased disinfection byproduct formation during chlorination, especially the formation of haloaldehydes, haloacetonitriles, and halonitromethanes. Preoxidation with permanganate had much less effect on disinfection byproduct formation. Preozonation destroyed algal cell walls and cell membranes to release intracellular organic matter (IOM), and less than 2.0% integrated cells were left after preozonation with the dosage as low as 0.4 mg/L. Preoxidation with permanganate mainly released organic matter adsorbed on the cells' surface without causing any damage to the cells' integrity, so the increase in byproduct formation was much less. More organic nitrogen and lower molecular weight precursors were produced in a dissolved phase after preozonation than permanganate preoxidation, which contributes to the significant increase of disinfection byproducts after preozonation. The results suggest that permanganate is a better choice than ozone for controlling algae derived pollutants and disinfection byproducts.

  3. Biodegradation of chlorinated ethenes by a methane-utilizing mixed culture

    International Nuclear Information System (INIS)

    Fogel, M.M.; Taddeo, A.R.; Fogel, S.

    1986-01-01

    Chlorinated ethenes are toxic substances which are widely distributed groundwater contaminants and are persistent in the subsurface environment. Reports on the biodegradation of these compounds under anaerobic conditions which might occur naturally in groundwater show that these substances degrade very slowly, if at all. Previous attempts to degrade chlorinated ethenes aerobically have produced conflicting results. A mixed culture containing methane-utilizing bacteria was obtained by methane enrichment of a sediment sample. Biodegradation experiments carried out in sealed culture bottles with radioactively labeled trichloroethylene (TCE) showed that approximately half of the radioactive carbon had been converted to 14 CO 2 and bacterial biomass. In addition to TCE, vinyl chloride and vinylidene chloride could be degraded to products which are not volatile chlorinated substances and are therefore likely to be further degraded to CO 2 . Two other chlorinated ethenes, cis and trans-1,2-dichloroethylene, were shown to degrade to chlorinated products, which appeared to degrade further. A sixth chlorinated ethene, tetrachloroethylene, was not degraded by the methane-utilizing culture under these conditions. The biodegradation of TCE was inhibited by acetylene, a specific inhibitor of methane oxidation by methanotrophs. This observation supported the hypothesis that a methanotroph is responsible for the observed biodegradations

  4. Structural and optical properties of chlorinated plasma polymers

    Energy Technology Data Exchange (ETDEWEB)

    Turri, Rafael [Laboratorio de Plasmas Tecnologicos, Campus Experimental de Sorocaba, Universidade Estadual Paulista (UNESP), Avenida Tres de Marco 511, Alto de Boa Vista, 18087-180, Sorocaba, SP (Brazil); Davanzo, Celso U. [Instituto de Quimica, Universidade Estadual de Campinas, Campinas, SP (Brazil); Schreiner, Wido [Departamento de Fisica, Universidade Federal de Parana, PR (Brazil); Dias da Silva, Jose Humberto [Faculdade de Ciencias, Universidade Estadual Paulista (UNESP), Bauru, SP (Brazil); Appolinario, Marcelo Borgatto [Laboratorio de Plasmas Tecnologicos, Campus Experimental de Sorocaba, Universidade Estadual Paulista (UNESP), Avenida Tres de Marco 511, Alto de Boa Vista, 18087-180, Sorocaba, SP (Brazil); Durrant, Steven F., E-mail: steve@sorocaba.unesp.br [Laboratorio de Plasmas Tecnologicos, Campus Experimental de Sorocaba, Universidade Estadual Paulista (UNESP), Avenida Tres de Marco 511, Alto de Boa Vista, 18087-180, Sorocaba, SP (Brazil)

    2011-12-30

    Amorphous hydrogenated chlorinated carbon (a-C:H:Cl) films were produced by the plasma polymerization of chloroform-acetylene-argon mixtures in a radiofrequency plasma enhanced chemical vapor deposition system. The main parameter of interest was the proportion of chloroform in the feed, R{sub C}, which was varied from 0 to 80%. Deposition rates of 80 nm min{sup -1} were typical for the chlorinated films. Infrared reflection-absorption spectroscopy revealed the presence of C-Cl groups in all the films produced with chloroform in the feed. X-ray photoelectron spectroscopy confirmed this finding, and revealed a saturation of the chlorine content at {approx} 47 at.% for R{sub C} {>=} 40%. The refractive index and optical gap, E{sub 04}, of the films were roughly in the 1.6 to 1.7, and the 2.8 to 3.7 eV range. These values were calculated from transmission ultraviolet-visible-near infrared spectra. Chlorination leads to an increase in the water surface contact angle from {approx} 40 Degree-Sign to {approx} 77 Degree-Sign .

  5. Structural and optical properties of chlorinated plasma polymers

    International Nuclear Information System (INIS)

    Turri, Rafael; Davanzo, Celso U.; Schreiner, Wido; Dias da Silva, José Humberto; Appolinario, Marcelo Borgatto; Durrant, Steven F.

    2011-01-01

    Amorphous hydrogenated chlorinated carbon (a-C:H:Cl) films were produced by the plasma polymerization of chloroform–acetylene–argon mixtures in a radiofrequency plasma enhanced chemical vapor deposition system. The main parameter of interest was the proportion of chloroform in the feed, R C , which was varied from 0 to 80%. Deposition rates of 80 nm min −1 were typical for the chlorinated films. Infrared reflection–absorption spectroscopy revealed the presence of C–Cl groups in all the films produced with chloroform in the feed. X-ray photoelectron spectroscopy confirmed this finding, and revealed a saturation of the chlorine content at ∼ 47 at.% for R C ≥ 40%. The refractive index and optical gap, E 04 , of the films were roughly in the 1.6 to 1.7, and the 2.8 to 3.7 eV range. These values were calculated from transmission ultraviolet–visible-near infrared spectra. Chlorination leads to an increase in the water surface contact angle from ∼ 40° to ∼ 77°.

  6. Effective range of chlorine transport in an aquifer during disinfection of wells: From laboratory experiments to field application

    Science.gov (United States)

    Paufler, S.; Grischek, T.; Adomat, Y.; Herlitzius, J.; Hiller, K.; Metelica, Y.

    2018-04-01

    Microbiological contamination usually leads to erratic operation of drinking water wells and disinfection is required after disasters and sometimes to restore proper well performance for aquifer storage and recovery (ASR) and subsurface iron removal (SIR) wells. This study focused on estimating the fate of chlorine around an infiltration well and improving the knowledge about processes that control the physical extent of the disinfected/affected radius. Closed bottle batch tests revealed low chlorine consumption rates for filter gravel and sand (0.005 mg/g/d) and higher rates for clay (0.030 mg/g/d) as well as natural aquifer material (0.054 mg/g/d). Smaller grain sizes disinfection ability at grain sizes >1 mm, but results in more effective disinfection for very fine material disinfection zone at the example well seems to extend to maximum 3.5 m into the aquifer. Excessive chlorine dosage of >10 mg/l would not further extend the disinfected radius. A preferable way to increase the range of chlorine application is to increase the total infiltrated volume and time. Three approaches are proposed for adapting lab results to actual infiltration wells, that are in principle applicable to any other site.

  7. Recovery of actinides from actinide-aluminium alloys by chlorination: Part I

    Energy Technology Data Exchange (ETDEWEB)

    Cassayre, L., E-mail: cassayre@chimie.ups-tlse.fr [Laboratoire de Genie Chimique (LGC), Departement Procedes Electrochimiques, CNRS-UMR 5503, Universite de Toulouse III - Paul Sabatier, 31062 Toulouse (France); Soucek, P.; Mendes, E.; Malmbeck, R.; Nourry, C.; Eloirdi, R.; Glatz, J.-P. [European Commission, JRC, Institute for Transuranium Elements, Postfach 2340, 76125 Karlsruhe (Germany)

    2011-07-01

    Pyrochemical processes in molten LiCl-KCl are being developed in ITU for recovery of actinides from spent nuclear fuel. The fuel is anodically dissolved to the molten salt electrolyte and actinides are electrochemically reduced on solid aluminium cathodes forming solid actinide-aluminium alloys. A chlorination route is being investigated for recovery of actinides from the alloys. This route consists in three steps: Vacuum distillation for removal of the salt adhered on the electrode, chlorination of the actinide-aluminium alloys by chlorine gas and sublimation of the formed AlCl{sub 3}. A thermochemical study showed thermodynamic feasibility of all three steps. On the basis of the conditions identified by the calculations, experiments using pure UAl{sub 3} alloy were carried out to evaluate and optimise the chlorination step. The work was focused on determination of the optimal temperature and Cl{sub 2}/UAl{sub 3} molar ratio, providing complete chlorination of the alloy without formation of volatile UCl{sub 5} and UCl{sub 6}. The results showed high efficient chlorination at a temperature of 150 deg. C.

  8. Recovery of actinides from actinide-aluminium alloys by chlorination: Part I

    International Nuclear Information System (INIS)

    Cassayre, L.; Soucek, P.; Mendes, E.; Malmbeck, R.; Nourry, C.; Eloirdi, R.; Glatz, J.-P.

    2011-01-01

    Pyrochemical processes in molten LiCl-KCl are being developed in ITU for recovery of actinides from spent nuclear fuel. The fuel is anodically dissolved to the molten salt electrolyte and actinides are electrochemically reduced on solid aluminium cathodes forming solid actinide-aluminium alloys. A chlorination route is being investigated for recovery of actinides from the alloys. This route consists in three steps: Vacuum distillation for removal of the salt adhered on the electrode, chlorination of the actinide-aluminium alloys by chlorine gas and sublimation of the formed AlCl 3 . A thermochemical study showed thermodynamic feasibility of all three steps. On the basis of the conditions identified by the calculations, experiments using pure UAl 3 alloy were carried out to evaluate and optimise the chlorination step. The work was focused on determination of the optimal temperature and Cl 2 /UAl 3 molar ratio, providing complete chlorination of the alloy without formation of volatile UCl 5 and UCl 6 . The results showed high efficient chlorination at a temperature of 150 deg. C.

  9. Preparation of 1,1,2,2-tetrachloroethane and trichloroethylene labelled with radioactive chlorine

    International Nuclear Information System (INIS)

    Smirnova, G.E.; Shalygin, V.A.; Zel'venskij, Ya.D.; Prosyanov, N.N.

    1980-01-01

    The chemical synthesis of 1,1,2,2-tetrachloroethane is carried out. 1,2,2,2-tetrachloroethane is labelled with radioactive chlorine by chlorinating the mixture of cis-, transisomeres of dichlorethylene with elementary chlorine. Trichloroethylene labelled with radioactive chlorine is prepared by the effect of alkali alcohol solution on radioactive 1,1,2,2-tetrachloroethane

  10. The removal of phenols from oily wastewater by chlorine dioxide

    OpenAIRE

    Hsu, Chung-Jung

    1988-01-01

    Treatability studies were performed on oily wastewaters produced by petroleum and canning industries. Chlorine dioxide was used for the removal of phenolic compounds from these oily wastewaters. Most of phenolic compounds can be destroyed by chlorine dioxide within 15 minutes if CI02-to-phenol ratios of higher than 5.0 are provided. Factors such as pH, temperature, and COD have little effect on phenol removal. The effectiveness of chlorine dioxide treatment depends critic...

  11. Chlorine gas processing of oxide nuclear fuel particles containing thorium

    International Nuclear Information System (INIS)

    Knotik, K.; Bildstein, H.; Falta, G.; Wagner, H.

    Experimental studies on the chloride extraction and separation of U and Th from coated Th--U oxide particles are reported. After a description of the chlorination equipment and the experimental procedures, the results are discussed. The yield of U is determined as a function of the reaction temperature. The results of a thermogravimetric analysis of the chlorination of uranium carbide and thorium carbides are reported and used to establish the reaction mechanism for the chlorination

  12. Site-selective photofragmentation of chlorinated polymeric films observed around the chlorine K-edge

    Energy Technology Data Exchange (ETDEWEB)

    Arantes, C., E-mail: csilva@inmetro.gov.br [Divisão de Metrologia de Materiais, Instituto Nacional de Metrologia, Qualidade e Tecnologia, Xerém 25250-020, Duque de Caxias, RJ (Brazil); Mendes, L.A.V. [Instituto de Física, Universidade Federal da Bahia, Ondina, 40210-340 Salvador, BA (Brazil); Pinho, R.R. [Departamento de Física-ICE, Universidade Federal de Juiz de Fora, Campus Universitário, 36036-330 Juiz de Fora, MG (Brazil); Ferreira, M. [PEMM/COPPE, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-972 Rio de Janeiro, RJ (Brazil); Souza, G.G.B. de; Rocha, A.B.; Rocco, M.L.M. [Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-909 Rio de Janeiro, RJ (Brazil)

    2013-03-29

    Highlights: ► PVC and PVDC were studied by PSID and NEXAFS techniques at the Chlorine 1s-edge. ► PVC film presented isotope ratio of 3:1 in the PSID spectrum. ► Cl{sup +} ion yield curves reproduce the photoabsorption spectrum for both polymers. ► Site-selectivity of C–Cl bond breaking due to an efficient spectator Auger decay. - Abstract: Photon stimulated ion desorption (PSID) and Near-edge X-ray absorption fine structure (NEXAFS) studies have been performed on poly(vinyl chloride) (PVC) and poly(vinyl dichloride) (PVDC) around the chlorine 1s-edge. Experiments were performed using a synchrotron source operating in the single-bunch mode and a time-of-flight mass spectrometry for ion analysis. Cl{sup +} ion yields, as a function of the photon energy, reproduce the photoabsorption spectrum, showing significant increase at the 1s-resonance. Edge-jump ratios, defined as the ratio between edge-jumps (intensity ratio of the yields between above and below the absorption edge) of two different transitions, for Cl{sup +} ion yields were much higher than the equivalent electron yields, indicating site-selectivity in C–Cl bond breaking for both polymers, as a result of efficient spectator Auger decay. The expected isotope ratio of 3:1 for chlorine was measured for PVC. The interpretation of the NEXAFS spectrum was assisted by quantum mechanical calculations at a multireference perturbation theory level.

  13. Stable Chlorine Isotopes and Elemental Chlorine by Thermal Ionization Mass Spectrometry and Ion Chromatography; Martian Meteorites, Carbonaceous Chondrites and Standard Rocks

    Science.gov (United States)

    Nakamura, N.; Nyquist, L. E.; Reese, Y.; Shih, C.-Y.; Fujitani, T.; Okano, O.

    2011-01-01

    Recently significantly large mass fractionation of stable chlorine isotopes has been reported for terrestrial and lunar samples [1,2]. In addition, in view of possible early solar system processes [3] and also potential perchlorate-related fluid/microbial activities on the Martian surface [4,5], a large chlorine isotopic fractionation might be expected for some types of planetary materials. Due to analytical difficulties of isotopic and elemental analyses, however, current chlorine analyses for planetary materials are controversial among different laboratories, particularly between IRMS (gas source mass spectrometry) and TIMS (Thermal Ionization Mass Spectrometry) groups [i.e. 1,6,7] for isotopic analyses, as well as between those doing pyrohydrolysis and other groups [i.e. 6,8]. Additional careful investigations of Cl isotope and elemental abundances are required to confirm real chlorine isotope and elemental variations for planetary materials. We have developed a TIMS technique combined with HF-leaching/ion chromatography at NASA JSC that is applicable to analysis of small amounts of meteoritic and planetary materials. We present here results for several standard rocks and meteorites, including Martian meteorites.

  14. Bacterial oxidation of low-chlorinated compounds under anoxic conditions

    NARCIS (Netherlands)

    Dijk, J.A.

    2005-01-01

    Chlorinated hydrocarbons belong to the most frequently encountered contaminants in soil and groundwater. Many of them were found to be toxic and recalcitrant, which causes a potential threat to the environment. Therefore, it is of great importance that sites contaminated with chlorinated

  15. Radioimmunoassay for chlorinated dibenzo-p-dioxins

    International Nuclear Information System (INIS)

    Albro, P.W.; Chae, K.; Luster, M.I.; Mckinney, J.D.

    1980-01-01

    The invention provides a double-antibody radioimmunoassay method for the determination of chlorinated dibenzo-p-dioxins, particularly, 2,3,7,8-tetrachlorodibenzo-p-dioxin, in environmental samples including animal tissues such as monkey liver and adipose tissues. The limit of detection is approximately 25 picograms for 2,3,7,8-tetrachlorodibenzo-pdioxin. Assuming an appropriate cleanup procedure is used, chlorinated dibenzofurans are the only likely interferences, and these can be distinguished through the use of two antisers of different dibenzo-furan/dibenzodioxin selectivities. The invention includes the preparation of a reproducible antigen, an appropriate radiolabeled hapten, and effective sample extracts. A feature of the assay method is the use of a nonionic detergent (e.g., ''cutscum'' or ''triton x-305'') to solubilize the extremely hydrophobic dibenzo-p-dioxins in a manner permitting their binding by antibodies. The immunoassay is applicable to screening samples in order to minimize the demand for mass spectrometric screening, and to routine monitoring for exposure to known chlorinated dibenzo-p-dioxins in potentially contaminated environments

  16. Chlorination of zirconium (0001) surface: A first-principles study.

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eunja [Univ. of Nevada, Las Vegas, NV (United States). Dept. of Physics and Astronomy; Weck, Philippe F [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Borjas, Rosendo [Univ. of Nevada, Las Vegas, NV (United States). Dept. of Chemistry; Poineau, Frederic [Univ. of Nevada, Las Vegas, NV (United States). Dept. of Chemistry

    2017-01-01

    Here, the mechanisms and energetics of Zr(0001) surface chlorination by dissociative adsorption of gaseous Cl2, and associated speciation and surface degradation processes, have been investigated within the framework of density functional theory. Chlorination of Zr(0001) is predicted to be exothermic by ~3 eV/Cl for dissociative adsorption of a single Cl2 molecule, followed by exothermic chlorination to 1ML and 2 ML under Cl-rich conditions, with respective energy gains of 1.93 and 2.79 eV/Cl. Calculations also show that exfoliation of the top Cl-Zr-Cl sandwich layers is exothermic and most energetically favorable, and can thus be considered as a leading mechanism for Zr(0001) surface dissolution. Consistent with experimental findings, formation of ZrCl4 molecular products is also found to be dominant during Zr(0001) chlorination.

  17. Chlorination of zirconium (0001) surface: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Kim, E. [Univ. of Nevada, Las Vegas, NV (United States). Department of Physics and Astronomy; Weck, Philippe F [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Poineau, F. [Univ. of Nevada, Las Vegas, NV (United States). Department of Chemistry; Paviet, P. [Dept. of Energy (DOE), Washington DC (United States)

    2016-12-13

    The mechanisms and energetics of Zr(0001) surface chlorination by dissociative adsorption of gaseous Cl2, and associated speciation and surface degradation processes, have been investigated within the framework of density functional theory. Chlorination of Zr(0001) is predicted to be exothermic by 3 eV/Cl for dissociative adsorption of a single Cl2 molecule, followed by exothermic chlorination to 1ML and 2 ML under Cl-rich conditions, with respective energy gains of 1.93 and 2.79 eV/Cl. Calculations also show that exfoliation of the top Cl-Zr-Cl sandwich layers is exothermic and most energetically favorable, and can thus be considered as a leading mechanism for Zr(0001) surface dissolution. Finally, consistent with experimental findings, formation of ZrCl4 molecular products is also found to be dominant during Zr(0001) chlorination.

  18. Why is organization theory so ignorant: The neglect of total institutions?

    NARCIS (Netherlands)

    Clegg, S.R.

    2006-01-01

    Organization theory has, on the whole, failed to adequately address the role that organizations have played in some of the crimes of humanity. The tools to do so have long been available to the discipline, in work by scholars such as Goffman on total institutions, Foucault on disciplinary

  19. Chlorine disinfection of dye wastewater: Implications for a commercial azo dye mixture

    International Nuclear Information System (INIS)

    Vacchi, Francine Inforçato; Albuquerque, Anjaina Fernandes; Vendemiatti, Josiane Aparecida; Morales, Daniel Alexandre; Ormond, Alexandra B.; Freeman, Harold S.; Zocolo, Guilherme Julião; Zanoni, Maria Valnice Boldrin; Umbuzeiro, Gisela

    2013-01-01

    Azo dyes, the most widely used family of synthetic dyes, are often employed as colorants in areas such as textiles, plastics, foods/drugs/cosmetics, and electronics. Following their use in industrial applications, azo dyes have been found in effluents and various receiving waters. Chemical treatment of effluents containing azo dyes includes disinfection using chlorine, which can generate compounds of varying eco/genotoxicity. Among the widely known commercial azo dyes for synthetic fibers is C.I. Disperse Red 1. While this dye is known to exist as a complex mixture, reports of eco/genotoxicity involve the purified form. Bearing in mind the potential for adverse synergistic effects arising from exposures to chemical mixtures, the aim of the present study was to characterize the components of commercial Disperse Red 1 and its chlorine-mediated decoloration products and to evaluate their ecotoxicity and mutagenicity. In conducting the present study, Disperse Red 1 was treated with chlorine gas, and the solution obtained was analyzed with the aid of LC–ESI-MS/MS to identify the components present, and then evaluated for ecotoxicity and mutagenicity, using Daphnia similis and Salmonella/microsome assays, respectively. The results of this study indicated that chlorination of Disperse Red 1 produced four chlorinated aromatic compounds as the main products and that the degradation products were more ecotoxic than the parent dye. These results suggest that a disinfection process using chlorine should be avoided for effluents containing hydrophobic azo dyes such commercial Disperse Red 1. -- Highlights: ► Aqueous solutions of Disperse Red 1 were treated with chlorine. ► The chlorination products of Disperse Red 1 were identified using LC–ESI-MS/MS. ► Daphnia and Salmonella/microsome were employed for eco/genotoxicity testing. ► The chlorinated dye was more mutagenic than the dye itself. ► Chlorination should be avoided in effluents containing azo-dyes.

  20. The chlorination kinetics of zirconium dioxide mixed with carbon black

    International Nuclear Information System (INIS)

    Movahedian, A.; Raygan, Sh.; Pourabdoli, M.

    2011-01-01

    In this research, the effects of chlorine gas at different chlorine partial pressures and carbon concentrations on the carbochlorination of zirconia were studied. It was found that in briquettes containing 18.7 %wt carbon, in a chlorine partial pressure range of 0.25-0.75 atm and for a reacted fraction of less than 0.7, the chemical reaction model was dominant for the carbochlorination process of zirconia. The order of reaction into chlorine gas (n) in this situation was 0.57. Moreover, the best weight ratio of carbon to zirconia was 40/60. In this case, the activation energy of the reaction was 209.9 kJ mol -1 in a temperature range of 1023-1223 K, and the dominant model was the chemical reaction model.

  1. Kinetic study on the chlorination of β-spodumene for lithium extraction with Cl2 gas

    International Nuclear Information System (INIS)

    Barbosa, L.I.; Valente, N.G.; González, J.A.

    2013-01-01

    Highlights: ► β-Spodumene was chlorinated to extract lithium with pure chlorine. ► The kinetics of the chlorination was studied in the range of 1000–1100 °C. ► Cl 2 flow rate, sample mass, and Cl 2 partial pressure were the operating variables. ► Experimental data were best fitted by the sequential nucleation and growth model. - Abstract: In this paper, the kinetics chlorination of β-spodumene for the extraction of lithium has been studied using gaseous chlorine as chlorinating agent. The effect of chlorine flow rate, temperature, mass of the sample, and partial pressure of Cl 2 was investigated. The study of the effect of chlorine flow rate indicated that the chlorination of β-spodumene may be carried out in the presence of active chlorinating species The chlorine partial pressure was found to have an appreciable effect on the system reactivity. The temperature was found to be the most important variable affecting the reaction rate. The β-spodumene chlorination process by Cl 2 was characterized by an apparent activation energy of about 359 kJ/mol in the range from 1000 to 1100 °C. Reaction was of non-catalytic gas–solid nature and experimental data fitted the sequential nucleation and growth model

  2. Total volatile organic compounds (TVOC) in indoor air quality investigations

    DEFF Research Database (Denmark)

    Mølhave, L.; Clausen, Geo; Berglund, B.

    1997-01-01

    The amount of volatile organic compounds (VOCs) in indoor air, usually called TVOC (total volatile organic compounds), has been measured using different definitions and techniques which yield different results. This report recommends a definition of TVOC referring to a specified range of VOCs...... for characterizing indoor pollution and for improving source control as required from the points of view of health, comfort, energy efficiency and sustainability. (C) Indoor Air (1997)....

  3. The effect of inorganic precursors on disinfection byproduct formation during UV-chlorine/chloramine drinking water treatment.

    Science.gov (United States)

    Lyon, Bonnie A; Dotson, Aaron D; Linden, Karl G; Weinberg, Howard S

    2012-10-01

    Ultraviolet (UV) disinfection is being increasingly used in drinking water treatment. It is important to understand how its application to different types of water may influence finished water quality, particularly as anthropogenic activity continues to impact the quality of source waters. The objective of this study was to evaluate the effect of inorganic precursors on the formation of regulated and unregulated disinfection byproducts (DBPs) during UV irradiation of surface waters when combined with chlorination or chloramination. Samples were collected from three drinking water utilities supplied by source waters with varying organic and inorganic precursor content. The filtered samples were treated in the laboratory with a range of UV doses delivered from low pressure (LP, UV output at 253.7 nm) and medium pressure (MP, polychromatic UV output 200-400 nm) mercury lamps followed by chlorination or chloramination, in the presence and absence of additional bromide and nitrate. The regulated trihalomethanes and haloacetic acids were not affected by UV pretreatment at disinfection doses (40-186 mJ/cm²). With higher doses (1000 mJ/cm²), trihalomethane formation was increased 30-40%. While most effects on DBPs were only observed with doses much higher than typically used for UV disinfection, there were some effects on unregulated DBPs at lower doses. In nitrate-spiked samples (1-10 mg N/L), chloropicrin formation doubled and increased three- to six-fold with 40 mJ/cm² MP UV followed by chloramination and chlorination, respectively. Bromopicrin formation was increased in samples containing bromide (0.5-1 mg/L) and nitrate (1-10 mg N/L) when pretreated with LP or MP UV (30-60% with 40 mJ/cm² LP UV and four- to ten-fold increase with 40 mJ/cm² MP UV, after subsequent chlorination). The formation of cyanogen chloride doubled and increased three-fold with MP UV doses of 186 and 1000 mJ/cm², respectively, when followed by chloramination in nitrate-spiked samples but

  4. Immobilization of chlorine dioxide modified cells for uranium absorption

    International Nuclear Information System (INIS)

    He, Shengbin; Ruan, Binbiao; Zheng, Yueping; Zhou, Xiaobin; Xu, Xiaoping

    2014-01-01

    There has been a trend towards the use of microorganisms to recover metals from industrial wastewater, for which various methods have been reported to be used to improve microorganism adsorption characteristics such as absorption capacity, tolerance and reusability. In present study, chlorine dioxide(ClO 2 ), a high-efficiency, low toxicity and environment-benign disinfectant, was first reported to be used for microorganism surface modification. The chlorine dioxide modified cells demonstrated a 10.1% higher uranium adsorption capacity than control ones. FTIR analysis indicated that several cell surface groups are involved in the uranium adsorption and cell surface modification. The modified cells were further immobilized on a carboxymethylcellulose (CMC) matrix to improve their reusability. The cell-immobilized adsorbent could be employed either in a high concentration system to move vast UO 2 2+ ions or in a low concentration system to purify UO 2 2+ contaminated water thoroughly, and could be repeatedly used in multiple adsorption-desorption cycles with about 90% adsorption capacity maintained after seven cycles. - Highlights: • Chlorine dioxide was first reported to be used for microorganism surface modification. • The chlorine dioxide modified cells demonstrated a 10.1% higher uranium adsorption capacity than control ones. • The chlorine dioxide modified cells were further immobilized by carboxymethylcellulose to improve their reusability

  5. Chlorine loss and mass loss from polyvinylchloride and polyvinylidenchloride under the electron beam

    International Nuclear Information System (INIS)

    Lindberg, K.A.H.; Bertilsson, H.E.

    1985-01-01

    The loss of chlorine during the irradiation of PVC and PVDC in the electron microscope has been measured by the decay of the X-ray chlorine Kα signal. A number of factors affecting the measured beam damage curves have been considered and the experimental errors reduced to +- 10%. The results show that the chlorine decay curves can be best described by the sum of two exponentials, corresponding to the two different chlorine decay processes, these being: the dehydrochlorination of the polymer molecules and the dehydrochlorination of the polyene structure formed by the beam damage. The higher initial chlorine content of PVDC compared to PVC will result in a larger amount of chlorine atoms reacting with the polyene structure, which is more stable in the electron beam than the undamaged polymer. The chlorine loss, measured by X-ray analysis, has been compared to the mass loss, measured by energy loss analysis, and also with the volume changes of isolated spherical PVC particles. It has been concluded that the mass loss is almost entirely due to chlorine loss and that the residual structure has a density similar to the undamaged PVC. (author)

  6. Comparative assessment of chlorine, heat, ozone, and UV light for killing Legionella pneumophila within a model plumbing system

    International Nuclear Information System (INIS)

    Muraca, P.; Stout, J.E.; Yu, V.L.

    1987-01-01

    Nosocomial Legionnaires disease can be acquired by exposure to the organism from the hospital water distribution system. As a result, many hospitals have instituted eradication procedures, including hypercholorination and thermal eradication. We compared the efficacy of ozonation, UV light, hyperchlorination, and heat eradication using a model plumbing system constructed of copper piping, brass spigots, Plexiglas reservoir, electric hot water tank, and a pump. Legionella pneumophila was added to the system at 10(7) CFU/ml. Each method was tested under three conditions; (i) nonturbid water at 25 degrees C, (ii) turbid water at 25 degrees C, and (iii) nonturbid water at 43 degrees C. UV light and heat killed L. pneumophila most rapidly and required minimal maintenance. Both UV light and heat (60 degrees C) produced a 5 log kill in less than 1 h. In contrast, both chlorine and ozone required 5 h of exposure to produce a 5 log decrease. Neither turbidity nor the higher temperature of 43 degrees C impaired the efficacy of any of the disinfectant methods. Surprisingly, higher temperature enhanced the disinfecting efficacy of chlorine. However, higher temperature accelerated the decomposition of the chlorine residual such that an additional 120% volume of chlorine was required. All four methods proved efficacious in eradicating L. pneumophila from a model plumbing system

  7. Diversity and Variability of Geoporphyrins and Chlorins During Cretaceous Oceanic Anoxic Event II.

    Science.gov (United States)

    Junium, C. K.; Mawson, D. H.; Arthur, M. A.; Keely, B. J.

    2005-12-01

    Geoporphyrins and chlorins are biomarkers that result from the transformation of tetrapyrroles including chlorophylls, bacteriochlorophylls and haems. The transformation reactions are initiated in the water column and sediments during early diagenesis and are dependent on a range of variables including, but not limited to water column redox state, burial conditions, and time. Geoporphyrins and chlorins can retain structural characteristics that allow unambiguous assignment of precursor structures and source organisms making their utility in paleoenvironmental studies extraordinary where such information is preserved. Black shales from Oceanic Anoxic Event II (OAE II, Cenomanian-Turonian Boundary) of ODP Leg 207 present a unique opportunity for investigating the variations in the tetrapyrrole record in very well preserved sediments across a globally significant biogeochemcal event. Identification and structural assignment of tetrapyrroles in this study were achieved by a combination of high-performance-liquid-chromatography (HPLC)/diode-array-detection (DAD) and liquid chromatography-mass spectrometry (LC-MSn) on acetone extracts. Stratigraphic variations in geoporphyrin compounds occur through OAE II. The relative proportions of metallated vs. free-base (metal free) porphyrins vary throughout the sequence, favoring free-base porphyrins during the height of the anoxic event. The greater proportion of free-base porphyrins associated with more extensive reducing conditions is consistent with metal ion limitation during euxinia. For example, vanadyl porphyrins become much less abundant during the peak of the event suggesting that the oceanic inventory of V was sequestered in black shales and unavailable. Preliminary characterization of the tetrapyrroles through OAE II of ODP Leg 207, Demerara Rise, reveals a wide range of geoporphyrins and chlorins. Notably, positive identification of chlorins, the geologically unstable intermediates between highly reactive

  8. Development and validation of an universal interface for compound-specific stable isotope analysis of chlorine (37Cl/35Cl) by GC-high-temperature conversion (HTC)-MS/IRMS.

    Science.gov (United States)

    Renpenning, Julian; Hitzfeld, Kristina L; Gilevska, Tetyana; Nijenhuis, Ivonne; Gehre, Matthias; Richnow, Hans-Hermann

    2015-03-03

    A universal application of compound-specific isotope analysis of chlorine was thus far limited by the availability of suitable analysis techniques. In this study, gas chromatography in combination with a high-temperature conversion interface (GC-HTC), converting organic chlorine in the presence of H2 to gaseous HCl, was coupled to a dual-detection system, combining an ion trap mass spectrometer (MS) and isotope-ratio mass spectrometer (IRMS). The combination of the MS/IRMS detection enabled a detailed characterization, optimization, and online monitoring of the high-temperature conversion process via ion trap MS as well as a simultaneous chlorine isotope analysis by the IRMS. Using GC-HTC-MS/IRMS, chlorine isotope analysis at optimized conversion conditions resulted in very accurate isotope values (δ(37)Cl(SMOC)) for measured reference material with known isotope composition, including chlorinated ethylene, chloromethane, hexachlorocyclohexane, and trichloroacetic acids methyl ester. Respective detection limits were determined to be <15 nmol Cl on column with achieved precision of <0.3‰.

  9. Inactivation of human and simian rotaviruses by chlorine dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu-Shiaw (Brookhaven National Lab., Upton, NY (USA)); Vaughn, J.M. (Univ. of New England College of Medicine, Biddeford, ME (USA))

    1990-05-01

    The inactivation of single-particle stocks of human (type 2, Wa) and simian (SA-11) rotaviruses by chlorine dioxide was investigated. Experiments were conducted at 4{degree}C in a standard phosphate-carbonate buffer. Both virus types were rapidly inactivated, within 20 s under alkaline conditions, when chlorine dioxide concentrations ranging from 0.05 to 0.2 mg/liter were used. Similar reductions of 10{sup 5}-fold in infectivity required additional exposure time of 120 s at 0.2 mg/liter for Wa and at 0.5 mg/liter for SA-11, respectively, at pH 6.0. The inactivation of both virus types was moderate a neutral pH, and the sensitivities to chlorine dioxide were similar. The observed enhancement of virucidal efficiency with increasing pH was contrary to earlier findings with chlorine- and ozone-treated rotavirus particles, where efficiencies decreased with increasing alkalinity. Comparison of 99.9% virus inactivation times revealed ozone to be the most effective virucidal agent among these three disinfectants.

  10. Chlorination of uranium oxides with CCl4 using a mechanochemical method

    International Nuclear Information System (INIS)

    Kitawaki, Shinichi; Nagai, Takayuki; Sato, Nobuaki

    2013-01-01

    Highlights: • UCl 4 or UOCl 2 could be synthesized from U 3 O 8 with CCl 4 by using a planetary ball mill. • The chlorination could not be observed when using UO 2 powder as the starting material. • Extension of milling time was effective for chlorinating U 3 O 8 with the appropriate amount of CCl 4 . -- Abstract: A chlorination method for uranium oxides at low temperature was investigated by using a mechanochemical method. In particular, the possibility of the chlorination of uranium oxides, such as UO 2 and U 3 O 8 , via mechanochemical reaction with CCl 4 was studied using a planetary ball mill. Mechanochemical experiments were conducted to evaluate the effect of milling time, CCl 4 /uranium oxide molar ratio, and revolution speed on the reaction. The synthesized products were then subjected to X-ray diffraction analysis, and it was found that the chlorination of U 3 O 8 with CCl 4 to UOCl 2 , UCl 4 , and U 2 O 2 Cl 5 proceeded. However, the chlorination reaction could not be observed when using UO 2 powder as the raw material

  11. Effect of silica fume addition on the PGNAA measurement of chlorine in concrete

    International Nuclear Information System (INIS)

    Naqvi, A.A.; Maslehuddin, M.; Garwan, M.A.; Nagadi, M.M.; Al-Amoudi, O.S.B.; Raashid, M.; Khateeb-ur-Rehman

    2010-01-01

    Pozzolanic materials, such as fly ash (FA), silica fume (SF), and blast furnace slag (BFS) are added to Portland cement in concrete to prevent reinforcement steel corrosion in concrete. Further preventive measure against reinforcement steel corrosion require monitoring of chloride salts concentration in concrete using non-destructive techniques, such as the prompt gamma-ray neutron activation analysis (PGNAA) technique. Due to interferences between gamma-rays from chlorine and calcium in PGNAA technique, detection limit of chlorine in concrete strongly depends upon calcium concentration in concrete. SF mainly contains silica and its addition to cement concrete reduces overall concentration of calcium in concrete. This may result in an improvement in detection limit of chlorine in SF-based concrete in PGNAA studies. Particularly for chlorine detection using 6.11 and 6.62 MeV prompt gamma-rays that strongly interfere with 6.42 MeV prompt gamma-rays from calcium. In this study, SF was added to Portland cement to prevent concrete reinforcement steel from corrosion. The chlorine concentration in SF cement concrete specimens containing 0.2-3.0 wt% chlorine was measured through yield of 1.16, 1.95, 6.11, 6.62, 7.41, 7.79, and 8.58 MeV chlorine gamma-rays using PGNAA technique. An excellent agreement was noted between the experimental yield of the prompt gamma-rays and the gamma-ray yield calculated through the Monte Carlo simulations. Further the minimum detectable concentration (MDC) of chlorine in SF cement concrete was calculated and compared with the MDC values of chlorine in plain concrete and concrete mixed with fly ash cement. The MDC of chlorine in SF-based concrete through 6.11 MeV, and 6.62 MeV chlorine gamma-rays was found to be improved as compared to those in plain concrete and concrete mixed with fly ash cement.

  12. Effect of silica fume addition on the PGNAA measurement of chlorine in concrete

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)], E-mail: aanaqvi@kfupm.edu.sa; Maslehuddin, M. [Center for Engineering Research, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Garwan, M.A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Nagadi, M.M. [Center for Engineering Research, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Al-Amoudi, O.S.B. [Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Raashid, M.; Khateeb-ur-Rehman [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2010-03-15

    Pozzolanic materials, such as fly ash (FA), silica fume (SF), and blast furnace slag (BFS) are added to Portland cement in concrete to prevent reinforcement steel corrosion in concrete. Further preventive measure against reinforcement steel corrosion require monitoring of chloride salts concentration in concrete using non-destructive techniques, such as the prompt gamma-ray neutron activation analysis (PGNAA) technique. Due to interferences between gamma-rays from chlorine and calcium in PGNAA technique, detection limit of chlorine in concrete strongly depends upon calcium concentration in concrete. SF mainly contains silica and its addition to cement concrete reduces overall concentration of calcium in concrete. This may result in an improvement in detection limit of chlorine in SF-based concrete in PGNAA studies. Particularly for chlorine detection using 6.11 and 6.62 MeV prompt gamma-rays that strongly interfere with 6.42 MeV prompt gamma-rays from calcium. In this study, SF was added to Portland cement to prevent concrete reinforcement steel from corrosion. The chlorine concentration in SF cement concrete specimens containing 0.2-3.0 wt% chlorine was measured through yield of 1.16, 1.95, 6.11, 6.62, 7.41, 7.79, and 8.58 MeV chlorine gamma-rays using PGNAA technique. An excellent agreement was noted between the experimental yield of the prompt gamma-rays and the gamma-ray yield calculated through the Monte Carlo simulations. Further the minimum detectable concentration (MDC) of chlorine in SF cement concrete was calculated and compared with the MDC values of chlorine in plain concrete and concrete mixed with fly ash cement. The MDC of chlorine in SF-based concrete through 6.11 MeV, and 6.62 MeV chlorine gamma-rays was found to be improved as compared to those in plain concrete and concrete mixed with fly ash cement.

  13. Occupational exposure to chlorinated and petroleum solvents and mycosis fungoides

    DEFF Research Database (Denmark)

    Morales-Suárez-Varela, Maria M; Olsen, Jørn; Villeneuve, Sara

    2013-01-01

    To evaluate the potential association between occupational exposure to chlorinated and petroleum solvents and mycosis fungoides (MF).......To evaluate the potential association between occupational exposure to chlorinated and petroleum solvents and mycosis fungoides (MF)....

  14. Assessing chlorinated ethene degradation in a large scale contaminant plume by dual carbon–chlorine isotope analysis and quantitative PCR

    DEFF Research Database (Denmark)

    Hunkeler, D.; Abe, Y.; Broholm, Mette Martina

    2011-01-01

    The fate of chlorinated ethenes in a large contaminant plume originating from a tetrachloroethene (PCE) source in a sandy aquifer in Denmark was investigated using novel methods including compound-specific carbon and chlorine isotope analysis and quantitative real-time polymerase chain reaction (q...... reduction by pyrite as indicated by the formation of cDCE and stable carbon isotope data. TCE and cDCE showed carbon isotope trends typical for reductive dechlorination with an initial depletion of 13C in the daughter products followed by an enrichment of 13C as degradation proceeded. At 1000 m downgradient......DCE. The significant enrichment of 13C in VC indicates that VC was transformed further, although the mechanismcould not be determined. The transformation of cDCEwas the rate limiting step as no accumulation of VC occurred. In summary, the study demonstrates that carbon–chlorine isotope analysis and qPCR combinedwith...

  15. Volatile and Organic Compositions of Sedimentary Rocks in Yellowknife Bay, Gale Crater, Mars

    Science.gov (United States)

    Ming, D. W.; Archer, P. D.; Glavin, D. P.; Eigenbrode, J. L.; Franz, H. B.; Sutter, B.; Brunner, A. E.; Stern, J. C.; Freissinet, C.; McAdam, A. C.; Mahaffy, P. R.; Cabane, M.; Coll, P.; Campbell, J. L.; Atreya, S. K.; Niles, P. B.; Bell, J. F.; Bish, D. L.; Brinckerhoff, W. B.; Buch, A.; Conrad, P. G.; Des Marais, D. J.; Ehlmann, B. L.; Fairén, A. G.; Farley, K.; Flesch, G. J.; Francois, P.; Gellert, R.; Grant, J. A.; Grotzinger, J. P.; Gupta, S.; Herkenhoff, K. E.; Hurowitz, J. A.; Leshin, L. A.; Lewis, K. W.; McLennan, S. M.; Miller, K. E.; Moersch, J.; Morris, R. V.; Navarro-González, R.; Pavlov, A. A.; Perrett, G. M.; Pradler, I.; Squyres, S. W.; Summons, R. E.; Steele, A.; Stolper, E. M.; Sumner, D. Y.; Szopa, C.; Teinturier, S.; Trainer, M. G.; Treiman, A. H.; Vaniman, D. T.; Vasavada, A. R.; Webster, C. R.; Wray, J. J.; Yingst, R. A.; Kemppinen, Osku; Bridges, Nathan; Johnson, Jeffrey R.; Minitti, Michelle; Cremers, David; Edgar, Lauren; Farmer, Jack; Godber, Austin; Wadhwa, Meenakshi; Wellington, Danika; McEwan, Ian; Newman, Claire; Richardson, Mark; Charpentier, Antoine; Peret, Laurent; King, Penelope; Blank, Jennifer; Weigle, Gerald; Schmidt, Mariek; Li, Shuai; Milliken, Ralph; Robertson, Kevin; Sun, Vivian; Baker, Michael; Edwards, Christopher; Ehlmann, Bethany; Griffes, Jennifer; Newcombe, Megan; Pilorget, Cedric; Rice, Melissa; Siebach, Kirsten; Stack, Katie; Brunet, Claude; Hipkin, Victoria; Léveillé, Richard; Marchand, Geneviève; Sánchez, Pablo Sobrón; Favot, Laurent; Cody, George; Flückiger, Lorenzo; Lees, David; Nefian, Ara; Martin, Mildred; Gailhanou, Marc; Westall, Frances; Israël, Guy; Agard, Christophe; Baroukh, Julien; Donny, Christophe; Gaboriaud, Alain; Guillemot, Philippe; Lafaille, Vivian; Lorigny, Eric; Paillet, Alexis; Pérez, René; Saccoccio, Muriel; Yana, Charles; Armiens-Aparicio, Carlos; Rodríguez, Javier Caride; Blázquez, Isaías Carrasco; Gómez, Felipe Gómez; Gómez-Elvira, Javier; Hettrich, Sebastian; Malvitte, Alain Lepinette; Jiménez, Mercedes Marín; Martínez-Frías, Jesús; Martín-Soler, Javier; Martín-Torres, F. Javier; Jurado, Antonio Molina; Mora-Sotomayor, Luis; Caro, Guillermo Muñoz; López, Sara Navarro; Peinado-González, Verónica; Pla-García, Jorge; Manfredi, José Antonio Rodriguez; Romeral-Planelló, Julio José; Fuentes, Sara Alejandra Sans; Martinez, Eduardo Sebastian; Redondo, Josefina Torres; Urqui-O'Callaghan, Roser; Mier, María-Paz Zorzano; Chipera, Steve; Lacour, Jean-Luc; Mauchien, Patrick; Sirven, Jean-Baptiste; Manning, Heidi; Hayes, Alexander; Joseph, Jonathan; Sullivan, Robert; Thomas, Peter; Dupont, Audrey; Lundberg, Angela; Melikechi, Noureddine; Mezzacappa, Alissa; DeMarines, Julia; Grinspoon, David; Reitz, Günther; Prats, Benito; Atlaskin, Evgeny; Genzer, Maria; Harri, Ari-Matti; Haukka, Harri; Kahanpää, Henrik; Kauhanen, Janne; Kemppinen, Osku; Paton, Mark; Polkko, Jouni; Schmidt, Walter; Siili, Tero; Fabre, Cécile; Wilhelm, Mary Beth; Poitrasson, Franck; Patel, Kiran; Gorevan, Stephen; Indyk, Stephen; Paulsen, Gale; Schieber, Juergen; Gondet, Brigitte; Langevin, Yves; Geffroy, Claude; Baratoux, David; Berger, Gilles; Cros, Alain; d'Uston, Claude; Forni, Olivier; Gasnault, Olivier; Lasue, Jérémie; Lee, Qiu-Mei; Maurice, Sylvestre; Meslin, Pierre-Yves; Pallier, Etienne; Parot, Yann; Pinet, Patrick; Schröder, Susanne; Toplis, Mike; Lewin, Éric; Brunner, Will; Heydari, Ezat; Achilles, Cherie; Oehler, Dorothy; Coscia, David; Israël, Guy; Dromart, Gilles; Robert, François; Sautter, Violaine; Le Mouélic, Stéphane; Mangold, Nicolas; Nachon, Marion; Stalport, Fabien; Raulin, François; Cameron, James; Clegg, Sam; Cousin, Agnès; DeLapp, Dorothea; Dingler, Robert; Jackson, Ryan Steele; Johnstone, Stephen; Lanza, Nina; Little, Cynthia; Nelson, Tony; Wiens, Roger C.; Williams, Richard B.; Jones, Andrea; Kirkland, Laurel; Baker, Burt; Cantor, Bruce; Caplinger, Michael; Davis, Scott; Duston, Brian; Edgett, Kenneth; Fay, Donald; Hardgrove, Craig; Harker, David; Herrera, Paul; Jensen, Elsa; Kennedy, Megan R.; Krezoski, Gillian; Krysak, Daniel; Lipkaman, Leslie; Malin, Michael; McCartney, Elaina; McNair, Sean; Nixon, Brian; Posiolova, Liliya; Ravine, Michael; Salamon, Andrew; Saper, Lee; Stoiber, Kevin; Supulver, Kimberley; Van Beek, Jason; Van Beek, Tessa; Zimdar, Robert; French, Katherine Louise; Iagnemma, Karl; Miller, Kristen; Goesmann, Fred; Goetz, Walter; Hviid, Stubbe; Johnson, Micah; Lefavor, Matthew; Lyness, Eric; Breves, Elly; Dyar, M. Darby; Fassett, Caleb; Blake, David F.; Bristow, Thomas; Edwards, Laurence; Haberle, Robert; Hoehler, Tori; Hollingsworth, Jeff; Kahre, Melinda; Keely, Leslie; McKay, Christopher; Wilhelm, Mary Beth; Bleacher, Lora; Choi, David; Dworkin, Jason P.; Floyd, Melissa; Garvin, James; Harpold, Daniel; Jones, Andrea; Martin, David K.; Raaen, Eric; Smith, Michael D.; Tan, Florence; Meyer, Michael; Posner, Arik; Voytek, Mary; Anderson, Robert C.; Aubrey, Andrew; Beegle, Luther W.; Behar, Alberto; Blaney, Diana; Brinza, David; Calef, Fred; Christensen, Lance; Crisp, Joy A.; DeFlores, Lauren; Feldman, Jason; Feldman, Sabrina; Jun, Insoo; Keymeulen, Didier; Maki, Justin; Mischna, Michael; Morookian, John Michael; Parker, Timothy; Pavri, Betina; Schoppers, Marcel; Sengstacken, Aaron; Simmonds, John J.; Spanovich, Nicole; Juarez, Manuel de la Torre; Yen, Albert; Cucinotta, Francis; Jones, John H.; Rampe, Elizabeth; Nolan, Thomas; Fisk, Martin; Radziemski, Leon; Barraclough, Bruce; Bender, Steve; Berman, Daniel; Dobrea, Eldar Noe; Tokar, Robert; Williams, Rebecca M. E.; Cleghorn, Timothy; Huntress, Wesley; Manhès, Gérard; Hudgins, Judy; Olson, Timothy; Stewart, Noel; Sarrazin, Philippe; Vicenzi, Edward; Wilson, Sharon A.; Bullock, Mark; Ehresmann, Bent; Hamilton, Victoria; Hassler, Donald; Peterson, Joseph; Rafkin, Scot; Zeitlin, Cary; Fedosov, Fedor; Golovin, Dmitry; Karpushkina, Natalya; Kozyrev, Alexander; Litvak, Maxim; Malakhov, Alexey; Mitrofanov, Igor; Mokrousov, Maxim; Nikiforov, Sergey; Prokhorov, Vasily; Sanin, Anton; Tretyakov, Vladislav; Varenikov, Alexey; Vostrukhin, Andrey; Kuzmin, Ruslan; Clark, Benton; Wolff, Michael; Botta, Oliver; Drake, Darrell; Bean, Keri; Lemmon, Mark; Schwenzer, Susanne P.; Anderson, Ryan B.; Lee, Ella Mae; Sucharski, Robert; Hernández, Miguel Ángel de Pablo; Ávalos, Juan José Blanco; Ramos, Miguel; Kim, Myung-Hee; Malespin, Charles; Plante, Ianik; Muller, Jan-Peter; Ewing, Ryan; Boynton, William; Downs, Robert; Fitzgibbon, Mike; Harshman, Karl; Morrison, Shaunna; Dietrich, William; Kortmann, Onno; Palucis, Marisa; Williams, Amy; Lugmair, Günter; Wilson, Michael A.; Rubin, David; Jakosky, Bruce; Balic-Zunic, Tonci; Frydenvang, Jens; Jensen, Jaqueline Kløvgaard; Kinch, Kjartan; Koefoed, Asmus; Madsen, Morten Bo; Stipp, Susan Louise Svane; Boyd, Nick; VanBommel, Scott; Jacob, Samantha; Owen, Tobias; Rowland, Scott; Atlaskin, Evgeny; Savijärvi, Hannu; Boehm, Eckart; Böttcher, Stephan; Burmeister, Sönke; Guo, Jingnan; Köhler, Jan; García, César Martín; Mueller-Mellin, Reinhold; Wimmer-Schweingruber, Robert; Bridges, John C.; McConnochie, Timothy; Benna, Mehdi; Bower, Hannah; Blau, Hannah; Boucher, Thomas; Carmosino, Marco; Elliott, Harvey; Halleaux, Douglas; Rennó, Nilton; Wong, Michael; Pepin, Robert; Elliott, Beverley; Spray, John; Thompson, Lucy; Gordon, Suzanne; Newsom, Horton; Ollila, Ann; Williams, Joshua; Vasconcelos, Paulo; Bentz, Jennifer; Nealson, Kenneth; Popa, Radu; Kah, Linda C.; Tate, Christopher; Day, Mackenzie; Kocurek, Gary; Hallet, Bernard; Sletten, Ronald; Francis, Raymond; McCullough, Emily; Cloutis, Ed; ten Kate, Inge Loes; Kuzmin, Ruslan; Arvidson, Raymond; Fraeman, Abigail; Scholes, Daniel; Slavney, Susan; Stein, Thomas; Ward, Jennifer; Berger, Jeffrey; Moores, John E.

    2014-01-01

    H2O, CO2, SO2, O2, H2, H2S, HCl, chlorinated hydrocarbons, NO, and other trace gases were evolved during pyrolysis of two mudstone samples acquired by the Curiosity rover at Yellowknife Bay within Gale crater, Mars. H2O/OH-bearing phases included 2:1 phyllosilicate(s), bassanite, akaganeite, and amorphous materials. Thermal decomposition of carbonates and combustion of organic materials are candidate sources for the CO2. Concurrent evolution of O2 and chlorinated hydrocarbons suggests the presence of oxychlorine phase(s). Sulfides are likely sources for sulfur-bearing species. Higher abundances of chlorinated hydrocarbons in the mudstone compared with Rocknest windblown materials previously analyzed by Curiosity suggest that indigenous martian or meteoritic organic carbon sources may be preserved in the mudstone; however, the carbon source for the chlorinated hydrocarbons is not definitively of martian origin.

  16. Volatile and organic compositions of sedimentary rocks in Yellowknife Bay, Gale crater, Mars

    Science.gov (United States)

    Ming, D. W.; Archer, P.D.; Glavin, D.P.; Eigenbrode, J.L.; Franz, H.B.; Sutter, B.; Brunner, A.E.; Stern, J.C.; Freissinet, C.; McAdam, A.C.; Mahaffy, P.R.; Cabane, M.; Coll, P.; Campbell, J.L.; Atreya, S.K.; Niles, P.B.; Bell, J.F.; Bish, D.L.; Brinckerhoff, W.B.; Buch, A.; Conrad, P.G.; Des Marais, D.J.; Ehlmann, B.L.; Fairén, A.G.; Farley, K.; Flesch, G.J.; Francois, P.; Gellert, Ralf; Grant, J. A.; Grotzinger, J.P.; Gupta, S.; Herkenhoff, K. E.; Hurowitz, J.A.; Leshin, L.A.; Lewis, K.W.; McLennan, S.M.; Miller, Karl E.; Moersch, J.; Morris, R.V.; Navarro- González, R.; Pavlov, A.A.; Perrett, G.M.; Pradler, I.; Squyres, S. W.; Summons, Roger E.; Steele, A.; Stolper, E.M.; Sumner, D.Y.; Szopa, C.; Teinturier, S.; Trainer, M.G.; Treiman, A.H.; Vaniman, D.T.; Vasavada, A.R.; Webster, C.R.; Wray, J.J.; Yingst, R.A.

    2014-01-01

    H2O, CO2, SO2, O2, H2, H2S, HCl, chlorinated hydrocarbons, NO, and other trace gases were evolved during pyrolysis of two mudstone samples acquired by the Curiosity rover at Yellowknife Bay within Gale crater, Mars. H2O/OH-bearing phases included 2:1 phyllosilicate(s), bassanite, akaganeite, and amorphous materials. Thermal decomposition of carbonates and combustion of organic materials are candidate sources for the CO2. Concurrent evolution of O2 and chlorinated hydrocarbons suggests the presence of oxychlorine phase(s). Sulfides are likely sources for sulfur-bearing species. Higher abundances of chlorinated hydrocarbons in the mudstone compared with Rocknest windblown materials previously analyzed by Curiosity suggest that indigenous martian or meteoritic organic carbon sources may be preserved in the mudstone; however, the carbon source for the chlorinated hydrocarbons is not definitively of martian origin.

  17. Volatile and organic compositions of sedimentary rocks in Yellowknife Bay, Gale crater, Mars.

    Science.gov (United States)

    Ming, D W; Archer, P D; Glavin, D P; Eigenbrode, J L; Franz, H B; Sutter, B; Brunner, A E; Stern, J C; Freissinet, C; McAdam, A C; Mahaffy, P R; Cabane, M; Coll, P; Campbell, J L; Atreya, S K; Niles, P B; Bell, J F; Bish, D L; Brinckerhoff, W B; Buch, A; Conrad, P G; Des Marais, D J; Ehlmann, B L; Fairén, A G; Farley, K; Flesch, G J; Francois, P; Gellert, R; Grant, J A; Grotzinger, J P; Gupta, S; Herkenhoff, K E; Hurowitz, J A; Leshin, L A; Lewis, K W; McLennan, S M; Miller, K E; Moersch, J; Morris, R V; Navarro-González, R; Pavlov, A A; Perrett, G M; Pradler, I; Squyres, S W; Summons, R E; Steele, A; Stolper, E M; Sumner, D Y; Szopa, C; Teinturier, S; Trainer, M G; Treiman, A H; Vaniman, D T; Vasavada, A R; Webster, C R; Wray, J J; Yingst, R A

    2014-01-24

    H2O, CO2, SO2, O2, H2, H2S, HCl, chlorinated hydrocarbons, NO, and other trace gases were evolved during pyrolysis of two mudstone samples acquired by the Curiosity rover at Yellowknife Bay within Gale crater, Mars. H2O/OH-bearing phases included 2:1 phyllosilicate(s), bassanite, akaganeite, and amorphous materials. Thermal decomposition of carbonates and combustion of organic materials are candidate sources for the CO2. Concurrent evolution of O2 and chlorinated hydrocarbons suggests the presence of oxychlorine phase(s). Sulfides are likely sources for sulfur-bearing species. Higher abundances of chlorinated hydrocarbons in the mudstone compared with Rocknest windblown materials previously analyzed by Curiosity suggest that indigenous martian or meteoritic organic carbon sources may be preserved in the mudstone; however, the carbon source for the chlorinated hydrocarbons is not definitively of martian origin.

  18. Prompt gamma-ray analysis of chlorine in superpozz cement concrete

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A., E-mail: aanaqvi@kfupm.edu.sa [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Kalakada, Zameer [Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Al-Matouq, Faris A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Maslehuddin, M. [Center for Engineering Research, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Al-Amoudi, O.S.B. [Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Ur-Rehman, Khateeb [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia)

    2012-11-21

    The chlorine concentration in Superpozz (SPZ) cement concrete was analyzed using a newly designed prompt gamma-ray neutron activation (PGNAA) setup utilizing a portable neutron generator. The setup, which mainly consists of a neutron source along with its moderator placed side by side with a shielded gamma-ray detector, allows determining chloride concentration in a concrete structure from one side. The setup has been tested through chlorine detection in chloride-contaminated Superpozz (SPZ) cement concrete specimens using 6.11 and 2.86{+-}3.10 MeV chlorine prompt gamma-rays. The optimum 0.032{+-}0.012 wt% value of Minimum Detectable Concentration (MDC) of chlorine in SPZ cement concrete measured in this study shows a successful application of a portable neutron generator in chloride analysis of concrete structure for corrosion studies.

  19. Dehalogenation of Chlorinated Hydroxybiphenyls by Fungal Laccase

    Science.gov (United States)

    Schultz, Asgard; Jonas, Ulrike; Hammer, Elke; Schauer, Frieder

    2001-01-01

    We have investigated the transformation of chlorinated hydroxybiphenyls by laccase produced by Pycnoporus cinnabarinus. The compounds used were transformed to sparingly water-soluble colored precipitates which were identified by gas chromatography-mass spectrometry as oligomerization products of the chlorinated hydroxybiphenyls. During oligomerization of 2-hydroxy-5-chlorobiphenyl and 3-chloro-4-hydroxybiphenyl, dechlorinated C—C-linked dimers were formed, demonstrating the dehalogenation ability of laccase. In addition to these nonhalogenated dimers, both monohalogenated and dihalogenated dimers were identified. PMID:11526052

  20. Pourbaix diagrams for the system copper-chlorine at 5-100 deg C

    Energy Technology Data Exchange (ETDEWEB)

    Beverskog, B. [Studsvik Material AB, Nykoeping (Sweden); Puigdomenech, I. [Studsvik Eco and Safety AB, Nykoeping (Sweden)

    1998-04-01

    Pourbaix diagrams for the copper-chlorine system in the temperature interval 5-100 deg C have been revised. Predominance diagrams for dissolved copper containing species have also been calculated. Two different total concentrations of each dissolved element, 10{sup -4} and 10{sup -6} molal for copper and 0.2 and 1.5 molal for chlorine have been used in the calculations. Chloride is the predominating chlorine species in aqueous solutions. Presence of chloride increases the corrosion regions of copper at the expense of the immunity and passivity regions in the Pourbaix diagrams. CuCl{sub 2} {center_dot} 3Cu(OH){sub 2} is the only copper-chloride solid phase that forms at the concentrations of chlorine studied. However, its stability area decreases with increasing temperature. The ion CuCl{sub 2}{sup -} predominates at all temperatures at [Cl(aq)]{sub tot}=0.2 molal and this reduces the immunity and passivity areas. A corrosion region exists between the immunity and passivity regions at 100 deg C at [Cu(aq)]{sub tot}=10{sup -6} and [Cl(aq)]{sub tot}=0.2 molal. At the chlorine concentration of 1.5 molal the corrosion region exists in the whole temperature range investigated. The ion CuCl{sub 3}{sup 2-} predominates at 5-25 and 100 deg C, while CuCl{sub 2}{sup -} predominates at 50-80 deg C at [Cl(aq)]{sub tot=}1-5 molal. A copper concentration of 10{sup -4} molal reduces the corrosion areas due to expansion of the immunity and passivity areas. However, a corrosion region still exists between the immunity and passivity regions at all investigated temperatures at pH{sub {Tau}}<9.5 and 1.5 molal chloride concentration. According to our calculations the copper canisters in the deep nuclear waste repository should not corrode at the copper concentration of 10{sup -6} molal and the chloride concentration of 0.2 molal. However, at 80-100 deg C the equilibrium potentials postulated for the Swedish nuclear repository are dangerously close to a corrosion situation. According to