WorldWideScience

Sample records for total fatty acids

  1. Determination of the seasonal changes on total fatty acid ...

    African Journals Online (AJOL)

    Total fatty acid compositions and seasonal variations of Oncorhynchus mykiss in Ivriz Dam Lake, Turkey were investigated using gas chromatographic method. A total of 38 different fatty acids were determined in the fatty acid composition of rainbow trout. Polyunsaturated fatty acids (PUFAs) were found to be higher than ...

  2. Profile of Fatty Acids, Amino Acids, Carotenoid Total, and α-Tocopherol from Flying Fish Eggs

    Directory of Open Access Journals (Sweden)

    Aulia Azka

    2015-12-01

    Full Text Available Flying fish are found in waters of eastern Indonesia, which until now is still limited information about nutritional content. The purpose of this research was determine the composition of fatty acids, amino acids, total carotenoids, α-tocopherol flying fish eggs (Hyrundicthys sp.. The composition of fatty acid was measured by gas chromatography (GC, while amino acids, total carotenoids, α-tocopherol was measured by High performanced Liquid Chromatography (HPLC. Egg contained 22 fatty acids such as saturated fatty acid 29.71%, monounsaturated fatty acid 7.86%, and polysaturated fatty acid 13.64%. The result showed that eggs flying fish contained 17 amino acids, such as essential amino acid 14.96% and non-essential amino acids 20.27%. Eggs contained a total carotenoid of 245.37 ppm. α-tocopherol content of flying fish eggs by 1.06 ppm.

  3. Profile of Fatty Acids, Amino Acids, Carotenoid Total, and α-Tocopherol from Flying Fish Eggs

    Directory of Open Access Journals (Sweden)

    Aulia Azka

    2015-12-01

    Full Text Available Flying fish are found in waters of eastern Indonesia, which until now is still limited informationabout nutritional content. The purpose of this research was determine the composition offatty acids, amino acids, total carotenoids, α-tocopherol flying fish eggs (Hyrundicthys sp..The composition of fatty acid was measured by gas chromatography (GC, while amino acids,total carotenoids, α-tocopherol was measured by High performanced Liquid Chromatography(HPLC. Egg contained 22 fatty acids such as saturated fatty acid 29.71%, monounsaturated fattyacid 7.86%, and polysaturated fatty acid 13.64%. The result showed that eggs flying fish contained17 amino acids, such as essential amino acid 14.96% and non-essential amino acids 20.27%. Eggscontained a total carotenoid of 245.37 ppm. α-tocopherol content of flying fish eggs by 1.06 ppm.Keywords: Amino acids, carotenoid total, fatty acid, flying fish egg, α-tocopherol

  4. Total Oil Content and Fatty Acid Profile of some Almond (Amygdalus Communis L. Cultivars

    Directory of Open Access Journals (Sweden)

    Yildirim Adnan Nurhan

    2016-07-01

    Full Text Available This study was conducted to determine the total oil contents and fatty acid compositions of some commercial almond cultivars. The total oil contents changed significantly (p<0.05 by year in all cultivars with the exception of cultivar Ferrastar. Total oil contents were changed from 50.90% (Picantili to 62.01% (Supernova in 2008 and from 52.44% (Lauranne to 63.18% (Cristomorto in 2009. While predominant unsaturated fatty acids were oleic and linoleic acids, predominant saturated fatty acid was palmitic acid. The highest amount of oleic acid was obtained in Glorieta in both 2008 (83.35% and 2009 (72.74%. Linoleic acid content varied by year and the highest content was recorded in Picantili (26.08% in 2008 and Yaltinski (30.01% in 2009. The highest amount of palmitic acid was detected in cultivar Sonora in both years, i.e. as 7.76% in 2008 and 10.11% in 2009. The mean UFA:SFA ratio was 11.73 in 2008 but 7.59 in 2009. Principal component (PC analysis indicated that palmitic acid, palmitoleic acid, stearic acid, oleic acid, arachidic acid, unsaturated fatty acid (UFA, saturated fatty acid (SFA and UFA:SFA ratio were primarily responsible for the separation on PC1

  5. Intake of total omega-3 fatty acids, eicosapentaenoic acid and docosahexaenoic acid and risk of coronary heart disease in the Spanish EPIC cohort study.

    Science.gov (United States)

    Amiano, P; Machón, M; Dorronsoro, M; Chirlaque, M Dolores; Barricarte, A; Sánchez, M-J; Navarro, C; Huerta, J M; Molina-Montes, E; Sánchez-Cantalejo, E; Urtizberea, M; Arriola, L; Larrañaga, N; Ardanaz, E; Quirós, J R; Moreno-Iribas, C; González, C A

    2014-03-01

    The evidence about the benefits of omega-3 fatty acid intake on coronary heart disease (CHD) is not consistent. We thus aimed to assess the relation between dietary intake of total omega-3 fatty acids (from plant and marine foods) and marine polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), on the risk of CHD in the Spanish cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC). The analysis included 41,091 men and women aged 20-69 years, recruited from 1992 to 1996 and followed-up until December 2004. Omega-3 fatty acid intake was estimated from a validated dietary questionnaire. Only participants with definite incident CHD event were considered as cases. Cox regression models were used to assess the association between the intake of total omega-3 fatty acids, EPA or DHA and CHD. A total of 609 participants (79% men) had a definite CHD event. Mean intakes of total omega-3 fatty acids, EPA and DHA were very similar in the cases and in the cohort, both in men and women. In the multivariate adjusted model, omega-3 fatty acids, EPA and DHA were not related to incident CHD in either men or women. The hazard ratios (HR) for omega-3 were 1.23 in men (95% CI 0.94-15.9, p = 0.20); and 0.77 in women (95% CI 0.46-1.30, p = 0.76). In the Spanish EPIC cohort, with a relatively high intake of fish, no association was found between EPA, DHA and total omega-3 fatty acid intake and risk of CHD. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Fatty acid composition of Swedish bakery products, with emphasis on trans-fatty acids.

    Science.gov (United States)

    Trattner, Sofia; Becker, Wulf; Wretling, Sören; Öhrvik, Veronica; Mattisson, Irene

    2015-05-15

    Trans-fatty acids (TFA) have been associated with increased risk of coronary heart disease, by affecting blood lipids and inflammation factors. Current nutrition recommendations emphasise a limitation of dietary TFA intake. The aim of this study was to investigate fatty acid composition in sweet bakery products, with emphasis on TFA, on the Swedish market and compare fatty acid composition over time. Products were sampled in 2001, 2006 and 2007 and analysed for fatty acid composition by using GC. Mean TFA levels were 0.7% in 2007 and 5.9% in 2001 of total fatty acids. In 1995-97, mean TFA level was 14.3%. In 2007, 3 of 41 products had TFA levels above 2% of total fatty acids. TFA content had decreased in this product category, while the proportion of saturated (SFA) and polyunsaturated (PUFA) fatty acids had increased, mostly through increased levels of 16:0 and 18:2 n-6, respectively. The total fat content remained largely unchanged. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Effect of nutrients on total lipid content and fatty acids profile of Scenedesmus obliquus

    Directory of Open Access Journals (Sweden)

    Behrouz Zarei Darki

    2017-05-01

    Full Text Available ABSTRACT The effect of nutrients on the total lipid content and fatty acid profile of Scenedesmus obliquus isolated from the south coast of the Caspian Sea was evaluated. The nutritional compositions of the media impacted the growth rate and biomass of S. obliquus that ranged from 0.175 day-1 to 0.209 day-1and 0.92 gr·l-1 to 1.79 gr·l-1, respectively. The alga grew better in the medium which was characterized by higher levels of sodium and trace elements such as Fe, Mn, Mo, and Co and poor in N and P as compared with the other media. The highest level of the total lipid (32% and the highest values of saturated fatty acids, in particular palmitic acid also were positively correlated with these nutrients. Peaks in polyunsaturated fatty acids (43.7 %, especially α-linolenic acid (28.4% were related to N and P, but its correlation with K and Mg was more evident. The most important factors correlated with high amount of monounsaturated fatty acids were also N and P, followed by K and Mg to a lesser extent. This study demonstrated that the same algal strain may be a source of different amount of fatty acids, depending on the composition of the culture medium.

  8. Light enhanced the accumulation of total fatty acids (TFA) and docosahexaenoic acid (DHA) in a newly isolated heterotrophic microalga Crypthecodinium sp. SUN.

    Science.gov (United States)

    Sun, Dongzhe; Zhang, Zhao; Mao, Xuemei; Wu, Tao; Jiang, Yue; Liu, Jin; Chen, Feng

    2017-03-01

    In the present study, light illumination was found to be efficient in elevating the total fatty acid content in a newly isolated heterotrophic microalga, Crypthecodinium sp. SUN. Under light illumination, the highest total fatty acid and DHA contents were achieved at 96h as 24.9% of dry weight and 82.8mgg -1 dry weight, respectively, which were equivalent to 1.46-fold and 1.68-fold of those under the dark conditions. The elevation of total fatty acid content was mainly contributed by an increase of neutral lipids at the expense of starches. Moreover, light was found to alter the cell metabolism and led to a higher specific growth rate, higher glucose consumption rate and lower non-motile cell percentage. This is the first report that light can promote the total fatty acids accumulation in Crypthecodinium without growth inhibition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Total fatty acid content of the plasma membrane of Saccharomyces cerevisiae is more responsible for ethanol tolerance than the degree of unsaturation.

    Science.gov (United States)

    Kim, Hyun-Soo; Kim, Na-Rae; Choi, Wonja

    2011-03-01

    The effect of change in unsaturated fatty acid composition on ethanol tolerance in Saccharomyces cerevisiae overexpressing ScOLE1 (∆9 fatty acid desaturase gene of S. cerevisiae), CaFAD2 (∆12 fatty acid desaturase gene of Candida albicans), or CaFAD3 (ω3 fatty acid desaturase gene of C. albicans) was examined. ScOLE1 over-expression increased the total unsaturated fatty acid content and enhanced ethanol tolerance, compared with a control strain. In contrast, overexpression of CaFAD2 and CaFAD3, which led to production of linoleic acid (18:2) and α-linolenic acid (18:3), respectively, neither changed total unsaturated fatty acids nor enhanced ethanol tolerance. The total unsaturated fatty acid content rather than the degree of unsaturation is thus an important factor for ethanol tolerance.

  10. EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA); Scientific Opinion on Dietary Reference Values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol

    DEFF Research Database (Denmark)

    Tetens, Inge

    This Opinion of the EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA) deals with the setting of Dietary Reference Values (DRVs) for fats. A lower bound of the reference intake range for total fat of 20 energy % (E%) and an upper bound of 35 E% are proposed. Fat intake in infants can......-linolenic acid (ALA) of 0.5 E%; not to set an UL for ALA; to set an AI of 250 mg for eicosapentaenoic acid (EPA) plus docosahexaenoic acid (DHA) for adults; to set an AI of 100 mg DHA for infants (>6 months) and young children...... gradually be reduced from 40 E% in the 6-12 month period to 35-40 E% in the 2nd and 3rd year of life. For specific fatty acids the following is proposed: saturated fatty acid (SFA) and trans fatty acid intake should be as low as possible; not to set any DRV for cis-monounsaturated fatty acids......; not to formulate a DRV for the intake of total cis-polyunsaturated fatty acids (PUFA); not to set specific values for the n-3/n-6 ratio; to set an Adequate Intake (AI) of 4 E% for linoleic acid (LA); not to set any DRV for arachidonic acid; not to set an UL for total or any of the n-6 PUFA; to set an AI for alpha...

  11. Fatty Acid Biosynthesis IX

    DEFF Research Database (Denmark)

    Carey, E. M.; Hansen, Heinz Johs. Max; Dils, R.

    1972-01-01

    # 1. I. [I-14C]Acetate was covalently bound to rabbit mammary gland fatty acid synthetase by enzymic transacylation from [I-14C]acetyl-CoA. Per mole of enzyme 2 moles of acetate were bound to thiol groups and up to I mole of acetate was bound to non-thiol groups. # 2. 2. The acetyl-fatty acid...... synthetase complex was isolated free from acetyl-CoA. It was rapidly hydrolysed at 30°C, but hydrolysis was greatly diminished at o°C and triacetic lactone synthesis occurred. In the presence of malonyl-CoA and NADPH, all the acetate bound to fatty acid synthetase was incorporated into long-chain fatty acids....... Hydrolysis of bound acetate and incorporation of bound acetate into fatty acids were inhibited to the same extent by guanidine hydrochloride. # 3. 3. Acetate was also covalently bound to fatty acid synthetase by chemical acetylation with [I-14C]acetic anhydride in the absence of CoASH. A total of 60 moles...

  12. Keloids in rural black South Africans. Part 2: dietary fatty acid intake and total phospholipid fatty acid profile in the blood of keloid patients.

    Science.gov (United States)

    Louw, L; Dannhauser, A

    2000-11-01

    In the second part of this study, emphasis is placed on nutritional intakes (fatty acids and micronutrients) and fatty acid intake and metabolism in the blood, respectively, according to a combined 24 h recall and standardized food frequency questionnaire analyses of keloid prone patients (n=10), compared with normal black South Africans (n=80), and total phospholipid blood (plasma and red blood cell ) analyses of keloid patients (n=20), compared with normal individuals (n=20). Lipid extraction and fractionation by standard procedures, total phospholipid (TPL) separation with thin layer chromatography, and fatty acid methyl ester analyses with gas liquid chromatography techniques were used. Since nutrition may play a role in several disease disorders, the purpose of this study was to confirm or refute a role for essential fatty acids (EFAs) in the hypothesis of keloid formations stated in part 1 of this study. (1)According to the Canadian recommendation (1991), we observed that in keloid patients linoleic acid (LA) and arachidonic acid (AA) dietary intakes, as EFAs of the omega-6-series, are higher than the recommended 7-11 g/d. However, the a-linolenic acid (ALA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) dietary intakes, as EFAs of the omega-3 series, are lower than the recommendation of 1.1-1.5 g/d. This was also the case in the control group, where a higher dietary intake of the omega-6 fatty acids and a slightly lower dietary intake of the omega-3 fatty acids occurred. Thus, we confirm a high dietary intake of LA (as a product of organ meats, diary products and many vegetable oils) and AA (as a product of meats and egg yolks), as well as lower dietary intakes of ALA (as a product of grains, green leafy vegetables, soy oil, rapeseed oil and linseed), and EPA and DHA (as products of marine oils). Lower micronutrient intakes than the recommended dietary allowances were observed in the keloid group that may influence EFA metabolism and/or collagen

  13. Determination of fruit characteristics, fatty acid profile and total antioxidant capacity of Mespilus germanica L. fruit

    Directory of Open Access Journals (Sweden)

    Hale Seçilmiş Canbay

    2015-11-01

    Full Text Available Objective: To determine fruit characteristics, fatty acid profile and total antioxidant capacitiy of first cultured Mespilus germanica L. Methods: A total of 15 fruits were taken randomly from four directions of adult trees. Then the physical and chemical properties of first cultured medlar fruit (Istanbul/Turkey were measured by using refractometer, colorimeter, spectrophotometer and gas chromatograph mass spectrometer, respectivly. Results: In the fruit studied, the results showed that palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, arachidic acid and behenic acid were the most abundant fatty acids (FAs, and the main FA was palmitic acid [(35.35 ± 1.20%]. The percentage of linoleic acid and stearic acid in this fruit oil were (29.10 ± 1.70% and (8.53 ± 0.25%, respectively. As a result of the analysis, the total antioxidant capacity of medlar fruit was (1.1 ± 0.2 mmol trolox equivalents/L. Conclusions: The present study has demonstrated the concentrations of FAs and the antioxidantive capacity of first cultured Istanbul medlar fruits by using many tested methods. It is proved that in our daily life, medlar fruit plays a significant role with its nutrition and health effect.

  14. Effect of dietary lignocellulose on ileal and total tract digestibility of fat and fatty acids in broiler chickens.

    Science.gov (United States)

    Bogusławska-Tryk, M; Piotrowska, A; Szymeczko, R; Burlikowska, K

    2016-12-01

    The study was conducted to determine the effect of a lignocellulose supplemented diet on apparent ileal and total tract digestibility of fat and fatty acids (FA) in broiler chickens. A total of 48 21-day-old male Ross 308 chickens were divided into four treatment groups (n = 12) with six replicates per treatment. From 21 to 42 days of age, the broilers were fed experimental diets varied in the amount of lignocellulose: 0%, 0.25%, 0.5% and 1%. Total excreta were gathered during the last 3 days of the feeding trial and digesta was collected from the ileum at 42 days of the bird age. Digestibility was determined by the indicator method. The ether extract content in diet/digesta/excreta was determined by the gravimetric method, and fatty acid methyl esters were analysed by gas chromatography-mass spectrometry. Fat digestibility measured to the end of the small intestine and in the whole gastrointestinal tract in birds was high and exceeded 90% and 87% respectively. Addition of lignocellulose (1%) increased (p digestibility but had no significant effect on total tract fat digestion. Absorption of total fatty acids (TFA) as well as myristic (C14:0), palmitoleic (C16:1) and α-linolenic (C18:3n-3) acids, estimated by both methods, was significantly higher in birds fed the diets supplemented with lignocellulose, especially at a dose of 1%. Total tract absorption of some dietary polyunsaturated fatty acids (PUFA) (C20:2, C20:4n-6) was significantly lower from diet supplemented with 0.5% and 0.25% lignocellulose. There was observed a decrease in apparent digestibility of fat and most examined fatty acids, when measured between terminal ileum and total gastrointestinal tract. The results suggest that lignocellulose can affect digestion and FA absorption in broilers but, as the effect of lignocellulose was not studied previously, further investigations are necessary to confirm the results of the present experiment. Journal of Animal Physiology and Animal Nutrition © 2016

  15. Fatty acid composition of total lipids and phospholipids of muscular tissue and brain of rats under the impact of vibration

    Directory of Open Access Journals (Sweden)

    N. M. Kostyshyn

    2016-06-01

    Full Text Available Fatty acids are important structural components of biological membranes, energy substrate of cells involved in fixing phospholipid bilayer proteins, and acting as regulators and modulators of enzymatic activity. Under the impact of vibration oscillations there can occur shifts in the ratio of different groups of fatty acids, and degrees of their saturation may change. The imbalance between saturated, monounsaturated and polyunsaturated fatty acids, which occurs later in the cell wall, disrupts fluidity and viscosity of lipid phase and causes abnormal cellular metabolism. Aim. In order to study the impact of vibration on the level of fatty acids of total lipids in muscular tissue and fatty acid composition of phospholipids in muscles and brain, experimental animals have been exposed to vertical vibration oscillations with different frequency for 28 days. Methods and results. Tissues fragments of hip quadriceps and brain of rats were used for obtaining methyl esters of fatty acids studied by the method of gas-liquid chromatography. It was found that the lipid content, ratio of its separate factions and fatty acid composition in muscular tissue and brain of animals with the action of vibration considerably varies. With the increase of vibration acceleration tendency to increase in absolute quantity of total lipids fatty acids can be observed at the account of increased level of saturated and monounsaturated ones. These processes are caused by activation of self-defense mechanisms of the body under the conditions of deviations from stabilized physiological norm, since adaptation requires certain structural and energy costs. Increase in the relative quantity of saturated and monounsaturated fatty acids in phospholipids of muscles and brain and simultaneous reduction in concentration of polyunsaturated fatty acids are observed. Conclusion. These changes indicate worsening of structural and functional organization of muscles and brain cell membranes of

  16. Changes in total lipids and fatty acid contents in sterilized flies of the onion bulb fly, Eumerus Amoenus loew (Diptera; Syrphidae)

    International Nuclear Information System (INIS)

    Souka, S.; Hegazy, R.A.; El-Saeadi, A.A.; Abdel-Salam, A.L.

    1996-01-01

    The changes in total lipids and fatty acid composition of the 5 day-old adults sterilized as 5,6 and 7 day-old pupae, reared on onion, were determined. Females of E. Amoenus adults contained significantly higher (1.8 folds) total lipid than males. Percent reduction in lipid contents increased by sterilization. The relative abundance of the fatty acids C 16, C 18:1, C 18:2 and C 14 was similar in both sexes. The content of total saturated fatty acid decreased in males sterilized as pupae 5 and 6 day-old, however, different data were observed for those irradiated as 7 day-old pupae. 1 fig., 1 tab

  17. Effect of total solids content on methane and volatile fatty acid production in anaerobic digestion of food waste.

    Science.gov (United States)

    Liotta, Flavia; d'Antonio, Giuseppe; Esposito, Giovanni; Fabbricino, Massimiliano; van Hullebusch, Eric D; Lens, Piet N L; Pirozzi, Francesco; Pontoni, Ludovico

    2014-10-01

    This work investigates the role of the moisture content on anaerobic digestion of food waste, as representative of rapidly biodegradable substrates, analysing the role of volatile fatty acid production on process kinetics. A range of total solids from 4.5% to 19.2% is considered in order to compare methane yields and kinetics of reactors operated under wet to dry conditions. The experimental results show a reduction of the specific final methane yield of 4.3% and 40.8% in semi-dry and dry conditions compared with wet conditions. A decreasing trend of the specific initial methane production rate is observed when increasing the total solids concentration. Because of lack of water, volatile fatty acids accumulation occurs during the first step of the process at semi-dry and dry conditions, which is considered to be responsible for the reduction of process kinetic rates. The total volatile fatty acids concentration and speciation are proposed as indicators of process development at different total solids content. © The Author(s) 2014.

  18. [CONTENT OF TRANS FATTY ACIDS IN FOOD PRODUCTS IN SPAIN].

    Science.gov (United States)

    Robledo de Dios, Teresa; Dal Re Saavedra, M Ángeles; Villar Villalba, Carmen; Pérez-Farinós, Napoleón

    2015-09-01

    trans fatty acids are associated to several health disorders, as ischemic heart disease or diabetes mellitus. to assess the content of trans fatty acids in products in Spain, and the percentage of trans fatty acids respecting total fatty acids. 443 food products were acquired in Spain, and they were classified into groups. The content in fatty acids was analyzed using gas chromatography. Estimates of central tendency and variability of the content of trans fatty acids in each food group were computed (in g of trans fatty acids/100 g of product). The percentage of trans fatty acids respecting total fatty acids was calculated in each group. 443 products were grouped into 42 groups. Median of trans fatty acids was less than 0.55 g / 100 g of product in all groups except one. 83 % of groups had less than 2 % of trans fatty acids, and 71 % of groups had less than 1 %. the content of trans fatty acids in Spain is low, and it currently doesn't play a public health problem. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  19. Association between very long chain fatty acids in the meibomian gland and dry eye resulting from n-3 fatty acid deficiency.

    Science.gov (United States)

    Tanaka, Hideko; Harauma, Akiko; Takimoto, Mao; Moriguchi, Toru

    2015-06-01

    In our previously study, we reported lower tear volume in with an n-3 fatty acid deficient mice and that the docosahexaenoic acid and total n-3 fatty acid levels in these mice are significantly reduced in the meibomian gland, which secretes an oily tear product. Furthermore, we noted very long chain fatty acids (≥25 carbons) in the meibomian gland. To verify the detailed mechanism of the low tear volume in the n-3 fatty acid-deficient mice, we identified the very long chain fatty acids in the meibomian gland, measured the fatty acid composition in the tear product. Very long chain fatty acids were found to exist as monoesters. In particular, very long chain fatty acids with 25-29 carbons existed for the most part as iso or anteiso branched-chain fatty acids. n-3 fatty acid deficiency was decreased the amount of meibum secretion from meibomian gland without change of fatty acid composition. These results suggest that the n-3 fatty acid deficiency causes the enhancement of evaporation of tear film by reducing oily tear secretion along with the decrease of meibomian gland function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Fatty acid composition of ostrich (Struthio camelus abdominal adipose tissue

    Directory of Open Access Journals (Sweden)

    Daniela Belichovska

    2015-03-01

    Full Text Available Fatty acid composition of foods has a great impact on nutrition and health. Therefore, thе determination and knowledge of the fatty acid composition of food is very important for nutrition. Due to the high nutritional characteristics of ostrich meat and its products, the research determining their quality is of topical interest. The aim of the present investigation was the determination of fatty acid composition of ostrich adipose tissue. The content of fatty acids was determined according to AOAC Official Methods of Analysis and determination was performed using a gas chromatograph with a flame-ionization detector (GC-FID. The results are expressed as a percentage of the total content of fatty acids. The method was validated and whereupon the following parameters were determined: linearity, precision, recovery, limit of detection and limit of quantification. The repeatability was within of 0.99 to 2.15%, reproducibility from 2.01 to 4.57%, while recovery ranged from 94.89 to 101.03%. According to these results, this method is accurate and precise and can be used for analysis of fatty acids in foods. It was concluded that the content of saturated fatty acids (SFA accounted 34.75%, of monounsaturated fatty acids (MUFA 38.37%, of polyunsaturated fatty acids (PUFA 26.88%, of total unsaturated fatty acids (UFA 65.25% and of desirable fatty acids (DFA (total unsaturated + stearic acid 70.37% of the analysed samples. The ratio polyunsaturated/saturated fatty acids accounted 0.77. The most present fatty acid is the oleic (C18:1n9c with 28.31%, followed by palmitic (C16:0 with 27.12% and linoleic (C18:2n6c acid with 25.08%. Other fatty acids are contained in significantly lower quantities.

  1. Study on the change of total fat content and fatty acid composition of the ethanol extract from cooking drips of thunnus thynnus by ionizing irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Sub; Choi, Jong Il; Kim, Hyun Joo; Kim, Jin Kyu; Byun, Myung Woo; Lee, Ju Woon [Team for Radiation Food Science and Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Yoo, Cheon Woo; Kim, Ju Bong [Dongwon Research and Development Center, Seongnam (Korea, Republic of); Hwang, Young Jung [Division of Food Science, Jinju International University, Jinju (Korea, Republic of); Chung, Young Jin [Dept. of Food and Nutrition, Chungnam National University, Daejeon (Korea, Republic of)

    2008-05-15

    This study was conducted to examine the effect of a gamma irradiation (GM) and an electron-beam irradiation (EB) on the total fat content and fatty acid composition of ethanol extract from cooking drips of Thunnus thynnus (ECT). The total fat content of samples were determined by fat extraction (Folch method) and fatty acid composition was by gas chromatography mass spectrometry (GC-MS) after fat extraction. The results showed that total fat contents were not changed by GM and EB up to the dose of 50 kGy. The content of unsaturated fatty acids (USFA) such as vaccenic acid and DHA, was decreased by irradiation. But, the content of palmitoleic acid was not changed by GM. In contrast, the content of saturated fatty acids(SFA) such as myristic acid and palmitic acid, was increased by the irradiation. But, the content of stearic acid was decreased with the increase of irradiation dose. Also, it has been shown that the GM had further affected the change of fatty acid content than EB.

  2. Study on the change of total fat content and fatty acid composition of the ethanol extract from cooking drips of thunnus thynnus by ionizing irradiation

    International Nuclear Information System (INIS)

    Lee, Hee Sub; Choi, Jong Il; Kim, Hyun Joo; Kim, Jin Kyu; Byun, Myung Woo; Lee, Ju Woon; Yoo, Cheon Woo; Kim, Ju Bong; Hwang, Young Jung; Chung, Young Jin

    2008-01-01

    This study was conducted to examine the effect of a gamma irradiation (GM) and an electron-beam irradiation (EB) on the total fat content and fatty acid composition of ethanol extract from cooking drips of Thunnus thynnus (ECT). The total fat content of samples were determined by fat extraction (Folch method) and fatty acid composition was by gas chromatography mass spectrometry (GC-MS) after fat extraction. The results showed that total fat contents were not changed by GM and EB up to the dose of 50 kGy. The content of unsaturated fatty acids (USFA) such as vaccenic acid and DHA, was decreased by irradiation. But, the content of palmitoleic acid was not changed by GM. In contrast, the content of saturated fatty acids(SFA) such as myristic acid and palmitic acid, was increased by the irradiation. But, the content of stearic acid was decreased with the increase of irradiation dose. Also, it has been shown that the GM had further affected the change of fatty acid content than EB

  3. Effect of dietary fatty acids on the postprandial fatty acid composition of triacylglycerol-rich lipoproteins in healthy male subjects

    DEFF Research Database (Denmark)

    Bysted, Anette; Holmer, G.; Lund, Pia

    2005-01-01

    interesterified test fats with equal amounts of palmitic acid ( P fat), stearic acid (S fat), trans-18: 1 isomers (T fat), oleic acid (O fat), or linoleic acid (L fat) were tested. Subjects: A total of 16 healthy, normolipidaemic males ( age 23 +/- 2 y) were recruited. Interventions: The participants ingested fat......Objective: The aim of the present study was to investigate the effect of trans-18: 1 isomers compared to other fatty acids, especially saturates, on the postprandial fatty acid composition of triacylglycerols ( TAG) in chylomicrons and VLDL. Design: A randomised crossover experiment where five......-rich test meals ( 1 g fat per kg body weight) and the fatty acid profiles of chylomicron and VLDL TAG were followed for 8 h. Results: The postprandial fatty acid composition of chylomicron TAG resembled that of the ingested fats. The fatty acids in chylomicron TAG were randomly distributed among the three...

  4. Total lipids and fatty acid profile in the liver of wild and farmed catla catla fish

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, M.; Shaihid chatha, S. A.; Tahira, I.; Hussain, B.

    2010-07-01

    This experimental work was aimed to study the moisture content, total lipids and fatty acid profile in the liver of wild and farmed freshwater major carp Catla catla of three different weight categories designated as W{sub 1} (601-900g), W{sub 2} (901- 1200)g and W{sub 3} (1201-1500g). Seven fish specimens of each of the three weight categories of wild and farmed Catla catla were obtained from Trimu Head, Jhang and Fish Hatchery, Satiana Road and Faisalabad, respectively. The fish were dissected to remove the liver and after weighing, liver samples were prepared and subjected to chemical analysis. Wild Catla catla liver had a significantly (p <0.05) higher moisture content as compared to the farmed species. Farmed Catla catla deposited significantly (p < 0.05) higher lipid contents in liver. Proportions of saturated fatty acids varied irregularly in the lipids of the liver from both wild and farmed Catla catla. Saturated fatty acids C12:0, C14:0, C16:0, C18:0, C20:0 and C22:0 were identified with considerable percentages in the liver of Catla catla from both habitats and monounsaturated fatty acid C18:1 was found in considerable amounts in the liver of both major carp. Polyunsaturated fatty acids such as C18:3 (n-6) and C20: 2 (n-6) were detected in the liver of the wild fish of W{sub 2} and W{sub 3} and was similar in the W{sub 3} weight category of the farmed species. (Author) 22 refs.

  5. Quantification of fatty acids in salmon fillets conserved by different methods

    Directory of Open Access Journals (Sweden)

    Renata Menoci Gonçalves

    2017-09-01

    Full Text Available Lipid contents and the composition of fatty acids of fillets from Chilean salmon (Salmo salar were determined under different conservation methods: fresh salmon, frozen salmon, water-conserved canned salmon and frozen salmon in long-term storage. Fatty acid contents were determined by gas chromatography. The fillets had high lipid levels, ranging between 9.71 and 12.86%. All samples presented high levels of monounsaturated fatty acids, between 363.69 and 425.30 mg g-1 of total lipids, followed by polyunsaturated fatty acids (294.46 - 342.45 mg g-1 of total lipids and saturated fatty acids (203.32 - 223.17 mg g-1 of total lipids. Although samples revealed different lipid contents, all proved to be great sources of omega-3 fatty acids, regardless of the manner of conservation.

  6. Dietary (n-6 : n-3 Fatty Acids Alter Plasma and Tissue Fatty Acid Composition in Pregnant Sprague Dawley Rats

    Directory of Open Access Journals (Sweden)

    Amira Abdulbari Kassem

    2012-01-01

    Full Text Available The objective of this paper is to study the effects of varying dietary levels of n-6 : n-3 fatty acid ratio on plasma and tissue fatty acid composition in rat. The treatment groups included control rats fed chow diet only, rats fed 50% soybean oil (SBO: 50% cod liver oil (CLO (1 : 1, 84% SBO: 16% CLO (6 : 1, 96% SBO: 4% CLO (30 : 1. Blood samples were taken at day 15 of pregnancy, and the plasma and tissue were analyzed for fatty acid profile. The n-3 PUFA in plasma of Diet 1 : 1 group was significantly higher than the other diet groups, while the total n-6 PUFA in plasma was significantly higher in Diet 30 : 1 group as compared to the control and Diet 1 : 1 groups. The Diet 1 : 1 group showed significantly greater percentages of total n-3 PUFA and docosahexaenoic acid in adipose and liver tissue, and this clearly reflected the contribution of n-3 fatty acids from CLO. The total n-6 PUFA, linoleic acid, and arachidonic acid were significantly difference in Diet 30 : 1 as compared to Diet 1 : 1 and control group. These results demonstrated that the dietary ratio of n-6 : n-3 fatty acid ratio significantly affected plasma and tissue fatty acids profile in pregnant rat.

  7. Dietary (n-6 : n-3) fatty acids alter plasma and tissue fatty acid composition in pregnant Sprague Dawley rats.

    Science.gov (United States)

    Kassem, Amira Abdulbari; Abu Bakar, Md Zuki; Yong Meng, Goh; Mustapha, Noordin Mohamed

    2012-01-01

    The objective of this paper is to study the effects of varying dietary levels of n-6 : n-3 fatty acid ratio on plasma and tissue fatty acid composition in rat. The treatment groups included control rats fed chow diet only, rats fed 50% soybean oil (SBO): 50% cod liver oil (CLO) (1 : 1), 84% SBO: 16% CLO (6 : 1), 96% SBO: 4% CLO (30 : 1). Blood samples were taken at day 15 of pregnancy, and the plasma and tissue were analyzed for fatty acid profile. The n-3 PUFA in plasma of Diet 1 : 1 group was significantly higher than the other diet groups, while the total n-6 PUFA in plasma was significantly higher in Diet 30 : 1 group as compared to the control and Diet 1 : 1 groups. The Diet 1 : 1 group showed significantly greater percentages of total n-3 PUFA and docosahexaenoic acid in adipose and liver tissue, and this clearly reflected the contribution of n-3 fatty acids from CLO. The total n-6 PUFA, linoleic acid, and arachidonic acid were significantly difference in Diet 30 : 1 as compared to Diet 1 : 1 and control group. These results demonstrated that the dietary ratio of n-6 : n-3 fatty acid ratio significantly affected plasma and tissue fatty acids profile in pregnant rat.

  8. Dietary (n-6 : n-3) Fatty Acids Alter Plasma and Tissue Fatty Acid Composition in Pregnant Sprague Dawley Rats

    Science.gov (United States)

    Kassem, Amira Abdulbari; Abu Bakar, Md Zuki; Yong Meng, Goh; Mustapha, Noordin Mohamed

    2012-01-01

    The objective of this paper is to study the effects of varying dietary levels of n-6 : n-3 fatty acid ratio on plasma and tissue fatty acid composition in rat. The treatment groups included control rats fed chow diet only, rats fed 50% soybean oil (SBO): 50% cod liver oil (CLO) (1 : 1), 84% SBO: 16% CLO (6 : 1), 96% SBO: 4% CLO (30 : 1). Blood samples were taken at day 15 of pregnancy, and the plasma and tissue were analyzed for fatty acid profile. The n-3 PUFA in plasma of Diet 1 : 1 group was significantly higher than the other diet groups, while the total n-6 PUFA in plasma was significantly higher in Diet 30 : 1 group as compared to the control and Diet 1 : 1 groups. The Diet 1 : 1 group showed significantly greater percentages of total n-3 PUFA and docosahexaenoic acid in adipose and liver tissue, and this clearly reflected the contribution of n-3 fatty acids from CLO. The total n-6 PUFA, linoleic acid, and arachidonic acid were significantly difference in Diet 30 : 1 as compared to Diet 1 : 1 and control group. These results demonstrated that the dietary ratio of n-6 : n-3 fatty acid ratio significantly affected plasma and tissue fatty acids profile in pregnant rat. PMID:22489205

  9. Contribution of fatty acids released from lipolysis of plasma triglycerides to total plasma fatty acid flux and tissue-specific fatty acid uptake

    NARCIS (Netherlands)

    Teusink, Bas; Voshol, Peter J.; Dahlmans, Vivian E. H.; Rensen, Patrick C. N.; Pijl, Hanno; Romijn, Johannes A.; Havekes, Louis M.

    2003-01-01

    There is controversy over the extent to which fatty acids (FAs) derived from plasma free FAs (FFAs) or from hydrolysis of plasma triglycerides (TGFAs) form communal or separate pools and what the contribution of each FA source is to cellular FA metabolism. Chylomicrons and lipid emulsions were

  10. Unsaturated fatty acids protect trophoblast cells from saturated fatty acid-induced autophagy defects.

    Science.gov (United States)

    Hong, Ye-Ji; Ahn, Hyo-Ju; Shin, Jongdae; Lee, Joon H; Kim, Jin-Hoi; Park, Hwan-Woo; Lee, Sung Ki

    2018-02-01

    Dysregulated serum fatty acids are associated with a lipotoxic placental environment, which contributes to increased pregnancy complications via altered trophoblast invasion. However, the role of saturated and unsaturated fatty acids in trophoblastic autophagy has yet to be explored. Here, we demonstrated that prolonged exposure of saturated fatty acids interferes with the invasiveness of human extravillous trophoblasts. Saturated fatty acids (but not unsaturated fatty acids) inhibited the fusion of autophagosomes and lysosomes, resulting in the formation of intracellular protein aggregates. Furthermore, when the trophoblast cells were exposed to saturated fatty acids, unsaturated fatty acids counteracted the effects of saturated fatty acids by increasing degradation of autophagic vacuoles. Saturated fatty acids reduced the levels of the matrix metalloproteinases (MMP)-2 and MMP-9, while unsaturated fatty acids maintained their levels. In conclusion, saturated fatty acids induced decreased trophoblast invasion, of which autophagy dysfunction plays a major role. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Total lipid accumulation and fatty acid profiles of microalga Spirulina ...

    African Journals Online (AJOL)

    Nutrient limitation in terms of nitrogen and phosphorus increased lipid accumulation under depleted growth in Spirulina strains. Nitrogen limitation was found more effective than phosphorus in accumulating lipid. The fatty acid profile was variable: palmitic (48%), linolenic (21%) and linoleic acids (15%) were the most ...

  12. Fatty acid composition of the cypselae of two endemic Centaurea species (Asteraceae

    Directory of Open Access Journals (Sweden)

    Janaćković Peđa

    2017-04-01

    Full Text Available The fatty acid composition of cypselae of two endemic species from Macedonia, Centaurea galicicae and C. tomorosii, is analysed for the first time, using GC/MS (gas chromatography/mass spectrometry. In the cypselae of C. galicicae, 11 fatty acids were identified, palmitic (hexadecanoic acid (32.5% being the most dominant. Other fatty acids were elaidic [(E-octadec-9-enoic] acid (13.9%, stearic (octadecanoic acid (12.8% and linoleic [(9Z,12Z-9,12-octadecadienoic] acid (10.6%. Of the 11 identified fatty acids, seven were saturated fatty acids, which represented 41.5% of total fatty acids, while unsaturated fatty acids altogether constituted 58.5%. In the cypselae of C. tomorosii, five fatty acids were identified. The major fatty acid was linolelaidic [(9E,12E-octadeca- 9,12-dienoic] acid (48.8%. The second most dominant fatty acid was oleic [(9Z-octadec-9-enoic] acid (34.2%. Thus, unsaturated fatty acids were present with 83%. The other three fatty acids identified were saturated fatty acids, which represented 17% of total fatty acids. As a minor fatty acid, levulinic (4-oxopentanoic acid was determined in both C. galicicae and C. tomorosii (0.3% and 3.2%, respectively. The obtained results differ from published data on dominant fatty acids in the cypselae of other species belonging to the same section as the species investigated in the present paper (section Arenariae, subgenus Acrolophus, genus Centaurea. They also, differ from published data referable to other genera belonging to the same tribe (Cardueae. The general chemotaxonomic significance of fatty acids is discussed.

  13. Identification and quantification of intermediates of unsaturated fatty acid metabolism in plasma of patients with fatty acid oxidation disorders

    NARCIS (Netherlands)

    Onkenhout, W.; Venizelos, V.; van der Poel, P. F.; van den Heuvel, M. P.; Poorthuis, B. J.

    1995-01-01

    The free fatty acid and total fatty acid profiles in plasma of nine patients with medium-chain acyl-CoA dehydrogenase (MCAD) deficiency, two with very-long-chain acyl-CoA dehydrogenase (VLCAD) deficiency and two with mild-type multiple acyl-CoA dehydrogenase (MAD-m) deficiency, were analyzed by gas

  14. Determination of fatty acid composition of {gamma}-irradiated hazelnuts, walnuts, almonds, and pistachios

    Energy Technology Data Exchange (ETDEWEB)

    Gecgel, Umit [Namik Kemal University, Agricultural Faculty, Department of Food Engineering, 59030 Tekirdag (Turkey); Gumus, Tuncay; Tasan, Murat; Daglioglu, Orhan; Arici, Muhammet [Namik Kemal University, Agricultural Faculty, Department of Food Engineering, 59030 Tekirdag (Turkey)

    2011-04-15

    Hazelnut, walnut, almonds, and pistachio nuts were treated with 1, 3, 5, and 7 kGy of gamma irradiation, respectively. Oil content, free fatty acid, peroxide value, and fatty acid composition of the nuts were investigated immediately after irradiation. The data obtained from the experiments indicated that gamma irradiation did not cause any significant change in the oil content of nuts. In contrast, free fatty acid and peroxide value of the nuts increased proportionally to the dose (p<0.05). Among the fatty acids determined, the concentration of total saturated fatty acids increased while total monounsaturated and total polyunsaturated fatty acids decreased with the irradiation dose (p<0.05 and <0.01).

  15. Determination of fatty acid composition of γ-irradiated hazelnuts, walnuts, almonds, and pistachios

    International Nuclear Information System (INIS)

    Gecgel, Umit; Gumus, Tuncay; Tasan, Murat; Daglioglu, Orhan; Arici, Muhammet

    2011-01-01

    Hazelnut, walnut, almonds, and pistachio nuts were treated with 1, 3, 5, and 7 kGy of gamma irradiation, respectively. Oil content, free fatty acid, peroxide value, and fatty acid composition of the nuts were investigated immediately after irradiation. The data obtained from the experiments indicated that gamma irradiation did not cause any significant change in the oil content of nuts. In contrast, free fatty acid and peroxide value of the nuts increased proportionally to the dose (p<0.05). Among the fatty acids determined, the concentration of total saturated fatty acids increased while total monounsaturated and total polyunsaturated fatty acids decreased with the irradiation dose (p<0.05 and <0.01).

  16. Determination of fatty acid composition of γ-irradiated hazelnuts, walnuts, almonds, and pistachios

    Science.gov (United States)

    Gecgel, Umit; Gumus, Tuncay; Tasan, Murat; Daglioglu, Orhan; Arici, Muhammet

    2011-04-01

    Hazelnut, walnut, almonds, and pistachio nuts were treated with 1, 3, 5, and 7 kGy of gamma irradiation, respectively. Oil content, free fatty acid, peroxide value, and fatty acid composition of the nuts were investigated immediately after irradiation. The data obtained from the experiments indicated that gamma irradiation did not cause any significant change in the oil content of nuts. In contrast, free fatty acid and peroxide value of the nuts increased proportionally to the dose (p<0.05). Among the fatty acids determined, the concentration of total saturated fatty acids increased while total monounsaturated and total polyunsaturated fatty acids decreased with the irradiation dose (p<0.05 and <0.01).

  17. Growth-Environment Dependent Modulation of Staphylococcus aureus Branched-Chain to Straight-Chain Fatty Acid Ratio and Incorporation of Unsaturated Fatty Acids.

    Science.gov (United States)

    Sen, Suranjana; Sirobhushanam, Sirisha; Johnson, Seth R; Song, Yang; Tefft, Ryan; Gatto, Craig; Wilkinson, Brian J

    2016-01-01

    The fatty acid composition of membrane glycerolipids is a major determinant of Staphylococcus aureus membrane biophysical properties that impacts key factors in cell physiology including susceptibility to membrane active antimicrobials, pathogenesis, and response to environmental stress. The fatty acids of S. aureus are considered to be a mixture of branched-chain fatty acids (BCFAs), which increase membrane fluidity, and straight-chain fatty acids (SCFAs) that decrease it. The balance of BCFAs and SCFAs in USA300 strain JE2 and strain SH1000 was affected considerably by differences in the conventional laboratory medium in which the strains were grown with media such as Mueller-Hinton broth and Luria broth resulting in high BCFAs and low SCFAs, whereas growth in Tryptic Soy Broth and Brain-Heart Infusion broth led to reduction in BCFAs and an increase in SCFAs. Straight-chain unsaturated fatty acids (SCUFAs) were not detected. However, when S. aureus was grown ex vivo in serum, the fatty acid composition was radically different with SCUFAs, which increase membrane fluidity, making up a substantial proportion of the total (37%) and BCFAs (>36%) making up the rest. Staphyloxanthin, an additional major membrane lipid component unique to S. aureus, tended to be greater in content in cells with high BCFAs or SCUFAs. Cells with high staphyloxanthin content had a lower membrane fluidity that was attributed to increased production of staphyloxanthin. S. aureus saves energy and carbon by utilizing host fatty acids for part of its total fatty acids when growing in serum, which may impact biophysical properties and pathogenesis given the role of SCUFAs in virulence. The nutritional environment in which S. aureus is grown in vitro or in vivo in an infection is likely to be a major determinant of membrane fatty acid composition.

  18. Plasma total odd-chain fatty acids in the monitoring of disorders of propionate, methylmalonate and biotin metabolism

    NARCIS (Netherlands)

    Coker, M.; de Klerk, J. B.; Poll-The, B. T.; Huijmans, J. G.; Duran, M.

    1996-01-01

    Total plasma odd-numbered long-chain fatty acids were analysed in patients with methylmalonic acidaemia (vitamin B12-responsive and unresponsive), combined methylmalonic acidaemia/homocystinuria (CblC), propionic acidaemia (both neonatal-onset and late-onset), biotinidase deficiency and

  19. Control of bovine hepatic fatty acid oxidation

    International Nuclear Information System (INIS)

    Jesse, B.W.; Emery, R.S.; Thomas, J.W.

    1986-01-01

    Fatty acid oxidation by bovine liver slices and mitochondria was examined to determine potential regulatory sites of fatty acid oxidation. Conversion of 1-[ 14 C]palmitate to 14 CO 2 and total [ 14 C]acid-soluble metabolites was used to measure fatty acid oxidation. Oxidation of palmitate (1 mM) was linear in both liver slice weight and incubation time. Carnitine stimulated palmitate oxidation; 2 mM dl-carnitine produced maximal stimulation of palmitate oxidation to both CO 2 and acid-soluble metabolites. Propionate (10 mM) inhibited palmitate oxidation by bovine liver slices. Propionate (.5 to 10 mM) had no effect on palmitate oxidation by mitochondria, but malonyl Coenzyme A, the first committed intermediate of fatty acid synthesis, inhibited mitochondrial palmitate oxidation (inhibition constant = .3 μM). Liver mitochonndrial carnitine palmitoyltransferase exhibited Michaelis constants for palmitoyl Coenzyme A and l-carnitine of 11.5 μM and .59 mM, respectively. Long-chain fatty acid oxidation in bovine liver is regulated by mechanisms similar to those in rats but adapted to the unique digestive physiology of the bovine

  20. Comparison of gas chromatographic and gravimetric methods for quantization of total fat and fatty acids in foodstuffs

    Directory of Open Access Journals (Sweden)

    Sabria Aued-Pimentel

    2010-01-01

    Full Text Available Different methods to determine total fat (TF and fatty acids (FA, including trans fatty acids (TFA, in diverse foodstuffs were evaluated, incorporating gravimetric methods and gas chromatography with flame ionization detector (GC/FID, in accordance with a modified AOAC 996.06 method. Concentrations of TF and FA obtained through these different procedures diverged (p< 0.05 and TFA concentrations varied beyond 20 % of the reference values. The modified AOAC 996.06 method satisfied both accuracy and precision, was fast and employed small amounts of low toxicity solvents. Therefore, the results showed that this methodology is viable to be adopted in Brazil for nutritional labeling purposes.

  1. Fatty Acid and Phytosterol Content of Commercial Saw Palmetto Supplements

    Directory of Open Access Journals (Sweden)

    Brian L. Lindshield

    2013-09-01

    Full Text Available Saw palmetto supplements are one of the most commonly consumed supplements by men with prostate cancer and/or benign prostatic hyperplasia (BPH. Some studies have found significant improvements in BPH and lower urinary tract symptoms (LUTS with saw palmetto supplementation, whereas others found no benefits. The variation in the efficacy in these trials may be a result of differences in the putative active components, fatty acids and phytosterols, of the saw palmetto supplements. To this end, we quantified the major fatty acids (laurate, myristate, palmitate, stearate, oleate, linoleate and phytosterols (campesterol, stigmasterol, β-sitosterol in 20 commercially available saw palmetto supplements using GC-FID and GC-MS, respectively. Samples were classified into liquids, powders, dried berries, and tinctures. Liquid saw palmetto supplements contained significantly higher (p < 0.05 concentrations of total fatty acids (908.5 mg/g, individual fatty acids, total phytosterols (2.04 mg/g, and individual phytosterols, than the other supplement categories. Powders contained significantly higher (p < 0.05 concentrations of total fatty acids than tinctures, which contain negligible amounts of fatty acids (46.3 mg/g and phytosterols (0.10 mg/g. Our findings suggest that liquid saw palmetto supplements may be the best choice for individuals who want to take a saw palmetto supplement with the highest concentrations of both fatty acids and phytosterols.

  2. Biooxidation of fatty acid distillates to dibasic acids by a mutant of Candida tropicalis.

    Science.gov (United States)

    Gangopadhyay, Sarbani; Nandi, Sumit; Ghosh, Santinath

    2006-01-01

    Fatty acid distillates (FADs) produced during physical refining of vegetable oil contains large amount of free fatty acid. A mutant of Candida tropicalis (M20) obtained after several stages of UV mutation are utilized to produce dicarboxylic acids (DCAs) from the fatty acid distillates of rice bran, soybean, coconut, palm kernel and palm oil. Initially, fermentation study was carried out in shake flasks for 144 h. Products were isolated and identified by GLC analysis. Finally, fermentation was carried out in a 2 L jar fermenter, which yielded 62 g/L and 48 g/L of total dibasic acids from rice bran oil fatty acid distillate and coconut oil fatty acid distillate respectively. FADs can be effectively utilized to produce DCAs of various chain lengths by biooxidation process.

  3. Eicosapentaenoic Acid Supplementation Changes Fatty Acid Composition and Corrects Endothelial Dysfunction in Hyperlipidemic Patients

    Directory of Open Access Journals (Sweden)

    Ken Yamakawa

    2012-01-01

    Full Text Available We investigated the effects of purified eicosapentaenoic acid (EPA on vascular endothelial function and free fatty acid composition in Japanese hyperlipidemic subjects. In subjects with hyperlipidemia (total cholesterol ≥220 mg/dL and/or triglycerides ≥150 mg/dL, lipid profile and forearm blood flow (FBF during reactive hyperemia were determined before and 3 months after supplementation with 1800 mg/day EPA. Peak FBF during reactive hyperemia was lower in the hyperlipidemic group than the normolipidemic group. EPA supplementation did not change serum levels of total, HDL, or LDL cholesterol, apolipoproteins, remnant-like particle (RLP cholesterol, RLP triglycerides, or malondialdehyde-modified LDL cholesterol. EPA supplementation did not change total free fatty acid levels in serum, but changed the fatty acid composition, with increased EPA and decreased linoleic acid, γ-linolenic acid, and dihomo-γ-linolenic acid. EPA supplementation recovered peak FBF after 3 months. Peak FBF recovery was correlated positively with EPA and EPA/arachidonic acid levels and correlated inversely with dihomo-γ-linolenic acid. EPA supplementation restores endothelium-dependent vasodilatation in hyperlipidemic patients despite having no effect on serum cholesterol and triglyceride patterns. These results suggest that EPA supplementation may improve vascular function at least partly via changes in fatty acid composition.

  4. Fatty acid composition of human milk and infant formulas

    Directory of Open Access Journals (Sweden)

    Ivančica Delaš

    2005-04-01

    Full Text Available The appropriate fatty acid composition of membrane lipids is necessary for structure and function of the developing nervous system. Rapid synthesis of brain tissue occurs during the last trimester of pregnancy and the early postnatal weeks. This synthesis of brain structure involves the formation of complex lipids, many of which contain significant quantities of essential fatty acids and their higher homologs. This study was undertaken to elucidate how fatty acid compositions of available diets for infants meet the requirements for essential fatty acids. Samples of infant formulas, present on the market, as well as milk samples obtained from breast feeding mothers, were extracted by chloroform : methanol mixtures in order to obtain total lipids. Fatty acid methyl esters were prepared and fatty acid composition was revealed by gas chromatography. Special interest was directed to the content of long chain polyunsaturated fatty acids. The results have shown that infant formulas, designed to substitute mothers’ breast milk, contain medium chain fatty acids (C 10:0, C 12:0, along with the other saturated fatty acids, in the amounts acceptable for infants’ energy consumption. Although linoleic acid (C18:2, n-6 was present at the level expected to cover needs for essential fatty acids, most of the tested products did not contain sufficient amounts of long chain polyunsaturated fatty acids, despite the fact that these fatty acids are necessary for undisturbed brain development, ignoring the strong recommendations that they should be used as a supplement in infants’ food.

  5. Fatty Acid Composition of Meat from Ruminants, with Special Emphasis on trans Fatty Acids

    DEFF Research Database (Denmark)

    Leth, Torben; Ovesen, L.; Hansen, K.

    1998-01-01

    The fatty acid composition was determined in 39 samples of beef, 20 samples of veal, and 34 samples of lamb, representative of the supply of ruminant meat in Denmark. Five cuts of beef and veal and three cuts of lamb with increasing fat content were selected, and analysis of the fatty acid methyl...... esters was performed by gas-liquid chromatography (GLC) on a polar 50-m capillary column CP Sil 88 with flame-ionization detection. Lamb had the highest content of saturated fatty acids (52.8 +/- 1.8 g/100 g fatty acids), higher than beef and veal (45.3 +/- 3.1 and 45.4 +/- 0.8 g/100 g fatty acids......, respectively). Cis monounsaturated fatty acids were 49.2 +/- 3.1, 44.9 +/- 1.8, and 37.7 +/- 1.7, and polyunsaturated fatty acids were 3.3 +/- 0.7, 5.8 +/- 2.0, and 5.0 +/- 0.1 g/100 g fatty acids in beef, veal, and lamb, respectively. Beef contained 2.1 +/- 0.8 g trans C-18:1 per 100 g fatty acids, about half...

  6. Influence of fatty acid composition on the formation of polar glycerides and polar fatty acids in sunflower oils heated at frying temperatures.

    Directory of Open Access Journals (Sweden)

    Jorge, N.

    1997-02-01

    Full Text Available Conventional and high oleic sunflower oils as well as 50% mixture of both of them were heated at different temperatures under well-controlled conditions. Total polar compounds, the main groups of polar glycerides, total polar fatty acids, the main groups of polar fatty acids and the loss of initial fatty acids were quantitated. The most outstanding results demonstrated the primacy of the formation of glyceridic polymerization compounds during heating at high temperatures. After transesterification of the samples dimeric fatty acids was the most significant group of compounds obtained. As expected, linoleic acid was preferentially involved in the formation of polar fatty acids, although the participation of oleic acid became very important at low concentration of linoleic acid. Finally good statistical figures were obtained for the regression of polar fatty acids on polar compounds.

    Aceites de girasol convencional y alto oleico así como una mezcla al 50% de ambos fueron calentados a diferentes temperaturas bajo condiciones controladas. Se cuantificaron los compuestos polares totales, los grupos principales de glicéridos, ácidos grasos polares totales, los grupos principales de ácidos grasos polares y la pérdida de ácidos grasos iniciales. Los resultados más relevantes demostraron la primacía de la formación de compuestos de polimerización glicerídicos durante el calentamiento a altas temperaturas. Después de la transesterificación de las muestras, los ácidos diméricos constituyeron el grupo más significativo de compuestos obtenidos. Como era esperado, el ácido linoleico contribuyó preferentemente en la formación de los ácidos grasos polares, si bien la participación del ácido oleico fue muy importante a bajas concentraciones de ácido linoleico. Finalmente, se obtuvieron buenos resultados estadísticos para la regresión entre ácidos grasos polares y compuestos polares.

  7. Changes in cholesterol content and fatty acid composition of serum lipid in irradiated rat

    International Nuclear Information System (INIS)

    Ohashi, Shigeru

    1979-01-01

    The effect of a single dose of whole body irradiation on the serum cholesterol content and fatty acid composition of serum lipids in rats was investigated. A change in the fatty acid composition of liver lipids was also observed. After 600 rad of irradiation, the cholesterol content increased, reached a maximum 3 days after irradiation, and then decreased. After irradiation, an increase in cholesterol content and a marked decrease in triglyceride content were observed, bringing about a change in the amount of total serum lipids. The fatty acid compositions of normal and irradiated rat sera were compared. The relative percentages of palmitic and oleic acids in total lipids decreased while those of stearic and arachidonic acids increased. Serum triglyceride had trace amounts of arachidonic acid and the unsaturated fatty acid component decreased after irradiation. On the other hand, unsaturated fatty acid in cholesterol ester increased after irradiation, while linoleic and arachidonic acids made up 29% and 22% in the controls and 17% and 61% after irradiation, respectively. The fatty acid composition of total liver lipids after irradiation showed a decrease in palmitic and oleic acids and an increase in stearic and arachidonic acids, the same trend as observed in serum lipid fatty acid. Liver cholesterol ester showed trace amounts of linoleic and arachidonic acids and an increase in short-chain fatty acid after irradiation. The major component of serum phospholipids was phosphatidylcholine while palmitostearyl lecithine and unsaturated fatty acid were minor components. Moreover, phosphatidylcholine and phosphatidylethanolamine were the major components of liver phospholipids, having highly unsaturated fatty acids. The changes in fatty acid composition were similar to the changes in total phospholipids. (J.P.N.)

  8. Eccentric contractions affect muscle membrane phospholipid fatty acid composition in rats

    DEFF Research Database (Denmark)

    Helge, Jørn Wulff; Therkildsen, K J; Jørgensen, T B

    2001-01-01

    This study investigated if prior eccentric contractions, and thus mechanical strain and muscle damage, exert an effect on the muscle membrane phospholipid fatty acid composition in rats, and whether a possible effect could be attenuated by dietary supplements. Twenty-three rats were randomised...... muscle, was excised from both legs. In the muscles stimulated to contract eccentrically, compared to the control muscles, the proportion of arachidonic acid, C20:4,n-6 (17.7 +/- 0.6; 16.4 +/- 0.4% of total fatty acids, respectively) and docosapentanoeic acid, C22:5,n-3 (2.9 +/- 0.1 and 2.7 +/- 0.......1% of total fatty acids, respectively) was uniformly higher across groups (P fatty acids) compared to the control leg (38.2 +/- 0...

  9. Amino acid and fatty acid compositions of Rusip from fermented Anchovy fish (Stolephorussp)

    Science.gov (United States)

    Koesoemawardani, D.; Hidayati, S.; Subeki

    2018-04-01

    Rusip is a typical food of Bangka Belitung Indonesia made from fermented anchovy. This study aims to determine the properties of chemistry, microbiology, composition of amino acids and fatty acids from fermented fish spontaneously and non spontaneously. Spontaneous rusip treatment is done by anchovy fish (Stolephorussp) after cleaning and added salt 25% (w/w) and palm sugar 10% (w/w). While, non-spontaneous rusip is done by adding a culture mixture of Streptococcus, Leuconostoc, and Lactobacillus bacteria 2% (w/v). The materials are then incubated for 2 weeks. The data obtained were then performed t-test at the level of 5%. Spontaneous and non-spontaneous rusip fermentation process showed significant differences in total acid, reducing sugar, salt content, TVN, total lactic acid bacteria, total mold, and total microbial. The dominant amino acid content of spontaneous and non-spontaneous rusip are glutamic acid and aspartic acid, while the dominant fatty acids in spontaneous and non-spontaneous rusip are docosahexaenoic acid, palmitic acid, oleic acid, arachidonic acid, stearic acid, eicosapentaenoic acid, palmitoleic acid, and myristic acid.

  10. Thai jute seed oil: a potential polyunsaturated fatty acid source

    Directory of Open Access Journals (Sweden)

    Maitree Suttajit

    2006-03-01

    Full Text Available This study examined lipid and fatty acid compositions of different varieties of jute (Po-kra-jao, Corchorus olitorius L. seed grown in Thailand. Four different jute seeds (Nonn-Soong, Keaw-Yai, Cuba and Khonkaen harvested from northeastern Thailand were ground, their lipid was extracted with chloroform: methanol (2:1, v/v, and lipid composition was determined by Iatroscan (TLC/FID. Fatty acid composition was analyzed using GLC with standard methods. Triacylglycerol was a predominant lipid in jute seed oil, ranging from 70% to 74%, and other two minor components were phytosterol (12% to 28% and diacylglycerol (0% to 9%. The ratio of saturates: monounsaturates: polyunsaturates, was approximately 2: 3: 4. Most predominant polyunsaturated fatty acid (PUFA was linoleic acid (18:2n-6, accounting for 40-67% of total fatty acid. Nonn-Soong had the highest amount of PUFA (67.7%, followed by Khonkaen (44.53%, Keaw-Yai (41.14%, and Cuba (40.19%. Another PUFA found was α-linolenic acid (18:3n-3, accounting for about 1% of total fatty acid. The results indicated that jute seed oil was a potential edible PUFA source. The oils obtained from different kinds of jute seeds had significantly different lipid and fatty acid compositions.

  11. [Fatty acid composition of edible marine fish in Zhoushan, Zhejiang province].

    Science.gov (United States)

    Gao, Yi-xiong; Yue, Bing; Yu, Xin-wei; He, Jia-lu; Shang, Xiao-hong; Li, Xiao-wei; Wu, Yong-ning

    2013-06-01

    To analyze the main fatty acids in edible marine fish from Zhoushan, Zhejiang province. From September to October 2011, a total of 186 edible marine fish (31 species,6 individual fishes/species) were collected in local markets. Total lipids of edible part were extracted by Folch's method and fatty acids were separated and quantified by gas chromatographic after the homogenization of edible part. The differences of composition of n-6 polyunsaturated fatty acid (n-6 PUFA), n-3 polyunsaturated fatty acid (n-3 PUFA),saturated fatty acid (SFA) and monounsaturated fatty acid (MUFA) among fishes were analyzed. Among the 31 fishes, total lipids were highest in Auxis thazard ((13.2 ± 1.2)g/100 g edible part) and lowest in Thamnaconus modestus ((0.6 ± 0.1)g/100 g edible part). Total n-6 PUFA were highest in Mugil cephalus ((875.7 ± 506.4)mg/100 g edible part) and lowest in Seriola quinqueradiata((2.1 ± 1.9)mg/100 g edible part). Total n-3 PUFA were highest in Auxis thazard ((2623.8 ± 426.1)mg/100 g edible part) and lowest in Scoliodon sorrakowah ((82.0 ± 13.9)mg/100 g edible part). SFA were highest in Trachinotus ovatus((3014.9 ± 379.0)mg/100 g edible part) and lowest in Seriola quinqueradiata ((89.7 ± 5.8)mg/100 g edible part). MUFA were highest in Coilia nasus ((3335.7 ± 383.5)mg/100 g edible part) and lowest in Thamnaconus modestus ((32.1 ± 16.9)mg/100 g edible part). There were significant differences of composition of total lipids and of fatty acids among 31 edible marine fish species from Zhoushan.

  12. Training affects muscle phospholipid fatty acid composition in humans

    DEFF Research Database (Denmark)

    Helge, Jørn Wulff; Wu, B J; Willer, Mette

    2001-01-01

    on the muscle membrane phospholipid fatty acid composition in humans. Seven male subjects performed endurance training of the knee extensors of one leg for 4 wk. The other leg served as a control. Before, after 4 days, and after 4 wk, muscle biopsies were obtained from the vastus lateralis. After 4 wk......, the phospholipid fatty acid contents of oleic acid 18:1(n-9) and docosahexaenoic acid 22:6(n-3) were significantly higher in the trained (10.9 +/- 0.5% and 3.2 +/- 0.4% of total fatty acids, respectively) than the untrained leg (8.8 +/- 0.5% and 2.6 +/- 0.4%, P fatty acids...... was significantly lower in the trained (11.1 +/- 0.9) than the untrained leg (13.1 +/- 1.2, P fatty acid composition. Citrate synthase activity was increased by 17% in the trained compared with the untrained leg (P

  13. Fatty acid synthesis by spinach chloroplasts, 2. The path from PGA to fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Mitsuhiro; Nakamura, Yasunori [Tokyo Univ. (Japan). Coll. of General Education

    1975-02-01

    By incorporation of /sup 3/H/sub 2/O into the fatty acid chain in the presence of unlabelled precursor, we showed that fatty acids are synthesized from PGA, PEP and pyruvate by intact spinach chloroplasts in the light. /sup 13/C-tracer experiments confirmed that 1-C of pyruvate is decarboxylated and 2-C is incorporated into fatty acids by the chloroplasts. The patterns of fatty acids synthesized from PGA and pyruvate were the same as that from acetate. The highest rate of fatty acid synthesis was reached at the physiological concentration of PGA (3 mM) and pyruvate (1 mM). These results indicate the operation of the following path in the chloroplasts in light: PGA..-->..PEP..-->..pyruvate..-->..acetylCoA..-->..fatty acids. Since citrate and OAA were much less active and malate and glyoxylate were inert as precursors for fatty acid synthesis, PEP or pyruvate carboxylation, citrate lyase reaction and malate synthetase reaction are not involved in the formation of acetylCoA and fatty acids. Since pyruvate was much more effective as a substrate for fatty acid synthesis than lactate, acetaldehyde or acetate, direct decarboxylation path is considered to be the primary path from pyruvate to acetylCoA. The insignificant effect of chloroplast-washing on fatty acid synthesis from PGA and pyruvate indicates that the glycolytic path from PGA to pyruvate is associated with the chloroplasts. Since pyruvate was more effectively incorporated into fatty acids than acetylCoA, it is unlikely that pyruvate decarboxylation to acetylCoA is due to mitochondria contaminating the chloroplast preparation. On the basis of measurements of /sup 3/H/sub 2/O incorporation in the light and dark, the activity of fatty acid synthesis in spincah leaves appears to be shared by the activities in chloroplasts (87%) and other organelles (13%).

  14. Improved fatty acid analysis of conjugated linoleic acid rich egg yolk triacylglycerols and phospholipid species.

    Science.gov (United States)

    Shinn, Sara; Liyanage, Rohana; Lay, Jack; Proctor, Andrew

    2014-07-16

    Reports from chicken conjugated linoleic acid (CLA) feeding trials are limited to yolk total fatty acid composition, which consistently described increased saturated fatty acids and decreased monounsaturated fatty acids. However, information on CLA triacylglycerol (TAG) and phospholipid (PL) species is limited. This study determined the fatty acid composition of total lipids in CLA-rich egg yolk produced with CLA-rich soy oil, relative to control yolks using gas chromatography with flame ionization detection (GC-FID), determined TAG and PL fatty acid compositions by thin-layer chromatography-GC-FID (TLC-GC-FID), identified intact PL and TAG species by TLC-matrix-assisted laser desorption/ionization mass spectrometry (TLC-MALDI-MS), and determined the composition of TAG and PL species in CLA and control yolks by direct flow infusion electrospray ionization MS (DFI ESI-MS). In total, 2 lyso-phosphatidyl choline (LPC) species, 1 sphingomyelin species, 17 phosphatidyl choline species, 19 TAG species, and 9 phosphatidyl ethanolamine species were identified. Fifty percent of CLA was found in TAG, occurring predominantly in C52:5 and C52:4 TAG species. CLA-rich yolks contained significantly more LPC than did control eggs. Comprehensive lipid profiling may provide insight on relationships between lipid composition and the functional properties of CLA-rich eggs.

  15. Tissue Fatty Acid Profile is Differently Modulated from Olive Oil and Omega-3 Polyunsaturated Fatty Acids in ApcMin/+ Mice.

    Science.gov (United States)

    Tutino, Valeria; Caruso, Maria G; De Leonardis, Giampiero; De Nunzio, Valentina; Notarnicola, Maria

    2017-11-16

    Fatty acid profile can be considered an appropriate biomarker for investigating the relations between the patterns of fatty acid metabolism and specific diseases, as cancer, cardiovascular and degenerative diseases. Aim of this study was to test the effects of diets enriched with olive oil and omega-3 Polyunsaturated Fatty Acids (PUFAs) on fatty acid profile in intestinal tissue of ApcMin/+ mice. Three groups of animals were considered: control group, receiving a standard diet; olive oilgroup, receiving a standard diet enriched with olive oil; omega-3 group, receiving a standard diet enriched with salmon fish. Tissue fatty acid profile was evaluated by gas chromatography method. Olive oil and omega-3 PUFAs in the diet differently affect the tissue fatty acid profile. Compared to control group, the levels of Saturated Fatty Acids (SFAs) were lower in olive oil group, while an increase of SFAs was found in omega-3 group. Monounsaturated Fatty Acids (MUFAs) levels were enhanced after olive oil treatment, and in particular, a significant increase of oleic acid levels was detected; MUFAs levels were instead reduced in omega-3 group in line with the decrease of oleic acid levels. The total PUFAs levels were lower in olive oil respect to control group. Moreover, a significant induction of Saturation Index (SI) levels was observed after omega-3 PUFAs treatment, while its levels were reduced in mice fed with olive oil. Our data demonstrated a different effect of olive oil and omega-3 PUFAs on tissue lipid profile in APCMin/+ mice. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Influence of goats feeding on the fatty acids content in milk

    Directory of Open Access Journals (Sweden)

    Željka Klir

    2012-12-01

    Full Text Available Numerous studies have demonstrated the possibility of modeling the content of fatty acids of milk fat, in order to increase the contents of desirable n-3 unsaturated fatty acids and decrease saturated fatty acid with adequate nutrition of goats. Previous studies showed that the milk of goats on pasture increased content of caproic (C6:0, caprylic (C8:0, conjugated linoleic acid (CLA, rumenic acid, cis-9, trans-11 C18:2, linolenic (C18:3, eicosapentaenoic (C20:5 and docosahexaenoic (C22:6 and total content of polyunsaturated fatty acids (PUFA. In the same group of goats lower content of palmitoleic (C16:1, linoleic (C18:2 and total n-6 unsaturated fatty acids was found, as well as lower n-6/n-3 ratio compared with group of goats kept indoors and fed with alfalfa hay. In milk of goats fed with diets supplemented with safflower oil, content of CLA significantly increased, while goats fed with diets supplement with linseed oil had significantly higher content of C18:3 in milk, compared with group of goats fed without addition of these oils. Goats fed with addition of protected fish oil had significant transfer of eicosapentaenoic-EPA and docosahexaenoic-DHA fatty acids in milk. Protected fish oil reduced the negative impact of long chain fatty acids on the activity of ruminal microorganisms, consumption and digestibility of fiber, as well as inhibition of synthesis of fatty acids in milk gland. When adding unprotected fish oil, increase of stearic (C18:0 and oleic (C18:1 fatty acids occurred, because of the biohydrogenation of polyunsaturated fatty acids in rumen.

  17. Probing fatty acid metabolism in bacteria, cyanobacteria, green microalgae and diatoms with natural and unnatural fatty acids.

    Science.gov (United States)

    Beld, Joris; Abbriano, Raffaela; Finzel, Kara; Hildebrand, Mark; Burkart, Michael D

    2016-04-01

    In both eukaryotes and prokaryotes, fatty acid synthases are responsible for the biosynthesis of fatty acids in an iterative process, extending the fatty acid by two carbon units every cycle. Thus, odd numbered fatty acids are rarely found in nature. We tested whether representatives of diverse microbial phyla have the ability to incorporate odd-chain fatty acids as substrates for their fatty acid synthases and their downstream enzymes. We fed various odd and short chain fatty acids to the bacterium Escherichia coli, cyanobacterium Synechocystis sp. PCC 6803, green microalga Chlamydomonas reinhardtii and diatom Thalassiosira pseudonana. Major differences were observed, specifically in the ability among species to incorporate and elongate short chain fatty acids. We demonstrate that E. coli, C. reinhardtii, and T. pseudonana can produce longer fatty acid products from short chain precursors (C3 and C5), while Synechocystis sp. PCC 6803 lacks this ability. However, Synechocystis can incorporate and elongate longer chain fatty acids due to acyl-acyl carrier protein synthetase (AasS) activity, and knockout of this protein eliminates the ability to incorporate these fatty acids. In addition, expression of a characterized AasS from Vibrio harveyii confers a similar capability to E. coli. The ability to desaturate exogenously added fatty acids was only observed in Synechocystis and C. reinhardtii. We further probed fatty acid metabolism of these organisms by feeding desaturase inhibitors to test the specificity of long-chain fatty acid desaturases. In particular, supplementation with thia fatty acids can alter fatty acid profiles based on the location of the sulfur in the chain. We show that coupling sensitive gas chromatography mass spectrometry to supplementation of unnatural fatty acids can reveal major differences between fatty acid metabolism in various organisms. Often unnatural fatty acids have antibacterial or even therapeutic properties. Feeding of short

  18. Effects of simple rain-shelter cultivation on fatty acid and amino acid accumulation in 'Chardonnay' grape berries.

    Science.gov (United States)

    Meng, Nan; Ren, Zhi-Yuan; Yang, Xiao-Fan; Pan, Qiu-Hong

    2018-02-01

    Fatty acids and amino acids are the precursors of aliphatic and aromatic volatile compounds, higher alcohols and esters. They are also nutrition for yeast metabolism during fermentation. However, few reports have been concerned about the effect of viticulture practices on the accumulation of fatty acids and amino acids in wine grapes. This study aimed to explore the accumulation of these compounds in developing Vitis vinifera L. cv. Chardonnay grape berries under two vintages, and compare the influences of the rain-shelter cultivation and open-field cultivation. Fifteen fatty acids and 21 amino acids were detected in total. The rain-shelter cultivation led to an increase in the total concentration of fatty acids, and a decrease in the total concentration of amino acids compared with the open-field cultivation in 2012, while no significant difference was observed between two cultivation modes in 2013 vintage. Concentrations of palmitoleic acid, isoleucine and cysteine were significantly promoted in the rain-shelter grape berries, whereas those of tyrosine and ornithine were markedly reduced in both vintages. The rain-shelter cultivation of wine grapes in the rainy region is beneficial for improving grape quality and fermentation activity by influence on the concentration of fatty acids and amino acids. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. Alterations in peripheral fatty acid composition in bipolar and unipolar depression.

    Science.gov (United States)

    Scola, Gustavo; Versace, Amelia; Metherel, Adam H; Monsalve-Castro, Luz A; Phillips, Mary L; Bazinet, Richard P; Andreazza, Ana C

    2018-06-01

    Lipid metabolism has been shown to play an important role in unipolar and bipolar depression. In this study, we aimed to evaluate levels of fatty acids in patients with unipolar (MDD) and bipolar depression (BDD) in comparison to patients with bipolar disorder in euthymia (BDE) and non-psychiatric controls. Levels of saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) were assessed in serum of (87) patients with BD (31 euthymic, 22 depressive) or MDD (34) and (31) non-psychiatric controls through GC-FID. No significant difference in total levels of PUFAs (polyunsaturated fatty acids), SFAs (saturated fatty acids), MUFAs (monounsaturated fatty acids) and total fatty acids were found between groups. Our results demonstrated higher levels AA: EPA and AA: EPA+DHA in patients with BDD. Additionally, we observed that overall omega-6 present a positive correlation with illness duration in patients with BDD and AA: EPA ratio positively associated with illness duration in MDD group. Depression severity was positively associated with AA: EPA+DHA ratio in all participants. Together, our results support the relevance for the balance of omega-3 and omega-6 in BDD. Also, our results suggest a potential subset of stage-related lipid biomarkers that further studies are needed to help clarify the dynamics of lipid alteration in BD and MDD. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Comprehensive genetic study of fatty acids helps explain the role of noncoding inflammatory bowel disease associated SNPs and fatty acid metabolism in disease pathogenesis.

    Science.gov (United States)

    Jezernik, Gregor; Potočnik, Uroš

    2018-03-01

    Fatty acids and their derivatives play an important role in inflammation. Diet and genetics influence fatty acid profiles. Abnormalities of fatty acid profiles have been observed in inflammatory bowel diseases (IBD), a group of complex diseases defined by chronic gastrointestinal inflammation. IBD associated fatty acid profile abnormalities were observed independently of nutritional status or disease activity, suggesting a common genetic background. However, no study so far has attempted to look for overlap between IBD loci and fatty acid associated loci or investigate the genetics of fatty acid profiles in IBD. To this end, we conducted a comprehensive genetic study of fatty acid profiles in IBD using iCHIP, a custom microarray platform designed for deep sequencing of immune-mediated disease associated loci. This study identifies 10 loci associated with fatty acid profiles in IBD. The most significant associations were a locus near CBS (p = 7.62 × 10 -8 ) and a locus in LRRK2 (p = 1.4 × 10 -7 ). Of note, this study replicates the FADS gene cluster locus, previously associated with both fatty acid profiles and IBD pathogenesis. Furthermore, we identify 18 carbon chain trans-fatty acids (p = 1.12 × 10 -3 ), total trans-fatty acids (p = 4.49 × 10 -3 ), palmitic acid (p = 5.85 × 10 -3 ) and arachidonic acid (p = 8.58 × 10 -3 ) as significantly associated with IBD pathogenesis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Analysis of total oil and fatty acids composition by near infrared reflectance spectroscopy in edible nuts

    Science.gov (United States)

    Kandala, Chari V.; Sundaram, Jaya

    2014-10-01

    Near Infrared (NIR) Reflectance spectroscopy has established itself as an important tool in quantifying water and oil present in various food materials. It is rapid and nondestructive, easier to use, and does not require processing the samples with corrosive chemicals that would render them non-edible. Earlier, the samples had to be ground into powder form before making any measurements. With the development of new soft ware packages, NIR techniques could now be used in the analysis of intact grain and nuts. While most of the commercial instruments presently available work well with small grain size materials such as wheat and corn, the method present here is suitable for large kernel size products such as shelled or in-shell peanuts. Absorbance spectra were collected from 400 nm to 2500 nm using a NIR instrument. Average values of total oil contents (TOC) of peanut samples were determined by standard extraction methods, and fatty acids were determined using gas chromatography. Partial least square (PLS) analysis was performed on the calibration set of absorption spectra, and models were developed for prediction of total oil and fatty acids. The best model was selected based on the coefficient of determination (R2), Standard error of prediction (SEP) and residual percent deviation (RPD) values. Peanut samples analyzed showed RPD values greater than 5.0 for both absorbance and reflectance models and thus could be used for quality control and analysis. Ability to rapidly and nondestructively measure the TOC, and analyze the fatty acid composition, will be immensely useful in peanut varietal improvement as well as in the grading process of grain and nuts.

  2. Production of γ-linolenic acid and stearidonic acid by Synechococcus sp. PCC7002 containing cyanobacterial fatty acid desaturase genes

    Science.gov (United States)

    Dong, Xuewei; He, Qingfang; Peng, Zhenying; Yu, Jinhui; Bian, Fei; Li, Youzhi; Bi, Yuping

    2016-07-01

    Genetic modification is useful for improving the nutritional qualities of cyanobacteria. To increase the total unsaturated fatty acid content, along with the ratio of ω-3/ω-6 fatty acids, genetic engineering can be used to modify fatty acid metabolism. Synechococcus sp. PCC7002, a fast-growing cyanobacterium, does not contain a Δ6 desaturase gene and is therefore unable to synthesize γ-linolenic acid (GLA) and stearidonic acid (SDA), which are important in human health. In this work, we constructed recombinant vectors Syd6D, Syd15D and Syd6Dd15D to express the Δ15 desaturase and Δ6 desaturase genes from Synechocystis PCC6803 in Synechococcus sp. PCC7002, with the aim of expressing polyunsaturated fatty acids. Overexpression of the Δ15 desaturase gene in Synechococcus resulted in 5.4 times greater accumulation of α-linolenic acid compared with the wild-type while Δ6 desaturase gene expression produced both GLA and SDA. Co-expression of the two genes resulted in low-level accumulation of GLA but much larger amounts of SDA, accounting for as much to 11.64% of the total fatty acid content.

  3. Variation of lipid and fatty acid compositions in Thai Perilla seeds grown at different locations

    Directory of Open Access Journals (Sweden)

    Maitree Suttajit

    2006-03-01

    Full Text Available Perilla or Nga-Kee-Mon (Perilla frutescens seed has long been known as a rich source of α-linolenic acid (18:3, n-3. It is widely cultivated throughout Thailand. However, there are no data on the variation of lipid and fatty acid compositions among crops from different regions. The aim of this study was to examine the compositions of lipids and fatty acids in Thai perilla seed grown at different locations. Two different perilla seeds were harvested from Maehongsorn and Chiang Mai districts, and one commercial perilla was purchased from local market. Seeds were ground, lipid was extracted with chloroform: methanol (2:1, v/v and its composition determined by Iatroscan (TLC/FID. Fatty acid composition was analyzed with GLC using standard methods. Lipid content was between 34-36% (w/w. Triacylglycerol was a predominant lipid in perilla seed (97% of total lipids, and a minor component was phytosterol (3% of total lipids. The ratio of saturates: monounsaturates: polyunsaturates was approximately 1: 1: 8. Most predominant fatty acid was α-linolenic acid (18:3, n-3 (55-60% of total fatty acid. Seeds from Maehongsorn district had the highest concentration of α-linolenic acid, and commercial perilla had the lowest (P<0.05. Other two predominant fatty acids were linoleic acid (18:2, n-6 (18-22% of total fatty acid and oleic acid (18:1 (11-13% of total fatty acid. The results showed that the compositions of lipids and fatty acids in Thai perilla seeds varied significantly among samples from different locations.

  4. [Fatty acids composition of the marine snails Phyllonotus pomum and Chicoreus brevifrons (Muricidae)].

    Science.gov (United States)

    D'Armas, Haydelba; Yáñez, Dayanis; Reyes, Dilia; Salazar, Gabriel

    2010-06-01

    Muricid species of P. pomum and C. brevifrons are of economic importance in the Caribbean. This study includes a comparative evaluation of fatty acid content in the total lipid composition of Phyllonotus pomum and Chicoreus brevifrons. Snail samples were collected during the rainy, dry and transition seasons, in Punta Arena, Sucre (Venezuela). Total lipids were extracted and the specific fatty acid contents were analyzed by gas chromatography. Lipid concentrations varied between 0.87 and 1.85%, with minimum and maximum values corresponding to C. brevifrons collected during rainy and dry seasons, respectively. In the case of total lipids, a high concentration of unsaturated fatty acids (57.21-70.05%) was observed followed by saturated fatty acids (20.33-31.94%), during all seasons. The polyunsaturated occurred in higher proportion among the unsaturated fatty acids, except for P. pomum which showed higher proportion of monounsaturated fatty acids (38.95%) during the transition season. The prevailing fatty acids were: C14:0, C16:0, C18:0, C20:1, C22:1 omega-11, C22:1 omega-9, C18:3 omega-3, C20:5 omega-3 and C22:6 omega-3, among which docosahexaenoic acid was the predominant polyunsaturated fatty acid, showing values between 4.62 and 33.11%. The presence of high concentrations of polyunsaturated fatty acids found in P. Pomum and C. brevifrons allow their recommendation for human consumption with appropriate resource utilization.

  5. Fatty acid profile of the fat in selected smoked marine fish.

    Science.gov (United States)

    Regulska-Ilow, Bozena; Ilow, Rafał; Konikowska, Klaudia; Kawicka, Anna; Rózańska, Dorota; Bochińska, Agnieszka

    2013-01-01

    Fish and marine animals fat is a source of unique long chain polyunsaturated fatty acids (LC-PUFA): eicosapentaenoic (EPA), docosahexaenoic (DHA) and dipicolinic (DPA). These compounds have a beneficial influence on blood lipid profile and they reduce the risk of cardiovascular diseases, atherosclerosis and disorders of central nervous system. The proper ratio of n-6/n-3 fatty acids in diet is necessary to maintain a balance between the effects of eicosanoids synthesized from these acids in the body. The aim of this study was the evaluation of total fat and cholesterol content and percentage of fatty acids in selected commercial smoked marine fish. The studied samples were smoked marine fish such as: halibut, mackerel, bloater and sprat. The percentage total fat content in edible muscles was evaluated via the Folch modified method. The fat was extracted via the Bligh-Dyer modified method. The enzymatic hydrolysis was used to assesses cholesterol content in samples. The content of fatty acids, expressed as methyl esters, was evaluated with gas chromatography. The average content of total fat in 100 g of fillet of halibut, mackerel, bloater and sprat amounted respectively to: 14.5 g, 25.7 g, 13.9 g and 13.9 g. The average content of cholesterol in 100 g of halibut, mackerel, bloater and sprat was respectively: 54.5 mg, 51.5 mg, 57.5 mg and 130.9 mg. The amount of saturated fatty acids (SFA) was about 1/4 of total fatty acids in the analyzed samples. The oleic acid (C18:1 n-9) was the major compound among monounsaturated fatty acids (MUFA) and amounted to 44% of these fatty acids. The percentage of polyunsaturated fatty acids (PUFA) in halibut, mackerel, bloater and sprat was respectively: 31.9%, 45.4%, 40.8% and 37.0%. The percentage of n-3 PUFA in mackerel and bloater was 30.1% and 30.2%, while in halibut and sprat was lower and amounted to 22.5% and 25.6%, respectively. In terms of nutritional magnitude the meat of mackerel and herring, compared to the meat of

  6. Identification of characteristic fatty acids to quantify triacylglycerols in microalgae

    Directory of Open Access Journals (Sweden)

    Peili eShen

    2016-02-01

    Full Text Available The fatty acid profiles of lipids from microalgae are unique. Polyunsaturated fatty acids are generally enriched in polar lipids, whereas saturated and monounsaturated fatty acids constitute the majority of fatty acids in triacylglycerols (TAG. Each species has characteristic fatty acids, and their content is positively or negatively correlated with TAGs. The marine oleaginous diatom Phaeodactylum tricornutum was used as the paradigm to determine the quantitative relationship between TAG and characteristic fatty acid content. Fatty acid profiles and TAG content of Phaeodactylum tricornutum were determined in a time course. C16:0/C16:1 and eicosapentaenoic acid (EPA, C20:5n3 were identified as characteristic fatty acids in TAGs and polar lipids, respectively. The percentage of those characteristic fatty acids in total fatty acids had a significant linear relationship with TAG content and thus the correlation coefficient presenting r2 were 0.96, 0.94 and 0.97 respectively. The fatty acid-based method for TAG quantification could also be applied to other microalgae such as Nannochloropsis oceanica in which the r2 of C16:0, EPA were 0.94, 0.97 respectively and Chlorella pyrenoidosa, whose r2 value correspondingly between C18:1, C18:3 and TAG content were 0.91, 0.99 as well. This characteristic fatty acid-based method provided a distinct way to quantify TAGs in microalgae, by which TAGs could be measured precisely by immediate transesterification from wet biomass rather than using conventional methods. This procedure simplified the operation and required smaller samples than conventional methods.

  7. Fatty acid intake in relation to reproductive hormones and testicular volume among young healthy men

    DEFF Research Database (Denmark)

    Mínguez-alarcón, Lidia; Chavarro, Jorgee; Mendiola, Jaime

    2017-01-01

    , and provided a blood sample. Linear regression was used to examine the association between each fatty acid type and reproductive hormone levels and testicular volumes. Monounsaturated fatty acids intake was inversely associated with serum blood levels of calculated free testosterone, total testosterone......, and inhibin B. A positive association was observed between the intake of polyunsaturated fatty acids, particularly of omega-6 polyunsaturated fatty acids, and luteinizing hormone concentrations. In addition, the intake of trans fatty acids was associated with lower total testosterone and calculated free...... testosterone concentrations (P trend = 0.01 and 0.02, respectively). The intake of omega-3 polyunsaturated fatty acids was positively related to testicular volume while the intake of omega-6 polyunsaturated fatty acids and trans fatty acids was inversely related to testicular volume. These data suggest...

  8. Immunoglobulin and fatty acids

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention relates to a composition comprising 0.1-10 w/w % immunoglobulin (Ig), 4-14 w/w % saturated fatty acids, 4-14 w/w % mono-unsaturated fatty acids and 0-5 w/w % poly-unsaturated fatty acids, wherein the weight percentages are based on the content of dry matter in the composition...

  9. Characterization and analysis of the cotton cyclopropane fatty acid synthase family and their contribution to cyclopropane fatty acid synthesis

    Directory of Open Access Journals (Sweden)

    Rawat Richa

    2011-05-01

    Full Text Available Abstract Background Cyclopropane fatty acids (CPA have been found in certain gymnosperms, Malvales, Litchi and other Sapindales. The presence of their unique strained ring structures confers physical and chemical properties characteristic of unsaturated fatty acids with the oxidative stability displayed by saturated fatty acids making them of considerable industrial interest. While cyclopropenoid fatty acids (CPE are well-known inhibitors of fatty acid desaturation in animals, CPE can also inhibit the stearoyl-CoA desaturase and interfere with the maturation and reproduction of some insect species suggesting that in addition to their traditional role as storage lipids, CPE can contribute to the protection of plants from herbivory. Results Three genes encoding cyclopropane synthase homologues GhCPS1, GhCPS2 and GhCPS3 were identified in cotton. Determination of gene transcript abundance revealed differences among the expression of GhCPS1, 2 and 3 showing high, intermediate and low levels, respectively, of transcripts in roots and stems; whereas GhCPS1 and 2 are both expressed at low levels in seeds. Analyses of fatty acid composition in different tissues indicate that the expression patterns of GhCPS1 and 2 correlate with cyclic fatty acid (CFA distribution. Deletion of the N-terminal oxidase domain lowered GhCPS's ability to produce cyclopropane fatty acid by approximately 70%. GhCPS1 and 2, but not 3 resulted in the production of cyclopropane fatty acids upon heterologous expression in yeast, tobacco BY2 cell and Arabidopsis seed. Conclusions In cotton GhCPS1 and 2 gene expression correlates with the total CFA content in roots, stems and seeds. That GhCPS1 and 2 are expressed at a similar level in seed suggests both of them can be considered potential targets for gene silencing to reduce undesirable seed CPE accumulation. Because GhCPS1 is more active in yeast than the published Sterculia CPS and shows similar activity when expressed in model

  10. Effect of soy lecithin on total cholesterol content, fatty acid composition and carcass characteristics in the Longissimus dorsi of Hanwoo steers (Korean native cattle).

    Science.gov (United States)

    Li, Xiang Zi; Park, Byung Ki; Hong, Byuong Chon; Ahn, Jun Sang; Shin, Jong Suh

    2017-06-01

    This study aims to investigate the effect of soy lecithin on the total cholesterol content, the fatty acid composition and carcass characteristics in the Longissimus dorsi in Hanwoo steers. Hanwoo steers (24 head) were fed two diets: Control (CON) (concentrate + alcohol-fermented feed (AFF)) and soy lecithin treatment (CON + soy lecithin at 0.5% of the AFF). Soy lecithin treatment increased average daily gain, serum concentrations of triglyceride, total cholesterol and high-density lipoprotein-cholesterol in the blood. A lower cholesterol concentration was found in the Longissimus dorsi for the soy lecithin diet compared to the CON diet. With respect to the marbling score and quality grade of Longissimus dorsi, soy lecithin supplementation significantly increased the C20:5n3, C22:4 and polyunsaturated fatty acids contents compared to the CON diet. Soy lecithin supplementation would alter the total cholesterol content, polyunsaturated fatty acid profile and meat quality of Longissimus dorsi. © 2016 Japanese Society of Animal Science.

  11. Aspirin increases mitochondrial fatty acid oxidation

    International Nuclear Information System (INIS)

    Uppala, Radha; Dudiak, Brianne; Beck, Megan E.; Bharathi, Sivakama S.; Zhang, Yuxun; Stolz, Donna B.; Goetzman, Eric S.

    2017-01-01

    The metabolic effects of salicylates are poorly understood. This study investigated the effects of aspirin on fatty acid oxidation. Aspirin increased mitochondrial long-chain fatty acid oxidation, but inhibited peroxisomal fatty acid oxidation, in two different cell lines. Aspirin increased mitochondrial protein acetylation and was found to be a stronger acetylating agent in vitro than acetyl-CoA. However, aspirin-induced acetylation did not alter the activity of fatty acid oxidation proteins, and knocking out the mitochondrial deacetylase SIRT3 did not affect the induction of long-chain fatty acid oxidation by aspirin. Aspirin did not change oxidation of medium-chain fatty acids, which can freely traverse the mitochondrial membrane. Together, these data indicate that aspirin does not directly alter mitochondrial matrix fatty acid oxidation enzymes, but most likely exerts its effects at the level of long-chain fatty acid transport into mitochondria. The drive on mitochondrial fatty acid oxidation may be a compensatory response to altered mitochondrial morphology and inhibited electron transport chain function, both of which were observed after 24 h incubation of cells with aspirin. These studies provide insight into the pathophysiology of Reye Syndrome, which is known to be triggered by aspirin ingestion in patients with fatty acid oxidation disorders. - Highlights: • Aspirin increases mitochondrial—but inhibits peroxisomal—fatty acid oxidation. • Aspirin acetylates mitochondrial proteins including fatty acid oxidation enzymes. • SIRT3 does not influence the effect of aspirin on fatty acid oxidation. • Increased fatty acid oxidation is likely due to altered mitochondrial morphology and respiration.

  12. Fatty acid-producing hosts

    Science.gov (United States)

    Pfleger, Brian F; Lennen, Rebecca M

    2013-12-31

    Described are hosts for overproducing a fatty acid product such as a fatty acid. The hosts include an exogenous nucleic acid encoding a thioesterase and, optionally, an exogenous nucleic acid encoding an acetyl-CoA carboxylase, wherein an acyl-CoA synthetase in the hosts are functionally delected. The hosts prefereably include the nucleic acid encoding the thioesterase at an intermediate copy number. The hosts are preferably recominantly stable and growth-competent at 37.degree. C. Methods of producing a fatty acid product comprising culturing such hosts at 37.degree. C. are also described.

  13. Halogenated fatty acids

    DEFF Research Database (Denmark)

    Mu, Huiling; Wesén, Clas; Sundin, Peter

    1997-01-01

    Chlorinated fatty acids have been found to be major contributors to organohalogen compounds in fish, bivalves, jellyfish, and lobster, and they have been indicated to contribute considerably to organohalogens in marine mammals. Brominated fatty acids have been found in marine sponges. Also...

  14. Intraspecies cellular fatty acids heterogeneity of Lactobacillus plantarum strains isolated from fermented foods in Ukraine.

    Science.gov (United States)

    Garmasheva, I; Vasyliuk, O; Kovalenko, N; Ostapchuk, A; Oleschenko, L

    2015-09-01

    The intraspecies heterogeneity of cellular fatty acids composition of Lactobacillus plantarum strains isolated from Ukrainian traditional fermented foods was examined. Seven cellular fatty acids were identified. All Lact. plantarum strains investigated contained C16:0 (from 7·54 to 49·83% of total fatty acids), cC18:1 (3·23-38·67% of total fatty acids) and cycC19:0 acids (9·03-67·68% of total fatty acids) as the major fatty acids. The tC18:1 acid made up 1·47-22·0% of the total fatty acids. The C14:0 and C16:1 acids were present in small amounts (0·22-6·96% and 0·66-7·42% respectively) in most Lact. plantarum strains. Differences in relative contents of some fatty acids between Lact. plantarum strains depending on the source isolation were found. Isolates of dairy origin contained slightly greater levels of the C16:0 and tC18:1 fatty acids and lower levels of the cC18:1 than strains obtained from fermented vegetables. The origin of Lact. plantarum strains affects their fatty acids composition, which in turn, appears to be related to their ability to growth under stress factors. Cellular fatty acids composition is an important chemotaxonomic characteristic of bacterial cells. At the same time cellular fatty acids play a key role in maintaining the viability of micro-organisms in different environmental conditions. In this study, intraspecies heterogeneity of cellular fatty acids composition of Lactobacillus plantarum strains was examined. This work provides novel and important information about a relationship between cellular fatty acids composition of Lact. plantarum strains and source of isolation or stress resistance profile. Our results showed that cellular fatty acids composition is quite diverse among Lact. plantarum strains derived from different sources and may reflect previous cell's history. Our findings should be considered in chemotaxonomic studies of lactic acid bacteria and its ecology. © 2015 The Society for Applied Microbiology.

  15. Effect of flaxseed oil and microalgae DHA on the production performance, fatty acids and total lipids of egg yolk and plasma in laying hens.

    Science.gov (United States)

    Neijat, M; Ojekudo, O; House, J D

    2016-12-01

    The incorporation of omega-3 polyunsaturated fatty acids (PUFA) in the egg is dependent on both the transfer efficiency of preformed dietary omega-3 fatty acids to the eggs as well as endogenous PUFA metabolism and deposition. Employing an experimental design consisting of 70 Lohmann LSL-Classic hens (n=10/treatment) in a 6-week feeding trial, we examined the impact of graded levels of either flaxseed oil (alpha-linolenic acid, ALA) or algal DHA (preformed docosahexaenoic acid, DHA), each supplying 0.20%, 0.40% and 0.60% total omega-3s. The control diet was practically low in omega-3s. Study parameters included monitoring the changes of fatty acid contents in yolk, measures of hen performance, eggshell quality, total lipids and fatty acid contents of plasma. Data were analysed as a complete randomized design using Proc Mixed procedure of SAS. No significant differences were observed between treatments with respect to hen performance, eggshell quality and cholesterol content in plasma and egg yolk. Individual and total omega-3 PUFA in the yolk and plasma increased (PDHA-fed hens incorporated 3-fold more DHA in eggs compared with ALA-fed hens (179±5.55 vs. 66.7±2.25mg/yolk, respectively). In both treatment groups, maximal enrichment of total n-3 PUFA was observed by week-2, declined by week-4 and leveled thereafter. In addition, accumulation of DHA in egg yolk showed linear (PDHA (R 2 =0.95). The current data, based on defined level of total omega-3s in the background diet, provides evidence to suggest that exogenous as well as endogenous synthesis of DHA may be subject to a similar basis of regulation, and serve to highlight potential regulatory aspects explaining the limitations in the deposition of endogenously produced omega-3 LCPUFA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Cardiorespiratory fitness modifies the association between dietary fat intake and plasma fatty acids.

    Science.gov (United States)

    König, D; Väisänen, S B; Bouchard, C; Halle, M; Lakka, T A; Baumstark, M W; Alen, M; Berg, A; Rauramaa, R

    2003-07-01

    To investigate the relation between (1) cardiorespiratory fitness and plasma saturated, monounsaturated and polyunsaturated fatty acids and (2) the interactions between cardiorespiratory fitness, dietary fat intake and plasma fatty acid composition. Cross-sectional analysis. The subjects were randomly selected, 127 middle-aged Finnish men participating in the DNASCO exercise intervention study. Cardiorespiratory fitness was determined spiroergometrically, dietary intake of macro- and micronutrients by 4-day food records and plasma fatty acids by gas chromatography. The subjects were divided into tertiles of aerobic fitness. Differences between fitness tertiles were not observed for dietary intake of total fat, and saturated, monounsaturated or polyunsaturated fatty acids (percent of total energy). In contrast, plasma saturated fatty acids were significantly lower (P cardiorespiratory fitness are associated with different levels in plasma saturated and polyunsaturated fatty acids and lead to modifications in the association between dietary and plasma fatty acids. These findings can perhaps be explained by a reduced hepatic fatty acid and lipoprotein synthesis as well as by an enhanced muscular lipid utilization, which are commonly seen in those who are physically active and who exhibit a higher level of fitness.

  17. Radiotherapy improves serum fatty acids and lipid profile in breast cancer.

    Science.gov (United States)

    Shaikh, Sana; Channa, Naseem Aslam; Talpur, Farha Naz; Younis, Muhammad; Tabassum, Naila

    2017-05-18

    Breast cancer is a disease with diverse clinical symptoms, molecular profiles, and its nature to response its therapeutic treatments. Radiotherapy (RT), along with surgery and chemotherapy is a part of treatment in breast cancer. The aim of present study was to investigate pre and post treatment effects of radiotherapy in serum fatty acids and its lipids profile in patients with breast cancer. In this comparative as well as follow up study, Serum fatty acids were performed by gas chromatography to investigate fatty acids and Microlab for analysis of lipid profile. Among serum free and total fatty acids the major saturated fatty acids (SFAs) in serum lipids of breast cancer patients (pre and post treated) were stearic acid (18:0) and palmitic acid (16:0). These fatty acids contributed about 35-50% of total fatty acids. The decreased concentrations of linoleic acid (C18:2) and arachidonic acid (C20:4) with a lower ratio of C18:2/C18:1 was found in pretreated breast cancer patients as compared to controls. The n-3/n-6 ratio of breast cancer patients was decreased before treatment but it was 35% increased after treatment. In addition, plasma activity of D6 desaturase was increased in the breast cancer patients, while the activity of D5 desaturase was decreased. Increased levels of SFAs, monounsaturated fatty acids (MUFAs) and decreased polyunsaturated fatty acids (PUFAs) levels in breast cancer patients (pre and post treated) as compared to controls. Serum total cholesterol (TC) (224.4 mg/dL) and low density lipoprotein cholesterol (LDL-C) (142.9 mg/dL) were significantly increased in pretreated breast cancer patients but after the radiotherapy treatment, the TC (150.2 mg/dL) and LDL-C (89.8 mg/dL) were decreased. It seems that RT would have played a potential role in the treatment of BC. After RT the serum levels of PUFAs, TC, and LDL-C are improved. Our study reinforces the important role of RT in the management of BC. The level of PUFAs, TC, and LDL-C can be

  18. Production of Medium Chain Fatty Acids by Yarrowia lipolytica: Combining Molecular Design and TALEN to Engineer the Fatty Acid Synthase.

    Science.gov (United States)

    Rigouin, Coraline; Gueroult, Marc; Croux, Christian; Dubois, Gwendoline; Borsenberger, Vinciane; Barbe, Sophie; Marty, Alain; Daboussi, Fayza; André, Isabelle; Bordes, Florence

    2017-10-20

    Yarrowia lipolytica is a promising organism for the production of lipids of biotechnological interest and particularly for biofuel. In this study, we engineered the key enzyme involved in lipid biosynthesis, the giant multifunctional fatty acid synthase (FAS), to shorten chain length of the synthesized fatty acids. Taking as starting point that the ketoacyl synthase (KS) domain of Yarrowia lipolytica FAS is directly involved in chain length specificity, we used molecular modeling to investigate molecular recognition of palmitic acid (C16 fatty acid) by the KS. This enabled to point out the key role of an isoleucine residue, I1220, from the fatty acid binding site, which could be targeted by mutagenesis. To address this challenge, TALEN (transcription activator-like effector nucleases)-based genome editing technology was applied for the first time to Yarrowia lipolytica and proved to be very efficient for inducing targeted genome modifications. Among the generated FAS mutants, those having a bulky aromatic amino acid residue in place of the native isoleucine at position 1220 led to a significant increase of myristic acid (C14) production compared to parental wild-type KS. Particularly, the best performing mutant, I1220W, accumulates C14 at a level of 11.6% total fatty acids. Overall, this work illustrates how a combination of molecular modeling and genome-editing technology can offer novel opportunities to rationally engineer complex systems for synthetic biology.

  19. Dietary trans-fatty acids and metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Zdzisław Kochan

    2010-12-01

    Full Text Available Trans-fatty acids (TFAs, products of partial hydrogenation of vegetable oils, have become more prevalent in our diet since the 1960s, when they replaced animal fats. TFAs also occur naturally in meat and dairy products from ruminants. There is growing evidence that dietary trans-fatty acids may increase the risk of metabolic syndrome. Several studies have demonstrated adverse effects of TFAs on plasma lipids and lipoproteins. In dietary trials, trans-fatty acids have been shown to raise the total cholesterol/HDL cholesterol ratio and Lp(a levels in blood. Moreover, a high intake of TFAs has been associated with an increased risk of coronary heart disease. Prospective cohort studies have shown that dietary trans-fatty acids promote abdominal obesity and weight gain. In addition, it appears that TFA consumption may be associated with the development of insulin resistance and type 2 diabetes. The documented adverse health effects of TFAs emphasise the importance of efforts to reduce the content of partially hydrogenated vegetable oils in foods.

  20. Fatty acids in mountain gorilla diets: implications for primate nutrition and health.

    Science.gov (United States)

    Reiner, Whitney B; Petzinger, Christina; Power, Michael L; Hyeroba, David; Rothman, Jessica M

    2014-03-01

    Little is known about the fatty acid composition of foods eaten by wild primates. A total of 18 staple foods that comprise 97% of the annual dietary intake of the mountain gorilla (Gorilla beringei) were analyzed for fatty acid concentrations. Fruits and herbaceous leaves comprise the majority of the diet, with fruits generally having a higher mean percentage of fat (of dry matter; DM), as measured by ether extract (EE), than herbaceous leaves (13.0% ± SD 13.0% vs. 2.3 ± SD 0.8%). The mean daily EE intake by gorillas was 3.1% (DM). Fat provided ≈14% of the total dietary energy intake, and ≈22% of the dietary non-protein energy intake. Saturated fatty acids accounted for 32.4% of the total fatty acids in the diet, while monounsaturated fatty acids accounted for 12.5% and polyunsaturated fatty acids (PUFA) accounted for 54.6%. Both of the two essential PUFA, linoleic acid (LA, n-6) and α-linolenic acid (ALA, n-3), were found in all of the 17 staple foods containing crude fat and were among the three most predominant fatty acids in the diet: LA (C18:2n-6) (30.3%), palmitic acid (C16:0) (23.9%), and ALA (C18:3n-3) (21.2%). Herbaceous leaves had higher concentrations of ALA, while fruit was higher in LA. Fruits provided high amounts of fatty acids, especially LA, in proportion to their intake due to the higher fat concentrations; despite being low in fat, herbaceous leaves provided sufficient ALA due to the high intake of these foods. As expected, we found that wild mountain gorillas consume a diet lower in EE, than modern humans. The ratio of LA:ALA was 1.44, closer to agricultural paleolithic diets than to modern human diets. © 2013 Wiley Periodicals, Inc.

  1. Effects of Fatty Acids at Different Positions in the Triglycerides on Cholesterol Levels

    International Nuclear Information System (INIS)

    Teh, S.S.; Voon, P.T.; Ng, Y.T.; Ong, S.H.; Augustine, S.H.O.; Choo, Y.M.

    2016-01-01

    Previous studies established a series of regression equations for predicting the risk factor effects from serum cholesterol concentrations. However, the degree of saturation was solely based on total fatty acid composition in triglycerides. Our article is focused on the relationships between the published human nutrition studies and predicted values of serum cholesterol levels based on total fatty acid compositions and at sn-2 position in triglycerides. Twenty-two published human nutrition studies were chosen to assess the effects of palm olein, olive oil, cocoa butter, sunflower seed oil, corn oil, soyabean oil, grape seed oil, groundnut oil and rice bran oil diets on serum cholesterol levels. There were no statistically significant differences between the predicted values of serum cholesterol levels based on fatty acids at sn-2 position and the published human nutrition studies as proven by the statistical analyses with p values more than 0.05. In contrast, there were statistically significant differences between the predicted values of serum cholesterol levels based on total fatty acids and the published human nutritional studies with p values less than 0.05. Fatty acids at sn-2 position appear to influence the cholesterol levels rather than total fatty acids of the triglyceride. (author)

  2. Genetic mapping of QTLs controlling fatty acids provided insights into the genetic control of fatty acid synthesis pathway in peanut (Arachis hypogaea L..

    Directory of Open Access Journals (Sweden)

    Ming Li Wang

    Full Text Available Peanut, a high-oil crop with about 50% oil content, is either crushed for oil or used as edible products. Fatty acid composition determines the oil quality which has high relevance to consumer health, flavor, and shelf life of commercial products. In addition to the major fatty acids, oleic acid (C18:1 and linoleic acid (C18:2 accounting for about 80% of peanut oil, the six other fatty acids namely palmitic acid (C16:0, stearic acid (C18:0, arachidic acid (C20:0, gadoleic acid (C20:1, behenic acid (C22:0, and lignoceric acid (C24:0 are accounted for the rest 20%. To determine the genetic basis and to improve further understanding on effect of FAD2 genes on these fatty acids, two recombinant inbred line (RIL populations namely S-population (high oleic line 'SunOleic 97R' × low oleic line 'NC94022' and T-population (normal oleic line 'Tifrunner' × low oleic line 'GT-C20' were developed. Genetic maps with 206 and 378 marker loci for the S- and the T-population, respectively were used for quantitative trait locus (QTL analysis. As a result, a total of 164 main-effect (M-QTLs and 27 epistatic (E-QTLs QTLs associated with the minor fatty acids were identified with 0.16% to 40.56% phenotypic variation explained (PVE. Thirty four major QTLs (>10% of PVE mapped on five linkage groups and 28 clusters containing more than three QTLs were also identified. These results suggest that the major QTLs with large additive effects would play an important role in controlling composition of these minor fatty acids in addition to the oleic and linoleic acids in peanut oil. The interrelationship among these fatty acids should be considered while breeding for improved peanut genotypes with good oil quality and desired fatty acid composition.

  3. Fatty acid composition of commercially available Iranian edible oils

    Directory of Open Access Journals (Sweden)

    Sedigheh Asgary

    2009-08-01

    Full Text Available

    • BACKGROUND: Trans-fatty acids (TFAs, unsaturated fats with at least one double bond in the Trans configuration, are industrially formed in large quantities when vegetable oils are partially hydrogenated. This study was  ndertaken to quantify the amounts of the common fatty acids in several commercial oils marketing in Iran.
    • METHODS: The most consumed commercially available brands of vegetable oils were randomly selected from products available in supermarkets. A 10g sample was drawn from each mixed sample and prepared for fatty cid analysis by gas chromatography (GC.
    • RESULTS: Palmitic acid (C16:0 and stearic acid (C18:0 jointly constituted 21% of total fatty acids in partially hydrogenated vegetable oils (PHVOs. More than one third of total fatty acids in Iranian PHVOs were Trans fats. TFAs constituted almost 1% and 3% of total fatty  cids in Iranian cooking and frying oils. This study  howed higher contents of TFAs in Iranian commercially available hydrogenated vegetable oils. Statistical Package for Social Sciences was used for all statistical analyses.
    • CONCLUSIONS: Although

    • Effects of dietary conjugated linoleic acid and linoleic:linolenic acid ratio on polyunsaturated fatty acid status in laying hens.

      Science.gov (United States)

      Du, M; Ahn, D U; Sell, J L

      2000-12-01

      A study was conducted to determine the effects of dietary conjugated linoleic acid (CLA) and the ratio of linoleic:linolenic acid on long-chain polyunsaturated fatty acid status. Thirty-two 31-wk-old White Leghorn hens were randomly assigned to four diets containing 8.2% soy oil, 4.1% soy oil + 2.5% CLA (4.1% CLA source), 4.1% flax oil + 2.5% CLA, or 4.1% soy oil + 4.1% flax oil. Hens were fed the diets for 3 wk before eggs and tissues were collected for the study. Lipids were extracted from egg yolk and tissues, classes of egg yolk lipids were separated, and fatty acid concentrations of total lipids, triglyceride, phosphatidylethanolamine, and phosphatidylcholine were analyzed by gas chromatography. The concentrations of monounsaturated fatty acids and non-CLA polyunsaturated fatty acids were reduced after CLA feeding. The amount of arachidonic acid was decreased after CLA feeding in linoleic acid- and linolenic acid-rich diets, but amounts of eicosapentaenoic acid and docosahexaenoic acid were increased in the linolenic-rich diet, indicating that the synthesis or deposition of long-chain n-3 fatty acids was accelerated after CLA feeding. The increased docosahexaenoic acid and eicosapentaenoic acid contents in lipid may be compensation for the decreased arachidonic acid content. Dietary supplementation of linoleic acid increased n-6 fatty acid levels in lipids, whereas linolenic acid increased n-3 fatty acid levels. Results also suggest that CLA might not be elongated to synthesize long-chain fatty acids in significant amounts. The effect of CLA in reducing the level of n-6 fatty acids and promoting the level of n-3 fatty acids could be related to the biological effects of CLA.

    • Chronic sucrose intake decreases concentrations of n6 fatty acids, but not docosahexaenoic acid in the rat brain phospholipids.

      Science.gov (United States)

      Mašek, Tomislav; Starčević, Kristina

      2017-07-13

      We investigated the influence of high sucrose intake, administered in drinking water, on the lipid profile of the brain and on the expression of SREBP1c and Δ-desaturase genes. Adult male rats received 30% sucrose solution for 20 weeks (Sucrose group), or plain water (Control group). After the 20th week of sucrose treatment, the Sucrose group showed permanent hyperglycemia. Sucrose treatment also increased the amount of total lipids and fatty acids in the brain. The brain fatty acid profile of total lipids as well as phosphatidylethanolamine, phosphatidylcholine and cardiolipin of the Sucrose group was extensively changed. The most interesting change was a significant decrease in n6 fatty acids, including the important arachidonic acid, whereas the content of oleic and docosahexaenoic acid remained unchanged. RT-qPCR revealed an increase in Δ-5-desaturase and SREBP1c gene expression. In conclusion, high sucrose intake via drinking water extensively changes rat brain fatty acid profile by decreasing n6 fatty acids, including arachidonic acid. In contrast, the content of docosahexaenoic acid remains constant in the brain total lipids as well as in phospholipids. Changes in the brain fatty acid profile reflect changes in the lipid metabolism of the rat lipogenic tissues and concentrations in the circulation. Copyright © 2017 Elsevier B.V. All rights reserved.

    • Dietary intake and food sources of fatty acids in Australian adolescents.

      Science.gov (United States)

      O'Sullivan, Therese A; Ambrosini, Gina; Beilin, Lawrie J; Mori, Trevor A; Oddy, Wendy H

      2011-02-01

      Dietary fat consumed during childhood and adolescence may be related to the development of cardiovascular and other chronic diseases in adulthood; however, there is a lack of information on specific fatty acid intakes and food sources in these populations. Our study aimed to assess fatty acid intakes in Australian adolescents, compare intakes with national guidelines, and identify major food sources of fatty acids. Dietary intake was assessed using measured 3-d records in 822 adolescents aged 13-15 y participating in The Western Australian Pregnancy Cohort (Raine) Study, Australia. Mean daily total fat intakes were 90 ± 25 g for boys and 73 ± 20 g for girls, with saturated fat contributing 14% of total energy intake. Mean contribution to daily energy intake for linoleic, alpha-linolenic, eicosapentaenoic, docosapentaenoic, and docosahexaenoic acids were 3.0%, 0.40%, 0.02%, 0.01%, and 0.04%, respectively, for boys, and 3.3%, 0.42%, 0.02%, 0.01%, and 0.05% for girls. To meet guidelines for chronic disease prevention, consumption of long-chain omega-3 fatty acids in this population may need to increase up to three-fold and the proportion of saturated fat decrease by one-third. Girls were more likely to achieve the guidelines. Major food sources were dairy products for total fat, saturated fat and alpha-linolenic acid, margarines for linoleic acid, and fish for long-chain omega-3 fatty acids. Results suggest that for this population, a higher dietary intake of long-chain omega-3 fatty acids, particularly for boys, and lower proportion of saturated fat is required to meet recommendations for prevention of chronic disease. Copyright © 2011 Elsevier Inc. All rights reserved.

    • Omega-3 fatty acids in baked freshwater fish from south of Brazil.

      Science.gov (United States)

      Andrade, A D; Visentainer, J V; Matsushita, M; de Souza, N E

      1997-03-01

      Lipid and fatty acid levels in the edible flesh of 17 baked freshwater fish from Brazil's southern region were determined. Analyses of fatty acids methyl esters were performed by gas chromatography. Palmitic acid (C16:0) was the predominant saturated fatty acid, accouting for 50-70% of total saturated acids. Linoleic acid (C18:2 omega 6), linolenic acid (C18:3 omega 3), and docosahexaenoic acid (C22:6 omega 3) were the predominant polyunsatured fatty acids (PUFA). The data revealed that species such as barbado, corvina, pintado, and truta were good sources of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and that most freshwater fish examined were good sources of PUFA-omega 3.

    • Relationship of the Reported Intakes of Fat and Fatty Acids to Body Weight in US Adults.

      Science.gov (United States)

      Raatz, Susan K; Conrad, Zach; Johnson, LuAnn K; Picklo, Matthew J; Jahns, Lisa

      2017-04-28

      Dietary fat composition may modulate energy expenditure and body weight. Little is known about the relationship between fatty acid intake and body weight at a population level. The purposes of this study were to compare intakes of energy, macronutrients, and individual fatty acids across BMI categories (1) for the US adult population and, (2) by sociodemographic groups. Reported dietary intake data from the National Health and Nutrition Examination Survey (NHANES) and What We Eat in America (WWEIA) surveys in the years 2005-2012 were analyzed. Overall, we found that the reported intake of carbohydrate, protein, total fat, total saturated fat (as well as long-chain saturated fatty acids 14:0-18:0), and monounsaturated fatty acids (MUFAs) were positively associated with BMI; while lauric acid (a medium-chain saturated fatty acid, 12:0) and total polyunsaturated fatty acids (PUFAs) (as well as all individual PUFAs) were not associated with BMI. Non-Hispanic black individuals demonstrated a negative association between BMI and energy intake and a positive association between total PUFAs, linoleic acid (LA), α-linolenic acid (ALA) and BMI. Individuals with less than a high school education showed a negative association between BMI and DHA. Mexican-Americans reported intakes with no association between BMI and energy, any macronutrient, or individual fatty acids. These findings support those of experimental studies demonstrating fatty acid-dependent associations between dietary fatty acid composition and body weight. Notably, we observed divergent results for some sociodemographic groups which warrant further investigation.

    • Efficient and specific analysis of red blood cell glycerophospholipid fatty acid composition.

      Directory of Open Access Journals (Sweden)

      Sabrina Klem

      Full Text Available BACKGROUND: Red blood cell (RBC n-3 fatty acid status is related to various health outcomes. Accepted biological markers for the fatty acid status determination are RBC phospholipids, phosphatidylcholine, and phosphatidyletholamine. The analysis of these lipid fractions is demanding and time consuming and total phospholipid n-3 fatty acid levels might be affected by changes of sphingomyelin contents in the RBC membrane during n-3 supplementation. AIM: We developed a method for the specific analysis of RBC glycerophospholipids. The application of the new method in a DHA supplementation trial and the comparison to established markers will determine the relevance of RBC GPL as a valid fatty acid status marker in humans. METHODS: Methyl esters of glycerophospholipid fatty acids are selectively generated by a two step procedure involving methanolic protein precipitation and base-catalysed methyl ester synthesis. RBC GPL solubilisation is facilitated by ultrasound treatment. Fatty acid status in RBC glycerophospholipids and other established markers were evaluated in thirteen subjects participating in a 30 days supplementation trial (510 mg DHA/d. OUTCOME: The intra-assay CV for GPL fatty acids ranged from 1.0 to 10.5% and the inter-assay CV from 1.3 to 10.9%. Docosahexaenoic acid supplementation significantly increased the docosahexaenoic acid contents in all analysed lipid fractions. High correlations were observed for most of the mono- and polyunsaturated fatty acids, and for the omega-3 index (r = 0.924 between RBC phospholipids and glycerophospholipids. The analysis of RBC glycerophospholipid fatty acids yields faster, easier and less costly results equivalent to the conventional analysis of RBC total phospholipids.

    • Fatty acid composition of leaves of forced chicory (Cichorium intybus L.

      Directory of Open Access Journals (Sweden)

      Sinkovič Lovro

      2015-01-01

      Full Text Available The objective of the present study was to determine the composition of fatty acids in leaves of nine chicory cultivars (Cichorium intybus L.. The growing practice followed the traditional forcing method of developed roots in a peat to obtain new etiolated vegetative apical buds, known as chicons. The fatty acid content was determined by the extraction of fatty acid methyl esters and analysis by means of gas chromatography. The analysis revealed the following ratios of C16:0, C18:0, C18:1, C18:2 and C18:3 of individual fatty acids. The total fatty acid content in forced chicory leaves ranged from 104 to 644 mg/100 g fresh weight. The highest relative content (64% is presented by α-linolenic acid, followed by linoleic (44% and palmitic (21%. An n-6/n-3 polyunsaturated fatty acids ratio of studied forced chicory is below 1.4 and thus, in accordance with the recommended dietary ratio that is close to 1.

    • Fatty Acid Incubation of Myotubues from Humans with Type 2 Diabetes Leads to Enhanced Release of Beta Oxidation Products Due to Impaired Fatty Acid Oxidation

      DEFF Research Database (Denmark)

      Wensaas, Andreas J; Rustan, Arild C; Just, Marlene

      2008-01-01

      Objective: Increased availability of fatty acids is important for accumulation of intracellular lipids and development of insulin resistance in human myotubes. It is unknown whether different types of fatty acids like eicosapentaenoic acid (EPA) or tetradecylthioacetic acid (TTA) influence...... these processes. Research Design and Methods: We examined fatty acid and glucose metabolism, and gene expression in cultured human skeletal muscle cells from control and T2D individuals after four days preincubation with EPA or TTA. Results: T2D myotubes exhibited reduced formation of CO(2) from palmitic acid (PA....... EPA markedly enhanced TAG accumulation in myotubes, more pronounced in T2D cells. TAG accumulation and fatty acid oxidation were inversely correlated only after EPA preincubation, and total level of acyl-CoA was reduced. Glucose oxidation (CO(2) formation) was enhanced and lactate production decreased...

    • [Fatty acids in confectionery products].

      Science.gov (United States)

      Daniewski, M; Mielniczuk, E; Jacórzyński, B; Pawlicka, M; Balas, J; Filipek, A; Górnicka, M

      2000-01-01

      The content of fat and fatty acids in 144 different confectionery products purchased on the market in Warsaw region during 1997-1999 have been investigated. In examined confectionery products considerable variability of both fat and fatty acids content have been found. The content of fat varied from 6.6% (coconut cookies) up to 40% (chocolate wafers). Saturated fatty acids were present in both cis and trans form. Especially trans fatty acids reach (above 50%) were fats extracted from nut wafers, coconuts wafers.

    • Distribution study of fatty acids (FAs) in sediments of Al-Kabeer Al-Shemali river estuary area using (HPLC) technique

      International Nuclear Information System (INIS)

      Nasser, M.; Ali, B.; Ali, A.

      2010-01-01

      Samples of sediments from fife sites of Al-kabeer Al-shemali river estuary area were collected during the period (22/2/2007-7/11/2007). The samples were extracted to determine their content of Fatty acids qualitatively and quantitatively by using ( HPLC) technique for determination resources of organic matter in studied sediments . The total concentrations of (FAs) varied from (0.36-1245.5μg/g dry weight).The saturated fatty acids were dominated in all samples (12.1 - 100 %) of total fatty acids. The levels of polyunsaturated fatty acids (PUFAs) were tested percent (0-18 %) of total fatty acids except one sample from surficial sediments in St 3 during 8/8/2007 .while the concentrations of monounsaturated fatty acids (MUFAs) were low (0 -21.6 %) of total fatty acids . We can use the saturated long chain fatty acid (C-22) as terrestrial biomarker. poly unsaturated fatty acid (C 1 8: 2ω6) as plankton biomarker and the Mono unsaturated fatty acid (C 1 8 : 1ω7) as bacterial biomarker.(author)

    • Proximate composition, amino acid and fatty acid composition of fish maws.

      Science.gov (United States)

      Wen, Jing; Zeng, Ling; Xu, Youhou; Sun, Yulin; Chen, Ziming; Fan, Sigang

      2016-01-01

      Fish maws are commonly recommended and consumed in Asia over many centuries because it is believed to have some traditional medical properties. This study highlights and provides new information on the proximate composition, amino acid and fatty acid composition of fish maws of Cynoscion acoupa, Congresox talabonoides and Sciades proops. The results indicated that fish maws were excellent protein sources and low in fat content. The proteins in fish maws were rich in functional amino acids (FAAs) and the ratio of FAAs and total amino acids in fish maws ranged from 0.68 to 0.69. Among species, croaker C. acoupa contained the most polyunsaturated fatty acids, arachidonic acid, docosahexaenoic acid and eicosapntemacnioc acid, showing the lowest value of index of atherogenicity and index of thrombogenicity, showing the highest value of hypocholesterolemic/hypercholesterolemic ratio, which is the most desirable.

    • Synthesis of new fatty acids amides from aminolysis of fatty acid methyl esters (FAMEs)

      International Nuclear Information System (INIS)

      Lopes, Carolina R.; Montes D'Oca, Caroline da Ros; Duarte, Rodrigo da C.; Kurz, Marcia H.S.; Primel, Ednei G.; Clementin, Rosilene M.; Villarreyes, Joaquin Ariel M.; Montes D'Oca, Marcelo G.

      2010-01-01

      Recent biochemical and pharmacological studies have led to the characterization of different fatty acid amides as a new family of biologically active lipids. Here, we describe the synthesis of new amides from C16:0, 18:0, 18:1 and 18:1, OH fatty acids (FFA) families with cyclic and acyclic amines and demonstrate for the first time that these compounds produce cytotoxic effects. Application of this method to the synthesis of fatty acid amides was performed using the esters aminolysis as a key step and various carboxylic amides were prepared in good yield from fatty acid methyl esters (FAMEs). (author)

    • Do fatty acids affect fetal programming?

      Science.gov (United States)

      Kabaran, Seray; Besler, H Tanju

      2015-08-13

      In this study discussed the primary and regulatory roles of fatty acids, and investigated the affects of fatty acids on metabolic programming. Review of the literature was carried out on three electronic databases to assess the roles of fatty acids in metabolic programming. All abstracts and full-text articles were examined, and the most relevant articles were selected for screening and inclusion in this review. The mother's nutritional environment during fetal period has important effects on long term health. Fatty acids play a primary role in growth and development. Alterations in fatty acid intake in the fetal period may increase the risk of obesity and metabolic disorders in later life. Maternal fatty acid intakes during pregnancy and lactation are passed to the fetus and the newborn via the placenta and breast milk, respectively. Imbalances in fatty acid intake during the fetal period change the fatty acid composition of membrane phospholipids, which can cause structural and functional problems in cells. Additionally, the metabolic and neuroendocrine environments of the fetus and the newborn play key roles in the regulation of energy balance. Imbalances in fatty acid intake during pregnancy and lactation may result in permanent changes in appetite control, neuroendocrine function and energy metabolism in the fetus, leading to metabolic programming. Further studies are needed to determine the role of fatty acid intake in metabolic programming.

    • Serum Fatty Acids Are Correlated with Inflammatory Cytokines in Ulcerative Colitis.

      Directory of Open Access Journals (Sweden)

      Dawn M Wiese

      Full Text Available Ulcerative colitis (UC is associated with increased dietary intake of fat and n-6 polyunsaturated fatty acids (PUFA. Modification of fat metabolism may alter inflammation and disease severity. Our aim was to assess differences in dietary and serum fatty acid levels between control and UC subjects and associations with disease activity and inflammatory cytokines.Dietary histories, serum, and colonic tissue samples were prospectively collected from 137 UC subjects and 38 controls. Both histologic injury and the Mayo Disease Activity Index were assessed. Serum and tissue cytokines were measured by Luminex assay. Serum fatty acids were obtained by gas chromatography.UC subjects had increased total fat and oleic acid (OA intake, but decreased arachidonic acid (AA intake vs controls. In serum, there was less percent saturated fatty acid (SFA and AA, with higher monounsaturated fatty acids (MUFA, linoleic acid, OA, eicosapentaenoic acid (EPA, and docosapentaenoic acid (DPA in UC. Tissue cytokine levels were directly correlated with SFA and inversely correlated with PUFA, EPA, and DPA in UC subjects, but not controls. 5-aminosalicylic acid therapy blunted these associations.In summary, we found differences in serum fatty acids in UC subjects that correlated with pro-inflammatory tissue cytokines. We propose that fatty acids may affect cytokine production and thus be immunomodulatory in UC.

    • Serum Fatty Acids Are Correlated with Inflammatory Cytokines in Ulcerative Colitis.

      Science.gov (United States)

      Wiese, Dawn M; Horst, Sara N; Brown, Caroline T; Allaman, Margaret M; Hodges, Mallary E; Slaughter, James C; Druce, Jennifer P; Beaulieu, Dawn B; Schwartz, David A; Wilson, Keith T; Coburn, Lori A

      2016-01-01

      Ulcerative colitis (UC) is associated with increased dietary intake of fat and n-6 polyunsaturated fatty acids (PUFA). Modification of fat metabolism may alter inflammation and disease severity. Our aim was to assess differences in dietary and serum fatty acid levels between control and UC subjects and associations with disease activity and inflammatory cytokines. Dietary histories, serum, and colonic tissue samples were prospectively collected from 137 UC subjects and 38 controls. Both histologic injury and the Mayo Disease Activity Index were assessed. Serum and tissue cytokines were measured by Luminex assay. Serum fatty acids were obtained by gas chromatography. UC subjects had increased total fat and oleic acid (OA) intake, but decreased arachidonic acid (AA) intake vs controls. In serum, there was less percent saturated fatty acid (SFA) and AA, with higher monounsaturated fatty acids (MUFA), linoleic acid, OA, eicosapentaenoic acid (EPA), and docosapentaenoic acid (DPA) in UC. Tissue cytokine levels were directly correlated with SFA and inversely correlated with PUFA, EPA, and DPA in UC subjects, but not controls. 5-aminosalicylic acid therapy blunted these associations. In summary, we found differences in serum fatty acids in UC subjects that correlated with pro-inflammatory tissue cytokines. We propose that fatty acids may affect cytokine production and thus be immunomodulatory in UC.

    • PPAR/RXR Regulation of Fatty Acid Metabolism and Fatty Acid -Hydroxylase (CYP4 Isozymes: Implications for Prevention of Lipotoxicity in Fatty Liver Disease

      Directory of Open Access Journals (Sweden)

      James P. Hardwick

      2009-01-01

      Full Text Available Fatty liver disease is a common lipid metabolism disorder influenced by the combination of individual genetic makeup, drug exposure, and life-style choices that are frequently associated with metabolic syndrome, which encompasses obesity, dyslipidemia, hypertension, hypertriglyceridemia, and insulin resistant diabetes. Common to obesity related dyslipidemia is the excessive storage of hepatic fatty acids (steatosis, due to a decrease in mitochondria -oxidation with an increase in both peroxisomal -oxidation, and microsomal -oxidation of fatty acids through peroxisome proliferator activated receptors (PPARs. How steatosis increases PPAR activated gene expression of fatty acid transport proteins, peroxisomal and mitochondrial fatty acid -oxidation and -oxidation of fatty acids genes regardless of whether dietary fatty acids are polyunsaturated (PUFA, monounsaturated (MUFA, or saturated (SFA may be determined by the interplay of PPARs and HNF4 with the fatty acid transport proteins L-FABP and ACBP. In hepatic steatosis and steatohepatitis, the -oxidation cytochrome P450 CYP4A gene expression is increased even with reduced hepatic levels of PPAR. Although numerous studies have suggested the role ethanol-inducible CYP2E1 in contributing to increased oxidative stress, Cyp2e1-null mice still develop steatohepatitis with a dramatic increase in CYP4A gene expression. This strongly implies that CYP4A fatty acid -hydroxylase P450s may play an important role in the development of steatohepatitis. In this review and tutorial, we briefly describe how fatty acids are partitioned by fatty acid transport proteins to either anabolic or catabolic pathways regulated by PPARs, and we explore how medium-chain fatty acid (MCFA CYP4A and long-chain fatty acid (LCFA CYP4F -hydroxylase genes are regulated in fatty liver. We finally propose a hypothesis that increased CYP4A expression with a decrease in CYP4F genes may promote the progression of steatosis to

    • New radiohalogenated alkenyl tellurium fatty acids

      International Nuclear Information System (INIS)

      Srivastava, P.C.; Knapp, F.F. Jr.; Kabalka, G.W.

      1987-01-01

      Radiolabeled long-chain fatty acids have diagnostic value as radiopharmaceutical tools in myocardial imaging. Some applications of these fatty acids are limited due to their natural metabolic degradation in vivo with subsequent washout of the radioactivity from the myocardium. The identification of structural features that will increase the myocardial residence time without decreasing the heart uptake of long-chain fatty acids is of interest. Fatty acids containing the tellurium heteroatom were the first modified fatty acids developed that show unique prolonged myocardial retention and low blood levels. Our detailed studies with radioiodinated vinyliodide substituted tellurium fatty acids demonstrate that heart uptake is a function of the tellurium position. New techniques of tellurium and organoborane chemistry have been developed for the synthesis of a variety of radioiodinated iodoalkenyl tellurium fatty acids. 9 refs., 3 figs., 2 tabs

  1. Fatty acid and sterol composition of fenugreek seed (Trigonella foenum-graecum L.

    Directory of Open Access Journals (Sweden)

    Mustafa Kıralan

    2017-12-01

    Full Text Available Oil content, fatty acid and sterol composition of fenugreek seeds obtained from three different provinces were investigated. Oil was obtained from fenugreek seeds by solvent extraction and oil content was determined between 7.01-8.82%. Fenugreek seed oils were determined to be rich of unsaturated fatty acids according to gas chromatography results. Especially, linoleic acid was the most important of the fatty acids and varied between 45.10-46.19%. Total sterol content of oils varied from 8 681.54 to 9 591.70 ppm. The major sterol was β- sitosterol, and it was found to be between 59.94-68.24% of the total sterols.

  2. Exogenous fatty acid metabolism in bacteria.

    Science.gov (United States)

    Yao, Jiangwei; Rock, Charles O

    2017-10-01

    Bacterial type II fatty acid synthesis (FASII) is a target for novel antibiotic development. All bacteria encode for mechanisms to incorporate exogenous fatty acids, and some bacteria can use exogenous fatty acids to bypass FASII inhibition. Bacteria encode three different mechanisms for activating exogenous fatty acids for incorporation into phospholipid synthesis. Exogenous fatty acids are converted into acyl-CoA in Gammaproteobacteria such as E. coli. Acyl-CoA molecules constitute a separate pool from endogenously synthesized acyl-ACP. Acyl-CoA can be used for phospholipid synthesis or broken down by β-oxidation, but cannot be used for lipopolysaccharide synthesis. Exogenous fatty acids are converted into acyl-ACP in some Gram-negative bacteria. The resulting acyl-ACP undergoes the same fates as endogenously synthesized acyl-ACP. Exogenous fatty acids are converted into acyl-phosphates in Gram-positive bacteria, and can be used for phospholipid synthesis or become acyl-ACP. Only the order Lactobacillales can use exogenous fatty acids to bypass FASII inhibition. FASII shuts down completely in presence of exogenous fatty acids in Lactobacillales, allowing Lactobacillales to synthesize phospholipids entirely from exogenous fatty acids. Inhibition of FASII cannot be bypassed in other bacteria because FASII is only partially down-regulated in presence of exogenous fatty acid or FASII is required to synthesize essential metabolites such as β-hydroxyacyl-ACP. Certain selective pressures such as FASII inhibition or growth in biofilms can select for naturally occurring one step mutations that attenuate endogenous fatty acid synthesis. Although attempts have been made to estimate the natural prevalence of these mutants, culture-independent metagenomic methods would provide a better estimate. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  3. Fatty acid profile in patients with phenylketonuria and its relationship with bone mineral density.

    Science.gov (United States)

    Lage, Sergio; Bueno, María; Andrade, Fernando; Prieto, José Angel; Delgado, Carmen; Legarda, María; Sanjurjo, Pablo; Aldámiz-Echevarría, Luis Jose

    2010-12-01

    Patients with phenylketonuria (PKU) undergo a restrictive vegan-like diet, with almost total absence of n-3 fatty acids, which have been proposed as potential contributors to bone formation in the healthy population. The PKU diet might lead these patients to bone mass loss and, consequently, to the development of osteopenia/osteoporosis. Therefore, we proposed to analyze their plasma fatty acid profile status and its relationship with bone health. We recruited 47 PKU patients for this cross-sectional study and divided the cohort into three age groups (6-10 years, 11-18 years, 19-42 years). We measured their plasma fatty acid profile and bone mineral density (BMD) (both at the femoral neck and the lumbar spine). Seventy-seven healthy controls also participated as reference values of plasma fatty acids. Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) and total n-3 fatty acids were significantly diminished in PKU patients compared with healthy controls. DHA, EPA, and total n-3 fatty acids were also positively associated with bone mineral density (r = 0.83, p = 0.010; r = 0.57, p = 0.006; r = 0.73, p = 0.040, respectively). There was no association between phenylalanine (Phe), Index of Dietary Control (IDC), calcium, 25-hydroxivitamin D concentrations, daily calcium intake, and BMD. Our results suggest a possible influence of essential fatty acids over BMD in PKU patients. The lack of essential n-3 fatty acids intake in the PKU diet might affect bone mineralization. Further clinical trials are needed to confirm the effect of the n-3 essential fatty acids on bone accrual in a cohort of PKU patients.

  4. 21 CFR 172.860 - Fatty acids.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Fatty acids. 172.860 Section 172.860 Food and Drugs... Multipurpose Additives § 172.860 Fatty acids. The food additive fatty acids may be safely used in food and in... and their associated fatty acids manufactured from fats and oils derived from edible sources: Capric...

  5. Identification of fatty acids and fatty acid amides in human meibomian gland secretions.

    Science.gov (United States)

    Nichols, Kelly K; Ham, Bryan M; Nichols, Jason J; Ziegler, Corrie; Green-Church, Kari B

    2007-01-01

    The complex superficial lipid layer of the tear film functions to prevent evaporation and maintain tear stability. Although classes of lipids found in the tear film have been reported, individual lipid species are currently being studied with more sophisticated. The purpose of this work was to show the identification of fatty acids and the fatty acid amides in human meibomian gland secretions by using electrospray mass spectrometry. methods. Human meibomian gland secretions (meibum) were analyzed by electrospray quadrupole time-of-flight mass spectrometry (positive- and negative-ion mode). Accurate mass determination and collision-induced dissociation of meibum, and lipid standards were used to identify lipid species. Mass analysis of meibum in an acidic chloroform-methanol solution in positive-ion mode revealed a mass peak of m/z 282.3, which was identified as the protonated molecule of oleamide [C(18)H(35)NO+H](+). The high-resolution mass analysis of the m/z 282.2788 peak (oleamide) demonstrated a mass accuracy of 3.2 parts per million (ppm). Collision-induced dissociation of this species from meibum, compared with an oleamide standard, confirmed its identification. Myristic, palmitic, stearic, and oleic free fatty acids were identified in a similar manner, as were the other fatty acid amides (myristamide, palmitamide, stearamide, and erucamide). The findings indicate that oleamide (cis-9-octadecenamide), an endogenous fatty acid primary amide, is a predominant component of meibum when examined by electrospray mass spectrometry. The novel finding of oleamide and other members of the fatty acid amide family in the tear film could lead to additional insights into the role of fatty acid amide activity in human biological systems and may indicate a new function for this lipid class of molecules in ocular surface signaling and/or in the maintenance of the complex tear film.

  6. Total lipid in the broodstock diet did not affect fatty acid composition and quality of eggs of sea bass (Dicentrarchus labrax L.

    Directory of Open Access Journals (Sweden)

    José Mª Navas

    2001-03-01

    Full Text Available To determine whether an increase in the quantity of lipids ingested by sea bass (Dicentrarchus labrax broodstock could improve egg quality, three year-old sea bass were fed three different diets: a natural diet (Control group, and two artificial diets containing 10% or 17% of total lipids. In two consecutive reproductive seasons, the spawning results, the lipid classes and the fatty acid composition of the eggs were studied. No differences in the absolute content of lipids or in the percentage of different lipid classes were observed between the eggs from the three groups. Both experimental groups fed with the artificial diets produced eggs of poor quality, with low percentages of buoyancy and hatching. Those observed in the eggs from the Control Group were significantly higher (p> 0.01 than those of the experimental groups. The higher hatching rate of the eggs from the Control Group was associated with higher DHA:EPA and AA:EPA ratios. The data obtained showed that the fatty acid composition of the eggs was affected by the fatty acid composition of the diets but not by the total quantity of lipids administered to the broodstock.

  7. Lipids and fatty acids in roasted chickens.

    Science.gov (United States)

    Souza, S A; Visentainer, J V; Matsushita, M; Souza, N E

    1999-09-01

    Total lipids from meat portions of breast, thigh, wing, side and back with and without skin from 10 roasted chickens were extracted with chloroform and methanol and gravimetrically determined, and their fatty acids were analysed as methyl esters by gaseous chromatography, using a flame ionization detector and capillary column. The main fatty acids found were: C16:0, C18:1 omega 9, and C18:2 omega 6. The average ratio observed between PUFA/SFA was of 0.98, mainly due to the great concentration of the C18:2 omega 6 fatty acid, with an average of 26.75%. Regarding to the lipids content, the skinless breast showed the lowest content, 0.78 g/100 g, while the back with skin was the one with the highest content, 12.13 g/100 g except for the pure skin, with 26.54 grams of lipids by 100 grams.

  8. Essential fatty acid deficiency in surgical patients.

    Science.gov (United States)

    O'Neill, J A; Caldwell, M D; Meng, H C

    1977-01-01

    Parenteral nutrition may protect patients unable to eat from malnutrition almost indefinitely. If fat is not also given EFAD will occur. This outlines a prospective study of 28 surgical patients on total intravenous fat-free nutrition to determine the developmental course of EFAD and the response to therapy. Twenty-eight patients ranging from newborn to 66 years receiving parenteral nutrition without fat had regular determinations of the composition of total plasma fatty acids and the triene/tetraene ratio using gas liquid chromatography. Physical signs of EFAD were looked for also. Patients found to have evidence of EFAD were treated with 10% Intralipid. Topical safflower oil was used in three infants. Total plasma fatty acid composition was restudied following therapy. In general, infants on fat-free intravenous nutrition developed biochemical EFAD within two weeks, but dermatitis took longer to become evident. Older individuals took over four weeks to develop a diagnostic triene/tetraene ratio (greater than 0.4; range 0.4 to 3.75). Therapeutic correction of biochemical EFAD took 7 to 10 days but dermatitis took longer to correct. Cutaneous application of safflower oil alleviated the cutaneous manifestations but did not correct the triene/tetraene ratio of total plasma fatty acids. These studies indicate that surgical patients who are unable to eat for two to four weeks, depending upon age and expected fat stores, should receive fat as a part of their intravenous regimen. Images Fig. 7. PMID:404973

  9. Interaction of (n-3) and (n-6) fatty acids in desaturation and chain elongation of essential fatty acids in cultured glioma cells

    International Nuclear Information System (INIS)

    Cook, H.W.; Spence, M.W.

    1987-01-01

    Recent research in various biological systems has revived interest in interactions between the (n-6) and (n-3) essential fatty acids. We have utilized cultured glioma cells to show that linolenic acid, 18:3(n-3), is rapidly desaturated and chain elongated; 20:5(n-3) is the major product and accumulates almost exclusively in phospholipids. We examined effects of various (n-6), (n-3), (n-9) and (n-7) fatty acids at 40 microM concentration on desaturation and chain elongation processes using [1- 14 C]18:3(n-3) as substrate. In general, monoenoic fatty acids were without effect. The (n-6) fatty acids (18:2, 18:3, 20:3, 20:4 and 22:4) had little effect on total product formed. There was a shift of labeled product to triacylglycerol, and in phospholipids, slightly enhanced conversion of 20:5 to 22:5 was evident. In contrast, 22:6(n-3) was inhibitory, whereas 20:3(n-3) and 20:5(n-3) had much less effect. At concentrations less than 75 microM, all acids were inhibitory. Most products were esterified to phosphatidylcholine, but phosphatidylethanolamine also contained a major portion of 20:5 and 22:5. We provide a condensed overview of how the (n-6) and (n-3) fatty acids interact to modify relative rates of desaturation and chain elongation, depending on the essential fatty acid precursor. Thus, the balance between these dietary acids can markedly influence enzymes providing crucial membrane components and substrates for biologically active oxygenated derivatives

  10. Changes in relative and absolute concentrations of plasma phospholipid fatty acids observed in a randomized trial of Omega-3 fatty acids supplementation in Uganda.

    Science.gov (United States)

    Song, Xiaoling; Diep, Pho; Schenk, Jeannette M; Casper, Corey; Orem, Jackson; Makhoul, Zeina; Lampe, Johanna W; Neuhouser, Marian L

    2016-11-01

    Expressing circulating phospholipid fatty acids (PLFAs) in relative concentrations has some limitations: the total of all fatty acids are summed to 100%; therefore, the values of individual fatty acid are not independent. In this study we examined if both relative and absolute metrics could effectively measure changes in circulating PLFA concentrations in an intervention trial. 66 HIV and HHV8 infected patients in Uganda were randomized to take 3g/d of either long-chain omega-3 fatty acids (1856mg EPA and 1232mg DHA) or high-oleic safflower oil in a 12-week double-blind trial. Plasma samples were collected at baseline and end of trial. Relative weight percentage and absolute concentrations of 41 plasma PLFAs were measured using gas chromatography. Total cholesterol was also measured. Intervention-effect changes in concentrations were calculated as differences between end of 12-week trial and baseline. Pearson correlations of relative and absolute concentration changes in individual PLFAs were high (>0.6) for 37 of the 41 PLFAs analyzed. In the intervention arm, 17 PLFAs changed significantly in relative concentration and 16 in absolute concentration, 15 of which were identical. Absolute concentration of total PLFAs decreased 95.1mg/L (95% CI: 26.0, 164.2; P=0.0085), but total cholesterol did not change significantly in the intervention arm. No significant change was observed in any of the measurements in the placebo arm. Both relative weight percentage and absolute concentrations could effectively measure changes in plasma PLFA concentrations. EPA and DHA supplementation changes the concentrations of multiple plasma PLFAs besides EPA and DHA.Both relative weight percentage and absolute concentrations could effectively measure changes in plasma phospholipid fatty acid (PLFA) concentrations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. MILK FAT FATTY ACIDS IN RELATION TO MILK PRODUCTION AND QUALITY

    Directory of Open Access Journals (Sweden)

    Vladimír Foltys

    2012-02-01

    Full Text Available Milk fat is from a nutritional point of view of the negative evaluation because of the dominant content of saturated fatty acid with high atherogenic index. Intake of milk fat in the diet is important because of the content of monounsaturated fatty acids, acting favorably against cardiovascular diseases and especially of essential fatty acids, linoleic, alpha linolenic and conjugated linoleic acid (CLA, which is found only in meat and milk of ruminants. These are precursors of biologically active substances - hormones and enzymes. The analysis of relations of fatty acids in milk fat to qualitative-production parameters of milk shows that the correlations of fatty acids with lactation stage and qualitative-production parameters of milk are quite weak in dairy cows with stable type of nutrition in form of whole-the-year feeding mixed feed ration in lowland agricultural area. Changes in milk fat composition are caused by the change in the ratio of de novo and depot fatty acids. Relation of fatty acids to the evaluated parameters lies with their metabolic origin and neither acid nor group underlies the specific influence of the studied parameters, by the means of which it would be possible to influence its proportion in milk fat. And so it is not possible to influence some group or a desirable fatty acid, e.g. CLA, without the influence on total milk fat.

  12. Biocatalytic acylation of carbohydrates with fatty acids from palm fatty acid distillates.

    Science.gov (United States)

    Chaiyaso, Thanongsak; H-Kittikun, Aran; Zimmermann, Wolfgang

    2006-05-01

    Palm fatty acid distillates (PFAD) are by-products of the palm oil refining process. Their use as the source of fatty acids, mainly palmitate, for the biocatalytic synthesis of carbohydrate fatty acid esters was investigated. Esters could be prepared in high yields from unmodified acyl donors and non-activated free fatty acids obtained from PFAD with an immobilized Candida antarctica lipase preparation. Acetone was found as a compatible non-toxic solvent, which gave the highest conversion yields in a heterogeneous reaction system without the complete solubilization of the sugars. Glucose, fructose, and other acyl acceptors could be employed for an ester synthesis with PFAD. The synthesis of glucose palmitate was optimized with regard to the water activity of the reaction mixture, the reaction temperature, and the enzyme concentration. The ester was obtained with 76% yield from glucose and PFAD after reaction for 74 h with 150 U ml(-1) immobilized lipase at 40 degrees C in acetone.

  13. Fatty Acids Composition of Vegetable Oils and Its Contribution to Dietary Energy Intake and Dependence of Cardiovascular Mortality on Dietary Intake of Fatty Acids

    Directory of Open Access Journals (Sweden)

    Jana Orsavova

    2015-06-01

    Full Text Available Characterizations of fatty acids composition in % of total methylester of fatty acids (FAMEs of fourteen vegetable oils—safflower, grape, silybum marianum, hemp, sunflower, wheat germ, pumpkin seed, sesame, rice bran, almond, rapeseed, peanut, olive, and coconut oil—were obtained by using gas chromatography (GC. Saturated (SFA, monounsaturated (MUFA and polyunsaturated fatty acids (PUFA, palmitic acid (C16:0; 4.6%–20.0%, oleic acid (C18:1; 6.2%–71.1% and linoleic acid (C18:2; 1.6%–79%, respectively, were found predominant. The nutritional aspect of analyzed oils was evaluated by determination of the energy contribution of SFAs (19.4%–695.7% ERDI, PUFAs (10.6%–786.8% ERDI, n-3 FAs (4.4%–117.1% ERDI and n-6 FAs (1.8%–959.2% ERDI, expressed in % ERDI of 1 g oil to energy recommended dietary intakes (ERDI for total fat (ERDI—37.7 kJ/g. The significant relationship between the reported data of total fat, SFAs, MUFAs and PUFAs intakes (% ERDI for adults and mortality caused by coronary heart diseases (CHD and cardiovascular diseases (CVD in twelve countries has not been confirmed by Spearman’s correlations.

  14. Fatty acid profile and composition of milk protein fraction in dairy cows fed long-chain unsaturated fatty acids during the transition period

    Directory of Open Access Journals (Sweden)

    Francisco Palma Rennó

    2013-11-01

    Full Text Available The objective of this study was to evaluate the utilization of different sources of unsaturated long-chain fatty acids in diets for dairy cows during the transition period and early lactation on the milk fatty acid profile and composition of the protein fraction. Thirty-six Holstein cows were divided into three groups, fed the following diets: control (C; soybean oil (SO; and calcium salts of long-chain unsaturated fatty acids (CS. The milk samples utilized for analysis were obtained weekly from parturition to twelve weeks of lactation; each one of the samples originated from two daily milkings. Milk composition and total nitrogen, non-protein nitrogen and non-casein nitrogen levels were analyzed. The cows receiving the diet with calcium salts had lower concentrations of non-protein nitrogen (%CP in milk compared with the animals fed the diet with soybean oil. There was a decrease in concentration of medium-chain fatty acids C12-C16, and a concomitant increase in concentrations of long-chain fatty acids >C18 in milk fat for the animals fed the diets CS and SO when compared with diet C. Soybean oil and CS diets increased milk-fat concentrations of the acids C18: 1 trans-11, C18: 2 cis-9, trans-11 and C18: 2 trans-10 cis-12 in relation to diet C. The utilization of sources of long-chain fatty acids in the diet of dairy cows increases the biological value of milk in early lactation due to higher concentrations of specific fatty acids such as CLA C18: 2cis-9, trans-11.

  15. Omega-6 Fatty Acids

    Science.gov (United States)

    Omega-6 fatty acids are types of fats. Some types are found in vegetable oils, including corn, evening primrose seed, safflower, and soybean oils. Other types of omega-6 fatty acids are found in black currant seed, borage seed, ...

  16. Effects of 20 standard amino acids on the growth, total fatty acids production, and γ-linolenic acid yield in Mucor circinelloides.

    Science.gov (United States)

    Tang, Xin; Zhang, Huaiyuan; Chen, Haiqin; Chen, Yong Q; Chen, Wei; Song, Yuanda

    2014-12-01

    Twenty standard amino acids were examined as single nitrogen source on the growth, total fatty acids production, and yield of γ-linolenic acid (GLA) in Mucor circinelloides. Of the amino acids, tyrosine gave the highest biomass and lipid accumulation and thus resulted in a high GLA yield with respective values of 17.8 g/L, 23 % (w/w, dry cell weight, DCW), and 0.81 g/L, which were 36, 25, and 72 % higher than when the fungus was grown with ammonium tartrate. To find out the potential mechanism underlying the increased lipid accumulation of M. circinelloides when grown on tyrosine, the activity of lipogenic enzymes of the fungus during lipid accumulation phase was measured. The enzyme activities of glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and ATP-citrate lyase were up-regulated, while NADP-isocitrate dehydrogenase was down-regulated by tyrosine during the lipid accumulation phase of the fungus which suggested that these enzymes may be involved in the increased lipid biosynthesis by tyrosine in this fungus.

  17. Intake of omega-3 fatty acids contributes to bone mineral density at the hip in a younger Japanese female population.

    Science.gov (United States)

    Kuroda, T; Ohta, H; Onoe, Y; Tsugawa, N; Shiraki, M

    2017-10-01

    This study investigated the relationships between intakes of polyunsaturated fatty acids, omega-3 fatty acids, and omega-6 fatty acids and bone mineral density in Japanese women aged 19 to 25 years. Intakes of omega-3 fatty acids (n-3) were positively associated with peak bone mass at the hip. Lifestyle factors such as physical activity and nutrition intake are known to optimize the peak bone mass (PBM). Recently, intake of polyunsaturated fatty acids (PUFAs) has been reported to contribute to bone metabolism. In this study, the relationships of intakes of n-3 and omega-6 (n-6) fatty acids with PBM were evaluated in Japanese female subjects. A total of 275 healthy female subjects (19-25 years) having PBM were enrolled, and lumbar and total hip bone mineral density (BMD) and bone metabolic parameters were measured. Dietary intakes of total energy, total n-3 fatty acids, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and total n-6 fatty acids were assessed by a self-administered questionnaire. Physical activity information was also assessed. The mean ± SD age was 20.6 ± 1.4 years, and BMI was 21.2 ± 2.7 kg/m 2 . BMI and serum bone alkaline phosphatase contributed significantly to lumbar BMD on multiple regression analysis. Intake of n-3 fatty acids and physical activity were also significantly related to total hip BMD. Using EPA or DHA instead of total n-3 fatty acids in the model did not result in a significant result. Adequate total n-3 fatty acid intake may help maximize PBM at the hip.

  18. Characterisation of Fecal Soap Fatty Acids, Calcium Contents, Bacterial Community and Short-Chain Fatty Acids in Sprague Dawley Rats Fed with Different sn-2 Palmitic Triacylglycerols Diets.

    Science.gov (United States)

    Wan, Jianchun; Hu, Songyou; Ni, Kefeng; Chang, Guifang; Sun, Xiangjun; Yu, Liangli

    2016-01-01

    The structure of dietary triacylglycerols is thought to influence fatty acid and calcium absorption, as well as intestinal microbiota population of the host. In the present study, we investigated the impact of palmitic acid (PA) esterified at the sn-2 position on absorption of fatty acid and calcium and composition of intestinal microorganisms in rats fed high-fat diets containing either low sn-2 PA (12.1%), medium sn-2 PA (40.4%) or high sn-2 PA (56.3%), respectively. Fecal fatty acid profiles in the soaps were measured by gas chromatography (GC), while fecal calcium concentration was detected by ICP-MS. The fecal microbial composition was assessed using a 16S rRNA high-throughput sequencing technology and fecal short-chain fatty acids were detected by ion chromatograph. Dietary supplementation with a high sn-2 PA fat significantly reduced total fecal contents of fatty acids soap and calcium compared with the medium or low sn-2 PA fat groups. Diet supplementation with sn-2 PA fat did not change the entire profile of the gut microbiota community at phylum level and the difference at genera level also were minimal in the three treatment groups. However, high sn-2 PA fat diet could potentially improve total short-chain fatty acids content in the feces, suggesting that high dietary sn-2 PA fat might have a beneficial effect on host intestinal health.

  19. Omega-3 Fatty Acids

    Science.gov (United States)

    Omega-3 fatty acids are used together with lifestyle changes (diet, weight-loss, exercise) to reduce the amount of triglycerides (a fat- ... in people with very high triglycerides. Omega-3 fatty acids are in a class of medications called antilipemic ...

  20. Seasonal and sexual variations of fatty acid composition in fillet of Capoeta erhani

    Directory of Open Access Journals (Sweden)

    Yılmaz Emre

    2014-11-01

    Full Text Available The lowest lipid levels of Capoeta erhani observed in winter and vice versa in summer. The fatty acid composition of the fillets was significantly different among seasons (P0.05. The ratios of the unsaturated fatty acids (UFAs were higher than half of the total fatty acids among all seasons. The level of PUFA was highest in autumn (25.91%, and lowest in summer (22.11%. Among seasons and sexes, the levels of total n3 PUFAs in total fatty acids changed from 15.43% to 21.89% and n6 PUFAs from 3.8% to 7.97%, respectively. The level of n3 PUFAs was present in excess that of the n6 PUFAs. The ratios of the n3 PUFAs to n6 PUFAs in the fillets of C. erhani were highest in autumn for both sexes and remarkably influenced by seasons.

  1. Expression and Association of SCD Gene Polymorphisms and Fatty Acid Compositions in Chicken Cross

    Directory of Open Access Journals (Sweden)

    A. Furqon

    2017-12-01

    Full Text Available Stearoyl-CoA desaturase (SCD is an integral membrane protein of endoplasmic reticulum (ER that catalyzes the rate limiting step in the monounsaturated fatty acids from saturated fatty acids. Selection for fatty acids traits based on molecular marker assisted selection is needed to increase a value of chicken meat. This study was designed to analyze expression and associations of SCD gene polymorphisms with fatty acid traits in F2 kampung-broiler chicken cross. A total of 62 F2 kampung-broiler chicken cross (29 males and 33 females were used in this study. Fatty acid traits were measured at 26 weeks of age. Samples were divided into two groups based on fatty acid traits (the highest and the lowest. Primers in exon 2 region were designed from the genomic chicken sequence. The SNP g.37284A>G was detected and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP method was then used to genotype. The expression of SCD gene was analyzed using quantitative real time PCR (qRT-PCR. The result showed that there were three genotypes (AA, AG, and GG found in this study. The SCD|AciI polymorphism was significantly associated with palmitoleic acid (C16:1, fatty acids total and saturated fatty acid in 26 weeks old of F2 kampung-broiler chicken cross (P<0.05. The SCD gene was expressed for polyunsaturated fatty acids in liver tissue in two groups of chickens. In conclusion, the SCD gene could be a candidate gene that affects fatty acids traits in F2 kampung-broiler chicken cross.

  2. Fatty acid uptake in normal human myocardium

    International Nuclear Information System (INIS)

    Vyska, K.; Meyer, W.; Stremmel, W.; Notohamiprodjo, G.; Minami, K.; Machulla, H.J.; Gleichmann, U.; Meyer, H.; Koerfer, R.

    1991-01-01

    Fatty acid binding protein has been found in rat aortic endothelial cell membrane. It has been identified to be a 40-kDa protein that corresponds to a 40-kDa fatty acid binding protein with high affinity for a variety of long chain fatty acids isolated from rat heart myocytes. It is proposed that this endothelial membrane fatty acid binding protein might mediate the myocardial uptake of fatty acids. For evaluation of this hypothesis in vivo, influx kinetics of tracer-labeled fatty acids was examined in 15 normal subjects by scintigraphic techniques. Variation of the plasma fatty acid concentration and plasma perfusion rate has been achieved by modulation of nutrition state and exercise conditions. The clinical results suggest that the myocardial fatty acid influx rate is saturable by increasing fatty acid plasma concentration as well as by increasing plasma flow. For analysis of these data, functional relations describing fatty acid transport from plasma into myocardial tissue in the presence and absence of an unstirred layer were developed. The fitting of these relations to experimental data indicate that the free fatty acid influx into myocardial tissue reveals the criteria of a reaction on a capillary surface in the vicinity of flowing plasma but not of a reaction in extravascular space or in an unstirred layer and that the fatty acid influx into normal myocardium is a saturable process that is characterized by the quantity corresponding to the Michaelis-Menten constant, Km, and the maximal velocity, Vmax, 0.24 ± 0.024 mumol/g and 0.37 ± 0.013 mumol/g(g.min), respectively. These data are compatible with a nondiffusional uptake process mediated by the initial interaction of fatty acids with the 40-kDa membrane fatty acid binding protein of cardiac endothelial cells

  3. Treatment of Fatty Acid Oxidation Disorders

    Science.gov (United States)

    ... Treatment of fatty acid oxidation disorders Treatment of fatty acid oxidation disorders E-mail to a friend Please ... this page It's been added to your dashboard . Fatty acid oxidation disorders are rare health conditions that affect ...

  4. Effect of intravenous omega-3 fatty acid infusion and hemodialysis on fatty acid composition of free fatty acids and phospholipids in patients with end-stage renal disease.

    Science.gov (United States)

    Madsen, Trine; Christensen, Jeppe Hagstrup; Toft, Egon; Aardestrup, Inge; Lundbye-Christensen, Søren; Schmidt, Erik B

    2011-01-01

    Patients treated with hemodialysis (HD) have been reported to have decreased levels of ω-3 polyunsaturated fatty acids (PUFAs) in plasma and cells. The aim of this study was to investigate the effect of ω-3 PUFAs administered intravenously during HD, as well as the effect of HD treatment, on the fatty acid composition of plasma free fatty acids (FFAs), plasma phospholipids, and platelet phospholipids. Forty-four HD patients were randomized to groups receiving either a single dose of a lipid emulsion containing 4.1 g of ω-3 PUFAs or placebo (saline) administered intravenously during HD. Blood was drawn immediately before (baseline) and after (4 hours) HD and before the next HD session (48 hours). Fatty acid composition was measured using gas chromatography. The increase in ω-3 FFAs was greater in the ω-3 PUFA group compared with the placebo group, whereas the increase in total FFAs was similar between the 2 groups. In the ω-3 PUFA group, ω-3 PUFAs in plasma phospholipids were higher after 48 hours than at baseline, and in platelet phospholipids, ω-3 PUFAs increased after 4 hours. In the placebo group, no changes were observed in ω-3 PUFAs in plasma and platelet phospholipids. Intravenous ω-3 PUFAs administered during HD caused a transient selective increase in ω-3 FFA concentration. Furthermore, ω-3 PUFAs were rapidly incorporated into platelets, and the content of ω-3 PUFAs in plasma phospholipids increased after 48 hours.

  5. Efficient and Specific Analysis of Red Blood Cell Glycerophospholipid Fatty Acid Composition

    OpenAIRE

    Klem, Sabrina; Klingler, Mario; Demmelmair, Hans; Koletzko, Berthold

    2012-01-01

    BACKGROUND: Red blood cell (RBC) n-3 fatty acid status is related to various health outcomes. Accepted biological markers for the fatty acid status determination are RBC phospholipids, phosphatidylcholine, and phosphatidyletholamine. The analysis of these lipid fractions is demanding and time consuming and total phospholipid n-3 fatty acid levels might be affected by changes of sphingomyelin contents in the RBC membrane during n-3 supplementation. AIM: We developed a method for the specific a...

  6. Suitability of phytosterols alongside fatty acids as chemotaxonomic biomarkers for phytoplankton

    Directory of Open Access Journals (Sweden)

    Sami Johan Taipale

    2016-03-01

    Full Text Available e composition and abundance of phytoplankton is important factor defining ecological status of marine and freshwater ecosystems. Chemotaxonomic markers (e.g., pigments and fatty acids are needed for monitoring changes in phytoplankton community and to know nutritional quality of seston for herbivorous zooplankton. Here we investigated the suitability of sterols along with fatty acids as chemotaxonomic markers by analyzing sterol and fatty acid composition of 10 different phytoplankton classes including altogether 37 strains isolated from freshwater lakes and by using multivariate statistics. We were able to detect totally 47 fatty acids and 29 sterols in our phytoplankton samples, which both differed statistically significantly between phytoplankton classes. Due to the high variation of fatty acid composition among cyanobacteria, taxonomical differentiation increased, when cyanobacteria were excluded from statistical analysis. Sterol composition was more heterogeneous within class than fatty acids and did not improve separation of phytoplankton classes when used alongside with fatty acids. However, we conclude that sterols can provide additional information on the abundance of specific genera within a class which can be generated by using fatty acids. For example, whereas high 16 ω-3 PUFAs (polyunsaturated fatty acid indicates the presence of Chlorophyceae, simultaneous high amount of ergosterol could specify the presence of Chlamydomonas spp. (Chlorophyceae. Additionally, we found specific 4α-methyl sterols for distinct Dinophyceae genus, suggesting that 4α-methyl sterols can potentially separate freshwater dinoflagellates from each other.

  7. Suitability of Phytosterols Alongside Fatty Acids as Chemotaxonomic Biomarkers for Phytoplankton.

    Science.gov (United States)

    Taipale, Sami J; Hiltunen, Minna; Vuorio, Kristiina; Peltomaa, Elina

    2016-01-01

    The composition and abundance of phytoplankton is an important factor defining ecological status of marine and freshwater ecosystems. Chemotaxonomic markers (e.g., pigments and fatty acids) are needed for monitoring changes in a phytoplankton community and to know the nutritional quality of seston for herbivorous zooplankton. Here we investigated the suitability of sterols along with fatty acids as chemotaxonomic markers using multivariate statistics, by analyzing the sterol and fatty acid composition of 10 different phytoplankton classes including altogether 37 strains isolated from freshwater lakes. We were able to detect a total of 47 fatty acids and 29 sterols in our phytoplankton samples, which both differed statistically significantly between phytoplankton classes. Due to the high variation of fatty acid composition among Cyanophyceae, taxonomical differentiation increased when Cyanophyceae were excluded from statistical analysis. Sterol composition was more heterogeneous within class than fatty acids and did not improve separation of phytoplankton classes when used alongside fatty acids. However, we conclude that sterols can provide additional information on the abundance of specific genera within a class which can be generated by using fatty acids. For example, whereas high C16 ω-3 PUFA (polyunsaturated fatty acid) indicates the presence of Chlorophyceae, a simultaneous high amount of ergosterol could specify the presence of Chlamydomonas spp. (Chlorophyceae). Additionally, we found specific 4α-methyl sterols for distinct Dinophyceae genera, suggesting that 4α-methyl sterols can potentially separate freshwater dinoflagellates from each other.

  8. Changes in some physicochemical properties and fatty acid composition of irradiated meatballs during storage

    Energy Technology Data Exchange (ETDEWEB)

    Gecgel, U., E-mail: ugecgel@nku.edu.tr [Agricultural Faculty, Department of Food Engineering, Namik Kemal University, 59030 Tekirdag (Turkey)

    2013-05-15

    Meatball samples were irradiated using a {sup 60}Co irradiation source (with the dose of 1, 3, 5 and 7 kGy) and stored (1, 2 and 3 weeks at 4 Degree-Sign C) to appraise some physicochemical properties and the fatty acid composition. The physicochemical results showed no significant differences in moisture, protein, fat and ash content of meatballs because of irradiation. However, total acidity, peroxide and thiobarbituric acid (TBA) values increased significantly as a result of irradiation doses and storage period. The fatty acid profile in meatball samples changed with irradiation. While saturated fatty acids (C16:0, C17:0, C18:0, and C20:0) increased with irradiation, monounsaturated (C14:1, C15:1, C18:1, and C20:1) and polyunsaturated (C18:2, C18:3, and C22:2) fatty acids decreased with irradiation. Trans fatty acids (C16:1trans, C18:1trans, C18:2trans, C18:3trans) increased with increasing irradiation doses. Meatball samples irradiated at 7 kGy had the highest total trans fatty acid content. This research shows that some physicochemical properties and fatty acid composition of meatballs can be changed by gamma irradiation. (author)

  9. Changes in some physicochemical properties and fatty acid composition of irradiated meatballs during storage.

    Science.gov (United States)

    Gecgel, Umit

    2013-06-01

    Meatball samples were irradiated using a (60)Co irradiation source (with the dose of 1, 3, 5 and 7 kGy) and stored (1, 2 and 3 weeks at 4°C) to appraise some physicochemical properties and the fatty acid composition. The physicochemical results showed no significant differences in moisture, protein, fat and ash content of meatballs because of irradiation. However, total acidity, peroxide and thiobarbituric acid (TBA) values increased significantly as a result of irradiation doses and storage period. The fatty acid profile in meatball samples changed with irradiation. While saturated fatty acids (C16:0, C17:0, C18:0, and C20:0) increased with irradiation, monounsaturated (C14:1, C15:1, C18:1, and C20:1) and polyunsaturated (C18:2, C18:3, and C22:2) fatty acids decreased with irradiation. Trans fatty acids (C16:1trans, C18:1trans, C18:2trans, C18:3trans) increased with increasing irradiation doses. Meatball samples irradiated at 7 kGy had the highest total trans fatty acid content. This research shows that some physicochemical properties and fatty acid composition of meatballs can be changed by gamma irradiation.

  10. Changes in some physicochemical properties and fatty acid composition of irradiated meatballs during storage

    International Nuclear Information System (INIS)

    Gecgel, U.

    2013-01-01

    Meatball samples were irradiated using a 60 Co irradiation source (with the dose of 1, 3, 5 and 7 kGy) and stored (1, 2 and 3 weeks at 4 °C) to appraise some physicochemical properties and the fatty acid composition. The physicochemical results showed no significant differences in moisture, protein, fat and ash content of meatballs because of irradiation. However, total acidity, peroxide and thiobarbituric acid (TBA) values increased significantly as a result of irradiation doses and storage period. The fatty acid profile in meatball samples changed with irradiation. While saturated fatty acids (C16:0, C17:0, C18:0, and C20:0) increased with irradiation, monounsaturated (C14:1, C15:1, C18:1, and C20:1) and polyunsaturated (C18:2, C18:3, and C22:2) fatty acids decreased with irradiation. Trans fatty acids (C16:1trans, C18:1trans, C18:2trans, C18:3trans) increased with increasing irradiation doses. Meatball samples irradiated at 7 kGy had the highest total trans fatty acid content. This research shows that some physicochemical properties and fatty acid composition of meatballs can be changed by gamma irradiation. (author)

  11. Abnormalities in plasma and red blood cell fatty acid profiles of patients with colorectal cancer.

    OpenAIRE

    Bar??, L.; Hermoso, J. C.; N????ez, M. C.; Jim??nez-Rios, J. A.; Gil, A.

    1998-01-01

    We evaluated total plasma fatty acid concentrations and percentages, and the fatty acid profiles for the different plasma lipid fractions and red blood cell lipids, in 17 patients with untreated colorectal cancer and 12 age-matched controls with no malignant diseases, from the same geographical area. Cancer patients had significantly lower total plasma concentrations of saturated, monounsaturated and essential fatty acids and their polyunsaturated derivatives than healthy controls; when the v...

  12. Modification of fatty acid profile of cow milk by calcium salts of fatty acids and its use in ice cream.

    Science.gov (United States)

    Nadeem, Muhammad; Abdullah, Muhammad; Hussain, Imtiaz; Inayat, Saima

    2015-02-01

    This study was conducted to determine the effect of calcium salts of fatty acids (CSFA) on fatty acid profile of milk of "Sahiwal" cows and suitability of milk with modified fatty acids in the formulation of ice cream. Fatty acid profile of cow milk was modified by feeding CSFA to eighteen randomly stratified "Sahiwal" cows of first and early lactation divided into three groups. CSFA were offered at two different levels i.e. T1 (150 g per cow per day) T2 (300 g per cow per day) both treatments were compared with a control (T0) without any addition of calcium salts of fatty acids. Iso caloric and iso nitrogenous feeds were given to both experimental groups and control. Concentrations of short chain fatty acids in T0, T1 and T2 were 9.85 ± 0.48a, 8.8 ± 0.24b and 7.1 ± 0.37c %, respectively and the concentrations of C18:1 and C18:2 increased (P ice cream did not have any adverse effect on pH, acidity and compositional attributes of ice cream. Viscosity of T1 was 67.94 ± 3.77a as compared to (T0) control 68.75 ± 2.46a (CP). Firmness of experimental samples and control were almost similar (P > 0.05) overall acceptability score of T2 was 7.1 ± 0.28b out of 9 (total score) which was more than 78 ± 2.92 %. It was concluded that CSFA may be successfully incorporated up to T2 level (300 g per cow per day) into the feed of "Sahiwal" cows to produce milk with higher content of unsaturated fatty acids and it may be used in the formulation of ice cream with acceptable sensory characteristics and increased health benefits.

  13. A diet high in α-linolenic acid and monounsaturated fatty acids attenuates hepatic steatosis and alters hepatic phospholipid fatty acid profile in diet-induced obese rats.

    Science.gov (United States)

    Hanke, Danielle; Zahradka, Peter; Mohankumar, Suresh K; Clark, Jaime L; Taylor, Carla G

    2013-01-01

    This study investigated the efficacy of the plant-based n-3 fatty acid, α-linolenic acid (ALA), a dietary precursor of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), for modulating hepatic steatosis. Rats were fed high fat (55% energy) diets containing high oleic canola oil, canola oil, a canola/flax oil blend (C/F, 3:1), safflower oil, soybean oil, or lard. After 12 weeks, C/F and weight-matched (WM) groups had 20% less liver lipid. Body mass, liver weight, glucose and lipid metabolism, inflammation and molecular markers of fatty acid oxidation, synthesis, desaturation and elongation did not account for this effect. The C/F group had the highest total n-3 and EPA in hepatic phospholipids (PL), as well as one of the highest DHA and lowest arachidonic acid (n-6) concentrations. In conclusion, the C/F diet with the highest content of the plant-based n-3 ALA attenuated hepatic steatosis and altered the hepatic PL fatty acid profile. © 2013 Published by Elsevier Ltd.

  14. Total fatty acid composition in the characterization and identification of orchid mycorrhizal fungi Epulorhiza spp.

    Directory of Open Access Journals (Sweden)

    Marlon Corrêa Pereira

    2011-08-01

    Full Text Available Rhizoctonia-like fungi are the main mycorrhizal fungi in orchid roots. Morphological characterization and analysis of conserved sequences of genomic DNA are frequently employed in the identification and study of fungi diversity. However, phytopathogenic Rhizoctonia-like fungi have been reliably and accurately characterized and identified through the examination of the fatty acid composition. To evaluate the efficacy of fatty acid composition in characterizing and identifying Rhizoctonia-like mycorrhizal fungi in orchids, three Epulorhiza spp. mycorrhizal fungi from Epidendrum secundum, two unidentified fungi isolated from Epidendrum denticulatum, and a phytopathogenic fungus, Ceratorhiza sp. AGC, were grouped based on the profile of their fatty acids, which was assessed by the Euclidian and Mahalanobis distances and the UPGMA method. Dendrograms distinguished the phytopathogenical isolate of Ceratorhiza sp. AGC from the mycorrhizal fungi studied. The symbionts of E. secundum were grouped into two clades, one containing Epulorhiza sp.1 isolates and the other the Epulorhiza sp.2 isolate. The similarity between the symbionts of E. denticulatum and Epulorhiza spp. fungi suggests that symbionts found in E. denticulatum may be identified as Epulorhiza. These results were corroborated by the analysis of the rDNA ITS region. The dendrogram constructed based on the Mahalanobis distance differentiated the clades most clearly. Fatty acid composition analysis proved to be a useful tool for characterizing and identifying Rhizoctonia-like mycorrhizal fungi.

  15. Effect of gamma irradiation on fatty acids of tomato seed oil

    International Nuclear Information System (INIS)

    El-Sayed, S.A.; Raouf, M.S.; Morad, M.M.; Rady, A.H.

    1979-01-01

    Since gamma irradiation of tomatoes is investigated as a tool for increasing tomato shelf-lefe, in this study the tomato seed oil produced from irradiated tomatoes was compared with that produced from industrial tomato seeds and with cotton seeds. Fatty acid contents of tomato seed oil, produced from industrial tomato seed waste and from tomato seeds (Variety Ace), were found nearly the same as in the edible cotton seed oil. Hence, both tomato seed oils may be considered as an additional source of essential fatty acids especially linoleic. Gamma irradiation doses ranged from 50-200 Krad had no significant effect on total saturated and total unsaturated fatty acids. 200 Krad led to significant increases in lenolic acid on the account of insignificant decrease in palmatic acid. Essentail and non essential amino acids of tomato seed meal seem to be equivalent to these of cotton seed meal. This suggests the possible use of tomato seed meal in animal feeding

  16. Intake of fatty acids in Western Europe with emphasis on trans fatty acids: The TRANSFAIR study

    NARCIS (Netherlands)

    Hulshof, K.F.A.M; Erp van - Baart, M.A.; Anttolainen, M.; Becker, W.; Church, S.M.; Couet, C.; Hermann-Kunz, E.; Kesteloot, H.; Leth, T.; Martins, I.; Moreiras, O.; Moschandreas, J.; Pizzoferrato, L.; Rimestad, A.H.; Thorgeirsdottir, H.; Amelsvoort, J.M.M. van; Aro, A.; Kafatos, A.G.; Lanzmann-Petithory, D.; Poppel, G. van

    1999-01-01

    Objective: To assess the intake of trans fatty acids (TFA) and other fatty acids in 14 Western European countries. Design and subjects: A maximum of 100 foods per country were sampled and centrally analysed. Each country calculated the intake of individual trans and other fatty acids, clusters of

  17. Intake of fatty acids in Western Europe with emphasis on trans fatty acids: The TRANSFAIR study

    DEFF Research Database (Denmark)

    Hulshof, K. F. A. M.; Erp-Baart, M. A. van; Anttolainen, M.

    1999-01-01

    Objective: To assess the intake of trans fatty acids (TFA) and other fatty acids in 14 Western European countries. Design and subjects: A maximum of 100 foods per country were sampled and centrally analysed. Each country calculated the intake of individual trans and other fatty acids, clusters of...

  18. Lipase-catalyzed synthesis of fatty acid amide (erucamide) using fatty acid and urea.

    Science.gov (United States)

    Awasthi, Neeraj Praphulla; Singh, R P

    2007-01-01

    Ammonolysis of fatty acids to the corresponding fatty acid amides is efficiently catalysed by Candida antartica lipase (Novozym 435). In the present paper lipase-catalysed synthesis of erucamide by ammonolysis of erucic acid and urea in organic solvent medium was studied and optimal conditions for fatty amides synthesis were established. In this process erucic acid gave 88.74 % pure erucamide after 48 hour and 250 rpm at 60 degrees C with 1:4 molar ratio of erucic acid and urea, the organic solvent media is 50 ml tert-butyl alcohol (2-methyl-2-propanol). This process for synthesis is economical as we used urea in place of ammonia or other amidation reactant at atmospheric pressure. The amount of catalyst used is 3 %.

  19. Survey on the fatty acids profile of fluid goat milk

    Directory of Open Access Journals (Sweden)

    Daniela Pittau

    2013-10-01

    Full Text Available Fluid goat milk submitted to thermal treatment has interesting nutritional properties and a potential expanding market. The present study was aimed to conduct fatty acids profile characterisation of goat milk placed on market. Forty-nine fluid milk samples were collected: 12 pasteurised, 12 pasteurised at high temperature, 11 ultrahigh temperature (UHT whole milk and 14 UHT semi-skimmed milk. Milk samples were collected at retail level from 7 different companies and from different production batches. After extraction and methilation, fatty acids (FAs profile was determined on each sample using a gas chromatograph with flame ionisation detector (GC-FID with high-polarity capillary column. The concentration (g/100mL of saturated fatty acids (SFAs, monounsaturated fatty acids (MUFAs, polyunsaturated fatty acids (PUFAs, trans fatty acids (t-FAs, and isomers of conjugated linoleic acid (CLA was determined. N-6/n-3 ratio, atherogenic index (AI and thrombogenic index (TI were also assessed. Fluid goat milk lipid profile was characterised by SFAs (68.4% of total FAs, PUFAs (5.3%, MUFAs (21.3%, t-FAs (3.6% and CLA (0.8%. The most represented fatty acids were: 16:0 (24.5%, 9cis-18:1 (18.2%, 18:0 (9.6%, 14:0 (9.5%, 10:0 (9.3% and 12:0 (4.5%. Nutritional indices were 2.8-6.8 for n-6/n-3 ratio; 2.3-2.9 for AI; and 2.7-3.2 for TI. Milk produced by small scale plants, with no milk fat standardisation, showed greater differences in fatty acid profile as compared to industrial plants milk. Large scale production is characterised by commingled bulk tank milk of different origins and then is more homogeneous. The whole goat milk supply chain should be controlled to obtain milk with fatty acids of high nutritional value.

  20. Site and extent of digestion, duodenal flow, and intestinal disappearance of total and esterified fatty acids in sheep fed a high-concentrate diet supplemented with high-linoleate safflower oil.

    Science.gov (United States)

    Atkinson, R L; Scholljegerdes, E J; Lake, S L; Nayigihugu, V; Hess, B W; Rule, D C

    2006-02-01

    Our objective was to determine duodenal and ileal flows of total and esterified fatty acids and to determine ruminal fermentation characteristics and site and extent of nutrient digestion in sheep fed an 80% concentrate diet supplemented with high-linoleate (77%) safflower oil at 0, 3, 6, and 9% of DM. Oil was infused intraruminally along with an isonitrogenous basal diet (fed at 2% of BW) that contained bromegrass hay, cracked corn, corn gluten meal, urea, and limestone. Four crossbred wethers (BW = 44.3 +/- 15.7 kg) fitted with ruminal, duodenal, and ileal cannulas were used in a 4 x 4 Latin square experiment, in which 14 d of dietary adaptation were followed by 4 d of duodenal, ileal, and ruminal sampling. Fatty acid intake increased (linear, P = 0.004 to 0.001) with increased dietary safflower oil. Digestibilities of OM, NDF, and N were not affected (P = 0.09 to 0.65) by increased dietary safflower oil. For total fatty acids (free plus esterified) and esterified fatty acids, duodenal flow of most fatty acids, including 18:2c-9,c-12, increased (P = 0.006 to 0.05) with increased dietary oil. Within each treatment, duodenal flow of total and esterified 18:2c-9,c-12 was similar (P = 0.32), indicating that duodenal flow of this fatty acid occurred because most of it remained esterified. Duodenal flow of esterified 18:1t-11 increased (P = 0.08) with increased dietary safflower oil, indicating that reesterification of ruminal fatty acids occurred. Apparent small intestinal disappearance of most fatty acids was not affected (P = 0.19 to 0.98) by increased dietary safflower oil, but increased (P = 0.05) for 18:2c-9,c-12, which ranged from 87.0 to 97.4%, and for 18:2c-9,t-11 (P = 0.03), which ranged from 37.9% with no added oil to 99.2% with supplemental oil. For esterified fatty acids, apparent small intestinal disappearance was from 80% for 18:3c-9,c-12,c-15 at the greatest level of dietary oil up to 100% for 18:1t-11 and 18:1c-12 with 0% oil. We concluded that

  1. Beef, chicken and lamb fatty acid analysis--a simplified direct bimethylation procedure using freeze-dried material.

    Science.gov (United States)

    Lee, M R F; Tweed, J K S; Kim, E J; Scollan, N D

    2012-12-01

    When fractionation of meat lipids is not required, procedures such as saponification can be used to extract total fatty acids, reducing reliance on toxic organic compounds. However, saponification of muscle fatty acids is laborious, and requires extended heating times, and a second methylation step to convert the extracted fatty acids to fatty acid methyl esters prior to gas chromatography. Therefore the development of a more rapid direct methylation procedure would be of merit. The use of freeze-dried material for analysis is common and allows for greater homogenisation of the sample. The present study investigated the potential of using freeze-dried muscle samples and a direct bimethylation to analyse total fatty acids of meat (beef, chicken and lamb) in comparison with a saponification procedure followed by bimethylation. Both methods compared favourably for all major fatty acids measured. There was a minor difference in relation to the C18:1 trans 10 isomer with a greater (Psaponification. However, numerically the difference was small and likely as a result of approaching the limits of isomer identification by single column gas chromatography. Differences (Psaponification to analyse total fatty acids from muscle samples. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Nickel Inhibits Mitochondrial Fatty Acid Oxidation

    Science.gov (United States)

    Uppala, Radha; McKinney, Richard W.; Brant, Kelly A.; Fabisiak, James P.; Goetzman, Eric S.

    2015-01-01

    Nickel exposure is associated with changes in cellular energy metabolism which may contribute to its carcinogenic properties. Here, we demonstrate that nickel strongly represses mitochondrial fatty acid oxidation—the pathway by which fatty acids are catabolized for energy—in both primary human lung fibroblasts and mouse embryonic fibroblasts. At the concentrations used, nickel suppresses fatty acid oxidation without globally suppressing mitochondrial function as evidenced by increased glucose oxidation to CO2. Pre-treatment with L-carnitine, previously shown to prevent nickel-induced mitochondrial dysfunction in neuroblastoma cells, did not prevent the inhibition of fatty acid oxidation. The effect of nickel on fatty acid oxidation occurred only with prolonged exposure (>5 hr), suggesting that direct inhibition of the active sites of metabolic enzymes is not the mechanism of action. Nickel is a known hypoxia-mimetic that activates hypoxia inducible factor-1α (HIF1α). Nickel-induced inhibition of fatty acid oxidation was blunted in HIF1α knockout fibroblasts, implicating HIF1α as one contributor to the mechanism. Additionally, nickel down-regulated the protein levels of the key fatty acid oxidation enzyme very long-chain acyl-CoA dehydrogenase (VLCAD) in a dose-dependent fashion. In conclusion, inhibition of fatty acid oxidation by nickel, concurrent with increased glucose metabolism, represents a form of metabolic reprogramming that may contribute to nickel-induced carcinogenesis. PMID:26051273

  3. Digestibility of Fatty Acids in the Gastrointestinal Tract of Dairy Cows Fed with Tallow or Saturated Fats Rich in Stearic Acid or Palmitic Acid

    DEFF Research Database (Denmark)

    Weisbjerg, Martin Riis; Hvelplund, Torben; Børsting, Christian Friis

    1992-01-01

    Fatty acid digestibility was studied with five lactating cows fed three different fat sources in a 5 × 5 latin square experiment. The treatments were 500 g of tallow, 500 or 1000 g of saturated fat rich in stearic acid (C18:0) (SARF) or 500 or 1000 g of saturated fat rich in palmitic acid (C16......:0) (PARF) per day. The total daily fatty acid intake was about 1100 g in rations with the highest fat inclusion. The fatty acid digestibilities were 76% for tallow, 74 and 64% for 500 and 1000 g SARF, respectively, and 87 and 81% for 500 and 1000 g of PARF, respectively. When compared to fatty acid...... digestibility for tallow predicted from a model based on literature values, PARF had a higher fatty acid digestibility at both fat intakes, and SARF had a lower fatty acid digestibility, especially at high fat intake....

  4. [The fat content and fatty acids composition in selected products of the convenience food].

    Science.gov (United States)

    Drzewicka, Maria; Grajeta, Halina; Kleczkowski, Jerzy

    2012-01-01

    An increasing pace of life and a lack of time for meals preparation at home, observed in many countries worldwide, have led to an increased consumption of convenient food products. This term refers to highly processed food products that are either ready-to-eat or may be consumed after short culinary processing. Convenience foods include: dinner courses, salads, cereals, creams, broths, pizzas, roasts, as well as frozen products ready-to-eat after short heat treatment. The aim of this study was to assess the fat content and fatty acids composition of frozen products belonging to convenience food. Material for analysis comprised of 30 following food products: fish and seafood products, pizza, casseroles and meat products. The fat content was determined using Folch method and the fatty acids composition using gas chromatography technique. The analyzed products contained from 1.2% to 26.9% of fat. The saturated fatty acids (SFA) content ranged from 8.7% to 53.2%, while the monounsaturated fatty acids (MUFA)--from 24.0% to 68.7% of total fatty acids. The polyunsaturated fatty acids (PUFA) percentage accounted for 8,1% to 48,8% and trans isomers--for 0.2% to 6.1% of total fatty acids. The fat and fatty acid contents showed large differences in products depending on their composition and preparation techniques declared by the producer. Most of the analyzed fish and seafood products were characterized by the fat content ranged from 11% to 14% with the high percentage of fatty acids favorable from nutritional point of view, MUFA and PUFA. The composition of fatty acids from pizza and casseroles was less favorable, due to high proportion of SFA and also trans isomers.

  5. Comparison of gene expression and fatty acid profiles in concentrate and forage finished beef.

    Science.gov (United States)

    Buchanan, J W; Garmyn, A J; Hilton, G G; VanOverbeke, D L; Duan, Q; Beitz, D C; Mateescu, R G

    2013-01-01

    Fatty acid profiles and intramuscular expression of genes involved in fatty acid metabolism were characterized in concentrate- (CO) and forage- (FO) based finishing systems. Intramuscular samples from the adductor were taken at slaughter from 99 heifers finished on a CO diet and 58 heifers finished on a FO diet. Strip loins were obtained at fabrication to evaluate fatty acid profiles of LM muscle for all 157 heifers by using gas chromatography fatty acid methyl ester analysis. Composition was analyzed for differences by using the General Linear Model (GLM) procedure in SAS. Differences in fatty acid profile included a greater atherogenic index, greater percentage total MUFA, decreased omega-3 to omega-6 ratio, decreased percentage total PUFA, and decreased percentage omega-3 fatty acids in CO- compared with FO-finished heifers (P0.05). Upregulation was observed for PPARγ, fatty acid synthase (FASN), and fatty acid binding protein 4 (FABP4) in FO-finished compared with CO-finished heifers in both atherogenic index categories (P<0.05). Upregulation of diglyceride acyl transferase 2 (DGAT2) was observed in FO-finished heifers with a HAI (P<0.05). Expression of steroyl Co-A desaturase (SCD) was upregulated in CO-finished heifers with a LAI, and downregulated in FO-finished heifers with a HAI (P<0.05). Expression of adiponectin (ADIPOQ) was significantly downregulated in CO-finished heifers with a HAI compared with all other categories (P<0.05). The genes identified in this study which exhibit differential regulation in response to diet or in animals with extreme fatty acid profiles may provide genetic markers for selecting desirable fatty acid profiles in future selection programs.

  6. Direct quantification of fatty acids in wet microalgal and yeast biomass via a rapid in situ fatty acid methyl ester derivatization approach.

    Science.gov (United States)

    Dong, Tao; Yu, Liang; Gao, Difeng; Yu, Xiaochen; Miao, Chao; Zheng, Yubin; Lian, Jieni; Li, Tingting; Chen, Shulin

    2015-12-01

    Accurate determination of fatty acid contents is routinely required in microalgal and yeast biofuel studies. A method of rapid in situ fatty acid methyl ester (FAME) derivatization directly from wet fresh microalgal and yeast biomass was developed in this study. This method does not require prior solvent extraction or dehydration. FAMEs were prepared with a sequential alkaline hydrolysis (15 min at 85 °C) and acidic esterification (15 min at 85 °C) process. The resulting FAMEs were extracted into n-hexane and analyzed using gas chromatography. The effects of each processing parameter (temperature, reaction time, and water content) upon the lipids quantification in the alkaline hydrolysis step were evaluated with a full factorial design. This method could tolerate water content up to 20% (v/v) in total reaction volume, which equaled up to 1.2 mL of water in biomass slurry (with 0.05-25 mg of fatty acid). There were no significant differences in FAME quantification (p>0.05) between the standard AOAC 991.39 method and the proposed wet in situ FAME preparation method. This fatty acid quantification method is applicable to fresh wet biomass of a wide range of microalgae and yeast species.

  7. Characterization of free and bound fatty acids in human gallstones by capillary gas liquid chromatography

    International Nuclear Information System (INIS)

    Channa, N.A.; Khand, F.D.; Noorani, M.A.; Bhanger, M.I.

    2002-01-01

    Forty-four human gallstone samples either of pure cholesterol or cholesterol and bilirubin were randomly selected and analyzed by capillary gas liquid chromatography for the relative percentage composition of free and total fatty acids. The results showed that bound fatty acids were present in higher amounts than the free fatty acids. Amongst the bound fatty acids the percentage occurrence for palmitic acid was highest followed by stearic, oleic, linoleic and myristic acids. Fatty acids myristic, palmitic and linoleic were present in higher amounts in cholesterol gallstones, whereas stearic acid in cholesterol and bilirubin gallstones. When compared, no significant difference (p < 0.05) in the levels of free and bound fatty acids were seen in gallstones of males and females. The results suggest that bound fatty acids have a role to play in the structure of gallstones. (author)

  8. Fatty acid synthesis by spinach chloroplasts, 2

    International Nuclear Information System (INIS)

    Yamada, Mitsuhiro; Nakamura, Yasunori

    1975-01-01

    By incorporation of 3 H 2 O into the fatty acid chain in the presence of unlabelled precursor, we showed that fatty acids are synthesized from PGA, PEP and pyruvate by intact spinach chloroplasts in the light. 13 C-tracer experiments confirmed that 1-C of pyruvate is decarboxylated and 2-C is incorporated into fatty acids by the chloroplasts. The patterns of fatty acids synthesized from PGA and pyruvate were the same as that from acetate. The highest rate of fatty acid synthesis was reached at the physiological concentration of PGA (3 mM) and pyruvate (1 mM). These results indicate the operation of the following path in the chloroplasts in light: PGA→PEP→pyruvate→acetylCoA→fatty acids. Since citrate and OAA were much less active and malate and glyoxylate were inert as precursors for fatty acid synthesis, PEP or pyruvate carboxylation, citrate lyase reaction and malate synthetase reaction are not involved in the formation of acetylCoA and fatty acids. Since pyruvate was much more effective as a substrate for fatty acid synthesis than lactate, acetaldehyde or acetate, direct decarboxylation path is considered to be the primary path from pyruvate to acetylCoA. The insignificant effect of chloroplast-washing on fatty acid synthesis from PGA and pyruvate indicates that the glycolytic path from PGA to pyruvate is associated with the chloroplasts. Since pyruvate was more effectively incorporated into fatty acids than acetylCoA, it is unlikely that pyruvate decarboxylation to acetylCoA is due to mitochondria contaminating the chloroplast preparation. On the basis of measurements of 3 H 2 O incorporation in the light and dark, the activity of fatty acid synthesis in spincah leaves appears to be shared by the activities in chloroplasts (87%) and other organelles (13%). (author)

  9. Fatty acid composition of lipids in pot marigold (Calendula officinalis L.) seed genotypes.

    Science.gov (United States)

    Dulf, Francisc V; Pamfil, Doru; Baciu, Adriana D; Pintea, Adela

    2013-01-17

    Calendula officinalis L. (pot marigold) is an annual aromatic herb with yellow or golden-orange flowers, native to the Mediterranean climate areas. Their seeds contain significant amounts of oil (around 20%), of which about 60% is calendic acid. For these reasons, in Europe concentrated research efforts have been directed towards the development of pot marigold as an oilseed crop for industrial purposes. The oil content and fatty acid composition of major lipid fractions in seeds from eleven genotypes of pot marigold (Calendula officinalis L.) were determined. The lipid content of seeds varied between 13.6 and 21.7 g oil/100 g seeds. The calendic and linoleic acids were the two dominant fatty acids in total lipid (51.4 to 57.6% and 28.5 to 31.9%) and triacylglycerol (45.7 to 54.7% and 22.6 to 29.2%) fractions. Polar lipids were also characterised by higher unsaturation ratios (with the PUFAs content between 60.4 and 66.4%), while saturates (consisted mainly of palmitic and very long-chain saturated fatty acids) were found in higher amounts in sterol esters (ranging between 49.3 and 55.7% of total fatty acids). All the pot marigold seed oils investigated contain high levels of calendic acid (more than 50% of total fatty acids), making them favorable for industrial use. The compositional differences between the genotypes should be considered when breeding and exploiting the pot marigold seeds for nutraceutical and pharmacological purposes.

  10. Impact of methods used to express levels of circulating fatty acids on the degree and direction of associations with blood lipids in humans.

    Science.gov (United States)

    Sergeant, Susan; Ruczinski, Ingo; Ivester, Priscilla; Lee, Tammy C; Morgan, Timothy M; Nicklas, Barbara J; Mathias, Rasika A; Chilton, Floyd H

    2016-01-28

    Numerous studies have examined relationships between disease biomarkers (such as blood lipids) and levels of circulating or cellular fatty acids. In such association studies, fatty acids have typically been expressed as the percentage of a particular fatty acid relative to the total fatty acids in a sample. Using two human cohorts, this study examined relationships between blood lipids (TAG, and LDL, HDL or total cholesterol) and circulating fatty acids expressed either as a percentage of total or as concentration in serum. The direction of the correlation between stearic acid, linoleic acid, dihomo-γ-linolenic acid, arachidonic acid and DHA and circulating TAG reversed when fatty acids were expressed as concentrations v. a percentage of total. Similar reversals were observed for these fatty acids when examining their associations with the ratio of total cholesterol:HDL-cholesterol. This reversal pattern was replicated in serum samples from both human cohorts. The correlations between blood lipids and fatty acids expressed as a percentage of total could be mathematically modelled from the concentration data. These data reveal that the different methods of expressing fatty acids lead to dissimilar correlations between blood lipids and certain fatty acids. This study raises important questions about how such reversals in association patterns impact the interpretation of numerous association studies evaluating fatty acids and their relationships with disease biomarkers or risk.

  11. Fatty acids composition of Spanish black (Morus nigra L.) and white (Morus alba L.) mulberries.

    Science.gov (United States)

    Sánchez-Salcedo, Eva M; Sendra, Esther; Carbonell-Barrachina, Ángel A; Martínez, Juan José; Hernández, Francisca

    2016-01-01

    This research has determined qualitatively and quantitatively the fatty acids composition of white (Morus alba) and black (Morus nigra) fruits grown in Spain, in 2013 and 2014. Four clones of each species were studied. Fourteen fatty acids were identified and quantified in mulberry fruits. The most abundant fatty acids were linoleic (C18:2), palmitic (C16:0), oleic (C18:1), and stearic (C18:0) acids in both species. The main fatty acid in all clones was linoleic (C18:2), that ranged from 69.66% (MN2) to 78.02% (MA1) of the total fatty acid content; consequently Spanish mulberry fruits were found to be rich in linoleic acid, which is an essential fatty acid. The fatty acid composition of mulberries highlights the nutritional and health benefits of their consumption. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Effects of Light and Temperature on Fatty Acid Production in Nannochloropsis Salina

    Energy Technology Data Exchange (ETDEWEB)

    Van Wagenen, Jonathan M.; Miller, Tyler W.; Hobbs, Samuel J.; Hook, Paul W.; Crowe, Braden J.; Huesemann, Michael H.

    2012-03-12

    Accurate prediction of algal biofuel yield will require empirical determination of physiological responses to the climate, particularly light and temperature. One strain of interest, Nannochloropsis salina, was subjected to ranges of light intensity (5-850 {mu}mol m{sup -2} s{sup -1}) and temperature (13-40 C); exponential growth rate, total fatty acids (TFA) and fatty acid composition were measured. The maximum acclimated growth rate was 1.3 day{sup -1} at 23 C and 250 {mu}mol m{sup -2} s{sup -1}. Fatty acids were detected by gas chromatography with flame ionization detection (GC-FID) after transesterification to corresponding fatty acid methyl esters (FAME). A sharp increase in TFA containing elevated palmitic acid (C16:0) and palmitoleic acid (C16:1) during exponential growth at high light was observed, indicating likely triacylglycerol accumulation due to photo-oxidative stress. Lower light resulted in increases in the relative abundance of unsaturated fatty acids; in thin cultures, increases were observed in palmitoleic and eicosapentaenoeic acids (C20:5{omega}3). As cultures aged and the effective light intensity per cell converged to very low levels, fatty acid profiles became more similar and there was a notable increase of oleic acid (C18:1{omega}9). The amount of unsaturated fatty acids was inversely proportional to temperature, demonstrating physiological adaptations to increase membrane fluidity. This data will improve prediction of fatty acid characteristics and yields relevant to biofuel production.

  13. Esterification free fatty acid in palm fatty acid distillate using sulfonated rice husk ash catalyst

    Science.gov (United States)

    Hidayat, Arif; Sutrisno, Bachrun

    2017-01-01

    Indonesia, as one of the biggest palm oil producers and exporters in the world, is producing large amounts of low-grade oil such as Palm Fatty Acid Distillate (PFAD) from palm oil industries. The use of PFAD can reduce the cost of biodiesel production significantly, which makes PFAD a highly potential alternative feedstock for biodiesel production. In this paper, the esterification of free fatty acid (FFA) on PFAD was studied using rice husk ash (RHA) as heterogeneous catalyst. The rice husk ash catalyst was synthesized by sulfonation using concentrated sulfuric acid. The RHA catalyst were characterized by using different techniques, such as porosity analysis, Fourier transform infrared (FT-IR) spectroscopy, total number of acid sites and elemental analysis. The effects of the molar ratio of methanol to PFAD (1-10%), the molar ratio of methanol to PFAD (4:1-10:1), and the reaction temperature (40-60°C) were studied for the conversion of FFA to optimize the reaction conditions. The results showed that the optimal conditions were an methanol to PFAD molar ratio of 10:1, the catalyst amount of 10 wt% of PFAD, and reaction temperature of 60°C.

  14. Fatty acid oxidation in skeletal and cardiac muscle

    International Nuclear Information System (INIS)

    Glatz, J.F.C.

    1983-01-01

    The biochemical investigations described in this thesis deal with two aspects of fatty acid oxidation in muscle: a comparison of the use of cell-free and cellular systems for oxidation measurements, and studies on the assay and the role of the fatty acid binding protein in fatty acid metabolism. The fatty acid oxidation rates are determined radiochemically by the sum of 14 CO 2 and 14 C-labeled acid-soluble products formed during oxidation of [ 14 C]-fatty acids. A radiochemical procedure for the assay of fatty acid binding by proteins is described. (Auth.)

  15. N-3 fatty acids reduced trans fatty acids retention and increased docosahexaenoic acid levels in the brain.

    Science.gov (United States)

    Lavandera, Jimena Verónica; Saín, Juliana; Fariña, Ana Clara; Bernal, Claudio Adrián; González, Marcela Aída

    2017-09-01

    The levels of docosahexaenoic acid (DHA, 22:6n-3) and arachidonic acid (AA, 20:4n-6) are critical for the normal structure and function of the brain. Trans fatty acids (TFA) and the source of the dietary fatty acids (FA) interfere with long-chain polyunsaturated fatty acids (LC-PUFA) biosynthesis. The aim of this study was to investigate the effect of TFA supplementation in diets containing different proportions of n-9, n-6, and n-3 FA on the brain FA profile, including the retention of TFA, LC-PUFA levels, and n-6/n-3 PUFA ratios. These parameters were also investigated in the liver, considering that LC-PUFA are mainly bioconverted from their dietary precursors in this tissue and transported by serum to the brain. Also, stearoyl-CoA desaturase-1 (SCD1) and sterol regulatory element-binding protein-1c (SREBP-1c) gene expressions were evaluated. Male CF1 mice were fed (16 weeks) diets containing different oils (olive, corn, and rapeseed) with distinct proportions of n-9, n-6, and n-3 FA (55.2/17.2/0.7, 32.0/51.3/0.9, and 61.1/18.4/8.6), respectively, substituted or not with 0.75% of TFA. FA composition of the brain, liver, and serum was assessed by gas chromatography. TFA were incorporated into, and therefore retained in the brain, liver, and serum. However, the magnitude of retention was dependent on the tissue and type of isomer. In the brain, total TFA retention was lower than 1% in all diets. Dietary n-3 PUFA decreased TFA retention and increased DHA accretion in the brain. The results underscore the importance of the type of dietary FA on the retention of TFA in the brain and also on the changes of the FA profile.

  16. FATTY ACID COMPOSITION AND PROSTAGLANDIN CONTENT OF THE RED SEAWEED Gracilaria sp. FROM INDONESIA

    Directory of Open Access Journals (Sweden)

    Muhammad Ikbal Illijas

    2012-06-01

    Full Text Available High content of polyunsaturated fatty acids (PUFAs such as arachidonic and eicosapentaenoic acids are typical for the red alga. Analysis of fatty acid composition and prostaglandin content was conducted in the red alga Gracilaria sp. from Indonesia. Total lipid of the alga was extracted with CHCl3-MeOH (2:1, v/v. Analysis of the fatty acids composition was performed on gas chromatography (GC equipped with omega wax column (30 m x 0,32 mm i.d., Supelco, PA, USA and analysis of prostaglandins were carried out by HPLC on ODS column (Mightysil RP-18 GP, 250 mm x 4.6 mm, 5 μm. The content of fatty acids high for were palmitic acid (50% and arachidonic acid (26.9%, whereas prostaglandin E2 was identified and found lower concentration (44.2 μg/gram total lipid.

  17. Fatty acid and cholesterol profiles and hypocholesterolemic, atherogenic, and thrombogenic indices of table eggs in the retail market.

    Science.gov (United States)

    Attia, Youssef A; Al-Harthi, Mohammed A; Korish, Mohamed A; Shiboob, Mohamed M

    2015-10-27

    Eggs are an important source of food due to its favorable effects on human health derived from the protein, fats, minerals, vitamins and bioactive components. We studied the effects of source of eggs in the retail market on fatty acids, lipid profiles and antioxidant status in eggs. Eggs from four sources named A, B, C, and D in the retail market were collected to determine fatty acid, total lipid, and cholesterol profiles; hypocholesterolemic, atherogenic and thrombotic indices; antioxidant status (e.g., of malondialdehyde); and total antioxidant capacity in the whole edible parts of eggs (albumen + yolk) and egg yolk. Samples were collected four times and pooled over times to represent 5 and 10 samples per source for determinations of fatty acids and determinations of lipid profiles and antioxidant status, respectively. Fatty acid, total lipid, and cholesterol profiles; hypocholesterolemic, atherogenic and thrombotic indices; presence of malondialdehyde; and total antioxidant capacity in the whole edible parts of eggs and egg yolk showed significant differences (P ≥ 0.05) among different sources of eggs in retail market. Source D showed higher levels of saturated fatty acids (SFA) and linoleic and monounsaturated fatty acid (MUFA)/polyunsaturated fatty acid (PUFA) ratio but lower levels of MUFA and linolenic, arachidonic, eicosapentaeonic (EPA), decohexaenoic (DHA), and total ω9 fatty acids and lower unsaturated fatty acids (UFA)/SFA ratio. Similar trend was shown in fatty acids profiles of the whole edible parts of eggs. On the other hand, total cholesterol, low density lipoprotein (LDL), LDL/high density lipoprotein (HDL) ratio, and atherogenic and thrombogenic indices and total antioxidant capacity of source D were significantly higher than those of other source, but levels of hypocholesterolemic index, and malondialdehyde levels were lower for source D. Eggs in the retail market in Jeddah city, Saudi Arabia, from May to August 2015 showed a

  18. Fatty acid intake in relation to reproductive hormones and testicular volume among young healthy men

    Institute of Scientific and Technical Information of China (English)

    Lidia Mínguez-Alarcón; Jorge E Chavarro; Jaime Mendiola; Manuela Roca; Cigdem Tanrikut; Jesús Vioque; Niels Jørgensen; Alberto M Torres-Cantero

    2017-01-01

    Emerging evidence suggests that dietary fats may inlfuence testicular function. However, most of the published literature on this ifeld has used semen quality parameters as the only proxy for testicular function. We examined the association of fat intake with circulating reproductive hormone levels and testicular volume among healthy young Spanish men. This is a cross‑sectional study among 209 healthy male volunteers conducted between October 2010 and November 2011 in Murcia Region of Spain. Participants completed questionnaires on lifestyle, diet, and smoking, and each underwent a physical examination, and provided a blood sample. Linear regression was used to examine the association between each fatty acid type and reproductive hormone levels and testicular volumes. Monounsaturated fatty acids intake was inversely associated with serum blood levels of calculated free testosterone, total testosterone, and inhibin B. A positive association was observed between the intake of polyunsaturated fatty acids, particularly of omega‑6 polyunsaturated fatty acids, and luteinizing hormone concentrations. In addition, the intake of trans fatty acids was associated with lower total testosterone and calculated free testosterone concentrations (Ptrend=0.01 and 0.02, respectively). The intake of omega‑3 polyunsaturated fatty acids was positively related to testicular volume while the intake of omega‑6 polyunsaturated fatty acids and trans fatty acids was inversely related to testicular volume. These data suggest that fat intake, and particularly intake of omega 3, omega 6, and trans fatty acids, may inlfuence testicular function.

  19. Fatty acid intake in relation to reproductive hormones and testicular volume among young healthy men

    Directory of Open Access Journals (Sweden)

    Lidia Mínguez-Alarcón

    2017-01-01

    Full Text Available Emerging evidence suggests that dietary fats may influence testicular function. However, most of the published literature on this field has used semen quality parameters as the only proxy for testicular function. We examined the association of fat intake with circulating reproductive hormone levels and testicular volume among healthy young Spanish men. This is a cross-sectional study among 209 healthy male volunteers conducted between October 2010 and November 2011 in Murcia Region of Spain. Participants completed questionnaires on lifestyle, diet, and smoking, and each underwent a physical examination, and provided a blood sample. Linear regression was used to examine the association between each fatty acid type and reproductive hormone levels and testicular volumes. Monounsaturated fatty acids intake was inversely associated with serum blood levels of calculated free testosterone, total testosterone, and inhibin B. A positive association was observed between the intake of polyunsaturated fatty acids, particularly of omega-6 polyunsaturated fatty acids, and luteinizing hormone concentrations. In addition, the intake of trans fatty acids was associated with lower total testosterone and calculated free testosterone concentrations (P trend = 0.01 and 0.02, respectively. The intake of omega-3 polyunsaturated fatty acids was positively related to testicular volume while the intake of omega-6 polyunsaturated fatty acids and trans fatty acids was inversely related to testicular volume. These data suggest that fat intake, and particularly intake of omega 3, omega 6, and trans fatty acids, may influence testicular function.

  20. Effects of feeding omega-3-fatty acids on fatty acid composition and quality of bovine sperm and on antioxidative capacity of bovine seminal plasma.

    Science.gov (United States)

    Gürler, Hakan; Calisici, Oguz; Calisici, Duygu; Bollwein, Heinrich

    2015-09-01

    The aim of the present study was to examine the effects of feeding alpha-linolenic (ALA) acid on fatty acid composition and quality of bovine sperm and on antioxidative capacity of seminal plasma. Nine bulls (ALA bulls) were fed with 800 g rumen-resistant linseed oil with a content of 50% linolenic acid and eight bulls with 400 g palmitic acid (PA bulls). Sperm quality was evaluated for plasma membrane and acrosome intact sperm (PMAI), the amount of membrane lipid peroxidation (LPO), and the percentage of sperm with a high DNA fragmentation index (DFI). Fatty acid content of sperm was determined using gas chromatography. Total antioxidant capacity, glutathione peroxidase, and superoxide dismutase activity were determined in seminal plasma. Feeding ALA increased (P acid (DHA) content in bulls whereas in PA bulls did not change. PMAI increased after cryopreservation in ALA bulls as well as in PA bulls during the experiment period (P fatty acids affect the antioxidant levels in seminal plasma. Both saturated as well as polyunsaturated fatty acids had positive effects on quality of cryopreserved bovine sperm, although the content of docosahexaenoic acid in sperm membranes increased only in ALA bulls. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Features of fatty acid synthesis in higher plants

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, M [Tokyo Univ. (Japan). Coll. of General Education; Nakamura, Y

    1975-07-01

    In the biosynthesis of fatty acid in the presence of /sup 3/H/sub 2/O, /sup 3/H is incorporated into the hydrocarbon chain of the fatty acid. The features in the fatty acid synthesis of higher plants were investigated by applying /sup 3/H/sub 2/O method to the measurement of the ability of spinach leaves synthesizing fatty acid. Sucrose, acetate, pyruvate, PGA, PEP, OAA, citrate, etc. were employed as the substrates of fatty acid synthesis to trace the process of synthesis of each fatty acid. The demand of various cofactors related to the ability of spinach chloroplast fatty acid synthesizing was also examined. Light dependence of the fatty acid synthesis of chloroplast as well as the influences of N,N'-dicyclohexyl carbodiimide, carbonylcyanide-4-trifluoromethoxy phenyl hydrazone and NH/sub 4/Cl were discussed. The results were compared with the reports on the fatty acid synthesis of avocado pear, castor bean, etc.

  2. CONTENT OF LONG CHAIN OMEGA-3 FATTY ACID COMPOSITION IN SOME IRANIAN CANNED FISH

    Directory of Open Access Journals (Sweden)

    Bahar Nazari

    2010-12-01

    Full Text Available Abstract    BACKGROUND: Ecological studies have found a negative correlation between the risk of developing heart disease and fish consumption because of their long chain omega-3 fatty acids. This study was undertaken to determine the amounts of the common fatty acid content of several commercial canned fish marketing in Iran, with particular attention to long chain omega-3 fatty acids.    METHODS: The most consumed available brands of canned fish were randomly selected seven times from products available in supermarkets. Total lipids were extracted by using the Folch method and prepared for fatty acid analysis. Individual fatty acids were quantified by gas chromatography (GC with 60 meter capillary column and flame ionization detector.    RESULTS: The most common saturated fatty acids (SFA in Iranian canned fish was palmitic acid (C16:0 followed by stearic acid (C18:0. The amount of all trans fatty acids (TFAs except elaidic acid (C18:1 9t was 0%. The highest amount of polyunsaturated fatty acids (PUFAs related to long chain omega-3 fatty acids include eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA. The most abundant monounsaturated fatty acids (MUFAs were oleic acid (C18:1 9c.     CONCLUSION: This study showed higher contents of EPA and DHA in Iranian commercially available canned fish compared to the canned fish in other countries.      Keywords: Iranian canned fish, fatty acids, long chain omega-3 fatty acids, gas chromatography.  

  3. 40 CFR 721.3620 - Fatty acid amine condensate, polycarboxylic acid salts.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty acid amine condensate... Specific Chemical Substances § 721.3620 Fatty acid amine condensate, polycarboxylic acid salts. (a... a fatty acid amine condensate, polycarboxylic acid salts. (PMN P-92-445) is subject to reporting...

  4. Meat quality and intramuscular fatty acid composition of Catria Horse.

    Science.gov (United States)

    Trombetta, Maria Federica; Nocelli, Francesco; Pasquini, Marina

    2017-08-01

    In order to extend scientific knowledge on autochthonous Italian equine meat, the physical-chemical parameters of Catria Horse Longissimus thoracis (LT) muscle and its nutritional characteristics have been investigated. Ten steaks of Catria foal raised at pasture and fattened indoors for 2 months were dissected, and LT muscle was analyzed for chemical composition, total iron, drip loss, colorimetric characteristics, intramuscular fat, fatty acid profile and nutritional indexes. Steak dissection showed that LT muscle accounted for 36.78% and fat accounted for 9.19% of weight of steak. Regarding chemical composition, protein and fat content was 20.31% and 2.83%, respectively. Total iron content (1.95 mg/100 g) was lower than data reported in the literature. Color parameters showed a luminous and intense red hue muscle. The sum of unsaturated fatty acid composition (50.3%) was higher than the sum of saturated fatty acids (46.64 %). The fatty acid profile and nutritional values of Catria Horse meat could be modified adopting extensive rearing systems and grazing. The data suggests that further investigation on the composition of Catria Horse meat should be carried out to valorize this autochthonous breed, reared in sustainable livestock systems, and its meat in local short-chain systems. © 2016 Japanese Society of Animal Science.

  5. Essential fatty acid deficiency in patients with severe fat malabsorption

    DEFF Research Database (Denmark)

    Jeppesen, Palle B; Christensen, Michael Søberg; Høy, Carl-Erik

    1997-01-01

    Essential fatty acid deficiency is commonly described in patients receiving parenteral nutrition, but the occurrence in patients with severe fat malabsorption not receiving parenteral nutrition is uncertain. One hundred twelve patients were grouped according to their degree of fat malabsorption......: group 1, 50% (n = 15). Fecal fat was measured by the method of Van de Kamer the last 2 of 5 d of a 75-g fat diet. Serum fatty acids in the phospholipid fraction were measured by gas-liquid chromatography after separation...... by thin-layer chromatography and expressed as a percentage of total fatty acids. The concentration of linoleic acid in groups 1, 2, 3, and 4 was 21.7%, 19.4%, 16.4%, and 13.4% respectively (P acid in groups 1, 2, 3, and 4 was 0.4%, 0.4%, 0.3% and 0.3%, respectively...

  6. Free and Bound Fatty-Acids and Hydroxy Fatty-Acids in the Living and Decomposing Eelgrass Zostera-Marina L

    NARCIS (Netherlands)

    De Leeuw, J.; Rijpstra, W.I.C.; Nienhuis, P.H.

    1995-01-01

    Very early diagenetic processes of free, esterified and amide or glycosidically bound fatty acids and hydroxy fatty acids present in well documented samples of living and decomposing eelgrass (Zostera marina L.) were investigated. Free and esterified fatty acids decreased significantly over a period

  7. Fatty acid biosynthesis VII. Substrate control of chain-length of products synthesised by rat liver fatty acid synthetase

    DEFF Research Database (Denmark)

    Hansen, Heinz Johs. Max; Carey, E.M.; Dils, R.

    1970-01-01

    - 1. Gas-liquid and paper chromatography have been used to determine the chain-lengths of fatty acids synthesised by purified rat liver fatty acid synthetase from [1-14C]acetyl-CoA, [1,3-14C2]malonyl-CoA and from [1-14C]acetyl-CoA plus partially purified rat liver acetyl-CoA carboxylase. - 2....... A wide range (C4:0–C18:0) of fatty acids was synthesised and the proportions were modified by substrate concentrations in the same manner as for purified rabbit mammary gland fatty acid synthetase. - 3. The relative amount of radioactivity incorporated from added acetyl-CoA and malonyl-CoA depended...... of long-chain fatty acids was synthesised from carboxylated acetyl-CoA than from added malonyl-CoA. - 5. It is suggested that acetyl-CoA carboxylase may carboxylate acetate bound to fatty acid synthetase....

  8. Modification of Death rate and Disturbances induced in the Levels of serum total Lipids and free fatty acids of irradiated rats by ascorbic acid and serotonin

    International Nuclear Information System (INIS)

    Mahdy, A.M.; Saada, H.N.; Osama, Z.S.

    1999-01-01

    Intraperitoneal injection of normal rats with ascorbic acid (10 mg/100 g body weight ) or serotonin (2 mg/100 g body weight) had no harmful effect on the life span. Moreover, the levels of serum total lipids and free fatty acids did not show any significant changes at 3, 7, 10 and 14 days after injection. Administration of ascorbic acid or serotonin to rats at the pre mentioned doses, 15 minutes, before gamma irradiation at 7.5 Gy (single dose ) improved the survival time of rats and the hyperlipemic state recorded after radiation exposure

  9. Caveolar fatty acids and acylation of caveolin-1.

    Directory of Open Access Journals (Sweden)

    Qian Cai

    Full Text Available Caveolae are cholesterol and sphingolipids rich subcellular domains on plasma membrane. Caveolae contain a variety of signaling proteins which provide platforms for signaling transduction. In addition to enriched with cholesterol and sphingolipids, caveolae also contain a variety of fatty acids. It has been well-established that acylation of protein plays a pivotal role in subcellular location including targeting to caveolae. However, the fatty acid compositions of caveolae and the type of acylation of caveolar proteins remain largely unknown. In this study, we investigated the fatty acids in caveolae and caveolin-1 bound fatty acids.Caveolae were isolated from Chinese hamster ovary (CHO cells. The caveolar fatty acids were extracted with Folch reagent, methyl esterificated with BF3, and analyzed by gas chromatograph-mass spectrometer (GC/MS. The caveolin-1 bound fatty acids were immunoprecipitated by anti-caveolin-1 IgG and analyzed with GC/MS.In contrast to the whole CHO cell lysate which contained a variety of fatty acids, caveolae mainly contained three types of fatty acids, 0.48 µg palmitic acid, 0.61 µg stearic acid and 0.83 µg oleic acid/caveolae preparation/5 × 10(7 cells. Unexpectedly, GC/MS analysis indicated that caveolin-1 was not acylated by myristic acid; instead, it was acylated by palmitic acid and stearic acid.Caveolae contained a special set of fatty acids, highly enriched with saturated fatty acids, and caveolin-1 was acylated by palmitic acid and stearic acid. The unique fatty acid compositions of caveolae and acylation of caveolin-1 may be important for caveolae formation and for maintaining the function of caveolae.

  10. Omega-3 fatty acids (image)

    Science.gov (United States)

    Omega-3 fatty acids are a form of polyunsaturated fat that the body derives from food. Omega-3s (and omega-6s) are known as essential fatty acids (EFAs) because they are important for good health. ...

  11. Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels

    Science.gov (United States)

    2014-01-01

    The idea of renewable and regenerative resources has inspired research for more than a hundred years. Ideally, the only spent energy will replenish itself, like plant material, sunlight, thermal energy or wind. Biodiesel or ethanol are examples, since their production relies mainly on plant material. However, it has become apparent that crop derived biofuels will not be sufficient to satisfy future energy demands. Thus, especially in the last decade a lot of research has focused on the production of next generation biofuels. A major subject of these investigations has been the microbial fatty acid biosynthesis with the aim to produce fatty acids or derivatives for substitution of diesel. As an industrially important organism and with the best studied microbial fatty acid biosynthesis, Escherichia coli has been chosen as producer in many of these studies and several reviews have been published in the fields of E. coli fatty acid biosynthesis or biofuels. However, most reviews discuss only one of these topics in detail, despite the fact, that a profound understanding of the involved enzymes and their regulation is necessary for efficient genetic engineering of the entire pathway. The first part of this review aims at summarizing the knowledge about fatty acid biosynthesis of E. coli and its regulation, and it provides the connection towards the production of fatty acids and related biofuels. The second part gives an overview about the achievements by genetic engineering of the fatty acid biosynthesis towards the production of next generation biofuels. Finally, the actual importance and potential of fatty acid-based biofuels will be discussed. PMID:24405789

  12. Trans fatty acids in dietary fats and oils from 14 European countries : the TRANSFAIR study

    NARCIS (Netherlands)

    Aro, A.; Amelsvoort, J. van; Becker, W.; Erp-Baart, M.A. van; Kafatos, A.; Leth, T.; Poppel, G. van

    1998-01-01

    The fatty acid composition of dietary fats and oils from 14 European countries was analyzed with particular emphasis on isomerictransfatty acids. The proportion oftransfatty acids in typical soft margarines and low-fat spreads ranged between 0.1 and 17% of total fatty acids and that

  13. Quality properties, fatty acids, and biogenic amines profile of fresh tilapia stored in ice.

    Science.gov (United States)

    Kulawik, Piotr; Özoğul, Fatih; Glew, Robert H

    2013-07-01

    This work determines quality properties and fatty acids content of Nile tilapia (Oreochromis niloticus) stored in ice for 21 d. The quality properties consist of thiobarbituic acid (TBA), total volatile basic nitrogen (TVB-N), trimethylamine (TMA), and microbiological analysis (total viable count (TVC), total coliform, Salmonella and Staphylococcus aureus) and determination of biogenic amines content (histamine, cadaverine, putrescine, spermine, spermidine, 2-phenylethylamine, agmatine, tyramine, and ammonia). Moreover, the fat, moisture, and ash composition as well as fatty acids profile have also been analyzed. The TBA, TVB-N, and biogenic amines analysis showed rather low levels of spoilage even after 21 d of storage. The microbiological analysis, however, showed that tilapia was unsuitable for consumption after just 10 d. The fat, ash, moisture, and fatty acids profile analysis showed that tilapia is not a good source of n-3 fatty acids. The research indicated that the microbiological analysis was the best method to establish spoilage of tilapia stored in ice, of all analytical methods performed in this study. © 2013 Institute of Food Technologists®

  14. Effects of fatty acid activation on photosynthetic production of fatty acid-based biofuels in Synechocystis sp. PCC6803

    Directory of Open Access Journals (Sweden)

    Gao Qianqian

    2012-03-01

    Full Text Available Abstract Background Direct conversion of solar energy and carbon dioxide to drop in fuel molecules in a single biological system can be achieved from fatty acid-based biofuels such as fatty alcohols and alkanes. These molecules have similar properties to fossil fuels but can be produced by photosynthetic cyanobacteria. Results Synechocystis sp. PCC6803 mutant strains containing either overexpression or deletion of the slr1609 gene, which encodes an acyl-ACP synthetase (AAS, have been constructed. The complete segregation and deletion in all mutant strains was confirmed by PCR analysis. Blocking fatty acid activation by deleting slr1609 gene in wild-type Synechocystis sp. PCC6803 led to a doubling of the amount of free fatty acids and a decrease of alkane production by up to 90 percent. Overexpression of slr1609 gene in the wild-type Synechocystis sp. PCC6803 had no effect on the production of either free fatty acids or alkanes. Overexpression or deletion of slr1609 gene in the Synechocystis sp. PCC6803 mutant strain with the capability of making fatty alcohols by genetically introducing fatty acyl-CoA reductase respectively enhanced or reduced fatty alcohol production by 60 percent. Conclusions Fatty acid activation functionalized by the slr1609 gene is metabolically crucial for biosynthesis of fatty acid derivatives in Synechocystis sp. PCC6803. It is necessary but not sufficient for efficient production of alkanes. Fatty alcohol production can be significantly improved by the overexpression of slr1609 gene.

  15. Nutritional and fatty acid profiles of sun-dried edible black ants (Polyrhachis vicina Roger

    Directory of Open Access Journals (Sweden)

    Duo Li

    2010-03-01

    Full Text Available Determination of the nutritional composition of sun-dried edible black ants (Polyrhachis vicina Roger cultivated in Zhejiang and Guizhou Provinces, China, was carried out. The Zhejiang and Guizhou ants contained 31.5% and 41.5% protein, 15.7% and 15.9% lipid, and 25.4% and 26.4% fibre respectively. Monounsaturated fatty acids were the most predominant fatty acids (71.472.7% of total fatty acids found in both ant samples, followed by saturated fatty acids (23.825.5% and polyunsaturated fatty acids (3.13.7%. A significant amount of n-3 fatty acids was detected: 87.4 mg/100g and 145.6 mg/100g in Zhejiang and Guizhou ants respectively. Phosphorus, iron and calcium were the main minerals found in the ant samples. A small amount of selenium was also found.

  16. Isolated etioplasts as test system for inhibitors of fatty acid biosynthesis

    International Nuclear Information System (INIS)

    Lichtenthaler, H.K.; Kobek, K.

    1989-01-01

    Isolated intact chloroplasts of mono- and dicotyledonous plants possess the capacity for de novo fatty acid biosynthesis, starting from 14 C-acetate. These can be taken as test system for herbicides affecting fatty acid biosynthesis as shown earlier in our laboratory. The incorporation rates of acetate into the total fatty acids depend on the photosynthetic cofactors ATP and NADPH and amount in the light to 33 kBq (oat) and 39 kBq (pea) per mg chlorophyll x h, whereas in the dark only ca. 10% of these rates are obtained. In order to establish a test system, which is fully independent of light, we isolated and characterized etioplast fractions from oat and pea seedlings with a very high capacity of de novo fatty acid biosynthesis (500 and 400 kBq per mg carotenoids in a 20 min period). This activity was blocked by herbicides such as cycloxydim, sethoxydim and diclofop in a dose-dependent manner. This new test system has the great advantage that one can verify whether inhibitors of photosynthesis affect fatty acid biosynthesis

  17. Fatty acid composition of lipids in pot marigold (Calendula officinalis L. seed genotypes

    Directory of Open Access Journals (Sweden)

    Dulf Francisc V

    2013-01-01

    Full Text Available Abstract Background Calendula officinalis L. (pot marigold is an annual aromatic herb with yellow or golden-orange flowers, native to the Mediterranean climate areas. Their seeds contain significant amounts of oil (around 20%, of which about 60% is calendic acid. For these reasons, in Europe concentrated research efforts have been directed towards the development of pot marigold as an oilseed crop for industrial purposes. Results The oil content and fatty acid composition of major lipid fractions in seeds from eleven genotypes of pot marigold (Calendula officinalis L. were determined. The lipid content of seeds varied between 13.6 and 21.7 g oil/100 g seeds. The calendic and linoleic acids were the two dominant fatty acids in total lipid (51.4 to 57.6% and 28.5 to 31.9% and triacylglycerol (45.7 to 54.7% and 22.6 to 29.2% fractions. Polar lipids were also characterised by higher unsaturation ratios (with the PUFAs content between 60.4 and 66.4%, while saturates (consisted mainly of palmitic and very long-chain saturated fatty acids were found in higher amounts in sterol esters (ranging between 49.3 and 55.7% of total fatty acids. Conclusions All the pot marigold seed oils investigated contain high levels of calendic acid (more than 50% of total fatty acids, making them favorable for industrial use. The compositional differences between the genotypes should be considered when breeding and exploiting the pot marigold seeds for nutraceutical and pharmacological purposes.

  18. Effect of omega-3 fatty acids on canine atopic dermatitis.

    Science.gov (United States)

    Mueller, R S; Fieseler, K V; Fettman, M J; Zabel, S; Rosychuk, R A W; Ogilvie, G K; Greenwalt, T L

    2004-06-01

    Twenty-nine dogs were included in a double-blinded, placebo-controlled, randomised trial and were orally supplemented for 10 weeks with either flax oil (200 mg/kg/day), eicosapentaenoic acid (50 mg/kg/day) and docosahexaenoic acid (35 mg/kg/day) in a commercial preparation, or mineral oil as a placebo. For each dog, clinical scores were determined based on a scoring system developed prior to the trial. Total omega-6 and omega-3 intake and the ratio of omega-6:omega-3 (omega-6:3) were calculated before and after the trial. The dogs' clinical scores improved in those supplemented with flax oil and the commercial preparation, but not in the placebo group. No correlation was identified between total fatty acid intake or omega-6:3 ratio and clinical scores. Based on the results of this study, the total intake of fatty acids or the omega-6:3 ratio do not seem to be the main factors in determining the clinical response.

  19. Direct methylation procedure for converting fatty amides to fatty acid methyl esters in feed and digesta samples.

    Science.gov (United States)

    Jenkins, T C; Thies, E J; Mosley, E E

    2001-05-01

    Two direct methylation procedures often used for the analysis of total fatty acids in biological samples were evaluated for their application to samples containing fatty amides. Methylation of 5 mg of oleamide (cis-9-octadecenamide) in a one-step (methanolic HCl for 2 h at 70 degrees C) or a two-step (sodium methoxide for 10 min at 50 degrees C followed by methanolic HCl for 10 min at 80 degrees C) procedure gave 59 and 16% conversions of oleamide to oleic acid, respectively. Oleic acid recovery from oleamide was increased to 100% when the incubation in methanolic HCl was lengthened to 16 h and increased to 103% when the incubation in methoxide was modified to 24 h at 100 degrees C. However, conversion of oleamide to oleic acid in an animal feed sample was incomplete for the modified (24 h) two-step procedure but complete for the modified (16 h) one-step procedure. Unsaturated fatty amides in feed and digesta samples can be converted to fatty acid methyl esters by incubation in methanolic HCl if the time of exposure to the acid catalyst is extended from 2 to 16 h.

  20. Docosahexaenoic Acid-Derived Fatty Acid Esters of Hydroxy Fatty Acids (FAHFAs) With Anti-inflammatory Properties.

    Science.gov (United States)

    Kuda, Ondrej; Brezinova, Marie; Rombaldova, Martina; Slavikova, Barbora; Posta, Martin; Beier, Petr; Janovska, Petra; Veleba, Jiri; Kopecky, Jan; Kudova, Eva; Pelikanova, Terezie; Kopecky, Jan

    2016-09-01

    White adipose tissue (WAT) is a complex organ with both metabolic and endocrine functions. Dysregulation of all of these functions of WAT, together with low-grade inflammation of the tissue in obese individuals, contributes to the development of insulin resistance and type 2 diabetes. n-3 polyunsaturated fatty acids (PUFAs) of marine origin play an important role in the resolution of inflammation and exert beneficial metabolic effects. Using experiments in mice and overweight/obese patients with type 2 diabetes, we elucidated the structures of novel members of fatty acid esters of hydroxy fatty acids-lipokines derived from docosahexaenoic acid (DHA) and linoleic acid, which were present in serum and WAT after n-3 PUFA supplementation. These compounds contained DHA esterified to 9- and 13-hydroxyoctadecadienoic acid (HLA) or 14-hydroxydocosahexaenoic acid (HDHA), termed 9-DHAHLA, 13-DHAHLA, and 14-DHAHDHA, and were synthesized by adipocytes at concentrations comparable to those of protectins and resolvins derived from DHA in WAT. 13-DHAHLA exerted anti-inflammatory and proresolving properties while reducing macrophage activation by lipopolysaccharides and enhancing the phagocytosis of zymosan particles. Our results document the existence of novel lipid mediators, which are involved in the beneficial anti-inflammatory effects attributed to n-3 PUFAs, in both mice and humans. © 2016 by the American Diabetes Association.

  1. Effects of bovine pregnancy on the fatty acid composition of milk: the significance for humans needs.

    Science.gov (United States)

    Barreiro, R; Regal, P; Díaz-Bao, M; Vázquez, B I; Cepeda, A

    2017-04-01

    Milk from 40 Holstein dairy cows was collected from two different farms in Galicia (Spain). The differences in the fatty acid composition of two groups of cows, 20 pregnant and 20 non-pregnant, was studied to determine whether pregnancy status is a determinant factor that can alter the fatty acid profile of milk. Gas-chromatography (GC) coupled to flame ionisation detection (FID) was used for the determination of the fatty acids. Differences in the milk fatty acids between pregnant and non-pregnant cows were pronounced showing statistically significant differences for some fatty acids and the total saturated and monounsaturated fatty acids. Milk from non-pregnant cows was lower in saturated fatty acids and higher in monounsaturated fatty acids (unlike milk from pregnant cows). The effects of the consumption of bovine milk, particularly milk fat, on human health have been studied in depth and sometimes are associated with negative effects, but milk has also several beneficial characteristics linked to some fatty acids.

  2. Regulation and limitations to fatty acid oxidation during exercise

    DEFF Research Database (Denmark)

    Jeppesen, Jacob; Kiens, Bente

    2012-01-01

    Fatty acids (FA) as fuel for energy utilization during exercise originate from different sources: FA transported in the circulation either bound to albumin or as triacylglycerol (TG) carried by very low density lipoproteins (VLDL) and FA from lipolysis of muscle TG stores (IMTG). Despite a high...... rate of energy expenditure during high intensity exercise the total fatty acid oxidation is suppressed to below that observed during moderate intensity exercise. Although this has been known for many years, the mechanisms behind this phenomenon are still not fully elucidated. A failure of adipose...... tissue to deliver sufficient fatty acids to exercising muscle has been proposed, but evidence is emerging that factors within the muscle might be of more importance. The high rate of glycolysis during high intensity exercise might be the "driving force" via the increased production of acetyl CoA which...

  3. Fatty Acid Compositions of Six Wild Edible Mushroom Species

    Science.gov (United States)

    Günç Ergönül, Pelin; Akata, Ilgaz; Kalyoncu, Fatih; Ergönül, Bülent

    2013-01-01

    The fatty acids of six wild edible mushroom species (Boletus reticulatus, Flammulina velutipes var. velutipes, Lactarius salmonicolor, Pleurotus ostreatus, Polyporus squamosus, and Russula anthracina) collected from different regions from Anatolia were determined. The fatty acids were identified and quantified by gas chromatography and studied using fruit bodies. Fatty acid composition varied among species. The dominant fatty acid in fruit bodies of all mushrooms was cis-linoleic acid (18 : 2). Percentage of cis-linoleic acid in species varied from 22.39% to 65.29%. The other major fatty acids were, respectively, cis-oleic, palmitic, and stearic acids. Fatty acids analysis of the mushrooms showed that the unsaturated fatty acids were at higher concentrations than saturated fatty acids. PMID:23844377

  4. Fatty Acid Compositions of Six Wild Edible Mushroom Species

    Directory of Open Access Journals (Sweden)

    Pelin Günç Ergönül

    2013-01-01

    Full Text Available The fatty acids of six wild edible mushroom species (Boletus reticulatus, Flammulina velutipes var. velutipes, Lactarius salmonicolor, Pleurotus ostreatus, Polyporus squamosus, and Russula anthracina collected from different regions from Anatolia were determined. The fatty acids were identified and quantified by gas chromatography and studied using fruit bodies. Fatty acid composition varied among species. The dominant fatty acid in fruit bodies of all mushrooms was cis-linoleic acid (18 : 2. Percentage of cis-linoleic acid in species varied from 22.39% to 65.29%. The other major fatty acids were, respectively, cis-oleic, palmitic, and stearic acids. Fatty acids analysis of the mushrooms showed that the unsaturated fatty acids were at higher concentrations than saturated fatty acids.

  5. FACTS ABOUT TRANS FATTY ACIDS

    Directory of Open Access Journals (Sweden)

    Sedighe Asgary

    2010-12-01

    Full Text Available Introduction Fatty acids constitute the main class of lipids in the human diet, being found in nature mainly as glycerol esters that originate triacylglycerols. In the vegetal and animal kingdoms, fatty acids generally have cis unsaturations. In this form, the hydrogens bound to the double bond carbons are on the same side. In another possible configuration, called trans, the hydrogens are bound to un saturations, carbons on opposing sides. Fatty acids with one or more un saturations in the trans configuration are called trans fatty acids (TFAs.1-4      There are two major sources of TFA, those that come from ruminant animals and those that are industrially produced.      The majority of TFAs are found in partially hydrogenated vegetable oils, which contain 10–40% as TFA.5 Hydrogenation is based on the reaction of unsaturated fatty acids of either vegetable or marine oil in the presence of a catalyst, in general nickel. The objective is to increase the oxidative stability of oils by reduction of the concentration of more unsaturated fatty acids and changing their physical properties, thus extending their application. Hydrogenation depends mainly on oil temperature, hydrogen pressure, stirring speed, reaction time, and the catalyst type and concentration. According to the process conditions, hydrogenation is classified as either partial or total and either selective or nonselective.6 It has been estimated that dietary TFAs from partially hydrogenated oils may be responsible for between 30,000 and 100,000 premature coronary deaths per year in the United States.7      The concentration of TFA in meat and milk from ruminants (i.e., cattle, sheep, goats, etc. contain 3 to 8% of total fat.5 It is hypothesized that ruminant TFAs, or certain TFA isomers from ruminant sources, may confer some health benefits; however, since TFA from animal sources accompany saturated fatty acids (SFA, an increase in a single ruminant TFA in the diet is not

  6. Effect of temperature on growth and fatty acids profile of the biodiesel producing microalga Scenedesmus acutus

    Directory of Open Access Journals (Sweden)

    El-Sheekh, M.

    2017-01-01

    Full Text Available Description of the subject. The present study examined the effect of temperature (15, 20, 25, 30, 35 and 40 °C on biomass, esterified fatty acids content and fatty acid productivity of Scenedesmus acutus. Objectives. This work aimed to study the effect of variation in temperature on lipid productivity and fatty acid profiles of S. acutus as a feedstock for biodiesel production. Method. The alga was grown under different temperatures and its biomass, as well as fatty acid content and composition, were determined. Results. The maximum growth rate of S. acutus was achieved at 30 °C , but there was no significant difference in biomass productivity at 25 and 30 °C (0.41 and 0.42 g·l-1·d-1, respectively. The highest fatty acid content (104.1 mg·g-1 CDW was recorded at low temperature (15 °C and decreased with increasing temperature. As a result of high biomass production, fatty acids productivity showed the highest values (41.27 and 42.10 mg·l-1·d-1 at 25 and 30 °C, respectively. The proportion of saturated and mono-unsaturated fatty acids increased from 13.72 to 23.79% and from 11.13 to 33.10% of total fatty acids when the incubation temperature was raised from 15 to 40 °C, respectively. The increase of temperature from 15 to 40 °C decreased the poly-unsaturated fatty acids from 75.15% to 43.10% of total fatty acids, respectively. Conclusions. The present study concluded that incubation temperature was a critical parameter for quantitative and qualitative fatty acid compositions of S. acutus. In addition, the type and proportion of individual fatty acids, which interfere with biodiesel quality, can be modified using different incubation temperatures in order to meet the biodiesel international standards.

  7. 21 CFR 172.863 - Salts of fatty acids.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Salts of fatty acids. 172.863 Section 172.863 Food... Multipurpose Additives § 172.863 Salts of fatty acids. The food additive salts of fatty acids may be safely..., magnesium, potassium, and sodium salts of the fatty acids conforming with § 172.860 and/or oleic acid...

  8. Effects of dietary omega-3 and -6 supplementations on phospholipid fatty acid composition in mice uterus during window of pre-implantation.

    Science.gov (United States)

    Fattahi, Amir; Darabi, Masoud; Farzadi, Laya; Salmassi, Ali; Latifi, Zeinab; Mehdizadeh, Amir; Shaaker, Maghsood; Ghasemnejad, Tohid; Roshangar, Leila; Nouri, Mohammad

    2018-03-01

    Since fatty acid composition of uterus phospholipids is likely to influence embryo implantation, this study was conducted to investigate the effects of dietary omega-3 and -6 fatty acids on implantation rate as well as uterine phospholipid fatty acids composition during mice pre-implantation period. Sixty female mice were randomly distributed into:1) control (standard pellet), 2) omega-3 (standard pellet + 10% w/w of omega-3 fatty acids) and 3) omega-6 (standard pellet + 10% w/w of omega-6 fatty acids). Uterine phospholipid fatty acid composition during the pre-implantation window (days 1-5 of pregnancy) was analyzed using gas-chromatography. The implantation rate on the fifth day of pregnancy was also determined. Our results showed that on days 1, 2 and 3 of pregnancy, the levels of arachidonic acid (ARA) as well as total omega-6 fatty acids were significantly higher and the levels of linolenic acid and total omega-3 fatty acids were statistically lower in the omega-6 group compared to the omega-3 group (p omega-6 fatty acids, and poly-unsaturated fatty acids levels were significantly different between the two dietary supplemented groups (p omega-6 fatty acids, especially ARA, with the implantation rate. The present study showed that diets rich in omega-3 and -6 fatty acids could differently modify uterine phospholipid fatty acid composition and uterine levels of phospholipid ARA, and that the total omega-6 fatty acids had a positive association with the implantation rate. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Omega-3 fatty acids upregulate adult neurogenesis

    OpenAIRE

    Beltz, Barbara S.; Tlusty, Michael F.; Benton, Jeannie L.; Sandeman, David C.

    2007-01-01

    Omega-3 fatty acids play crucial roles in the development and function of the central nervous system. These components, which must be obtained from dietary sources, have been implicated in a variety of neurodevelopmental and psychiatric disorders. Furthermore, the presence of omega-6 fatty acids may interfere with omega-3 fatty acid metabolism. The present study investigated whether changes in dietary ratios of omega-3:omega-6 fatty acids influence neurogenesis in the lobster (Homarus america...

  10. [Overexpression of four fatty acid synthase genes elevated the efficiency of long-chain polyunsaturated fatty acids biosynthesis in mammalian cells].

    Science.gov (United States)

    Zhu, Guiming; Saleh, Abdulmomen Ali Mohammed; Bahwal, Said Ahmed; Wang, Kunfu; Wang, Mingfu; Wang, Didi; Ge, Tangdong; Sun, Jie

    2014-09-01

    Three long-chain polyunsaturated fatty acids, docosahexaenoic acid (DHA, 22:6n-3), eicosapentaenoic acid (EPA, 20:5n-3) and arachidonic acid (ARA, 20:4n-6), are the most biologically active polyunsaturated fatty acids in the body. They are important in developing and maintaining the brain function, and in preventing and treating many diseases such as cardiovascular disease, inflammation and cancer. Although mammals can biosynthesize these long-chain polyunsaturated fatty acids, the efficiency is very low and dietary intake is needed to meet the requirement. In this study, a multiple-genes expression vector carrying mammalian A6/A5 fatty acid desaturases and multiple-genes expression vector carrying mammalian Δ6/Δ5 fatty acid desaturases and Δ6/Δ5 fatty acid elongases coding genes was used to transfect HEK293T cells, then the overexpression of the target genes was detected. GC-MS analysis shows that the biosynthesis efficiency and level of DHA, EPA and ARA were significantly increased in cells transfected with the multiple-genes expression vector. Particularly, DHA level in these cells was 2.5 times higher than in the control cells. This study indicates mammal possess a certain mechanism for suppression of high level of biosynthesis of long chain polyunsaturated fatty acids, and the overexpression of Δ6/Δ5 fatty acid desaturases and Δ6/Δ5 fatty acid elongases broke this suppression mechanism so that the level of DHA, EPA and ARA was significantly increased. This study also provides a basis for potential applications of this gene construct in transgenic animal to produce high level of these long-chain polyunsaturated fatty acid.

  11. Exploring the Lean Phenotype of Glutathione-Depleted Mice: Thiol, Amino Acid and Fatty Acid Profiles.

    Directory of Open Access Journals (Sweden)

    Amany K Elshorbagy

    Full Text Available Although reduced glutathione (rGSH is decreased in obese mice and humans, block of GSH synthesis by buthionine sulfoximine (BSO results in a lean, insulin-sensitive phenotype. Data is lacking about the effect of BSO on GSH precursors, cysteine and glutamate. Plasma total cysteine (tCys is positively associated with stearoyl-coenzyme A desaturase (SCD activity and adiposity in humans and animal models.To explore the phenotype, amino acid and fatty acid profiles in BSO-treated mice.Male C3H/HeH mice aged 11 weeks were fed a high-fat diet with or without BSO in drinking water (30 mmol/L for 8 weeks. Amino acid and fatty acid changes were assessed, as well as food consumption, energy expenditure, locomotor activity, body composition and liver vacuolation (steatosis.Despite higher food intake, BSO decreased particularly fat mass but also lean mass (both P<0.001, and prevented fatty liver vacuolation. Physical activity increased during the dark phase. BSO decreased plasma free fatty acids and enhanced insulin sensitivity. BSO did not alter liver rGSH, but decreased plasma total GSH (tGSH and rGSH (by ~70%, and liver tGSH (by 82%. Glutamate accumulated in plasma and liver. Urine excretion of cysteine and its precursors was increased by BSO. tCys, rCys and cystine decreased in plasma (by 23-45%, P<0.001 for all, but were maintained in liver, at the expense of decreased taurine. Free and total plasma concentrations of the SCD products, oleic and palmitoleic acids were decreased (by 27-38%, P <0.001 for all.Counterintuitively, block of GSH synthesis decreases circulating tCys, raising the question of whether the BSO-induced obesity-resistance is linked to cysteine depletion. Cysteine-supplementation of BSO-treated mice is warranted to dissect the effects of cysteine and GSH depletion on energy metabolism.

  12. Phylogenomic reconstruction of archaeal fatty acid metabolism

    Science.gov (United States)

    Dibrova, Daria V.; Galperin, Michael Y.; Mulkidjanian, Armen Y.

    2014-01-01

    While certain archaea appear to synthesize and/or metabolize fatty acids, the respective pathways still remain obscure. By analyzing the genomic distribution of the key lipid-related enzymes, we were able to identify the likely components of the archaeal pathway of fatty acid metabolism, namely, a combination of the enzymes of bacterial-type β-oxidation of fatty acids (acyl-CoA-dehydrogenase, enoyl-CoA hydratase, and 3-hydroxyacyl-CoA dehydrogenase) with paralogs of the archaeal acetyl-CoA C-acetyltransferase, an enzyme of the mevalonate biosynthesis pathway. These three β-oxidation enzymes working in the reverse direction could potentially catalyze biosynthesis of fatty acids, with paralogs of acetyl-CoA C-acetyltransferase performing addition of C2 fragments. The presence in archaea of the genes for energy-transducing membrane enzyme complexes, such as cytochrome bc complex, cytochrome c oxidase, and diverse rhodopsins, was found to correlate with the presence of the proposed system of fatty acid biosynthesis. We speculate that because these membrane complexes functionally depend on fatty acid chains, their genes could have been acquired via lateral gene transfer from bacteria only by those archaea that already possessed a system of fatty acid biosynthesis. The proposed pathway of archaeal fatty acid metabolism operates in extreme conditions and therefore might be of interest in the context of biofuel production and other industrial applications. PMID:24818264

  13. Fatty acids, phenols content, and antioxidant activity in Ibervillea sonorae callus cultures

    OpenAIRE

    Estrada-Zúñiga, M.E.; Arano-Varela, H.; Buendía-González, L.; Orozco-Villafuerte, J.

    2012-01-01

    Ibervillea sonorae callus cultures were established in order to produce fatty acids (lauric, myristic, pentadecanoic, palmitic and stearic acids) and phenolic compounds. Highest callus induction (100%) was obtained in treatments containing 2.32 or 4.65 μM Kinetin (KIN) with 2.26 or 6.80 μM 2,4-Dichlorophenoxyacetic acid (2,4-D). Highest fatty acids (FA) production (48.57 mg g-1), highest total phenol content (TPC; 57.1 mg gallic acid equivalents [GAE] g-1) and highest antioxidant activity (EC...

  14. Effects of total replacement of soybean meal and corn on ruminal fermentation, volatile fatty acids, protozoa concentration, and gas production

    Directory of Open Access Journals (Sweden)

    A. Bahri

    2018-03-01

    Full Text Available The main purpose of this study is to evaluate the effect of total replacement of soybean meal and corn with triticale and faba bean or field pea on rumen fermentation, protozoa counts, and gas production of lactating ewes. A total of 30 Sicilo-Sarde ewes were randomly allocated into three groups and were fed 1.8 kg drymatter of oat hay plus 500 g of one of three concentrates: the first concentrate (CS was mainly composed of soybean meal, corn, and barley; the second (TFB was formed by triticale and faba bean; and the third (TFP was composed of triticale and field pea. The type of concentrate did not affect ruminal pH or ammonia nitrogen concentration (P  >  0.05. The individual concentrations of volatile fatty acids showed a significant interaction between the type of concentrate and sampling time (P  <  0.05, except for Butyric and Isobutyric acids. Within a post-feeding time, the pattern of evolution of total volatile fatty, acetic, and propionic acids differed significantly at 2 h post feeding (P  <  0.05, while butyric and valeric acid changed at 0 and 4 h post feeding. The type of concentrate affected the total number of ciliate protozoa and the Isotricha species (P  <  0.05, whereas Entodinium, Ophryoscolex, and Polyplastron were similar among concentrates (P  >  0.05. The cumulative gas production from the in vitro fermentation, the time of incubation, and their interaction was affected by concentrate (P  <  0.001. The substitution of soybean meal and corn in the concentrate with faba bean or field peas and triticale might maintain rumen parameters of dairy ewes.

  15. Proteomic evaluation of free fatty acid biosynthesis in Jatropha ...

    African Journals Online (AJOL)

    WincoolV5

    2013-05-22

    May 22, 2013 ... was analyzed at each stage using gas chromatography after conversion to methyl esters. Fatty acid levels .... Total protein extraction .... Total RNA isolation and cDNA synthesis. Total RNA was ..... In this work, the SDS-PAGE-LC-MS based ... thesis in animals, bacteria and plants (Jackowski et al.,. 1991 ...

  16. Effects of global change factors on fatty acids and mycosporine-like amino acid production in Chroothece richteriana (Rhodophyta).

    Science.gov (United States)

    Gonzalez-Silvera, Daniel; Pérez, Sandra; Korbee, Nathalie; Figueroa, Félix L; Asencio, Antonia D; Aboal, Marina; López-Jiménez, José Ángel

    2017-10-01

    Under natural conditions, Chroothece richteriana synthesizes a fairly high proportion of fatty acids. However, nothing is known about how environmental changes affect their production, or about the production of protective compounds, when colonies develop under full sunshine with high levels of UV radiation. In this study, wild colonies of C. richteriana were subjected to increasing temperature, conductivity, ammonium concentrations and photosynthetically active radiation (PAR), and UV radiations to assess the potential changes in lipid composition and mycosporine-like amino acids (MAAs) concentration. The PERMANOVA analysis detected no differences for the whole fatty acid profile among treatments, but the percentages of α-linolenic acid and total polyunsaturated fatty acids increased at the lowest assayed temperature. The percentages of linoleic and α-linolenic acids increased with lowering temperature. γ-linolenic and arachidonic acids decreased with increasing conductivity, and a high arachidonic acid concentration was related with increased conductivity. The samples exposed to UVB radiation showed higher percentages of eicosapentaenoic acid and total monounsaturated fatty acids, at the expense of saturated fatty acids. MAAs accumulation increased but not significantly at the lowest conductivity, and also with the highest PAR and UVR exposure, while ammonium and temperature had no effect. The observed changes are probably related with adaptations of both membrane fluidity to low temperature, and metabolism to protect cells against UV radiation damage. The results suggest the potential to change lipid composition and MAAs concentration in response to environmental stressful conditions due to climate change, and highlight the interest of the species in future research about the biotechnological production of both compound types. © 2017 Phycological Society of America.

  17. The effect of pH on the toxicity of fatty acids and fatty acid amides to rainbow trout gill cells.

    Science.gov (United States)

    Bertin, Matthew J; Voronca, Delia C; Chapman, Robert W; Moeller, Peter D R

    2014-01-01

    Harmful algal blooms (HABs) expose aquatic organisms to multiple physical and chemical stressors during an acute time period. Algal toxins themselves may be altered by water chemistry parameters affecting their bioavailability and resultant toxicity. The purpose of this study was to determine the effects of two abiotic parameters (pH, inorganic metal salts) on the toxicity of fatty acid amides and fatty acids, two classes of lipids produced by harmful algae, including the golden alga, Prymnesium parvum, that are toxic to aquatic organisms. Rainbow trout gill cells were used as a model of the fish gill and exposed to single compounds and mixtures of compounds along with variations in pH level and concentration of inorganic metal salts. We employed artificial neural networks (ANNs) and standard ANOVA statistical analysis to examine and predict the effects of these abiotic parameters on the toxicity of fatty acid amides and fatty acids. Our results demonstrate that increasing pH levels increases the toxicity of fatty acid amides and inhibits the toxicity of fatty acids. This phenomenon is reversed at lower pH levels. Exposing gill cells to complex mixtures of chemical factors resulted in dramatic increases in toxicity compared to tests of single compounds for both the fatty acid amides and fatty acids. These findings highlight the potential of physicochemical factors to affect the toxicity of chemicals released during algal blooms and demonstrate drastic differences in the effect of pH on fatty acid amides and fatty acids. Published by Elsevier B.V.

  18. Muscle and genotype effects on fatty acid composition of goat kid intramuscular fat

    Directory of Open Access Journals (Sweden)

    Valeriano Domenech

    2011-07-01

    Full Text Available Little is known about the fatty acid composition of the major muscles in goats from different breeds. Forty entire male suckling kids, 20 Criollo Cordobes and 20 Anglo Nubian, were slaughtered at 75 days of age and the fatty acid composition of their longissimus thoracis (LT and semitendinosus (ST muscles was analysed to clarify the effects of genotype and muscle type on goat kid meat. Genotype had a great influence on the fatty acid composition of goat kid meat. Meat from Criollo Cordobes had greater saturated (P<0.001 and lower monounsaturated (P<0.001 and polyunsaturated fatty acids (P=0.002 concentration than meat from Anglo Nubian, showing higher saturated fatty acids (SFA. On the other hand, intramuscular fat content from both genotypes was higher (P=0.042 in ST muscle, while the lowest cholesterol levels were observed in ST of Criollo Cordobes (P=0.038. That higher fat content resulted in lower relative contents of total polyunsaturated (P<0.001 and n-3 (P=0.002 fatty acids due to the lower contribution of the membrane phospholipids.

  19. Fatty acid metabolism: target for metabolic syndrome

    OpenAIRE

    Wakil, Salih J.; Abu-Elheiga, Lutfi A.

    2009-01-01

    Fatty acids are a major energy source and important constituents of membrane lipids, and they serve as cellular signaling molecules that play an important role in the etiology of the metabolic syndrome. Acetyl-CoA carboxylases 1 and 2 (ACC1 and ACC2) catalyze the synthesis of malonyl-CoA, the substrate for fatty acid synthesis and the regulator of fatty acid oxidation. They are highly regulated and play important roles in the energy metabolism of fatty acids in animals, including humans. They...

  20. Radioiodinated fatty acids for cardiological diagnosis

    International Nuclear Information System (INIS)

    Machulla, H.-J.; Knust, E.J.

    1986-01-01

    The development of fatty acids labelled with iodine-123 is reviewed. The variety of methods for producing 123 I and introducing radioiodine into the molecule is discussed and the important points of the biochemical background are recalled with the aim of finding a broad application for 123 I-labelled fatty acids. The results of the pharmacokinetic studies and biochemical analysis are presented as they prove that both 17- 123 I-heptadecanoic acid (IHA) and 15-(rho- 123 I-phenyl)pentadecanoic acid (IPPA) exhibit analogous behaviour to that of the naturally occurring fatty acids. Clinical applications demonstrated two fields of importance: (i) applications solely for imaging the heart and (ii) assessment of myocardial turnover rates of fatty acids for functional diagnosis. Moreover, very recent studies show that the provision of information about prognosis of myocardial diseases and the applied cardiological therapy appear to be possible. (author)

  1. The comparison of fatty acid and cholesterol profile on fresh and mozarella cheese made by pampangan buffalo milk

    Science.gov (United States)

    Rizqiati, H.; Nurwantoro; Mulyani, S.

    2018-01-01

    This research aimed to investigate the composition of fatty acid and cholesterol profile of Fresh and Mozarella Cheese from Pampangan Buffalo Milk. Material of this reseach was Pampangan buffalo milk and Mozarella cheese made from buffalo milk. Fatty acids composition were analyzed by [1] method. Result showed the major saturated fatty acid found in milk and Mozzarella cheese Pampangan buffalo milk were palmitic, stearic and miristic acid while the unsaturated fatty acid was oleic acid. The total amount of fatty acid in Mozarella cheese was lower than those in Pampangan buffalo milk.

  2. Aspects of the regulation of long-chain fatty acid oxidation in bovine liver

    International Nuclear Information System (INIS)

    Jesse, B.W.; Emery, R.S.; Thomas, J.W.

    1986-01-01

    Factors involved in regulation of bovine hepatic fatty acid oxidation were examined using liver slices. Fatty acid oxidation was measured as the conversion of l-[ 14 C] palmitate to 14 CO 2 and total [ 14 C] acid-soluble metabolites. Extended (5 to 7 d) fasting of Holstein cows had relatively little effect on palmitate oxidation to acid-soluble metabolites by liver slices, although oxidation to CO 2 was decreased. Feeding a restricted roughage, high concentrate ration to lactating cows resulted in inhibition of palmitate oxidation. Insulin, glucose, and acetate inhibited palmitate oxidation by bovine liver slices. The authors suggest the regulation of bovine hepatic fatty acid oxidation may be less dependent on hormonally induced alterations in enzyme activity as observed in rat liver and more dependent upon action of rumen fermentation products or their metabolites on enzyme systems involved in fatty acid oxidation

  3. Determination of Fatty Acid in Asparagus by Gas Chromatography

    Directory of Open Access Journals (Sweden)

    Zehra HAJRULAI-MUSLIU

    2016-05-01

    Full Text Available Asparagus contain a lot of macronutrients and micronutrients including folate, dietary fibre (soluble and insoluble and phenolic compounds. Also asparagus is a good source of unsaturated linoleic and linolenic fatty acids which are precursors for Eicosapentanoic acid (EPA and Docosahexanoic acid (DHA. Unsaturated fatty acids have important biological effects and they have important role in human health. The objective of this study was to analyze fatty acid composition of asparagus as a potential source of linoleic and linolenic acid - a precursor for EPA and DHA. For this reason we analyzed fifty seven samples of asparagus collected from the local market. We used AOAC 996.06 method and analyses were performed with gas chromatograph with flame-ionization detector (GC-FID. The highest concentration of fatty acid in the asparagus was linoleic acid (C18:2n6 which content in asparagus is 25.620±1.0%. Also, asparagus is good source of -linolenic fatty acid (C18:3n3 and content of this fatty acid in asparagus is 8.840±0.3%. The omega-6 to omega-3 (n6/n3 ratio in asparagus was 3.19. Polyunsaturated fatty acids (PUFAs were higher than monounsaturated fatty acids (MUFAs, and from saturated fatty acids, palmitic acid was most frequent with 24.324±1.0%. From our study we can conclude that asparagus is very good source of unsaturated fatty acids, especially linoleic and linolenic fatty acids.

  4. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Oleic acid derived from tall oil fatty acids. 172... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and as...

  5. Quantiifcation of methyl esters of fatty acids in the oil of Physalis minima by GC-MS

    Institute of Scientific and Technical Information of China (English)

    Muhammad Nasimullah Qureshi; Fazal Wajid; Inayat-ur-Rahman

    2015-01-01

    Objective:To investigate quantification of methyl esters of fatty acids in the oil extracted from Physalis minima (P. minima) using gas chromatography-mass spectrometer. Methods: Oil was extracted from the shade dried plant with n-hexane through Soxhlet extraction. Fatty acids that present in the oil were derivatized to fatty acid methyl esters and analysed through gas chromatography-mass spectrometer. Results:A total of nine fatty acids were detected in quantifiable amount in the oil. Both the saturated fatty acids and unsaturated fatty acids were identified. Palmitic acid was found in the highest concentration as 46.83%. Linoleic acid (ω-6) and linolenic acid (ω-3) were obtained in appreciable amount as 16.98%and 14.80%respectively among the unsaturated fatty acids in the oil under study. From the literature review, it appeared that fatty acids were determined for the first time in the oil of P. minima. Conclusions: Presence of these important fatty acids in high amount makes P. minima oil beneficial for health, which can be used in the preparation of phytopharmaceutical or pharmaceutical preparations. Moreover, the results of this study are useful for the phytopharmaceutical industries to establish their quality control profile.

  6. Quantification of methyl esters of fatty acids in the oil of Physalis minima by GC-MS

    Directory of Open Access Journals (Sweden)

    Muhammad Nasimullah Qureshi

    2015-02-01

    Full Text Available Objective: To investigate quantification of methyl esters of fatty acids in the oil extracted from Physalis minima (P. minima using gas chromatography-mass spectrometer. Methods: Oil was extracted from the shade dried plant with n-hexane through Soxhlet extraction. Fatty acids that present in the oil were derivatized to fatty acid methyl esters and analysed through gas chromatography-mass spectrometer. Results: A total of nine fatty acids were detected in quantifiable amount in the oil. Both the saturated fatty acids and unsaturated fatty acids were identified. Palmitic acid was found in the highest concentration as 46.83%. Linoleic acid (ω-6 and linolenic acid (ω-3 were obtained in appreciable amount as 16.98% and 14.80% respectively among the unsaturated fatty acids in the oil under study. From the literature review, it appeared that fatty acids were determined for the first time in the oil of P. minima. Conclusions: Presence of these important fatty acids in high amount makes P. minima oil beneficial for health, which can be used in the preparation of phytopharmaceutical or pharmaceutical preparations. Moreover, the results of this study are useful for the phytopharmaceutical industries to establish their quality control profile.

  7. Efficient production of free fatty acids from soybean meal carbohydrates.

    Science.gov (United States)

    Wang, Dan; Thakker, Chandresh; Liu, Ping; Bennett, George N; San, Ka-Yiu

    2015-11-01

    Conversion of biomass feedstock to chemicals and fuels has attracted increasing attention recently. Soybean meal, containing significant quantities of carbohydrates, is an inexpensive renewable feedstock. Glucose, galactose, and fructose can be obtained by enzymatic hydrolysis of soluble carbohydrates of soybean meal. Free fatty acids (FFAs) are valuable molecules that can be used as precursors for the production of fuels and other value-added chemicals. In this study, free fatty acids were produced by mutant Escherichia coli strains with plasmid pXZ18Z (carrying acyl-ACP thioesterase (TE) and (3R)-hydroxyacyl-ACP dehydratase) using individual sugars, sugar mixtures, and enzymatic hydrolyzed soybean meal extract. For individual sugar fermentations, strain ML211 (MG1655 fadD(-) fabR(-) )/pXZ18Z showed the best performance, which produced 4.22, 3.79, 3.49 g/L free fatty acids on glucose, fructose, and galactose, respectively. While the strain ML211/pXZ18Z performed the best with individual sugars, however, for sugar mixture fermentation, the triple mutant strain XZK211 (MG1655 fadD(-) fabR(-) ptsG(-) )/pXZ18Z with an additional deletion of ptsG encoding the glucose-specific transporter, functioned the best due to relieved catabolite repression. This strain produced approximately 3.18 g/L of fatty acids with a yield of 0.22 g fatty acids/g total sugar. Maximum free fatty acids production of 2.78 g/L with a high yield of 0.21 g/g was achieved using soybean meal extract hydrolysate. The results suggested that soybean meal carbohydrates after enzymatic treatment could serve as an inexpensive feedstock for the efficient production of free fatty acids. © 2015 Wiley Periodicals, Inc.

  8. Transformation of Unsaturated Fatty Acids/Esters to Corresponding Keto Fatty Acids/Esters by Aerobic Oxidation with Pd(II)/Lewis Acid Catalyst.

    Science.gov (United States)

    Senan, Ahmed M; Zhang, Sicheng; Zeng, Miao; Chen, Zhuqi; Yin, Guochuan

    2017-08-16

    Utilization of renewable biomass to partly replace the fossil resources in industrial applications has attracted attention due to the limited fossil feedstock with the increased environmental concerns. This work introduced a modified Wacker-type oxidation for transformation of unsaturated fatty acids/esters to the corresponding keto fatty acids/esters, in which Cu 2+ cation was replaced with common nonredox metal ions, that is, a novel Pd(II)/Lewis acid (LA) catalyst. It was found that adding nonredox metal ions can effectively promote Pd(II)-catalyzed oxidation of unsaturated fatty acids/esters to the corresponding keto fatty acids/esters, even much better than Cu 2+ , and the promotional effect is highly dependent on the Lewis acidity of added nonredox metal ions. The improved catalytic efficiency is attributed to the formation of heterobimetallic Pd(II)/LA species, and the oxidation mechanism of this Pd(II)/LA catalyst is also briefly discussed.

  9. Egg fatty acid composition from lake trout fed two Lake Michigan prey fish species.

    Science.gov (United States)

    Honeyfield, D.C.; Fitzsimons, J.D.; Tillitt, D.E.; Brown, S.B.

    2009-01-01

    We previously demonstrated that there were significant differences in the egg thiamine content in lake trout Salvelinus namaycush fed two Lake Michigan prey fish (alewife Alosa pseudoharengus and bloater Coregonus hoyi). Lake trout fed alewives produced eggs low in thiamine, but it was unknown whether the consumption of alewives affected other nutritionally important components. In this study we investigated the fatty acid composition of lake trout eggs when females were fed diets that resulted in different egg thiamine concentrations. For 2 years, adult lake trout were fed diets consisting of four combinations of captured alewives and bloaters (100% alewives; 65% alewives, 35% bloaters; 35% alewives, 65% bloaters; and 100% bloaters). The alewife fatty acid profile had higher concentrations of arachidonic acid and total omega-6 fatty acids than the bloater profile. The concentrations of four fatty acids (cis-13, 16-docosadienoic, eicosapentaenoic, docosapentaenoic, and docosahexaenoic acids) were higher in bloaters than in alewives. Although six fatty acid components were higher in lake trout eggs in 2001 than in 2000 and eight fatty acids were lower, diet had no effect on any fatty acid concentration measured in lake trout eggs in this study. Based on these results, it appears that egg fatty acid concentrations differ between years but that the egg fatty acid profile does not reflect the alewife-bloater mix in the diet of adults. The essential fatty acid content of lake trout eggs from females fed alewives and bloaters appears to be physiologically regulated and adequate to meet the requirements of developing embryos.

  10. Fishy Business: Effect of Omega-3 Fatty Acids on Zinc Transporters and Free Zinc Availability in Human Neuronal Cells

    OpenAIRE

    De Mel, Damitha; Suphioglu, Cenk

    2014-01-01

    Omega-3 (ω-3) fatty acids are one of the two main families of long chain polyunsaturated fatty acids (PUFA). The main omega-3 fatty acids in the mammalian body are α-linolenic acid (ALA), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Central nervous tissues of vertebrates are characterized by a high concentration of omega-3 fatty acids. Moreover, in the human brain, DHA is considered as the main structural omega-3 fatty acid, which comprises about 40% of the PUFAs in total. DHA...

  11. Hydrogen-deuterium exchange reaction of 2-methylpyridine catalyzed by several fatty acids

    International Nuclear Information System (INIS)

    Hirata, Hirohumi; Fukuzumi, Kazuo.

    1976-01-01

    Hydrogen-deuterium exchange reaction of 2-methylpyridine has been studied by using several fatty acids as catalysts. The reaction was carried out in a sealed pyrex tube at 120 0 C, and the contents of the products were determined by mass spectrometry. Reaction of 2-methylpyridine with monodeuteroacetic acid (1 : 1, mol/mol) arrived at a equilibrium (d 0 reversible d 1 reversible d 2 reversible d 3 ) in 2 hr (d 0 41%, d 1 42%, d 2 15%, d 3 2%). No exchange was observed for the reaction of pyridine with monodeuteroacetic acid. The conversion-time curves of typical series reactions (d 0 → d 1 → d 2 → d 3 ) were obtained for the fatty acid catalyzed exchange in deuterium oxide. The effect of the fatty acid RCO 2 H (substrate : fatty acid : D 2 O=1 : 0.86 : 27.6, mol/mol/mol) on the conversion was in the order of R; C 1 --C 3 4 --C 10 , where the reaction mixtures were homogeneous in the case of C 1 --C 3 and were heterogeneous in the case of C 4 --C 10 . The effects of the initial concentration of the substrates and the catalysts (RCO 2 H) on the total conversion were studied by using some fatty acids (R; C 2 , C 4 and C 9 ) in deuterium oxide (for 2 hr). The total conversion of the substrate increases with increasing the concentration of the acids. The total conversion decreases in the case of R=C 9 , but, increases in the case of R=C 2 with increasing the concentration of the substrate. In the case of reactions with low concentrations of the substrate, the reactivity was in the order of C 9 >C 4 >C 2 , while with high concentrations, the reactivity was in the order of C 4 >C 2 >C 9 and C 9 >C 4 >C 2 with high and low concentrations of the acids, respectively. A possible reaction mechanism was proposed and discussed. (auth.)

  12. Lipid content and fatty acid composition of Mediterranean macro-algae as dynamic factors for biodiesel production

    Directory of Open Access Journals (Sweden)

    Dahlia M. El Maghraby

    2015-01-01

    Full Text Available Using the total lipid contents and fatty acid profiles, the marine macro-algae Jania rubens (Rhodophyceae, Ulva linza (Chlorophyceae and Padina pavonica (Phaeophyceae were evaluated for biodiesel production during the spring, summer and autumn. Seawater parameters such as pH, salinity and temperature were measured. The total lipid content varied from 1.56% (J. rubens to 4.14% (U. linza of dry weight, with the highest values occurring in spring. The fatty acid methyl ester profiles were analysed using gas chromatography. The highest percentage of total fatty acids was recorded in P. pavonica, with 6.2% in autumn, whereas the lowest was in J. rubens, with 68.6% in summer. The relative amount of saturated to unsaturated fatty acids was significantly higher in P. pavonica than in the other macro-algae. Seasonal variations in pH, salinity and temperature had no significant effect on the total lipid and fatty acid contents. Principal component analysis grouped brown and green algae together, whereas red alga grouped out. Furthermore, methyl ester profiles indicate that brown and green seaweeds are preferred, followed by red seaweeds, which appears to have little potential for oil-based products. Therefore, these seaweeds are not targets for biodiesel production.

  13. ω-3 Fatty acids reverse lipotoxity through induction of autophagy in nonalcoholic fatty liver disease.

    Science.gov (United States)

    Chen, Yi; Xu, Chengfu; Yan, Tianlian; Yu, Chaohui; Li, Youming

    2015-01-01

    The aim of this study was to evaluate the effect of ω-3 fatty acids on nonalcoholic fatty liver disease concerning hepatocyte lipid accumulation as well as apoptosis induced by free fatty acids (FFAs) and to explore the underlying mechanism involving autophagy. Hepatocytes were incubated with a mixture of free fatty acids (FFAs) to mimic in vitro lipotoxicity in the pathogenesis of nonalcoholic fatty liver disease, presented by lipid accumulation and cellular apoptosis. Chemical inhibitor or inducer of autophagy and genetic deficit cells, as well as ω-3 fatty acids were used as intervention. The autophagic role of ω-3 fatty acids was investigated using Western blot and immunofluorescence. The underlying mechanism of ω-3 fatty acids involving autophagy was preliminarily explored by quantitative real-time polymerase chain reaction and Western blot. FFAs induce lipid accumulation and apoptosis in hepatocytes. Inhibition or genetic defect of autophagy increases lipid accumulation induced by FFA, whereas induction acts inversely. ω-3 Fatty acids reduced lipid accumulation and inhibited apoptosis induced by FFA. ω-3 Fatty acids induced autophagy by downregulating stearoyl-CoA desaturase 1 expression in hepatocytes. ω-3 Fatty acids exert protective effects on hepatocytes against lipotoxicity through induction of autophagy, as demonstrated by inhibition of lipid accumulation and apoptosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Reciprocal effects of 5-(tetradecyloxy)-2-furoic acid on fatty acid oxidation.

    Science.gov (United States)

    Otto, D A; Chatzidakis, C; Kasziba, E; Cook, G A

    1985-10-01

    Under certain incubation conditions 5-(tetradecyloxy)-2-furoic acid (TOFA) stimulated the oxidation of palmitate by hepatocytes, as observed by others. A decrease in malonyl-CoA concentration accompanied the stimulation of oxidation. Under other conditions, however, TOFA inhibited fatty acid oxidation. The observed effects of TOFA depended on the TOFA and fatty acid concentrations, the cell concentration, the time of TOFA addition relative to the addition of fatty acid, and the nutritional state of the animal (fed or starved). The data indicate that only under limited incubation conditions may TOFA be used as an inhibitor of fatty acid synthesis without inhibition of fatty acid oxidation. When rat liver mitochondria were preincubated with TOFA, ketogenesis from palmitate was slightly inhibited (up to 20%) at TOFA concentrations that were less than that of CoA, but the inhibition became almost complete (up to 90%) when TOFA was greater than or equal to the CoA concentration. TOFA had only slight or no inhibitory effects on the oxidation of palmitoyl-CoA, palmitoyl(-)carnitine, or butyrate. Since TOFA can be converted to TOFyl-CoA, the data suggest that the inhibition of fatty acid oxidation from palmitate results from the decreased availability of CoA for extramitochondrial activation of fatty acids. These data, along with previous data of others, indicate that inhibition of fatty acid oxidation by CoA sequestration is a common mechanism of a group of carboxylic acid inhibitors. A general caution is appropriate with regard to the interpretation of results when using TOFA in studies of fatty acid oxidation.

  15. The effect of fish oil supplementation on brain DHA and EPA content and fatty acid profile in mice.

    Science.gov (United States)

    Valentini, Kelly J; Pickens, C Austin; Wiesinger, Jason A; Fenton, Jenifer I

    2017-12-18

    Supplementation with omega-3 (n-3) fatty acids may improve cognitive performance and protect against cognitive decline. However, changes in brain phospholipid fatty acid composition after supplementation with n-3 fatty acids are poorly described. The purpose of this study was to feed increasing n-3 fatty acids and characterise the changes in brain phospholipid fatty acid composition and correlate the changes with red blood cells (RBCs) and plasma in mice. Increasing dietary docosahexaenoic (DHA) and eicosapentaenoic acid (EPA) did not alter brain DHA. Brain EPA increased and total n-6 polyunsaturated fatty acids decreased across treatment groups, and correlated with fatty acid changes in the RBC (r > 0.7). Brain cis-monounsaturated fatty acids oleic and nervonic acid (p acids arachidic, behenic, and lignoceric acid (p acid changes upon increasing n-3 intake should be further investigated to determine their effects on cognition and neurodegenerative disease.

  16. River inputs and organic matter fluxes in the northern Bay of Bengal: Fatty acids

    Digital Repository Service at National Institute of Oceanography (India)

    Reemtsma, T.; Ittekkot, V.; Bartsch, M.; Nair, R.R

    ) 55-71 55 Elsevier Science Publishers B.V., Amsterdam \\[RA\\] River inputs and organic matter fluxes in the northern Bay of Bengal: fatty acids T. Reemtsma a, V. Ittekkot a, M. Bartsch a and R.R. Nair b alnstitut fiir Biogeochemie und Meereschemie..., R.R., 1993. River inputs and organic matter fluxes in the northern Bay of Bengal: fatty acids. Chem. Geol., 103: 55-71. Total particulate matter flux and organic carbon and fatty acid fluxes associated with settling particles collected during...

  17. Rapid Characterization of Fatty Acids in Oleaginous Microalgae by Near-Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Bin Liu

    2015-03-01

    Full Text Available The key properties of microalgal biodiesel are largely determined by the composition of its fatty acid methyl esters (FAMEs. The gas chromatography (GC based techniques for fatty acid analysis involve energy-intensive and time-consuming procedures and thus are less suitable for high-throughput screening applications. In the present study, a novel quantification method for microalgal fatty acids was established based on the near-infrared spectroscopy (NIRS technique. The lyophilized cells of oleaginous Chlorella containing different contents of lipids were scanned by NIRS and their fatty acid profiles were determined by GC-MS. NIRS models were developed based on the chemometric correlation of the near-infrared spectra with fatty acid profiles in algal biomass. The optimized NIRS models showed excellent performances for predicting the contents of total fatty acids, C16:0, C18:0, C18:1 and C18:3, with the coefficient of determination (R2 being 0.998, 0.997, 0.989, 0.991 and 0.997, respectively. Taken together, the NIRS method established here bypasses the procedures of cell disruption, oil extraction and transesterification, is rapid, reliable, and of great potential for high-throughput applications, and will facilitate the screening of microalgal mutants and optimization of their growth conditions for biodiesel production.

  18. Optimization of ultrasound-assisted extraction of crude oil from winter melon (Benincasa hispida) seed using response surface methodology and evaluation of its antioxidant activity, total phenolic content and fatty acid composition.

    Science.gov (United States)

    Bimakr, Mandana; Rahman, Russly Abdul; Taip, Farah Saleena; Adzahan, Noranizan Mohd; Sarker, Md Zaidul Islam; Ganjloo, Ali

    2012-10-08

    In the present study, ultrasound-assisted extraction of crude oil from winter melon seeds was investigated through response surface methodology (RSM). Process variables were power level (25-75%), temperature (45-55 °C) and sonication time (20-40 min). It was found that all process variables have significant (p yield (108.62 mg-extract/g-dried matter). The antioxidant activity, total phenolic content and fatty acid composition of extract obtained under optimized conditions were determined and compared with those of oil obtained by the Soxhlet method. It was found that crude extract yield (CEY) of ultrasound-assisted extraction was lower than that of the Soxhlet method, whereas antioxidant activity and total phenolic content of the extract obtained by ultrasound-assisted extraction were clearly higher than those of the Soxhlet extract. Furthermore, both extracts were rich in unsaturated fatty acids. The major fatty acids of the both extracts were linoleic acid and oleic acid.

  19. 40 CFR 721.6200 - Fatty acid polyamine condensate, phosphoric acid ester salts.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty acid polyamine condensate... New Uses for Specific Chemical Substances § 721.6200 Fatty acid polyamine condensate, phosphoric acid... substances identified as fatty acid polyamine condensate, phosphate ester salts (PMNs P-90-1984 and P-90-1985...

  20. Lipid content and fatty acid composition of green algae Scenedesmus obliquus grown in a constant cell density apparatus

    Science.gov (United States)

    Choi, K. J.; Nakhost, Z.; Barzana, E.; Karel, M.

    1987-01-01

    The lipids of alga Scenedesmus obliquus grown under controlled conditions were separated and fractionated by column and thin-layer chromatography, and fatty acid composition of each lipid component was studied by gas-liquid chromatography (GLC). Total lipids were 11.17%, and neutral lipid, glycolipid and phospholipid fractions were 7.24%, 2.45% and 1.48% on a dry weight basis, respectively. The major neutral lipids were diglycerides, triglycerides, free sterols, hydrocarbons and sterol esters. The glycolipids were: monogalactosyl diglyceride, digalactosyl diglyceride, esterified sterol glycoside, and sterol glycoside. The phospholipids included: phosphatidyl choline, phosphatidyl glycerol and phosphatidyl ethanolamine. Fourteen fatty acids were identified in the four lipid fractions by GLC. The main fatty acids were C18:2, C16:0, C18:3(alpha), C18:1, C16:3, C16:1, and C16:4. Total unsaturated fatty acid and essential fatty acid compositions of the total algal lipids were 80% and 38%, respectively.

  1. Unusual fatty acid substitution in lipids and lipopolysaccharides of Helicobacter pylori.

    OpenAIRE

    Geis, G; Leying, H; Suerbaum, S; Opferkuch, W

    1990-01-01

    Cellular fatty acids, phospholipid fatty acids, and lipopolysaccharide fatty acids of four strains of Helicobacter pylori were analyzed by gas-liquid chromatography. The presence of myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, 19-carbon cyclopropane fatty acid, beta-hydroxypalmitic acid, and beta-hydroxystearic acid was confirmed. In phospholipids, myristic acid and 19-carbon cyclopropane fatty acid were the major fatty acids. Hydroxy fatty acids and unsaturated fatt...

  2. 21 CFR 172.848 - Lactylic esters of fatty acids.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Lactylic esters of fatty acids. 172.848 Section 172... CONSUMPTION Multipurpose Additives § 172.848 Lactylic esters of fatty acids. Lactylic esters of fatty acids... prepared from lactic acid and fatty acids meeting the requirements of § 172.860(b) and/or oleic acid...

  3. Studies on lipids and fatty acids in rats with streptozotocin-induced insulin deficiency II. Incorporation of 1-(14)C-sodium acetate into lipids and fatty acids of liver slices and whole blood cells

    OpenAIRE

    三宅,寛治

    1988-01-01

    In order to study the lipid and fatty acid metabolism in the insulin deficient state, the in vitro incorporation of 1-(14)C-sodium acetate into major lipid fractions and fatty acids of liver slices and whole blood cells was determined. Rats were studied one week, one month and three months after insulin deficiency was induced by administration of streptozotocin.The net incorporation of (14)C into lipid fractions and total fatty acids of liver slices significantly decreased after one week. On ...

  4. The influence of hen age on fatty acid composition of commercial eggs

    Directory of Open Access Journals (Sweden)

    Tina Lešić

    2017-01-01

    Full Text Available The aim of this study was to investigate the nutritional composition of commercial eggs from Lohman Brown hens through fat and fatty acid content analysis, as well as to evaluate the effect of hen age on the above parameters. Egg samples (n=108 were collected every two weeks from 21- to 55- week old hens during the 2015/2016 autumn/winter period. The results revealed significant differences in fatty acid composition dependent on hen age (p 0.05. The total polyunsaturated fatty acid (PUFA content was statistically significantly higher in eggs laid by 55- week old hens as compared to those laid by 21- week old hens. The n-6/n-3 and PUFA/SFA ratios were more favourable in the elder hens. In general, the results revealed hen ageing-based variations in fatty acid composition of their eggs, in particular in the representation of linoleic (LA, alpha-linolenic (ALA and arachidonic acid (AA, for which statistically significant hen age-based differences were found.

  5. Dietary effects on fatty acid metabolism of common carp.

    Science.gov (United States)

    Csengeri, I

    1996-01-01

    The paper summarises experimental data demonstrating effects of various dietary factors exerting changes in the fatty acid composition and fatty acid metabolism of the common carp (Cyprinus carpio L.). Among the dietary factors (1) supplementary feeding in fish ponds, (2) absence of essential fatty acids (EFA) in the diet, (3) starvation, and (4) ration level were studied. It was concluded that supplementary feeding in carp rearing ponds is frequently excessive in the Hungarian carp culture practice, inducing slight EFA-deficiency and enhancing de novo fatty acid synthesis. This latter caused enlarged fat depots with high oleic acid contents in the fish organs and tissues. EFA-deficient diets enhanced the synthesis of oleic acid except when high rate of de novo fatty acid synthesis was suppressed by dietary fatty acids. Feeding EFA-deficient diets caused gradual decrease in the levels of polyunsaturated fatty acids and gradual increase in that of Mead's acid: 20:3(n-9), an indicator of the EFA-deficiency. At prolonged starvation, polyunsaturated fatty acids of the structural lipids were somehow protected and mainly oleic acid was utilised for energy production. At high ration levels, excessive exogenous polyunsaturates were decomposed, and probably converted to oleic acid or energy. Starvation subsequent to the feeding the fish at various ration levels, reflected adaptive changes in the fatty acid metabolism: Below and above the ration level required for the most efficient feed utilisation for growth, decomposition processes of the fatty acid metabolism were accelerated.

  6. Maternal and cord blood fatty acid patterns with excessive gestational weight gain and neonatal macrosomia.

    Science.gov (United States)

    Liu, Kaiyong; Ye, Kui; Han, Yanping; Sheng, Jie; Jin, Zhongxiu; Bo, Qinli; Hu, Chunqiu; Hu, Chuanlai; Li, Li

    2017-03-01

    This study evaluated the association of maternal excessive gestational weight gain with saturated and polyunsaturated fatty acid concentrations in maternal and cord serum. We included 77 pairs of women and their newborns and classified them into three groups as follows: mothers with normal gestational weight gain and their babies with normal birth weight in group I (30 pairs), mothers with excessive gestational weight gain and their babies with normal birth weight in group II (30 pairs), and mothers with excessive gestational weight gain and their macrosomic babies in group III (17 pairs). Serum fatty acid concentrations were determined through gas chromatography-mass spectrometry. No remarkable difference in maternal dietary intake was observed among the three groups. C16:0, C18:0, eicosapentaenoic acid, and docosahexaenoic acid concentrations were significantly higher in group III mothers than in group I mothers. Compared with group I neonates, total saturated and polyunsaturated fatty acid concentrations were significantly lower but total n-3 polyunsaturated fatty acid and docosahexaenoic acid concentrations were significantly higher in group II neonates (ppattern.

  7. [Effect of pregnancy and lactation on the nutritional status of essential fatty acids in rat].

    Science.gov (United States)

    Araya, J; Barriga, C

    1996-08-01

    Pregnancy and lactation could be high risk situations for the development of essential fatty acid deficiencies. To study the effect of pregnancy and lactation on red blood cell phospholipids percentual fatty acid composition of virgin, pregnant and lactating rats. Twenty four pregnant rats of 50 +/- 1 days of age were supplement with soy and 24 with fish oil during 21 days. Twelve rats of each group were sacrificed after 18 days of lactation, twenty four non pregnant rats received soy oil and acted as controls of pregnant and lactating rats. Red blood cell phospholipid fatty acid composition was analyzed by gas chromatography. The percentage of total omega-6 fatty acids of red blood cell phospholipid was 37.8 +/- 5.9, 32.6 +/- 0.6 and 38.3 +/- 3.5% in non pregnant, pregnant and lactating rats respectively (p oil reverted the decrease in omega-6 and omega-3 fatty acid percentage of pregnant and lactating rats. Pregnancy and lactation decrease the capacity to transform precursors of essential fatty acids in long chain polyunsaturated fatty acids.

  8. The relationship between fatty acid compositions and thermal stability of extra virgin olive oils

    OpenAIRE

    Fayegh Moulodi; Peyman Qajarbeigi; Ashraf Haj Hosseini Babaei; Asghar Mohammadpoor Asl

    2014-01-01

    Background: Fatty acids are one of the most important compounds in edible oils. Further, the stability of oils depends on the composition of fatty acids. So, this study was conducted to investigate the effect of fatty acid composition on the oxidative stability of extra virgin olive oils during the heating process. Methods: In total, eight samples of extra virgin olive oil were studied. To evaluate their thermal stability, the oils were heated at 120 ° C for 4 h and sampling was carried o...

  9. Acylation of cellular proteins with endogenously synthesized fatty acids

    International Nuclear Information System (INIS)

    Towler, D.; Glaser, L.

    1986-01-01

    A number of cellular proteins contain covalently bound fatty acids. Previous studies have identified myristic acid and palmitic acid covalently linked to protein, the former usually attached to proteins by an amide linkage and the latter by ester or thio ester linkages. While in a few instances specific proteins have been isolated from cells and their fatty acid composition has been determined, the most frequent approach to the identification of protein-linked fatty acids is to biosynthetically label proteins with fatty acids added to intact cells. This procedure introduces possible bias in that only a selected fraction of proteins may be labeled, and it is not known whether the radioactive fatty acid linked to the protein is identical with that which is attached to the protein when the fatty acid is derived from endogenous sources. We have examined the distribution of protein-bound fatty acid following labeling with [ 3 H]acetate, a general precursor of all fatty acids, using BC 3 H1 cells (a mouse muscle cell line) and A431 cells (a human epidermoid carcinoma). Myristate, palmitate, and stearate account for essentially all of the fatty acids linked to protein following labeling with [ 3 H]acetate, but at least 30% of the protein-bound palmitate in these cells was present in amide linkage. In BC3H1 cells, exogenous palmitate becomes covalently bound to protein such that less than 10% of the fatty acid is present in amide linkage. These data are compatible with multiple protein acylating activities specific for acceptor protein fatty acid chain length and linkage

  10. Effect of impaired fatty acid oxidation on myocardial kinetics of 11C- and 123I-labelled fatty acids

    International Nuclear Information System (INIS)

    Lerch, R.

    1986-01-01

    Positron emission tomography with palmitate 11 C and single photon imaging with terminally radioiodinated fatty acid analogues (FFA 123 I) were evaluated for the noninvasive assessment of regional myocardial fatty acid metabolism during ischaemia. Decreased uptake of tracer and delayed clearance of activity in the ischaemic myocardium were reported for both 11 C- and 123 I-labelled compounds. However, since during ischaemia both myocardial blood flow and oxidative metabolism are reduced concomitantly, either factor can be responsible for the changes observed. Experimental preparations in which fatty acid metabolism can be modified independently of flow are helpful for the characterization of the relationship between metabolism and myocardial kinetics of labelled fatty acids. Results obtained during flow-independent inhibition of fatty acid oxidation include the following observations: - In dogs with controlled coronary perfusion the rate of clearance of palmitate 11 C-activity is decreased during diminished delivery of oxygen, regardless of whether myocardial perfusion is concomitantly reduced or not. - In isolated rabbit hearts perfused at normal flow, the extraction of FFA 123 I is decreased during hypoxia. - During pharmacological inhibition of fatty acid oxidation the deiodination of FFA 123 I is markedly reduced in rat hearts in vivo and in vitro. (orig.)

  11. Effect of growing area on tocopherols, carotenoids and fatty acid composition of Pistacia lentiscus edible oil.

    Science.gov (United States)

    Mezni, F; Khouja, M L; Gregoire, S; Martine, L; Khaldi, A; Berdeaux, O

    2014-01-01

    In this investigation, we aim to study, for the first time, the effect of the growing area on tocopherols, carotenoids and fatty acid content of Pistacia lentiscus fixed oil. Fruits were harvested from eight different sites located in the north and the centre of Tunisia. Tocopherols, carotenoids and fatty acid content of the fixed oils were determined. The highest carotenoid content was exhibited by Feija oil (10.57 mg/kg of oil). Oueslatia and Tabarka oils displayed the highest α-tocopherol content (96.79 and 92.79 mg/kg of oil, respectively). Three major fatty acids were determined: oleic, palmitic and linoleic acids. Oleic acid was the main fatty acid presenting more than 50% of the total fatty acid content. Kebouche oil presented the highest oleic acid content (55.66%). All these results highlight the richness of carotenoids, tocopherols and unsaturated fatty acids in P. lentiscus seed oil and underscore the nutritional value of this natural product.

  12. The effect of replacing fat with oat bran on fatty acid composition and physicochemical properties of meatballs.

    Science.gov (United States)

    Yılmaz, İsmail; Dağlıoğlu, Orhan

    2003-10-01

    Oat bran was used as a fat substitute in the production of meatballs. The effect of oat bran addition on the fatty acid composition, trans fatty acids, total fat, some physicochemical and sensory properties of the samples was studied. Meatballs were produced with four different formulations; the addition of 5, 10, 15 and 20% oat bran. Control samples were formulated with 25% fat addition as in commercial production. The major fatty acids were cis-oleic, palmitic and stearic acid in all the meatball samples, those with oat bran added as well as the control. Meatballs containing oat bran had lower concentrations of total fat and total trans fatty acids than the control samples. Meatballs made with 20% oat bran had the highest protein, salt and ash contents, L value (lightness), b value (yellowness), and the lowest moisture content and a value (redness). There was no significant difference among the meatball samples with respect to sensory properties, and all samples had high acceptability.

  13. Kelussia odoratissima Mozaff. as a rich source of essential fatty acids and phthalides

    Directory of Open Access Journals (Sweden)

    Ghasemi Mehdi

    2015-10-01

    Full Text Available Introduction: The present study is the first assessment of the fatty acids of leaf and essential oil compositions of new three habitats of aerial parts of K. odoratissima. Methods: The aerial parts of K. odoratissima from the three habitats were dried. The essential oils were obtained by hydrodistillation for 3 h in a Clevenger-type apparatus, then the analysis of the components was carried out using gas chromatography–mass spectrometry. To study the oil yield and fatty acids, the dried leaves subjected to extraction in hexane by using Soxhlet Apparatus. To analyze fatty acids from the oil fractions by gas chromatography technique, the oil was subjected to transesterification to obtain the fatty acid methyl esters, which, were dissolved in hexane and subjected to GC analysis. Results: According to the results, a total of 43 components, the major constitutes of essential oil compositions were (Z-Ligustilide (76.45%, Unknown-A (4.47%, (E-Ligustilide (2.57%, (Z-Butylidene phthalide (2.37%, 5-pentyl cyclohexa-1,3-diene (1.57% and Kessane (0.77% in K. odoratissima. The sixteen fatty acids were separated from the oil (5% yield per 100 g dry matter. Linoleic acid (25.46%, α-Linolenic acid (16.66%, Palmitic acid (11.92%, Oleic acid (9.33%, Stearic acid (4.72%, Petroselinic acid (2.53%, Arachidonic acid (2.51% and Erucic acid (1.76% were major fatty acids. Conclusion: Generally, K. odoratissima is a rich source of essential fatty acids and phthalide derivatives, specially (Z-ligustilide. This study was presented valuable information about the phytochemical properties, which can be useful for the future researches on the pharmacological effects of K. odoratissima.

  14. Biological study of some labeled C16 fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Riche, F.; Mathieu, J.P.; Busquet, G.; Vidal, M.; Comet, M.; Pernin, C. (C.H.R.U. de Grenoble, 38 - La Tronche (France)); Godart, J.; Benabed, A. (Institut des Sciences Nucleaires, 38 - Grenoble (France)); Bardy, A. (C.E.A.-ORIS, 91 - Gif-sur-Yvette (France))

    1983-01-01

    The evolution of myocardial, blood, liver and kidney activity is studied in mice after I.V. injection of some labelled C16 fatty acids. With ..omega.. iodo fatty acids, the presence or absence of a double bond and the character Z or E have no influence on the tissue activity. The presence of a triple bond decreases the fixation, modifies the intramyocardial metabolism of the fatty acid and accelerates the rate of decrease of myocardial activity. ..omega.. bromo fatty acid have the same maximal fixation as ..omega.. iodo fatty acid but a more rapid decrease of myocardial activity. ..cap alpha.. iodo fatty acid has a very low myocardial fixation.

  15. Biological study of some labeled C16 fatty acids

    International Nuclear Information System (INIS)

    Riche, F.; Mathieu, J.P.; Busquet, G.; Vidal, M.; Comet, M.; Pernin, C.; Godart, J.; Benabed, A.; Bardy, A.

    1983-01-01

    The evolution of myocardial, blood, liver and kidney activity is studied in mice after I.V. injection of some labelled C16 fatty acids. With ω iodo fatty acids, the presence or absence of a double bond and the character Z or E have no influence on the tissue activity. The presence of a triple bond decreases the fixation, modifies the intramyocardial metabolism of the fatty acid and accelerates the rate of decrease of myocardial activity. ω bromo fatty acid have the same maximal fixation as ω iodo fatty acid but a more rapid decrease of myocardial activity. α iodo fatty acid has a very low myocardial fixation [fr

  16. Binding of acyl CoA by fatty acid binding protein and the effect on fatty acid activation

    International Nuclear Information System (INIS)

    Burrier, R.E.; Manson, C.R.; Brecher, P.

    1987-01-01

    The ability of purified rat liver and heart fatty acid binding proteins (FABPs) to bind oleoyl CoA and modulate acyl CoA synthesis by microsomal membranes was investigated. Using binding assays employing either Lipidex 1000 or multilamellar liposomes to sequester unbound ligand, rat liver but not rat heart FABP was shown to bind radiolabeled acyl CoA. Binding studies suggest that liver FABP has a single binding site for acyl CoA which is separate from the two binding sites for fatty acids. Experiments were then performed to determine how binding may influence acyl CoA metabolism by liver microsomes or heart sarcoplasmic reticulum. Using liposomes as fatty acid donors, liver FABP stimulated acyl CoA production whereas heart FABP did not stimulate production over control values. 14 C-Fatty acid-FABP complexes were prepared, incubated with membranes and acyl CoA synthetase activity was determined. Up to 70% of the fatty acid could be converted to acyl CoA in the presence of liver FABP but in the presence of heart FABP, only 45% of the fatty acid was converted. The amount of product formed was not changed by additional membrane, enzyme cofactor, or incubation time. Liver but not heart FABP bound the acyl CoA formed and removed it from the membranes. These studies suggest that liver FABP can increase the amount of acyl CoA by binding this ligand thereby removing it from the membrane and possibly aiding transport within the cell

  17. Binding of acyl CoA by fatty acid binding protein and the effect on fatty acid activation

    Energy Technology Data Exchange (ETDEWEB)

    Burrier, R.E.; Manson, C.R.; Brecher, P.

    1987-05-01

    The ability of purified rat liver and heart fatty acid binding proteins (FABPs) to bind oleoyl CoA and modulate acyl CoA synthesis by microsomal membranes was investigated. Using binding assays employing either Lipidex 1000 or multilamellar liposomes to sequester unbound ligand, rat liver but not rat heart FABP was shown to bind radiolabeled acyl CoA. Binding studies suggest that liver FABP has a single binding site for acyl CoA which is separate from the two binding sites for fatty acids. Experiments were then performed to determine how binding may influence acyl CoA metabolism by liver microsomes or heart sarcoplasmic reticulum. Using liposomes as fatty acid donors, liver FABP stimulated acyl CoA production whereas heart FABP did not stimulate production over control values. /sup 14/C-Fatty acid-FABP complexes were prepared, incubated with membranes and acyl CoA synthetase activity was determined. Up to 70% of the fatty acid could be converted to acyl CoA in the presence of liver FABP but in the presence of heart FABP, only 45% of the fatty acid was converted. The amount of product formed was not changed by additional membrane, enzyme cofactor, or incubation time. Liver but not heart FABP bound the acyl CoA formed and removed it from the membranes. These studies suggest that liver FABP can increase the amount of acyl CoA by binding this ligand thereby removing it from the membrane and possibly aiding transport within the cell.

  18. Fatty acid effects on fibroblast cholesterol synthesis

    International Nuclear Information System (INIS)

    Shireman, R.B.; Muth, J.; Lopez, C.

    1987-01-01

    Two cell lines of normal (CRL 1475, GM5565) and of familial hypercholesterolemia (FH) (CM 486,488) fibroblasts were preincubated with medium containing the growth factor ITS, 2.5 mg/ml fatty acid-free BSA, or 35.2 μmol/ml of these fatty acids complexed with 2.5 mg BSA/ml: stearic (18:0), caprylic (8:0), oleic (18:1;9), linoleic (18:2;9,12), linolenic (18:3;9,12,15), docosahexaenoic (22:6;4,7,10,13,16,19)(DHA) or eicosapentaenoic (20:5;5,8,11,14,17)(EPA). After 20 h, cells were incubated for 2 h with 0.2 μCi [ 14 C]acetate/ml. Cells were hydrolyzed; an aliquot was quantitated for radioactivity and protein. After saponification and extraction with hexane, radioactivity in the aqueous and organic phases was determined. The FH cells always incorporated 30-90% more acetate/mg protein than normal cells but the pattern of the fatty acid effects was similar in both types. When the values were normalized to 1 for the BSA-only group, cells with ITS had the greatest [ 14 C]acetate incorporation (1.45) followed by the caprylic group (1.14). Cells incubated with 18:3, 20:6 or 22:6 incorporated about the same amount as BSA-only. Those preincubated with 18:2, 18:1, 18:0 showed the least acetate incorporation (0.87, 0.59 and 0.52, respectively). The percentage of total 14 C counts which extracted into hexane was much greater in FH cells; however, these values varied with the fatty acid, e.g., 1.31(18:0) and 0.84(8:0) relative to 1

  19. Fatty Acids, Lipid Mediators, and T-Cell Function

    Science.gov (United States)

    de Jong, Anja J.; Kloppenburg, Margreet; Toes, René E. M.; Ioan-Facsinay, Andreea

    2014-01-01

    Research toward the mechanisms underlying obesity-linked complications has intensified during the last years. As a consequence, it has become clear that metabolism and immunity are intimately linked. Free fatty acids and other lipids acquired in excess by current feeding patterns have been proposed to mediate this link due to their immune modulatory capacity. The functional differences between saturated and unsaturated fatty acids, in combination with their dietary intake are believed to modulate the outcome of immune responses. Moreover, unsaturated fatty acids can be oxidized in a tightly regulated and specific manner to generate either potent pro-inflammatory or pro-resolving lipid mediators. These oxidative derivatives of fatty acids have received detailed attention during the last years, as they have proven to have strong immune modulatory capacity, even in pM ranges. Both fatty acids and oxidized fatty acids have been studied especially in relation to macrophage and T-cells functions. In this review, we propose to focus on the effect of fatty acids and their oxidative derivatives on T-cells, as it is an active area of research during the past 5 years. The effect of fatty acids and their derivatives on activation and proliferation of T-cells, as well as the delicate balance between stimulation and lipotoxicity will be discussed. Moreover, the receptors involved in the interaction between free fatty acids and their derivatives with T-cells will be summarized. Finally, the mechanisms involved in modulation of T-cells by fatty acids will be addressed, including cellular signaling and metabolism of T-cells. The in vitro results will be placed in context of in vivo studies both in humans and mice. In this review, we summarize the latest findings on the immune modulatory function of lipids on T-cells and will point out novel directions for future research. PMID:25352844

  20. Scintigraphy with radioiodinated free fatty acids

    International Nuclear Information System (INIS)

    Visser, F.C.

    1985-01-01

    In this thesis several clinical and animal experimental studies of free fatty acids labeled with radioiodine are discussed. These radiolabeled fatty acids are used for cardiac imaging. Besides, the elimination rate of the radioactivity from the myocardium, as observed during a scintigraphic study, is correlated with fatty acid metabolism. Uptake and distribution of I-heptadecanoic acid (I-HDA) and I-phenylpentadecanoic acid (I-PPA) are compared with those of thallium-201 (Tl-201) in the normal and ischemic canine myocardium. For determination of the elimination rate (expressed in terms of halftime values) of the radioactivity from the myocardium, regions of interest have to be drawn over a scintigram. A method is described resulting in more reliable demarcation of normal and abnormal regions within the scintigram. (Auth.)

  1. Effects of Harvest Times on the Fatty Acids Composition of Rose Hip (Rosa sp. Seeds

    Directory of Open Access Journals (Sweden)

    Mehmet Güneş

    2017-04-01

    Full Text Available This study was conducted to determine the change of fatty acids ratios of some rose hip species seeds in different harvest times. Seeds of five genotypes belonging to rose hip species (Rosa sp. were used in the study. The fruits of species were harvested in six different ripening times and analyzed. Total oil analysis was performed for the fifth harvest only, which was determined as the optimal harvest time. As a result; total oil ratio of rose hip seeds varied as 5.22 and 6.62 g/100g respectively for accessions of Rosa dumalis (MR-12 and MR-15, 6.37 g/100g for R. canina (MR-26, 5.00 g/100g for R. dumalis ssp. boissieri (MR-46 and 5.29 g/100g for R. villosa (MR-84. Eleven fatty acids were determined in rose hip seeds. Among these fatty acids linoleic, oleic, linolenic, palmitic and stearic acids respectively had high ratio. Saturated fatty acids ratio (SFAs was the highest in R. canina (MR-26 and the lowest in R. dumalis (MR-12; monounsaturated fatty acids ratio (MUFAs was the highest in R. dumalis (MR-12 and the lowest in R. dumalis ssp. boissieri (MR-46; polyunsaturated fatty acids ratio (PUFAs was the highest in R. dumalis ssp. boissieri (MR-46 and the lowest in R. dumalis (MR-12. Mono and polyunsaturated fatty acid contents obtained in this study was high; the change of fatty acid profile in the studied species in relation to harvest time was significant for some species and insignificant for others. A conclusion was reached that it is important to pay attention to qualitative and quantitative properties of seeds when conducting studies about rose hip improvement.

  2. Serum Paraoxonase 1 Activity Is Associated with Fatty Acid Composition of High Density Lipoprotein

    Directory of Open Access Journals (Sweden)

    Maryam Boshtam

    2013-01-01

    Full Text Available Introduction. Cardioprotective effect of high density lipoprotein (HDL is, in part, dependent on its related enzyme, paraoxonase 1 (PON1. Fatty acid composition of HDL could affect its size and structure. On the other hand, PON1 activity is directly related to the structure of HDL. This study was designed to investigate the association between serum PON1 activity and fatty acid composition of HDL in healthy men. Methods. One hundred and forty healthy men participated in this research. HDL was separated by sequential ultracentrifugation, and its fatty acid composition was analyzed by gas chromatography. PON1 activity was measured spectrophotometrically using paraxon as substrate. Results. Serum PON1 activity was directly correlated with the amount of stearic acid and dihomo-gamma-linolenic acid (DGLA. PON1/HDL-C was directly correlated with the amount of miristic acid, stearic acid, and DGLA and was inversely correlated with total amount of ω6 fatty acids of HDL. Conclusion. The fatty acid composition of HDL could affect the activity of its associated enzyme, PON1. As dietary fats are the major determinants of serum lipids and lipoprotein composition, consuming some special dietary fatty acids may improve the activity of PON1 and thereby have beneficial effects on health.

  3. Serum paraoxonase 1 activity is associated with fatty acid composition of high density lipoprotein.

    Science.gov (United States)

    Boshtam, Maryam; Razavi, Amirnader Emami; Pourfarzam, Morteza; Ani, Mohsen; Naderi, Gholam Ali; Basati, Gholam; Mansourian, Marjan; Dinani, Narges Jafari; Asgary, Seddigheh; Abdi, Soheila

    2013-01-01

    Cardioprotective effect of high density lipoprotein (HDL) is, in part, dependent on its related enzyme, paraoxonase 1 (PON1). Fatty acid composition of HDL could affect its size and structure. On the other hand, PON1 activity is directly related to the structure of HDL. This study was designed to investigate the association between serum PON1 activity and fatty acid composition of HDL in healthy men. One hundred and forty healthy men participated in this research. HDL was separated by sequential ultracentrifugation, and its fatty acid composition was analyzed by gas chromatography. PON1 activity was measured spectrophotometrically using paraxon as substrate. Serum PON1 activity was directly correlated with the amount of stearic acid and dihomo-gamma-linolenic acid (DGLA). PON1/HDL-C was directly correlated with the amount of miristic acid, stearic acid, and DGLA and was inversely correlated with total amount of ω 6 fatty acids of HDL. The fatty acid composition of HDL could affect the activity of its associated enzyme, PON1. As dietary fats are the major determinants of serum lipids and lipoprotein composition, consuming some special dietary fatty acids may improve the activity of PON1 and thereby have beneficial effects on health.

  4. Fatty acid biosynthesis. VIII. The fate of malonyl-CoA in fatty acid biosynthesis by purified enzymes from lactating-rabbit mammary gland

    DEFF Research Database (Denmark)

    Hansen, Heinz Johs. Max; Carey, E.M.; Dils, R.

    1971-01-01

    - 1. We have investigated the formation and utilization of malonyl-CoA in fatty acid synthesis catalysed by preparations of partially purified acetyl-CoA carboxylase and purified fatty acid synthetase from lactating-rabbit mammary gland. - 2. Carboxylation of [1-14C]acetyl-CoA was linked to fatty...... acid synthesis by the presence of fatty acid synthetase and NADPH. The rate of fatty acid formation was equal to that of acetyl-CoA carboxylation, without the accumulation of free malonyl-CoA to a concentration required to obtain the same rate of fatty acid synthesis from added [1,3-14C2]malonyl......-CoA. - 3. The preparations of acetyl-CoA carboxylase and fatty acid synthetase were each able to decarboxylate [1,3-14C2]malonyl-CoA. - 4. Both enzyme preparations acted as competitive inhibitors of 14CO2 fixation into acetyl-CoA catalysed by acetyl-CoA carboxylase in the absence of NADPH...

  5. Dietary fatty acids modulate associations between genetic variants and circulating fatty acids in plasma and erythrocyte membranes: meta-analysis of 9 studies in the CHARGE consortium

    Science.gov (United States)

    Smith, Caren E.; Follis, Jack L.; Nettleton, Jennifer A.; Foy, Millennia; Wu, Jason H.Y.; Ma, Yiyi; Tanaka, Toshiko; Manichakul, Ani W.; Wu, Hongyu; Chu, Audrey Y.; Steffen, Lyn M.; Fornage, Myriam; Mozaffarian, Dariush; Kabagambe, Edmond K.; Ferruci, Luigi; da Chen, Yii-Der I; Rich, Stephen S.; Djoussé, Luc; Ridker, Paul M.; Tang, Weihong; McKnight, Barbara; Tsai, Michael Y.; Bandinelli, Stefania; Rotter, Jerome I.; Hu, Frank B.; Chasman, Daniel I.; Psaty, Bruce M.; Arnett, Donna K.; King, Irena B.; Sun, Qi; Wang, Lu; Lumley, Thomas; Chiuve, Stephanie E.; Siscovick, David S; Ordovás, José M.; Lemaitre, Rozenn N.

    2015-01-01

    Scope Tissue concentrations of omega-3 fatty acids may reduce cardiovascular disease risk, and genetic variants are associated with circulating fatty acids concentrations. Whether dietary fatty acids interact with genetic variants to modify circulating omega-3 fatty acids is unclear. Objective We evaluated interactions between genetic variants and fatty acid intakes for circulating alpha-linoleic acid (ALA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA). Methods and Results We conducted meta-analyses (N to 11,668) evaluating interactions between dietary fatty acids and genetic variants (rs174538 and rs174548 in FADS1 (fatty acid desaturase 1), rs7435 in AGPAT3 (1-acyl-sn-glycerol-3-phosphate), rs4985167 in PDXDC1 (pyridoxal-dependent decarboxylase domain-containing 1), rs780094 in GCKR (glucokinase regulatory protein) and rs3734398 in ELOVL2 (fatty acid elongase 2)). Stratification by measurement compartment (plasma vs. erthyrocyte) revealed compartment-specific interactions between FADS1 rs174538 and rs174548 and dietary ALA and linoleic acid for DHA and DPA. Conclusion Our findings reinforce earlier reports that genetically-based differences in circulating fatty acids may be partially due to differences in the conversion of fatty acid precursors. Further, fatty acids measurement compartment may modify gene-diet relationships, and considering compartment may improve the detection of gene-fatty acids interactions for circulating fatty acid outcomes. PMID:25626431

  6. Effect of ocean acidification on the fatty acid composition of a natural plankton community

    Science.gov (United States)

    Leu, E.; Daase, M.; Schulz, K. G.; Stuhr, A.; Riebesell, U.

    2013-02-01

    The effect of ocean acidification on the fatty acid composition of a natural plankton community in the Arctic was studied in a large-scale mesocosm experiment, carried out in Kongsfjorden (Svalbard, Norway) at 79° N. Nine mesocosms of ~50 m3 each were exposed to 8 different pCO2 levels (from natural background conditions to ~1420 μatm), yielding pH values (on the total scale) from ~8.3 to 7.5. Inorganic nutrients were added on day 13. The phytoplankton development during this 30-day experiment passed three distinct phases: (1) prior to the addition of inorganic nutrients, (2) first bloom after nutrient addition, and (3) second bloom after nutrient addition. The fatty acid composition of the natural plankton community was analysed and showed, in general, high percentages of polyunsaturated fatty acids (PUFAs): 44-60% of total fatty acids. Positive correlations with pCO2 were found for most PUFAs during phases 2 and/or 3, with the exception of 20:5n3 (eicosapentaenoic acid, EPA), an important diatom marker. These correlations are probably linked to changes in taxonomic composition in response to pCO2. While diatoms (together with prasinophytes and haptophytes) increased during phase 3 mainly in the low and intermediate pCO2 treatments, dinoflagellates were favoured by high CO2 concentrations during the same time period. This is reflected in the development of group-specific fatty acid trophic markers. No indications were found for a generally detrimental effect of ocean acidification on the planktonic food quality in terms of essential fatty acids.

  7. Seasonal variation of fatty acids from drip water in Heshang Cave, central China

    International Nuclear Information System (INIS)

    Li Xiuli; Wang Canfa; Huang Junhua; Hu Chaoyong; Xie Shucheng

    2011-01-01

    Research highlights: → A 2-year monitoring to investigate the seasonal variation of fatty acids in cave drip water. → Microbes are the dominant source for fatty acids in drip water. → The relative abundance of mono-unsaturated responds negatively with external air temperature. - Abstract: In order to investigate how lipids in cave water respond to seasonal climate change, drip water samples were collected from 2006 to 2008 in Heshang Cave, central China for fatty acid analysis. These lipids are abundant in the drip water. Their compositions are dominated by lower-molecular-weight nC16:0, nC18:0 and nC14:0 acids, together with mono-unsaturated nC18:1, nC16:1 and nC14:1. Analysis of one water sample revealed marked differences between the dissolved and particulate fractions. The dissolved fraction contains total fatty acids one order of magnitude higher than that of the particulate fraction. The distributional patterns of the fatty acids suggest that microbes living in the overlying soils and/or groundwater system contribute most fatty acids to the drip water. This 2-a monitoring experiment reveals that the abundance of mono-unsaturated fatty acids relative to the saturated homologues (nC16:1/nC16:0 and nC18:1/nC18:0) relate inversely to the changes of synchronous external air temperature. Higher values occur under cold conditions (winter/spring), while lower values appear in warm intervals (summer). Further studies are needed to elucidate the dynamic processes by which the external temperature affects fatty acids in drip water and to confirm the potential application of fatty acid ratios such as nC16:1/nC16:0 and nC18:1/nC18:0 in paleotemperature reconstructions.

  8. Introduction to fatty acids and lipids.

    Science.gov (United States)

    Burdge, Graham C; Calder, Philip C

    2015-01-01

    The purpose of this article is to describe the structure, function and metabolism of fatty acids and lipids that are of particular importance in the context of parenteral nutrition. Lipids are a heterogeneous group of molecules that share the common property of hydrophobicity. Lipids range in structure from simple short hydrocarbon chains to more complex molecules, including triacylglycerols, phospholipids and sterols and their esters. Lipids within each class may differ structurally. Fatty acids are common components of complex lipids, and these differ according to chain length and the presence, number and position of double bonds in the hydrocarbon chain. Structural variation among complex lipids and among fatty acids gives rise to functional differences that result in different impacts upon metabolism and upon cell and tissue responses. Fatty acids and complex lipids exhibit a variety of structural variations that influence their metabolism and their functional effects. © 2015 S. Karger AG, Basel.

  9. Conversion of α-linolenic acid to long-chain omega-3 fatty acid derivatives and alterations of HDL density subfractions and plasma lipids with dietary polyunsaturated fatty acids in Monk parrots (Myiopsitta monachus).

    Science.gov (United States)

    Petzinger, C; Larner, C; Heatley, J J; Bailey, C A; MacFarlane, R D; Bauer, J E

    2014-04-01

    The effect of α-linolenic acid from a flaxseed (FLX)-enriched diet on plasma lipid and fatty acid metabolism and possible atherosclerosis risk factors was studied in Monk parrots (Myiopsitta monachus). Twenty-four Monk parrots were randomly assigned to diets containing either 10% ground SUNs or 10% ground FLXs. Feed intake was calculated daily. Blood samples, body condition scores and body weights were obtained at -5 weeks, day 0, 7, 14, 28, 42 and 70. Plasma samples were analysed for total cholesterol, free cholesterol, triacylglycerols and lipoproteins. Phospholipid subfraction fatty acid profiles were determined. By day 70, the FLX group had significantly higher plasma phospholipid fatty acids including 18:3n-3 (α-linolenic acid), 20:5n-3 (eicosapentaenoic acid) and 22:6n-3 (docosahexaenoic acid). The sunflower group had significantly higher plasma phospholipid levels of 20:4n-6 (arachidonic acid). By day 70, the high-density lipoprotein (HDL) peak shifted resulting in significantly different HDL peak densities between the two experimental groups (1.097 g/ml FLX group and 1.095 g/ml SUN group, p = 0.028). The plasma fatty acid results indicate that Monk parrots can readily convert α-linolenic acid to the long-chain omega-3 derivatives including docosahexaenoic acid and reduce 20:4n-6 accumulation in plasma phospholipids. The reason for a shift in the HDL peak density is unknown at this time. Journal of Animal Physiology and Animal Nutrition © 2013 Blackwell Verlag GmbH.

  10. Unsaturated fatty acids in the diet of inpatients

    OpenAIRE

    KONHEFROVÁ, Veronika

    2015-01-01

    The thesis with the name "Unsaturated fatty acids in the diet of inpatients" is divided into a theoretical and a research parts. The theoretical part is focused on sorting out lipids and the recommended daily dosing. Next there are described the chemical structure of fatty acids and basic differences between saturated (SFA) and unsaturated (trans and cis) fatty acids. The biggest part of the theory is formed by the unsaturated fatty acids, their characteristics, food source and their effect o...

  11. Antioxidant activity, fatty acid profile and tocopherols of Tamarindus indica L. seeds

    Directory of Open Access Journals (Sweden)

    Débora Maria Moreno Luzia

    2011-06-01

    Full Text Available This study aimed to characterize Tamarindus indica L. seeds regarding its composition and to evaluate its antioxidant potential, fatty acid profile and content of tocopherols. In order to obtain the extract, the dried and crushed seeds were extracted with ethanol for 30 minutes in a 1:3 seeds: ethanol ratio under continuous stirring at room temperature. After that, the mixtures were filtered and subjected to roto-evaporation at 40 ºC in order to determine, through direct weighing, the dry matter yields of the extracts. According to the results, Tamarindus indica L. seeds showed high content of total carbohydrates (71.91% and offered relevant content and antioxidant activity of phenolic compounds. Tamarindus indica L. seeds oil presents high oxidative stability (15.83 hours and significant total tocopherol content (57.77 mg.kg-1, besides presenting a higher percentage of unsaturated fatty acids - the main component being linolenic (59.61%, which is considered an essential fatty acid.

  12. Adipose tissue fatty acids present in dairy fat and risk of stroke: the Danish Diet, Cancer and Health cohort

    DEFF Research Database (Denmark)

    Laursen, Anne Sofie Dam; Dahm, Christina Catherine; Johnsen, Søren Paaske

    2018-01-01

    of adipose tissue biopsies was determined by gas chromatography and specific fatty acids were expressed as percentage of total fatty acids. Stroke cases were identified in the Danish National Patient Registry and the diagnoses were individually verified. We recorded 2108 stroke cases of which 1745 were......The role of dairy fat for the risk of stroke is not yet clear. Adipose tissue reflects long-term fatty acid intake and metabolism. We, therefore, investigated associations for percentages of adipose tissue fatty acids, for which dairy products are a major source (12:0, 14:0, 14:1 cis-9, 15:0, 17......:0, 18:1 trans-11 and 18:2 cis-9, trans-11), with incident total stroke and stroke subtypes. We conducted a case-cohort study within the Danish Diet, Cancer and Health cohort, including all incident stroke cases (n = 2108) and a random sample of the total cohort (n = 3186). The fatty acid composition...

  13. G-protein-coupled receptors for free fatty acids

    DEFF Research Database (Denmark)

    Milligan, Graeme; Ulven, Trond; Murdoch, Hannah

    2014-01-01

    of these receptors. However, ongoing clinical trials of agonists of free fatty acid receptor 1 suggest that this receptor and other receptors for free fatty acids may provide a successful strategy for controlling hyperglycaemia and providing novel approaches to treat diabetes. Receptors responsive to free fatty acid...

  14. 40 CFR 721.3627 - Branched synthetic fatty acid.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Branched synthetic fatty acid. 721... Substances § 721.3627 Branched synthetic fatty acid. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a branched synthetic fatty acid...

  15. Recovery of slaughterhouse Animal Fatty Wastewater Sludge by conversion into Fatty Acid Butyl Esters by acid-catalyzed esterification.

    Science.gov (United States)

    Wallis, Christopher; Cerny, Muriel; Lacroux, Eric; Mouloungui, Zéphirin

    2017-02-01

    Two types of Animal Fatty Wastewater Sludges (AFWS 1 and 2) were analyzed and fully characterized to determine their suitability for conversion into biofuel. AFWS 1 was determined to be unsuitable as it contains 68.8wt.% water and only 32.3wt.% dry material, of which only around 80% is lipids to be converted. AFWS 2 has only 15.7wt.% water and 84.3wt.% dry material of which is assumed to 100% lipids as the protein and ash contents were determined to be negligible. The 4-dodecylbenzenesulfonic acid (DBSA) catalyzed esterification of AFWS with 1-butanol was performed in a novel batch reactor fitted with a drying chimney for the "in situ" removal of water and optimized using a non-conventional Doehlert surface response methodology. The optimized condition was found to be 1.66mol equivalent of 1-butanol (with respect to total fatty acid chains), 10wt.% of DBSA catalyst (with respect to AFWS) at 105°C for 3h. Fatty Acid Butyl Esters (FABEs) were isolated in good yields (95%+) as well as a blend of FABEs with 1-butanol (16%). The two potential biofuels were analyzed in comparison with current and analogous biofuels (FAME based biodiesel, and FABE products made from vegetable oils) and were found to exhibit high cetane numbers and flash point values. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Fatty acid synthase plays a role in cancer metabolism beyond providing fatty acids for phospholipid synthesis or sustaining elevations in glycolytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Hopperton, Kathryn E., E-mail: kathryn.hopperton@mail.utoronto.ca [Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2 (Canada); Duncan, Robin E., E-mail: robin.duncan@uwaterloo.ca [Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2 (Canada); Bazinet, Richard P., E-mail: richard.bazinet@utoronto.ca [Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2 (Canada); Archer, Michael C., E-mail: m.archer@utoronto.ca [Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2 (Canada); Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2 (Canada)

    2014-01-15

    Fatty acid synthase is over-expressed in many cancers and its activity is required for cancer cell survival, but the role of endogenously synthesized fatty acids in cancer is unknown. It has been suggested that endogenous fatty acid synthesis is either needed to support the growth of rapidly dividing cells, or to maintain elevated glycolysis (the Warburg effect) that is characteristic of cancer cells. Here, we investigate both hypotheses. First, we compared utilization of fatty acids synthesized endogenously from {sup 14}C-labeled acetate to those supplied exogenously as {sup 14}C-labeled palmitate in the culture medium in human breast cancer (MCF-7 and MDA-MB-231) and untransformed breast epithelial cells (MCF-10A). We found that cancer cells do not produce fatty acids that are different from those derived from exogenous palmitate, that these fatty acids are esterified to the same lipid and phospholipid classes in the same proportions, and that their distribution within neutral lipids is not different from untransformed cells. These results suggest that endogenously synthesized fatty acids do not fulfill a specific function in cancer cells. Furthermore, we observed that cancer cells excrete endogenously synthesized fatty acids, suggesting that they are produced in excess of requirements. We next investigated whether lipogenic activity is involved in the maintenance of high glycolytic activity by culturing both cancer and non-transformed cells under anoxic conditions. Although anoxia increased glycolysis 2–3 fold, we observed no concomitant increase in lipogenesis. Our results indicate that breast cancer cells do not have a specific qualitative or quantitative requirement for endogenously synthesized fatty acids and that increased de novo lipogenesis is not required to sustain elevations in glycolytic activity induced by anoxia in these cells. - Highlights: • Fatty acid synthase (FASN) is over-expressed in cancer but its function is unknown. • We compare

  17. Fatty acid synthase plays a role in cancer metabolism beyond providing fatty acids for phospholipid synthesis or sustaining elevations in glycolytic activity

    International Nuclear Information System (INIS)

    Hopperton, Kathryn E.; Duncan, Robin E.; Bazinet, Richard P.; Archer, Michael C.

    2014-01-01

    Fatty acid synthase is over-expressed in many cancers and its activity is required for cancer cell survival, but the role of endogenously synthesized fatty acids in cancer is unknown. It has been suggested that endogenous fatty acid synthesis is either needed to support the growth of rapidly dividing cells, or to maintain elevated glycolysis (the Warburg effect) that is characteristic of cancer cells. Here, we investigate both hypotheses. First, we compared utilization of fatty acids synthesized endogenously from 14 C-labeled acetate to those supplied exogenously as 14 C-labeled palmitate in the culture medium in human breast cancer (MCF-7 and MDA-MB-231) and untransformed breast epithelial cells (MCF-10A). We found that cancer cells do not produce fatty acids that are different from those derived from exogenous palmitate, that these fatty acids are esterified to the same lipid and phospholipid classes in the same proportions, and that their distribution within neutral lipids is not different from untransformed cells. These results suggest that endogenously synthesized fatty acids do not fulfill a specific function in cancer cells. Furthermore, we observed that cancer cells excrete endogenously synthesized fatty acids, suggesting that they are produced in excess of requirements. We next investigated whether lipogenic activity is involved in the maintenance of high glycolytic activity by culturing both cancer and non-transformed cells under anoxic conditions. Although anoxia increased glycolysis 2–3 fold, we observed no concomitant increase in lipogenesis. Our results indicate that breast cancer cells do not have a specific qualitative or quantitative requirement for endogenously synthesized fatty acids and that increased de novo lipogenesis is not required to sustain elevations in glycolytic activity induced by anoxia in these cells. - Highlights: • Fatty acid synthase (FASN) is over-expressed in cancer but its function is unknown. • We compare utilization of

  18. Topical electrophilic nitro-fatty acids potentiate cutaneous inflammation.

    Science.gov (United States)

    Mathers, Alicia R; Carey, Cara D; Killeen, Meaghan E; Salvatore, Sonia R; Ferris, Laura K; Freeman, Bruce A; Schopfer, Francisco J; Falo, Louis D

    2018-02-01

    Endogenous electrophilic fatty acids mediate anti-inflammatory responses by modulating metabolic and inflammatory signal transduction and gene expression. Nitro-fatty acids and other electrophilic fatty acids may thus be useful for the prevention and treatment of immune-mediated diseases, including inflammatory skin disorders. In this regard, subcutaneous (SC) injections of nitro oleic acid (OA-NO 2 ), an exemplary nitro-fatty acid, inhibit skin inflammation in a model of allergic contact dermatitis (ACD). Given the nitration of unsaturated fatty acids during metabolic and inflammatory processes and the growing use of fatty acids in topical formulations, we sought to further study the effect of nitro-fatty acids on cutaneous inflammation. To accomplish this, the effect of topically applied OA-NO 2 on skin inflammation was evaluated using established murine models of contact hypersensitivity (CHS). In contrast to the effects of subcutaneously injected OA-NO 2 , topical OA-NO 2 potentiated hapten-dependent inflammation inducing a sustained neutrophil-dependent inflammatory response characterized by psoriasiform histological features, increased angiogenesis, and an inflammatory infiltrate that included neutrophils, inflammatory monocytes, and γδ T cells. Consistent with these results, HPLC-MS/MS analysis of skin from psoriasis patients displayed a 56% increase in nitro-conjugated linoleic acid (CLA-NO 2 ) levels in lesional skin compared to non-lesional skin. These results suggest that nitro-fatty acids in the skin microenvironment are products of cutaneous inflammatory responses and, in high local concentrations, may exacerbate inflammatory skin diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Effects of partial hydrogenation, epoxidation, and hydroxylation on the fuel properties of fatty acid methyl esters

    Energy Technology Data Exchange (ETDEWEB)

    Wadumesthrige, Kapila; Salley, Steven O.; Ng, K.Y. Simon [Department of Chemical Engineering and Materials Science, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI 48202 (United States)

    2009-10-15

    The properties of biodiesel depend on the chemical structure of individual fatty acid methyl esters (FAME). In this work the chemical structure of fatty acid chains was modified by catalytic hydrogenation, epoxidation and hydroxylation under controlled conditions. Hydrolysis of ester functionality or oxidation of fatty acid chain was not observed during these reactions. The properties of hydrogenated FAME strongly depend on the hydrogenation time. The total saturated fatty acid (SFA) percentage increased from 29.3% to 76.2% after 2 h of hydrogenation. This hydrogenated FAME showed higher oxidation stability and higher cetane number but poor cold flow properties. Formation of trans FAME was observed during hydrogenation. Both hydroxylation and epoxidation resulted in a decrease of unsaturated fatty acid methyl ester (UFA) fraction. The percentages of total unsaturated FAME decreased 39% in the epoxidation reaction and 44% in the hydroxylation reaction. The addition of hydroxyl groups to the unsaturated regions of the fatty acid chain yields biodiesel with better cold flow properties, increased lubricity and slightly increased oxidative stability. However, epoxy FAME shows some interesting properties such as higher oxidation stability, higher cetane number and acceptable cold flow properties, which met the limits of ASTM D6751 biodiesel specifications. (author)

  20. Sensory quality and fatty acid content of springbok (Antidorcas marsupialis) meat: influence of farm location and sex.

    Science.gov (United States)

    Neethling, Jeannine; Muller, Magdalena; van der Rijst, Marieta; Hoffman, Louwrens C

    2018-05-01

    Springbok are harvested for meat production irrespective of farm location or sex from which the meat is derived. The present study investigated the influence of farm location (three farms containing different vegetation types) and sex on the sensory quality of springbok longissimus thoracis et lumborum muscle. The sensory profile (aroma, flavour and texture) was determined by descriptive sensory analysis, in addition to determination of the physical meat quality, proximate and fatty acid composition. Farm location had a significant influence on the sensory quality (gamey and liver-like aroma; beef, liver-like, lamb-like and herbaceous flavour; sweet taste; tenderness; residue; mealiness; Warner-Bratzler shear force; moisture, protein and intramuscular lipid content) and fatty acid content (oleic acid; α-linolenic acid; total saturated and monounsaturated fatty acids; polyunsaturated to saturated fatty acid ratio; total omega-3 polyunsaturated fatty acid; and omega-6 to omega-3 polyunsaturated fatty acid ratio) of springbok meat. Sex influenced the chemical composition of springbok meat; however, the influence on the sensory profile was minor (sweet taste; P meat and should be considered when harvesting for meat production. Sex does not have to be considered for the marketing of springbok meat. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  1. Nutritional value and fatty acid composition of some traditional Argentinean meat sausages

    Directory of Open Access Journals (Sweden)

    Mara Cristina Romero

    2013-03-01

    Full Text Available The aim of this study was to determine the nutritional composition (moisture, protein, carbohydrates, and total fat of some meat products produced in the northeastern Argentina, analyzing fatty acids composition, polyunsaturated/saturated fatty acid ratio PUFA/SFA ratio (polyunsaturated/ saturated fatty acids, n-6/n-3 ratio, and CLA (conjugated linoleic acid content. Thirty traditional meat products produced by different processes were used. The samples were classified into 4 different categories as follows: salamín (dry cured and fermented sausage, chorizos (raw sausage, chorizo ahumado (cooked and smoked sausage, and morcilla (cooked sausage. From the results obtained it can be said that the total carbohydrate contents of the salamín studied were slightly lower; fat content of raw chorizo was significantly lower, and protein content of chorizo ahumado was significantly higher than those comparison from databases from other regions of Argentina, USA, and Spain. Except for chorizo, which has a value lower than 0.4, the PUFA/SFA-stearic ratio of the other products were a little higher than those reported by other researchers. CLA (Conjugated linoleic acid contents between 0.03% and 0.19% were detected. The results obtained indicate that salamín produced in northeastern Argentina, Chaco state, shows high protein and PUFA (Polyunsaturated fatty acids contents, and low atherogenic and thrombogenic indexes, which makes it a more healthful product than those of similar composition produced in other countries.

  2. Adipose tissue Fatty Acid patterns and changes in antrhropometry

    DEFF Research Database (Denmark)

    Dahm, Christina Catherine; Gorst-Rasmussen, Anders; Jakobsen, Marianne Uhre

    2011-01-01

    Introduction Diets rich in n-3 long chain polyunsaturated fatty acids (LC-PUFA), but low in n-6 LC-PUFA and 18:1 trans-fatty acids (TFA), may lower the risk of overweight and obesity. These fatty acids have often been investigated individually. We explored associations between global patterns...... in adipose tissue fatty acids and changes in anthropometry. Methods 34 fatty acid species from adipose tissue biopsies were determined in a random sample of 1100 men and women from a Danish cohort study. We used sex-specific principal component analysis and multiple linear regression to investigate...... the associations of adipose tissue fatty acid patterns with changes in weight, waist circumference (WC), and WC controlled for changes in body mass index (WCBMI), adjusting for confounders. Results 7 principal components were extracted for each sex, explaining 77.6% and 78.3% of fatty acid variation in men...

  3. Fatty acid oxidation and ketogenesis in astrocytes

    International Nuclear Information System (INIS)

    Auestad, N.

    1988-01-01

    Astrocytes were derived from cortex of two-day-old rat brain and grown in primary culture to confluence. The metabolism of the fatty acids, octanoate and palmitate, to CO 2 in oxidative respiration and to the formation of ketone bodies was examined by radiolabeled tracer methodology. The net production of acetoacetate was also determined by measurement of its mass. The enzymes in the ketogenic pathway were examined by measuring enzymic activity and/or by immunoblot analyses. Labeled CO 2 and labeled ketone bodies were produced from the oxidation of fatty acids labeled at carboxy- and ω-terminal carbons, indicating that fatty acids were oxidized by β-oxidation. The results from the radiolabeled tracer studies also indicated that a substantial proportion of the ω-terminal 4-carbon unit of the fatty acids bypassed the β-ketothiolase step of the β-oxidation pathway. The [ 14 C]acetoacetate formed from the [1- 14 C]labeled fatty acids, obligated to pass through the acetyl-CoA pool, contained 50% of the label at carbon 3 and 50% at carbon 1. In contrast, the [ 14 C]acetoacetate formed from the (ω-1)labeled fatty acids contained 90% of the label at carbon 3 and 10% at carbon 1

  4. Dynamic regulation of fatty acid pools for improved production of fatty alcohols in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Teixeira, Paulo Goncalves; Ferreira, Raphael; Zhou, Yongjin J.

    2017-01-01

    Background: In vivo production of fatty acid-derived chemicals in Saccharomyces cerevisiae requires strategies to increase the intracellular supply of either acyl-CoA or free fatty acids (FFAs), since their cytosolic concentrations are quite low in a natural state for this organism. Deletion...... of the fatty acyl-CoA synthetase genes FAA1 and FAA4 is an effective and straightforward way to disable re-activation of fatty acids and drastically increase FFA levels. However, this strategy causes FFA over-accumulation and consequential release to the extracellular medium, which results in a significant...... faa4 Delta strain constitutively expressing a carboxylic acid reductase from Mycobacterium marinum (MmCAR) and an endogenous alcohol dehydrogenase (Adh5) for in vivo production of fatty alcohols from FFAs. We observed production of fatty acids and fatty alcohols with different rates leading to high...

  5. Dietary Alfalfa and Calcium Salts of Long-Chain Fatty Acids Alter Protein Utilization, Microbial Populations, and Plasma Fatty Acid Profile in Holstein Freemartin Heifers.

    Science.gov (United States)

    He, Yang; Qiu, Qinghua; Shao, Taoqi; Niu, Wenjing; Xia, Chuanqi; Wang, Haibo; Li, Qianwen; Gao, Zhibiao; Yu, Zhantao; Su, Huawei; Cao, Binghai

    2017-12-20

    This study presented the effects of alfalfa and calcium salts of long-chain fatty acids (CSFA) on feed intake, apparent digestibility, rumen fermentation, microbial community, plasma biochemical parameters, and fatty acid profile in Holstein freemartin heifers. Eight Holstein freemartin heifers were randomly divided into a 4 × 4 Latin Square experiment with 2 × 2 factorial diets, with or without alfalfa or CSFA. Dietary supplementation of CSFA significantly increased the apparent digestibility of dry matter, crude protein, neutral detergent fiber, organic matter, and significantly reduced N retention (P fatty acids in the plasma, which was expressed in reducing saturated fatty acid (ΣSFA) ratio and C14-C17 fatty acids proportion except C16:0 (P fatty acid (ΣPUFA) and unsaturated fatty acid (ΣUFA) (P fatty acids in plasma. Alfalfa and CSFA had mutual interaction effect on fat digestion and plasma triglycerides.

  6. Factors affecting variations in the detailed fatty acid profile of Mediterranean buffalo milk determined by 2-dimensional gas chromatography.

    Science.gov (United States)

    Pegolo, S; Stocco, G; Mele, M; Schiavon, S; Bittante, G; Cecchinato, A

    2017-04-01

    Buffalo milk is the world's second most widely produced milk, and increasing attention is being paid to its composition, particularly the fatty acid profile. The objectives of the present study were (1) to characterize the fatty acid composition of Mediterranean buffalo milk, and (2) to investigate potential sources of variation in the buffalo milk fatty acid profile. We determined the profile of 69 fatty acid traits in 272 individual samples of Mediterranean buffalo milk using gas chromatography. In total, 51 individual fatty acids were identified: 24 saturated fatty acids, 13 monounsaturated fatty acids, and 14 polyunsaturated fatty acids. The major individual fatty acids in buffalo milk were in the order 16:0, 18:1 cis-9, 14:0, and 18:0. Saturated fatty acids were the predominant fraction in buffalo milk fat (70.49%); monounsaturated and polyunsaturated fatty acids were at 25.95 and 3.54%, respectively. Adopting a classification based on carbon-chain length, we found that medium-chain fatty acids (11-16 carbons) represented the greater part (53.7%) of the fatty acid fraction of buffalo milk, whereas long-chain fatty acids (17-24 carbons) and short-chain fatty acids (4-10 carbons) accounted for 32.73 and 9.72%, respectively. The n-3 and n-6 fatty acids were 0.46 and 1.77%, respectively. The main conjugated linoleic acid, rumenic acid, represented 0.45% of total milk fatty acids. Herd/test date and stage of lactation were confirmed as important sources of variation in the fatty acid profile of buffalo milk. The percentages of short-chain and medium-chain fatty acids in buffalo milk increased in early lactation (+0.6 and +3.5%, respectively), whereas long-chain fatty acids decreased (-4.2%). The only exception to this pattern was butyric acid, which linearly decreased from the beginning of lactation, confirmation that its synthesis is independent of malonyl-CoA. These results seem to suggest that in early lactation the mobilization of energy reserves may have less

  7. Glucose-stimulated acrolein production from unsaturated fatty acids.

    Science.gov (United States)

    Medina-Navarro, R; Duran-Reyes, G; Diaz-Flores, M; Hicks, J J; Kumate, J

    2004-02-01

    Glucose auto-oxidation may be a significant source of reactive oxygen species (ROS), and also be important in the lipid peroxidation process, accompanied by the release of toxic reactive products. We wanted to demonstrate that acrolein can be formed directly and actively from free fatty acids in a hyperglycemic environment. A suspension of linoleic and arachidonic acids (2.5 mM) was exposed to different glucose concentrations (5, 10 and 15 mmol/L) in vitro. The samples were extracted with organic solvents, partitioned, followed at 255-267 nm, and analysed using capillary electrophoresis and mass spectroscopy. The total release of aldehydes significantly (P products, acrolein (5% of total) and its condensing product, 4-hydroxy-hexenal, were identified. From the results presented here, it was possible to demonstrate the production of acrolein, probably as a fatty acid product, due to free radicals generated from the glucose auto-oxidation process. The results led us to propose that acrolein, which is one of the most toxic aldehydes, is produced during hyperglycemic states, and may lead to tissue injury, as one of the initial problems to be linked to high levels of glucose in vivo.

  8. Origin of fatty acids

    International Nuclear Information System (INIS)

    Prieur, B.E.

    1995-01-01

    The appearance of fatty acids and membranes is one of the most important events of the prebiotic world because genesis of life required the compartmentalization of molecules. Membranes allowed cells to become enriched with molecules relevant for their evolution and gave rise to gradients convertible into energy. By virtue of their hydrophobic/hydrophilic interface, membranes developed certain enzymatic activities impossible in the aqueous phase. A prebiotic cell is an energy unit but it is also an information unit. It has a past, a present and a future. The biochemistry of fatty acids involves acetylCoA, malonylCoA and an enzyme, acyl synthetase, which joins both molecules. After substitution of the acetyl group in place of the carboxyl group of malonyl derivatives, the chain is reduced and dehydrated to crotonyl derivatives. These molecules can again react with malonylCoA to form unsaturated chain; they can also undergo a new reduction step to form butyryl derivatives which can react with malonylCoA to form a longer aliphatic chain. The formation of malonylCoA consumes ATP. The reduction step needs NADPH and proton. Dehydration requires structural information because the reduction product is chiral (D configuration). It is unlikely that these steps were possible in a prebiotic environment. Thus we have to understand how fatty acids could appear in the prebiotic era. This hypothesis about the origin of fatty acids is based on the chemistry of sulfonium ylides and sulfonium salts. The most well-known among these molecules are S-melthyl-methionine and S-adenosyl methionine. The simplest sulfonium cation is the trimethylsulfonium cation. Chemists have evidence that these products can produce olefin when they are heated or flashed with UV light in some conditions. I suggest that these volatile products can allow the formation of fatty acids chains in atmospheric phase with UV and temperature using methanol as starting material. Different synthetic pathways will be

  9. Radiolytic products of irradiated authentic fatty acids and triacylglycerides

    International Nuclear Information System (INIS)

    Kim, K.-S.; Lee, Jeong-Min; Seo, Hye-Young; Kim, Jun-Hyoung; Song, Hyun-Pa; Byun, Myung-Woo; Kwon, Joong-Ho

    2004-01-01

    Radiolytic products of authentic fatty acids (palmitic, stearic, oleic, linoleic and linolenic acids) and triacylglycerides (tripalmitin, tristearin, triolein, trilinolein and trilinolenin) were determined. Concentrations of hydrocarbons from the saturated fatty acids were higher than the unsaturated fatty acids. Authentic fatty acids were mainly decomposed in the α-carbon position and C n-1 hydrocarbons occurred in higher than C n-2 hydrocarbons. Concentrations of 2-alkylcyclobutanones from the saturated fatty acids were lower than the unsaturated fatty acids. Concentrations of hydrocarbons from tripalmitin and tristearin were not a significant change compared with triolein, trilinolein and trilinolenin. For all triacylglycerides except triolein, C n-1 hydrocarbons were higher than C n-2 hydrocarbons. Radioproduction rates of 2-alkylcyclobutanones from tripalmitin and tristearin were higher than triolein, trilinolein and trilinolenin

  10. Fatty acid biomarkers: validation of food web and trophic markers using C-13-labelled fatty acids in juvenile sandeel ( Ammodytes tobianus )

    DEFF Research Database (Denmark)

    Dalsgaard, Anne Johanne Tang; St. John, Michael

    2004-01-01

    A key issue in marine science is parameterizing trophic interactions in marine food webs, thereby developing an understanding of the importance of top-down and bottom-up controls on populations of key trophic players. This study validates the utility of fatty acid food web and trophic markers usi......), respectively. Lack of temporal trends in nonlabelled fatty acids confirmed the conservative incorporation of labelled fatty acids by the fish.......A key issue in marine science is parameterizing trophic interactions in marine food webs, thereby developing an understanding of the importance of top-down and bottom-up controls on populations of key trophic players. This study validates the utility of fatty acid food web and trophic markers using...... C-13-labelled fatty acids to verify the conservative incorporation of fatty acid tracers by juvenile sandeel (Ammodytes tobianus) and assess their uptake, clearance, and metabolic turnover rates. Juvenile sandeel were fed for 16 days in the laboratory on a formulated diet enriched in (13)C16...

  11. Dietary fatty acids and membrane protein function.

    Science.gov (United States)

    Murphy, M G

    1990-02-01

    In recent years, there has been growing public awareness of the potential health benefits of dietary fatty acids, and of the distinction between the effects of the omega6 and omega3 polyunsaturated fatty acids that are concentrated in vegetable and fish oils, respectively. A part of the biologic effectiveness of the two families of polyunsaturated fatty acids resides in their relative roles as precursors of the eicosanoids. However, we are also beginning to appreciate that as the major components of the hydrophobic core of the membrane bilayer, they can interact with and directly influence the functioning of select integral membrane proteins. Among the most important of these are the enzymes, receptors, and ion channels that are situated in the plasma membrane of the cell, since they carry out the communication and homeostatic processes that are necessary for normal cell function. This review examines current information regarding the effects of diet-induced changes in plasma membrane fatty acid composition on several specific enzymes (adenylate cyclase, 5'-nucleotidase, Na(+)/K(+)-ATPase) and cell-surface receptors (opiate, adrenergic, insulin). Dietary manipulation studies have demonstrated a sensitivity of each to a fatty acid environment that is variably dependent on the nature of the fatty acid(s) and/or source of the membrane. The molecular mechanisms appear to involve fatty acid-dependent effects on protein conformation, on the "fluidity" and/or thickness of the membrane, or on protein synthesis. Together, the results of these studies reinforce the concept that dietary fats have the potential to regulate physiologic function and to further our understanding of how this occurs at a membrane level.

  12. Chain-modified radioiodinated fatty acids

    International Nuclear Information System (INIS)

    Otto, C.A.

    1987-01-01

    Several carbon chain manipulations have been studied in terms of their effects on myocardial activity levels and residence time. The manipulations examined included: chain length, chain branching, chain unsaturation, and carbon-iodine bond stabilization. It was found that chain length affects myocardial activity levels for both straight-chain alkyl acids and branched chain alkyl and aryl acids. Similar results have been reported for the straight-chain aryl acids. Generally, the longer chain lengths correlated with higher myocardial activity levels and longer residence times. This behavior is attributed to storage as triglycerides. Branched chain acids are designed to be anti-metabolites but only the aryl β-methyl acids possessed the expected time course of constant or very slowly decreasing activity levels. The alkyl β-methyl acids underwent rapid deiodination - a process apparently independent of β-oxidation. Inhibition of β-oxidation by incorporation of carbon-carbon double and triple bonds was studied. Deiodination of ω-iodo alkyl fatty acids prevented an assessment of suicide inhibition using an unsaturated alkynoic acid. Stabilization of the carbon-iodine bond by attachment of iodine to a vinylic or aryl carbon was studied. The low myocardial values and high blood values observed for an eleven carbon ω-iodo vinylic fatty acid were not encouraging but ω-iodo aryl fatty acids appear to avoid the problems of rapid deiodination. (Auth.)

  13. Expression of Vibrio harveyi acyl-ACP synthetase allows efficient entry of exogenous fatty acids into the Escherichia coli fatty acid and lipid A synthetic pathways.

    Science.gov (United States)

    Jiang, Yanfang; Morgan-Kiss, Rachael M; Campbell, John W; Chan, Chi Ho; Cronan, John E

    2010-02-02

    Although the Escherichia coli fatty acid synthesis (FAS) pathway is the best studied type II fatty acid synthesis system, a major experimental limitation has been the inability to feed intermediates into the pathway in vivo because exogenously supplied free fatty acids are not efficiently converted to the acyl-acyl carrier protein (ACP) thioesters required by the pathway. We report that expression of Vibrio harveyi acyl-ACP synthetase (AasS), a soluble cytosolic enzyme that ligates free fatty acids to ACP to form acyl-ACPs, allows exogenous fatty acids to enter the E. coli fatty acid synthesis pathway. The free fatty acids are incorporated intact and can be elongated or directly incorporated into complex lipids by acyltransferases specific for acyl-ACPs. Moreover, expression of AasS strains and supplementation with the appropriate fatty acid restored growth to E. coli mutant strains that lack essential fatty acid synthesis enzymes. Thus, this strategy provides a new tool for circumventing the loss of enzymes essential for FAS function.

  14. Effect of gamma-radiation treatment on the lipids of meat products during storage.II Fatty acid composition in durable raw-dried products of chopped meat

    International Nuclear Information System (INIS)

    Dimitrov, G.; Bakalivanova, T.; Tsvetkova, E.; Grigorova, S.; Marinova, T.

    2004-01-01

    Studied is the effect of gamma rays treatment with 4 kGy on the total fatty acid composition (FAC) of Karlovska Lukanka and Shumenski Sudzhuk for 30 days and nights from the moment of treatment with gamma-rays. The saturated fatty acids in the Lukanka/flat sausage/ are 42,5-44,7% of the total lipids, and in the Sudzhuk/sausage/ the level of the saturated fatty acids is 45,7-49,7%. The mono-unsaturated fatty acids in the two products are between 44 and 47%. The share of poly-unsaturated fatty acids in the Lukanka is over 10% of the total lipids, and in the Sudzhuk - 7%. It was established that the treatment of Karlovo Lukanka and Shumen Sudzhuk with 4 kGy gamma-rays: does not affect the total fatty acid composition of the tested samples; does not change the balance in the fatty acid composition and the nutritional value of the tested samples; does not change the quantity of the essential fatty acids; quarantees the safety of the treated products

  15. A Review of the Metabolic Origins of Milk Fatty Acids

    Directory of Open Access Journals (Sweden)

    Anamaria COZMA

    2013-08-01

    Full Text Available Milk fat and its fatty acid profile are important determinants of the technological, sensorial, and nutritional properties of milk and dairy products. The two major processes contributing to the presence of fatty acids in ruminant milk are the mammary lipogenesis and the lipid metabolism in the rumen. Among fatty acids, 4:0 to 12:0, almost all 14:0 and about a half of 16:0 in milk fat derive from de novo synthesis within the mammary gland. De novo synthesis utilizes as precursors acetate and butyrate produced through carbohydrates ruminal fermentation and involves acetyl-CoA carboxylase and fatty acid synthetase as key enzymes. The rest of 16:0 and all of the long-chain fatty acids derive from mammary uptake of circulating lipoproteins and nonesterified fatty acids that originate from digestive absorption of lipids and body fat mobilization. Further, long-chain fatty acids as well as medium-chain fatty acids entering the mammary gland can be desaturated via Δ-9 desaturase, an enzyme that acts by adding a cis-9-double bond on the fatty acid chain. Moreover, ruminal biohydrogenation of dietary unsaturated fatty acids results in the formation of numerous fatty acids available for incorporation into milk fat. Ruminal biohydrogenation is performed by rumen microbial population as a means of protection against the toxic effects of polyunsaturated fatty acids. Within the rumen microorganisms, bacteria are principally responsible for ruminal biohydrogenation when compared to protozoa and anaerobic fungi.

  16. Reduced triacylglycerol mobilization during seed germination and early seedling growth in Arabidopsis containing nutritionally important polyunsaturated fatty acids

    Directory of Open Access Journals (Sweden)

    Pushkar Shrestha

    2016-09-01

    Full Text Available There are now several examples of plant species engineered to synthesise and accumulate nutritionally important polyunsaturated fatty acids in their seed triacylglycerols (TAG. The utilization of such TAG in germinating seeds of such transgenic plants was unknown. In this study, we examined the TAG utilization efficiency during seed germination in transgenic Arabidopsis seeds containing several examples of these fatty acids. Seed TAG species with native fatty acids had higher utilization rate than the TAG species containing transgenically produced polyunsaturated fatty acids. Conversely, quantification of the fatty acid components remaining in the total TAG after early stages of seed germination revealed that the undigested TAGs tended to contain an elevated level of the engineered polyunsaturated fatty acids (PUFA. LC-MS analysis further revealed asymmetrical mobilization rates for the individual TAG species. TAGs which contained multiple PUFA fatty acids were mobilized slower than the species containing single PUFA. The mobilised engineered fatty acids were used in de novo membrane lipid synthesis during seedling development.

  17. Influence of maternal dietary n-3 fatty acids on breast milk and liver lipids of rat dams and offspring - a preliminary study

    DEFF Research Database (Denmark)

    Hartvigsen, M.S.; Mu, Huiling; Høy, Carl-Erik

    2003-01-01

    The impact of triacylglycerol (TAG) structure and level of n-3 fatty acids on the fatty acid profile of total breast milk lipids and total liver phospholipids (PL) of dams and offspring (1, 3 and 13 weeks of age), when administered during development, was examined. Pregnant rats were fed experime......The impact of triacylglycerol (TAG) structure and level of n-3 fatty acids on the fatty acid profile of total breast milk lipids and total liver phospholipids (PL) of dams and offspring (1, 3 and 13 weeks of age), when administered during development, was examined. Pregnant rats were fed...... experimental diets from the 8(th) day of pregnancy throughout lactation. After weaning and until 13 weeks of age, the offspring were fed the same diet as their dams. The experimental diets contained either a specific structured oil, linseed oil or fish oil. In the specific structured oil, a-linolenic acid (18...... fatty acids. Samples from three animals in each group were analyzed. The highest level of 22:6n-3 in the breast milk was obtained with diets containing this fatty acid itself. The fatty acid profile of rat dam liver PL was very different from the milk lipids indicating that the maternal dietary fats...

  18. Impact of dietary fatty acids on muscle composition, liver lipids, milt composition and sperm performance in European eel

    DEFF Research Database (Denmark)

    Butts, Ian; Baeza, R.; Støttrup, Josianne

    2015-01-01

    of dietary regime on muscle composition, and liver lipids prior to induced maturation, and the resulting sperm composition and performance. To accomplish this fish were reared on three "enhanced" diets and one commercial diet, each with different levels of fatty acids, arachidonic acid (ARA......), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). Neutral lipids from the muscle and liver incorporated the majority of the fatty acid profile, while phospholipids incorporated only certain fatty acids. Diet had an effect on the majority of sperm fatty acids, on the total volume of extractable milt...... induced medium milt volumes but had the highest sperm motility. EPA also seems important for sperm quality parameters since diets with higher EPA percentages had a higher volume of milt and higher sperm motility. In conclusion, dietary fatty acids had an influence on fatty acids in the tissues of male eel...

  19. Recent developments in altering the fatty acid composition of ruminant-derived foods.

    Science.gov (United States)

    Shingfield, K J; Bonnet, M; Scollan, N D

    2013-03-01

    There is increasing evidence to indicate that nutrition is an important factor involved in the onset and development of several chronic human diseases including cancer, cardiovascular disease (CVD), type II diabetes and obesity. Clinical studies implicate excessive consumption of medium-chain saturated fatty acids (SFA) and trans-fatty acids (TFA) as risk factors for CVD, and in the aetiology of other chronic conditions. Ruminant-derived foods are significant sources of medium-chain SFA and TFA in the human diet, but also provide high-quality protein, essential micronutrients and several bioactive lipids. Altering the fatty acid composition of ruminant-derived foods offers the opportunity to align the consumption of fatty acids in human populations with public health policies without the need for substantial changes in eating habits. Replacing conserved forages with fresh grass or dietary plant oil and oilseed supplements can be used to lower medium-chain and total SFA content and increase cis-9 18:1, total conjugated linoleic acid (CLA), n-3 and n-6 polyunsaturated fatty acids (PUFA) to a variable extent in ruminant milk. However, inclusion of fish oil or marine algae in the ruminant diet results in marginal enrichment of 20- or 22-carbon PUFA in milk. Studies in growing ruminants have confirmed that the same nutritional strategies improve the balance of n-6/n-3 PUFA, and increase CLA and long-chain n-3 PUFA in ruminant meat, but the potential to lower medium-chain and total SFA is limited. Attempts to alter meat and milk fatty acid composition through changes in the diet fed to ruminants are often accompanied by several-fold increases in TFA concentrations. In extreme cases, the distribution of trans 18:1 and 18:2 isomers in ruminant foods may resemble that of partially hydrogenated plant oils. Changes in milk fat or muscle lipid composition in response to diet are now known to be accompanied by tissue-specific alterations in the expression of one or more

  20. Higher acclimation temperature modulates the composition of muscle fatty acid of Tor putitora juveniles

    Directory of Open Access Journals (Sweden)

    M.S. Akhtar

    2014-08-01

    Full Text Available A 30-day acclimation trial was conducted using golden mahseer, Tor putitora juveniles to study its muscle fatty acid composition at five acclimation temperatures (AT. Ninety juveniles of T. putitora were distributed among five treatment groups (20, 23, 26, 29 and 32±0.5 °C. At the end of 30 days trial, highest percentage of monounsaturated fatty acids was found at 20 °C and lowest at 26 °C. The highest percentage of n-6 polyunsaturated fatty acid (PUFA was found at 23 °C and a decreasing trend was observed with increase in AT. However, highest percentage of n-3 PUFA was found at 32 °C and lowest at 29 °C. The maximum n-6 to n-3 ratio was observed at 23 °C and ratio decreased to a minimum at 32 °C. The results revealed that T. putitora juveniles could adapt to higher acclimation temperatures by altering its muscle fatty acid composition mainly by increasing its total saturated fatty acids especially stearic acid.

  1. Cellular fatty acids and aldehydes of oral Eubacterium.

    Science.gov (United States)

    Itoh, U; Sato, M; Tsuchiya, H; Namikawa, I

    1995-02-01

    The cellular fatty acids and aldehydes of oral Eubacterium species were determined by gas chromatography-mass spectrometry. E. brachy and E. lentum contained mainly branched-chain fatty acids, whereas the others contained straight-chain acids. E. brachy, E. lentum, E. yurii ssp. yurii, E. yurii spp. margaretiae, E. limosum, E. plauti and E. aerofaciens also contained aldehydes with even carbon numbers. In addition to species-specific components, the compositional ratios of fatty acids and aldehydes characterized each individual species. The 10 species tested were divided into 5 groups by the principal component analysis. Cellular fatty acids and aldehydes would be chemical markers for interspecies differentiation of oral Eubacterium.

  2. Fatty Acid-Based Monomers as Styrene Replacements for Liquid Molding Resins

    Science.gov (United States)

    2005-05-01

    fatty acid length and unsaturation level on resin and polymer properties. Fig. 2. The addition of fatty acids ( oleic acid ) to glycidyl methacylate to...the synthetic route used to form the methacrylated fatty acids (MFA). The carboxylic acid of fatty acids undergoes a simple addition reaction with... form methacrylated fatty acid monomer

  3. The development of radioiodinated fatty acids for myocardial imaging

    International Nuclear Information System (INIS)

    Knapp, F.F. Jr.

    1993-01-01

    Since free fatty acids are the principal energy source for the normally oxygenated myocardium, the use of iodine-123-labeled fatty acid analogues is an attractive approach for myocardial imaging. Interest in the use of these substances results from divergent fatty acid metabolic pathways in ischemic (triglyceride storage) versus normoxic tissue (β-oxidative clearance), following flow-dependent delivery. Iodine-123-labeled fatty acids may offer a unique opportunity to identity myocardial viability using single photon emission tomography. The development of structurally-modified fatty acids became of interest because of the relatively long acquisition periods required for SPECT. The significant time required by early generation single- or dual-head SPECT systems for data acquisition requires minimal redistribution during the acquisition period to ensure accurate evaluation of the regional fatty acid distribution pattern after re-construction. Research has focussed on the evaluation of structural modifications which can be introduced into the fatty acid chain which would inhibit the subsequent β-oxidative catabolism which normally results in rapid myocardial clearance. Introduction of a methyl group in position-3 of the fatty acid carbon chain has been shown to significantly delay myocardial clearance and iodine-123-labeled 15-(p-iodophenyl)-3- R,S-methylpentadecanoic acid (BMIPP) is a new tracer based on this strategy

  4. A microfluidic device for the automated derivatization of free fatty acids to fatty acid methyl esters.

    Science.gov (United States)

    Duong, Cindy T; Roper, Michael G

    2012-02-21

    Free fatty acid (FFA) compositions are examined in feedstock for biodiesel production, as source-specific markers in soil, and because of their role in cellular signaling. However, sample preparation of FFAs for gas chromatography-mass spectrometry (GC-MS) analysis can be time and labor intensive. Therefore, to increase sample preparation throughput, a glass microfluidic device was developed to automate derivatization of FFAs to fatty acid methyl esters (FAMEs). FFAs were delivered to one input of the device and methanolic-HCl was delivered to a second input. FAME products were produced as the reagents traversed a 29 μL reaction channel held at 55 °C. A Design of Experiment protocol was used to determine the combination of derivatization time (T(der)) and ratio of methanolic-HCl:FFA (R(der)) that maximized the derivatization efficiencies of tridecanoic acid and stearic acid to their methyl ester forms. The combination of T(der) = 0.8 min and R(der) = 4.9 that produced optimal derivatization conditions for both FFAs within a 5 min total sample preparation time was determined. This combination of T(der) and R(der) was used to derivatize 12 FFAs with a range of derivatization efficiencies from 18% to 93% with efficiencies of 61% for tridecanoic acid and 84% for stearic acid. As compared to a conventional macroscale derivatization of FFA to FAME, the microfluidic device decreased the volume of methanolic-HCl and FFA by 20- and 1300-fold, respectively. The developed microfluidic device can be used for automated preparation of FAMEs to analyze the FFA compositions of volume-limited samples.

  5. Production of extracellular fatty acid using engineered Escherichia coli

    Directory of Open Access Journals (Sweden)

    Liu Hui

    2012-04-01

    Full Text Available Abstract Background As an alternative for economic biodiesel production, the microbial production of extracellular fatty acid from renewable resources is receiving more concerns recently, since the separation of fatty acid from microorganism cells is normally involved in a series of energy-intensive steps. Many attempts have been made to construct fatty acid producing strains by targeting genes in the fatty acid biosynthetic pathway, while few studies focused on the cultivation process and the mass transfer kinetics. Results In this study, both strain improvements and cultivation process strategies were applied to increase extracellular fatty acid production by engineered Escherichia coli. Our results showed overexpressing ‘TesA and the deletion of fadL in E. coli BL21 (DE3 improved extracellular fatty acid production, while deletion of fadD didn’t strengthen the extracellular fatty acid production for an undetermined mechanism. Moreover, the cultivation process controls contributed greatly to extracellular fatty acid production with respect to titer, cell growth and productivity by adjusting the temperature, adding ampicillin and employing on-line extraction. Under optimal conditions, the E. coli strain (pACY-‘tesA-ΔfadL produced 4.8 g L−1 extracellular fatty acid, with the specific productivity of 0.02 g h−1 g−1dry cell mass, and the yield of 4.4% on glucose, while the ratios of cell-associated fatty acid versus extracellular fatty acid were kept below 0.5 after 15 h of cultivation. The fatty acids included C12:1, C12:0, C14:1, C14:0, C16:1, C16:0, C18:1, C18:0. The composition was dominated by C14 and C16 saturated and unsaturated fatty acids. Using the strain pACY-‘tesA, similar results appeared under the same culture conditions and the titer was also much higher than that ever reported previously, which suggested that the supposedly superior strain did not necessarily perform best for the efficient production of desired

  6. Enriched eggs as a source of n-3 polyunsaturated fatty acids for humans

    Directory of Open Access Journals (Sweden)

    Gordana Kralik

    2017-01-01

    Full Text Available The aim of the research was to enrich eggs with n-3 polyunsaturated fatty acids by using plant oils and fish oil as dietary supplements in laying hens’ feed. The focus was put on the effect of the daily consumption of 100 g of egg yolk, i.e. 100 g of egg mass, on the human health. The 1st group of laying hens was fed a diet containing soybean and fish oil, and the 2nd group was given feed containing a combination of linseed, rapeseed, soybean, and fish oils. Eggs laid by the 2nd group contained 4.73% α-linolenic acid, 0.20% eicosapentaenoic acid and 2.37% docosahexaenoic acid (% of total fatty acids in yolk lipids, P < 0.001, which marks an increase of × 4.04 for α-linolenic acid, × 3.33 for eicosapentaenoic acid, and × 1.75 for docosahexaenoic acid compared to eggs laid by the 1st group. Total n-3 polyunsaturated fatty acids in eggs of the 2nd group were × 2.8 higher than in the 1st first group. Calculated per 100 g of eggs of the 2nd group, the intake for the human body corresponds to 435 mg α-linolenic acid, 18.43 mg eicosapentaenoic acid, and 218.2 mg docosahexaenoic acid.

  7. Maternal adipose tissue becomes a source of fatty acids for the fetus in fasted pregnant rats given diets with different fatty acid compositions.

    Science.gov (United States)

    López-Soldado, Iliana; Ortega-Senovilla, Henar; Herrera, Emilio

    2017-11-10

    The utilization of long-chain polyunsaturated fatty acids (LCPUFA) by the fetus may exceed its capacity to synthesize them from essential fatty acids, so they have to come from the mother. Since adipose tissue lipolytic activity is greatly accelerated under fasting conditions during late pregnancy, the aim was to determine how 24 h fasting in late pregnant rats given diets with different fatty acid compositions affects maternal and fetal tissue fatty acid profiles. Pregnant Sprague-Dawley rats were given isoenergetic diets containing 10% palm-, sunflower-, olive- or fish-oil. Half the rats were fasted from day 19 of pregnancy and all were studied on day 20. Triacylglycerols (TAG), glycerol and non-esterified fatty acids (NEFA) were analyzed by enzymatic methods and fatty acid profiles were analyzed by gas chromatography. Fasting caused increments in maternal plasma NEFA, glycerol and TAG, indicating increased adipose tissue lipolytic activity. Maternal adipose fatty acid profiles paralleled the respective diets and, with the exception of animals on the olive oil diet, maternal fasting increased the plasma concentration of most fatty acids. This maintains the availability of LCPUFA to the fetus during brain development. The results show the major role played by maternal adipose tissue in the storage of dietary fatty acids during pregnancy, thus ensuring adequate availability of LCPUFA to the fetus during late pregnancy, even when food supply is restricted.

  8. Genotype, production system and sex effects on fatty acid composition of meat from goat kids.

    Science.gov (United States)

    Özcan, Mustafa; Demirel, Gulcan; Yakan, Akın; Ekiz, Bülent; Tölü, Cemil; Savaş, Türker

    2015-02-01

    Two trials were performed to assess the meat fatty acid profile of goat kids from different genotypes, production systems and sex. In the first trial, genotype effect was determined in 24 suckling male kids from Turkish Saanen, Maltese and Gokceada breeds. In the second trial, male and female Gokceada Goat kids were used to compare the effect of extensive and semi-intensive production systems on fatty acid composition of meat. Significant genotype effect was observed in the percentages of myristic acid (C14:0), palmitic acid (C16:0), oleic acid (C18:1 n-9), linolenic acid (C18:3 n-3), arachidonic acid (C20:4 n-6) and docosahexaenoic acid (C22:6 n-3), despite no differences on the ratios of polyunsaturated fatty acids to saturated fatty acids (PUFA/SFA) and n-6/n-3 (P > 0.05). The effect of production system had also significant effects on fatty acids, but sex only influenced significantly stearic acid (C18:0), C18:1 n-9 and C18:3 n-3 fatty acids and total PUFA level and PUFA/SFA ratio. This study confirms that dairy breeds are prone to produce higher levels of unsaturated fatty acids in their muscle. Meanwhile, meat from Gokceada goat kids, which is one of the indigenous breeds in Turkey, had similar PUFA/SFA and n-6/n-3 ratios to Turkish Saanen and Maltase. © 2014 Japanese Society of Animal Science.

  9. Accurate and reliable quantification of total microalgal fuel potential as fatty acid methyl esters by in situ transesterification

    Energy Technology Data Exchange (ETDEWEB)

    Laurens, Lieve M.L.; Quinn, Matthew; Wychen, Stefanie van; Templeton, David W.; Wolfrum, Edward J. [National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO (United States)

    2012-04-15

    In the context of algal biofuels, lipids, or better aliphatic chains of the fatty acids, are perhaps the most important constituents of algal biomass. Accurate quantification of lipids and their respective fuel yield is crucial for comparison of algal strains and growth conditions and for process monitoring. As an alternative to traditional solvent-based lipid extraction procedures, we have developed a robust whole-biomass in situ transesterification procedure for quantification of algal lipids (as fatty acid methyl esters, FAMEs) that (a) can be carried out on a small scale (using 4-7 mg of biomass), (b) is applicable to a range of different species, (c) consists of a single-step reaction, (d) is robust over a range of different temperature and time combinations, and (e) tolerant to at least 50% water in the biomass. Unlike gravimetric lipid quantification, which can over- or underestimate the lipid content, whole biomass transesterification reflects the true potential fuel yield of algal biomass. We report here on the comparison of the yield of FAMEs by using different catalysts and catalyst combinations, with the acid catalyst HCl providing a consistently high level of conversion of fatty acids with a precision of 1.9% relative standard deviation. We investigate the influence of reaction time, temperature, and biomass water content on the measured FAME content and profile for 4 different samples of algae (replete and deplete Chlorella vulgaris, replete Phaeodactylum tricornutum, and replete Nannochloropsis sp.). We conclude by demonstrating a full mass balance closure of all fatty acids around a traditional lipid extraction process. (orig.)

  10. Trienoic fatty acids and plant tolerance of temperature

    Directory of Open Access Journals (Sweden)

    Routaboul Jean-Marc

    2002-01-01

    Full Text Available The biophysical reactions of light harvesting and electron transport during photosynthesis take place in a uniquely constructed bilayer, the thylakoid. In all photosynthetic eukaryotes, the complement of atypical glycerolipid molecules that form the foundation of this membrane are characterised by sugar head-groups and a very high level of unsaturation in the fatty acids that occupy the central portion of the thylakoid bilayer. alpha-linolenic (18:3 or a combination of 18:3 and hexadecatrienoic (16:3 acids typically account for approximately two-thirds of all thylakoid membrane fatty acids and over 90% of the fatty acids of monogalactosyl diacylglycerol, the major thylakoid lipid [1, 2]. The occurrence of trienoic fatty acids as a major component of the thylakoid membrane is especially remarkable since these fatty acids form highly reactive targets for active oxygen species and free radicals, which are often the by-products of oxygenic photosynthesis. Photosynthesis is one of the most temperature-sensitive functions of plant [3, 4]. There remains a widespread belief that these trienoic fatty acids might have some crucial role in plants to be of such universal occurrence, especially in photosynthesis tolerance of temperature [5].

  11. Fatty acids, essential oil, and phenolics modifications of black cumin fruit under NaCl stress conditions.

    Science.gov (United States)

    Bourgou, Soumaya; Bettaieb, Iness; Saidani, Moufida; Marzouk, Brahim

    2010-12-08

    This research evaluated the effect of saline conditions on fruit yield, fatty acids, and essential oils compositions and phenolics content of black cumin (Nigella sativa). This plant is one of the most commonly found aromatics in the Mediterranean kitchen. Increasing NaCl levels to 60 mM decreased significantly the fruits yield by 58% and the total fatty acids amount by 35%. Fatty acids composition analysis indicated that linoleic acid was the major fatty acid (58.09%) followed by oleic (19.21%) and palmitic (14.77%) acids. Salinity enhanced the linoleic acid percentage but did not affect the unsaturation degree of the fatty acids pool and thus the oil quality. The essential oil yield was 0.39% based on the dry weight and increased to 0.53, 0.56, and 0.72% at 20, 40, and 60 mM NaCl. Salinity results on the modification of the essential oil chemotype from p-cymene in controls to γ-terpinene/p-cymene in salt-stressed plants. The amounts of total phenolics were lower in the treated plants. Salinity decreased mainly the amount of the major class, benzoics acids, by 24, 29, and 44% at 20, 40, and 60 mM NaCl. The results suggest that salt treatment may regulate bioactive compounds production in black cumin fruits, influencing their nutritional and industrial values.

  12. Bioproductive parameters and fatty acids profile of the meat from broilers treated with flax meal and grape seeds meal

    Directory of Open Access Journals (Sweden)

    Margareta OLTEANU

    2017-05-01

    Full Text Available The 3-week feeding trial was conducted on 120, Cobb 500 chicks (14 days assigned to two groups (C, E. Compared to C diet formulation (corn, wheat, soybean meal and flax meal as basic ingredients, E diet formulation also included 3% grape seeds meal as natural antioxidant. The feed intake and the gains were not significantly (P>0.05 different between groups. Six broilers/group were slaughtered in the end of the trial and 6 samples of breast and thigh meat/group were formed and assayed for the feeding value. The proportion of polyunsaturated fatty acids (PUFA was significantly (P≤0.05 higher in group E than in group C, both for the chicken breast: 32.6±0.87g (E vs 29.29±0.96 g/100 g total fatty acids (C, and in the thigh: 37.68±2.07g (E vs 29.58±1.16 g/100g total fatty acids (C. The content of alfa linolenic acid (ALA was significantly (P≤0.05 higher also in group E, both in the breast meat: 0.99±0.02g (E vs 0.89±0.34g/100g total fatty acids (C, and in the thigh meat: 1.20±0.07g (E vs 0.90±0.0g/100g total fatty acids (C. The omega-3 PUFA content was the highest in the breast meat sample, 2.19±0.07g/100g total fatty acids (E, with no significant (P>0.05 differences between groups.

  13. Effects of the traditional method and an alternative parboiling process on the fatty acids, vitamin E, γ-oryzanol and phenolic acids of glutinous rice.

    Science.gov (United States)

    Thammapat, Pornpisanu; Meeso, Naret; Siriamornpun, Sirithon

    2016-03-01

    The impacts of traditional and alternative parboiling processes on the concentrations of fatty acids, tocopherol, tocotrienol, γ-oryzanol and phenolic acids in glutinous rice were investigated. Differences between the two methods were the soaking temperatures and the steaming methods. Results showed that parboiling processes significantly increased the concentrations of saturated fatty acids (SFA), mono-unsaturated fatty acids (MUFA), γ-oryzanol, γ-tocotrienol and total phenolic acids (TPA) in glutinous rice, while α-tocopherol, γ-tocopherol and polyunsaturated fatty acids (PUFA) decreased (p-oryzanol by three or fourfold compared with the level of γ-oryzanol in raw rice. Parboiling caused both adverse and favorable effects on phenolic acids content (p-oryzanol, hydrobenzoic acid, hydroxycinnamic acid and TPA compared to the traditional method. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Comparative Serum Fatty Acid Profiles of Captive and Free-Ranging Cheetahs (Acinonyx jubatus) in Namibia.

    Science.gov (United States)

    Tordiffe, Adrian S W; Wachter, Bettina; Heinrich, Sonja K; Reyers, Fred; Mienie, Lodewyk J

    2016-01-01

    Cheetahs (Acinonyx jubatus) are highly specialised large felids, currently listed as vulnerable on the IUCN red data list. In captivity, they are known to suffer from a range of chronic non-infectious diseases. Although low heterozygosity and the stress of captivity have been suggested as possible causal factors, recent studies have started to focus on the contribution of potential dietary factors in the pathogenesis of these diseases. Fatty acids are an important component of the diet, not only providing a source of metabolisable energy, but serving other important functions in hormone production, cellular signalling as well as providing structural components in biological membranes. To develop a better understanding of lipid metabolism in cheetahs, we compared the total serum fatty acid profiles of 35 captive cheetahs to those of 43 free-ranging individuals in Namibia using gas chromatography-mass spectrometry. The unsaturated fatty acid concentrations differed most remarkably between the groups, with all of the polyunsaturated and monounsaturated fatty acids, except arachidonic acid and hypogeic acid, detected at significantly lower concentrations in the serum of the free-ranging animals. The influence of age and sex on the individual fatty acid concentrations was less notable. This study represents the first evaluation of the serum fatty acids of free-ranging cheetahs, providing critical information on the normal fatty acid profiles of free-living, healthy individuals of this species. The results raise several important questions about the potential impact of dietary fatty acid composition on the health of cheetahs in captivity.

  15. Effects of branched-chain volatile fatty acids on lactation performance and mRNA expression of genes related to fatty acid synthesis in mammary gland of dairy cows.

    Science.gov (United States)

    Liu, Q; Wang, C; Guo, G; Huo, W J; Zhang, S L; Pei, C X; Zhang, Y L; Wang, H

    2018-02-12

    Branched-chain volatile fatty acids (BCVFA) supplements could promote lactation performance and milk quality by improving ruminal fermentation and milk fatty acid synthesis. This study was conducted to evaluate the effects of BCVFA supplementation on milk performance, ruminal fermentation, nutrient digestibility and mRNA expression of genes related to fatty acid synthesis in mammary gland of dairy cows. A total of 36 multiparous Chinese Holstein cows averaging 606±4.7 kg of BW, 65±5.2 day in milk (DIM) with daily milk production of 30.6±0.72 kg were assigned to one of four groups blocked by lactation number, milk yield and DIM. The treatments were control, low-BCVFA (LBCVFA), medium-BCVFA (MBCVFA) and high-BCVFA (HBCVFA) with 0, 30, 60 and 90 g BCVFA per cow per day, respectively. Experimental periods were 105 days with 15 days of adaptation and 90 days of data collection. Dry matter (DM) intake tended to increase, but BW changes were similar among treatments. Yields of actual milk, 4% fat corrected milk, milk fat and true protein linearly increased, but feed conversion ratio (FCR) linearly decreased with increasing BCVFA supplementation. Milk fat content linearly increased, but true protein content tended to increase. Contents of C4:0, C6:0, C8:0, C10:0, C12:0, C14:0 and C15:0 fatty acids in milk fat linearly increased, whereas other fatty acids were not affected with increasing BCVFA supplementation. Ruminal pH, ammonia N concentration and propionate molar proportion linearly decreased, but total VFA production and molar proportions of acetate and butyrate linearly increased with increasing BCVFA supplementation. Consequently, acetate to propionate ratios linearly increased. Digestibilities of DM, organic matter, CP, NDF and ADF also linearly increased. In addition, mRNA expressions of peroxisome proliferator-activated receptor γ, sterol regulatory element-binding factor 1 and fatty acid-binding protein 3 linearly increased, mRNA expressions of acetyl

  16. Modifications of proteins by polyunsaturated fatty acid peroxidation products

    DEFF Research Database (Denmark)

    Refsgaard, Hanne; Tsai, Lin; Stadtman, Earl

    2000-01-01

    The ability of unsaturated fatty acid methyl esters to modify amino acid residues in bovine serum albumin (BSA), glutamine synthetase, and insulin in the presence of a metal-catalyzed oxidation system [ascorbate/Fe(lll)/O-2] depends on the degree of unsaturation of the fatty acid. The fatty acid......-dependent generation of carbonyl groups and loss of lysine residues increased in the order methyl linoleate fatty acids were oxidized in the presence...... in the formation of protein carbonyls, These results are consistent with the proposition that metal-catalyzed oxidation of polyunsaturated fatty acids can contribute to the generation of protein carbonyls by direct interaction of lipid oxidation products (alpha,beta-unsaturated aldehydes) with lysine residues...

  17. Seed oil and fatty acid composition in Capsicum spp

    Science.gov (United States)

    The oil content and fatty acid composition of seed of 233 genebank accessions (total) of nine Capsicum species, and a single accession of Tubocapsicum anomalum, were determined. The physicochemical characteristics of oil extracted from seed of C. annuum and C. baccatum were also examined. Significan...

  18. Succinct synthesis of saturated hydroxy fatty acids and

    DEFF Research Database (Denmark)

    Kaspersen, Mads Holmgaard; Jenkins, Laura; Dunlop, Julia

    2017-01-01

    Saturated hydroxy fatty acids make up a class of underexplored lipids with potentially interesting biological activities. We report a succinct and general synthetic route to saturated hydroxy fatty acids hydroxylated at position 6 or higher, and exemplify this with the synthesis of hydroxylauric ...... acids. All regioisomers of hydroxylauric acids were tested on free fatty acid receptors FFA1, FFA4 and GPR84. The results show that the introduction of a hydroxy group and its position have a high impact on receptor activity....

  19. Curcumin improves alcoholic fatty liver by inhibiting fatty acid biosynthesis.

    Science.gov (United States)

    Guo, Chang; Ma, Jingfan; Zhong, Qionghong; Zhao, Mengyuan; Hu, Tianxing; Chen, Tong; Qiu, Longxin; Wen, Longping

    2017-08-01

    Alcoholic fatty liver is a threat to human health. It has been long known that abstinence from alcohol is the most effective therapy, other effective therapies are not available for the treatment in humans. Curcumin has a great potential for anti-oxidation and anti-inflammation, but the effect on metabolic reconstruction remains little known. Here we performed metabolomic analysis by gas chromatography/mass spectrometry and explored ethanol pathogenic insight as well as curcumin action pattern. We identified seventy-one metabolites in mouse liver. Carbohydrates and lipids were characteristic categories. Pathway analysis results revealed that ethanol-induced pathways including biosynthesis of unsaturated fatty acids, fatty acid biosynthesis and pentose and glucuronate interconversions were suppressed by curcumin. Additionally, ethanol enhanced galactose metabolism and pentose phosphate pathway. Glyoxylate and dicarboxylate metabolism and pyruvate metabolism were inhibited in mice fed ethanol diet plus curcumin. Stearic acid, oleic acid and linoleic acid were disease biomarkers and therapical biomarkers. These results reflect the landscape of hepatic metabolism regulation. Our findings illustrate ethanol pathological pathway and metabolic mechanism of curcumin therapy. Copyright © 2017. Published by Elsevier Inc.

  20. Radiocarbon variability of fatty acids in semi-urban aerosol samples

    International Nuclear Information System (INIS)

    Matsumoto, Kohei; Uchida, Masao; Kawamura, Kimitaka; Shibata, Yasuyuki; Morita, Masatoshi

    2004-01-01

    We analyzed radiocarbon and the stable carbon isotope ratio for individual monocarboxylic (fatty) acids in an aerosol sample (QFF 2138) and compared the results with data of the aerosol sample taken in another year. The fatty acid concentration distribution of aerosol sample QFF 2138 showed a bimodal pattern with maxima at C 16 and C 26 . Stable carbon isotope ratios of the fatty acids ranged from -30.8 per mille to -23.0 per mille which indicates the animal and/or marine algae origins for C 16 -C 19 fatty acids and mainly terrestrial C 3 plant origins for C >20 fatty acids. Δ 14 C values for fatty acids ranged from -89.7 per mille to +83.5 per mille. Compared with QFF1969, we found that the Δ 14 C values of fatty acids exhibited a wide diversity and Δ 14 C values for each fatty acid in QFF 2138 were largely different from those of QFF 1969

  1. Effects of varying levels of n-6:n-3 fatty acid ratio on plasma fatty acid ...

    African Journals Online (AJOL)

    This study investigated the effects of varying dietary levels of n-6:n-3 fatty acid ratio on plasma fatty acid composition and prostanoid synthesis in pregnant rats. Four groups consisting of seven rats per group of non pregnant rats were fed diets with either a very low n-6:n-3 ratio of 50% soybean oil (SBO): 50% cod liver oil ...

  2. Patterns of food and nutrient intakes of Dutch adults according to intakes of total fat, saturated fatty acids, dietary fibre, and of fruit and vegetables

    NARCIS (Netherlands)

    Löwik, M.R.H.; Hulshof, K.F.A.M.; Brussaard, J.H.

    1999-01-01

    Dietary intake characteristics were studied among 3833 adults of the second Dutch National Food Consumption Survey held in 1992. The subjects were classified into three groups based on their intake of total fat (% energy), saturated fatty acids (% energy), dietary fibre (g/MJ), and fruit and

  3. PHOSPHOLIPIDS FROM PUMPKIN (Cucurbita moschata (Duch. Poir SEED KERNEL OIL AND THEIR FATTY ACID COMPOSITION

    Directory of Open Access Journals (Sweden)

    Tri Joko Raharjo

    2011-07-01

    Full Text Available The phospholipids (PL of pumpkin (Cucurbita moschata (Duch Poir seed kernel and their fatty acid composition were investigated. The crude oil was obtained by maceration with isopropanol followed by steps of extraction yielded polar lipids. The quantitative determination of PLs content of the dried pumpkin seed kernel and their polar lipids were calculated based on the elemental phosphorus (P contents which was determined by means of spectrophotometric methods. PL classes were separated from polar lipids via column chromatography. The fatty acid composition of individual PL was identified by gas chromatography-mass spectrometry (GC-MS. The total of PL in the pumpkin seed kernels was 1.27% which consisted of phosphatidylcholine (PC, phosphatidylserine (PS and phosphatidyletanolamine (PE. The predominant fatty acids of PL were oleic and palmitic acid in PC and PE while PS's fatty acid were dominantly consisted of oleic acid and linoleic acid.

  4. Bacterial fatty acid metabolism in modern antibiotic discovery.

    Science.gov (United States)

    Yao, Jiangwei; Rock, Charles O

    2017-11-01

    Bacterial fatty acid synthesis is essential for many pathogens and different from the mammalian counterpart. These features make bacterial fatty acid synthesis a desirable target for antibiotic discovery. The structural divergence of the conserved enzymes and the presence of different isozymes catalyzing the same reactions in the pathway make bacterial fatty acid synthesis a narrow spectrum target rather than the traditional broad spectrum target. Furthermore, bacterial fatty acid synthesis inhibitors are single-targeting, rather than multi-targeting like traditional monotherapeutic, broad-spectrum antibiotics. The single-targeting nature of bacterial fatty acid synthesis inhibitors makes overcoming fast-developing, target-based resistance a necessary consideration for antibiotic development. Target-based resistance can be overcome through multi-targeting inhibitors, a cocktail of single-targeting inhibitors, or by making the single targeting inhibitor sufficiently high affinity through a pathogen selective approach such that target-based mutants are still susceptible to therapeutic concentrations of drug. Many of the pathogens requiring new antibiotic treatment options encode for essential bacterial fatty acid synthesis enzymes. This review will evaluate the most promising targets in bacterial fatty acid metabolism for antibiotic therapeutics development and review the potential and challenges in advancing each of these targets to the clinic and circumventing target-based resistance. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Profiling Abscisic Acid-Induced Changes in Fatty Acid Composition in Mosses.

    Science.gov (United States)

    Shinde, Suhas; Devaiah, Shivakumar; Kilaru, Aruna

    2017-01-01

    In plants, change in lipid composition is a common response to various abiotic stresses. Lipid constituents of bryophytes are of particular interest as they differ from that of flowering plants. Unlike higher plants, mosses have high content of very long-chain polyunsaturated fatty acids. Such lipids are considered to be important for survival of nonvascular plants. Here, using abscisic acid (ABA )-induced changes in lipid composition in Physcomitrella patens as an example, a protocol for total lipid extraction and quantification by gas chromatography (GC) coupled with flame ionization detector (FID) is described.

  6. Metabolomics of Dietary Fatty Acid Restriction in Patients with Phenylketonuria

    Science.gov (United States)

    Mütze, Ulrike; Beblo, Skadi; Kortz, Linda; Matthies, Claudia; Koletzko, Berthold; Bruegel, Mathias; Rohde, Carmen; Thiery, Joachim; Kiess, Wieland; Ceglarek, Uta

    2012-01-01

    Background Patients with phenylketonuria (PKU) have to follow a lifelong phenylalanine restricted diet. This type of diet markedly reduces the intake of saturated and unsaturated fatty acids especially long chain polyunsaturated fatty acids (LC-PUFA). Long-chain saturated fatty acids are substrates of mitochondrial fatty acid oxidation for acetyl-CoA production. LC-PUFA are discussed to affect inflammatory and haemostaseological processes in health and disease. The influence of the long term PKU diet on fatty acid metabolism with a special focus on platelet eicosanoid metabolism has been investigated in the study presented here. Methodology/Principal Findings 12 children with PKU under good metabolic control and 8 healthy controls were included. Activated fatty acids (acylcarnitines C6–C18) in dried blood and the cholesterol metabolism in serum were analyzed by liquid chromatographic tandem mass spectrometry (LC-MS/MS). Fatty acid composition of plasma glycerophospholipids was determined by gas chromatography. LC-PUFA metabolites were analyzed in supernatants by LC-MS/MS before and after platelet activation and aggregation using a standardized protocol. Patients with PKU had significantly lower free carnitine and lower activated fatty acids in dried blood compared to controls. Phytosterols as marker of cholesterol (re-) absorption were not influenced by the dietary fatty acid restriction. Fatty acid composition in glycerophospholipids was comparable to that of healthy controls. However, patients with PKU showed significantly increased concentrations of y-linolenic acid (C18:3n-6) a precursor of arachidonic acid. In the PKU patients significantly higher platelet counts were observed. After activation with collagen platelet aggregation and thromboxane B2 and thromboxane B3 release did not differ from that of healthy controls. Conclusion/Significance Long-term dietary fatty acid restriction influenced the intermediates of mitochondrial beta-oxidation. No functional

  7. Metabolomics of dietary fatty acid restriction in patients with phenylketonuria.

    Directory of Open Access Journals (Sweden)

    Ulrike Mütze

    Full Text Available BACKGROUND: Patients with phenylketonuria (PKU have to follow a lifelong phenylalanine restricted diet. This type of diet markedly reduces the intake of saturated and unsaturated fatty acids especially long chain polyunsaturated fatty acids (LC-PUFA. Long-chain saturated fatty acids are substrates of mitochondrial fatty acid oxidation for acetyl-CoA production. LC-PUFA are discussed to affect inflammatory and haemostaseological processes in health and disease. The influence of the long term PKU diet on fatty acid metabolism with a special focus on platelet eicosanoid metabolism has been investigated in the study presented here. METHODOLOGY/PRINCIPAL FINDINGS: 12 children with PKU under good metabolic control and 8 healthy controls were included. Activated fatty acids (acylcarnitines C6-C18 in dried blood and the cholesterol metabolism in serum were analyzed by liquid chromatographic tandem mass spectrometry (LC-MS/MS. Fatty acid composition of plasma glycerophospholipids was determined by gas chromatography. LC-PUFA metabolites were analyzed in supernatants by LC-MS/MS before and after platelet activation and aggregation using a standardized protocol. Patients with PKU had significantly lower free carnitine and lower activated fatty acids in dried blood compared to controls. Phytosterols as marker of cholesterol (re- absorption were not influenced by the dietary fatty acid restriction. Fatty acid composition in glycerophospholipids was comparable to that of healthy controls. However, patients with PKU showed significantly increased concentrations of y-linolenic acid (C18:3n-6 a precursor of arachidonic acid. In the PKU patients significantly higher platelet counts were observed. After activation with collagen platelet aggregation and thromboxane B(2 and thromboxane B(3 release did not differ from that of healthy controls. CONCLUSION/SIGNIFICANCE: Long-term dietary fatty acid restriction influenced the intermediates of mitochondrial beta

  8. Direct determination of fatty acids in fish tissues: quantifying top predator trophic connections.

    Science.gov (United States)

    Parrish, Christopher C; Nichols, Peter D; Pethybridge, Heidi; Young, Jock W

    2015-01-01

    Fatty acids are a valuable tool in ecological studies because of the large number of unique structures synthesized. They provide versatile signatures that are being increasingly employed to delineate the transfer of dietary material through marine and terrestrial food webs. The standard procedure for determining fatty acids generally involves lipid extraction followed by methanolysis to produce methyl esters for analysis by gas chromatography. By directly transmethylating ~50 mg wet samples and adding an internal standard it was possible to greatly simplify the analytical methodology to enable rapid throughput of 20-40 fish tissue fatty acid analyses a day including instrumental analysis. This method was verified against the more traditional lipid methods using albacore tuna and great white shark muscle and liver samples, and it was shown to provide an estimate of sample dry mass, total lipid content, and a condition index. When large fatty acid data sets are generated in this way, multidimensional scaling, analysis of similarities, and similarity of percentages analysis can be used to define trophic connections among samples and to quantify them. These routines were used on albacore and skipjack tuna fatty acid data obtained by direct methylation coupled with literature values for krill. There were clear differences in fatty acid profiles among the species as well as spatial differences among albacore tuna sampled from different locations.

  9. Biosynthesis of Essential Polyunsaturated Fatty Acids in Wheat Triggered by Expression of Artificial Gene

    Directory of Open Access Journals (Sweden)

    Daniel Mihálik

    2015-12-01

    Full Text Available The artificial gene D6D encoding the enzyme ∆6desaturase was designed and synthesized using the sequence of the same gene from the fungus Thamnidium elegans. The original start codon was replaced by the signal sequence derived from the wheat gene for high-molecular-weight glutenin subunit and the codon usage was completely changed for optimal expression in wheat. Synthesized artificial D6D gene was delivered into plants of the spring wheat line CY-45 and the gene itself, as well as transcribed D6D mRNA were confirmed in plants of T0 and T1 generations. The desired product of the wheat genetic modification by artificial D6D gene was the γ-linolenic acid. Its presence was confirmed in mature grains of transgenic wheat plants in the amount 0.04%–0.32% (v/v of the total amount of fatty acids. Both newly synthesized γ-linolenic acid and stearidonic acid have been detected also in leaves, stems, roots, awns, paleas, rachillas, and immature grains of the T1 generation as well as in immature and mature grains of the T2 generation. Contents of γ-linolenic acid and stearidonic acid varied in range 0%–1.40% (v/v and 0%–1.53% (v/v from the total amount of fatty acids, respectively. This approach has opened the pathway of desaturation of fatty acids and production of essential polyunsaturated fatty acids in wheat.

  10. Dietary Fatty Acids and Predementia Syndromes

    Directory of Open Access Journals (Sweden)

    Vincenzo Solfrizzi

    2009-01-01

    Full Text Available An increasing body of epidemiological evidence suggests that elevated saturated fatty acids (SFA could have negative effects on age-related cognitive decline (ARCD. Furthermore, a reduction of risk for cognitive decline and mild cognitive impairment (MCI has been found in population samples with elevated fish consumption, and high intake of monounsaturated fatty acids (MUFA and polyunsaturated fatty acids (PUFA, particularly n-3 PUFA. However, recent findings from clinical trials with n-3 PUFA supplementation showed efficacy on depressive symptoms in non–Vapolipoprotein E (APOE ε4 carriers, and on cognitive symptoms only in very mild Alzheimer's disease (AD subgroups, MCI patients, and cognitively unimpaired non-APOE ε4 carriers. These data, together with epidemiological evidence, support the idea that n-3 PUFA may play a role in maintaining adequate cognitive functioning in predementia syndromes, but not when the AD process has already taken over. Therefore, at present, no definitive dietary recommendations on fish and unsaturated fatty acids consumption, or lower intake of saturated fat, in relation to the risk for dementia and cognitive decline are possible.

  11. Influence of pumpkin seed cake and extruded linseed on milk production and milk fatty acid profile in Alpine goats.

    Science.gov (United States)

    Klir, Z; Castro-Montoya, J M; Novoselec, J; Molkentin, J; Domacinovic, M; Mioc, B; Dickhoefer, U; Antunovic, Z

    2017-10-01

    The aim was to determine the effect of substituting pumpkin seed cake (PSC) or extruded linseed (ELS) for soya bean meal in goats' diets on milk yield, milk composition and fatty acids profile of milk fat. In total, 28 dairy goats were divided into three groups. They were fed with concentrate mixtures containing soya bean meal (Control; n=9), ELS (n=10) or PSC (n=9) as main protein sources in the trial lasting 75 days. Addition of ELS or PSC did not influence milk yield and milk gross composition in contrast to fatty acid profile compared with Control. Supplementation of ELS resulted in greater branched-chain fatty acids (BCFA) and total n-3 fatty acids compared with Control and PSC (PLA, C18:2n-6; 2.10 and 2.28 g/100 g fatty acids, respectively) proportions compared with Control (2.80 g/100 g fatty acids; PLA/ALA ratio (3.81 v. 7.44 or 6.92, respectively; Psoya bean meal with ELS in hay-based diets may increase beneficial n-3 fatty acids and BCFA accompanied by lowering LA/ALA ratio and increased C18:0. Pumpkin seed cake completely substituted soya bean meal in the diet of dairy goats without any decrease in milk production or sharp changes in fatty acid profile that may have a commercial or a human health relevancy.

  12. Fatty acid utilization in pressure-overload hypertrophied rat hearts

    International Nuclear Information System (INIS)

    Reibel, D.K.; O'Rourke, B.

    1986-01-01

    The authors have previously shown that the levels of total tissue coenzyme A and carnitine are reduced in hypertrophied hearts of rats subjected to aortic constriction. It was therefore of interest to determine if these changes were associated with alterations in fatty acid oxidation by the hypertrophied myocardium. Hearts were excised from sham-operated and aortic-constricted rats and perfused at 10 cm H 2 O left atrial filling pressure with a ventricular afterload of 80 cm of H 2 O with buffer containing 1.2 mM 14 C-linoleate. Heart rate and peak systolic pressure were not different in control and hypertrophied hearts. 14 CO 2 production was linear in both groups of hearts between 10 and 30 minutes of perfusion. The rate of fatty acid oxidation determined by 14 CO 2 production during this time was 0.728 +/- 0.06 μmoles/min/g dry in control hearts and 0.710 +/- 0.02 μmoles/min/g dry in hypertrophied hearts. Comparable rates of fatty acid oxidation were associated with comparable rates of O 2 consumption in the two groups of hearts (39.06 +/- 3.50 and 36.78 +/- 2.39 μmoles/g dry/min for control and hypertrophied hearts, respectively). The data indicate that the ability of the hypertrophied heart to oxidize fatty acids under these perfusion conditions is not impaired in spite of significant reductions in tissue levels of coenzyme A and carnitine

  13. Effects of Long Chain Fatty Acid Synthesis and Associated Gene Expression in Microalga Tetraselmis sp.

    Directory of Open Access Journals (Sweden)

    T. Catalina Adarme-Vega

    2014-06-01

    Full Text Available With the depletion of global fish stocks, caused by high demand and effective fishing techniques, alternative sources for long chain omega-3 fatty acids are required for human nutrition and aquaculture feeds. Recent research has focused on land-based cultivation of microalgae, the primary producers of omega-3 fatty acids in the marine food web. The effect of salinity on fatty acids and related gene expression was studied in the model marine microalga, Tetraselmis sp. M8. Correlations were found for specific fatty acid biosynthesis and gene expression according to salinity and the growth phase. Low salinity was found to increase the conversion of C18:4 stearidonic acid (SDA to C20:4 eicosatetraenoic acid (ETA, correlating with increased transcript abundance of the Δ-6-elongase-encoding gene in salinities of 5 and 10 ppt compared to higher salinity levels. The expression of the gene encoding β-ketoacyl-coenzyme was also found to increase at lower salinities during the nutrient deprivation phase (Day 4, but decreased with further nutrient stress. Nutrient deprivation also triggered fatty acids synthesis at all salinities, and C20:5 eicosapentaenoic acid (EPA increased relative to total fatty acids, with nutrient starvation achieving a maximum of 7% EPA at Day 6 at a salinity of 40 ppt.

  14. Separation of free fatty acids from high free fatty acid crude palm oil using short-path distillation

    Science.gov (United States)

    Japir, Abd Al-Wali; Salimon, Jumat; Derawi, Darfizzi; Bahadi, Murad; Yusop, Muhammad Rahimi

    2016-11-01

    The separation of free fatty acids (FFAs) was done by using short-path distillation (SPD). The separation parameters was at their boiling points, a feed amount of 2.3 mL/min, an operating pressure of 10 Torr, a condenser temperature of 60°C, and a rotor speed of 300 rpm. The physicochemical characteristics of oil before and after SPD were determined. The results showed that FFA % of 8.7 ± 0.3 and 0.9 ± 0.1 %, iodine value of 53.1 ± 0.4 and 52.7 ± 0.5 g I2/100 g, hydroxyl value of 32.5 ± 0.6 and 13.9 ± 1.1 mg KOH/g, unsaponifiable value of 0.31 ± 0.01 and 0.20 ± 0.15%, moisture content of 0.31 ± 0.01 and 0.24 ± 0.01 % for high free fatty acid crude palm oil before and after distillation, respectively. Gas chromatography (GC) results showed that the major fatty acids in crude palm oil (CPO) were palmitic acid (44.4% - 45%) followed by oleic acid (39.6% - 39.8%). In general, high free fatty acid crude palm oil after molecular distillation (HFFA-CPOAM) showed admirably physicochemical properties.

  15. Sources and Bioactive Properties of Conjugated Dietary Fatty Acids.

    Science.gov (United States)

    Hennessy, Alan A; Ross, Paul R; Fitzgerald, Gerald F; Stanton, Catherine

    2016-04-01

    The group of conjugated fatty acids known as conjugated linoleic acid (CLA) isomers have been extensively studied with regard to their bioactive potential in treating some of the most prominent human health malignancies. However, CLA isomers are not the only group of potentially bioactive conjugated fatty acids currently undergoing study. In this regard, isomers of conjugated α-linolenic acid, conjugated nonadecadienoic acid and conjugated eicosapentaenoic acid, to name but a few, have undergone experimental assessment. These studies have indicated many of these conjugated fatty acid isomers commonly possess anti-carcinogenic, anti-adipogenic, anti-inflammatory and immune modulating properties, a number of which will be discussed in this review. The mechanisms through which these bioactivities are mediated have not yet been fully elucidated. However, existing evidence indicates that these fatty acids may play a role in modulating the expression of several oncogenes, cell cycle regulators, and genes associated with energy metabolism. Despite such bioactive potential, interest in these conjugated fatty acids has remained low relative to the CLA isomers. This may be partly attributed to the relatively recent emergence of these fatty acids as bioactives, but also due to a lack of awareness regarding sources from which they can be produced. In this review, we will also highlight the common sources of these conjugated fatty acids, including plants, algae, microbes and chemosynthesis.

  16. Effects of NaCl and soaking temperature on the phenolic compounds, α-tocopherol, γ-oryzanol and fatty acids of glutinous rice.

    Science.gov (United States)

    Thammapat, Pornpisanu; Meeso, Naret; Siriamornpun, Sirithon

    2015-05-15

    Soaking is one of the important steps of the parboiling process. In this study, we investigated the effect of changes in different sodium chloride (NaCl) content (0%, 1.5% and 3.0% NaCl, w/v) of soaking media and soaking temperatures (30°C, 45°C and 60°C) on the phenolic compounds (α-tocopherol, γ-oryzanol) and on the fatty acids of glutinous rice, compared with unsoaked samples. Overall, the total phenolic content, total phenolic acids, γ-oryzanol, saturated fatty acid and mono-unsaturated fatty acid of the glutinous rice showed an increasing trend as NaCl content and soaking temperature increased, while α-tocopherol and polyunsaturated fatty acids decreased. Soaking at 3.0% NaCl provided the highest total phenolic content, total phenolic acids and γ-oryzanol (0.2mg GAE/g, 63.61 μg/g and 139.76 mg/100g, respectively) for the soaking treatments tested. Nevertheless, the amount of α-tocopherol and polyunsaturated fatty acid were found to be the highest (18.30/100g and 39.74%, respectively) in unsoaked rice. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Unveiling of novel regio-selective fatty acid double bond hydratases from Lactobacillus acidophilus involved in the selective oxyfunctionalization of mono- and di-hydroxy fatty acids.

    Science.gov (United States)

    Kim, Kyoung-Rok; Oh, Hye-Jin; Park, Chul-Soon; Hong, Seung-Hye; Park, Ji-Young; Oh, Deok-Kun

    2015-11-01

    The aim of this study is the first time demonstration of cis-12 regio-selective linoleate double-bond hydratase. Hydroxylation of fatty acids, abundant feedstock in nature, is an emerging alternative route for many petroleum replaceable products thorough hydroxy fatty acids, carboxylic acids, and lactones. However, chemical route for selective hydroxylation is still quite challenging owing to low selectivity and many environmental concerns. Hydroxylation of fatty acids by hydroxy fatty acid forming enzymes is an important route for selective biocatalytic oxyfunctionalization of fatty acids. Therefore, novel fatty acid hydroxylation enzymes should be discovered. The two hydratase genes of Lactobacillus acidophilus were identified by genomic analysis, and the expressed two recombinant hydratases were identified as cis-9 and cis-12 double-bond selective linoleate hydratases by in vitro functional validation, including the identification of products and the determination of regio-selectivity, substrate specificity, and kinetic parameters. The two different linoleate hydratases were the involved enzymes in the 10,13-dihydroxyoctadecanoic acid biosynthesis. Linoleate 13-hydratase (LHT-13) selectively converted 10 mM linoleic acid to 13S-hydroxy-9(Z)-octadecenoic acid with high titer (8.1 mM) and yield (81%). Our study will expand knowledge for microbial fatty acid-hydroxylation enzymes and facilitate the designed production of the regio-selective hydroxy fatty acids for useful chemicals from polyunsaturated fatty acid feedstocks. © 2015 Wiley Periodicals, Inc.

  18. Variation in oil content and fatty acid composition of sesame accessions from different origins

    Directory of Open Access Journals (Sweden)

    C. Kurt

    2018-03-01

    Full Text Available Oil content and fatty acid composition are very important parameters for the human consumption of oilseed crops. Twenty-four sesame accessions including seven collected from various geographical regions of Turkey and 11 from different countries were investigated under field conditions for two consecutive years (2015 and 2016. The sesame accessions varied widely in their oil content and fatty acid compositions. The oil content varied between 44.6 and 53.1% with an average value of 48.15%. The content of oleic acids, linoleic acid, linolenic acid, palmitic acid,and stearic acid varied between 36.13–43.63%, 39.13–46.38%, 0.28–0.4%, 8.19–10.26%, and 4.63–6.35%, respectively. When total oil content and fatty acid composition were compared, Turkish sesame showed wide variation in oil and fatty acid compositions compared to those from other countries. However, the accessions from other countries were fewer compared to those from Turkey. It is essential to compare oil and fatty acid composition using a large number of germ plasm from different origins. In sesame oil, the average contents of oleic acid and linoleic acid were 39.02% and 43.64%, respectively, and their combined average content was 82.66%, representing the major fatty acid components in the oil from the sesame accessions used in the present study. The results obtained in this study provide useful information for the identification of better parents with high linoleic and oleic acid contents for developing elite sesame varieties with traits which are beneficial to consumer health.

  19. Biochemical and fatty acid composition of Arca noae (Bivalvia: Arcidae from the Mali Ston Bay, Adriatic Sea

    Directory of Open Access Journals (Sweden)

    I. DUPCIC RADIC

    2014-03-01

    Full Text Available Biochemical and fatty acid composition of the bivalve Arca noae were investigated in the Mali Ston Bay in relation to environmental conditions. Sampling was carried out monthly, from December 2001 to November 2002. Wet shellfish meat consists on average of 77.61% water and 22.39% dry matter, while dry shellfish meat consists on average of 89.04% organic and 10.96% inorganic matter. PCA analysis identified temperature, nitrate, silicate, MICRO, Chl a and salinity as the most important environmental factors influencing biochemical composition of A. noae. An increase of dry weight content of A. noae was observed during the spring when both the sea temperature and food supply increased rapidly. Contents of protein (54.39-62.06% of dry weight, carbohydrate (4.13-8.07% of dry weight and lipid (3.46-8.58% of dry weight varied significantly during the year. Protein and lipid level reached the maximum value in June. The fatty acid profiles of total lipids extracted from A. noae showed high level of unsaturation (UNS/SAT 1.9-3.4. Total polyunsaturated fatty acids (PUFA represented the majority of total fatty acids (40.3-59.9% of total fatty acids and the most abundant were eicosapentaenoic (20:5n-3 and docosahexaenoic (22:6n-3 acid. n-3/n-6 PUFA ratio value varied between 2.1 and 5.0 and was the highest during the spring (April to June. Due to their low lipid and high percentages of healthy polyunsaturated fatty acids A. noae can be evaluated as a quality seafood product. The most suitable period of the year for its consumption is in the spring when it reaches its highest nutritional values.

  20. Roles of unsaturated fatty acids (especially omega-3 fatty acids) in the brain at various ages and during ageing.

    Science.gov (United States)

    Bourre, J M

    2004-01-01

    Among various organs, in the brain, the fatty acids most extensively studied are omega-3 fatty acids. Alpha-linolenic acid (18:3omega3) deficiency alters the structure and function of membranes and induces minor cerebral dysfunctions, as demonstrated in animal models and subsequently in human infants. Even though the brain is materially an organ like any other, that is to say elaborated from substances present in the diet (sometimes exclusively), for long it was not accepted that food can have an influence on brain structure, and thus on its function. Lipids, and especially omega-3 fatty acids, provided the first coherent experimental demonstration of the effect of diet (nutrients) on the structure and function of the brain. In fact the brain, after adipose tissue, is the organ richest in lipids, whose only role is to participate in membrane structure. First it was shown that the differentiation and functioning of cultured brain cells requires not only alpha-linolenic acid (the major component of the omega-3, omega3 family), but also the very long omega-3 and omega-6 carbon chains (1). It was then demonstrated that alpha-linolenic acid deficiency alters the course of brain development, perturbs the composition and physicochemical properties of brain cell membranes, neurones, oligodendrocytes, and astrocytes (2). This leads to physicochemical modifications, induces biochemical and physiological perturbations, and results in neurosensory and behavioural upset (3). Consequently, the nature of polyunsaturated fatty acids (in particular omega-3) present in formula milks for infants (premature and term) conditions the visual and cerebral abilities, including intellectual. Moreover, dietary omega-3 fatty acids are certainly involved in the prevention of some aspects of cardiovascular disease (including at the level of cerebral vascularization), and in some neuropsychiatric disorders, particularly depression, as well as in dementia, notably Alzheimer's disease. Recent

  1. Fatty acid profiles of some Fabaceae seed oils

    Science.gov (United States)

    The fatty acid profiles of six seed oils of the Fabaceae (Leguminosae) family are reported and discussed. These are the seed oils of Centrosema pubescens, Clitoria ternatea, Crotalaria mucronata, Macroptilium lathyroides, Pachyrhizus erosus, and Senna alata. The most common fatty acid in the fatty a...

  2. Optimization of Ultrasound-Assisted Extraction of Crude Oil from Winter Melon (Benincasa hispida Seed Using Response Surface Methodology and Evaluation of Its Antioxidant Activity, Total Phenolic Content and Fatty Acid Composition

    Directory of Open Access Journals (Sweden)

    Md. Zaidul Islam Sarker

    2012-10-01

    Full Text Available In the present study, ultrasound-assisted extraction of crude oil from winter melon seeds was investigated through response surface methodology (RSM. Process variables were power level (25–75%, temperature (45–55 °C and sonication time (20–40 min. It was found that all process variables have significant (p < 0.05 effects on the response variable. A central composite design (CCD was used to determine the optimum process conditions. Optimal conditions were identified as 65% power level, 52 °C temperature and 36 min sonication time for maximum crude yield (108.62 mg-extract/g-dried matter. The antioxidant activity, total phenolic content and fatty acid composition of extract obtained under optimized conditions were determined and compared with those of oil obtained by the Soxhlet method. It was found that crude extract yield (CEY of ultrasound-assisted extraction was lower than that of the Soxhlet method, whereas antioxidant activity and total phenolic content of the extract obtained by ultrasound-assisted extraction were clearly higher than those of the Soxhlet extract. Furthermore, both extracts were rich in unsaturated fatty acids. The major fatty acids of the both extracts were linoleic acid and oleic acid.

  3. Composition of fatty acids in selected vegetable oils

    Directory of Open Access Journals (Sweden)

    Helena Frančáková

    2015-12-01

    Full Text Available Plant oils and fats are important and necessary components of the human nutrition. They are energy source and also contain fatty acids - compounds essential for human health. The aim of this study was to evaluate nutritional quality of selected plant oil - olive, rapeseed, pumpkin, flax and sesame; based on fatty acid composition in these oils. Fatty acids (MUFA, PUFA, SFA were analyzed chromatography using system Agilent 6890 GC, injector multimode, detector FID. The highest content of saturated fatty acids was observed in pumpkinseed oil (19.07%, the lowest content was found in rapeseed oil (7.03%, with low level of palmitic and stearic acids and high level of behenic acid (0.32% among the evaluated oils. The highest content of linoleic acid was determined in pumpkinseed (46.40% and sesame oil (40.49%; in these samples was also found lowest content of α-linolenic acid. These oils have important antioxidant properties and are not subject to oxidation. The richest source of linolenic acid was flaxseed oil which, which is therefore more difficult to preserve and process in food industry. In olive oil was confirmed that belongs to the group of oils with a predominantly monosaturated oleic acid (more than 70% and a small amount of polysaturated fatty acid. The most commonly used rapeseed oil belongs to the group of oils with the medium content of linolenic acid (8.76%; this oil also showed a high content of linoleic acid (20.24%. The group of these essentially fatty acids showed a suitable ratio ∑n3/n6 in the rapessed oil (0.44.

  4. Fatty Acid Biosynthesis Pathways in Methylomicrobium buryatense 5G(B1).

    Science.gov (United States)

    Demidenko, Aleksandr; Akberdin, Ilya R; Allemann, Marco; Allen, Eric E; Kalyuzhnaya, Marina G

    2016-01-01

    Methane utilization by methanotrophic bacteria is an attractive application for biotechnological conversion of natural or biogas into high-added-value products. Haloalcaliphilic methanotrophic bacteria belonging to the genus Methylomicrobium are among the most promising strains for methane-based biotechnology, providing easy and inexpensive cultivation, rapid growth, and the availability of established genetic tools. A number of methane bioconversions using these microbial cultures have been discussed, including the derivation of biodiesel, alkanes, and OMEGA-3 supplements. These compounds are derived from bacterial fatty acid pools. Here, we investigate fatty acid biosynthesis in Methylomicrobium buryatense 5G(B1) . Most of the genes homologous to typical Type II fatty acid biosynthesis pathways could be annotated by bioinformatics analyses, with the exception of fatty acid transport and regulatory elements. Different approaches for improving fatty acid accumulation were investigated. These studies indicated that both fatty acid degradation and acetyl- and malonyl-CoA levels are bottlenecks for higher level fatty acid production. The best strain generated in this study synthesizes 111 ± 2 mg/gDCW of extractable fatty acids, which is ~20% more than the original strain. A candidate gene for fatty acid biosynthesis regulation, farE , was identified and studied. Its deletion resulted in drastic changes to the fatty acid profile, leading to an increased pool of C18-fatty acid methyl ester. The FarE-regulon was further investigated by RNA-seq analysis of gene expression in farE -knockout mutants and farE -overexpressing strains. These gene profiles highlighted a novel set of enzymes and regulators involved in fatty acid biosynthesis. The gene expression and fatty acid profiles of the different farE -strains support the hypothesis that metabolic fluxes upstream of fatty acid biosynthesis restrict fatty acid production in the methanotroph.

  5. Effect of ocean acidification on the fatty acid composition of a natural plankton community

    Directory of Open Access Journals (Sweden)

    E. Leu

    2013-02-01

    Full Text Available The effect of ocean acidification on the fatty acid composition of a natural plankton community in the Arctic was studied in a large-scale mesocosm experiment, carried out in Kongsfjorden (Svalbard, Norway at 79° N. Nine mesocosms of ~50 m3 each were exposed to 8 different pCO2 levels (from natural background conditions to ~1420 μatm, yielding pH values (on the total scale from ~8.3 to 7.5. Inorganic nutrients were added on day 13. The phytoplankton development during this 30-day experiment passed three distinct phases: (1 prior to the addition of inorganic nutrients, (2 first bloom after nutrient addition, and (3 second bloom after nutrient addition. The fatty acid composition of the natural plankton community was analysed and showed, in general, high percentages of polyunsaturated fatty acids (PUFAs: 44–60% of total fatty acids. Positive correlations with pCO2 were found for most PUFAs during phases 2 and/or 3, with the exception of 20:5n3 (eicosapentaenoic acid, EPA, an important diatom marker. These correlations are probably linked to changes in taxonomic composition in response to pCO2. While diatoms (together with prasinophytes and haptophytes increased during phase 3 mainly in the low and intermediate pCO2 treatments, dinoflagellates were favoured by high CO2 concentrations during the same time period. This is reflected in the development of group-specific fatty acid trophic markers. No indications were found for a generally detrimental effect of ocean acidification on the planktonic food quality in terms of essential fatty acids.

  6. [Effect of total hypothermia on the fatty acid composition of blood phospholipids of rats and sousliks and light irradiation on chemical processes in lipid extract].

    Science.gov (United States)

    Zabelinskiĭ, S A; Chebotareva, M A; Kalandarov, A M; Feĭzulaev, B A; Klichkhanov, N K; Krivchenko, A I; Kazennov, A M

    2011-01-01

    Effect of hypothermia on the fatty acid composition of rat and souslik blood phospholipids is studied. Different reaction of these animals to cooling is revealed: in rats no changes were observed in the fatty acid composition of blood phospholipids, whereas in the hibernating there were significant changes in the content of individual fatty acids (FA). The content of monoenic acids in sousliks decreased almost by 50%, while the content of saturated acid (C18) and of polyenic acids C18 : 2omega6 and C20 : 4omega6 rose significantly. Such changes seem to be the mechanism that promotes maintenance of the organism viability under conditions of a decreased level of metabolism, heart rhythm, and body temperature and is evolutionarily acquired. At the same time, the observed changes in the content of individual FA do not lead to sharp changes in such integrative parameters as the total non-saturation of phospholipids, which determines liquid properties of chylomicrons and other lipolipoprotein transport particles of the souslik blood. There are studied absorption spectra of blood lipid extracts of rats and sousliks under effect of light as well as effect of light upon the FA composition of lipid extracts of these animals. The FA composition of lipid extracts has been established to remain practically constant, whereas the character of changes of spectra under action of light indicates the presence in the extracts of oxidation-reduction reactions. The obtained data allow suggesting that in the lipid extract there occurs cooperation both of the phospholipid molecules themselves and of them with other organic molecules, which makes it possible for fatty acids to participate in processes of transport both of electrons and of protons. This novel role of FA as a participant of the electron transfer might probably be extrapolated to chemical reactions (processes) occurring inside the membrane.

  7. Effect of dietary poly unsaturated fatty acids on total brain lipid concentration and anxiety levels of electron beam irradiated mice

    International Nuclear Information System (INIS)

    Suchetha Kumari; Bekal, Mahesh

    2013-01-01

    The whole brain irradiation causes injury to the nervous system at various levels. Omega-3 poly unsaturated fatty acids are very much essential for the growth and development of nervous system. Dietary supplementation of these nutrients will promote the development of injured neuronal cells. Therefore this study was undertaken to establish the role of Omega-3 poly unsaturated fatty acids on total brain lipid concentration, lipid peroxidation and anxiety levels in the irradiated mice. The effect of Electron Beam Radiation (EBR) on total brain lipid concentration, lipid peroxidation and anxiety level were investigated in male Swiss albino mice. The study groups were subjected to a sub-lethal dose of EBR and also the flax seed extract and fish oil were given orally to the irradiated mice. Irradiated groups show significant elevation in anxiety levels when compared to control group, indicating the acute radiation effects on the central nervous system. But the oral supplementation of dietary PUFA source decrees the anxiety level in the irradiated group. The analysis of lipid peroxidation showed a significant level of changes when compared between control and radiation groups. Dietary PUFA supplementation showed a significant level of decrease in the lipid peroxidation in the irradiated groups. The observation of total lipids in brain shows decrease in concentration in the irradiated groups, the differences in the variables follow the similar patterns as of that the MDA levels. This study suggests that the dietary intake of PUFAs may help in prevention and recovery of the oxidative stress caused by radiation. (author)

  8. Differential effect of maternal diet supplementation with α-Linolenic adcid or n-3 long-chain polyunsaturated fatty acids on glial cell phosphatidylethanolamine and phosphatidylserine fatty acid profile in neonate rat brains

    Directory of Open Access Journals (Sweden)

    Cruz-Hernandez Cristina

    2010-01-01

    Full Text Available Abstract Background Dietary long-chain polyunsaturated fatty acids (LC-PUFA are of crucial importance for the development of neural tissues. The aim of this study was to evaluate the impact of a dietary supplementation in n-3 fatty acids in female rats during gestation and lactation on fatty acid pattern in brain glial cells phosphatidylethanolamine (PE and phosphatidylserine (PS in the neonates. Methods Sprague-Dawley rats were fed during the whole gestation and lactation period with a diet containing either docosahexaenoic acid (DHA, 0.55% and eicosapentaenoic acid (EPA, 0.75% of total fatty acids or α-linolenic acid (ALA, 2.90%. At two weeks of age, gastric content and brain glial cell PE and PS of rat neonates were analyzed for their fatty acid and dimethylacetal (DMA profile. Data were analyzed by bivariate and multivariate statistics. Results In the neonates from the group fed with n-3 LC-PUFA, the DHA level in gastric content (+65%, P Conclusion The present study confirms that early supplementation of maternal diet with n-3 fatty acids supplied as LC-PUFA is more efficient in increasing n-3 in brain glial cell PE and PS in the neonate than ALA. Negative correlation between n-6 DPA, a conventional marker of DHA deficiency, and DMA in PE suggests n-6 DPA that potentially be considered as a marker of tissue ethanolamine plasmalogen status. The combination of multivariate and bivariate statistics allowed to underline that the accretion pattern of n-3 LC-PUFA in PE and PS differ.

  9. New insights into the molecular mechanism of intestinal fatty acid absorption.

    Science.gov (United States)

    Wang, Tony Y; Liu, Min; Portincasa, Piero; Wang, David Q-H

    2013-11-01

    Dietary fat is one of the most important energy sources of all the nutrients. Fatty acids, stored as triacylglycerols (also called triglycerides) in the body, are an important reservoir of stored energy and derived primarily from animal fats and vegetable oils. Although the molecular mechanisms for the transport of water-insoluble amphipathic fatty acids across cell membranes have been debated for many years, it is now believed that the dominant means for intestinal fatty acid uptake is via membrane-associated fatty acid-binding proteins, that is, fatty acid transporters on the apical membrane of enterocytes. These findings indicate that intestinal fatty acid absorption is a multistep process that is regulated by multiple genes at the enterocyte level, and intestinal fatty acid absorption efficiency could be determined by factors influencing intraluminal fatty acid molecules across the brush border membrane of enterocytes. To facilitate research on intestinal, hepatic and plasma triacylglycerol metabolism, it is imperative to establish standard protocols for precisely and accurately measuring the efficiency of intestinal fatty acid absorption in humans and animal models. In this review, we will discuss the chemical structure and nomenclature of fatty acids and summarize recent progress in investigating the molecular mechanisms underlying the intestinal absorption of fatty acids, with a particular emphasis on the physical chemistry of intestinal lipids and the molecular physiology of intestinal fatty acid transporters. A better understanding of the molecular mechanism of intestinal fatty acid absorption should lead to novel approaches to the treatment and the prevention of fatty acid-related metabolic diseases that are prevalent worldwide. © 2013 Stichting European Society for Clinical Investigation Journal Foundation. Published by John Wiley & Sons Ltd.

  10. Seasonal comparison of wild and farmed brown trout (Salmo trutta forma fario L., 1758): crude lipid, gonadosomatic index and fatty acids.

    Science.gov (United States)

    Kaya, Yalçin; Erdem, Mehmet Emіn

    2009-08-01

    Brown trout is one of the most preferred wild freshwater fish species in the east Black Sea region (Turkey) due to its nutritional value and palatable aroma as well as being popular for sport fishing. In this research, seasonal variations in the crude lipid, gonadosomatic index and fatty acid composition of wild and farmed brown trout were investigated. The spawning period of wild and farmed brown trout appears to be from August to October and from October to January, respectively. The mean crude lipid content in farmed brown trout (3.62%) was significantly higher (P≤0.05) than that of wild brown trout (2.80%). Significant seasonal differences (P≤0.05) in crude lipid content were observed in both fish. The percentage of total saturated fatty acids was similar (P≥0.05) in both fish. Total polyunsaturated fatty acids were higher (P≤0.05) in the wild brown trout compared with the farmed brown trout, while its total monounsaturated fatty acids content was lower (P≤0.05). The muscle lipids of wild fish contained significantly (P≤0.05) higher percentages of C16:1n-7, C17:1n-7, C18:3n-3, C20:2n-6, C20:4n-6, C20:5n-3 and C22:2n-6 fatty acids and contained lower percentages of C14:0, C18:1n-9, C18:2n-6, C20:1n-9, C24:1n-9 and C22:6n-3 fatty acids than farmed fish. The total amounts of n-3 fatty acids in wild fish were higher than in farmed fish, but total amounts of n-6 fatty acids in farmed fish were higher than in wild fish. The n3/n6 proportion in wild fish was higher than that of farmed fish.

  11. Effects of rye bran addition on fatty acid composition and quality characteristics of low-fat meatballs.

    Science.gov (United States)

    Yılmaz, Ismail

    2004-06-01

    Rye bran was used as a fat substitute in the production of meatballs. The effect of rye bran addition on the fatty acid composition, trans fatty acids, total fat, some physico-chemical and sensory properties of the samples was studied. Meatballs were produced with four different formulations including 5%, 10%, 15% and 20% rye bran addition. Control samples were formulated with 10% fat addition. Meatballs containing rye bran had lower concentrations of total fat and total trans fatty acids than the control samples. Meatballs made with addition of 20% rye bran had the highest protein, ash contents, L value (lightness), b value (yellowness), and the lowest moisture, salt content and weight losses and a value (redness). There was a significant difference among the meatball samples in respect to sensory properties and 5%, 10% rye bran added meatballs and control samples had high acceptability.

  12. Comparative Serum Fatty Acid Profiles of Captive and Free-Ranging Cheetahs (Acinonyx jubatus) in Namibia

    Science.gov (United States)

    Wachter, Bettina; Heinrich, Sonja K.; Reyers, Fred; Mienie, Lodewyk J.

    2016-01-01

    Cheetahs (Acinonyx jubatus) are highly specialised large felids, currently listed as vulnerable on the IUCN red data list. In captivity, they are known to suffer from a range of chronic non-infectious diseases. Although low heterozygosity and the stress of captivity have been suggested as possible causal factors, recent studies have started to focus on the contribution of potential dietary factors in the pathogenesis of these diseases. Fatty acids are an important component of the diet, not only providing a source of metabolisable energy, but serving other important functions in hormone production, cellular signalling as well as providing structural components in biological membranes. To develop a better understanding of lipid metabolism in cheetahs, we compared the total serum fatty acid profiles of 35 captive cheetahs to those of 43 free-ranging individuals in Namibia using gas chromatography-mass spectrometry. The unsaturated fatty acid concentrations differed most remarkably between the groups, with all of the polyunsaturated and monounsaturated fatty acids, except arachidonic acid and hypogeic acid, detected at significantly lower concentrations in the serum of the free-ranging animals. The influence of age and sex on the individual fatty acid concentrations was less notable. This study represents the first evaluation of the serum fatty acids of free-ranging cheetahs, providing critical information on the normal fatty acid profiles of free-living, healthy individuals of this species. The results raise several important questions about the potential impact of dietary fatty acid composition on the health of cheetahs in captivity. PMID:27992457

  13. Fe-Catalyzed Oxidative Cleavage of Unsaturated Fatty Acids

    NARCIS (Netherlands)

    Spannring, P.

    2013-01-01

    The oxidative cleavage of unsaturated fatty acids into aldehydes or carboxylic acids gives access to valuable products. The products can be used as chemical building blocks, as emulsifiers or in the paint or polymer industry. Ozonolysis is applied industrially to cleave the fatty acid oleic acid

  14. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity

    Science.gov (United States)

    Simopoulos, Artemis P.

    2016-01-01

    In the past three decades, total fat and saturated fat intake as a percentage of total calories has continuously decreased in Western diets, while the intake of omega-6 fatty acid increased and the omega-3 fatty acid decreased, resulting in a large increase in the omega-6/omega-3 ratio from 1:1 during evolution to 20:1 today or even higher. This change in the composition of fatty acids parallels a significant increase in the prevalence of overweight and obesity. Experimental studies have suggested that omega-6 and omega-3 fatty acids elicit divergent effects on body fat gain through mechanisms of adipogenesis, browning of adipose tissue, lipid homeostasis, brain-gut-adipose tissue axis, and most importantly systemic inflammation. Prospective studies clearly show an increase in the risk of obesity as the level of omega-6 fatty acids and the omega-6/omega-3 ratio increase in red blood cell (RBC) membrane phospholipids, whereas high omega-3 RBC membrane phospholipids decrease the risk of obesity. Recent studies in humans show that in addition to absolute amounts of omega-6 and omega-3 fatty acid intake, the omega-6/omega-3 ratio plays an important role in increasing the development of obesity via both AA eicosanoid metabolites and hyperactivity of the cannabinoid system, which can be reversed with increased intake of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). A balanced omega-6/omega-3 ratio is important for health and in the prevention and management of obesity. PMID:26950145

  15. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity

    Directory of Open Access Journals (Sweden)

    Artemis P. Simopoulos

    2016-03-01

    Full Text Available In the past three decades, total fat and saturated fat intake as a percentage of total calories has continuously decreased in Western diets, while the intake of omega-6 fatty acid increased and the omega-3 fatty acid decreased, resulting in a large increase in the omega-6/omega-3 ratio from 1:1 during evolution to 20:1 today or even higher. This change in the composition of fatty acids parallels a significant increase in the prevalence of overweight and obesity. Experimental studies have suggested that omega-6 and omega-3 fatty acids elicit divergent effects on body fat gain through mechanisms of adipogenesis, browning of adipose tissue, lipid homeostasis, brain-gut-adipose tissue axis, and most importantly systemic inflammation. Prospective studies clearly show an increase in the risk of obesity as the level of omega-6 fatty acids and the omega-6/omega-3 ratio increase in red blood cell (RBC membrane phospholipids, whereas high omega-3 RBC membrane phospholipids decrease the risk of obesity. Recent studies in humans show that in addition to absolute amounts of omega-6 and omega-3 fatty acid intake, the omega-6/omega-3 ratio plays an important role in increasing the development of obesity via both AA eicosanoid metabolites and hyperactivity of the cannabinoid system, which can be reversed with increased intake of eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA. A balanced omega-6/omega-3 ratio is important for health and in the prevention and management of obesity.

  16. Fatty acid composition of Spirulina sp., Chlorella sp. and Chaetoceros sp. microalgae and introduction as potential new sources to extinct omega 3 and omega 6

    Directory of Open Access Journals (Sweden)

    Homan Gorjzdadeh

    2016-05-01

    Full Text Available Background: This study was carried out to determine the oil fatty acids from two special species of microalgae; Spirulina sp.,Chlorella sp. and also Chaetoceros sp. collected from Bahmanshir River. Materials and Methods: Sampling of microalgae Chaetoceros sp. from Bahmanshir River was under taken using bottle samplers during spring season of 2013. Microalgae Spirulina sp. and Chlorella sp. were supplied from Shrimp Research Institute of Iran in Bushehr Province. Samples then were cultured under controlled laboratory conditions and mass culture for 100 liters was undertaken. Isolation of microalgae species from water of cultured media was carried out using filtration and centrifugation methods. The fatty acid compositions were determined by Gas – FID chromatography. Results: Results showed that regarding Saturated Fatty Acids (SFA obtained from purified culture of Chaetoceros sp., Spirulina sp. and Chlorella sp. the maximum amount of total fatty acids were belonged to palmitic acids (C16:0 with 15.21%, 30.1% and 25.17% of total fatty acids  respectively. Analysis of Mono Unsaturated Fatty Acids (MUFA showed that in the Oleic acid was maximum amount of 34% in Spirulina sp. In addition the amount of MUFA in Chlorella sp. was 16.37% of total fatty acids. On the other hand the amount of palmeotic acid in purified culture of Chaetoceros sp. was 30.33% from total content of fatty acids. Analysis of Poly Unsaturated Fatty Acids (PUFA, Linoleic acid (C18:2 (Omega 6, revealed maximum percentage in Spirulina sp. with 18.8%. Results of Alpha linoleic acid (C18:3 (Omega3 analysis showed maximum amount of 9.66% in Chlorella sp. compared to other microalgae with lower omega 3 contents. Spirulina sp. contained maximum amount of Linoleic acid (C18:2 with 18.8% of total fatty acids. Therefore, Spirulina sp. can be considered as a rich source of omega 6 for the purpose of fatty acid extractions. The presence of PUFA in Chlorella sp. and Spirulina sp. was

  17. Fatty acid composition of symbiotic zooxanthellae in relation to their hosts.

    Science.gov (United States)

    Bishop, D G; Kenrick, J R

    1980-10-01

    Gymnodinoid dinoflagellate symbionts, commonly referred to as zooxanthellae, are widely distributed among marine invertebrates. It has been assumed that they represent only one species,Gymnodinium microadriaticum. The fatty acid composition of total lipids and galactolipids of zooxanthellae isolated from 8 species of corals, 3 species of clams and a foraminiferan have been analyzed and found to vary according to the host. For example, the content of eicosapentaenoic acid in clam zooxanthellae monogalactosyldiacylglycerol was less than 2%, whereas in the same lipid from coral zooxanthellae, the content ranged from 9 to 22%. Corresponding values for the acid in digalactosyl-diacylglycerol were 1-8% from clam zooxanthellae and 23-40% from coral zooxanthellae. Coral zooxanthellae monogalactosyldiacylglycerol contain higher levels of octadecatetraenoic acid than are found in digalactosyldiacylglycerol, whereas the reverse is true in clam zooxanthellae. The fatty acid composition of the lipids of an axenic culture of zooxanthellae isolated from the clamTridacna maxima are similar to those of cells freshly isolated from the host. The results suggest either that the host is capable of affecting the fatty acid metabolism of the symbiont or that different strains of zooxanthellae occur in corals and clams.

  18. Nutrigenomics and nutrigenetics of ω3 polyunsaturated fatty acids.

    Science.gov (United States)

    Vanden Heuvel, John P

    2012-01-01

    Diets rich in ω3 polyunsaturated fatty acids (ω3-PUFAs) such as alpha-linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid are associated with decreased incidence and severity of several chronic diseases including cardiovascular disease (CVD) and cancer. At least some of the beneficial effects of these dietary fatty acids are via metabolites such as prostaglandins, leukotrienes, thromboxanes, and resolvins. The effects of ω3-PUFAs are in contrast to those of fatty acids with virtually identical structures, such as the ω6-PUFAs linoleic acid and arachidonic acid, and their corresponding metabolites. The purpose of this chapter is to discuss both the nutrigenomics (nutrient-gene interactions) and nutrigenetics (genetic variation in nutrition) of dietary fatty acids with a focus on the ω3-PUFAs (Gebauer et al., 2007(1)). Important in the biological response for these fatty acids or their metabolites are cognate receptors that are able to regulate gene expression and coordinately affect metabolic or signaling pathways associated with CVD and cancer. Four nuclear receptor (NR) subfamilies will be emphasized as receptors that respond to dietary and endogenous ligands: (1) peroxisome proliferator-activated receptors, (2) retinoid X receptors, (3) liver X receptors, and (4) farnesoid X receptor. In addition to the different responses elicited by varying structures of fatty acids, responses may vary because of genetic variation in enzymes that metabolize ω3- and ω6 fatty acids or that respond to them. In particular, polymorphisms in the fatty acid desaturases and the aforementioned NRs contribute to the complexity of nutritional effects seen with ω3-PUFAs. Following a brief introduction to the health benefits of ω3-PUFAs, the regulation of gene expression by these dietary fatty acids via NRs will be characterized. Subsequently, the effects of single-nucleotide polymorphisms (SNPs) in key enzymes involved in the metabolism and response to ω3-PUFAs will

  19. Dietary fatty acids modulate associations between genetic variants and circulating fatty acids in plasma and erythrocyte membranes: meta-analysis of nine studies in the CHARGE consortium

    Science.gov (United States)

    Scope: Tissue concentrations of omega-3 fatty acids may reduce cardiovascular disease risk, and genetic variants are associated with circulating fatty acids concentrations. Whether dietary fatty acids interact with genetic variants to modify circulating omega-3 fatty acids is unclear. We evaluated i...

  20. 40 CFR 721.3710 - Polyether modified fatty acids (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polyether modified fatty acids... Specific Chemical Substances § 721.3710 Polyether modified fatty acids (generic). (a) Chemical substance... Polyether modified fatty acids (PMN P-99-0435) is subject to reporting under this section for the...

  1. Cadmium Alters the Concentration of Fatty Acids in THP-1 Macrophages.

    Science.gov (United States)

    Olszowski, Tomasz; Gutowska, Izabela; Baranowska-Bosiacka, Irena; Łukomska, Agnieszka; Drozd, Arleta; Chlubek, Dariusz

    2018-03-01

    Fatty acid composition of human immune cells influences their function. The aim of this study was to evaluate the effects of known toxicant and immunomodulator, cadmium, at low concentrations on levels of selected fatty acids (FAs) in THP-1 macrophages. The differentiation of THP-1 monocytes into macrophages was achieved by administration of phorbol myristate acetate. Macrophages were incubated with various cadmium chloride (CdCl 2 ) solutions for 48 h at final concentrations of 5 nM, 20 nM, 200 nM, and 2 μM CdCl 2 . Fatty acids were extracted from samples according to the Folch method. The fatty acid levels were determined using gas chromatography. The following fatty acids were analyzed: long-chain saturated fatty acids (SFAs) palmitic acid and stearic acid, very long-chain saturated fatty acid (VLSFA) arachidic acid, monounsaturated fatty acids (MUFAs) palmitoleic acid, oleic acid and vaccenic acid, and n-6 polyunsaturated fatty acids (PUFAs) linoleic acid and arachidonic acid. Treatment of macrophages with very low concentrations of cadmium (5-200 nM) resulted in significant reduction in the levels of arachidic, palmitoleic, oleic, vaccenic, and linoleic acids and significant increase in arachidonic acid levels (following exposure to 5 nM Cd), without significant reduction of palmitic and stearic acid levels. Treatment of macrophages with the highest tested cadmium concentration (2 μM) produced significant reduction in the levels of all examined FAs: SFAs, VLSFA, MUFAs, and PUFAs. In conclusion, cadmium at tested concentrations caused significant alterations in THP-1 macrophage fatty acid levels, disrupting their composition, which might dysregulate fatty acid/lipid metabolism thus affecting macrophage behavior and inflammatory state.

  2. Influence of selenomethionine and omega-3 fatty acid on serum mineral profile and nutrient utilization of broiler chicken

    Directory of Open Access Journals (Sweden)

    Pankaj Kumar

    2015-02-01

    Full Text Available Aim: This study was conducted to investigate the effect of selenomethionine and omega-3 fatty acid on serum mineral profile and nutrient utilization of broiler chicken. Materials and Methods: The present study was a 2×3 factorial arrangement of two levels of selenomethionine (0 and 0.3 ppm and three levels of omega-3 fatty acid (0, 0.5 and 1%. Day-old Vencobb broiler chicks (n=180, were randomly assigned in six treatment groups. The experiment lasted for 42 days. Treatment groups followed of: Group I was a control. Group II, III, IV, V and VI were supplemented with 0 ppm selenomethionine with 0.5% omega-3 fatty acid, 0 ppm selenomethionine with 1% omega-3 fatty acid, 0.3 ppm selenomethionine with 0% omega-3 fatty acid, 0.3 ppm selenomethionine with 0.5% omega-3 fatty acid and 0.3 ppm selenomethionine with 1% omega-3 fatty acid, respectively. Linseed oil was used as a source of omega-3 fatty acid while sel-plex is used for selenomethionine supplementation. Results: Significant (p<0.05 interaction exist between selenomethionine and omega-3 fatty acid for serum zinc and iron concentration whereas, it was non-significant for serum calcium and copper. Significantly (p<0.05 increased concentration of selenium, zinc, iron and phosphorus was observed in birds fed 0.3 ppm selenomethionine whereas, significantly (p<0.05 increased zinc and iron was observed in birds fed 0.5% omega-3 fatty acid. There was significant (p<0.05 interaction exist between selenomethionine and omega-3 fatty acid for calcium and phosphorus retention percentage. The maximum retention of calcium and phosphorus was recorded in birds supplemented with 0.3 ppm selenomethionine in combination with 0.5% omega-3 fatty acid. There was marked interaction between selenomethionine and omega-3 fatty acid for hemoglobin (Hb, total erythrocytic count, total leukocytic count and platelets (p<0.05 however, it was non-significant for mean corpuscular volume, mean corpuscular Hb, MCH concentration

  3. Fatty acid synthase plays a role in cancer metabolism beyond providing fatty acids for phospholipid synthesis or sustaining elevations in glycolytic activity.

    Science.gov (United States)

    Hopperton, Kathryn E; Duncan, Robin E; Bazinet, Richard P; Archer, Michael C

    2014-01-15

    Fatty acid synthase is over-expressed in many cancers and its activity is required for cancer cell survival, but the role of endogenously synthesized fatty acids in cancer is unknown. It has been suggested that endogenous fatty acid synthesis is either needed to support the growth of rapidly dividing cells, or to maintain elevated glycolysis (the Warburg effect) that is characteristic of cancer cells. Here, we investigate both hypotheses. First, we compared utilization of fatty acids synthesized endogenously from (14)C-labeled acetate to those supplied exogenously as (14)C-labeled palmitate in the culture medium in human breast cancer (MCF-7 and MDA-MB-231) and untransformed breast epithelial cells (MCF-10A). We found that cancer cells do not produce fatty acids that are different from those derived from exogenous palmitate, that these fatty acids are esterified to the same lipid and phospholipid classes in the same proportions, and that their distribution within neutral lipids is not different from untransformed cells. These results suggest that endogenously synthesized fatty acids do not fulfill a specific function in cancer cells. Furthermore, we observed that cancer cells excrete endogenously synthesized fatty acids, suggesting that they are produced in excess of requirements. We next investigated whether lipogenic activity is involved in the maintenance of high glycolytic activity by culturing both cancer and non-transformed cells under anoxic conditions. Although anoxia increased glycolysis 2-3 fold, we observed no concomitant increase in lipogenesis. Our results indicate that breast cancer cells do not have a specific qualitative or quantitative requirement for endogenously synthesized fatty acids and that increased de novo lipogenesis is not required to sustain elevations in glycolytic activity induced by anoxia in these cells. © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Evaluation of in-situ fatty acid extraction protocols for the analysis of staphylococcal cell membrane associated fatty acids by gas chromatography.

    Science.gov (United States)

    Crompton, Marcus J; Dunstan, R Hugh

    2018-05-01

    The composition and integrity of the bacterial cytoplasmic membrane is critical to the survival of staphylococci in dynamic environments and it is important to investigate how the cell membrane responds to changes in the environmental conditions. The staphylococcal membrane differs from eukaryotic and many other bacterial cell membranes by having a high abundance of branch fatty acids and relatively few unsaturated fatty acids. The range of available methods for extraction and efficient analyses of staphylococcal fatty acids was initially appraised to identify the best potential procedures for appraisal. Staphylococcus aureus subsp. aureus Rosenbach (ATCC® 29213) was grown under optimal conditions to generate a cell biomass to compare the efficiencies of three approaches to extract and prepare methyl esters of the membrane fatty acids: (1) acidic direct transesterification of lipids, (2) modified basic direct transesterification of membrane lipids with adjusted reaction times and temperatures, and (3) base catalysed hydrolysis followed by acid catalysed esterification in two separate chemical reactions (MIDI process). All methods were able to extract fatty acids from the cell mass effectively where these lipids represented approximately 5% of the cellular dry mass. The acidic transesterification method had the least number of steps, the lowest coefficient of variation at 6.7% and good resistance to tolerating water. Basic transesterification was the least accurate method showing the highest coefficient of variation (26%). The MIDI method showed good recoveries, but had twice the number of steps and a coefficient of variation of 16%. It was also found that there was no need to use an anti-oxidant such as BHT for the protection of polyunsaturated fatty acids when the GC-MS injection liner was clean. It was concluded that the acidic transesterification procedures formed the most efficient and reproducible method for the analyses of staphylococcal membrane fatty acids

  5. Polyunsaturated fatty acids in various macroalgal species from North Atlantic and tropical seas.

    Science.gov (United States)

    van Ginneken, Vincent J T; Helsper, Johannes P F G; de Visser, Willem; van Keulen, Herman; Brandenburg, Willem A

    2011-06-22

    In this study the efficacy of using marine macroalgae as a source for polyunsaturated fatty acids, which are associated with the prevention of inflammation, cardiovascular diseases and mental disorders, was investigated. The fatty acid (FA) composition in lipids from seven sea weed species from the North Sea (Ulva lactuca, Chondrus crispus, Laminaria hyperborea, Fucus serratus, Undaria pinnatifida, Palmaria palmata, Ascophyllum nodosum) and two from tropical seas (Caulerpa taxifolia, Sargassum natans) was determined using GCMS. Four independent replicates were taken from each seaweed species. Omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs), were in the concentration range of 2-14 mg/g dry matter (DM), while total lipid content ranged from 7-45 mg/g DM. The n-9 FAs of the selected seaweeds accounted for 3%-56% of total FAs, n-6 FAs for 3%-32% and n-3 FAs for 8%-63%. Red and brown seaweeds contain arachidonic (C20:4, n-6) and/or eicosapentaenoic acids (EPA, C20:5, n-3), the latter being an important "fish" FA, as major PUFAs while in green seaweeds these values are low and mainly C16 FAs were found. A unique observation is the presence of another typical "fish" fatty acid, docosahexaenoic acid (DHA, C22:6, n-3) at ≈ 1 mg/g DM in S. natans. The n-6: n-3 ratio is in the range of 0.05-2.75 and in most cases below 1.0. Environmental effects on lipid-bound FA composition in seaweed species are discussed. Marine macroalgae form a good, durable and virtually inexhaustible source for polyunsaturated fatty acids with an (n-6) FA: (n-3) FA ratio of about 1.0. This ratio is recommended by the World Health Organization to be less than 10 in order to prevent inflammatory, cardiovascular and nervous system disorders. Some marine macroalgal species, like P. palmata, contain high proportions of the "fish fatty acid" eicosapentaenoic acid (EPA, C20:5, n-3), while in S. natans also docosahexaenoic acid (DHA, C22:6, n-3) was detected.

  6. Polyunsaturated fatty acids in various macroalgal species from north Atlantic and tropical seas

    Directory of Open Access Journals (Sweden)

    van Keulen Herman

    2011-06-01

    Full Text Available Abstract Background In this study the efficacy of using marine macroalgae as a source for polyunsaturated fatty acids, which are associated with the prevention of inflammation, cardiovascular diseases and mental disorders, was investigated. Methods The fatty acid (FA composition in lipids from seven sea weed species from the North Sea (Ulva lactuca, Chondrus crispus, Laminaria hyperborea, Fucus serratus, Undaria pinnatifida, Palmaria palmata, Ascophyllum nodosum and two from tropical seas (Caulerpa taxifolia, Sargassum natans was determined using GCMS. Four independent replicates were taken from each seaweed species. Results Omega-3 (n-3 and omega-6 (n-6 polyunsaturated fatty acids (PUFAs, were in the concentration range of 2-14 mg/g dry matter (DM, while total lipid content ranged from 7-45 mg/g DM. The n-9 FAs of the selected seaweeds accounted for 3%-56% of total FAs, n-6 FAs for 3%-32% and n-3 FAs for 8%-63%. Red and brown seaweeds contain arachidonic (C20:4, n-6 and/or eicosapentaenoic acids (EPA, C20:5, n-3, the latter being an important "fish" FA, as major PUFAs while in green seaweeds these values are low and mainly C16 FAs were found. A unique observation is the presence of another typical "fish" fatty acid, docosahexaenoic acid (DHA, C22:6, n-3 at ≈ 1 mg/g DM in S. natans. The n-6: n-3 ratio is in the range of 0.05-2.75 and in most cases below 1.0. Environmental effects on lipid-bound FA composition in seaweed species are discussed. Conclusion Marine macroalgae form a good, durable and virtually inexhaustible source for polyunsaturated fatty acids with an (n-6 FA: (n-3 FA ratio of about 1.0. This ratio is recommended by the World Health Organization to be less than 10 in order to prevent inflammatory, cardiovascular and nervous system disorders. Some marine macroalgal species, like P. palmata, contain high proportions of the "fish fatty acid" eicosapentaenoic acid (EPA, C20:5, n-3, while in S. natans also docosahexaenoic acid (DHA, C

  7. Fatty Acid Elongation in Non-Alcoholic Steatohepatitis and Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Sonja M. Kessler

    2014-04-01

    Full Text Available Non-alcoholic steatohepatitis (NASH represents a risk factor for the development of hepatocellular carcinoma (HCC and is characterized by quantitative and qualitative changes in hepatic lipids. Since elongation of fatty acids from C16 to C18 has recently been reported to promote both hepatic lipid accumulation and inflammation we aimed to investigate whether a frequently used mouse NASH model reflects this clinically relevant feature and whether C16 to C18 elongation can be observed in HCC development. Feeding mice a methionine and choline deficient diet to model NASH not only increased total hepatic fatty acids and cholesterol, but also distinctly elevated the C18/C16 ratio, which was not changed in a model of simple steatosis (ob/ob mice. Depletion of Kupffer cells abrogated both quantitative and qualitative methionine-and-choline deficient (MCD-induced alterations in hepatic lipids. Interestingly, mimicking inflammatory events in early hepatocarcinogenesis by diethylnitrosamine-induced carcinogenesis (48 h increased hepatic lipids and the C18/C16 ratio. Analyses of human liver samples from patients with NASH or NASH-related HCC showed an elevated expression of the elongase ELOVL6, which is responsible for the elongation of C16 fatty acids. Taken together, our findings suggest a detrimental role of an altered fatty acid pattern in the progression of NASH-related liver disease.

  8. Inhibitors of Fatty Acid Synthesis Induce PPAR α -Regulated Fatty Acid β -Oxidative Genes: Synergistic Roles of L-FABP and Glucose.

    Science.gov (United States)

    Huang, Huan; McIntosh, Avery L; Martin, Gregory G; Petrescu, Anca D; Landrock, Kerstin K; Landrock, Danilo; Kier, Ann B; Schroeder, Friedhelm

    2013-01-01

    While TOFA (acetyl CoA carboxylase inhibitor) and C75 (fatty acid synthase inhibitor) prevent lipid accumulation by inhibiting fatty acid synthesis, the mechanism of action is not simply accounted for by inhibition of the enzymes alone. Liver fatty acid binding protein (L-FABP), a mediator of long chain fatty acid signaling to peroxisome proliferator-activated receptor- α (PPAR α ) in the nucleus, was found to bind TOFA and its activated CoA thioester, TOFyl-CoA, with high affinity while binding C75 and C75-CoA with lower affinity. Binding of TOFA and C75-CoA significantly altered L-FABP secondary structure. High (20 mM) but not physiological (6 mM) glucose conferred on both TOFA and C75 the ability to induce PPAR α transcription of the fatty acid β -oxidative enzymes CPT1A, CPT2, and ACOX1 in cultured primary hepatocytes from wild-type (WT) mice. However, L-FABP gene ablation abolished the effects of TOFA and C75 in the context of high glucose. These effects were not associated with an increased cellular level of unesterified fatty acids but rather by increased intracellular glucose. These findings suggested that L-FABP may function as an intracellular fatty acid synthesis inhibitor binding protein facilitating TOFA and C75-mediated induction of PPAR α in the context of high glucose at levels similar to those in uncontrolled diabetes.

  9. Fatty acids in female’s gonads of the Red Sea fish Rhabdosargus sarba during the spawning season

    Directory of Open Access Journals (Sweden)

    Suhaila Qari

    2014-05-01

    Full Text Available Objective: To determine the fatty acids profiles in female fish, Rhabdosargus sarba (R. sarba from the Red Sea during the spawning season. Methods: Monthly individual R. sarba were obtained from Bangalah market in Jeddah, Red Sea and transported to the laboratory in ice aquarium. The total length, standard length and weight were measured, fishes were dissected. Ovaries were removed, weighed and 10 mL of concentrated hydrochloric acid were added to 10 g of the ovary in a conical flask and immersed in boiling water until the sample was dissolved and the fat was seen to collect on the surface. The conical was cooled and the fat was extracted by shaking with 30 mL of diethyl ether. The extract was bowled after allowing the layers to separate into a weighed flask. The extraction was repeated three times more and distilled off the solvent then the fat dried at 100 °C, cooled and weighed. Then 50 mg of lipid was put in a tube, 5 mL of methanolic sulphuric acid was added and 2 mL of benzene, the tube well closed and placed in water bath at 90 °C for an hour and a half. After cooling, 8 mL water and 5 mL petroleum were added and shaked strongly and the ethereal layer was separated in a dry tube, evaporated to dryness. The fatty acid methyl esters were analyzed by using a Hewlett Packard (HP 6890 chromatography, a split/splitless injector and flame ionization detector. Results: In female R. sarba, a total of 29 fatty acids were detected in ovaries throughout the spawning season. The main fatty acid group in total lipid was saturated fatty acid (SFA, 28.9%, followed by 23.5% of polyunsaturated fatty acids (PUFA and 12.9% of monounsaturated fatty acids (MUFA. The dominant SFA were palmitic and stearic, the major MUFA were palmitoleic and oleic, and the major PUFA were C18:2 and C22:2. During spawning stages, there were no significant differences in total SFA, MUFA and PUFA. The highest value of SFA was in late spawning (36.78%. However, the highest value

  10. Erythrocyte membrane fatty acids in multiple sclerosis patients and ...

    African Journals Online (AJOL)

    The risk of developing multiple sclerosis (MS) is associated with increased dietary intake of saturated fatty acids. For many years it has been suspected that this disease might be associated with an imbalance between unsaturated and saturated fatty acids. We determined erythrocyte membrane fatty acids levels in Hot ...

  11. Fatty acid methyl esters production: chemical process variables

    Directory of Open Access Journals (Sweden)

    Paulo César Narváez Rincón

    2004-05-01

    Full Text Available The advantages of fatty acid methyl esters as basic oleochemicals over fatty acids, the seventies world energy crisis and the use of those oleochemicals as fuels, have increased research interest on fats and oils trans-esterification. In this document, a review about basic aspects, uses, process variables and problems associated to the production process of fatty acid methyl esters is presented. A global view of recent researches, most of them focused in finding a new catalyst with same activity as the alcohol-soluble hydroxides (NaOH, KOH, and suitable to be used in transforming fats and oils with high levels of free fatty acids and water avoiding separation problems and reducing process costs, is also discussed.

  12. Echinococcus granulosus fatty acid binding proteins subcellular localization.

    Science.gov (United States)

    Alvite, Gabriela; Esteves, Adriana

    2016-05-01

    Two fatty acid binding proteins, EgFABP1 and EgFABP2, were isolated from the parasitic platyhelminth Echinococcus granulosus. These proteins bind fatty acids and have particular relevance in flatworms since de novo fatty acids synthesis is absent. Therefore platyhelminthes depend on the capture and intracellular distribution of host's lipids and fatty acid binding proteins could participate in lipid distribution. To elucidate EgFABP's roles, we investigated their intracellular distribution in the larval stage by a proteomic approach. Our results demonstrated the presence of EgFABP1 isoforms in cytosolic, nuclear, mitochondrial and microsomal fractions, suggesting that these molecules could be involved in several cellular processes. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. The relationship between fatty acid compositions and thermal stability of extra virgin olive oils

    Directory of Open Access Journals (Sweden)

    Fayegh Moulodi

    2014-11-01

    Full Text Available Background: Fatty acids are one of the most important compounds in edible oils. Further, the stability of oils depends on the composition of fatty acids. So, this study was conducted to investigate the effect of fatty acid composition on the oxidative stability of extra virgin olive oils during the heating process. Methods: In total, eight samples of extra virgin olive oil were studied. To evaluate their thermal stability, the oils were heated at 120 ° C for 4 h and sampling was carried out in 2-hour intervals. Then, fatty acid composition, peroxide value, anisidine value and totox value were evaluated according to Iranian national standards. Results: Results showed a significantly direct correlation between Palmitoleic acid and Totox index in the second (r=0.786 and fourth hours (r=0.762, and between linoleic and Totox index in the second (r=0.643 and fourth hours (r=0.786. However, there was a significantly inverse relationship between oleic acid and Totox index in the fourth hour (r=-0.833. Conclusion: Result indicated that linoleic and Palmitoleic acids had a reducing effect on thermal stability of extra virgin olive oil after the second hour. But, Oleic acid caused a positive effect on thermal stability after the fourth hour. Thus, it is concluded that unsaturated fatty acids especially oleic acid affect the thermal stability at final hours.

  14. Validation of a One-Step Method for Extracting Fatty Acids from Salmon, Chicken and Beef Samples.

    Science.gov (United States)

    Zhang, Zhichao; Richardson, Christine E; Hennebelle, Marie; Taha, Ameer Y

    2017-10-01

    Fatty acid extraction methods are time-consuming and expensive because they involve multiple steps and copious amounts of extraction solvents. In an effort to streamline the fatty acid extraction process, this study compared the standard Folch lipid extraction method to a one-step method involving a column that selectively elutes the lipid phase. The methods were tested on raw beef, salmon, and chicken. Compared to the standard Folch method, the one-step extraction process generally yielded statistically insignificant differences in chicken and salmon fatty acid concentrations, percent composition and weight percent. Initial testing showed that beef stearic, oleic and total fatty acid concentrations were significantly lower by 9-11% with the one-step method as compared to the Folch method, but retesting on a different batch of samples showed a significant 4-8% increase in several omega-3 and omega-6 fatty acid concentrations with the one-step method relative to the Folch. Overall, the findings reflect the utility of a one-step extraction method for routine and rapid monitoring of fatty acids in chicken and salmon. Inconsistencies in beef concentrations, although minor (within 11%), may be due to matrix effects. A one-step fatty acid extraction method has broad applications for rapidly and routinely monitoring fatty acids in the food supply and formulating controlled dietary interventions. © 2017 Institute of Food Technologists®.

  15. Influence of the derivatization procedure on the results of the gaschromatographic fatty acid analysis of human milk and infant formulae.

    Science.gov (United States)

    Kohn, G; van der Ploeg, P; Möbius, M; Sawatzki, G

    1996-09-01

    Many different analytical procedures for fatty acid analysis of infant formulae and human milk are described. The objective was to study possible pitfalls in the use of different acid-catalyzed procedures compared to a base-catalyzed procedure based on sodium-methoxide in methanol. The influence of the different methods on the relative fatty acid composition (wt% of total fatty acids) and the total fatty acid recovery rate (expressed as % of total lipids) was studied in two experimental LCP-containing formulae and a human milk sample. MeOH/HCl-procedures were found to result in an incomplete transesterification of triglycerides, if an additional nonpolar solvent like toluene or hexane is not added and a water-free preparation is not guaranteed. In infant formulae the low transesterification of triglycerides (up to only 37%) could result in an 100%-overestimation of the relative amount of LCP, if these fatty acids primarily derive from phospholipids. This is the case in infant formulae containing egg lipids as raw materials. In formula containing fish oils and in human milk the efficacy of esterification results in incorrect absolute amounts of fatty acids, but has no remarkable effect on the relative fatty acid distribution. This is due to the fact that in these samples LCP are primarily bound to triglycerides. Furthermore, in formulae based on butterfat the derivatization procedure should be designed in such a way that losses of short-chain fatty acids due to evaporation steps can be avoided. The procedure based on sodium methoxide was found to result in a satisfactory (about 90%) conversion of formula lipids and a reliable content of all individual fatty acids. Due to a possibly high amount of free fatty acids in human milk, which are not methylated by sodium-methoxide, caution is expressed about the use of this reagent for fatty acid analysis of mothers milk. It is concluded that accurate fatty acid analysis of infant formulae and human milk requires a careful

  16. Correlation of secretory phospholipase-A2 activity and fatty acids in cerebrospinal fluid with liver enzymes tests

    Directory of Open Access Journals (Sweden)

    Sepideh Ghodoosifar

    2016-02-01

    Full Text Available Introduction: The aim was to determine whether secretory phospholipase-A2 (sPLA2 activity and fatty acids in cerebrospinal fluid (CSF are correlated with liver enzymes tests. Methods: CSF and serum samples were collected from 49 patients (age 18-65 as part of routine diagnostic testing. Along with serum liver enzymes aspartate aminotransferase (AST, alanine aminotransferase (ALT and alkaline phosphatase (ALP, the fatty acid composition of CSF was measured by gas liquid chromatography. CSF enzyme activities of sPLA2 were measured using the standard assay with diheptanoyl thio-phosphatidylcholin as substrate. Results: The saturated fatty acids (SFAs including palmitic acid and stearic acid were positively, and the unsaturated fatty acids including oleic acid and linoleic acid were negatively correlated with liver enzymes tests. In regression analysis with adjustment for body mass index (BMI, the elevated liver enzymes tests were positively associated with activity of sPLA2 (β > 0.31, P 0.38, P < 0.010 and negatively with total monounsaturated fatty acids (MUFAs (β < -0.40, P < 0.001 contents of CSF. Conclusion: CSF activity of sPLA2 and fatty acids may be linked to peripheral markers of liver function, suggesting an indirect impact of central fatty acids on hepatocytes function and metabolism.

  17. Metabolism of fatty acids in rat brain in microsomal membranes

    International Nuclear Information System (INIS)

    Aeberhard, E.E.; Gan-Elepano, M.; Mead, J.F.

    1980-01-01

    Using a technique in which substrate fatty acids are incorporated into microsomal membranes followd by comparison of their rates of desaturation or elongation with those of exogenous added fatty acids it has been found that the desaturation rate is more rapid for the membrane-bound substrate than for the added fatty acid. Moreover, the product of the membrane-bound substrate is incorporated into membrane phospholipid whereas the product of the exogenous substrate is found in di- and triacyl glycerols and in free fatty acids as well. These and other findings point to a normal sequence of reaction of membrane liqids with membrane-bound substrates involving transfer of fatty acid from phospholipid to the coupled enzyme systems without ready equilibration with the free fatty acid pool

  18. Adipose tissue fatty acid patterns and changes in anthropometry

    DEFF Research Database (Denmark)

    Dahm, Christina Catherine; Gorst-Rasmussen, Anders; Jakobsen, Marianne Uhre

    2011-01-01

    Diets rich in n-3 long chain polyunsaturated fatty acids (LC-PUFA), but low in n-6 LC-PUFA and 18:1 trans-fatty acids (TFA), may lower the risk of overweight and obesity. These fatty acids have often been investigated individually. We explored associations between global patterns in adipose tissu...

  19. 21 CFR 172.854 - Polyglycerol esters of fatty acids.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyglycerol esters of fatty acids. 172.854 Section... HUMAN CONSUMPTION Multipurpose Additives § 172.854 Polyglycerol esters of fatty acids. Polyglycerol esters of fatty acids, up to and including the decaglycerol esters, may be safely used in food in...

  20. Composition of fatty acids in selected vegetable oils

    OpenAIRE

    Helena Frančáková; Eva Ivanišová; Štefan Dráb; Tomáš Krajčovič; Marián Tokár; Ján Mareček; Janette Musilová

    2015-01-01

    Plant oils and fats are important and necessary components of the human nutrition. They are energy source and also contain fatty acids - compounds essential for human health. The aim of this study was to evaluate nutritional quality of selected plant oil - olive, rapeseed, pumpkin, flax and sesame; based on fatty acid composition in these oils. Fatty acids (MUFA, PUFA, SFA) were analyzed chromatography using system Agilent 6890 GC, injector multimode, detector FID. The highest c...

  1. The effect of breed on fatty acid composition of subcutaneous ...

    African Journals Online (AJOL)

    User

    2015-02-23

    Feb 23, 2015 ... FA, total polyunsaturated fatty acid (PUFA) and n-6PUFA contents were observed in the subcutaneous adipose .... frozen at −20 ºC, pending FA analysis. Samples of the .... The synthesis and metabolism of FAs in the ruminant ...

  2. Antioxidant activity and profile fatty acids of jabuticaba seeds (Myrciaria cauliflora berg)

    International Nuclear Information System (INIS)

    Jorge, Neuza; Bruna Jorge Bertanha; Moreno Luzia, Debora Maria

    2011-01-01

    Numerous natural compounds found in fruits, grains and vegetables have antioxidant activity. This work aimed to characterize jabuticaba seeds (Myrciaria cauliflora berg) by proximate composition, antioxidant activity and fatty acids profile of their extracted oil. To obtain the extract, the dehydrated and triturated seeds were extracted with ethyl alcohol for 30 min, at a proportion of 1:3 of seeds: ethyl alcohol, under continuous agitation, at room temperature. Afterwards, the mixture was filtered and the supernatant dehydrated at 40 Celsius degrade aiming to determine, by direct weighing, the extracts dry matter yield. According to the results, the jabuticaba seeds are an important source of total carbohydrates, and also presented relevant antioxidant activity. In the jabuticaba seeds oil, a significant percentage of polyunsaturated fatty acids stood out, with linoleic and α-linolenic being the main component, essentials fatty acids.

  3. Effects of exogenous fatty acids and inhibition of de novo fatty acid synthesis on disaturated phosphatidylcholine production by fetal lung cells and adult type II cells.

    Science.gov (United States)

    Maniscalco, W M; Finkelstein, J N; Parkhurst, A B

    1989-05-01

    De novo fatty acid synthesis may be an important source of saturated fatty acids for fetal lung disaturated phosphatidylcholine (DSPC) production. To investigate the roles of de novo fatty acid synthesis and exogenous fatty acids, we incubated dispersed fetal lung cells and freshly isolated adult type II cells with exogenous palmitate and oleate and measured DSPC synthesis. Unlike adult type II cells, fetal lung cells did not increase DSPC synthesis when exogenous palmitate was available; adult type II cells increased DSPC synthesis by 70% in the presence of palmitate. Exogenous oleate decreased DSPC synthesis by 48% in fetal cells but not in adult type II cells. Incubation of fetal lung cells with TOFA [2-furancarboxylate, 5-(tetradecyloxy)-sodium], a metabolic inhibitor of fatty acid synthesis, decreased fatty acid synthesis by 65%. There was a simultaneous 56% inhibition of DSPC production, but no effect on protein, DNA, or glyceride-glycerol production, measured by precursor incorporation. The inhibition of DSPC synthesis associated with TOFA was partially prevented by exogenous palmitate but not oleate. Fetal cells prepared from explants that had been cultured in dexamethasone also had TOFA-associated inhibition of DSPC synthesis that was similar to non-dexamethasone-exposed cells. These studies suggest that under baseline conditions of low fatty acid availability, such as in the fetus, de novo fatty acid synthesis in fetal cells, but not in adult type II cells, provides sufficient saturated fatty acids to support maximal DSPC production. Inhibition of de novo fatty acid synthesis resulting in decreased DSPC production in fetal lung cells in conditions of low fatty acid availability suggests that fatty acid synthesis may be central to maintain DSPC synthesis in the fetus.

  4. Analysis of long-chain fatty acid binding activity in vesicles of the outer membrane generated from Escherchia coli

    International Nuclear Information System (INIS)

    Black, P.N.

    1987-01-01

    Escherichia coli transports long-chain fatty acids across the dual membrane by a high affinity, saturable, energy-dependent process. The fadL gene codes for an outer membrane protein which appears to act specifically as a long-chain fatty acid binding protein when fatty acid utilization is blocked by mutation. In an effort to understand the function of the fadL gene product, FLP, membranes have been isolated from fadL + and fadL - strains following osmotic lysis. Following isolation, total membranes were separated into inner and outer membrane fractions and assayed for long-chain fatty acid binding activity. Outer membrane vesicles were incubated 2-5 min at 37 0 C with 3 H oleate (C/sub 18:1/), cooled to 0 0 C, and centrifuged through a Lipidex 100 column for 3 min to remove the unbound fatty acid. The level of fatty acid binding was quantitated by scintillation counting of the eluate. Outer membrane vesicles generated from a fadL + strain bind 325 pmol fatty acid/mg protein whereas vesicles generated for a mutant strain bind 175 pmol fatty acid/mg protein. These data suggest that FLP acts at least as a long-chain fatty acid binding protein on the surface of the cell

  5. Detailed dimethylacetal and fatty acid composition of rumen content from lambs fed lucerne or concentrate supplemented with soybean oil.

    Science.gov (United States)

    Alves, Susana P; Santos-Silva, José; Cabrita, Ana R J; Fonseca, António J M; Bessa, Rui J B

    2013-01-01

    Lipid metabolism in the rumen is responsible for the complex fatty acid profile of rumen outflow compared with the dietary fatty acid composition, contributing to the lipid profile of ruminant products. A method for the detailed dimethylacetal and fatty acid analysis of rumen contents was developed and applied to rumen content collected from lambs fed lucerne or concentrate based diets supplemented with soybean oil. The methodological approach developed consisted on a basic/acid direct transesterification followed by thin-layer chromatography to isolate fatty acid methyl esters from dimethylacetal, oxo- fatty acid and fatty acid dimethylesters. The dimethylacetal composition was quite similar to the fatty acid composition, presenting even-, odd- and branched-chain structures. Total and individual odd- and branched-chain dimethylacetals were mostly affected by basal diet. The presence of 18:1 dimethylacetals indicates that biohydrogenation intermediates might be incorporated in structural microbial lipids. Moreover, medium-chain fatty acid dimethylesters were identified for the first time in the rumen content despite their concentration being relatively low. The fatty acids containing 18 carbon-chain lengths comprise the majority of the fatty acids present in the rumen content, most of them being biohydrogenation intermediates of 18:2n-6 and 18:3n-3. Additionally, three oxo- fatty acids were identified in rumen samples, and 16-O-18:0 might be produced during biohydrogenation of the 18:3n-3.

  6. Antioxidant and cyclooxygenase activities of fatty acids found in food.

    Science.gov (United States)

    Henry, Geneive E; Momin, Rafikali A; Nair, Muraleedharan G; Dewitt, David L

    2002-04-10

    Several commercially available C-8 to C-24 saturated and unsaturated fatty acids (1-29) were assayed for cyclooxygenase-I (COX-I) and cyclooxygenase-II (COX-II) inhibitory and antioxidant activities. Among the saturated fatty acids tested at 60 microg mL(-1), there was an increase in antioxidant activity with increasing chain length from octanoic acid to myristic acid (C-8-C-14) and a decrease thereafter. All unsaturated fatty acids tested at 60 microg mL(-1) showed good antioxidant activity except for undecylenic acid (12), cis-5-dodecenoic acid (13), and nervonic acid (29). The highest inhibitory activities among the saturated fatty acids tested on cyclooxygenase enzymes COX-I and COX-II were observed for decanoic acid to lauric acid (3-5) at 100 microg mL(-1). Similarly, among the unsaturated fatty acids tested, the highest activities were observed for cis-8,11,14-eicosatrienoic acid (25) and cis-13,16-docosadienoic acid (27) at 100 microg mL(-1).

  7. Thermal and mechanical properties of fatty acid starch esters.

    Science.gov (United States)

    Winkler, H; Vorwerg, W; Rihm, R

    2014-02-15

    The current study examined thermal and mechanical properties of fatty acid starch esters (FASEs). All highly soluble esters were obtained by the sustainable, homogeneous transesterification of fatty acid vinyl esters in dimethylsulfoxide (DMSO). Casted films of products with a degree of substitution (DS) of 1.40-1.73 were compared with highly substituted ones (DS 2.20-2.63). All films were free of any plasticizer additives. Hydrophobic surfaces were characterized by contact angle measurements. Dynamic scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA) revealed thermal transitions (T(g), T(m)) which were influenced by the internal plasticizing effect of the ester groups. Thermal gravimetric analysis (TGA) measurements showed the increased thermal stability toward native starch. Tensile tests revealed the decreasing strength and stiffness of the products with increasing ester-group chain length while the elongation increased up to the ester group laurate and after that decreased. Esters of the longest fatty acids, palmitate and stearate turned out to be brittle materials due to super molecular structures of the ester chains such as confirmed by X-ray. Summarized products with a DS 1.40-1.73 featured more "starch-like" properties with tensile strength up to outstanding 43 MPa, while products with a DS >2 behaved more "oil-like". Both classes of esters should be tested as a serious alternative to commercial starch blends and petrol-based plastics. The term Cnumber is attributed to the number of total C-Atoms of the fatty acid (e.g. C6=Hexanoate). Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Fatty acid profile and cholesterol and retinol contents in different locations of Celta pig breed

    Directory of Open Access Journals (Sweden)

    Domínguez, R.

    2014-09-01

    Full Text Available The fatty acid profile (total, neutral and polar lipids and cholesterol and retinol contents of the intramuscular -Longissimus dorsi (LD and Psoas major (PM-, adipose -rump, covering Biceps femoris muscle, ventral and dorsal-, perirenal and hepatic fat of the Celta pig breed (Galicia, northwest Spain were evaluated. Oleic acid was the most abundant fatty acid, except in the polar lipids of the intramuscular fat, where the most abundant fatty acid was linoleic acid. The fatty acid composition of total and neutral lipids was influenced more by the location than the fatty acids of polar lipids. There were some differences only in minor fatty acids of intramuscular and subcutaneous fat between castrated females and castrated males. The fatty acids of neutral lipids were also more influenced by sex than the fatty acids of polar lipids. The cholesterol and retinol contents showed no significant differences by sex. The LD muscle showed a higher content of intramuscular fat than the PM muscle. The greatest cholesterol values were described in the liver. Subcutaneous locations showed higher cholesterol levels than muscles.Se estudió el perfil de los ácidos grasos y los contenidos en colesterol y retinol en la grasa intramuscular - Longissimus dorsi (LD y Psoas mayor (PM -, subcutánea -grupa, ventral, dorsal y la grasa que rodea al músculo Bíceps femoris -, perirrenal y hepática de cerdos de raza Celta (Galicia, noroeste de España. El ácido oleico fue el ácido graso más importante, excepto en los lípidos polares de la grasa intramuscular, donde el ácido graso más abundante fue el ácido linoleico. La composición de ácidos grasos de los lípidos totales y neutros estuvo más influenciada por la localización grasa que los ácidos grasos de los lípidos polares. Se encontraron ligeras diferencias entre hembras y machos castrados en algunos ácidos grasos minoritarios en la grasa intramuscular y subcutánea. Los ácidos grasos de los l

  9. Abnormal fatty acid pattern in the superior temporal gyrus distinguishes bipolar disorder from major depression and schizophrenia and resembles multiple sclerosis.

    Science.gov (United States)

    McNamara, Robert K; Rider, Therese; Jandacek, Ronald; Tso, Patrick

    2014-03-30

    This study investigated the fatty acid composition of the postmortem superior temporal gyrus (STG), a cortical region implicated in emotional processing, from normal controls (n=15) and patients with bipolar disorder (BD, n=15), major depressive disorder (MDD, n=15), and schizophrenia (SZ, n=15). For comparative purposes, STG fatty acid composition was determined in a separate cohort of multiple sclerosis patients (MS, n=15) and normal controls (n=15). Compared with controls, patients with BD, but not MDD or SZ, exhibited abnormal elevations in the saturated fatty acids (SFA) palmitic acid (16:0), stearic acid (18:0), the polyunsaturated fatty acids (PUFA) linoleic acid (18:2n-6), arachidonic acid (20:4n-6), and docosahexaenoic acid (22:6n-3), and reductions in the monounsaturated fatty acid (MUFA) oleic acid (18:1n-9). The total MUFA/SFA and 18:1/18:0 ratios were lower in the STG of BD patients and were inversely correlated with total PUFA composition. MS patients exhibited a pattern of fatty acid abnormalities similar to that observed in BD patients including elevated PUFA and a lower 18:1/18:0 ratio. Collectively, these data demonstrate that BD patients exhibit a pattern of fatty acid abnormalities in the STG that is not observed in MDD and SZ patients and closely resembles MS patients. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Determination of Free Fatty Acids and Triglycerides by Gas Chromatography Using Selective Esterification Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Kail, Brian W; Link, Dirk D; Morreale, Bryan D

    2012-11-01

    A method for selectively determining both free fatty acids (FFA) and triacylglycerides (TAGs) in biological oils was investigated and optimized using gas chromatography after esterification of the target species to their corresponding fatty acid methyl esters (FAMEs). The method used acid catalyzed esterification in methanolic solutions under conditions of varying severity to achieve complete conversion of more reactive FFAs while preserving the concentration of TAGs. Complete conversion of both free acids and glycerides to corresponding FAMEs was found to require more rigorous reaction conditions involving heating to 120°C for up to 2 h. Method validation was provided using gas chromatography–flame ionization detection, gas chromatography–mass spectrometry, and liquid chromatography–mass spectrometry. The method improves on existing methods because it allows the total esterified lipid to be broken down by FAMEs contributed by FFA compared to FAMEs from both FFA and TAGs. Single and mixed-component solutions of pure fatty acids and triglycerides, as well as a sesame oil sample to simulate a complex biological oil, were used to optimize the methodologies. Key parameters that were investigated included: HCl-to-oil ratio, temperature and reaction time. Pure free fatty acids were found to esterify under reasonably mild conditions (10 min at 50°C with a 2.1:1 HCl to fatty acid ratio) with 97.6 ± 2.3% recovery as FAMEs, while triglycerides were largely unaffected under these reaction conditions. The optimized protocol demonstrated that it is possible to use esterification reactions to selectively determine the free acid content, total lipid content, and hence, glyceride content in biological oils. This protocol also allows gas chromatography analysis of FAMEs as a more ideal analyte than glyceride species in their native state.

  11. Soybean Aphid Infestation Induces Changes in Fatty Acid Metabolism in Soybean.

    Directory of Open Access Journals (Sweden)

    Charles Kanobe

    Full Text Available The soybean aphid (Aphis glycines Matsumura is one of the most important insect pests of soybeans in the North-central region of the US. It has been hypothesized that aphids avoid effective defenses by inhibition of jasmonate-regulated plant responses. Given the role fatty acids play in jasmonate-induced plant defenses, we analyzed the fatty acid profile of soybean leaves and seeds from aphid-infested plants. Aphid infestation reduced levels of polyunsaturated fatty acids in leaves with a concomitant increase in palmitic acid. In seeds, a reduction in polyunsaturated fatty acids was associated with an increase in stearic acid and oleic acid. Soybean plants challenged with the brown stem rot fungus or with soybean cyst nematodes did not present changes in fatty acid levels in leaves or seeds, indicating that the changes induced by aphids are not a general response to pests. One of the polyunsaturated fatty acids, linolenic acid, is the precursor of jasmonate; thus, these changes in fatty acid metabolism may be examples of "metabolic hijacking" by the aphid to avoid the induction of effective defenses. Based on the changes in fatty acid levels observed in seeds and leaves, we hypothesize that aphids potentially induce interference in the fatty acid desaturation pathway, likely reducing FAD2 and FAD6 activity that leads to a reduction in polyunsaturated fatty acids. Our data support the idea that aphids block jasmonate-dependent defenses by reduction of the hormone precursor.

  12. 21 CFR 573.914 - Salts of volatile fatty acids.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Salts of volatile fatty acids. 573.914 Section 573... Food Additive Listing § 573.914 Salts of volatile fatty acids. (a) Identity. The food additive is a... contains ammonium or calcium salts of volatile fatty acids and shall conform to the following...

  13. Enhancing Fatty Acid Production of Saccharomyces cerevisiae as an Animal Feed Supplement.

    Science.gov (United States)

    You, Seung Kyou; Joo, Young-Chul; Kang, Dae Hee; Shin, Sang Kyu; Hyeon, Jeong Eun; Woo, Han Min; Um, Youngsoon; Park, Chulhwan; Han, Sung Ok

    2017-12-20

    Saccharomyces cerevisiae is used for edible purposes, such as human food or as an animal feed supplement. Fatty acids are also beneficial as feed supplements, but S. cerevisiae produces small amounts of fatty acids. In this study, we enhanced fatty acid production of S. cerevisiae by overexpressing acetyl-CoA carboxylase, thioesterase, and malic enzyme associated with fatty acid metabolism. The enhanced strain pAMT showed 2.4-fold higher fatty acids than the wild-type strain. To further increase the fatty acids, various nitrogen sources were analyzed and calcium nitrate was selected as an optimal nitrogen source for fatty acid production. By concentration optimization, 672 mg/L of fatty acids was produced, which was 4.7-fold higher than wild-type strain. These results complement the low level fatty acid production and make it possible to obtain the benefits of fatty acids as an animal feed supplement while, simultaneously, maintaining the advantages of S. cerevisiae.

  14. Kefir Grains Change Fatty Acid Profile of Milk during Fermentation and Storage.

    Science.gov (United States)

    Vieira, C P; Álvares, T S; Gomes, L S; Torres, A G; Paschoalin, V M F; Conte-Junior, C A

    2015-01-01

    Several studies have reported that lactic acid bacteria may increase the production of free fatty acids by lipolysis of milk fat, though no studies have been found in the literature showing the effect of kefir grains on the composition of fatty acids in milk. In this study the influence of kefir grains from different origins [Rio de Janeiro (AR), Viçosa (AV) e Lavras (AD)], different time of storage, and different fat content on the fatty acid content of cow milk after fermentation was investigated. Fatty acid composition was determined by gas chromatography. Values were considered significantly different when p<0.05. The highest palmitic acid content, which is antimutagenic compost, was seen in AV grain (36.6g/100g fatty acids), which may have contributed to increasing the antimutagenic potential in fermented milk. Higher monounsaturated fatty acid (25.8 g/100g fatty acids) and lower saturated fatty acid (72.7 g/100g fatty acids) contents were observed in AV, when compared to other grains, due to higher Δ9-desaturase activity (0.31) that improves the nutritional quality of lipids. Higher oleic acid (25.0 g/100g fatty acids) and monounsaturated fatty acid (28.2g/100g fatty acids) and lower saturated fatty acid (67.2g/100g fatty acids) contents were found in stored kefir relatively to fermented kefir leading to possible increase of antimutagenic and anticarcinogenic potential and improvement of nutritional quality of lipids in storage milk. Only high-lipidic matrix displayed increase polyunsaturated fatty acids after fermentation. These findings open up new areas of study related to optimizing desaturase activity during fermentation in order to obtaining a fermented product with higher nutritional lipid quality.

  15. Fatty acid profile, cholesterol and oxidative status in broiler chicken ...

    African Journals Online (AJOL)

    Nazim

    2015-05-25

    May 25, 2015 ... The LO diet increased the total n-3 fatty acids and decreased the n-6 : n-3 .... the muscle samples were snap frozen in liquid nitrogen and stored at −80 ..... precursor for the synthesis of molecules such as steroid hormones, ...

  16. Ultrasonic-assisted incorporation of nano-encapsulated omega-3 fatty acids to enhance the fatty acid profile of pork meat.

    Science.gov (United States)

    Ojha, K Shikha; Perussello, Camila A; García, Carlos Álvarez; Kerry, Joseph P; Pando, Daniel; Tiwari, Brijesh K

    2017-10-01

    In this study, ultrasound was employed to enhance the diffusion of microencapsulated fatty acids into pork meat. Nanovesicles of fish oil composed of 42% EPA (eicosapentanoic acid) and 16% DHA (docosahexanoic acid) were prepared using two different commercial Pronanosome preparations (Lipo-N and Lipo-CAT; which yield cationic and non-cationic nanovesicles, respectively). The thin film hydration (TFH) methodology was employed for encapsulation. Pork meat (Musculus semitendinosus) was submerged in the nanovesicles suspension and subjected to ultrasound (US) treatment at 25kHz for either 30 or 60min. Samples were analysed for fatty acid composition using gas chromatography-flame ionisation (GC-FID). The content of long-chain PUFAs, especially omega-3, was found to increase following the US treatment which was higher for Lipo-CAT compared to Lipo-N nanovesicles. Samples subjected to Lipo-N had higher atherogenic and thrombogenic indices, indicating higher levels of saturated fatty acids compared to the Lipo-CAT. The omega-6/omega-3 ratio in pork meat was significantly reduced following the US treatment, thus indicating an improved fatty acid profile of pork. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Symbiotic zooxanthellae provide the host-coral Montipora digitata with polyunsaturated fatty acids.

    Science.gov (United States)

    Papina, M; Meziane, T; van Woesik, R

    2003-07-01

    We compared the fatty acid composition of the host-coral Montipora digitata with the fatty acid composition in the coral's endosymbiotic dinoflagellates (zooxanthellae). Fatty acids as methyl esters were determined using gas chromatography (GC) and verified by GC-mass spectrometry. We found the main difference between the fatty acids in the host and their symbionts were that zooxanthellae supported higher proportions of polyunsaturated fatty acids. The presence of fatty acids specific to dinoflagellates (i.e. 18:4omega3, 22:5omega3 and 22:6omega3) in the host tissue suggests that zooxanthellae provide the coral host not only with saturated fatty acids, but also with diverse polyunsaturated fatty acids.

  18. Protein-membrane interaction and fatty acid transfer from intestinal fatty acid-binding protein to membranes. Support for a multistep process.

    Science.gov (United States)

    Falomir-Lockhart, Lisandro J; Laborde, Lisandro; Kahn, Peter C; Storch, Judith; Córsico, Betina

    2006-05-19

    Fatty acid transfer from intestinal fatty acid-binding protein (IFABP) to phospholipid membranes occurs during protein-membrane collisions. Electrostatic interactions involving the alpha-helical "portal" region of the protein have been shown to be of great importance. In the present study, the role of specific lysine residues in the alpha-helical region of IFABP was directly examined. A series of point mutants in rat IFABP was engineered in which the lysine positive charges in this domain were eliminated or reversed. Using a fluorescence resonance energy transfer assay, we analyzed the rates and mechanism of fatty acid transfer from wild type and mutant proteins to acceptor membranes. Most of the alpha-helical domain mutants showed slower absolute fatty acid transfer rates to zwitterionic membranes, with substitution of one of the lysines of the alpha2 helix, Lys27, resulting in a particularly dramatic decrease in the fatty acid transfer rate. Sensitivity to negatively charged phospholipid membranes was also reduced, with charge reversal mutants in the alpha2 helix the most affected. The results support the hypothesis that the portal region undergoes a conformational change during protein-membrane interaction, which leads to release of the bound fatty acid to the membrane and that the alpha2 segment is of particular importance in the establishment of charge-charge interactions between IFABP and membranes. Cross-linking experiments with a phospholipid-photoactivable reagent underscored the importance of charge-charge interactions, showing that the physical interaction between wild-type intestinal fatty acid-binding protein and phospholipid membranes is enhanced by electrostatic interactions. Protein-membrane interactions were also found to be enhanced by the presence of ligand, suggesting different collisional complex structures for holo- and apo-IFABP.

  19. Macrocyclic lactones: A versatile source for omega radiohalogenated fatty acid analogs

    International Nuclear Information System (INIS)

    Dougan, A.H.; Lyster, D.M.; Robertson, K.A.; Vincent, J.S.

    1984-01-01

    For each omega halogenated fatty acid there exists a potential omega hydroxy fatty acid and the corresponding macrocyclic lactone. The authors have utilized such lactones as starting materials for omega /sup 123/I fatty acid analogs intended for myocardial imaging. Macrocyclic musk lactones are industrially available; 120 analogs are described in the literature. The preparation requires saponification, tosylation, and radio-iodide substitution. Iodo-fatty acids are readily separated from tosylate fatty acids on TLC. While providing a secure source of 16-iodo-hexadecanoic acid and 17-iodo-heptadecanoic acid, the scheme allows ready access to a large number of untried fatty acid analogs. Examples presented are 16-iodo-hexadecanoic acid, 16-iodo-7-hexadecanoic acid, 16-iodo-12-oxa-hexadecanoic acid, 15-iodo-pentadecanoic acid, and 15-iodo-12-keto-pentadecanoic acid. Metabolic studies are in progress in mice and dogs to assess the utility of these analogs for myocardial imaging

  20. Fatty acids in an estuarine mangrove ecosystem

    Directory of Open Access Journals (Sweden)

    Nabeel M Alikunhi

    2010-06-01

    Full Text Available Los ácidos grasos se han utilizado con éxito para estudiar la transferencia de materia orgánica en las redes alimentarias costeras y estuarinas. Para delinear las interacciones tróficas en las redes, se analizaron perfiles de ácidos grasos en las especies de microbios (Azotobacter vinelandii y Lactobacillus xylosus, camarones (Metapenaeus monoceros y Macrobrachium rosenbergii y peces (Mugil cephalus, que están asociadas con la descomposición de las hojas de dos especies de mangle, Rhizophora apiculata y Avicennia marina. Los ácidos grasos, con excepción de los de cadena larga, exhiben cambios durante la descomposición de las hojas de mangle, con una reducción de los ácidos grasos saturados y un aumento de los monoinsaturados. Los ácidos grasos ramificados están ausentes en las hojas de mangle sin descomponer, pero presentes de manera significativa en las hojas descompuestas, en camarones y peces, representando una fuente importante para ellos. Esto revela que los microbios son productores dominantes que contribuyen significativamente con los peces y camarones en el ecosistema de manglar. Este trabajo demuestra que los marcadores biológicos de los ácidos grasos son una herramienta eficaz para la identificación de las interacciones tróficas entre los productores dominantes y consumidores en este manglar.Fatty acids have been successfully used to trace the transfer of organic matter in coastal and estuarine food webs. To delineate these web connections, fatty acid profiles were analyzed in species of microbes (Azotobacter vinelandii, and Lactobacillus xylosus, prawns (Metapenaeus monoceros and Macrobrachium rosenbergii and finfish (Mugil cephalus, that are associated with decomposing leaves of two mangrove species, Rhizophora apiculata and Avicennia marina. The fatty acids, except long chain fatty acids, exhibit changes during decomposition of mangrove leaves with a reduction of saturated fatty acids and an increase of

  1. Thermodynamic analysis of fatty acid esterification for fatty acid alkyl esters production

    International Nuclear Information System (INIS)

    Voll, Fernando A.P.; Silva, Camila da; Rossi, Carla C.R.S.; Guirardello, Reginaldo; Castilhos, Fernanda de; Oliveira, J. Vladimir; Cardozo-Filho, Lucio

    2011-01-01

    The development of renewable energy source alternatives has become a planet need because of the unavoidable fossil fuel scarcity and for that reason biodiesel production has attracted growing interest over the last decade. The reaction yield for obtaining fatty acid alkyl esters varies significantly according to the operating conditions such as temperature and the feed reactants ratio and thus investigation of the thermodynamics involved in such reactional systems may afford important knowledge on the effects of process variables on biodiesel production. The present work reports a thermodynamic analysis of fatty acid esterification reaction at low pressure. For this purpose, Gibbs free energy minimization was employed with UNIFAC and modified Wilson thermodynamic models through a nonlinear programming model implementation. The methodology employed is shown to reproduce the most relevant investigations involving experimental studies and thermodynamic analysis.

  2. Fatty acids profile and alteration of lemon seeds extract (Citrus limon) added to soybean oil under thermoxidation.

    Science.gov (United States)

    Luzia, Débora Maria Moreno; Jorge, Neuza

    2013-10-01

    This paper aimed at evaluating fatty acids profile and the total alteration of lemon seeds extract added to soybean oil under thermoxidation, verifying the isolated and synergistic effect of these antioxidants. Therefore, Control treatments, LSE (2,400 mg/kg Lemon Seeds Extract), TBHQ (mg/kg), Mixture 1 (LSE + 50 mg/kg TBHQ) and Mixture 2 (LSE + 25 mg/kg TBHQ) were subjected to 180°C for 20 h. Samples were taken at 0, 5, 10, 15 and 20 h intervals and analyzed as for fatty acid profile and total polar compounds. Results were subjected to variance analyses and Tukey tests at a 5% significance level. An increase in the percentage of saturated fatty acids and mono-unsaturated, and decrease in polyunsaturated fatty acids was observed, regardless of the treatments studied. For total polar compounds, it was verified that Mixtures 1 and 2 presented values lower than 25% with 20 h of heating, not surpassing the limits established in many countries for disposal of oils and fats under high temperatures, thus proving the synergistic effect of antioxidants.

  3. Effects of dietary vitamin B6 supplementation on fillet fatty acid composition and fatty acid metabolism of rainbow trout fed vegetable oil based diets.

    Science.gov (United States)

    Senadheera, Shyamalie D; Turchini, Giovanni M; Thanuthong, Thanongsak; Francis, David S

    2012-03-07

    Fish oil replacement in aquaculture feeds results in major modifications to the fatty acid makeup of cultured fish. Therefore, in vivo fatty acid biosynthesis has been a topic of considerable research interest. Evidence suggests that pyridoxine (vitamin B(6)) plays a role in fatty acid metabolism, and in particular, the biosynthesis of LC-PUFA has been demonstrated in mammals. However, there is little information on the effects of dietary pyridoxine availability in fish fed diets lacking LC-PUFA. This study demonstrates a relationship between dietary pyridoxine supplementation and fatty acid metabolism in rainbow trout. In particular, the dietary pyridoxine level was shown to modulate and positively stimulate the activity of the fatty acid elongase and Δ-6 and Δ-5 desaturase enzymes, deduced by the whole-body fatty acid balance method. This activity was insufficient to compensate for a diet lacking in LC-PUFA but does highlight potential strategies to maximize this activity in cultured fish, especially when fish oil is replaced with vegetable oils.

  4. Omega-3 free fatty acids for the treatment of severe hypertriglyceridemia

    DEFF Research Database (Denmark)

    Kastelein, John J P; Maki, Kevin C; Susekov, Andrey

    2014-01-01

    Omega-3 fatty acids in free fatty acid form have enhanced bioavailability, and plasma levels are less influenced by food than for ethyl ester forms.......Omega-3 fatty acids in free fatty acid form have enhanced bioavailability, and plasma levels are less influenced by food than for ethyl ester forms....

  5. Omega-3 fatty acids, phenolic compounds and antioxidant characteristics of chia oil supplemented margarine.

    Science.gov (United States)

    Nadeem, Muhammad; Imran, Muhammad; Taj, Imran; Ajmal, Muhammad; Junaid, Muhammad

    2017-05-31

    Chia (Salvia hispanica L.) is known as power house of omega fatty acids which has great health benefits. It contains up to 78% linolenic acid (ω-3) and 18% linoleic acid (ω-6), which could be a great source of omega-3 fatty acids for functional foods. Therefore, in this study, margarines were prepared with supplementation of different concentrations of chia oil to enhance omega-3 fatty acids, antioxidant characteristics and oxidative stability of the product. Margarines were formulated from non-hydrogenated palm oil, palm kernel and butter. Margarines were supplemented with 5, 10, 15 and 20% chia oil (T 1 , T 2 , T 3 and T 4 ), respectively. Margarine without any addition of chia oil was kept as control. Margarine samples were stored at 5 °C for a period of 90 days. Physico-chemical (fat, moisture, refractive index, melting point, solid fat index, fatty acids profile, total phenolic contents, DPPH free radical scavenging activity, free fatty acids and peroxide value) and sensory characteristics were studied at the interval of 45 days. The melting point of T 1 , T 2 , T 3 and T 4 developed in current investigation were 34.2, 33.8, 33.1 and 32.5 °C, respectively. The solid fat index of control, T 1 , T 2 , T 3 and T 4 were 47.21, 22.71, 20.33, 18.12 and 16.58%, respectively. The α-linolenic acid contents in T 1 , T 2 , T 3 and T 4 were found 2.92, 5.85, 9.22, 12.29%, respectively. The concentration of eicosanoic acid in T 2 , T 3 and T 4 was 1.82, 3.52, 6.43 and 9.81%, respectively. The content of docosahexanoic acid in T 2 , T 3 and T 4 was present 1.26, 2.64, 3.49 and 5.19%, respectively. The omega-3 fatty acids were not detected in the control sample. Total phenolic contents of control, T 1 , T 2 , T 3 and T 4 samples were 0.27, 2.22, 4.15, 7.23 and 11.42 mg GAE/mL, respectively. DPPH free radical scavenging activity for control, T 1 , T 2 , T 3 and T 4 was noted 65.8, 5.37, 17.82, 24.95, 45.42 and 62.8%, respectively. Chlorogenic acid, caffeic acid

  6. Effect of exogenous fatty acids on biotin deprived death of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Shimada, Shoji; Kuraishi, Hiroshi; Aida, Ko

    1978-01-01

    The effect of exogeneous fatty acids on cell growth and death of the biotin-requiring yeast Saccharomyces cerevisiae BA-1 was examined with respect to the mechanism of synthetic pathway of fatty acid under biotin starvation. At a growth temperature of 30 0 C, exogeneous unsaturated fatty acids, such as palmitoleic, oleic, linoleic, and linolenic acids which promote the cell growth and suppress death effectively, were incorporated intactly into the cellular fatty acids, whereas the saturated fatty acid, palmitic acid, which supports growth but some what inhibits death, was once incorporated, and about 60% of incorporated palmitic acid was found to be desaturated. However, at an elevated temperature of 36 0 C, even palmitic acid showed similar effects to unsaturated fatty acids in cell growth and death; following by an increased desaturation of palmitic acid. Thus the data indicate that palmitic aicd, as well as unsaturated fatty acids directly compensate for the deficiency of endogenously synthesized fatty acids caused by biotin starvation. (auth.)

  7. Effect of chromium on the fatty acid composition of two strains of Euglena gracilis

    Energy Technology Data Exchange (ETDEWEB)

    Rocchetta, Iara [Departamento de Biodiversidad y Biologia Experimental, Universidad de Buenos Aires, Pab. II, Ciudad Universitaria, 1428 Buenos Aires (Argentina)]. E-mail: rocchetta@bg.fcen.uba.ar; Mazzuca, Marcia [Departamento de Quimica, Facultad de Ciencias Naturales, Universidad de Patagonia, Comodoro Rivadavia, Chubut (Argentina); Conforti, Visitacion [Departamento de Biodiversidad y Biologia Experimental, Universidad de Buenos Aires, Pab. II, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Ruiz, Laura [Departamento de Biodiversidad y Biologia Experimental, Universidad de Buenos Aires, Pab. II, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Balzaretti, Vilma [Departamento de Quimica, Facultad de Ciencias Naturales, Universidad de Patagonia, Comodoro Rivadavia, Chubut (Argentina); Rios de Molina, Maria del Carmen [Departamento de Quimica Biologica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pab. II, Ciudad Universitaria, 1428 Buenos Aires (Argentina)

    2006-05-15

    The effect of hexavalent chromium on fatty acid composition was studied in two strains of Euglena gracilis; UTEX 753 (from the Culture Collection of Algae of Texas University, USA) and MAT (isolated from a highly polluted River). Both were grown in photoauxotrophic and photoheterotrophic conditions and exposed to two metal concentrations, one below and one above IC{sub 5}. The high malondialdehyde (MDA) levels (3 to 7-fold) obtained with chromium concentration above IC{sub 5}, suggested the existence of metal-induced lipid peroxidation. Total lipid content increased only with concentration below IC{sub 5}, whereas it was inhibited by higher metal concentration. Photoheterotrophic control strains exhibited a significantly higher proportion of saturated and polyunsaturated fatty acids. Polyunsaturated acids were most affected by chromium, especially those related to chloroplast structures. Ultra-structure studies showed clear thylakoid disorganization in all treated cells. The results indicate that hexavalent chromium affects levels of fatty acids, especially those related to photosynthetic activity. - Fatty acid evaluation in the presence of chromium in Euglena gracilis grown in different culture conditions.

  8. Effect of chromium on the fatty acid composition of two strains of Euglena gracilis

    International Nuclear Information System (INIS)

    Rocchetta, Iara; Mazzuca, Marcia; Conforti, Visitacion; Ruiz, Laura; Balzaretti, Vilma; Rios de Molina, Maria del Carmen

    2006-01-01

    The effect of hexavalent chromium on fatty acid composition was studied in two strains of Euglena gracilis; UTEX 753 (from the Culture Collection of Algae of Texas University, USA) and MAT (isolated from a highly polluted River). Both were grown in photoauxotrophic and photoheterotrophic conditions and exposed to two metal concentrations, one below and one above IC 5 . The high malondialdehyde (MDA) levels (3 to 7-fold) obtained with chromium concentration above IC 5 , suggested the existence of metal-induced lipid peroxidation. Total lipid content increased only with concentration below IC 5 , whereas it was inhibited by higher metal concentration. Photoheterotrophic control strains exhibited a significantly higher proportion of saturated and polyunsaturated fatty acids. Polyunsaturated acids were most affected by chromium, especially those related to chloroplast structures. Ultra-structure studies showed clear thylakoid disorganization in all treated cells. The results indicate that hexavalent chromium affects levels of fatty acids, especially those related to photosynthetic activity. - Fatty acid evaluation in the presence of chromium in Euglena gracilis grown in different culture conditions

  9. Effect of Enriched Feed by n-3 fatty acids and 2% of n-6 fatty acid on Danio rerio Reproduction

    Directory of Open Access Journals (Sweden)

    N.B.P Utomo

    2007-07-01

    Full Text Available This experiment was conducted to determine the optimum n-3 fatty acid level in the diet containing 2 % of n-6 fatty acid on the reproductive performance of zebra fish (Danio rerio. There experimental diets containing 0.0; 1.0; 1.5 % n-3 fatty acid with 2.0 % n-6 fatty acid was fed to the fish, three times daily, at satiation, for two months. In order to evaluate the gonadal development of the broodstock, two gonads og fish was used for histologis preparation in every 7 days. At the end of the second month, reproductive performance was evaluated through parameters of gonad somato indeks, fecundity, fertilization rate, hatching rate, yolk egg absorbtion rate, survival rate of 3 days old larvae. Sample of fish also was taken for proximate composition as the end of this experiment. Results shows that at the fifth weeks of this experiment, gonad of fish fed on 1.0 % of n-3 fatty acid and 2.0 % n-6 fatty acid already produce eggs with the some size, while others. Still produce small size of eggs. It was found also that the whole body of fish fed an diet with 1.0% n-3 fatty acid contain the highest protein level compare to two other diets. Based on the evaluation of reproduction performance parameters, it was concluded that the optimum dietary level of n-3 fatty acid with 2.0 % n-6 fatty acid for Danio rerio was 0.81 - 0.90 %. Keywords: essential fatty, acids, reproduction, zebra fish, Danio rerio   ABSTRAK Penelitian ini bertujuan untuk menentukan kadar asam lemak n-3 optimum dalam pakan yang mempunyai kadar asam lemak n-6 tetap. Tiga macam pakan dengan kadar asam lemak n-3 berbeda yaitu 0.0; 1.0; dan 2.0 % diberikan pada ikan dengan bobot rata-rata 0.12 g. Pakan diberikan secara at satiation, 4 kali sehari selama 60 hari. Setiap 7 hari sekali diambil sampel ikan untuk pembentukan preparat histologi gonad dengan tujuan untuk mengevaluasi perkembangan gonad. Pada akhir penelitian, induk dipijahkan dan dievaluasi performan reproduksi berdasarkan

  10. Milk fat globules: fatty acid composition, size and in vivo regulation of fat liquidity.

    Science.gov (United States)

    Timmen, H; Patton, S

    1988-07-01

    Populations of large and small milk fat globules were isolated and analyzed to determine differences in fatty acid composition. Globule samples were obtained by centrifugation from milks of a herd and of individual animals produced under both pasture and barn feeding. Triacylglycerols of total globule lipids were prepared by thin layer chromatography and analyzed for fatty acid composition by gas chromatography. Using content of the acids in large globules as 100%, small globules contained fewer short-chain acids, -5.9%, less stearic acid, -22.7%, and more oleic acids, +4.6%, mean values for five trials. These differences are consistent with alternative use of short-chain acids or oleic acid converted from stearic acid to maintain liquidity at body temperature of milk fat globules and their precursors, intracellular lipid droplets. Stearyl-CoA desaturase (EC 1.14.99.5), which maintains fluidity of cellular endoplasmic reticulum membrane, is suggested to play a key role in regulating globule fat liquidity. Possible origins of differences between individual globules in fatty acid composition of their triacylglycerols are discussed.

  11. Fatty Acid Status and Its Relationship to Cognitive Decline and Homocysteine Levels in the Elderly

    Directory of Open Access Journals (Sweden)

    Marília Baierle

    2014-09-01

    Full Text Available Polyunsaturated fatty acids (PUFAs, especially the n-3 series, are known for their protective effects. Considering that cardiovascular diseases are risk factors for dementia, which is common at aging, the aim of this study was to evaluate whether fatty acid status in the elderly was associated with cognitive function and cardiovascular risk. Forty-five elderly persons (age ≥60 years were included and divided into two groups based on their Mini-Mental Status Examination score adjusted for educational level: the case group (n = 12 and the control group (n = 33. Serum fatty acid composition, homocysteine (Hcy, hs-CRP, lipid profile and different cognitive domains were evaluated. The case group, characterized by reduced cognitive performance, showed higher levels of 14:0, 16:0, 16:1n-7 fatty acids and lower levels of 22:0, 24:1n-9, 22:6n-3 (DHA and total PUFAs compared to the control group (p < 0.05. The n-6/n-3 ratio was elevated in both study groups, whereas alterations in Hcy, hs-CRP and lipid profile were observed in the case group. Cognitive function was positively associated with the 24:1n-9, DHA and total n-3 PUFAs, while 14:0, 16:0 and 16:1n-7 fatty acids, the n-6/n-3 ratio and Hcy were inversely associated. In addition, n-3 PUFAs, particularly DHA, were inversely associated with cardiovascular risk, assessed by Hcy levels in the elderly.

  12. Inhibition of fatty acid mobilization by arterial free fatty acid concentration

    DEFF Research Database (Denmark)

    Madsen, J; Bülow, J; Nielsen, N E

    1986-01-01

    Subcutaneous, inguinal adipose tissue from dogs was perfused with blood in which the free fatty acid (FFA) concentration was varied corresponding to FFA/albumin molar ratios between 1 and 6. Otherwise the composition of the perfusate was kept constant. In order to stimulate lipolysis, isoprenaline...

  13. Improved zeolite regeneration processes for preparing saturated branched-chain fatty acids

    Science.gov (United States)

    Ferrierite zeolite solid is an excellent catalyst for the skeletal isomerization of unsaturated linear-chain fatty acids (i.e., oleic acid) to unsaturated branched-chain fatty acids (i.e., iso-oleic acid) follow by hydrogenation to give saturated branched-chain fatty acids (i.e., isostearic acid). ...

  14. The effect of conjugated linoleic acid on the fatty acid composition of ...

    African Journals Online (AJOL)

    rahim aydin

    Dietary conjugated linoleic acid (CLA) was reported to increase the levels of saturated fatty ... Hence, the objective of this study was to determine the effects of dietary CLA on the fatty acid ..... silver ion-high performance liquid chromatography.

  15. Feedlot lamb meat fatty acids profile characterization employing gas chromatography

    Directory of Open Access Journals (Sweden)

    M.I. Cruz-Gonzalez

    2014-06-01

    Full Text Available Fat is an important constituent in diet, not only as an energy source, but for its essential fatty acids associated to fats in foods, considering that some polyunsaturated fatty acids like linoleic, linolenic and arachidonic cannot be synthesized by superior animals like humans. Scientific evidence show that the fatty acids ingest can affect the thrombotic tendency, cardiac rhythm, endothelial function systematic inflammation, insulin sensibility and oxidative stress. Samples from 21 ovine crossbreds from Pelibuey, Blackbelly, Dorper and Katahadin (40 kg average weight feed with corn based balanced diets were taken from loin area 18 h after refrigeration. Saturated and polyunsaturated fatty acids levels were analyzed by gas chromatography. Results in this work showed that the healthy fatty acids levels are higher as compared to saturated fatty acids levels, indicating that this meat can influence consumer’s buying choice decision regarded to their health.

  16. 21 CFR 172.852 - Glyceryl-lacto esters of fatty acids.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Glyceryl-lacto esters of fatty acids. 172.852... HUMAN CONSUMPTION Multipurpose Additives § 172.852 Glyceryl-lacto esters of fatty acids. Glyceryl-lacto esters of fatty acids (the lactic acid esters of mono- and diglycerides) may be safely used in food in...

  17. Analysis of non-esterified fatty acids in human samples by solid-phase-extraction and gas chromatography/mass spectrometry.

    Science.gov (United States)

    Kopf, Thomas; Schmitz, Gerd

    2013-11-01

    The determination of the fatty acid (FA) profile of lipid classes is essential for lipidomic analysis. We recently developed a GC/MS-method for the analysis of the FA profile of total FAs, i.e. the totality of bound and unbound FAs, in any given biological sample (TOFAs). Here, we present a method for the analysis of non-esterified fatty acids (NEFAs) in biological samples, i.e. the fraction that is present as extractable free fatty acids. Lipid extraction is performed according to Dole using 80/20 2-propanol/n-hexane (v/v), with 0.1% H2SO4. The fatty acid-species composition of this NEFA-fraction is determined as FAME after derivatization with our GC/MS-method on a BPX column (Shimadzu). Validation of the NEFA-method presented was performed in human plasma samples. The validated method has been used with human plasma, cells and tissues, as well as mammalian body fluids and tissue samples. The newly developed solid-phase-extraction (SPE)-GC-MS method allows the rapid separation of the NEFA-fraction from a neutral lipid extract of plasma samples. As a major advantage compared to G-FID-methods, GC-MS allows the use of stable isotope labeled fatty acid precursors to monitor fatty acid metabolism. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Changes in lipid content and fatty acid composition along the reproductive cycle of the freshwater mussel Dreissena polymorpha: Its modulation by clofibrate exposure

    Energy Technology Data Exchange (ETDEWEB)

    Lazzara, Raimondo; Fernandes, Denise, E-mail: deniseferna@gmail.com; Faria, Melissa; Lopez, Jordi F.; Tauler, Roma; Porte, Cinta, E-mail: cinta.porte@cid.csic.es

    2012-08-15

    Total lipids and fatty acid profiles were determined along the reproductive cycle of the zebra mussel (Dreissena polymorpha). A total of 33 fatty acids with carbon atoms from 14 to 22 were identified: palmitic acid (16:0) was the most abundant fatty acid (13-24%) followed by docosahexaenoic acid (DHA; 22:6n-3), eicosapentaenoic acid (EPA; 20:5n-3) and palmitoleic acid (16:1n-7). Some individual fatty acids (16:0, 16:2n-4, 18:1n-7, 18:2n-6, 18:3n-4, 18:4n-3, 20:4n-3, 20:5n-3) were strongly related to reproductive events, while others having structural-type functions (18:0 and 22:6n-3) were rather stable during the study period. Multivariate analysis of the whole data set using the multivariate curve resolution alternating least squares method confirmed the strong relationship of fatty acid profiles with the reproductive cycle of zebra mussel. Additionally, the effects of the pharmaceutical clofibrate on lipid composition and fatty acid profiles were assessed following 7-day exposure of zebra mussels to a wide range of concentrations (20 ng/L to 2 mg/L). A significant reduction in total triglycerides (38%-48%) together with an increase in the amount of fatty acids per gram wet weight (1.5- to 2.2-fold) was observed in the exposed mussels. This work highlights the ability of clofibrate to induce changes on the lipidome of zebra mussels at concentrations as low as 200 ng/L. -- Highlights: Black-Right-Pointing-Pointer Clofibrate exposure leads to a reduction of total triglycerides in zebra mussel. Black-Right-Pointing-Pointer The amount of fatty acids per gram wet weight increased in exposed mussels. Black-Right-Pointing-Pointer The effects were evidenced at concentrations of clofibrate as low as 200 ng/L. Black-Right-Pointing-Pointer Fatty acid profiles were closely related to reproductive events.

  19. Changes in lipid content and fatty acid composition along the reproductive cycle of the freshwater mussel Dreissena polymorpha: Its modulation by clofibrate exposure

    International Nuclear Information System (INIS)

    Lazzara, Raimondo; Fernandes, Denise; Faria, Melissa; López, Jordi F.; Tauler, Romà; Porte, Cinta

    2012-01-01

    Total lipids and fatty acid profiles were determined along the reproductive cycle of the zebra mussel (Dreissena polymorpha). A total of 33 fatty acids with carbon atoms from 14 to 22 were identified: palmitic acid (16:0) was the most abundant fatty acid (13–24%) followed by docosahexaenoic acid (DHA; 22:6n−3), eicosapentaenoic acid (EPA; 20:5n−3) and palmitoleic acid (16:1n−7). Some individual fatty acids (16:0, 16:2n−4, 18:1n−7, 18:2n−6, 18:3n−4, 18:4n−3, 20:4n−3, 20:5n−3) were strongly related to reproductive events, while others having structural-type functions (18:0 and 22:6n−3) were rather stable during the study period. Multivariate analysis of the whole data set using the multivariate curve resolution alternating least squares method confirmed the strong relationship of fatty acid profiles with the reproductive cycle of zebra mussel. Additionally, the effects of the pharmaceutical clofibrate on lipid composition and fatty acid profiles were assessed following 7-day exposure of zebra mussels to a wide range of concentrations (20 ng/L to 2 mg/L). A significant reduction in total triglycerides (38%–48%) together with an increase in the amount of fatty acids per gram wet weight (1.5- to 2.2-fold) was observed in the exposed mussels. This work highlights the ability of clofibrate to induce changes on the lipidome of zebra mussels at concentrations as low as 200 ng/L. -- Highlights: ► Clofibrate exposure leads to a reduction of total triglycerides in zebra mussel. ► The amount of fatty acids per gram wet weight increased in exposed mussels. ► The effects were evidenced at concentrations of clofibrate as low as 200 ng/L. ► Fatty acid profiles were closely related to reproductive events.

  20. Isoforms of acyl carrier protein involved in seed-specific fatty acid synthesis.

    Science.gov (United States)

    Suh, M C; Schultz, D J; Ohlrogge, J B

    1999-03-01

    Seeds of coriandrum sativum (coriander) and Thunbergia alata (black-eyed Susan vine) produce unusual monoenoic fatty acids which constitute over 80% of the total fatty acids of the seed oil. The initial step in the formation of these fatty acids is the desaturation of palmitoyl-ACP (acyl carrier protein) at the delta(4) or delta(6) positions to produce delta(4)-hexadecenoic acid (16:1(delta(4)) or delta(6)-hexadecenoic acid (16:1(delta(6)), respectively. The involvement of specific forms of ACP in the production of these novel monoenoic fatty acids was studied. ACPs were partially purified from endosperm of coriander and T. alata and used to generate 3H- and 14C-labelled palmitoyl-ACP substrates. In competition assays with labelled palmitoyl-ACP prepared from spinach (Spinacia oleracea), delta(4)-acyl-ACP desaturase activity was two- to threefold higher with coriander ACP than with spinach ACP. Similarly, the T. alata delta(6) desaturase favoured T. alata ACP over spinach ACP. A cDNA clone, Cs-ACP-1, encoding ACP was isolated from a coriander endosperm cDNA library. Cs-ACP-1 mRNA was predominantly expressed in endosperm rather than leaves. The Cs-ACP-1 mature protein was expressed in E. coli and comigrated on SDS-PAGE with the most abundant ACP expressed in endosperm tissues. In in vitro delta(4)-palmitoyl-ACP desaturase assays, the Cs-ACP-1 expressed from E. coli was four- and 10-fold more active than spinach ACP or E. coli ACP, respectively, in the synthesis of delta(4)-hexadecenoic acid from palmitoyl-ACP. In contrast, delta(9)-stearoyl-ACP desaturase activity from coriander endosperm did not discriminate strongly between different ACP species. These results indicate that individual ACP isoforms are specifically involved in the biosynthesis of unusual seed fatty acids and further suggest that expression of multiple ACP isoforms may participate in determining the products of fatty acid biosynthesis.

  1. Effect of lipid supplementation on milk fatty acid focus on rumenic acid.

    Directory of Open Access Journals (Sweden)

    Esperanza Prieto-Manrique

    2016-06-01

    Full Text Available The aim of this study was to review the effect of the lipid supplementation on the concentration of conjugated linoleic acid (CLA-c9t11 or rumenic acid and other unsaturated fatty acids in bovine milk. The study addressed the concept and origin of the CLA-c9t11 in ruminants. There is an international trend to improve nutrition quality , which implies an increase in consumption of animal protein, including the healthy and rich in CLA-c9t11 dairy products. CLA-c9t11 has proved to have anticancer effects in animal models. CLA-c9t11 in the bovine milk results from the consumption of unsaturated fatty acids and from the extent of rumen biohydrogenation. Supplementation with unsaturated fatty acids of vegetable origin allows to increase the concentration of CLA-c9t11 and to decrease the proportion of saturated fatty acids in milk, but the response varies depending on the source of fat used, its level, and its interaction with basal diet

  2. Fatty acid composition of the pollen lipids of Cycas revoluta Thunb

    International Nuclear Information System (INIS)

    Sidorov, R.A.; Kuznetsova, E.I.; Pchelkin, V.P.; Zhukov, A.V.; Gorshkova, E.N.; Tsydendambaev, V.D.

    2016-01-01

    The fatty acid (FA) composition of total extractable and non extractable with chloroform lipids of C. revoluta pollen was determined. Among other minor FAs, unusual Δ5 polymethylene-interrupted FA, Δ5, 11-octadecadienoic acid was found. This FA was found in the seed lipids of C. revoluta earlier, but it was discovered for the first time in pollen lipids. [es

  3. Pork as a Source of Omega-3 (n-3) Fatty Acids.

    Science.gov (United States)

    Dugan, Michael E R; Vahmani, Payam; Turner, Tyler D; Mapiye, Cletos; Juárez, Manuel; Prieto, Nuria; Beaulieu, Angela D; Zijlstra, Ruurd T; Patience, John F; Aalhus, Jennifer L

    2015-12-16

    Pork is the most widely eaten meat in the world, but typical feeding practices give it a high omega-6 (n-6) to omega-3 (n-3) fatty acid ratio and make it a poor source of n-3 fatty acids. Feeding pigs n-3 fatty acids can increase their contents in pork, and in countries where label claims are permitted, claims can be met with limited feeding of n-3 fatty acid enrich feedstuffs, provided contributions of both fat and muscle are included in pork servings. Pork enriched with n-3 fatty acids is, however, not widely available. Producing and marketing n-3 fatty acid enriched pork requires regulatory approval, development costs, quality control costs, may increase production costs, and enriched pork has to be tracked to retail and sold for a premium. Mandatory labelling of the n-6/n-3 ratio and the n-3 fatty acid content of pork may help drive production of n-3 fatty acid enriched pork, and open the door to population-based disease prevention polices (i.e., food tax to provide incentives to improve production practices). A shift from the status-quo, however, will require stronger signals along the value chain indicating production of n-3 fatty acid enriched pork is an industry priority.

  4. Pork as a Source of Omega-3 (n-3) Fatty Acids

    Science.gov (United States)

    Dugan, Michael E.R.; Vahmani, Payam; Turner, Tyler D.; Mapiye, Cletos; Juárez, Manuel; Prieto, Nuria; Beaulieu, Angela D.; Zijlstra, Ruurd T.; Patience, John F.; Aalhus, Jennifer L.

    2015-01-01

    Pork is the most widely eaten meat in the world, but typical feeding practices give it a high omega-6 (n-6) to omega-3 (n-3) fatty acid ratio and make it a poor source of n-3 fatty acids. Feeding pigs n-3 fatty acids can increase their contents in pork, and in countries where label claims are permitted, claims can be met with limited feeding of n-3 fatty acid enrich feedstuffs, provided contributions of both fat and muscle are included in pork servings. Pork enriched with n-3 fatty acids is, however, not widely available. Producing and marketing n-3 fatty acid enriched pork requires regulatory approval, development costs, quality control costs, may increase production costs, and enriched pork has to be tracked to retail and sold for a premium. Mandatory labelling of the n-6/n-3 ratio and the n-3 fatty acid content of pork may help drive production of n-3 fatty acid enriched pork, and open the door to population-based disease prevention polices (i.e., food tax to provide incentives to improve production practices). A shift from the status-quo, however, will require stronger signals along the value chain indicating production of n-3 fatty acid enriched pork is an industry priority. PMID:26694475

  5. Pork as a Source of Omega-3 (n-3 Fatty Acids

    Directory of Open Access Journals (Sweden)

    Michael E.R. Dugan

    2015-12-01

    Full Text Available Pork is the most widely eaten meat in the world, but typical feeding practices give it a high omega-6 (n-6 to omega-3 (n-3 fatty acid ratio and make it a poor source of n-3 fatty acids. Feeding pigs n-3 fatty acids can increase their contents in pork, and in countries where label claims are permitted, claims can be met with limited feeding of n-3 fatty acid enrich feedstuffs, provided contributions of both fat and muscle are included in pork servings. Pork enriched with n-3 fatty acids is, however, not widely available. Producing and marketing n-3 fatty acid enriched pork requires regulatory approval, development costs, quality control costs, may increase production costs, and enriched pork has to be tracked to retail and sold for a premium. Mandatory labelling of the n-6/n-3 ratio and the n-3 fatty acid content of pork may help drive production of n-3 fatty acid enriched pork, and open the door to population-based disease prevention polices (i.e., food tax to provide incentives to improve production practices. A shift from the status-quo, however, will require stronger signals along the value chain indicating production of n-3 fatty acid enriched pork is an industry priority.

  6. Fatty Acid Content of Indonesian Aquatic Microalgae

    Directory of Open Access Journals (Sweden)

    TRI PRARTONO

    2010-12-01

    Full Text Available High utilization of fossil fuel increases the level of carbon dioxide in the atmosphere and results in global warming phenomenon. These things establish the world's thought to look for the other alternative energy that can reduce the use of fossil fuel even to be replaced by the substitute. Recently, Indonesia has been doing the research of microalgae as a feedstock of an alternative biofuel. Fatty acid content that microalgae have is also high to produce biofuel. The steps used in this research is a 7 days cultivation, harvesting, extraction using hexane, and fatty acid identification using Gas Chromatography of microalgae species. Fatty acid component in some species such as Chlorella sp., Scenedesmus sp., Nannochloropsis sp., and Isochrysis sp. is between 0.21-29.5%; 0.11-25.16%; 0.30-42.32%; 2.06-37.63%, respectively, based on dry weight calculation. The high content of fatty acid in some species of microalgae showed the potential to be the feedstock of producing biofuel in overcoming the limited utilization from petroleum (fossil fuel presently.

  7. Risk of secondary lymphedema in breast cancer survivors is related to serum phospholipid fatty acid desaturation.

    Science.gov (United States)

    Ryu, Eunjung; Yim, Seung Yun; Do, Hyun Ju; Lim, Jae-Young; Yang, Eun Joo; Shin, Min-Jeong; Lee, Seung-Min

    2016-09-01

    Secondary lymphedema is a common irreversible side effect of breast cancer surgery. We investigated if risk of secondary lymphedema in breast cancer survivors was related to changes in serum phospholipid fatty acid composition. Study subjects were voluntarily recruited into the following three groups: breast cancer survivors who had sentinel lymph node biopsy without lymphedema (SLNB), those who had auxillary lymph node dissection without lymphedema (ALND), and those who had ALND with lymphedema (ALND + LE). Body mass index (BMI), serum lipid profiles, bioimpedance data with single-frequency bioimpedance analysis (SFBIA), and serum phospholipid compositions were analyzed and compared among the groups. BMI, serum total cholesterol (total-C), and low-density lipoprotein cholesterol (LDL-C) and SFBIA ratios increased only in the ALND + LE. High polyunsaturated fatty acids (PUFAs) and high C20:4 to C18:2 n-6 PUFAs (arachidonic acid [AA]/linoleic acid [LA]) was detected in the ALND and ALND + LE groups compared to SLNB. The ALND + LE group showed increased activity indices for delta 6 desaturase (D6D) and D5D and increased ratio of AA to eicosapentaenoic acid (AA/EPA) compared to the ALND and SLNB groups. Correlation and regression analysis indicated that D6D, D5D, and AA/EPA were associated with SFBIA ratios. We demonstrated that breast cancer survivors with lymphedema had elevated total PUFAs, fatty acid desaturase activity indices, and AA/EPA in serum phospholipids. Our findings suggested that desaturation extent of fatty acid composition might be related to the risk of secondary lymphedema in breast cancer survivors.

  8. Free Fatty Acids Profiles Are Related to Gut Microbiota Signatures and Short-Chain Fatty Acids

    Directory of Open Access Journals (Sweden)

    Javier Rodríguez-Carrio

    2017-07-01

    Full Text Available A growing body of evidence highlights the relevance of free fatty acids (FFA for human health, and their role in the cross talk between the metabolic status and immune system. Altered serum FFA profiles are related to several metabolic conditions, although the underlying mechanisms remain unclear. Recent studies have highlighted the link between gut microbiota and host metabolism. However, although most of the studies have focused on different clinical conditions, evidence on the role of these mediators in healthy populations is lacking. Therefore, we have addressed the analysis of the relationship among gut microbial populations, short-chain fatty acid (SCFA production, FFA levels, and immune mediators (IFNγ, IL-6, and MCP-1 in 101 human adults from the general Spanish population. Levels of selected microbial groups, representing the major phylogenetic types present in the human intestinal microbiota, were determined by quantitative PCR. Our results showed that the intestinal abundance of Akkermansia was the main predictor of total FFA serum levels, displaying a negative association with total FFA and the pro-inflammatory cytokine IL-6. Similarly, an altered FFA profile, identified by cluster analysis, was related to imbalanced levels of Akkermansia and Lactobacillus as well as increased fecal SCFA, enhanced IL-6 serum levels, and higher prevalence of subclinical metabolic alterations. Although no differences in nutritional intakes were observed, divergent patterns in the associations between nutrient intakes with intestinal microbial populations and SCFA were denoted. Overall, these findings provide new insights on the gut microbiota–host lipid metabolism axis and its potential relevance for human health, where FFA and SCFA seem to play an important role.

  9. Tailored fatty acid synthesis via dynamic control of fatty acid elongation

    Energy Technology Data Exchange (ETDEWEB)

    Torella, JP; Ford, TJ; Kim, SN; Chen, AM; Way, JC; Silver, PA

    2013-07-09

    Medium-chain fatty acids (MCFAs, 4-12 carbons) are valuable as precursors to industrial chemicals and biofuels, but are not canonical products of microbial fatty acid synthesis. We engineered microbial production of the full range of even-and odd-chain-length MCFAs and found that MCFA production is limited by rapid, irreversible elongation of their acyl-ACP precursors. To address this limitation, we programmed an essential ketoacyl synthase to degrade in response to a chemical inducer, thereby slowing acyl-ACP elongation and redirecting flux from phospholipid synthesis to MCFA production. Our results show that induced protein degradation can be used to dynamically alter metabolic flux, and thereby increase the yield of a desired compound. The strategy reported herein should be widely useful in a range of metabolic engineering applications in which essential enzymes divert flux away from a desired product, as well as in the production of polyketides, bioplastics, and other recursively synthesized hydrocarbons for which chain-length control is desired.

  10. Tailored fatty acid synthesis via dynamic control of fatty acid elongation

    Science.gov (United States)

    Torella, Joseph P.; Ford, Tyler J.; Kim, Scott N.; Chen, Amanda M.; Way, Jeffrey C.; Silver, Pamela A.

    2013-01-01

    Medium-chain fatty acids (MCFAs, 4–12 carbons) are valuable as precursors to industrial chemicals and biofuels, but are not canonical products of microbial fatty acid synthesis. We engineered microbial production of the full range of even- and odd-chain–length MCFAs and found that MCFA production is limited by rapid, irreversible elongation of their acyl-ACP precursors. To address this limitation, we programmed an essential ketoacyl synthase to degrade in response to a chemical inducer, thereby slowing acyl-ACP elongation and redirecting flux from phospholipid synthesis to MCFA production. Our results show that induced protein degradation can be used to dynamically alter metabolic flux, and thereby increase the yield of a desired compound. The strategy reported herein should be widely useful in a range of metabolic engineering applications in which essential enzymes divert flux away from a desired product, as well as in the production of polyketides, bioplastics, and other recursively synthesized hydrocarbons for which chain-length control is desired. PMID:23798438

  11. Fatty acids profile and nutritional composition of two tropical diatoms from the Costa Rican Pacific Coast

    International Nuclear Information System (INIS)

    Rodríguez-Núñez, K.; Toledo-Aguero, P.

    2017-01-01

    Microalgae represent an important nutritional source for diverse organisms, therefore, their nutritional value, and more specifically, total lipid and fatty acid contents, must be considered. This study evaluated the nutritional contents and potential growth under controlled conditions of Nitzschia sp. and Chaetoceros sp. Tropical microalgae, isolated from the Gulf of Nicoya, Costa Rica. In both strains, the nutritional composition and the fatty acid profile were evaluated in exponential and stationary phases. With regards to fatty acids, Nitzschia sp. had more Eicosapentaenoic Acid (EPA) in both the exponential (32.80%) and stationary (27.20%) phases. The results in growth rate, production and biochemical composition indicated two tropical microalgae strains suitable for cultivation under controlled conditions. The studies of the phytoplankton in this geographical area is highly relevant because of its importance in the primary production of nutrients and the importance of finding sources of fatty acids such as the EPA. [es

  12. 40 CFR 721.3629 - Triethanolamine salts of fatty acids.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Triethanolamine salts of fatty acids... Substances § 721.3629 Triethanolamine salts of fatty acids. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as triethanolamine salts of fatty...

  13. 40 CFR 721.720 - Alkoxylated fatty acid amide, alkylsulfate salt.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkoxylated fatty acid amide... Specific Chemical Substances § 721.720 Alkoxylated fatty acid amide, alkylsulfate salt. (a) Chemical... as an alkoxylated fatty acid amide, alkylsulfate salt (PMN P-97-136) is subject to reporting under...

  14. Effect of cassava wastewater on physicochemical characteristics and fatty acids composition of meat from feedlot-finished lambs

    Directory of Open Access Journals (Sweden)

    Jose Adelson Santana Neto

    2017-09-01

    Full Text Available This study aimed to evaluate the effects of includingcassava wastewater (0.0, 0.5, 1.0, or 1.5 L animal-1 day-1 in diets of feedlot-finished lambs on the physicochemical characteristics and fatty acid composition of their meat. Thirty-two uncastrated lambs atan average age of 167 days and an average body weight of 24.76 ± 3.00 kg were distributed into four groups in a completely randomized design with eight animals per group for each treatment. Inclusion of cassava wastewater linearly reduced cooking losses, shear force, and yellow intensity and linearly increased the fat content of the meat. The amounts of myristic, stearic, linoleic, and total fatty acids were changed. Additionally, an effect of cassava wastewater was observed on the amounts of saturated fatty acids, polyunsaturated fatty acids, desirable fatty acids, and n-6:n-3ratio. A positive quadratic effect was observed for the following nutritional quality indices: Δ9 desaturase 16, elongase, at herogenicity, and thrombogenicity. Cassava wastewater changesthe physicochemical characteristics and fatty acid composition of lamb meat. Furtherstudies should be carried outto more accurately determine the fatty acid composition of cassava wastewater to better understand its effectson animal nutrition.

  15. Effect of Exogenous Abscisic Acid and Methyl Jasmonate on Anthocyanin Composition, Fatty Acids, and Volatile Compounds of Cabernet Sauvignon (Vitis vinifera L.) Grape Berries.

    Science.gov (United States)

    Ju, Yan-Lun; Liu, Min; Zhao, Hui; Meng, Jiang-Fei; Fang, Yu-Lin

    2016-10-12

    The anthocyanin composition, fatty acids, and volatile aromas are important for Cabernet Sauvignon grape quality. This study evaluated the effect of exogenous abscisic acid (ABA) and methyl jasmonate (MeJA) on the anthocyanin composition, fatty acids, lipoxygenase activity, and the volatile compounds of Cabernet Sauvignon grape berries. Exogenous ABA and MeJA improved the content of total anthocyanins (TAC) and individual anthocyanins. Lipoxygenase (LOX) activity also increased after treatment. Furthermore, 16 fatty acids were detected. The linoleic acid concentration gradually increased with ABA concentration. The fatty acid content decreased with increasing MeJA concentration and then increased again, with the exception of linoleic acid. After exogenous ABA and MeJA treatment, the C6 aroma content increased significantly. Interestingly, the exogenous ABA and MeJA treatments improved mainly the content of 1-hexanol, hexanal, and 2-heptanol. These results provide insight into the effect of plant hormones on wine grapes, which is useful for grape quality improvement.

  16. Effect of Exogenous Abscisic Acid and Methyl Jasmonate on Anthocyanin Composition, Fatty Acids, and Volatile Compounds of Cabernet Sauvignon (Vitis vinifera L. Grape Berries

    Directory of Open Access Journals (Sweden)

    Yan-Lun Ju

    2016-10-01

    Full Text Available The anthocyanin composition, fatty acids, and volatile aromas are important for Cabernet Sauvignon grape quality. This study evaluated the effect of exogenous abscisic acid (ABA and methyl jasmonate (MeJA on the anthocyanin composition, fatty acids, lipoxygenase activity, and the volatile compounds of Cabernet Sauvignon grape berries. Exogenous ABA and MeJA improved the content of total anthocyanins (TAC and individual anthocyanins. Lipoxygenase (LOX activity also increased after treatment. Furthermore, 16 fatty acids were detected. The linoleic acid concentration gradually increased with ABA concentration. The fatty acid content decreased with increasing MeJA concentration and then increased again, with the exception of linoleic acid. After exogenous ABA and MeJA treatment, the C6 aroma content increased significantly. Interestingly, the exogenous ABA and MeJA treatments improved mainly the content of 1-hexanol, hexanal, and 2-heptanol. These results provide insight into the effect of plant hormones on wine grapes, which is useful for grape quality improvement.

  17. Restoration of fillet n-3 long-chain polyunsaturated fatty acid is improved by a modified fish oil finishing diet strategy for atlantic salmon (Salmo salar L.) smolts fed palm fatty acid distillate.

    Science.gov (United States)

    Codabaccus, Mohamed B; Bridle, Andrew R; Nichols, Peter D; Carter, Chris G

    2012-01-11

    Reducing the lipid content in fish prior to feeding a fish oil finishing diet (FOFD) has the potential to improve n-3 long-chain (≥ C(20)) polyunsaturated fatty acid (LC-PUFA) restoration. This study had two main objectives: (1) determine whether feeding Atlantic salmon smolt a 75% palm fatty acid distillate diet (75PFAD) improves the apparent digestibility (AD) of saturated fatty acids (SFA) and (2) examine whether a food deprivation period after growth on 75PFAD leads to higher n-3 LC-PUFA restoration in the fillet when applying a FOFD. The AD of SFA was higher for 75PFAD compared to that of a fish oil (FO) diet. The relative level (as % total fatty acids (FA)) of n-3 LC-PUFA was higher in unfed fish compared to that in continuously fed fish after 21 and 28 day FOFD periods, respectively. Our results suggest that a food deprivation period prior to feeding a FOFD improves the efficiency of n-3 LC-PUFA restoration in the fillet of Atlantic salmon smolt.

  18. Why does brain metabolism not favor burning of fatty acids to provide energy? Reflections on disadvantages of the use of free fatty acids as fuel for brain.

    Science.gov (United States)

    Schönfeld, Peter; Reiser, Georg

    2013-10-01

    It is puzzling that hydrogen-rich fatty acids are used only poorly as fuel in the brain. The long-standing belief that a slow passage of fatty acids across the blood-brain barrier might be the reason. However, this has been corrected by experimental results. Otherwise, accumulated nonesterified fatty acids or their activated derivatives could exert detrimental activities on mitochondria, which might trigger the mitochondrial route of apoptosis. Here, we draw attention to three particular problems: (1) ATP generation linked to β-oxidation of fatty acids demands more oxygen than glucose, thereby enhancing the risk for neurons to become hypoxic; (2) β-oxidation of fatty acids generates superoxide, which, taken together with the poor anti-oxidative defense in neurons, causes severe oxidative stress; (3) the rate of ATP generation based on adipose tissue-derived fatty acids is slower than that using blood glucose as fuel. Thus, in periods of extended continuous and rapid neuronal firing, fatty acid oxidation cannot guarantee rapid ATP generation in neurons. We conjecture that the disadvantages connected with using fatty acids as fuel have created evolutionary pressure on lowering the expression of the β-oxidation enzyme equipment in brain mitochondria to avoid extensive fatty acid oxidation and to favor glucose oxidation in brain.

  19. Effect of fatty acids on self-assembly of soybean lecithin systems.

    Science.gov (United States)

    Godoy, C A; Valiente, M; Pons, R; Montalvo, G

    2015-07-01

    With the increasing interest in natural formulations for drug administration and functional foods, it is desirable a good knowledge of the phase behavior of lecithin/fatty acid formulations. Phase structure and properties of ternary lecithin/fatty acids/water systems are studied at 37°C, making emphasis in regions with relatively low water and fatty acid content. The effect of fatty acid saturation degree on the phase microstructure is studied by comparing a fully saturated (palmitic acid, C16:0), monounsaturated (oleic acid, C18:1), and diunsaturated (linoleic acid, C18:2) fatty acids. Phase determinations are based on a combination of polarized light microscopy and small-angle X-ray scattering measurements. Interestingly, unsaturated (oleic acid and linoleic acid) fatty acid destabilizes the lamellar bilayer. Slight differences are observed between the phase diagrams produced by the unsaturated ones: small lamellar, medium cubic and large hexagonal regions. A narrow isotropic fluid region also appears on the lecithin-fatty acid axis, up to 8wt% water. In contrast, a marked difference in phase microsctructure was observed between unsaturated and saturated systems in which the cubic and isotropic fluid phases are not formed. These differences are, probably, a consequence of the high Krafft point of the C16 saturated chains that imply rather rigid chains. However, unsaturated fatty acids result in more flexible tails. The frequent presence of, at least, one unsaturated chain in phospholipids makes it very likely a better mixing situation than in the case of more rigid chains. This swelling potential favors the formation of reverse hexagonal, cubic, and micellar phases. Both unsaturated fatty acid systems evolve by aging, with a reduction of the extension of reverse hexagonal phase and migration of the cubic phase to lower fatty acid and water contents. The kinetic stability of the systems seems to be controlled by the unsaturation of fatty acids. Copyright © 2015

  20. In Vitro Rumen Fermentation Characteristics and Fatty Acid Profiles Added with Calcium Soap of Canola/Flaxseed Oil

    Directory of Open Access Journals (Sweden)

    S. Suharti

    2017-12-01

    Full Text Available This research aimed to assess the effect of adding canola oil and flaxseed oil which were protected with calcium soap (Ca-soap on the fermentation characteristics, rumen microbial population, and the profile of fatty acids in the rumen during 4 and 8 hours in the in vitro fermentation. The research design used in this study was a completely randomized block design with 3 treatments and 4 replications. The treatments consisted of control ration (Napier grass and concentrate at the ratio of 60 : 40, control + 6% of Ca-soap of canola oil, and control + 6% of Ca-soap of flaxseed oil. Variables observed were pH value, NH3 concentration, volatile fatty acid (VFA, dry matter and organic matter digestibility, and fatty acid profile.  The results showed that the addition of Ca-soap of canola or flaxseed oil did not affect the pH value, NH3 concentration, dry matter digestibility, organic matter digestibility, total population of bacteria and protozoa in the rumen. However, the total production of ruminal VFA was increased (P<0.05 with the addition of Ca soap of canola oil/flaxseed oil. The use of Ca-soap of flaxseed oil increased (P<0.05 the content of unsaturated fatty acids in the rumen at 4 h incubation. The addition of Ca-soap of flaxseed oil resulted the lowest (P<0.05 level of unsaturated fatty acids biohydrogenation compared to the other treatments at 4 h incubation. In conclusion, the addition of Ca soap of canola/flaxseed oil could improve VFA total production. Vegetable oils protected using calcium soap could inhibit unsaturated fatty acid biohidrogenation by rumen microbes. Ca-soap of flaxseed oil could survive from rumen biohydrogenation in the rumen better than Ca-soap of canola oil.

  1. Assessment of the fatty acid patterns in vegetable oils, fats and fat-rich foods commonly consumed in Egypt

    Directory of Open Access Journals (Sweden)

    Cantellops, Dennis

    2001-08-01

    Full Text Available Forty-one individual food samples were analyzed for their fatty acid contents by gas-liquid chromatography using capillary tubes. The samples belonged to 5 different food groups and included vegetable oils, butter & ghee, animal fats, dairy products, fishes, chicken & meats and other popular dishes. The results show that maize oil was lowest in its total saturated fatty acid content (11% and richest in linolenic acid. On the other hand, total saturated fatty acids made up 42-62 % of the total fatty acid patterns of the lamb and camel fat tallow, respectively. Long chain polyunsaturated fatty acids (C20-C22 with two to six double bonds were present only in fishes. Estimate of fat intake amounted to 36 grams per subject per day and the % contribution of the analyzed fats was presented. The ratio of polyunsaturated to saturated fatty acids amounted to 0.96; which falls within the optimum dietary goals.Cuarenta y una muestras de alimentos individuales fueron analizadas por su contenido en ácidos grasos mediante cromatografía gas-líquido usando columnas capilares. Las muestras pertenecieron a 5 grupos diferentes, incluyendo aceites vegetales, mantequilla y «ghee», grasas animales, productos lácteos, pescados, pollo y carnes, y otros platos populares. Los resultados mostraron que el aceite de maíz fue el que tuvo el más bajo contenido en ácidos grasos saturados totales (11% y el más rico en ácido linolénico. Por otro lado, los ácidos grasos saturados totales alcanzaron el 42-62% de los ácidos grasos totales del sebo de cordero y camello respectivamente. Los ácidos grasos poliinsaturados de cadena larga (C20-C22 con dos a seis dobles enlaces estuvieron presentes solo en pescados. La estimación de la ingesta ascendió a 36 g por sujeto y día, y se presenta el porcentaje de contribución de las grasas analizadas. La relación de ácidos grasos poliinsaturados a saturados ascendió a 0.96; estando dentro del óptimo alimenticio.

  2. Blood fatty acid patterns are associated with prostate cancer risk in a prospective nested case-control study.

    Science.gov (United States)

    Yang, Meng; Ayuningtyas, Azalea; Kenfield, Stacey A; Sesso, Howard D; Campos, Hannia; Ma, Jing; Stampfer, Meir J; Chavarro, Jorge E

    2016-09-01

    Circulating fatty acids are highly correlated with each other, and analyzing fatty acid patterns could better capture their interactions and their relation to prostate cancer. We aimed to assess the associations between data-derived blood fatty acid patterns and prostate cancer risk. We conducted a nested case-control study in the Physicians' Health Study. Fatty acids levels were measured in whole blood samples of 476 cases and their matched controls by age and smoking status. Fatty acid patterns were identified using principal component analysis. Conditional logistic regression was used to estimate odds ratio (OR) and 95 % confidence interval (CI). Two patterns explaining 40.9 % of total variation in blood fatty acid levels were identified. Pattern 1, which mainly reflects polyunsaturated fatty acid metabolism, was suggestively positively related to prostate cancer risk (ORquintile 5 vs. quintile 1 = 1.37, 95 % CI = 0.91-2.05, P trend = 0.07). Pattern 2, which largely reflects de novo lipogenesis, was significantly associated with higher prostate cancer risk (ORquintile5 vs. quintile1 = 1.63, 95 % CI = 1.04-2.55, P trend = 0.02). This association was similar across tumor stage, grade, clinical aggressiveness categories and follow-up time. The two patterns of fatty acids we identified were consistent with known interactions between fatty acid intake and metabolism. A pattern suggestive of higher activity in the de novo lipogenesis pathway was related to higher risk of prostate cancer.

  3. Changes over time in muscle fatty acid composition of Malaysian ...

    African Journals Online (AJOL)

    use

    2011-12-12

    Dec 12, 2011 ... Key words: Fatty acid, lipid, muscle, Malaysian mahseer, Tor tambroides. INTRODUCTION. The content of long chain n-3 polyunsaturated fatty acids. (n-3 PUFAs) differentiates fish from the other food products. These fatty acids are important beneficial nutrients for the prevention of human coronary disease,.

  4. Total and free fatty acids content during the ripening of artisan and industrially manufactured “Chorizo de cebolla”

    Directory of Open Access Journals (Sweden)

    Franco, Inmaculada

    2002-12-01

    Full Text Available "Chorizo de cebolla" is a traditional sausage made in the north west of Spain. In four batches manufactured by artisanal methods and 4 manufactured by industrial ones the contents of total and free fatty acids were assessed throughout ripening, taking from every batch samples of the mass before stuffing (0 days and of the sausage after 2, 7, 14, 21, 28 and 42 days of ripening. The profile of total fatty acids of the two types of sausage basically coincide with that found by other authors in pork fat. However, both types of sausage (artisanal and industrial differ significantly (pEl chorizo de cebolla es un embutido tradicional elaborado en el noroeste de España. En cuatro partidas fabricadas por procedimientos artesanales y 4 elaboradas industrialmente se determinó a lo largo de la maduración los contenidos en ácidos grasos totales y libres, tomando en cada partida muestras de masa antes de embutir (0 días y de chorizo a los 2, 7, 14, 21, 28 y 42 días de maduración. El perfil de ácidos grasos totales de los dos tipos de embutidos coincide básicamente con el encontrado por otros autores en grasa de cerdo. Sin embargo, ambos tipos de chorizo (artesanal e industrial difirieron significativamente (p< 0.05 en el porcentaje de ácidos grasos totales saturados e insaturados. Los chorizos elaborados artesanalmente presentaron porcentajes de ácidos grasos saturados significativamente superiores a los encontrados en los chorizos industriales. El contenido en ácidos grasos libres totales experimentó a lo largo de la maduración un incremento significativo (p< 0.05 desde valores medios de 459 ± 243 mg/100 g de grasa en la masa hasta 3687 ± 1670 mg/100 g de grasa en chorizo de 42 días, en los chorizos artesanales, y desde 560 ± 317 mg/100 g de grasa hasta 5157 ± 3673 mg/100 g en los industriales. Debido a la gran variabilidad entre las diferentes partidas, no se encontraron diferencias estadísticamente significativas en los

  5. Validation of fatty acid intakes estimated by a food frequency questionnaire using erythrocyte fatty acid profiling in the Montreal Heart Institute Biobank.

    Science.gov (United States)

    Turcot, V; Brunet, J; Daneault, C; Tardif, J C; Des Rosiers, C; Lettre, G

    2015-12-01

    To improve the prevention, treatment and risk prediction of cardiovascular diseases, genetic markers and gene-diet interactions are currently being investigated. The Montreal Heart Institute (MHI) Biobank is suitable for such studies because of its large sample size (currently, n = 17 000), the availability of biospecimens, and the collection of data on dietary intakes of saturated (SFAs) and n-3 and n-6 polyunsaturated (PUFAs) fatty acids estimated from a 14-item food frequency questionnaire (FFQ). We tested the validity of the FFQ by correlating dietary intakes of these fatty acids with their red blood cell (RBC) content in MHI Biobank participants. Seventy-five men and 75 women were selected from the Biobank. We successfully obtained RBC fatty acids for 142 subjects using gas chromatography coupled to mass spectrometry. Spearman correlation coefficients were used to test whether SFA scores and daily intakes (g day(-1)) of n-3 and n-6 PUFAs correlate with their RBC content. Based on covariate-adjusted analyses, intakes of n-3 PUFAs from vegetable sources were significantly correlated with RBC α-linolenic acid levels (ρ = 0.23, P = 0.007), whereas n-3 PUFA intakes from marine sources correlated significantly with RBC eicosapentaenoic acid (ρ = 0.29, P = 0.0008) and docosahexaenoic acid (ρ = 0.41, P = 9.2 × 10(-7)) levels. Intakes of n-6 PUFAs from vegetable sources correlated with RBC linoleic acid (ρ = 0.18, P = 0.04). SFA scores were not correlated with RBC total SFAs. The MHI Biobank 14-item FFQ can appropriately estimate daily intakes of n-3 PUFAs from vegetable and marine sources, as well as vegetable n-6 PUFAs, which enables the possibility of using these data in future studies. © 2014 The British Dietetic Association Ltd.

  6. MERCURY-CONTAMINATED FISH AND ESSENTIAL FATTY ACIDS: PROBLEMS AND SOLUTIONS

    Directory of Open Access Journals (Sweden)

    Cropotova Janna

    2012-06-01

    Full Text Available Fish consumption is an important part of human diet due to essential omega-3 fatty acids found naturally in this product. Many researchers from all over the world found that high mercury concentrations in the body reduced the heart-protective effects of the fatty acids in fish oils. People shouldn't be constrained by choosing between the health hazards related to toxins caused by industrial pollution and the nutritional benefits provided by consummation of essential fatty acids contained in oily fish. It is very important to find an alternative natural source of essential omega-3 fatty acids EPA and DHA to restore an optimal ratio between omega-6 and omega-3 fatty acids in the human diet.

  7. Fatty acid profiles in tissues of mice fed conjugated linoleic acid

    DEFF Research Database (Denmark)

    Gøttsche, Jesper; Straarup, Ellen Marie

    2006-01-01

    The incorporation of vaccenic acid (VA, 0.5 and 1.2%), conjugated linoleic acid (CLA, mixture of primarily c9,t11- and t10,c12-CLA, 1.2%), linoleic acid (LA, 1.2%) and oleic acid (OA, 1.2%) into different tissues of mice was examined. The effects on the fatty acid composition of triacylglycerols...... (TAG) and phospholipids (PL) in kidney, spleen, liver and adipose tissue were investigated. VA and CLA (c9,t11- and t10,c12-CLA) were primarily found in TAG, especially in kidney and adipose tissue, respectively. Conversion of VA to c9,t11-CLA was indicated by our results, as both fatty acids were...... incorporated into all the analyzed tissues when a diet containing VA but not c9,t11-CLA was fed. Most of the observed effects on the fatty acid profiles were seen in the CLA group, whereas only minor effects were observed in the VA groups compared with the CA group. Thus, CLA increased n-3 polyunsaturated...

  8. Oxygen uptake during the γ-irradiation of fatty acids

    International Nuclear Information System (INIS)

    Metwally, M.M.K.; Moore, J.S.

    1987-01-01

    The radiation-induced oxidation of saturated and unsaturated fatty acids in aqueous solutions has been estimated by measurement of the continuous uptake of oxygen using an oxygen electrode. Chain reactions, initiated by HO radicals, are easily identified to be occurring in the case of unsaturated fatty acids. Other mild oxidation agents, namely (SCN)2 -anion radicals, Br 2 - anion radicals and N 3 -anion radicals, are also found to be capable of oxidizing the polyunsaturated fatty acids. Evidence is presented the O 2- anion radicals may also initiate peroxidation. The oxidation of the polyunsaturated fatty acids is dependent on dose rate, fatty acid concentration, temperature and the presence of antioxidant and other protective agents. Kinetic studies of the reaction of (SCN)2 - anion radicals and Br 2 - anion radicals with linoleic and linolenic acids have been carried out using pulse radiolysis. The bimolecular rate constants for both radical species with the lipids are approx 10 7 mol-? 1 dm 3 s -1 , below their critical micelle concentrations, and decrease at higher concentrations due to micelle formation. (author)