WorldWideScience

Sample records for tomography requires correct

  1. Motion correction in thoracic positron emission tomography

    CERN Document Server

    Gigengack, Fabian; Dawood, Mohammad; Schäfers, Klaus P

    2015-01-01

    Respiratory and cardiac motion leads to image degradation in Positron Emission Tomography (PET), which impairs quantification. In this book, the authors present approaches to motion estimation and motion correction in thoracic PET. The approaches for motion estimation are based on dual gating and mass-preserving image registration (VAMPIRE) and mass-preserving optical flow (MPOF). With mass-preservation, image intensity modulations caused by highly non-rigid cardiac motion are accounted for. Within the image registration framework different data terms, different variants of regularization and parametric and non-parametric motion models are examined. Within the optical flow framework, different data terms and further non-quadratic penalization are also discussed. The approaches for motion correction particularly focus on pipelines in dual gated PET. A quantitative evaluation of the proposed approaches is performed on software phantom data with accompanied ground-truth motion information. Further, clinical appl...

  2. Partial Volume Effects correction in emission tomography

    International Nuclear Information System (INIS)

    Le Pogam, Adrien

    2010-01-01

    Partial Volume Effects (PVE) designates the blur commonly found in nuclear medicine images and this PhD work is dedicated to their correction with the objectives of qualitative and quantitative improvement of such images. PVE arise from the limited spatial resolution of functional imaging with either Positron Emission Tomography (PET) or Single Photon Emission Computed Tomography (SPECT). They can be defined as a signal loss in tissues of size similar to the Full Width at Half Maximum (FWHM) of the PSF of the imaging device. In addition, PVE induce activity cross contamination between adjacent structures with different tracer uptakes. This can lead to under or over estimation of the real activity of such analyzed regions. Various methodologies currently exist to compensate or even correct for PVE and they may be classified depending on their place in the processing chain: either before, during or after the image reconstruction process, as well as their dependency on co-registered anatomical images with higher spatial resolution, for instance Computed Tomography (CT) or Magnetic Resonance Imaging (MRI). The voxel-based and post-reconstruction approach was chosen for this work to avoid regions of interest definition and dependency on proprietary reconstruction developed by each manufacturer, in order to improve the PVE correction. Two different contributions were carried out in this work: the first one is based on a multi-resolution methodology in the wavelet domain using the higher resolution details of a co-registered anatomical image associated to the functional dataset to correct. The second one is the improvement of iterative deconvolution based methodologies by using tools such as directional wavelets and curvelets extensions. These various developed approaches were applied and validated using synthetic, simulated and clinical images, for instance with neurology and oncology applications in mind. Finally, as currently available PET/CT scanners incorporate more

  3. Neutron stimulated emission computed tomography: Background corrections

    International Nuclear Information System (INIS)

    Floyd, Carey E.; Sharma, Amy C.; Bender, Janelle E.; Kapadia, Anuj J.; Xia, Jessie Q.; Harrawood, Brian P.; Tourassi, Georgia D.; Lo, Joseph Y.; Kiser, Matthew R.; Crowell, Alexander S.; Pedroni, Ronald S.; Macri, Robert A.; Tajima, Shigeyuki; Howell, Calvin R.

    2007-01-01

    Neutron stimulated emission computed tomography (NSECT) is an imaging technique that provides an in-vivo tomographic spectroscopic image of the distribution of elements in a body. To achieve this, a neutron beam illuminates the body. Nuclei in the body along the path of the beam are stimulated by inelastic scattering of the neutrons in the beam and emit characteristic gamma photons whose unique energy identifies the element. The emitted gammas are collected in a spectrometer and form a projection intensity for each spectral line at the projection orientation of the neutron beam. Rotating and translating either the body or the beam will allow a tomographic projection set to be acquired. Images are reconstructed to represent the spatial distribution of elements in the body. Critical to this process is the appropriate removal of background gamma events from the spectrum. Here we demonstrate the equivalence of two background correction techniques and discuss the appropriate application of each

  4. Prior-based artifact correction (PBAC) in computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Heußer, Thorsten, E-mail: thorsten.heusser@dkfz-heidelberg.de; Brehm, Marcus [Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Ritschl, Ludwig [Ziehm Imaging GmbH, Donaustraße 31, 90451 Nürnberg (Germany); Sawall, Stefan; Kachelrieß, Marc [Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany and Institute of Medical Physics, Friedrich–Alexander–University (FAU) of Erlangen–Nürnberg, Henkestraße 91, 91052 Erlangen (Germany)

    2014-02-15

    Purpose: Image quality in computed tomography (CT) often suffers from artifacts which may reduce the diagnostic value of the image. In many cases, these artifacts result from missing or corrupt regions in the projection data, e.g., in the case of metal, truncation, and limited angle artifacts. The authors propose a generalized correction method for different kinds of artifacts resulting from missing or corrupt data by making use of available prior knowledge to perform data completion. Methods: The proposed prior-based artifact correction (PBAC) method requires prior knowledge in form of a planning CT of the same patient or in form of a CT scan of a different patient showing the same body region. In both cases, the prior image is registered to the patient image using a deformable transformation. The registered prior is forward projected and data completion of the patient projections is performed using smooth sinogram inpainting. The obtained projection data are used to reconstruct the corrected image. Results: The authors investigate metal and truncation artifacts in patient data sets acquired with a clinical CT and limited angle artifacts in an anthropomorphic head phantom data set acquired with a gantry-based flat detector CT device. In all cases, the corrected images obtained by PBAC are nearly artifact-free. Compared to conventional correction methods, PBAC achieves better artifact suppression while preserving the patient-specific anatomy at the same time. Further, the authors show that prominent anatomical details in the prior image seem to have only minor impact on the correction result. Conclusions: The results show that PBAC has the potential to effectively correct for metal, truncation, and limited angle artifacts if adequate prior data are available. Since the proposed method makes use of a generalized algorithm, PBAC may also be applicable to other artifacts resulting from missing or corrupt data.

  5. Prior-based artifact correction (PBAC) in computed tomography

    International Nuclear Information System (INIS)

    Heußer, Thorsten; Brehm, Marcus; Ritschl, Ludwig; Sawall, Stefan; Kachelrieß, Marc

    2014-01-01

    Purpose: Image quality in computed tomography (CT) often suffers from artifacts which may reduce the diagnostic value of the image. In many cases, these artifacts result from missing or corrupt regions in the projection data, e.g., in the case of metal, truncation, and limited angle artifacts. The authors propose a generalized correction method for different kinds of artifacts resulting from missing or corrupt data by making use of available prior knowledge to perform data completion. Methods: The proposed prior-based artifact correction (PBAC) method requires prior knowledge in form of a planning CT of the same patient or in form of a CT scan of a different patient showing the same body region. In both cases, the prior image is registered to the patient image using a deformable transformation. The registered prior is forward projected and data completion of the patient projections is performed using smooth sinogram inpainting. The obtained projection data are used to reconstruct the corrected image. Results: The authors investigate metal and truncation artifacts in patient data sets acquired with a clinical CT and limited angle artifacts in an anthropomorphic head phantom data set acquired with a gantry-based flat detector CT device. In all cases, the corrected images obtained by PBAC are nearly artifact-free. Compared to conventional correction methods, PBAC achieves better artifact suppression while preserving the patient-specific anatomy at the same time. Further, the authors show that prominent anatomical details in the prior image seem to have only minor impact on the correction result. Conclusions: The results show that PBAC has the potential to effectively correct for metal, truncation, and limited angle artifacts if adequate prior data are available. Since the proposed method makes use of a generalized algorithm, PBAC may also be applicable to other artifacts resulting from missing or corrupt data

  6. CTF Correction in Cryo-Electron Tomography

    NARCIS (Netherlands)

    Voortman, L.M.

    2014-01-01

    Nanometer resolution inside the cell will allow us to study the fundamentals of life at the smallest scale. This thesis addresses what is needed to obtain this resolution using cryo-electron tomography (CET). CET is a microscopy modality with the unique potential to visualize proteins,

  7. Evaluation of a scattering correction method for high energy tomography

    Science.gov (United States)

    Tisseur, David; Bhatia, Navnina; Estre, Nicolas; Berge, Léonie; Eck, Daniel; Payan, Emmanuel

    2018-01-01

    One of the main drawbacks of Cone Beam Computed Tomography (CBCT) is the contribution of the scattered photons due to the object and the detector. Scattered photons are deflected from their original path after their interaction with the object. This additional contribution of the scattered photons results in increased measured intensities, since the scattered intensity simply adds to the transmitted intensity. This effect is seen as an overestimation in the measured intensity thus corresponding to an underestimation of absorption. This results in artifacts like cupping, shading, streaks etc. on the reconstructed images. Moreover, the scattered radiation provides a bias for the quantitative tomography reconstruction (for example atomic number and volumic mass measurement with dual-energy technique). The effect can be significant and difficult in the range of MeV energy using large objects due to higher Scatter to Primary Ratio (SPR). Additionally, the incident high energy photons which are scattered by the Compton effect are more forward directed and hence more likely to reach the detector. Moreover, for MeV energy range, the contribution of the photons produced by pair production and Bremsstrahlung process also becomes important. We propose an evaluation of a scattering correction technique based on the method named Scatter Kernel Superposition (SKS). The algorithm uses a continuously thickness-adapted kernels method. The analytical parameterizations of the scatter kernels are derived in terms of material thickness, to form continuously thickness-adapted kernel maps in order to correct the projections. This approach has proved to be efficient in producing better sampling of the kernels with respect to the object thickness. This technique offers applicability over a wide range of imaging conditions and gives users an additional advantage. Moreover, since no extra hardware is required by this approach, it forms a major advantage especially in those cases where

  8. Evaluation of a scattering correction method for high energy tomography

    Directory of Open Access Journals (Sweden)

    Tisseur David

    2018-01-01

    Full Text Available One of the main drawbacks of Cone Beam Computed Tomography (CBCT is the contribution of the scattered photons due to the object and the detector. Scattered photons are deflected from their original path after their interaction with the object. This additional contribution of the scattered photons results in increased measured intensities, since the scattered intensity simply adds to the transmitted intensity. This effect is seen as an overestimation in the measured intensity thus corresponding to an underestimation of absorption. This results in artifacts like cupping, shading, streaks etc. on the reconstructed images. Moreover, the scattered radiation provides a bias for the quantitative tomography reconstruction (for example atomic number and volumic mass measurement with dual-energy technique. The effect can be significant and difficult in the range of MeV energy using large objects due to higher Scatter to Primary Ratio (SPR. Additionally, the incident high energy photons which are scattered by the Compton effect are more forward directed and hence more likely to reach the detector. Moreover, for MeV energy range, the contribution of the photons produced by pair production and Bremsstrahlung process also becomes important. We propose an evaluation of a scattering correction technique based on the method named Scatter Kernel Superposition (SKS. The algorithm uses a continuously thickness-adapted kernels method. The analytical parameterizations of the scatter kernels are derived in terms of material thickness, to form continuously thickness-adapted kernel maps in order to correct the projections. This approach has proved to be efficient in producing better sampling of the kernels with respect to the object thickness. This technique offers applicability over a wide range of imaging conditions and gives users an additional advantage. Moreover, since no extra hardware is required by this approach, it forms a major advantage especially in those

  9. Radial lens distortion correction with sub-pixel accuracy for X-ray micro-tomography.

    Science.gov (United States)

    Vo, Nghia T; Atwood, Robert C; Drakopoulos, Michael

    2015-12-14

    Distortion correction or camera calibration for an imaging system which is highly configurable and requires frequent disassembly for maintenance or replacement of parts needs a speedy method for recalibration. Here we present direct techniques for calculating distortion parameters of a non-linear model based on the correct determination of the center of distortion. These techniques are fast, very easy to implement, and accurate at sub-pixel level. The implementation at the X-ray tomography system of the I12 beamline, Diamond Light Source, which strictly requires sub-pixel accuracy, shows excellent performance in the calibration image and in the reconstructed images.

  10. Correction for polychromatic aberration in computed tomography images

    International Nuclear Information System (INIS)

    Naparstek, A.

    1979-01-01

    A method and apparatus for correcting a computed tomography image for polychromatic aberration caused by the non-linear interaction (i.e. the energy dependent attenuation characteristics) of different body constituents, such as bone and soft tissue, with a polychromatic X-ray beam are described in detail. An initial image is conventionally computed from path measurements made as source and detector assembly scan a body section. In the improvement, each image element of the initial computed image representing attenuation is recorded in a store and is compared with two thresholds, one representing bone and the other soft tissue. Depending on the element value relative to the thresholds, a proportion of the respective constituent is allocated to that element location and corresponding bone and soft tissue projections are determined and stored. An error projection generator calculates projections of polychromatic aberration errors in the raw image data from recalled bone and tissue projections using a multidimensional polynomial function which approximates the non-linear interaction involved. After filtering, these are supplied to an image reconstruction computer to compute image element correction values which are subtracted from raw image element values to provide a corrected reconstructed image for display. (author)

  11. Effect of oral contrast agents on computed tomography-based positron emission tomography attenuation correction in dual-modality positron emission tomography/computed tomography imaging.

    Science.gov (United States)

    Antoch, Gerald; Jentzen, Walter; Freudenberg, Lutz S; Stattaus, Jorg; Mueller, Stefan P; Debatin, Jorg F; Bockisch, Andreas

    2003-12-01

    To evaluate the effect of iodine- and barium-based contrast agents on the computed tomography (CT)-based positron emission tomography (PET) attenuation correction in dual-modality PET/CT. Experiments were conducted on a Society of Nuclear Medicine/National Electrical Manufacturers Association-PET phantom equipped with cylinders containing [18F]-2-fluoro-2-desoxy-D-glucose. The main compartment was filled with iodine (0.5-10%), barium (0.5-50%), or water (negative control). The error in attenuation correction was determined by comparison of measured tracer quantities in the presence of contrast agents with expected quantities. Contrast agent attenuation was demonstrated to be comparable to in vivo conditions. The presence of contrast agents resulted in an overestimation of the intracylindrical activity concentration on PET images and overestimation directly related to contrast concentrations (iodine 5-38%; barium 15-580%). Iodine and barium concentrations in clinical use resulted in an activity overestimation of 20 +/- 1.8% for iodine and 21 +/- 2.9% for barium. An overestimation of the tracer activity concentration is to be expected in the presence of oral contrast agents, if PET attenuation correction is attained CT-based.

  12. Attenuation correction in pulmonary and myocardial single photon emission computed tomography

    International Nuclear Information System (INIS)

    Almquist, H.

    2000-01-01

    The objective was to develop and validate methods for single photon emission computed tomography, SPECT, allowing quantitative physiologic and diagnostic studies of lung and heart. A method for correction of variable attenuation in SPECT, based on transmission measurements before administration of an isotope to the subject, was developed and evaluated. A protocol based upon geometrically well defined phantoms was developed. In a mosaic pattern phantom count rates were corrected from 39-43% to 101-110% of reference. In healthy subjects non-gravitational pulmonary perfusion gradients observed without attenuation correction were artefacts caused by attenuation. Pulmonary density in centre of right lung, obtained from the transmission measurement, was 0.28 ± 0.03 g/ml in normal subjects. Mean density was lower in large lungs compared to smaller ones. We also showed that regional ventilation/perfusion ratios could be measured with SPECT, using the readily available tracer 133 Xe. Because of the low energy of 133 Xe this relies heavily upon attenuation correction. A commercially available system for attenuation correction with simultaneous emission and transmission, considered to improve myocardial SPECT, performed erroneously. This could lead to clinical misjudgement. We considered that manufacturer-independent pre-clinical tests are required. In a test of two other commercial systems, based on different principles, an adapted variant of our initial protocol was proven useful. Only one of the systems provided correct emission count rates independently on phantom configuration. Errors in the other system were related to inadequate compensation of the influence of emission activity on the transmission study

  13. Phase estimation for global defocus correction in optical coherence tomography

    DEFF Research Database (Denmark)

    Jensen, Mikkel; Israelsen, Niels Møller; Podoleanu, Adrian

    2017-01-01

    In this work we investigate three techniques for estimation of the non-linear phase present due to defocus in opticalcoherence tomography, and apply them with the angular spectrum method. The techniques are: Least squarestting the of unwrapped phase of the angular spectrum, iterative optimization...

  14. 78 FR 29247 - Contractor Legal Management Requirements; Acquisition Regulations; Correction

    Science.gov (United States)

    2013-05-20

    ... Part 952 RIN 1990-AA37 Contractor Legal Management Requirements; Acquisition Regulations; Correction..., on May 14, 2013. Paul Bosco, Director, Office of Acquisition and Project Management. BILLING CODE..., DOE revised existing regulations covering contractor legal management requirements. Conforming...

  15. Correction of computed tomography motion artifacts using pixel-specific back-projection

    International Nuclear Information System (INIS)

    Ritchie, C.J.; Crawford, C.R.; Godwin, J.D.; Kim, Y. King, K.F.

    1996-01-01

    Cardiac and respiratory motion can cause artifacts in computed tomography scans of the chest. The authors describe a new method for reducing these artifacts called pixel-specific back-projection (PSBP). PSBP reduces artifacts caused by in-plane motion by reconstructing each pixel in a frame of reference that moves with the in-plane motion in the volume being scanned. The motion of the frame of reference is specified by constructing maps that describe the motion of each pixel in the image at the time each projection was measured; these maps are based on measurements of the in-plane motion. PSBP has been tested in computer simulations and with volunteer data. In computer simulations, PSBP removed the structured artifacts caused by motion. In scans of two volunteers, PSBP reduced doubling and streaking in chest scans to a level that made the images clinically useful. PSBP corrections of liver scans were less satisfactory because the motion of the liver is predominantly superior-inferior (S-I). PSBP uses a unique set of motion parameters to describe the motion at each point in the chest as opposed to requiring that the motion be described by a single set of parameters. Therefore, PSBP may be more useful in correcting clinical scans than are other correction techniques previously described

  16. Attenuation correction in pulmonary and myocardial single photon emission computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Almquist, H

    2000-01-01

    The objective was to develop and validate methods for single photon emission computed tomography, SPECT, allowing quantitative physiologic and diagnostic studies of lung and heart. A method for correction of variable attenuation in SPECT, based on transmission measurements before administration of an isotope to the subject, was developed and evaluated. A protocol based upon geometrically well defined phantoms was developed. In a mosaic pattern phantom count rates were corrected from 39-43% to 101-110% of reference. In healthy subjects non-gravitational pulmonary perfusion gradients observed without attenuation correctionwere artefacts caused by attenuation. Pulmonary density in centre of right lung, obtained from the transmission measurement, was 0.28 {+-} 0.03 g/ml in normal subjects. Mean density was lower in large lungs compared to smaller ones. We also showed that regional ventilation/perfusion ratios could be measured with SPECT, using the readily available tracer {sup 133}Xe. Because of the low energy of {sup 133}Xe this relies heavily upon attenuation correction. A commercially available system for attenuation correction with simultaneous emission and transmission, considered to improve myocardial SPECT, performed erroneously. This could lead to clinical misjudgement. We considered that manufacturer-independent pre-clinical tests are required. In a test of two other commercial systems, based on different principles, an adapted variant of our initial protocol was proven useful. Only one of the systems provided correct emission count rates independently on phantom configuration. Errors in the other system were related to inadequate compensation of the influence of emission activity on the transmission study.

  17. A rigid motion correction method for helical computed tomography (CT)

    International Nuclear Information System (INIS)

    Kim, J-H; Kyme, A; Fulton, R; Nuyts, J; Kuncic, Z

    2015-01-01

    We propose a method to compensate for six degree-of-freedom rigid motion in helical CT of the head. The method is demonstrated in simulations and in helical scans performed on a 16-slice CT scanner. Scans of a Hoffman brain phantom were acquired while an optical motion tracking system recorded the motion of the bed and the phantom. Motion correction was performed by restoring projection consistency using data from the motion tracking system, and reconstructing with an iterative fully 3D algorithm. Motion correction accuracy was evaluated by comparing reconstructed images with a stationary reference scan. We also investigated the effects on accuracy of tracker sampling rate, measurement jitter, interpolation of tracker measurements, and the synchronization of motion data and CT projections. After optimization of these aspects, motion corrected images corresponded remarkably closely to images of the stationary phantom with correlation and similarity coefficients both above 0.9. We performed a simulation study using volunteer head motion and found similarly that our method is capable of compensating effectively for realistic human head movements. To the best of our knowledge, this is the first practical demonstration of generalized rigid motion correction in helical CT. Its clinical value, which we have yet to explore, may be significant. For example it could reduce the necessity for repeat scans and resource-intensive anesthetic and sedation procedures in patient groups prone to motion, such as young children. It is not only applicable to dedicated CT imaging, but also to hybrid PET/CT and SPECT/CT, where it could also ensure an accurate CT image for lesion localization and attenuation correction of the functional image data. (paper)

  18. A rigid motion correction method for helical computed tomography (CT)

    Science.gov (United States)

    Kim, J.-H.; Nuyts, J.; Kyme, A.; Kuncic, Z.; Fulton, R.

    2015-03-01

    We propose a method to compensate for six degree-of-freedom rigid motion in helical CT of the head. The method is demonstrated in simulations and in helical scans performed on a 16-slice CT scanner. Scans of a Hoffman brain phantom were acquired while an optical motion tracking system recorded the motion of the bed and the phantom. Motion correction was performed by restoring projection consistency using data from the motion tracking system, and reconstructing with an iterative fully 3D algorithm. Motion correction accuracy was evaluated by comparing reconstructed images with a stationary reference scan. We also investigated the effects on accuracy of tracker sampling rate, measurement jitter, interpolation of tracker measurements, and the synchronization of motion data and CT projections. After optimization of these aspects, motion corrected images corresponded remarkably closely to images of the stationary phantom with correlation and similarity coefficients both above 0.9. We performed a simulation study using volunteer head motion and found similarly that our method is capable of compensating effectively for realistic human head movements. To the best of our knowledge, this is the first practical demonstration of generalized rigid motion correction in helical CT. Its clinical value, which we have yet to explore, may be significant. For example it could reduce the necessity for repeat scans and resource-intensive anesthetic and sedation procedures in patient groups prone to motion, such as young children. It is not only applicable to dedicated CT imaging, but also to hybrid PET/CT and SPECT/CT, where it could also ensure an accurate CT image for lesion localization and attenuation correction of the functional image data.

  19. Metric-based method of software requirements correctness improvement

    Directory of Open Access Journals (Sweden)

    Yaremchuk Svitlana

    2017-01-01

    Full Text Available The work highlights the most important principles of software reliability management (SRM. The SRM concept construes a basis for developing a method of requirements correctness improvement. The method assumes that complicated requirements contain more actual and potential design faults/defects. The method applies a newer metric to evaluate the requirements complexity and double sorting technique evaluating the priority and complexity of a particular requirement. The method enables to improve requirements correctness due to identification of a higher number of defects with restricted resources. Practical application of the proposed method in the course of demands review assured a sensible technical and economic effect.

  20. Evaluation of attenuation and scatter correction requirements in small animal PET and SPECT imaging

    Science.gov (United States)

    Konik, Arda Bekir

    Positron emission tomography (PET) and single photon emission tomography (SPECT) are two nuclear emission-imaging modalities that rely on the detection of high-energy photons emitted from radiotracers administered to the subject. The majority of these photons are attenuated (absorbed or scattered) in the body, resulting in count losses or deviations from true detection, which in turn degrades the accuracy of images. In clinical emission tomography, sophisticated correction methods are often required employing additional x-ray CT or radionuclide transmission scans. Having proven their potential in both clinical and research areas, both PET and SPECT are being adapted for small animal imaging. However, despite the growing interest in small animal emission tomography, little scientific information exists about the accuracy of these correction methods on smaller size objects, and what level of correction is required. The purpose of this work is to determine the role of attenuation and scatter corrections as a function of object size through simulations. The simulations were performed using Interactive Data Language (IDL) and a Monte Carlo based package, Geant4 application for emission tomography (GATE). In IDL simulations, PET and SPECT data acquisition were modeled in the presence of attenuation. A mathematical emission and attenuation phantom approximating a thorax slice and slices from real PET/CT data were scaled to 5 different sizes (i.e., human, dog, rabbit, rat and mouse). The simulated emission data collected from these objects were reconstructed. The reconstructed images, with and without attenuation correction, were compared to the ideal (i.e., non-attenuated) reconstruction. Next, using GATE, scatter fraction values (the ratio of the scatter counts to the total counts) of PET and SPECT scanners were measured for various sizes of NEMA (cylindrical phantoms representing small animals and human), MOBY (realistic mouse/rat model) and XCAT (realistic human model

  1. X-ray scatter correction method for dedicated breast computed tomography: improvements and initial patient testing

    NARCIS (Netherlands)

    Ramamurthy, S.; D'Orsi, C.J.; Sechopoulos, I.

    2016-01-01

    A previously proposed x-ray scatter correction method for dedicated breast computed tomography was further developed and implemented so as to allow for initial patient testing. The method involves the acquisition of a complete second set of breast CT projections covering 360 degrees with a

  2. Magnetic resonance imaging-guided attenuation and scatter corrections in three-dimensional brain positron emission tomography

    CERN Document Server

    Zaidi, H; Slosman, D O

    2003-01-01

    Reliable attenuation correction represents an essential component of the long chain of modules required for the reconstruction of artifact-free, quantitative brain positron emission tomography (PET) images. In this work we demonstrate the proof of principle of segmented magnetic resonance imaging (MRI)-guided attenuation and scatter corrections in 3D brain PET. We have developed a method for attenuation correction based on registered T1-weighted MRI, eliminating the need of an additional transmission (TX) scan. The MR images were realigned to preliminary reconstructions of PET data using an automatic algorithm and then segmented by means of a fuzzy clustering technique which identifies tissues of significantly different density and composition. The voxels belonging to different regions were classified into air, skull, brain tissue and nasal sinuses. These voxels were then assigned theoretical tissue-dependent attenuation coefficients as reported in the ICRU 44 report followed by Gaussian smoothing and additio...

  3. Corrected coronary opacification decrease from coronary computed tomography angiography: Validation with quantitative 13N-ammonia positron emission tomography.

    Science.gov (United States)

    Benz, Dominik C; Gräni, Christoph; Ferro, Paola; Neumeier, Luis; Messerli, Michael; Possner, Mathias; Clerc, Olivier F; Gebhard, Catherine; Gaemperli, Oliver; Pazhenkottil, Aju P; Kaufmann, Philipp A; Buechel, Ronny R

    2017-07-06

    To assess the functional relevance of a coronary artery stenosis, corrected coronary opacification (CCO) decrease derived from coronary computed tomography angiography (CCTA) has been proposed. The present study aims at validating CCO decrease with quantitative 13N-ammonia positron emission tomography (PET) myocardial perfusion imaging (MPI). This retrospective study consists of 39 patients who underwent hybrid CCTA/PET-MPI. From CCTA, attenuation in the coronary lumen was measured before and after a stenosis and corrected to the aorta to calculate CCO and its decrease. Relative flow reserve (RFR) was calculated by dividing the stress myocardial blood flow (MBF) of a vessel territory subtended by a stenotic coronary by the stress MBF of the reference territories without stenoses. RFR was abnormal in 11 vessel territories (27%). CCO decrease yielded a sensitivity, specificity, negative predictive value, positive predictive value, and accuracy for prediction of an abnormal RFR of 73%, 70%, 88%, 47%, and 70%, respectively. CCTA-derived CCO decrease has moderate diagnostic accuracy to predict an abnormal RFR in PET-MPI. However, its high negative predictive value to rule out functional relevance of a given lesion may confer clinical implications in the diagnostic work-up of patients with a coronary stenosis.

  4. Deconvolution based attenuation correction for time-of-flight positron emission tomography

    Science.gov (United States)

    Lee, Nam-Yong

    2017-10-01

    For an accurate quantitative reconstruction of the radioactive tracer distribution in positron emission tomography (PET), we need to take into account the attenuation of the photons by the tissues. For this purpose, we propose an attenuation correction method for the case when a direct measurement of the attenuation distribution in the tissues is not available. The proposed method can determine the attenuation factor up to a constant multiple by exploiting the consistency condition that the exact deconvolution of noise-free time-of-flight (TOF) sinogram must satisfy. Simulation studies shows that the proposed method corrects attenuation artifacts quite accurately for TOF sinograms of a wide range of temporal resolutions and noise levels, and improves the image reconstruction for TOF sinograms of higher temporal resolutions by providing more accurate attenuation correction.

  5. General rigid motion correction for computed tomography imaging based on locally linear embedding

    Science.gov (United States)

    Chen, Mianyi; He, Peng; Feng, Peng; Liu, Baodong; Yang, Qingsong; Wei, Biao; Wang, Ge

    2018-02-01

    The patient motion can damage the quality of computed tomography images, which are typically acquired in cone-beam geometry. The rigid patient motion is characterized by six geometric parameters and are more challenging to correct than in fan-beam geometry. We extend our previous rigid patient motion correction method based on the principle of locally linear embedding (LLE) from fan-beam to cone-beam geometry and accelerate the computational procedure with the graphics processing unit (GPU)-based all scale tomographic reconstruction Antwerp toolbox. The major merit of our method is that we need neither fiducial markers nor motion-tracking devices. The numerical and experimental studies show that the LLE-based patient motion correction is capable of calibrating the six parameters of the patient motion simultaneously, reducing patient motion artifacts significantly.

  6. Comparative evaluation of scatter correction techniques in 3D positron emission tomography

    CERN Document Server

    Zaidi, H

    2000-01-01

    Much research and development has been concentrated on the scatter compensation required for quantitative 3D PET. Increasingly sophisticated scatter correction procedures are under investigation, particularly those based on accurate scatter models, and iterative reconstruction-based scatter compensation approaches. The main difference among the correction methods is the way in which the scatter component in the selected energy window is estimated. Monte Carlo methods give further insight and might in themselves offer a possible correction procedure. Methods: Five scatter correction methods are compared in this paper where applicable. The dual-energy window (DEW) technique, the convolution-subtraction (CVS) method, two variants of the Monte Carlo-based scatter correction technique (MCBSC1 and MCBSC2) and our newly developed statistical reconstruction-based scatter correction (SRBSC) method. These scatter correction techniques are evaluated using Monte Carlo simulation studies, experimental phantom measurements...

  7. Quantitative assessment of scatter correction techniques incorporated in next generation dual-source computed tomography

    Science.gov (United States)

    Mobberley, Sean David

    Accurate, cross-scanner assessment of in-vivo air density used to quantitatively assess amount and distribution of emphysema in COPD subjects has remained elusive. Hounsfield units (HU) within tracheal air can be considerably more positive than -1000 HU. With the advent of new dual-source scanners which employ dedicated scatter correction techniques, it is of interest to evaluate how the quantitative measures of lung density compare between dual-source and single-source scan modes. This study has sought to characterize in-vivo and phantom-based air metrics using dual-energy computed tomography technology where the nature of the technology has required adjustments to scatter correction. Anesthetized ovine (N=6), swine (N=13: more human-like rib cage shape), lung phantom and a thoracic phantom were studied using a dual-source MDCT scanner (Siemens Definition Flash. Multiple dual-source dual-energy (DSDE) and single-source (SS) scans taken at different energy levels and scan settings were acquired for direct quantitative comparison. Density histograms were evaluated for the lung, tracheal, water and blood segments. Image data were obtained at 80, 100, 120, and 140 kVp in the SS mode (B35f kernel) and at 80, 100, 140, and 140-Sn (tin filtered) kVp in the DSDE mode (B35f and D30f kernels), in addition to variations in dose, rotation time, and pitch. To minimize the effect of cross-scatter, the phantom scans in the DSDE mode was obtained by reducing the tube current of one of the tubes to its minimum (near zero) value. When using image data obtained in the DSDE mode, the median HU values in the tracheal regions of all animals and the phantom were consistently closer to -1000 HU regardless of reconstruction kernel (chapters 3 and 4). Similarly, HU values of water and blood were consistently closer to their nominal values of 0 HU and 55 HU respectively. When using image data obtained in the SS mode the air CT numbers demonstrated a consistent positive shift of up to 35 HU

  8. Physically corrected forward operators for induced emission tomography: a simulation study

    Science.gov (United States)

    Viganò, Nicola Roberto; Solé, Vicente Armando

    2018-03-01

    X-ray emission tomography techniques over non-radioactive materials allow one to investigate different and important aspects of the matter that are usually not addressable with the standard x-ray transmission tomography, such as density, chemical composition and crystallographic information. However, the quantitative reconstruction of these investigated properties is hindered by additional problems, including the self-attenuation of the emitted radiation. Work has been done in the past, especially concerning x-ray fluorescence tomography, but this has always focused on solving very specific problems. The novelty of this work resides in addressing the problem of induced emission tomography from a much wider perspective, introducing a unified discrete representation that can be used to modify existing algorithms to reconstruct the data of the different types of experiments. The direct outcome is a clear and easy mathematical description of the implementation details of such algorithms, despite small differences in geometry and other practical aspects, but also the possibility to express the reconstruction as a minimization problem, allowing the use of variational methods, and a more flexible modeling of the noise involved in the detection process. In addition, we look at the results of a few selected simulated data reconstructions that describe the effect of physical corrections like the self-attenuation, and the response to noise of the adapted reconstruction algorithms.

  9. Developing Formal Correctness Properties from Natural Language Requirements

    Science.gov (United States)

    Nikora, Allen P.

    2006-01-01

    This viewgraph presentation reviews the rationale of the program to transform natural language specifications into formal notation.Specifically, automate generation of Linear Temporal Logic (LTL)correctness properties from natural language temporal specifications. There are several reasons for this approach (1) Model-based techniques becoming more widely accepted, (2) Analytical verification techniques (e.g., model checking, theorem proving) significantly more effective at detecting types of specification design errors (e.g., race conditions, deadlock) than manual inspection, (3) Many requirements still written in natural language, which results in a high learning curve for specification languages, associated tools and increased schedule and budget pressure on projects reduce training opportunities for engineers, and (4) Formulation of correctness properties for system models can be a difficult problem. This has relevance to NASA in that it would simplify development of formal correctness properties, lead to more widespread use of model-based specification, design techniques, assist in earlier identification of defects and reduce residual defect content for space mission software systems. The presentation also discusses: potential applications, accomplishments and/or technological transfer potential and the next steps.

  10. MRI-Based Computed Tomography Metal Artifact Correction Method for Improving Proton Range Calculation Accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Park, Peter C. [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Schreibmann, Eduard; Roper, Justin; Elder, Eric; Crocker, Ian [Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia (United States); Fox, Tim [Varian Medical Systems, Palo Alto, California (United States); Zhu, X. Ronald [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Dong, Lei [Scripps Proton Therapy Center, San Diego, California (United States); Dhabaan, Anees, E-mail: anees.dhabaan@emory.edu [Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia (United States)

    2015-03-15

    Purpose: Computed tomography (CT) artifacts can severely degrade dose calculation accuracy in proton therapy. Prompted by the recently increased popularity of magnetic resonance imaging (MRI) in the radiation therapy clinic, we developed an MRI-based CT artifact correction method for improving the accuracy of proton range calculations. Methods and Materials: The proposed method replaces corrupted CT data by mapping CT Hounsfield units (HU number) from a nearby artifact-free slice, using a coregistered MRI. MRI and CT volumetric images were registered with use of 3-dimensional (3D) deformable image registration (DIR). The registration was fine-tuned on a slice-by-slice basis by using 2D DIR. Based on the intensity of paired MRI pixel values and HU from an artifact-free slice, we performed a comprehensive analysis to predict the correct HU for the corrupted region. For a proof-of-concept validation, metal artifacts were simulated on a reference data set. Proton range was calculated using reference, artifactual, and corrected images to quantify the reduction in proton range error. The correction method was applied to 4 unique clinical cases. Results: The correction method resulted in substantial artifact reduction, both quantitatively and qualitatively. On respective simulated brain and head and neck CT images, the mean error was reduced from 495 and 370 HU to 108 and 92 HU after correction. Correspondingly, the absolute mean proton range errors of 2.4 cm and 1.7 cm were reduced to less than 2 mm in both cases. Conclusions: Our MRI-based CT artifact correction method can improve CT image quality and proton range calculation accuracy for patients with severe CT artifacts.

  11. Physics Model-Based Scatter Correction in Multi-Source Interior Computed Tomography.

    Science.gov (United States)

    Gong, Hao; Li, Bin; Jia, Xun; Cao, Guohua

    2018-02-01

    Multi-source interior computed tomography (CT) has a great potential to provide ultra-fast and organ-oriented imaging at low radiation dose. However, X-ray cross scattering from multiple simultaneously activated X-ray imaging chains compromises imaging quality. Previously, we published two hardware-based scatter correction methods for multi-source interior CT. Here, we propose a software-based scatter correction method, with the benefit of no need for hardware modifications. The new method is based on a physics model and an iterative framework. The physics model was derived analytically, and was used to calculate X-ray scattering signals in both forward direction and cross directions in multi-source interior CT. The physics model was integrated to an iterative scatter correction framework to reduce scatter artifacts. The method was applied to phantom data from both Monte Carlo simulations and physical experimentation that were designed to emulate the image acquisition in a multi-source interior CT architecture recently proposed by our team. The proposed scatter correction method reduced scatter artifacts significantly, even with only one iteration. Within a few iterations, the reconstructed images fast converged toward the "scatter-free" reference images. After applying the scatter correction method, the maximum CT number error at the region-of-interests (ROIs) was reduced to 46 HU in numerical phantom dataset and 48 HU in physical phantom dataset respectively, and the contrast-noise-ratio at those ROIs increased by up to 44.3% and up to 19.7%, respectively. The proposed physics model-based iterative scatter correction method could be useful for scatter correction in dual-source or multi-source CT.

  12. MRI-Based Computed Tomography Metal Artifact Correction Method for Improving Proton Range Calculation Accuracy

    International Nuclear Information System (INIS)

    Park, Peter C.; Schreibmann, Eduard; Roper, Justin; Elder, Eric; Crocker, Ian; Fox, Tim; Zhu, X. Ronald; Dong, Lei; Dhabaan, Anees

    2015-01-01

    Purpose: Computed tomography (CT) artifacts can severely degrade dose calculation accuracy in proton therapy. Prompted by the recently increased popularity of magnetic resonance imaging (MRI) in the radiation therapy clinic, we developed an MRI-based CT artifact correction method for improving the accuracy of proton range calculations. Methods and Materials: The proposed method replaces corrupted CT data by mapping CT Hounsfield units (HU number) from a nearby artifact-free slice, using a coregistered MRI. MRI and CT volumetric images were registered with use of 3-dimensional (3D) deformable image registration (DIR). The registration was fine-tuned on a slice-by-slice basis by using 2D DIR. Based on the intensity of paired MRI pixel values and HU from an artifact-free slice, we performed a comprehensive analysis to predict the correct HU for the corrupted region. For a proof-of-concept validation, metal artifacts were simulated on a reference data set. Proton range was calculated using reference, artifactual, and corrected images to quantify the reduction in proton range error. The correction method was applied to 4 unique clinical cases. Results: The correction method resulted in substantial artifact reduction, both quantitatively and qualitatively. On respective simulated brain and head and neck CT images, the mean error was reduced from 495 and 370 HU to 108 and 92 HU after correction. Correspondingly, the absolute mean proton range errors of 2.4 cm and 1.7 cm were reduced to less than 2 mm in both cases. Conclusions: Our MRI-based CT artifact correction method can improve CT image quality and proton range calculation accuracy for patients with severe CT artifacts

  13. Evaluation on correction factor for in-line X-ray phase contrast computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Mingli; Huang, Zhifeng; Zhang, Li; Zhang, Ran [Tsinghua Univ., Beijing (China). Dept. of Engineering Physics; Ministry of Education, Beijing (China). Key Laboratory of Particle and Radiation Imaging; Yin, Hongxia; Liu, Yunfu; Wang, Zhenchang [Capital Medical Univ., Beijing (China). Medical Imaging Center; Xiao, Tiqiao [Chinese Academy of Sciences, Shanghai (China). Shanghai Inst. of Applied Physics

    2011-07-01

    X-ray in-line phase contrast computed tomography (CT) is an effective nondestructive tool, providing 3D distribution of the refractive index of weakly absorbing low-Z object with high resolution and image contrast, especially with high-brilliance third-generation synchrotron radiation sources. Modified Bronnikov's algorithm (MBA), one of the in-line phase contrast CT reconstruction algorithms, can reconstruct the refractive index distribution of a pure phase object with a single computed tomographic data set. The key idea of the MBA is to use a correction factor in the filter function to stabilize the behavior at low frequencies. In this paper, we evaluate the influences of the correction factor to the final reconstruction results of the absorption-phase-mixed objects with analytical simulation and actual experiments. The limitations of the MBA are discussed finally. (orig.)

  14. Requirements Document for Development of a Livermore Tomography Tools Interface

    Energy Technology Data Exchange (ETDEWEB)

    Seetho, I. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-02-09

    In this document, we outline an exercise performed at LLNL to evaluate the user interface deficits of a LLNL-developed CT reconstruction software package, Livermore Tomography Tools (LTT). We observe that a difficult-to-use command line interface and the lack of support functions compound to generate a bottleneck in the CT reconstruction process when input parameters to key functions are not well known. Through the exercise of systems engineering best practices, we generate key performance parameters for a LTT interface refresh, and specify a combination of back-end (“test-mode” functions) and front-end (graphical user interface visualization and command scripting tools) solutions to LTT’s poor user interface that aim to mitigate issues and lower costs associated with CT reconstruction using LTT. Key functional and non-functional requirements and risk mitigation strategies for the solution are outlined and discussed.

  15. Correction of Motion Artifacts From Shuttle Mode Computed Tomography Acquisitions for Body Perfusion Imaging Applications.

    Science.gov (United States)

    Ghosh, Payel; Chandler, Adam G; Altinmakas, Emre; Rong, John; Ng, Chaan S

    2016-01-01

    The aim of this study was to investigate the feasibility of shuttle-mode computed tomography (CT) technology for body perfusion applications by quantitatively assessing and correcting motion artifacts. Noncontrast shuttle-mode CT scans (10 phases, 2 nonoverlapping bed locations) were acquired from 4 patients on a GE 750HD CT scanner. Shuttling effects were quantified using Euclidean distances (between-phase and between-bed locations) of corresponding fiducial points on the shuttle and reference phase scans (prior to shuttle mode). Motion correction with nonrigid registration was evaluated using sum-of-squares differences and distances between centers of segmented volumes of interest on shuttle and references images. Fiducial point analysis showed an average shuttling motion of 0.85 ± 1.05 mm (between-bed) and 1.18 ± 1.46 mm (between-phase), respectively. The volume-of-interest analysis of the nonrigid registration results showed improved sum-of-squares differences from 2950 to 597, between-bed distance from 1.64 to 1.20 mm, and between-phase distance from 2.64 to 1.33 mm, respectively, averaged over all cases. Shuttling effects introduced during shuttle-mode CT acquisitions can be computationally corrected for body perfusion applications.

  16. Patient Position Verification and Corrective Evaluation Using Cone Beam Computed Tomography (CBCT) in Intensity modulated Radiation Therapy

    International Nuclear Information System (INIS)

    Do, Gyeong Min; Jeong, Deok Yang; Kim, Young Bum

    2009-01-01

    Cone beam computed tomography (CBCT) using an on board imager (OBI) can check the movement and setup error in patient position and target volume by comparing with the image of computer simulation treatment in real.time during patient treatment. Thus, this study purposed to check the change and movement of patient position and target volume using CBCT in IMRT and calculate difference from the treatment plan, and then to correct the position using an automated match system and to test the accuracy of position correction using an electronic portal imaging device (EPID) and examine the usefulness of CBCT in IMRT and the accuracy of the automatic match system. The subjects of this study were 3 head and neck patients and 1 pelvis patient sampled from IMRT patients treated in our hospital. In order to investigate the movement of treatment position and resultant displacement of irradiated volume, we took CBCT using OBI mounted on the linear accelerator. Before each IMRT treatment, we took CBCT and checked difference from the treatment plan by coordinate by comparing it with the image of CT simulation. Then, we made correction through the automatic match system of 3D/3D match to match the treatment plan, and verified and evaluated using electronic portal imaging device. When CBCT was compared with the image of CT simulation before treatment, the average difference by coordinate in the head and neck was 0.99 mm vertically, 1.14 mm longitudinally, 4.91 mm laterally, and 1.07 degrees in the rotational direction, showing somewhat insignificant differences by part. In testing after correction, when the image from the electronic portal imaging device was compared with DRR image, it was found that correction had been made accurately with error less than 0.5 mm. By comparing a CBCT image before treatment with a 3D image reconstructed into a volume instead of a 2D image for the patient's setup error and change in the position of the organs and the target, we could measure and

  17. 76 FR 50481 - Announcement of Requirements and Registration for “Lifeline Facebook App Challenge”; Correction

    Science.gov (United States)

    2011-08-15

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Announcement of Requirements and Registration for ``Lifeline Facebook App Challenge''; Correction AGENCY: Office of the Assistant Secretary for Preparedness... Requirements and Registration for ``Lifeline Facebook App Challenge''. DATES: This correction is effective...

  18. X-ray beam hardening correction for measuring density in linear accelerator industrial computed tomography

    International Nuclear Information System (INIS)

    Zhou Rifeng; Wang Jue; Chen Weimin

    2009-01-01

    Due to X-ray attenuation being approximately proportional to material density, it is possible to measure the inner density through Industrial Computed Tomography (ICT) images accurately. In practice, however, a number of factors including the non-linear effects of beam hardening and diffuse scattered radiation complicate the quantitative measurement of density variations in materials. This paper is based on the linearization method of beam hardening correction, and uses polynomial fitting coefficient which is obtained by the curvature of iron polychromatic beam data to fit other materials. Through theoretical deduction, the paper proves that the density measure error is less than 2% if using pre-filters to make the spectrum of linear accelerator range mainly 0.3 MeV to 3 MeV. Experiment had been set up at an ICT system with a 9 MeV electron linear accelerator. The result is satisfactory. This technique makes the beam hardening correction easy and simple, and it is valuable for measuring the ICT density and making use of the CT images to recognize materials. (authors)

  19. X-ray scatter correction method for dedicated breast computed tomography: improvements and initial patient testing

    International Nuclear Information System (INIS)

    Ramamurthy, Senthil; D’Orsi, Carl J; Sechopoulos, Ioannis

    2016-01-01

    A previously proposed x-ray scatter correction method for dedicated breast computed tomography was further developed and implemented so as to allow for initial patient testing. The method involves the acquisition of a complete second set of breast CT projections covering 360° with a perforated tungsten plate in the path of the x-ray beam. To make patient testing feasible, a wirelessly controlled electronic positioner for the tungsten plate was designed and added to a breast CT system. Other improvements to the algorithm were implemented, including automated exclusion of non-valid primary estimate points and the use of a different approximation method to estimate the full scatter signal. To evaluate the effectiveness of the algorithm, evaluation of the resulting image quality was performed with a breast phantom and with nine patient images. The improvements in the algorithm resulted in the avoidance of introduction of artifacts, especially at the object borders, which was an issue in the previous implementation in some cases. Both contrast, in terms of signal difference and signal difference-to-noise ratio were improved with the proposed method, as opposed to with the correction algorithm incorporated in the system, which does not recover contrast. Patient image evaluation also showed enhanced contrast, better cupping correction, and more consistent voxel values for the different tissues. The algorithm also reduces artifacts present in reconstructions of non-regularly shaped breasts. With the implemented hardware and software improvements, the proposed method can be reliably used during patient breast CT imaging, resulting in improvement of image quality, no introduction of artifacts, and in some cases reduction of artifacts already present. The impact of the algorithm on actual clinical performance for detection, diagnosis and other clinical tasks in breast imaging remains to be evaluated. (paper)

  20. X-ray scatter correction method for dedicated breast computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Sechopoulos, Ioannis [Department of Radiology and Imaging Sciences and Winship Cancer Institute, Emory University School of Medicine, 1701 Upper Gate Drive NE, Suite 5018, Atlanta, Georgia 30322 (United States)

    2012-05-15

    Purpose: To improve image quality and accuracy in dedicated breast computed tomography (BCT) by removing the x-ray scatter signal included in the BCT projections. Methods: The previously characterized magnitude and distribution of x-ray scatter in BCT results in both cupping artifacts and reduction of contrast and accuracy in the reconstructions. In this study, an image processing method is proposed that estimates and subtracts the low-frequency x-ray scatter signal included in each BCT projection postacquisition and prereconstruction. The estimation of this signal is performed using simple additional hardware, one additional BCT projection acquisition with negligible radiation dose, and simple image processing software algorithms. The high frequency quantum noise due to the scatter signal is reduced using a noise filter postreconstruction. The dosimetric consequences and validity of the assumptions of this algorithm were determined using Monte Carlo simulations. The feasibility of this method was determined by imaging a breast phantom on a BCT clinical prototype and comparing the corrected reconstructions to the unprocessed reconstructions and to reconstructions obtained from fan-beam acquisitions as a reference standard. One-dimensional profiles of the reconstructions and objective image quality metrics were used to determine the impact of the algorithm. Results: The proposed additional acquisition results in negligible additional radiation dose to the imaged breast ({approx}0.4% of the standard BCT acquisition). The processed phantom reconstruction showed substantially reduced cupping artifacts, increased contrast between adipose and glandular tissue equivalents, higher voxel value accuracy, and no discernible blurring of high frequency features. Conclusions: The proposed scatter correction method for dedicated breast CT is feasible and can result in highly improved image quality. Further optimization and testing, especially with patient images, is necessary to

  1. Single photon emission computed tomography using a regularizing iterative method for attenuation correction

    International Nuclear Information System (INIS)

    Soussaline, Francoise; Cao, A.; Lecoq, G.

    1981-06-01

    An analytically exact solution to the attenuated tomographic operator is proposed. Such a technique called Regularizing Iterative Method (RIM) belongs to the iterative class of procedures where a priori knowledge can be introduced on the evaluation of the size and shape of the activity domain to be reconstructed, and on the exact attenuation distribution. The relaxation factor used is so named because it leads to fast convergence and provides noise filtering for a small number of iteractions. The effectiveness of such a method was tested in the Single Photon Emission Computed Tomography (SPECT) reconstruction problem, with the goal of precise correction for attenuation before quantitative study. Its implementation involves the use of a rotating scintillation camera based SPECT detector connected to a mini computer system. Mathematical simulations of cylindical uniformly attenuated phantoms indicate that in the range of a priori calculated relaxation factor a fast converging solution can always be found with a (contrast) accuracy of the order of 0.2 to 4% given that numerical errors and noise are or not, taken into account. The sensitivity of the (RIM) algorithm to errors in the size of the reconstructed object and in the value of the attenuation coefficient μ was studied, using the same simulation data. Extreme variations of +- 15% in these parameters will lead to errors of the order of +- 20% in the quantitative results. Physical phantoms representing a variety of geometrical situations were also studied

  2. 77 FR 63849 - Facility Security Officer Training Requirements; Correction

    Science.gov (United States)

    2012-10-17

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard [Docket No. USCG-2012-0908] Facility Security Officer... comments; correction. SUMMARY: The Coast Guard published a notice of public meeting; request for comments... comments on the development of a Facility Security Officer training program. The notice contains an...

  3. Improving the quantitative accuracy of optical-emission computed tomography by incorporating an attenuation correction: application to HIF1 imaging

    Science.gov (United States)

    Kim, E.; Bowsher, J.; Thomas, A. S.; Sakhalkar, H.; Dewhirst, M.; Oldham, M.

    2008-10-01

    Optical computed tomography (optical-CT) and optical-emission computed tomography (optical-ECT) are new techniques for imaging the 3D structure and function (including gene expression) of whole unsectioned tissue samples. This work presents a method of improving the quantitative accuracy of optical-ECT by correcting for the 'self'-attenuation of photons emitted within the sample. The correction is analogous to a method commonly applied in single-photon-emission computed tomography reconstruction. The performance of the correction method was investigated by application to a transparent cylindrical gelatin phantom, containing a known distribution of attenuation (a central ink-doped gelatine core) and a known distribution of fluorescing fibres. Attenuation corrected and uncorrected optical-ECT images were reconstructed on the phantom to enable an evaluation of the effectiveness of the correction. Significant attenuation artefacts were observed in the uncorrected images where the central fibre appeared ~24% less intense due to greater attenuation from the surrounding ink-doped gelatin. This artefact was almost completely removed in the attenuation-corrected image, where the central fibre was within ~4% of the others. The successful phantom test enabled application of attenuation correction to optical-ECT images of an unsectioned human breast xenograft tumour grown subcutaneously on the hind leg of a nude mouse. This tumour cell line had been genetically labelled (pre-implantation) with fluorescent reporter genes such that all viable tumour cells expressed constitutive red fluorescent protein and hypoxia-inducible factor 1 transcription-produced green fluorescent protein. In addition to the fluorescent reporter labelling of gene expression, the tumour microvasculature was labelled by a light-absorbing vasculature contrast agent delivered in vivo by tail-vein injection. Optical-CT transmission images yielded high-resolution 3D images of the absorbing contrast agent, and

  4. Graphics processing unit accelerated intensity-based optical coherence tomography angiography using differential frames with real-time motion correction.

    Science.gov (United States)

    Watanabe, Yuuki; Takahashi, Yuhei; Numazawa, Hiroshi

    2014-02-01

    We demonstrate intensity-based optical coherence tomography (OCT) angiography using the squared difference of two sequential frames with bulk-tissue-motion (BTM) correction. This motion correction was performed by minimization of the sum of the pixel values using axial- and lateral-pixel-shifted structural OCT images. We extract the BTM-corrected image from a total of 25 calculated OCT angiographic images. Image processing was accelerated by a graphics processing unit (GPU) with many stream processors to optimize the parallel processing procedure. The GPU processing rate was faster than that of a line scan camera (46.9 kHz). Our OCT system provides the means of displaying structural OCT images and BTM-corrected OCT angiographic images in real time.

  5. A new iterative reconstruction technique for attenuation correction in high-resolution positron emission tomography

    International Nuclear Information System (INIS)

    Knesaurek, K.; Machac, J.; Vallabhajosula, S.; Buchsbaum, M.S.

    1996-01-01

    A new interative reconstruction technique (NIRT) for positron emission computed tomography (PET), which uses transmission data for nonuniform attenuation correction, is described. Utilizing the general inverse problem theory, a cost functional which includes a noise term was derived. The cost functional was minimized using a weighted-least-square maximum a posteriori conjugate gradient (CG) method. The procedure involves a change in the Hessian of the cost function by adding an additional term. Two phantoms were used in a real data acquisition. The first was a cylinder phantom filled with uniformly distributed activity of 74 MBq of fluorine-18. Two different inserts were placed in the phantom. The second was a Hoffman brain phantom filled with uniformly distributed activity of 7.4 MBq of 18 F. Resulting reconstructed images were used to test and compare a new interative reconstruction technique with a standard filtered backprojection (FBP) method. The results confirmed that NIRT, based on the conjugate gradient method, converges rapidly and provides good reconstructed images. In comaprison with standard results obtained by the FBP method, the images reconstructed by NIRT showed better noise properties. The noise was measured as rms% noise and was less, by a factor of 1.75, in images reconstructed by NIRT than in the same images reconstructed by FBP. The distance between the Hoffman brain slice created from the MRI image was 0.526, while the same distance for the Hoffman brain slice reconstructed by NIRT was 0.328. The NIRT method suppressed the propagation of the noise without visible loss of resolution in the reconstructed PET images. (orig.)

  6. Computed tomography imaging parameters for inhomogeneity correction in radiation treatment planning

    Directory of Open Access Journals (Sweden)

    Indra J Das

    2016-01-01

    Full Text Available Modern treatment planning systems provide accurate dosimetry in heterogeneous media (such as a patient' body with the help of tissue characterization based on computed tomography (CT number. However, CT number depends on the type of scanner, tube voltage, field of view (FOV, reconstruction algorithm including artifact reduction and processing filters. The impact of these parameters on CT to electron density (ED conversion had been subject of investigation for treatment planning in various clinical situations. This is usually performed with a tissue characterization phantom with various density plugs acquired with different tube voltages (kilovoltage peak, FOV reconstruction and different scanners to generate CT number to ED tables. This article provides an overview of inhomogeneity correction in the context of CT scanning and a new evaluation tool, difference volume dose-volume histogram (DVH, dV-DVH. It has been concluded that scanner and CT parameters are important for tissue characterizations, but changes in ED are minimal and only pronounced for higher density materials. For lungs, changes in CT number are minimal among scanners and CT parameters. Dosimetric differences for lung and prostate cases are usually insignificant (<2% in three-dimensional conformal radiation therapy and < 5% for intensity-modulated radiation therapy (IMRT with CT parameters. It could be concluded that CT number variability is dependent on acquisition parameters, but its dosimetric impact is pronounced only in high-density media and possibly in IMRT. In view of such small dosimetric changes in low-density medium, the acquisition of additional CT data for financially difficult clinics and countries may not be warranted.

  7. 77 FR 28763 - Flightcrew Member Duty and Rest Requirements; Correction

    Science.gov (United States)

    2012-05-16

    ... holders and their flightcrew members operating certain domestic, flag, and supplemental operations. This... exceeded to the extent necessary to allow the flightcrew to fly to the closest destination where they can... follows: Sec. 121.467 Flight attendant duty period limitations and rest requirements: Domestic, flag, and...

  8. Correction of image distortions in endoscopic optical coherence tomography based on two-axis scanning MEMS mirrors

    Science.gov (United States)

    Wang, Donglin; Liang, Peng; Samuelson, Sean; Jia, Hongzhi; Ma, Junshan; Xie, Huikai

    2013-01-01

    A two-axis scanning microelectromechanical (MEMS) mirror enables an optical coherence tomography (OCT) system to perform three-dimensional endoscopic imaging due to its fast scan speed and small size. However, the radial scan from the MEMS mirror causes various distortions in OCT images, namely spherical, fan-shaped and keystone distortions. In this paper, a new method is proposed to correct all of three distortions presented in OCT systems based on two-axis MEMS scanning mirrors. The spherical distortion is corrected first by directly manipulating the original spectral interferograms in the phase domain, followed by Fourier transform and three-dimensional geometrical transformation for correcting the other two types of distortions. OCT imaging experiments on a paper with square ink printed arrays and a glass tube filled with milk have been used to validate the proposed method. Distortions in OCT images of flat or curved surfaces can all be effectively removed. PMID:24156064

  9. Efficient 3D-CTF correction for cryo-electron tomography using NovaCTF improves subtomogram averaging resolution to 3.4Å.

    Science.gov (United States)

    Turoňová, Beata; Schur, Florian K M; Wan, William; Briggs, John A G

    2017-09-01

    Cryo-electron tomography (cryo-ET) allows cellular ultrastructures and macromolecular complexes to be imaged in three-dimensions in their native environments. Cryo-electron tomograms are reconstructed from projection images taken at defined tilt-angles. In order to recover high-resolution information from cryo-electron tomograms, it is necessary to measure and correct for the contrast transfer function (CTF) of the microscope. Most commonly, this is performed using protocols that approximate the sample as a two-dimensional (2D) plane. This approximation accounts for differences in defocus and therefore CTF across the tilted sample. It does not account for differences in defocus of objects at different heights within the sample; instead, a 3D approach is required. Currently available approaches for 3D-CTF correction are computationally expensive and have not been widely implemented. Here we simulate the benefits of 3D-CTF correction for high-resolution subtomogram averaging, and present a user-friendly, computationally-efficient 3D-CTF correction tool, NovaCTF, that is compatible with standard tomogram reconstruction workflows in IMOD. We validate the approach on synthetic data and test it using subtomogram averaging of real data. Consistent with our simulations, we find that 3D-CTF correction allows high-resolution structures to be obtained with much smaller subtomogram averaging datasets than are required using 2D-CTF. We also show that using equivalent dataset sizes, 3D-CTF correction can be used to obtain higher-resolution structures. We present a 3.4Å resolution structure determined by subtomogram averaging. Copyright © 2017 MRC Laboratory of Molecular Biology. Published by Elsevier Inc. All rights reserved.

  10. Energy-angle correlation correction algorithm for monochromatic computed tomography based on Thomson scattering X-ray source

    Science.gov (United States)

    Chi, Zhijun; Du, Yingchao; Huang, Wenhui; Tang, Chuanxiang

    2017-12-01

    The necessity for compact and relatively low cost x-ray sources with monochromaticity, continuous tunability of x-ray energy, high spatial coherence, straightforward polarization control, and high brightness has led to the rapid development of Thomson scattering x-ray sources. To meet the requirement of in-situ monochromatic computed tomography (CT) for large-scale and/or high-attenuation materials based on this type of x-ray source, there is an increasing demand for effective algorithms to correct the energy-angle correlation. In this paper, we take advantage of the parametrization of the x-ray attenuation coefficient to resolve this problem. The linear attenuation coefficient of a material can be decomposed into a linear combination of the energy-dependent photoelectric and Compton cross-sections in the keV energy regime without K-edge discontinuities, and the line integrals of the decomposition coefficients of the above two parts can be determined by performing two spectrally different measurements. After that, the line integral of the linear attenuation coefficient of an imaging object at a certain interested energy can be derived through the above parametrization formula, and monochromatic CT can be reconstructed at this energy using traditional reconstruction methods, e.g., filtered back projection or algebraic reconstruction technique. Not only can monochromatic CT be realized, but also the distributions of the effective atomic number and electron density of the imaging object can be retrieved at the expense of dual-energy CT scan. Simulation results validate our proposal and will be shown in this paper. Our results will further expand the scope of application for Thomson scattering x-ray sources.

  11. Tomography

    International Nuclear Information System (INIS)

    1985-01-01

    Already widely accepted in medicine, tomography can also be useful in industry. The theory behind tomography and a demonstration of the technique to inspect a motorcycle carburetor is presented. To demonstrate the potential of computer assisted tomography (CAT) to accurately locate defects in three dimensions, a sectioned 5 cm gate valve with a shrink cavity made visible by the sectioning was tomographically imaged using a Co-60 source. The tomographic images revealed a larger cavity below the sectioned surface. The position of this cavity was located with an in-plane and axial precision of approximately +-1 mm. The volume of the cavity was estimated to be approximately 40 mm 3

  12. Automatic correction of nonlinear damping effects in HAADF–STEM tomography for nanomaterials of discrete compositions

    NARCIS (Netherlands)

    Zhong, Zhichao; Aveyard, R.A.; Rieger, B.; Bals, Sara; Palenstijn, Willem Jan; Batenburg, K. Joost

    2018-01-01

    HAADF-STEM tomography is a common technique for characterizing the three-dimensional morphology of nanomaterials. In conventional tomographic reconstruction algorithms, the image intensity is assumed to be a linear projection of a physical property of the specimen. However, this assumption of

  13. Automatic correction of nonlinear damping effects in HAADF–STEM tomography for nanomaterials of discrete compositions

    NARCIS (Netherlands)

    Z. Zhong (Zhichao); R. Aveyard; B. Rieger; S. Bals (Sara); W.J. Palenstijn (Willem Jan); K.J. Batenburg (Joost)

    2018-01-01

    textabstractHAADF-STEM tomography is a common technique for characterizing the three-dimensional morphology of nanomaterials. In conventional tomographic reconstruction algorithms, the image intensity is assumed to be a linear projection of a physical property of the specimen. However, this

  14. Towards Corrected and Completed Atomic Site Occupancy Analysis of Superalloys Using Atom Probe Tomography Techniques

    Science.gov (United States)

    2012-08-17

    Advanced Atom Probe Tomography (APT) techniques have been developed and applied to the atomic-scale characterization of multi-component...analysis approaches for solute distribution/segregation analysis, atom probe crystallography, and lattice rectification and has demonstrated potential...materials design, where Integrated Computational Materials engineering (ICME) can be enabled by real world 3D atomic resolution data via atom probe microscopy.

  15. Correction of motion artifacts in endoscopic optical coherence tomography and autofluorescence images based on azimuthal en face image registration

    Science.gov (United States)

    Abouei, Elham; Lee, Anthony M. D.; Pahlevaninezhad, Hamid; Hohert, Geoffrey; Cua, Michelle; Lane, Pierre; Lam, Stephen; MacAulay, Calum

    2018-01-01

    We present a method for the correction of motion artifacts present in two- and three-dimensional in vivo endoscopic images produced by rotary-pullback catheters. This method can correct for cardiac/breathing-based motion artifacts and catheter-based motion artifacts such as nonuniform rotational distortion (NURD). This method assumes that en face tissue imaging contains slowly varying structures that are roughly parallel to the pullback axis. The method reduces motion artifacts using a dynamic time warping solution through a cost matrix that measures similarities between adjacent frames in en face images. We optimize and demonstrate the suitability of this method using a real and simulated NURD phantom and in vivo endoscopic pulmonary optical coherence tomography and autofluorescence images. Qualitative and quantitative evaluations of the method show an enhancement of the image quality.

  16. Influence of Clinical Factors and Magnification Correction on Normal Thickness Profiles of Macular Retinal Layers Using Optical Coherence Tomography

    Science.gov (United States)

    Higashide, Tomomi; Ohkubo, Shinji; Hangai, Masanori; Ito, Yasuki; Shimada, Noriaki; Ohno-Matsui, Kyoko; Terasaki, Hiroko; Sugiyama, Kazuhisa; Chew, Paul; Li, Kenneth K. W.; Yoshimura, Nagahisa

    2016-01-01

    Purpose To identify the factors which significantly contribute to the thickness variabilities in macular retinal layers measured by optical coherence tomography with or without magnification correction of analytical areas in normal subjects. Methods The thickness of retinal layers {retinal nerve fiber layer (RNFL), ganglion cell layer plus inner plexiform layer (GCLIPL), RNFL plus GCLIPL (ganglion cell complex, GCC), total retina, total retina minus GCC (outer retina)} were measured by macular scans (RS-3000, NIDEK) in 202 eyes of 202 normal Asian subjects aged 20 to 60 years. The analytical areas were defined by three concentric circles (1-, 3- and 6-mm nominal diameters) with or without magnification correction. For each layer thickness, a semipartial correlation (sr) was calculated for explanatory variables including age, gender, axial length, corneal curvature, and signal strength index. Results Outer retinal thickness was significantly thinner in females than in males (sr2, 0.07 to 0.13) regardless of analytical areas or magnification correction. Without magnification correction, axial length had a significant positive sr with RNFL (sr2, 0.12 to 0.33) and a negative sr with GCLIPL (sr2, 0.22 to 0.31), GCC (sr2, 0.03 to 0.17), total retina (sr2, 0.07 to 0.17) and outer retina (sr2, 0.16 to 0.29) in multiple analytical areas. The significant sr in RNFL, GCLIPL and GCC became mostly insignificant following magnification correction. Conclusions The strong correlation between the thickness of inner retinal layers and axial length appeared to result from magnification effects. Outer retinal thickness may differ by gender and axial length independently of magnification correction. PMID:26814541

  17. Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns.

    Science.gov (United States)

    Kraus, Martin F; Potsaid, Benjamin; Mayer, Markus A; Bock, Ruediger; Baumann, Bernhard; Liu, Jonathan J; Hornegger, Joachim; Fujimoto, James G

    2012-06-01

    High speed Optical Coherence Tomography (OCT) has made it possible to rapidly capture densely sampled 3D volume data. One key application is the acquisition of high quality in vivo volumetric data sets of the human retina. Since the volume is acquired in a few seconds, eye movement during the scan process leads to distortion, which limits the accuracy of quantitative measurements using 3D OCT data. In this paper, we present a novel software based method to correct motion artifacts in OCT raster scans. Motion compensation is performed retrospectively using image registration algorithms on the OCT data sets themselves. Multiple, successively acquired volume scans with orthogonal fast scan directions are registered retrospectively in order to estimate and correct eye motion. Registration is performed by optimizing a large scale numerical problem as given by a global objective function using one dense displacement field for each input volume and special regularization based on the time structure of the acquisition process. After optimization, each volume is undistorted and a single merged volume is constructed that has superior signal quality compared to the input volumes. Experiments were performed using 3D OCT data from the macula and optic nerve head acquired with a high-speed ultra-high resolution 850 nm spectral OCT as well as wide field data acquired with a 1050 nm swept source OCT instrument. Evaluation of registration performance and result stability as well as visual inspection shows that the algorithm can correct for motion in all three dimensions and on a per A-scan basis. Corrected volumes do not show visible motion artifacts. In addition, merging multiple motion corrected and registered volumes leads to improved signal quality. These results demonstrate that motion correction and merging improves image quality and should also improve morphometric measurement accuracy from volumetric OCT data.

  18. Multiobjective optimization framework for landmark measurement error correction in three-dimensional cephalometric tomography.

    Science.gov (United States)

    DeCesare, A; Secanell, M; Lagravère, M O; Carey, J

    2013-01-01

    The purpose of this study is to minimize errors that occur when using a four vs six landmark superimpositioning method in the cranial base to define the co-ordinate system. Cone beam CT volumetric data from ten patients were used for this study. Co-ordinate system transformations were performed. A co-ordinate system was constructed using two planes defined by four anatomical landmarks located by an orthodontist. A second co-ordinate system was constructed using four anatomical landmarks that are corrected using a numerical optimization algorithm for any landmark location operator error using information from six landmarks. The optimization algorithm minimizes the relative distance and angle between the known fixed points in the two images to find the correction. Measurement errors and co-ordinates in all axes were obtained for each co-ordinate system. Significant improvement is observed after using the landmark correction algorithm to position the final co-ordinate system. The errors found in a previous study are significantly reduced. Errors found were between 1 mm and 2 mm. When analysing real patient data, it was found that the 6-point correction algorithm reduced errors between images and increased intrapoint reliability. A novel method of optimizing the overlay of three-dimensional images using a 6-point correction algorithm was introduced and examined. This method demonstrated greater reliability and reproducibility than the previous 4-point correction algorithm.

  19. Correction

    CERN Multimedia

    2002-01-01

    Tile Calorimeter modules stored at CERN. The larger modules belong to the Barrel, whereas the smaller ones are for the two Extended Barrels. (The article was about the completion of the 64 modules for one of the latter.) The photo on the first page of the Bulletin n°26/2002, from 24 July 2002, illustrating the article «The ATLAS Tile Calorimeter gets into shape» was published with a wrong caption. We would like to apologise for this mistake and so publish it again with the correct caption.

  20. 76 FR 58226 - Waiver of Citizenship Requirements for Crewmembers on Commercial Fishing Vessels; Correction

    Science.gov (United States)

    2011-09-20

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 46 CFR Part 28 [Docket No. USCG-2011-0887] RIN 1625-AB61 Waiver of Citizenship Requirements for Crewmembers on Commercial Fishing Vessels; Correction... August 18, 2011, entitled ``Waiver of Citizenship Requirements for Crewmembers on Commercial Fishing...

  1. 76 FR 16588 - Risk Management Requirements for Derivatives Clearing Organizations; Correction

    Science.gov (United States)

    2011-03-24

    ... Register of January 20, 2011, regarding Risk Management Requirements for Derivatives Clearing Organizations... COMMODITY FUTURES TRADING COMMISSION 17 CFR Part 39 RIN 3038-AC98 Risk Management Requirements for Derivatives Clearing Organizations; Correction AGENCY: Commodity Futures Trading Commission. ACTION: Notice of...

  2. Experimental Evaluation of Depth-of-Interaction Correction in a Small-Animal Positron Emission Tomography Scanner

    Directory of Open Access Journals (Sweden)

    Michael V. Green

    2010-11-01

    Full Text Available Human and small-animal positron emission tomography (PET scanners with cylindrical geometry and conventional detectors exhibit a progressive reduction in radial spatial resolution with increasing radial distance from the geometric axis of the scanner. This “depth-of-interaction” (DOI effect is sufficiently deleterious that many laboratories have devised novel schemes to reduce the magnitude of this effect and thereby yield PET images of greater quantitative accuracy. Here we examine experimentally the effects of a particular DOI correction method (dual-scintillator phoswich detectors with pulse shape discrimination implemented in a small-animal PET scanner by comparing the same phantom and same mouse images with and without DOI correction. The results suggest that even this relatively coarse, two-level estimate of radial gamma ray interaction position significantly reduces the DOI parallax error. This study also confirms two less appreciated advantages of DOI correction: a reduction in radial distortion and radial source displacement as a source is moved toward the edge of the field of view and a resolution improvement detectable in the central field of view likely owing to improved spatial sampling.

  3. Experimental evaluation of depth-of-interaction correction in a small-animal positron emission tomography scanner.

    Science.gov (United States)

    Green, Michael V; Ostrow, Harold G; Seidel, Jurgen; Pomper, Martin G

    2010-12-01

    Human and small-animal positron emission tomography (PET) scanners with cylindrical geometry and conventional detectors exhibit a progressive reduction in radial spatial resolution with increasing radial distance from the geometric axis of the scanner. This "depth-of-interaction" (DOI) effect is sufficiently deleterious that many laboratories have devised novel schemes to reduce the magnitude of this effect and thereby yield PET images of greater quantitative accuracy. Here we examine experimentally the effects of a particular DOI correction method (dual-scintillator phoswich detectors with pulse shape discrimination) implemented in a small-animal PET scanner by comparing the same phantom and same mouse images with and without DOI correction. The results suggest that even this relatively coarse, two-level estimate of radial gamma ray interaction position significantly reduces the DOI parallax error. This study also confirms two less appreciated advantages of DOI correction: a reduction in radial distortion and radial source displacement as a source is moved toward the edge of the field of view and a resolution improvement detectable in the central field of view likely owing to improved spatial sampling.

  4. Correction of non-linear thickness effects in HAADF STEM electron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Van den Broek, W., E-mail: wouter.vandenbroek@uni-ulm.de [Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium); Rosenauer, A. [Institut fuer Festkoerperphysik (IFP), Universitaet Bremen, Otto-Hahn-Allee 1, 28359 Bremen (Germany); Goris, B.; Martinez, G.T.; Bals, S.; Van Aert, S.; Van Dyck, D. [Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium)

    2012-05-15

    In materials science, high angle annular dark field scanning transmission electron microscopy is often used for tomography at the nanometer scale. In this work, it is shown that a thickness dependent, non-linear damping of the recorded intensities occurs. This results in an underestimated intensity in the interior of reconstructions of homogeneous particles, which is known as the cupping artifact. In this paper, this non-linear effect is demonstrated in experimental images taken under common conditions and is reproduced with a numerical simulation. Furthermore, an analytical derivation shows that these non-linearities can be inverted if the imaging is done quantitatively, thus preventing cupping in the reconstruction. -- Highlights: Black-Right-Pointing-Pointer In HAADF STEM, a thickness dependent, non-linear damping of the projected intensities occurs. Black-Right-Pointing-Pointer In tomography, this leads to underestimated intensities in the interior of homogeneous particles, the cupping artifact. Black-Right-Pointing-Pointer The non-linear damping is demonstrated in experimental images and reproduced with numerical simulations. Black-Right-Pointing-Pointer The non-linear damping can be undone if the imaging is done quantitatively. Black-Right-Pointing-Pointer Experimental proof is provided showing that cupping can be prevented.

  5. Correction

    Directory of Open Access Journals (Sweden)

    2012-01-01

    Full Text Available Regarding Gorelik, G., & Shackelford, T.K. (2011. Human sexual conflict from molecules to culture. Evolutionary Psychology, 9, 564–587: The authors wish to correct an omission in citation to the existing literature. In the final paragraph on p. 570, we neglected to cite Burch and Gallup (2006 [Burch, R. L., & Gallup, G. G., Jr. (2006. The psychobiology of human semen. In S. M. Platek & T. K. Shackelford (Eds., Female infidelity and paternal uncertainty (pp. 141–172. New York: Cambridge University Press.]. Burch and Gallup (2006 reviewed the relevant literature on FSH and LH discussed in this paragraph, and should have been cited accordingly. In addition, Burch and Gallup (2006 should have been cited as the originators of the hypothesis regarding the role of FSH and LH in the semen of rapists. The authors apologize for this oversight.

  6. Correction

    CERN Multimedia

    2002-01-01

    The photo on the second page of the Bulletin n°48/2002, from 25 November 2002, illustrating the article «Spanish Visit to CERN» was published with a wrong caption. We would like to apologise for this mistake and so publish it again with the correct caption.   The Spanish delegation, accompanied by Spanish scientists at CERN, also visited the LHC superconducting magnet test hall (photo). From left to right: Felix Rodriguez Mateos of CERN LHC Division, Josep Piqué i Camps, Spanish Minister of Science and Technology, César Dopazo, Director-General of CIEMAT (Spanish Research Centre for Energy, Environment and Technology), Juan Antonio Rubio, ETT Division Leader at CERN, Manuel Aguilar-Benitez, Spanish Delegate to Council, Manuel Delfino, IT Division Leader at CERN, and Gonzalo León, Secretary-General of Scientific Policy to the Minister.

  7. Correction

    Directory of Open Access Journals (Sweden)

    2014-01-01

    Full Text Available Regarding Tagler, M. J., and Jeffers, H. M. (2013. Sex differences in attitudes toward partner infidelity. Evolutionary Psychology, 11, 821–832: The authors wish to correct values in the originally published manuscript. Specifically, incorrect 95% confidence intervals around the Cohen's d values were reported on page 826 of the manuscript where we reported the within-sex simple effects for the significant Participant Sex × Infidelity Type interaction (first paragraph, and for attitudes toward partner infidelity (second paragraph. Corrected values are presented in bold below. The authors would like to thank Dr. Bernard Beins at Ithaca College for bringing these errors to our attention. Men rated sexual infidelity significantly more distressing (M = 4.69, SD = 0.74 than they rated emotional infidelity (M = 4.32, SD = 0.92, F(1, 322 = 23.96, p < .001, d = 0.44, 95% CI [0.23, 0.65], but there was little difference between women's ratings of sexual (M = 4.80, SD = 0.48 and emotional infidelity (M = 4.76, SD = 0.57, F(1, 322 = 0.48, p = .29, d = 0.08, 95% CI [−0.10, 0.26]. As expected, men rated sexual infidelity (M = 1.44, SD = 0.70 more negatively than they rated emotional infidelity (M = 2.66, SD = 1.37, F(1, 322 = 120.00, p < .001, d = 1.12, 95% CI [0.85, 1.39]. Although women also rated sexual infidelity (M = 1.40, SD = 0.62 more negatively than they rated emotional infidelity (M = 2.09, SD = 1.10, this difference was not as large and thus in the evolutionary theory supportive direction, F(1, 322 = 72.03, p < .001, d = 0.77, 95% CI [0.60, 0.94].

  8. Registration concepts for the just-in-time artefact correction by means of virtual computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kasperl, St.; Franz, M. [Fraunhofer Development Center for X-ray Technology EZRT, a cooperative dept. of the Fraunhofer Institutes IZFP Saarbrucken and IIS Erlangen, Furth (Germany)

    2007-07-01

    This article deals with the enhancement of accuracy in CT by just-in-time correction of artefacts (beam hardening, scattered radiation) caused by the interaction of X-rays with matter. The so called EAR method needs for simulation a registration of the object. Therefore the article presents two different registration concepts. (authors)

  9. Registration concepts for the just-in-time artefact correction by means of virtual computed tomography

    International Nuclear Information System (INIS)

    Kasperl, St.; Franz, M.

    2007-01-01

    This article deals with the enhancement of accuracy in CT by just-in-time correction of artefacts (beam hardening, scattered radiation) caused by the interaction of X-rays with matter. The so called EAR method needs for simulation a registration of the object. Therefore the article presents two different registration concepts. (authors)

  10. Novel scatter compensation with energy and spatial dependent corrections in positron emission tomography

    International Nuclear Information System (INIS)

    Guerin, Bastien

    2010-01-01

    We developed and validated a fast Monte Carlo simulation of PET acquisitions based on the SimSET program modeling accurately the propagation of gamma photons in the patient as well as the block-based PET detector. Comparison of our simulation with another well validated code, GATE, and measurements on two GE Discovery ST PET scanners showed that it models accurately energy spectra (errors smaller than 4.6%), the spatial resolution of block-based PET scanners (6.1%), scatter fraction (3.5%), sensitivity (2.3%) and count rates (12.7%). Next, we developed a novel scatter correction incorporating the energy and position of photons detected in list-mode. Our approach is based on the reformulation of the list-mode likelihood function containing the energy distribution of detected coincidences in addition to their spatial distribution, yielding an EM reconstruction algorithm containing spatial and energy dependent correction terms. We also proposed using the energy in addition to the position of gamma photons in the normalization of the scatter sinogram. Finally, we developed a method for estimating primary and scatter photons energy spectra from total spectra detected in different sectors of the PET scanner. We evaluated the accuracy and precision of our new spatio-spectral scatter correction and that of the standard spatial correction using realistic Monte Carlo simulations. These results showed that incorporating the energy in the scatter correction reduces bias in the estimation of the absolute activity level by ∼ 60% in the cold regions of the largest patients and yields quantification errors less than 13% in all regions. (author)

  11. Spreadsheet program for estimating recovery coefficient to get partial volume corrected standardized uptake value in clinical positron emission tomography-computed tomography studies

    International Nuclear Information System (INIS)

    Pandey, Anil Kumar; Sharma, Punit; Pandey, Manjesh; Aswathi, KK; Malhotra, Arun; Kumar, Rakesh

    2012-01-01

    To develop a spreadsheet program for estimation of recovery coefficient (RC) to get partial volume corrected (PVC) standardized uptake value (SUV) in clinical positron emission tomography-computed tomography (PET-CT) studies. For formulation of this program we used data from a phantom study conducted at our center in which a phantom with a sphere assembly (seven spheres-different diameters) was filled with 18F-Fluorodeoxyglucose solution to get a sphere/background ratio of 8:1, 10:1 and 12:1. PET-CT images were acquired. RC was then calculated from processed PET-CT images. We plotted graph of RC versus lesion-size at different sphere/background ratio using MS Excel function. There was logarithmic increase in RC with increase in lesion size. We fitted the data with a logarithmic equation and found optimum fit (least-square fit). We then validated this program with clinical data using 42 lung nodules in five patients. The program estimates the value of RC and object to background ratio in PET-CT for the input lesion-size and displays graph with trendline. When the user enters SUV and background activity measured in clinical PET-CT, it provides the value of RC and PVC SUV. It also validates the data entry and displays appropriate message. It is consistent, reproducible, accurate and provides output for wide range of lesion-sizes (71% of lesions evaluated); however, program does not give output for lesion-size < 9 mm. The present spreadsheet program is a useful and easy tool for calculating PVC SUV of clinical PET-CT lesions

  12. Correction of distortions in optical coherence tomography imaging of the eye

    International Nuclear Information System (INIS)

    Podoleanu, Adrian; Charalambous, Ismini; Plesea, Lucian; Dogariu, Aristide; Rosen, Richard

    2004-01-01

    Optical coherence tomography (OCT) images are affected by artefacts. These artefacts are the result of different factors such as refraction, curvature of the intermediate layers up to the depth of interest and the scanning procedure. The effect of such errors is different, depending on the way the image is acquired, either en-face or longitudinal OCT. We quantify the distortions by evaluating a lateral and an axial error. These measure the lateral and axial deviations of each image point from the object point inside the tissue. We show that the axial distortion can be larger than the achievable depth resolution in modern OCT systems. We have investigated these errors in imaging different tissue: cornea and retina in vivo and an intraocular lens in vitro

  13. Tomography

    International Nuclear Information System (INIS)

    Allan, C.J.; Keller, N.A.; Lupton, L.R.; Taylor, T.; Tonner, P.D.

    1984-10-01

    Tomography is a non-intrusive imaging technique being developed at CRNL as an industrial tool for generating quantitative cross-sectional density maps of objects. Of most interest is tomography's ability to: distinguish features within complex geometries where other NDT techniques fail because of the complexity of the geometry; detect/locate small density changes/defects within objects, e.g. void fraction measurements within thick-walled vessels, shrink cavities in castings, etc.; provide quantitative data that can be used in analyses, e.g. of complex processes, or fracture mechanics; and provide objective quantitative data that can be used for (computer-based) quality assurance decisions, thereby reducing and in some cases eliminating the present subjectivity often encountered in NDT. The CRNL program is reviewed and examples are presented to illustrate the potential and the limitations of the technology

  14. Evaluation of a prototype correction algorithm to reduce metal artefacts in flat detector computed tomography of scaphoid fixation screws

    Energy Technology Data Exchange (ETDEWEB)

    Filli, Lukas; Finkenstaedt, Tim; Andreisek, Gustav; Guggenberger, Roman [University Hospital of Zurich, Department of Diagnostic and Interventional Radiology, Zurich (Switzerland); Marcon, Magda [University Hospital of Zurich, Department of Diagnostic and Interventional Radiology, Zurich (Switzerland); University of Udine, Institute of Diagnostic Radiology, Department of Medical and Biological Sciences, Udine (Italy); Scholz, Bernhard [Imaging and Therapy Division, Siemens AG, Healthcare Sector, Forchheim (Germany); Calcagni, Maurizio [University Hospital of Zurich, Division of Plastic Surgery and Hand Surgery, Zurich (Switzerland)

    2014-12-15

    The aim of this study was to evaluate a prototype correction algorithm to reduce metal artefacts in flat detector computed tomography (FDCT) of scaphoid fixation screws. FDCT has gained interest in imaging small anatomic structures of the appendicular skeleton. Angiographic C-arm systems with flat detectors allow fluoroscopy and FDCT imaging in a one-stop procedure emphasizing their role as an ideal intraoperative imaging tool. However, FDCT imaging can be significantly impaired by artefacts induced by fixation screws. Following ethical board approval, commercially available scaphoid fixation screws were inserted into six cadaveric specimens in order to fix artificially induced scaphoid fractures. FDCT images corrected with the algorithm were compared to uncorrected images both quantitatively and qualitatively by two independent radiologists in terms of artefacts, screw contour, fracture line visibility, bone visibility, and soft tissue definition. Normal distribution of variables was evaluated using the Kolmogorov-Smirnov test. In case of normal distribution, quantitative variables were compared using paired Student's t tests. The Wilcoxon signed-rank test was used for quantitative variables without normal distribution and all qualitative variables. A p value of < 0.05 was considered to indicate statistically significant differences. Metal artefacts were significantly reduced by the correction algorithm (p < 0.001), and the fracture line was more clearly defined (p < 0.01). The inter-observer reliability was ''almost perfect'' (intra-class correlation coefficient 0.85, p < 0.001). The prototype correction algorithm in FDCT for metal artefacts induced by scaphoid fixation screws may facilitate intra- and postoperative follow-up imaging. (orig.)

  15. Evaluation of a prototype correction algorithm to reduce metal artefacts in flat detector computed tomography of scaphoid fixation screws

    International Nuclear Information System (INIS)

    Filli, Lukas; Finkenstaedt, Tim; Andreisek, Gustav; Guggenberger, Roman; Marcon, Magda; Scholz, Bernhard; Calcagni, Maurizio

    2014-01-01

    The aim of this study was to evaluate a prototype correction algorithm to reduce metal artefacts in flat detector computed tomography (FDCT) of scaphoid fixation screws. FDCT has gained interest in imaging small anatomic structures of the appendicular skeleton. Angiographic C-arm systems with flat detectors allow fluoroscopy and FDCT imaging in a one-stop procedure emphasizing their role as an ideal intraoperative imaging tool. However, FDCT imaging can be significantly impaired by artefacts induced by fixation screws. Following ethical board approval, commercially available scaphoid fixation screws were inserted into six cadaveric specimens in order to fix artificially induced scaphoid fractures. FDCT images corrected with the algorithm were compared to uncorrected images both quantitatively and qualitatively by two independent radiologists in terms of artefacts, screw contour, fracture line visibility, bone visibility, and soft tissue definition. Normal distribution of variables was evaluated using the Kolmogorov-Smirnov test. In case of normal distribution, quantitative variables were compared using paired Student's t tests. The Wilcoxon signed-rank test was used for quantitative variables without normal distribution and all qualitative variables. A p value of < 0.05 was considered to indicate statistically significant differences. Metal artefacts were significantly reduced by the correction algorithm (p < 0.001), and the fracture line was more clearly defined (p < 0.01). The inter-observer reliability was ''almost perfect'' (intra-class correlation coefficient 0.85, p < 0.001). The prototype correction algorithm in FDCT for metal artefacts induced by scaphoid fixation screws may facilitate intra- and postoperative follow-up imaging. (orig.)

  16. Comparison of Positron Emission Tomography Quantification Using Magnetic Resonance- and Computed Tomography-Based Attenuation Correction in Physiological Tissues and Lesions: A Whole-Body Positron Emission Tomography/Magnetic Resonance Study in 66 Patients.

    Science.gov (United States)

    Seith, Ferdinand; Gatidis, Sergios; Schmidt, Holger; Bezrukov, Ilja; la Fougère, Christian; Nikolaou, Konstantin; Pfannenberg, Christina; Schwenzer, Nina

    2016-01-01

    Attenuation correction (AC) in fully integrated positron emission tomography (PET)/magnetic resonance (MR) systems plays a key role for the quantification of tracer uptake. The aim of this prospective study was to assess the accuracy of standardized uptake value (SUV) quantification using MR-based AC in direct comparison with computed tomography (CT)-based AC of the same PET data set on a large patient population. Sixty-six patients (22 female; mean [SD], 61 [11] years) were examined by means of combined PET/CT and PET/MR (11C-choline, 18F-FDG, or 68Ga-DOTATATE) subsequently. Positron emission tomography images from PET/MR examinations were corrected with MR-derived AC based on tissue segmentation (PET(MR)). The same PET data were corrected using CT-based attenuation maps (μ-maps) derived from PET/CT after nonrigid registration of the CT to the MR-based μ-map (PET(MRCT)). Positron emission tomography SUVs were quantified placing regions of interest or volumes of interest in 6 different body regions as well as PET-avid lesions, respectively. The relative differences of quantitative PET values when using MR-based AC versus CT-based AC were varying depending on the organs and body regions assessed. In detail, the mean (SD) relative differences of PET SUVs were as follows: -7.8% (11.5%), blood pool; -3.6% (5.8%), spleen; -4.4% (5.6%)/-4.1% (6.2%), liver; -0.6% (5.0%), muscle; -1.3% (6.3%), fat; -40.0% (18.7%), bone; 1.6% (4.4%), liver lesions; -6.2% (6.8%), bone lesions; and -1.9% (6.2%), soft tissue lesions. In 10 liver lesions, distinct overestimations greater than 5% were found (up to 10%). In addition, overestimations were found in 2 bone lesions and 1 soft tissue lesion adjacent to the lung (up to 28.0%). Results obtained using different PET tracers show that MR-based AC is accurate in most tissue types, with SUV deviations generally of less than 10%. In bone, however, underestimations can be pronounced, potentially leading to inaccurate SUV quantifications. In

  17. Determining the dimensions of essential medical coverage required by military body armour plates utilising Computed Tomography.

    Science.gov (United States)

    Breeze, J; Lewis, E A; Fryer, R

    2016-09-01

    Military body armour is designed to prevent the penetration of ballistic projectiles into the most vulnerable structures within the thorax and abdomen. Currently the OSPREY and VIRTUS body armour systems issued to United Kingdom (UK) Armed Forces personnel are provided with a single size front and rear ceramic plate regardless of the individual's body dimensions. Currently limited information exists to determine whether these plates overprotect some members of the military population, and no method exists to accurately size plates to an individual. Computed Tomography (CT) scans of 120 male Caucasian UK Armed Forces personnel were analysed to measure the dimensions of internal thoraco-abdominal anatomical structures that had been defined as requiring essential medical coverage. The boundaries of these structures were related to three potential anthropometric landmarks on the skin surface and statistical analysis was undertaken to validate the results. The range of heights of each individual used in this study was comparable to previous anthropometric surveys, confirming that a representative sample had been used. The vertical dimension of essential medical coverage demonstrated good correlation to torso height (suprasternal notch to iliac crest) but not to stature (r(2)=0.53 versus 0.04). Horizontal coverage did not correlate to either measure of height. Surface landmarks utilised in this study were proven to be reliable surrogate markers for the boundaries of the underlying anatomical structures potentially requiring essential protection by a plate. Providing a range of plate sizes, particularly multiple heights, should optimise the medical coverage and thus effectiveness of body armour for UK Armed Forces personnel. The results of this work provide evidence that a single width of plate if chosen correctly will provide the essential medical coverage for the entire military population, whilst recognising that it still could overprotect the smallest individuals

  18. Effect of stray light correction of extreme-ultraviolet solar images in tomography

    Science.gov (United States)

    Lloveras, D. G.; Vásquez, A. M.; Shearer, P.; Frazin, R. A.

    2017-10-01

    The Extreme UltraViolet Imager (EUVI) telescope on board the Solar TErrestrial RElations Observatory (STEREO) mission provides extreme-ultraviolet (EUV) coronal images of the full Sun. Using time series of EUV images, the differential emission measure tomography (DEMT) technique allows the determination of the three-dimensional (3D) distribution of the coronal electron density and temperature in the inner corona. EUV images are affected by stray light contamination which can be effectively removed if the point-spread function (PSF) of the instrument is well determined, as it is the case for EUVI. We show the results of a detailed analysis of the impact of EUVI stray light removal in DEMT results. To this end we analyze Carrington Rotation (CR)-2081 during the last solar minimum, characterized by a highly axisymmetric coronal structure. We find that stray light decontamination of EUVI images implies a systematic decrease of the derived electron density scale height and a systematic increase of the derived coronal base density, while its effect on the derived temperature is not systematic neither significant. We detail the results of the analysis in quantitative fashion.

  19. An algorithm for noise correction of dual-energy computed tomography material density images.

    Science.gov (United States)

    Maia, Rafael Simon; Jacob, Christian; Hara, Amy K; Silva, Alvin C; Pavlicek, William; Ross, Mitchell J

    2015-01-01

    Dual-energy computed tomography (DECT) images can undergo a two-material decomposition process which results in two images containing material density information. Material density images obtained by that process result in images with increased pixel noise. Noise reduction in those images is desirable in order to improve image quality. A noise reduction algorithm for material density images was developed and tested. A three-level wavelet approach combined with the application of an anisotropic diffusion filter was used. During each level, the resulting noise maps are further processed, until the original resolution is reached and the final noise maps obtained. Our method works in image space and, therefore, can be applied to any type of material density images obtained from any DECT vendor. A quantitative evaluation of the noise-reduced images using the signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and 2D noise power spectrum was done to quantify the improvements. The noise reduction algorithm was applied to a set of images resulting in images with higher SNR and CNR than the raw density images obtained by the decomposition process. The average improvement in terms of SNR gain was about 49 % while CNR gain was about 52 %. The difference between the raw and filtered regions of interest mean values was far from reaching statistical significance (minimum [Formula: see text], average [Formula: see text]). We have demonstrated through a series of quantitative analyses that our novel noise reduction algorithm improves the image quality of DECT material density images.

  20. Application of ray tracing towards a correction for refracting effects in computed tomography with diffracting sources

    International Nuclear Information System (INIS)

    Andersen, A.H.

    1983-01-01

    Ray tracing methods are investigated in forward and inverse processes and applied for image restoration and resolution enhancement in computed tomography with diffracting sources. Within the geometrical optics approximation for a given refractive field, a mathematical model for the forward propagation and inverse reconstruction process is presented. For a finite set of rays in a discrete image representation, an algebraic reconstruction technique is derived which is analogous to the inverse process for a continuum of rays. The geometrical theory of diffraction is invoked to describe ray patterns arising from the introduction of object discontinuity surfaces. We have compared the performance of existing recursive ray tracing techniques for the reconstruction of objects exhibiting discontinuity boundaries. A novel ray tracing and reconstruction technique is presented which enjoys significant computational savings over traditional implementations incorporating tedious ray linking procedures. Simulation studies illustrate the macro-structural distortion and loss of fine resolution when ray refraction is unaccounted for. Restoration and resolution enhancement is achieved with a recursive ray tracing approach. Successful experimental studies with tissue equivalent phantoms are presented. The comparison of simulation and experimental results demonstrated the reasonable assumption of the geometrical optics approximation. Simulation results for larger refractive deviations are encouraging

  1. Partial-volume effect correction in positron emission tomography brain scan image using super-resolution image reconstruction.

    Science.gov (United States)

    Meechai, T; Tepmongkol, S; Pluempitiwiriyawej, C

    2015-02-01

    The partial-volume effect (PVE) is a consequence of limited (i.e. finite) spatial resolution. PVE can lead to quantitative underestimation of activity concentrations in reconstructed images, which may result in misinterpretation of positron emission tomography (PET) scan images, especially in the brain. The PVE becomes significant when the dimensions of a source region are less than two to three times the full width at half maximum spatial resolution of the imaging system. In the present study, the ability of super-resolution (SR) image reconstruction to compensate for PVE in PET was characterized. The ability of SR image reconstruction technique to recover activity concentrations in small structures was evaluated by comparing images before and after image reconstruction in the NEMA/IEC phantom (Washington, DC), in the Hoffman brain phantom and in four human brain subjects (three normal subjects and one atrophic brain subject) in terms of apparent recovery coefficient (ARC) and percentage yield. Both the ARC and percentage yield are improved after SR implementation in NEMA/IEC phantom and Hoffman brain phantom. When tested in normal subjects, SR implementation can improve the intensity and justify SR efficiency to correct PVE. SR algorithm can be used to effectively correct PVE in PET images. The current research focused on brain PET scanning exclusively; future work will extend to whole-body imaging.

  2. Automatic motion correction for in vivo human skin optical coherence tomography angiography through combined rigid and nonrigid registration

    Science.gov (United States)

    Wei, David Wei; Deegan, Anthony J.; Wang, Ruikang K.

    2017-06-01

    When using optical coherence tomography angiography (OCTA), the development of artifacts due to involuntary movements can severely compromise the visualization and subsequent quantitation of tissue microvasculatures. To correct such an occurrence, we propose a motion compensation method to eliminate artifacts from human skin OCTA by means of step-by-step rigid affine registration, rigid subpixel registration, and nonrigid B-spline registration. To accommodate this remedial process, OCTA is conducted using two matching all-depth volume scans. Affine transformation is first performed on the large vessels of the deep reticular dermis, and then the resulting affine parameters are applied to all-depth vasculatures with a further subpixel registration to refine the alignment between superficial smaller vessels. Finally, the coregistration of both volumes is carried out to result in the final artifact-free composite image via an algorithm based upon cubic B-spline free-form deformation. We demonstrate that the proposed method can provide a considerable improvement to the final en face OCTA images with substantial artifact removal. In addition, the correlation coefficients and peak signal-to-noise ratios of the corrected images are evaluated and compared with those of the original images, further validating the effectiveness of the proposed method. We expect that the proposed method can be useful in improving qualitative and quantitative assessment of the OCTA images of scanned tissue beds.

  3. Real-time axial motion detection and correction for single photon emission computed tomography using a linear prediction filter

    International Nuclear Information System (INIS)

    Saba, V.; Setayeshi, S.; Ghannadi-Maragheh, M.

    2011-01-01

    We have developed an algorithm for real-time detection and complete correction of the patient motion effects during single photon emission computed tomography. The algorithm is based on a linear prediction filter (LPC). The new prediction of projection data algorithm (PPDA) detects most motions-such as those of the head, legs, and hands-using comparison of the predicted and measured frame data. When the data acquisition for a specific frame is completed, the accuracy of the acquired data is evaluated by the PPDA. If patient motion is detected, the scanning procedure is stopped. After the patient rests in his or her true position, data acquisition is repeated only for the corrupted frame and the scanning procedure is continued. Various experimental data were used to validate the motion detection algorithm; on the whole, the proposed method was tested with approximately 100 test cases. The PPDA shows promising results. Using the PPDA enables us to prevent the scanner from collecting disturbed data during the scan and replaces them with motion-free data by real-time rescanning for the corrupted frames. As a result, the effects of patient motion is corrected in real time. (author)

  4. Patient-specific scatter correction in clinical cone beam computed tomography imaging made possible by the combination of Monte Carlo simulations and a ray tracing algorithm

    DEFF Research Database (Denmark)

    Slot Thing, Rune; Bernchou, Uffe; Mainegra-Hing, Ernesto

    2013-01-01

    Abstract Purpose. Cone beam computed tomography (CBCT) image quality is limited by scattered photons. Monte Carlo (MC) simulations provide the ability of predicting the patient-specific scatter contamination in clinical CBCT imaging. Lengthy simulations prevent MC-based scatter correction from...

  5. Correction of an image size difference between positron emission tomography (PET) and computed tomography (CT) improves image fusion of dedicated PET and CT.

    NARCIS (Netherlands)

    Vogel, W.V.; Dalen, J.A. van; Schinagl, D.A.X.; Kaanders, J.H.A.M.; Huisman, H.J.; Corstens, F.H.M.; Oyen, W.J.G.

    2006-01-01

    AIM: Clinical work in software positron emission tomography/computed tomography (PET/CT) image fusion has raised suspicion that the image sizes of PET and CT differ slightly from each other, thus rendering the images suboptimal for image fusion. The aim of this study was to evaluate the extent of

  6. Experimental artefacts occurring during atom probe tomography analysis of oxide nanoparticles in metallic matrix: Quantification and correction

    Science.gov (United States)

    Hatzoglou, C.; Radiguet, B.; Pareige, P.

    2017-08-01

    Oxide Dispersion Strengthened (ODS) steels are promising candidates for future nuclear reactors, partly due to the fine dispersion of the nanoparticles they contain. Until now, there was no consensus as to the nature of the nanoparticles because their analysis pushed the techniques to their limits and in consequence, introduced some artefacts. In this study, the artefacts that occur during atom probe tomography analysis are quantified. The artefacts quantification reveals that the particles morphology, chemical composition and atomic density are biased. A model is suggested to correct these artefacts in order to obtain a fine and accurate characterization of the nanoparticles. This model is based on volume fraction calculation and an analytical expression of the atomic density. Then, the studied ODS steel reveals nanoparticles, pure in Y, Ti and O, with a core/shell structure. The shell is rich in Cr. The Cr content of the shell is dependent on that of the matrix by a factor of 1.5. This study also shows that 15% of the atoms that were initially in the particles are not detected during the analysis. This only affects O atoms. The particle stoichiometry evolves from YTiO2 for the smallest observed (8 nm).

  7. Impact of an intra-cycle motion correction algorithm on overall evaluability and diagnostic accuracy of computed tomography coronary angiography

    Energy Technology Data Exchange (ETDEWEB)

    Pontone, Gianluca; Bertella, Erika; Baggiano, Andrea; Mushtaq, Saima; Loguercio, Monica; Segurini, Chiara; Conte, Edoardo; Beltrama, Virginia; Annoni, Andrea; Formenti, Alberto; Petulla, Maria; Trabattoni, Daniela; Pepi, Mauro [Centro Cardiologico Monzino, IRCCS, Milan (Italy); Andreini, Daniele; Montorsi, Piero; Bartorelli, Antonio L. [Centro Cardiologico Monzino, IRCCS, Milan (Italy); University of Milan, Department of Cardiovascular Sciences and Community Health, Milan (Italy); Guaricci, Andrea I. [University of Foggia, Department of Cardiology, Foggia (Italy)

    2016-01-15

    The aim of this study was to evaluate the impact of a novel intra-cycle motion correction algorithm (MCA) on overall evaluability and diagnostic accuracy of cardiac computed tomography coronary angiography (CCT). From a cohort of 900 consecutive patients referred for CCT for suspected coronary artery disease (CAD), we enrolled 160 (18 %) patients (mean age 65.3 ± 11.7 years, 101 male) with at least one coronary segment classified as non-evaluable for motion artefacts. The CCT data sets were evaluated using a standard reconstruction algorithm (SRA) and MCA and compared in terms of subjective image quality, evaluability and diagnostic accuracy. The mean heart rate during the examination was 68.3 ± 9.4 bpm. The MCA showed a higher Likert score (3.1 ± 0.9 vs. 2.5 ± 1.1, p < 0.001) and evaluability (94%vs.79 %, p < 0.001) than the SRA. In a 45-patient subgroup studied by clinically indicated invasive coronary angiography, specificity, positive predictive value and accuracy were higher in MCA vs. SRA in segment-based and vessel-based models, respectively (87%vs.73 %, 50%vs.34 %, 85%vs.73 %, p < 0.001 and 62%vs.28 %, 66%vs.51 % and 75%vs.57 %, p < 0.001). In a patient-based model, MCA showed higher accuracy vs. SCA (93%vs.76 %, p < 0.05). MCA can significantly improve subjective image quality, overall evaluability and diagnostic accuracy of CCT. (orig.)

  8. Optical coherence tomography system requirements for clinical diagnostic middle ear imaging

    Science.gov (United States)

    MacDougall, Dan; Rainsbury, James; Brown, Jeremy; Bance, Manohar; Adamson, Robert

    2015-05-01

    Noninvasive middle ear imaging using optical coherence tomography (OCT) presents some unique challenges for real-time, clinical use in humans. We present results from a two-dimensional/three-dimensional OCT system built to assess the imaging requirements of clinical middle ear imaging, and the technical challenges associated with them. These include the need to work at a low numerical aperture, the deleterious effects of transtympanic imaging on image quality at the ossicles, sensitivity requirements for clinical fidelity of images at real-time rates, and the high dynamic-range requirements of the ear. We validated the system by imaging cadaveric specimens with simulated disorders to show the clinical applicability of the images. We also provide additional insight into the likely role of OCT in clinical otology.

  9. A New Contrast Enhancement Protocol for Subtraction Coronary Computed Tomography Requiring a Short Breath-Holding Time.

    Science.gov (United States)

    Yamaguchi, Takayoshi; Ichikawa, Katsuhiro; Takahashi, Daichi; Sugaya, Teppei; Furuya, Jungo; Igarashi, Keiichi

    2017-01-01

    We have developed a new contrast enhancement protocol for subtraction coronary computed tomography (SCCTA) requiring a short breath-holding time. In the protocol, test and main boluses were sequentially and automatically injected, and correct timings for pre-contrast and contrast-enhanced scans for main bolus were automatically determined only by the test bolus tracking. Combined with a fixed short main bolus injection for 7 seconds, the breath-holding time was shortened as possible. The purpose of this study was to evaluate whether use of this new protocol produced adequate quality images, taking into account calcified lesions and in-stent lumens. Patients (n = 127) with calcium scores of >400 Agatston units or a history of stent placement were enrolled. Breath-holding times were recorded, and image quality was visually evaluated by two observers. The mean ± standard deviation breath-holding time was 13.2 ± 0.6 seconds. The mean ± SD computed tomography (CT) number of coronary arteries for the pre-contrast scan was sufficiently low [99.2 ± 32.2 Hounsfield units (HU)] and, simultaneously, that for SCCTA was 367.0 ± 77.2 HU. The rate of segments evaluated as unreadable was sufficiently low (3.8%). Use of the SCCTA protocol was efficient and allowed for a shorter breath-holding time and adequate diagnostic accuracy of SCCTA images, including images of calcified and stent implantation segments. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  10. Combine TV-L1 model with guided image filtering for wide and faint ring artifacts correction of in-line x-ray phase contrast computed tomography.

    Science.gov (United States)

    Ji, Dongjiang; Qu, Gangrong; Hu, Chunhong; Zhao, Yuqing; Chen, Xiaodong

    2018-01-01

    In practice, mis-calibrated detector pixels give rise to wide and faint ring artifacts in the reconstruction image of the In-line phase-contrast computed tomography (IL-PC-CT). Ring artifacts correction is essential in IL-PC-CT. In this study, a novel method of wide and faint ring artifacts correction was presented based on combining TV-L1 model with guided image filtering (GIF) in the reconstruction image domain. The new correction method includes two main steps namely, the GIF step and the TV-L1 step. To validate the performance of this method, simulation data and real experimental synchrotron data are provided. The results demonstrate that TV-L1 model with GIF step can effectively correct the wide and faint ring artifacts for IL-PC-CT.

  11. Correct patterning of the primitive streak requires the anterior visceral endoderm.

    Directory of Open Access Journals (Sweden)

    Daniel W Stuckey

    2011-03-01

    Full Text Available Anterior-posterior axis specification in the mouse requires signalling from a specialised extra-embryonic tissue called the anterior visceral endoderm (AVE. AVE precursors are induced at the distal tip of the embryo and move to the prospective anterior. Embryological and genetic analysis has demonstrated that the AVE is required for anterior patterning and for correctly positioning the site of primitive streak formation by inhibiting Nodal activity. We have carried out a genetic ablation of the Hex-expressing cells of the AVE (Hex-AVE by knocking the Diphtheria toxin subunit A into the Hex locus in an inducible manner. Using this model we have identified that, in addition to its requirement in the anterior of the embryo, the Hex-AVE sub-population has a novel role between 5.5 and 6.5dpc in patterning the primitive streak. Embryos lacking the Hex-AVE display delayed initiation of primitive streak formation and miss-patterning of the anterior primitive streak. We demonstrate that in the absence of the Hex-AVE the restriction of Bmp2 expression to the proximal visceral endoderm is also defective and expression of Wnt3 and Nodal is not correctly restricted to the posterior epiblast. These results, coupled with the observation that reducing Nodal signalling in Hex-AVE ablated embryos increases the frequency of phenotypes observed, suggests that these primitive streak patterning defects are due to defective Nodal signalling. Together, our experiments demonstrate that the AVE is not only required for anterior patterning, but also that specific sub-populations of this tissue are required to pattern the posterior of the embryo.

  12. Potential Requirement of Positron Emission Tomography Apparatuses in Asia and Latin America Including Mexico

    International Nuclear Information System (INIS)

    Watanabe, Naoyuki; Padhy, Ajit Kumar; Oku, Shinya; Sasaki, Yasuhito

    2013-01-01

    The number of positron emission tomography (PET) machines has been increasing in regions of East-, Southeast-, and South-Asia as well as in Latin America including Mexico. This study was performed to assess the potential requirement of PET machines in 19 countries which already use PET in the aforementioned regions. Data on the number of PET machines and internationally available characteristics of the restrictive countries such as the land area, the total population, the gross national income (GNI), and the average life span of inhabitants were obtained from IAEA, UN, WB, and WHO. Correlation between the number of PET machines and the characteristics of each country was evaluated. The potentially required number of PET machines, which was obtained by adjusting the number of PET machines with statistically significant, correlative characteristics of each country, standardized on the state of Japan, were compared. The number of PET machines could be significantly correlated to the GNI of a country and the average life span of its inhabitants (P < 0.05). Based on Japan, most of the countries in the regions would require considerably more PET machines. With installation of the potentially required number of PET machines in each of the countries, the number of PET machine per 10 6 population would increase by 1.1- to 12-fold, in comparison with the current situation. With regards to the potentially required number of PET machines, most of the countries in these regions may require a considerable increase of PET machines. Nevertheless, some countries in the Asia seem to require outside assistance such as international support in order to introduce PET and enhance the efficacy of their health services

  13. The Systematic Bias of Ingestible Core Temperature Sensors Requires a Correction by Linear Regression

    Directory of Open Access Journals (Sweden)

    Andrew P. Hunt

    2017-04-01

    Full Text Available An accurate measure of core body temperature is critical for monitoring individuals, groups and teams undertaking physical activity in situations of high heat stress or prolonged cold exposure. This study examined the range in systematic bias of ingestible temperature sensors compared to a certified and traceable reference thermometer. A total of 119 ingestible temperature sensors were immersed in a circulated water bath at five water temperatures (TEMP A: 35.12 ± 0.60°C, TEMP B: 37.33 ± 0.56°C, TEMP C: 39.48 ± 0.73°C, TEMP D: 41.58 ± 0.97°C, and TEMP E: 43.47 ± 1.07°C along with a certified traceable reference thermometer. Thirteen sensors (10.9% demonstrated a systematic bias > ±0.1°C, of which 4 (3.3% were > ± 0.5°C. Limits of agreement (95% indicated that systematic bias would likely fall in the range of −0.14 to 0.26°C, highlighting that it is possible for temperatures measured between sensors to differ by more than 0.4°C. The proportion of sensors with systematic bias > ±0.1°C (10.9% confirms that ingestible temperature sensors require correction to ensure their accuracy. An individualized linear correction achieved a mean systematic bias of 0.00°C, and limits of agreement (95% to 0.00–0.00°C, with 100% of sensors achieving ±0.1°C accuracy. Alternatively, a generalized linear function (Corrected Temperature (°C = 1.00375 × Sensor Temperature (°C − 0.205549, produced as the average slope and intercept of a sub-set of 51 sensors and excluding sensors with accuracy outside ±0.5°C, reduced the systematic bias to < ±0.1°C in 98.4% of the remaining sensors (n = 64. In conclusion, these data show that using an uncalibrated ingestible temperature sensor may provide inaccurate data that still appears to be statistically, physiologically, and clinically meaningful. Correction of sensor temperature to a reference thermometer by linear function eliminates this systematic bias (individualized functions or ensures

  14. Critical examination of the uniformity requirements for single-photon emission computed tomography.

    Science.gov (United States)

    O'Connor, M K; Vermeersch, C

    1991-01-01

    It is generally recognized that single-photon emission computed tomography (SPECT) imposes very stringent requirements on gamma camera uniformity to prevent the occurrence of ring artifacts. The purpose of this study was to examine the relationship between nonuniformities in the planar data and the magnitude of the consequential ring artifacts in the transaxial data, and how the perception of these artifacts is influenced by factors such as reconstruction matrix size, reconstruction filter, and image noise. The study indicates that the relationship between ring artifact magnitude and image noise is essentially independent of the acquisition or reconstruction matrix sizes, but is strongly dependent upon the type of smoothing filter applied during the reconstruction process. Furthermore, the degree to which a ring artifact can be perceived above image noise is dependent on the size and location of the nonuniformity in the planar data, with small nonuniformities (1-2 pixels wide) close to the center of rotation being less perceptible than those further out (8-20 pixels). Small defects or nonuniformities close to the center of rotation are thought to cause the greatest potential corruption to tomographic data. The study indicates that such may not be the case. Hence the uniformity requirements for SPECT may be less demanding than was previously thought.

  15. 77 FR 72993 - Atlantic Highly Migratory Species; Electronic Dealer Reporting Requirements; Correction

    Science.gov (United States)

    2012-12-07

    ...). This document corrects the final electronic dealer reporting rule by revising the first sentence of Sec... (NOAA), Commerce. ACTION: Final rule; correction. SUMMARY: This action is a technical amendment to a rule not yet in effect. It contains a correction to the final regulations regarding electronic dealer...

  16. Dizziness and neck pain: a correct diagnosis is required before consulting a physiotherapist.

    Science.gov (United States)

    van Leeuwen, Roeland B; van der Zaag-Loonen, Hester

    2017-03-01

    Patients with dizziness often present with concurrent neck complaints. Although there is no evidence that physiotherapy treatment of the neck reduces dizziness, many patients have been treated by a physiotherapist before they visit our tertiary dizziness centre. 1. How often do dizziness and neck complaints co-occur? and 2. how many patients have been treated by a physiotherapist for their neck complaints with a view to reduce the dizziness complaints? In a prospective observational study, the following data were collected: age, gender, neck complaints, and whether or not the dizziness had been treated by physiotherapy. From 455 non-consecutive patients with dizziness, 192 (42 %) patients had concurrent neck complaints in addition to dizziness. Within this group, 87 (45 %) had been treated with physiotherapy to reduce the dizziness. In 81 patients (94 %) who had been treated with physiotherapy, the doctors of the dizziness centre discovered a cause of the dizziness that could be treated medically. Neck complaints and dizziness often coincide. Treatment of the neck complaints with physiotherapy is frequently used. However, the causes of the dizziness are often vestibular (non-cervical) for which medical treatment is available. A correct diagnosis is required before consulting a physiotherapist.

  17. A moving blocker-based strategy for simultaneous megavoltage and kilovoltage scatter correction in cone-beam computed tomography image acquired during volumetric modulated arc therapy

    International Nuclear Information System (INIS)

    Ouyang, Luo; Lee, Huichen Pam; Wang, Jing

    2015-01-01

    Purpose: To evaluate a moving blocker-based approach in estimating and correcting megavoltage (MV) and kilovoltage (kV) scatter contamination in kV cone-beam computed tomography (CBCT) acquired during volumetric modulated arc therapy (VMAT). Methods and materials: During the concurrent CBCT/VMAT acquisition, a physical attenuator (i.e., “blocker”) consisting of equally spaced lead strips was mounted and moved constantly between the CBCT source and patient. Both kV and MV scatter signals were estimated from the blocked region of the imaging panel, and interpolated into the unblocked region. A scatter corrected CBCT was then reconstructed from the unblocked projections after scatter subtraction using an iterative image reconstruction algorithm based on constraint optimization. Experimental studies were performed on a Catphan® phantom and an anthropomorphic pelvis phantom to demonstrate the feasibility of using a moving blocker for kV–MV scatter correction. Results: Scatter induced cupping artifacts were substantially reduced in the moving blocker corrected CBCT images. Quantitatively, the root mean square error of Hounsfield units (HU) in seven density inserts of the Catphan phantom was reduced from 395 to 40. Conclusions: The proposed moving blocker strategy greatly improves the image quality of CBCT acquired with concurrent VMAT by reducing the kV–MV scatter induced HU inaccuracy and cupping artifacts

  18. 77 FR 42462 - Reporting and Notice Requirements for Deferred Vested Benefits Under Section 6057; Correction

    Science.gov (United States)

    2012-07-19

    ... Participants With Deferred Vested Benefits,'' to the list of forms that are covered by the Income Tax... Deferred Vested Benefits Under Section 6057; Correction AGENCY: Internal Revenue Service (IRS), Treasury...'', line four of the column, the language ``Employee Benefit Returns,''and file the'' is corrected to read...

  19. [F-18]2-fluoro-2-deoxyglucose (FDG) positron emission tomography after limb salvage surgery: post-surgical appearance, attenuation correction and local complications

    Energy Technology Data Exchange (ETDEWEB)

    Gelfand, Michael J.; Sharp, Susan E. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Nuclear Medicine Division, Cincinnati, OH (United States)

    2015-08-15

    Metal endoprostheses and internal fixation devices cause significant artifacts on CT after limb salvage surgery; positron emission tomography (PET) images should be evaluated for artifacts. (1) To describe [F-18]2-fluoro-2-deoxyglucose (FDG) PET uptake patterns after limb salvage surgery. (2) To determine whether metal endoprostheses and fixation hardware cause significant artifacts on CT attenuation-corrected PET that interfere with diagnostic use of PET/CT after limb salvage surgery. We reviewed 92 studies from 18 patients ages 5-21 years. Diagnoses were osteogenic sarcoma in 14, Ewing sarcoma in 3, and malignant peripheral nerve sheath tumor originating in bone in 1. Nine patients had distal femur/knee endoprostheses, five had lower-extremity bone allografts secured by large metal plates and four had upper-extremity limb salvage procedures. Maximum standardized uptake value was calculated at lower-extremity soft-tissue-endoprosthesis interfaces. In 15 patients with PET/CT imaging, the first PET/CT scan after limb salvage surgery was reviewed for metal artifacts on CT images and for artifacts at locations on PET corresponding to the CT metal artifacts. Increased FDG uptake was consistently present at soft-tissue interfaces with endoprostheses, allografts and internal fixation devices, with little or no FDG uptake at cemented endoprosthesis-bone interfaces. Maximum standardized uptake value at margins of femur/knee endoprostheses ranged from 1.4 to 5.7. In four patients with distal femur/knee endoprostheses, minimal artifact was noted on attenuation-corrected PET images, but image interpretation was not affected. In the other 11 patients who had CT attenuation correction, we detected no artifacts caused by the attenuation correction. CT attenuation correction did not cause artifacts that affected interpretation of attenuation-corrected PET images. (orig.)

  20. Correction of the X-ray tube spot movement as a tool for improvement of the micro-tomography quality

    Czech Academy of Sciences Publication Activity Database

    Vavřík, Daniel; Jandejsek, Ivan; Pichotka, M.

    2016-01-01

    Roč. 11, č. 1 (2016), C01029 ISSN 1748-0221 R&D Projects: GA MŠk(CZ) LO1219 Keywords : computerized tomography (CT) * computed radiography (CR) * inspection with x-rays * detector alignment and calibration methods Subject RIV: AL - Art, Architecture, Cultural Heritage Impact factor: 1.220, year: 2016 http://iopscience.iop.org/article/10.1088/1748-0221/11/01/C01029

  1. Experimental Evaluation of Depth-of-Interaction Correction in a Small-Animal Positron Emission Tomography Scanner

    OpenAIRE

    Green, Michael V.; Ostrow, Harold G.; Seidel, Jurgen; Pomper, Martin G.

    2010-01-01

    Human and small-animal positron emission tomography (PET) scanners with cylindrical geometry and conventional detectors exhibit a progressive reduction in radial spatial resolution with increasing radial distance from the geometric axis of the scanner. This “depth-of-interaction” (DOI) effect is sufficiently deleterious that many laboratories have devised novel schemes to reduce the magnitude of this effect and thereby yield PET images of greater quantitative accuracy. Here we examine experim...

  2. Assessment of the scatter correction procedures in single photon emission computed tomography imaging using simulation and clinical study

    Directory of Open Access Journals (Sweden)

    Mehravar Rafati

    2017-01-01

    Conclusion: The simulation and the clinical studies showed that the new approach could be better performance than DEW, TEW methods, according to values of the contrast, and the SNR for scatter correction.

  3. Clinical usefulness of scatter and attenuation correction for brain single photon emission computed tomography (SPECT) in pediatrics

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Itaru; Doi, Kenji; Komori, Tsuyoshi; Hou, Nobuyoshi; Tabuchi, Koujirou; Matsui, Ritsuo; Sueyoshi, Kouzou; Utsunomiya, Keita; Narabayashi, Isamu [Osaka Medical Coll., Takatsuki (Japan)

    1998-01-01

    This investigation was undertaken to study clinical usefulness of scatter and attenuation correction (SAC) of brain SPECT in infants to compare the standard reconstruction (STD). The brain SPECT was performed in 31 patients with 19 epilepsy, 5 cerebro-vascular disease, 2 brain tumor, 3 meningitis, 1 hydrocephalus and psychosis (mean age 5.0{+-}4.9 years old). Many patients was necessary to be injected sedatives for restraining body motion after Technetium-99m hexamethylpropylene amine oxime ({sup 99m}Tc-HMPAO) was injected at the convulsion or rest. Brain SPECT data were acquired with triple detector gamma camera (GCA-9300 Toshiba Japan). These data were reconstructed by filtered backprojection after the raw data were corrected by triple energy windows method of scatter correction and Chang filtered method of attenuation correction. The same data was reconstructed by filtered backprojection without these corrections. Both SAC and STD SPECT images were analyzed by the visual interpretation. The uptake ratio of cerebral basal nuclei was calculated by the counts of the thalamus or lenticular nuclei divided by the cortex. All images of SAC method were excellent than that of STD method. The thalamic uptake ratio in SAC method was higher than that of STD method (1.22{+-}0.09>0.87{+-}0.22 p<0.01). The lenticular nuclear uptake ratio in SAC method was higher than that of STD method (1.26{+-}0.15>1.02{+-}0.16 p<0.01). Transmission scan is the most suitable method of absorption correction. But the transmission scan is not adequate for examination of children, because this scan needs a lot of time and the infants are exposed by the line source radioisotope. It was concluded that these scatter and absorption corrections were most suitable method for brain SPECT in pediatrics. (author)

  4. Clinical usefulness of scatter and attenuation correction for brain single photon emission computed tomography (SPECT) in pediatrics

    International Nuclear Information System (INIS)

    Adachi, Itaru; Doi, Kenji; Komori, Tsuyoshi; Hou, Nobuyoshi; Tabuchi, Koujirou; Matsui, Ritsuo; Sueyoshi, Kouzou; Utsunomiya, Keita; Narabayashi, Isamu

    1998-01-01

    This investigation was undertaken to study clinical usefulness of scatter and attenuation correction (SAC) of brain SPECT in infants to compare the standard reconstruction (STD). The brain SPECT was performed in 31 patients with 19 epilepsy, 5 cerebro-vascular disease, 2 brain tumor, 3 meningitis, 1 hydrocephalus and psychosis (mean age 5.0±4.9 years old). Many patients was necessary to be injected sedatives for restraining body motion after Technetium-99m hexamethylpropylene amine oxime ( 99m Tc-HMPAO) was injected at the convulsion or rest. Brain SPECT data were acquired with triple detector gamma camera (GCA-9300 Toshiba Japan). These data were reconstructed by filtered backprojection after the raw data were corrected by triple energy windows method of scatter correction and Chang filtered method of attenuation correction. The same data was reconstructed by filtered backprojection without these corrections. Both SAC and STD SPECT images were analyzed by the visual interpretation. The uptake ratio of cerebral basal nuclei was calculated by the counts of the thalamus or lenticular nuclei divided by the cortex. All images of SAC method were excellent than that of STD method. The thalamic uptake ratio in SAC method was higher than that of STD method (1.22±0.09>0.87±0.22 p 1.02±0.16 p<0.01). Transmission scan is the most suitable method of absorption correction. But the transmission scan is not adequate for examination of children, because this scan needs a lot of time and the infants are exposed by the line source radioisotope. It was concluded that these scatter and absorption corrections were most suitable method for brain SPECT in pediatrics. (author)

  5. Prevention and correction of violations of posture in the required classes of physical training on the department of the athletics

    Directory of Open Access Journals (Sweden)

    Gavrilova N.M.

    2010-01-01

    Full Text Available Article is dedicated to the substantiation of the use of exercises, directed toward preventive and correction of the violations of posture, on the required classes of physical training. The state of the problem of prevention and correction of violations of student's posture was studied according to literature data scientific methods. The athletics is characterized by the variety of the utilized exercises and by a large quantity of methods and versions of their fulfillment, which makes these occupations optimal for the solution of the problems of prevention and correction of violations of posture. It is recommended to use special exercises for the prevention and correction of violations of posture on the athletics classes.

  6. Simulation tools for scattering corrections in spectrally resolved X-ray Computed Tomography using McXtrace

    DEFF Research Database (Denmark)

    Busi, Matteo; Olsen, Ulrik L.; Knudsen, Erik B.

    2018-01-01

    -ray and the sample is the incoherent scattering. The scattered radiation causes a loss of contrast in the results, and its correction has proven to be a complex problem, due to its dependence on energy, material composition, and geometry. Monte Carlo simulations can utilize a physical model to estimate...... the scattering contribution to the signal, at the cost of high computational time. We present a fast Monte Carlo simulation tool, based on McXtrace, to predict the energy resolved radiation being scattered and absorbed by objects of complex shapes. We validate the tool through measurements using a CdTe single...... PCD (Multix ME-100) and use it for scattering correction in a simulation of a spectral CT. We found the correction to account for up to 7% relative amplification in the reconstructed linear attenuation. It is a useful tool for x-ray CT to obtain a more accurate material discrimination, especially...

  7. Visual and semiquantitative analysis of 18F-fluorodeoxyglucose positron emission tomography using a partial-ring tomograph without attenuation correction to differentiate benign and malignant pulmonary nodules

    International Nuclear Information System (INIS)

    Skehan, S.J.; Coates, G.; Otero, C.; O'Donovan, N.; Pelling, M.; Nahmias, C.

    2001-01-01

    Many studies have reported the use of attenuation-corrected positron emission tomography with 18 F-fluorodeoxyglucose (FDG PET) with full-ring tomographs to differentiate between benign and malignant pulmonary nodules. We sought to evaluate FDG PET using a partial-ring tomograph without attenuation correction. A retrospective review of PET images from 77 patients (range 38-84 years of age) with proven benign or malignant pulmonary nodules was undertaken. All images were obtained using a Siemens/CTI ECAT ART tomograph, without attenuation correction, after 185 MBq 18 F-FDG was injected. Images were visually graded on a 5-point scale from 'definitely malignant' to 'definitely benign,' and lesion-to-background (LB) ratios were calculated using region of interest analysis. Visual and semiquantitative analyses were compared using receiver operating characteristic analysis. Twenty lesions were benign and 57 were malignant. The mean LB ratio for benign lesions was 1.5 (range 1.0-5.7) and for malignant lesions 5.7 (range 1.2-14.1) (p < 0.001). The area under the ROC curve for LB ratio analysis was 0.95, and for visual analysis 0.91 (p = 0.39). The optimal cut-off ratio with LB ratio analysis was 1.8, giving a sensitivity of 95% and a specificity of 85%. For lesions thought to be 'definitely malignant' on visual analysis, the sensitivity was 93% and the specificity 85%. Three proven infective lesions were rated as malignant by both techniques (LB ratio 2.6-5.7). FDG PET without attenuation correction is accurate for differentiating between benign and malignant lung nodules. Results using simple LB ratios without attenuation correction compare favourably with the published sensitivity and specificity for standard uptake ratios. Visual analysis is equally accurate. (author)

  8. 49 CFR 40.208 - What problem requires corrective action but does not result in the cancellation of a test?

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false What problem requires corrective action but does not result in the cancellation of a test? 40.208 Section 40.208 Transportation Office of the Secretary of Transportation PROCEDURES FOR TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Problems...

  9. A Dictyostelium SH2 adaptor protein required for correct DIF-1 signaling and pattern formation.

    Science.gov (United States)

    Sugden, Christopher; Ross, Susan; Annesley, Sarah J; Cole, Christian; Bloomfield, Gareth; Ivens, Alasdair; Skelton, Jason; Fisher, Paul R; Barton, Geoffrey; Williams, Jeffrey G

    2011-05-15

    Dictyostelium is the only non-metazoan with functionally analyzed SH2 domains and studying them can give insights into their evolution and wider potential. LrrB has a novel domain configuration with leucine-rich repeat, 14-3-3 and SH2 protein-protein interaction modules. It is required for the correct expression of several specific genes in early development and here we characterize its role in later, multicellular development. During development in the light, slug formation in LrrB null (lrrB-) mutants is delayed relative to the parental strain, and the slugs are highly defective in phototaxis and thermotaxis. In the dark the mutant arrests development as an elongated mound, in a hitherto unreported process we term dark stalling. The developmental and phototaxis defects are cell autonomous and marker analysis shows that the pstO prestalk sub-region of the slug is aberrant in the lrrB- mutant. Expression profiling, by parallel micro-array and deep RNA sequence analyses, reveals many other alterations in prestalk-specific gene expression in lrrB- slugs, including reduced expression of the ecmB gene and elevated expression of ampA. During culmination ampA is ectopically expressed in the stalk, there is no expression of ampA and ecmB in the lower cup and the mutant fruiting bodies lack a basal disc. The basal disc cup derives from the pstB cells and this population is greatly reduced in the lrrB- mutant. This anatomical feature is a hallmark of mutants aberrant in signaling by DIF-1, the polyketide that induces prestalk and stalk cell differentiation. In a DIF-1 induction assay the lrrB- mutant is profoundly defective in ecmB activation but only marginally defective in ecmA induction. Thus the mutation partially uncouples these two inductive events. In early development LrrB interacts physically and functionally with CldA, another SH2 domain containing protein. However, the CldA null mutant does not phenocopy the lrrB- in its aberrant multicellular development or

  10. Binary moving-blocker-based scatter correction in cone-beam computed tomography with width-truncated projections: proof of concept.

    Science.gov (United States)

    Lee, Ho; Fahimian, Benjamin P; Xing, Lei

    2017-03-21

    This paper proposes a binary moving-blocker (BMB)-based technique for scatter correction in cone-beam computed tomography (CBCT). In concept, a beam blocker consisting of lead strips, mounted in front of the x-ray tube, moves rapidly in and out of the beam during a single gantry rotation. The projections are acquired in alternating phases of blocked and unblocked cone beams, where the blocked phase results in a stripe pattern in the width direction. To derive the scatter map from the blocked projections, 1D B-Spline interpolation/extrapolation is applied by using the detected information in the shaded regions. The scatter map of the unblocked projections is corrected by averaging two scatter maps that correspond to their adjacent blocked projections. The scatter-corrected projections are obtained by subtracting the corresponding scatter maps from the projection data and are utilized to generate the CBCT image by a compressed-sensing (CS)-based iterative reconstruction algorithm. Catphan504 and pelvis phantoms were used to evaluate the method's performance. The proposed BMB-based technique provided an effective method to enhance the image quality by suppressing scatter-induced artifacts, such as ring artifacts around the bowtie area. Compared to CBCT without a blocker, the spatial nonuniformity was reduced from 9.1% to 3.1%. The root-mean-square error of the CT numbers in the regions of interest (ROIs) was reduced from 30.2 HU to 3.8 HU. In addition to high resolution, comparable to that of the benchmark image, the CS-based reconstruction also led to a better contrast-to-noise ratio in seven ROIs. The proposed technique enables complete scatter-corrected CBCT imaging with width-truncated projections and allows reducing the acquisition time to approximately half. This work may have significant implications for image-guided or adaptive radiation therapy, where CBCT is often used.

  11. Improving imaging of the air-liquid interface in living mice by aberration-corrected optical coherence tomography (mOCT) (Conference Presentation)

    Science.gov (United States)

    Schulz-Hildebrandt, Hinnerk; Sauer, Benjamin; Reinholz, Fred; Pieper, Mario; Mall, Markus; König, Peter; Huettmann, Gereon

    2017-04-01

    Failure in mucociliary clearance is responsible for severe diseases like cystic fibroses, primary ciliary dyskinesia or asthma. Visualizing the mucous transport in-vivo will help to understanding transport mechanisms as well as developing and validating new therapeutic intervention. However, in-vivo imaging is complicated by the need of high spatial and temporal resolution. Recently, we developed microscopy optical coherence tomography (mOCT) for non-invasive imaging of the liquid-air interface in intact murine trachea from its outside. Whereas axial resolution of 1.5 µm is achieved by the spectral width of supercontinuum light source, lateral resolution is limited by aberrations caused by the cylindric shape of the trachea and optical inhomogenities of the tissue. Therefore, we extended our mOCT by a deformable mirror for compensation of the probe induced aberrations. Instead of using a wavefront sensor for measuring aberrations, we harnessed optimization of the image quality to determine the correction parameter. With the aberration corrected mOCT ciliary function and mucus transport was measured in wild type and βENaC overexpressing mice, which served as a model for cystic fibrosis.

  12. Effect of partial volume correction on muscarinic cholinergic receptor imaging with single-photon emission tomography in patients with temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Weckesser, M.; Ziemons, K.; Griessmeier, M.; Sonnenberg, F.; Langen, K.J.; Mueller-Gaertner, H.W.; Hufnagel, A.; Elger, C.E.; Hacklaender, T.; Holschbach, M.

    1997-01-01

    Animal experiments and preliminary results in humans have indicated alterations of hippocampal muscarinic acetylcholine receptors (mAChR) in temporal lobe epilepsy. Patients with temporal lobe epilepsy often present with a reduction in hippocampal volume. The aim of this study was to investigate the influence of hippocampal atrophy on the quantification of mAChR with single photon emission tomography (SPET) in patients with temporal lobe epilepsy. Cerebral uptake of the muscarinic cholinergic antagonist [ 123 I]4-iododexetimide (IDex) was investigated by SPET in patients suffering from temporal lobe epilepsy of unilateral (n=6) or predominantly unilateral (n=1) onset. Regions of interest were drawn on co-registered magnetic resonance images. Hippocampal volume was determined in these regions and was used to correct the SPET results for partial volume effects. A ratio of hippocampal IDex binding on the affected side to that on the unaffected side was used to detect changes in muscarinic cholinergic receptor density. Before partial volume correction a decrease in hippocampal IDex binding on the focus side was found in each patient. After partial volume no convincing differences remained. Our results indicate that the reduction in hippocampal IDex binding in patients with epilepsy is due to a decrease in hippocampal volume rather than to a decrease in receptor concentration. (orig.). With 2 figs., 2 tabs

  13. Positron Emission Tomography Imaging Demonstrates Correlation between Behavioral Recovery and Correction of Dopamine Neurotransmission after Gene Therapy

    International Nuclear Information System (INIS)

    Leriche, L.; Besret, L.; Gregoire, M.C.; Deglon, N.; Hantraye, Ph.; Leriche, L.; Besret, L.; Gregoire, M.C.; Deglon, N.; Hantraye, Ph.; Bjorklund, T.; Breysse, N.; Carlsson, T.; Kirik, D.; Dolle, F.; Mandel, R.J.; Kirik, D.

    2009-01-01

    In vivo gene transfer using viral vectors is an emerging therapy for neuro-degenerative diseases with a clinical impact recently demonstrated in Parkinson's disease patients. Recombinant adeno-associated viral (rAAV) vectors, in particular, provide an excellent tool for long-term expression of therapeutic genes in the brain. Here we used the [ 11 C]raclopride [(S)-(-)-3, 5-dichloro-N-((1-ethyl-2-pyrrolidinyl)methyl)-2-hydroxy- 6-methoxybenzamide] micro-positron emission tomography (PET) technique to demonstrate that delivery of the tyrosine hydroxylase (TH) and GTP-cyclohydrolase 1 (GCH1) enzymes using an rAAV5 vector normalizes the increased [ 11 C]raclopride binding in hemi-parkinsonian rats. Importantly, we show in vivo by micro-PET imaging and postmortem by classical binding assays performed in the very same animals that the changes in [ 11 C]raclopride after viral vector-based enzyme replacement therapy is attributable to a decrease in the affinity of the tracer binding to the D2 receptors, providing evidence for reconstitution of a functional pool of endogenous dopamine in the striatum. Moreover, the extent of the normalization in this non-invasive imaging measure was highly correlated with the functional recovery in motor behavior. The PET imaging protocol used in this study is fully adaptable to humans and thus can serve as an in vivo imaging technique to follow TH+GCH1 gene therapy in PD patients and provide an additional objective measure to a potential clinical trial using rAAV vectors to deliver L-3, 4-dihydroxyphenylalanine in the brain. (authors)

  14. 78 FR 4032 - Prompt Corrective Action, Requirements for Insurance, and Promulgation of NCUA Rules and Regulations

    Science.gov (United States)

    2013-01-18

    ... interest rate risk requirements. The amended IRPS increases the asset threshold that identifies credit... asset threshold used to define a ``complex'' credit union for determining whether risk-based net worth... or credit unions) with assets of $50 million or less from interest rate risk rule requirements. To...

  15. Metal artifact correction for x-ray computed tomography using kV and selective MV imaging

    International Nuclear Information System (INIS)

    Wu, Meng; Keil, Andreas; Constantin, Dragos; Star-Lack, Josh; Zhu, Lei; Fahrig, Rebecca

    2014-01-01

    Purpose: The overall goal of this work is to improve the computed tomography (CT) image quality for patients with metal implants or fillings by completing the missing kilovoltage (kV) projection data with selectively acquired megavoltage (MV) data that do not suffer from photon starvation. When both of these imaging systems, which are available on current radiotherapy devices, are used, metal streak artifacts are avoided, and the soft-tissue contrast is restored, even for regions in which the kV data cannot contribute any information. Methods: Three image-reconstruction methods, including two filtered back-projection (FBP)-based analytic methods and one iterative method, for combining kV and MV projection data from the two on-board imaging systems of a radiotherapy device are presented in this work. The analytic reconstruction methods modify the MV data based on the information in the projection or image domains and then patch the data onto the kV projections for a FBP reconstruction. In the iterative reconstruction, the authors used dual-energy (DE) penalized weighted least-squares (PWLS) methods to simultaneously combine the kV/MV data and perform the reconstruction. Results: The authors compared kV/MV reconstructions to kV-only reconstructions using a dental phantom with fillings and a hip-implant numerical phantom. Simulation results indicated that dual-energy sinogram patch FBP and the modified dual-energy PWLS method can successfully suppress metal streak artifacts and restore information lost due to photon starvation in the kV projections. The root-mean-square errors of soft-tissue patterns obtained using combined kV/MV data are 10–15 Hounsfield units smaller than those of the kV-only images, and the structural similarity index measure also indicates a 5%–10% improvement in the image quality. The added dose from the MV scan is much less than the dose from the kV scan if a high efficiency MV detector is assumed. Conclusions: The authors have shown that it

  16. Aberration corrected and 3D cryo-tomography HAADF-STEM surface studies of ZnO tetrapods

    International Nuclear Information System (INIS)

    Ward, M R; Gai, P L; Boyes, E D; Sugiura, H; Tanaka, N; Yoshida, K

    2012-01-01

    We present a morphology study of ZnO tetrapods using aberration corrected TEM, HAADF-STEM and 3D HAADF-STEM cryotomography as an alternative to more conventional TEM and SEM techniques. We use 3D IMOD reconstructions to show that the {11-bar 0} facets dominate the total surface area of uniform hexagonal prism tetrapods. Using HRTEM we show that the small tetrapods have a zincblende phase core from which the four legs extend. The facets and the edges of these legs were found to be atomically clean and flat with the potential for ZnO tetrapods as model substrates. We deposited ultrafine Pt/Pd nanoparticles onto the tetrapods and investigated the resulting morphologies. We found using HAADF-STEM cryotomography and reconstruction techniques that the nanoparticle coverage gave separate nanoparticles and overall uniform coverage. We believe these techniques and the results from them could be useful for the development of nanoparticle-ZnO tetrapod composite systems with applications in optoelectronics, gas sensing and catalysis.

  17. Precise temporal regulation of roughest is required for correct salivary gland autophagic cell death in Drosophila.

    Science.gov (United States)

    Simon, Claudio R; Moda, Livia M R; Octacilio-Silva, Shirlei; Anhezini, Lucas; Machado-Gitai, Luciana C H; Ramos, Ricardo Guelerman P

    2009-07-01

    The Drosophila roughest (rst) locus encodes an immunoglobulin superfamily transmembrane glycoprotein implicated in a variety of embryonic and postembryonic developmental processes. Here we demonstrate a previously unnoticed role for this gene in the autophagic elimination of larval salivary glands during early pupal stages by showing that overexpression of the Rst protein ectodomain in early pupa leads to persistence of salivary glands up to at least 12 hours after head eversion, although with variable penetrance. The same phenotype is observed in individuals carrying the dominant regulatory allele rst(D), but not in loss of function alleles. Analysis of persistent glands at the ultrastructural level showed that programmed cell death starts at the right time but is arrested at an early stage of the process. Finally we describe the expression pattern and intracellular distribution of Rst in wild type and rst(D) mutants, showing that its downregulation in salivary glands at the beginning of pupal stage is an important factor in the correct implementation of the autophagic program of this tissue in space and time. 2009 Wiley-Liss, Inc.

  18. 77 FR 59139 - Prompt Corrective Action, Requirements for Insurance, and Promulgation of NCUA Rules and Regulations

    Science.gov (United States)

    2012-09-26

    ... threshold is used to define a ``complex'' credit union for determining whether risk-based net worth... credit union (FICU) is subject to certain interest rate risk rule requirements. \\1\\ IRPS 03-2, 68 FR... multiple applications, while avoiding undue risk to the National Credit Union Share Insurance Fund (NCUSIF...

  19. Diagnostic value of thallium-201 myocardial perfusion IQ-SPECT without and with computed tomography-based attenuation correction to predict clinically significant and insignificant fractional flow reserve

    Science.gov (United States)

    Tanaka, Haruki; Takahashi, Teruyuki; Ohashi, Norihiko; Tanaka, Koichi; Okada, Takenori; Kihara, Yasuki

    2017-01-01

    Abstract The aim of this study was to clarify the predictive value of fractional flow reserve (FFR) determined by myocardial perfusion imaging (MPI) using thallium (Tl)-201 IQ-SPECT without and with computed tomography-based attenuation correction (CT-AC) for patients with stable coronary artery disease (CAD). We assessed 212 angiographically identified diseased vessels using adenosine-stress Tl-201 MPI-IQ-SPECT/CT in 84 consecutive, prospectively identified patients with stable CAD. We compared the FFR in 136 of the 212 diseased vessels using visual semiquantitative interpretations of corresponding territories on MPI-IQ-SPECT images without and with CT-AC. FFR inversely correlated most accurately with regional summed difference scores (rSDS) in images without and with CT-AC (r = −0.584 and r = −0.568, respectively, both P system can predict FFR at an optimal cut-off of <0.80, and we propose a novel application of CT-AC to MPI-IQ-SPECT for predicting clinically significant and insignificant FFR even in nonobese patients. PMID:29390486

  20. Local detection of prostate cancer by positron emission tomography with 2-fluorodeoxyglucose comparison of filtered back projection and iterative reconstruction with segmented attenuation correction

    International Nuclear Information System (INIS)

    Turlakow, A.; Larson, S. M.; Coakley, F.; Akhurst, T.; Macapinlac, H. A.; Hricak, H.; Gonen, M.; Kelly, W.; Scher, H.; Leibel, S.; Humm, J.; Scardino, P.

    2001-01-01

    To compare filtered back projection (FBP) and iterative reconstruction with segmented attenuation correction (IRSAC) in the local imaging of prostate cancer by positron emission tomography with 2-fluorodeoxyglucose (FDG-PET). 13 patients with primary (n=7) or recurrent (n=6) prostate cancer who had increased uptake in the prostate on FDG-PET performed without urinary catheterization, contemporaneous biopsy confirming the presence of active tumor in the prostate, were retrospectively identified. Two independent nuclear medicine physicians separately rated FBP and IRSAC images for visualization of prostatic activity on a 4-point scale. Results were compared using biopsy and cross-sectional imaging findings as the standard of reference. IRSAC images were significantly better that FBP in terms of visualization of prostatic activity in 12 of 13 patients, and were equivalent in 1 patient (p<0.001, Wilcoxon signed ranks test). In particular, 2 foci of tumor activity in 2 different patients seen on IRSAC images were not visible on FBP images. In 11 patients who had a gross tumor mass evident on cross-sectional imaging, there was good agreement between PET and cross-sectional anatomic imaging with respect to tumor localization. In selected patients, cancer can be imaged within the prostate using FDG-PET, and IRSAC is superior to FBP in image reconstruction for local tumor visualization

  1. Local detection of prostate cancer by positron emission tomography with 2-fluorodeoxyglucose comparison of filtered back projection and iterative reconstruction with segmented attenuation correction

    Energy Technology Data Exchange (ETDEWEB)

    Turlakow, A.; Larson, S. M.; Coakley, F.; Akhurst, T.; Macapinlac, H. A.; Hricak, H. [Memorial Sloab-Kettering Cancer Center, Dept. of Radiology, New York (United States); Gonen, M. [Memorial Sloab-Kettering Cancer Center, Dept. of Biostatics, New York (United States); Kelly, W.; Scher, H. [Memorial Sloab-Kettering Cancer Center, Dept. of Medical Oncology, New York (United States); Leibel, S. [Memorial Sloab-Kettering Cancer Center, Dept. of Radiation Oncology, New York (United States); Humm, J. [Memorial Sloab-Kettering Cancer Center, Dept. of Medical Physics, New York (United States); Scardino, P. [Memorial Sloab-Kettering Cancer Center, Dept. of Urology, New York (United States)

    2001-09-01

    To compare filtered back projection (FBP) and iterative reconstruction with segmented attenuation correction (IRSAC) in the local imaging of prostate cancer by positron emission tomography with 2-fluorodeoxyglucose (FDG-PET). 13 patients with primary (n=7) or recurrent (n=6) prostate cancer who had increased uptake in the prostate on FDG-PET performed without urinary catheterization, contemporaneous biopsy confirming the presence of active tumor in the prostate, were retrospectively identified. Two independent nuclear medicine physicians separately rated FBP and IRSAC images for visualization of prostatic activity on a 4-point scale. Results were compared using biopsy and cross-sectional imaging findings as the standard of reference. IRSAC images were significantly better that FBP in terms of visualization of prostatic activity in 12 of 13 patients, and were equivalent in 1 patient (p<0.001, Wilcoxon signed ranks test). In particular, 2 foci of tumor activity in 2 different patients seen on IRSAC images were not visible on FBP images. In 11 patients who had a gross tumor mass evident on cross-sectional imaging, there was good agreement between PET and cross-sectional anatomic imaging with respect to tumor localization. In selected patients, cancer can be imaged within the prostate using FDG-PET, and IRSAC is superior to FBP in image reconstruction for local tumor visualization.

  2. Differential requirement for utrophin in the induced pluripotent stem cell correction of muscle versus fat in muscular dystrophy mice.

    Directory of Open Access Journals (Sweden)

    Amanda J Beck

    Full Text Available Duchenne muscular dystrophy (DMD is an incurable degenerative muscle disorder. We injected WT mouse induced pluripotent stem cells (iPSCs into mdx and mdx∶utrophin mutant blastocysts, which are predisposed to develop DMD with an increasing degree of severity (mdx <<< mdx∶utrophin. In mdx chimeras, iPSC-dystrophin was supplied to the muscle sarcolemma to effect corrections at morphological and functional levels. Dystrobrevin was observed in dystrophin-positive and, at a lesser extent, utrophin-positive areas. In the mdx∶utrophin mutant chimeras, although iPSC-dystrophin was also supplied to the muscle sarcolemma, mice still displayed poor skeletal muscle histopathology, and negligible levels of dystrobrevin in dystrophin- and utrophin-negative areas. Not only dystrophin-expressing tissues are affected by iPSCs. Mdx and mdx∶utrophin mice have reduced fat/body weight ratio, but iPSC injection normalized this parameter in both mdx and mdx∶utrophin chimeras, despite the fact that utrophin was compromised in the mdx∶utrophin chimeric fat. The results suggest that the presence of utrophin is required for the iPSC-corrections in skeletal muscle. Furthermore, the results highlight a potential (utrophin-independent non-cell autonomous role for iPSC-dystrophin in the corrections of non-muscle tissue like fat, which is intimately related to the muscle.

  3. Territorial Behavior and Social Stability in the Mouse Require Correct Expression of Imprinted Cdkn1c

    Directory of Open Access Journals (Sweden)

    Gráinne I. McNamara

    2018-02-01

    Full Text Available Genomic imprinting, the epigenetic process by which transcription occurs from a single parental allele, is believed to influence social behaviors in mammals. An important social behavior is group living, which is enriched in Eutherian mammals relative to monotremes and marsupials. Group living facilitates resource acquisition, defense of territory and co-care of young, but requires a stable social group with complex inter-individual relationships. Co-occurring with increased group living in Eutherians is an increase in the number of imprinted loci, including that spanning the maternally expressed Cdkn1c. Using a ‘loss-of-imprinting’ model of Cdkn1c (Cdkn1cBACx1, we demonstrated that twofold over expression of Cdkn1c results in abnormal social behaviors. Although, our previous work indicated that male Cdkn1cBACx1 mice were more dominant as measured by tube test encounters with unfamiliar wild-type (WT males. Building upon this work, using more ecologically relevant assessments of social dominance, indicated that within their normal social group, Cdkn1cBACx1 mice did not occupy higher ranking positions. Nevertheless, we find that presence of Cdkn1cBACx1 animals within a group leads to instability of the normal social hierarchy, as indicated by greater variability in social rank within the group over time and an increase in territorial behavior in WT cage-mates. Consequently, these abnormal behaviors led to an increased incidence of fighting and wounding within the group. Taken together these data indicate that normal expression of Cdkn1c is required for maintaining stability of the social group and suggests that the acquisition of monoallelic expression of Cdkn1c may have enhanced social behavior in Eutherian mammals to facilitate group living.

  4. SU-E-I-86: Ultra-Low Dose Computed Tomography Attenuation Correction for Pediatric PET CT Using Adaptive Statistical Iterative Reconstruction (ASiR™)

    Energy Technology Data Exchange (ETDEWEB)

    Brady, S; Shulkin, B [St. Jude Children’s Research Hospital, Memphis, TN (United States)

    2015-06-15

    Purpose: To develop ultra-low dose computed tomography (CT) attenuation correction (CTAC) acquisition protocols for pediatric positron emission tomography CT (PET CT). Methods: A GE Discovery 690 PET CT hybrid scanner was used to investigate the change to quantitative PET and CT measurements when operated at ultra-low doses (10–35 mAs). CT quantitation: noise, low-contrast resolution, and CT numbers for eleven tissue substitutes were analyzed in-phantom. CT quantitation was analyzed to a reduction of 90% CTDIvol (0.39/3.64; mGy) radiation dose from baseline. To minimize noise infiltration, 100% adaptive statistical iterative reconstruction (ASiR) was used for CT reconstruction. PET images were reconstructed with the lower-dose CTAC iterations and analyzed for: maximum body weight standardized uptake value (SUVbw) of various diameter targets (range 8–37 mm), background uniformity, and spatial resolution. Radiation organ dose, as derived from patient exam size specific dose estimate (SSDE), was converted to effective dose using the standard ICRP report 103 method. Effective dose and CTAC noise magnitude were compared for 140 patient examinations (76 post-ASiR implementation) to determine relative patient population dose reduction and noise control. Results: CT numbers were constant to within 10% from the non-dose reduced CTAC image down to 90% dose reduction. No change in SUVbw, background percent uniformity, or spatial resolution for PET images reconstructed with CTAC protocols reconstructed with ASiR and down to 90% dose reduction. Patient population effective dose analysis demonstrated relative CTAC dose reductions between 62%–86% (3.2/8.3−0.9/6.2; mSv). Noise magnitude in dose-reduced patient images increased but was not statistically different from pre dose-reduced patient images. Conclusion: Using ASiR allowed for aggressive reduction in CTAC dose with no change in PET reconstructed images while maintaining sufficient image quality for co

  5. Functional requirements for the man-vehicle systems research facility. [identifying and correcting human errors during flight simulation

    Science.gov (United States)

    Clement, W. F.; Allen, R. W.; Heffley, R. K.; Jewell, W. F.; Jex, H. R.; Mcruer, D. T.; Schulman, T. M.; Stapleford, R. L.

    1980-01-01

    The NASA Ames Research Center proposed a man-vehicle systems research facility to support flight simulation studies which are needed for identifying and correcting the sources of human error associated with current and future air carrier operations. The organization of research facility is reviewed and functional requirements and related priorities for the facility are recommended based on a review of potentially critical operational scenarios. Requirements are included for the experimenter's simulation control and data acquisition functions, as well as for the visual field, motion, sound, computation, crew station, and intercommunications subsystems. The related issues of functional fidelity and level of simulation are addressed, and specific criteria for quantitative assessment of various aspects of fidelity are offered. Recommendations for facility integration, checkout, and staffing are included.

  6. Applying the Meiorin Decision requirements to the fitness test for correctional officer applicants; examining adverse impact and accommodation.

    Science.gov (United States)

    Jamnik, Veronica K; Thomas, Scott G; Gledhill, Norman

    2010-02-01

    The fitness test for correctional officer applicants (FITCO) was constructed a priori to conform to requirements established by the Meiorin Decision of the Supreme Court of Canada. A critical obligation from this decision is to determine whether the FITCO has the potential of adverse impact on any subpopulation of applicants and, if so, whether it is possible to provide accommodation. The FITCO pass rate was 28.6% for 56 women and 72.7% for 22 men, which indicates adverse impact on the female applicants. There was no specific adverse impact on minority applicants. To evaluate training as accommodation for adverse impact, a subgroup of 40 females and 8 males engaged in a 6-week FITCO-specific training program with pre-FITCO and post-FITCO performance evaluations. Over the 6 weeks, the overall FITCO pass rate of the females improved to 82.5%, whereas the pass rate of the males improved to 100%, indicating that the training program removed the adverse impact that the FITCO had on the females. We conclude that although the FITCO is likely to have an adverse impact on female correctional officer applicants, a 6-week FITCO-specific training program can provide the accommodation necessary to overcome the potential adverse impact, and the FITCO meets all the requirements established by the Supreme Court of Canada's Meiorin Decision.

  7. Data Requirements for the Correct Identification of Medication Errors and Adverse Drug Events in Patients Presenting at an Emergency Department.

    Science.gov (United States)

    Plank-Kiegele, Bettina; Bürkle, Thomas; Müller, Fabian; Patapovas, Andrius; Sonst, Anja; Pfistermeister, Barbara; Dormann, Harald; Maas, Renke

    2017-08-11

    Adverse drug events (ADE) involving or not involving medication errors (ME) are common, but frequently remain undetected as such. Presently, the majority of available clinical decision support systems (CDSS) relies mostly on coded medication data for the generation of drug alerts. It was the aim of our study to identify the key types of data required for the adequate detection and classification of adverse drug events (ADE) and medication errors (ME) in patients presenting at an emergency department (ED). As part of a prospective study, ADE and ME were identified in 1510 patients presenting at the ED of an university teaching hospital by an interdisciplinary panel of specialists in emergency medicine, clinical pharmacology and pharmacy. For each ADE and ME the required different clinical data sources (i.e. information items such as acute clinical symptoms, underlying diseases, laboratory values or ECG) for the detection and correct classification were evaluated. Of all 739 ADE identified 387 (52.4%), 298 (40.3%), 54 (7.3%), respectively, required one, two, or three, more information items to be detected and correctly classified. Only 68 (10.2%) of the ME were simple drug-drug interactions that could be identified based on medication data alone while 381 (57.5%), 181 (27.3%) and 33 (5.0%) of the ME required one, two or three additional information items, respectively, for detection and clinical classification. Only 10% of all ME observed in emergency patients could be identified on the basis of medication data alone. Focusing electronic decisions support on more easily available drug data alone may lead to an under-detection of clinically relevant ADE and ME.

  8. Patients with computed tomography-proven acute diverticulitis require follow-up to exclude colorectal cancer

    Directory of Open Access Journals (Sweden)

    Shafquat Zaman

    2017-04-01

    Full Text Available Background/Aims: Traditionally, patients with acute diverticulitis undergo follow-up endoscopy to exclude colorectal cancer (CRC. However, its usefulness has been debated in this era of high-resolution computed tomography (CT diagnosis. We assessed the frequency and outcome of endoscopic follow-up for patients with CT-proven acute diverticulitis, according to the confidence in the CT diagnosis.Methods: Records of patients with CT-proven acute diverticulitis between October 2007 and March 2014 at Sandwell & West Birmingham Hospitals NHS Trust were retrieved. The National Cancer Registry confirmed the cases of CRC. Endoscopy quality indicators were compared between these patients and other patients undergoing the same endoscopic examination over the same period.Results: We identified 235 patients with CT-proven acute diverticulitis, of which, 187 were managed conservatively. The CT report was confident of the diagnosis of acute diverticulitis in 75% cases. Five of the 235 patients were subsequently diagnosed with CRC (2.1%. Three cases of CRC were detected in the 187 patients managed conservatively (1.6%. Forty-eight percent of the conservatively managed patients underwent follow-up endoscopy; one case of CRC was identified. Endoscopies were often incomplete and caused more discomfort for patients with diverticulitis compared with controls.Conclusions: CRC was diagnosed in patients with CT-proven diverticulitis at a higher rate than in screened asymptomatic populations, necessitating follow-up. CT reports contained statements regarding diagnostic uncertainty in 25% cases, associated with an increased risk of CRC. Follow-up endoscopy in patients with CT-proven diverticulitis is associated with increased discomfort and high rates of incompletion. The use of other follow-up modalities should be considered.

  9. Optimizing experimental parameters for the projection requirement in HAADF-STEM tomography

    Energy Technology Data Exchange (ETDEWEB)

    Aveyard, R., E-mail: r.a.aveyard@tudelft.nl [Department of Imaging Physics, Delft University of Technology, 2628CJ Delft (Netherlands); Zhong, Z.; Batenburg, K.J. [Centrum Wiskunde and Informatica, Science Park 123, NL-1098 XG Amsterdam (Netherlands); Rieger, B., E-mail: b.rieger@tudelft.nl [Department of Imaging Physics, Delft University of Technology, 2628CJ Delft (Netherlands)

    2017-06-15

    Highlights: • The extent to which HAADF-STEM meets the projection requirement has been studied. • Multislice simulations used to model beam propagation and study signal linearity. • Propagation in crystalline and amorphous materials considered. • Optimal experimental set-up for the projection requirement is discussed. - Abstract: Tomographic reconstruction algorithms offer a means by which a tilt-series of transmission images can be combined to yield a three dimensional model of the specimen. Conventional reconstruction algorithms assume that the measured signal is a linear projection of some property, typically the density, of the material. Here we report the use of multislice simulations to investigate the extent to which this assumption is met in HAADF-STEM imaging. The use of simulations allows for a systematic survey of a range of materials and microscope parameters to inform optimal experimental design. Using this approach it is demonstrated that the imaging of amorphous materials is in good agreement with the projection assumption in most cases. Images of crystalline specimens taken along zone-axes are found to be poorly suited for conventional linear reconstruction algorithms due to channelling effects which produce enhanced intensities compared with off-axis images, and poor compliance with the projection requirement. Off-axis images are found to be suitable for reconstruction, though they do not strictly meet the linearity requirement in most cases. It is demonstrated that microscope parameters can be selected to yield improved compliance with the projection requirement.

  10. An innovative technique for contrast enhancement of computed tomography images using normalized gamma-corrected contrast-limited adaptive histogram equalization

    Science.gov (United States)

    Al-Ameen, Zohair; Sulong, Ghazali; Rehman, Amjad; Al-Dhelaan, Abdullah; Saba, Tanzila; Al-Rodhaan, Mznah

    2015-12-01

    Image contrast is an essential visual feature that determines whether an image is of good quality. In computed tomography (CT), captured images tend to be low contrast, which is a prevalent artifact that reduces the image quality and hampers the process of extracting its useful information. A common tactic to process such artifact is by using histogram-based techniques. However, although these techniques may improve the contrast for different grayscale imaging applications, the results are mostly unacceptable for CT images due to the presentation of various faults, noise amplification, excess brightness, and imperfect contrast. Therefore, an ameliorated version of the contrast-limited adaptive histogram equalization (CLAHE) is introduced in this article to provide a good brightness with decent contrast for CT images. The novel modification to the aforesaid technique is done by adding an initial phase of a normalized gamma correction function that helps in adjusting the gamma of the processed image to avoid the common errors of the basic CLAHE of the excess brightness and imperfect contrast it produces. The newly developed technique is tested with synthetic and real-degraded low-contrast CT images, in which it highly contributed in producing better quality results. Moreover, a low intricacy technique for contrast enhancement is proposed, and its performance is also exhibited against various versions of histogram-based enhancement technique using three advanced image quality assessment metrics of Universal Image Quality Index (UIQI), Structural Similarity Index (SSIM), and Feature Similarity Index (FSIM). Finally, the proposed technique provided acceptable results with no visible artifacts and outperformed all the comparable techniques.

  11. Contemporary hygienic and engineering requirements to the projecting and exploitation of the positron-emission tomography in medicine

    International Nuclear Information System (INIS)

    Chekmarev, O.; Paltseva, A.

    2004-01-01

    The positron-emission tomography (PET) centres, attached to a large medical establishment as a rule include except PET a compact cyclotron for producing positron-radiant ultra-temporary product radionuclides (carbon-11, Nitrogen-14, oxygen-15, fluorine-18 and etc.) based on water and gaseous targets. At present there are no information about regulating and setting up such medical centres, moreover, requirements which must be presented to the Sanitary Inspection Agency at the documents examination are incompletely represented. During 2001-2003 years specialists of the Moscow Medical Centre (MMC) have been reviewing the hygienic expert examination of the 5 versions of the PET's cabinets installation in therapeutic and prophylactic offices. One of the projects for operating ultra-temporary products is submitted in this report. It foresees the usage of proton beam of the self-protected cyclotron RDS/111 (CTJ PET System (USA)). Its energy of irradiation (proton beam) is 11 MeV. The cyclotron is placed in the additional building of the radiological trunk on the territory of the Moscow Clinical hospital. The technological process of producing the ultra-temporary radionuclides is presented. The block of the radiodiagnostic research include: a treatment room for PET; an operating room; an area for information handling; a treatment room for intake of the radio-pharm-preparations; a filling room; a laboratory for express-analysis of blood before and after research; a WC for patients (with radio-pharm-preparations); and at last - an area for transient (30 - 40 min.) staying for the patients in the lay position before the research. All probable accidents, which can happen in the case of any technology violation, are discussed. There were worked out special requirements to the clarification tanks equipment for liquid radioactive waste and to the time of being a patient in the department after diagnostic researches using fluorine-18

  12. Efficient RNA pseudouridylation by eukaryotic H/ACA ribonucleoproteins requires high affinity binding and correct positioning of guide RNA

    Science.gov (United States)

    Caton, Evan A; Kelly, Erin K; Kamalampeta, Rajashekhar

    2018-01-01

    Abstract H/ACA ribonucleoproteins (H/ACA RNPs) are responsible for introducing many pseudouridines into RNAs, but are also involved in other cellular functions. Utilizing a purified and reconstituted yeast H/ACA RNP system that is active in pseudouridine formation under physiological conditions, we describe here the quantitative characterization of H/ACA RNP formation and function. This analysis reveals a surprisingly tight interaction of H/ACA guide RNA with the Cbf5p–Nop10p–Gar1p trimeric protein complex whereas Nhp2p binds comparably weakly to H/ACA guide RNA. Substrate RNA is bound to H/ACA RNPs with nanomolar affinity which correlates with the GC content in the guide-substrate RNA base pairing. Both Nhp2p and the conserved Box ACA element in guide RNA are required for efficient pseudouridine formation, but not for guide RNA or substrate RNA binding. These results suggest that Nhp2p and the Box ACA motif indirectly facilitate loading of the substrate RNA in the catalytic site of Cbf5p by correctly positioning the upper and lower parts of the H/ACA guide RNA on the H/ACA proteins. In summary, this study provides detailed insight into the molecular mechanism of H/ACA RNPs. PMID:29177505

  13. Statistical correction of atom probe tomography data of semiconductor alloys combined with optical spectroscopy: The case of Al{sub 0.25}Ga{sub 0.75}N

    Energy Technology Data Exchange (ETDEWEB)

    Rigutti, L., E-mail: lorenzo.rigutti@univ-rouen.fr; Mancini, L.; Hernández-Maldonado, D.; Lefebvre, W.; Blavette, D.; Vurpillot, F. [Groupe de Physique des Matériaux, UMR 6634 CNRS, University and INSA of Rouen, Normandie University, 76800 St. Etienne du Rouvray (France); Giraud, E.; Butté, R.; Carlin, J. F.; Grandjean, N. [Institute of Physics (IPhys), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)

    2016-03-14

    The ternary semiconductor alloy Al{sub 0.25}Ga{sub 0.75}N has been analyzed by means of correlated photoluminescence spectroscopy and atom probe tomography (APT). We find that the composition measured by APT is strongly dependent on the surface electric field, leading to erroneous measurements of the alloy composition at high field, due to the different evaporation behaviors of Al and Ga atoms. After showing how a biased measurement of the alloy content leads to inaccurate predictions on the optical properties of the material, we develop a correction procedure which yields consistent transition and localization energies for the alloy photoluminescence.

  14. Attenuation correction for small animal PET tomographs

    Energy Technology Data Exchange (ETDEWEB)

    Chow, Patrick L [David Geffen School of Medicine at UCLA, Crump Institute for Molecular Imaging, University of California, 700 Westwood Plaza, Los Angeles, CA 90095 (United States); Rannou, Fernando R [Departamento de Ingenieria Informatica, Universidad de Santiago de Chile (USACH), Av. Ecuador 3659, Santiago (Chile); Chatziioannou, Arion F [David Geffen School of Medicine at UCLA, Crump Institute for Molecular Imaging, University of California, 700 Westwood Plaza, Los Angeles, CA 90095 (United States)

    2005-04-21

    Attenuation correction is one of the important corrections required for quantitative positron emission tomography (PET). This work will compare the quantitative accuracy of attenuation correction using a simple global scale factor with traditional transmission-based methods acquired either with a small animal PET or a small animal x-ray computed tomography (CT) scanner. Two phantoms (one mouse-sized and one rat-sized) and two animal subjects (one mouse and one rat) were scanned in CTI Concorde Microsystem's microPET (registered) Focus{sup TM} for emission and transmission data and in ImTek's MicroCAT{sup TM} II for transmission data. PET emission image values were calibrated against a scintillation well counter. Results indicate that the scale factor method of attenuation correction places the average measured activity concentration about the expected value, without correcting for the cupping artefact from attenuation. Noise analysis in the phantom studies with the PET-based method shows that noise in the transmission data increases the noise in the corrected emission data. The CT-based method was accurate and delivered low-noise images suitable for both PET data correction and PET tracer localization.

  15. Corrective Jaw Surgery

    Medline Plus

    Full Text Available ... and Craniofacial Surgery Cleft Lip/Palate and Craniofacial Surgery A cleft lip may require one or more ... find out more. Corrective Jaw Surgery Corrective Jaw Surgery Orthognathic surgery is performed to correct the misalignment ...

  16. The required number of treatment imaging days for an effective off-line correction of systematic errors in conformal radiotherapy of prostate cancer -- a radiobiological analysis

    International Nuclear Information System (INIS)

    Amer, Ali M.; Mackay, Ranald I.; Roberts, Stephen A.; Hendry, Jolyon H.; Williams, Peter C.

    2001-01-01

    Background and purpose: To use radiobiological modelling to estimate the number of initial days of treatment imaging required to gain most of the benefit from off-line correction of systematic errors in the conformal radiation therapy of prostate cancer. Materials and methods: Treatment plans based on the anatomical information of a representative patient were generated assuming that the patient is treated with a multi leaf collimator (MLC) four-field technique and a total isocentre dose of 72 Gy delivered in 36 daily fractions. Target position variations between fractions were simulated from standard deviations of measured data found in the literature. Off-line correction of systematic errors was assumed to be performed only once based on the measured errors during the initial days of treatment. The tumour control probability (TCP) was calculated using the Webb and Nahum model. Results: Simulation of daily variations in the target position predicted a marked reduction in TCP if the planning target volume (PTV) margin was smaller than 4 mm (TCP decreased by 3.4% for 2 mm margin). The systematic components of target position variations had greater effect on the TCP than the random components. Off-line correction of estimated systematic errors reduced the decrease in TCP due to target daily displacements, nevertheless, the resulting TCP levels for small margins were still less than the TCP level obtained with the use of an adequate PTV margin of ∼10 mm. The magnitude of gain in TCP expected from the correction depended on the number of treatment imaging days used for the correction and the PTV margin applied. Gains of 2.5% in TCP were estimated from correction of systematic errors performed after 6 initial days of treatment imaging for a 2 mm PTV margin. The effect of various possible magnitudes of systematic and random components on the gain in TCP expected from correction and on the number of imaging days required was also investigated. Conclusions: Daily

  17. 49 CFR 40.209 - What procedural problems do not result in the cancellation of a test and do not require correction?

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false What procedural problems do not result in the cancellation of a test and do not require correction? 40.209 Section 40.209 Transportation Office of the... Problems in Drug Tests § 40.209 What procedural problems do not result in the cancellation of a test and do...

  18. Daily online bony correction is required for prostate patients without fiducial markers or soft-tissue imaging.

    Science.gov (United States)

    Johnston, M L; Vial, P; Wiltshire, K L; Bell, L J; Blome, S; Kerestes, Z; Morgan, G W; O'Driscoll, D; Shakespeare, T P; Eade, T N

    2011-09-01

    To compare online position verification strategies with offline correction protocols for patients undergoing definitive prostate radiotherapy. We analysed 50 patients with implanted fiducial markers undergoing curative prostate radiation treatment, all of whom underwent daily kilovoltage imaging using an on-board imager. For each treatment, patients were set-up initially with skin tattoos and in-room lasers. Orthogonal on-board imager images were acquired and the couch shift to match both bony anatomy and the fiducial markers recorded. The set-up error using skin tattoos and offline bone correction was compared with online bone correction. The fiducial markers were used as the reference. Data from 1923 fractions were analysed. The systematic error was ≤1 mm for all protocols. The average random error was 2-3mm for online bony correction and 3-5mm for skin tattoos or offline-bone. Online-bone showed a significant improvement compared with offline-bone in the number of patients with >5mm set-up errors for >10% (P20% (Pmarkers or daily soft-tissue imaging. Copyright © 2011 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  19. Reliability and reproducibility of spectral and time domain optical coherence tomography images before and after correction for patients with age-related macular degeneration [v2; ref status: indexed, http://f1000r.es/50m

    Directory of Open Access Journals (Sweden)

    Mohammad A. Sadiq

    2015-03-01

    Full Text Available Purpose: To evaluate the reproducibility and reliability of optical coherence tomography scans obtained using the time domain (TD-OCT StratusTM OCT, and the Spectral Domain (SD-OCT SpectralisTM and CirrusTM OCT devices before and after manual correction in eyes with either Neovascular (NV-AMD or Non-Neovascular (NNV-AMD age-related macular degeneration. Design: Prospective observational study. Methods: Setting: University-based retina practice. Patients: Thirty-six patients (50 eyes with NV-AMD or NNV-AMD. Procedure: OCT scans were taken simultaneously using one TD-OCT and two SD-OCT devices. Main Outcome Measures: Macular thickness measurements were assessed before and after correction of the algorithm by constructing Bland-Altman plots for agreement and calculating intraclass correlation coefficients (ICCs and coefficients of repeatability (COR to evaluate intraclass repeatability. Results: Spectralis had the highest number of images needing manual correction.  All machines had high ICCs, with Spectralis having the highest.  Also, Bland-Altman plots indicated that there was low agreement between Cirrus™ and Stratus™, Spectralis™ and Stratus™, while there was good agreement between the Cirrus™ and Spectralis™.  The CORs were lowest for SpectralisTM and similar and higher for CirrusTM and StratusTM.  Agreement, CORs, and ICCs generally improved after manual correction, but only minimally.  Conclusion: Agreement is low between devices, except between both SD-OCT machines.  Manual correction tends to improve results.

  20. Evaluation of a method for correction of scatter radiation in thorax cone beam CT; Evaluation d'une methode de correction du rayonnement diffuse en tomographie du thorax avec faisceau conique

    Energy Technology Data Exchange (ETDEWEB)

    Rinkel, J.; Dinten, J.M. [CEA Grenoble (DTBS/STD), Lab. d' Electronique et de Technologie de l' Informatique, LETI, 38 (France); Esteve, F. [European Synchrotron Radiation Facility (ESRF), 38 - Grenoble (France)

    2004-07-01

    Purpose: Cone beam CT (CBCT) enables three-dimensional imaging with isotropic resolution. X-ray scatter estimation is a big challenge for quantitative CBCT imaging of thorax: scatter level is significantly higher on cone beam systems compared to collimated fan beam systems. The effects of this scattered radiation are cupping artefacts, streaks, and quantification inaccuracies. The beam stops conventional scatter estimation approach can be used for CBCT but leads to a significant increase in terms of dose and acquisition time. At CEA-LETI has been developed an original scatter management process without supplementary acquisition. Methods and Materials: This Analytical Plus Indexing-based method (API) of scatter correction in CBCT is based on scatter calibration through offline acquisitions with beam stops on lucite plates, combined to an analytical transformation issued from physical equations. This approach has been applied with success in bone densitometry and mammography. To evaluate this method in CBCT, acquisitions from a thorax phantom with and without beam stops have been performed. To compare different scatter correction approaches, Feldkamp algorithm has been applied on rough data corrected from scatter by API and by beam stops approaches. Results: The API method provides results in good agreement with the beam stops array approach, suppressing cupping artefact. Otherwise influence of the scatter correction method on the noise in the reconstructed images has been evaluated. Conclusion: The results indicate that the API method is effective for quantitative CBCT imaging of thorax. Compared to a beam stops array method it needs a lower x-ray dose and shortens acquisition time. (authors)

  1. Diagnostic value of thallium-201 myocardial perfusion IQ-SPECT without and with computed tomography-based attenuation correction to predict clinically significant and insignificant fractional flow reserve: A single-center prospective study.

    Science.gov (United States)

    Tanaka, Haruki; Takahashi, Teruyuki; Ohashi, Norihiko; Tanaka, Koichi; Okada, Takenori; Kihara, Yasuki

    2017-12-01

    The aim of this study was to clarify the predictive value of fractional flow reserve (FFR) determined by myocardial perfusion imaging (MPI) using thallium (Tl)-201 IQ-SPECT without and with computed tomography-based attenuation correction (CT-AC) for patients with stable coronary artery disease (CAD).We assessed 212 angiographically identified diseased vessels using adenosine-stress Tl-201 MPI-IQ-SPECT/CT in 84 consecutive, prospectively identified patients with stable CAD. We compared the FFR in 136 of the 212 diseased vessels using visual semiquantitative interpretations of corresponding territories on MPI-IQ-SPECT images without and with CT-AC.FFR inversely correlated most accurately with regional summed difference scores (rSDS) in images without and with CT-AC (r = -0.584 and r = -0.568, respectively, both P system can predict FFR at an optimal cut-off of reserved.

  2. Modeling Atom Probe Tomography: A review

    Energy Technology Data Exchange (ETDEWEB)

    Vurpillot, F., E-mail: francois.vurpillot@univ-rouen.fr [Groupe de Physique des Matériaux, UMR CNRS 6634, Université de Rouen, Saint Etienne du Rouvray 76801 (France); Oberdorfer, C. [Institut für Materialwissenschaft, Lehrstuhl für Materialphysik, Universität Stuttgart, Heisenbergstr. 3, 70569 Stuttgart (Germany)

    2015-12-15

    Improving both the precision and the accuracy of Atom Probe Tomography reconstruction requires a correct understanding of the imaging process. In this aim, numerical modeling approaches have been developed for 15 years. The injected ingredients of these modeling tools are related to the basic physic of the field evaporation mechanism. The interplay between the sample nature and structure of the analyzed sample and the reconstructed image artefacts have pushed to gradually improve and make the model more and more sophisticated. This paper reviews the evolution of the modeling approach in Atom Probe Tomography and presents some future potential directions in order to improve the method. - Highlights: • The basics of field evaporation. • The main aspects of Atom Probe Tomography modeling. • The intrinsic limitations of the current method and future potential directions to improve the understanding of tip to image ion projection.

  3. Correctness of multi-detector-row computed tomography for diagnosing mechanical prosthetic heart valve disorders using operative findings as a gold standard

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, I.Chen [Taichung Veterans General Hospital, Department of Radiology, Taichung (China); Institute of Clinical Medicine and Faculty of Medicine, National Yang-Ming University, Taipei (China); Lin, Yung-Kai; Chang, Yen; Wang, Chung-Chi; Hsieh, Shih-Rong; Wei, Hao-Ji; Tsai, Hung-Wen [Taichung Veterans General Hospital, Section of Cardiovascular Surgery, Cardiovascular Center, Taichung (China); Fu, Yun-Ching; Jan, Sheng-Ling [Institute of Clinical Medicine and Faculty of Medicine, National Yang-Ming University, Taipei (China); Taichung Veterans General Hospital, Section of Pediatric Cardiology, Department of Pediatrics, Taichung (China); Wang, Kuo-Yang [Taichung Veterans General Hospital, Section of General Cardiology, Cardiovascular Center, Taichung (China); Chung-Shan Medical University, Department of Medicine, Taichung (China); Chen, Min-Chi; Chen, Clayton Chi-Chang [Taichung Veterans General Hospital, Department of Radiology, Taichung (China); Central Taiwan University of Science and Technology, Department of Radiological Technology, Taichung (China)

    2009-04-15

    The purpose was to compare the findings of multi-detector computed tomography (MDCT) in prosthetic valve disorders using the operative findings as a gold standard. In a 3-year period, we prospectively enrolled 25 patients with 31 prosthetic heart valves. MDCT and transthoracic echocardiography (TTE) were done to evaluate pannus formation, prosthetic valve dysfunction, suture loosening (paravalvular leak) and pseudoaneurysm formation. Patients indicated for surgery received an operation within 1 week. The MDCT findings were compared with the operative findings. One patient with a Bjoerk-Shiley valve could not be evaluated by MDCT due to a severe beam-hardening artifact; thus, the exclusion rate for MDCT was 3.2% (1/31). Prosthetic valve disorders were suspected in 12 patients by either MDCT or TTE. Six patients received an operation that included three redo aortic valve replacements, two redo mitral replacements and one Amplatzer ductal occluder occlusion of a mitral paravalvular leak. The concordance of MDCT for diagnosing and localizing prosthetic valve disorders and the surgical findings was 100%. Except for images impaired by severe beam-hardening artifacts, MDCT provides excellent delineation of prosthetic valve disorders. (orig.)

  4. Impact of point spread function correction in standardized uptake value quantitation for positron emission tomography images. A study based on phantom experiments and clinical images

    International Nuclear Information System (INIS)

    Nakamura, Akihiro; Tanizaki, Yasuo; Takeuchi, Miho

    2014-01-01

    While point spread function (PSF)-based positron emission tomography (PET) reconstruction effectively improves the spatial resolution and image quality of PET, it may damage its quantitative properties by producing edge artifacts, or Gibbs artifacts, which appear to cause overestimation of regional radioactivity concentration. In this report, we investigated how edge artifacts produce negative effects on the quantitative properties of PET. Experiments with a National Electrical Manufacturers Association (NEMA) phantom, containing radioactive spheres of a variety of sizes and background filled with cold air or water, or radioactive solutions, showed that profiles modified by edge artifacts were reproducible regardless of background μ values, and the effects of edge artifacts increased with increasing sphere-to-background radioactivity concentration ratio (S/B ratio). Profiles were also affected by edge artifacts in complex fashion in response to variable combinations of sphere sizes and S/B ratios; and central single-peak overestimation up to 50% was occasionally noted in relatively small spheres with high S/B ratios. Effects of edge artifacts were obscured in spheres with low S/B ratios. In patient images with a variety of focal lesions, areas of higher radioactivity accumulation were generally more enhanced by edge artifacts, but the effects were variable depending on the size of and accumulation in the lesion. PET images generated using PSF-based reconstruction are therefore not appropriate for the evaluation of SUV. (author)

  5. Correctness of multi-detector-row computed tomography for diagnosing mechanical prosthetic heart valve disorders using operative findings as a gold standard

    International Nuclear Information System (INIS)

    Tsai, I.Chen; Lin, Yung-Kai; Chang, Yen; Wang, Chung-Chi; Hsieh, Shih-Rong; Wei, Hao-Ji; Tsai, Hung-Wen; Fu, Yun-Ching; Jan, Sheng-Ling; Wang, Kuo-Yang; Chen, Min-Chi; Chen, Clayton Chi-Chang

    2009-01-01

    The purpose was to compare the findings of multi-detector computed tomography (MDCT) in prosthetic valve disorders using the operative findings as a gold standard. In a 3-year period, we prospectively enrolled 25 patients with 31 prosthetic heart valves. MDCT and transthoracic echocardiography (TTE) were done to evaluate pannus formation, prosthetic valve dysfunction, suture loosening (paravalvular leak) and pseudoaneurysm formation. Patients indicated for surgery received an operation within 1 week. The MDCT findings were compared with the operative findings. One patient with a Bjoerk-Shiley valve could not be evaluated by MDCT due to a severe beam-hardening artifact; thus, the exclusion rate for MDCT was 3.2% (1/31). Prosthetic valve disorders were suspected in 12 patients by either MDCT or TTE. Six patients received an operation that included three redo aortic valve replacements, two redo mitral replacements and one Amplatzer ductal occluder occlusion of a mitral paravalvular leak. The concordance of MDCT for diagnosing and localizing prosthetic valve disorders and the surgical findings was 100%. Except for images impaired by severe beam-hardening artifacts, MDCT provides excellent delineation of prosthetic valve disorders. (orig.)

  6. Beam-hardening correction by a surface fitting and phase classification by a least square support vector machine approach for tomography images of geological samples

    Science.gov (United States)

    Khan, F.; Enzmann, F.; Kersten, M.

    2015-12-01

    In X-ray computed microtomography (μXCT) image processing is the most important operation prior to image analysis. Such processing mainly involves artefact reduction and image segmentation. We propose a new two-stage post-reconstruction procedure of an image of a geological rock core obtained by polychromatic cone-beam μXCT technology. In the first stage, the beam-hardening (BH) is removed applying a best-fit quadratic surface algorithm to a given image data set (reconstructed slice), which minimizes the BH offsets of the attenuation data points from that surface. The final BH-corrected image is extracted from the residual data, or the difference between the surface elevation values and the original grey-scale values. For the second stage, we propose using a least square support vector machine (a non-linear classifier algorithm) to segment the BH-corrected data as a pixel-based multi-classification task. A combination of the two approaches was used to classify a complex multi-mineral rock sample. The Matlab code for this approach is provided in the Appendix. A minor drawback is that the proposed segmentation algorithm may become computationally demanding in the case of a high dimensional training data set.

  7. Political Correctness--Correct?

    Science.gov (United States)

    Boase, Paul H.

    1993-01-01

    Examines the phenomenon of political correctness, its roots and objectives, and its successes and failures in coping with the conflicts and clashes of multicultural campuses. Argues that speech codes indicate failure in academia's primary mission to civilize and educate through talk, discussion, thought,166 and persuasion. (SR)

  8. The MinD protein is a membrane ATPase required for the correct placement of the Escherichia coli division site.

    OpenAIRE

    de Boer, P A; Crossley, R E; Hand, A R; Rothfield, L I

    1991-01-01

    The proper placement of the cell division site in Escherichia coli requires the site-specific inactivation of potential division sites at the cell poles in a process that is mediated by the MinC, MinD and MinE proteins. During the normal division cycle MinD plays two roles. It activates the MinC-dependent mechanism that is responsible for the inactivation of potential division sites and it also renders the division inhibition system sensitive to the topological specificity factor MinE. MinE s...

  9. Normal patterns of spontaneous activity are required for correct motor axon guidance and the expression of specific guidance molecules.

    Science.gov (United States)

    Hanson, M Gartz; Landmesser, Lynn T

    2004-09-02

    Rhythmic spontaneous electrical activity occurs in many parts of the developing nervous system, where it plays essential roles in the refinement of neural connections. By blocking or slowing this bursting activity, via in ovo drug applications at precise developmental periods, we show that such activity is also required at much earlier stages for spinal motoneurons to accurately execute their first major dorsal-ventral pathfinding decision. Blockade or slowing of rhythmic bursting activity also prevents the normal expression patterns of EphA4 and polysialic acid on NCAM, which may contribute to the pathfinding errors observed. More prolonged (E2-5) blockade resulted in a downregulation of LIM homeodomain transcription factors, but since this occurred only after the pathfinding errors and alterations in guidance molecules, it cannot have contributed to them.

  10. Territorial Behavior and Social Stability in the Mouse Require Correct Expression of ImprintedCdkn1c.

    Science.gov (United States)

    McNamara, Gráinne I; John, Rosalind M; Isles, Anthony R

    2018-01-01

    Genomic imprinting, the epigenetic process by which transcription occurs from a single parental allele, is believed to influence social behaviors in mammals. An important social behavior is group living, which is enriched in Eutherian mammals relative to monotremes and marsupials. Group living facilitates resource acquisition, defense of territory and co-care of young, but requires a stable social group with complex inter-individual relationships. Co-occurring with increased group living in Eutherians is an increase in the number of imprinted loci, including that spanning the maternally expressed Cdkn1c . Using a 'loss-of-imprinting' model of Cdkn1c ( Cdkn1c BACx1 ), we demonstrated that twofold over expression of Cdkn1c results in abnormal social behaviors. Although, our previous work indicated that male Cdkn1c BACx1 mice were more dominant as measured by tube test encounters with unfamiliar wild-type (WT) males. Building upon this work, using more ecologically relevant assessments of social dominance, indicated that within their normal social group, Cdkn1c BACx1 mice did not occupy higher ranking positions. Nevertheless, we find that presence of Cdkn1c BACx1 animals within a group leads to instability of the normal social hierarchy, as indicated by greater variability in social rank within the group over time and an increase in territorial behavior in WT cage-mates. Consequently, these abnormal behaviors led to an increased incidence of fighting and wounding within the group. Taken together these data indicate that normal expression of Cdkn1c is required for maintaining stability of the social group and suggests that the acquisition of monoallelic expression of Cdkn1c may have enhanced social behavior in Eutherian mammals to facilitate group living.

  11. MO-AB-BRA-04: Correct Identification of Low-Attenuation Intracranial Hemorrhage and Calcification Using Dual-Energy Computed Tomography in a Phantom System

    Energy Technology Data Exchange (ETDEWEB)

    Nute, J; Jacobsen, M; Popnoe, D [UT MD Anderson Cancer Center, Department of Imaging Physics, Houston, TX (United States); UT Graduate School of Biomedical Sciences at Houston, Houston, TX (United States); Wei, W [UT MD Anderson Cancer Center, Department of Biostatistics, Houston, TX (United States); Baiu, C [Gammex Inc., Middleton, WI (United States); Schellingerhout, D [MD Anderson Cancer Center, Department of Diagnostic Radiology, Houston, TX (United States); Cody, D [UT MD Anderson Cancer Center, Department of Imaging Physics, Houston, TX (United States)

    2015-06-15

    Purpose: Intracranial hemorrhage and calcification with Single-Energy CT (SECT) attenuation below 100HU cannot be reliably identified using currently clinically available means. Calcification is typically benign but hemorrhage can carry a risk of intracranial bleeding and contraindicate use of anticoagulant therapies. A biologically-relevant phantom was used to investigate identification of unknown intracranial lesions using dual-energy CT (DECT) as a verification of prior lesion differentiation results. Methods: Prior phantom work investigating calcification and hemorrhage differentiation resulted in 3D-DECT raw data (water density, calcium density, 68keV) for a range of DECT protocol variations: image thicknesses (1.25, 2.5, 3.75, 5mm), CTDIvol (36.7 to 132.6mGy) and reconstruction algorithms (Soft, Standard, Detail). Acquisition-specific raw data were used to create a plane of optimal differentiation based on the geometric bisector of 3D-linear regression of the two lesion distributions. Verification hemorrhage and calcification lesions, ranging in size from 0.5 to 1.5cm, were created at varying attenuation from 50 to 100HU. Lesions were inserted into a biologically-relevant brain phantom and scanned using SECT (3.75mm images, Standard, 67mGy) and a range of DECT protocols (3.75mm images, Standard, [67, 105.6, 132.6mGy]). 3D-DECT data were collected and blinded for analysis. The 3D-DECT distribution of the lesion was then compared to the acquisition-matched geometric bisector plane and the mean lesion value’s position relative to the plane, indicating lesion identity, and the percentage of voxels on the identified side of the plane, indicating identification confidence, were derived. Results: 98% of the 120 lesions investigated were identified correctly as hemorrhage or calcification. 74% were identified with greater than 80% confidence. Increases in CTDIvol and lesion diameter were associated with increased identification confidence. Conclusion: Intracranial

  12. The methodical approach to determining the heterogeneity of cognitive function in preschool children requiring correction of speech impediments

    Directory of Open Access Journals (Sweden)

    N.B. Petrenko

    2016-04-01

    Full Text Available Introduction. It has been confirmed that children who suffer from speech impediments may experience difficulties in their cognitive activity, limitations in communication, asociality and sense detachment. It is also clear that these children require not only logopedic treatment, but also assistance in developing functions of their cognitive and mental activities. Aims. To identify the case of uniformity lack of cognitive and somatomental functions of 5-6 year old children with speech impediments in a group; to evaluate the method used for this research. Methods. Use estimates of major mental and cognitive activities by means of tests increases the difficulty. Scores from 1 to 10 were given. Such factors as movement coordination, musicality and body plasticity were taken into consideration too. StatSoft STATISTICA10.0. programme was used to run the statistical analysis. Results. The changes of the group with uniformity of physical, cognitive, somatomental and dance abilities were analysed and estimated at the beginning and at the end of the academic year. The results of the claster analysis have shown that the children managed to develop their cognitive and somatomental abilities. Also it was estimated that the level of uniformity has increased in the group. Conclusions. Having done the research we can state that with the help of cluster analysis children with speech impediments can be grouped according to their physical, cognitive, somatomental and dance abilities. With the help of the results of the claster analysis that notifies that the children managed to develop their cognitive and somatomental abilities, we can observe the positivie effects of the suggested dance-cognitive teaching elements in an educational programme.

  13. The effect of adding orbital computed tomography findings to the Chandler criteria for classifying pediatric orbital cellulitis in predicting which patients will require surgical intervention.

    Science.gov (United States)

    Le, Tran D; Liu, Eugene S; Adatia, Feisal A; Buncic, J Raymond; Blaser, Susan

    2014-06-01

    To assess the effect of adding orbital computerized tomography (CT) findings to the Chandler criteria for classifying pediatric orbital cellulitis in predicting which patients will require surgical intervention. The medical records of patients with orbital CT at a tertiary pediatric hospital from January 2000 to March 2011 were reviewed retrospectively. CT images of cases with radiology report of postseptal orbital involvement were further reviewed by a neuroradiologist. Of 101 cases of orbital cellulitis, 71 (mean age, 7.1 ± 4.0) were successfully managed with systemic antibiotics alone; 30 patients (mean age, 7.2 ± 4.3) required surgical intervention. Bony destruction on CT was significantly associated with surgical intervention (P = 0.02), and the size of the subperiosteal abscess (SPA) was significantly correlated with management outcome. Patients who were managed with systemic antibiotics alone had a mean SPA volume of 2.1 ± 2.4 mL; those who had undergone surgical intervention had a mean SPA volume of 14.3 mL ± 16.8 mL (P 3.8 mL, the probability of surgery is 71% (P orbital cellulitis classification scheme increases the ability to more accurately predict which patients will require surgical intervention. Copyright © 2014 American Association for Pediatric Ophthalmology and Strabismus. Published by Mosby, Inc. All rights reserved.

  14. An introduction to emission computed tomography

    International Nuclear Information System (INIS)

    Williams, E.D.

    1985-01-01

    This report includes salient features of the theory and an examination of practical considerations for someone who is using or introducing tomography, selecting equipment for it or wishing to develop a clinical application. Emphasis is on gamma camera tomography. The subject is dealt with under the following headings: emission computed and gamma camera tomography and the relationship to other medical imaging techniques, the tomographic reconstruction technique theory, rotating gamma camera tomography, attenuation correction and quantitative reconstruction, other single photon tomographic techniques, positron tomography, image display, clinical application of single photon and positron tomography, and commercial systems for SPECT. Substantial bibliography. (U.K.)

  15. Computerized Tomography

    International Nuclear Information System (INIS)

    Mirell, S.G.

    1979-01-01

    The physical bases of computerized tomography are presented, the following items being discussed:attenuation of a photon beam by an absorbent material, reconstruction algorithms and detection systems. Image statistics is also presented. The emission computerized tomography is discussed. Clinical results of computerized tomography are presented. (M.A.) [pt

  16. Modeling Atom Probe Tomography: A review.

    Science.gov (United States)

    Vurpillot, F; Oberdorfer, C

    2015-12-01

    Improving both the precision and the accuracy of Atom Probe Tomography reconstruction requires a correct understanding of the imaging process. In this aim, numerical modeling approaches have been developed for 15 years. The injected ingredients of these modeling tools are related to the basic physic of the field evaporation mechanism. The interplay between the sample nature and structure of the analyzed sample and the reconstructed image artefacts have pushed to gradually improve and make the model more and more sophisticated. This paper reviews the evolution of the modeling approach in Atom Probe Tomography and presents some future potential directions in order to improve the method. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. The homeodomain transcription factor PITX2 is required for specifying correct cell fates and establishing angiogenic privilege in the developing cornea.

    Science.gov (United States)

    Gage, Philip J; Kuang, Chen; Zacharias, Amanda L

    2014-11-01

    Correct specification of cell lineages and establishing angiogenic privilege within the developing cornea are essential for normal vision but the mechanisms controlling these processes are poorly understood. We show that the homeodomain transcription factor PItX2 is expressed in mesenchymal cells of the developing and mature cornea and use a temporal gene knockout approach to demonstrate that PITX2 is required for corneal morphogenesis and the specification of cell fates within the surface ectoderm and mesenchymal primordia. PITX2 is also required to establish angiogenic privilege in the developing cornea. Further, the expression of Dkk2 and suppression of canonical Wnt signaling activity levels are key mechanisms by which PITX2 specifies ocular surface ectoderm as cornea. In contrast, specifying the underlying mesenchyme to corneal fates and establishing angiogenic privilege in the cornea are less sensitive to DKK2 activity. Finally, the cellular expression patterns of FOXC2, PITX1, and BARX2 in Pitx2 and Dkk2 mutants suggest that these transcription factors may be involved in specifying cell fate and establishing angiogenic privilege within the corneal mesenchyme. However, they are unlikely to play a role in specifying cell fate within the corneal ectoderm. Together, these data provide important insights into the mechanisms regulating cornea development. Copyright © 2014 Wiley Periodicals, Inc.

  18. Computed Tomography

    Science.gov (United States)

    Castellano, Isabel; Geleijns, Jacob

    After its clinical introduction in 1973, computed tomography developed from an x-ray modality for axial imaging in neuroradiology into a versatile three dimensional imaging modality for a wide range of applications in for example oncology, vascular radiology, cardiology, traumatology and even in interventional radiology. Computed tomography is applied for diagnosis, follow-up studies and screening of healthy subpopulations with specific risk factors. This chapter provides a general introduction in computed tomography, covering a short history of computed tomography, technology, image quality, dosimetry, room shielding, quality control and quality criteria.

  19. Determination of the attenuation map in emission tomography

    CERN Document Server

    Zaidi, H

    2002-01-01

    Reliable attenuation correction methods for quantitative emission computed tomography (ECT) require accurate delineation of the body contour and often necessitate knowledge of internal anatomical structure. Two broad classes of methods have been used to calculate the attenuation map referred to as "transmissionless" and transmission-based attenuation correction techniques. While calculated attenuation correction belonging to the first class of methods is appropriate for brain studies, more adequate methods must be performed in clinical applications where the attenuation coefficient distribution is not known a priori, and for areas of inhomogeneous attenuation such as the chest. Measured attenuation correction overcomes this problem and utilizes different approaches to determine this map including transmission scanning, segmented magnetic resonance images or appropriately scaled X-ray CT scans acquired either independently on separate or simultaneously on multimodality imaging systems. Combination of data acqu...

  20. Informationally incomplete quantum tomography

    Science.gov (United States)

    Teo, Yong Siah; Řeháček, Jaroslav; Hradil, Zdenĕk

    2013-11-01

    In quantum-state tomography on sources with quantum degrees of freedom of large Hilbert spaces, inference of quantum states of light for instance, a complete characterization of the quantum states for these sources is often not feasible owing to limited resources. As such, the concepts of informationally incomplete state estimation becomes important. These concepts are ideal for applications to quantum channel/ process tomography, which typically requires a much larger number of measurement settings for a full characterization of a quantum channel. Some key aspects of both quantumstate and quantum-process tomography are arranged together in the form of a tutorial review article that is catered to students and researchers who are new to the field of quantum tomography, with focus on maximum-likelihood related techniques as instructive examples to illustrate these ideas.

  1. Image Quality, Overall Evaluability, and Effective Radiation Dose of Coronary Computed Tomography Angiography With Prospective Electrocardiographic Triggering Plus Intracycle Motion Correction Algorithm in Patients With a Heart Rate Over 65 Beats Per Minute.

    Science.gov (United States)

    Pontone, Gianluca; Muscogiuri, Giuseppe; Baggiano, Andrea; Andreini, Daniele; Guaricci, Andrea I; Guglielmo, Marco; Fazzari, Fabio; Mushtaq, Saima; Conte, Edoardo; Annoni, Andrea; Formenti, Alberto; Mancini, Elisabetta; Verdecchia, Massimo; Fusini, Laura; Bonfanti, Lorenzo; Consiglio, Elisa; Rabbat, Mark G; Bartorelli, Antonio L; Pepi, Mauro

    2018-01-16

    Recently, a new intracycle motion correction algorithm (MCA) was introduced to reduce motion artifacts from heart rate (HR) in coronary computed tomography angiography (cCTA). The aim of the study was to evaluate the image quality, overall evaluability, and effective radiation dose (ED) of cCTA with prospective electrocardiographic (ECG) triggering plus MCA as compared with standard protocol with retrospective ECG triggering in patients with HR≥65 bpm. One hundred consecutive patients (67±10 y) scheduled for cCTA with 65Ethics Committee and a written informed consent was obtained from all patients. Image noise, signal to noise ratio, contrast to noise ratio, Likert image quality score (score 1, nondiagnostic; score 2, adequate; score 3, good; score 4, excellent), overall image evaluability, and ED were measured and compared between the 2 groups. Both vessel-based and patient-based analyses were evaluated. Student test or Wilcoxon test were used to evaluate differences of continuous variables, whereas the χ test was used to study differences with regard to categorical data. A P-value <0.05 was considered statistically significant. cCTA was successfully performed in all patients. In a segment-based model, group 1 compared with group 2 showed a lower rate of overall artifacts (67% vs. 83%; P<0.001) and motion artifacts (49% vs. 66%; P<0.001), resulting in a better Likert image quality score (2.83±1.03 vs. 2.37±1.02; P<0.01) and overall evaluability (85% vs. 75%; P<0.01). Group 1 showed a lower ED as compared with group 2 (3.1±1.9 vs. 11.9±3.3 mSv; P<0.01). MCA and cCTA with prospective ECG-triggering acquisition in patients with high HR improves image quality and overall evaluability compared with cCTA with standard retrospective ECG triggering.

  2. ChromAIX: A high-rate energy-resolving photon-counting ASIC for Spectral Computed Tomography

    NARCIS (Netherlands)

    Steadman, R.; Herrmann, C.; Mülhens, O.

    2011-01-01

    X-ray attenuation properties of matter (i.e. human body in medicalComputed Tomography) are energy and material dependent. This dependency is largely neglected in conventional CT techniques, which require the introduction of correction algorithms in order to prevent image artefacts. The

  3. Brain Image Motion Correction

    DEFF Research Database (Denmark)

    Jensen, Rasmus Ramsbøl; Benjaminsen, Claus; Larsen, Rasmus

    2015-01-01

    The application of motion tracking is wide, including: industrial production lines, motion interaction in gaming, computer-aided surgery and motion correction in medical brain imaging. Several devices for motion tracking exist using a variety of different methodologies. In order to use such devices...... offset and tracking noise in medical brain imaging. The data are generated from a phantom mounted on a rotary stage and have been collected using a Siemens High Resolution Research Tomograph for positron emission tomography. During acquisition the phantom was tracked with our latest tracking prototype...

  4. A Mutation in a Saccharomyces Cerevisiae Gene (Rad3) Required for Nucleotide Excision Repair and Transcription Increases the Efficiency of Mismatch Correction

    OpenAIRE

    Yang, Y.; Johnson, A. L.; Johnston, L. H.; Siede, W.; Friedberg, E. C.; Ramachandran, K.; Kunz, B. A.

    1996-01-01

    RAD3 functions in DNA repair and transcription in Saccharomyces cerevisiae and particular rad3 alleles confer a mutator phenotype, possibly as a consequence of defective mismatch correction. We assessed the potential involvement of the Rad3 protein in mismatch correction by comparing heteroduplex repair in isogenic rad3-1 and wild-type strains. The rad3-1 allele increased the spontaneous mutation rate but did not prevent heteroduplex repair or bias its directionality. Instead, the efficiency ...

  5. Author Correction

    DEFF Research Database (Denmark)

    Grundle, D S; Löscher, C R; Krahmann, G

    2018-01-01

    A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.......A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper....

  6. Correct Models

    OpenAIRE

    Blacher, René

    2010-01-01

    Ce rapport complete les deux rapports précédents et apporte une explication plus simple aux résultats précédents : à savoir la preuve que les suites obtenues sont aléatoires.; In previous reports, we have show how to transform a text $y_n$ in a random sequence by using functions of Fibonacci $T_q$. Now, in this report, we obtain a clearer result by proving that $T_q(y_n)$ has the IID model as correct model. But, it is necessary to define correctly a correct model. Then, we study also this pro...

  7. Reduction of Coronary Motion Artifacts in Prospectively Electrocardiography-Gated Coronary Computed Tomography Angiography Using Monochromatic Imaging at Various Energy Levels in Combination With a Motion Correction Algorithm on Single-Source Fast Tube Voltage Switching Dual-Energy Computed Tomography: A Phantom Experiment.

    Science.gov (United States)

    Machida, Haruhiko; Fukui, Rika; Gao, Jianbo; Tanaka, Isao; Shen, Yun; Suzuki, Shigeru; Ishikawa, Takuya; Ueno, Eiko

    2016-08-01

    The aim of this study was to assess the effect of monochromatic imaging at various energy levels in combination with a motion correction algorithm (MCA) in single-source dual-energy coronary computed tomography angiography (CCTA) with fast switching of tube voltage on the reduction of coronary motion artifacts (CMA) in a phantom setting. Using this dual-energy computed tomography technique with a phantom comprising models of coronary vessels filled with contrast medium and pulsating at constant heart rates of 60 to 100 beats per minute, we reconstructed monochromatic images of CCTA obtained at 50 to 90 keV with and without use of MCA. Cardiac motion was modeled by simulating the in vivo time-volume curve of the left ventricle. Two independent readers graded CMA in 9 coronary segments using a 5-point scale (1, poor; 3 to 5, interpretable; 5, excellent). At each heart rate, we compared the average score of CMA between images obtained at 50 to 90 keV with and without use of MCA using Wilcoxon signed rank test, and we compared the score among images obtained at 50 to 90 keV with use of MCA using Kruskal-Wallis and post hoc tests. We also compared the percentages of image interpretability and improvement in image interpretability among images obtained at 50 to 90 keV with use of MCA. With the use of MCA, the average score of CMA was significantly higher for images obtained at each energy level from 50 to 70 keV (P < 0.05) and was comparable at 80 and 90 keV, and it was comparable among those obtained at 50 to 70 keV. With its use, the percentages of image interpretability were similarly high at 50 to 70 keV at 60 to 80 beats per minute (78%-100%), and they were higher at 50 to 60 keV (72%-83%) than at 70 keV at 90 to 100 beats per minute (50%-56%). The percentages of improved image interpretability with MCA were similarly high at 50 to 70 keV at 60 to 80 beats per minute (56%-100%), and they were higher at 50 to 60 keV (62%-77%) than at 70 keV at 90 to 100 beats per

  8. ISABELLE closed orbit correction system

    International Nuclear Information System (INIS)

    Parzen, G.

    1977-01-01

    The proposed closed orbit correction system for the ISABELLE storage accelerators is described. Results given include the initial orbit displacement error expected, the degree of correction that is expected by moving quadrupoles and by exciting dipole correction coils, the limitations on orbit correction due to the number and location of the probes (pick-up electrodes) and the accuracy requirements on the power supplies that stem primarily from the need to keep the two narrow beams in proper collision with each other

  9. Publisher Correction

    DEFF Research Database (Denmark)

    Flachsbart, Friederike; Dose, Janina; Gentschew, Liljana

    2018-01-01

    The original version of this Article contained an error in the spelling of the author Robert Häsler, which was incorrectly given as Robert Häesler. This has now been corrected in both the PDF and HTML versions of the Article....

  10. Publisher Correction

    DEFF Research Database (Denmark)

    Stokholm, Jakob; Blaser, Martin J.; Thorsen, Jonathan

    2018-01-01

    The originally published version of this Article contained an incorrect version of Figure 3 that was introduced following peer review and inadvertently not corrected during the production process. Both versions contain the same set of abundance data, but the incorrect version has the children...

  11. Doppler Tomography

    Science.gov (United States)

    Marsh, T. R.

    I review the method of Doppler tomography which translates binary-star line profiles taken at a series of orbital phases into a distribution of emission over the binary. I begin with a discussion of the basic principles behind Doppler tomography, including a comparison of the relative merits of maximum entropy regularisation versus filtered back-projection for implementing the inversion. Following this I discuss the issue of noise in Doppler images and possible methods for coping with it. Then I move on to look at the results of Doppler Tomography applied to cataclysmic variable stars. Outstanding successes to date are the discovery of two-arm spiral shocks in cataclysmic variable accretion discs and the probing of the stream/magnetospheric interaction in magnetic cataclysmic variable stars. Doppler tomography has also told us much about the stream/disc interaction in non-magnetic systems and the irradiation of the secondary star in all systems. The latter indirectly reveals such effects as shadowing by the accretion disc or stream. I discuss all of these and finish with some musings on possible future directions for the method. At the end I include a tabulation of Doppler maps published in refereed journals.

  12. Correction note.

    Science.gov (United States)

    2014-12-01

    Correction note for Sanders, M., Calam, R., Durand, M., Liversidge, T. and Carmont, S. A. (2008), Does self-directed and web-based support for parents enhance the effects of viewing a reality television series based on the Triple P - Positive Parenting Programme?. Journal of Child Psychology and Psychiatry, 49: 924-932. doi: 10.1111/j.1469-7610.2008.01901.x. © 2014 Association for Child and Adolescent Mental Health.

  13. Positron emission tomography

    International Nuclear Information System (INIS)

    Yamamoto, Y.L.; Thompson, C.J.; Diksic, M.; Meyer, E.; Feindel, W.H.

    1984-01-01

    One of the most exciting new technologies introduced in the last 10 yr is positron emission tomography (PET). PET provides quantitative, three-dimensional images for the study of specific biochemical and physiological processes in the human body. This approach is analogous to quantitative in-vivo autoradiography but has the added advantage of permitting non-invasive in vivo studies. PET scanning requires a small cyclotron to produce short-lived positron emitting isotopes such as oxygen-15, carbon-11, nitrogen-13 and fluorine-18. Proper radiochemical facilities and advanced computer equipment are also needed. Most important, PET requires a multidisciplinary scientific team of physicists, radiochemists, mathematicians, biochemists and physicians. The most recent trends are reviewed in the imaging technology, radiochemistry, methodology and clinical applications of positron emission tomography. (author)

  14. CORRECTIVE ACTION PLAN FOR CORRECTIVE ACTION UNIT 543: LIQUID DISPOSAL UNITS, NEVADA TEST SITE, NEVADA

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-09-01

    The purpose of this Corrective Action Plan is to provide the detailed scope of work required to implement the recommended corrective actions as specified in the approved Corrective Action Decision Document.

  15. Evaluation of computed tomography for obstructive jaundice

    International Nuclear Information System (INIS)

    Matsuoka, Shoji; Toda, Hiroshi; Suzuki, Toshihiko

    1980-01-01

    Findings of computed tomography were reviewed in 54 cases where obstructive jaundice was suggested by liver function studies and computed tomography was done with the diagnosis subsequently confirmed by surgery. Dilatation of the intrahepatic bile duct was found in 49 (91%) of the cases and the site of obstruction was determined in 44 cases (82%). The cause was shown in 28 cases (52%). By disease, the cause was correctly diagnosed with gallbladder in 40%, bile duct cancer in 46%, pancreas cancer in 71%, and choledocal cyst in 100%, but cholelithiasis was diagnosed correctly in only 17%. Further, non-calcium cholelithiasis is very difficult to diagnose by computed tomography. Computed tomography is a useful tool for diagnosis of obstructive jaundice as a noninvasive means of evaluating the patient; however, concomitand use of other diagnostic studies is essential for greater accuracy of diagnosis. (author)

  16. Immediate postoperative outcome of orthognathic surgical planning, and prediction of positional changes in hard and soft tissue, independently of the extent and direction of the surgical corrections required

    DEFF Research Database (Denmark)

    Donatsky, Ole; Bjørn-Jørgensen, Jens; Hermund, Niels Ulrich

    2011-01-01

    Our purpose was to evaluate the immediate postoperative outcome of preoperatively planned and predicted positional changes in hard and soft tissue in 100 prospectively and consecutively planned and treated patients; all had various dentofacial deformities that required single or double jaw orthog...

  17. Preprocessing of backprojection images in the McClellan Nuclear Radiation Center tomography system

    Energy Technology Data Exchange (ETDEWEB)

    Gibbons, M. R., LLNL

    1998-02-19

    Neutron tomography is being investigated as a nondestructive technique for quantitative assessment of low atomic mass impurity concentration in metals. Neutrons maximize the sensitivity given their higher cross sections for low Z isotopes while tomography provides the three dimensional density information. The specific application is the detection of Hydrogen down to 200 ppm weight in aircraft engine compressor blades. A number of preprocessing corrections have been implemented for the backprojection images in order to achieve the detection requirements for a testing rate of three blades per hour. Among the procedures are corrections for neutron scattering and beam hardening. With these procedures the artifacts in tomographic reconstructions are shown to be less than the signal for 100 ppm hydrogen in titanium alloy samples.

  18. Geological Corrections in Gravimetry

    Science.gov (United States)

    Mikuška, J.; Marušiak, I.

    2015-12-01

    Applying corrections for the known geology to gravity data can be traced back into the first quarter of the 20th century. Later on, mostly in areas with sedimentary cover, at local and regional scales, the correction known as gravity stripping has been in use since the mid 1960s, provided that there was enough geological information. Stripping at regional to global scales became possible after releasing the CRUST 2.0 and later CRUST 1.0 models in the years 2000 and 2013, respectively. Especially the later model provides quite a new view on the relevant geometries and on the topographic and crustal densities as well as on the crust/mantle density contrast. Thus, the isostatic corrections, which have been often used in the past, can now be replaced by procedures working with an independent information interpreted primarily from seismic studies. We have developed software for performing geological corrections in space domain, based on a-priori geometry and density grids which can be of either rectangular or spherical/ellipsoidal types with cells of the shapes of rectangles, tesseroids or triangles. It enables us to calculate the required gravitational effects not only in the form of surface maps or profiles but, for instance, also along vertical lines, which can shed some additional light on the nature of the geological correction. The software can work at a variety of scales and considers the input information to an optional distance from the calculation point up to the antipodes. Our main objective is to treat geological correction as an alternative to accounting for the topography with varying densities since the bottoms of the topographic masses, namely the geoid or ellipsoid, generally do not represent geological boundaries. As well we would like to call attention to the possible distortions of the corrected gravity anomalies. This work was supported by the Slovak Research and Development Agency under the contract APVV-0827-12.

  19. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... Professions Site Index A-Z Computed Tomography (CT) - Head Computed tomography (CT) of the head uses special ... the Head? What is CT Scanning of the Head? Computed tomography, more commonly known as a CT ...

  20. Positron Emission Tomography - Computed Tomography (PET/CT)

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Positron Emission Tomography - Computed Tomography (PET/CT) Positron emission tomography (PET) ... Emission Tomography – Computed Tomography (PET/CT)? What is Positron Emission Tomography – Computed Tomography (PET/CT) Scanning? Positron emission tomography, ...

  1. Estimation of the minimum dose required to measure ventricular width in follow-up cranial computed tomography (CCT) in children with hydrocephalus

    Energy Technology Data Exchange (ETDEWEB)

    Kirchhof, K. [Universitaetsklinikum Dresden (Germany). Inst. und Poliklinik fuer Radiologische Diagnostik; Wohlgemuth, W.A.; Berlis, A. [Klinikum Augsburg (Germany). Klinik fuer Diagnostische Radiologie und Neuroradiologie

    2010-12-15

    Purpose: To estimate the minimum dose needed at follow-up cranial computed tomography (CCT) to reliably determine ventricular width in children with hydrocephalus. Materials and Methods: For the study, a phantom was created using the calvarium of an infant which was filled with gelatin and the shaped inner cones of two carrots serving as lateral ventricles. The phantom was scanned ten times with two multi-slice CTs (LightSpeed Ultra, GE, and Somatom Sensation, Siemens), using a tube current of 400, 350, 300, 250, 200, 150, and 100 mA, and a tube voltage of 140, 120, 100, and 80 kV. The width of both lateral ventricles was measured at 4 sites. The values derived from scans performed at 380 / 400 mA and 140 kV (LightSpeed/Somatom) served as a reference. Measurements scored 1 point if they did not differ by more than 0.5 mm from the reference values. Results: The radiation dose can be reduced from 61.0 mGy to 9.2 mGy (15.1 %) with LightSpeed and from 55.0 mGy to 8.0 mGy (14.6 %) with Somatom without impairing the reliability of ventricular width measurements. However, in the case of both scanners, certain combinations of tube voltage and current yielded less reliable measurements although the dose was higher and the pixel noise was lower. Conclusion: There is no single cut-off dose or setting for tube voltage and current which guarantees reliable ventricular width measurements with the least radiation exposure for both scanners. As a guideline, it is safe to use the standard protocols with a reduced tube current of 100 kV. (orig.)

  2. Computed tomography of choledocholithiasis

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey, R.B.; Federle, M.P.; Laing, F.C.; Wall, S.; Rego, J.; Moss, A.A.

    1983-06-01

    Computed tomography (CT) correctly diagnosed common bile duct stones in 19 (90%) of 21 surgically proven cases. CT demonstrated calculi in all 13 patients with calcium bilirubinate common duct stones and six of eight patients with predominantly cholesterol stones. There were two false-negative diagnoses in patients with cholesterol calculi scanned at 1 cm intervals. Cholesterol stones are nearly isodense with bile and may be difficult to visualize in the common duct by routine scanning techniques. There are three suggestive CT features of cholesterol common duct calculi: (1) abrupt termination of the distal common bile duct without an obstructing mass, (2) a faint rim of increased density along the peripheral margin of a low-density calculus, and (3) mottled areas of increased density centrally within a calculus elevating its CT number above values for normal bile. Modification of scanning technique to obtain high-resolution images of the extrahepatic biliary tree is stressed to optimize visualization of the above findings.

  3. Transaxial analogue tomography

    International Nuclear Information System (INIS)

    Duinker, S.; Geluk, R.J.; Mulder, H.

    1978-01-01

    After an introduction on computerized tomography (CT) scanners summarizing the various generations, the general outline of the concept of a transaxial tomography system is given, which is entirely based on analogue instead of digital techniques (AT system). In particular, the use of X-ray image-intensifier systems as a means of detecting the transmission profiles of the object in a so-called half-field detection method are discussed as well as various possibilities of detector scanning. It is further discussed how in a purely electronic way with the aid of a scan-converter, density profiles representative of parallel beams can be derived from the family of profiles as obtained from the fan-shaped beams in the actual experiment. A practical opto-electronic solution of the analogue spatial filtering problem is described as to how to process, on a real-time basis, parallel density profiles so that after back-projection tomographic images which are free from point-spreading effects will be obtained. Finally, after a brief indication of certain technical details for which corrective measures have to be worked out in the course of practical realization, the main relative advantages of AT scanners in comparison to CT scanners are enumerated. (Auth.)

  4. Waste inspection tomography (WIT)

    International Nuclear Information System (INIS)

    Bernardi, R.T.

    1995-01-01

    Waste Inspection Tomography (WIT) provides mobile semi-trailer mounted nondestructive examination (NDE) and assay (NDA) for nuclear waste drum characterization. WIT uses various computed tomography (CT) methods for both NDE and NDA of nuclear waste drums. Low level waste (LLW), transuranic (TRU), and mixed radioactive waste can be inspected and characterized without opening the drums. With externally transmitted x-ray NDE techniques, WIT has the ability to identify high density waste materials like heavy metals, define drum contents in two- and three-dimensional space, quantify free liquid volumes through density and x-ray attenuation coefficient discrimination, and measure drum wall thickness. With waste emitting gamma-ray NDA techniques, WIT can locate gamma emitting radioactive sources in two- and three-dimensional space, identify gamma emitting, isotopic species, identify the external activity levels of emitting gamma-ray sources, correct for waste matrix attenuation, provide internal activity approximations, and provide the data needed for waste classification as LLW or TRU

  5. ExsB Is Required for Correct Assembly of the Pseudomonas aeruginosa Type III Secretion Apparatus in the Bacterial Membrane and Full Virulence In Vivo

    Science.gov (United States)

    Perdu, Caroline; Huber, Philippe; Bouillot, Stéphanie; Blocker, Ariel; Elsen, Sylvie; Attrée, Ina

    2015-01-01

    Pseudomonas aeruginosa is responsible for high-morbidity infections of cystic fibrosis patients and is a major agent of nosocomial infections. One of its most potent virulence factors is a type III secretion system (T3SS) that injects toxins directly into the host cell cytoplasm. ExsB, a lipoprotein localized in the bacterial outer membrane, is one of the components of this machinery, of which the function remained elusive until now. The localization of the exsB gene within the exsCEBA regulatory gene operon suggested an implication in the T3SS regulation, while its similarity with yscW from Yersinia spp. argued in favor of a role in machinery assembly. The present work shows that ExsB is necessary for full in vivo virulence of P. aeruginosa. Furthermore, the requirement of ExsB for optimal T3SS assembly and activity is demonstrated using eukaryotic cell infection and in vitro assays. In particular, ExsB promotes the assembly of the T3SS secretin in the bacterial outer membrane, highlighting the molecular role of ExsB as a pilotin. This involvement in the regulation of the T3S apparatus assembly may explain the localization of the ExsB-encoding gene within the regulatory gene operon. PMID:25690097

  6. Optical coherence tomography for an in-vivo study of posterior-capsule-opacification types and their influence on the total-pulse energy required for Nd:YAG capsulotomy: a case series.

    Science.gov (United States)

    Hawlina, Gregor; Perovšek, Darko; Drnovšek-Olup, Brigita; MoŽina, Janez; Gregorčič, Peter

    2014-11-18

    Posterior capsule opacification (PCO) is the most common post-operative complication associated with cataract surgery and is mostly treated with Nd:YAG laser capsulotomy. Here, we demonstrate the use of high-resolution spectral-domain optical coherence tomography (OCT) as a technique for PCO analysis. Additionally, we evaluate the influence of PCO types and the distance between the intraocular lens (IOL) and the posterior capsule (PC), i.e., the IOL/PC distance, on the total-pulse energy required for the Nd:YAG laser posterior capsulotomy. 47 eyes with PCO scheduled for the Nd:YAG procedure were examined and divided into four categories: fibrosis, pearl, mixed type and late-postoperative capsular bag distension syndrome. Using custom-made computer software for OCT image analysis, the IOL/PC distances in two dimensions were measured. The IOL/PC distances were compared with those of a control group of 15 eyes without PCO. The influence of the different PCO types and the IOL/PC distance on the total-pulse energy required for the Nd:YAG procedure was analyzed. The total-pulse energy required for a laser capsulotomy differs significantly between PCO types (p = 0.005, Kruskal-Wallis test). The highest energy was required for the fibrosis PCO type, followed by mixed, pearl and late-postoperative capsular bag distension syndrome. The IOL/PC distance also significantly influenced the total-pulse energy required for laser capsulotomy (p = 0.028, linear regression). Lower total-pulse energy was expected for a larger IOL/PC distance. Our study indicates that the PCO types and the IOL/PC distance influence the total-pulse energy required for Nd:YAG capsulotomy. The presented OCT method has the potential to become an additional tool for PCO characterization. Our results are important for a better understanding of the photodisruptive mechanisms in Nd:YAG capsulotomy.

  7. Results of the American College of Surgeons Oncology Group Z0050 trial: the utility of positron emission tomography in staging potentially operable non-small cell lung cancer.

    Science.gov (United States)

    Reed, Carolyn E; Harpole, David H; Posther, Katherine E; Woolson, Sandra L; Downey, Robert J; Meyers, Bryan F; Heelan, Robert T; MacApinlac, Homer A; Jung, Sin-Ho; Silvestri, Gerard A; Siegel, Barry A; Rusch, Valerie W

    2003-12-01

    The American College of Surgeons Oncology Group undertook a trial to ascertain whether positron emission tomography with 18F-fluorodeoxyglucose could detect lesions that would preclude pulmonary resection in a group of patients with documented or suspected non-small cell lung cancer found to be surgical candidates by routine staging procedures. A total of 303 eligible patients registered from 22 institutions underwent positron emission tomography after routine staging (computed tomography of chest and upper abdomen, bone scintigraphy, and brain imaging) had deemed their tumors resectable. Positive findings required confirmatory procedures. Positron emission tomography was significantly better than computed tomography for the detection of N1 and N2/N3 disease (42% vs 13%, P =.0177, and 58% vs 32%, P =.0041, respectively). The negative predictive value of positron emission tomography for mediastinal node disease was 87%. Unsuspected metastatic disease or second primary malignancy was identified in 18 of 287 patients (6.3%). Distant metastatic disease indicated in 19 of 287 patients (6.6%) was subsequently shown to be benign. By correctly identifying advanced disease (stages IIIA, IIIB, and IV) or benign lesions, positron emission tomography potentially avoided unnecessary thoracotomy in 1 of 5 patients. In patients with suspected or proven non-small cell lung cancer considered resectable by standard staging procedures, positron emission tomography can prevent nontherapeutic thoracotomy in a significant number of cases. Use of positron emission tomography for mediastinal staging should not be relied on as a sole staging modality, and positive findings should be confirmed by mediastinoscopy. Metastatic disease, especially a single site, identified by positron emission tomography requires further confirmatory evaluation.

  8. Refraction traveltime tomography based on damped wave equation for irregular topographic model

    Science.gov (United States)

    Park, Yunhui; Pyun, Sukjoon

    2018-03-01

    Land seismic data generally have time-static issues due to irregular topography and weathered layers at shallow depths. Unless the time static is handled appropriately, interpretation of the subsurface structures can be easily distorted. Therefore, static corrections are commonly applied to land seismic data. The near-surface velocity, which is required for static corrections, can be inferred from first-arrival traveltime tomography, which must consider the irregular topography, as the land seismic data are generally obtained in irregular topography. This paper proposes a refraction traveltime tomography technique that is applicable to an irregular topographic model. This technique uses unstructured meshes to express an irregular topography, and traveltimes calculated from the frequency-domain damped wavefields using the finite element method. The diagonal elements of the approximate Hessian matrix were adopted for preconditioning, and the principle of reciprocity was introduced to efficiently calculate the Fréchet derivative. We also included regularization to resolve the ill-posed inverse problem, and used the nonlinear conjugate gradient method to solve the inverse problem. As the damped wavefields were used, there were no issues associated with artificial reflections caused by unstructured meshes. In addition, the shadow zone problem could be circumvented because this method is based on the exact wave equation, which does not require a high-frequency assumption. Furthermore, the proposed method was both robust to an initial velocity model and efficient compared to full wavefield inversions. Through synthetic and field data examples, our method was shown to successfully reconstruct shallow velocity structures. To verify our method, static corrections were roughly applied to the field data using the estimated near-surface velocity. By comparing common shot gathers and stack sections with and without static corrections, we confirmed that the proposed tomography

  9. Detecting Metastatic Bladder Cancer Using (18)F-Fluorodeoxyglucose Positron-Emission Tomography/Computed Tomography.

    Science.gov (United States)

    Öztürk, Hakan

    2015-10-01

    The purpose of this study was to retrospectively investigate the contribution of (18)F-fluorodeoxyglucose-positron emission tomography/computed tomography ((18)F-FDG-PET/CT) to detection of metastatic bladder cancer. The present study included 79 patients (69 men and 10 women) undergoing (18)F-FDG-PET/CT upon suspicion of metastatic bladder cancer between July 2007 and April 2013. The mean age was 66.1 years with a standard deviation of 10.7 years (range, 21 to 85 years). Patients were required to fast for 6 hours prior to scanning, and whole-body PET scanning from the skull base to the upper thighs was performed approximately 1 hour after intravenous injection of 555 MBq of (18)F-FDG. Whole body CT scanning was performed in the cranio-caudal direction. FDG-PET images were reconstructed using CT data for attenuation correction. Suspicious recurrent or metastatic lesions were confirmed by histopathology or clinical follow-up. The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of (18)F-FDG-PET/CT were 89%, 78%, 90%, 75%, and 86%, respectively. (18)F-FDG-PET/CT can detect metastases with high sensitivity and positive predictive values in patients with metastatic bladder carcinoma.

  10. Hepatic hemangiomas as diagnosed by ultrasonography and computed tomography

    International Nuclear Information System (INIS)

    Sachse, M.

    1987-01-01

    A total of 62 cases where the clinical diagnosis of hepatic hemangioma had been established during the period between 1981 and 1983 on the basis of computed tomography and sonography were subjected to retrospective analysis with the aim of evaluating the diagnostic reliability of these two methods. In 29 patients a typical distribution pattern of the contrast medium gave irrefutable evidence of the disease. Hemangiomas were predicted from the results of computed tomography for a further 5 patients with less revealing distribution patterns, although in 4 among these the preliminary diagnosis of hemangioma was disproved by additional diagnostic procedures (scintigraphy, laparoscopy, surgery and biopsy). Out of 16 patients, in which the hemangiomas were diagnosed from the typical patterns created by the contrast medium on the CT scans, 11 showed sonographic findings to confirm the presence of such tumours. This retrospective analysis showed that a correct and positive diagnosis could be established in no more than 7 patients on the basis of sonography alone, while 6 such diagnoses were definitely proven to be false-positive. As regards diagnostic accuracy, sonography clearly compares unfavourably with computed tomography. It may offer some advantages inasmuch as it requires no radiation exposure, is non-invasive and, last not least, less costly. (ECB) [de

  11. Prediction of the energy required for extracorporeal shock wave lithotripsy of certain stones composition using simple radiology and computerized axial tomography.

    Science.gov (United States)

    Argüelles-Salido, E; Campoy-Martínez, P; Aguilar-García, J; Podio-Lora, V; Medina-López, R

    2014-03-01

    To demonstrate that urinary lithiasis have a specific susceptibility to fracture through extracorporeal shock wave lithotripsy (ESWL), which is common for all calculi with the same composition and which can be estimated before treatment using CT or plain x-ray. We present an in vitro, prospective, randomized, blind and multi-centre study involving 308 urinary calculi. 193 of these met the inclusion criteria: whole calculi composed purely of calcium oxalate monohydrate (COM), uric acid (UA) or carbonate apatite (CA), or a mix of oxalate (COMix) and of a size greater than 0.5 cm. The samples were broken using lithotripsy until reaching a pre-established level of comminution. The variables employed were energy dose (Edose) per cm(3) of lithiasis and Edose adjusted to lithiasic surface (EdAJ) per cm(3). COM was the hardest, requiring an Edose of 119,624 mJ/cm(3) and an EdAJ of 36,983 mJ/cm(3), followed by COMix (75,501/36,983), CA (22,734/21,186) and UA (22,580/6,837) (P < .05). Gmax y Gmda were correlated with Edose (r = 0.434/r = 0.420) and EdAJ (r = 0.599/r = 0.545) (P < .01). UH were correlated, in bone window and soft tissue window, with Edose/cm(3) (r = 0.478/r = 0.539) y EdAJ/cm(3) (r = 0.745/r = 0.758) (P < .01). In our in vitro research lithiasis require, due to the specific nature of their composition, a given amount of energy in order to be broken by ESWL, which is inherent to all those sharing the same composition, and can be predicted using CT or plain x-ray. Copyright © 2013 AEU. Published by Elsevier Espana. All rights reserved.

  12. 78 FR 75449 - Miscellaneous Corrections; Corrections

    Science.gov (United States)

    2013-12-12

    ... cross- references, correcting grammatical errors, revising language for clarity and consistency, and... practice. Specifically, these amendments are to correct grammatical errors and to revise cross-references.... The final rule contained minor errors in grammar, punctuation, and referencing. This document corrects...

  13. Computed tomography of oesophageal carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Muehling, T.; Kuklinski, M.E.; Huebsch, T.; Witte, J.

    1985-08-01

    Between March, 1980 and January, 1984, computerized tomography (CT) was performed on 110 patients with proven esophageal carcinoma. In 26 patients, information obtained preoperatively by CT was compared with results of intraoperative exploration or histologic examination of resection specimen. Correlation analysis showed that accuracy of CT in assessing actual tumor size and mediastinal or abdominal lymphnode involvement is rather limited, while correct results were obtained in between 84 and 100 percent of patients as far as identification of invasion of adjacent organs is concerned. We thus advocate routine use of CT in the process of preoperative assessment of operability and staging.

  14. Positron emission tomography/computed tomography for optimized colon cancer staging and follow up

    DEFF Research Database (Denmark)

    Engelmann, Bodil Elisabeth; Loft, Annika; Kjær, Andreas

    2014-01-01

    OBJECTIVES: Optimal management of colon cancer (CC) requires detailed assessment of extent of disease. This study prospectively investigates the diagnostic accuracy of 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography/computed tomography (PET/CT) for staging and detection of recurrence...

  15. Estimation and relevance of depth correction in paediatric renal studies

    International Nuclear Information System (INIS)

    Lythgoe, M.F.; Gradwell, M.J.; Evans, K.; Gordon, I.

    1998-01-01

    Measurement of absolute renal function by gamma camera techniques requires knowledge of kidney depth to correct for soft tissue attenuation, there is debate about the need to take depth into account when only relative renal function is estimated. The aim of this study was to derive a formula for renal depth in children and to assess the importance of depth correction when relative renal function is assessed with dimercaptosuccinic acid (DMSA) on the gamma camera. In this study, kidney depths were derived from measurements on abdominal computerised tomography (CT) images in 57 children in the supine position with two normally located kidneys. Using best-subset regression analysis, one formula for both left and right kidney depth (KD, cm) was developed based on the easily measured parameters of height (H, cm) and body weight (W, kg). The inclusion of extra variables was found to significantly improve the model compared with a model using weight alone (P<0.005). A second group of 19 children who underwent technetium-99m DMSA scans, had differential function estimated from both anterior and posterior views and the geometric mean method. The mean difference in differential renal function calculated by the geometric mean method versus the posterior image was only 1.2%. In conclusion, we present a new formula for the estimation of paediatric kidney depth for the absolute quantitation of kidney uptake. Further, for normally located kidneys it appears unnecessary to use the geometric mean method or to correct for individual renal depth when calculating differential function. (orig.)

  16. Tracer kinetic modelling of receptor data with mathematical metabolite correction

    International Nuclear Information System (INIS)

    Burger, C.; Buck, A.

    1996-01-01

    Quantitation of metabolic processes with dynamic positron emission tomography (PET) and tracer kinetic modelling relies on the time course of authentic ligand in plasma, i.e. the input curve. The determination of the latter often requires the measurement of labelled metabilites, a laborious procedure. In this study we examined the possibility of mathematical metabolite correction, which might obviate the need for actual metabolite measurements. Mathematical metabilite correction was implemented by estimating the input curve together with kinetic tissue parameters. The general feasibility of the approach was evaluated in a Monte Carlo simulation using a two tissue compartment model. The method was then applied to a series of five human carbon-11 iomazenil PET studies. The measured cerebral tissue time-activity curves were fitted with a single tissue compartment model. For mathematical metabolite correction the input curve following the peak was approximated by a sum of three decaying exponentials, the amplitudes and characteristic half-times of which were then estimated by the fitting routine. In the simulation study the parameters used to generate synthetic tissue time-activity curves (K 1 -k 4 ) were refitted with reasonable identifiability when using mathematical metabolite correciton. Absolute quantitation of distribution volumes was found to be possible provided that the metabolite and the kinetic models are adequate. If the kinetic model is oversimplified, the linearity of the correlation between true and estimated distribution volumes is still maintained, although the linear regression becomes dependent on the input curve. These simulation results were confirmed when applying mathematical metabolite correction to the 11 C iomazenil study. Estimates of the distribution volume calculated with a measured input curve were linearly related to the estimates calculated using mathematical metabolite correction with correlation coefficients >0.990. (orig./MG)

  17. Towards quantitative PET/MRI: a review of MR-based attenuation correction techniques

    International Nuclear Information System (INIS)

    Hofmann, Matthias; Pichler, Bernd; Schoelkopf, Bernhard; Beyer, Thomas

    2009-01-01

    Positron emission tomography (PET) is a fully quantitative technology for imaging metabolic pathways and dynamic processes in vivo. Attenuation correction of raw PET data is a prerequisite for quantification and is typically based on separate transmission measurements. In PET/CT attenuation correction, however, is performed routinely based on the available CT transmission data. Recently, combined PET/magnetic resonance (MR) has been proposed as a viable alternative to PET/CT. Current concepts of PET/MRI do not include CT-like transmission sources and, therefore, alternative methods of PET attenuation correction must be found. This article reviews existing approaches to MR-based attenuation correction (MR-AC). Most groups have proposed MR-AC algorithms for brain PET studies and more recently also for torso PET/MR imaging. Most MR-AC strategies require the use of complementary MR and transmission images, or morphology templates generated from transmission images. We review and discuss these algorithms and point out challenges for using MR-AC in clinical routine. MR-AC is work-in-progress with potentially promising results from a template-based approach applicable to both brain and torso imaging. While efforts are ongoing in making clinically viable MR-AC fully automatic, further studies are required to realize the potential benefits of MR-based motion compensation and partial volume correction of the PET data. (orig.)

  18. Computed Tomography (CT) -- Sinuses

    Medline Plus

    Full Text Available ... Videos About Us News Physician Resources Professions Site Index A-Z Computed Tomography (CT) - Sinuses Computed tomography ( ... cross-sectional images generated during a CT scan can be reformatted in multiple planes, and can even ...

  19. Computed Tomography (CT) -- Sinuses

    Medline Plus

    Full Text Available ... the Sinuses? What is CT (Computed Tomography) of the Sinuses? Computed tomography, more commonly known as a ... of page What are some common uses of the procedure? CT of the sinuses is primarily used ...

  20. Review of muon tomography

    International Nuclear Information System (INIS)

    Feng Hanliang; Jiao Xiaojing

    2010-01-01

    As a new detection technology, Muon tomography has some potential benefits, such as being able to form a three- dimensional image, without radiation, low cost, fast detecting etc. Especially, muon tomography will play an important role in detecting nuclear materials. It introduces the theory of Muon tomography, its advantages and the Muon tomography system developed by decision sciences corporation and Los Alamos national laboratory. (authors)

  1. Spectral and Diffraction Tomography

    OpenAIRE

    Lionheart, William

    2016-01-01

    We discuss several cases of what we call "Rich Tomography" problems in which more data is measured than a scalar for each ray. We give examples of infra red spectral tomography and Bragg edge neutron tomography in which the data is insufficient. For diffraction tomography of strain for polycrystaline materials we give an explicit reconstruction procedure. We go on to describe a way to find six independent rotation axes using Pascal's theorem of projective geometry

  2. Positron emission tomography

    International Nuclear Information System (INIS)

    Reivich, M.; Alavi, A.

    1985-01-01

    This book contains 24 selections. Some of the titles are: Positron Emission Tomography Instrumentation, Generator Systems for Positron Emitters, Reconstruction Algorithms, Cerebral Glucose Consumption: Methodology and Validation, Cerebral Blood Flow Tomography Using Xenon-133 Inhalation: Methods and Clinical Applications, PET Studies of Stroke, Cardiac Positron Emission Tomography, and Use of PET in Oncology

  3. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... Perfusion of the Head CT Angiography (CTA) Stroke Brain Tumors Computer Tomography (CT) Safety During Pregnancy Head and Neck Cancer X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety Images related to Computed Tomography (CT) - Head Videos related to Computed Tomography ( ...

  4. Computed tomography findings of early abdominal postoperative complications

    Energy Technology Data Exchange (ETDEWEB)

    Zissin, R.; Osadchy, A. [Sapir Medical Center, Dept. of Diagnostic Imaging, Kfar Saba (Israel)]. E-mail: zisinrivka@clalit.org.il; Gayer, G. [Assaf Harofe Medical Center, Dept. of Diagnostic Imaging, Zrifin (Israel)

    2007-06-15

    Various surgical approaches are used for different abdominal pathological conditions. Postoperative complications occur not infrequently and vary according to the type of the surgery and the clinical context. Nowadays, multidetector computed tomography (MDCT) provides superb anatomic detail and diagnostic accuracy for various intraabdominal pathological processes, even if clinically unsuspected, and it thus has become an essential diagnostic tool for evaluating postoperative insults. Other advantages of abdominal MDCT include its accessibility and its speed, which allow scanning of uncooperative, marginally stable patients. Computed tomography (CT)-guided percutaneous (PC) drainage of postoperative collections is another advantage of CT. Therefore, although CT requires transportation of a critically ill, postoperative patient, it is recommended in any suspicious clinical setting because several conditions require prompt management and a correct diagnosis is crucial. In assessing a patient for suspected postoperative complications, several points should be taken into consideration, including the relevant clinical and laboratory data, the surgical findings, the type of the surgery, the time elapsed since surgery, and the operative technique (either open laparotomy of laparoscopic procedure). (author)

  5. Positron emission tomography camera

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    A positron emission tomography camera having a plurality of detector rings positioned side-by-side or offset by one-half of the detector cross section around a patient area to detect radiation therefrom. Each ring contains a plurality of scintillation detectors which are positioned around an inner circumference with a septum ring extending inwardly from the inner circumference along each outer edge of each ring. An additional septum ring is positioned in the middle of each ring of detectors and parallel to the other septa rings, whereby the inward extent of all the septa rings may be reduced by one-half and the number of detectors required in each ring is reduced. The additional septa reduces the costs of the positron camera and improves its performance

  6. An update in proton probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Sakellariou, A.; Cholewa, M.; Saint, A.; Legge, G.L.F. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Howard, J. [Australian National Univ., Canberra, ACT (Australia). Research School of Physical Sciences

    1996-12-31

    The analysis of scanning transmission ion microscopy (STIM) tomography data is improved. The volumetric density information is obtained directly from an iterative convolution and back-projection (BFP) reconstruction method. The iterative method allows the effects of stopping-power to be incorporated easily. One draw back is that a priori constituency information is required for the iterative method to work However, this is of no concern because the iterative method was designed with PIXE tomography in mind. In this light, the a priori information will be obtained as the zeroth iteration of a PIXE tomography iterative reconstruction method. 4 refs., 1 tab., 4 figs.

  7. Central venous catheterization for acute trauma resuscitation: Tip position analysis using routine emergency computed tomography.

    Science.gov (United States)

    Struck, Manuel F; Ewens, Sebastian; Schummer, Wolfram; Busch, Thilo; Bernhard, Michael; Fakler, Johannes K M; Stumpp, Patrick; Stehr, Sebastian N; Josten, Christoph; Wrigge, Hermann

    2018-03-01

    Central venous catheter insertion for acute trauma resuscitation may be associated with mechanical complications, but studies on the exact central venous catheter tip positions are not available. The goal of the study was to analyze central venous catheter tip positions using routine emergency computed tomography. Consecutive acute multiple trauma patients requiring large-bore thoracocervical central venous catheters in the resuscitation room of a university hospital were enrolled retrospectively from 2010 to 2015. Patients who received a routine emergency chest computed tomography were analyzed regarding central venous catheter tip position. The central venous catheter tip position was defined as correct if the catheter tip was placed less than 1 cm inside the right atrium relative to the cavoatrial junction, and the simultaneous angle of the central venous catheter tip compared with the lateral border of the superior vena cava was below 40°. During the 6-year study period, 97 patients were analyzed for the central venous catheter tip position in computed tomography. Malpositions were observed in 29 patients (29.9%). Patients with malpositioned central venous catheters presented with a higher rate of shock (systolic blood pressure central venous catheter tips. Logistic regression revealed injury severity score as a significant predictor for central venous catheter malposition (odds ratio = 1.039, 95% confidence interval = 1.005-1.074, p = 0.024). Multiple trauma patients who underwent emergency central venous catheter placement by experienced anesthetists presented with considerable tip malposition in computed tomography, which was significantly associated with a higher injury severity.

  8. Geometric reconstruction methods for electron tomography

    DEFF Research Database (Denmark)

    Alpers, Andreas; Gardner, Richard J.; König, Stefan

    2013-01-01

    Electron tomography is becoming an increasingly important tool in materials science for studying the three-dimensional morphologies and chemical compositions of nanostructures. The image quality obtained by many current algorithms is seriously affected by the problems of missing wedge artefacts...... and discuss several algorithms from the mathematical fields of geometric and discrete tomography. The algorithms incorporate geometric prior knowledge (mainly convexity and homogeneity), which also in principle considerably reduces the number of tilt angles required. Results are discussed...

  9. Turbulence compressibility corrections

    Science.gov (United States)

    Coakley, T. J.; Horstman, C. C.; Marvin, J. G.; Viegas, J. R.; Bardina, J. E.; Huang, P. G.; Kussoy, M. I.

    1994-01-01

    The basic objective of this research was to identify, develop and recommend turbulence models which could be incorporated into CFD codes used in the design of the National AeroSpace Plane vehicles. To accomplish this goal, a combined effort consisting of experimental and theoretical phases was undertaken. The experimental phase consisted of a literature survey to collect and assess a database of well documented experimental flows, with emphasis on high speed or hypersonic flows, which could be used to validate turbulence models. Since it was anticipated that this database would be incomplete and would need supplementing, additional experiments in the NASA Ames 3.5-Foot Hypersonic Wind Tunnel (HWT) were also undertaken. The theoretical phase consisted of identifying promising turbulence models through applications to simple flows, and then investigating more promising models in applications to complex flows. The complex flows were selected from the database developed in the first phase of the study. For these flows it was anticipated that model performance would not be entirely satisfactory, so that model improvements or corrections would be required. The primary goals of the investigation were essentially achieved. A large database of flows was collected and assessed, a number of additional hypersonic experiments were conducted in the Ames HWT, and two turbulence models (kappa-epsilon and kappa-omega models with corrections) were determined which gave superior performance for most of the flows studied and are now recommended for NASP applications.

  10. 77 FR 39899 - Technical Corrections

    Science.gov (United States)

    2012-07-06

    ... requirements, Source material, Special nuclear material, Waste treatment and disposal. 10 CFR Part 21 Nuclear... Atomic Energy Act sec. 274 (42 U.S.C. 2021) and under Nuclear Waste Policy Act sec. 121 (42 U.S.C. 10141... NUCLEAR REGULATORY COMMISSION 10 CFR Chapter I [NRC-2012-0092] RIN 3150-AJ16 Technical Corrections...

  11. Turbocharging Quantum Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Blume-Kohout, Robin J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Gamble, John King [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Nielsen, Erik [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Maunz, Peter Lukas Wilhelm [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Scholten, Travis L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Rudinger, Kenneth Michael [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    Quantum tomography is used to characterize quantum operations implemented in quantum information processing (QIP) hardware. Traditionally, state tomography has been used to characterize the quantum state prepared in an initialization procedure, while quantum process tomography is used to characterize dynamical operations on a QIP system. As such, tomography is critical to the development of QIP hardware (since it is necessary both for debugging and validating as-built devices, and its results are used to influence the next generation of devices). But tomography suffers from several critical drawbacks. In this report, we present new research that resolves several of these flaws. We describe a new form of tomography called gate set tomography (GST), which unifies state and process tomography, avoids prior methods critical reliance on precalibrated operations that are not generally available, and can achieve unprecedented accuracies. We report on theory and experimental development of adaptive tomography protocols that achieve far higher fidelity in state reconstruction than non-adaptive methods. Finally, we present a new theoretical and experimental analysis of process tomography on multispin systems, and demonstrate how to more effectively detect and characterize quantum noise using carefully tailored ensembles of input states.

  12. EDITORIAL: Industrial Process Tomography

    Science.gov (United States)

    Anton Johansen, Geir; Wang, Mi

    2008-09-01

    There has been tremendous development within measurement science and technology over the past couple of decades. New sensor technologies and compact versatile signal recovery electronics are continuously expanding the limits of what can be measured and the accuracy with which this can be done. Miniaturization of sensors and the use of nanotechnology push these limits further. Also, thanks to powerful and cost-effective computer systems, sophisticated measurement and reconstruction algorithms previously only accessible in advanced laboratories are now available for in situ online measurement systems. The process industries increasingly require more process-related information, motivated by key issues such as improved process control, process utilization and process yields, ultimately driven by cost-effectiveness, quality assurance, environmental and safety demands. Industrial process tomography methods have taken advantage of the general progress in measurement science, and aim at providing more information, both quantitatively and qualitatively, on multiphase systems and their dynamics. The typical approach for such systems has been to carry out one local or bulk measurement and assume that this is representative of the whole system. In some cases, this is sufficient. However, there are many complex systems where the component distribution varies continuously and often unpredictably in space and time. The foundation of industrial tomography is to conduct several measurements around the periphery of a multiphase process, and use these measurements to unravel the cross-sectional distribution of the process components in time and space. This information is used in the design and optimization of industrial processes and process equipment, and also to improve the accuracy of multiphase system measurements in general. In this issue we are proud to present a selection of the 145 papers presented at the 5th World Congress on Industrial Process Tomography in Bergen

  13. Estimation of an image derived input function with MR-defined carotid arteries in FDG-PET human studies using a novel partial volume correction method

    DEFF Research Database (Denmark)

    Sari, Hasan; Erlandsson, Kjell; Law, Ian

    2017-01-01

    Kinetic analysis of18F-fluorodeoxyglucose positron emission tomography data requires an accurate knowledge the arterial input function. The gold standard method to measure the arterial input function requires collection of arterial blood samples and is an invasive method. Measuring an image derived...... input function is a non-invasive alternative but is challenging due to partial volume effects caused by the limited spatial resolution of the positron emission tomography scanners. In this work, a practical image derived input function extraction method is presented, which only requires segmentation...... of the carotid arteries from MR images. The simulation study results showed that at least 92% of the true intensity could be recovered after the partial volume correction. Results from 19 subjects showed that the mean cerebral metabolic rate of glucose calculated using arterial samples and partial volume...

  14. Computed tomography in the imaging of colonic diverticulitis

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, O.; Geoghegan, T.; O' Riordain, D.S.; Lyburn, I.D.; Torreggiani, W.C. E-mail: william.torreggiani@amnch.ie

    2004-11-01

    Colonic diverticulitis occurs when diverticula within the colon become infected or inflamed. It is becoming an increasingly common cause for hospital admission, particularly in western society, where it is linked to a low fibre diet. Symptoms of diverticulitis include abdominal pain, diarrhoea and pyrexia, however, symptoms are often non-specific and the clinical diagnosis may be difficult. In addition, elderly patients and those taking corticosteroids may have limited findings on physical examination, even in the presence of severe diverticulitis. A high index of suspicion is required in such patients in order to avoid a significant delay in arriving at the correct diagnosis. Imaging plays an important role in establishing an early and correct diagnosis. In the past, contrast enema studies were the principal imaging test used to make the diagnosis. However, such studies lack sensitivity and have limited success in identifying abscesses that may require drainage. Conversely computed tomography (CT) is both sensitive and specific in making a diagnosis of diverticulitis. In addition, it is the imaging technique of choice in depicting complications such as perforation, abscess formation and fistulae. CT-guided drainage of diverticular abscesses helps to reduce sepsis and to permit a one-stage, rather than two-stage, surgical operation. The purpose of this review article is to discuss the role of CT in the imaging of diverticulitis, describe the CT imaging features and complications of this disease, as well as review the impact and rationale of CT imaging and intervention in the overall management of patients with diverticulitis.

  15. Computed tomography in the imaging of colonic diverticulitis

    International Nuclear Information System (INIS)

    Buckley, O.; Geoghegan, T.; O'Riordain, D.S.; Lyburn, I.D.; Torreggiani, W.C.

    2004-01-01

    Colonic diverticulitis occurs when diverticula within the colon become infected or inflamed. It is becoming an increasingly common cause for hospital admission, particularly in western society, where it is linked to a low fibre diet. Symptoms of diverticulitis include abdominal pain, diarrhoea and pyrexia, however, symptoms are often non-specific and the clinical diagnosis may be difficult. In addition, elderly patients and those taking corticosteroids may have limited findings on physical examination, even in the presence of severe diverticulitis. A high index of suspicion is required in such patients in order to avoid a significant delay in arriving at the correct diagnosis. Imaging plays an important role in establishing an early and correct diagnosis. In the past, contrast enema studies were the principal imaging test used to make the diagnosis. However, such studies lack sensitivity and have limited success in identifying abscesses that may require drainage. Conversely computed tomography (CT) is both sensitive and specific in making a diagnosis of diverticulitis. In addition, it is the imaging technique of choice in depicting complications such as perforation, abscess formation and fistulae. CT-guided drainage of diverticular abscesses helps to reduce sepsis and to permit a one-stage, rather than two-stage, surgical operation. The purpose of this review article is to discuss the role of CT in the imaging of diverticulitis, describe the CT imaging features and complications of this disease, as well as review the impact and rationale of CT imaging and intervention in the overall management of patients with diverticulitis

  16. Computed tomography for radiographers

    International Nuclear Information System (INIS)

    Brooker, M.

    1986-01-01

    Computed tomography is regarded by many as a complicated union of sophisticated x-ray equipment and computer technology. This book overcomes these complexities. The rigid technicalities of the machinery and the clinical aspects of computed tomography are discussed including the preparation of patients, both physically and mentally, for scanning. Furthermore, the author also explains how to set up and run a computed tomography department, including advice on how the room should be designed

  17. Corrective Jaw Surgery

    Medline Plus

    Full Text Available ... more surgeries depending on the extent of the repair needed. Click here to find out more. Corrective ... more surgeries depending on the extent of the repair needed. Click here to find out more. Corrective ...

  18. Corrective Jaw Surgery

    Medline Plus

    Full Text Available ... Jaw Surgery Download Download the ebook for further information Corrective jaw, or orthognathic surgery is performed by ... your treatment. Correction of Common Dentofacial Deformities ​ ​ The information provided here is not intended as a substitute ...

  19. NWS Corrections to Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Form B-14 is the National Weather Service form entitled 'Notice of Corrections to Weather Records.' The forms are used to make corrections to observations on forms...

  20. Teaching Politically Correct Language

    Science.gov (United States)

    Tsehelska, Maryna

    2006-01-01

    This article argues that teaching politically correct language to English learners provides them with important information and opportunities to be exposed to cultural issues. The author offers a brief review of how political correctness became an issue and how being politically correct influences the use of language. The article then presents…

  1. Quantum corrections to the string Bethe ansatz

    CERN Document Server

    Hernández, R; Hernandez, Rafael; Lopez, Esperanza

    2006-01-01

    One-loop corrections to the energy of semiclassical rotating strings contain both analytic and non-analytic terms in the 't Hooft coupling. Analytic contributions agree with the prediction from the string Bethe ansatz based on the classical S-matrix, but in order to include non-analytic contributions quantum corrections are required. We find a general expression for the first quantum correction to the string Bethe ansatz.

  2. Children's (Pediatric) CT (Computed Tomography)

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z Children's (Pediatric) CT (Computed Tomography) Pediatric computed tomography (CT) ... are the limitations of Children's CT? What is Children's CT? Computed tomography, more commonly known as a ...

  3. Data pre-processing for quantification in tomography and radiography with a digital flat panel detector

    Science.gov (United States)

    Rinkel, Jean; Gerfault, Laurent; Estève, François; Dinten, Jean-Marc

    2006-03-01

    In order to obtain accurate quantitative results, flat panel detectors require specific calibration and correction of acquisitions. Main artefacts are due to bad pixels, variations of photodiodes characteristics and inhomogeneity of X-rays sensitivity of the scintillator layer. Other limitations for quantification are the non-linearity of the detector due to charge trapping in the transistors and the scattering generated inside the detector, called detector scattering. Based on physical models of artefacts generation, this paper presents an unified framework for the calibration and correction of these artefacts. The following specific algorithms have been developed to correct them. A new method for correction of deviation to linearity is based on the comparison between experimental and simulated data. A method of detector scattering correction is performed in two steps: off-line characterization of detector scattering by considering its spatial distribution through a convolution model and on-line correction based on a deconvolution approach. Radiographic results on an anthropomorphic thorax phantom imaged with a flat panel detector, that convert X-rays into visible light using scintillator coupled to an amorphous silicon transistor frame for photons to electrons conversion, demonstrate that experimental X-rays attenuation images are significantly improved qualitatively and quantitatively by applying non-linearity correction and detector scattering correction. Results obtained on tomographic reconstructions from pre-processed acquisitions of the phantom are in very good agreement with expected attenuation coefficients values obtained with a multi-slice CT scanner. Thus, this paper demonstrates the efficiency of the proposed pre-processings to perform accurate quantification on radiographies and tomographies.

  4. Diagnosis of simulated condylar bone defects using panoramic radiography, spiral tomography and cone-beam computed tomography: A comparison study.

    Science.gov (United States)

    Salemi, Fatemeh; Shokri, Abbas; Mortazavi, Hamed; Baharvand, Maryam

    2015-02-01

    Radiographic examination is one of the most important parts of the clinical assessment routine for temporomandibular disorders. The aim of this study was to compare the diagnostic accuracy of cone-beam computed tomography(CBCT) with panoramic radiography and spiral computed tomography for the detection of the simulated mandibular condyle bone lesions. The sample consisted of 10 TMJs from 5 dried human skulls. Simulated erosive and osteophytic lesions were created in 3 different sizes using round diamond bur and bone chips, respectively. Panoramic radiography, spiral tomography and cone-beam computed tomography were used in defect detection. Data were statistically analyzed with the Mann-Whitney test. The reliability and degrees of agreement between two observers were also determined by the mean of Cohen's Kappa analysis. CBCT had a statistically significant superiority than other studied techniques in detection of both erosive and osteophytic lesions with different sizes. There were significant differences between tomography and panoramic in correct detection of both erosive and osteophytic lesions with 1mm and 1.5 mm in size. However, there were no significant differences between Tomography and Panoramic in correct detection of both erosive and osteophytic lesions with 0.5 mm in size. CBCT images provide a greater diagnostic accuracy than spiral tomography and panoramic radiography in the detection of condylar bone erosions and osteophytes. Key words:Bone defect, Condyle, CBCT, Panoramic, radiography.

  5. Improving quantitative dosimetry in 177Lu-DOTATATE SPECT by energy window-based scatter corrections

    Science.gov (United States)

    Lagerburg, Vera; Klausen, Thomas L.; Holm, Søren

    2014-01-01

    Purpose Patient-specific dosimetry of lutetium-177 (177Lu)-DOTATATE treatment in neuroendocrine tumours is important, because uptake differs across patients. Single photon emission computer tomography (SPECT)-based dosimetry requires a conversion factor between the obtained counts and the activity, which depends on the collimator type, the utilized energy windows and the applied scatter correction techniques. In this study, energy window subtraction-based scatter correction methods are compared experimentally and quantitatively. Materials and methods 177Lu SPECT images of a phantom with known activity concentration ratio between the uniform background and filled hollow spheres were acquired for three different collimators: low-energy high resolution (LEHR), low-energy general purpose (LEGP) and medium-energy general purpose (MEGP). Counts were collected in several energy windows, and scatter correction was performed by applying different methods such as effective scatter source estimation (ESSE), triple-energy and dual-energy window, double-photopeak window and downscatter correction. The intensity ratio between the spheres and the background was measured and corrected for the partial volume effect and used to compare the performance of the methods. Results Low-energy collimators combined with 208 keV energy windows give rise to artefacts. For the 113 keV energy window, large differences were observed in the ratios for the spheres. For MEGP collimators with the ESSE correction technique, the measured ratio was close to the real ratio, and the differences between spheres were small. Conclusion For quantitative 177Lu imaging MEGP collimators are advised. Both energy peaks can be utilized when the ESSE correction technique is applied. The difference between the calculated and the real ratio is less than 10% for both energy windows. PMID:24525900

  6. Cardiac blood pool emission tomography

    International Nuclear Information System (INIS)

    Itti, R.; Philippe, L.; Lorgeron, J.M.; Charbonnier, B.; Raynaud, P.; Brochier, M.

    1983-01-01

    After blood pool labeling using technetium-99m, a series of cardiac pictures is acquired during the rotation of a gamma-camera about the patient. Computer processing leads to reconstruction of various tomographic slices from the original planar projection. Electrocardiographic gating selects the different phases of the cardiac cycle. Individual slices through the left ventricular region are added in order to provide ''thick'' slices on which global and regional parameters of the left ventricular function can be determined. Due to the proportionality existing between count rates and labeled blood volumes, any geometrical model can be avoided. The delineation of regions of interest for count integration is made easier due to the absence of superimposition of structures; no correction for background is necessary. Tomography thus appears to be more consistent and more accurate than the classical methods using planar projections. In addition, right ventricular morphological and kinetic studies can be performed in the same conditions as for the left ventricle [fr

  7. Vision 20/20: Magnetic resonance imaging-guided attenuation correction in PET/MRI: Challenges, solutions, and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Mehranian, Abolfazl; Arabi, Hossein [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva CH-1211 (Switzerland); Zaidi, Habib, E-mail: habib.zaidi@hcuge.ch [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva CH-1211 (Switzerland); Geneva Neuroscience Centre, University of Geneva, Geneva CH-1205 (Switzerland); Department of Nuclear Medicine and Molecular Imaging, University of Groningen, Groningen 9700 RB (Netherlands)

    2016-03-15

    Attenuation correction is an essential component of the long chain of data correction techniques required to achieve the full potential of quantitative positron emission tomography (PET) imaging. The development of combined PET/magnetic resonance imaging (MRI) systems mandated the widespread interest in developing novel strategies for deriving accurate attenuation maps with the aim to improve the quantitative accuracy of these emerging hybrid imaging systems. The attenuation map in PET/MRI should ideally be derived from anatomical MR images; however, MRI intensities reflect proton density and relaxation time properties of biological tissues rather than their electron density and photon attenuation properties. Therefore, in contrast to PET/computed tomography, there is a lack of standardized global mapping between the intensities of MRI signal and linear attenuation coefficients at 511 keV. Moreover, in standard MRI sequences, bones and lung tissues do not produce measurable signals owing to their low proton density and short transverse relaxation times. MR images are also inevitably subject to artifacts that degrade their quality, thus compromising their applicability for the task of attenuation correction in PET/MRI. MRI-guided attenuation correction strategies can be classified in three broad categories: (i) segmentation-based approaches, (ii) atlas-registration and machine learning methods, and (iii) emission/transmission-based approaches. This paper summarizes past and current state-of-the-art developments and latest advances in PET/MRI attenuation correction. The advantages and drawbacks of each approach for addressing the challenges of MR-based attenuation correction are comprehensively described. The opportunities brought by both MRI and PET imaging modalities for deriving accurate attenuation maps and improving PET quantification will be elaborated. Future prospects and potential clinical applications of these techniques and their integration in commercial

  8. Basic principles of 18F-fluoro-deoxyglucose positron emission tomography

    International Nuclear Information System (INIS)

    Standke, R.

    2002-01-01

    Positron emission tomography uses photons to receive regional information about dynamic, physiologic, and biochemical processes in the living body. A positron decay is measured indirectly by the simultaneous registration of both gamma rays created by the annihilation. The event is counted, if two directly opposite located detectors register gamma rays in coincidence. Unfortunately the detectors of a positron emission tomography system do not register only true coincident events. There are also scattered and random coincidences. Different types of positron tomographs are presented and scintillation crystals, which are in use for positron emission tomography are discussed. The 2D- and 3D-acquisition methods are described as well as preprocessing methods, such as correction for attenuation, scatter and dead time. For quantification the relative parameter standard uptake value (SUV) is explained. Finally hybrid systems, such as combined positron emission tomography/computed tomography scanners and the use of computed tomography data for attenuation correction are introduced. (author)

  9. Automatic correction of dental artifacts in PET/MRI

    DEFF Research Database (Denmark)

    Ladefoged, Claes N.; Andersen, Flemming L.; Keller, Sune

    2015-01-01

    A challenge when using current magnetic resonance (MR)-based attenuation correction in positron emission tomography/MR imaging (PET/MRI) is that the MRIs can have a signal void around the dental fillings that is segmented as artificial air-regions in the attenuation map. For artifacts connected t...

  10. An Improved Technique for Static Correction in a High Resolution ...

    African Journals Online (AJOL)

    Previous refraction tomography model carried out in the area was used as a guide during the 2D velocity model generation, making use of the observed travel times. The observe time was used to generate the initial model, which was later corrected using the previous known subsurface model, thereby noting the difference ...

  11. EDITORIAL: Politically correct physics?

    Science.gov (United States)

    Pople Deputy Editor, Stephen

    1997-03-01

    If you were a caring, thinking, liberally minded person in the 1960s, you marched against the bomb, against the Vietnam war, and for civil rights. By the 1980s, your voice was raised about the destruction of the rainforests and the threat to our whole planetary environment. At the same time, you opposed discrimination against any group because of race, sex or sexual orientation. You reasoned that people who spoke or acted in a discriminatory manner should be discriminated against. In other words, you became politically correct. Despite its oft-quoted excesses, the political correctness movement sprang from well-founded concerns about injustices in our society. So, on balance, I am all for it. Or, at least, I was until it started to invade science. Biologists were the first to feel the impact. No longer could they refer to 'higher' and 'lower' orders, or 'primitive' forms of life. To the list of undesirable 'isms' - sexism, racism, ageism - had been added a new one: speciesism. Chemists remained immune to the PC invasion, but what else could you expect from a group of people so steeped in tradition that their principal unit, the mole, requires the use of the thoroughly unreconstructed gram? Now it is the turn of the physicists. This time, the offenders are not those who talk disparagingly about other people or animals, but those who refer to 'forms of energy' and 'heat'. Political correctness has evolved into physical correctness. I was always rather fond of the various forms of energy: potential, kinetic, chemical, electrical, sound and so on. My students might merge heat and internal energy into a single, fuzzy concept loosely associated with moving molecules. They might be a little confused at a whole new crop of energies - hydroelectric, solar, wind, geothermal and tidal - but they could tell me what devices turned chemical energy into electrical energy, even if they couldn't quite appreciate that turning tidal energy into geothermal energy wasn't part of the

  12. Computed tomography intravenous cholangiography

    International Nuclear Information System (INIS)

    Nascimento, S.; Murray, W.; Wilson, P.

    1997-01-01

    Indications for direct visualization of the bile ducts include bile duct dilatation demonstrated by ultrasound or computed tomography (CT) scanning, where the cause of the bile duct dilatation is uncertain or where the anatomy of bile duct obstruction needs further clarification. Another indication is right upper quadrant pain, particularly in a post-cholecystectomy patient, where choledocholithiasis is suspected. A possible new indication is pre-operative evaluation prior to laparoscopic cholecystectomy. The bile ducts are usually studied by endoscopic retrograde cholangiopancreatography (ERCP), or, less commonly, trans-hepatic cholangiography. The old technique of intravenous cholangiography has fallen into disrepute because of inconsistent bile-duct opacification. The advent of spiral CT scanning has renewed interest in intravenous cholangiography. The CT technique is very sensitive to the contrast agent in the bile ducts, and angiographic and three-dimensional reconstructions of the biliary tree can readily be obtained using the CT intravenous cholangiogram technique (CT IVC). Seven patients have been studied using this CT IVC technique, between February 1995 and June 1996, and are the subject of the present report. Eight further studies have since been performed. The results suggest that CT IVC could replace ERCP as the primary means of direct cholangiography, where pancreatic duct visualization is not required. (authors)

  13. Computed tomography intravenous cholangiography

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, S.; Murray, W.; Wilson, P. [Pittwater Radiology, Dee Why, NSW, (Australia)

    1997-08-01

    Indications for direct visualization of the bile ducts include bile duct dilatation demonstrated by ultrasound or computed tomography (CT) scanning, where the cause of the bile duct dilatation is uncertain or where the anatomy of bile duct obstruction needs further clarification. Another indication is right upper quadrant pain, particularly in a post-cholecystectomy patient, where choledocholithiasis is suspected. A possible new indication is pre-operative evaluation prior to laparoscopic cholecystectomy. The bile ducts are usually studied by endoscopic retrograde cholangiopancreatography (ERCP), or, less commonly, trans-hepatic cholangiography. The old technique of intravenous cholangiography has fallen into disrepute because of inconsistent bile-duct opacification. The advent of spiral CT scanning has renewed interest in intravenous cholangiography. The CT technique is very sensitive to the contrast agent in the bile ducts, and angiographic and three-dimensional reconstructions of the biliary tree can readily be obtained using the CT intravenous cholangiogram technique (CT IVC). Seven patients have been studied using this CT IVC technique, between February 1995 and June 1996, and are the subject of the present report. Eight further studies have since been performed. The results suggest that CT IVC could replace ERCP as the primary means of direct cholangiography, where pancreatic duct visualization is not required. (authors). 11 refs., 6 figs.

  14. Positron emission tomography

    International Nuclear Information System (INIS)

    Lindback, Stig

    1995-01-01

    Positron Emission Tomography (PET) is an advanced nuclear medicine technique used for research at major centres. Unique diagnostic information is obtained from tomographic measurements of the biochemistry and physiology of tissues and organs. In theory, diseases are related to biochemical changes and these can be observed with PET long before any anatomical changes are detectable. In PET the radioactive component is a positron-emitting isotope or 'tracer'. The positrons annihilate with electrons in the body to produce two gamma rays 180° apart; coincidence detection of these gammas provides a very efficient method of determining the spatial distribution of the radioisotope tracer. Because physiological measurements are usually required in a single imaging session, very short-lived isotopes are used to label the tracer molecules; isotope production and labelling is usually carried out in situ. The most commonly used radionuclides are carbon- 11 (half-life 20 minutes), nitrogen-13 (10 minutes), oxygen-15 (2 minutes), and fluorine-18 (110 minutes). A PET system has three major components: - a particle accelerator with targets for production of the positron-emitting isotopes; - chemistry modules for synthesis and labelling of the desired tracers; - and a PET camera for in-vivo measurements of the distribution of the tracer in the body

  15. Computational investigation of nonlinear microwave tomography on anatomically realistic breast phantoms

    DEFF Research Database (Denmark)

    Jensen, P. D.; Rubæk, Tonny; Mohr, J. J.

    2013-01-01

    The performance of a nonlinear microwave tomography algorithm is tested using simulated data from anatomically realistic breast phantoms. These tests include several different anatomically correct breast models from the University of Wisconsin-Madison repository with and without tumors inserted....

  16. Experimental validation of gallium production and isotope-dependent positron range correction in PET

    Energy Technology Data Exchange (ETDEWEB)

    Fraile, L.M., E-mail: lmfraile@ucm.es [Grupo de Física Nuclear, Dpto. Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Herraiz, J.L.; Udías, J.M.; Cal-González, J.; Corzo, P.M.G.; España, S.; Herranz, E.; Pérez-Liva, M.; Picado, E.; Vicente, E. [Grupo de Física Nuclear, Dpto. Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Muñoz-Martín, A. [Centro de Microanálisis de Materiales, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Vaquero, J.J. [Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid (Spain)

    2016-04-01

    Positron range (PR) is one of the important factors that limit the spatial resolution of positron emission tomography (PET) preclinical images. Its blurring effect can be corrected to a large extent if the appropriate method is used during the image reconstruction. Nevertheless, this correction requires an accurate modelling of the PR for the particular radionuclide and materials in the sample under study. In this work we investigate PET imaging with {sup 68}Ga and {sup 66}Ga radioisotopes, which have a large PR and are being used in many preclinical and clinical PET studies. We produced a {sup 68}Ga and {sup 66}Ga phantom on a natural zinc target through (p,n) reactions using the 9-MeV proton beam delivered by the 5-MV CMAM tandetron accelerator. The phantom was imaged in an ARGUS small animal PET/CT scanner and reconstructed with a fully 3D iterative algorithm, with and without PR corrections. The reconstructed images at different time frames show significant improvement in spatial resolution when the appropriate PR is applied for each frame, by taking into account the relative amount of each isotope in the sample. With these results we validate our previously proposed PR correction method for isotopes with large PR. Additionally, we explore the feasibility of PET imaging with {sup 68}Ga and {sup 66}Ga radioisotopes in proton therapy.

  17. Experimental validation of gallium production and isotope-dependent positron range correction in PET

    Science.gov (United States)

    Fraile, L. M.; Herraiz, J. L.; Udías, J. M.; Cal-González, J.; Corzo, P. M. G.; España, S.; Herranz, E.; Pérez-Liva, M.; Picado, E.; Vicente, E.; Muñoz-Martín, A.; Vaquero, J. J.

    2016-04-01

    Positron range (PR) is one of the important factors that limit the spatial resolution of positron emission tomography (PET) preclinical images. Its blurring effect can be corrected to a large extent if the appropriate method is used during the image reconstruction. Nevertheless, this correction requires an accurate modelling of the PR for the particular radionuclide and materials in the sample under study. In this work we investigate PET imaging with 68Ga and 66Ga radioisotopes, which have a large PR and are being used in many preclinical and clinical PET studies. We produced a 68Ga and 66Ga phantom on a natural zinc target through (p,n) reactions using the 9-MeV proton beam delivered by the 5-MV CMAM tandetron accelerator. The phantom was imaged in an ARGUS small animal PET/CT scanner and reconstructed with a fully 3D iterative algorithm, with and without PR corrections. The reconstructed images at different time frames show significant improvement in spatial resolution when the appropriate PR is applied for each frame, by taking into account the relative amount of each isotope in the sample. With these results we validate our previously proposed PR correction method for isotopes with large PR. Additionally, we explore the feasibility of PET imaging with 68Ga and 66Ga radioisotopes in proton therapy.

  18. Odontoid Fracture: Computed Tomography

    Directory of Open Access Journals (Sweden)

    Jonathan Peña

    2016-09-01

    Full Text Available History of present illness: An 84-year-old male presented with left-sided posterior head, neck, and back pain after a ground level fall. Exam was notable for left parietal scalp laceration and midline cervical spine tenderness with no obvious deformities. He was neurovascularly intact, and placed in an Aspen Collar with strict spine precautions. Significant findings: Computed Tomography (CT of the cervical spine showed a stable, acute, non-displaced fracture of the odontoid process extending into the body of C2, consistent with a Type III Odontoid Fracture. He was evaluated by orthopedic spine service who recommended conservative, non-operative management. Discussion: The cervical spine is composed of seven vertebrae, with C1 and C2 commonly referred to as the Atlas and Axis, respectively. Unique to C2 is a bony prominence, the Odontoid Process (Dens. Hyperextension or hyperflexion injuries can induce significant stress causing fractures. Odontoid fractures comprise approximately 10% of vertebral fractures, and there are three types with varying stability.1 Type 1 is the rarest and is a fracture involving the superior segment of the Dens. It is considered a stable fracture. Type 2 is the most common and is a fracture involving the base of the odontoid process, below the transverse component of the cruciform ligament. This fracture is unstable and requires operative stabilization. 2 Type 3 odontoid fractures are classified by a fracture of the Odontoid process, as well as the lateral masses of the C2. Determining the stability of a Type III Odontoid fracture requires radiographic evaluation. Strict cervical spine precautions must be adhered to until adequate imaging and surgical consultation is obtained. CT of the of cervical spine fractures poses several advantages to plain film radiography due to the ability to view the anatomy in three planes. 3 However, if there is concern for ligamentous injury, MRI is the preferred modality.3

  19. Duodenal diverticulitis. computed tomography findings

    International Nuclear Information System (INIS)

    Sanchez, E.; Martin, S.; Garcia, J.; Dominguez, A.

    2001-01-01

    Duodenal diverticular occur very frequently among the general public. However, duodenal diverticulitis is a very uncommon clinical entity, the diagnosis of which requires radiological studies since the clinical signs cam mimic a great number of disease processes with different treatments. We present a case of duodenal diverticulitis in which the diagnosis according to ultrasound and computed tomography (CT) studies was confirmed intraoperatively. We also review the few cases of this entity reported in the literature. The CT findings are highly suggestive of duodenal diverticulitis given their similarity to those associated with diverticulitis at other sites. (Author) 5 refs,

  20. NMF on positron emission tomography

    DEFF Research Database (Denmark)

    Bödvarsson, Bjarni; Hansen, Lars Kai; Svarer, Claus

    2007-01-01

    In positron emission tomography, kinetic modelling of brain tracer uptake, metabolism or binding requires knowledge of the cerebral input function. Traditionally, this is achieved with arterial blood sampling in the arm or as shown in (Liptrot, M, et al., 2004) by non-invasive K-means clustering...... is calculated from the NMF solution. The method is tested on a [18F]-Altanserin tracer ligand data set consisting of 5 healthy subjects. The results from using K-means clustering and NMF are compared to a sampled arterial TAC. The comparison is done by calculating the correlation with the arterial sampled TAC....

  1. NEUTRON IMAGING, RADIOGRAPHY AND TOMOGRAPHY.

    Energy Technology Data Exchange (ETDEWEB)

    SMITH,G.C.

    2002-03-01

    Neutrons are an invaluable probe in a wide range of scientific, medical and commercial endeavors. Many of these applications require the recording of an image of the neutron signal, either in one-dimension or in two-dimensions. We summarize the reactions of neutrons with the most important elements that are used for their detection. A description is then given of the major techniques used in neutron imaging, with emphasis on the detection media and position readout principle. Important characteristics such as position resolution, linearity, counting rate capability and sensitivity to gamma-background are discussed. Finally, the application of a subset of these instruments in radiology and tomography is described.

  2. Positron emission tomography

    International Nuclear Information System (INIS)

    Iio, Masahiro

    1982-01-01

    Utilization of positron emission tomography was reviewed in relation to construction and planned construction of small-size medical cyclotrons, planned construction of positron cameras and utilization of short-lived radionuclides. (Chiba, N.)

  3. Cardiac positron emission tomography

    International Nuclear Information System (INIS)

    Eftekhari, M.; Ejmalian, G.

    2003-01-01

    Positron emission tomography is an intrinsically tool that provide a unique and unparalleled approach for clinicians and researchers to interrogate the heart noninvasively. The ability to label substances of physiological interest with positron-emitting radioisotopes has permitted insight into normal blood flow and metabolism and the alterations that occur with disease states. Positron emission tomography of the heart has evolved as a unique, noninvasive approach for the assessment of myocardial perfusion, metabolism, and function. Because of the intrinsic quantitative nature of positron emission tomography measurements as well as the diverse compounds that can be labeled with positron- emitting radioisotopes, studies with positron emission tomography have provided rich insight into the physiology of the heart under diverse conditions

  4. Computed Tomography (CT) -- Sinuses

    Medline Plus

    Full Text Available ... tomography, more commonly known as a CT or CAT scan, is a diagnostic medical test that, like ... imaging provides real-time imaging, making it a good tool for guiding minimally invasive procedures such as ...

  5. Computed Tomography (CT) - Spine

    Science.gov (United States)

    ... the removal of fluid from a localized infection ( abscess ). In patients with narrowing ( stenosis ) of the spine ... Survey Images × Image Gallery Computed Tomography (CT or CAT scan) equipment View full size with caption Do ...

  6. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... the limitations of CT Scanning of the Head? What is CT Scanning of the Head? Computed tomography, ... than regular radiographs (x-rays). top of page What are some common uses of the procedure? CT ...

  7. Computed Tomography (CT) -- Sinuses

    Medline Plus

    Full Text Available ... are the limitations of CT of the Sinuses? What is CT (Computed Tomography) of the Sinuses? Computed ... nasal cavity by small openings. top of page What are some common uses of the procedure? CT ...

  8. Computer tomography in otolaryngology

    Energy Technology Data Exchange (ETDEWEB)

    Gradzki, J. (Akademia Medyczna, Poznan (Poland))

    1981-01-01

    The principles of design and the action of computer tomography which was applied also for the diagnosis of nose, ear and throat diseases are discussed. Computer tomography makes possible visualization of the structures of the nose, nasal sinuses and facial skeleton in transverse and eoronal planes. The method enables an accurate evaluation of the position and size of neoplasms in these regions and differentiation of inflammatory exudates against malignant masses. In otology computer tomography is used particularly in the diagnosis of pontocerebellar angle tumours and otogenic brain abscesses. Computer tomography of the larynx and pharynx provides new diagnostic data owing to the possibility of obtaining transverse sections and visualization of cartilage. Computer tomograms of some cases are presented.

  9. Computed Tomography (CT) -- Sinuses

    Medline Plus

    Full Text Available ... vessels. CT examinations are fast and simple; in emergency cases, they can reveal internal injuries and bleeding ... Neck Cancer X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety Images related to Computed Tomography (CT) - ...

  10. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... of a stroke. a stroke, especially with a new technique called Perfusion CT. brain tumors. enlarged brain ... Neck Cancer X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety Images related to Computed Tomography (CT) - ...

  11. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... for Brain Tumors Radiation Therapy for Head and Neck Cancer Others American Stroke Association National Stroke Association ... Computer Tomography (CT) Safety During Pregnancy Head and Neck Cancer X-ray, Interventional Radiology and Nuclear Medicine ...

  12. Intracoronary optical coherence tomography

    DEFF Research Database (Denmark)

    Tenekecioglu, Erhan; Albuquerque, Felipe N; Sotomi, Yohei

    2017-01-01

    By providing valuable information about the coronary artery wall and lumen, intravascular imaging may aid in optimizing interventional procedure results and thereby could improve clinical outcomes following percutaneous coronary intervention (PCI). Intravascular optical coherence tomography (OCT)...

  13. Computed Tomography (CT) -- Sinuses

    Medline Plus

    Full Text Available ... tomography (CT) scan. View full size with caption Pediatric Content Some imaging tests and treatments have special pediatric considerations. The teddy bear denotes child-specific content. ...

  14. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... tomography (CT) scan. View full size with caption Pediatric Content Some imaging tests and treatments have special pediatric considerations. The teddy bear denotes child-specific content. ...

  15. Electrical Impedance Tomography Technology

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal for the Electrical Impedance Tomography Technology (EITT) project is to develop a reliable portable, lightweight device providing two-dimensional...

  16. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... of the Head? What is CT Scanning of the Head? Computed tomography, more commonly known as a ... of page What are some common uses of the procedure? CT scanning of the head is typically ...

  17. First-arrival traveltime tomography for anisotropic media using the adjoint-state method

    KAUST Repository

    Waheed, Umair bin

    2016-05-27

    Traveltime tomography using transmission data has been widely used for static corrections and for obtaining near-surface models for seismic depth imaging. More recently, it is also being used to build initial models for full-waveform inversion. The classic traveltime tomography approach based on ray tracing has difficulties in handling large data sets arising from current seismic acquisition surveys. Some of these difficulties can be addressed using the adjoint-state method, due to its low memory requirement and numerical efficiency. By coupling the gradient computation to nonlinear optimization, it avoids the need for explicit computation of the Fréchet derivative matrix. Furthermore, its cost is equivalent to twice the solution of the forward-modeling problem, irrespective of the size of the input data. The presence of anisotropy in the subsurface has been well established during the past few decades. The improved seismic images obtained by incorporating anisotropy into the seismic processing workflow justify the effort. However, previous literature on the adjoint-state method has only addressed the isotropic approximation of the subsurface. We have extended the adjoint-state technique for first-arrival traveltime tomography to vertical transversely isotropic (VTI) media. Because δ is weakly resolvable from surface seismic alone, we have developed the mathematical framework and procedure to invert for vNMO and η. Our numerical tests on the VTI SEAM model demonstrate the ability of the algorithm to invert for near-surface model parameters and reveal the accuracy achievable by the algorithm.

  18. Interior tomography: theory, algorithms and applications

    Science.gov (United States)

    Yu, Hengyong; Ye, Yangbo; Wang, Ge

    2008-08-01

    The conventional wisdom states that the interior problem (reconstruction of an interior region from projection data along lines only through that region) is NOT uniquely solvable. While it remains correct, our recent theoretical and numerical results demonstrated that this interior problem CAN be solved in a theoretically exact and numerically stable fashion if a sub-region within the interior region is known. In contrast to the well-established lambda tomography, the studies on this type of exact interior reconstruction are referred to as "interior tomography". In this paper, we will overview the development of interior tomography, involving theory, algorithms and applications. The essence of interior tomography is to find the unique solution from highly truncated projection data via analytic continuation. Such an extension can be done either in the filtered backprojection or backprojection filtration formats. The key issue for the exact interior reconstruction is how to invert the truncated Hilbert transform. We have developed a projection onto convex set (POCS) algorithm and a singular value decomposition (SVD) method and produced excellent results in numerical simulations and practical applications.

  19. Introduction to Seismic Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, Charlotte Anne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-21

    Tomography is a method of obtaining an image of a 3d object by observing the behavior of energy transmissions through the object. The image is obtained by Interrogating the object with Energy sources at a variety of Locations and observing the Object’s effects on the energy at a Variety of sensors. Tomography was first Used to build 3-dimensional Scans through Human bodies. These Are called computed Tomographic (ct) scans.

  20. Attenuation correction for freely moving small animal brain PET studies based on a virtual scanner geometry

    International Nuclear Information System (INIS)

    Angelis, G I; Kyme, A Z; Ryder, W J; Fulton, R R; Meikle, S R

    2014-01-01

    Attenuation correction in positron emission tomography brain imaging of freely moving animals is a very challenging problem since the torso of the animal is often within the field of view and introduces a non negligible attenuating factor that can degrade the quantitative accuracy of the reconstructed images. In the context of unrestrained small animal imaging, estimation of the attenuation correction factors without the need for a transmission scan is highly desirable. An attractive approach that avoids the need for a transmission scan involves the generation of the hull of the animal’s head based on the reconstructed motion corrected emission images. However, this approach ignores the attenuation introduced by the animal’s torso. In this work, we propose a virtual scanner geometry which moves in synchrony with the animal’s head and discriminates between those events that traversed only the animal’s head (and therefore can be accurately compensated for attenuation) and those that might have also traversed the animal’s torso. For each recorded pose of the animal’s head a new virtual scanner geometry is defined and therefore a new system matrix must be calculated leading to a time-varying system matrix. This new approach was evaluated on phantom data acquired on the microPET Focus 220 scanner using a custom-made phantom and step-wise motion. Results showed that when the animal’s torso is within the FOV and not appropriately accounted for during attenuation correction it can lead to bias of up to 10% . Attenuation correction was more accurate when the virtual scanner was employed leading to improved quantitative estimates (bias < 2%), without the need to account for the attenuation introduced by the extraneous compartment. Although the proposed method requires increased computational resources, it can provide a reliable approach towards quantitatively accurate attenuation correction for freely moving animal studies. (paper)

  1. Relationship between radiation dose estimation in patients submitted to abdominal tomography examination and the body mass index

    International Nuclear Information System (INIS)

    Capaverde, Alexandre da S.; Pimentel, Juliana; Froner, Ana Paula P.; Silva, Ana Maria Marques da

    2014-01-01

    Because of the radiation dose in computed tomography (CT) is relatively high, it is important to have an estimate of the dose to which the patient is submitted, considering parameters and correction factors, so that the value is closer to the real. The objective of this study is to relate the estimated dose in patients undergoing abdominal CT with BMI (Body Mass Index) groups, considering the specific size of the anatomical region. The work developed in a hospital in Porto Alegre, Brazil, using 16 Siemens Somatom Emotion equipment. We selected 30 adult that underwent to CT of the abdomen in January 2014. Of these, 13 using dose reduction mechanism (Care Dose), (Sample 1) and the rest without this mechanism (Sample 2). Registered weight, height, CTDI vol (Computed Tomography Dose Index) and anteroposterior and lateral diameter at the umbilicus. BMI and the correction factor for the dose estimates were calculated, according to the specific size of the abdomen. It was determined the percentage change between the CTDI vol values provided by CT and the value of CTDI vol after application of the correction factor, plus the average percentage change for each BMI group. The mean percentage change was between 54% and 19% for sample 1 and between 35% and 10% for sample 2, the lowest to highest BMI group. There was a reduction in the medium average percent with the increasing of the BMI groups in both samples. A larger sample of individuals for verification of results is required

  2. Magnified Weak Lensing Cross Correlation Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ulmer, Melville P., Clowe, Douglas I.

    2010-11-30

    This project carried out a weak lensing tomography (WLT) measurement around rich clusters of galaxies. This project used ground based photometric redshift data combined with HST archived cluster images that provide the WLT and cluster mass modeling. The technique has already produced interesting results (Guennou et al, 2010,Astronomy & Astrophysics Vol 523, page 21, and Clowe et al, 2011 to be submitted). Guennou et al have validated that the necessary accuracy can be achieved with photometric redshifts for our purposes. Clowe et al titled "The DAFT/FADA survey. II. Tomographic weak lensing signal from 10 high redshift clusters," have shown that for the **first time** via this purely geometrical technique, which does not assume a standard rod or candle, that a cosmological constant is **required** for flat cosmologies. The intent of this project is not to produce the best constraint on the value of the dark energy equation of state, w. Rather, this project is to carry out a sustained effort of weak lensing tomography that will naturally feed into the near term Dark Energy Survey (DES) and to provide invaluable mass calibration for that project. These results will greatly advance a key cosmological method which will be applied to the top-rated ground-based project in the Astro2020 decadal survey, LSST. Weak lensing tomography is one of the key science drivers behind LSST. CO-I Clowe is on the weak lensing LSST committee, and senior scientist on this project, at FNAL James Annis, plays a leading role in the DES. This project has built on successful proposals to obtain ground-based imaging for the cluster sample. By 1 Jan, it is anticipated the project will have accumulated complete 5-color photometry on 30 (or about 1/3) of the targeted cluster sample (public webpage for the survey is available at http://cencos.oamp.fr/DAFT/ and has a current summary of the observational status of various clusters). In all, the project has now been awarded the equivalent of over 60

  3. Clinical value of whole body fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography in the detection of metastatic bladder cancer.

    Science.gov (United States)

    Yang, Zhongyi; Pan, Lingling; Cheng, Jingyi; Hu, Silong; Xu, Junyan; Ye, Dingwei; Zhang, Yingjian

    2012-07-01

    To investigate the value of whole-body fluorine-18 2-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography for the detection of metastatic bladder cancer. From December 2006 to August 2010, 60 bladder cancer patients (median age 60.5 years old, range 32-96) underwent whole body positron emission tomography/computed tomography positron emission tomography/computed tomography. The diagnostic accuracy was assessed by performing both organ-based and patient-based analyses. Identified lesions were further studied by biopsy or clinically followed for at least 6 months. One hundred and thirty-four suspicious lesions were identified. Among them, 4 primary cancers (2 pancreatic cancers, 1 colonic and 1 nasopharyngeal cancer) were incidentally detected, and the patients could be treated on time. For the remaining 130 lesions, positron emission tomography/computed tomography detected 118 true positive lesions (sensitivity = 95.9%). On the patient-based analysis, the overall sensitivity and specificity resulted to be 87.1% and 89.7%, respectively. There was no difference of sensitivity and specificity in patients with or without adjuvant treatment in terms of detection of metastatic sites by positron emission tomography/computed tomography. Compared with conventional imaging modality, positron emission tomography/computed tomography correctly changed the management in 15 patients (25.0%). Positron emission tomography/computed tomography has excellent sensitivity and specificity in the detection of metastatic bladder cancer and it provides additional diagnostic information compared to standard imaging techniques. © 2012 The Japanese Urological Association.

  4. Clinical value of whole body fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography in the detection of metastatic bladder cancer

    International Nuclear Information System (INIS)

    Yang Zhongyi; Pan Lingling; Cheng Jingyi; Hu Silong; Xu Junyan; Zhang Yingjian; Ye Dingwei

    2012-01-01

    The objective of this study was to investigate the value of whole-body fluorine-18 2-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography for the detection of metastatic bladder cancer. From December 2006 to August 2010, 60 bladder cancer patients (median age 60.5 years old, range 32-96) underwent whole body positron emission tomography/computed tomography positron emission tomography/computed tomography. The diagnostic accuracy was assessed by performing both organ-based and patient-based analyses. Identified lesions were further studied by biopsy or clinically followed for at least 6 months. One hundred and thirty-four suspicious lesions were identified. Among them, 4 primary cancers (2 pancreatic cancers, 1 colonic and 1 nasopharyngeal cancer) were incidentally detected, and the patients could be treated on time. For the remaining 130 lesions, positron emission tomography/computed tomography detected 118 true positive lesions (sensitivity=95.9%). On the patient-based analysis, the overall sensitivity and specificity resulted to be 87.1% and 89.7%, respectively. There was no difference of sensitivity and specificity in patients with or without adjuvant treatment in terms of detection of metastatic sites by positron emission tomography/computed tomography. Compared with conventional imaging modality, positron emission tomography/computed tomography correctly changed the management in 15 patients (25.0%). Positron emission tomography/computed tomography has excellent sensitivity and specificity in the detection of metastatic bladder cancer and it provides additional diagnostic information compared to standard imaging techniques. (author)

  5. Correcting ligands, metabolites, and pathways

    Directory of Open Access Journals (Sweden)

    Vriend Gert

    2006-11-01

    Full Text Available Abstract Background A wide range of research areas in bioinformatics, molecular biology and medicinal chemistry require precise chemical structure information about molecules and reactions, e.g. drug design, ligand docking, metabolic network reconstruction, and systems biology. Most available databases, however, treat chemical structures more as illustrations than as a datafield in its own right. Lack of chemical accuracy impedes progress in the areas mentioned above. We present a database of metabolites called BioMeta that augments the existing pathway databases by explicitly assessing the validity, correctness, and completeness of chemical structure and reaction information. Description The main bulk of the data in BioMeta were obtained from the KEGG Ligand database. We developed a tool for chemical structure validation which assesses the chemical validity and stereochemical completeness of a molecule description. The validation tool was used to examine the compounds in BioMeta, showing that a relatively small number of compounds had an incorrect constitution (connectivity only, not considering stereochemistry and that a considerable number (about one third had incomplete or even incorrect stereochemistry. We made a large effort to correct the errors and to complete the structural descriptions. A total of 1468 structures were corrected and/or completed. We also established the reaction balance of the reactions in BioMeta and corrected 55% of the unbalanced (stoichiometrically incorrect reactions in an automatic procedure. The BioMeta database was implemented in PostgreSQL and provided with a web-based interface. Conclusion We demonstrate that the validation of metabolite structures and reactions is a feasible and worthwhile undertaking, and that the validation results can be used to trigger corrections and improvements to BioMeta, our metabolite database. BioMeta provides some tools for rational drug design, reaction searches, and

  6. Students' Attitude toward Correction

    Directory of Open Access Journals (Sweden)

    Rinda Fitriana

    2017-10-01

    Full Text Available Students’ attitudes influence their decision to whether or not accept the teachers’ feedback. Therefore, questionnaire was administered to one hundred and ninety-six twelfth grade of vocational high school students, wherein, ten of them were involved in interview, to figure out their perspective concerning to the teachers’ correction on their oral production. From both instruments, it is found that the students preferred the teachers as the correctors, although, they did not mind for peer correction. They also expected the teachers to give correction at every time they did error and for all types of errors. Additionally, students agreed that teachers’ personality and their way of teaching influenced their willingness to accept the corrective feedback.

  7. Corrected Age for Preemies

    Science.gov (United States)

    ... Spread the Word Shop AAP Find a Pediatrician Ages & Stages Prenatal Baby Bathing & Skin Care Breastfeeding Crying & Colic ... Toddler Preschool Gradeschool Teen Young Adult Healthy Children > Ages & Stages > Baby > Preemie > Corrected Age For Preemies Ages & Stages ...

  8. Eyeglasses for Vision Correction

    Science.gov (United States)

    ... light. Another option for vision correction with UV protection is prescription sunglasses . Also, for people who prefer one set of eyeglasses for both inside and outdoors, photochromatic lenses are ...

  9. Corrective Jaw Surgery

    Medline Plus

    Full Text Available ... is performed by an oral and maxillofacial surgeon (OMS) to correct a wide range of minor and ... when sleeping, including snoring) Your dentist, orthodontist and OMS will work together to determine whether you are ...

  10. Corrective Jaw Surgery

    Medline Plus

    Full Text Available ... It can also invite bacteria that lead to gum disease. Click here to find out more. Who We ... It can also invite bacteria that lead to gum disease. Click here to find out more. Corrective Jaw ...

  11. Corrective Jaw Surgery

    Medline Plus

    Full Text Available ... can also invite bacteria that lead to gum disease. Click here to find out more. Who We ... can also invite bacteria that lead to gum disease. Click here to find out more. Corrective Jaw ...

  12. Corrective Jaw Surgery

    Medline Plus

    Full Text Available ... surgery, orthognathic surgery is performed to correct functional problems. Jaw Surgery can have a dramatic effect on ... without straining Chronic mouth breathing Sleep apnea (breathing problems when sleeping, including snoring) Your dentist, orthodontist and ...

  13. Operator quantum error-correcting subsystems for self-correcting quantum memories

    International Nuclear Information System (INIS)

    Bacon, Dave

    2006-01-01

    The most general method for encoding quantum information is not to encode the information into a subspace of a Hilbert space, but to encode information into a subsystem of a Hilbert space. Recently this notion has led to a more general notion of quantum error correction known as operator quantum error correction. In standard quantum error-correcting codes, one requires the ability to apply a procedure which exactly reverses on the error-correcting subspace any correctable error. In contrast, for operator error-correcting subsystems, the correction procedure need not undo the error which has occurred, but instead one must perform corrections only modulo the subsystem structure. This does not lead to codes which differ from subspace codes, but does lead to recovery routines which explicitly make use of the subsystem structure. Here we present two examples of such operator error-correcting subsystems. These examples are motivated by simple spatially local Hamiltonians on square and cubic lattices. In three dimensions we provide evidence, in the form a simple mean field theory, that our Hamiltonian gives rise to a system which is self-correcting. Such a system will be a natural high-temperature quantum memory, robust to noise without external intervening quantum error-correction procedures

  14. Diagnostic value of 64 multislice computed tomography in the assessment of the coronary graft patency

    International Nuclear Information System (INIS)

    Mendoza Rodriguez, Vladimir; Llerena Rojas, Luis R; Olivares Aquino, Eddy

    2011-01-01

    Symptoms recurrence after surgical coronary artery revascularization requires the assessment of graft patency. At the moment, promissory results have been reported using the multislice computed tomography

  15. Integrated positron emission tomography/computed tomography for ...

    African Journals Online (AJOL)

    Integrated positron emission tomography/computed tomography for evaluation of mediastinal lymph node staging of non-small-cell lung cancer in a tuberculosisendemic area: A 5-year prospective observational study.

  16. Results of computerized tomography of pulmonary hamartochondromes

    International Nuclear Information System (INIS)

    Goerich, J.; Beyer-Enke, S.A.; Probst, G.; Layer, G.; Kaick, G. van

    1990-01-01

    Hamartochondromes are rare, benign neoplasms. CT findings for 25 patients with patho-histologically confirmed hamartochondromes were investigated with hindsight for characteristic marks. 96% had a solitary manifestation in the lateral area of the lungs, in 100% of cases the margin was sharply defined. Intratumoral calcium was confirmed in 28%. For judging the outer layer and calcium inlays, thin-layer computerized tomography (2 millimetres distance) is superior to conventional demonstration with sections at 8 millimetres distance. In 56% of cases, a correct diagnosis or differential diagnosis was made on the basis of the computerized tomogram. (orig.) [de

  17. A project of X-ray hardening correction in large ICT

    International Nuclear Information System (INIS)

    Fang Min; Liu Yinong; Ni Jianping

    2005-01-01

    This paper presents a means of polychromatic X-ray beam hardening correction using a standard function to transform the polychromatic projection to monochromatic projection in large Industrial Computed Tomography (ICT). Some parameters were defined to verify the validity of hardening correction in large ICT and optimized. Simulated experiments were used to prove that without prior knowledge of the composition of the scanned object, the correction method using monochromatic reconstruction arithmetic could remove beam hardening artifact greatly. (authors)

  18. Ocean acoustic reverberation tomography.

    Science.gov (United States)

    Dunn, Robert A

    2015-12-01

    Seismic wide-angle imaging using ship-towed acoustic sources and networks of ocean bottom seismographs is a common technique for exploring earth structure beneath the oceans. In these studies, the recorded data are dominated by acoustic waves propagating as reverberations in the water column. For surveys with a small receiver spacing (e.g., ocean acoustic reverberation tomography, is developed that uses the travel times of direct and reflected waves to image ocean acoustic structure. Reverberation tomography offers an alternative approach for determining the structure of the oceans and advancing the understanding of ocean heat content and mixing processes. The technique has the potential for revealing small-scale ocean thermal structure over the entire vertical height of the water column and along long survey profiles or across three-dimensional volumes of the ocean. For realistic experimental geometries and data noise levels, the method can produce images of ocean sound speed on a smaller scale than traditional acoustic tomography.

  19. Practical Bayesian tomography

    Science.gov (United States)

    Granade, Christopher; Combes, Joshua; Cory, D. G.

    2016-03-01

    In recent years, Bayesian methods have been proposed as a solution to a wide range of issues in quantum state and process tomography. State-of-the-art Bayesian tomography solutions suffer from three problems: numerical intractability, a lack of informative prior distributions, and an inability to track time-dependent processes. Here, we address all three problems. First, we use modern statistical methods, as pioneered by Huszár and Houlsby (2012 Phys. Rev. A 85 052120) and by Ferrie (2014 New J. Phys. 16 093035), to make Bayesian tomography numerically tractable. Our approach allows for practical computation of Bayesian point and region estimators for quantum states and channels. Second, we propose the first priors on quantum states and channels that allow for including useful experimental insight. Finally, we develop a method that allows tracking of time-dependent states and estimates the drift and diffusion processes affecting a state. We provide source code and animated visual examples for our methods.

  20. 40 CFR 258.73 - Financial assurance for corrective action.

    Science.gov (United States)

    2010-07-01

    ... required under § 258.58 of this part. The corrective action cost estimate must account for the total costs... or operator must increase the corrective action cost estimate and the amount of financial assurance... of the corrective action cost estimate and the amount of financial assurance provided under paragraph...

  1. Enhancement of image quality with a fast iterative scatter and beam hardening correction method for kV CBCT

    Energy Technology Data Exchange (ETDEWEB)

    Reitz, Irmtraud; Hesse, Bernd-Michael; Nill, Simeon; Tuecking, Thomas; Oelfke, Uwe [DKFZ, Heidelberg (Germany)

    2009-07-01

    The problem of the enormous amount of scattered radiation in kV CBCT (kilo voltage cone beam computer tomography) is addressed. Scatter causes undesirable streak- and cup-artifacts and results in a quantitative inaccuracy of reconstructed CT numbers, so that an accurate dose calculation might be impossible. Image contrast is also significantly reduced. Therefore we checked whether an appropriate implementation of the fast iterative scatter correction algorithm we have developed for MV (mega voltage) CBCT reduces the scatter contribution in a kV CBCT as well. This scatter correction method is based on a superposition of pre-calculated Monte Carlo generated pencil beam scatter kernels. The algorithm requires only a system calibration by measuring homogeneous slab phantoms with known water-equivalent thicknesses. In this study we compare scatter corrected CBCT images of several phantoms to the fan beam CT images acquired with a reduced cone angle (a slice-thickness of 14 mm in the isocenter) at the same system. Additional measurements at a different CBCT system were made (different energy spectrum and phantom-to-detector distance) and a first order approach of a fast beam hardening correction will be introduced. The observed, image quality of the scatter corrected CBCT images is comparable concerning resolution, noise and contrast-to-noise ratio to the images acquired in fan beam geometry. Compared to the CBCT without any corrections the contrast of the contrast-and-resolution phantom with scatter correction and additional beam hardening correction is improved by a factor of about 1.5. The reconstructed attenuation coefficients and the CT numbers of the scatter corrected CBCT images are close to the values of the images acquired in fan beam geometry for the most pronounced tissue types. Only for extreme dense tissue types like cortical bone we see a difference in CT numbers of 5.2%, which can be improved to 4.4% with the additional beam hardening correction. Cupping

  2. Boomwhackers and End-Pipe Corrections

    Science.gov (United States)

    Ruiz, Michael J.

    2014-02-01

    End-pipe corrections seldom come to mind as a suitable topic for an introductory physics lab. Yet, the end-pipe correction formula can be verified in an engaging and inexpensive lab that requires only two supplies: plastic-tube toys called boomwhackers and a meterstick. This article describes a lab activity in which students model data from plastic tubes to arrive at the end-correction formula for an open pipe. Students also learn the basic mathematics behind the musical scale, and come to appreciate the importance of end-pipe physics in the engineering design of toy musical tubes.

  3. Quantum corrected Schwarzschild thin-shell wormhole

    OpenAIRE

    Jusufi, Kimet

    2016-01-01

    Recently, Ali and Khalil (Nucl Phys B, 909, 173–185, 2016 ), based on Bohmian quantum mechanics, derived a quantum corrected version of the Schwarzschild metric. In this paper, we construct a quantum corrected Schwarzschild thin-shell wormhole (QSTSW) and investigate the stability of this wormhole. First we compute the surface stress at the wormhole throat by applying the Darmois–Israel formalism to the modified Schwarzschild metric and show that exotic matter is required at the throat to kee...

  4. Cálculo do volume de sangue necessário para a correção da anemia fetal em gestantes isoimunizadas Blood volume calculation required for the correction of fetal anemia in pregnant women with alloimmunization

    Directory of Open Access Journals (Sweden)

    Mônica Deolindo Santiago

    2008-04-01

    Full Text Available OBJETIVO: obter uma equação capaz de estimar o volume de concentrado de hemácias a ser infundido para correção da anemia em fetos de gestantes portadoras de isoimunização pelo fator Rh, baseado em parâmetros alcançados durante a cordocentese prévia à transfusão intra-uterina. MÉTODOS: em estudo transversal, foram analisadas 89 transfusões intra-uterinas para correção de anemia em 48 fetos acompanhados no Centro de Medicina Fetal do Hospital das Clínicas da Universidade Federal de Minas Gerais. A idade gestacional mediana, no momento da cordocentese, foi de 29 semanas e a média de procedimentos por feto foi de 2,1. A hemoglobina fetal foi dosada antes e após a cordocentese, sendo verificado o volume de concentrado de hemácias transfundido. Para determinação de uma fórmula para estimar o volume sanguíneo necessário para correção da anemia fetal, tomou-se como base o volume necessário para elevar em 1 g% a hemoglobina fetal (diferença entre a concentração de hemoglobina final e a inicial, dividida pelo volume transfundido e o volume de quanto seria necessário para se atingir 14 g%, em análise de regressão múltipla. RESULTADOS: a concentração da hemoglobina pré-transfusional variou entre 2,3 e 15,7 g%. A prevalência de anemia fetal (HbPURPOSE: to obtain an equation to estimate the volume of red blood cells concentrate to be infused to correct anemia in fetuses of pregnant women with Rh factor isoimmunization, based in parameters obtained along the cordocentesis previous to intrauterine transfusion. METHODS: a transversal study analyzing 89 intrauterine transfusions to correct anemia in 48 fetuses followed-up in the Centro de Medicina Fetal do Hospital das Clínicas da Universidade de Minas Gerais. The median gestational age at the cordocentesis was 29 weeks and the average number of procedures was 2.1. Fetal hemoglobin was assayed before and after cordocentesis, leading to the volume of transfused red blood

  5. Digital multilayer tomography

    International Nuclear Information System (INIS)

    Dueber, C.; Klose, K.J.; Thelen, M.

    1991-01-01

    With digital multilayer tomography a sequence of projection images is recorded by an image intensifier television system and stored as digital data during a linear run of a layer sequence. Using this data record, tomograms of the examined body region can be computed for any layer thickness by shifts and superimposition of the single projections later at a digital workstation. The qualities of digital and conventional tomograms are basically comparable. A drawback of digital tomography is its lower local resolution (512 x 512 image matrix), advantages are a lower radiation exposure, a shorter patient examination time, and the facilities of digital image processing (later processing, archive setup, transmission). (orig.) [de

  6. Quantitative cardiac computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Thelen, M.; Dueber, C.; Wolff, P.; Erbel, R.; Hoffmann, T.

    1985-06-01

    The scope and limitations of quantitative cardiac CT have been evaluated in a series of experimental and clinical studies. The left ventricular muscle mass was estimated by computed tomography in 19 dogs (using volumetric methods, measurements in two axes and planes and reference volume). There was good correlation with anatomical findings. The enddiastolic volume of the left ventricle was estimated in 22 patients with cardiomyopathies; using angiography as a reference, CT led to systematic under-estimation. It is also shown that ECG-triggered magnetic resonance tomography results in improved visualisation and may be expected to improve measurements of cardiac morphology.

  7. Anti-3-[(18)F]FACBC positron emission tomography-computerized tomography and (111)In-capromab pendetide single photon emission computerized tomography-computerized tomography for recurrent prostate carcinoma: results of a prospective clinical trial.

    Science.gov (United States)

    Schuster, David M; Nieh, Peter T; Jani, Ashesh B; Amzat, Rianot; Bowman, F Dubois; Halkar, Raghuveer K; Master, Viraj A; Nye, Jonathon A; Odewole, Oluwaseun A; Osunkoya, Adeboye O; Savir-Baruch, Bital; Alaei-Taleghani, Pooneh; Goodman, Mark M

    2014-05-01

    We prospectively evaluated the amino acid analogue positron emission tomography radiotracer anti-3-[(18)F]FACBC compared to ProstaScint® ((111)In-capromab pendetide) single photon emission computerized tomography-computerized tomography to detect recurrent prostate carcinoma. A total of 93 patients met study inclusion criteria who underwent anti-3-[(18)F]FACBC positron emission tomography-computerized tomography plus (111)In-capromab pendetide single photon emission computerized tomography-computerized tomography for suspected recurrent prostate carcinoma within 90 days. Reference standards were applied by a multidisciplinary board. We calculated diagnostic performance for detecting disease. In the 91 of 93 patients with sufficient data for a consensus on the presence or absence of prostate/bed disease anti-3-[(18)F]FACBC had 90.2% sensitivity, 40.0% specificity, 73.6% accuracy, 75.3% positive predictive value and 66.7% negative predictive value compared to (111)In-capromab pendetide with 67.2%, 56.7%, 63.7%, 75.9% and 45.9%, respectively. In the 70 of 93 patients with a consensus on the presence or absence of extraprostatic disease anti-3-[(18)F]FACBC had 55.0% sensitivity, 96.7% specificity, 72.9% accuracy, 95.7% positive predictive value and 61.7% negative predictive value compared to (111)In-capromab pendetide with 10.0%, 86.7%, 42.9%, 50.0% and 41.9%, respectively. Of 77 index lesions used to prove positivity histological proof was obtained in 74 (96.1%). Anti-3-[(18)F]FACBC identified 14 more positive prostate bed recurrences (55 vs 41) and 18 more patients with extraprostatic involvement (22 vs 4). Anti-3-[(18)F]FACBC positron emission tomography-computerized tomography correctly up-staged 18 of 70 cases (25.7%) in which there was a consensus on the presence or absence of extraprostatic involvement. Better diagnostic performance was noted for anti-3-[(18)F]FACBC positron emission tomography-computerized tomography than for (111)In-capromab pendetide single

  8. Children's (Pediatric) CT (Computed Tomography)

    Medline Plus

    Full Text Available ... Physician Resources Professions Site Index A-Z Children's (Pediatric) CT (Computed Tomography) Pediatric computed tomography (CT) is ... a CT scan. View full size with caption Pediatric Content Some imaging tests and treatments have special ...

  9. Children's (Pediatric) CT (Computed Tomography)

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z Children's (Pediatric) CT (Computed Tomography) Pediatric computed tomography (CT) is ... a CT scan. View full size with caption Pediatric Content Some imaging tests and treatments have special ...

  10. The analysis and correction of neutron scattering effects in neutron imaging

    International Nuclear Information System (INIS)

    Raine, D.A.; Brenizer, J.S.

    1997-01-01

    A method of correcting for the scattering effects present in neutron radiographic and computed tomographic imaging has been developed. Prior work has shown that beam, object, and imaging system geometry factors, such as the L/D ratio and angular divergence, are the primary sources contributing to the degradation of neutron images. With objects smaller than 20--40 mm in width, a parallel beam approximation can be made where the effects from geometry are negligible. Factors which remain important in the image formation process are the pixel size of the imaging system, neutron scattering, the size of the object, the conversion material, and the beam energy spectrum. The Monte Carlo N-Particle transport code, version 4A (MCNP4A), was used to separate and evaluate the effect that each of these parameters has on neutron image data. The simulations were used to develop a correction algorithm which is easy to implement and requires no a priori knowledge of the object. The correction algorithm is based on the determination of the object scatter function (OSF) using available data outside the object to estimate the shape and magnitude of the OSF based on a Gaussian functional form. For objects smaller than 1 mm (0.04 in.) in width, the correction function can be well approximated by a constant function. Errors in the determination and correction of the MCNP simulated neutron scattering component were under 5% and larger errors were only noted in objects which were at the extreme high end of the range of object sizes simulated. The Monte Carlo data also indicated that scattering does not play a significant role in the blurring of neutron radiographic and tomographic images. The effect of neutron scattering on computed tomography is shown to be minimal at best, with the most serious effect resulting when the basic backprojection method is used

  11. Neutron computed tomography of rat lungs.

    Science.gov (United States)

    Metzke, R W; Runck, H; Stahl, C A; Schillinger, B; Calzada, E; Mühlbauer, M; Schulz, M; Schneider, M; Priebe, H-J; Wall, W A; Guttmann, J

    2011-01-07

    Using conventional methods, three-dimensional imaging of the lung is challenging because of the low contrast between air and tissue and the large differences in dimensions between various pulmonary structures. The small distal airway structures and the high air-to-tissue ratio of lung tissue require an imaging technique which reliably discriminates between air and water. The objective of this study was to assess whether neutron computed tomography would satisfy such a requirement. This method utilizes the unique characteristic of neutrons of directly interacting with the atomic nucleus rather than being scattered by the atomic shell. Neutron computed tomography was tested in rats and allowed differentiation of larger lung structures (e.g., lobes) and distal airways. Airways could be identified reliably down to the sixth bronchial generation, in some cases even down to the tenth generation. The lung could be stabilized for sufficiently long exposure times to achieve an image resolution of 50-60 µm, which is the current physical resolution limit of the neutron computed tomography facility. Neutron computed tomography allowed excellent lung imaging without the need for additional tissue preparation or contrast media. The enhanced structural resolution obtained by applying this new research technique may improve understanding of lung physiology and respiratory therapy.

  12. Electrical impedance tomography: topology optimization

    International Nuclear Information System (INIS)

    Miranda, Lenine Campos

    2013-01-01

    The Electrical Impedance Tomography (EIT) is a study of body parts who use electric current. Is studied through computers resistance or conductivity of these parts, producing an image used for medical diagnosis. A body is wrapped in a blanket placed with small electrodes and receivers of electric current, potential difference. Based on data obtained from a series of measurements at the electrodes, one by one, sending and receiving, you can perform a numerical phantom, where each 'voxel' of the image formed computationally represents the impedance of biological tissue. In Brazil, studies on electrical impedance tomography (EIT) has not yet started. Such equipment are measured tensions - potential difference - between each electrode / sensor one by one, as a way to Simple Combinatorial Analysis. The sequence and the way it is measured strains are in the final image quality. Finite Element Method Interactive, whose algorithm is based on Dialectical Method. We use an initial function with the objective of maximizing the data quantitatively, for better qualitative analysis. Topology Optimization methods are used to improve the image reconstruction. Currently the study is quite primitive related to the theory that shows how to power the new science studied. The high quality images requires a difficulty in obtaining. This work is not intended for detailed for analysis in any tissue or organ specific, but in general terms. And the formation of the 2D image. 3D need a reconstructor to part. (author)

  13. Coherence and diffraction limited resolution in microscopic OCT by a unified approach for the correction of dispersion and aberrations

    Science.gov (United States)

    Schulz-Hildebrandt, H.; Münter, Michael; Ahrens, M.; Spahr, H.; Hillmann, D.; König, P.; Hüttmann, G.

    2018-03-01

    Optical coherence tomography (OCT) images scattering tissues with 5 to 15 μm resolution. This is usually not sufficient for a distinction of cellular and subcellular structures. Increasing axial and lateral resolution and compensation of artifacts caused by dispersion and aberrations is required to achieve cellular and subcellular resolution. This includes defocus which limit the usable depth of field at high lateral resolution. OCT gives access the phase of the scattered light and hence correction of dispersion and aberrations is possible by numerical algorithms. Here we present a unified dispersion/aberration correction which is based on a polynomial parameterization of the phase error and an optimization of the image quality using Shannon's entropy. For validation, a supercontinuum light sources and a costume-made spectrometer with 400 nm bandwidth were combined with a high NA microscope objective in a setup for tissue and small animal imaging. Using this setup and computation corrections, volumetric imaging at 1.5 μm resolution is possible. Cellular and near cellular resolution is demonstrated in porcine cornea and the drosophila larva, when computational correction of dispersion and aberrations is used. Due to the excellent correction of the used microscope objective, defocus was the main contribution to the aberrations. In addition, higher aberrations caused by the sample itself were successfully corrected. Dispersion and aberrations are closely related artifacts in microscopic OCT imaging. Hence they can be corrected in the same way by optimization of the image quality. This way microscopic resolution is easily achieved in OCT imaging of static biological tissues.

  14. Model Correction Factor Method

    DEFF Research Database (Denmark)

    Christensen, Claus; Randrup-Thomsen, Søren; Morsing Johannesen, Johannes

    1997-01-01

    The model correction factor method is proposed as an alternative to traditional polynomial based response surface techniques in structural reliability considering a computationally time consuming limit state procedure as a 'black box'. The class of polynomial functions is replaced by a limit...... statebased on an idealized mechanical model to be adapted to the original limit state by the model correction factor. Reliable approximations are obtained by iterative use of gradient information on the original limit state function analogously to previous response surface approaches. However, the strength...... of the model correction factor method, is that in simpler form not using gradient information on the original limit state function or only using this information once, a drastic reduction of the number of limit state evaluation is obtained together with good approximations on the reliability. Methods...

  15. Ultra-low dose CT attenuation correction for PET/CT

    International Nuclear Information System (INIS)

    Xia Ting; Kinahan, Paul E; Alessio, Adam M; De Man, Bruno; Manjeshwar, Ravindra; Asma, Evren

    2012-01-01

    A challenge for positron emission tomography/computed tomography (PET/CT) quantitation is patient respiratory motion, which can cause an underestimation of lesion activity uptake and an overestimation of lesion volume. Several respiratory motion correction methods benefit from longer duration CT scans that are phase matched with PET scans. However, even with the currently available, lowest dose CT techniques, extended duration cine CT scans impart a substantially high radiation dose. This study evaluates methods designed to reduce CT radiation dose in PET/CT scanning. We investigated selected combinations of dose reduced acquisition and noise suppression methods that take advantage of the reduced requirement of CT for PET attenuation correction (AC). These include reducing CT tube current, optimizing CT tube voltage, adding filtration, CT sinogram smoothing and clipping. We explored the impact of these methods on PET quantitation via simulations on different digital phantoms. CT tube current can be reduced much lower for AC than that in low dose CT protocols. Spectra that are higher energy and narrower are generally more dose efficient with respect to PET image quality. Sinogram smoothing could be used to compensate for the increased noise and artifacts at radiation dose reduced CT images, which allows for a further reduction of CT dose with no penalty for PET image quantitation. When CT is not used for diagnostic and anatomical localization purposes, we showed that ultra-low dose CT for PET/CT is feasible. The significant dose reduction strategies proposed here could enable respiratory motion compensation methods that require extended duration CT scans and reduce radiation exposure in general for all PET/CT imaging. (paper)

  16. Bryant J. correction formula

    International Nuclear Information System (INIS)

    Tejera R, A.; Cortes P, A.; Becerril V, A.

    1990-03-01

    For the practical application of the method proposed by J. Bryant, the authors carried out a series of small corrections, related with the bottom, the dead time of the detectors and channels, with the resolution time of the coincidences, with the accidental coincidences, with the decay scheme and with the gamma efficiency of the beta detector beta and the beta efficiency beta of the gamma detector. The calculation of the correction formula is presented in the development of the present report, being presented 25 combinations of the probability of the first existent state at once of one disintegration and the second state at once of the following disintegration. (Author)

  17. Multislice computed tomography coronary angiography

    NARCIS (Netherlands)

    F. Cademartiri (Filippo)

    2005-01-01

    markdownabstract__Abstract__ Computed Tomography (CT) imaging is also known as "CAT scanning" (Computed Axial Tomography). Tomography is from the Greek word "tomos" meaning "slice" or "section" and "graphia" meaning "describing". CT was invented in 1972 by British engineer Godfrey Hounsfield

  18. Celebral computerized tomography

    International Nuclear Information System (INIS)

    Lofteroed, B.; Sortland, O.

    1985-01-01

    Indications for cerebral computerized tomography (CT) and the diagnostic results from this examination are evaluated in 127 children. Pathological changes were found in 31 children, mostly based on such indications as increasing head size, suspicion of brain tumor, cerebral paresis, delayed psychomotor development and epileptic seizures. A list of indications for CT in children is given

  19. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Computed Tomography (CT) - Head ...

  20. Computed Tomography (CT) -- Sinuses

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Computed Tomography (CT) - Sinuses ...

  1. Positron emission tomography

    NARCIS (Netherlands)

    Paans, AMJ

    Positron Emission Tomography (PET) is a method for determining biochemical and physiological processes in vivo in a quantitative way by using radiopharmaceuticals labelled with positron emitting radionuclides as C-11, N-13, O-15 and F-18 and by measuring the annihilation radiation using a

  2. Geodetic SAR Tomography

    NARCIS (Netherlands)

    Zhu, Xiao Xiang; Montazeri, Sina; Gisinger, Christoph; Hanssen, R.F.; Bamler, Richard

    2016-01-01

    In this paper, we propose a framework referred to as 'geodetic synthetic aperture radar (SAR) tomography' that fuses the SAR imaging geodesy and tomographic SAR inversion (TomoSAR) approaches to obtain absolute 3-D positions of a large amount of natural scatterers. The methodology is applied on

  3. Advances in neutron tomography

    Indian Academy of Sciences (India)

    Up to now the interaction of the neutron spin with magnetic fields in samples has not been applied to imaging techniques despite the fact that it was proposed many years ago. About ten years ago neutron depolarization as imaging signal for neutron radiography or tomography was demonstrated and in principle it works.

  4. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... Computed tomography (CT) of the head uses special x-ray equipment to help assess head injuries, severe headaches, ... is a diagnostic medical test that, like traditional x-rays, produces multiple images or pictures of the inside ...

  5. Computed Tomography (CT) -- Sinuses

    Medline Plus

    Full Text Available ... Computed tomography (CT) of the sinuses uses special x-ray equipment to evaluate the paranasal sinus cavities – hollow, ... is a diagnostic medical test that, like traditional x-rays, produces multiple images or pictures of the inside ...

  6. Optical Tomography in Combustion

    DEFF Research Database (Denmark)

    Evseev, Vadim

    . JQSRT 113 (2012) 2222, 10.1016/j.jqsrt.2012.07.015] included in the PhD thesis as an attachment. The knowledge and experience gained in the PhD project is the first important step towards introducing the advanced optical tomography methods of combustion diagnostics developed in the project to future...

  7. Optical Coherence Tomography

    DEFF Research Database (Denmark)

    Andersen, Peter E.

    2015-01-01

    Optical coherence tomography (OCT) is a noninvasive imaging technique that provides real-time two- and three-dimensional images of scattering samples with micrometer resolution. Mapping the local reflectivity, OCT visualizes the morphology of the sample, in real time or at video rate. In addition...

  8. Computed tomography for radiographers

    International Nuclear Information System (INIS)

    Brooker, M.J.

    1986-01-01

    This book is directed towards giving radiographers an introduction to and basic knowledge of computerized tomography. The technical section discusses gantries and x-ray production, computer and disc drive image display, storage, artefacts quality assurance and design of departments. The clinical section includes patient preparation, radiotherapy planning, and interpretation of images from various areas of the anatomy. (U.K.)

  9. Computed tomography system

    International Nuclear Information System (INIS)

    Lambert, T.W.; Blake, J.E.

    1981-01-01

    This invention relates to computed tomography and is particularly concerned with determining the CT numbers of zones of interest in an image displayed on a cathode ray tube which zones lie in the so-called level or center of the gray scale window. (author)

  10. Holography and tomography

    International Nuclear Information System (INIS)

    Howells, M.

    1997-01-01

    This session includes a collection of outlines of pertinent information, diagrams, graphs, electron micrographs, and color photographs pertaining to historical aspects and recent advances in the development of X-ray Gabor Holography. Many of the photographs feature or pertain to instrumentation used in holography, tomography, and cryo-holography

  11. EDITORIAL: Process Tomography

    Science.gov (United States)

    Wang, Mi

    2006-08-01

    Process tomography (PT) refers to a methodology by which the internal characteristics of process vessel reaction or pipeline flows are acquired from measurements on or outside the domain of interest in a non-invasive fashion. As a generic 'tool' PT is extremely useful in improving, for example, the modelling and design of many complex processes, in understanding the dynamic mechanisms of flowing and mixing of colloidal dispersions, and in multiphase flow phenomena, hydraulic transport and process control. Over two decades of research worldwide, PT has become a routine research tool in many research laboratories and is being accepted for process measurement and control in some industrial applications. This is the fourth special feature on process tomography after previous publications in this journal in 1996, 2001 and 2002. In this issue, recent developments in sensors, measurements and algorithms with new features for specific distinctive applications are addressed, such as the high temporal resolutions of 1000 frames/s and beyond obtained by both x-ray and impedance tomography for flow measurement and fast process reaction; interferometric tomography combining the Mach Zehnder interferometer and tomography to utilize the phase difference in propagation for visualization of particular features in a process and new three-dimensional image reconstruction algorithms in process applications. The important aspect of this issue is that it demonstrates current developments focusing on the improvement of performance at the temporal resolution, phase information and 3D algorithms for specific application. Looking back over two decades of research, we can see that the process tomography technique is maturing and its applications in industrial manufacture are being deployed as a result of the determined efforts of researchers worldwide. As Guest Editor of this special feature, I would like to thank my colleagues at the Virtual Centre for Industrial Process Tomography (VCIPT

  12. Vibhute Class II Correction Appliance

    Directory of Open Access Journals (Sweden)

    Pavankumar Janardan Vibhute

    2013-01-01

    Full Text Available Fixed functional appliances have gained the popularity for growth modification in noncompliant patients, especially hybrid types. But for this, clinicians have to depend on certain commercially available appliances; otherwise components required in fabrication of hybrid type appliances are not routinely available in clinics, which discourage their, use. Additionally, these preformed appliances have less scope in changing their length as per patient′s requirement of particular mandibular advancement. This article explains the chairside fabrication of open coil NiTi spring loaded hybrid type fixed functional appliance named ′Vibhute Class II Correction Appliance′ (VCCA. This custom-made tinier and hygienic design provides stable fixation, less breakages with increased range of mandibular movement involving unrestricted mouth opening. VCCA permits quick chairside fabrication with ease in installation of appliance and is inexpensive.

  13. Staging of bronchogenic carcinoma by computerized tomography

    International Nuclear Information System (INIS)

    Sommer, B.; Bauer, W.M.; Rath, M.; Fenzl, G.; Stelter, W.J.; Lissner, J.

    1981-01-01

    It was possible to check the information obtained by CT scanning in 36 patients out of 49 who had been subjected to computerized tomography, in respect of the extension of the primary tumour (T stage), and in 25 patients in respect of the degree of mediastinal lymphatic node involvement (N stage). In all 49 patients, the presence of bronchogenic carcinoma had been safely established. In 97% of the cases, assessment of the extension of the primary tumour was found to be correct. Assessment of the N stage, however, is more problematic, since detection of mediastinal lymphatic nodes by computerized tomography does not necessarily tell us something about their metastatic involvement. If all recognizable lymphatic nodes are interpreted as potential metastases, we have no false negative but 61% false positive results because of the frequency of postinflammatory or anthracotic lymphatic nodes. In case of exclusive assessment of lymphatic node enlargement above 1 cm diameter, the rate of metastatic nodes increases considerably (83%). Computerized tomography is definitely superior to all roentgenological methods in assessing the stage of a bronchogenic carcinoma; hence, it could occupy a key position in determining the diagnostic and therapeutic approach in patients with this disease. (orig.) [de

  14. Computed Tomography of Interacerebral Hemorrhage

    International Nuclear Information System (INIS)

    Kim, Seung Hyeon; Lee, Jong Beum; Lee, Yong Chul; Lee, Kwan Seh; Park, Soo Soung

    1983-01-01

    Computed tomography (CT) is the most accurate and reliable method for the diagnosis of intracerebral and intraventricular hemorrhage. The precise anatomic extent of the nematoma, associated cerebral edema, ventricular deformity and displacement, and hydrocephalus are all readily assessed. Aside from head trauma, the principal cause of intracerebral hematoma is hypertensive vascular disease. Although hematomas from various causes may present similar CT appearances frequently the correct etiology may be suggested by consideration of patient's age, clinical history, and the location of the hematoma. The analytical study was performed in 180 cases of intracerebral hemorrhages by CT from October 1981 to January 1983. The results were as follows; 1. The most prevalent age group was 6th decade (37.2%). Male was prevalent to female at the ration of 1.6 to 1. 2. The most common symptom and sign was mental disturbance (48.7%), motor weakness (23%), headache (10.6%), nausea and vomiting (9.8%). 3. The causes of hemorrhage were hypertension (53.9%), head trauma (30.6%), aneurysm (6.1%) and A-V malformation (7.2%). 4. The frequent locations of hemorrhage were basal ganglia and thalamus (40.4%), lobes (35%), ventricles (21.8%). 5. The distribution of hemorrhage was intracerebral hemorrhage (65.6%), intracerebral and intraventricular hemorrhage (30.3%), intraventricular hemorrhage (4.4%).

  15. Attenuation correction for the HRRT PET-scanner using transmission scatter correction and total variation regularization

    DEFF Research Database (Denmark)

    Keller, Sune H; Svarer, Claus; Sibomana, Merence

    2013-01-01

    In the standard software for the Siemens high-resolution research tomograph (HRRT) positron emission tomography (PET) scanner the most commonly used segmentation in the μ -map reconstruction for human brain scans is maximum a posteriori for transmission (MAP-TR). Bias in the lower cerebellum...... and pons in HRRT brain images have been reported. The two main sources of the problem with MAP-TR are poor bone/soft tissue segmentation below the brain and overestimation of bone mass in the skull. Method: We developed the new transmission processing with total variation (TXTV) method that introduces...... scatter correction in the μ-map reconstruction and total variation filtering to the transmission processing. Results: Comparing MAP-TR and the new TXTV with gold standard CT-based attenuation correction, we found that TXTV has less bias as compared to MAP-TR. We also compared images acquired at the HRRT...

  16. Error Correcting Codes -34 ...

    Indian Academy of Sciences (India)

    Science, Bangalore. Her interests are in. Theoretical Computer. Science. SERIES I ARTICLE. Error Correcting Codes. 2. The Hamming Codes. Priti Shankar. In the first article of this series we showed how redundancy introduced into a message transmitted over a noisy channel could improve the reliability of transmission. In.

  17. Error Correcting Codes

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 3. Error Correcting Codes - Reed Solomon Codes. Priti Shankar. Series Article Volume 2 Issue 3 March 1997 pp 33-47. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/002/03/0033-0047 ...

  18. Error Correcting Codes

    Indian Academy of Sciences (India)

    focused pictures of Triton, Neptune's largest moon. This great feat was in no small measure due to the fact that the sophisticated communication system on Voyager had an elaborate error correcting scheme built into it. At Jupiter and Saturn, a convolutional code was used to enhance the reliability of transmission, and at ...

  19. Corrective Jaw Surgery

    Medline Plus

    Full Text Available ... their surgery, orthognathic surgery is performed to correct functional problems. Jaw Surgery can have a dramatic effect on many aspects of life. Following are some of the conditions that may ... front, or side Facial injury Birth defects Receding lower jaw and ...

  20. Corrective Jaw Surgery

    Medline Plus

    Full Text Available ... It can also invite bacteria that lead to gum disease. Click here to find out more. Who We Are Find a Surgeon News Videos Contact Anesthesia Cleft Lip/Palate and Craniofacial Surgery Corrective Jaw Surgery Dental Implant Surgery Extractions and Other Oral Surgeries Facial Cosmetic ...

  1. Correctness of concurrent processes

    NARCIS (Netherlands)

    E.R. Olderog (Ernst-Rüdiger)

    1989-01-01

    textabstractA new notion of correctness for concurrent processes is introduced and investigated. It is a relationship P sat S between process terms P built up from operators of CCS [Mi 80], CSP [Ho 85] and COSY [LTS 79] and logical formulas S specifying sets of finite communication sequences as in

  2. Error Correcting Codes

    Indian Academy of Sciences (India)

    It was engineering on the grand scale. - the use of new material for .... ROAD REPAIRSCE!STOP}!TL.,ZBFALK where errors occur in both the message as well as the check symbols, the decoder would be able to correct all of these (as there are not more than 8 .... before it is conveyed to the master disc. Modulation caters for.

  3. Text Induced Spelling Correction

    NARCIS (Netherlands)

    Reynaert, M.W.C.

    2004-01-01

    We present TISC, a language-independent and context-sensitive spelling checking and correction system designed to facilitate the automatic removal of non-word spelling errors in large corpora. Its lexicon is derived from a very large corpus of raw text, without supervision, and contains word

  4. Error Correcting Codes

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 3. Error Correcting Codes - Reed Solomon Codes. Priti Shankar. Series Article Volume 2 Issue 3 March ... Author Affiliations. Priti Shankar1. Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560 012, India ...

  5. 10. Correctness of Programs

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 4. Algorithms - Correctness of Programs. R K Shyamasundar. Series Article Volume 3 ... Author Affiliations. R K Shyamasundar1. Computer Science Group, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India.

  6. Correctional Practices in Japan.

    Science.gov (United States)

    Eskridge, Chris W.

    1989-01-01

    Describes Japanese correctional system including its early history and adoption of Western ideas in the late nineteenth century. Presents current Japanese treatment practices, probation/parole systems, and other offender assistance programs pointing out the importance of individual responsibility and community involvement to the system. Compares…

  7. Adaptive-Predictive Organ Localization Using Cone-Beam Computed Tomography for Improved Accuracy in External Beam Radiotherapy for Bladder Cancer

    International Nuclear Information System (INIS)

    Lalondrelle, Susan; Huddart, Robert; Warren-Oseni, Karole; Hansen, Vibeke Nordmark; McNair, Helen; Thomas, Karen; Dearnaley, David; Horwich, Alan; Khoo, Vincent

    2011-01-01

    Purpose: To examine patterns of bladder wall motion during high-dose hypofractionated bladder radiotherapy and to validate a novel adaptive planning method, A-POLO, to prevent subsequent geographic miss. Methods and Materials: Patterns of individual bladder filling were obtained with repeat computed tomography planning scans at 0, 15, and 30 minutes after voiding. A series of patient-specific plans corresponding to these time-displacement points was created. Pretreatment cone-beam computed tomography was performed before each fraction and assessed retrospectively for adaptive intervention. In fractions that would have required intervention, the most appropriate plan was chosen from the patient's 'library,' and the resulting target coverage was reassessed with repeat cone-beam computed tomography. Results: A large variation in patterns of bladder filling and interfraction displacement was seen. During radiotherapy, predominant translations occurred cranially (maximum 2.5 cm) and anteriorly (maximum 1.75 cm). No apparent explanation was found for this variation using pretreatment patient factors. A need for adaptive planning was demonstrated by 51% of fractions, and 73% of fractions would have been delivered correctly using A-POLO. The adaptive strategy improved target coverage and was able to account for intrafraction motion also. Conclusions: Bladder volume variation will result in geographic miss in a high proportion of delivered bladder radiotherapy treatments. The A-POLO strategy can be used to correct for this and can be implemented from the first fraction of radiotherapy; thus, it is particularly suited to hypofractionated bladder radiotherapy regimens.

  8. Scatter corrections for cone beam optical CT

    Energy Technology Data Exchange (ETDEWEB)

    Olding, Tim; Holmes, Oliver [Department of Physics, Queen' s University (United Kingdom); Schreiner, L John [Medical Physics Department, Cancer Centre of Southeastern Ontario (Canada)], E-mail: Tim.Olding@krcc.on.ca

    2009-05-01

    Cone beam optical computed tomography (OptCT) employing the VISTA scanner (Modus Medical, London, ON) has been shown to have significant promise for fast, three dimensional imaging of polymer gel dosimeters. One distinct challenge with this approach arises from the combination of the cone beam geometry, a diffuse light source, and the scattering polymer gel media, which all contribute scatter signal that perturbs the accuracy of the scanner. Beam stop array (BSA), beam pass array (BPA) and anti-scatter polarizer correction methodologies have been employed to remove scatter signal from OptCT data. These approaches are investigated through the use of well-characterized phantom scattering solutions and irradiated polymer gel dosimeters. BSA corrected scatter solutions show good agreement in attenuation coefficient with the optically absorbing dye solutions, with considerable reduction of scatter-induced cupping artifact at high scattering concentrations. The application of BSA scatter corrections to a polymer gel dosimeter lead to an overall improvement in the number of pixel satisfying the (3%, 3mm) gamma value criteria from 7.8% to 0.15%.

  9. Issues in Correctional Training and Casework. Correctional Monograph.

    Science.gov (United States)

    Wolford, Bruce I., Ed.; Lawrenz, Pam, Ed.

    The eight papers contained in this monograph were drawn from two national meetings on correctional training and casework. Titles and authors are: "The Challenge of Professionalism in Correctional Training" (Michael J. Gilbert); "A New Perspective in Correctional Training" (Jack Lewis); "Reasonable Expectations in Correctional Officer Training:…

  10. Positron emission tomography of the lung

    International Nuclear Information System (INIS)

    Wollmer, P.

    1984-01-01

    Positron emission tomography enables the distribution of positron emitting isotopes to be imaged in a transverse plane through the body and the regional concentration of the isotope to be measured quantitatively. This thesis reports some applications of positron emission tomography to studies of pulmonary pathophysiology. Measurements in lung phantoms showed that regional lung density could be measured from a transmission tomogram obtained with an external source of positron emitting isotope. The regional, fractional blood volume was measured after labelling the blood with carbon-11-monoxide. Regional extravascular lung density (lung tissue and interstitial water per unit thoracic volume) was obtained by subtracting fractional blood volume from lung density. Measurements in normal subjects revealed large regional variations in lung density and fractional blood volume in the supine posture. Extravascular lung density showed a more uniform distribution. The technique has been used to study patients with chronic interstitial pulmonary oedema, pulmonary sarcoidosis and fibrosis, pulmonary arterial hypertension and patients with intracardiac, left-to-right shunt. Tomographic measurements of pulmonary tissue concentration of radionuclides are difficult, since corrections for the blood content and the inflation of the lung must be applied. A simultaneous measurement of lung density and fractional blood volume allows such corrections to be made and the extravascular tracer concentration to be calculated. This has been applied to measurements of the tissue penetration of carbon-11-labelled erythromycin in patients with lobar pneumonia. (author)

  11. Is tomography of intervertebral disc calcification useful in children?

    International Nuclear Information System (INIS)

    Ginalski, J.M.; Landry, M.; Gudinchet, F.; Schnyder, P.

    1992-01-01

    In the past ten years, we have found cervical intervertebral disc calcification in three children on plain films of the cervical spine made because of cervical pain. In each case, we required further radiological investigations, antero-posterior and lateral linear tomography for two children and an axial computed tomography for one child. In each case, tomography revealed no supplementary useful information. On retrospect, we think that these examinations caused unnecessary irradiation and that they should only be carried out in the rare circumstances when disc calcification is associated with neurological symptoms. (orig.)

  12. Feasibility study for mega-electron-volt electron beam tomography.

    Science.gov (United States)

    Hampel, U; Bärtling, Y; Hoppe, D; Kuksanov, N; Fadeev, S; Salimov, R

    2012-09-01

    Electron beam tomography is a promising imaging modality for the study of fast technical processes. But for many technical objects of interest x rays of several hundreds of keV energy are required to achieve sufficient material penetration. In this article we report on a feasibility study for fast electron beam computed tomography with a 1 MeV electron beam. The experimental setup comprises an electrostatic accelerator with beam optics, transmission target, and a single x-ray detector. We employed an inverse fan-beam tomography approach with radiographic projections being generated from the linearly moving x-ray source. Angular projections were obtained by rotating the object.

  13. Emission tomography with positrons principle, physical performances of a ring detector and quantitative possibilities

    International Nuclear Information System (INIS)

    Soussaline, F.; Plummer, D.; Todd Pokropek, A.E.; Loc'h, C.; Comar, D.

    1979-01-01

    Satisfactory qualitative and quantitative data in positron emission tomography requires the use of a well adapted tomographic system. A number of parameters have been identified which can be considered as the critical characteristics for evaluation and intercomparison of such systems. Using these the choice of a single slice ring positron camera could be justified by its physical performance, which is presented and discussed. Series of physical and mathematical simulations allow an appropriate knowledge of such a system, which has been in use for more than a year in a clinical environment. These studies aid to the interpretation of very interesting physiopathologic studies. In principle, a positron tomographic system permits measurement of absolute quantitative concentration values, which are essential for precise metabolic studies. The main sources of error comprising the calibration of the system, the tail effects and the precision for attenuation correction are analysed. When taking in account these errors, a precision of the order of 10% should be obtainable [fr

  14. Penalized maximum-likelihood sinogram restoration for dual focal spot computed tomography

    International Nuclear Information System (INIS)

    Forthmann, P; Koehler, T; Begemann, P G C; Defrise, M

    2007-01-01

    Due to various system non-idealities, the raw data generated by a computed tomography (CT) machine are not readily usable for reconstruction. Although the deterministic nature of corruption effects such as crosstalk and afterglow permits correction by deconvolution, there is a drawback because deconvolution usually amplifies noise. Methods that perform raw data correction combined with noise suppression are commonly termed sinogram restoration methods. The need for sinogram restoration arises, for example, when photon counts are low and non-statistical reconstruction algorithms such as filtered backprojection are used. Many modern CT machines offer a dual focal spot (DFS) mode, which serves the goal of increased radial sampling by alternating the focal spot between two positions on the anode plate during the scan. Although the focal spot mode does not play a role with respect to how the data are affected by the above-mentioned corruption effects, it needs to be taken into account if regularized sinogram restoration is to be applied to the data. This work points out the subtle difference in processing that sinogram restoration for DFS requires, how it is correctly employed within the penalized maximum-likelihood sinogram restoration algorithm and what impact it has on image quality

  15. Seismic tomography inversion in the case that sources and receivers are distributed out of a 2-D plane; Shingen jushinten ga nijigen heimennai ni nai baai no danseiha tomography kaiseki ni kansuru kosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Yokota, T.; Miyazaki, T. [Geological Survey of Japan, Tsukuba (Japan); Rokugawa, S.; Matsushima, J. [The University of Tokyo, Tokyo (Japan). Faculty of Engineering; Ashida, Y. [Kyoto University, Kyoto (Japan). Faculty of Engineering

    1996-10-01

    In the case where sources and receivers are not distributed on a 2-D plane, seismic tomography inversion was studied. In tomography experiments, the existing wells are generally used. In such case, sources and receivers are frequently not distributed on a 2-D plane. The 2.5-D analysis method including 2-D structure and 3-D ray-tracing was thus developed. This method is featured by less memory necessary for ray-tracing calculation, and the same algorithm for velocity determination as 2-D analysis method. In previous methods, since analysis is generally carried out by projecting sources and receivers on a certain assumed 2-D plane, it can derive correct results in the case of constant velocity and straight ray, however, in the other case, it derives incorrect results. Application of 3-D tomography requires a large amount of memory, and falls into poor convergence because of various parameters. The 2.5-D analysis method can avoid these demerits. This analysis method was applied to the data obtained in Ogiri area, Kagoshima prefecture. 5 refs., 3 figs., 2 tabs.

  16. Optimised motion tracking for positron emission tomography studies of brain function in awake rats.

    Directory of Open Access Journals (Sweden)

    Andre Z Kyme

    Full Text Available Positron emission tomography (PET is a non-invasive molecular imaging technique using positron-emitting radioisotopes to study functional processes within the body. High resolution PET scanners designed for imaging rodents and non-human primates are now commonplace in preclinical research. Brain imaging in this context, with motion compensation, can potentially enhance the usefulness of PET by avoiding confounds due to anaesthetic drugs and enabling freely moving animals to be imaged during normal and evoked behaviours. Due to the frequent and rapid motion exhibited by alert, awake animals, optimal motion correction requires frequently sampled pose information and precise synchronisation of these data with events in the PET coincidence data stream. Motion measurements should also be as accurate as possible to avoid degrading the excellent spatial resolution provided by state-of-the-art scanners. Here we describe and validate methods for optimised motion tracking suited to the correction of motion in awake rats. A hardware based synchronisation approach is used to achieve temporal alignment of tracker and scanner data to within 10 ms. We explored the impact of motion tracker synchronisation error, pose sampling rate, rate of motion, and marker size on motion correction accuracy. With accurate synchronisation (20 Hz, and a small head marker suitable for awake animal studies, excellent motion correction results were obtained in phantom studies with a variety of continuous motion patterns, including realistic rat motion (<5% bias in mean concentration. Feasibility of the approach was also demonstrated in an awake rat study. We conclude that motion tracking parameters needed for effective motion correction in preclinical brain imaging of awake rats are achievable in the laboratory setting. This could broaden the scope of animal experiments currently possible with PET.

  17. Xenon as an adjunct in computed tomography

    International Nuclear Information System (INIS)

    Kendall, B.E.; Radue, E.W.; Zilkha, E.; Loh, L.

    1979-01-01

    Nonradioactive xenon was used for enhancement in computed tomography in a series of 18 patients requiring general anesthesia. The method and results are described. The properties of xenon are radically different from those of intravenous iodides, and the enhancement patterns demonstrate different aspects of both normal and abnormal tissues. In our limited experience, it has been of value in those isodense and low attenuation lesions that have not enhanced after intravenous Conray. (orig.) 891 MG/orig. 892 MB [de

  18. Encapsulating peritonitis: computed tomography and surgical correlation

    Energy Technology Data Exchange (ETDEWEB)

    Kadow, Juliana Santos; Fingerhut, Carla Jeronimo Peres; Fernandes, Vinicius de Barros; Coradazzi, Klaus Rizk Stuhr; Silva, Lucas Marciel Soares; Penachim, Thiago Jose, E-mail: vinicius.barros.fernandes@gmail.com [Pontificia Universidade Catolica de Campinas (PUC-Campinas), Campinas, SP (Brazil). Hospital e Maternidade Celso Pierro

    2014-07-15

    Sclerosing encapsulating peritonitis is a rare and frequently severe entity characterized by total or partial involvement of small bowel loops by a membrane of fibrous tissue. The disease presents with nonspecific clinical features of intestinal obstruction, requiring precise imaging diagnosis to guide the treatment. The present report emphasizes the importance of computed tomography in the diagnosis of this condition and its confirmation by surgical correlation. (author)

  19. Correction of nonuniform attenuation and image fusion in SPECT imaging by means of separate X-ray CT

    International Nuclear Information System (INIS)

    Kashiwagi, Toru; Yutani, Kenji; Fukuchi, Minoru; Naruse, Hitoshi; Iwasaki, Tadaaki; Yokozuka, Koichi; Inoue, Shinichi; Kondo, Shoji

    2002-01-01

    Improvements in image quality and quantitation measurement, and the addition of detailed anatomical structures are important topics for single-photon emission tomography (SPECT). The goal of this study was to develop a practical system enabling both nonuniform attenuation correction and image fusion of SPECT images by means of high-performance X-ray computed tomography (CT). A SPECT system and a helical X-ray CT system were placed next to each other and linked with Ethernet. To avoid positional differences between the SPECT and X-ray CT studies, identical flat patient tables were used for both scans; body distortion was minimized with laser beams from the upper and lateral directions to detect the position of the skin surface. For the raw projection data of SPECT, a scatter correction was performed with the triple energy window method. Image fusion of the X-ray CT and SPECT images was performed automatically by auto-registration of fiducial markers attached to the skin surface. After registration of the X-ray CT and SPECT images, an X-ray CT-derived attenuation map was created with the calibration curve for 99m Tc. The SPECT images were then reconstructed with scatter and attenuation correction by means of a maximum likelihood expectation maximization algorithm. This system was evaluated in torso and cylindlical phantoms and in 4 patients referred for myocardial SPECT imaging with Tc-99m tetrofosmin. In the torso phantom study, the SPECT and X-ray CT images overlapped exactly on the computer display. After scatter and attenuation correction, the artifactual activity reduction in the inferior wall of the myocardium improved. Conversely, the increased activity around the torso surface and the lungs was reduced. In the abdomen, the liver activity, which was originally uniform, had recovered after scatter and attenuation correction processing. The clinical study also showed good overlapping of cardiac and skin surface outlines on the fused SPECT and X-ray CT images

  20. Mathematical Methods in Tomography

    CERN Document Server

    Louis, Alfred; Natterer, Frank

    1991-01-01

    The conference was devoted to the discussion of present and future techniques in medical imaging, including 3D x-ray CT, ultrasound and diffraction tomography, and biomagnetic ima- ging. The mathematical models, their theoretical aspects and the development of algorithms were treated. The proceedings contains surveys on reconstruction in inverse obstacle scat- tering, inversion in 3D, and constrained least squares pro- blems.Research papers include besides the mentioned imaging techniques presentations on image reconstruction in Hilbert spaces, singular value decompositions, 3D cone beam recon- struction, diffuse tomography, regularization of ill-posed problems, evaluation reconstruction algorithms and applica- tions in non-medical fields. Contents: Theoretical Aspects: J.Boman: Helgason' s support theorem for Radon transforms-a newproof and a generalization -P.Maass: Singular value de- compositions for Radon transforms- W.R.Madych: Image recon- struction in Hilbert space -R.G.Mukhometov: A problem of in- teg...

  1. Controllable tomography phase microscopy

    Science.gov (United States)

    Xiu, Peng; Zhou, Xin; Kuang, Cuifang; Xu, Yingke; Liu, Xu

    2015-03-01

    Tomography phase microscopy (TPM) is a new microscopic method that can quantitatively yield the volumetric 3D distribution of a sample's refractive index (RI), which is significant for cell biology research. In this paper, a controllable TPM system is introduced. In this system a circulatory phase-shifting method and piezoelectric ceramic are used which enable the TPM system to record the 3D RI distribution at a more controllable speed, from 1 to 40 fps, than in the other TPM systems reported. The resolution of the RI distribution obtained by this controllable TPM is much better than that in images recorded by phase contrast microscopy and interference tomography microscopy. The realization of controllable TPM not only allows for the application of TPM to the measurement of kinds of RI sample, but also contributes to academic and technological support for the practical use of TPM.

  2. Highly resolving computerized tomography

    International Nuclear Information System (INIS)

    Kurtz, B.; Petersen, D.; Walter, E.

    1984-01-01

    With the development of highly-resolving devices for computerized tomography, CT diagnosis of the lumbar vertebral column has gained increasing importance. As an ambulatory, non-invasive method it has proved in comparative studies to be at least equivalent to myelography in the detection of dislocations of inter-vertebral disks (4,6,7,15). Because with modern devices not alone the bones, but especially the spinal soft part structures are clearly and precisely presented with a resolution of distinctly below 1 mm, a further improvement of the results is expected as experience will increase. The authors report on the diagnosis of the lumbar vertebral column with the aid of a modern device for computerized tomography and wish to draw particular attention to the possibility of doing this investigation as a routine, and to the diagnostic value of secondary reconstructions. (BWU) [de

  3. Reinforced concrete tomography

    International Nuclear Information System (INIS)

    Mariscotti, M.A.J.; Morixe, M.; Tarela, P.A.; Thieberger, P.

    1997-01-01

    In this paper we describe the technique of reinforced concrete tomography, its historical background, recent technological developments and main applications. Gamma radiation sensitive plates are imprinted with radiation going through the concrete sample under study, and then processed to reveal the presence of reinforcement and defects in the material density. The three dimensional reconstruction, or tomography, of the reinforcement out of a single gammagraphy is an original development alternative to conventional methods. Re-bar diameters and positions may be determined with an accuracy of ± 1 mm 0.5-1 cm, respectively. The non-destructive character of this technique makes it particularly attractive in cases of inhabited buildings and diagnoses of balconies. (author) [es

  4. Students' Attitude toward Correction

    OpenAIRE

    Rinda Fitriana

    2017-01-01

    Students’ attitudes influence their decision to whether or not accept the teachers’ feedback. Therefore, questionnaire was administered to one hundred and ninety-six twelfth grade of vocational high school students, wherein, ten of them were involved in interview, to figure out their perspective concerning to the teachers’ correction on their oral production. From both instruments, it is found that the students preferred the teachers as the correctors, although, they did not mind for peer cor...

  5. Ghana, Corrections in

    OpenAIRE

    Akoensi, Thomas D

    2017-01-01

    Corrections in Ghana has evolved from communal traditional practices emphasizing offender reintegration and restitution to offender punishment in prisons. Prisons in Ghana represent a colonial legacy and its modus operandi via the maintenance of safe custody, and welfare provision since independence remains unchanged. The raison d'être of prison administration is security and discipline, with little emphasis and resource provision geared toward offender rehabilitation. With no parole system o...

  6. [Correct contact lens hygiene].

    Science.gov (United States)

    Blümle, S; Kaercher, T; Khaireddin, R

    2013-06-01

    Although contact lenses have long been established in ophthalmology, practical aspects of handling contact lenses is becoming increasingly less important in the clinical training as specialist for ophthalmology. Simultaneously, for many reasons injuries due to wearing contact lenses are increasing. In order to correct this discrepancy, information on contact lenses and practical experience with them must be substantially increased from a medical perspective. This review article deals with the most important aspects for prevention of complications, i.e. contact lens hygiene.

  7. Congenitally corrected transposition

    Directory of Open Access Journals (Sweden)

    Debich-Spicer Diane

    2011-05-01

    Full Text Available Abstract Congenitally corrected transposition is a rare cardiac malformation characterized by the combination of discordant atrioventricular and ventriculo-arterial connections, usually accompanied by other cardiovascular malformations. Incidence has been reported to be around 1/33,000 live births, accounting for approximately 0.05% of congenital heart malformations. Associated malformations may include interventricular communications, obstructions of the outlet from the morphologically left ventricle, and anomalies of the tricuspid valve. The clinical picture and age of onset depend on the associated malformations, with bradycardia, a single loud second heart sound and a heart murmur being the most common manifestations. In the rare cases where there are no associated malformations, congenitally corrected transposition can lead to progressive atrioventricular valvar regurgitation and failure of the systemic ventricle. The diagnosis can also be made late in life when the patient presents with complete heart block or cardiac failure. The etiology of congenitally corrected transposition is currently unknown, and with an increase in incidence among families with previous cases of congenitally corrected transposition reported. Diagnosis can be made by fetal echocardiography, but is more commonly made postnatally with a combination of clinical signs and echocardiography. The anatomical delineation can be further assessed by magnetic resonance imaging and catheterization. The differential diagnosis is centred on the assessing if the patient is presenting with isolated malformations, or as part of a spectrum. Surgical management consists of repair of the associated malformations, or redirection of the systemic and pulmonary venous return associated with an arterial switch procedure, the so-called double switch approach. Prognosis is defined by the associated malformations, and on the timing and approach to palliative surgical care.

  8. 4D microvascular imaging based on ultrafast Doppler tomography.

    Science.gov (United States)

    Demené, Charlie; Tiran, Elodie; Sieu, Lim-Anna; Bergel, Antoine; Gennisson, Jean Luc; Pernot, Mathieu; Deffieux, Thomas; Cohen, Ivan; Tanter, Mickael

    2016-02-15

    4D ultrasound microvascular imaging was demonstrated by applying ultrafast Doppler tomography (UFD-T) to the imaging of brain hemodynamics in rodents. In vivo real-time imaging of the rat brain was performed using ultrasonic plane wave transmissions at very high frame rates (18,000 frames per second). Such ultrafast frame rates allow for highly sensitive and wide-field-of-view 2D Doppler imaging of blood vessels far beyond conventional ultrasonography. Voxel anisotropy (100 μm × 100 μm × 500 μm) was corrected for by using a tomographic approach, which consisted of ultrafast acquisitions repeated for different imaging plane orientations over multiple cardiac cycles. UFT-D allows for 4D dynamic microvascular imaging of deep-seated vasculature (up to 20 mm) with a very high 4D resolution (respectively 100 μm × 100 μm × 100 μm and 10 ms) and high sensitivity to flow in small vessels (>1 mm/s) for a whole-brain imaging technique without requiring any contrast agent. 4D ultrasound microvascular imaging in vivo could become a valuable tool for the study of brain hemodynamics, such as cerebral flow autoregulation or vascular remodeling after ischemic stroke recovery, and, more generally, tumor vasculature response to therapeutic treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Computed Tomography Window Blending: Feasibility in Thoracic Trauma.

    Science.gov (United States)

    Mandell, Jacob C; Wortman, Jeremy R; Rocha, Tatiana C; Folio, Les R; Andriole, Katherine P; Khurana, Bharti

    2018-02-07

    This study aims to demonstrate the feasibility of processing computed tomography (CT) images with a custom window blending algorithm that combines soft-tissue, bone, and lung window settings into a single image; to compare the time for interpretation of chest CT for thoracic trauma with window blending and conventional window settings; and to assess diagnostic performance of both techniques. Adobe Photoshop was scripted to process axial DICOM images from retrospective contrast-enhanced chest CTs performed for trauma with a window-blending algorithm. Two emergency radiologists independently interpreted the axial images from 103 chest CTs with both blended and conventional windows. Interpretation time and diagnostic performance were compared with Wilcoxon signed-rank test and McNemar test, respectively. Agreement with Nexus CT Chest injury severity was assessed with the weighted kappa statistic. A total of 13,295 images were processed without error. Interpretation was faster with window blending, resulting in a 20.3% time saving (P window-blended cases was 82.7%, compared to 81.6% for conventional windows. The specificity of the window-blended cases was 93.1%, compared to 90.5% for conventional windows. All injuries of major clinical significance (per Nexus CT Chest criteria) were correctly identified in all reading sessions, and all negative cases were correctly classified. All readers demonstrated near-perfect agreement with injury severity classification with both window settings. In this pilot study utilizing retrospective data, window blending allows faster preliminary interpretation of axial chest CT performed for trauma, with no significant difference in diagnostic performance compared to conventional window settings. Future studies would be required to assess the utility of window blending in clinical practice. Copyright © 2018 The Association of University Radiologists. All rights reserved.

  10. Corrective Jaw Surgery

    Medline Plus

    Full Text Available ... and Craniofacial Surgery A cleft lip may require one or more surgeries depending on the extent of ... and Craniofacial Surgery A cleft lip may require one or more surgeries depending on the extent of ...

  11. Polychromatic diffraction contrast tomography

    International Nuclear Information System (INIS)

    King, A.; Reischig, P.; Adrien, J.; Peetermans, S.; Ludwig, W.

    2014-01-01

    This tutorial review introduces the use of polychromatic radiation for 3D grain mapping using X-ray diffraction contrast tomography. The objective is to produce a 3D map of the grain shapes and orientations within a bulk, millimeter-sized polycrystalline sample. The use of polychromatic radiation enables the standard synchrotron X-ray technique to be applied in a wider range of contexts: 1) Using laboratory X-ray sources allows a much wider application of the diffraction contrast tomography technique. 2) Neutron sources allow large samples, or samples containing high Z elements to be studied. 3) Applied to synchrotron sources, smaller samples may be treated, or faster measurements may be possible. Challenges and particularities in the data acquisition and processing, and the limitations of the different variants, are discussed. - Highlights: • We present a tutorial review of polychromatic diffraction contrast tomography techniques. • The use of polychromatic radiation allows the standard synchrotron DCT technique to be extended to a range of other sources. • The characteristics and limitations of all variants of the techniques are derived, discussed and compared. • Examples using laboratory X-ray and cold neutron radiation are presented. • Suggestions for the future development of these techniques are presented

  12. Coded aperture tomography revisited

    International Nuclear Information System (INIS)

    Bizais, Y.; Rowe, R.W.; Zubal, I.G.; Bennett, G.W.; Brill, A.B.

    1983-01-01

    Coded aperture (CA) Tomography never achieved wide spread use in Nuclear Medicine, except for the degenerate case of Seven Pinhole tomagraphy (7PHT). However it enjoys several attractive features (high sensitivity and tomographic ability with a statis detector). On the other hand, resolution is usually poor especially along the depth axis and the reconstructed volume is rather limited. Arguments are presented justifying the position that CA tomography can be useful for imaging time-varying 3D structures, if its major drawbacks (poor longitudinal resolution and difficulty in quantification) are overcome. Poor results obtained with 7PHT can be explained by both a very limited angular range sampled and a crude modelling of the image formation process. Therefore improvements can be expected by the use of a dual-detector system, along with a better understanding of its sampling properties and the use of more powerful reconstruction algorithms. Non overlapping multipinhole plates, because they do not involve a decoding procedure, should be considered first for practical applications. Use of real CA should be considered for cases in which non overlapping multipinhole plates do not lead to satisfactory solutions. We have been and currently are carrying out theoretical and experimental works, in order to define the factors which limit CA imaging and to propose satisfactory solutions for Dynamic Emission Tomography

  13. Fully 3D refraction correction dosimetry system

    International Nuclear Information System (INIS)

    Manjappa, Rakesh; Makki, S Sharath; Kanhirodan, Rajan; Kumar, Rajesh; Vasu, Ram Mohan

    2016-01-01

    The irradiation of selective regions in a polymer gel dosimeter results in an increase in optical density and refractive index (RI) at those regions. An optical tomography-based dosimeter depends on rayline path through the dosimeter to estimate and reconstruct the dose distribution. The refraction of light passing through a dose region results in artefacts in the reconstructed images. These refraction errors are dependant on the scanning geometry and collection optics. We developed a fully 3D image reconstruction algorithm, algebraic reconstruction technique-refraction correction (ART-rc) that corrects for the refractive index mismatches present in a gel dosimeter scanner not only at the boundary, but also for any rayline refraction due to multiple dose regions inside the dosimeter. In this study, simulation and experimental studies have been carried out to reconstruct a 3D dose volume using 2D CCD measurements taken for various views. The study also focuses on the effectiveness of using different refractive-index matching media surrounding the gel dosimeter. Since the optical density is assumed to be low for a dosimeter, the filtered backprojection is routinely used for reconstruction. We carry out the reconstructions using conventional algebraic reconstruction (ART) and refractive index corrected ART (ART-rc) algorithms. The reconstructions based on FDK algorithm for cone-beam tomography has also been carried out for comparison. Line scanners and point detectors, are used to obtain reconstructions plane by plane. The rays passing through dose region with a RI mismatch does not reach the detector in the same plane depending on the angle of incidence and RI. In the fully 3D scanning setup using 2D array detectors, light rays that undergo refraction are still collected and hence can still be accounted for in the reconstruction algorithm. It is found that, for the central region of the dosimeter, the usable radius using ART-rc algorithm with water as RI matched

  14. In Vivo Diffuse Optical Tomography and Fluorescence Molecular Tomography

    Directory of Open Access Journals (Sweden)

    Mingze Li

    2010-01-01

    Full Text Available Diffuse optical tomography (DOT and fluorescence molecular tomography (FMT are two attractive imaging techniques for in vivo physiological and psychological research. They have distinct advantages such as non-invasiveness, non-ionizing radiation, high sensitivity and longitudinal monitoring. This paper reviews the key components of DOT and FMT. Light propagation model, mathematical reconstruction algorithm, imaging instrumentation and medical applications are included. Future challenges and perspective on optical tomography are discussed.

  15. Language Trajectory through Corrective Feedback

    Directory of Open Access Journals (Sweden)

    S. Saber Alavi

    2016-08-01

    Full Text Available This quasi-experimental study was designed to investigate the effects of corrective feedback on SLA/EFL to determine the potential benefits of two different corrective feedback techniques, namely recasts and elicitation. The research hypotheses were: 1 Learners who are exposed to interactive focused task that requires CR will benefit more than those who are exposed to communicative activities only; 2 Elicitation will be more effective than recasts in leading to L2 development; Three intensive EFL classes in a language center in Songkhla province, Thailand were selected to participate in the study. Based on the study design, two class were assigned to the treatment conditions elicitation group and recasts group and the third was used as a control group. The treatment took place over a period of 9 meetings focusing on teaching third person singular –s morpheme and the provision of CF where it was necessary. The participants' knowledge of the intended syntantic point was tested before treatment and post tested after receiving the treatment. A multiple choice and focused-cloze reading grammar test was used in the pre-test and the post-test to evaluate the effects of the treatments on the learners' acquisition of third person singular morpheme. This classroom-based study showed that the two treatment groups benefited from CF strategies, but according to the study, elicitation group outperformed the recast one.

  16. Illumination correction in psoriasis lesions images

    DEFF Research Database (Denmark)

    Maletti, Gabriela Mariel; Ersbøll, Bjarne Kjær

    2003-01-01

    An approach to automatically correct illumination problems in dermatological images is presented. The illumination function is estimated after combining the thematic map indicating skin-produced by an automated classification scheme- with the dermatological image data. The user is only required t...

  17. AFIP-7 Tomography – 2013 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Craft, A. E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Williams, W. J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Abir, M. I.K. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wachs, D. M. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-10-01

    This project seeks to assess the geometric stability of the U-Mo monolithic fuel system by evaluating the radiation-induced changes in the AFIP-7 experiment device. Neutron radiography and computed tomography (CT) provide valuable information about the post-irradiation condition of the fuel specimen. Tomographic reconstructions of the AFIP-7 fuel element will be analyzed to assess the geometric condition of the element after irradiation and provide information regarding the condition of the fuel, including gross geometric defects, bowing, twist, plate buckling, cracks, and other defects. The INL, in collaboration with Oregon State University (OSU), Missouri University of Science and Technology (Missouri S&T), and Real Time Tomography, is developing advanced neutron detector systems and tomographic reconstruction techniques to evaluate the AFIP-7 fuel element. Neutron computed tomography using the current neutron radiography technique available at the Neutron Radiography reactor (NRAD) is impractical due to the long time and high cost to produce a set of images for tomographic reconstruction. Advanced neutron radiography systems such as the micro-channel plate (MCP) detector and neutron computed radiography (CR) may reduce the time and cost of acquiring images for neutron CT. The MCP detector system tested at OSU and Missouri S&T provides neutron radiographs and has lower gamma sensitivity compared to other digital acquisition image systems. However, some significant, but not prohibitive, challenges must be overcome to make its use for imaging nuclear fuel more practical. Images taken with the MCP require significant image processing to reduce distortions and correct for the dynamic detector response. Also, the small active area of the detector (~30 mm diameter) requires the collection and combination of several images of a specimen, which may become time-consuming. The MCP is tested in low gamma dose environments, but should also be tested in the gamma field at the

  18. Mesenteric panniculitis: computed tomography aspects

    International Nuclear Information System (INIS)

    Moreira, Luiza Beatriz Melo; Alves, Jose Ricardo Duarte; Marchiori, Edson; Pinheiro, Ricardo Andrade; Melo, Alessandro Severo Alves de; Noro, Fabio

    2001-01-01

    Mesenteric panniculitis is an inflammatory process that represents the second stage of a rare progressive disease involving the adipose tissue of the mesentery. Imaging methods used in the diagnosis of mesenteric panniculitis include barium studies, ultrasonography, computed tomography and magnetic resonance imaging. Computed tomography is important for both, diagnosis and evaluation of the extension of the disease and treatment monitoring. Computed tomography findings may vary according to the stage of the disease and the amount of inflammatory material or fibrosis. There is also good correlation between the computed tomography and anatomical pathology findings. The authors studied 10 patients with mesenteric panniculitis submitted to computed tomography. Magnetic resonance imaging was also performed in one patient. In all patients, computed tomography revealed a heterogeneous mass in the mesentery with density of fat, interspersed with areas of soft tissue density and dilated vessels. (author)

  19. Comparison of computed tomography and sonography in choledocholithiasis

    International Nuclear Information System (INIS)

    Mitchell, S.E.; Clark, R.A.

    1984-01-01

    A comparison was made of sonography and computed tomography (CT) for the diagnosis of choledocholithiasis. Sonography correctly diagnosed nine of 49 patients with choledocholithiasis for a sensitivity rate of 18%. The accuracy rate for sonography was 19%; there were five false-positive examinations. CT correctly identified common duct stones in 26 of 30 patients for a sensitivity rate of 87%. The accuracy rate was 84%; there was one false positive. Sonography is limited in its ability to image calculi in the distal common bile duct. CT is effective for imaging common duct stones and is superior to sonography for diagnosing this cause of billary obstruction

  20. Comparison of computed tomography and sonography in choledocholithiasis

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, S.E.; Clark, R.A.

    1984-04-01

    A comparison was made of sonography and computed tomography (CT) for the diagnosis of choledocholithiasis. Sonography correctly diagnosed nine of 49 patients with choledocholithiasis for a sensitivity rate of 18%. The accuracy rate for sonography was 19%; there were five false-positive examinations. CT correctly identified common duct stones in 26 of 30 patients for a sensitivity rate of 87%. The accuracy rate was 84%; there was one false positive. Sonography is limited in its ability to image calculi in the distal common bile duct. CT is effective for imaging common duct stones and is superior to sonography for diagnosing this cause of billary obstruction.

  1. Scanning Microwave Induced Acoustic Tomography

    National Research Council Canada - National Science Library

    Wang, Lihong V

    2002-01-01

    .... Specifically, our accomplishments include (1) an exact and an approximate time-domain reconstruction algorithm for thermoacoustic tomography in a spherical geometry was derived and published, (2...

  2. Using Online Annotations to Support Error Correction and Corrective Feedback

    Science.gov (United States)

    Yeh, Shiou-Wen; Lo, Jia-Jiunn

    2009-01-01

    Giving feedback on second language (L2) writing is a challenging task. This research proposed an interactive environment for error correction and corrective feedback. First, we developed an online corrective feedback and error analysis system called "Online Annotator for EFL Writing". The system consisted of five facilities: Document Maker,…

  3. Can megavoltage computed tomography reduce proton range uncertainties in treatment plans for patients with large metal implants?

    Science.gov (United States)

    Newhauser, Wayne D.; Giebeler, Annelise; Langen, Katja M.; Mirkovic, Dragan; Mohan, Radhe

    2008-05-01

    Treatment planning calculations for proton therapy require an accurate knowledge of radiological path length, or range, to the distal edge of the target volume. In most cases, the range may be calculated with sufficient accuracy using kilovoltage (kV) computed tomography (CT) images. However, metal implants such as hip prostheses can cause severe streak artifacts that lead to large uncertainties in proton range. The purposes of this study were to quantify streak-related range errors and to determine if they could be avoided by using artifact-free megavoltage (MV) CT images in treatment planning. Proton treatment plans were prepared for a rigid, heterogeneous phantom and for a prostate cancer patient with a metal hip prosthesis using corrected and uncorrected kVCT images alone, uncorrected MVCT images and a combination of registered MVCT and kVCT images (the hybrid approach). Streak-induced range errors of 5-12 mm were present in the uncorrected kVCT-based patient plan. Correcting the streaks by manually assigning estimated true Hounsfield units improved the range accuracy. In a rigid heterogeneous phantom, the implant-related range uncertainty was estimated at based plan and the uncorrected MVCT-based plan. The hybrid planning approach yielded the best overall result. In this approach, the kVCT images provided good delineation of soft tissues due to high-contrast resolution, and the streak-free MVCT images provided smaller range uncertainties because they did not require artifact correction.

  4. Detection of left ventricular thrombi by computerised tomography

    International Nuclear Information System (INIS)

    Nair, C.K.; Sketch, M.H.; Mahoney, P.D.; Lynch, J.D.; Mooss, A.N.; Kenney, N.P.

    1981-01-01

    Sixteen patients suspected of having left ventricular mural thrombi were studied. All had suffered transmural myocardial infarction. Fifteen patients had a ventricular aneurysm. One had had systemic emboli. The mean length of time between the myocardial infarction and the study was 14.8 months, with a range of one month to 79 months. All patients underwent computerised tomography of the heart, M-mode echocardiography (M-mode), and two-dimensional echocardiography (2-D). Eight patients underwent left ventricular cineangiography. Five patients had surgical confirmation. Computerised tomography, two-dimensional, and M-mode echocardiography predicted left ventricular mural thrombi in 10, eight, and one of the 16 patients, respectively. Left ventricular cineangiography predicted left ventricular mural thrombi in four out of eight patients. Computerised tomography and left ventricular cineangiography correctly predicted the presence or absence of left ventricular thrombi in all five patients who underwent operation. In the same group, however, two-dimensional and M-mode echocardiography failed to predict the presence of thrombi in one and three patients, respectively. Among the 11 patients without surgical confirmation, one, in whom no left ventricular thrombi were shown by M-mode and two-dimensional echocardiography, was found to have thrombi on computerised tomography. In another, two-dimensional echocardiography was positive but this finding was not confirmed either by computerised tomography or by left ventricular angiography. (author)

  5. Corrective Jaw Surgery

    Medline Plus

    Full Text Available ... out more. Cleft Lip/Palate and Craniofacial Surgery Cleft Lip/Palate and Craniofacial Surgery A cleft lip may require ... out more. Cleft Lip/Palate and Craniofacial Surgery Cleft Lip/Palate and Craniofacial Surgery A cleft lip may require ...

  6. Corrective Jaw Surgery

    Science.gov (United States)

    ... out more. Cleft Lip/Palate and Craniofacial Surgery Cleft Lip/Palate and Craniofacial Surgery A cleft lip may require ... out more. Cleft Lip/Palate and Craniofacial Surgery Cleft Lip/Palate and Craniofacial Surgery A cleft lip may require ...

  7. Positron emission tomography

    International Nuclear Information System (INIS)

    Paans, A.M.J.

    1981-01-01

    Positron emitting radiopharmaceuticals have special applications in in-vivo studies of biochemical processes. The combination of a cyclotron for the production of radionuclides and a positron emission tomograph for the registration of the distribution of radioactivity in the body enables the measurement of local radioactivity concentration in tissues, and opens up new possibilities in the diagnosis and examination of abnormalities in the metabolism. The principles and procedures of positron emission tomography are described and the necessary apparatus considered, with emphasis on the positron camera. The first clinical applications using 55 Co bloemycine for tumor detection are presented. (C.F.)

  8. Positron Emission Tomography (PET)

    Energy Technology Data Exchange (ETDEWEB)

    Welch, M.J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET. 22 figs.

  9. Computed tomography device

    International Nuclear Information System (INIS)

    Ohhashi, A.

    1985-01-01

    A computed tomography device comprising a subtraction unit which obtains differential data strings representing the difference between each time-serial projection data string of a group of projection data strings corresponding to a prospective reconstruction image generated by projection data strings acquired by a data acquisition system, a convolution unit which convolves each time-serial projection data string of the group of projection data strings corresponding to the prospective reconstruction image, and a back-projection unit which back-projects the convolved data strings

  10. Compressive Phase Contrast Tomography

    International Nuclear Information System (INIS)

    Maia, Filipe; MacDowell, Alastair; Marchesini, Stefano; Padmore, Howard A.; Parkinson, Dula Y.; Pien, Jack; Schirotzek, Andre; Yang, Chao

    2010-01-01

    When x-rays penetrate soft matter, their phase changes more rapidly than their amplitude. Interference effects visible with high brightness sources creates higher contrast, edge enhanced images. When the object is piecewise smooth (made of big blocks of a few components), such higher contrast datasets have a sparse solution. We apply basis pursuit solvers to improve SNR, remove ring artifacts, reduce the number of views and radiation dose from phase contrast datasets collected at the Hard X-Ray Micro Tomography Beamline at the Advanced Light Source. We report a GPU code for the most computationally intensive task, the gridding and inverse gridding algorithm (non uniform sampled Fourier transform).

  11. Positron emission tomography

    CERN Document Server

    Paans, A M J

    2006-01-01

    Positron Emission Tomography (PET) is a method for measuring biochemical and physiological processes in vivo in a quantitative way by using radiopharmaceuticals labelled with positron emitting radionuclides such as 11C, 13N, 15O and 18F and by measuring the annihilation radiation using a coincidence technique. This includes also the measurement of the pharmacokinetics of labelled drugs and the measurement of the effects of drugs on metabolism. Also deviations of normal metabolism can be measured and insight into biological processes responsible for diseases can be obtained. At present the combined PET/CT scanner is the most frequently used scanner for whole-body scanning in the field of oncology.

  12. Dynamic tomography in dentistry

    International Nuclear Information System (INIS)

    Richards, A.G.

    1976-01-01

    Dynamic tomography is a procedure in which a sandwich of eight underexposed radiographs is utilized to display sharp images of details lying in a thin layer at any chosen depth within a subject. When the sandwich of films is viewed by transmitted light, the location of this chosen layer can be moved up or down within the subject by simply mechanically moving the radiographs in a precise manner relative to each other. The amount of radiation used in exposing the eight radiographs is the same as would be used to fully expose two normal radiographs

  13. Optical Coherence Tomography

    DEFF Research Database (Denmark)

    Fercher, A.F.; Andersen, Peter E.

    2017-01-01

    Optical coherence tomography (OCT) is a technique that is used to peer inside a body noninvasively. Tissue structure defined by tissue absorption and scattering coefficients, and the speed of blood flow, are derived from the characteristics of light remitted by the body. Singly backscattered light...... technique can be realized by using ultrafast wavelength scanning light sources. For tissue imaging, the light source wavelengths are restricted to the red and near-infrared (NIR) region from about 600 to 1300 nm, the so-called therapeutic window, where absorption (μa ≈ 0.01 mm−1) is small enough. Transverse...

  14. Gantry for computed tomography

    International Nuclear Information System (INIS)

    Kelman, A.L.

    1981-01-01

    A novel design of gantry for use in computed tomography is described in detail. In the new gantry, curved tracks are mounted to the laterally spaced apart sides of the frame which rotates and carries the detector and X-ray source. This permits the frame to be tilted either side of vertical enabling angular slices of body layers to be viewed and allows simplification of the algorithm which the computer uses for image reconstruction. The tracks are supported on rollers which carry the substantial weight. Explicit engineering details are presented. (U.K.)

  15. Positron Emission Tomography (PET)

    International Nuclear Information System (INIS)

    Welch, M.J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET. 22 figs

  16. Gantry for computed tomography

    International Nuclear Information System (INIS)

    Kelman, A.L.; Peterson, T.E.

    1981-01-01

    A novel design of gantry for use in computed tomography is described in detail. In the new gantry, curved tracks are mounted to the laterally spaced apart sides of the frame which rotates and carries the detector and X-ray source. This permits the frame to be tilted either side of vertical enabling angular slices of body layers to be viewed and allows simplification of the algorithm which the computer uses for image reconstruction. The tracks are supported on rollers which carry the substantial weight. Explicit engineering details are presented especially of the ball bearing races used in the rotation. (U.K.)

  17. Solar Stereoscopy and Tomography

    Directory of Open Access Journals (Sweden)

    Markus J. Aschwanden

    2011-10-01

    Full Text Available We review stereoscopic and tomographic methods used in the solar corona, including ground-based and space-based measurements, using solar rotation or multiple spacecraft vantage points, in particular from the STEREO mission during 2007--2010. Stereoscopic and tomographic observations in the solar corona include large-scale structures, streamers, active regions, coronal loops, loop oscillations, acoustic waves in loops, erupting filaments and prominences, bright points, jets, plumes, flares, CME source regions, and CME-triggered global coronal waves. Applications in the solar interior (helioseismic tomography and reconstruction and tracking of CMEs from the outer corona and into the heliosphere (interplanetary CMEs are not included.

  18. Practical adaptive quantum tomography

    Science.gov (United States)

    Granade, Christopher; Ferrie, Christopher; Flammia, Steven T.

    2017-11-01

    We introduce a fast and accurate heuristic for adaptive tomography that addresses many of the limitations of prior methods. Previous approaches were either too computationally intensive or tailored to handle special cases such as single qubits or pure states. By contrast, our approach combines the efficiency of online optimization with generally applicable and well-motivated data-processing techniques. We numerically demonstrate these advantages in several scenarios including mixed states, higher-dimensional systems, and restricted measurements. http://cgranade.com complete data and source code for this work are available online [1], and can be previewed at https://goo.gl/koiWxR.

  19. Recent RI tomography

    International Nuclear Information System (INIS)

    Katsuyama, Naofumi; Kawakami, Kenshi

    1979-01-01

    In this paper, new equipments for radionuclide tomography and recent radiopharmaceuticals with positron emission are described. Positron CT is very usefull for functional imaging. Those nucleides 11 C, 13 N and 15 O have been studied for their sake, but used as a usefull tool as tracer elements for the basic research in the fields of chemistry, bio-chemistry, biology and medicine. Also they have been utilized in the diagnosis of diseases, particularly in the non-invasive and dynamic assessment of metabolic and functional disorders in the patients. We will also describe the clinical usefullness of a commercial scanner such as the Anger multiplane tomographic scanner (PHO/CON). (author)

  20. Sparse-view Reconstruction of Dynamic Processes by Neutron Tomography

    Science.gov (United States)

    Wang, Hu; Kaestner, Anders; Zou, Yubin; Lu, Yuanrong; Guo, Zhiyu

    As for neutron tomography, hundreds of projections over the range of 0-180 degrees are required to reconstruct the attenuation matrix with the traditional filtered back projection (FBP) algorithm, and the total acquisition time can reach several hours. This poor temporal resolution constrains that neutron tomography is only feasible to investigate static or quasi-static process. Reducing the number of projections is a possible way to improve the temporal resolution, which however highly relies on sparse-view reconstruction algorithms. To assess the feasibility of sparse-view reconstruction for neutron tomography, both simulation and an experiment of water uptake from a piece of wood composite were studied, and the results indicated that temporal resolution of neutron tomography can be improved when combining the Golden Ratio scan strategy with a prior image-constrained sparse-view reconstruction algorithm-PICCS.

  1. Grating-based tomography of human tissues

    Science.gov (United States)

    Müller, Bert; Schulz, Georg; Mehlin, Andrea; Herzen, Julia; Lang, Sabrina; Holme, Margaret; Zanette, Irene; Hieber, Simone; Deyhle, Hans; Beckmann, Felix; Pfeiffer, Franz; Weitkamp, Timm

    2012-07-01

    The development of therapies to improve our health requires a detailed knowledge on the anatomy of soft tissues from the human body down to the cellular level. Grating-based phase contrast micro computed tomography using synchrotron radiation provides a sensitivity, which allows visualizing micrometer size anatomical features in soft tissue without applying any contrast agent. We show phase contrast tomography data of human brain, tumor vessels and constricted arteries from the beamline ID 19 (ESRF) and urethral tissue from the beamline W2 (HASYLAB/DESY) with micrometer resolution. Here, we demonstrate that anatomical features can be identified within brain tissue as well known from histology. Using human urethral tissue, the application of two photon energies is compared. Tumor vessels thicker than 20 μm can be perfectly segmented. The morphology of coronary arteries can be better extracted in formalin than after paraffin embedding.

  2. Mixed-Precision Spectral Deferred Correction: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Grout, Ray W. S.

    2015-09-02

    Convergence of spectral deferred correction (SDC), where low-order time integration methods are used to construct higher-order methods through iterative refinement, can be accelerated in terms of computational effort by using mixed-precision methods. Using ideas from multi-level SDC (in turn based on FAS multigrid ideas), some of the SDC correction sweeps can use function values computed in reduced precision without adversely impacting the accuracy of the final solution. This is particularly beneficial for the performance of combustion solvers such as S3D [6] which require double precision accuracy but are performance limited by the cost of data motion.

  3. FPGA-Based Pulse Pileup Correction.

    Science.gov (United States)

    Haselman, M D; Hauck, S; Lewellen, T K; Miyaoka, R S

    2010-01-01

    Modern Field Programmable Gate Arrays (FPGAs) are capable of performing complex discrete signal processing algorithms with clock rates above 100MHz. This combined with FPGA's low expense, ease of use, and selected dedicated hardware make them an ideal technology for a data acquisition system for a positron emission tomography (PET) scanner. The University of Washington is producing a high-resolution, small-animal PET scanner that utilizes FPGAs as the core of the front-end electronics. For this next generation scanner, functions that are typically performed in dedicated circuits, or offline, are being migrated to the FPGA. This will not only simplify the electronics, but the features of modern FPGAs can be utilizes to add significant signal processing power to produce higher resolution images. In this paper we report on an all-digital pulse pileup correction algorithm that is being developed for the FPGA. The pileup mitigation algorithm will allow the scanner to run at higher count rates without incurring large data losses due to the overlapping of scintillation signals. This correction technique utilizes a reference pulse to extract timing and energy information for most pileup events. Using pulses were acquired from a Zecotech Photonics MAPDN with an LFS-3 scintillator, we show that good timing and energy information can be achieved in the presence of pileup.

  4. Food systems in correctional settings

    DEFF Research Database (Denmark)

    Smoyer, Amy; Kjær Minke, Linda

    management of food systems may improve outcomes for incarcerated people and help correctional administrators to maximize their health and safety. This report summarizes existing research on food systems in correctional settings and provides examples of food programmes in prison and remand facilities......, including a case study of food-related innovation in the Danish correctional system. It offers specific conclusions for policy-makers, administrators of correctional institutions and prison-food-service professionals, and makes proposals for future research....

  5. Effect of fluid-filled boreholes on resistivity tomography; Hiteiko tomography ni okeru konaisui no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, Y. [DIA Consultants Co. Ltd., Tokyo (Japan)

    1997-10-22

    Theoretical discussions were given on the effect of fluid-filled boreholes on resistivity tomography. The discussions performed incorporation of earth resistance as a method to consider borehole diameters in an FEM calculation using wire elements. The numerical experiment conducted a simulation on the following two objects: resistivity tomography in a horizontal multi-layer structure consisted of layers with resistivity ranging from 10 to 10000 ohm-m, and a model with a slanted low resistivity band existing in a background of 5000 ohm-m. As a result of the discussions, it was made clear that the effect of the boreholes can be corrected by giving earth resistance between the wire elements and natural ground. An improved potential calculating program indicated that the effect of the fluid-filled boreholes in the resistivity tomography generates false images with high resistivity along the bores if the resistivity has high contrast. Incorporating the wire elements into an inverse analysis model reduces the false images and improves the accuracy. 1 ref., 12 figs.

  6. EDITORIAL: Optical tomography and digital holography

    Science.gov (United States)

    Coupland, Jeremy; Lobera, Julia

    2008-07-01

    report a transmission set-up to investigate poling in a lithium niobate crystal. Developments in the field of optical tomography are covered by the majority of the papers in this issue. The paper by Debailleul et al shows the differences between images reconstructed from a single holographic recording and those synthesized from a series of holograms made with different plane wave illumination. This is optical diffraction tomography (ODT), the original method discussed by Wolf that is characterized by large NA and monochromatic illumination. An alternative strategy is to synthesize the image from holograms made at several wavelengths with low NA optics. This can be done either by sweeping the source or detector response or the reference path in a white light interferometer. These methods are called spectral domain and temporal domain optical coherence tomography (SD-ODT and TD-OCT) respectively. SD-OCT is illustrated in the paper by Potcoava and Kim for biomedical applications. SD- and TD-OCT are compared with confocal microscopy in the paper by Stifter et al. The huge potential of OCT as a diagnostic in polymer and composite materials is apparent from this work. There are clearly many different ways to implement optical tomography, and several established techniques, such as scanning white light interferometry (SWLI) and confocal microscopy, can be considered to be tomographic processes. We present two papers in this issue. The first attempts to bring together the topics of holography, microscopy and tomography within the framework of linear systems theory. It is shown that the images (or interferograms) produced by these instruments can be considered as estimates of refractive index contrast that are obtained using a linear inversion of the scattered field data. It is noted, however, that this is only strictly correct for the case of weak scattering and this is only a crude approximation for many cases of practical interest. The second paper that we present illustrates

  7. Political Correctness and Cultural Studies.

    Science.gov (United States)

    Carey, James W.

    1992-01-01

    Discusses political correctness and cultural studies, dealing with cultural studies and the left, the conservative assault on cultural studies, and political correctness in the university. Describes some of the underlying changes in the university, largely unaddressed in the political correctness debate, that provide the deep structure to the…

  8. Positron emission tomography

    International Nuclear Information System (INIS)

    Bolwig, T.G.; Haunsoe, S.; Dahlgaard Hove, J.; Hesse, B.; Hoejgard, L.; Jensen, M.; Paulson, O.B.; Hastrup Svendsen, J.; Soelvsten Soerensen, S.

    1994-01-01

    Positron emission tomography (PET) is a method for quantitative imaging of regional physiological and biochemical parameters. Positron emitting radioactive isotopes can be produced by a cyclotron, eg. the biologically important carbon ( 11 C), oxygen ( 15 O), and nitrogen ( 13 N) elements. With the tomographic principles of the PET scanner the quantitative distribution of the administered isotopes can be determined and images can be provided as well as dynamic information on blood flow, metabolism and receptor function. In neurology PET has been used for investigations on numerous physiological processes in the brain: circulation, metabolism and receptor studies. In Parkinson's disease PET studies have been able to localize the pathology specifically, and in early stroke PET technique can outline focal areas with living but non-functioning cells, and this could make it possible to intervene in this early state. With positron emission tomography a quantitative evaluation of myocardial blood flow, glucose and fatty acid metabolism can be made as well as combined assessments of blood flow and metabolism. Combined studies of blood flow and metabolism can determine whether myocardial segments with abnormal motility consist of necrotic or viable tissue, thereby delineating effects of revascularisation. In the future it will probably be possible to characterize the myocardial receptor status in different cardiac diseases. The PET technique is used in oncology for clinical as well as more basic research on tumor perfusion and metabolism. Further, tumor uptake of positron labelled cytotoxic drugs might predict the clinical benefit of treatment. (au) (19 refs.)

  9. Positron emission tomography. Positronemisionstomografi

    Energy Technology Data Exchange (ETDEWEB)

    Bolwig, T.G.; Haunsoe, S.; Dahlgaard Hove, J.; Hesse, B.; Hoejgard, L.; Jensen, M.; Paulson, O.B.; Hastrup Svendsen, J.; Soelvsten Soerensen, S.

    1994-10-01

    Positron emission tomography (PET) is a method for quantitative imaging of regional physiological and biochemical parameters. Positron emitting radioactive isotopes can be produced by a cyclotron, eg. the biologically important carbon ([sup 11]C), oxygen ([sup 15]O), and nitrogen ([sup 13]N) elements. With the tomographic principles of the PET scanner the quantitative distribution of the administered isotopes can be determined and images can be provided as well as dynamic information on blood flow, metabolism and receptor function. In neurology PET has been used for investigations on numerous physiological processes in the brain: circulation, metabolism and receptor studies. In Parkinson's disease PET studies have been able to localize the pathology specifically, and in early stroke PET technique can outline focal areas with living but non-functioning cells, and this could make it possible to intervene in this early state. With positron emission tomography a quantitative evaluation of myocardial blood flow, glucose and fatty acid metabolism can be made as well as combined assessments of blood flow and metabolism. Combined studies of blood flow and metabolism can determine whether myocardial segments with abnormal motility consist of necrotic or viable tissue, thereby delineating effects of revascularisation. In the future it will probably be possible to characterize the myocardial receptor status in different cardiac diseases. The PET technique is used in oncology for clinical as well as more basic research on tumor perfusion and metabolism. Further, tumor uptake of positron labelled cytotoxic drugs might predict the clinical benefit of treatment. (au) (19 refs.).

  10. Optical Coherence Tomography

    DEFF Research Database (Denmark)

    Mogensen, Mette; Themstrup, Lotte; Banzhaf, Christina

    2014-01-01

    Optical coherence tomography (OCT) has developed rapidly since its first realisation in medicine and is currently an emerging technology in the diagnosis of skin disease. OCT is an interferometric technique that detects reflected and backscattered light from tissue and is often described as the o......Optical coherence tomography (OCT) has developed rapidly since its first realisation in medicine and is currently an emerging technology in the diagnosis of skin disease. OCT is an interferometric technique that detects reflected and backscattered light from tissue and is often described...... as the optical analogue to ultrasound. The inherent safety of the technology allows for in vivo use of OCT in patients. The main strength of OCT is the depth resolution. In dermatology, most OCT research has turned on non-melanoma skin cancer (NMSC) and non-invasive monitoring of morphological changes...... in a number of skin diseases based on pattern recognition, and studies have found good agreement between OCT images and histopathological architecture. OCT has shown high accuracy in distinguishing lesions from normal skin, which is of great importance in identifying tumour borders or residual neoplastic...

  11. Transverse tomography and radiotherapy

    International Nuclear Information System (INIS)

    Leer, J.W.H.

    1982-01-01

    This study was intended to delineate the indications for radiotherapy treatment-planning with the help of computerized axial tomography (C.T.) and transverse analog tomography (T.A.T.). Radiotherapy localisation procedures with the conventional method (simulator), with the CT-scanner and with the transverse analog tomograph (T.A.T., Simtomix, Oldelft) were compared. As criterium for evaluation differences in reconstruction drawing based on these methods were used. A certain method was judged ''superior'' to another if the delineation of the target volume was more accurate, if a better impression was gained of the site of (for irradiation) organs at risk, or if the localisation could only be performed with that method. The selected group of patients consisted of 120 patients for whom a reconstruction drawing in the transverse plane was made according to the treatment philosophy. In this group CT-assisted localisation was judged on 68 occasions superior to the conventional method. In a number of cases it was found that a ''standard'' change in a standard target volume, on the base of augmented anatomical knowledge, made the conventional method sufficient. The use of CT-scanner for treatment planning was estimated. For ca. 270/1000 new patients a CT-scan is helpful (diagnostic scan), for 140 of them the scan is necessary (planning scan). The quality of the anatomical information obtained with the T.A.T. does not yet fall within acceptable limits, but progress has been made. (Auth.)

  12. Compressed sensing electron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Leary, Rowan, E-mail: rkl26@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Saghi, Zineb; Midgley, Paul A. [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Holland, Daniel J. [Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Pembroke Street, Cambridge CB2 3RA (United Kingdom)

    2013-08-15

    The recent mathematical concept of compressed sensing (CS) asserts that a small number of well-chosen measurements can suffice to reconstruct signals that are amenable to sparse or compressible representation. In addition to powerful theoretical results, the principles of CS are being exploited increasingly across a range of experiments to yield substantial performance gains relative to conventional approaches. In this work we describe the application of CS to electron tomography (ET) reconstruction and demonstrate the efficacy of CS–ET with several example studies. Artefacts present in conventional ET reconstructions such as streaking, blurring of object boundaries and elongation are markedly reduced, and robust reconstruction is shown to be possible from far fewer projections than are normally used. The CS–ET approach enables more reliable quantitative analysis of the reconstructions as well as novel 3D studies from extremely limited data. - Highlights: • Compressed sensing (CS) theory and its application to electron tomography (ET) is described. • The practical implementation of CS–ET is outlined and its efficacy demonstrated with examples. • High fidelity tomographic reconstruction is possible from a small number of images. • The CS–ET reconstructions can be more reliably segmented and analysed quantitatively. • CS–ET is applicable to different image content by choice of an appropriate sparsifying transform.

  13. Rethinking political correctness.

    Science.gov (United States)

    Ely, Robin J; Meyerson, Debra E; Davidson, Martin N

    2006-09-01

    Legal and cultural changes over the past 40 years ushered unprecedented numbers of women and people of color into companies' professional ranks. Laws now protect these traditionally underrepresented groups from blatant forms of discrimination in hiring and promotion. Meanwhile, political correctness has reset the standards for civility and respect in people's day-to-day interactions. Despite this obvious progress, the authors' research has shown that political correctness is a double-edged sword. While it has helped many employees feel unlimited by their race, gender, or religion,the PC rule book can hinder people's ability to develop effective relationships across race, gender, and religious lines. Companies need to equip workers with skills--not rules--for building these relationships. The authors offer the following five principles for healthy resolution of the tensions that commonly arise over difference: Pause to short-circuit the emotion and reflect; connect with others, affirming the importance of relationships; question yourself to identify blind spots and discover what makes you defensive; get genuine support that helps you gain a broader perspective; and shift your mind-set from one that says, "You need to change," to one that asks, "What can I change?" When people treat their cultural differences--and related conflicts and tensions--as opportunities to gain a more accurate view of themselves, one another, and the situation, trust builds and relationships become stronger. Leaders should put aside the PC rule book and instead model and encourage risk taking in the service of building the organization's relational capacity. The benefits will reverberate through every dimension of the company's work.

  14. Corrective Jaw Surgery

    Medline Plus

    Full Text Available ... Lip/Palate and Craniofacial Surgery A cleft lip may require one or more surgeries depending on the ... are not uncommon. Individuals with a TMJ disorder may experience a variety of symptoms, such as earaches, ...

  15. Corrective Jaw Surgery

    Medline Plus

    Full Text Available ... Do Who We Are News Videos Contact Find a Surgeon What We Do Anesthesia Anesthesia Oral and ... Craniofacial Surgery Cleft Lip/Palate and Craniofacial Surgery A cleft lip may require one or more surgeries ...

  16. CLOSURE REPORT FOR CORRECTIVE ACTION UNIT 214: BUNKERS AND STORAGE AREAS NEVADA TEST SITE, NEVADA

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-09-01

    The purpose of this Closure Report is to document that the closure of CAU 214 complied with the Nevada Division of Environmental Protection-approved Corrective Action Plan closure requirements. The closure activities specified in the Corrective Action Plan were based on the approved corrective action alternatives presented in the CAU 214 Corrective Action Decision Document.

  17. 75 FR 17055 - Gray's Reef National Marine Sanctuary Regulations on the Use of Spearfishing Gear; Correction

    Science.gov (United States)

    2010-04-05

    ... notice corrects the grammatical error in Part 922.92 (a)(11)(iii) by adding the word ``it'' to the... requirements because it is unnecessary. This rule corrects a grammatical error in the regulations that does not... necessary due to the minimal nature of the correcting amendment. This rule corrects a grammatical error in...

  18. A simulation study of linear coupling effects and their correction in RHIC

    International Nuclear Information System (INIS)

    Parzen, G.

    1993-01-01

    This paper describes a possible skew quadrupole correction system for linear coupling effects for the RHIC92 lattice. A simulation study has been done for this correction system. Results are given for the performance of the correction system and the required strength of the skew quadrupole corrections. The location of the correctors is discussed. For RHIC92, it appears possible to use the same 2 family correction system for all the likely choices of β*. The simulation study gives results for the residual tune splitting that remains after correction with a 2 family correction system. It also gives results for the beta functions before and after correction

  19. C12/C13-ratio determination in nanodiamonds by atom-probe tomography.

    Science.gov (United States)

    Lewis, Josiah B; Isheim, Dieter; Floss, Christine; Seidman, David N

    2015-12-01

    The astrophysical origins of ∼ 3 nm-diameter meteoritic nanodiamonds can be inferred from the ratio of C12/C13. It is essential to achieve high spatial and mass resolving power and minimize all sources of signal loss in order to obtain statistically significant measurements. We conducted atom-probe tomography on meteoritic nanodiamonds embedded between layers of Pt. We describe sample preparation, atom-probe tomography analysis, 3D reconstruction, and bias correction. We present new data from meteoritic nanodiamonds and terrestrial standards and discuss methods to correct isotopic measurements made with the atom-probe tomograph. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Quantum corrected Schwarzschild thin-shell wormhole

    Energy Technology Data Exchange (ETDEWEB)

    Jusufi, Kimet [State University of Tetovo, Physics Department, Tetovo (Macedonia, The Former Yugoslav Republic of)

    2016-11-15

    Recently, Ali and Khalil (Nucl Phys B, 909, 173-185, 2016), based on Bohmian quantum mechanics, derived a quantum corrected version of the Schwarzschild metric. In this paper, we construct a quantum corrected Schwarzschild thin-shell wormhole (QSTSW) and investigate the stability of this wormhole. First we compute the surface stress at the wormhole throat by applying the Darmois-Israel formalism to the modified Schwarzschild metric and show that exotic matter is required at the throat to keep the wormhole stable. We then study the stability analysis of the wormhole by considering phantom-energy for the exotic matter, generalized Chaplygin gas (GCG), and the linearized stability analysis. It is argued that quantum corrections can affect the stability domain of the wormhole. (orig.)

  1. Designing a custom made gauge device for application in the access hole correction in the dental implant surgical guide.

    Science.gov (United States)

    Moslehifard, Elnaz; Nokar, Saeid

    2012-06-01

    Anatomic limitation and restorative demands encourage the surgeon to gain precision in planning and surgical positioning of dental implants. Ideal placement facilitates the establishment of favorable forces on the implants and the prosthetic component as well as ensures an esthetic outcome. The predictability of success can be increased, if the implants are placed properly. During oral implant placement, the drill must be guided by the surgeon according to the final form of the restoration. A surgical template would be helpful in more accurate placement of the dental implants. Surgical guides fabricated in laboratory are still being used. But these guides often need correction after computed tomography (CT) scan evaluation. For their correction and reducing the possibility of error, a scaled milling machine is usually required. But this scaled milling machine is not available omnipresent. In this article a simple device is described that can be attached to any milling machine and surveyor. The presented device can correct the diagnostic template easily and predicts dental implants placement with more favorable esthetic and occlusal outcome.

  2. Resistivity tomography using line electrode; Sendenryugen wo tsukatta hiteiko tomography

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, Y. [Dia Consultants Company, Tokyo (Japan)

    1996-10-01

    Resistivity tomography (RT) using line electrode was studied. Although line electrode is available even for RT, in casing line electrode, only one kind of electrode data is obtained. The calculation method of potential and sensitivity distributions based on line electrode is not yet established. Since various data in various measurement arrangements are required for analysis of RT, the new measurement method was devised which measures resistivities while successively changing the tip depth of line electrode. Until now, although potential has been calculated under the assumption that outflow current per unit length of line electrode is uniform, this assumption is incorrect. The new potential distribution calculation method was thus proposed. Sensitivity distribution calculation for inverse analysis is also described. RT using line electrode could precisely obtain deep information which couldn`t be obtained only by measurement along the surface measuring line. Although RT is poorer in accuracy than the previous point electrode method, it will be probably improved by 3-electrode arrangement. RT is also useful in the case difficult to apply point electrode method. 3 refs., 10 figs.

  3. Access to the kinematic information for the velocity model determination by 3-D reflexion tomography; Acces a l'information cinematique pour la determination du modele de vitesse par tomographie de reflexion 3D

    Energy Technology Data Exchange (ETDEWEB)

    Broto, K.

    1999-04-01

    The access to a reliable image of the subsurface requires a kinematically correct velocity depth model.Reflection tomography allows to meet this requirement if a complete and coherent pre-stack kinematic database can be provided. However, in case of complex sub-surfaces, wave propagation may lead to hardly interpretable seismic events in the time data. The SMART method is a sequential method that relies on reflection tomography for updating the velocity model and on the pre-stack depth migrated domain for extracting kinematic information that is not readily accessible in the time domain. For determining 3-D subsurface velocity models in case of complex structures, we propose the seriated SMART 2-D method as an alternative to the currently inconceivable SMART 3-D method. In order to extract kinematic information from a 3-D pre-stack data set, we combine detours through the 2-D pre-stack depth domain for a number of selected lines of the studied 3-D survey and 3-D reflection tomography for updating the velocity model. The travel-times from the SMART method being independent of the velocity model used for passing through the pre-stack depth migrated domain, the access to 3-D travel-times is ensured, even if they have been obtained via a 2-D domain. Besides, we propose to build a kinematical guide for ensuring the coherency of the seriated 2-D pre-stack depth interpretations and the access to a complete 3-D pre-stack kinematic database when dealing with structures associated with 3-D wave propagation. We opt for a blocky representation of the velocity model in order to be able to cope with complex structures. This representation leads us to define specific methodological rules for carrying out the different steps of the seriated SMART 2-D method. We also define strategies, built from the analysis of first inversion results, for an efficient application of reflection tomography. Besides, we discuss the problem of uncertainties to be assigned to travel-times obtained

  4. Comparing staging by positron emission tomography with contrast-enhanced computed tomography and by pathology in head and neck squamous cell carcinoma.

    Science.gov (United States)

    Qualliotine, J R; Mydlarz, W K; Chan, J Y K; Zhou, X; Wang, H; Agrawal, N

    2015-12-01

    This study aimed to evaluate the ability of positron emission tomography with contrast-enhanced computed tomography to correctly stage head and neck squamous cell carcinomas, in comparison with pathological staging. Positron emission tomography computed tomography was used to determine the tumour-node-metastasis classification and overall cancer stage in 85 head and neck squamous cell carcinoma patients who underwent pre-operative imaging using this modality and primary surgery between July 2010 and January 2013. Staging by positron emission tomography computed tomography was retrospectively compared with staging using pathological specimens. Agreement between imaging stage and pathological stage was examined by univariate and multivariate analysis both overall and for each primary tumour site. This imaging modality was 87.5 per cent sensitive and 44.8 per cent specific in identifying regional cervical metastases, and had false positive and false negative rates of 18.8 per cent and 8.2 per cent, respectively. The positive predictive and negative predictive values were 75.4 per cent and 65.0 per cent, respectively. Univariate and multivariate analyses revealed a significant agreement between positron emission tomography computed tomography and pathological node classification in older patients and for the oral cavity primary tumour site. There was significant agreement between both methods in the overall classification only for tumours classified as T3 or greater. Positron emission tomography computed tomography should be used with caution for the pre-operative staging of head and neck cancers because of its high false positive and false negative rates.

  5. 7 CFR 275.16 - Corrective action planning.

    Science.gov (United States)

    2010-01-01

    ... provide responsive service to eligible households. (b) The State agency and project area(s)/management... control reviews and those deficiencies requiring corrective action only at the project area level... project area/management unit corrective action, the State agency and/or project area/management unit shall...

  6. Finding Incorrect and Missing Quality Requirements Definitions Using Requirements Frame

    Science.gov (United States)

    Kaiya, Haruhiko; Ohnishi, Atsushi

    Defining quality requirements completely and correctly is more difficult than defining functional requirements because stakeholders do not state most of quality requirements explicitly. We thus propose a method to measure a requirements specification for identifying the amount of quality requirements in the specification. We also propose another method to recommend quality requirements to be defined in such a specification. We expect stakeholders can identify missing and unnecessary quality requirements when measured quality requirements are different from recommended ones. We use a semi-formal language called X-JRDL to represent requirements specifications because it is suitable for analyzing quality requirements. We applied our methods to a requirements specification, and found our methods contribute to defining quality requirements more completely and correctly.

  7. A practical procedure to improve the accuracy of radiochromic film dosimetry. A integration with a correction method of uniformity correction and a red/blue correction method

    International Nuclear Information System (INIS)

    Uehara, Ryuzo; Tachibana, Hidenobu; Ito, Yasushi; Yoshino, Shinichi; Matsubayashi, Fumiyasu; Sato, Tomoharu

    2013-01-01

    It has been reported that the light scattering could worsen the accuracy of dose distribution measurement using a radiochromic film. The purpose of this study was to investigate the accuracy of two different films, EDR2 and EBT2, as film dosimetry tools. The effectiveness of a correction method for the non-uniformity caused from EBT2 film and the light scattering was also evaluated. In addition the efficacy of this correction method integrated with the red/blue correction method was assessed. EDR2 and EBT2 films were read using a flatbed charge-coupled device scanner (EPSON 10000 G). Dose differences on the axis perpendicular to the scanner lamp movement axis were within 1% with EDR2, but exceeded 3% (Maximum: +8%) with EBT2. The non-uniformity correction method, after a single film exposure, was applied to the readout of the films. A corrected dose distribution data was subsequently created. The correction method showed more than 10%-better pass ratios in dose difference evaluation than when the correction method was not applied. The red/blue correction method resulted in 5%-improvement compared with the standard procedure that employed red color only. The correction method with EBT2 proved to be able to rapidly correct non-uniformity, and has potential for routine clinical intensity modulated radiation therapy (IMRT) dose verification if the accuracy of EBT2 is required to be similar to that of EDR2. The use of red/blue correction method may improve the accuracy, but we recommend we should use the red/blue correction method carefully and understand the characteristics of EBT2 for red color only and the red/blue correction method. (author)

  8. 76 FR 36996 - Requirements for Taxpayers Filing Form 5472; Correction

    Science.gov (United States)

    2011-06-24

    ... paragraph of the column, first and second lines, the language ``It has been determined that this temporary... ``Special Analyses'', the first paragraph of the column, third and fourth lines, the language ``section 7805... preamble, under the paragraph heading ``Drafting Information'', sixth line of the paragraph, the language...

  9. Neurovascular photoacoustic tomography

    Directory of Open Access Journals (Sweden)

    Song Hu

    2010-06-01

    Full Text Available Neurovascular coupling refers to the relationship between neuronal activities and downstream hemodynamic responses. Photoacoustic tomography (PAT, enabling comprehensive label-free imaging of hemodynamic activities with highly scalable penetration and spatial resolution, has great potential in the study of neurovascular coupling. In this review, we first introduce the technical basis of hemodynamic PAT—including label-free quantification of total hemoglobin concentration, blood oxygenation, and blood flow—as well as its applications in hemodynamic monitoring. Then, we demonstrate the potential application of PAT in neurovascular imaging by highlighting representative studies on cerebral vascular responses to whisker stimulation and Alzheimer’s disease. Finally, potential research directions and associated technical challenges are discussed.

  10. Tomography by positrons emission

    International Nuclear Information System (INIS)

    Mosconi, Sergio L.

    1999-01-01

    The tomography by positrons emission is a technology that allows to measure the concentration of positrons emission in a tri dimensional body through external measurements. Among the isotope emissions have carbon isotopes are ( 11 C), of the oxygen ( 15 O), of the nitrogen ( 13 N) that are three the element that constitute the base of the organic chemistry. Theses have on of the PET's most important advantages, since many biological interesting organic molecules can be tracer with these isotopes for the metabolism studies 'in vivo' through PET, without using organic tracers that modify the metabolism. The mentioned isotopes, also possess the characteristic of having short lifetime, that constitute on of PET's advantages from the dosimetric point of view. Among 11 C, 15 O, and 13 N, other isotopes that can be obtained of a generator as the 68 Ga and 82 Rb

  11. Positron emission computed tomography

    International Nuclear Information System (INIS)

    Grover, M.; Schelbert, H.R.

    1985-01-01

    Regional mycardial blood flow and substrate metabolism can be non-invasively evaluated and quantified with positron emission computed tomography (Positron-CT). Tracers of exogenous glucose utilization and fatty acid metabolism are available and have been extensively tested. Specific tracer kinetic models have been developed or are being tested so that glucose and fatty acid metabolism can be measured quantitatively by Positron-CT. Tracers of amino acid and oxygen metabolism are utilized in Positron-CT studies of the brain and development of such tracers for cardiac studies are in progress. Methods to quantify regional myocardial blood flow are also being developed. Previous studies have demonstrated the ability of Positron-/CT to document myocardial infarction. Experimental and clinical studies have begun to identify metabolic markers of reversibly ischemic myocardium. The potential of Positron-CT to reliably detect potentially salvageable myocardium and, hence, to identify appropriate therapeutic interventions is one of the most exciting applications of the technique

  12. Positron emission tomography camera

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    A positron emission tomography camera having a plurality of detector planes positioned side-by-side around a patient area to detect radiation. Each plane includes a plurality of photomultiplier tubes and at least two rows of scintillation crystals on each photomultiplier tube extend across to adjacent photomultiplier tubes for detecting radiation from the patient area. Each row of crystals on each photomultiplier tube is offset from the other rows of crystals, and the area of each crystal on each tube in each row is different than the area of the crystals on the tube in other rows for detecting which crystal is actuated and allowing the detector to detect more inter-plane slides. The crystals are offset by an amount equal to the length of the crystal divided by the number of rows. The rows of crystals on opposite sides of the patient may be rotated 90 degrees relative to each other

  13. Proton computed tomography

    International Nuclear Information System (INIS)

    Hanson, K.M.

    1978-01-01

    The use of protons or other heavy charged particles instead of x rays in computed tomography (CT) is explored. The results of an experimental implementation of proton CT are presented. High quality CT reconstructions are obtained at an average dose reduction factor compared with an EMI 5005 x-ray scanner of 10:1 for a 30-cm-diameter phantom and 3.5:1 for a 20-cm diameter. The spatial resolution is limited by multiple Coulomb scattering to about 3.7 mm FWHM. Further studies are planned in which proton and x-ray images of fresh human specimens will be compared. Design considerations indicate that a clinically useful proton CT scanner is eminently feasible

  14. Electrical impedance tomography.

    Science.gov (United States)

    Costa, Eduardo L V; Lima, Raul Gonzalez; Amato, Marcelo B P

    2009-02-01

    Electrical impedance tomography (EIT) is a noninvasive, radiation-free monitoring tool that allows real-time imaging of ventilation. The purpose of this article is to discuss the fundamentals of EIT and to review the use of EIT in critical care patients. In addition to its established role in describing the distribution of alveolar ventilation, EIT has been shown to be a useful tool to detect lung collapse and monitor lung recruitment, both regionally and on a global basis. EIT has also been used to diagnose with high sensitivity incident pneumothoraces during mechanical ventilation. Additionally, with injection of hypertonic saline as a contrast agent, it is possible to estimate ventilation/perfusion distributions. EIT is cheap, noninvasive and allows continuous monitoring of ventilation. It is gaining acceptance as a valuable monitoring tool for the care of critical patients.

  15. Gantry for computed tomography

    International Nuclear Information System (INIS)

    Kelman, A.L.; O'Dell, W.R.; Brook, R.F.; Hein, P.W.; Brandt, R.T.

    1981-01-01

    A novel design of gantry for use in computed tomography is described in detail. In the new gantry, curved tracks are mounted to the laterally spaced apart sides of the frame which rotates and carries the detector and X-ray source. This permits the frame to be tilted either side of vertical enabling angular slices of body layers to be viewed and allows simplification of the algorithm which the computer uses for image reconstruction. A failsafe, solenoid brake is described which can lock the shaft against rotation. The gantry also contains a hoist mechanism which aids maintenance of the heavy X-ray tube and/or detector arrays. Explicit engineering details are presented. (U.K.)

  16. Computed tomography apparatus

    International Nuclear Information System (INIS)

    Palermo, A.; Zupancic, A.

    1981-01-01

    A computed tomography (CT) scanner apparatus including improved arrangement for transferring high voltage electrical energy between a stationary gantry and a rotating assembly is described. The assembly carries the X-ray source and has an opening defining an aperture to receive a part of a patient. A first axis about which the assembly rotates, passes through the aperture. The apparatus includes a number of slip rings which are used for effecting the transfer of the electrical energy. Respective portions of the gantry and rotating assembly define a cavity which contains an insulating di-electric fluid in which the slip rings are immersed. The apparatus is of compact design and, further, the rotating assembly and the slip rings can be tilted about a second axis which intersects the first axis. (author)

  17. Emission computed tomography

    International Nuclear Information System (INIS)

    Phelps, M.E.

    1977-01-01

    Although there are many common aspects to x-ray transmission and radionuclide emission (ECT) computerized tomography, there are added difficulties and a number of particular factors which form the basis of ECT. The relationship between the physical factors, system design, methodologic approach and assumptions of ECT is discussed. The instrumentation design and application strategies in ECT at this time are diverse and in a rapid stage of development. The approaches are divided into two major categories of Single Photon Counting (SPC) employing scanner and camera concepts with radionuclides of 99 /sup m/Tc, 201 Tl, 123 I etc., and Annihilation Coincidence Detection (ACD) of positron-emitting radionuclides. Six systems in the former and ten systems in the latter category, with examples of typical studies, illustrate the different approaches

  18. Optical coherence tomography of the newborn airway.

    Science.gov (United States)

    Ridgway, James M; Su, Jianping; Wright, Ryan; Guo, Shuguang; Kim, David C; Barretto, Roberto; Ahuja, Gurpreet; Sepehr, Ali; Perez, Jorge; Sills, Jack H; Chen, Zhongping; Wong, Brian J F

    2008-05-01

    Acquired subglottic stenosis in a newborn is often associated with prolonged endotracheal intubation. This condition is generally diagnosed during operative endoscopy after airway injury has occurred. Unfortunately, endoscopy is unable to characterize the submucosal changes observed in such airway injuries. Other modalities, such as magnetic resonance imaging, computed tomography, and ultrasound, do not possess the necessary level of resolution to differentiate scar, neocartilage, and edema. Optical coherence tomography (OCT) is an imaging modality that produces high-resolution, cross-sectional images of living tissue (8 to 20 microm). We examined the ability of this noninvasive technique to characterize the newborn airway in a prospective clinical trial. Twelve newborn patients who required ventilatory support underwent OCT airway imaging. Comparative analysis of intubated and non-intubated states was performed. Imaging of the supraglottis, glottis, subglottis, and trachea was performed in 12 patients, revealing unique tissue characteristics as related to turbidity, signal backscattering, and architecture. Multiple structures were identified, including the vocal folds, cricoid cartilage, tracheal rings, ducts, glands, and vessels. Optical coherence tomography clearly identifies in vivo tissue layers and regional architecture while offering detailed information concerning tissue microstructures. The diagnostic potential of this technology makes OCT a promising modality in the study and surveillance of the neonatal airway.

  19. Sensing flame structure by process tomography.

    Science.gov (United States)

    Liu, Jing; Liu, Shi; Zhou, Wanting; Qi, Xin; Lei, Jing; Mu, Huaiping

    2016-06-28

    Non-intrusive visualization of the structure of flames can offer us many advantages in studying the reaction mechanisms of combustion and observing special distributions of the parameters required for the development of equipment such as jet engines and gas turbines. Process tomography is a relatively new technique for such a task, but is useful owing to its fast speed and capability of detecting signals related to ionizations caused by chemical reactions and thermal effects. Electric capacitance tomography (ECT) is one of the process tomographic techniques. ECT usually comprises a sensor array of electrodes that detect permittivity variations in the measuring zone, a data-logging device and a computer that controls data acquisition and carries out image reconstruction. There have been studies on ECT imaging of flames; however, ECT has not been exploited sufficiently to reveal the inner structure of the flames. In this study, a sensor with planar electrodes is created, and the associated three-dimensional sensitivity map is generated by the finite-element method to detect flame structure. A series of experiments are carried out covering a range of feed rates of fuel and air. Data are collected by the ECT sensor and hardware. The results of the ECT reconstruction show good agreement with actual features, and the structure of the flame is found. This opens up a new route for the study of flames. This article is part of the themed issue 'Supersensing through industrial process tomography'. © 2016 The Author(s).

  20. Geometric reconstruction methods for electron tomography

    International Nuclear Information System (INIS)

    Alpers, Andreas; Gardner, Richard J.; König, Stefan; Pennington, Robert S.; Boothroyd, Chris B.; Houben, Lothar; Dunin-Borkowski, Rafal E.; Joost Batenburg, Kees

    2013-01-01

    Electron tomography is becoming an increasingly important tool in materials science for studying the three-dimensional morphologies and chemical compositions of nanostructures. The image quality obtained by many current algorithms is seriously affected by the problems of missing wedge artefacts and non-linear projection intensities due to diffraction effects. The former refers to the fact that data cannot be acquired over the full 180° tilt range; the latter implies that for some orientations, crystalline structures can show strong contrast changes. To overcome these problems we introduce and discuss several algorithms from the mathematical fields of geometric and discrete tomography. The algorithms incorporate geometric prior knowledge (mainly convexity and homogeneity), which also in principle considerably reduces the number of tilt angles required. Results are discussed for the reconstruction of an InAs nanowire. - Highlights: ► Four algorithms for electron tomography are introduced that utilize prior knowledge. ► Objects are assumed to be homogeneous; convexity and regularity is also discussed. ► We are able to reconstruct slices of a nanowire from as few as four projections. ► Algorithms should be selected based on the specific reconstruction task at hand

  1. Correcting Reflux Laparoscopically

    Directory of Open Access Journals (Sweden)

    Eric C Poulin

    1998-01-01

    Full Text Available Most operations in the abdominal cavity and chest can be performed using minimally invasive techniques. As yet it has not been determined which laparoscopic procedures are preferable to the same operations done through conventional laparotomy. However, most surgeons who have completed the learning curves of these procedures believe that most minimally invasive techniques will be scientifically recognized soon. The evolution, validation and justification of advanced laparoscopic surgical methods seem inevitable. Most believe that the trend towards procedures that minimize or eliminate the trauma of surgery while adhering to accepted surgical principles is irreversible. The functional results of laparoscopic antireflux surgery in the seven years since its inception have been virtually identical to the success curves generated with open fundoplication in past years. Furthermore, overall patient outcomes with laparoscopic procedures have been superior to outcomes with the traditional approach. Success is determined by patient selection and operative technique. Patient evaluation should include esophagogastroduodenoscopy, barium swallow, 24 h pH study and esophageal motility study. Gastric emptying also should be evaluated. Patients who have abnormal propulsion in the esophagus should not receive a complete fundoplication (Nissen because it adds a factor of obstruction. Dor or Toupet procedures are adequate alternatives. Prokinetic agents, dilation or pyloroplasty are used for pyloric obstruction ranging from little to more severe. Correcting reflux laparoscopically is more difficult in patients with obesity, peptic strictures, paraesophageal hernias, short esophagus, or a history of previous upper abdominal or antireflux surgery.

  2. Compressed sensing for STEM tomography.

    Science.gov (United States)

    Donati, Laurène; Nilchian, Masih; Trépout, Sylvain; Messaoudi, Cédric; Marco, Sergio; Unser, Michael

    2017-08-01

    A central challenge in scanning transmission electron microscopy (STEM) is to reduce the electron radiation dosage required for accurate imaging of 3D biological nano-structures. Methods that permit tomographic reconstruction from a reduced number of STEM acquisitions without introducing significant degradation in the final volume are thus of particular importance. In random-beam STEM (RB-STEM), the projection measurements are acquired by randomly scanning a subset of pixels at every tilt view. In this work, we present a tailored RB-STEM acquisition-reconstruction framework that fully exploits the compressed sensing principles. We first demonstrate that RB-STEM acquisition fulfills the "incoherence" condition when the image is expressed in terms of wavelets. We then propose a regularized tomographic reconstruction framework to recover volumes from RB-STEM measurements. We demonstrate through simulations on synthetic and real projection measurements that the proposed framework reconstructs high-quality volumes from strongly downsampled RB-STEM data and outperforms existing techniques at doing so. This application of compressed sensing principles to STEM paves the way for a practical implementation of RB-STEM and opens new perspectives for high-quality reconstructions in STEM tomography. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Wave-equation Q tomography

    KAUST Repository

    Dutta, Gaurav

    2016-10-12

    Strong subsurface attenuation leads to distortion of amplitudes and phases of seismic waves propagating inside the earth. The amplitude and the dispersion losses from attenuation are often compensated for during prestack depth migration. However, most attenuation compensation or Qcompensation migration algorithms require an estimate of the background Q model. We have developed a wave-equation gradient optimization method that inverts for the subsurface Q distribution by minimizing a skeletonized misfit function ∈, where ∈ is the sum of the squared differences between the observed and the predicted peak/centroid-frequency shifts of the early arrivals. The gradient is computed by migrating the observed traces weighted by the frequency shift residuals. The background Q model is perturbed until the predicted and the observed traces have the same peak frequencies or the same centroid frequencies. Numerical tests determined that an improved accuracy of the Q model by wave-equation Q tomography leads to a noticeable improvement in migration image quality. © 2016 Society of Exploration Geophysicists.

  4. Discrete tomography in neutron radiography

    International Nuclear Information System (INIS)

    Kuba, Attila; Rodek, Lajos; Kiss, Zoltan; Rusko, Laszlo; Nagy, Antal; Balasko, Marton

    2005-01-01

    Discrete tomography (DT) is an imaging technique for reconstructing discrete images from their projections using the knowledge that the object to be reconstructed contains only a few homogeneous materials characterized by known discrete absorption values. One of the main reasons for applying DT is that we will hopefully require relatively few projections. Using discreteness and some a priori information (such as an approximate shape of the object) we can apply two DT methods in neutron imaging by reducing the problem to an optimization task. The first method is a special one because it is only suitable if the object is composed of cylinders and sphere shapes. The second method is a general one in the sense that it can be used for reconstructing objects of any shape. Software was developed and physical experiments performed in order to investigate the effects of several reconstruction parameters: the number of projections, noise levels, and complexity of the object to be reconstructed. We give a summary of the experimental results and make a comparison of the results obtained using a classical reconstruction technique (FBP). The programs we developed are available in our DT reconstruction program package DIRECT

  5. Local Color Correction

    Directory of Open Access Journals (Sweden)

    Juan Gabriel Gomila Salas

    2011-09-01

    Full Text Available In this paper we present a local algorithm for contrast enhancement developed by N. Moroney at Hewlett-Packard Laboratories and presented at the IS&T/SID Eight Color Imaging Conference, in 2000. The algorithm uses a non-linear masking, is fast and does not require any manual parameter adjustments.

  6. 24 - 27 BIT Corrected

    African Journals Online (AJOL)

    DR. AMIN

    of alarming intensity. The design of a solar energy conversion system requires precise knowledge regarding the availability of global solar radiation and its components at the location of interest. Since the solar radiation reaching the earth's surface depends upon climatic conditions of the place, a study of solar radiation ...

  7. Finding Incorrect and Missing Quality Requirements Definitions Using Requirements Frame

    OpenAIRE

    Kaiya, Haruhiko; Ohnishi, Atsushi

    2012-01-01

    Defining quality requirements completely and correctly is more difficult than defining functional requirements because stakeholders do not state most of quality requirements explicitly. We thus propose a method to measure a requirements specification for identifying the amount of quality requirements in the specification. We also propose another method to recommend quality requirements to be defined in such a specification. We expect stakeholders can identify missing and unnecessary quality r...

  8. Imaging optimizations with non-pure and high-energy positron emitters in small animal positron computed tomography

    International Nuclear Information System (INIS)

    Harzmann, Sophie

    2014-01-01

    The contribution on imaging optimizations with non-pure and high-energy positron emitters in small animal positron emission tomography (PET) covers the following topics: physical fundamentals of PET, mathematical image reconstruction and data analyses, Monte-Carlo simulations and implemented correction scheme, quantification of cascade gamma coincidences based on simulations and measurements, sinogram based corrections, restoration of the spatial resolution, implementation of full corrections.

  9. Evaluation of dosimetric techniques in positrons emission tomography and computerized tomography (PET/CT)

    International Nuclear Information System (INIS)

    Pinto, Gabriella Montezano

    2014-01-01

    Among diagnostic techniques PET/CT is one of those with the highest dose delivery to the patient as a cause of external exposure to X-rays, and the use of a radiopharmaceutical that results in a high energy gamma emission. The dosimetry of these two components becomes important in order to optimize and justify the technique. Various dosimetric techniques are found in literature without a consensus of the best to use. With the advances in technological and consequent equipment configuration changes, upgrades and variation in methodologies, particularly in computed tomography, a standardization of these techniques is required. Previous studies show that CT is responsible for 70 % of the dose delivered to the patient in PET/CT examinations. Thus, many researchers have been focused on CT dose optimization protocols studies. This work analyzes the doses involved in a PET/CT oncology protocol by using an Alderson female anthropomorphic phantom in a public hospital of Rio de Janeiro city. The dose estimate for PET examination resulting from the use of 18 F - FDG radiopharmaceutical was conducted through dose factors published in ICRP 106; the dose for CT was estimated and compared by calculation of the absorbed doses to patients according to four methods: thermoluminescent dosimetry (TL0100) distributed in critical organs of the Alderson phantom; measurements of CTOI according to AAPM number 96; correction factor for effective diameter SSOE (AAPM Number 204); and simulation by ImPACT program For CT, the results in terms of effective dose presented (TLO, CTOI and ImPACT) ± 5 % maximum variations between methodologies. Considering medium absorbed dose (TLO, SSOE and ImPACT) the results differed in ± 7 % from each other. These findings demonstrate that parameters provided by the manufacturer on the console can be used to have a primary approach of both, absorbed and effective doses to the patient since that a quality assurance program of these parameters are adopted in

  10. Power corrections and renormalons in Transverse Momentum Distributions

    Energy Technology Data Exchange (ETDEWEB)

    Scimemi, Ignazio [Departamento de Física Teórica II, Universidad Complutense de Madrid,Ciudad Universitaria, 28040 Madrid (Spain); Vladimirov, Alexey [Institut für Theoretische Physik, Universität Regensburg,D-93040 Regensburg (Germany)

    2017-03-01

    We study the power corrections to Transverse Momentum Distributions (TMDs) by analyzing renormalon divergences of the perturbative series. The renormalon divergences arise independently in two constituents of TMDs: the rapidity evolution kernel and the small-b matching coefficient. The renormalon contributions (and consequently power corrections and non-perturbative corrections to the related cross sections) have a non-trivial dependence on the Bjorken variable and the transverse distance. We discuss the consistency requirements for power corrections for TMDs and suggest inputs for the TMD phenomenology in accordance with this study. Both unpolarized quark TMD parton distribution function and fragmentation function are considered.

  11. Imaging artifacts in magnetic induction tomography caused by the structural incorrectness of the sensor model

    Science.gov (United States)

    Gürsoy, Doğa; Scharfetter, Hermann

    2011-01-01

    Magnetic induction tomography (MIT) is a noninvasive imaging modality that aims to reconstruct the interior electrical conductivity distribution of the human body. It uses magnetic induction to excite eddy currents in the body and an array of sensor coils to detect the perturbations in the magnetic field. Image reconstruction in MIT is usually carried out by minimizing the residuals between the estimated and measured quantities assuming a structurally correct model. Thus, any mismatch between the simulated and the true experimental coil setup alters the data and may cause artifacts in the images. In this paper, a simulation study was performed to investigate the effect of modeling mismatches on measurements and corresponding reconstructed images. It was found that slight distortions of the receivers may cause up to 20% deviations in the data considering a local and small perturbation in conductivity. Unless the geometry is modeled correctly, these artifacts may spoil the images particularly for the case of flexible systems that have many degrees of freedom and systems that require different adjustments for different imaging sessions. If the system does not need calibration, for instance as in the case of head applications, then a rigid mechanical support appears to be an important design issue to achieve a better image quality.

  12. Imaging artifacts in magnetic induction tomography caused by the structural incorrectness of the sensor model

    International Nuclear Information System (INIS)

    Gürsoy, Doğa; Scharfetter, Hermann

    2011-01-01

    Magnetic induction tomography (MIT) is a noninvasive imaging modality that aims to reconstruct the interior electrical conductivity distribution of the human body. It uses magnetic induction to excite eddy currents in the body and an array of sensor coils to detect the perturbations in the magnetic field. Image reconstruction in MIT is usually carried out by minimizing the residuals between the estimated and measured quantities assuming a structurally correct model. Thus, any mismatch between the simulated and the true experimental coil setup alters the data and may cause artifacts in the images. In this paper, a simulation study was performed to investigate the effect of modeling mismatches on measurements and corresponding reconstructed images. It was found that slight distortions of the receivers may cause up to 20% deviations in the data considering a local and small perturbation in conductivity. Unless the geometry is modeled correctly, these artifacts may spoil the images particularly for the case of flexible systems that have many degrees of freedom and systems that require different adjustments for different imaging sessions. If the system does not need calibration, for instance as in the case of head applications, then a rigid mechanical support appears to be an important design issue to achieve a better image quality

  13. [High-resolution computed tomography in injuries to the cervical spine].

    Science.gov (United States)

    Gigli, F; Burzi, M; Sartoni Galloni, S; Laus, M

    1989-03-01

    Correct orthopedic therapy for traumas of the cervical rachis requires perfect knowledge of the spatial balance of the fracture focus. The authors believe Computed Tomography (CT) to be the most suitable, and often indispensable, method for this purpose. Twenty-four patients were examined for traumatic pathology of the cervical rachis. In 7 cases with clinically minor traumas, the negative outcome of the traditional exam was considered reliable and sufficient for therapeutic purposes. The extant 17 patients were examined also by means of CT, either to better determine the characteristics of skeletal lesions already ascertained with traditional techniques or to assess the presence of clinically-suspected osteo-articular lesions, even with negative conventional X-rays. For 9 of these patients orthopedic treatment was considered sufficient, whereas 8 patients underwent surgery and were subsequently examined with CT, which allowed correct evaluation of postoperative pictures even in the presence of metal prostheses. In 10 cases CT demonstrated the presence of lesions which had not been diagnosed with traditional X-ray techniques.

  14. Revised Total Coliform Rule Assessments and Corrective Actions

    Science.gov (United States)

    EPA has developed the Revised Total Coliform Rule Assessment and Corrective Actions Guidance Manual for public water systems (e.g., owners and operators) to assist in complying with the requirements of the Revised Total Coliform Rule.

  15. Unpacking Corrections in Mobile Instruction

    DEFF Research Database (Denmark)

    Levin, Lena; Cromdal, Jakob; Broth, Mathias

    2017-01-01

    This article deals with the organisation of correction in mobile instructional settings. Five sets of video data (>250 h) documenting how learners were instructed to fly aeroplanes, drive cars and ride bicycles in real life traffic were examined to reveal some common features of correction exchan...... and mobility, as well as to ongoing work in ethnomethodology and conversation analysis on teaching and learning as members’ phenomena.......This article deals with the organisation of correction in mobile instructional settings. Five sets of video data (>250 h) documenting how learners were instructed to fly aeroplanes, drive cars and ride bicycles in real life traffic were examined to reveal some common features of correction...... that the practice of unpacking the local particulars of corrections (i) provides for the instructional character of the interaction, and (ii) is highly sensitive to the relevant physical and mobile contingencies. These findings contribute to the existing literature on the interactional organisation of correction...

  16. Scintillators for positron emission tomography

    International Nuclear Information System (INIS)

    Moses, W.W.; Derenzo, S.E.

    1995-09-01

    Like most applications that utilize scintillators for gamma detection, Positron Emission Tomography (PET) desires materials with high light output, short decay time, and excellent stopping power that are also inexpensive, mechanically rugged, and chemically inert. Realizing that this ''ultimate'' scintillator may not exist, this paper evaluates the relative importance of these qualities and describes their impact on the imaging performance of PET. The most important PET scintillator quality is the ability to absorb 511 keV photons in a small volume, which affects the spatial resolution of the camera. The dominant factor is a short attenuation length (≤ 1.5 cm is required), although a high photoelectric fraction is also important (> 30% is desired). The next most important quality is a short decay time, which affects both the dead time and the coincidence timing resolution. Detection rates for single 511 keV photons can be extremely high, so decay times ≤ 500 ns are essential to avoid dead time losses. In addition, positron annihilations are identified by time coincidence so ≤5 ns fwhm coincidence pair timing resolution is required to identify events with narrow coincidence windows, reducing contamination due to accidental coincidences. Current trends in PET cameras are toward septaless, ''fully-3D'' cameras, which have significantly higher count rates than conventional 2-D cameras and so place higher demands on scintillator decay time. Light output affects energy resolution, and thus the ability of the camera to identify and reject events where the initial 511 keV photon has undergone Compton scatter in the patient. The scatter to true event fraction is much higher in fully-3D cameras than in 2-D cameras, so future PET cameras would benefit from scintillators with a 511 keV energy resolution < 10--12% fwhm

  17. Manifold corrections on spinning compact binaries

    International Nuclear Information System (INIS)

    Zhong Shuangying; Wu Xin

    2010-01-01

    This paper deals mainly with a discussion of three new manifold correction methods and three existing ones, which can numerically preserve or correct all integrals in the conservative post-Newtonian Hamiltonian formulation of spinning compact binaries. Two of them are listed here. One is a new momentum-position scaling scheme for complete consistency of both the total energy and the magnitude of the total angular momentum, and the other is the Nacozy's approach with least-squares correction of the four integrals including the total energy and the total angular momentum vector. The post-Newtonian contributions, the spin effects, and the classification of orbits play an important role in the effectiveness of these six manifold corrections. They are all nearly equivalent to correct the integrals at the level of the machine epsilon for the pure Kepler problem. Once the third-order post-Newtonian contributions are added to the pure orbital part, three of these corrections have only minor effects on controlling the errors of these integrals. When the spin effects are also included, the effectiveness of the Nacozy's approach becomes further weakened, and even gets useless for the chaotic case. In all cases tested, the new momentum-position scaling scheme always shows the optimal performance. It requires a little but not much expensive additional computational cost when the spin effects exist and several time-saving techniques are used. As an interesting case, the efficiency of the correction to chaotic eccentric orbits is generally better than one to quasicircular regular orbits. Besides this, the corrected fast Lyapunov indicators and Lyapunov exponents of chaotic eccentric orbits are large as compared with the uncorrected counterparts. The amplification is a true expression of the original dynamical behavior. With the aid of both the manifold correction added to a certain low-order integration algorithm as a fast and high-precision device and the fast Lyapunov

  18. Corrective Action Plan for Corrective Action Unit 562: Waste Systems, Nevada National Security Site, Nevada

    International Nuclear Information System (INIS)

    2011-01-01

    This Corrective Action Plan has been prepared for Corrective Action Unit (CAU) 562, Waste Systems, in accordance with the Federal Facility Agreement and Consent Order (1996; as amended March 2010). CAU 562 consists of 13 Corrective Action Sites (CASs) located in Areas 2, 23, and 25 of the Nevada National Security Site. Site characterization activities were performed in 2009 and 2010, and the results are presented in Appendix A of the Corrective Action Decision Document for CAU 562. The scope of work required to implement the recommended closure alternatives is summarized. (1) CAS 02-26-11, Lead Shot, will be clean closed by removing shot. (2) CAS 02-44-02, Paint Spills and French Drain, will be clean closed by removing paint and contaminated soil. As a best management practice (BMP), asbestos tile will be removed. (3) CAS 02-59-01, Septic System, will be clean closed by removing septic tank contents. As a BMP, the septic tank will be removed. (4) CAS 02-60-01, Concrete Drain, contains no contaminants of concern (COCs) above action levels. No further action is required; however, as a BMP, the concrete drain will be removed. (5) CAS 02-60-02, French Drain, was clean closed. Corrective actions were completed during corrective action investigation activities. As a BMP, the drain grates and drain pipe will be removed. (6) CAS 02-60-03, Steam Cleaning Drain, will be clean closed by removing contaminated soil. As a BMP, the steam cleaning sump grate and outfall pipe will be removed. (7) CAS 02-60-04, French Drain, was clean closed. Corrective actions were completed during corrective action investigation activities. (8) CAS 02-60-05, French Drain, will be clean closed by removing contaminated soil. (9) CAS 02-60-06, French Drain, contains no COCs above action levels. No further action is required. (10) CAS 02-60-07, French Drain, requires no further action. The french drain identified in historical documentation was not located during corrective action investigation

  19. Processor register error correction management

    Science.gov (United States)

    Bose, Pradip; Cher, Chen-Yong; Gupta, Meeta S.

    2016-12-27

    Processor register protection management is disclosed. In embodiments, a method of processor register protection management can include determining a sensitive logical register for executable code generated by a compiler, generating an error-correction table identifying the sensitive logical register, and storing the error-correction table in a memory accessible by a processor. The processor can be configured to generate a duplicate register of the sensitive logical register identified by the error-correction table.

  20. Corrective justice and contract law

    OpenAIRE

    Martín Hevia

    2010-01-01

    This article suggests that the central aspects of contract law in various jurisdictions can be explained within the idea of corrective justice. The article is divided into three parts. The first part distinguishes between corrective justice and distributive justice. The second part describes contract law. The third part focuses on actions for breach of contract and within that context reflects upon the idea of corrective justice.

  1. Timing jitter correction for THz-TDS measurements of graphene

    DEFF Research Database (Denmark)

    Whelan, Patrick Rebsdorf; Iwaszczuk, Krzysztof; Bøggild, Peter

    2016-01-01

    We discuss how noncontact, quantitative large-area mapping of the conductance of thin films requires delicate corrections in order to deduce electrical properties such as graphene mobility from THz-TDS measurements.......We discuss how noncontact, quantitative large-area mapping of the conductance of thin films requires delicate corrections in order to deduce electrical properties such as graphene mobility from THz-TDS measurements....

  2. Geometry of anterior open bite correction.

    Science.gov (United States)

    Abramson, Zachary R; Susarla, Srinivas M; Lawler, Matthew E; Choudhri, Asim F; Peacock, Zachary S

    2015-05-01

    Correction of anterior open bite is a frequently encountered and challenging problem for the craniomaxillofacial surgeon and orthodontist. Accurate clinical evaluation, including cephalometric assessment, is paramount for establishing the diagnosis and appropriate treatment plan. The purposes of this technical note were to discuss the basic geometric principles involved in the surgical correction of skeletal anterior open bites and to offer a simple mathematical model for predicting the amount of posterior maxillary impaction with concomitant mandibular rotation required to establish an adequate overbite. Using standard geometric principles, a mathematical model was created to demonstrate the relationship between the magnitude of the open bite and the magnitude of the rotational movements required for correction. This model was then validated using a clinical case. In summary, the amount of open bite closure for a given amount of posterior maxillary impaction depends on anatomic variables, which can be obtained from a lateral cephalogram. The clinical implication of this relationship is as follows: patients with small mandibles and steep mandibular occlusal planes will require greater amounts of posterior impaction.

  3. Emission tomography: quantitative aspects in metabolic and physiopathologic studies

    International Nuclear Information System (INIS)

    Yerouchalmi-Soussaline, F.

    1984-11-01

    This thesis presents instrumental and data processing studies developped in emission tomography in man, using gamma and positron emitting tracers. High contrast visualisation of volume distribution of tracers in the organs, kinetic studies and measurements of radioactive concentration or of other clinical parameters necessitate a detailed analysis of all physical factors limiting the accuracy of the measure; therefore, development of adapted imaging devices and data processing techniques, together with models describing correctly the phenomena under study are to be carried out. Thus, in single photon (gamma) emission tomography an image reconstruction strategy is elaborated, based on an analytical model for the ill-posed problem including the attenuation effect. In positron emission tomography, the time-of-flight information combined with the reconstruction technique is used in the design of a first prototype imaging device which performance is presented and evaluated in a clinical environment. Moreover, a priori or a posteriori techniques correcting for Compton diffusion events, limited statistics and limited resolutions, are proposed and discussed for the improvement of regional measurement accuracy, in metabolic and physiopathologic studies [fr

  4. Metal Artifact Reduction in Cone-Beam Computed Tomography for Head and Neck Radiotherapy.

    Science.gov (United States)

    Korpics, Mark; Johnson, Paul; Patel, Rakesh; Surucu, Murat; Choi, Mehee; Emami, Bahman; Roeske, John C

    2016-12-01

    To evaluate a method for reducing metal artifacts, arising from dental fillings, on cone-beam computed tomography images. A projection interpolation algorithm is applied to cone-beam computed tomography images containing metal artifacts from dental fillings. This technique involves identifying metal regions in individual cone-beam computed tomography projections and interpolating the surrounding values to remove the metal from the projection data. Axial cone-beam computed tomography images are then reconstructed, resulting in a reduction in the streak artifacts produced by the metal. Both phantom and patient imaging data are used to evaluate this technique. The interpolation substitution technique successfully reduced metal artifacts in all cases. Corrected images had fewer or no streak artifacts compared to their noncorrected counterparts. Quantitatively, regions of interest containing the artifacts showed reduced variance in the corrected images versus the uncorrected images. Average pixel values in regions of interest around the metal object were also closer in value to nonmetal regions after artifact reduction. Artifact correction tended to perform better on patient images with less complex metal objects versus those with multiple large dental fillings. The interpolation substitution is potentially an efficient and effective technique for reducing metal artifacts caused by dental fillings on cone-beam computed tomography image. This technique may be effective in reducing such artifacts in patients with head and neck cancer receiving daily image-guided radiotherapy. © The Author(s) 2015.

  5. Diagnosis of choledocholithiasis by computed tomography

    International Nuclear Information System (INIS)

    Lee, Jae Sub; Kang, Kyung Sook; Lee, Yul; Chung, Soo Young; Bae, Sang Hoon; Yoon, Jong Sup

    1986-01-01

    In order to determine the value of Computed Tomography (CT) in the diagnosis of choledocholithiasis, the authors retrospectively studied 33 cases of choledocholithiasis proven by surgery from January 1983 to June 1985. Among them, 15 cases were examined by both CT and ultrasonography. The results were as follows: 1. There were 12 men and 21 women with mean age of 57 years. 2. CT correctly diagnosed choledocholithiasis in 29(88%) of total 33 cases. There were 4 false negative diagnoses and there were no false positive. 3. In 15 cases which were examined by both CT and ultrasonography, 13(86%) cases were correctly diagnosed by CT and 7(46%) by ultrasonography. 4. The majority (88%) of choledocholithiasis were demonstrated as calcific density and 4 cases (12%) were nearly isotense to pancreas. 5. Most cases were shown as homogenous density and 5 cases (16%) as ringlike structure with low density center and high density periphery. 6. Additional findings, such as intrahepatic and/or GB stones, paricholangitic abscess, GB empyema, ascites, and liver cirrhosis were also identified by CT. 7. CT is effective for noninvasive and accurate detection of choledocholithiasis. So invasive cholangiography, such as E.R.C.P or P.T.C can be reserved in many cases of choledocholithiasis.

  6. Diagnosis of choledocholithiasis by computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Sub; Kang, Kyung Sook; Lee, Yul; Chung, Soo Young; Bae, Sang Hoon; Yoon, Jong Sup [Hallym University College of Medicine, Seoul (Korea, Republic of)

    1986-02-15

    In order to determine the value of Computed Tomography (CT) in the diagnosis of choledocholithiasis, the authors retrospectively studied 33 cases of choledocholithiasis proven by surgery from January 1983 to June 1985. Among them, 15 cases were examined by both CT and ultrasonography. The results were as follows: 1. There were 12 men and 21 women with mean age of 57 years. 2. CT correctly diagnosed choledocholithiasis in 29(88%) of total 33 cases. There were 4 false negative diagnoses and there were no false positive. 3. In 15 cases which were examined by both CT and ultrasonography, 13(86%) cases were correctly diagnosed by CT and 7(46%) by ultrasonography. 4. The majority (88%) of choledocholithiasis were demonstrated as calcific density and 4 cases (12%) were nearly isotense to pancreas. 5. Most cases were shown as homogenous density and 5 cases (16%) as ringlike structure with low density center and high density periphery. 6. Additional findings, such as intrahepatic and/or GB stones, paricholangitic abscess, GB empyema, ascites, and liver cirrhosis were also identified by CT. 7. CT is effective for noninvasive and accurate detection of choledocholithiasis. So invasive cholangiography, such as E.R.C.P or P.T.C can be reserved in many cases of choledocholithiasis.

  7. Children's (Pediatric) CT (Computed Tomography)

    Medline Plus

    Full Text Available ... Children's (Pediatric) CT (Computed Tomography) Sponsored by Please note RadiologyInfo.org is not a medical facility. Please ... is further reviewed by committees from the American College of Radiology (ACR) and the Radiological Society of ...

  8. Children's (Pediatric) CT (Computed Tomography)

    Medline Plus

    Full Text Available ... Videos About Us News Physician Resources Professions Site Index A-Z Children's (Pediatric) CT (Computed Tomography) Pediatric ... cross-sectional images generated during a CT scan can be reformatted in multiple planes, and can even ...

  9. Children's (Pediatric) CT (Computed Tomography)

    Medline Plus

    Full Text Available ... tomography, more commonly known as a CT or CAT scan, is a diagnostic medical test that, like ... imaging provides real-time imaging, making it a good tool for guiding minimally invasive procedures such as ...

  10. Children's (Pediatric) CT (Computed Tomography)

    Medline Plus

    Full Text Available ... risks? What are the limitations of Children's CT? What is Children's CT? Computed tomography, more commonly known ... newborns, infants and older children. top of page What are some common uses of the procedure? CT ...

  11. Children's (Pediatric) CT (Computed Tomography)

    Medline Plus

    Full Text Available ... Pediatric computed tomography (CT) is a fast, painless exam that uses special x-ray equipment to create ... your doctor and the technologist prior to the exam if your child has a known allergy to ...

  12. Children's (Pediatric) CT (Computed Tomography)

    Medline Plus

    Full Text Available ... considerations. The teddy bear denotes child-specific content. Related Articles and Media Radiation Dose in X-Ray ... Materials Anesthesia Safety Children and Radiation Safety Images related to Children's (Pediatric) CT (Computed Tomography) Videos related ...

  13. Parkinson disease and positron tomography

    International Nuclear Information System (INIS)

    Baron, J.C.

    1984-10-01

    Physiopathologic investigations of Parkinson disease and parkinsonian syndrome using positron tomography are briefly reviewed: study of cerebral blood flow and metabolism; effects of L-DOPA; study of dopaminergic receptors and of 18 F-Fluoro-L-DOPA incorporation [fr

  14. Computed tomography of the chest

    International Nuclear Information System (INIS)

    Norsworthy, R.

    1984-01-01

    Computed tomography of the chest can be useful in gaining detailed information of lung and mediastinal pathology, and in following up lesions during and after treatment. Considerations for dynamic and standard techniques are presented

  15. CORRECTED MARCH EDITON 2009 F...

    African Journals Online (AJOL)

    User

    2007-12-12

    Dec 12, 2007 ... 26. Nigerian Journal of Clinical Practice March 2009, Vol.12(1). Computerized Tomography Of Children Wammanda et al history, with histories suggestive of birth asphyxia. (44.4%) and meningitis (33.3%) being the commonest significant past medical history in them. Among the 9 children with normal scan, ...

  16. Serotonin synthesis studied with positron emission tomography, (PET)

    DEFF Research Database (Denmark)

    Honoré, Per Gustaf Hartvig; Lundquist, Pinelopi

    Positron emission tomography (PET) has the potential to study the biosynthesis and release of serotonin (5HT) at brain serotonergic neurons. PET requires probe compounds with specific attributes to enable imaging and quantification of biological processes. This section focuses on probes to measure...

  17. The value of computed tomography-urography in predicting the ...

    African Journals Online (AJOL)

    Background The natural course of pelviureteric junction (PUJ) obstruction is variable. Of those who require surgical intervention, there is no definite reliable preoperative predictor of the likely postoperative outcome. We evaluated the value of preoperative computed tomography (CT)-urography in predicting the ...

  18. Quantitative comparison of analysis methods for spectroscopic optical coherence tomography

    NARCIS (Netherlands)

    Bosschaart, Nienke; van Leeuwen, Ton; Aalders, Maurice C.G.; Faber, Dirk

    2013-01-01

    pectroscopic optical coherence tomography (sOCT) enables the mapping of chromophore concentrations and image contrast enhancement in tissue. Acquisition of depth resolved spectra by sOCT requires analysis methods with optimal spectral/spatial resolution and spectral recovery. In this article, we

  19. Quantitative comparison of analysis methods for spectroscopic optical coherence tomography

    NARCIS (Netherlands)

    Bosschaart, Nienke; van Leeuwen, Ton G.; Aalders, Maurice C. G.; Faber, Dirk J.

    2013-01-01

    Spectroscopic optical coherence tomography (sOCT) enables the mapping of chromophore concentrations and image contrast enhancement in tissue. Acquisition of depth resolved spectra by sOCT requires analysis methods with optimal spectral/spatial resolution and spectral recovery. In this article, we

  20. Ceramic and polymeric dental onlays evaluated by photo-elasticity, optical coherence tomography, and micro-computed tomography

    Science.gov (United States)

    Sinescu, Cosmin; Negrutiu, Meda; Topala, Florin; Ionita, Ciprian; Negru, Radu; Fabriky, Mihai; Marcauteanu, Corina; Bradu, Adrian; Dobre, George; Marsavina, Liviu; Rominu, Mihai; Podoleanu, Adrian

    2011-10-01

    Dental onlays are restorations used to repair rear teeth that have a mild to moderate amount of decay. They can also be used to restore teeth that are cracked or fractured if the damage is not severe enough to require a dental crown. The use of onlays requires less tooth reduction than does the use of metal fillings. This allows dentists to conserve more of a patient's natural tooth structure in the treatment process. The aims of this study are to evaluate the biomechanical comportment of the dental onlays, by using the 3D photo elasticity method and to investigate the integrity of the structures and their fitting to the dental support. For this optical coherence tomography and micro-computed tomography were employed. Both methods were used to investigate 37 dental onlays, 17 integral polymeric and 20 integral ceramic. The results permit to observe materials defects inside the ceramic or polymeric onlays situate in the biomechanically tensioned areas that could lead to fracture of the prosthetic structure. Marginal fitting problems of the onlays related to the teeth preparations were presented in order to observe the possibility of secondary cavities. The resulted images from the optical coherence tomography were verified by the micro-computed tomography. In conclusion, the optical coherence tomography can be used as a clinical method in order to evaluate the integrity of the dental ceramic and polymeric onlays and to investigate the quality of the marginal fitting to the teeth preparations.

  1. Impact of Intraoperative Cone Beam Computed Tomography on Reduction Quality and Implant Position in Treatment of Tibial Plafond Fractures.

    Science.gov (United States)

    Vetter, Sven Yves; Euler, Finn; von Recum, Jan; Wendl, Klaus; Grützner, Paul Alfred; Franke, Jochen

    2016-09-01

    The intraoperative assessment of the articular surface in displaced intra-articular distal tibia fractures can be challenging using conventional fluoroscopy. The aim of the study was to determine the frequency and the method of intraoperative corrections of fracture reductions or implant placements during open reduction, internal fixation by using cone beam computed tomography (CT) after conventional fluoroscopy. Displaced intra-articular distal tibia fractures were retrospectively analyzed from August 2001 until December 2011. The fractures were classified according to the standards of the AO/OTA as type B or C and treated with open reduction and internal plate fixation. After primary reduction using conventional fluoroscopy, an additional cone beam CT scan was used to determine the alignment of the joint line and the implant position. The number of intraoperative revisions of the primary reduction due to the use of cone beam CT was analyzed. A total of 143 patients with an intra-articular tibial plafond fracture were included in the analysis. In 43 patients (30%), an intraoperative correction was performed after the cone beam CT scan. In 34 (24%) of these cases, intraoperative correction was required because of inadequate joint line reduction. Nine (6%) corrections were required as a result of a malposition of the implant. The revision rate did not differ by fracture classification. Despite its acceptance as the standard method of imaging, intraoperative conventional fluoroscopy for the assessment of implant positioning and fracture reduction of tibial plafond fractures is limited. The intraoperative utilization of cone beam CT provided additional information for the surgeon to detect insufficient reduction or implant malposition. Level III, retrospective comparative series. © The Author(s) 2016.

  2. The Comparative Effect of Online Self-Correction, Peer- correction, and Teacher Correction in Descriptive Writing Tasks on Intermediate EFL Learners’ Grammar Knowledge The Prospect of Mobile Assisted Language Learning (MALL

    Directory of Open Access Journals (Sweden)

    Mojtaba Aghajani

    2018-05-01

    Full Text Available 60 participants of the study were selected based on their scores on the Nelson proficiency test and divided into three Telegram groups comprising a peer-correction, a self-correction and a teacher-correction group, each with 20 students. The pretest was administered to measure the subjects' grammar knowledge. Subsequently, three Telegram groups each with 21 members (20 students + 1 teacher were formed. Then during a course of nearly one academic term the grammatical notions were taught by the teacher. The members were required to write on the prompt in about 50 to 70 words and post it on the group. Then, their writings were corrected through self-correction, peer-correction and teacher-correction under the feedback provided by the researcher. The study used a pretest-posttest design to compare the learners’ progress after the application of three different types of treatment. One-Way between-groups ANOVA was run to test whether there was any statistically significant difference in grammar knowledge in descriptive writing of intermediate EFL learners’ who receive mobile-assisted self-correction, peer-correction and teacher-correction. The researcher also used Post-Hoc Tests to determine the exact difference between correction methods. Online self-correction, peer-correction and teacher-correction were the independent variables and grammar knowledge was the dependent variable. Examining the result of the study prove that significance level between self-correction and teacher-correction was the strongest (sig. = 0.000 but the significance level was a little less strong between peer-correction and teacher-correction whereas no significance was observed between self-correction and peer-correction.

  3. Solar tomography adaptive optics.

    Science.gov (United States)

    Ren, Deqing; Zhu, Yongtian; Zhang, Xi; Dou, Jiangpei; Zhao, Gang

    2014-03-10

    Conventional solar adaptive optics uses one deformable mirror (DM) and one guide star for wave-front sensing, which seriously limits high-resolution imaging over a large field of view (FOV). Recent progress toward multiconjugate adaptive optics indicates that atmosphere turbulence induced wave-front distortion at different altitudes can be reconstructed by using multiple guide stars. To maximize the performance over a large FOV, we propose a solar tomography adaptive optics (TAO) system that uses tomographic wave-front information and uses one DM. We show that by fully taking advantage of the knowledge of three-dimensional wave-front distribution, a classical solar adaptive optics with one DM can provide an extra performance gain for high-resolution imaging over a large FOV in the near infrared. The TAO will allow existing one-deformable-mirror solar adaptive optics to deliver better performance over a large FOV for high-resolution magnetic field investigation, where solar activities occur in a two-dimensional field up to 60'', and where the near infrared is superior to the visible in terms of magnetic field sensitivity.

  4. Multiphoton tomography of astronauts

    Science.gov (United States)

    König, Karsten; Weinigel, Martin; Pietruszka, Anna; Bückle, Rainer; Gerlach, Nicole; Heinrich, Ulrike

    2015-03-01

    Weightlessness may impair the astronaut's health conditions. Skin impairments belong to the most frequent health problems during space missions. Within the Skin B project, skin physiological changes during long duration space flights are currently investigated on three European astronauts that work for nearly half a year at the ISS. Measurements on the hydration, the transepidermal water loss, the surface structure, elasticity and the tissue density by ultrasound are conducted. Furthermore, high-resolution in vivo histology is performed by multiphoton tomography with 300 nm spatial and 200 ps temporal resolution. The mobile certified medical tomograph with a flexible 360° scan head attached to a mechano-optical arm is employed to measure two-photon autofluorescence and SHG in the volar forearm of the astronauts. Modification of the tissue architecture and of the fluorescent biomolecules NAD(P)H, keratin, melanin and elastin are detected as well as of SHG-active collagen. Thinning of the vital epidermis, a decrease of the autofluoresence intensity, an increase in the long fluorescence lifetime, and a reduced skin ageing index SAAID based on an increased collagen level in the upper dermis have been found. Current studies focus on recovery effects.

  5. Intraoperative computed tomography.

    Science.gov (United States)

    Tonn, J C; Schichor, C; Schnell, O; Zausinger, S; Uhl, E; Morhard, D; Reiser, M

    2011-01-01

    Intraoperative computed tomography (iCT) has gained increasing impact among modern neurosurgical techniques. Multislice CT with a sliding gantry in the OR provides excellent diagnostic image quality in the visualization of vascular lesions as well as bony structures including skull base and spine. Due to short acquisition times and a high spatial and temporal resolution, various modalities such as iCT-angiography, iCT-cerebral perfusion and the integration of intraoperative navigation with automatic re-registration after scanning can be performed. This allows a variety of applications, e.g. intraoperative angiography, intraoperative cerebral perfusion studies, update of cerebral and spinal navigation, stereotactic procedures as well as resection control in tumour surgery. Its versatility promotes its use in a multidisciplinary setting. Radiation exposure is comparable to standard CT systems outside the OR. For neurosurgical purposes, however, new hardware components (e.g. a radiolucent headholder system) had to be developed. Having a different range of applications compared to intraoperative MRI, it is an attractive modality for intraoperative imaging being comparatively easy to install and cost efficient.

  6. Usefulness of Cone-Beam Computed Tomography and Automatic Vessel Detection Software in Emergency Transarterial Embolization

    Energy Technology Data Exchange (ETDEWEB)

    Carrafiello, Gianpaolo, E-mail: gcarraf@gmail.com; Ierardi, Anna Maria, E-mail: amierardi@yahoo.it; Duka, Ejona, E-mail: ejonaduka@hotmail.com [Insubria University, Department of Radiology, Interventional Radiology (Italy); Radaelli, Alessandro, E-mail: alessandro.radaelli@philips.com [Philips Healthcare (Netherlands); Floridi, Chiara, E-mail: chiara.floridi@gmail.com [Insubria University, Department of Radiology, Interventional Radiology (Italy); Bacuzzi, Alessandro, E-mail: alessandro.bacuzzi@ospedale.varese.it [University of Insubria, Anaesthesia and Palliative Care (Italy); Bucourt, Maximilian de, E-mail: maximilian.de-bucourt@charite.de [Charité - University Medicine Berlin, Department of Radiology (Germany); Marchi, Giuseppe De, E-mail: giuseppedemarchi@email.it [Insubria University, Department of Radiology, Interventional Radiology (Italy)

    2016-04-15

    BackgroundThis study was designed to evaluate the utility of dual phase cone beam computed tomography (DP-CBCT) and automatic vessel detection (AVD) software to guide transarterial embolization (TAE) of angiographically challenging arterial bleedings in emergency settings.MethodsTwenty patients with an arterial bleeding at computed tomography angiography and an inconclusive identification of the bleeding vessel at the initial 2D angiographic series were included. Accuracy of DP-CBCT and AVD software were defined as the ability to detect the bleeding site and the culprit arterial bleeder, respectively. Technical success was defined as the correct positioning of the microcatheter using AVD software. Clinical success was defined as the successful embolization. Total volume of iodinated contrast medium and overall procedure time were registered.ResultsThe bleeding site was not detected by initial angiogram in 20 % of cases, while impossibility to identify the bleeding vessel was the reason for inclusion in the remaining cases. The bleeding site was detected by DP-CBCT in 19 of 20 (95 %) patients; in one case CBCT-CT fusion was required. AVD software identified the culprit arterial branch in 18 of 20 (90 %) cases. In two cases, vessel tracking required manual marking of the candidate arterial bleeder. Technical success was 95 %. Successful embolization was achieved in all patients. Mean contrast volume injected for each patient was 77.5 ml, and mean overall procedural time was 50 min.ConclusionsC-arm CBCT and AVD software during TAE of angiographically challenging arterial bleedings is feasible and may facilitate successful embolization. Staff training in CBCT imaging and software manipulation is necessary.

  7. Usefulness of Cone-Beam Computed Tomography and Automatic Vessel Detection Software in Emergency Transarterial Embolization

    International Nuclear Information System (INIS)

    Carrafiello, Gianpaolo; Ierardi, Anna Maria; Duka, Ejona; Radaelli, Alessandro; Floridi, Chiara; Bacuzzi, Alessandro; Bucourt, Maximilian de; Marchi, Giuseppe De

    2016-01-01

    BackgroundThis study was designed to evaluate the utility of dual phase cone beam computed tomography (DP-CBCT) and automatic vessel detection (AVD) software to guide transarterial embolization (TAE) of angiographically challenging arterial bleedings in emergency settings.MethodsTwenty patients with an arterial bleeding at computed tomography angiography and an inconclusive identification of the bleeding vessel at the initial 2D angiographic series were included. Accuracy of DP-CBCT and AVD software were defined as the ability to detect the bleeding site and the culprit arterial bleeder, respectively. Technical success was defined as the correct positioning of the microcatheter using AVD software. Clinical success was defined as the successful embolization. Total volume of iodinated contrast medium and overall procedure time were registered.ResultsThe bleeding site was not detected by initial angiogram in 20 % of cases, while impossibility to identify the bleeding vessel was the reason for inclusion in the remaining cases. The bleeding site was detected by DP-CBCT in 19 of 20 (95 %) patients; in one case CBCT-CT fusion was required. AVD software identified the culprit arterial branch in 18 of 20 (90 %) cases. In two cases, vessel tracking required manual marking of the candidate arterial bleeder. Technical success was 95 %. Successful embolization was achieved in all patients. Mean contrast volume injected for each patient was 77.5 ml, and mean overall procedural time was 50 min.ConclusionsC-arm CBCT and AVD software during TAE of angiographically challenging arterial bleedings is feasible and may facilitate successful embolization. Staff training in CBCT imaging and software manipulation is necessary.

  8. Comparison of denture models by means of micro computed tomography

    Science.gov (United States)

    Vögtlin, Christoph; Schulz, Georg; Deyhle, Hans; Jäger, Kurt; Liebrich, Thomas; Weikert, Sascha; Müller, Bert

    2012-10-01

    The production of dental inlays and crowns requires precise information on patients' teeth morphology. The conventional method is the preparation of impressions using mold materials, e.g. a silicone impression material. The disadvantage of this technique is the human choke impulse and the flavor of the material. These discomforts can be avoided by methods where a three-dimensional scanner is used for recording the teeth morphology. The present study reveals the accuracy of three model types, namely conventional impression, rapid prototyping using an oral scanner C.O.S., 3M (Schweiz) AG and milling from a proprietary resin using the oral scanner iTero, Straumann Holding AG. For each method five models were fabricated from a steel reference (standard). Using a nanotom m (phoenixǀx-ray, GE Sensing and Inspection Technologies GmbH), three-dimensional micro computed tomography data sets of the standard and the 15 models were recorded and landmark distances within the data sets were measured with sub-pixel accuracy. To verify these results a coordinate measuring machine (Leitz PMM 864, Hexagon Metrology GmbH) based on tactile detection was used for the measurement of the landmark distances, and a correction of the distances measured by the nanotom m was arranged. The nanotom data sets of the 15 models were also compared to the standard by means of a non-rigid registration algorithm. The calculated deformation field exhibited mean pixel displacement values of (0.19 +/- 0.09) mm for the C.O.S. models, (0.12 +/- 0.07) mm for the gypsum models and (0.19 +/- 0.12) mm for the i-Tero models.

  9. Space mapping and defect correction

    NARCIS (Netherlands)

    Echeverría, D.; Hemker, P.W.

    2005-01-01

    In this paper we show that space-mapping optimization can be understood in the framework of defect correction. Then, space-mapping algorithms can be seen as special cases of defect correction iteration. In order to analyze the properties of space mapping and the space-mapping function, we introduce

  10. Corrective Action Decision Document/Closure Report for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick

    2014-01-01

    The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 105 based on the implementation of the corrective actions. Corrective action investigation (CAI) activities were performed from October 22, 2012, through May 23, 2013, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites; and in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices.

  11. Quantum corrections in Galileon theories

    CERN Document Server

    Brouzakis, N; Tetradis, N; Zanusso, O

    2014-01-01

    We calculate the one-loop quantum corrections in the cubic Galileon theory, using cutoff regularization. We confirm the expected form of the one-loop effective action and that the couplings of the Galileon theory do not get renormalized. However, new terms, not included in the tree-level action, are induced by quantum corrections. We also consider the one-loop corrections in an effective brane theory, which belongs to the Horndeski or generalized Galileon class. We find that new terms are generated by quantum corrections, while the tree-level couplings are also renormalized. We conclude that the structure of the generalized Galileon theories is altered by quantum corrections more radically than that of the Galileon theory.

  12. Corrective Action Decision Document/ Corrective Action Plan for Corrective Action Unit 443: Central Nevada Test Area-Subsurface Central Nevada Test Area, Nevada, Rev. No. 0

    Energy Technology Data Exchange (ETDEWEB)

    Susan Evans

    2004-11-01

    This Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) has been prepared for the subsurface at the Central Nevada Test Area (CNTA) Corrective Action Unit (CAU) 443, CNTA - Subsurface, Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996). CAU 443 is located in Hot Creek Valley in Nye County, Nevada, north of U.S. Highway 6, about 48 kilometers north of Warm Springs, Nevada. The CADD/CAP combines the decision document (CADD) with the corrective action plan (CAP) and provides or references the specific information necessary to recommend corrective actions for the UC-1 Cavity (Corrective Action Site 58-57-001) at CAU 443, as provided in the FFACO. The purpose of the CADD portion of the document (Section 1.0 to Section 4.0) is to identify and provide a rationale for the selection of a recommended corrective action alternative for the subsurface at CNTA. To achieve this, the following tasks were required: (1) Develop corrective action objectives; (2) Identify corrective action alternative screening criteria; (3) Develop corrective action alternatives; (4) Perform detailed and comparative evaluations of the corrective action alternatives in relation to the corrective action objectives and screening criteria; and (5) Recommend a preferred corrective action alternative for the subsurface at CNTA. A Corrective Action Investigation (CAI) was performed in several stages from 1999 to 2003, as set forth in the ''Corrective Action Investigation Plan for the Central Nevada Test Area Subsurface Sites (Corrective Action Unit No. 443)'' (DOE/NV, 1999). Groundwater modeling was the primary activity of the CAI. Three phases of modeling were conducted for the Faultless underground nuclear test. The first involved the gathering and interpretation of geologic and hydrogeologic data into a three-dimensional numerical model of groundwater flow, and use of the output of the flow model for a

  13. Analysis of scattered radiation cross-talk in a high-resolution gamma ray tomography detector with GATE Monte-Carlo simulation

    Science.gov (United States)

    Kießling, N.; Bieberle, A.; Hampel, U.

    2008-10-01

    Limited energy resolution in scintillation type gamma ray detectors leads to systematic errors in photon counting because the pulse height discrimination stages cannot accurately discriminate interactions with full respectively partial deposition of isotopic emission energy. The resulting error is a systematic positive count rate offset originating from erroneously counted scattered photons. The origin of scattering may be the detector itself (scintillation crystals and other construction material) as well as components of the setup, including the object of investigation. In this article results of a simulation study are presented which was carried out to assess the role of different design parameters for the count rate accuracy of a high resolution gamma ray detector used for transmission tomography. Thereby the simulation software Geant4 Application for Emission Tomography (GATE) was used. As a target parameter we evaluated the radiation cross-talk, which is the amount of erroneously counted interactions from photons which have undergone Compton scattering in neighbouring crystals. For the given detector design it was found that cross-talk obtained from the simulated data is in good agreement with experimentally determined cross-talk. It could further be shown by virtual detector design changes that radiation cross-talk can be reduced only to a degree that would still require additional software correction measures, such as scattering correction algorithms, if quantitative accuracy it demanded.

  14. Correction of ring artifacts in X-ray tomographic images

    DEFF Research Database (Denmark)

    Lyckegaard, Allan; Johnson, G.; Tafforeau, P.

    2011-01-01

    Ring artifacts are systematic intensity distortions located on concentric circles in reconstructed tomographic X-ray images. When using X-ray tomography to study for instance low-contrast grain boundaries in metals it is crucial to correct for the ring artifacts in the images as they may have...... are separable. The method is implemented in Matlab, it works with very little user interaction and may run in parallel on a cluster if applied to a whole stack of images. The strength and robustness of the method implemented will be demonstrated on three tomographic X-ray data sets: a mono-phase β...... the same intensity level as the grain boundaries and thus make it impossible to perform grain segmentation. This paper describes an implementation of a method for correcting the ring artifacts in tomographic X-ray images of simple objects such as metal samples where the object and the background...

  15. Effect of scatter correction on the compartmental measurement of striatal and extrastriatal dopamine D{sub 2} receptors using [{sup 123}I]epidepride SPET

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Masahiro; Seneca, Nicholas; Innis, Robert B. [Department of Psychiatry, Yale University School of Medicine and VA Connecticut Healthcare System, West Haven, CT (United States); Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD (United States); Varrone, Andrea [Department of Psychiatry, Yale University School of Medicine and VA Connecticut Healthcare System, West Haven, CT (United States); Biostructure and Bioimaging Institute, National Research Council, Napoli (Italy); Kim, Kyeong Min; Watabe, Hiroshi; Iida, Hidehiro [Department of Investigative Radiology, National Cardiovascular Center Research Institute, Osaka (Japan); Zoghbi, Sami S. [Department of Psychiatry, Yale University School of Medicine and VA Connecticut Healthcare System, West Haven, CT (United States); Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD (United States); Department of Radiology, Yale University School of Medicine and VA Connecticut Healthcare System, West Haven, CT (United States); Tipre, Dnyanesh [Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD (United States); Seibyl, John P. [Institute for Neurodegenerative Disorders, New Haven, CT (United States)

    2004-05-01

    Prior studies with anthropomorphic phantoms and single, static in vivo brain images have demonstrated that scatter correction significantly improves the accuracy of regional quantitation of single-photon emission tomography (SPET) brain images. Since the regional distribution of activity changes following a bolus injection of a typical neuroreceptor ligand, we examined the effect of scatter correction on the compartmental modeling of serial dynamic images of striatal and extrastriatal dopamine D{sub 2} receptors using [{sup 123}I]epidepride. Eight healthy human subjects [age 30{+-}8 (range 22-46) years] participated in a study with a bolus injection of 373{+-}12 (354-389) MBq [{sup 123}I]epidepride and data acquisition over a period of 14 h. A transmission scan was obtained in each study for attenuation and scatter correction. Distribution volumes were calculated by means of compartmental nonlinear least-squares analysis using metabolite-corrected arterial input function and brain data processed with scatter correction using narrow-beam geometry {mu} (SC) and without scatter correction using broad-beam {mu} (NoSC). Effects of SC were markedly different among brain regions. SC increased activities in the putamen and thalamus after 1-1.5 h while it decreased activity during the entire experiment in the temporal cortex and cerebellum. Compared with NoSC, SC significantly increased specific distribution volume in the putamen (58%, P=0.0001) and thalamus (23%, P=0.0297). Compared with NoSC, SC made regional distribution of the specific distribution volume closer to that of [{sup 18}F]fallypride. It is concluded that SC is required for accurate quantification of distribution volumes of receptor ligands in SPET studies. (orig.)

  16. Design of respiration averaged CT for attenuation correction of the PET data from PET/CT

    International Nuclear Information System (INIS)

    Chi, Pai-Chun Melinda; Mawlawi, Osama; Nehmeh, Sadek A.; Erdi, Yusuf E.; Balter, Peter A.; Luo, Dershan; Mohan, Radhe; Pan Tinsu

    2007-01-01

    Our previous patient studies have shown that the use of respiration averaged computed tomography (ACT) for attenuation correction of the positron emission tomography (PET) data from PET/CT reduces the potential misalignment in the thorax region by matching the temporal resolution of the CT to that of the PET. In the present work, we investigated other approaches of acquiring ACT in order to reduce the CT dose and to improve the ease of clinical implementation. Four-dimensional CT (4DCT) data sets for ten patients (17 lung/esophageal tumors) were acquired in the thoracic region immediately after the routine PET/CT scan. For each patient, multiple sets of ACTs were generated based on both phase image averaging (phase approach) and fixed cine duration image averaging (cine approach). In the phase approach, the ACTs were calculated from CT images corresponding to the significant phases of the respiratory cycle: ACT 050phs from end-inspiration (0%) and end-expiration (50%), ACT 2070phs from mid-inspiration (20%) and mid-expiration (70%), ACT 4phs from 0%, 20%, 50% and 70%, and ACT 10phs from all ten phases, which was the original approach. In the cine approach, which does not require 4DCT, the ACTs were calculated based on the cine images from cine durations of 1 to 6 s at 1 s increments. PET emission data for each patient were attenuation corrected with each of the above mentioned ACTs and the tumor maximum standard uptake value (SUV max ), average SUV (SUV avg ), and tumor volume measurements were compared. Percent differences were calculated between PET data corrected with various ACTs and that corrected with ACT 10phs . In the phase approach, the ACT 10phs can be approximated by the ACT 4phs to within a mean percent difference of 2% in SUV and tumor volume measurements. In cine approach, ACT 10phs can be approximated to within a mean percent difference of 3% by ACTs computed from cine durations ≥3 s. Acquiring CT images only at the four significant phases for the

  17. Survey of computed tomography doses in head and chest protocols

    International Nuclear Information System (INIS)

    Souza, Giordana Salvi de; Silva, Ana Maria Marques da

    2016-01-01

    Computed tomography is a clinical tool for the diagnosis of patients. However, the patient is subjected to a complex dose distribution. The aim of this study was to survey dose indicators in head and chest protocols CT scans, in terms of Dose-Length Product(DLP) and effective dose for adult and pediatric patients, comparing them with diagnostic reference levels in the literature. Patients were divided into age groups and the following image acquisition parameters were collected: age, kV, mAs, Volumetric Computed Tomography Dose Index (CTDIvol) and DLP. The effective dose was found multiplying DLP by correction factors. The results were obtained from the third quartile and showed the importance of determining kV and mAs values for each patient depending on the studied region, age and thickness. (author)

  18. Imaging of dental implant osseointegration using optical coherent tomography

    Science.gov (United States)

    Ionita, I.; Reisen, P.

    2009-02-01

    Investigation of initial implant stability with different dental implant designs is an important task to obtain good quality dental implants. Failure of a dental implant is often related to failure to osseointegrate correctly. Optical Coherent Tomography is a competitive non-invasive method of osseointegration investigation. FD-OCT with Swept Source was used to obtain 3-D image of the peri-implant tissue (soft and hard) in the case of mandible fixed screw. 1350 nm centered laser source give better images than 850 nm laser source for hard tissue imaging. Present work suggests that Optical Coherent Tomography is a proper technique to obtain the image of the contact tissue-metal screw. OCT images are useful to evaluate optical properties of bone tissues.

  19. Shape corrections for 3D EIT

    Science.gov (United States)

    Paridis, Kyriakos; Lionheart, William R. B.

    2010-04-01

    Movement of the boundary in biomedical Electrical Impedance Tomography (EIT) has been always a source of error in image reconstruction. In the case of pulmonary EIT, where the patient's chest shape changes during respiration, this is inevitable, so it is essential to be able to correct for shape changes and consequently avoid artifacts. Assuming that the conductivity is isotropic, an assumption that is reasonable for lung tissue but admittedly violated for muscle, the boundary shape up to a Möbius transformation (conformal mapping) as well as the conductivity can theoretically be determined by 3D EIT data. While in two dimensions the space of conformal mappings are infinite dimensional, in the three dimensional case the Möbius transformations are given by a finite number of parameters. In this paper, we concentrate on the three dimensional case and take a linear approximation. We will give results of numerical studies analogous to the two dimensional work of Boyle et al on the effect of electrode movement and shape error in 3D EIT.

  20. Corrective Septorhinoplasty in Acute Nasal Bone Fractures.

    Science.gov (United States)

    Kim, Jisung; Jung, Hahn Jin; Shim, Woo Sub

    2018-03-01

    Closed reduction is generally recommended for acute nasal bone fractures, and rhinoplasty is considered in cases with an unsatisfactory outcome. However, concomitant rhinoplasty with fracture reduction might achieve better surgical outcomes. This study investigated the surgical techniques and outcomes in patients who underwent rhinoplasty and fracture reduction concomitantly, during the acute stage of nasal bone fracture. Forty-five patients who underwent concomitant rhinoplasty and fracture reduction were enrolled. Nasal bone fractures were classified into three major types (type I, simple fracture; type II, fracture line that mimics nasal osteotomy; and type III, comminuted fracture) based on computed tomography images and preoperative facial images. Two independent otolaryngology-head and neck surgeons evaluated the surgical outcomes and telephone based survey were made to evaluate patients satisfaction. Among 45 patients, there were 39 males and 6 females. Type I was the commonest type of fracture with 18 patients (40%), while the most frequently used surgical technique for corrective surgery was dorsal augmentation with 44 patients (97.8%). The mean visual analogue scale satisfaction score of the surgeons and patients were 7.62 and 8, respectively, with no significant differences between fracture types. Concomitant rhinoplasty with fracture reduction can be performed for acute nasal bone fracture patients, and it might lead to better aesthetic outcomes.

  1. Computed Tomography (CT) -- Sinuses

    Medline Plus

    Full Text Available ... beforehand. This examination does not commonly require contrast material; however, in some situations your doctor may request that contrast material be given. If you have a known allergy ...

  2. Cardiac Computed Tomography as an Imaging Modality in Coronary Anomalies.

    Science.gov (United States)

    Karliova, Irem; Fries, Peter; Schmidt, Jörg; Schneider, Ulrich; Shalabi, Ahmad; Schäfers, Hans-Joachim

    2018-01-01

    Coronary artery fistulae and coronary aneurysms are rare anomalies. When they become symptomatic, they require precise anatomic information to allow for planning of the therapeutic procedure. We report a case in which both fistulae and aneurysm were present. The required information could only be obtained by electrocardiogram-gated computed tomography with reformation. This imaging modality should be considered in every case of fistula or coronary aneurysm. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  3. Mapping distributed brain function and networks with diffuse optical tomography

    Science.gov (United States)

    Eggebrecht, Adam T.; Ferradal, Silvina L.; Robichaux-Viehoever, Amy; Hassanpour, Mahlega S.; Dehghani, Hamid; Snyder, Abraham Z.; Hershey, Tamara; Culver, Joseph P.

    2014-06-01

    Mapping of human brain function has revolutionized systems neuroscience. However, traditional functional neuroimaging by positron emission tomography or functional magnetic resonance imaging cannot be used when applications require portability, or are contraindicated because of ionizing radiation (positron emission tomography) or implanted metal (functional magnetic resonance imaging). Optical neuroimaging offers a non-invasive alternative that is radiation free and compatible with implanted metal and electronic devices (for example, pacemakers). However, optical imaging technology has heretofore lacked the combination of spatial resolution and wide field of view sufficient to map distributed brain functions. Here, we present a high-density diffuse optical tomography imaging array that can map higher-order, distributed brain function. The system was tested by imaging four hierarchical language tasks and multiple resting-state networks including the dorsal attention and default mode networks. Finally, we imaged brain function in patients with Parkinson's disease and implanted deep brain stimulators that preclude functional magnetic resonance imaging.

  4. Psychiatric stigma in correctional facilities.

    Science.gov (United States)

    Miller, R D; Metzner, J L

    1994-01-01

    While legislatively sanctioned discrimination against the mentally ill in general society has largely disappeared, it persists in correctional systems where inmates are denied earn-time reductions in sentences, parole opportunities, placement in less restrictive facilities, and opportunities to participate in sentence-reducing programs because of their status as psychiatric patients or their need for psychotropic medications. The authors discuss the prevalence of such problems from detailed examinations of several correctional systems and from the results of a national survey of correctional medical directors.

  5. Linear network error correction coding

    CERN Document Server

    Guang, Xuan

    2014-01-01

    There are two main approaches in the theory of network error correction coding. In this SpringerBrief, the authors summarize some of the most important contributions following the classic approach, which represents messages by sequences?similar to algebraic coding,?and also briefly discuss the main results following the?other approach,?that uses the theory of rank metric codes for network error correction of representing messages by subspaces. This book starts by establishing the basic linear network error correction (LNEC) model and then characterizes two equivalent descriptions. Distances an

  6. Use of Positron Emission Tomography/Computed Tomography in Radiation Treatment Planning for Lung Cancer

    Directory of Open Access Journals (Sweden)

    Kezban Berberoğlu

    2016-06-01

    Full Text Available Radiotherapy (RT plays an important role in the treatment of lung cancer. Accurate diagnosis and staging are crucial in the delivery of RT with curative intent. Target miss can be prevented by accurate determination of tumor contours during RT planning. Currently, tumor contours are determined manually by computed tomography (CT during RT planning. This method leads to differences in delineation of tumor volume between users. Given the change in RT tools and methods due to rapidly developing technology, it is now more significant to accurately delineate the tumor tissue. F18 fluorodeoxyglucose positron emission tomography/CT (F18 FDG PET/CT has been established as an accurate method in correctly staging and detecting tumor dissemination in lung cancer. Since it provides both anatomic and biologic information, F18 FDG PET decreases interuser variability in tumor delineation. For instance, tumor volumes may be decreased as atelectasis and malignant tissue can be more accurately differentiated, as well as better evaluation of benign and malignant lymph nodes given the difference in FDG uptake. Using F18 FDG PET/CT, the radiation dose can be escalated without serious adverse effects in lung cancer. In this study, we evaluated the contribution of F18 FDG PET/CT for RT planning in lung cancer.

  7. State Waste Discharge Permit Application: Electric resistance tomography testing

    International Nuclear Information System (INIS)

    1994-04-01

    This permit application documentation is for a State Waste Discharge Permit issued in accordance with requirements of Washington Administrative Code 173-216. The activity being permitted is a technology test using electrical resistance tomography. The electrical resistance tomography technology was developed at Lawrence Livermore National Laboratory and has been used at other waste sites to track underground contamination plumes. The electrical resistance tomography technology measures soil electrical resistance between two electrodes. If a fluid contaminated with electrolytes is introduced into the soil, the soil resistance is expected to drop. By using an array of measurement electrodes in several boreholes, the areal extent of contamination can be estimated. At the Hanford Site, the purpose of the testing is to determine if the electrical resistance tomography technology can be used in the vicinity of large underground metal tanks without the metal tank interfering with the test. It is anticipated that the electrical resistance tomography technology will provide a method for accurately detecting leaks from the bottom of underground tanks, such as the Hanford Site single-shell tanks

  8. State Waste Discharge Permit Application: Electric resistance tomography testing

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    This permit application documentation is for a State Waste Discharge Permit issued in accordance with requirements of Washington Administrative Code 173-216. The activity being permitted is a technology test using electrical resistance tomography. The electrical resistance tomography technology was developed at Lawrence Livermore National Laboratory and has been used at other waste sites to track underground contamination plumes. The electrical resistance tomography technology measures soil electrical resistance between two electrodes. If a fluid contaminated with electrolytes is introduced into the soil, the soil resistance is expected to drop. By using an array of measurement electrodes in several boreholes, the areal extent of contamination can be estimated. At the Hanford Site, the purpose of the testing is to determine if the electrical resistance tomography technology can be used in the vicinity of large underground metal tanks without the metal tank interfering with the test. It is anticipated that the electrical resistance tomography technology will provide a method for accurately detecting leaks from the bottom of underground tanks, such as the Hanford Site single-shell tanks.

  9. Corrective Action Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    Corrective Action Unit (CAU) 139, Waste Disposal Sites, is listed in the Federal Facility Agreement and Consent Order (FFACO) of 1996 (FFACO, 1996). CAU 139 consists of seven Corrective Action Sites (CASs) located in Areas 3, 4, 6, and 9 of the Nevada Test Site (NTS), which is located approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1). CAU 139 consists of the following CASs: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Details of the site history and site characterization results for CAU 139 are provided in the approved Corrective Action Investigation Plan (CAIP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2006) and in the approved Corrective Action Decision Document (CADD) (NNSA/NSO, 2007). The purpose of this Corrective Action Plan (CAP) is to present the detailed scope of work required to implement the recommended corrective actions as specified in Section 4.0 of the approved CADD (NNSA/NSO, 2007). The approved closure activities for CAU 139 include removal of soil and debris contaminated with plutonium (Pu)-239, excavation of geophysical anomalies, removal of surface debris, construction of an engineered soil cover, and implementation of use restrictions (URs). Table 1 presents a summary of CAS-specific closure activities and contaminants of concern (COCs). Specific details of the corrective actions to be performed at each CAS are presented in Section 2.0 of this report

  10. Using Distant Sources in Local Seismic Tomography

    Science.gov (United States)

    Julian, Bruce; Foulgr, Gillian

    2014-05-01

    Seismic tomography methods such as the 'ACH' method of Aki, Christoffersson & Husebye (1976, 1977) are subject to significant bias caused by the unknown wave-speed structure outside the study volume, whose effects are mathematically of the same order as the local-structure effects being studied. Computational experiments using whole-mantle wave-speed models show that the effects are also of comparable numerical magnitude (Masson & Trampert, 1997). Failure to correct for these effects will significantly corrupt computed local structures. This bias can be greatly reduced by solving for additional parameters defining the shapes, orientations, and arrival times of the incident wavefronts. The procedure is exactly analogous to solving for hypocentral locations in local-earthquake tomography. For planar incident wavefronts, each event adds three free parameters and the forward problem is surprisingly simple: The first-order change in the theoretical arrival time at observation point B resulting from perturbations in the incident-wave time t0 and slowness vector s is δtB ≡ δt0 + δs · rA = δtA, the change in the time of the plane wave at the point A where the un-perturbed ray enters the study volume (Julian and Foulger, submitted). This consequence of Fermat's principle apparently has not previously been recognized. In addition to eliminating the biasing effect of structure outside the study volume, this formalism enables us to combine data from local and distant events in studies of local structure, significantly improving resolution of deeper structure, particularly in places such as volcanic and geothermal areas where seismicity is confined to shallow depths. Many published models that were derived using ACH and similar methods probably contain significant artifacts and are in need of re-evaluation.

  11. Automatic, three-segment, MR-based attenuation correction for whole-body PET/MR data

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, V. [Philips Research Europe, Department of Molecular Imaging Systems, Aachen (Germany); RWTH Aachen University, Department of Experimental Molecular Imaging, Aachen (Germany); Torres-Espallardo, I. [Philips Research Europe, Aachen (Germany); RWTH Aachen University, Department of Diagnostic Radiology, Aachen (Germany); RWTH Aachen University, Institute of Imaging and Computer Vision, Aachen (Germany); Renisch, S.; Boernert, P. [Philips Research Europe, Hamburg (Germany); Hu, Z.; Ojha, N. [Philips Healthcare, Cleveland, OH (United States); Perkuhn, M. [Philips Research Europe, Aachen (Germany); RWTH Aachen University, Department of Diagnostic Radiology, Aachen (Germany); Niendorf, T. [RWTH Aachen University, Department of Diagnostic Radiology, Aachen (Germany); Max-Delbrueck Center for Molecular Medicine, Berlin (Germany); Schaefer, W.M.; Brockmann, H.; Krohn, T.; Mottaghy, F.M. [RWTH Aachen University, Department of Nuclear Medicine, Aachen (Germany); Buhl, A.; Guenther, R.W.; Krombach, G.A. [RWTH Aachen University, Department of Diagnostic Radiology, Aachen (Germany)

    2011-01-15

    The combination of positron emission tomography (PET) and magnetic resonance (MR) tomography in a single device is anticipated to be the next step following PET/CT for future molecular imaging application. Compared to CT, the main advantages of MR are versatile soft tissue contrast and its capability to acquire functional information without ionizing radiation. However, MR is not capable of measuring a physical quantity that would allow a direct derivation of the attenuation values for high-energy photons. To overcome this problem, we propose a fully automated approach that uses a dedicated T1-weighted MR sequence in combination with a customized image processing technique to derive attenuation maps for whole-body PET. The algorithm automatically identifies the outer contour of the body and the lungs using region-growing techniques in combination with an intensity analysis for automatic threshold estimation. No user interaction is required to generate the attenuation map. The accuracy of the proposed MR-based attenuation correction (AC) approach was evaluated in a clinical study using whole-body PET/CT and MR images of the same patients (n = 15). The segmentation of the body and lung contour (L-R directions) was evaluated via a four-point scale in comparison to the original MR image (mean values >3.8). PET images were reconstructed using elastically registered MR-based and CT-based (segmented and non-segmented) attenuation maps. The MR-based AC showed similar behaviour as CT-based AC and similar accuracy as offered by segmented CT-based AC. Standardized uptake value (SUV) comparisons with reference to CT-based AC using predefined attenuation coefficients showed the largest difference for bone lesions (mean value {+-} standard variation of SUV{sub max}: -3.0% {+-} 3.9% for MR; -6.5% {+-} 4.1% for segmented CT). A blind comparison of PET images corrected with segmented MR-based, CT-based and segmented CT-based AC afforded identical lesion detectability, but slight

  12. Anterior Segment Tomography with the Cirrus Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Eduardo B. Rodrigues

    2012-01-01

    Full Text Available Optical coherence tomography (OCT is an optical acquisition method to examine biological tissues. In recent years, OCT has become an important imaging technology used in diagnosing and following macular pathologies. Further development enabled application of optical coherence tomography in evaluation of the integrity of the nerve fiber layer, optic nerve cupping, anterior chamber angle, or corneal topography. In this manuscript we overview the use of OCT in the clinical practice to enable corneal, iris, ciliary body, and angle evaluation and diagnostics.

  13. Motion correction in medical imaging.

    OpenAIRE

    Smith, Rhodri

    2017-01-01

    It is estimated that over half of current adults within Great Britain under the age of 65 will be diagnosed with cancer at some point in their lifetime. Medical Imaging forms an essential part of cancer clinical protocols and is able to furnish morphological, metabolic and functional information. The imaging of molecular interactions of biological processes in vivo with Positron Emission Tomography (PET) is informative not only for disease detection but also therapeutic response. The qualitat...

  14. Corrective Action Decision Document/Closure Report for Corrective Action Unit 567: Miscellaneous Soil Sites - Nevada National Security Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick [Navarro-Intera, LLC (N-I), Las Vegas, NV (United States)

    2014-12-01

    This Corrective Action Decision Document/Closure Report presents information supporting the closure of Corrective Action Unit (CAU) 567: Miscellaneous Soil Sites, Nevada National Security Site, Nevada. The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 567 based on the implementation of the corrective actions. The corrective actions implemented at CAU 567 were developed based on an evaluation of analytical data from the CAI, the assumed presence of COCs at specific locations, and the detailed and comparative analysis of the CAAs. The CAAs were selected on technical merit focusing on performance, reliability, feasibility, safety, and cost. The implemented corrective actions meet all requirements for the technical components evaluated. The CAAs meet all applicable federal and state regulations for closure of the site. Based on the implementation of these corrective actions, the DOE, National Nuclear Security Administration Nevada Field Office provides the following recommendations: • No further corrective actions are necessary for CAU 567. • The Nevada Division of Environmental Protection issue a Notice of Completion to the DOE, National Nuclear Security Administration Nevada Field Office for closure of CAU 567. • CAU 567 be moved from Appendix III to Appendix IV of the FFACO.

  15. Libertarian Anarchism Is Apodictically Correct

    OpenAIRE

    Redford, James

    2011-01-01

    James Redford, "Libertarian Anarchism Is Apodictically Correct", Social Science Research Network (SSRN), Dec. 15, 2011, 9 pp., doi:10.2139/ssrn.1972733. ABSTRACT: It is shown that libertarian anarchism (i.e., consistent liberalism) is unavoidably true.

  16. Self-correcting quantum computers

    International Nuclear Information System (INIS)

    Bombin, H; Chhajlany, R W; Horodecki, M; Martin-Delgado, M A

    2013-01-01

    Is the notion of a quantum computer (QC) resilient to thermal noise unphysical? We address this question from a constructive perspective and show that local quantum Hamiltonian models provide self-correcting QCs. To this end, we first give a sufficient condition on the connectedness of excitations for a stabilizer code model to be a self-correcting quantum memory. We then study the two main examples of topological stabilizer codes in arbitrary dimensions and establish their self-correcting capabilities. Also, we address the transversality properties of topological color codes, showing that six-dimensional color codes provide a self-correcting model that allows the transversal and local implementation of a universal set of operations in seven spatial dimensions. Finally, we give a procedure for initializing such quantum memories at finite temperature. (paper)

  17. Publisher Correction: Maya meteor mystery

    Science.gov (United States)

    Chiao, May

    2017-12-01

    In the version of this Research Highlight originally published, the figure credit was incorrect. The figure has now been correctly attributed to `Sébastian Lecocq / Alamy Stock Photo' in all versions of the Research Highlight.

  18. Publisher Correction: On our bookshelf

    Science.gov (United States)

    Karouzos, Marios

    2018-03-01

    In the version of this Books and Arts originally published, the book title Spectroscopy for Amateur Astronomy was incorrect; it should have read Spectroscopy for Amateur Astronomers. This has now been corrected.

  19. Beam Trajectory Correction for SNS

    CERN Document Server

    Chu, Chungming

    2005-01-01

    Automated beam trajectory correction with dipole correctors is developed and tested during the Spallation Neutron Source warm linac commissioning periods. The application is based on the XAL Java framework with newly developed optimization tools. Also, dipole corrector polarities and strengths, and beam position monitor (BPM) polarities were checked by an orbit difference program. The on-line model is used in both the trajectory correction and the orbit difference applications. Experimental data for both applications will be presented.

  20. Quantitative electron tomography: The effect of the three-dimensional point spread function

    Energy Technology Data Exchange (ETDEWEB)

    Heidari, Hamed [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Van den Broek, Wouter [Institut für Experimentelle Physik, Universität Ulm, Albert-Einstein-Allee 11, 89081 Ulm (Germany); Bals, Sara, E-mail: sara.bals@ua.ac.be [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)

    2013-12-15

    The intensity levels in a three-dimensional (3D) reconstruction, obtained by electron tomography, can be influenced by several experimental imperfections. Such artifacts will hamper a quantitative interpretation of the results. In this paper, we will correct for artificial intensity variations by determining the 3D point spread function (PSF) of a tomographic reconstruction based on high angle annular dark field scanning transmission electron microscopy. The large tails of the PSF cause an underestimation of the intensity of smaller particles, which in turn hampers an accurate radius estimate. Here, the error introduced by the PSF is quantified and corrected a posteriori. - Highlights: • Intensity variations in 3D reconstructions hamper quantification of tomography data. • These variations are corrected based on the point spread function. • The approach can be considered as an optimized route to 3D quantification.