WorldWideScience

Sample records for toluene-degrading methanogenic consortium

  1. Multiple Syntrophic Interactions in a Terephthalate-Degrading Methanogenic Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Lykidis, Athanasios; Chen, Chia-Lung; Tringe, Susannah G.; McHardy, Alice C.; Copeland, Alex 5; Kyrpides, Nikos C.; Hugenholtz, Philip; Liu, Wen-Tso

    2010-08-05

    Terephthalate (TA) is one of the top 50 chemicals produced worldwide. Its production results in a TA-containing wastewater that is treated by anaerobic processes through a poorly understood methanogenic syntrophy. Using metagenomics, we characterized the methanogenic consortium tinside a hyper-mesophilic (i.e., between mesophilic and thermophilic), TA-degrading bioreactor. We identified genes belonging to dominant Pelotomaculum species presumably involved in TA degradation through decarboxylation, dearomatization, and modified ?-oxidation to H{sub 2}/CO{sub 2} and acetate. These intermediates are converted to CH{sub 4}/CO{sub 2} by three novel hyper-mesophilic methanogens. Additional secondary syntrophic interactions were predicted in Thermotogae, Syntrophus and candidate phyla OP5 and WWE1 populations. The OP5 encodes genes capable of anaerobic autotrophic butyrate production and Thermotogae, Syntrophus and WWE1 have the genetic potential to oxidize butyrate to COsub 2}/H{sub 2} and acetate. These observations suggest that the TA-degrading consortium consists of additional syntrophic interactions beyond the standard H{sub 2}-producing syntroph ? methanogen partnership that may serve to improve community stability.

  2. Microbial characterization of toluene-degrading denitrifying consortia obtained from terrestrial and marine ecosystems.

    Science.gov (United States)

    An, Y-J; Joo, Y-H; Hong, I-Y; Ryu, H-W; Cho, K-S

    2004-10-01

    The degradation characteristics of toluene coupled to nitrate reduction were investigated in enrichment culture and the microbial communities of toluene-degrading denitrifying consortia were characterized by denaturing gradient gel electrophoresis (DGGE) technique. Anaerobic nitrate-reducing bacteria were enriched from oil-contaminated soil samples collected from terrestrial (rice field) and marine (tidal flat) ecosystems. Enriched consortia degraded toluene in the presence of nitrate as a terminal electron acceptor. The degradation rate of toluene was affected by the initial substrate concentration and co-existence of other hydrocarbons. The types of toluene-degrading denitrifying consortia depended on the type of ecosystem. The clone RS-7 obtained from the enriched consortium of the rice field was most closely related to a toluene-degrading and denitrifying bacterium, Azoarcus denitrificians (A. tolulyticus sp. nov.). The clone TS-11 detected in the tidal flat enriched consortium was affiliated to Thauera sp. strain S2 (T. aminoaromatica sp. nov.) that was able to degrade toluene under denitrifying conditions. This indicates that environmental factors greatly influence microbial communities obtained from terrestrial (rice field) and marine (tidal flat) ecosystems.

  3. The contribution of fermentative bacteria and methanogenic archaea to azo dye reduction by a thermophilic anaerobic consortium

    NARCIS (Netherlands)

    Santos, dos A.B.; Cervantes, F.J.; Madrid, de M.P.; Bok, de F.A.M.; Stams, A.J.M.; Lier, van J.B.

    2006-01-01

    The contribution of fermentative bacteria and methanogenic archaea to azo dye reduction by a thermophilic anaerobic consortium was studied. Additionally, the effects of different electron-donating substrates and the redox mediator riboflavin on dye reduction were assessed by using either a

  4. Biodegradation and growth characteristics of a toluene-degrading ...

    African Journals Online (AJOL)

    A toluene-degrading strain was isolated from active sludge in this study. Both growth characteristic and the performance to degrade toluene by the strain in batch culture mode were evaluated. Results showed that the isolated strain presented a good ability to remove toluene with the maximum removal efficiency of 93.8%.

  5. Effect of trichloroethylene on the competitive behavior of toluene-degrading bacteria

    NARCIS (Netherlands)

    Mars, Astrid E.; Prins, Gjalt T.; Wietzes, Pieter; Koning, Wim de; Janssen, Dick B.

    The influence of trichloroethylene (TCE) on a mixed culture of four different toluene-degrading bacterial strains (Pseudomonas putida mt-2, P. putida F1, P. putida GJ31, and Burkholderia cepacia G4) was studied with a fed-batch culture. The strains were competing for toluene, which was added at a

  6. The function of a toluene-degrading bacterial community in a waste gas trickling filter

    DEFF Research Database (Denmark)

    Pedersen, A.R.; Arvin, E.

    1999-01-01

    oligonucleotide 16S ribosomal RNA probe targeting the toluene-degrading species Pseudomonas putida, and by computer simulations (AQUASIM) of the biofilm growth based on a food web model. Biofilms were taken from a lab-scale trickling filter for treatment of toluene-polluted air. The biofilm growth...

  7. Transformation of pWWO in Rhizobium leguminosarum DPT to Engineer Toluene Degrading Ability for Rhizoremediation

    OpenAIRE

    Goel, Garima; Pandey, Piyush; Sood, Anchal; Bisht, Sandeep; Maheshwari, D. K.; Sharma, G. D.

    2011-01-01

    Rhizoremediation of organic xenobiotics is based on interactions between plants and their associated micro-organisms. The present work was designed to engineer a bacterial system having toluene degradation ability along with plant growth promoting characteristics for effective rhizoremediation. pWWO harboring the genes responsible for toluene breakdown was isolated from Pseudomonas putida MTCC 979 and successfully transformed in Rhizobium DPT. This resulted in a bacterial strain (DPTT) which ...

  8. Toluene degradation by non-thermal plasma combined with a ferroelectric catalyst.

    Science.gov (United States)

    Liang, Wen-Jun; Ma, Lin; Liu, Huan; Li, Jian

    2013-08-01

    Degradation of toluene in a gas by non-thermal plasma with a ferroelectric catalyst was studied at normal temperature and atmospheric pressure. Spontaneous polarization material (BaTiO3) and photocatalyst (TiO2) were added into plasma system simultively. Toluene degradation efficiency and specific energy density during the discharge process were investigated. Furthermore, byproducts and degradation mechanisms of toluene were also investigated. The toluene degradation efficiency increased when non-thermal plasma technology was combined with the catalyst. The toluene degradation efficiencies of the different catalysts tested were in the following order: BaTiO3/TiO2>BaTiO3>TiO2>no catalyst. A mass ratio of 2.38:1 was optimum for the BaTiO3 and TiO2 catalyst. The outlet gas was analyzed by gas chromatography and Fourier transform infrared spectroscopy, and the main compounds detected were CO2, H2O, O3 and benzene ring derivatives. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Transformation of pWWO in Rhizobium leguminosarum DPT to Engineer Toluene Degrading Ability for Rhizoremediation.

    Science.gov (United States)

    Goel, Garima; Pandey, Piyush; Sood, Anchal; Bisht, Sandeep; Maheshwari, D K; Sharma, G D

    2012-06-01

    Rhizoremediation of organic xenobiotics is based on interactions between plants and their associated micro-organisms. The present work was designed to engineer a bacterial system having toluene degradation ability along with plant growth promoting characteristics for effective rhizoremediation. pWWO harboring the genes responsible for toluene breakdown was isolated from Pseudomonas putida MTCC 979 and successfully transformed in Rhizobium DPT. This resulted in a bacterial strain (DPT(T)) which had the ability to degrade toluene as well as enhance growth of host plant. The frequency of transformation was recorded 5.7 × 10(-6). DPT produced IAA, siderophore, chitinase, HCN, ACC deaminase, solubilized inorganic phosphate, fixed atmospheric nitrogen and inhibited the growth of Fusarium oxysporum and Macrophomina phaseolina in vitro. During pot assay, 50 ppm toluene in soil was found to inhibit the germination of Cajanus cajan seeds. However when the seeds bacterized with toluene degrading P. putida or R. leguminosarum DPT were sown in pots, again no germination was observed. Non-bacterized as well as bacterized seeds germinated successfully in toluene free soil as control. The results forced for an alternative mode of application of bacteria for rhizoremediation purpose. Hence bacterial suspension was mixed with soil having 50 ppm of toluene. Germination index in DPT treated soil was 100% while in P. putida it was 50%. Untreated soil with toluene restricted the seeds to germinate.

  10. Classes of organic molecules targeted by a methanogenic microbial consortium grown on sedimentary rocks of various maturities

    Directory of Open Access Journals (Sweden)

    Margaux eMesle

    2015-06-01

    Full Text Available Organic-rich shales are populated by methanogenic consortia that are able to degrade the fossilized organic matter into methane gas. To identify the organic fraction effectively degraded, we have sequentially depleted two types of organic-rich rocks, shales and coal, at two different maturities, by successive solvent extractions to remove the most soluble fractions (maltenes and asphaltenes and isolate kerogen. We show the ability of the consortia to produce methane from all rock samples, including those containing the most refractory organic matter, i.e. the kerogen. Shales yielded higher methane production than lignite and coal. Mature rocks yielded more methane than immature rocks. Surprisingly, the efficiency of the consortia was not influenced by the removal of the easily biodegradable fractions contained in the maltenes and asphaltenes. This suggests that one of the limitations of organic matter degradation in situ may be the accessibility of the carbon and energy source. Indeed, bitumen has a colloidal structure that may limit the accessibility to asphaltenes in the bulk rock. Solvent extractions might favor the access to asphaltenes and kerogen by modifying the spatial organization of the molecules in the rock matrix.

  11. Isolation and characterization of Magnetospirillum sp strain 15-1 as a representative anaerobic toluene-degrader from a constructed wetland model

    DEFF Research Database (Denmark)

    Meyer-Cifuentes, Ingrid; Lavanchy, Paula Maria Martinez; Marin-Cevada, Vianey

    2017-01-01

    -independent approaches indicated also that microbes capable of anaerobic toluene degradation were abundant. Therefore, we aimed at isolating anaerobic-toluene degraders from one of these PFRs. From the obtained colonies which consisted of spirilli-shaped bacteria, a strain designated 15-1 was selected for further...

  12. Phylogenetic and functional diversity within toluene-degrading, sulphate-reducing consortia enriched from a contaminated aquifer.

    Science.gov (United States)

    Kuppardt, Anke; Kleinsteuber, Sabine; Vogt, Carsten; Lüders, Tillmann; Harms, Hauke; Chatzinotas, Antonis

    2014-08-01

    Three toluene-degrading microbial consortia were enriched under sulphate-reducing conditions from different zones of a benzene, toluene, ethylbenzene and xylenes (BTEX) plume of two connected contaminated aquifers. Two cultures were obtained from a weakly contaminated zone of the lower aquifer, while one culture originated from the highly contaminated upper aquifer. We hypothesised that the different habitat characteristics are reflected by distinct degrader populations. Degradation of toluene with concomitant production of sulphide was demonstrated in laboratory microcosms and the enrichment cultures were phylogenetically characterised. The benzylsuccinate synthase alpha-subunit (bssA) marker gene, encoding the enzyme initiating anaerobic toluene degradation, was targeted to characterise the catabolic diversity within the enrichment cultures. It was shown that the hydrogeochemical parameters in the different zones of the plume determined the microbial composition of the enrichment cultures. Both enrichment cultures from the weakly contaminated zone were of a very similar composition, dominated by Deltaproteobacteria with the Desulfobulbaceae (a Desulfopila-related phylotype) as key players. Two different bssA sequence types were found, which were both affiliated to genes from sulphate-reducing Deltaproteobacteria. In contrast, the enrichment culture from the highly contaminated zone was dominated by Clostridia with a Desulfosporosinus-related phylotype as presumed key player. A distinct bssA sequence type with high similarity to other recently detected sequences from clostridial toluene degraders was dominant in this culture. This work contributes to our understanding of the niche partitioning between degrader populations in distinct compartments of BTEX-contaminated aquifers.

  13. Methanogenic archaea

    International Nuclear Information System (INIS)

    Joblin, K.N.

    2005-01-01

    This chapter outlines procedures for enumerating, isolating, culturing and storing methanogens from ruminal digesta. The methanogens, a large and diverse group of Archaea, have unique features that separate them from the bacteria and the eukaryotes. They are the only recognized ruminal microbes belonging to the Archaea and are an integral part of the rumen microbial ecosystem. By scavenging hydrogen gas, methanogens play a key ecological role in keeping the partial pressure of hydrogen low so that fermentation can proceed efficiently. Although about 70 methanogenic species belonging to 2 1 genera have been identified from anaerobic environments, and a range of different methanogens co-exist in the rumen, to date only seven ruminal species have been isolated and purified. The population densities of methanogens in the rumen appear to be influenced by diet, and in particular by the fibre content of the diet. Sheep and cattle fed diets rich in concentrates contained 10 7 -10 8 and 10 8 - 10 9 ruminal methanogens/g, respectively, whereas sheep and dairy cows grazing pasture contained 10 9 -10 10 ruminal methanogens/g (G.N. Jarvis and K.N. Joblin, unpublished data). With careful application, methanogen population densities can readily be determined using culture methods. These appear to be similar to the population densities determined by culture-independent methods (P. Evans and K.N. Joblin, unpublished data)

  14. Activity and three-dimensional distribution of toluene-degrading Pseudomonas putida in a multispecies biofilm assessed by quantitative in situ hybridization and scanning confocal laser microscopy

    DEFF Research Database (Denmark)

    Møller, Søren; Pedersen, Anne Rathmann; Poulsen, L.K.

    1996-01-01

    As a representative member of the toluene-degrading population in a biofilter for waste gas treatment, Pseudomonas putida was investigated with a 16S rRNA targeting probe, The three-dimensional distribution of P. putida was visualized in the biofilm matrix by scanning confocal laser microscopy...

  15. DNA-SIP identifies sulfate-reducing Clostridia as important toluene degraders in tar-oil-contaminated aquifer sediment

    Energy Technology Data Exchange (ETDEWEB)

    Winderl, C.; Penning, H.; von Netzer, F.; Meckenstock, R.U.; Lueders, T. [Helmholtz Zentrum Munchen, Neuherberg (Germany)

    2010-10-15

    Global groundwater resources are constantly challenged by a multitude of contaminants such as aromatic hydrocarbons. Especially in anaerobic habitats, a large diversity of unrecognized microbial populations may be responsible for their degradation. Still, our present understanding of the respective microbiota and their ecophysiology is almost exclusively based on a small number of cultured organisms, mostly within the Proteobacteria. Here, by DNA-based stable isotope probing (SIP), we directly identified the most active sulfate-reducing toluene degraders in a diverse sedimentary microbial community originating from a tar-oil-contaminated aquifer at a former coal gasification plant. On incubation of fresh sediments with {sup 13}C{sub 7}-toluene, the production of both sulfide and (CS{sub 2}){sup 13}CO{sub 2} was clearly coupled to the {sup 13}Clabeling of DNA of microbes related to Desulfosporosinus spp. within the Peptococcaceae (Clostridia). The screening of labeled DNA fractions also suggested a novel benzylsuccinate synthase alpha-subunit (bssA) sequence type previously only detected in the environment to be tentatively affiliated with these degraders. However, carbon flow from the contaminant into degrader DNA was only similar to 50%, pointing toward high ratios of heterotrophic CS{sub 2}-fixation during assimilation of acetyl-CoA originating from the contaminant by these degraders. These findings demonstrate that the importance of non-proteobacterial populations in anaerobic aromatics degradation, as well as their specific ecophysiology in the subsurface may still be largely ungrasped.

  16. Controlled biomass formation and kinetics of toluene degradation in a bioscrubber and in a reactor with a periodically moved trickle-bed.

    Science.gov (United States)

    Wübker, S M; Laurenzis, A; Werner, U; Friedrich, C

    1997-08-20

    The kinetics of degradation of toluene from a model waste gas and of biomass formation were examined in a bioscrubber operated under different nutrient limitations with a mixed culture. The applicability of the kinetics of continuous cultivation of the mixed culture was examined for a special trickle-bed reactor with a periodically moved filter bed. The efficiency of toluene elimination of the bioscrubber was 50 to 57% and depended on the toluene mass transfer as evident from a constant productivity of 0.026 g dry cell weight/L . h over the dilution rate. Under potassium limitation the biomass productivity was reduced by 60% to 0.011 g dry cell weight/L . h at a dilution rate of 0.013/h. Conversely, at low dilution rates the specific toluene degradation rates increased. Excess biomass in a trickle-bed reactor causes reduction of interfacial area and mass transfer, and increase in pressure drop. To avoid these disadvantages, the trickle-bed was moved periodically and biomass was removed with outflowing medium. The concentration of steady state biomass fixed on polyamide beads decreased hyperbolically with the dilution rate. Also, the efficiency of toluene degradation decreased from 72 to 56% with increasing dilution rate while the productivity increased. Potassium limitation generally caused a reduction in biomass, productivity, and yield while the specific degradation increased with dilution rate. This allowed the application of the principles of the chemostat to the trickle-bed reactor described here, for toluene degradation from waste gases. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 686-692, 1997.

  17. Desulfotignum toluenicum sp. nov., a novel toluene-degrading, sulphate-reducing bacterium isolated from an oil-reservoir model column.

    Science.gov (United States)

    Ommedal, Hege; Torsvik, Terje

    2007-12-01

    A Gram-negative, sulphate-reducing bacterium (strain H3(T)) was isolated from an oil-reservoir model column. The new isolate was able to oxidize toluene coupled to hydrogen sulphide production. For growth, the optimum salt concentration was 1.5 % (w/v), the optimum pH was 7.2 and the optimum temperature was 34 degrees C. The cells were straight to slightly curved rods, 0.6-1.0 microm in diameter and 1.4-2.5 microm in length. The predominant fatty acids were C(16 : 0), C(16 : 1)omega7c and C(17 : 0) cyclo, and the cells also contained dimethylacetals. Cloning and sequencing of a 1505 bp long fragment of the 16S rRNA gene showed that strain H3(T) is a member of the Deltaproteobacteria and is related closely to Desulfotignum balticum DSM 7044(T). The G+C content of the DNA was 52.0 mol% and the DNA-DNA similarity to D. balticum DSM 7044(T) was 56.1 %. Based on differences in DNA sequence and the unique property of toluene degradation, it is proposed that strain H3(T) should be designated a member of a novel species within the genus Desulfotignum, for which the name Desulfotignum toluenicum sp. nov. is proposed. The type strain is H3(T) (=DSM 18732(T)=ATCC BAA-1460(T)).

  18. Preparation of silver-modified TiO2 via microwave-assisted method and its photocatalytic activity for toluene degradation

    International Nuclear Information System (INIS)

    Li Xiaobin; Wang Linling; Lu Xiaohua

    2010-01-01

    Silver-modified TiO 2 (Ag-TiO 2 ) with various Ag/Ti molar ratios were prepared by the microwave-assisted method and characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and UV-vis diffuse reflectance spectroscopy (UV-vis-DRS). Compared with the hydrothermal method, Ag-TiO 2 of small crystallite size and high crystallinity can be obtained by the microwave-assisted preparation method. When the Ag/Ti molar ratio increased from 0 to 2%, the doping of Ag promoted the phase transformation and inhibited the growth of anatase crystallite. The absorption edge of Ag-TiO 2 shifted to longer wavelength, and the band gap energy of Ag-TiO 2 decreased. However, after increasing the molar ratio Ag/Ti further from 2 to 4%, the anatase content, the crystallite size and the band gap energy of Ag-TiO 2 only increased slightly. In photodegradation gaseous toluene, the photocatalytic activity of Ag-TiO 2 increased with the increase of Ag/Ti molar ratio from 0 to 1%, but declined with the further increase to 2%. The optimal Ag/Ti molar ratio for photocatalytic activity of Ag-TiO 2 was found as 1%, with the content of anatase, rutile and brookite of 71.1, 14.5 and 14.4%, respectively. Compared with TiO 2 , Ag-TiO 2 exhibited a better photostability in toluene degradation.

  19. Preparation and Characterization of Au/Pd Modified-TiO2 Photocatalysts for Phenol and Toluene Degradation under Visible Light—The Effect of Calcination Temperature

    Directory of Open Access Journals (Sweden)

    Anna Cybula

    2014-01-01

    Full Text Available Rutile loaded with Au/Pd nanoparticles was prepared using a water-in-oil microemulsion system of water/AOT/cyclohexane followed by calcination. The effect of calcination temperature (from 350 to 700°C on the structure of Au/Pd nanoparticles deposited at rutile matrix and the photocatalytic properties of Au/Pd-TiO2 was investigated in two model reactions (toluene degradation in gas phase and phenol degradation in aqueous phase. Toluene was irradiated over Au/Pd-TiO2 using light emitting diodes (LEDs, λmax⁡ = 415 nm. The sample 0.5 mol% Pd/TiO2 exhibited the highest activity under visible light irradiation in gas and aqueous phase reaction among all photocatalysts calcined at 350°C, while the sample modified only with gold nanoparticles showed the lowest activity. The Au/Pd-TiO2 sample calcinated at 350°C possesses the highest photocatalytic activity when degrading phenol under visible light, which is 14 times higher than that of the one calcinated at 450°C. It was observed that increasing temperature from 350 to 700°C during calcination step caused segregation of metals and finally resulted in photoactivity drop.

  20. The Genome of the Toluene-Degrading Pseudomonas veronii Strain 1YdBTEX2 and Its Differential Gene Expression in Contaminated Sand.

    Directory of Open Access Journals (Sweden)

    Marian Morales

    Full Text Available The natural restoration of soils polluted by aromatic hydrocarbons such as benzene, toluene, ethylbenzene and m- and p-xylene (BTEX may be accelerated by inoculation of specific biodegraders (bioaugmentation. Bioaugmentation mainly involves introducing bacteria that deploy their metabolic properties and adaptation potential to survive and propagate in the contaminated environment by degrading the pollutant. In order to better understand the adaptive response of cells during a transition to contaminated material, we analyzed here the genome and short-term (1 h changes in genome-wide gene expression of the BTEX-degrading bacterium Pseudomonas veronii 1YdBTEX2 in non-sterile soil and liquid medium, both in presence or absence of toluene. We obtained a gapless genome sequence of P. veronii 1YdBTEX2 covering three individual replicons with a total size of 8 Mb, two of which are largely unrelated to current known bacterial replicons. One-hour exposure to toluene, both in soil and liquid, triggered massive transcription (up to 208-fold induction of multiple gene clusters, such as toluene degradation pathway(s, chemotaxis and toluene efflux pumps. This clearly underlines their key role in the adaptive response to toluene. In comparison to liquid medium, cells in soil drastically changed expression of genes involved in membrane functioning (e.g., lipid composition, lipid metabolism, cell fatty acid synthesis, osmotic stress response (e.g., polyamine or trehalose synthesis, uptake of potassium and putrescine metabolism, highlighting the immediate response mechanisms of P. veronii 1YdBTEX2 for successful establishment in polluted soil.

  1. Isolation and Partial Characterization of Bacteria in an Anaerobic Consortium That Mineralizes 3-Chlorobenzoic Acid †

    OpenAIRE

    Shelton, Daniel R.; Tiedje, James M.

    1984-01-01

    A methanogenic consortium able to use 3-chlorobenzoic acid as its sole energy and carbon source was enriched from anaerobic sewage sludge. Seven bacteria were isolated from the consortium in mono- or coculture. They included: one dechlorinating bacterium (strain DCB-1), one benzoate-oxidizing bacterium (strain BZ-2), two butyrate-oxidizing bacteria (strains SF-1 and NSF-2), two H2-consuming methanogens (Methanospirillum hungatei PM-1 and Methanobacterium sp. strain PM-2), and a sulfate-reduci...

  2. Conductive properties of methanogenic biofilms.

    Science.gov (United States)

    Li, Cheng; Lesnik, Keaton Larson; Liu, Hong

    2018-02-01

    Extracellular electron transfer between syntrophic partners needs to be efficiently maintained in methanogenic environments. Direct extracellular electron transfer via electrical current is an alternative to indirect hydrogen transfer but requires construction of conductive extracellular structures. Conductive mechanisms and relationship between conductivity and the community composition in mixed-species methanogenic biofilms are not well understood. The present study investigated conductive behaviors of methanogenic biofilms and examined the correlation between biofilm conductivity and community composition between different anaerobic biofilms enriched from the same inoculum. Highest conductivity observed in methanogenic biofilms was 71.8±4.0μS/cm. Peak-manner response of conductivity upon changes over a range of electrochemical potentials suggests that electron transfer in methanogenic biofilms occurs through redox driven super-exchange. The strong correlation observed between biofilm conductivity and Geobacter spp. in the metabolically diverse anaerobic communities suggests that the efficiency of DEET may provide pressure for microbial communities to select for species that can produce electrical conduits. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Methanogenic paraffin degradation proceeds via alkane addition to fumarate by 'Smithella' spp. mediated by a syntrophic coupling with hydrogenotrophic methanogens.

    Science.gov (United States)

    Wawrik, Boris; Marks, Christopher R; Davidova, Irene A; McInerney, Michael J; Pruitt, Shane; Duncan, Kathleen E; Suflita, Joseph M; Callaghan, Amy V

    2016-09-01

    Anaerobic microbial biodegradation of recalcitrant, water-insoluble substrates, such as paraffins, presents unique metabolic challenges. To elucidate this process, a methanogenic consortium capable of mineralizing long-chain n-paraffins (C28 -C50 ) was enriched from San Diego Bay sediment. Analysis of 16S rRNA genes indicated the dominance of Syntrophobacterales (43%) and Methanomicrobiales (26%). Metagenomic sequencing allowed draft genome assembly of dominant uncultivated community members belonging to the bacterial genus Smithella and the archaeal genera Methanoculleus and Methanosaeta. Five contigs encoding homologs of the catalytic subunit of alkylsuccinate synthase (assA) were detected. Additionally, mRNA transcripts for these genes, including a homolog binned within the 'Smithella' sp. SDB genome scaffold, were detected via RT-PCR, implying that paraffins are activated via 'fumarate addition'. Metabolic reconstruction and comparison with genome scaffolds of uncultivated n-alkane degrading 'Smithella' spp. are consistent with the hypothesis that syntrophically growing 'Smithella' spp. may achieve reverse electron transfer by coupling the reoxidation of ETFred to a membrane-bound FeS oxidoreductase functioning as an ETF:menaquinone oxidoreductase. Subsequent electron transfer could proceed via a periplasmic formate dehydrogenase and/or hydrogenase, allowing energetic coupling to hydrogenotrophic methanogens such as Methanoculleus. Ultimately, these data provide fundamental insight into the energy conservation mechanisms that dictate interspecies interactions salient to methanogenic alkane mineralization. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. BACTERIAL CONSORTIUM

    Directory of Open Access Journals (Sweden)

    Payel Sarkar

    2013-01-01

    Full Text Available Petroleum aromatic hydrocarbons like benzen e, toluene, ethyl benzene and xylene, together known as BTEX, has almost the same chemical structure. These aromatic hydrocarbons are released as pollutants in th e environment. This work was taken up to develop a solvent tolerant bacterial cons ortium that could degrade BTEX compounds as they all share a common chemical structure. We have isolated almost 60 different types of bacterial strains from different petroleum contaminated sites. Of these 60 bacterial strains almost 20 microorganisms were screene d on the basis of capability to tolerate high concentration of BTEX. Ten differe nt consortia were prepared and the compatibility of the bacterial strains within the consortia was checked by gram staining and BTEX tolerance level. Four successful mi crobial consortia were selected in which all the bacterial strains concomitantly grew in presence of high concentration of BTEX (10% of toluene, 10% of benzene 5% ethyl benzene and 1% xylene. Consortium #2 showed the highest growth rate in pr esence of BTEX. Degradation of BTEX by consortium #2 was monitored for 5 days by gradual decrease in the volume of the solvents. The maximum reduction observed wa s 85% in 5 days. Gas chromatography results also reveal that could completely degrade benzene and ethyl benzene within 48 hours. Almost 90% degradation of toluene and xylene in 48 hours was exhibited by consortium #2. It could also tolerate and degrade many industrial solvents such as chloroform, DMSO, acetonitrile having a wide range of log P values (0.03–3.1. Degradation of aromatic hydrocarbon like BTEX by a solvent tolerant bacterial consortium is greatly significant as it could degrade high concentration of pollutants compared to a bacterium and also reduces the time span of degradation.

  5. Methanogens in the Solar System

    Science.gov (United States)

    Taubner, Ruth-Sophie; Schleper, Christa; Firneis, Maria G.; Rittmann, Simon

    2015-04-01

    The last decade of space science revealed that potential habitats in the Solar System may not be limited to the classical habitable zone supporting life as we know it. These microorganisms were shown to thrive under extremophilic growth conditions. Here, we outline the main eco-physiological characteristics of methanogens like their response on temperature, pressure, or pH changes or their resistance against radiation or desiccation. They can withstand extreme environmental conditions which makes them intriguing organisms for astrobiological studies. On Earth, they are found for example in wetlands, in arctic and antarctic subglacial environments, in ruminants, and even in the environment surrounding the Mars Desert Research Station in Utah. These obligate anaerobic chemolithoautotrophs or chemolithoheterotrophs are able to use e.g. hydrogen and C1 compounds like CO2, formate, or methanol as energy source and carbon source, respectively. We point out their capability to be able to habitat potential extraterrestrial biospheres all over the planetary system. We will give an overview about these possible environments on Mars, icy moons like Europa or Enceladus, and minor planets. We present an overview about studies of methanogens with an astrobiological relevance and we show our conclusions about the role of methanogens for the search for extraterrestrial life in the Solar System. We will present first results of our study about the possibility to cultivate methanogens under Enceladus-like conditions. For that, based on the observations obtained by the Cassini spacecraft concerning the plume compounds, we produce a medium with a composition similar to the ocean composition of this icy moon which is far more Enceladus-like than in any (published) experiment before. Eventually, we give an outlook on the feasibility and the necessity of future astrobiological studies with these microbes. We point out the importance of future in-situ or even sample and return missions to

  6. Isolation and characterization of methanogenic bacteria from ...

    African Journals Online (AJOL)

    Isolation and characterization of methanogenic bacteria from brewery wastewater in Kenya. Sylvia Injete Murunga, Duncan Onyango Mbuge, Ayub Njoroge Gitau, Urbanus Ndungwa Mutwiwa, Ingrid Namae Wekesa ...

  7. Adaptation of Methanogenic Inocula to Anaerobic Digestion of Maize Silage

    Directory of Open Access Journals (Sweden)

    Martyna Wojcieszak

    2017-09-01

    Full Text Available A well-balanced microbial consortium is crucial for efficient biogas production. In turn, one of a major factor that influence on the structure of anaerobic digestion (AD consortium is a source of microorganisms which are used as an inoculum. This study evaluated the influence of inoculum sources (with various origin on adaptation of a biogas community and the efficiency of the biomethanization of maize silage. As initial inocula for AD of maize silage the samples from: (i an agricultural biogas plant (ABP which utilizes maize silage as a main substrate, (ii cattle slurry (CS, which contain elevated levels of lignocelluloses materials, and (iii raw sewage sludge (RSS with low content of plant origin materials were used. The adaptation of methanogenic consortia was monitored during a series of passages, and the functionality of the adapted consortia was verified through start-up operation of AD in two-stage reactors. During the first stages of the adaptation phase, methanogenic consortia occurred very slowly, and only after several passages did the microbial community adapts to allow production of biogas with high methane content. The ABP consortium revealed highest biogas production in the adaptation and in the start-up process. The biodiversity dynamics monitored during adaptation and start-up process showed that community profile changed in a similar direction in three studied consortia. Native communities were very distinct to each other, while at the end of the Phase II of the start-up process microbial diversity profile was similar in all consortia. All adopted bacterial communities were dominated by representatives of Porphyromonadaceae, Rikenellaceae, Ruminococcaceae, and Synergistaceae. A shift from low acetate-preferring acetoclastic Methanosaetaceae (ABP and RSS and/or hydrogenotrophic Archaea, e.g., Methanomicrobiaceae (CS prevailing in the inoculum samples to larger populations of high acetate-preferring acetoclastic

  8. Microbiological aspects of granular methanogenic sludge

    NARCIS (Netherlands)

    Dolfing, J.

    1987-01-01

    The settling characteristics of anaerobic sludge are enhanced by the formation of microbial conglomerates. Various types of conglomerates having different structures, were distinguished in the present study, viz. granules, pellets and flocs (chapter 1). Granular methanogenic sludge, often

  9. Converting mesophilic upflow sludge blanket (UASB) reactors to thermophilic by applying axenic methanogenic culture bioaugmentation

    DEFF Research Database (Denmark)

    Zhu, Xinyu; Treu, Laura; Kougias, Panagiotis G.

    2018-01-01

    on the microbial consortium. The adaptation of microbial community to a new environment or condition can be accelerated by a process known as “bioaugmentation” or “microbial community manipulation”, during which exogenous microorganisms harbouring specific metabolic activities are introduced to the reactor....... The aim of the current study was to rapidly convert the operational temperature of up-flow anaerobic sludge blanket (UASB) reactors from mesophilic to thermophilic conditions by applying microbial community manipulation techniques. Three different bioaugmentation strategies were compared and it was proven...... that the injection of axenic methanogenic culture was the most efficient approach leading to improved biomethanation process with 40% higher methane production rate compared to the control reactor. Microbial community analyses revealed that during bioaugmentation, the exogenous hydrogenotrophic methanogen could...

  10. Methanogenic Transformation of Methylfurfural Compounds to Furfural

    OpenAIRE

    Boopathy, R.

    1996-01-01

    The metabolic conversion of 5-methylfurfural and 2-methylfurfural to furfural by a methanogenic bacterium, Methanococcus sp. strain B, was studied. This bacterium was found to use methylfurfural compounds as a growth substrate and to convert them stoichiometrically to furfural. For every mole of methylfurfurals metabolized, almost 1 mol of furfural and 0.7 mol of methane were produced. Several methanogenic bacteria did not carry out this conversion. The metabolic conversion of methylfurfurals...

  11. International Lymphoma Epidemiology Consortium

    Science.gov (United States)

    The InterLymph Consortium, or formally the International Consortium of Investigators Working on Non-Hodgkin's Lymphoma Epidemiologic Studies, is an open scientific forum for epidemiologic research in non-Hodgkin's lymphoma.

  12. Quantification of methanogenic biomass by enzyme-linked immunosorbent assay and by analysis of specific methanogenic cofactors

    Energy Technology Data Exchange (ETDEWEB)

    Gorris, L G.M.; Kemp, H A; Archer, D B

    1987-01-01

    The reliability and accuracy with which enzyme-linked immunosorbent assay (ELISA) and an assay of methanogenic cofactors detect and quantify methanogenic species were investigated. Both assays required standardization with laboratory cultures of methanogenic bacteria and were applied to mixtures of pure cultures and samples from anaerobic digesters. ELISA was shown to be a simple method for detecting and quantifying individual methanogenic species. The range of species which can be assayed is limited by the range of antisera available but, potentially, ELISA can be applied to all methanogens. Although the cofactor assay is not species-specific it can distinguish hydrogenotrophic and acetotrophic methanogens and is quantitative.

  13. Quantifying electron fluxes in methanogenic microbial communities

    NARCIS (Netherlands)

    Junicke, H.

    2015-01-01

    Anaerobic digestion is a widely applied process in which close interactions between different microbial groups result in the formation of renewable energy in the form of biogas. Nevertheless, the regulatory mechanisms of the electron transfer between acetogenic bacteria and methanogenic archaea in

  14. Fate of neptunium in an anaerobic, methanogenic microcosm

    International Nuclear Information System (INIS)

    Banaszak, J.E.; Webb, S.M.; Rittmann, B.E.; Gaillard, J.F.; Reed, D.T.

    1999-01-01

    Neptunium is found predominantly as Np(IV) in reducing environments, but as Np(V) in aerobic environments. Currently, it is not known how the interplay between biotic and abiotic processes affects Np redox speciation in the environment. To evaluate the effect of anaerobic microbial activity on the fate of Np in natural systems, Np(V) was added to a microcosm inoculated with anaerobic sediments from a metal-contaminated freshwater lake. The consortium included metal-reducing, sulfate-reducing, and methanogenic microorganisms, and acetate was supplied as the only exogenous substrate. Addition of more than 10 -5 M Np did not inhibit methane production. Total Np solubility in the active microcosm, as well as in sterilized control samples, decreased by nearly two orders of magnitude. A combination of analytical techniques, including VIS-NIR absorption spectroscopy and XANES, identified Np(IV) as the oxidation state associated with the sediments. The similar results from the active microcosm and the abiotic controls suggest that microbially produced Mn(II/III) and Fe(II) may serve as electron donors for Np reduction

  15. [Effects of selective methanogenic inhibitors on methanogenesis and methanogenic communities in acetate degrading cultures].

    Science.gov (United States)

    Ma, Tingting; Cheng, Lei; Liu, Laiyan; Dai, Lirong; Zhou, Zheng; Zhang, Hui

    2015-05-04

    We evaluated the role of syntrophic acetate oxidation coupled with hydrogenotrophic methanogens in three different methanogenic consortia. Three methanogenic hexadecane degrading consortia named Y15, M82 and SK were taken from the same oily sludge of Shengli oil-field and enriched. They were incubated at 15, 35 and 55 °C, respectively. The consortia amended with acetate and inhibitors of NH4Cl or CH3F were further transferred and incubated at corresponding temperatures. The cultures atlate logarithmic phase were collected for terminal restriction fragment length polymorphism (T-RFLP) combined with cloning and phylogenetic analysis of 16S rRNA gene fragments. Gas chromatograph analysis showed that all of the consortia could grow and produce methane, but the lag phase was delayed and the growth rate was retarded in the cultures amended with inhibitor. Combination analysis of T-RFLP and clone library revealed the predominance of obligate aceticlastic Methanosaeta in the acetate cultures of Y15, M82 and SK. Under the mesophilic and thermophilic conditions, after add inginhibitor the relative abundance of aceticlastic methanogen decreased but hydrogenotrophic methanogen increased. Syntrophic acetate oxidation during methanogenic degradation of petroleum hydrocarbons occurs under mesophilic and thermophilic conditions, although the situation at low temperature seems uncertain.

  16. Biomethane potential of industrial paper wastes and investigation of the methanogenic communities involved.

    Science.gov (United States)

    Walter, Andreas; Silberberger, Sandra; Juárez, Marina Fernández-Delgado; Insam, Heribert; Franke-Whittle, Ingrid H

    2016-01-01

    Cellulose-containing waste products from the agricultural or industrial sector are potentially one of the largest sources of renewable energy on earth. In this study, the biomethane potential (BMP) of two types of industrial paper wastes, wood and pulp residues (WR and PR, respectively), were evaluated under both mesophilic and thermophilic conditions, and various pretreatment methods were applied in the attempt to increase the methane potential during anaerobic digestion. The methanogenic community composition was investigated with denaturing gradient gel electrophoresis (DGGE) and the ANAEROCHIP microarray, and dominant methanogens were quantitated using quantitative PCR. All pretreatments investigated in this study with the exception of the alkaline pretreatment of PR were found to increase the BMP of two paper industry wastes. However, the low recalcitrance level of the PR resulted in the pretreatments being less effective in increasing BMP when compared with those for WR. These results were supported by the physico-chemical data. A combined application of ultrasound and enzymatic pretreatment was found to be the best strategy for increasing methane yields. The retention time of substrates in the reactors strongly influenced the BMP of wastes subjected to the different pretreatments. In sludges from both paper wastes subjected to the various pretreatments, mixotrophic Methanosarcina species were found to dominate the community, accompanied by a consortium of hydrogenotrophic genera. Pretreating industrial paper wastes could be a potentially viable option for increasing the overall degradation efficiency and decreasing reactor retention time for the digestion of complex organic matter such as lignocellulose or hemicellulose. This would help reduce the environmental burden generated from paper production. Although there were minor differences in the methanogenic communities depending on the temperature of anaerobic digestion, there was little effect of substrate

  17. Enrichment of high ammonia tolerant methanogenic culture

    DEFF Research Database (Denmark)

    Fotidis, Ioannis; Karakashev, Dimitar Borisov; Proietti, Nicolas

    Ammonia is the major toxicant in full scale anaerobic digesters of animal wastes which are rich in proteins and/or urea, such as pig or poultry wastes. Ammonia inhibition decreases methane production rates, increases volatile fatty acids concentration and leads to economic losses for the biogas...... was derived from a full scale biogas reactor (Hashøj, Denmark), fed with 75% animal manure and 25% food industries organic waste. Basal anaerobic medium was used for the enrichment along with sodium acetate (1 g HAc L-1) as a carbon source. Fluorescence insitu hybridization (FISH) was used to determine...... exclusively to strict aceticlastic methanogens. Results obtained in this study, demonstrated for the first time that strictly aceticlastic methanogens, derived from an enriched culture, can efficiently produce methane under high ammonia levels....

  18. Molecular Biology and Physiology of Methanogenic Archaebacteria

    Science.gov (United States)

    1989-06-27

    anaerobic food chains, the methanogens contribute to the mineralization of large amounts of organic matter. The end product of their metabolism...of radiolabelled substrate to product [8; Worrell and Nagle, in preparation]. Strain RT103, a formate auxotroph was isolated from the kanamycin...methylmercaptopurine riboside 0. 16 Bacteriocidald 8-aza-2, 6-diaminopurine 0.0011 6-thioguanine 0.0004 8-azaguanine 0.0004 6- mercaptopurine 0 8

  19. Studying gene regulation in methanogenic archaea.

    Science.gov (United States)

    Rother, Michael; Sattler, Christian; Stock, Tilmann

    2011-01-01

    Methanogenic archaea are a unique group of strictly anaerobic microorganisms characterized by their ability, and dependence, to convert simple C1 and C2 compounds to methane for growth. The major models for studying the biology of methanogens are members of the Methanococcus and Methanosarcina species. Recent development of sophisticated tools for molecular analysis and for genetic manipulation allows investigating not only their metabolism but also their cell cycle, and their interaction with the environment in great detail. One aspect of such analyses is assessment and dissection of methanoarchaeal gene regulation, for which, at present, only a handful of cases have been investigated thoroughly, partly due to the great methodological effort required. However, it becomes more and more evident that many new regulatory paradigms can be unraveled in this unique archaeal group. Here, we report both molecular and physiological/genetic methods to assess gene regulation in Methanococcus maripaludis and Methanosarcina acetivorans, which should, however, be applicable for other methanogens as well. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Community Hospital Telehealth Consortium

    National Research Council Canada - National Science Library

    Williams, Elton

    2004-01-01

    The Community Hospital Telehealth Consortium is a unique, forward-thinking, community-based healthcare service project organized around 5 not-for-profit community hospitals located throughout Louisiana and Mississippi...

  1. Community Hospital Telehealth Consortium

    National Research Council Canada - National Science Library

    Williams, Elton

    2003-01-01

    The Community Hospital Telehealth Consortium is a unique, forward-thinking, community-based healthcare service project organized around 5 not-for-profit community hospitals located throughout Louisiana and Mississippi...

  2. Community Hospital Telehealth Consortium

    National Research Council Canada - National Science Library

    Williams, Jr, Elton L

    2007-01-01

    The Community Hospital Telehealth Consortium is a unique, forward-thinking, community-based healthcare service project organized around 5 not-for-profit community hospitals located throughout Louisiana and Mississippi...

  3. Metabolic interactions in methanogenic and sulfate-reducing bioreactors.

    Science.gov (United States)

    Stams, A J M; Plugge, C M; de Bok, F A M; van Houten, B H G W; Lens, P; Dijkman, H; Weijma, J

    2005-01-01

    In environments where the amount of electron acceptors is insufficient for complete breakdown of organic matter, methane is formed as the major reduced end product. In such methanogenic environments organic acids are degraded by syntrophic consortia of acetogenic bacteria and methanogenic archaea. Hydrogen consumption by methanogens is essential for acetogenic bacteria to convert organic acids to acetate and hydrogen. Several syntrophic cocultures growing on propionate and butyrate have been described. These syntrophic fatty acid-degrading consortia are affected by the presence of sulfate. When sulfate is present sulfate-reducing bacteria compete with methanogenic archaea for hydrogen and acetate, and with acetogenic bacteria for propionate and butyrate. Sulfate-reducing bacteria easily outcompete methanogens for hydrogen, but the presence of acetate as carbon source may influence the outcome of the competition. By contrast, acetoclastic methanogens can compete reasonably well with acetate-degrading sulfate reducers. Sulfate-reducing bacteria grow much faster on propionate and butyrate than syntrophic consortia.

  4. Ammonia effect on hydrogenotrophic methanogens and syntrophic acetate oxidizing bacteria

    DEFF Research Database (Denmark)

    Wang, Han; Fotidis, Ioannis; Angelidaki, Irini

    2015-01-01

    tested in the study; which is contradicting to the general belief that thermophilic methanogens are more vulnerable to high ammonia loads compared to mesophilic. This unexpected finding underlines the fact that the complete knowledge of ammonia inhibition effect on hydrogenotrophic methanogens is still...

  5. Metabolic interactions in methanogenic and sulfate-reducing bioreactors

    NARCIS (Netherlands)

    Stams, A.J.M.; Plugge, C.M.; Bok, de F.A.M.; Houten, van B.H.G.W.; Lens, P.N.L.; Dijkman, H.; Weijma, J.

    2005-01-01

    In environments where the amount of electron acceptors is insufficient for complete breakdown of organic matter, methane is formed as the major reduced end product. In such methanogenic environments organic acids are degraded by syntrophic consortia of acetogenic bacteria and methanogenic archaea.

  6. Interspecies electron transfer in methanogenic propionate degrading consortia

    NARCIS (Netherlands)

    Bok, de F.A.M.; Plugge, C.M.; Stams, A.J.M.

    2004-01-01

    Propionate is a key intermediate in the conversion of complex organic matter under methanogenic conditions. Oxidation of this compound requires obligate syntrophic consortia of acetogenic proton- and bicarbonate reducing bacteria and methanogenic archaea. Although H-2 acts as an electron-carrier in

  7. Genomic Characterization of Methanomicrobiales Reveals Three Classes of Methanogens

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iain; Ulrich, Luke E.; Lupa, Boguslaw; Susanti, Dwi; Porat, Iris; Hooper, Sean D.; Lykidis, Athanasios; Sieprawska-Lupa, Magdalena; Dharmarajan, Lakshmi; Goltsman, Eugene; Lapidus, Alla; Saunders, Elizabeth; Han, Cliff; Land, Miriam; Lucas, Susan; Mukhopadhyay, Biswarup; Whitman, William B.; Woese, Carl; Bristow, James; Kyrpides, Nikos

    2009-05-01

    Methanomicrobiales is the least studied order of methanogens. While these organisms appear to be more closely related to the Methanosarcinales in ribosomal-based phylogenetic analyses, they are metabolically more similar to Class I methanogens. In order to improve our understanding of this lineage, we have completely sequenced the genomes of two members of this order, Methanocorpusculum labreanum Z and Methanoculleus marisnigri JR1, and compared them with the genome of a third, Methanospirillum hungatei JF-1. Similar to Class I methanogens, Methanomicrobiales use a partial reductive citric acid cycle for 2-oxoglutarate biosynthesis, and they have the Eha energy-converting hydrogenase. In common with Methanosarcinales, Methanomicrobiales possess the Ech hydrogenase and at least some of them may couple formylmethanofuran formation and heterodisulfide reduction to transmembrane ion gradients. Uniquely, M. labreanum and M. hungatei contain hydrogenases similar to the Pyrococcus furiosus Mbh hydrogenase, and all three Methanomicrobiales have anti-sigma factor and anti-anti-sigma factor regulatory proteins not found in other methanogens. Phylogenetic analysis based on seven core proteins of methanogenesis and cofactor biosynthesis places the Methanomicrobiales equidistant from Class I methanogens and Methanosarcinales. Our results indicate that Methanomicrobiales, rather than being similar to Class I methanogens or Methanomicrobiales, share some features of both and have some unique properties. We find that there are three distinct classes of methanogens: the Class I methanogens, the Methanomicrobiales (Class II), and the Methanosarcinales (Class III).

  8. A new combination of substrates: biogas production and diversity of the methanogenic microorganisms

    Directory of Open Access Journals (Sweden)

    Kushkevych Ivan

    2018-04-01

    Full Text Available Agriculture, food industry, and manufacturing are just some of the areas where anaerobic technology can be used. Currently, anaerobic technologies are mainly used for wastewater treatment, solid waste treatment, or for the production of electrical and thermal energy from energy crops processing. However, a clear trend is towards more intensive use of this technology in biomass and biodegradable waste processing and hydrogen or biomethane production. An enormous number of anaerobic digesters are operating worldwide but there is very little information about the effect of different substrate combinations on the methanogens community. This is due to the fact that each of the anaerobic digesters has its own unique microbial community. For the most effective management of anaerobic processes it would be important to know the composition of a consortium of anaerobic microorganisms present in anaerobic digesters processing different input combinations of raw material. This paper characterizes the effect of the input raw materials on the diversity of the methanogen community. Two predominant microorganisms in anaerobic digesters were found to be 99% identity by the sequences of the 16S rRNA gene to the Methanoculleus and Thermogymnomonas genera deposited in GenBank.

  9. Different cultivation methods to acclimatise ammonia-tolerant methanogenic consortia

    DEFF Research Database (Denmark)

    Tian, Hailin; Fotidis, Ioannis; Mancini, Enrico

    2017-01-01

    reactors (i.e. batch, fed-batch and continuous stirred-tank reactors (CSTR)) operated at mesophilic (37°C) and thermophilic (55°C) conditions were assessed, based on methane production efficiency, incubation time, TAN/FAN (total ammonium nitrogen/free ammonia nitrogen) levels and maximum methanogenic...... activity. Overall, fed-batch cultivation was clearly the most efficient method compared to batch and CSTR. Specifically, by saving incubation time up to 150%, fed-batch reactors were acclimatised to nearly 2-fold higher FAN levels with a 37%-153% methanogenic activity improvement, compared to batch method....... Meanwhile, CSTR reactors were inhibited at lower ammonia levels. Finally, specific methanogenic activity test showed that hydrogenotrophic methanogens were more active than aceticlastic methanogens in all FAN levels above 540 mg NH3-N L-1....

  10. Sulfate reduction with methanol by a thermophilic consortium obtained from a methanogenic reactor

    Energy Technology Data Exchange (ETDEWEB)

    Davidova, I.A. [Wageningen Agricultural Univ. (Netherlands). Dept. of Microbiology; Stams, A.J.M. [Wageningen Agricultural Univ. (Netherlands). Dept. of Microbiology

    1996-12-31

    An enrichment culture obtained from anaerobic granular sludge of a bench-scale anarobic reactor degraded methanol at 65 C via sulfate reduction and acetogenesis. Sulfate reduction was the dominant process (S{sup 2-}/acetate=2.5). No methane formation was observed. Approximately 30% of the methanol was converted by acetogenic bacteria to acetate, while the remainder was degraded by these bacteria to H{sub 2} and CO{sub 2} in syntrophy with hydrogen-consuming sulfate-reducing bacteria. Pure cultures of sulfate-reducing and acetogenic bacteria were isolated and characterized. (orig.)

  11. The Genomic Standards Consortium

    DEFF Research Database (Denmark)

    Field, Dawn; Amaral-Zettler, Linda; Cochrane, Guy

    2011-01-01

    Standards Consortium (GSC), an open-membership organization that drives community-based standardization activities, Here we provide a short history of the GSC, provide an overview of its range of current activities, and make a call for the scientific community to join forces to improve the quality...

  12. Effect of ammonium and acetate on methanogenic pathway and methanogenic community composition

    DEFF Research Database (Denmark)

    Fotidis, Ioannis; Karakashev, Dimitar Borisov; Kotsopoulos, T. A.

    2013-01-01

    exposure to different ammonia concentrations. The methanogenic pathway was determined by following the production of (14) CH(4) and (14) CO(2) from acetate labeled in the methyl group (C-2). Microbial communities' composition was determined by fluorescence in situ hybridization. Upon acclimatization......Methanogenesis from acetate (aceticlastic methanogenesis or syntrophic acetate oxidation (SAO) coupled with hydrogenotrophic methanogenesis) is the most important step for the biogas process. The major environmental factors influencing methanogenesis are volatile fatty acids, ammonia, p...

  13. Phylogenetic analysis of methanogens from the bovine rumen

    Directory of Open Access Journals (Sweden)

    Forster Robert J

    2001-05-01

    Full Text Available Abstract Background Interest in methanogens from ruminants has resulted from the role of methane in global warming and from the fact that cattle typically lose 6 % of ingested energy as methane. Several species of methanogens have been isolated from ruminants. However they are difficult to culture, few have been consistently found in high numbers, and it is likely that major species of rumen methanogens are yet to be identified. Results Total DNA from clarified bovine rumen fluid was amplified using primers specific for Archaeal 16S rRNA gene sequences (rDNA. Phylogenetic analysis of 41 rDNA sequences identified three clusters of methanogens. The largest cluster contained two distinct subclusters with rDNA sequences similar to Methanobrevibacter ruminantium 16S rDNA. A second cluster contained sequences related to 16S rDNA from Methanosphaera stadtmanae, an organism not previously described in the rumen. The third cluster contained rDNA sequences that may form a novel group of rumen methanogens. Conclusions The current set of 16S rRNA hybridization probes targeting methanogenic Archaea does not cover the phylogenetic diversity present in the rumen and possibly other gastro-intestinal tract environments. New probes and quantitative PCR assays are needed to determine the distribution of the newly identified methanogen clusters in rumen microbial communities.

  14. Different cultivation methods to acclimatise ammonia-tolerant methanogenic consortia.

    Science.gov (United States)

    Tian, Hailin; Fotidis, Ioannis A; Mancini, Enrico; Angelidaki, Irini

    2017-05-01

    Bioaugmentation with ammonia tolerant-methanogenic consortia was proposed as a solution to overcome ammonia inhibition during anaerobic digestion process recently. However, appropriate technology to generate ammonia tolerant methanogenic consortia is still lacking. In this study, three basic reactors (i.e. batch, fed-batch and continuous stirred-tank reactors (CSTR)) operated at mesophilic (37°C) and thermophilic (55°C) conditions were assessed, based on methane production efficiency, incubation time, TAN/FAN (total ammonium nitrogen/free ammonia nitrogen) levels and maximum methanogenic activity. Overall, fed-batch cultivation was clearly the most efficient method compared to batch and CSTR. Specifically, by saving incubation time up to 150%, fed-batch reactors were acclimatised to nearly 2-fold higher FAN levels with a 37%-153% methanogenic activity improvement, compared to batch method. Meanwhile, CSTR reactors were inhibited at lower ammonia levels. Finally, specific methanogenic activity test showed that hydrogenotrophic methanogens were more active than aceticlastic methanogens in all FAN levels above 540mgNH 3 -NL -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Diversity of methanogenic archaea in freshwater sediments of lacustrine ecosystems.

    Science.gov (United States)

    Laskar, Folguni; Das Purkayastha, Sumi; Sen, Aniruddha; Bhattacharya, Mrinal K; Misra, Biswapriya B

    2018-02-01

    About half of the global methane (CH 4 ) emission is contributed by the methanogenic archaeal communities leading to a significant increase in global warming. This unprecedented situation has increased the ever growing necessity of evaluating the control measures for limiting CH 4 emission to the atmosphere. Unfortunately, research endeavors on the diversity and functional interactions of methanogens are not extensive till date. We anticipate that the study of the diversity of methanogenic community is paramount for understanding the metabolic processes in freshwater lake ecosystems. Although there are several disadvantages of conventional culture-based methods for determining the diversity of methanogenic archaeal communities, in order to understand their ecological roles in natural environments it is required to culture the microbes. Recently different molecular techniques have been developed for determining the structure of methanogenic archaeal communities thriving in freshwater lake ecosystem. The two gene based cloning techniques required for this purpose are 16S rRNA and methyl coenzyme M reductase (mcrA) in addition to the recently developed metagenomics approaches and high throughput next generation sequencing efforts. This review discusses the various methods of culture-dependent and -independent measures of determining the diversity of methanogen communities in lake sediments in lieu of the different molecular approaches and inter-relationships of diversity of methanogenic archaea. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Methanogenic Conversion of CO2 Into CH4

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, S.H., Ferry, J.G., Schoell, M.

    2012-05-06

    This SBIR project evaluated the potential to remediate geologic CO2 sequestration sites into useful methane gas fields by application of methanogenic bacteria. Such methanogens are present in a wide variety of natural environments, converting CO2 into CH4 under natural conditions. We conclude that the process is generally feasible to apply within many of the proposed CO2 storage reservoir settings. However, extensive further basic R&D still is needed to define the precise species, environments, nutrient growth accelerants, and economics of the methanogenic process. Consequently, the study team does not recommend Phase III commercial application of the technology at this early phase.

  17. Metabolic interactions between methanogenic consortia and anaerobic respiring bacteria

    DEFF Research Database (Denmark)

    Stams, A.J.; Oude Elferink, S.J.; Westermann, Peter

    2003-01-01

    Most types of anaerobic respiration are able to outcompete methanogenic consortia for common substrates if the respective electron acceptors are present in sufficient amounts. Furthermore, several products or intermediate compounds formed by anaerobic respiring bacteria are toxic to methanogenic...... consortia. Despite the potentially adverse effects, only few inorganic electron acceptors potentially utilizable for anaerobic respiration have been investigated with respect to negative interactions in anaerobic digesters. In this chapter we review competitive and inhibitory interactions between anaerobic...... respiring populations and methanogenic consortia in bioreactors. Due to the few studies in anaerobic digesters, many of our discussions are based upon studies of defined cultures or natural ecosystems...

  18. IPD-Work consortium

    DEFF Research Database (Denmark)

    Kivimäki, Mika; Singh-Manoux, Archana; Virtanen, Marianna

    2015-01-01

    of countries. The aim of the consortium is to estimate reliably the associations of work-related psychosocial factors with chronic diseases, disability, and mortality. Our findings are highly cited by the occupational health, epidemiology, and clinical medicine research community. However, some of the IPD-Work......'s findings have also generated disagreement as they challenge the importance of job strain as a major target for coronary heart disease (CHD) prevention, this is reflected in the critical discussion paper by Choi et al (1). In this invited reply to Choi et al, we aim to (i) describe how IPD-Work seeks......Established in 2008 and comprising over 60 researchers, the IPD-Work (individual-participant data meta-analysis in working populations) consortium is a collaborative research project that uses pre-defined meta-analyses of individual-participant data from multiple cohort studies representing a range...

  19. Kansas Wind Energy Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Gruenbacher, Don [Kansas State Univ., Manhattan, KS (United States)

    2015-12-31

    This project addresses both fundamental and applied research problems that will help with problems defined by the DOE “20% Wind by 2030 Report”. In particular, this work focuses on increasing the capacity of small or community wind generation capabilities that would be operated in a distributed generation approach. A consortium (KWEC – Kansas Wind Energy Consortium) of researchers from Kansas State University and Wichita State University aims to dramatically increase the penetration of wind energy via distributed wind power generation. We believe distributed generation through wind power will play a critical role in the ability to reach and extend the renewable energy production targets set by the Department of Energy. KWEC aims to find technical and economic solutions to enable widespread implementation of distributed renewable energy resources that would apply to wind.

  20. Methanobacterium Dominates Biocathodic Archaeal Communities in Methanogenic Microbial Electrolysis Cells

    KAUST Repository

    Siegert, Michael; Yates, Matthew D.; Spormann, Alfred M.; Logan, Bruce E.

    2015-01-01

    % of archaea). Cathodes with platinum contained mainly archaea most similar to Methanobrevibacter. Neither of these methanogens were abundant (<0.1% of archaea) in the inoculum, and therefore their high abundance on the cathode resulted from selective

  1. Ammonia effect on hydrogenotrophic methanogens and syntrophic acetate oxidizing bacteria

    DEFF Research Database (Denmark)

    Wang, Han; Fotidis, Ioannis; Angelidaki, Irini

    Substrates that contain high ammonia levels can cause inhibition on anaerobic digestion process and unstable biogas production. The aim of the current study was to assess the effects of different ammonia levels on pure strains of (syntrophic acetate oxidizing) SAO bacteria and hydrogenotrophic...... methanogens. Two pure strains of hydrogenotrophic methanogens (i.e: Methanoculleus bourgensis and Methanoculleus thermophiles) and two pure strains of SAO bacteria (i.e: Tepidanaerobacter acetatoxydans and Thermacetogenium phaeum) were inoculated under four different ammonia (0.26, 3, 5 and 7g NH4+-N......, the total incubation periods of hydrogenotrophic methanogens were significantly shorter compared to the SAO bacteria incubation periods. Thus, it seems that hydrogenotrophic methanogens could be equally, if not more, tolerant to high ammonia levels compared to SAO bacteria....

  2. ELISA techniques for the determination of methanogenic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Bryniok, D; Troesch, W [Fraunhofer-Institut fuer Grenzflaechen- und Bioverfahrenstechnik (IGB), Stuttgart (Germany, F.R.)

    1989-12-01

    Easy-to-handle enzyme-linked immunosorbent assay (ELISA) techniques have been developed suitable for quantitative species-specific determination of very low numbers of methanogens in complex bacterial populations. The amount and the distribution of different species of methanogens in anaerobic digestors is a reflection of the functional status of the degradation process; this can be recognized with these tests and hence may be used for process control. (orig.).

  3. PHOSPHOLIPIDS OF FIVE PSEUDOMONAD ARCHETYPES FOR DIFFERENT TOLUENE DEGRADATION PATHWAYS

    Science.gov (United States)

    Liquid chromatography/electrospray ionization/mass spectrometry (LC/ESI/MS) was used to determine phospholipid profiles for five reference pseudomonad strains harboring distinct toluene catabolic pathways: Pseudomonas putida mt-2, Pseudomonas putida F1, Burkholderia cepacia G4, B...

  4. The International Human Epigenome Consortium

    DEFF Research Database (Denmark)

    Stunnenberg, Hendrik G; Hirst, Martin

    2016-01-01

    The International Human Epigenome Consortium (IHEC) coordinates the generation of a catalog of high-resolution reference epigenomes of major primary human cell types. The studies now presented (see the Cell Press IHEC web portal at http://www.cell.com/consortium/IHEC) highlight the coordinated ac...

  5. Hawaii Space Grant Consortium

    Science.gov (United States)

    Flynn, Luke P.

    2005-01-01

    The Hawai'i Space Grant Consortium is composed of ten institutions of higher learning including the University of Hawai'i at Manoa, the University of Hawai'i at Hilo, the University of Guam, and seven Community Colleges spread over the 4 main Hawaiian islands. Geographic separation is not the only obstacle that we face as a Consortium. Hawai'i has been mired in an economic downturn due to a lack of tourism for almost all of the period (2001 - 2004) covered by this report, although hotel occupancy rates and real estate sales have sky-rocketed in the last year. Our challenges have been many including providing quality educational opportunities in the face of shrinking State and Federal budgets, encouraging science and technology course instruction at the K-12 level in a public school system that is becoming less focused on high technology and more focused on developing basic reading and math skills, and assembling community college programs with instructors who are expected to teach more classes for the same salary. Motivated people can overcome these problems. Fortunately, the Hawai'i Space Grant Consortium (HSGC) consists of a group of highly motivated and talented individuals who have not only overcome these obstacles, but have excelled with the Program. We fill a critical need within the State of Hawai'i to provide our children with opportunities to pursue their dreams of becoming the next generation of NASA astronauts, engineers, and explorers. Our strength lies not only in our diligent and creative HSGC advisory board, but also with Hawai'i's teachers, students, parents, and industry executives who are willing to invest their time, effort, and resources into Hawai'i's future. Our operational philosophy is to FACE the Future, meaning that we will facilitate, administer, catalyze, and educate in order to achieve our objective of creating a highly technically capable workforce both here in Hawai'i and for NASA. In addition to administering to programs and

  6. GAS STORAGE TECHNOLOGY CONSORTIUM

    Energy Technology Data Exchange (ETDEWEB)

    Robert W. Watson

    2004-10-18

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period July 1, 2004, through September 30, 2004. During this time period there were three main activities. First was the

  7. Methanogenic archaea isolated from Taiwan's Chelungpu fault.

    Science.gov (United States)

    Wu, Sue-Yao; Lai, Mei-Chin

    2011-02-01

    Terrestrial rocks, petroleum reservoirs, faults, coal seams, and subseafloor gas hydrates contain an abundance of diverse methanoarchaea. However, reports on the isolation, purification, and characterization of methanoarchaea in the subsurface environment are rare. Currently, no studies investigating methanoarchaea within fault environments exist. In this report, we succeeded in obtaining two new methanogen isolates, St545Mb(T) of newly proposed species Methanolobus chelungpuianus and Methanobacterium palustre FG694aF, from the Chelungpu fault, which is the fault that caused a devastating earthquake in central Taiwan in 1999. Strain FG694aF was isolated from a fault gouge sample obtained at 694 m below land surface (mbls) and is an autotrophic, mesophilic, nonmotile, thin, filamentous-rod-shaped organism capable of using H(2)-CO(2) and formate as substrates for methanogenesis. The morphological, biochemical, and physiological characteristics and 16S rRNA gene sequence analysis revealed that this isolate belongs to Methanobacterium palustre. The mesophilic strain St545Mb(T), isolated from a sandstone sample at 545 mbls, is a nonmotile, irregular, coccoid organism that uses methanol and trimethylamine as substrates for methanogenesis. The 16S rRNA gene sequence of strain St545Mb(T) was 99.0% similar to that of Methanolobus psychrophilus strain R15 and was 96 to 97.5% similar to the those of other Methanolobus species. However, the optimal growth temperature and total cell protein profile of strain St545Mb(T) were different from those of M. psychrophilus strain R15, and whole-genome DNA-DNA hybridization revealed less than 20% relatedness between these two strains. On the basis of these observations, we propose that strain St545Mb(T) (DSM 19953(T); BCRC AR10030; JCM 15159) be named Methanolobus chelungpuianus sp. nov. Moreover, the environmental DNA database survey indicates that both Methanolobus chelungpuianus and Methanobacterium palustre are widespread in the

  8. Nuclear Fabrication Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Levesque, Stephen [EWI, Columbus, OH (United States)

    2013-04-05

    This report summarizes the activities undertaken by EWI while under contract from the Department of Energy (DOE) Office of Nuclear Energy (NE) for the management and operation of the Nuclear Fabrication Consortium (NFC). The NFC was established by EWI to independently develop, evaluate, and deploy fabrication approaches and data that support the re-establishment of the U.S. nuclear industry: ensuring that the supply chain will be competitive on a global stage, enabling more cost-effective and reliable nuclear power in a carbon constrained environment. The NFC provided a forum for member original equipment manufactures (OEM), fabricators, manufacturers, and materials suppliers to effectively engage with each other and rebuild the capacity of this supply chain by : Identifying and removing impediments to the implementation of new construction and fabrication techniques and approaches for nuclear equipment, including system components and nuclear plants. Providing and facilitating detailed scientific-based studies on new approaches and technologies that will have positive impacts on the cost of building of nuclear plants. Analyzing and disseminating information about future nuclear fabrication technologies and how they could impact the North American and the International Nuclear Marketplace. Facilitating dialog and initiate alignment among fabricators, owners, trade associations, and government agencies. Supporting industry in helping to create a larger qualified nuclear supplier network. Acting as an unbiased technology resource to evaluate, develop, and demonstrate new manufacturing technologies. Creating welder and inspector training programs to help enable the necessary workforce for the upcoming construction work. Serving as a focal point for technology, policy, and politically interested parties to share ideas and concepts associated with fabrication across the nuclear industry. The report the objectives and summaries of the Nuclear Fabrication Consortium

  9. Growth and analysis of anaerobic wastewater methanogens using microfluidics

    Science.gov (United States)

    Steinhaus, Ben

    2005-11-01

    A micro-bioreactor (μBR) with a total system volume of 5 μl was developed using microfluidics and used to study the anaerobic waste-water methanogen methanosaeta concilli. The μBR was contained inside of an anaerobic chamber designed to be placed directly under an inverted light microscope while maintaining the reactor under a N2/CO2 gas mixture. Methanogens were cultured for periods of up to 3 months inside channels of varying width. The varying channel widths created varying fluid velocities and hence varying shear-rates inside the μBR. This allowed for direct study of the behavior and response of the anaerobe to varying shear-rates. After completion of the study, fluorescent in situ hybridization (FISH) was performed directly inside the microchannels to allow for further analysis and identification of the methanogens.

  10. An ancient divergence among the bacteria. [methanogenic phylogeny

    Science.gov (United States)

    Balch, W. E.; Magrum, L. J.; Fox, G. E.; Wolfe, R. S.; Woese, C. R.

    1977-01-01

    The 16S ribosomal RNZs from two species of met methanogenic bacteria, the mesophile Methanobacterium ruminantium and the thermophile Methanobacterium thermoautotrophicum, have been characterized in terms of the oligonucleotides produced by digestion with T1 ribonuclease. These two organisms are found to be sufficiently related that they can be considered members of the same genus or family. However, they bear only slight resemblance to 'typical' Procaryotic genera; such as Escherichia, Bacillus and Anacystis. The divergence of the methanogenic bacteria from other bacteria may be the most ancient phylogenetic event yet detected - antedating considerably the divergence of the blue green algal line for example, from the main bacterial line.

  11. Gas Storage Technology Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Joel Morrison; Elizabeth Wood; Barbara Robuck

    2010-09-30

    The EMS Energy Institute at The Pennsylvania State University (Penn State) has managed the Gas Storage Technology Consortium (GSTC) since its inception in 2003. The GSTC infrastructure provided a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. The GSTC received base funding from the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Oil & Natural Gas Supply Program. The GSTC base funds were highly leveraged with industry funding for individual projects. Since its inception, the GSTC has engaged 67 members. The GSTC membership base was diverse, coming from 19 states, the District of Columbia, and Canada. The membership was comprised of natural gas storage field operators, service companies, industry consultants, industry trade organizations, and academia. The GSTC organized and hosted a total of 18 meetings since 2003. Of these, 8 meetings were held to review, discuss, and select proposals submitted for funding consideration. The GSTC reviewed a total of 75 proposals and committed co-funding to support 31 industry-driven projects. The GSTC committed co-funding to 41.3% of the proposals that it received and reviewed. The 31 projects had a total project value of $6,203,071 of which the GSTC committed $3,205,978 in co-funding. The committed GSTC project funding represented an average program cost share of 51.7%. Project applicants provided an average program cost share of 48.3%. In addition to the GSTC co-funding, the consortium provided the domestic natural gas storage industry with a technology transfer and outreach infrastructure. The technology transfer and outreach were conducted by having project mentoring teams and a GSTC website, and by working closely with the Pipeline Research Council International (PRCI) to

  12. Snapshot of methanogen sensitivity to temperature in Zoige wetland from Tibetan plateau

    Directory of Open Access Journals (Sweden)

    Li eFu

    2015-02-01

    Full Text Available Zoige wetland in Tibetan plateau represents a cold environment at high altitude where significant methane emission has been observed. However, it remains unknown how the production and emission of CH4 from Zoige wetland will respond to a warming climate. Here we investigated the temperature sensitivity of methanogen community in a Zoige wetland soil under the laboratory incubation conditions. One soil sample was collected and the temperature sensitivity of the methanogenic activity, the structure of methanogen community and the methanogenic pathways were determined. We found that the response of methanogenesis to temperature could be separated into two phases, a high sensitivity in the low temperature range and a modest sensitivity under mesophilic conditions, respectively. The aceticlastic methanogens Methanosarcinaceae were the main methanogens at low temperatures, while hydrogenotrophic Methanobacteriales, Methanomicrobiales and Methanocellales were more abundant at higher temperatures. The total abundance of mcrA genes increased with temperature indicating that the growth of methanogens was stimulated. The growth of hydrogenotrophic methanogens, however, was faster than aceticlastic ones resulting in the shift of methanogen community. Determination of carbon isotopic signatures indicated that methanogenic pathway was also shifted from mainly aceticlastic methanogenesis to a mixture of hydrogenotrophic and aceticlastic methanogenesis with the increase of temperature. Collectively, the shift of temperature responses of methanogenesis was in accordance with the changes in methanogen composition and methanogenic pathway in this Zoige wetland sample. It appears that the aceticlastic methanogenesis dominated at low temperatures is more sensitive than the hydrogenotrophic one at higher temperatures.

  13. Atlantic Coast Environmental Indicators Consortium

    Data.gov (United States)

    Federal Laboratory Consortium — n 2000, the US EPA granted authority to establish up to five Estuarine Indicator Research Programs. These Programs were designed to identify, evaluate, recommend and...

  14. NCI Pediatric Preclinical Testing Consortium

    Science.gov (United States)

    NCI has awarded grants to five research teams to participate in its Pediatric Preclinical Testing Consortium, which is intended to help to prioritize which agents to pursue in pediatric clinical trials.

  15. Hickory Consortium 2001 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    2003-02-01

    As with all Building America Program consortia, systems thinking is the key to understanding the processes that Hickory Consortium hopes to improve. The Hickory Consortium applies this thinking to more than the whole-building concept. Their systems thinking embraces the meta process of how housing construction takes place in America. By understanding the larger picture, they are able to identify areas where improvements can be made and how to implement them.

  16. A simple model for simultaneous methanogenic-denitrification systems

    DEFF Research Database (Denmark)

    Garibay-Orijel, C.; Ahring, Birgitte Kiær; Rinderknecht-Seijas, N.

    2006-01-01

    We describe a useful and simple model for studies of simultaneous methanogenic-denitrification (M-D) systems. One equation predicts an inverse relationship between the percentage of electron donor channeled into dissimilatory denitrification and the loading ratio X given by grams degradable COD per...

  17. Survival of methanogens during desiccation: implications for life on Mars.

    Science.gov (United States)

    Kendrick, Michael G; Kral, Timothy A

    2006-08-01

    The relatively recent discoveries that liquid water likely existed on the surface of past Mars and that methane currently exists in the martian atmosphere have fueled the possibility of extant or extinct life on Mars. One possible explanation for the existence of the methane would be the presence of methanogens in the subsurface. Methanogens are microorganisms in the domain Archaea that can metabolize molecular hydrogen as an energy source and carbon dioxide as a carbon source and produce methane. One factor of importance is the arid nature of Mars, at least at the surface. If one is to assume that life exists below the surface, then based on the only example of life that we know, liquid water must be present. Realistically, however, that liquid water may be seasonal just as it is at some locations on our home planet. Here we report on research designed to determine how long certain species of methanogens can survive desiccation on a Mars soil simulant, JSC Mars-1. Methanogenic cells were grown on JSC Mars-1, transferred to a desiccator within a Coy anaerobic environmental chamber, and maintained there for varying time periods. Following removal from the desiccator and rehydration, gas chromatographic measurements of methane indicated survival for varying time periods. Methanosarcina barkeri survived desiccation for 10 days, while Methanobacterium formicicum and Methanothermobacter wolfeii were able to survive for 25 days.

  18. Effects of high salinity wastewater on methanogenic sludge bed systems

    NARCIS (Netherlands)

    Ismail, S.; Gonzalez-Contreras, P.A.; Jeison, D.A.; Lier, van J.B.

    2008-01-01

    The attainable loading potentials of anaerobic sludge bed systems are strongly dependent on the growth of granular biomass with a particular wastewater. Experiments were conducted to determine the effects of high salinity wastewater on the biological and physical properties of methanogenic sludge.

  19. Taxonomic, phylogenetic, and ecological diversity of methanogenic Archaea

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, J.-L.; Ollivier, B. [Universite de Provence, Marseille (France). Laboratoire de Microbiologist; Patel, B.K.C. [Griffith University, Brisbane (Australia). Microbial Discovery Research Unit

    2000-07-01

    Methanogens are strict anaerobes which share a complex biochemistry for methane synthesis as part of their energy metabolism. The discovery of the unique biochemical and genetic properties of these organisms led to the concept of Archaebacteria at the end of the seventies and the proposal in 1990 for the domain Archaea. A number of studies have provided evidence that they are of economic value. The successive petroleum crisis since 1973 has led to great interest in alternative forms of energy, including recovery of methane via anaerobic digestion of wastes. Improvements in the design of digestors have been made possible by advances in understanding the ecology and physiology of methanogens. In the cattle industry, the knowledge of the fermentation processes in the rumen demonstrated a net loss of energy via the methanogenesis, and inhibitors such as Rumensin have been developed to enhance meat yields. Oil companies try to distinguish between natural gas produced by methanogens or by the thermocatalytic reactions associated with petroleum generation. Finally, studies on the global distribution of methane in the earth's atmosphere are increasing due to the sudden awareness of its possible role in the enhancement of the greenhouse effect from CO-2 accumulation, and on the reversal of stratospheric ozone depletion. This paper summarizes the recent knowledge of methanogenic Archaea with emphasis on their taxonomy and ecology. (author)

  20. Mineralization of LCFA associated with anaerobic sludge: Kinetics, enhancement of methanogenic activity, and effect of VFA.

    Science.gov (United States)

    Pereira, M A; Sousa, D Z; Mota, M; Alves, M M

    2004-11-20

    Long-chain fatty acids (LCFA) associated with anaerobic sludge by mechanisms of precipitation, adsorption, or entrapment can be biodegraded to methane. The mineralization kinetics of biomass-associated LCFA were established according to an inhibition model based on Haldane's enzymatic inhibition kinetics. A value around 1,000 mg COD-LCFA..g VSS(-1) was obtained for the optimal specific LCFA content that allowed the maximal mineralization rate. For sludge with specific LCFA contents of 2,838 +/- 63 and 4,571 +/- 257 mg COD-LCFA..g VSS(-1), the specific methanogenic activities in the presence of acetate, butyrate, and H(2)/CO(2) were significantly enhanced after the mineralization of the biomass-associated LCFA. For sludge with a specific LCFA content near the optimal value defined by the kinetic model, the effect of adding VFA to the medium was studied during the mineralization of the biomass-associated LCFA. Different patterns were obtained for each individual substrate. Acetate and butyrate were preferentially consumed by the consortium, but in the case of propionate no evidence of a sequential consumption pattern could be withdrawn. It was concluded that LCFA do not exert a bactericidal neither a permanent toxic effect toward the anaerobic consortia. A discussion is addressed to the relative roles of a reversible inhibitory effect and a transport limitation effect imposed by the LCFA surrounding the cells. (c) 2004 Wiley Periodicals, Inc

  1. Bacterial community structure in experimental methanogenic bioreactors and search for pathogenic clostridia as community members.

    Science.gov (United States)

    Dohrmann, Anja B; Baumert, Susann; Klingebiel, Lars; Weiland, Peter; Tebbe, Christoph C

    2011-03-01

    Microbial conversion of organic waste or harvested plant material into biogas has become an attractive technology for energy production. Biogas is produced in reactors under anaerobic conditions by a consortium of microorganisms which commonly include bacteria of the genus Clostridium. Since the genus Clostridium also harbors some highly pathogenic members in its phylogenetic cluster I, there has been some concern that an unintended growth of such pathogens might occur during the fermentation process. Therefore this study aimed to follow how process parameters affect the diversity of Bacteria in general, and the diversity of Clostridium cluster I members in particular. The development of both communities was followed in model biogas reactors from start-up during stable methanogenic conditions. The biogas reactors were run with either cattle or pig manures as substrates, and both were operated at mesophilic and thermophilic conditions. The structural diversity was analyzed independent of cultivation using a PCR-based detection of 16S rRNA genes and genetic profiling by single-strand conformation polymorphism (SSCP). Genetic profiles indicated that both bacterial and clostridial communities evolved in parallel, and the community structures were highly influenced by both substrate and temperature. Sequence analysis of 16S rRNA genes recovered from prominent bands from SSCP profiles representing Clostridia detected no pathogenic species. Thus, this study gave no indication that pathogenic clostridia would be enriched as dominant community members in biogas reactors fed with manure.

  2. Methane production from coal by a single methanogen

    Science.gov (United States)

    Sakata, S.; Mayumi, D.; Mochimaru, H.; Tamaki, H.; Yamamoto, K.; Yoshioka, H.; Suzuki, Y.; Kamagata, Y.

    2017-12-01

    Previous geochemical studies indicate that biogenic methane greatly contributes to the formation of coalbed methane (CBM). It is unclear, however, what part of coal is used for the methane production and what types of microbes mediate the process. Here we hypothesized that methylotrophic methanogens use methoxylated aromatic compounds (MACs) derived from lignin. We incubated 11 species of methanogens belonging to order Methanosarcinales with 7 types of MACs. Two strains of methanogens, i.e., Methermicoccus shengliensis AmaM and ZC-1, produced methane from the MACs. In fact, these methanogens used over 30 types of commercially available MACs in addition to methanol and methylamines. To date, it is widely believed that methanogens use very limited number of small compounds such as hydrogen plus carbon dioxide, acetate, and methanol, and only three methanogenic pathways are recognized accordingly. Here, in contrast, two Methermicoccus strains used many types of MACs. We therefore propose this "methoxydotrophic" process as the fourth methanogenic pathway. Incubation of AmaM with 2-methoxybenzoate resulted in methanogenesis associated with the stoichiometric production of 2-hydroxybenzoate. Incubation with 2-methoxy-[7-13C] benzoate and with [13C] bicarbonate indicated that two thirds of methane carbon derived from the methoxy group and one third from CO2. Furthermore, incubation with [2-13C] acetate resulted in significant increases of 13C in both methane and CO2. These results suggest the occurrence of O-demethylation, CO2 reduction and acetyl-CoA metabolism in the methoxydotrophic methanogenesis. Furthermore, incubation of AmaM with lignite, subbituminous or bituminous coals in the bicarbonate-buffered media revealed that AmaM produced methane directly from coals via the methoxydotrophic pathway. Although 4 types of MACs were detected in the coal media in addition to methanol and methylamines, their total concentrations were too low to account for the methane

  3. Combustion Byproducts Recycling Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Ziemkiewicz, Paul; Vandivort, Tamara; Pflughoeft-Hassett, Debra; Chugh, Y Paul; Hower, James

    2008-08-31

    Each year, over 100 million tons of solid byproducts are produced by coal-burning electric utilities in the United States. Annual production of flue gas desulfurization (FGD) byproducts continues to increase as the result of more stringent sulfur emission restrictions. In addition, stricter limits on NOx emissions mandated by the 1990 Clean Air Act have resulted in utility burner/boiler modifications that frequently yield higher carbon concentrations in fly ash, which restricts the use of the ash as a cement replacement. Controlling ammonia in ash is also of concern. If newer, “clean coal” combustion and gasification technologies are adopted, their byproducts may also present a management challenge. The objective of the Combustion Byproducts Recycling Consortium (CBRC) is to develop and demonstrate technologies to address issues related to the recycling of byproducts associated with coal combustion processes. A goal of CBRC is that these technologies, by the year 2010, will lead to an overall ash utilization rate from the current 34% to 50% by such measures as increasing the current rate of FGD byproduct use and increasing in the number of uses considered “allowable” under state regulations. Another issue of interest to the CBRC would be to examine the environmental impact of both byproduct utilization and disposal. No byproduct utilization technology is likely to be adopted by industry unless it is more cost-effective than landfilling. Therefore, it is extremely important that the utility industry provide guidance to the R&D program. Government agencies and privatesector organizations that may be able to utilize these materials in the conduct of their missions should also provide input. The CBRC will serve as an effective vehicle for acquiring and maintaining guidance from these diverse organizations so that the proper balance in the R&D program is achieved.

  4. The National Astronomy Consortium (NAC)

    Science.gov (United States)

    Von Schill, Lyndele; Ivory, Joyce

    2017-01-01

    The National Astronomy Consortium (NAC) program is designed to increase the number of underrepresented minority students into STEM and STEM careers by providing unique summer research experiences followed by long-term mentoring and cohort support. Hallmarks of the NAC program include: research or internship opportunities at one of the NAC partner sites, a framework to continue research over the academic year, peer and faculty mentoring, monthly virtual hangouts, and much more. NAC students also participate in two professional travel opportunities each year: the annual NAC conference at Howard University and poster presentation at the annual AAS winter meeting following their summer internship.The National Astronomy Consortium (NAC) is a program led by the National Radio Astronomy Consortium (NRAO) and Associated Universities, Inc. (AUI), in partnership with the National Society of Black Physicist (NSBP), along with a number of minority and majority universities.

  5. Combustion Byproducts Recycling Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    The Combustion Byproducts Recycling Consortium (CBRC) program was developed as a focused program to remove and/or minimize the barriers for effective management of over 123 million tons of coal combustion byproducts (CCBs) annually generated in the USA. At the time of launching the CBRC in 1998, about 25% of CCBs were beneficially utilized while the remaining was disposed in on-site or off-site landfills. During the ten (10) year tenure of CBRC (1998-2008), after a critical review, 52 projects were funded nationwide. By region, the East, Midwest, and West had 21, 18, and 13 projects funded, respectively. Almost all projects were cooperative projects involving industry, government, and academia. The CBRC projects, to a large extent, successfully addressed the problems of large-scale utilization of CCBs. A few projects, such as the two Eastern Region projects that addressed the use of fly ash in foundry applications, might be thought of as a somewhat smaller application in comparison to construction and agricultural uses, but as a novel niche use, they set the stage to draw interest that fly ash substitution for Portland cement might not attract. With consideration of the large increase in flue gas desulfurization (FGD) gypsum in response to EPA regulations, agricultural uses of FGD gypsum hold promise for large-scale uses of a product currently directed to the (currently stagnant) home construction market. Outstanding achievements of the program are: (1) The CBRC successfully enhanced professional expertise in the area of CCBs throughout the nation. The enhanced capacity continues to provide technology and information transfer expertise to industry and regulatory agencies. (2) Several technologies were developed that can be used immediately. These include: (a) Use of CCBs for road base and sub-base applications; (b) full-depth, in situ stabilization of gravel roads or highway/pavement construction recycled materials; and (c) fired bricks containing up to 30%-40% F

  6. The OncoArray Consortium

    DEFF Research Database (Denmark)

    Amos, Christopher I; Dennis, Joe; Wang, Zhaoming

    2017-01-01

    by Illumina to facilitate efficient genotyping. The consortium developed standard approaches for selecting SNPs for study, for quality control of markers, and for ancestry analysis. The array was genotyped at selected sites and with prespecified replicate samples to permit evaluation of genotyping accuracy...... among centers and by ethnic background. RESULTS: The OncoArray consortium genotyped 447,705 samples. A total of 494,763 SNPs passed quality control steps with a sample success rate of 97% of the samples. Participating sites performed ancestry analysis using a common set of markers and a scoring...

  7. The ocean sampling day consortium

    DEFF Research Database (Denmark)

    Kopf, Anna; Bicak, Mesude; Kottmann, Renzo

    2015-01-01

    Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate...... the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our...

  8. Vaccination of Sheep with a Methanogen Protein Provides Insight into Levels of Antibody in Saliva Needed to Target Ruminal Methanogens.

    Directory of Open Access Journals (Sweden)

    Supatsak Subharat

    Full Text Available Methane is produced in the rumen of ruminant livestock by methanogens and is a major contributor to agricultural greenhouse gases. Vaccination against ruminal methanogens could reduce methane emissions by inducing antibodies in saliva which enter the rumen and impair ability of methanogens to produce methane. Presently, it is not known if vaccination can induce sufficient amounts of antibody in the saliva to target methanogen populations in the rumen and little is known about how long antibody in the rumen remains active. In the current study, sheep were vaccinated twice at a 3-week interval with a model methanogen antigen, recombinant glycosyl transferase protein (rGT2 formulated with one of four adjuvants: saponin, Montanide ISA61, a chitosan thermogel, or a lipid nanoparticle/cationic liposome adjuvant (n = 6/formulation. A control group of sheep (n = 6 was not vaccinated. The highest antigen-specific IgA and IgG responses in both saliva and serum were observed with Montanide ISA61, which promoted levels of salivary antibodies that were five-fold higher than the second most potent adjuvant, saponin. A rGT2-specific IgG standard was used to determine the level of rGT2-specific IgG in serum and saliva. Vaccination with GT2/Montanide ISA61 produced a peak antibody concentration of 7 × 1016 molecules of antigen-specific IgG per litre of saliva, and it was estimated that in the rumen there would be more than 104 molecules of antigen-specific IgG for each methanogen cell. Both IgG and IgA in saliva were shown to be relatively stable in the rumen. Salivary antibody exposed for 1-2 hours to an in vitro simulated rumen environment retained approximately 50% of antigen-binding activity. Collectively, the results from measuring antibody levels and stablility suggest a vaccination-based mitigation strategy for livestock generated methane is in theory feasible.

  9. Effect of different ammonia sources on aceticlastic and hydrogenotrophic methanogens

    DEFF Research Database (Denmark)

    Tian, Hailin; Fotidis, Ioannis; Kissas, Konstantinos

    2018-01-01

    Ammonium chloride (NH4Cl) was usually used as a model ammonia source to simulate ammonia inhibition during anaerobic digestion (AD) of nitrogen-rich feedstocks. However, ammonia in AD originates mainly from degradation of proteins, urea and nucleic acids, which is distinct from NH4Cl. Thus......, in this study, the inhibitory effect of a “natural” ammonia source (urea) and NH4Cl, on four pure methanogenic strains (aceticlastic: Methanosarcina thermophila, Methanosarcina barkeri; hydrogenotrophic: Methanoculleus bourgensis, Methanoculleus thermophilus), was assessed under mesophilic (37 °C......) and thermophilic (55 °C) conditions. The results showed that urea hydrolysis increased pH significantly to unsuitable levels for methanogenic growth, while NH4Cl had a negligible effect on pH. After adjusting initial pH to 7 and 8, urea was significantly stronger inhibitor with longer lag phases to methanogenesis...

  10. Restricted diversity of dental calculus methanogens over five centuries, France

    OpenAIRE

    Hong T. T. Huynh; Vanessa D. Nkamga; Michel Signoli; Stéfan Tzortzis; Romuald Pinguet; Gilles Audoly; Gérard Aboudharam; Michel Drancourt

    2016-01-01

    Methanogens are acknowledged archaeal members of modern dental calculus microbiota and dental pathogen complexes. Their repertoire in ancient dental calculus is poorly known. We therefore investigated archaea in one hundred dental calculus specimens collected from individuals recovered from six archaeological sites in France dated from the 14th to 19th centuries AD. Dental calculus was demonstrated by macroscopic and cone-beam observations. In 56 calculus specimens free of PCR inhibition, PCR...

  11. Studies on methanogenic consortia associated with mangrove sediments of Ennore.

    Digital Repository Service at National Institute of Oceanography (India)

    Ahila, N.K.; Kannapiran, E.; Ravindran, J.; Ramkumar, V.S.

    page : www.jeb.co.in « E-mail : editor@jeb.co.in Journal of Environmental Biology, Vol. 35, 649-654, July 2014© Triveni Enterprises, Lucknow (India) Journal of Environmental Biology ISSN: 0254-8704 CODEN: JEBIDP Introduction Mangroves are complex...-National Institute of Oceanography, Biological Oceanography Division, Dona Paula, Goa – 403 004, India Abstract Key words In this study, methanogenic consortia were isolated and characterized from eight different sediment samples of mangrove ecosystem located...

  12. The nif Gene Operon of the Methanogenic Archaeon Methanococcus maripaludis

    Science.gov (United States)

    Kessler, Peter S.; Blank, Carrine; Leigh, John A.

    1998-01-01

    Nitrogen fixation occurs in two domains, Archaea and Bacteria. We have characterized a nif (nitrogen fixation) gene cluster in the methanogenic archaeon Methanococcus maripaludis. Sequence analysis revealed eight genes, six with sequence similarity to known nif genes and two with sequence similarity to glnB. The gene order, nifH, ORF105 (similar to glnB), ORF121 (similar to glnB), nifD, nifK, nifE, nifN, and nifX, was the same as that found in part in other diazotrophic methanogens and except for the presence of the glnB-like genes, also resembled the order found in many members of the Bacteria. Using transposon insertion mutagenesis, we determined that an 8-kb region required for nitrogen fixation corresponded to the nif gene cluster. Northern analysis revealed the presence of either a single 7.6-kb nif mRNA transcript or 10 smaller mRNA species containing portions of the large transcript. Polar effects of transposon insertions demonstrated that all of these mRNAs arose from a single promoter region, where transcription initiated 80 bp 5′ to nifH. Distinctive features of the nif gene cluster include the presence of the six primary nif genes in a single operon, the placement of the two glnB-like genes within the cluster, the apparent physical separation of the cluster from any other nif genes that might be in the genome, the fragmentation pattern of the mRNA, and the regulation of expression by a repression mechanism described previously. Our study and others with methanogenic archaea reporting multiple mRNAs arising from gene clusters with only a single putative promoter sequence suggest that mRNA processing following transcription may be a common occurrence in methanogens. PMID:9515920

  13. Methanogenic degradation of acetone by an enrichment culture

    OpenAIRE

    Platen, Harald; Schink, Bernhard

    1987-01-01

    An anaerobic enrichment culture degraded 1 mol of acetone to 2 tool of methane and 1 tool of carbon dioxide. Two microorganisms were involved in this process, a filament-forming rod similar to Methanothrix sp. and an unknown rod with round to slightly pointed ends. Both organisms formed aggregates up to 300 gm in diameter. No fluorescing bacteria were observed indicating that hydrogen or formate-utilizing methanogens are not involved in this process. Acetate was utilized in this culture by th...

  14. An intertwined evolutionary history of methanogenic archaea and sulfate reduction.

    Directory of Open Access Journals (Sweden)

    Dwi Susanti

    Full Text Available Hydrogenotrophic methanogenesis and dissimilatory sulfate reduction, two of the oldest energy conserving respiratory systems on Earth, apparently could not have evolved in the same host, as sulfite, an intermediate of sulfate reduction, inhibits methanogenesis. However, certain methanogenic archaea metabolize sulfite employing a deazaflavin cofactor (F(420-dependent sulfite reductase (Fsr where N- and C-terminal halves (Fsr-N and Fsr-C are homologs of F(420H(2 dehydrogenase and dissimilatory sulfite reductase (Dsr, respectively. From genome analysis we found that Fsr was likely assembled from freestanding Fsr-N homologs and Dsr-like proteins (Dsr-LP, both being abundant in methanogens. Dsr-LPs fell into two groups defined by following sequence features: Group I (simplest, carrying a coupled siroheme-[Fe(4-S(4] cluster and sulfite-binding Arg/Lys residues; Group III (most complex, with group I features, a Dsr-type peripheral [Fe(4-S(4] cluster and an additional [Fe(4-S(4] cluster. Group II Dsr-LPs with group I features and a Dsr-type peripheral [Fe(4-S(4] cluster were proposed as evolutionary intermediates. Group III is the precursor of Fsr-C. The freestanding Fsr-N homologs serve as F(420H(2 dehydrogenase unit of a putative novel glutamate synthase, previously described membrane-bound electron transport system in methanogens and of assimilatory type sulfite reductases in certain haloarchaea. Among archaea, only methanogens carried Dsr-LPs. They also possessed homologs of sulfate activation and reduction enzymes. This suggested a shared evolutionary history for methanogenesis and sulfate reduction, and Dsr-LPs could have been the source of the oldest (3.47-Gyr ago biologically produced sulfide deposit.

  15. Fast pyrolysis product distribution of biopretreated corn stalk by methanogen.

    Science.gov (United States)

    Wang, Tipeng; Ye, Xiaoning; Yin, Jun; Jin, Zaixing; Lu, Qiang; Zheng, Zongming; Dong, Changqing

    2014-10-01

    After pretreated by methanogen for 5, 15 and 25 days, corn stalk (CS) were pyrolyzed at 250, 300, 350, 400, 450 and 500 °C by Py-GC/MS and product distribution in bio-oil was analyzed. Results indicated that methanogen pretreatment changed considerably the product distribution: the contents of sugar and phenols increased; the contents of linear carbonyls and furans decreased; the contents of linear ketones and linear acids changed slightly. Methanogen pretreatment improved significantly the pyrolysis selectivity of CS to phenols especially 4-VP. At 250 °C, the phenols content increased from 42.25% for untreated CS to 79.32% for biopretreated CS for 5 days; the 4-VP content increased from 28.6% to 60.9%. Increasing temperature was contributed to convert more lignin into 4-VP, but decreased its content in bio-oil due to more other chemicals formed. The effects of biopretreatment time on the chemicals contents were insignificant. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Massachusetts Institute of Technology Consortium Agreement

    National Research Council Canada - National Science Library

    Asada, Haruhiko

    1999-01-01

    ... of Phase 2 of the Home Automation and Healthcare Consortium. This report describes all major research accomplishments within the last six months since we launched the second phase of the consortium...

  17. Brain Tumor Epidemiology Consortium (BTEC)

    Science.gov (United States)

    The Brain Tumor Epidemiology Consortium is an open scientific forum organized to foster the development of multi-center, international and inter-disciplinary collaborations that will lead to a better understanding of the etiology, outcomes, and prevention of brain tumors.

  18. Energetic and hydrogen limitations of thermophilic and hyperthermophilic methanogens

    Science.gov (United States)

    Stewart, L. C.; Holden, J. F.

    2013-12-01

    Deep-sea hydrothermal vents are a unique ecosystem, based ultimately not on photosynthesis but chemosynthetic primary production. This makes them an excellent analog environment for the early Earth, and for potential extraterrestrial habitable environments, such as those on Mars and Europa. The habitability of given vent systems for chemoautotrophic prokaryotes can be modeled energetically by estimating the available Gibbs energy for specific modes of chemoautotrophy, using geochemical data and mixing models for hydrothermal fluids and seawater (McCollom and Shock, 1997). However, modeling to date has largely not taken into account variation in organisms' energy demands in these environments. Controls on maintenance energies are widely assumed to be temperature-dependent, rising with increasing temperature optima (Tijhuis et al., 1993), and species-independent. The impacts of other environmental stressors and particular energy-gathering strategies on maintenance energies have not been investigated. We have undertaken culture-based studies of growth and maintenance energies in thermophilic and hyperthermophilic methanogenic (hydrogenotrophic) archaea from deep-sea hydrothermal vents to investigate potential controls on energy demands in hydrothermal vent microbes, and to quantify their growth and maintenance energies for future bioenergetic modeling. We have investigated trends in their growth energies over their full temperature range and a range of nitrogen concentrations, and in their maintenance energies at different hydrogen concentrations. Growth energies in these organisms appear to rise with temperature, but do not vary between hyperthermophilic and thermophilic methanogens. Nitrogen availability at tested levels (40μM - 9.4 mM) does not appear to affect growth energies in all but one tested organism. In continuous chemostat culture, specific methane production varied with hydrogen availability but was similar between a thermophilic and a hyperthermophilic

  19. A new methanogen "Methanobrevibacter massiliense" isolated in a case of severe periodontitis.

    Science.gov (United States)

    Huynh, Hong T T; Pignoly, Marion; Drancourt, Michel; Aboudharam, Gérard

    2017-12-01

    A few methanogens have been previously recovered from periodontitis lesions, yet their repertoire may not be completed. We recovered a previously unreported methanogen species in this situation. A 64-year-old Caucasian woman was diagnosed with chronic, severe generalized periodontitis. In the presence of negative controls, an 18-month culture of periodontal pockets in anaerobe Hungate tube yielded "Methanobrevibacter massiliense" and Pyramidobacter piscolens. This case report provides evidence of the symbiotic strategy deployed by the methanogens and the anaerobes, and reports the first culture of a new methanogen, "M. massiliense".

  20. Corn in consortium with forages

    Directory of Open Access Journals (Sweden)

    Cássia Maria de Paula Garcia

    2013-12-01

    Full Text Available The basic premises for sustainable agricultural development with focus on rural producers are reducing the costs of production and aggregation of values through the use crop-livestock system (CLS throughout the year. The CLS is based on the consortium of grain crops, especially corn with tropical forages, mainly of the genus Panicum and Urochloa. The study aimed to evaluate the grain yield of irrigated corn crop intercropped with forage of the genus Panicum and Urochloa. The experiment was conducted at the Fazenda de Ensino, Pesquisa e Extensão – FEPE  of the Faculdade de Engenharia - UNESP, Ilha Solteira in an Oxisol in savannah conditions and in the autumn winter of 2009. The experimental area was irrigated by a center pivot and had a history of no-tillage system for 8 years. The corn hybrid used was simple DKB 390 YG at distances of 0.90 m. The seeds of grasses were sown in 0.34 m spacing in the amount of 5 kg ha-1, they were mixed with fertilizer minutes before sowing  and placed in a compartment fertilizer seeder and fertilizers were mechanically deposited in the soil at a depth of 0.03 m. The experimental design used was a randomized block with four replications and five treatments: Panicum maximum cv. Tanzania sown during the nitrogen fertilization (CTD of the corn; Panicum maximum cv. Mombaça sown during the nitrogen fertilization (CMD of the corn; Urochloa brizantha cv. Xaraés sown during the occasion of nitrogen fertilization (CBD of the corn; Urochloa ruziziensis cv. Comumsown during the nitrogen fertilization (CRD of the corn and single corn (control. The production components of corn: plant population per hectare (PlPo, number of ears per hectare (NE ha-1, number of rows per ear (NRE, number of kernels per row on the cob (NKR, number of grain in the ear (NGE and mass of 100 grains (M100G were not influenced by consortium with forage. Comparing grain yield (GY single corn and maize intercropped with forage of the genus Panicum

  1. Virginia ADS consortium - thorium utilization

    International Nuclear Information System (INIS)

    Myneni, Ganapati

    2015-01-01

    A Virginia ADS consortium, consisting of Virginia Universities (UVa, VCU, VT), Industry (Casting Analysis Corporation, GEM*STAR, MuPlus Inc.), Jefferson Lab and not-for-profit ISOHIM, has been organizing International Accelerator-Driven Sub-Critical Systems (ADS) and Thorium Utilization (ThU) workshops. The third workshop of this series was hosted by VCU in Richmond, Virginia, USA Oct 2014 with CBMM and IAEA sponsorship and was endorsed by International Thorium Energy Committee (IThEC), Geneva and Virginia Nuclear Energy Consortium Authority. In this presentation a brief summary of the successful 3 rd International ADS and ThU workshop proceedings and review the worldwide ADS plans and/or programs is given. Additionally, a report on new start-ups on Molten Salt Reactor (MSR) systems is presented. Further, a discussion on potential simplistic fertile 232 Th to fissile 233 U conversion is made

  2. John Glenn Biomedical Engineering Consortium

    Science.gov (United States)

    Nall, Marsha

    2004-01-01

    The John Glenn Biomedical Engineering Consortium is an inter-institutional research and technology development, beginning with ten projects in FY02 that are aimed at applying GRC expertise in fluid physics and sensor development with local biomedical expertise to mitigate the risks of space flight on the health, safety, and performance of astronauts. It is anticipated that several new technologies will be developed that are applicable to both medical needs in space and on earth.

  3. Appalachian clean coal technology consortium

    International Nuclear Information System (INIS)

    Kutz, K.; Yoon, Roe-Hoan

    1995-01-01

    The Appalachian Clean Coal Technology Consortium (ACCTC) has been established to help U.S. coal producers, particularly those in the Appalachian region, increase the production of lower-sulfur coal. The cooperative research conducted as part of the consortium activities will help utilities meet the emissions standards established by the 1990 Clean Air Act Amendments, enhance the competitiveness of U.S. coals in the world market, create jobs in economically-depressed coal producing regions, and reduce U.S. dependence on foreign energy supplies. The research activities will be conducted in cooperation with coal companies, equipment manufacturers, and A ampersand E firms working in the Appalachian coal fields. This approach is consistent with President Clinton's initiative in establishing Regional Technology Alliances to meet regional needs through technology development in cooperation with industry. The consortium activities are complementary to the High-Efficiency Preparation program of the Pittsburgh Energy Technology Center, but are broader in scope as they are inclusive of technology developments for both near-term and long-term applications, technology transfer, and training a highly-skilled work force

  4. Appalachian clean coal technology consortium

    Energy Technology Data Exchange (ETDEWEB)

    Kutz, K.; Yoon, Roe-Hoan [Virginia Polytechnic Institute and State Univ., Blacksburg, VA (United States)

    1995-11-01

    The Appalachian Clean Coal Technology Consortium (ACCTC) has been established to help U.S. coal producers, particularly those in the Appalachian region, increase the production of lower-sulfur coal. The cooperative research conducted as part of the consortium activities will help utilities meet the emissions standards established by the 1990 Clean Air Act Amendments, enhance the competitiveness of U.S. coals in the world market, create jobs in economically-depressed coal producing regions, and reduce U.S. dependence on foreign energy supplies. The research activities will be conducted in cooperation with coal companies, equipment manufacturers, and A&E firms working in the Appalachian coal fields. This approach is consistent with President Clinton`s initiative in establishing Regional Technology Alliances to meet regional needs through technology development in cooperation with industry. The consortium activities are complementary to the High-Efficiency Preparation program of the Pittsburgh Energy Technology Center, but are broader in scope as they are inclusive of technology developments for both near-term and long-term applications, technology transfer, and training a highly-skilled work force.

  5. Magnetic resonance microscopy of iron transport in methanogenic granules

    Science.gov (United States)

    Bartacek, Jan; Vergeldt, Frank J.; Gerkema, Edo; Jenicek, Pavel; Lens, Piet N. L.; Van As, Henk

    2009-10-01

    Interactions between anaerobic biofilms and heavy metals such as iron, cobalt or nickel are largely unknown. Magnetic resonance imaging (MRI) is a non-invasive method that allows in situ studies of metal transport within biofilm matrixes. The present study investigates quantitatively the penetration of iron (1.75 mM) bound to ethylenediaminetetraacetate (EDTA) into the methanogenic granules (spherical biofilm). A spatial resolution of 109 × 109 × 218 μm 3 and a temporal resolution of 11 min are achieved with 3D Turbo Spin Echo (TSE) measurements. The longitudinal relaxivity, i.e. the slope the dependence of the relaxation rate (1/ T1) on the concentration of paramagnetic metal ions, was used to measure temporal changes in iron concentration in the methanogenic granules. It took up to 300 min for the iron-EDTA complex ([FeEDTA] 2-) to penetrate into the methanogenic granules (3-4 mm in diameter). The diffusion was equally fast in all directions with irregularities such as diffusion-facilitating channels and diffusion-resistant zones. Despite these irregularities, the overall process could be modeled using Fick's equations for diffusion in a sphere, because immobilization of [FeEDTA] 2- in the granular matrix (or the presence of a reactive barrier) was not observed. The effective diffusion coefficient ( D ejf) of [FeEDTA] 2- was found to be 2.8 × 10 -11 m 2 s -1, i.e. approximately 4% of D ejf of [FeEDTA] 2- in water. The Fickian model did not correspond to the processes taking place in the core of the granule (3-5% of the total volume of the granule), where up to 25% over-saturation by iron (compare to the concentration in the bulk solution) occurred.

  6. Methanogenic activity tests by Infrared Tunable Diode Laser Absorption Spectroscopy.

    Science.gov (United States)

    Martinez-Cruz, Karla; Sepulveda-Jauregui, Armando; Escobar-Orozco, Nayeli; Thalasso, Frederic

    2012-10-01

    Methanogenic activity (MA) tests are commonly carried out to estimate the capability of anaerobic biomass to treat effluents, to evaluate anaerobic activity in bioreactors or natural ecosystems, or to quantify inhibitory effects on methanogenic activity. These activity tests are usually based on the measurement of the volume of biogas produced by volumetric, pressure increase or gas chromatography (GC) methods. In this study, we present an alternative method for non-invasive measurement of methane produced during activity tests in closed vials, based on Infrared Tunable Diode Laser Absorption Spectroscopy (MA-TDLAS). This new method was tested during model acetoclastic and hydrogenotrophic methanogenic activity tests and was compared to a more traditional method based on gas chromatography. From the results obtained, the CH(4) detection limit of the method was estimated to 60 ppm and the minimum measurable methane production rate was estimated to 1.09(.)10(-3) mg l(-1) h(-1), which is below CH(4) production rate usually reported in both anaerobic reactors and natural ecosystems. Additionally to sensitivity, the method has several potential interests compared to more traditional methods among which short measurements time allowing the measurement of a large number of MA test vials, non-invasive measurements avoiding leakage or external interferences and similar cost to GC based methods. It is concluded that MA-TDLAS is a promising method that could be of interest not only in the field of anaerobic digestion but also, in the field of environmental ecology where CH(4) production rates are usually very low. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Conversion of Crude Oil to Methane by a Microbial Consortium Enriched From Oil Reservoir Production Waters

    Directory of Open Access Journals (Sweden)

    Carolina eBerdugo-Clavijo

    2014-05-01

    Full Text Available The methanogenic biodegradation of crude oil is an important process occurring in petroleum reservoirs and other oil-containing environments such as contaminated aquifers. In this process, syntrophic bacteria degrade hydrocarbon substrates to products such as acetate, and/or H2 and CO2 that are then used by methanogens to produce methane in a thermodynamically dependent manner. We enriched a methanogenic crude oil-degrading consortium from production waters sampled from a low temperature heavy oil reservoir. Alkylsuccinates indicative of fumarate addition to C5 and C6 n-alkanes were identified in the culture (above levels found in controls, corresponding to the detection of an alkyl succinate synthase gene (assA in the culture. In addition, the enrichment culture was tested for its ability to produce methane from residual oil in a sandstone-packed column system simulating a mature field. Methane production rates of up 5.8 μmol CH4/g of oil/day were measured in the column system. Amounts of produced methane were in relatively good agreement with hydrocarbon loss showing depletion of more than 50% of saturate and aromatic hydrocarbons. Microbial community analysis revealed that the enrichment culture was dominated by members of the genus Smithella, Methanosaeta, and Methanoculleus. However, a shift in microbial community occurred following incubation of the enrichment in the sandstone columns. Here, Methanobacterium sp. were most abundant, as were bacterial members of the genus Pseudomonas and other known biofilm forming organisms. Our findings show that microorganisms enriched from petroleum reservoir waters can bioconvert crude oil components to methane both planktonically and in sandstone-packed columns as test systems. Further, the results suggest that different organisms may contribute to oil biodegradation within different phases (e.g., planktonic versus sessile within a subsurface crude oil reservoir.

  8. Methanogenic archaea and sulfate reducing bacteria co-cultured on acetate: teamwork or coexistence?

    NARCIS (Netherlands)

    Ozuolmez, D.; Na, H.; Lever, M.A.; Kjeldsen, K.U.; Jørgensen, B.B.; Plugge, C.M.

    2015-01-01

    Acetate is a major product of fermentation processes and an important substrate for sulfate reducing bacteria and methanogenic archaea. Most studies on acetate catabolism by sulfate reducers and methanogens have used pure cultures. Less is known about acetate conversion by mixed pure cultures and

  9. Detection of methanogenic archaea in seawater particles and the digestive tract of a marine fish species

    NARCIS (Netherlands)

    van der Maarel, MJEC; Sprenger, W; Haanstra, R; Forney, LJ

    1999-01-01

    A methanogen-specific nested PCR approach was used to detect methanogenic archaea in seawater particles of the North Sea and the feces and the digestive tract of flounder (Platichthys flesus), a fish found in the North Sea. A number of 16S rDNA sequences with 97.6-99.5% similarity to

  10. Methane Production and Methanogenic Archaea in the Digestive Tracts of Millipedes (Diplopoda)

    Science.gov (United States)

    Šustr, Vladimír; Chroňáková, Alica; Semanová, Stanislava; Tajovský, Karel; Šimek, Miloslav

    2014-01-01

    Methane production by intestinal methanogenic Archaea and their community structure were compared among phylogenetic lineages of millipedes. Tropical and temperate millipedes of 35 species and 17 families were investigated. Species that emitted methane were mostly in the juliform orders Julida, Spirobolida, and Spirostreptida. The irregular phylogenetic distribution of methane production correlated with the presence of the methanogen-specific mcrA gene. The study brings the first detailed survey of methanogens’ diversity in the digestive tract of millipedes. Sequences related to Methanosarcinales, Methanobacteriales, Methanomicrobiales and some unclassified Archaea were detected using molecular profiling (DGGE). The differences in substrate preferences of the main lineages of methanogenic Archaea found in different millipede orders indicate that the composition of methanogen communities may reflect the differences in available substrates for methanogenesis or the presence of symbiotic protozoa in the digestive tract. We conclude that differences in methane production in the millipede gut reflect differences in the activity and proliferation of intestinal methanogens rather than an absolute inability of some millipede taxa to host methanogens. This inference was supported by the general presence of methanogenic activity in millipede faecal pellets and the presence of the 16S rRNA gene of methanogens in all tested taxa in the two main groups of millipedes, the Helminthophora and the Pentazonia. PMID:25028969

  11. Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates

    DEFF Research Database (Denmark)

    Morita, Masahiko; Malvankar, Nikhil S; Franks, Ashley E

    2011-01-01

    Mechanisms for electron transfer within microbial aggregates derived from an upflow anaerobic sludge blanket reactor converting brewery waste to methane were investigated in order to better understand the function of methanogenic consortia. The aggregates were electrically conductive, with conduc...... for electron exchange in some methanogenic systems....

  12. Restricted diversity of dental calculus methanogens over five centuries, France.

    Science.gov (United States)

    Huynh, Hong T T; Nkamga, Vanessa D; Signoli, Michel; Tzortzis, Stéfan; Pinguet, Romuald; Audoly, Gilles; Aboudharam, Gérard; Drancourt, Michel

    2016-05-11

    Methanogens are acknowledged archaeal members of modern dental calculus microbiota and dental pathogen complexes. Their repertoire in ancient dental calculus is poorly known. We therefore investigated archaea in one hundred dental calculus specimens collected from individuals recovered from six archaeological sites in France dated from the 14(th) to 19(th) centuries AD. Dental calculus was demonstrated by macroscopic and cone-beam observations. In 56 calculus specimens free of PCR inhibition, PCR sequencing identified Candidatus Methanobrevibacter sp. N13 in 44.6%, Methanobrevibacter oralis in 19.6%, a new Methanomassiliicoccus luminyensis-like methanogen in 12.5%, a Candidatus Nitrososphaera evergladensis-like in one and Methanoculleus bourgensis in one specimen, respectively. One Candidatus Methanobrevibacter sp. N13 dental calculus was further documented by fluorescent in situ hybridization. The prevalence of dental calculus M. oralis was significantly lower in past populations than in modern populations (P = 0.03, Chi-square test). This investigation revealed a previously unknown repertoire of archaea found in the oral cavity of past French populations as reflected in preserved dental calculus.

  13. Methanobacterium Dominates Biocathodic Archaeal Communities in Methanogenic Microbial Electrolysis Cells

    KAUST Repository

    Siegert, Michael

    2015-07-06

    © 2015 American Chemical Society. Methane is the primary end product from cathodic current in microbial electrolysis cells (MECs) in the absence of methanogenic inhibitors, but little is known about the archaeal communities that develop in these systems. MECs containing cathodes made from different materials (carbon brushes, or plain graphite blocks or blocks coated with carbon black and platinum, stainless steel, nickel, ferrihydrite, magnetite, iron sulfide, or molybdenum disulfide) were inoculated with anaerobic digester sludge and acclimated at a set potential of -600 mV (versus a standard hydrogen electrode). The archaeal communities on all cathodes, except those coated with platinum, were predominated by Methanobacterium (median 97% of archaea). Cathodes with platinum contained mainly archaea most similar to Methanobrevibacter. Neither of these methanogens were abundant (<0.1% of archaea) in the inoculum, and therefore their high abundance on the cathode resulted from selective enrichment. In contrast, bacterial communities on the cathode were more diverse, containing primarily δ-Proteobacteria (41% of bacteria). The lack of a consistent bacterial genus on the cathodes indicated that there was no similarly selective enrichment of bacteria on the cathode. These results suggest that the genus Methanobacterium was primarily responsible for methane production in MECs when cathodes lack efficient catalysts for hydrogen gas evolution. (Figure Presented).

  14. Hydrogen or formate: Alternative key players in methanogenic degradation.

    Science.gov (United States)

    Schink, Bernhard; Montag, Dominik; Keller, Anja; Müller, Nicolai

    2017-06-01

    Hydrogen and formate are important electron carriers in methanogenic degradation in anoxic environments such as sediments, sewage sludge digestors and biogas reactors. Especially in the terminal steps of methanogenesis, they determine the energy budgets of secondary (syntrophically) fermenting bacteria and their methanogenic partners. The literature provides considerable data on hydrogen pool sizes in such habitats, but little data exist for formate concentrations due to technical difficulties in formate determination at low concentration. Recent evidence from biochemical and molecular biological studies indicates that several secondary fermenters can use both hydrogen and formate for electron release, and may do so even simultaneously. Numerous strictly anaerobic bacteria contain enzymes which equilibrate hydrogen and formate pools to energetically equal values, and recent measurements in sewage digestors and biogas reactors indicate that - beyond occasional fluctuations - the pool sizes of hydrogen and formate are indeed energetically nearly equivalent. Nonetheless, a thermophilic archaeon from a submarine hydrothermal vent, Thermococcus onnurineus, can obtain ATP from the conversion of formate to hydrogen plus bicarbonate at 80°C, indicating that at least in this extreme environment the pools of formate and hydrogen are likely to be sufficiently different to support such an unusual type of energy conservation. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  15. Diversity and ubiquity of thermophilic methanogenic archaea in temperate anoxic soils.

    Science.gov (United States)

    Wu, Xiao-Lei; Friedrich, Michael W; Conrad, Ralf

    2006-03-01

    Temperate rice field soil from Vercelli (Italy) contains moderately thermophilic methanogens of the yet uncultivated rice cluster I (RC-I), which become prevalent upon incubation at temperatures of 45-50 degrees C. We studied whether such thermophilic methanogens were ubiquitously present in anoxic soils. Incubation of different rice field soils (from Italy, China and the Philippines) and flooded riparian soils (from the Netherlands) at 45 degrees C resulted in vigorous CH(4) production after a lag phase of about 10 days. The archaeal community structure in the soils was analysed by terminal restriction fragment length polymorphism (T-RFLP) targeting the SSU rRNA genes retrieved from the soil, and by cloning and sequencing. Clones of RC-I methanogens mostly exhibited T-RF of 393 bp, but also terminal restriction fragment (T-RF) of 158 and 258 bp length, indicating a larger diversity than previously assumed. No RC-I methanogens were initially found in flooded riparian soils. However, these archaea became abundant upon incubation of the soil at 45 degrees C. Thermophilic RC-I methanogens were also found in the rice field soils from Pavia, Pila and Gapan. However, the archaeal communities in these soils also contained other methanogenic archaea at high temperature. Rice field soil from Buggalon, on the other hand, only contained thermophilic Methanomicrobiales rather than RC-I methanogens, and rice field soil from Jurong mostly Methanomicrobiales and only a few RC-I methanogens. The archaeal community of rice field soil from Zhenjiang almost exclusively consisted of Methanosarcinaceae when incubated at high temperature. Our results show that moderately thermophilic methanogens are common in temperate soils. However, RC-I methanogens are not always dominating or ubiquitous.

  16. Consortium for Health and Military Performance (CHAMP)

    Data.gov (United States)

    Federal Laboratory Consortium — The Center's work addresses a wide scope of trauma exposure from the consequences of combat, operations other than war, terrorism, natural and humanmade disasters,...

  17. Method for indirect quantification of CH4 production via H2O production using hydrogenotrophic methanogens

    Directory of Open Access Journals (Sweden)

    Ruth-Sophie eTaubner

    2016-04-01

    Full Text Available ydrogenotrophic methanogens are an intriguing group of microorganisms from the domain Archaea. They exhibit extraordinary ecological, biochemical, physiological characteristics colorbox{yellow}{and have a huge biotechnological potential}. Yet, the only possibility to assess the methane (CH$_4$ production potential of hydrogenotrophic methanogens is to apply gas chromatographic quantification of CH$_4$.In order to be able to effectively screen pure cultures of hydrogenotrophic methanogens regarding their CH$_4$ production potential we developed a novel method for indirect quantification of colorbox{yellow}{the} volumetric CH$_4$ production rate by measuring colorbox{yellow}{the} volumetric water production rate. This colorbox{yellow}{ } method was established in serum bottles for cultivation of methanogens in closed batch cultivation mode. Water production was colorbox{yellow}{estimated} by determining the difference in mass increase in an isobaric setting.This novel CH$_4$ quantification method is an accurate and precise analytical technique, colorbox{yellow}{which can be used} to rapidly screen pure cultures of methanogens regarding colorbox{yellow}{their} volumetric CH$_{4}$ evolution rate. colorbox{yellow}{It} is a cost effective alternative colorbox{yellow}{determining} CH$_4$ production of methanogens over CH$_4$ quantification by using gas chromatography, especially if colorbox{yellow}{ } applied as a high throughput quantification method. colorbox{yellow}{Eventually, the} method can be universally applied for quantification of CH$_4$ production from psychrophilic, thermophilic and hyperthermophilic hydrogenotrophic methanogens.

  18. Thermophilic anaerobic acetate-utilizing methanogens and their metabolism

    DEFF Research Database (Denmark)

    Mladenovska, Zuzana

    Six strains of thermophilic anaerobic acetate-utilizing methanogens were isolated from different full-scale thermophilic biogas plants in China and Denmark. The strain isolated from the Chinese biogas plant was designated KN-6P and the isolates from the Danish full-scale biogas plants were......, utilizing the substrates acetate, methanol and methylamines but not hydrogen/carbon dioxide. Strain Methanosarcina sp. SO-2P was able to grow mixotrophically on methanol and hydrogen/carbon dioxide with methane formation from hydrogen and carbon dioxide occurring after methanol depletion. All six...... designated HG-1P, LVG-4P R1-1P, SO-2P and V-1P. The isolates were characterized morphologically and physiologically, and their immunological and phylogenetic relatedness to already known isolated strains were established. All isolated strains were identified as organisms belonging to genus Methanosarcina...

  19. Tri-District Arts Consortium Summer Program.

    Science.gov (United States)

    Kirby, Charlotte O.

    1990-01-01

    The Tri-District Arts Consortium in South Carolina was formed to serve artistically gifted students in grades six-nine. The consortium developed a summer program offering music, dance, theatre, and visual arts instruction through a curriculum of intense training, performing, and hands-on experiences with faculty members and guest artists. (JDD)

  20. Increasing Sales by Developing Production Consortiums.

    Science.gov (United States)

    Smith, Christopher A.; Russo, Robert

    Intended to help rehabilitation facility administrators increase organizational income from manufacturing and/or contracted service sources, this document provides a decision-making model for the development of a production consortium. The document consists of five chapters and two appendices. Chapter 1 defines the consortium concept, explains…

  1. Growth of methylaminotrophic, acetotrophic and hydrogenotrophic methanogenic bacteria on artificial supports.

    Science.gov (United States)

    Urrutia, H; Vidal, R; Baeza, M; Reyes, J E; Aspe, E

    1997-06-01

    The efficiency of organic matter degradation in attached biomass reactors depends on the suitable selection of artificial support for the retention of bacterial communities. We have studied the growth on glass and clay beads of methylaminotrophic, acetotrophic and hydrogenotrophic methanogenic bacterial communities isolated from anaerobic reactors. Bacterial counts were performed by the standard MPN technique. Experiments were performed in 50 ml vials for 12 days at 35 degrees C. Increase in the counts of methylaminotrophic and hydrogenotrophic methanogens occurred on both glass and clay beads. The latter support material also stimulated the growth rate of methylaminotrophic methanogens.

  2. Consortium for military LCD display procurement

    Science.gov (United States)

    Echols, Gregg

    2002-08-01

    International Display Consortium (IDC) is the joining together of display companies to combined their buying power and obtained favorable terms with a major LCD manufacturer. Consolidating the buying power and grouping the demand enables the rugged display industry of avionics, ground vehicles, and ship based display manufacturers to have unencumbered access to high performance AMLCDs while greatly reducing risk and lowering cost. With an unrestricted supply of AMLCD displays, the consortium members have total control of their risk, cost, deliveries and added value partners. Every display manufacturer desires a very close relationship with a display vender. With IDC each consortium member achieves a close relationship. Consortium members enjoy cost effective access to high performance, industry standard sized LCD panels, and modified commercial displays with 100 degree C clearing points and portrait configurations. Consortium members also enjoy proposal support, technical support and long-term support.

  3. Ammonia tolerant enriched methanogenic cultures as bioaugmentation inocula to alleviate ammonia inhibition in continuous anaerobic reactors

    DEFF Research Database (Denmark)

    Fotidis, Ioannis; Wang, Han; Angelidaki, Irini

    Ammonia is the most common inhibitor of anaerobic digestion (AD) process, resulting in suboptimal exploitation of the biogas potential of the feedstocks, causing significant economic losses to the biogas plants. Ammonia is mainly inhibiting the aceticlastic methanogens, while the hydrogenotrophic...... methanogens are more robust to ammonia toxicity effect. It has been shown that bioaugmentation of a pure strain of a hydrogenotrophic methanogen (i.e. Methanoculleus bourgensis) in an ammonia inhibited continuous anaerobic reactor can improve methane production more than 30%. Nevertheless, cultivation...... tolerant methanogenic culture as potential bioaugmentation inoculum in a continuous stirred tank reactor (CSTR) operating under “inhibited steady-state”, triggered by high ammonia levels (5 g NH4+-N L-1). The results of the current study established for the first time that bioaugmentation of an enriched...

  4. Assessing the Ecophysiology of Methanogens in the Context of Recent Astrobiological and Planetological Studies

    Directory of Open Access Journals (Sweden)

    Ruth-Sophie Taubner

    2015-12-01

    Full Text Available Among all known microbes capable of thriving under extreme and, therefore, potentially extraterrestrial environmental conditions, methanogens from the domain Archaea are intriguing organisms. This is due to their broad metabolic versatility, enormous diversity, and ability to grow under extreme environmental conditions. Several studies revealed that growth conditions of methanogens are compatible with environmental conditions on extraterrestrial bodies throughout the Solar System. Hence, life in the Solar System might not be limited to the classical habitable zone. In this contribution we assess the main ecophysiological characteristics of methanogens and compare these to the environmental conditions of putative habitats in the Solar System, in particular Mars and icy moons. Eventually, we give an outlook on the feasibility and the necessity of future astrobiological studies concerning methanogens.

  5. Community Structure in Methanogenic Enrichments Provides Insight into Syntrophic Interactions in Hydrocarbon-Impacted Environments

    DEFF Research Database (Denmark)

    Fowler, Jane; Toth, Courtney R. A.; Gieg, Lisa M.

    2016-01-01

    , but such information has important implications for bioremediation and microbial enhanced energy recovery technologies. Many factors such as changing environmental conditions or substrate variations can influence the composition and biodegradation capabilities of syntrophic microbial communities in hydrocarbon......The methanogenic biodegradation of crude oil involves the conversion of hydrocarbons to methanogenic substrates by syntrophic bacteria and subsequent methane production by methanogens. Assessing the metabolic roles played by various microbial species in syntrophic communities remains a challenge......-impacted environments. In this study, a methanogenic crude oil-degrading enrichment culture was successively transferred onto the single long chain fatty acids palmitate or stearate followed by their parent alkanes, hexadecane or octadecane, respectively, in order to assess the impact of different substrates...

  6. Methanogens at the top of the world: occurrence and potential activity of methanogens in newly deglaciated soils in high-altitude cold deserts in the Western Himalayas

    Directory of Open Access Journals (Sweden)

    Katrin eAschenbach

    2013-12-01

    Full Text Available Methanogens typically occur in reduced anoxic environments. However, in recent studies it has been shown that many aerated upland soils, including desert soils also host active methanogens. Here we show that soil samples from high–altitude cold deserts in the western Himalayas (Ladakh, India produce CH4 after incubation as slurry under anoxic conditions at rates comparable to those of hot desert soils. Samples of matured soil from three different vegetation belts (arid, steppe, and subnival were compared with younger soils originating from frontal and lateral moraines of receding glaciers. While methanogenic rates were higher in the samples from matured soils, CH4 was also produced in the samples from the recently deglaciated moraines. In both young and matured soils, those covered by a biological soil crust (biocrust were more active than their bare counterparts. Isotopic analysis showed that in both cases CH4 was initially produced from H2/CO2 but later mostly from acetate. Analysis of the archaeal community in the in situ soil samples revealed a clear dominance of sequences related to Thaumarchaeota, while the methanogenic community comprised only a minor fraction of the archaeal community. Similar to other aerated soils, the methanogenic community was comprised almost solely of the genera Methanosarcina and Methanocella, and possibly also Methanobacterium in some cases. Nevertheless, approximately 103 gdw-1 soil methanogens were already present in the young moraine soil together with cyanobacteria. Our results demonstrate that Methanosarcina and Methanocella not only tolerate atmospheric oxygen but are also able to survive in these harsh cold environments. Their occurrence in newly deglaciated soils shows that they are early colonisers of desert soils, similar to cyanobacteria, and may play a role in the development of desert biocrusts.

  7. Methanogens and Martian natural resources: Investigations regarding the possibility of biogenic methane on Mars

    Science.gov (United States)

    Chastain, Brendon Kelly

    Archaeal methanogens were suggested as terrestrial models of possible subsurface martian microbial life prior to the actual detection of methane in Mars' atmosphere. This idea gained even more interest after the methane on Mars was observed. However, the amount of methane detected was very small, and release of methane was localized and episodic. This led some scientists to doubt that an active or ancient biosphere could be the source of the methane. Moreover, even extremophilic methanogens have not been shown to metabolize in conditions exactly analogous to those known to be available on Mars. The following chapters present a realistic and viable mechanism that allows a large or ancient biosphere to be the original source of the observed methane, and they detail experimental work that was done in order to systematically investigate nutritional and conditional variables related to those that might be available in the martian subsurface. The results of the experimental work indicate that some components of Mars' regolith can support methanogenic metabolism without being detrimental to the organisms, and that certain known components of Mars' regolith can promote periods of methanogenic dormancy without being lethal to the methanogens. The results of the experimental studies also show that material known to exist at and near Mars' surface has the potential to supply electrons for biological methanogenesis and that methanogenic metabolism can occur even when artificial media, buffers, and reductants are omitted in order to create more Mars-relevant conditions. These findings may have implications regarding the viability of methanogenic organisms as a source of the observed methane and should assist future efforts to study methanogenic metabolism in conditions exactly analogous to those available in niches on Mars.

  8. A comprehensive study into the molecular methodology and molecular biology of methanogenic Archaea

    DEFF Research Database (Denmark)

    Lange, M.; Ahring, Birgitte Kiær

    2001-01-01

    Methanogens belong to the kingdom of Euryarchaeota in the domain of Archaea. The Archaea differ from Bacteria in many aspects important to molecular work. Among these are cell wall composition, their sensitivity to antibiotics, their translation and transcription machinery, and their very strict ...... procedures. Efficient genetic manipulation systems, including shuttle and integration vector systems, have appeared for mesophilic, but not for thermophilic species within the last few years and will have a major impact on future investigations of methanogenic molecular biology....

  9. A new methanogen “Methanobrevibacter massiliense” isolated in a case of severe periodontitis

    OpenAIRE

    Huynh, Hong T. T.; Pignoly, Marion; Drancourt, Michel; Aboudharam, Gérard

    2017-01-01

    Background A few methanogens have been previously recovered from periodontitis lesions, yet their repertoire may not be completed. We recovered a previously unreported methanogen species in this situation. Case presentation A 64-year-old Caucasian woman was diagnosed with chronic, severe generalized periodontitis. In the presence of negative controls, an 18-month culture of periodontal pockets in anaerobe Hungate tube yielded “Methanobrevibacter massiliense” and Pyramidobacter piscolens. Conc...

  10. Analysis of methanogenic activity in a thermophilic-dry anaerobic reactor: Use of fluorescent in situ hybridization

    International Nuclear Information System (INIS)

    Montero, B.; Garcia-Morales, J.L.; Sales, D.; Solera, R.

    2009-01-01

    Methanogenic activity in a thermophilic-dry anaerobic reactor was determined by comparing the amount of methane generated for each of the organic loading rates with the size of the total and specific methanogenic population, as determined by fluorescent in situ hybridization. A high correlation was evident between the total methanogenic activity and retention time [-0.6988Ln(x) + 2.667] (R 2 0.8866). The total methanogenic activity increased from 0.04 x 10 -8 mLCH 4 cell -1 day -1 to 0.38 x 10 -8 mLCH 4 cell -1 day -1 while the retention time decreased, augmenting the organic loading rates. The specific methanogenic activities of H 2 -utilizing methanogens and acetate-utilizing methanogens increased until they stabilised at 0.64 x 10 -8 mLCH 4 cell -1 day -1 and 0.33 x 10 -8 mLCH 4 cell -1 day -1 , respectively. The methanogenic activity of H 2 -utilizing methanogens was higher than acetate-utilizing methanogens, indicating that maintaining a low partial pressure of hydrogen does not inhibit the acetoclastic methanogenesis or the anaerobic process

  11. Seryl-tRNA Synthetases from Methanogenic Archaea: Suppression of Bacterial Amber Mutation and Heterologous Toxicity

    Directory of Open Access Journals (Sweden)

    Drasko Boko

    2010-01-01

    Full Text Available Methanogenic archaea possess unusual seryl-tRNA synthetases (SerRS, evolutionarily distinct from the SerRSs found in other archaea, eucaryotes and bacteria. Our recent X-ray structural analysis of Methanosarcina barkeri SerRS revealed an idiosyncratic N-terminal domain and catalytic zinc ion in the active site. To shed further light on substrate discrimination by methanogenic-type SerRS, we set up to explore in vivo the interaction of methanogenic-type SerRSs with their cognate tRNAs in Escherichia coli or Saccharomyces cerevisiae. The expression of various methanogenic-type SerRSs was toxic for E. coli, resulting in the synthesis of erroneous proteins, as revealed by β-galactosidase stability assay. Although SerRSs from methanogenic archaea recognize tRNAsSer from all three domains of life in vitro, the toxicity presumably precluded the complementation of endogenous SerRS function in both, E. coli and S. cerevisiae. However, despite the observed toxicity, coexpression of methanogenic-type SerRS with its cognate tRNA suppressed bacterial amber mutation.

  12. Reduction of Fe(III) oxides by phylogenetically and physiologically diverse thermophilic methanogens.

    Science.gov (United States)

    Yamada, Chihaya; Kato, Souichiro; Kimura, Satoshi; Ishii, Masaharu; Igarashi, Yasuo

    2014-09-01

    Three thermophilic methanogens (Methanothermobacter thermautotrophicus, Methanosaeta thermophila, and Methanosarcina thermophila) were investigated for their ability to reduce poorly crystalline Fe(III) oxides (ferrihydrite) and the inhibitory effects of ferrihydrite on their methanogenesis. This study demonstrated that Fe(II) generation from ferrihydrite occurs in the cultures of the three thermophilic methanogens only when H2 was supplied as the source of reducing equivalents, even in the cultures of Mst. thermophila that do not grow on and produce CH4 from H2/CO2. While supplementation of ferrihydrite resulted in complete inhibition or suppression of methanogenesis by the thermophilic methanogens, ferrihydrite reduction by the methanogens at least partially alleviates the inhibitory effects. Microscopic and crystallographic analyses on the ferrihydrite-reducing Msr. thermophila cultures exhibited generation of magnetite on its cell surfaces through partial reduction of ferrihydrite. These findings suggest that at least certain thermophilic methanogens have the ability to extracellularly transfer electrons to insoluble Fe(III) compounds, affecting their methanogenic activities, which would in turn have significant impacts on materials and energy cycles in thermophilic anoxic environments. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  13. Stereochemical studies of acyclic isoprenoids-XII. Lipids of methanogenic bacteria and possible contributions to sediments

    Science.gov (United States)

    Risatti, J.B.; Rowland, S.J.; Yon, D.A.; Maxwell, J.R.

    1984-01-01

    Abundant volatile lipids of Methanobacterium thermoautotrophicum and Methanosarcina barkeri include isoprenoid hydrocarbons (??? C30), and C15, C20 and C25 isoprenoid alcohols. M. barkeri contains 2,6,10,15,19-pentamethyleicosane, whose relative stereochemistry is the same as found in marine sediments, indicating that it is a marker of methanogenic activity. The C20, C30 and C25 alkenes in M. thermoautotrophicum also have a preferred sterochemistry; the latter have the 2,6,10,14,18-pentamethyleicosanyl skeleton, suggesting that the alkane in marine sediments may derive from methanogens. The stereochemistry of squalane in a marine sediment is also compatible with an origin in methanogens; in contrast, the stereochemistry of pristane in M. thermoautotrophicum indicates a fossil fuel contaminant origin, suggesting that this and certain other alkanes reported in archaebacteria might also be of contaminant origin. There is, therefore, little evidence at present that the pristane in immature marine sediments originates in methanogens. The C15 and C20 saturated alcohols in M. thermoautotrophicum have mainly the all-R configuration. If this is generally true for methanogens, the C20 alcohol in the Messel shale may originate mainly from methanogens, whereas that in the Green River shale may originate mainly from photosynthetic organisms. ?? 1984.

  14. Reduction of hexavalent chromium by the thermophilic methanogen Methanothermobacter thermautotrophicus

    Science.gov (United States)

    Singh, Rajesh; Dong, Hailiang; Liu, Deng; Zhao, Linduo; Marts, Amy R.; Farquhar, Erik; Tierney, David L.; Almquist, Catherine B.; Briggs, Brandon R.

    2015-01-01

    Despite significant progress on iron reduction by thermophilic microorganisms, studies on their ability to reduce toxic metals are still limited, despite their common co-existence in high temperature environments (up to 70 °C). In this study, Methanothermobacter thermautotrophicus, an obligate thermophilic methanogen, was used to reduce hexavalent chromium. Experiments were conducted in a growth medium with H2/CO2 as substrate with various Cr6+ concentrations (0.2, 0.4, 1, 3, and 5 mM) in the form of potassium dichromate (K2Cr2O7). Time-course measurements of aqueous Cr6+ concentrations using 1,5-diphenylcarbazide colorimetric method showed complete reduction of the 0.2 and 0.4 mM Cr6+ solutions by this methanogen. However, much lower reduction extents of 43.6%, 13.0%, and 3.7% were observed at higher Cr6+ concentrations of 1, 3 and 5 mM, respectively. These lower extents of bioreduction suggest a toxic effect of aqueous Cr6+ to cells at this concentration range. At these higher Cr6+ concentrations, methanogenesis was inhibited and cell growth was impaired as evidenced by decreased total cellular protein production and live/dead cell ratio. Likewise, Cr6+ bioreduction rates decreased with increased initial concentrations of Cr6+ from 13.3 to 1.9 μM h-1. X-ray absorption near-edge structure (XANES) spectroscopy revealed a progressive reduction of soluble Cr6+ to insoluble Cr3+ precipitates, which was confirmed as amorphous chromium hydroxide by selected area electron diffraction pattern. However, a small fraction of reduced Cr occurred as aqueous Cr3+. Scanning and transmission electron microscope observations of M. thermautotrophicus cells after Cr6+ exposure suggest both extra- and intracellular chromium reduction mechanisms. Results of this study demonstrate the ability of M. thermautotrophicus cells to reduce toxic Cr6+ to less toxic Cr3+ and its potential application in metal bioremediation, especially at high temperature subsurface radioactive waste disposal

  15. Novel Syntrophic Populations Dominate an Ammonia-Tolerant Methanogenic Microbiome.

    Science.gov (United States)

    Frank, J A; Arntzen, M Ø; Sun, L; Hagen, L H; McHardy, A C; Horn, S J; Eijsink, V G H; Schnürer, A; Pope, P B

    2016-01-01

    Biogas reactors operating with protein-rich substrates have high methane potential and industrial value; however, they are highly susceptible to process failure because of the accumulation of ammonia. High ammonia levels cause a decline in acetate-utilizing methanogens and instead promote the conversion of acetate via a two-step mechanism involving syntrophic acetate oxidation (SAO) to H 2 and CO 2 , followed by hydrogenotrophic methanogenesis. Despite the key role of syntrophic acetate-oxidizing bacteria (SAOB), only a few culturable representatives have been characterized. Here we show that the microbiome of a commercial, ammonia-tolerant biogas reactor harbors a deeply branched, uncultured phylotype (unFirm_1) accounting for approximately 5% of the 16S rRNA gene inventory and sharing 88% 16S rRNA gene identity with its closest characterized relative. Reconstructed genome and quantitative metaproteomic analyses imply unFirm_1's metabolic dominance and SAO capabilities, whereby the key enzymes required for acetate oxidation are among the most highly detected in the reactor microbiome. While culturable SAOB were identified in genomic analyses of the reactor, their limited proteomic representation suggests that unFirm_1 plays an important role in channeling acetate toward methane. Notably, unFirm_1-like populations were found in other high-ammonia biogas installations, conjecturing a broader importance for this novel clade of SAOB in anaerobic fermentations. IMPORTANCE The microbial production of methane or "biogas" is an attractive renewable energy technology that can recycle organic waste into biofuel. Biogas reactors operating with protein-rich substrates such as household municipal or agricultural wastes have significant industrial and societal value; however, they are highly unstable and frequently collapse due to the accumulation of ammonia. We report the discovery of a novel uncultured phylotype (unFirm_1) that is highly detectable in metaproteomic data

  16. Gene Ontology Consortium: going forward.

    Science.gov (United States)

    2015-01-01

    The Gene Ontology (GO; http://www.geneontology.org) is a community-based bioinformatics resource that supplies information about gene product function using ontologies to represent biological knowledge. Here we describe improvements and expansions to several branches of the ontology, as well as updates that have allowed us to more efficiently disseminate the GO and capture feedback from the research community. The Gene Ontology Consortium (GOC) has expanded areas of the ontology such as cilia-related terms, cell-cycle terms and multicellular organism processes. We have also implemented new tools for generating ontology terms based on a set of logical rules making use of templates, and we have made efforts to increase our use of logical definitions. The GOC has a new and improved web site summarizing new developments and documentation, serving as a portal to GO data. Users can perform GO enrichment analysis, and search the GO for terms, annotations to gene products, and associated metadata across multiple species using the all-new AmiGO 2 browser. We encourage and welcome the input of the research community in all biological areas in our continued effort to improve the Gene Ontology. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. The bioleaching potential of a bacterial consortium.

    Science.gov (United States)

    Latorre, Mauricio; Cortés, María Paz; Travisany, Dante; Di Genova, Alex; Budinich, Marko; Reyes-Jara, Angélica; Hödar, Christian; González, Mauricio; Parada, Pilar; Bobadilla-Fazzini, Roberto A; Cambiazo, Verónica; Maass, Alejandro

    2016-10-01

    This work presents the molecular foundation of a consortium of five efficient bacteria strains isolated from copper mines currently used in state of the art industrial-scale biotechnology. The strains Acidithiobacillus thiooxidans Licanantay, Acidiphilium multivorum Yenapatur, Leptospirillum ferriphilum Pañiwe, Acidithiobacillus ferrooxidans Wenelen and Sulfobacillus thermosulfidooxidans Cutipay were selected for genome sequencing based on metal tolerance, oxidation activity and bioleaching of copper efficiency. An integrated model of metabolic pathways representing the bioleaching capability of this consortium was generated. Results revealed that greater efficiency in copper recovery may be explained by the higher functional potential of L. ferriphilum Pañiwe and At. thiooxidans Licanantay to oxidize iron and reduced inorganic sulfur compounds. The consortium had a greater capacity to resist copper, arsenic and chloride ion compared to previously described biomining strains. Specialization and particular components in these bacteria provided the consortium a greater ability to bioleach copper sulfide ores. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Update on the US Government's Biometric Consortium

    National Research Council Canada - National Science Library

    Campbell, Joseph

    1997-01-01

    .... The goals of the consortium remain largely the same under this new leadership. The current emphasis is on the formal approval of our charter and on the establishment of a national biometric test and evaluation laboratory.

  19. NASA space radiation transport code development consortium

    International Nuclear Information System (INIS)

    Townsend, L. W.

    2005-01-01

    Recently, NASA established a consortium involving the Univ. of Tennessee (lead institution), the Univ. of Houston, Roanoke College and various government and national laboratories, to accelerate the development of a standard set of radiation transport computer codes for NASA human exploration applications. This effort involves further improvements of the Monte Carlo codes HETC and FLUKA and the deterministic code HZETRN, including developing nuclear reaction databases necessary to extend the Monte Carlo codes to carry out heavy ion transport, and extending HZETRN to three dimensions. The improved codes will be validated by comparing predictions with measured laboratory transport data, provided by an experimental measurements consortium, and measurements in the upper atmosphere on the balloon-borne Deep Space Test Bed (DSTB). In this paper, we present an overview of the consortium members and the current status and future plans of consortium efforts to meet the research goals and objectives of this extensive undertaking. (authors)

  20. The LBNL/JSU/AGMUS Science Consortium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    This report discusses the 11 year of accomplishments of the science consortium of minority graduates from Jackson State University and Ana G. Mendez University at the Lawrence Berkeley National Laboratory.

  1. International Radical Cystectomy Consortium: A way forward

    Directory of Open Access Journals (Sweden)

    Syed Johar Raza

    2014-01-01

    Full Text Available Robot-assisted radical cystectomy (RARC is an emerging operative alternative to open surgery for the management of invasive bladder cancer. Studies from single institutions provide limited data due to the small number of patients. In order to better understand the related outcomes, a world-wide consortium was established in 2006 of patients undergoing RARC, called the International Robotic Cystectomy Consortium (IRCC. Thus far, the IRCC has reported its findings on various areas of operative interest and continues to expand its capacity to include other operative modalities and transform it into the International Radical Cystectomy Consortium. This article summarizes the findings of the IRCC and highlights the future direction of the consortium.

  2. International Lymphoma Epidemiology Consortium (InterLymph)

    Science.gov (United States)

    A consortium designed to enhance collaboration among epidemiologists studying lymphoma, to provide a forum for the exchange of research ideas, and to create a framework for collaborating on analyses that pool data from multiple studies

  3. Cyclic-2,3-diphosphoglycerate cycle in methanogenic bacteria

    International Nuclear Information System (INIS)

    Fahrney, D.E.; Harper, S.H.; Krueger, R.D.

    1987-01-01

    A new and unprecedented model for P/sub i/ translocation into Methanobacterium thermoautotrophicum is proposed. It is based on an analysis of the rates of P/sub i/ uptake and concomitant flux through the cyclic-2,3-diphosphoglycerate (cDPG) pool in the presence of cyanide. CN - completely blocks flow of carbon into cellular constituents, but methanogenesis continues at about 70%, indicating considerable energy flow. P/sub i/ uptake continued at 20% of control for 30 min or longer, resulting in an expansion of the intracellular P/sub i/ pool. During this period the flux of phosphate through the cDPG pool remained equal to the rate of P/sub i/ entry. The distribution of 32 P in cDPG showed that the C-2 phosphoryl group was labeled preferentially, indicating that this phosphoryl group has a half-life under 10 min in the presence of CN - . Since CN - completely blocks CO 2 fixation but does not interfere with cDPG turnover, cDPG is neither a biosynthetic intermediate nor a phosphate storage compound. Earlier they had demonstrated that this methanogen can transport P/sub i/ against a million-fold concentration gradient via a H 2 -driven transport system having a K/sub m/ of 25 nM. The evidence that cDPG may play a role in this transport mechanism seems compelling, but further studies are needed

  4. Cultivating microbial dark matter in benzene-degrading methanogenic consortia.

    Science.gov (United States)

    Luo, Fei; Devine, Cheryl E; Edwards, Elizabeth A

    2016-09-01

    The microbes responsible for anaerobic benzene biodegradation remain poorly characterized. In this study, we identified and quantified microbial populations in a series of 16 distinct methanogenic, benzene-degrading enrichment cultures using a combination of traditional 16S rRNA clone libraries (four cultures), pyrotag 16S rRNA amplicon sequencing (11 cultures), metagenome sequencing (1 culture) and quantitative polymerase chain reaction (qPCR; 12 cultures). An operational taxonomic unit (OTU) from the Deltaproteobacteria designated ORM2 that is only 84% to 86% similar to Syntrophus or Desulfobacterium spp. was consistently identified in all enrichment cultures, and typically comprised more than half of the bacterial sequences. In addition to ORM2, a sequence belonging to Parcubacteria (candidate division OD1) identified from the metagenome data was the only other OTU common to all the cultures surveyed. Culture transfers (1% and 0.1%) were made in the presence and absence of benzene, and the abundance of ORM2, OD1 and other OTUs was tracked over 415 days using qPCR. ORM2 sequence abundance increased only when benzene was present, while the abundance of OD1 and other OTUs increased even in the absence of benzene. Deltaproteobacterium ORM2 is unequivocally the benzene-metabolizing population. This study also hints at laboratory cultivation conditions for a member of the widely distributed yet uncultivated Parcubacteria (OD1). © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Human methanogen diversity and incidence in healthy and diseased colonic groups using mcrA gene analysis

    Directory of Open Access Journals (Sweden)

    Scanlan Pauline D

    2008-05-01

    Full Text Available Abstract Background The incidence and diversity of human methanogens are insufficiently characterised in the gastrointestinal tract of both health and disease. A PCR and clone library methodology targeting the mcrA gene was adopted to facilitate the two-fold aim of surveying the relative incidence of methanogens in health and disease groups and also to provide an overview of methanogen diversity in the human gastrointestinal tract. Results DNA faecal extracts (207 in total from a group of healthy controls and five gastrointestinal disease groups were investigated. Colorectal cancer, polypectomised, irritable bowel syndrome and the control group had largely equivalent numbers of individuals positive for methanogens (range 45–50%. Methanogen incidence in the inflammatory bowel disease groups was reduced, 24% for ulcerative colitis and 30% for Crohn's disease. Four unique mcrA gene restriction fragment length polymorphism profiles were identified and bioinformatic analyses revealed that the majority of all sequences (94% retrieved from libraries were 100% identical to Methanobrevibacter smithii mcrA gene. In addition, mcrA gene sequences most closely related to Methanobrevibacter oralis and members of the order Methanosarcinales were also recovered. Conclusion The mcrA gene serves as a useful biomarker for methanogen detection in the human gut and the varying trends of methanogen incidence in the human gut could serve as important indicators of intestinal function. Although Methanobrevibacter smithii is the dominant methanogen in both the distal colon of individuals in health and disease, the diversity of methanogens is greater than previously reported. In conclusion, the low incidence of methanogens in Inflammatory Bowel Disease, the functionality of the methanogens and impact of methane production in addition to competitive interactions between methanogens and other microbial groups in the human gastrointestinal tract warrants further

  6. Methanogens at the top of the world: occurrence and potential activity of methanogens in newly deglaciated soils in high-altitude cold deserts in the Western Himalayas

    Czech Academy of Sciences Publication Activity Database

    Aschenbach, K.; Conrad, R.; Řeháková, Klára; Doležal, Jiří; Janatková, Kateřina; Angel, R.

    2013-01-01

    Roč. 4, Dec 2013 (2013), Ar.359 ISSN 1664-302X R&D Projects: GA ČR GA13-13368S Institutional support: RVO:67985939 Keywords : methanogens * desert areas * cold climate Subject RIV: EH - Ecology, Behaviour Impact factor: 3.941, year: 2013

  7. Methanogenic archaea and sulfate reducing bacteria co-cultured on acetate: teamwork or coexistence?

    Science.gov (United States)

    Ozuolmez, Derya; Na, Hyunsoo; Lever, Mark A; Kjeldsen, Kasper U; Jørgensen, Bo B; Plugge, Caroline M

    2015-01-01

    Acetate is a major product of fermentation processes and an important substrate for sulfate reducing bacteria and methanogenic archaea. Most studies on acetate catabolism by sulfate reducers and methanogens have used pure cultures. Less is known about acetate conversion by mixed pure cultures and the interactions between both groups. We tested interspecies hydrogen transfer and coexistence between marine methanogens and sulfate reducers using mixed pure cultures of two types of microorganisms. First, Desulfovibrio vulgaris subsp. vulgaris (DSM 1744), a hydrogenotrophic sulfate reducer, was cocultured together with the obligate aceticlastic methanogen Methanosaeta concilii using acetate as carbon and energy source. Next, Methanococcus maripaludis S2, an obligate H2- and formate-utilizing methanogen, was used as a partner organism to M. concilii in the presence of acetate. Finally, we performed a coexistence experiment between M. concilii and an acetotrophic sulfate reducer Desulfobacter latus AcSR2. Our results showed that D. vulgaris was able to reduce sulfate and grow from hydrogen leaked by M. concilii. In the other coculture, M. maripaludis was sustained by hydrogen leaked by M. concilii as revealed by qPCR. The growth of the two aceticlastic microbes indicated co-existence rather than competition. Altogether, our results indicate that H2 leaking from M. concilii could be used by efficient H2-scavengers. This metabolic trait, revealed from coculture studies, brings new insight to the metabolic flexibility of methanogens and sulfate reducers residing in marine environments in response to changing environmental conditions and community compositions. Using dedicated physiological studies we were able to unravel the occurrence of less obvious interactions between marine methanogens and sulfate-reducing bacteria.

  8. Methanogenic archaea and sulfate reducing bacteria co-cultured on acetate: teamwork or coexistence?

    Directory of Open Access Journals (Sweden)

    Derya eOzuolmez

    2015-05-01

    Full Text Available Acetate is a major product of fermentation processes and an important substrate for sulfate reducing bacteria and methanogenic archaea. Most studies on acetate catabolism by sulfate reducers and methanogens have used pure cultures. Less is known about acetate conversion by mixed pure cultures and the interactions between both groups. We tested interspecies hydrogen transfer and coexistence between marine methanogens and sulfate reducers using mixed pure cultures of two types of microorganisms. First, Desulfovibrio vulgaris subsp. vulgaris (DSM 1744, a hydrogenotrophic sulfate reducer, was cocultured together with the obligate aceticlastic methanogen Methanosaeta concilii using acetate as carbon and energy source. Next, Methanococcus maripaludis S2, an obligate H2- and formate-utilizing methanogen, was used as a partner organism to M. concilii in the presence of acetate. Finally, we performed a coexistence experiment between M. concilii and an acetotrophic sulfate reducer Desulfobacter latus AcSR2. Our results showed that D. vulgaris was able to reduce sulfate and grow from hydrogen leaked by M. concilii. In the other coculture, M. maripaludis was sustained by hydrogen leaked by M. concilii as revealed by qPCR. The growth of the two aceticlastic microbes indicated co-existence rather than competition. Altogether, our results indicate that H2 leaking from M. concilii could be used by efficient H2-scavengers. This metabolic trait, revealed from coculture studies, brings new insight to the metabolic flexibility of methanogens and sulfate reducers residing in marine environments in response to changing environmental conditions and community compositions. Using dedicated physiological studies we were able to unravel the occurrence of less obvious interactions between marine methanogens and sulfate-reducing bacteria.

  9. The Effects of Perchlorates on the Permafrost Methanogens: Implication for Autotrophic Life on Mars.

    Science.gov (United States)

    Shcherbakova, Viktoria; Oshurkova, Viktoria; Yoshimura, Yoshitaka

    2015-09-09

    The terrestrial permafrost represents a range of possible cryogenic extraterrestrial ecosystems on Earth-like planets without obvious surface ice, such as Mars. The autotrophic and chemolithotrophic psychrotolerant methanogens are more likely than aerobes to function as a model for life forms that may exist in frozen subsurface environments on Mars, which has no free oxygen, inaccessible organic matter, and extremely low amounts of unfrozen water. Our research on the genesis of methane, its content and distribution in permafrost horizons of different ages and origin demonstrated the presence of methane in permanently frozen fine-grained sediments. Earlier, we isolated and described four strains of methanogenic archaea of Methanobacterium and Methanosarcina genera from samples of Pliocene and Holocene permafrost from Eastern Siberia. In this paper we study the effect of sodium and magnesium perchlorates on growth of permafrost and nonpermafrost methanogens, and present evidence that permafrost hydogenotrophic methanogens are more resistant to the chaotropic agent found in Martian soil. In this paper we study the effect of sodium and magnesium perchlorates on the growth of permafrost and nonpermafrost methanogens, and present evidence that permafrost hydogenotrophic methanogens are more resistant to the chaotropic agent found in Martian soil. Furthermore, as shown in the studies strain M2(T) M. arcticum, probably can use perchlorate anion as an electron acceptor in anaerobic methane oxidation. Earth's subzero subsurface environments are the best approximation of environments on Mars, which is most likely to harbor methanogens; thus, a biochemical understanding of these pathways is expected to provide a basis for designing experiments to detect autotrophic methane-producing life forms on Mars.

  10. The Effects of Perchlorates on the Permafrost Methanogens: Implication for Autotrophic Life on Mars

    Directory of Open Access Journals (Sweden)

    Viktoria Shcherbakova

    2015-09-01

    Full Text Available The terrestrial permafrost represents a range of possible cryogenic extraterrestrial ecosystems on Earth-like planets without obvious surface ice, such as Mars. The autotrophic and chemolithotrophic psychrotolerant methanogens are more likely than aerobes to function as a model for life forms that may exist in frozen subsurface environments on Mars, which has no free oxygen, inaccessible organic matter, and extremely low amounts of unfrozen water. Our research on the genesis of methane, its content and distribution in permafrost horizons of different ages and origin demonstrated the presence of methane in permanently frozen fine-grained sediments. Earlier, we isolated and described four strains of methanogenic archaea of Methanobacterium and Methanosarcina genera from samples of Pliocene and Holocene permafrost from Eastern Siberia. In this paper we study the effect of sodium and magnesium perchlorates on growth of permafrost and nonpermafrost methanogens, and present evidence that permafrost hydogenotrophic methanogens are more resistant to the chaotropic agent found in Martian soil. In this paper we study the effect of sodium and magnesium perchlorates on the growth of permafrost and nonpermafrost methanogens, and present evidence that permafrost hydogenotrophic methanogens are more resistant to the chaotropic agent found in Martian soil. Furthermore, as shown in the studies strain M2T M. arcticum, probably can use perchlorate anion as an electron acceptor in anaerobic methane oxidation. Earth’s subzero subsurface environments are the best approximation of environments on Mars, which is most likely to harbor methanogens; thus, a biochemical understanding of these pathways is expected to provide a basis for designing experiments to detect autotrophic methane-producing life forms on Mars.

  11. The quantitative significance of Syntrophaceae and syntrophic partnerships in methanogenic degradation of crude oil alkanes.

    Science.gov (United States)

    Gray, N D; Sherry, A; Grant, R J; Rowan, A K; Hubert, C R J; Callbeck, C M; Aitken, C M; Jones, D M; Adams, J J; Larter, S R; Head, I M

    2011-11-01

    Libraries of 16S rRNA genes cloned from methanogenic oil degrading microcosms amended with North Sea crude oil and inoculated with estuarine sediment indicated that bacteria from the genera Smithella (Deltaproteobacteria, Syntrophaceace) and Marinobacter sp. (Gammaproteobacteria) were enriched during degradation. Growth yields and doubling times (36 days for both Smithella and Marinobacter) were determined using qPCR and quantitative data on alkanes, which were the predominant hydrocarbons degraded. The growth yield of the Smithella sp. [0.020 g(cell-C)/g(alkane-C)], assuming it utilized all alkanes removed was consistent with yields of bacteria that degrade hydrocarbons and other organic compounds in methanogenic consortia. Over 450 days of incubation predominance and exponential growth of Smithella was coincident with alkane removal and exponential accumulation of methane. This growth is consistent with Smithella's occurrence in near surface anoxic hydrocarbon degrading systems and their complete oxidation of crude oil alkanes to acetate and/or hydrogen in syntrophic partnership with methanogens in such systems. The calculated growth yield of the Marinobacter sp., assuming it grew on alkanes, was [0.0005 g(cell-C)/g(alkane-C)] suggesting that it played a minor role in alkane degradation. The dominant methanogens were hydrogenotrophs (Methanocalculus spp. from the Methanomicrobiales). Enrichment of hydrogen-oxidizing methanogens relative to acetoclastic methanogens was consistent with syntrophic acetate oxidation measured in methanogenic crude oil degrading enrichment cultures. qPCR of the Methanomicrobiales indicated growth characteristics consistent with measured rates of methane production and growth in partnership with Smithella. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  12. Fractionation of carbon isotopes by thermophilic methanogenic bacteria

    International Nuclear Information System (INIS)

    Ivanov, M.V.; Belyaev, S.S.; Zyakun, A.M.; Bondar, V.A.; Shipin, O.P.; Laurinavichus, K.S.

    1985-01-01

    The authors investigated the pattern of fractionation of stable carbon isotopes by the thermophilic methane-forming bacteria under different growth conditions and at various rates of formation of methane. A pure culture of Methanobacterium thermoautotrophicum was used in the experiments under the following growth conditions: temperature 65-70 0 C; pH 7.2-7.6; NaCl content 0-0.9 g/liter. The methanogenic bacteria were cultivated in 0.15 liter flasks in mineral medium. A mixture of CO 2 and H 2 in a 1:4 ratio by volume served as the sole carbon and energy source. In all experiments, not more than 5% of the initial CO 2 level was utilized. The rate of methane generation was altered by adjusting the physicochemical growth parameters (temperature from 45-70 0 C, salinity from 0.9 to 40 g/liter NaCl, pH from 6.3 to 7.2). Methane in the samples was quantitatively determined in a chromatograph which had a flame-ionization detector and a column containing Porapak Q sorbent at T = 120 0 C. The carrier gas was CO 2 . The average specific rate of methane formation was calculated as ml CH 4 per mg dry biomass of bacteria per h. Soluble mineral carbon was isolated form the acidified culture liquid in the form of CO 2 and was quantitatively determined in a Chrom-4 chromatography provided with a katharometer and a column containing activated charcoal at T = 150 0 . The gas carrier was helium. The isotopic composition of carbon was determined in a CH-7 mass-spectrometer and was expressed in 13 C values (per thousand) with respect to the international PDB standard

  13. Transduction-like gene transfer in the methanogen Methanococcus voltae

    Science.gov (United States)

    Bertani, G.

    1999-01-01

    Strain PS of Methanococcus voltae (a methanogenic, anaerobic archaebacterium) was shown to generate spontaneously 4.4-kbp chromosomal DNA fragments that are fully protected from DNase and that, upon contact with a cell, transform it genetically. This activity, here called VTA (voltae transfer agent), affects all markers tested: three different auxotrophies (histidine, purine, and cobalamin) and resistance to BES (2-bromoethanesulfonate, an inhibitor of methanogenesis). VTA was most effectively prepared by culture filtration. This process disrupted a fraction of the M. voltae cells (which have only an S-layer covering their cytoplasmic membrane). VTA was rapidly inactivated upon storage. VTA particles were present in cultures at concentrations of approximately two per cell. Gene transfer activity varied from a minimum of 2 x 10(-5) (BES resistance) to a maximum of 10(-3) (histidine independence) per donor cell. Very little VTA was found free in culture supernatants. The phenomenon is functionally similar to generalized transduction, but there is no evidence, for the time being, of intrinsically viral (i.e., containing a complete viral genome) particles. Consideration of VTA DNA size makes the existence of such viral particles unlikely. If they exist, they must be relatively few in number;perhaps they differ from VTA particles in size and other properties and thus escaped detection. Digestion of VTA DNA with the AluI restriction enzyme suggests that it is a random sample of the bacterial DNA, except for a 0.9-kbp sequence which is amplified relative to the rest of the bacterial chromosome. A VTA-sized DNA fraction was demonstrated in a few other isolates of M. voltae.

  14. Toxicity assessment of inorganic nanoparticles to acetoclastic and hydrogenotrophic methanogenic activity in anaerobic granular sludge.

    Science.gov (United States)

    Gonzalez-Estrella, Jorge; Sierra-Alvarez, Reyes; Field, James A

    2013-09-15

    Release of engineered nanoparticles (NPs) to municipal wastewater from industrial and residential sources could impact biological systems in wastewater treatment plants. Methanogenic inhibition can cause failure of anaerobic waste(water) treatment. This study investigated the inhibitory effect of a wide array of inorganic NPs (Ag(0), Al₂O₃, CeO₂, Cu(0), CuO, Fe(0), Fe₂O₃, Mn₂O₃, SiO₂, TiO₂, and ZnO supplied up to 1500 mgL(-1)) to acetoclastic and hydrogenotrophic methanogenic activity of anaerobic granular sludge. Of all the NPs tested, only Cu(0) and ZnO caused severe methanogenic inhibition. The 50% inhibiting concentrations determined towards acetoclastic and hydrogenotrophic methanogens were 62 and 68 mgL(-1) for Cu(0) NP; and 87 and 250 mgL(-1) for ZnO NP, respectively. CuO NPs also caused inhibition of acetoclastic methanogens. Cu(2+) and Zn(2+) salts caused similar levels of inhibition as Cu(0) and ZnO NPs based on equilibrium soluble metal concentrations measured during the assays, suggesting that the toxicity was due to the release of metal ions by NP-corrosion. A commercial dispersant, Dispex, intended to increase NP stability did not affect the inhibitory impact of the NPs. The results taken as a whole suggest that Zn- and Cu-containing NPs can release metal ions that are inhibitory for methanogenesis. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Windrow composting mitigated CH4 emissions: characterization of methanogenic and methanotrophic communities in manure management.

    Science.gov (United States)

    Chen, Ruirui; Wang, Yiming; Wei, Shiping; Wang, Wei; Lin, Xiangui

    2014-12-01

    With increasing livestock breeding, methane (CH4 ) emissions from manure management will increasingly contribute more to atmospheric CH4 concentration. The dynamics of methanogens and methanotrophs have not yet been studied in the manure environment. The current study combines surface CH4 emissions with methanogenic and methanotrophic community analyses from two management practices, windrow composting (WCOM) and solid storage (SSTO). Our results showed that there was an c. 50% reduction of CH4 emissions with WCOM compared with SSTO over a 50-day period. A sharp decrease in the quantities of both methanogens and methanotrophs in WCOM suggested that CH4 mitigation was mainly due to decreased CH4 production rather than increased CH4 oxidation. Pyrosequencing analysis demonstrated that aeration caused a clear shift of dominant methanogens in the manure, with specifically a significant decrease in Methanosarcina and increase in Methanobrevibacter. The composition of methanogenic community was influenced by manure management and regulated CH4 production. A sharp increase in the quantity of methanotrophs in SSTO suggested that microbial CH4 oxidation is an important sink for the CH4 produced. The increased abundance of Methylococcaceae in SSTO suggested that Type I methanotrophs have an advantage in CH4 oxidation in occupying niches under low CH4 and high O2 conditions. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  16. Methanogenic degradation of petroleum hydrocarbons in subsurface environments remediation, heavy oil formation, and energy recovery.

    Science.gov (United States)

    Gray, N D; Sherry, A; Hubert, C; Dolfing, J; Head, I M

    2010-01-01

    Hydrocarbons are common constituents of surface, shallow, and deep-subsurface environments. Under anaerobic conditions, hydrocarbons can be degraded to methane by methanogenic microbial consortia. This degradation process is widespread in the geosphere. In comparison with other anaerobic processes, methanogenic hydrocarbon degradation is more sustainable over geological time scales because replenishment of an exogenous electron acceptor is not required. As a consequence, this process has been responsible for the formation of the world's vast deposits of heavy oil, which far exceed conventional oil assets such as those found in the Middle East. Methanogenic degradation is also a potentially important component of attenuation in hydrocarbon contamination plumes. Studies of the organisms, syntrophic partnerships, mechanisms, and geochemical signatures associated with methanogenic hydrocarbon degradation have identified common themes and diagnostic markers for this process in the subsurface. These studies have also identified the potential to engineer methanogenic processes to enhance the recovery of energy assets as biogenic methane from residual oils stranded in petroleum systems. Copyright 2010 Elsevier Inc. All rights reserved.

  17. Application of Pseudomurein Endoisopeptidase to Fluorescence In Situ Hybridization of Methanogens within the Family Methanobacteriaceae▿

    Science.gov (United States)

    Nakamura, Kohei ; Terada, Takeshi; Sekiguchi, Yuji; Shinzato, Naoya; Meng, Xian-Ying; Enoki, Miho; Kamagata, Yoichi

    2006-01-01

    In situ detection of methanogens within the family Methanobacteriaceae is sometimes known to be unsuccessful due to the difficulty in permeability of oligonucleotide probes. Pseudomurein endoisopeptidase (Pei), a lytic enzyme that specifically acts on their cell walls, was applied prior to 16S rRNA-targeting fluorescence in situ hybridization (FISH). For this purpose, pure cultured methanogens within this family, Methanobacterium bryantii, Methanobrevibacter ruminantium, Methanosphaera stadtmanae, and Methanothermobacter thermautotrophicus together with a Methanothermobacter thermautotrophicus-containing syntrophic acetate-oxidizing coculture, endosymbiotic Methanobrevibacter methanogens within an anaerobic ciliate, and an upflow anaerobic sludge blanket (UASB) granule were examined. Even without the Pei treatment, Methanobacterium bryantii and Methanothermobacter thermautotrophicus cells are relatively well hybridized with oligonucleotide probes. However, almost none of the cells of Methanobrevibacter ruminantium, Methanosphaera stadtmanae, cocultured Methanothermobacter thermautotrophicus, and the endosymbiotic methanogens and the cells within UASB granule were hybridized. Pei treatment was able to increase the probe hybridization ratio in every specimen, particularly in the specimen that had shown little hybridization. Interestingly, the hybridizing signal intensity of Methanothermobacter thermautotrophicus cells in coculture with an acetate-oxidizing H2-producing syntroph was significantly improved by Pei pretreatment, whereas the probe was well hybridized with the cells of pure culture of the same strain. We found that the difference is attributed to the differences in cell wall thicknesses between the two culture conditions. These results indicate that Pei treatment is effective for FISH analysis of methanogens that show impermeability to the probe. PMID:16950902

  18. Molecular Analysis of Methanogen Richness in Landfill and Marshland Targeting 16S rDNA Sequences.

    Science.gov (United States)

    Yadav, Shailendra; Kundu, Sharbadeb; Ghosh, Sankar K; Maitra, S S

    2015-01-01

    Methanogens, a key contributor in global carbon cycling, methane emission, and alternative energy production, generate methane gas via anaerobic digestion of organic matter. The methane emission potential depends upon methanogenic diversity and activity. Since they are anaerobes and difficult to isolate and culture, their diversity present in the landfill sites of Delhi and marshlands of Southern Assam, India, was analyzed using molecular techniques like 16S rDNA sequencing, DGGE, and qPCR. The sequencing results indicated the presence of methanogens belonging to the seventh order and also the order Methanomicrobiales in the Ghazipur and Bhalsawa landfill sites of Delhi. Sequences, related to the phyla Crenarchaeota (thermophilic) and Thaumarchaeota (mesophilic), were detected from marshland sites of Southern Assam, India. Jaccard analysis of DGGE gel using Gel2K showed three main clusters depending on the number and similarity of band patterns. The copy number analysis of hydrogenotrophic methanogens using qPCR indicates higher abundance in landfill sites of Delhi as compared to the marshlands of Southern Assam. The knowledge about "methanogenic archaea composition" and "abundance" in the contrasting ecosystems like "landfill" and "marshland" may reorient our understanding of the Archaea inhabitants. This study could shed light on the relationship between methane-dynamics and the global warming process.

  19. Molecular Analysis of Methanogen Richness in Landfill and Marshland Targeting 16S rDNA Sequences

    Directory of Open Access Journals (Sweden)

    Shailendra Yadav

    2015-01-01

    Full Text Available Methanogens, a key contributor in global carbon cycling, methane emission, and alternative energy production, generate methane gas via anaerobic digestion of organic matter. The methane emission potential depends upon methanogenic diversity and activity. Since they are anaerobes and difficult to isolate and culture, their diversity present in the landfill sites of Delhi and marshlands of Southern Assam, India, was analyzed using molecular techniques like 16S rDNA sequencing, DGGE, and qPCR. The sequencing results indicated the presence of methanogens belonging to the seventh order and also the order Methanomicrobiales in the Ghazipur and Bhalsawa landfill sites of Delhi. Sequences, related to the phyla Crenarchaeota (thermophilic and Thaumarchaeota (mesophilic, were detected from marshland sites of Southern Assam, India. Jaccard analysis of DGGE gel using Gel2K showed three main clusters depending on the number and similarity of band patterns. The copy number analysis of hydrogenotrophic methanogens using qPCR indicates higher abundance in landfill sites of Delhi as compared to the marshlands of Southern Assam. The knowledge about “methanogenic archaea composition” and “abundance” in the contrasting ecosystems like “landfill” and “marshland” may reorient our understanding of the Archaea inhabitants. This study could shed light on the relationship between methane-dynamics and the global warming process.

  20. Molecular diversity and tools for deciphering the methanogen community structure and diversity in freshwater sediments.

    Science.gov (United States)

    Chaudhary, Prem Prashant; Brablcová, Lenka; Buriánková, Iva; Rulík, Martin

    2013-09-01

    Methanogenic archaeal communities existing in freshwater sediments are responsible for approximately 50 % of the total global emission of methane. This process contributes significantly to global warming and, hence, necessitates interventional control measures to limit its emission. Unfortunately, the diversity and functional interactions of methanogenic populations occurring in these habitats are yet to be fully characterized. Considering several disadvantages of conventional culture-based methodologies, in recent years, impetus is given to molecular biology approaches to determine the community structure of freshwater sedimentary methanogenic archaea. 16S rRNA and methyl coenzyme M reductase (mcrA) gene-based cloning techniques are the first choice for this purpose. In addition, electrophoresis-based (denaturing gradient gel electrophoresis, temperature gradient gel electrophoresis, and terminal restriction fragment length polymorphism) and quantitative real-time polymerase chain reaction techniques have also found extensive applications. These techniques are highly sensitive, rapid, and reliable as compared to traditional culture-dependent approaches. Molecular diversity studies revealed the dominance of the orders Methanomicrobiales and Methanosarcinales of methanogens in freshwater sediments. The present review discusses in detail the status of the diversity of methanogens and the molecular approaches applied in this area of research.

  1. Molecular Characterization of Methanogenic Communities in Core Sediments of the Dajiuhu Peatland, Central China

    Science.gov (United States)

    Wang, R.; Wang, H.

    2017-12-01

    Methane (CH4) is an important greenhouse gas with a global warming potential 22 times greater than carbon dioxide. Large amounts of CH4 can be produced and released by methanogenesis in peatland ecosystems, which make peatland ecosystems play an important role in mediating global climate change. Here we report the abundance and distribution of methanogenic communities and their correlation with physicochemical parameters along two sediment cores in the Dajiuhu Peatland via quantitative PCR, clone library construction of functional genes and statistical analysis. Uncultured Group and Fen Cluster were found to be the dominant methanogens at the upper part of the cores, and Rice and Related Rice Cluster became dominant in the bottom of the cores. Quantitative PCR showed that abundances of methanogenic communities ranged from 104 to 106 copies/ng DNA throughout the cores. Canonical Correlation Analysis (CCA) indicated that dissolved oxygen (DO) (P=0.046, F=1.4) was the main factor significantly controlling methanogenic communities. Our results enhance the understanding of the compositions and variations of methanogenic communities vertically and greatly help us to further investigate process of microbial methanogenesis in Dajiuhu Peatland.

  2. New approach to control the methanogenic reactor of a two-phase anaerobic digestion system.

    Science.gov (United States)

    von Sachs, Jürgen; Meyer, Ulrich; Rys, Paul; Feitkenhauer, Heiko

    2003-03-01

    A new control strategy for the methanogenic reactor of a two-phase anaerobic digestion system has been developed and successfully tested on the laboratory scale. The control strategy serves the purpose to detect inhibitory effects and to achieve good conversion. The concept is based on the idea that volatile fatty acids (VFA) can be measured in the influent of the methanogenic reactor by means of titration. Thus, information on the output (methane production) and input of the methanogenic reactor is available, and a (carbon) mass balance can be obtained. The control algorithm comprises a proportional/integral structure with the ratio of (a) the methane production rate measured online and (b) a maximum methane production rate expected (derived from the stoichiometry) as a control variable. The manipulated variable is the volumetric feed rate. Results are shown for an experiment with VFA (feed) concentration ramps and for experiments with sodium chloride as inhibitor.

  3. Methanogenic H2 syntrophy among thermophiles: a model of metabolism, adaptation and survival in the subsurface

    Science.gov (United States)

    Topcuoglu, B. D.; Stewart, L. C.; Butterfield, D. A.; Huber, J. A.; Holden, J. F.

    2016-12-01

    Approximately 1 giga ton (Gt, 1015 g) of CH4 is formed globally per year from H2, CO2 and acetate through methanogenesis, largely by methanogens growing in syntrophic association with anaerobic microbes that hydrolyze and ferment biopolymers. However, our understanding of methanogenesis in hydrothermal regions of the subseafloor and potential syntrophic methanogenesis at thermophilic temperatures (i.e., >50°C) is nascent. In this study, the growth of natural assemblages of thermophilic methanogens from Axial Seamount was primarily limited by H2 availability. Heterotrophs supported thermophilic methanogenesis by H2 syntrophy in microcosm incubations of hydrothermal fluids at 55°C and 80°C supplemented with tryptone only. Based on 16S rRNA gene sequencing, only heterotrophic archaea that produce H2, H2-consuming methanogens, and sulfate reducing archaea were found in 80°C tryptone microcosms from Marker 113 vent. No bacteria were found. In 55°C tryptone microcosms, sequences were found from H2-producing bacteria and H2-consuming methanogens and sulfate-reducing bacteria. In order to model the impact of H2 syntrophy at hyperthemophilic temperatures, a co-culture was established consisting of the H2-producing hyperthermophilic heterotroph Thermococcus paralvinellae and a H2-consuming hyperthermophilic methanogen Methanocaldococcus bathoardescens. When grown alone in a chemostat, the growth rates and steady-state cell concentrations of T. paralvinellae decreased significantly when a high H2 (70 µM) background was present. H2 inhibition was ameliorated by the production of formate, but in silico modeling suggests less energetic yield for the cells. H2 syntrophy relieved H2 inhibition for both the heterotroph and the methanogenic partners. The results demonstrate that thermophilic H2 syntrophy can support methanogenesis within natural microbial assemblages and may be an important alternative energy source for thermophilic autotrophs in marine geothermal environments.

  4. Establishment of a Methanogenic Benzene-Degrading Culture and its Implication in Bioremediation

    Science.gov (United States)

    Qiao, W.; Luo, F.; Bawa, N.; Guo, S.; Ye, S.; Edwards, E.

    2017-12-01

    Benzene is a known human carcinogen and it is a common pollutant in groundwater, mainly resulting from petrochemical industry. Anaerobic degradation of benzene has significant advantages over aerobic processes for in situ bioremediation. In this study, new methanogenic and sulfate-reducing benzene degrading cultures have been enriched. Microbial community composition was characterized with two other previously established benzene-degrading cultures, and their potential use in bioaugmentation is investigated. In this study, a lab microcosm study was conducted anaerobically with contaminated soil and groundwater from a former chemical plant. Benzene degradation was observed in the presence of co-contaminants and electron donor. Through repetitive amendment of benzene, two enrichment cultures have been developed under sulfate and methanogenic conditions. Results from DNA amplicon sequencing and qPCR analysis revealed that an organism similar to previously described benzene-degrading Deltaproteobacterium has been enriched. The microbial community of this culture was compared with other two methanogenic benzene-degrading enrichment cultures that were derived from an oil refinery and a decommissioned gasoline station, and have been maintained for decades. Deltaproteobacterium ORM2-like microbes were dominate in all enrichment cultures, which brought to light benzene-degrading microbes, ORM2 were enriched under different geological conditions distributed around the world. The relative abundance of methanogens was much lower compared to previously established cultures, although substantial amount of methane was produced. The peripheral organisms also vary. To investigate effectiveness of using ORM2-dominant enrichment cultures in bioremediation, microcosm studies were set up using contaminated materials, and a ORM2-dominating methanogenic benzene-degrading culture was used for bioaugmentation. Results revealed that benzene degradation was speeded up under methanogenic or

  5. Investigation into the effect of high concentrations of volatile fatty acids in anaerobic digestion on methanogenic communities

    Energy Technology Data Exchange (ETDEWEB)

    Franke-Whittle, Ingrid H., E-mail: ingrid.whittle@uibk.ac.at [Institut für Mikrobiologie, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck (Austria); Walter, Andreas [Institut für Mikrobiologie, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck (Austria); Ebner, Christian [Abwasserverband Zirl und Umgebung, Meilbrunnen 5, 6170 Zirl (Austria); Insam, Heribert [Institut für Mikrobiologie, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck (Austria)

    2014-11-15

    Highlights: • Different methanogenic communities in mesophilic and thermophilic reactors. • High VFA levels do not cause major changes in archaeal communities. • Real-time PCR indicated greater diversity than ANAEROCHIP microarray. - Abstract: A study was conducted to determine whether differences in the levels of volatile fatty acids (VFAs) in anaerobic digester plants could result in variations in the indigenous methanogenic communities. Two digesters (one operated under mesophilic conditions, the other under thermophilic conditions) were monitored, and sampled at points where VFA levels were high, as well as when VFA levels were low. Physical and chemical parameters were measured, and the methanogenic diversity was screened using the phylogenetic microarray ANAEROCHIP. In addition, real-time PCR was used to quantify the presence of the different methanogenic genera in the sludge samples. Array results indicated that the archaeal communities in the different reactors were stable, and that changes in the VFA levels of the anaerobic digesters did not greatly alter the dominating methanogenic organisms. In contrast, the two digesters were found to harbour different dominating methanogenic communities, which appeared to remain stable over time. Real-time PCR results were inline with those of microarray analysis indicating only minimal changes in methanogen numbers during periods of high VFAs, however, revealed a greater diversity in methanogens than found with the array.

  6. Evaluation of the vinyl acetate elimination process in methanogenic sludge with oxygen

    International Nuclear Information System (INIS)

    Duran, U.; Monroy, O.; Rendon, B.; Gomez, J.; Ramirez, F.

    2009-01-01

    The vinyl acetate (AV) is a volatile toxic used in the painting manufacture, causing serious problems of contamination in grounds, air and natural bodies of water. Under methanogenic conditions the complete mineralization of the AV has not been obtained, but evidences exist suggesting that with the addition of low oxygen concentrations to methanogenic sludge the elimination of this compound is possible. In this work was studied the respiratory process of elimination of the AV methano genesis and methano genesis with oxygen (1 mg/L-d). (Author)

  7. The dominant acetate degradation pathway/methanogenic composition in full-scale anaerobic digesters operating under different ammonia levels

    DEFF Research Database (Denmark)

    Fotidis, Ioannis; Karakashev, Dimitar Borisov; Angelidaki, Irini

    2014-01-01

    Ammonia is a major environmental factor influencing biomethanation in full-scale anaerobic digesters. In this study, the effect of different ammonia levels on methanogenic pathways and methanogenic community composition of full-scale biogas plants was investigated. Eight full-scale digesters...... operating under different ammonia levels were sampled, and the residual biogas production was followed in fed-batch reactors. Acetate, labelled in the methyl group, was used to determine the methanogenic pathway by following the 14CH4 and 14CO2 production. Fluorescence in situ hybridisation was used...... to determine the methanogenic communities’ composition. Results obtained clearly demonstrated that syntrophic acetate oxidation coupled with hydrogenotrophic methanogenesis was the dominant pathway in all digesters with high ammonia levels (2.8–4.57 g NH4 +-N L−1), while acetoclastic methanogenic pathway...

  8. Physico-chemical characteristics and methanogen communities in swine and dairy manure storage tanks: spatio-temporal variations and impact on methanogenic activity.

    Science.gov (United States)

    Barret, Maialen; Gagnon, Nathalie; Topp, Edward; Masse, Lucie; Massé, Daniel I; Talbot, Guylaine

    2013-02-01

    Greenhouse gas emissions represent a major environmental problem associated with the management of manure from the livestock industry. Methane is the primary GHG emitted during manure outdoor storage. In this paper, the variability of two swine and two dairy manure storage tanks was surveyed, in terms of physico-chemical and microbiological parameters. The impact of the inter-tank and spatio-temporal variations of these parameters on the methanogenic activity of manure was ascertained. A Partial Least Square regression was carried out, which demonstrated that physico-chemical as well as microbiological parameters had a major influence on the methanogenic activity. Among the 19 parameters included in the regression, the concentrations of VFAs had the strongest negative influence on the methane emission rate of manure, resulting from their well-known inhibitory effect. The relative abundance of two amplicons in archaeal fingerprints was found to positively influence the methanogenic activity, suggesting that Methanoculleus spp. and possibly Methanosarcina spp. are major contributors to methanogenesis in storage tanks. This work gave insights into the mechanisms, which drive methanogenesis in swine and dairy manure storage tanks. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  9. A Staff Education Consortium: One Model for Collaboration.

    Science.gov (United States)

    Stetler, Cheryl Beth; And Others

    1983-01-01

    Discusses the development, organization, activities, problems, and future of a staff education consortium of five medical center hospitals in Boston. The purposes of the consortium are mutual sharing, reduction in duplication, and cost containment of educational programing. (JOW)

  10. Primary Immune Deficiency Treatment Consortium (PIDTC) report

    NARCIS (Netherlands)

    L.M. Griffith (Linda); M. Cowan (Morton); L.D. Notarangelo (Luigi Daniele); R. Kohn (Robert); J. Puck (Jennifer); S.-Y. Pai (Sung-Yun); B. Ballard (Barbara); S.C. Bauer (Sarah); J. Bleesing (Jack); M. Boyle (Marcia); R.W. Brower (Ronald); R.H. Buckley (Rebecca); M. van der Burg (Mirjam); L.M. Burroughs (Lauri); F. Candotti (Fabio); A. Cant (Andrew); T. Chatila (Talal); C. Cunningham-Rundles (Charlotte); M.C. Dinauer (Mary); J. Dvorak (Jennie); A. Filipovich (Alexandra); L.A. Fleisher (Lee); H.B. Gaspar (Bobby); T. Gungor (Tayfun); E. Haddad (Elie); E. Hovermale (Emily); F. Huang (Faith); A. Hurley (Alan); M. Hurley (Mary); S.K. Iyengar (Sudha); E.M. Kang (Elizabeth); B.R. Logan (Brent); J.R. Long-Boyle (Janel); H. Malech (Harry); S.A. McGhee (Sean); S. Modell (Sieglinde); S. Modell (Sieglinde); H.D. Ochs (Hans); R.J. O'Reilly (Richard); R. Parkman (Robertson); D. Rawlings (D.); J.M. Routes (John); P. Shearer (P.); T.N. Small (Trudy); H. Smith (H.); K.E. Sullivan (Kathleen); P. Szabolcs (Paul); A.J. Thrasher (Adrian); D. Torgerson; P. Veys (Paul); K. Weinberg (Kenneth); J.C. Zuniga-Pflucker (Juan Carlos)

    2014-01-01

    textabstractThe Primary Immune Deficiency Treatment Consortium (PIDTC) is a network of 33 centers in North America that study the treatment of rare and severe primary immunodeficiency diseases. Current protocols address the natural history of patients treated for severe combined immunodeficiency

  11. Maryland Family Support Services Consortium. Final Report.

    Science.gov (United States)

    Gardner, James F.; Markowitz, Ricka Keeney

    The Maryland Family Support Services Consortium is a 3-year demonstration project which developed unique family support models at five sites serving the needs of families with a developmentally disabled child (ages birth to 21). Caseworkers provided direct intensive services to 224 families over the 3-year period, including counseling, liaison and…

  12. Establishing a Consortium for the Study of Rare Diseases: The Urea Cycle Disorders Consortium

    Science.gov (United States)

    Seminara, Jennifer; Tuchman, Mendel; Krivitzky, Lauren; Krischer, Jeffrey; Lee, Hye-Seung; LeMons, Cynthia; Baumgartner, Matthias; Cederbaum, Stephen; Diaz, George A.; Feigenbaum, Annette; Gallagher, Renata C.; Harding, Cary O.; Kerr, Douglas S.; Lanpher, Brendan; Lee, Brendan; Lichter-Konecki, Uta; McCandless, Shawn E.; Merritt, J. Lawrence; Oster-Granite, Mary Lou; Seashore, Margretta R.; Stricker, Tamar; Summar, Marshall; Waisbren, Susan; Yudkoff, Marc; Batshaw, Mark L.

    2010-01-01

    The Urea Cycle Disorders Consortium (UCDC) was created as part of a larger network established by the National Institutes of Health to study rare diseases. This paper reviews the UCDC’s accomplishments over the first six years, including how the Consortium was developed and organized, clinical research studies initiated, and the importance of creating partnerships with patient advocacy groups, philanthropic foundations and biotech and pharmaceutical companies. PMID:20188616

  13. Visualization of candidate division OP3 cocci in limonene-degrading methanogenic cultures

    DEFF Research Database (Denmark)

    Rotaru, Amelia-Elena; Schauer, Regina; Probian, Christina

    2012-01-01

    Members of candidate division OP3 were detected in 16S rRNA gene clone libraries from methanogenic enrichment cultures that utilized limonene as a carbon and energy source. We developed probes for the visualization of OP3 cells. In situ hybridization experiments with newly designed OP3-specific...

  14. Complete Genome Sequence of the Halophilic Methylotrophic Methanogen Archaeon Methanohalophilus portucalensis Strain FDF-1T

    KAUST Repository

    L’Haridon, Stéphane

    2018-01-17

    We report here the complete genome sequence (2.08 Mb) of Methanohalophilus portucalensis strain FDF-1T, a halophilic methylotrophic methanogen isolated from the sediment of a saltern in Figeria da Foz, Portugal. The average nucleotide identity and DNA-DNA hybridization analyses show that Methanohalophilus mahii, M. halophilus, and M. portucalensis are three different species within the Methanosarcinaceae family.

  15. Activation of CO2-reducing methanogens in oil reservoir after addition of nutrient.

    Science.gov (United States)

    Yang, Guang-Chao; Zhou, Lei; Mbadinga, Serge Maurice; You, Jing; Yang, Hua-Zhen; Liu, Jin-Feng; Yang, Shi-Zhong; Gu, Ji-Dong; Mu, Bo-Zhong

    2016-12-01

    Nutrient addition as part of microbial enhanced oil recovery (MEOR) operations have important implications for more energy recovery from oil reservoirs, but very little is known about the in situ response of microorganisms after intervention. An analysis of two genes as biomarkers, mcrA encoding the key enzyme in methanogenesis and fthfs encoding the key enzyme in acetogenesis, was conducted during nutrient addition in oil reservoir. Clone library data showed that dominant mcrA sequences changed from acetoclastic (Methanosaetaceae) to CO 2 -reducing methanogens (Methanomicrobiales and Methanobacteriales), and the authentic acetogens affiliated to Firmicutes decreased after the intervention. Principal coordinates analysis (PCoA) and Jackknife environment clusters revealed evidence on the shift of the microbial community structure among the samples. Quantitative analysis of methanogens via qPCR showed that Methanobacteriales and Methanomicrobiales increased after nutrient addition, while acetoclastic methanogens (Methanosaetaceae) changed slightly. Nutrient treatment activated native CO 2 -reducing methanogens in oil reservoir. The high frequency of Methanobacteriales and Methanomicrobiales (CO 2 -reducers) after nutrient addition in this petroleum system suggested that CO 2 -reducing methanogenesis was involved in methane production. The nutrient addition could promote the methane production. The results will likely improve strategies of utilizing microorganisms in subsurface environments. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. Stress management skills in the subsurface: H2 stress on thermophilic heterotrophs and methanogens

    Science.gov (United States)

    Topcuoglu, B. D.; Holden, J. F.

    2017-12-01

    Marine hyperthermophilic heterotrophs and methanogens belonging to the Thermococcales and Methanococcales are often found in subsurface environments such as coal and shale beds, marine sediments, and oil reservoirs where they encounter H2 stress conditions. It is important to study the H2 stress survival strategies of these organisms and their cooperation with one another for survival to better understand their biogeochemical impact in hot subsurface environments. In this study, we have shown that H2 inhibition changed the growth kinetics and the transcriptome of Thermococcus paralvinellae. We observed a significant decrease in batch phase growth rates and cell concentrations with high H2 background. Produced metabolite production measurements, RNA-seq analyses of differentially expressed genes and in silico experiments we performed with the T. paralvinellae metabolic model showed that T. paralvinellae produces formate by a formate hydrogenlyase to survive H2 inhibition. We have also shown that H2 limitation caused a significant decrease in batch phase growth rates and methane production rates of the methanogen, Methanocaldococcus jannaschii. H2 stress of both organisms can be ameliorated by syntrophic growth. H2 syntrophy was demonstrated in microcosm incubations for a natural assemblage of Thermococcus and hyperthermophilic methanogens present in hydrothermal fluid samples. This project aims to describe how a hyperthermophilic heterotroph and a hyperthermophilic methanogen eliminate H2 stress and explore cooperation among thermophiles in the hot subsurface.

  17. Kinetic and thermodynamic control of butyrate conversion in non-defined methanogenic communities.

    Science.gov (United States)

    Junicke, H; van Loosdrecht, M C M; Kleerebezem, R

    2016-01-01

    Many anaerobic conversions proceed close to thermodynamic equilibrium and the microbial groups involved need to share their low energy budget to survive at the thermodynamic boundary of life. This study aimed to investigate the kinetic and thermodynamic control mechanisms of the electron transfer during syntrophic butyrate conversion in non-defined methanogenic communities. Despite the rather low energy content of butyrate, results demonstrate unequal energy sharing between the butyrate-utilizing species (17 %), the hydrogenotrophic methanogens (9-10 %), and the acetoclastic methanogens (73-74 %). As a key finding, the energy disproportion resulted in different growth strategies of the syntrophic partners. Compared to the butyrate-utilizing partner, the hydrogenotrophic methanogens compensated their lower biomass yield per mole of electrons transferred with a 2-fold higher biomass-specific electron transfer rate. Apart from these thermodynamic control mechanisms, experiments revealed a ten times lower hydrogen inhibition constant on butyrate conversion than proposed by the Anaerobic Digestion Model No. 1, suggesting a much stronger inhibitory effect of hydrogen on anaerobic butyrate conversion. At hydrogen partial pressures exceeding 40 Pa and at bicarbonate limited conditions, a shift from methanogenesis to reduced product formation was observed which indicates an important role of the hydrogen partial pressure in redirecting electron fluxes towards reduced products such as butanol. The findings of this study demonstrate that a careful consideration of thermodynamics and kinetics is required to advance our current understanding of flux regulation in energy-limited syntrophic ecosystems.

  18. Microbiology and performance of a methanogenic biofilm reactor during the start-up period.

    Science.gov (United States)

    Cresson, R; Dabert, P; Bernet, N

    2009-03-01

    To understand the interactions between anaerobic biofilm development and process performances during the start-up period of methanogenic biofilm reactor. Two methanogenic inverse turbulent bed reactors have been started and monitored for 81 days. Biofilm development (adhesion, growth, population dynamic) and characteristics (biodiversity, structure) were investigated using molecular tools (PCR-SSCP, FISH-CSLM). Identification of the dominant populations, in relation to process performances and to the present knowledge of their metabolic activities, was used to propose a global scheme of the degradation routes involved. The inoculum, which determines the microbial species present in the biofilm influences bioreactor performances during the start-up period. FISH observations revealed a homogeneous distribution of the Archaea and bacterial populations inside the biofilm. This study points out the link between biodiversity, functional stability and methanogenic process performances during start-up of anaerobic biofilm reactor. It shows that inoculum and substrate composition greatly influence biodiversity, physiology and structure of the biofilm. The combination of molecular techniques associated to a biochemical engineering approach is useful to get relevant information on the microbiology of a methanogenic growing biofilm, in relation with the start-up of the process.

  19. Carbon nanotubes accelerate methane production in pure cultures of methanogens and in a syntrophic coculture

    NARCIS (Netherlands)

    Salvador, Andreia F.; Martins, Gilberto; Melle-Franco, Manuel; Serpa, Ricardo; Stams, Alfons J.M.; Cavaleiro, Ana J.; Pereira, M.A.; Alves, M.M.

    2017-01-01

    Carbon materials have been reported to facilitate direct interspecies electron transfer (DIET) between bacteria and methanogens improving methane production in anaerobic processes. In this work, the effect of increasing concentrations of carbon nanotubes (CNT) on the activity of pure cultures of

  20. Dosing of anaerobic granular sludge bioreactors with cobalt: Impact of cobalt retention on methanogenic activity

    KAUST Repository

    Fermoso, Fernando G.; Bartacek, Jan; Manzano, Ramon; van Leeuwen, Herman P.; Lens, Piet N.L.

    2010-01-01

    The effect of dosing a metal limited anaerobic sludge blanket (UASB) reactor with a metal pulse on the methanogenic activity of granular sludge has thus far not been successfully modeled. The prediction of this effect is crucial in order to optimize

  1. Draft Genome Sequence of an Obligately Methylotrophic Methanogen, Methanococcoides methylutens, Isolated from Marine Sediment

    KAUST Repository

    Guan, Yue; Ngugi, David; Blom, J.; Ali, Shahjahan; Ferry, J. G.; Stingl, Ulrich

    2014-01-01

    Methanococcoides methylutens, the type species of the genus Methanococcoides, is a slightly halophilic methanogenic archaeon with a methylotrophic metabolism. Here, we present the annotated draft genome sequence of M. methylutens, which comprises 2,508,511 bp with 2,482 coding sequences, 51 tRNA genes, and a G+C content of 42.5%.

  2. Peptidolytic microbial community of methanogenic reactors from two modified UASBs of brewery industries

    Directory of Open Access Journals (Sweden)

    C. Díaz

    2010-10-01

    Full Text Available We studied the peptide-degrading anaerobic communities of methanogenic reactors from two mesophilic full-scale modified upflow anaerobic sludge blanket (UASB reactors treating brewery wastewater in Colombia. Most probable number (MPN counts varied between 7.1 x 10(8 and 6.6 x 10(9 bacteria/g volatile suspended solids VSS (Methanogenic Reactor 1 and 7.2 x 10(6 and 6.4 x 10(7 bacteria/g (VSS (Methanogenic Reactor 2. Metabolites detected in the highest positive MPN dilutions in both reactors were mostly acetate, propionate, isovalerate and, in some cases, negligible concentrations of butyrate. Using the highest positive dilutions of MPN counts, 50 dominant strains were isolated from both reactors, and 12 strains were selected for sequencing their 16S rRNA gene based on their phenotypic characteristics. The small-subunit rRNA gene sequences indicated that these strains were affiliated to the families Propionibacteriaceae, Clostridiaceae and Syntrophomonadaceae in the low G + C gram-positive group and Desulfovibrio spp. in the class d-Proteobacteria. The main metabolites detected in the highest positive dilutions of MPN and the presence of Syntrophomonadaceae indicate the effect of the syntrophic associations on the bioconversion of these substrates in methanogenic reactors. Additionally, the potential utilization of external electron acceptors for the complete degradation of amino acids by Clostridium strains confirms the relevance of these acceptors in the transformation of peptides and amino acids in these systems.

  3. Selenate removal in methanogenic and sulfate-reducing upflow anaerobic sludge bed reactors

    NARCIS (Netherlands)

    Lenz, M.; Hullebusch, van E.D.; Hommes, G.; Corvini, P.F.X.; Lens, P.N.L.

    2008-01-01

    This paper evaluates the use of upflow anaerobic sludge bed (UASB) bioreactors (30 degrees C, pH = 7.0) to remove selenium oxyanions from contaminated waters (790 mu g Se L-1) under methanogenic and sulfate-reducing conditions using lactate as electron donor. One UASB reactor received sulfate at

  4. Draft Genome Sequence of an Obligately Methylotrophic Methanogen, Methanococcoides methylutens, Isolated from Marine Sediment

    KAUST Repository

    Guan, Yue

    2014-11-20

    Methanococcoides methylutens, the type species of the genus Methanococcoides, is a slightly halophilic methanogenic archaeon with a methylotrophic metabolism. Here, we present the annotated draft genome sequence of M. methylutens, which comprises 2,508,511 bp with 2,482 coding sequences, 51 tRNA genes, and a G+C content of 42.5%.

  5. Decreasing ammonia inhibition in thermophilic methanogenic bioreactors using carbon fiber textiles.

    Science.gov (United States)

    Sasaki, Kengo; Morita, Masahiko; Hirano, Shin-ichi; Ohmura, Naoya; Igarashi, Yasuo

    2011-05-01

    Ammonia accumulation is one of the main causes of the loss of methane production observed during fermentation. We investigated the effect of addition of carbon fiber textiles (CFT) to thermophilic methanogenic bioreactors with respect to ammonia tolerance during the process of degradation of artificial garbage slurry, by comparing the performance of the reactors containing CFT with the performance of reactors without CFT. Under total ammonia-N concentrations of 3,000 mg L(-1), the reactors containing CFT were found to mediate stable removal of organic compounds and methane production. Under these conditions, high levels of methanogenic archaea were retained at the CFT, as determined by 16S rRNA gene analysis for methanogenic archaea. In addition, Methanobacterium sp. was found to be dominant in the suspended fraction, and Methanosarcina sp. was dominant in the retained fraction of the reactors with CFT. However, the reactors without CFT had lower rates of removal of organic compounds and production of methane under total ammonia-N concentrations of 1,500 mg L(-1). Under this ammonia concentration, a significant accumulation of acetate was observed in the reactors without CFT (130.0 mM), relative to the reactors with CFT (4.2 mM). Only Methanobacterium sp. was identified in the reactors without CFT. These results suggest that CFT enables stable proliferation of aceticlastic methanogens by preventing ammonia inhibition. This improves the process of stable garbage degradation and production of methane in thermophilic bioreactors that include high levels of ammonia.

  6. Methanomethylovorans thermophila sp. nov., a thermophilic, methylotrophic methanogen form an anaerobic reactor fed with methanol

    NARCIS (Netherlands)

    Jiang, B.; Parshina, S.N.; Doesburg, van W.C.J.; Lomans, B.P.; Stams, A.J.M.

    2005-01-01

    A novel thermophilic, obligately methylotrophic, methanogenic archaeon, strain L2FAWT, was isolated from a thermophilic laboratory-scale upflow anaerobic sludge blanket reactor fed with methanol as the carbon and energy source. Cells of strain L2FAWT were non-motile, irregular cocci, 0·7¿1·5 µm in

  7. A portable anaerobic microbioreactor reveals optimum growth conditions for the methanogen Methanosaeta concilii.

    Science.gov (United States)

    Steinhaus, Benjamin; Garcia, Marcelo L; Shen, Amy Q; Angenent, Largus T

    2007-03-01

    Conventional studies of the optimum growth conditions for methanogens (methane-producing, obligate anaerobic archaea) are typically conducted with serum bottles or bioreactors. The use of microfluidics to culture methanogens allows direct microscopic observations of the time-integrated response of growth. Here, we developed a microbioreactor (microBR) with approximately 1-microl microchannels to study some optimum growth conditions for the methanogen Methanosaeta concilii. The microBR is contained in an anaerobic chamber specifically designed to place it directly onto an inverted light microscope stage while maintaining a N2-CO2 environment. The methanogen was cultured for months inside microchannels of different widths. Channel width was manipulated to create various fluid velocities, allowing the direct study of the behavior and responses of M. concilii to various shear stresses and revealing an optimum shear level of approximately 20 to 35 microPa. Gradients in a single microchannel were then used to find an optimum pH level of 7.6 and an optimum total NH4-N concentration of less than 1,100 mg/liter (<47 mg/liter as free NH3-N) for M. concilii under conditions of the previously determined ideal shear stress and pH and at a temperature of 35 degrees C.

  8. The effect of operational conditions on the sludge specific methanogenic activity and sludge biodegradability

    NARCIS (Netherlands)

    Leitao, R.; Santaellla, S.T.; Haandel, van A.C.; Zeeman, G.; Lettinga, G.

    2009-01-01

    The effects of hydraulic retention time (HRT) and influent COD concentration (CODInf) on Specific Methanogenic Activity (SMA) and the biodegradability of an anaerobic sludge need to be elucidated because of the discordant results available in literature. This information is important for the

  9. The effect of pH profiles in methanogenic aggregates on the kinetics of acetate conversion

    NARCIS (Netherlands)

    Beer, de D.; Huisman, J.W.; Heuvel, van den J.C.; Ottengraf, S.P.P.

    1993-01-01

    Due to the conversion of acetic acid into the weaker carbonic acid and CH4, the pH inside methanogenic aggregates is higher than in the bulk liq. The pH profiles in aggregates were measured with pH microelectrodes. These profiles strongly det. the macro-kinetics of the aggregate, by their influence

  10. Complete Genome Sequence of the Halophilic Methylotrophic Methanogen Archaeon Methanohalophilus portucalensis Strain FDF-1T

    KAUST Repository

    L’ Haridon, Sté phane; Corre, Erwan; Guan, Yue; Vinu, Manikandan; La Cono, Violetta; Yakimov, Michail; Stingl, Ulrich; Toffin, Laurent; Jebbar, Mohamed

    2018-01-01

    We report here the complete genome sequence (2.08 Mb) of Methanohalophilus portucalensis strain FDF-1T, a halophilic methylotrophic methanogen isolated from the sediment of a saltern in Figeria da Foz, Portugal. The average nucleotide identity and DNA-DNA hybridization analyses show that Methanohalophilus mahii, M. halophilus, and M. portucalensis are three different species within the Methanosarcinaceae family.

  11. Methane production and methanogenic Archaea in the digestive tracts of millipedes (Diplopoda)

    Czech Academy of Sciences Publication Activity Database

    Šustr, Vladimír; Chroňáková, Alica; Semanová, Stanislava; Tajovský, Karel; Šimek, Miloslav

    2014-01-01

    Roč. 9, č. 7 (2014), e102659 E-ISSN 1932-6203 R&D Projects: GA ČR GA526/09/1570 Institutional support: RVO:60077344 Keywords : methane production * methanogenic Archaea * digestive tracts of millipedes Subject RIV: EG - Zoology Impact factor: 3.234, year: 2014

  12. Genomic analysis of methanogenic archaea reveals a shift towards energy conservation

    DEFF Research Database (Denmark)

    Gilmore, Sean P.; Henske, John K.; Sexton, Jessica A.

    2017-01-01

    Background: The metabolism of archaeal methanogens drives methane release into the environment and is critical to understanding global carbon cycling. Methanogenesis operates at a very low reducing potential compared to other forms of respiration and is therefore critical to many anaerobic enviro...

  13. Interspecies electron transfer in suspended and aggregated methanogenic propionate-degrading consortia

    NARCIS (Netherlands)

    Bok, de F.A.M.; Plugge, C.M.; Stams, A.J.M.

    2002-01-01

    Propionate is a key intermediate in the conversion of complex organic matter under methanogenic conditions. Oxidation of propionate to acetate is energetically unfavorable under standard conditions. Therefore, micro organisms are only able to gain energy from this conversion if the concentrations of

  14. Reductive decolourisation of azo dyes by mesophilic and thermophilic methanogenic consortia

    NARCIS (Netherlands)

    Cervantes, F.J.; Santos, dos A.B.; Madrid, de M.P.; Stams, A.J.M.; Lier, van J.B.

    2005-01-01

    The contribution of acidogenic bacteria and methanogenic archaea on the reductive decolourisation of azo dyes was assessed in anaerobic granular sludge. Acidogenic bacteria appeared to play an important role in the decolourising processes when glucose was provided as an electron donor; whereas

  15. Roles of thermophilic thiosulfate-reducing bacteria and methanogenic archaea in the biocorrosion of oil pipelines

    Directory of Open Access Journals (Sweden)

    Renxing eLiang

    2014-03-01

    Full Text Available Thermophilic sulfide-producing microorganisms from an oil pipeline network were enumerated with different sulfur oxyanions as electron acceptors at 55 oC. Most-probable number (MPN analysis showed that thiosulfate-reducing bacteria were the most numerous sulfidogenic microorganisms in pipeline inspection gauge (PIG scrapings. Thiosulfate-reducing and methanogenic enrichments were obtained from the MPN cultures that were able to use yeast extract as the electron donor. Molecular analysis revealed that both enrichments harbored the same dominant bacterium, which belonged to the genus Anaerobaculum. The dominant archaeon in the methanogenic enrichment was affiliated with the genus Methanothermobacter. With yeast extract as the electron donor, the general corrosion rate by the thiosulfate-reducing enrichment (8.43 ± 1.40 milli-inch per year, abbreviated as mpy was about 5.5 times greater than the abiotic control (1.49 ± 0.15 mpy, while the comparable measures for the methanogenic culture were 2.03 ± 0.49 mpy and 0.62 ± 0.07 mpy, respectively. Total iron analysis in the cultures largely accounted for the mass loss of iron measured in the weight loss determinations. Profilometry analysis of polished steel coupons incubated in the presence of the thiosulfate-reducing enrichment revealed 59 pits over an area of 71.16 mm2, while only 6 pits were evident in the corresponding methanogenic incubations. The results show the importance of thiosulfate-utilizing, sulfide-producing fermentative bacteria such as Anaerobaculum sp. in the corrosion of carbon steel, but also suggest that Anaerobaculum sp. are of far less concern when growing syntrophically with methanogens.

  16. Methanogen community composition and rates of methane consumption in Canadian High Arctic permafrost soils.

    Science.gov (United States)

    Allan, J; Ronholm, J; Mykytczuk, N C S; Greer, C W; Onstott, T C; Whyte, L G

    2014-04-01

    Increasing permafrost thaw, driven by climate change, has the potential to result in organic carbon stores being mineralized into carbon dioxide (CO2) and methane (CH4) through microbial activity. This study examines the effect of increasing temperature on community structure and metabolic activity of methanogens from the Canadian High Arctic, in an attempt to predict how warming will affect microbially controlled CH4 soil flux. In situ CO2 and CH4 flux, measured in 2010 and 2011 from ice-wedge polygons, indicate that these soil formations are a net source of CO2 emissions, but a CH4 sink. Permafrost and active layer soil samples were collected at the same sites and incubated under anaerobic conditions at warmer temperatures, with and without substrate amendment. Gas flux was measured regularly and indicated an increase in CH4 flux after extended incubation. Pyrosequencing was used to examine the effects of an extended thaw cycle on methanogen diversity and the results indicate that in situ methanogen diversity, based on the relative abundance of the 16S ribosomal ribonucleic acid (rRNA) gene associated with known methanogens, is higher in the permafrost than in the active layer. Methanogen diversity was also shown to increase in both the active layer and permafrost soil after an extended thaw. This study provides evidence that although High Arctic ice-wedge polygons are currently a sink for CH4, higher arctic temperatures and anaerobic conditions, a possible result of climate change, could result in this soil becoming a source for CH4 gas flux. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. Roles of thermophilic thiosulfate-reducing bacteria and methanogenic archaea in the biocorrosion of oil pipelines.

    Science.gov (United States)

    Liang, Renxing; Grizzle, Robert S; Duncan, Kathleen E; McInerney, Michael J; Suflita, Joseph M

    2014-01-01

    Thermophilic sulfide-producing microorganisms from an oil pipeline network were enumerated with different sulfur oxyanions as electron acceptors at 55°C. Most-probable number (MPN) analysis showed that thiosulfate-reducing bacteria were the most numerous sulfidogenic microorganisms in pipeline inspection gauge (PIG) scrapings. Thiosulfate-reducing and methanogenic enrichments were obtained from the MPN cultures that were able to use yeast extract as the electron donor. Molecular analysis revealed that both enrichments harbored the same dominant bacterium, which belonged to the genus Anaerobaculum. The dominant archaeon in the methanogenic enrichment was affiliated with the genus Methanothermobacter. With yeast extract as the electron donor, the general corrosion rate by the thiosulfate-reducing enrichment (8.43 ± 1.40 milli-inch per year, abbreviated as mpy) was about 5.5 times greater than the abiotic control (1.49 ± 0.15 mpy), while the comparable measures for the methanogenic culture were 2.03 ± 0.49 mpy and 0.62 ± 0.07 mpy, respectively. Total iron analysis in the cultures largely accounted for the mass loss of iron measured in the weight loss determinations. Profilometry analysis of polished steel coupons incubated in the presence of the thiosulfate-reducing enrichment revealed 59 pits over an area of 71.16 mm(2), while only 6 pits were evident in the corresponding methanogenic incubations. The results show the importance of thiosulfate-utilizing, sulfide-producing fermentative bacteria such as Anaerobaculum sp. in the corrosion of carbon steel, but also suggest that Anaerobaculum sp. are of far less concern when growing syntrophically with methanogens.

  18. Microbiological characterization and specific methanogenic activity of anaerobe sludges used in urban solid waste treatment

    International Nuclear Information System (INIS)

    Sandoval Lozano, Claudia Johanna; Vergara Mendoza, Marisol; Carreno de Arango, Mariela; Castillo Monroy, Edgar Fernando

    2009-01-01

    This study presents the microbiological characterization of the anaerobic sludge used in a two-stage anaerobic reactor for the treatment of organic fraction of urban solid waste (OFUSW). This treatment is one alternative for reducing solid waste in landfills at the same time producing a biogas (CH 4 and CO 2 ) and an effluent that can be used as biofertilizer. The system was inoculated with sludge from a wastewater treatment plant (WWTP) (Rio Frio Plant in Bucaramanga-Colombia) and a methanogenic anaerobic digester for the treatment of pig manure (Mesa de los Santos in Santander). Bacterial populations were evaluated by counting groups related to oxygen sensitivity, while metabolic groups were determined by most probable number (MPN) technique. Specific methanogenic activity (SMA) for acetate, formate, methanol and ethanol substrates was also determined. In the acidogenic reactor (R1), volatile fatty acids (VFA) reached values of 25,000 mg L -1 and a concentration of CO 2 of 90%. In this reactor, the fermentative population was predominant (10 5 -10 6 MPN mL -1 ). The acetogenic population was (10 5 MPN mL -1 ) and the sulphate-reducing population was (10 4 -10 5 MPN mL -1 ). In the methanogenic reactor (R2), levels of CH 4 (70%) were higher than CO 2 (25%), whereas the VFA values were lower than 4000 mg L -1 . Substrate competition between sulphate-reducing (10 4 -10 5 MPN mL -1 ) and methanogenic bacteria (10 5 MPN mL -1 ) was not detected. From the SMA results obtained, acetoclastic (2.39 g COD-CH 4 g -1 VSS -1 day -1 ) and hydrogenophilic (0.94 g COD-CH 4 g -1 VSS -1 day -1 ) transformations as possible metabolic pathways used by methanogenic bacteria is suggested from the SMA results obtained. Methanotrix sp., Methanosarcina sp., Methanoccocus sp. and Methanobacterium sp. were identified

  19. TOLUENE DEGRADATION IN THE RECYCLE LIQUID OF BIOTRICKLING FILTERS FOR AIR POLLUTION CONTROL. (R825392)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  20. Catabolite-mediated mutations in alternate toluene degradative pathways in Pseudomonas putida.

    Science.gov (United States)

    Leddy, M B; Phipps, D W; Ridgway, H F

    1995-01-01

    Pseudomonas putida 54g grew on mineral salts with toluene and exhibited catechol-2,3-dioxygenase (C23O) activity, indicating a meta pathway. After 10 to 15 days on toluene, nondegrading (Tol-) variants approached nearly 10% of total CFU. Auxotrophs were not detected among variants, suggesting selective loss of catabolic function(s). Variant formation was substrate dependent, since Tol- cells were observed on neither ethylbenzene, glucose, nor peptone-based media nor when toluene catabolism was suppressed by glucose. Unlike wild-type cells, variants did not grow on gasoline, toluene, benzene, ethylbenzene, benzoate, or catechol, suggesting loss of meta pathway function. Catabolic and C23O activities were restored to variants via transfer of a 78-mDa TOL-like plasmid from a wild-type Tol+ donor. Tests for reversion of variants to Tol+ were uniformly negative, suggesting possible delection or excision of catabolic genes. Deletions were confirmed in some variants by failure to hybridize with a DNA probe specific for the xylE gene encoding C23O. Cells grown on benzoate remained Tol+ but were C23O- and contained a plasmid of reduced size or were plasmid free, suggesting an alternate chromosomal catabolic pathway, also defective in variants. Cells exposed to benzyl alcohol, the initial oxidation product of toluene, accumulated > 13% variants in 5 days, even when cell division was repressed by nitrogen deprivation to abrogate selection processes. No variants formed in identical ethylbenzene-exposed controls. The results suggest that benzyl alcohol mediates irreversible defects in both a plasmid-associated meta pathway and an alternate chromosomal pathway. PMID:7642499

  1. Detection of Toluene Degradation in Bacteria Isolated from Oil Contaminated Soils

    International Nuclear Information System (INIS)

    Ainon Hamzah; Tavakoli, A.; Amir Rabu

    2011-01-01

    Toluene (C 7 H 8 ) a hydrocarbon in crude oil, is a common contaminant in soil and groundwater. In this study, the ability to degrade toluene was investigated from twelve bacteria isolates which were isolated from soil contaminated with oil. Out of 12 bacterial isolates tested, most of Pseudomonas sp. showed the capability to grow in 1 mM of toluene compared with other isolates on the third day of incubation. Based on enzyme assays towards toluene monooxygenase, Pseudomonas aeruginosa UKMP-14T and Bacillus cereus UKMP-6G were shown to have the highest ability to degrade toluene. The toluene monooxygenase activity was analysed by using two calorimetric methods, Horseradish peroxidase (HRP) and indole-indigo. Both of the methods measured the production of catechol by the enzymatic reaction of toluene monooxygenase. In the HRP assay, the highest enzyme activity was 0.274 U/ mL, exhibited by Pseudomonas aeruginosa UKMP-14T. However, for indole-indigo assay, Bacillus cereus UKMP-6G produced the highest enzyme activity of 0.291 U/ ml. Results from both experiments showed that Pseudomonas aeruginosa UKMP-14T and Bacillus cereus UKMP-6G were able to degrade toluene. (author)

  2. Overview of the Inland California Translational Consortium

    Science.gov (United States)

    Malkas, Linda H.

    2017-05-01

    The mission of the Inland California Translational Consortium (ICTC), an independent research consortium comprising a unique hub of regional institutions (City of Hope [COH], California Institute of Technology [Caltech], Jet Propulsion Laboratory [JPL], University of California Riverside [UCR], and Claremont Colleges Keck Graduate Institute [KGI], is to institute a new paradigm within the academic culture to accelerate translation of innovative biomedical discoveries into clinical applications that positively affect human health and life. The ICTC actively supports clinical translational research as well as the implementation and advancement of novel education and training models for the translation of basic discoveries into workable products and practices that preserve and improve human health while training and educating at all levels of the workforce using innovative forward-thinking approaches.

  3. Midwest Nuclear Science and Engineering Consortium

    International Nuclear Information System (INIS)

    Volkert, Wynn; Kumar, Arvind; Becker, Bryan; Schwinke, Victor; Gonzalez, Angel; McGregor, Douglas

    2010-01-01

    The objective of the Midwest Nuclear Science and Engineering Consortium (MNSEC) is to enhance the scope, quality and integration of educational and research capabilities of nuclear sciences and engineering (NS/E) programs at partner schools in support of the U.S. nuclear industry (including DOE laboratories). With INIE support, MNSEC had a productive seven years and made impressive progress in achieving these goals. Since the past three years have been no-cost-extension periods, limited -- but notable -- progress has been made in FY10. Existing programs continue to be strengthened and broadened at Consortium partner institutions. The enthusiasm generated by the academic, state, federal, and industrial communities for the MNSEC activities is reflected in the significant leveraging that has occurred for our programs.

  4. Consortium for Verification Technology Fellowship Report.

    Energy Technology Data Exchange (ETDEWEB)

    Sadler, Lorraine E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-06-01

    As one recipient of the Consortium for Verification Technology (CVT) Fellowship, I spent eight days as a visiting scientist at the University of Michigan, Department of Nuclear Engineering and Radiological Sciences (NERS). During this time, I participated in multiple department and research group meetings and presentations, met with individual faculty and students, toured multiple laboratories, and taught one-half of a one-unit class on Risk Analysis in Nuclear Arms control (six 1.5 hour lectures). The following report describes some of the interactions that I had during my time as well as a brief discussion of the impact of this fellowship on members of the consortium and on me/my laboratory’s technical knowledge and network.

  5. Midwest Nuclear Science and Engineering Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Wynn Volkert; Dr. Arvind Kumar; Dr. Bryan Becker; Dr. Victor Schwinke; Dr. Angel Gonzalez; Dr. DOuglas McGregor

    2010-12-08

    The objective of the Midwest Nuclear Science and Engineering Consortium (MNSEC) is to enhance the scope, quality and integration of educational and research capabilities of nuclear sciences and engineering (NS/E) programs at partner schools in support of the U.S. nuclear industry (including DOE laboratories). With INIE support, MNSEC had a productive seven years and made impressive progress in achieving these goals. Since the past three years have been no-cost-extension periods, limited -- but notable -- progress has been made in FY10. Existing programs continue to be strengthened and broadened at Consortium partner institutions. The enthusiasm generated by the academic, state, federal, and industrial communities for the MNSEC activities is reflected in the significant leveraging that has occurred for our programs.

  6. The COPD Biomarker Qualification Consortium (CBQC)

    DEFF Research Database (Denmark)

    Casaburi, Richard; Celli, Bartolome; Crapo, James

    2013-01-01

    Abstract Knowledge about the pathogenesis and pathophysiology of chronic obstructive pulmonary disease (COPD) has advanced dramatically over the last 30 years. Unfortunately, this has had little impact in terms of new treatments. Over the same time frame, only one new class of medication for COPD......, and no interested party has been in a position to undertake such a process. In order to facilitate the development of novel tools to assess new treatments, the Food and Drug Administration, in collaboration with the COPD Foundation, the National Heart Lung and Blood Institute and scientists from the pharmaceutical...... industry and academia conducted a workshop to survey the available information that could contribute to new tools. Based on this, a collaborative project, the COPD Biomarkers Qualification Consortium, was initiated. The Consortium in now actively preparing integrated data sets from existing resources...

  7. The ARC (Astrophysical Research Consortium) telescope project.

    Science.gov (United States)

    Anderson, K. S.

    A consortium of universities intends to construct a 3.5 meter optical-infrared telescope at a site in south-central New Mexico. The use of innovative mirror technology, a fast primary, and an alt-azimuth mounting results in a compact and lightweight instrument. This telescope will be uniquely well-suited for addressing certain observational programs by virtue of its capability for fully remote operation and rapid instrument changes.

  8. Massachusetts Institute of Technology Consortium Agreement

    Science.gov (United States)

    1999-03-01

    This is the third progress report of the M.I.T. Home Automation and Healthcare Consortium-Phase Two. It covers majority of the new findings, concepts...research projects of home automation and healthcare, ranging from human modeling, patient monitoring, and diagnosis to new sensors and actuators, physical...aids, human-machine interface and home automation infrastructure. This report contains several patentable concepts, algorithms, and designs.

  9. Removal of Triphenylmethane Dyes by Bacterial Consortium

    Directory of Open Access Journals (Sweden)

    Jihane Cheriaa

    2012-01-01

    Full Text Available A new consortium of four bacterial isolates (Agrobacterium radiobacter; Bacillus spp.; Sphingomonas paucimobilis, and Aeromonas hydrophila-(CM-4 was used to degrade and to decolorize triphenylmethane dyes. All bacteria were isolated from activated sludge extracted from a wastewater treatment station of a dyeing industry plant. Individual bacterial isolates exhibited a remarkable color-removal capability against crystal violet (50 mg/L and malachite green (50 mg/L dyes within 24 h. Interestingly, the microbial consortium CM-4 shows a high decolorizing percentage for crystal violet and malachite green, respectively, 91% and 99% within 2 h. The rate of chemical oxygen demand (COD removal increases after 24 h, reaching 61.5% and 84.2% for crystal violet and malachite green, respectively. UV-Visible absorption spectra, FTIR analysis and the inspection of bacterial cells growth indicated that color removal by the CM-4 was due to biodegradation. Evaluation of mutagenicity by using Salmonella typhimurium test strains, TA98 and TA100 studies revealed that the degradation of crystal violet and malachite green by CM-4 did not lead to mutagenic products. Altogether, these results demonstrated the usefulness of the bacterial consortium in the treatment of the textile dyes.

  10. Computational Modeling of Fluctuations in Energy and Metabolic Pathways of Methanogenic Archaea

    Energy Technology Data Exchange (ETDEWEB)

    Luthey-Schulten, Zaida [Univ. of Illinois, Urbana-Champaign, IL (United States). Dept. of Chemistry; Carl R. Woese Inst. for Genomic Biology

    2017-01-04

    The methanogenic archaea, anaerobic microbes that convert CO2 and H2 and/or other small organic fermentation products into methane, play an unusually large role in the global carbon cycle. As they perform the final step in the anaerobic breakdown of biomass, methanogens are a biogenic source of an estimated one billion tons methane each year. Depending on the location, produced methane can be considered as either a greenhouse gas (agricultural byproduct), sequestered carbon storage (methane hydrate deposits), or a potential energy source (organic wastewater treatment). These microbes therefore represent an important target for biotechnology applications. Computational models of methanogens with predictive power are useful aids in the adaptation of methanogenic systems, but need to connect processes of wide-ranging time and length scales. In this project, we developed several computational methodologies for modeling the dynamic behavior of entire cells that connects stochastic reaction-diffusion dynamics of individual biochemical pathways with genome-scale modeling of metabolic networks. While each of these techniques were in the realm of well-defined computational methods, here we integrated them to develop several entirely new approaches to systems biology. The first scientific aim of the project was to model how noise in a biochemical pathway propagates into cellular phenotypes. Genetic circuits have been optimized by evolution to regulate molecular processes despite stochastic noise, but the effect of such noise on a cellular biochemical networks is currently unknown. An integrated stochastic/systems model of Escherichia coli species was created to analyze how noise in protein expression gives—and therefore noise in metabolic fluxes—gives rise to multiple cellular phenotype in isogenic population. After the initial work developing and validating methods that allow characterization of the heterogeneity in the model organism E. coli, the project shifted toward

  11. Low strength ultrasonication positively affects the methanogenic granules toward higher AD performance. Part I: Physico-chemical characteristics

    DEFF Research Database (Denmark)

    Cho, S. K.; Hwang, Yuhoon; Kim, D. H.

    2013-01-01

    To elucidate the correlation between enhanced biogas production and changed physico-chemical properties of methanogenic granules after low strength ultrasonication, in this study, the effects of low strength ultrasonication on the settling velocity, permeability, porosity, and fluid collection ef...

  12. An improved enzyme-linked immunosorbent assay for whole-cell determination of methanogens in samples from anaerobic reactors

    DEFF Research Database (Denmark)

    Sørensen, A.H.; Ahring, B.K.

    1997-01-01

    An enzyme-linked immunosorbent assay was developed for the detection of whole cells of methanogens in samples from anaerobic continuously stirred tank digesters treating slurries of solid waste. The assay was found to allow for quantitative analysis of the most important groups of methanogens......-quality microtiter plates and the addition of dilute hydrochloric acid to the samples. In an experiment on different digester samples, the test demonstrated a unique pattern of different methanogenic strains present in each sample. The limited preparatory work required for the assay and the simple assay design make...... in samples from anaerobic digesters in a reproducible manner. Polyclonal antisera against eight strains of methanogens were employed in the test, The specificities of the antisera were increased by adsorption with cross-reacting cells. The reproducibility of the assay depended on the use of high...

  13. Phenotypic properties and microbial diversity of methanogenic granules from a full-scale UASB reactor treating brewery wastewater

    NARCIS (Netherlands)

    Diaz, E.E.; Stams, A.J.M.; Amils, R.; Sanz, J.L.

    2006-01-01

    Methanogenic granules from an anaerobic bioreactor that treated wastewater of a beer brewery consisted of different morphological types of granules. In this study, the microbial compositions of the different granules were analyzed by molecular microbiological techniques: cloning, denaturing gradient

  14. Stable acetate production in extreme-thermophilic (70ºC) mixed culture fermentation by selective enrichment of hydrogenotrophic methanogens

    NARCIS (Netherlands)

    Zhang, F.; Zhang, Y.; Ding, J.; Dai, K.; Van Loosdrecht, M.C.M.; Zeng, R.J.

    2014-01-01

    The control of metabolite production is difficult in mixed culture fermentation. This is particularly related to hydrogen inhibition. In this work, hydrogenotrophic methanogens were selectively enriched to reduce the hydrogen partial pressure and to realize efficient acetate production in

  15. Quantitation and identification of methanogens and sulphate reducers in Olkiluoto groundwater

    International Nuclear Information System (INIS)

    Bomberg, M.; Nyyssoenen, M.; Itaevaara, M.

    2010-08-01

    The GEOFUNC Project focuses on the microbiology connected to safety and risk assessment of the final disposal of high radioactive nuclear waste. Methanogenic archaea and sulphate reducing bacteria are significant groups of microorganisms in anaerobic environments, and are of crucial concern for the safe long term storage of nuclear waste in deep bedrock. The sulphate reducing bacteria are able to produce sulphide which may cause corrosion of the copper in the radioactive waste storage capsules. Methanogens, on the other hand, may produce quantities of methane from various organic carbon compounds, CO 2 and H 2 . Methane may both serve as carbon source for methanotrophic microbial groups, and may also cause mobilization of radionuclides, as a result of gas discharge through fractures in the bedrock. The transition zones between the sulphate rich and methane rich waters are locations for microbial processes where the methane may serve as carbon source for sulphate reducing bacteria, which in turn would produce corrosive sulphides. It has been estimated that only 1-10 % of all the microorganisms present in the environment can be isolated and cultivated. Uncultured microorganisms can be identified and their numbers in the environment quantified by identification of specific marker genes that are essential for their functions by use of molecular methods. Methanogens, for example, can be identified by their genes for methyl coenzyme M reductase (mcrA), which is an essential enzyme involved in the production of methane. The mcrA is specifically present only in methanogenic archaea. Sulphate reducers are identified by their dissimilatory sulphite reductase genes (dsrB), which are present in and essential for all microorganisms performing dissimilatory sulphate reducing. In the GEOFUNC project, a quantitative PCR method (qPCR) was developed for the detection of methanogens and sulphate reducers. This method is based on specific quantitative detection of marker genes

  16. Genome sequence of a mesophilic hydrogenotrophic methanogen Methanocella paludicola, the first cultivated representative of the order Methanocellales.

    Directory of Open Access Journals (Sweden)

    Sanae Sakai

    Full Text Available We report complete genome sequence of a mesophilic hydrogenotrophic methanogen Methanocella paludicola, the first cultured representative of the order Methanocellales once recognized as an uncultured key archaeal group for methane emission in rice fields. The genome sequence of M. paludicola consists of a single circular chromosome of 2,957,635 bp containing 3004 protein-coding sequences (CDS. Genes for most of the functions known in the methanogenic archaea were identified, e.g. a full complement of hydrogenases and methanogenesis enzymes. The mixotrophic growth of M. paludicola was clarified by the genomic characterization and re-examined by the subsequent growth experiments. Comparative genome analysis with the previously reported genome sequence of RC-I(MRE50, which was metagenomically reconstructed, demonstrated that about 70% of M. paludicola CDSs were genetically related with RC-I(MRE50 CDSs. These CDSs included the genes involved in hydrogenotrophic methane production, incomplete TCA cycle, assimilatory sulfate reduction and so on. However, the genetic components for the carbon and nitrogen fixation and antioxidant system were different between the two Methanocellales genomes. The difference is likely associated with the physiological variability between M. paludicola and RC-I(MRE50, further suggesting the genomic and physiological diversity of the Methanocellales methanogens. Comparative genome analysis among the previously determined methanogen genomes points to the genome-wide relatedness of the Methanocellales methanogens to the orders Methanosarcinales and Methanomicrobiales methanogens in terms of the genetic repertoire. Meanwhile, the unique evolutionary history of the Methanocellales methanogens is also traced in an aspect by the comparative genome analysis among the methanogens.

  17. Expression of a bacterial catalase in a strictly anaerobic methanogen significantly increases tolerance to hydrogen peroxide but not oxygen

    Science.gov (United States)

    Jennings, Matthew E.; Schaff, Cody W.; Horne, Alexandra J.; Lessner, Faith H.

    2014-01-01

    Haem-dependent catalase is an antioxidant enzyme that degrades H2O2, producing H2O and O2, and is common in aerobes. Catalase is present in some strictly anaerobic methane-producing archaea (methanogens), but the importance of catalase to the antioxidant system of methanogens is poorly understood. We report here that a survey of the sequenced genomes of methanogens revealed that the majority of species lack genes encoding catalase. Moreover, Methanosarcina acetivorans is a methanogen capable of synthesizing haem and encodes haem-dependent catalase in its genome; yet, Methanosarcina acetivorans cells lack detectable catalase activity. However, inducible expression of the haem-dependent catalase from Escherichia coli (EcKatG) in the chromosome of Methanosarcina acetivorans resulted in a 100-fold increase in the endogenous catalase activity compared with uninduced cells. The increased catalase activity conferred a 10-fold increase in the resistance of EcKatG-induced cells to H2O2 compared with uninduced cells. The EcKatG-induced cells were also able to grow when exposed to levels of H2O2 that inhibited or killed uninduced cells. However, despite the significant increase in catalase activity, growth studies revealed that EcKatG-induced cells did not exhibit increased tolerance to O2 compared with uninduced cells. These results support the lack of catalase in the majority of methanogens, since methanogens are more likely to encounter O2 rather than high concentrations of H2O2 in the natural environment. Catalase appears to be a minor component of the antioxidant system in methanogens, even those that are aerotolerant, including Methanosarcina acetivorans. Importantly, the experimental approach used here demonstrated the feasibility of engineering beneficial traits, such as H2O2 tolerance, in methanogens. PMID:24222618

  18. Phylogenetic comparison of the methanogenic communities from an acidic, oligotrophic fen and an anaerobic digester treating municipal wastewater sludge.

    Science.gov (United States)

    Steinberg, Lisa M; Regan, John M

    2008-11-01

    Methanogens play a critical role in the decomposition of organics under anaerobic conditions. The methanogenic consortia in saturated wetland soils are often subjected to large temperature fluctuations and acidic conditions, imposing a selective pressure for psychro- and acidotolerant community members; however, methanogenic communities in engineered digesters are frequently maintained within a narrow range of mesophilic and circumneutral conditions to retain system stability. To investigate the hypothesis that these two disparate environments have distinct methanogenic communities, the methanogens in an oligotrophic acidic fen and a mesophilic anaerobic digester treating municipal wastewater sludge were characterized by creating clone libraries for the 16S rRNA and methyl coenzyme M reductase alpha subunit (mcrA) genes. A quantitative framework was developed to assess the differences between these two communities by calculating the average sequence similarity for 16S rRNA genes and mcrA within a genus and family using sequences of isolated and characterized methanogens within the approved methanogen taxonomy. The average sequence similarities for 16S rRNA genes within a genus and family were 96.0 and 93.5%, respectively, and the average sequence similarities for mcrA within a genus and family were 88.9 and 79%, respectively. The clone libraries of the bog and digester environments showed no overlap at the species level and almost no overlap at the family level. Both libraries were dominated by clones related to uncultured methanogen groups within the Methanomicrobiales, although members of the Methanosarcinales and Methanobacteriales were also found in both libraries. Diversity indices for the 16S rRNA gene library of the bog and both mcrA libraries were similar, but these indices indicated much lower diversity in the 16S digester library than in the other three libraries.

  19. The influence of substrate transport limitation on porosity and methanogenic activity of anaerobic sludge granules

    Energy Technology Data Exchange (ETDEWEB)

    Alphenaar, P.A. (Agricultural Univ., Wageningen (Netherlands). Dept. of Environmental Technology); Perez, M.C. (Agricultural Univ., Wageningen (Netherlands). Dept. of Environmental Technology); Lettinga, G. (Agricultural Univ., Wageningen (Netherlands). Dept. of Environmental Technology)

    1993-05-01

    The relationship between porosity, diameter and methanogenic activity of anaerobic granules has been investigated. Experiments with different granular sludges revealed that substrate transport limitations increase with the diameter of the granules. As a consequence, autolysis can occur in the core of the granule, producing hollow granules. The porosity measurements revealed that the hollow centre is not available for substrate transport. Possibly as an effect of bacterial lysis, the porosity decreases in the more interior layers of the granules. This results in a inactive inner part of the large granules, which is not involved in the treatment process; the specific methanogenic activity decreases with granule size. No marked difference in substrate affinity is observed between granules of different sizes, which probably indicates that for large granules only the exterior is biological active. (orig.)

  20. Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions

    International Nuclear Information System (INIS)

    Freedman, D.L.; Gossett, J.M.

    1989-01-01

    A biological process for remediation of groundwater contaminated with tetrachloroethylene (PCE) and trichloroethylene (TCE) can only be applied if the transformation products are environmentally acceptable. Studies with enrichment cultures of PCE- and TCE-degrading microorganisms provide evidence that, under methanogenic conditions, mixed cultures are able to completely dechlorinate PCE and TCE to ethylene, a product which is environmentally acceptable. Radiotracer studies with [ 14 C]PCE indicated that [ 14 C]ethylene was the terminal product; significant conversion to 14 CO 2 or 14 CH 4 was not observed. The rate-limiting step in the pathway appeared to be conversion of vinyl chloride to ethylene. To sustain reductive dechlorination of PCE and TCE, it was necessary to supply an electron donor; methanol was the most effective, although hydrogen, formate, acetate, and glucose also served. Studies with the inhibitor 2-bromoethanesulfonate suggested that methanogens played a key role in the observed biotransformations of PCE and TCE

  1. Metagenomic identification of active methanogens and methanotrophs in serpentinite springs of the Voltri Massif, Italy

    Directory of Open Access Journals (Sweden)

    William J. Brazelton

    2017-01-01

    Full Text Available The production of hydrogen and methane by geochemical reactions associated with the serpentinization of ultramafic rocks can potentially support subsurface microbial ecosystems independent of the photosynthetic biosphere. Methanogenic and methanotrophic microorganisms are abundant in marine hydrothermal systems heavily influenced by serpentinization, but evidence for methane-cycling archaea and bacteria in continental serpentinite springs has been limited. This report provides metagenomic and experimental evidence for active methanogenesis and methanotrophy by microbial communities in serpentinite springs of the Voltri Massif, Italy. Methanogens belonging to family Methanobacteriaceae and methanotrophic bacteria belonging to family Methylococcaceae were heavily enriched in three ultrabasic springs (pH 12. Metagenomic data also suggest the potential for hydrogen oxidation, hydrogen production, carbon fixation, fermentation, and organic acid metabolism in the ultrabasic springs. The predicted metabolic capabilities are consistent with an active subsurface ecosystem supported by energy and carbon liberated by geochemical reactions within the serpentinite rocks of the Voltri Massif.

  2. Specific acyclic isoprenoids as biological markers of methanogenic bacteria in marine sediments.

    Science.gov (United States)

    Brassell, S C; Wardroper, A M; Thomson, I D; Maxwell, J R; Eglinton, G

    1981-04-23

    The widespread occurrence of extended hopanoids in sediments and petroleums illustrates the importance of bacterial lipid contributions to geological materials. In archaebacteria, however, hopanoids are absent; their role as structural components of biomembranes is fulfilled by acyclic isoprenoids. Recent studies of the lipid constituents of archaebacteria have greatly extended the range of acyclic isoprenoid skeletons known in organisms (Fig. 1). In particularly, isoprenoids with head-to-head linkages have been identified, and such compounds (for example, 3,7,11,15,18,22,26,30-octamethyldotriacontane, I) have been recognized in petroleum and as degradation products of Messel shale kerogen. Here we report the first recognition of 2,6,10,15,19-pentamethyleicosane (II), a known component of methanogens, in marine sediments of Recent to Cretaceous age (Table 1) and suggest that it and certain other acyclic isoprenoids may be used as biological markers for methanogens.

  3. Confocal Raman microspectroscopy reveals a convergence of the chemical composition in methanogenic archaea from a Siberian permafrost-affected soil.

    Science.gov (United States)

    Serrano, Paloma; Hermelink, Antje; Lasch, Peter; de Vera, Jean-Pierre; König, Nicole; Burckhardt, Oliver; Wagner, Dirk

    2015-12-01

    Methanogenic archaea are widespread anaerobic microorganisms responsible for the production of biogenic methane. Several new species of psychrotolerant methanogenic archaea were recently isolated from a permafrost-affected soil in the Lena Delta (Siberia, Russia), showing an exceptional resistance against desiccation, osmotic stress, low temperatures, starvation, UV and ionizing radiation when compared to methanogens from non-permafrost environments. To gain a deeper insight into the differences observed in their resistance, we described the chemical composition of methanogenic strains from permafrost and non-permafrost environments using confocal Raman microspectroscopy (CRM). CRM is a powerful tool for microbial identification and provides fingerprint-like information about the chemical composition of the cells. Our results show that the chemical composition of methanogens from permafrost-affected soils presents a high homology and is remarkably different from strains inhabiting non-permafrost environments. In addition, we performed a phylogenetic reconstruction of the studied strains based on the functional gene mcrA to prove the different evolutionary relationship of the permafrost strains. We conclude that the permafrost methanogenic strains show a convergent chemical composition regardless of their genotype. This fact is likely to be the consequence of a complex adaptive process to the Siberian permafrost environment and might be the reason underlying their resistant nature. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Abundance and potential metabolic activity of methanogens in well-aerated forest and grassland soils of an alpine region.

    Science.gov (United States)

    Hofmann, Katrin; Praeg, Nadine; Mutschlechner, Mira; Wagner, Andreas O; Illmer, Paul

    2016-02-01

    Although methanogens were recently discovered to occur in aerated soils, alpine regions have not been extensively studied for their presence so far. Here, the abundance of archaea and the methanogenic guilds Methanosarcinales, Methanococcales, Methanobacteriales, Methanomicrobiales and Methanocella spp. was studied at 16 coniferous forest and 14 grassland sites located at the montane and subalpine belts of the Northern Limestone Alps (calcareous) and the Austrian Central Alps (siliceous) using quantitative real-time PCR. Abundance of archaea, methanogens and the methanogenic potentials were significantly higher in grasslands than in forests. Furthermore, methanogenic potentials of calcareous soils were higher due to pH. Methanococcales, Methanomicrobiales and Methanocella spp. were detected in all collected samples, which indicates that they are autochthonous, while Methanobacteriales were absent from 4 out of 16 forest soils. Methanosarcinales were absent from 10 out of 16 forest soils and 2 out of 14 grassland soils. Nevertheless, together with Methanococcales they represented the majority of the 16S rRNA gene copies quantified from the grassland soils. Contrarily, forest soils were clearly dominated by Methanococcales. Our results indicate a higher diversity of methanogens in well-aerated soils than previously believed and that pH mainly influences their abundances and activities. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Thermophilic methanogenic Archaea in compost material: occurrence, persistence and possible mechanisms for their distribution to other environments.

    Science.gov (United States)

    Thummes, Kathrin; Schäfer, Jenny; Kämpfer, Peter; Jäckel, Udo

    2007-12-01

    Since compost is widely used as soil amendment and the fact that during the processing of compost material high amounts of microorganisms are released into the air, we investigated whether compost may act as a carrier for thermophilic methanogens to temperate soils. All eight investigated compost materials showed a clear methane production potential between 0.01 and 0.98 micromol CH(4) g dw(-1)h(-1) at 50 degrees C. Single strand conformation polymorphism (SSCP) and cloning analysis indicated the presence of Methanosarcina thermophila, Methanoculleus thermophilus, and Methanobacterium formicicum. Bioaerosols collected during the turning of a compost pile showed both a highly similar SSCP profile compared to the corresponding compost material and clear methane production during anoxic incubation in selective medium at 50 degrees C. Both observations indicated a considerable release of thermophilic methanogens into the air. To analyse the persistence of compost-borne thermophilic methanogens in temperate oxic soils, we therefore studied their potential activity in compost and compost/soil mixtures, which was brought to a meadow soil, as well as in an agricultural soil fertilised with compost. After 24h anoxic incubation at 50 degrees C, all samples containing compost showed a clear methanogenic activity, even 1 year after application. In combination with the in vitro observed resilience of the compost-borne methanogens against desiccation and UV radiation we assume that compost material acts as an effective carrier for the distribution of thermophilic methanogens by fertilisation and wind.

  6. Growth of desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria.

    Science.gov (United States)

    Bryant, M P; Campbell, L L; Reddy, C A; Crabill, M R

    1977-05-01

    In the analysis of an ethanol-CO(2) enrichment of bacteria from an anaerobic sewage digestor, a strain tentatively identified as Desulfovibrio vulgaris and an H(2)-utilizing methanogen resembling Methanobacterium formicicum were isolated, and they were shown to represent a synergistic association of two bacterial species similar to that previously found between S organism and Methanobacterium strain MOH isolated from Methanobacillus omelianskii. In lowsulfate media, the desulfovibrio produced acetate and H(2) from ethanol and acetate, H(2), and, presumably, CO(2) from lactate; but growth was slight and little of the energy source was catabolized unless the organism was combined with an H(2)-utilizing methanogenic bacterium. The type strains of D. vulgaris and Desulfovibrio desulfuricans carried out the same type of synergistic growth with methanogens. In mixtures of desulfovibrio and strain MOH growing on ethanol, lactate, or pyruvate, diminution of methane produced was stoichiometric with the moles of sulfate added, and the desulfovibrios grew better with sulfate addition. The energetics of the synergistic associations and of the competition between the methanogenic system and sulfate-reducing system as sinks for electrons generated in the oxidation of organic materials such as ethanol, lactate, and acetate are discussed. It is suggested that lack of availability of H(2) for growth of methanogens is a major factor in suppression of methanogenesis by sulfate in natural ecosystems. The results with these known mixtures of bacteria suggest that hydrogenase-forming, sulfate-reducing bacteria could be active in some methanogenic ecosystems that are low in sulfate.

  7. Effects of cattle husbandry on abundance and activity of methanogenic archaea in upland soils.

    Science.gov (United States)

    Radl, Viviane; Gattinger, Andreas; Chronáková, Alica; Nemcová, Anna; Cuhel, Jiri; Simek, Miloslav; Munch, Jean Charles; Schloter, Michael; Elhottová, Dana

    2007-09-01

    In the present study, we tested the hypothesis that animal treading associated with a high input of organic matter would favour methanogenesis in soils used as overwintering pasture. Hence, methane emissions and methanogen populations were examined at sections with different degree of cattle impact in a Farm in South Bohemia, Czech Republic. In spring, methane emission positively corresponded to the gradient of animal impact. Applying phospholipid etherlipid analysis, the highest archaeal biomass was found in section severe impact (SI), followed by moderate impact (MI) and no impact. The same trend was observed for the methanogens as showed by real-time quantitative PCR analyses of methyl coenzyme M reductase (mcrA) genes. The detection of monounsaturated isoprenoid side chain hydrocarbons (i20:1) indicated the presence of acetoclastic methanogens in the cattle-impacted sites. This result was corroborated by the phylogenetic analysis of mcrA gene sequences obtained from section SI, which showed that 33% of the analysed clones belonged to the genus Methanosarcina. The majority of the sequenced clones (41%) showed close affiliations with uncultured rumen archaeons. This leads to the assumption that a substantial part of the methanogenic community in plot SI derived from the grazing cattle itself. Compared to the spring sampling, in autumn, a significant reduction in archaeal biomass and number of copies of mcrA genes was observed mainly for section MI. It can be concluded that after 5 months without cattle impact, the severely impact section maintained its methane production potential, whereas the methane production potential under moderate impact returned to background values.

  8. Conductive iron oxide minerals accelerate syntrophic cooperation in methanogenic benzoate degradation

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Li; Tang, Jia; Wang, Yueqiang; Hu, Min; Zhou, Shungui, E-mail: sgzhou@soil.gd.cn

    2015-08-15

    Highlights: • Paddy soil contaminated with benzoate incubated with hematite and magnetite. • Iron oxides addition enhanced methanogenic benzoate degradation by 25–53%. • The facilitated syntrophy might involve direct interspecies electron transfer. • Bacillaceae, Peptococcaceae, and Methanobacterium are potentially involved. - Abstract: Recent studies have suggested that conductive iron oxide minerals can facilitate syntrophic metabolism of the methanogenic degradation of organic matter, such as ethanol, propionate and butyrate, in natural and engineered microbial ecosystems. This enhanced syntrophy involves direct interspecies electron transfer (DIET) powered by microorganisms exchanging metabolic electrons through electrically conductive minerals. Here, we evaluated the possibility that conductive iron oxides (hematite and magnetite) can stimulate the methanogenic degradation of benzoate, which is a common intermediate in the anaerobic metabolism of aromatic compounds. The results showed that 89–94% of the electrons released from benzoate oxidation were recovered in CH{sub 4} production, and acetate was identified as the only carbon-bearing intermediate during benzoate degradation. Compared with the iron-free controls, the rates of methanogenic benzoate degradation were enhanced by 25% and 53% in the presence of hematite and magnetite, respectively. This stimulatory effect probably resulted from DIET-mediated methanogenesis in which electrons transfer between syntrophic partners via conductive iron minerals. Phylogenetic analyses revealed that Bacillaceae, Peptococcaceae, and Methanobacterium are potentially involved in the functioning of syntrophic DIET. Considering the ubiquitous presence of iron minerals within soils and sediments, the findings of this study will increase the current understanding of the natural biological attenuation of aromatic hydrocarbons in anaerobic environments.

  9. Environmental Drivers of Differences in Microbial Community Structure in Crude Oil Reservoirs across a Methanogenic Gradient

    OpenAIRE

    Shelton, Jenna L.; Akob, Denise M.; McIntosh, Jennifer C.; Fierer, Noah; Spear, John R.; Warwick, Peter D.; McCray, John E.

    2016-01-01

    Stimulating in situ microbial communities in oil reservoirs to produce natural gas is a potentially viable strategy for recovering additional fossil fuel resources following traditional recovery operations. Little is known about what geochemical parameters drive microbial population dynamics in biodegraded, methanogenic oil reservoirs. We investigated if microbial community structure was significantly impacted by the extent of crude oil biodegradation, extent of biogenic methane production, a...

  10. Effects of oxytetracycline, tylosin, and amoxicillin antibiotics on specific methanogenic activity of anaerobic biomass

    OpenAIRE

    Mohammad Mehdi Amin; Hassan Hashemi; Afshin Ebrahimi; Asghar Ebrahimi

    2012-01-01

    Aims: The purpose of this study was to survey the antibiotics effects of oxytetracycline, tylosin, and amoxicillin on anerobic wastewater treatment process. Materials and Methods: To evaluate the inhibitory antibiotics amoxicillin, tetracycline, and tylosin on biomass activity, specific methanogenic activity (SMA) using anerobic biomass batch; into 120 ml vials: 30 ml biomass and 70 ml substrate including volatile fatty acids, mainly acetic acid and various concentrations of antibiotics we...

  11. Mature fine tailings from oil sands processing harbour diverse methanogenic communities

    Energy Technology Data Exchange (ETDEWEB)

    Penner, T.J.; Foght, J.M. [Alberta Univ., Edmonton, AB (Canada). Dept. of Biological Sciences

    2010-06-15

    Syncrude's bitumen extraction process produces a fine tailings slurry consisting of water, sand, fines, residual bitumen and naphtha diluent. Following rapid settling of the sand fraction, the tailings are stored in large settling ponds to form a thick mature fine tailings (MFT). This paper discussed the potential benefits of methane production on management of the settling basins. Enhanced methanogenesis accelerates densification and improves the rheological properties of MFT. In this study molecular techniques were used to characterize the methanogenic communities in uncultivated MFT samples to determine the diversity present in the Mildred Lake Settling Basin (MLSB) and West In-Pit tailings deposit. The flux of methane is currently estimated at about 40 million L/day at the MLSB. Clone libraries of amplified archaeal and bacterial 16S rRNA genes were created in order to analyze the methanogenic consortia in MFT samples from depth profiles in the 2 tailings deposits. The archaeal sequences, whose closest matches were primarily cultivated methanogens, were comparable within and between basins and were mostly affiliated with acetoclastic Methanosaeta spp. However, bacterial clone libraries were diverse, with most sequences relating to Proteobacteria, including some presumptive nitrate-, iron-, or sulfate-reducing, hydrocarbon-degrading genera. The study showed that MFT consists of a diverse community of prokaryotes that may be responsible for producing methane from substrates indigenous to the MFT. These findings contribute to a better understanding of the biogenesis of methane and densification of MFT in oil sands tailings deposits. The results from this study will help determine strategies to control and exploit microbial activities in these large systems and improve the understanding of methanogenic environments. 43 refs., 2 tabs., 3 figs.

  12. Iron oxides alter methanogenic pathways of acetate in production water of high-temperature petroleum reservoir.

    Science.gov (United States)

    Pan, Pan; Hong, Bo; Mbadinga, Serge Maurice; Wang, Li-Ying; Liu, Jin-Feng; Yang, Shi-Zhong; Gu, Ji-Dong; Mu, Bo-Zhong

    2017-09-01

    Acetate is a key intermediate in anaerobic crude oil biodegradation and also a precursor for methanogenesis in petroleum reservoirs. The impact of iron oxides, viz. β-FeOOH (akaganéite) and magnetite (Fe 3 O 4 ), on the methanogenic acetate metabolism in production water of a high-temperature petroleum reservoir was investigated. Methane production was observed in all the treatments amended with acetate. In the microcosms amended with acetate solely about 30% of the acetate utilized was converted to methane, whereas methane production was stimulated in the presence of magnetite (Fe 3 O 4 ) resulting in a 48.34% conversion to methane. Methane production in acetate-amended, β-FeOOH (akaganéite)-supplemented microcosms was much faster and acetate consumption was greatly improved compared to the other conditions in which the stoichiometric expected amounts of methane were not produced. Microbial community analysis showed that Thermacetogenium spp. (known syntrophic acetate oxidizers) and hydrogenotrophic methanogens closely related to Methanothermobacter spp. were enriched in acetate and acetate/magnetite (Fe 3 O 4 ) microcosms suggesting that methanogenic acetate metabolism was through hydrogenotrophic methanogenesis fueled by syntrophic acetate oxidizers. The acetate/β-FeOOH (akaganéite) microcosms, however, differed by the dominance of archaea closely related to the acetoclastic Methanosaeta thermophila. These observations suggest that supplementation of β-FeOOH (akaganéite) accelerated the production of methane further, driven the alteration of the methanogenic community, and changed the pathway of acetate methanogenesis from hydrogenotrophic methanogenesis fueled by syntrophic acetate oxidizers to acetoclastic.

  13. Dosing of anaerobic granular sludge bioreactors with cobalt: Impact of cobalt retention on methanogenic activity

    KAUST Repository

    Fermoso, Fernando G.

    2010-12-01

    The effect of dosing a metal limited anaerobic sludge blanket (UASB) reactor with a metal pulse on the methanogenic activity of granular sludge has thus far not been successfully modeled. The prediction of this effect is crucial in order to optimize the strategy for metal dosage and to prevent unnecessary losses of resources. This paper describes the relation between the initial immobilization of cobalt in anaerobic granular sludge cobalt dosage into the reactor and the evolution of methanogenic activity during the subsequent weeks. An operationally defined parameter (A0· B0) was found to combine the amount of cobalt immobilized instantaneously upon the pulse (B0) and the amount of cobalt immobilized within the subsequent 24. h (A0). In contrast with the individual parameters A0 and B0, the parameter A0· B0 correlated significantly with the methanogenic activity of the sludge during the subsequent 16 or 35. days. This correlation between metal retention and activity evolution is a useful tool to implement trace metal dosing strategies for biofilm-based biotechnological processes. © 2010.

  14. Isolation and characterization of new strains of methanogens from cold terrestrial habitats.

    Science.gov (United States)

    Simankova, Maria V; Kotsyurbenko, Oleg R; Lueders, Tillmann; Nozhevnikova, Alla N; Wagner, Bianca; Conrad, Ralf; Friedrich, Michael W

    2003-06-01

    Five strains of methanogenic archaea (MT, MS, MM, MSP, ZB) were isolated from permanently and periodically cold terrestrial habitats. Physiological and morphological studies, as well as phylogenetic analyses of the new isolates were performed. Based on sequences of the 16S rRNA and methyl-coenzyme M reductase a-subunit (mcrA) genes all new isolates are closely related to known mesophilic and psychrotolerant methanogens. Both, phylogenetic analyses and phenotypic properties allow to classify strains MT, MS, and MM as members of the genus Methanosarcina. Strain MT is a new ecotype of Methanosarcina mazei, whereas strains MM and MS are very similar to each other and can be assigned to the recently described psychrotolerant species Methanosarcina lacustris. The hydrogenotrophic strain MSP is a new ecotype of the genus Methanocorpusculum. The obligately methylotrophic strain ZB is closely related to Methanomethylovorans hollandica and can be classified as new ecotype of this species. All new isolates, including the strains from permanently cold environments, are not true psychrophiles according to their growth temperature characteristics. In spite of the ability of all isolates to grow at temperatures as low as 1-5 degrees C, all of them have their growth optima in the range of moderate temperatures (25-35 degrees C). Thus, they can be regarded as psychrotolerant organisms. Psychrotolerant methanogens are thought to play an important role in methane production in both, habitats under seasonal temperature variations or from permanently cold areas.

  15. The effect of organic loading rate and retention time on hydrogen production from a methanogenic CSTR.

    Science.gov (United States)

    Pakarinen, O; Kaparaju, P; Rintala, J

    2011-10-01

    The possibility of shifting a methanogenic process for hydrogen production by changing the process parameters viz., organic loading rate (OLR) and hydraulic retention time (HRT) was evaluated. At first, two parallel semi-continuously fed continuously stirred tank reactors (CSTR) were operated as methanogenic reactors (M1 and M2) for 78 days. Results showed that a methane yield of 198-218 L/kg volatile solids fed (VS(fed)) was obtained when fed with grass silage at an OLR of 2 kgVS/m³/d and HRT of 30 days. After 78 days of operation, hydrogen production was induced in M2 by increasing the OLR from 2 to 10 kgVS/m³/d and shortening the HRT from 30 to 6 days. The highest H₂ yield of 42 L/kgVS(fed) was obtained with a maximum H₂ content of 24%. The present results thus demonstrate that methanogenic process can be shifted towards hydrogen production by increasing the OLR and decreasing HRT. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Performance and methanogenic community of rotating disk reactor packed with polyurethane during thermophilic anaerobic digestion

    International Nuclear Information System (INIS)

    Yang, Yingnan; Tsukahara, Kenichiro; Sawayama, Shigeki

    2007-01-01

    A newly developed anaerobic rotating disk reactor (ARDR) packed with polyurethane was used in continuous mode for organic waste removal under thermophilic (55 o C) anaerobic conditions. This paper reports the effects of the rotational speed on the methanogenic performance and community in an ARDR supplied with acetic acid synthetic wastewater as the organic substrate. The best performance was obtained from the ARDR with the rotational speed (ω) of 30 rpm. The average removal of dissolved organic carbon was 98.5%, and the methane production rate was 393 ml/l-reactor/day at an organic loading rate of 2.69 g/l-reactor/day. Under these operational conditions, the reactor had a greater biomass retention capacity and better reactor performance than those at other rotational speeds (0, 5 and 60 rpm). The results of 16S rRNA phylogenetic analysis indicated that the major methanogens in the reactor belonged to the genus Methanosarcina spp. The results of real-time polymerase chain reaction (PCR) analysis suggested that the cell density of methanogenic archaea immobilized on the polyurethane foam disk could be concentrated more than 2000 times relative to those in the original thermophilic sludge. Scanning electron microphotographs showed that there were more immobilized microbes at ω of 30 rpm than 60 rpm. A rotational speed on the outer layer of the disk of 6.6 m/min could be appropriate for anaerobic digestion using the polyurethane ARDR

  17. Anaerobic metabolism of nitroaromatic compounds by sulfate-reducing and methanogenic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Boopathy, R. [Argonne National Lab., IL (United States); Kulpa, C.F. [Notre Dame Univ., IN (United States). Dept. of Biological Sciences

    1994-06-01

    Ecological observations suggest that sulfate-reducing and methanogenic bacteria might metabolize nitroaromatic compounds under anaerobic conditions if appropriate electron donors and electron acceptors are present in the environment, but this ability had not been demonstrated until recently. Most studies on the microbial metabolism of nitroaromatic compounds used aerobic microorganisms. In most cases no mineralization of nitroaromatics occurs, and only superficial modifications of the structures are reported. However, under anaerobic sulfate-reducing conditions, the nitroaromatic compounds reportedly undergo a series of reductions with the formation of amino compounds. For example, trinitrotoluene under sulfate-reducing conditions is reduced to triaminotoluene by the enzyme nitrite reductase, which is commonly found in many Desulfovibrio spp. The removal of ammonia from triaminotoluene is achieved by reductive deamination catalyzed by the enzyme reductive deaminase, with the production of ammonia and toluene. Some sulfate reducers can metabolize toluene to CO{sub 2}. Similar metabolic processes could be applied to other nitroaromatic compounds like nitrobenzene, nitrobenzoic acids, nitrophenols, and aniline. Many methanogenic bacteria can reduce nitroaromatic compounds to amino compounds. In this paper we review the anaerobic metabolic processes of nitroaromatic compounds under sulfate-reducing And methanogenic conditions.

  18. Microbial ecology of methanogenic crude oil biodegradation; from microbial consortia to heavy oil

    Energy Technology Data Exchange (ETDEWEB)

    Head, Ian M.; Maguire, Michael J.; Sherry, Angela; Grant, Russell; Gray, Neil D.; Aitken, Carolyn M.; Martin Jones, D.; Oldenburg, Thomas B.P.; Larter, Stephen R. [Petroleum Research Group, Geosciences, University of Calgary (Canada)

    2011-07-01

    This paper presents the microbial ecology of methanogenic crude oil biodegradation. Biodegraded petroleum reservoirs are one of the most dramatic indications of the deep biosphere. It is estimated that heavy oil and oil sands will account for a considerable amount of energy production in the future. Carbon, a major resource for deep subsurface microorganisms, and energy are contained in large quantities in petroleum reservoirs. The aerobic to anaerobic paradigm shift is explained. A key process for in-situ oil biodegradation in petroleum reservoirs is methanogenesis. New paradigms for in-reservoir crude oil biodegradation are discussed. Variations in anaerobic degradation of crude oil hydrocarbons are also discussed. A graph shows the different patterns of crude oil biodegradation under sulfate-reducing and methanogenic conditions. Alternative anaerobic alkane activation mechanisms are also shown. From the study, it can be concluded that methanogenic crude oil degradation is of global importance and led to the establishment of the world's enormous heavy oil deposits.

  19. Performance of thermophilic anaerobic digesters using inoculum mixes with enhanced methanogenic diversity

    KAUST Repository

    Ghanimeh, Sophia

    2017-05-30

    BACKGROUND Reportedly, various mixes of seeds were quasi-randomly selected to startup anaerobic digesters. In contrast, this study examines the impact of inoculating thermophilic anaerobic digesters with a designed mix of non-acclimated seeds based on their methanogen composition, using Quantitative Polymerase Chain Reaction (QPCR) of 16S rRNA gene, to achieve high abundance and diversity of methanogens. RESULTS Based on QPCR results, two seed mixes were selected to inoculate two anaerobic digesters: digester (A) was inoculated with a control seed consisting of digestate, manure, and activated sludge; and digester (B) was inoculated with a further methanogen-enriched seed consisting of the control seed with added compost and leachate. Both seed combinations yielded a balanced microflora that is able to achieve a successful startup. However, upon reaching steady state, digester B exhibited lower propionate levels, resulting in lower VFA concentration and increased buffering capacity, indicating greater stability. Acetotrophs and hydrogenotrophs were dominated by Methanosarcinaceae and Methanobacteriales, respectively, in both digesters, exhibiting an average ratio of 66-to-34% in A and 76-to-24% in B during steady state. CONCLUSION The inoculation strategy in digester B resulted in improved stability, lower propionate concentration and 10% higher relative abundance of acetotrophs.

  20. Anaerobic metabolism of nitroaromatic compounds by sulfate-reducing and methanogenic bacteria

    International Nuclear Information System (INIS)

    Boopathy, R.; Kulpa, C.F.

    1994-01-01

    Ecological observations suggest that sulfate-reducing and methanogenic bacteria might metabolize nitroaromatic compounds under anaerobic conditions if appropriate electron donors and electron acceptors are present in the environment, but this ability had not been demonstrated until recently. Most studies on the microbial metabolism of nitroaromatic compounds used aerobic microorganisms. In most cases no mineralization of nitroaromatics occurs, and only superficial modifications of the structures are reported. However, under anaerobic sulfate-reducing conditions, the nitroaromatic compounds reportedly undergo a series of reductions with the formation of amino compounds. For example, trinitrotoluene under sulfate-reducing conditions is reduced to triaminotoluene by the enzyme nitrite reductase, which is commonly found in many Desulfovibrio spp. The removal of ammonia from triaminotoluene is achieved by reductive deamination catalyzed by the enzyme reductive deaminase, with the production of ammonia and toluene. Some sulfate reducers can metabolize toluene to CO 2 . Similar metabolic processes could be applied to other nitroaromatic compounds like nitrobenzene, nitrobenzoic acids, nitrophenols, and aniline. Many methanogenic bacteria can reduce nitroaromatic compounds to amino compounds. In this paper we review the anaerobic metabolic processes of nitroaromatic compounds under sulfate-reducing And methanogenic conditions

  1. Characterization of the methanogen community in a household anaerobic digester fed with swine manure in China.

    Science.gov (United States)

    Qin, Huibin; Lang, Huihua; Yang, Hongjiang

    2013-09-01

    Household anaerobic digesters have been installed across rural China for biogas production, but information on methanogen community structure in these small biogas units is sparsely available. By creating clone libraries for 16S rRNA and methyl coenzyme M reductase alpha subunit (mcrA) genes, we investigated the methanogenic consortia in a household biogas digester treating swine manure. Operational taxonomic units (OTUs) were defined by comparative sequence analysis, seven OTUs were identified in the 16S rRNA gene library, and ten OTUs were identified in the mcrA gene library. Both libraries were dominated by clones highly related to the type strain Methanocorpusculum labreanum Z, 64.0 % for 16S rRNA gene clones and 64.3 % for mcrA gene clones. Additionally, gas chromatography assays showed that formic acid was 84.54 % of the total volatile fatty acids and methane was 57.20 % of the biogas composition. Our results may help further isolation and characterization of methanogenic starter strains for industrial biogas production.

  2. Migrating from Informal to Formal Consortium — COSTLI Issues

    Science.gov (United States)

    Birdie, C.; Patil, Y. M.

    2010-10-01

    There are many models of library consortia which have come into existence due to various reasons and compulsions. FORSA (Forum for Resource Sharing in Astronomy) is an informal consortium born from the links between academic institutions specializing in astronomy in India. FORSA is a cooperative venture initiated by library professionals. Though this consortium was formed mainly for inter-lending activities and bibliographic access, it has matured over the years to adopt the consortium approach on cooperative acquisitions, due to increased requirements.

  3. Biomarker evidence for widespread anaerobic methane oxidation in Mediterranean sediments by a consortium of methanogenic archaea and bacteria : The Medinaut Shipboard Scientific Party

    NARCIS (Netherlands)

    Pancost, Richard D.; Sinninghe Damsté, Jaap S.; de Lint, Saskia; van der Maarel, Marc J.E.C.; Gottschal, JC

    Although abundant geochemical data indicate that anaerobic methane oxidation occurs in marine sediments, the linkage to specific microorganisms remains unclear, In order to examine processes of methane consumption and oxidation, sediment samples from mud volcanoes at two distinct sites on the

  4. Latest Developments of the Isprs Student Consortium

    Science.gov (United States)

    Detchev, I.; Kanjir, U.; Reyes, S. R.; Miyazaki, H.; Aktas, A. F.

    2016-06-01

    The International Society for Photogrammetry and Remote Sensing (ISPRS) Student Consortium (SC) is a network for young professionals studying or working within the fields of photogrammetry, remote sensing, Geographical Information Systems (GIS), and other related geo-spatial sciences. The main goal of the network is to provide means for information exchange for its young members and thus help promote and integrate youth into the ISPRS. Over the past four years the Student Consortium has successfully continued to fulfil its mission in both formal and informal ways. The formal means of communication of the SC are its website, newsletter, e-mail announcements and summer schools, while its informal ones are multiple social media outlets and various social activities during student related events. The newsletter is published every three to four months and provides both technical and experiential content relevant for the young people in the ISPRS. The SC has been in charge or at least has helped with organizing one or more summer schools every year. The organization's e-mail list has over 1,100 subscribers, its website hosts over 1,300 members from 100 countries across the entire globe, and its public Facebook group currently has over 4,500 joined visitors, who connect among one another and share information relevant for their professional careers. These numbers show that the Student Consortium has grown into a significant online-united community. The paper will present the organization's on-going and past activities for the last four years, its current priorities and a strategic plan and aspirations for the future four-year period.

  5. External RNA Controls Consortium Beta Version Update.

    Science.gov (United States)

    Lee, Hangnoh; Pine, P Scott; McDaniel, Jennifer; Salit, Marc; Oliver, Brian

    2016-01-01

    Spike-in RNAs are valuable controls for a variety of gene expression measurements. The External RNA Controls Consortium developed test sets that were used in a number of published reports. Here we provide an authoritative table that summarizes, updates, and corrects errors in the test version that ultimately resulted in the certified Standard Reference Material 2374. We have noted existence of anti-sense RNA controls in the material, corrected sub-pool memberships, and commented on control RNAs that displayed inconsistent behavior.

  6. University Research Consortium annual review meeting program

    International Nuclear Information System (INIS)

    1996-07-01

    This brochure presents the program for the first annual review meeting of the University Research Consortium (URC) of the Idaho National Engineering Laboratory (INEL). INEL is a multiprogram laboratory with a distinctive role in applied engineering. It also conducts basic science research and development, and complex facility operations. The URC program consists of a portfolio of research projects funded by INEL and conducted at universities in the United States. In this program, summaries and participant lists for each project are presented as received from the principal investigators

  7. University Research Consortium annual review meeting program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    This brochure presents the program for the first annual review meeting of the University Research Consortium (URC) of the Idaho National Engineering Laboratory (INEL). INEL is a multiprogram laboratory with a distinctive role in applied engineering. It also conducts basic science research and development, and complex facility operations. The URC program consists of a portfolio of research projects funded by INEL and conducted at universities in the United States. In this program, summaries and participant lists for each project are presented as received from the principal investigators.

  8. Midwest Superconductivity Consortium: 1994 Progress report

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    The mission of the Midwest Superconductivity Consortium, MISCON, is to advance the science and understanding of high {Tc} superconductivity. During the past year, 27 projects produced over 123 talks and 139 publications. Group activities and interactions involved 2 MISCON group meetings (held in August and January); with the second MISCON Workshop held in August; 13 external speakers; 79 collaborations (with universities, industry, Federal laboratories, and foreign research centers); and 48 exchanges of samples and/or measurements. Research achievements this past year focused on understanding the effects of processing phenomena on structure-property interrelationships and the fundamental nature of transport properties in high-temperature superconductors.

  9. History of the Tinnitus Research Consortium.

    Science.gov (United States)

    Snow, James B

    2016-04-01

    This article describes the creation and accomplishments of the Tinnitus Research Consortium (TRC), founded and supported through philanthropy and intended to enrich the field of tinnitus research. Bringing together a group of distinguished auditory researchers, most of whom were not involved in tinnitus research, over the fifteen years of its life it developed novel research approaches and recruited a number of new investigators into the field. The purpose of this special issue is to highlight some of the significant accomplishments of the investigators supported by the TRC. This article is part of a Special Issue entitled "Tinnitus". Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Midwest Superconductivity Consortium: 1994 Progress report

    International Nuclear Information System (INIS)

    1995-01-01

    The mission of the Midwest Superconductivity Consortium, MISCON, is to advance the science and understanding of high T c superconductivity. During the past year, 27 projects produced over 123 talks and 139 publications. Group activities and interactions involved 2 MISCON group meetings (held in August and January); with the second MISCON Workshop held in August; 13 external speakers; 79 collaborations (with universities, industry, Federal laboratories, and foreign research centers); and 48 exchanges of samples and/or measurements. Research achievements this past year focused on understanding the effects of processing phenomena on structure-property interrelationships and the fundamental nature of transport properties in high-temperature superconductors

  11. BIODEGRADATION OF MTBE BY A MICROORGANISM CONSORTIUM

    Directory of Open Access Journals (Sweden)

    M. Alimohammadi, A. R. Mesdaghinia, M. Mahmoodi, S. Nasseri, A. H. Mahvi and J. Nouri

    2005-10-01

    Full Text Available Methyl Tert-Butyl Ether (MTBE is one of the ether oxygenates which its use has been increased within the last twenty years. This compound is produced from isobutylene and methanol reaction that is used as octane index enhancer and also increases dissolved oxygen in gasoline and decreases carbon monoxide emission in four phased motors because of better combustion of gasoline. High solubility in water (52 g/L, high vapor pressure (0.54 kg/cm3, low absorption to organic carbon of soil and presence of MTBE in the list of potentially-carcinogens of U.S EPA has made its use of great concern. The culture media used in this study was Mineral Salt Medium (MSM. The study lasted for 236 days and in three different concentrations of MTBE of 200, 5 and 0.8 mg/L. A control sample was also used to compare the results. This research studied the isolation methods of microbial consortium in the MTBE polluted soils in Tehran and Abadan petroleum refinery besides MTBE degradation. The results showed the capability of bacteria in consuming MTBE as carbon source. Final microbial isolation was performed with several microbial passages as well as keeping consortium in a certain amount of MTBE as the carbon source.

  12. Fermentative hydrogen production by microbial consortium

    Energy Technology Data Exchange (ETDEWEB)

    Maintinguer, Sandra I.; Fernandes, Bruna S.; Duarte, Iolanda C.S.; Saavedra, Nora Katia; Adorno, M. Angela T.; Varesche, M. Bernadete [Department of Hydraulics and Sanitation, School of Engineering of Sao Carlos, University of Sao Paulo, Av. Trabalhador Sao-carlense, 400, 13566-590 Sao Carlos-SP (Brazil)

    2008-08-15

    Heat pre-treatment of the inoculum associated to the pH control was applied to select hydrogen-producing bacteria and endospores-forming bacteria. The source of inoculum to the heat pre-treatment was from a UASB reactor used in the slaughterhouse waste treatment. The molecular biology analyses indicated that the microbial consortium presented microorganisms affiliated with Enterobacter cloacae (97% and 98%), Clostridium sp. (98%) and Clostridium acetobutyricum (96%), recognized as H{sub 2} and volatile acids' producers. The following assays were carried out in batch reactors in order to verify the efficiencies of sucrose conversion to H{sub 2} by the microbial consortium: (1) 630.0 mg sucrose/L, (2) 1184.0 mg sucrose/L, (3) 1816.0 mg sucrose/L and (4) 4128.0 mg sucrose/L. The subsequent yields were obtained as follows: 15% (1.2 mol H{sub 2}/mol sucrose), 20% (1.6 mol H{sub 2}/mol sucrose), 15% (1.2 mol H{sub 2}/mol sucrose) and 4% (0.3 mol H{sub 2}/mol sucrose), respectively. The intermediary products were acetic acid, butyric acid, methanol and ethanol in all of the anaerobic reactors. (author)

  13. Overview of the carbon products consortium (CPC)

    Energy Technology Data Exchange (ETDEWEB)

    Irwin, C.L. [West Virginia Univ., Morgantown, WV (United States)

    1996-08-01

    The Carbon Products Consortium (CPC) is an industry, university, government cooperative research team which has evolved over the past seven years to produce and evaluate coal-derived feedstocks for carbon products. The members of the Carbon Products Consortium are UCAR Carbon Company, Koppers Industries, CONOCO, Aluminum Company of America, AMOCO Polymers, and West Virginia University. The Carbon and Insulation Materials Technology Group at Oak Ridge National Laboratory, Fiber Materials Inc., and BASF Corporation are affiliates of the CPC. The initial work on coal-derived nuclear graphites was supported by a grant to WVU, UCAR Carbon, and ORNL from the U.S. DOE New Production Reactor program. More recently, the CPC program has been supported through the Fossil Energy Materials program and through PETC`s Liquefaction program. The coal processing technologies involve hydrogenation, extraction by solvents such as N-methyl pyrolidone and toluene, material blending, and calcination. The breadth of carbon science expertise and manufacturing capability available in the CPC enables it to address virtually all research and development issues of importance to the carbon products industry.

  14. Immobilization Patterns and Dynamics of Acetate-Utilizing Methanogens Immobilized in Sterile Granular Sludge in Upflow Anaerobic Sludge Blanket Reactors

    Science.gov (United States)

    Schmidt, Jens Ejbye; Ahring, Birgitte Kjær

    1999-01-01

    Sterile granular sludge was inoculated with either Methanosarcina mazeii S-6, Methanosaeta concilii GP-6, or both species in acetate-fed upflow anaerobic sludge blanket (UASB) reactors to investigate the immobilization patterns and dynamics of aceticlastic methanogens in granular sludge. After several months of reactor operation, the methanogens were immobilized, either separately or together. The fastest immobilization was observed in the reactor containing M. mazeii S-6. The highest effluent concentration of acetate was observed in the reactor with only M. mazeii S-6 immobilized, while the lowest effluent concentration of acetate was observed in the reactor where both types of methanogens were immobilized together. No changes were observed in the kinetic parameters (Ks and μmax) of immobilized M. concilii GP-6 or M. mazeii S-6 compared with suspended cultures, indicating that immobilization does not affect the growth kinetics of these methanogens. An enzyme-linked immunosorbent assay using polyclonal antibodies against either M. concilii GP-6 or M. mazeii S-6 showed significant variations in the two methanogenic populations in the different reactors. Polyclonal antibodies were further used to study the spatial distribution of the two methanogens. M. concilii GP-6 was immobilized only on existing support material without any specific pattern. M. mazeii S-6, however, showed a different immobilization pattern: large clumps were formed when the concentration of acetate was high, but where the acetate concentration was low this strain was immobilized on support material as single cells or small clumps. The data clearly show that the two aceticlastic methanogens immobilize differently in UASB systems, depending on the conditions found throughout the UASB reactor. PMID:10049862

  15. Considerations in the use of fluorescence in situ hybridization (FISH) and confocal laser scanning microscopy to characterize rumen methanogens and define their spatial distributions.

    Science.gov (United States)

    Valle, Edith R; Henderson, Gemma; Janssen, Peter H; Cox, Faith; Alexander, Trevor W; McAllister, Tim A

    2015-06-01

    In this study, methanogen-specific coenzyme F420 autofluorescence and confocal laser scanning microscopy were used to identify rumen methanogens and define their spatial distribution in free-living, biofilm-, and protozoa-associated microenvironments. Fluorescence in situ hybridization (FISH) with temperature-controlled hybridization was used in an attempt to describe methanogen diversity. A heat pretreatment (65 °C, 1 h) was found to be a noninvasive method to increase probe access to methanogen RNA targets. Despite efforts to optimize FISH, 16S rRNA methanogen-specific probes, including Arch915, bound to some cells that lacked F420, possibly identifying uncharacterized Methanomassiliicoccales or reflecting nonspecific binding to other members of the rumen bacterial community. A probe targeting RNA from the methanogenesis-specific methyl coenzyme M reductase (mcr) gene was shown to detect cultured Methanosarcina cells with signal intensities comparable to those of 16S rRNA probes. However, the probe failed to hybridize with the majority of F420-emitting rumen methanogens, possibly because of differences in cell wall permeability among methanogen species. Methanogens were shown to integrate into microbial biofilms and to exist as ecto- and endosymbionts with rumen protozoa. Characterizing rumen methanogens and defining their spatial distribution may provide insight into mitigation strategies for ruminal methanogenesis.

  16. Aims, organization and activities of the consortium for underground storage

    International Nuclear Information System (INIS)

    Stucky, G.

    1977-01-01

    The consortium of Swiss authorities interested in underground storage (the petroleum oil and gas industries, for fuel storage; the nuclear industry for radioactive waste disposal), was initiated in 1972. The author outlines the motives behind the formation of the consortium and outlines its structure and objectives. The envisaged projects are outlined. (F.Q.)

  17. Urban Consortium Energy Task Force - Year 21 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-04-01

    The Urban Consortium Energy Task Force (UCETF), comprised of representatives of large cities and counties in the United States, is a subgroup of the Urban Consortium, an organization of the nation's largest cities and counties joined together to identify, develop and deploy innovative approaches and technological solutions to pressing urban issues.

  18. The Black Rock Forest Consortium: A narrative

    Science.gov (United States)

    Buzzetto-More, Nicole Antoinette

    The Black Rock Forest is a 3,785-acre wilderness area whose richly forested landscape represents the splendor of the Hudson Valley Region of New York State. Although originally intended to become the home of wealthy banker James Stillman, it was his son Ernest whose love of conservation caused him to embrace the then new and revolutionary practice of sustainable forestry and establish Black Rock in 1928. Due to Ernest Stillman's foresight, the property was protected from development and bequeathed to Harvard University following his death for the establishment of an experimental forest. The modern environmental movement in America began when the Black Rock Forest was threatened with development by Consolidated Edison, and the people of the surrounding community banded together, battling tirelessly for over 17 years to stop the degradation of this historic forest. The outcome of this crusade marked a hallmark win for the environment leaving an illustrious and inveterate legacy. The campaign resulted in the watershed legislation the National Environmental Policy Act, the formation of several environmental advocacy groups, the creation of the Council on Environmental Quality of the Executive Office of the President, as well as set a precedent for communities to initiate and win cases against major corporations in order to safeguard natural resources. In the midst of the controversy it became apparent that alternative futures for the Forest needed to be explored. As a result of a committee report and one man's vision, the idea emerged to create a consortium that would purchase and steward the Forest. With a formation that took nearly fifteen years, the Black Rock Forest Consortium was formed, a unique amalgamation of K--12 public and private schools, colleges and universities, and science and cultural centers that successfully collaborate to enhance scientific research, environmental conservation, and education. The Consortium works to bridge the gaps between learners

  19. The response of archaeal species to seasonal variables in a subtropical aerated soil: insight into the low abundant methanogens.

    Science.gov (United States)

    Xie, Wei; Jiao, Na; Ma, Cenling; Fang, Sa; Phelps, Tommy J; Zhu, Ruixin; Zhang, Chuanlun

    2017-08-01

    Archaea are cosmopolitan in aerated soils around the world. While the dominance of Thaumarchaeota has been reported in most soils, the methanogens are recently found to be ubiquitous but with low abundances in the aerated soil globally. However, the seasonal changes of Archaea community in the aerated soils are still in the mist. In this study, we investigated the change of Archaea in the context of environmental variables over a period of 12 months in a subtropical soil on the Chongming Island, China. The results showed that Nitrososphaera spp. were the dominant archaeal population while the methanogens were in low proportions but highly diverse (including five genera: Methanobacterium, Methanocella, Methanosaeta, Methanosarcina, and Methanomassiliicoccus) in the aerated soil samples determined by high throughput sequencing. A total of 126 LSA correlations were found in the dataset including all the 72 archaeal OTUs and 8 environmental factors. A significance index defined as the pagerank score of each OTU divided by its relative abundance was used to evaluate the significance of each OTU. The results showed that five out of 17 methanogen OTUs were significantly positively correlated with temperature, suggesting those methanogens might increase with temperature rather than being dormant in the aerated soils. Given the metabolic response of methanogens to temperature under aerated soil conditions, their contribution to the global methane cycle warrants evaluation.

  20. Zero-valent iron enhanced methanogenic activity in anaerobic digestion of waste activated sludge after heat and alkali pretreatment.

    Science.gov (United States)

    Zhang, Yaobin; Feng, Yinghong; Quan, Xie

    2015-04-01

    Heat or alkali pretreatment is the effective method to improve hydrolysis of waste sludge and then enhance anaerobic sludge digestion. However the pretreatment may inactivate the methanogens in the sludge. In the present work, zero-valent iron (ZVI) was used to enhance the methanogenic activity in anaerobic sludge digester under two methanogens-suppressing conditions, i.e. heat-pretreatment and alkali condition respectively. With the addition of ZVI, the lag time of methane production was shortened, and the methane yield increased by 91.5% compared to the control group. The consumption of VFA was accelerated by ZVI, especially for acetate, indicating that the acetoclastic methanogenesis was enhanced. In the alkali-condition experiment, the hydrogen produced decreased from 27.6 to 18.8 mL when increasing the ZVI dosage from 0 to 10 g/L. Correspondingly, the methane yield increased from 1.9 to 32.2 mL, which meant that the H2-utilizing methanogenes was enriched. These results suggested that the addition of ZVI into anaerobic digestion of sludge after pretreated by the heat or alkali process could efficiently recover the methanogenic activity and increase the methane production and sludge reduction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Midwest Superconductivity Consortium: 1995 Progress report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    The mission of the Midwest Superconductivity Consortium, MISCON, is to advance the science and understanding of high Tc superconductivity. During the past year, 26 projects produced over 133 talks and 127 publications. Three Master`s Degrees and 9 Doctor`s of Philosophy Degrees were granted to students working on MISCON projects. Group activities and interactions involved 2 MISCON group meetings (held in January and July); the third MISCON Summer School held in July; 12 external speakers; 81 collaborations (with universities, industry, Federal laboratories, and foreign research centers); and 54 exchanges of samples and/or measurements. Research achievements this past year focused on understanding the effects of processing phenomena on structure-property interrelationships and the fundamental nature of transport properties in high-temp superconductors.

  2. Midwest Superconductivity Consortium: 1995 Progress report

    International Nuclear Information System (INIS)

    1996-01-01

    The mission of the Midwest Superconductivity Consortium, MISCON, is to advance the science and understanding of high Tc superconductivity. During the past year, 26 projects produced over 133 talks and 127 publications. Three Master's Degrees and 9 Doctor's of Philosophy Degrees were granted to students working on MISCON projects. Group activities and interactions involved 2 MISCON group meetings (held in January and July); the third MISCON Summer School held in July; 12 external speakers; 81 collaborations (with universities, industry, Federal laboratories, and foreign research centers); and 54 exchanges of samples and/or measurements. Research achievements this past year focused on understanding the effects of processing phenomena on structure-property interrelationships and the fundamental nature of transport properties in high-temp superconductors

  3. The International Human Epigenome Consortium Data Portal.

    Science.gov (United States)

    Bujold, David; Morais, David Anderson de Lima; Gauthier, Carol; Côté, Catherine; Caron, Maxime; Kwan, Tony; Chen, Kuang Chung; Laperle, Jonathan; Markovits, Alexei Nordell; Pastinen, Tomi; Caron, Bryan; Veilleux, Alain; Jacques, Pierre-Étienne; Bourque, Guillaume

    2016-11-23

    The International Human Epigenome Consortium (IHEC) coordinates the production of reference epigenome maps through the characterization of the regulome, methylome, and transcriptome from a wide range of tissues and cell types. To define conventions ensuring the compatibility of datasets and establish an infrastructure enabling data integration, analysis, and sharing, we developed the IHEC Data Portal (http://epigenomesportal.ca/ihec). The portal provides access to >7,000 reference epigenomic datasets, generated from >600 tissues, which have been contributed by seven international consortia: ENCODE, NIH Roadmap, CEEHRC, Blueprint, DEEP, AMED-CREST, and KNIH. The portal enhances the utility of these reference maps by facilitating the discovery, visualization, analysis, download, and sharing of epigenomics data. The IHEC Data Portal is the official source to navigate through IHEC datasets and represents a strategy for unifying the distributed data produced by international research consortia. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  4. Perspectives of International Human Epigenome Consortium

    Directory of Open Access Journals (Sweden)

    Jae-Bum Bae

    2013-03-01

    Full Text Available As the International Human Epigenome Consortium (IHEC launched officially at the 2010 Washington meeting, a giant step toward the conquest of unexplored regions of the human genome has begun. IHEC aims at the production of 1,000 reference epigenomes to the international scientific community for next 7-10 years. Seven member institutions, including South Korea, Korea National Institute of Health (KNIH, will produce 25-200 reference epigenomes individually, and the produced data will be publically available by using a data center. Epigenome data will cover from whole genome bisulfite sequencing, histone modification, and chromatin access information to miRNA-seq. The final goal of IHEC is the production of reference maps of human epigenomes for key cellular status relevant to health and disease.

  5. Functional consortium for denitrifying sulfide removal process.

    Science.gov (United States)

    Chen, Chuan; Ren, Nanqi; Wang, Aijie; Liu, Lihong; Lee, Duu-Jong

    2010-03-01

    Denitrifying sulfide removal (DSR) process simultaneously converts sulfide, nitrate, and chemical oxygen demand from industrial wastewaters to elemental sulfur, nitrogen gas, and carbon dioxide, respectively. This investigation utilizes a dilution-to-extinction approach at 10(-2) to 10(-6) dilutions to elucidate the correlation between the composition of the microbial community and the DSR performance. In the original suspension and in 10(-2) dilution, the strains Stenotrophomonas sp., Thauera sp., and Azoarcus sp. are the heterotrophic denitrifiers and the strains Paracoccus sp. and Pseudomonas sp. are the sulfide-oxidizing denitrifers. The 10(-4) dilution is identified as the functional consortium for the present DSR system, which comprises two functional strains, Stenotrophomonas sp. strain Paracoccus sp. At 10(-6) dilution, all DSR performance was lost. The functions of the constituent cells in the DSR granules were discussed based on data obtained using the dilution-to-extinction approach.

  6. Biogas production and methanogenic archaeal community in mesophilic and thermophilic anaerobic co-digestion processes.

    Science.gov (United States)

    Yu, D; Kurola, J M; Lähde, K; Kymäläinen, M; Sinkkonen, A; Romantschuk, M

    2014-10-01

    Over 258 Mt of solid waste are generated annually in Europe, a large fraction of which is biowaste. Sewage sludge is another major waste fraction. In this study, biowaste and sewage sludge were co-digested in an anaerobic digestion reactor (30% and 70% of total wet weight, respectively). The purpose was to investigate the biogas production and methanogenic archaeal community composition in the anaerobic digestion reactor under meso- (35-37 °C) and thermophilic (55-57 °C) processes and an increasing organic loading rate (OLR, 1-10 kg VS m(-3) d(-1)), and also to find a feasible compromise between waste treatment capacity and biogas production without causing process instability. In summary, more biogas was produced with all OLRs by the thermophilic process. Both processes showed a limited diversity of the methanogenic archaeal community which was dominated by Methanobacteriales and Methanosarcinales (e.g. Methanosarcina) in both meso- and thermophilic processes. Methanothermobacter was detected as an additional dominant genus in the thermophilic process. In addition to operating temperatures, the OLRs, the acetate concentration, and the presence of key substrates like propionate also affected the methanogenic archaeal community composition. A bacterial cell count 6.25 times higher than archaeal cell count was observed throughout the thermophilic process, while the cell count ratio varied between 0.2 and 8.5 in the mesophilic process. This suggests that the thermophilic process is more stable, but also that the relative abundance between bacteria and archaea can vary without seriously affecting biogas production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Selection of methanogenic microbial by gamma irradiation on improvement of unaerobic digestion efficiency on biogas formation

    International Nuclear Information System (INIS)

    M Yazid; Aris Bastianudin

    2011-01-01

    Selection of methanogenic microbial by gamma irradiation as an effort on improvement of efficiency process on biogas formation has been done. The objectives of this research is to obtain the methanogenic microbial isolate with high specific growth constant (μ), there for will be applicable for increasing the efficiency of biogas formation process. The microbial content sludge sample was taken from the digester tank conventional biogas installation located in Marangan village, Bokoharjo, Prambanan, Sleman and the sludge was irradiated using Co-60 gamma irradiator with varied dosage dose of 0-25 KGy. Microbial culture formation is conducted in growing media with 30% liquid rumen content in un-aerobe condition by addition of 80% H2 and 20% CO_2 gas mixture. Analysis of colony growth was performed by observation using long-wave ultraviolet rays (UV rays), while the microbial growth was by spectro-photometric analysis. Determination of gas methane product was done using gas chromatographic method. The result shown that 4 isolated methanogenic microbial (RB10, RB15, RB20 and RB25) that grown on 10-25 kGy gamma irradiation. The identification result shows that isolate RB10 and RB25 are belong to Methanobacterium genus, while isolate RB15 and RB20 are belong to Methanosarcina and Methanospirillum genus respectively. The specific growth constant (μ) values of the 4 bacterial isolates are in the range between 0.022 - 0.031. On the other hand, the efficiency of methane gas production for each isolates is in the range of 53.4%. - 67.6%. It can be concluded that isolate RB25 was the isolate with the highest specific growth constant (μ) value 0.031 and its efficiency of methane gas production was 67.6%. (author)

  8. Thermoplasmatales and Methanogens: Potential Association with the Crenarchaeol Production in Chinese Soils

    Directory of Open Access Journals (Sweden)

    Fuyan Li

    2017-06-01

    Full Text Available Crenarchaeol is a unique isoprenoid glycerol dibiphytanyl glycerol tetraether (iGDGT lipid, which is only identified in cultures of ammonia-oxidizing Thaumarchaeota. However, the taxonomic origins of crenarchaeol have been debated recently. The archaeal populations, other than Thaumarchaeota, may have associations with the production of crenarchaeol in ecosystems characterized by non-thaumarchaeotal microorganisms. To this end, we investigated 47 surface soils from upland and wetland soils and rice fields and another three surface sediments from river banks. The goal was to examine the archaeal community compositions in comparison with patterns of iGDGTs in four fractional forms (intact polar-, core-, monoglycosidic- and diglycosidic-lipid fractions along gradients of environments. The DistLM analysis identified that Group I.1b Thaumarchaeota were mainly responsible for changes in crenarchaeol in the overall soil samples; however, Thermoplasmatales may also contribute to it. This is further supported by the comparison of crenarchaeol between samples characterized by methanogens, Thermoplasmatales or Group I.1b Thaumarchaeota, which suggests that the former two may contribute to the crenarchaeol pool. Last, when samples containing enhanced abundance of Thermoplasmatales and methanogens were considered, crenarchaeol was observed to correlate positively with Thermoplasmatales and archaeol, respectively. Collectively, our data suggest that the crenarchaeol production is mainly derived from Thaumarchaeota and partly associated with uncultured representatives of Thermoplasmatales and archaeol-producing methanogens in soil environments that may be in favor of their growth. Our finding supports the notion that Thaumarchaeota may not be the sole source of crenarchaeol in the natural environment, which may have implication for the evolution of lipid synthesis among different types of archaea.

  9. Microbial diversity of western Canadian subsurface coal beds and methanogenic coal enrichment cultures

    Energy Technology Data Exchange (ETDEWEB)

    Penner, Tara J.; Foght, Julia M. [Department of Biological Sciences, University of Alberta, Edmonton, Alberta (Canada); Budwill, Karen [Carbon and Energy Management, Alberta Innovates-Technology Futures, 250 Karl Clark Road, Edmonton, Alberta (Canada)

    2010-05-01

    Coalbed methane is an unconventional fuel source associated with certain coal seams. Biogenic methane can comprise a significant portion of the gas found in coal seams, yet the role of microbes in methanogenesis in situ is uncertain. The purpose of this study was to detect and identify major bacterial and archaeal species associated with coal sampled from sub-bituminous methane-producing coal beds in western Canada, and to examine the potential for methane biogenesis from coal. Enrichment cultures of coal samples were established to determine how nutrient amendment influenced the microbial community and methane production in the laboratory. 16S rRNA gene clone libraries were constructed using DNA extracted and amplified from uncultured coal samples and from methanogenic coal enrichment cultures. Libraries were screened using restriction fragment length polymorphism, and representative clones were sequenced. Most (> 50%) of the bacterial sequences amplified from uncultured coal samples were affiliated with Proteobacteria that exhibit nitrate reduction, nitrogen fixation and/or hydrogen utilization activities, including Pseudomonas, Thauera and Acidovorax spp., whereas enrichment cultures were dominated by Bacteroidetes, Clostridia and/or Lactobacillales. Archaeal 16S rRNA genes could not be amplified from uncultured coal, suggesting that methanogens are present in coal below the detection levels of our methods. However, enrichment cultures established with coal inocula produced significant volumes of methane and the archaeal clone libraries were dominated by sequences closely affiliated with Methanosarcina spp. Enrichment cultures incubated with coal plus organic nutrients produced more methane than either nutrient or coal supplements alone, implying that competent methanogenic consortia exist in coal beds but that nutrient limitations restrict their activity in situ. This report adds to the scant literature on coal bed microbiology and suggests how microbes may be

  10. Magnetite production and transformation in the methanogenic consortia from coastal riverine sediments.

    Science.gov (United States)

    Zheng, Shiling; Wang, Bingchen; Liu, Fanghua; Wang, Oumei

    2017-11-01

    Minerals that contain ferric iron, such as amorphous Fe(III) oxides (A), can inhibit methanogenesis by competitively accepting electrons. In contrast, ferric iron reduced products, such as magnetite (M), can function as electrical conductors to stimulate methanogenesis, however, the processes and effects of magnetite production and transformation in the methanogenic consortia are not yet known. Here we compare the effects on methanogenesis of amorphous Fe (III) oxides (A) and magnetite (M) with ethanol as the electron donor. RNA-based terminal restriction fragment length polymorphism with a clone library was used to analyse both bacterial and archaeal communities. Iron (III)-reducing bacteria including Geobacteraceae and methanogens such as Methanosarcina were enriched in iron oxide-supplemented enrichment cultures for two generations with ethanol as the electron donor. The enrichment cultures with A and non-Fe (N) dominated by the active bacteria belong to Veillonellaceae, and archaea belong to Methanoregulaceae and Methanobacteriaceae, Methanosarcinaceae (Methanosarcina mazei), respectively. While the enrichment cultures with M, dominated by the archaea belong to Methanosarcinaceae (Methanosarcina barkeri). The results also showed that methanogenesis was accelerated in the transferred cultures with ethanol as the electron donor during magnetite production from A reduction. Powder X-ray diffraction analysis indicated that magnetite was generated from microbial reduction of A and M was transformed into siderite and vivianite with ethanol as the electron donor. Our data showed the processes and effects of magnetite production and transformation in the methanogenic consortia, suggesting that significantly different effects of iron minerals on microbial methanogenesis in the iron-rich coastal riverine environment were present.

  11. Anaerobic biodegradation of fluoranthene under methanogenic conditions in presence of surface-active compounds

    DEFF Research Database (Denmark)

    Fuchedzhieva, Nadezhda; Karakashev, Dimitar Borisov; Angelidaki, Irini

    2008-01-01

    for the study were linear alkyl benzene sulphonates (LAS) and rhamnolipid-biosurfactant complex from Pseudomonas sp. PS-17. Biodegradation of fluoranthene was monitored by GC/MS for a period up to 12th day. No change in the fluoranthene concentration was registered after 7th day. The presence of LAS enhanced...... biodegradation was most likely as a result of the increased fluoranthene solubility. The results indicate that LAS can be considered as a promising agent for facilitation of the process of anaerobic polycyclic aromatic hydrocarbons (PAH) biodegradation under methanogenic conditions....

  12. Cultivation of methanogenic community from 2-km deep subseafloor coalbeds using a continuous-flow bioreactor

    Science.gov (United States)

    Imachi, H.; Tasumi, E.; Morono, Y.; Ito, M.; Takai, K.; Inagaki, F.

    2013-12-01

    Deep subseafloor environments associated with hydrocarbon reservoirs have been least explored by previous scientific drilling and hence the nature of deep subseafloor life and its ecological roles in the carbon cycle remain largely unknown. In this study, we performed cultivation of subseafloor methanogenic communities using a continuous-flow bioreactor with polyurethane sponges, called down-flow hanging sponge (DHS) reactor. The sample used for the reactor cultivation was obtained from 2 km-deep coalbeds off the Shimokita Peninsula of Japan, the northwestern Pacific, during the Integrated Ocean Drilling Program (IODP) Expedition 337 using a riser drilling technology of the drilling vessel Chikyu. The coalbed samples were incubated anaerobically in the DHS reactor at the in-situ temperature of 40°C. Synthetic seawater supplemented with a tiny amount of yeast extract, acetate, propionate and butyrate was provided into the DHS reactor. After 34 days of the bioreactor operation, a small production of methane was observed. The methane concentration was gradually increased and the stable carbon isotopic composition of methane was consistency 13C-depleted during the bioreactor operation, indicating the occurrence of microbial methanogenesis. Microscopic observation showed that the enrichment culture contained a variety of microorganisms, including methanogen-like rod-shaped cells with F420 auto-fluorescence. Interestingly, many spore-like particles were observed in the bioreactor enrichment. Phylogenetic analysis of 16S rRNA genes showed the growth of phylogenetically diverse bacteria and archaea in the DHS reactor. Predominant archaeal components were closely related to hydrogenotrophic methanogens within the genus Methanobacterium. Some predominant bacteria were related to the spore-formers within the class Clostridia, which are overall in good agreement with microscopic observations. By analyzing ion images using a nano-scale secondary ion mass spectrometry (Nano

  13. Methanogens Are Major Contributors to Nitrogen Fixation in Soils of the Florida Everglades.

    Science.gov (United States)

    Bae, Hee-Sung; Morrison, Elise; Chanton, Jeffrey P; Ogram, Andrew

    2018-04-01

    The objective of this study was to investigate the interaction of the nitrogen (N) cycle with methane production in the Florida Everglades, a large freshwater wetland. This study provides an initial analysis of the distribution and expression of N-cycling genes in Water Conservation Area 2A (WCA-2A), a section of the marsh that underwent phosphorus (P) loading for many years due to runoff from upstream agricultural activities. The elevated P resulted in increased primary productivity and an N limitation in P-enriched areas. Results from quantitative real-time PCR (qPCR) analyses indicated that the N cycle in WCA-2A was dominated by nifH and nirK / S , with an increasing trend in copy numbers in P-impacted sites. Many nifH sequences (6 to 44% of the total) and nifH transcript sequences (2 to 49%) clustered with the methanogenic Euryarchaeota , in stark contrast to the proportion of core gene sequences representing Archaea (≤0.27% of SSU rRNA genes) for the WCA-2A microbiota. Notably, archaeal nifH gene transcripts were detected at all sites and comprised a significant proportion of total nifH transcripts obtained from the unimpacted site, indicating that methanogens are actively fixing N 2 Laboratory incubations with soils taken from WCA-2A produced nifH transcripts with the production of methane from H 2 plus CO 2 and acetate as electron donors and carbon sources. Methanogenic N 2 fixation is likely to be an important, although largely unrecognized, route through which fixed nitrogen enters the anoxic soils of the Everglades and may have significant relevance regarding methane production in wetlands. IMPORTANCE Wetlands are the most important natural sources of the greenhouse gas methane, and much of that methane emanates from (sub)tropical peatlands. Primary productivity in these peatlands is frequently limited by the availability of nitrogen or phosphorus; however, the response to nutrient limitations of microbial communities that control biogeochemical cycling

  14. The effect of operational conditions on the sludge specific methanogenic activity and sludge biodegradability

    Energy Technology Data Exchange (ETDEWEB)

    Leitao, R. C.; Santaella, S. T.; Haandel, A. C. van; Zeeman, G.; Lettinga, G.

    2009-07-01

    The Specific Methanogenic Activity (SMA) and sludge biodegradability of an anaerobic sludge depends on various operational and environmental conditions imposed to the anaerobic reactor. However, the effects of hydraulic retention time (HRT), influent COD concentration (COD{sub i}nf) and sludge retention time (SRT) on those two parameters need to be elucidated. This knowledge about SMA can provide insights about the capacity of the UASB reactors to withstand organic and hydraulic shock loads, whereas the biodegradability gives information necessary for final disposal of the sludge. (Author)

  15. Enriched ammonia-tolerant methanogenic cultures as bioaugmentation inocula in continuous biomethanation processes

    DEFF Research Database (Denmark)

    Fotidis, Ioannis; Treu, Laura; Angelidaki, Irini

    2017-01-01

    reactor (CSTR), resulted in up to 90% recovery of the methane production compared to the uninhibited production. However, cultivation of pure strains has practical difficulties due to the need of special growth media and sterile conditions. In contrast, acclimatized enriched cultures have minor sterility...... requirements. In the current study, an enriched ammonia-tolerant methanogenic culture was bioaugmented in a CSTR reactor operating under ammonia-induced, inhibited-steady-state. The results demonstrated that bioaugmentation, completely counteracted the ammonia toxicity effect. This indicates that a commercial...

  16. Methanotrophs, methanogens and microbial community structure in livestock slurry surface crusts

    DEFF Research Database (Denmark)

    Duan, Y.F.; Abu Al-Soud, Waleed; Brejnrod, Asker Daniel

    2014-01-01

    , and Methylosarcina of Type I, and Methylocystis of Type II, dominated the methane-oxidizing bacteria (MOB) community, whereas Methanocorpusculum was the predominant methanogen. Higher numbers of operational taxonomic units (OTUs) representing Type I than Type II MOB were found in all crusts. Potential CH4 oxidation...... rates were determined by incubating crusts with CH4, and CH4 oxidization was observed in cattle, but not in swine slurry crusts. Conclusions: Slurry surface crusts harbour a diverse microbial community. Type I MOB are more diverse and abundant than Type II MOB in this environment. The distinct CH4...

  17. The effect of operational conditions on the sludge specific methanogenic activity and sludge biodegradability

    International Nuclear Information System (INIS)

    Leitao, R. C.; Santaella, S. T.; Haandel, A. C. van; Zeeman, G.; Lettinga, G.

    2009-01-01

    The Specific Methanogenic Activity (SMA) and sludge biodegradability of an anaerobic sludge depends on various operational and environmental conditions imposed to the anaerobic reactor. However, the effects of hydraulic retention time (HRT), influent COD concentration (COD i nf) and sludge retention time (SRT) on those two parameters need to be elucidated. This knowledge about SMA can provide insights about the capacity of the UASB reactors to withstand organic and hydraulic shock loads, whereas the biodegradability gives information necessary for final disposal of the sludge. (Author)

  18. Impact of fulvic acids on bio-methanogenic treatment of municipal solid waste incineration leachate.

    Science.gov (United States)

    Dang, Yan; Lei, Yuqing; Liu, Zhao; Xue, Yiting; Sun, Dezhi; Wang, Li-Ying; Holmes, Dawn E

    2016-12-01

    A considerable amount of leachate with high fulvic acid (FA) content is generated during the municipal solid waste (MSW) incineration process. This incineration leachate is usually processed by downstream bio-methanogenic treatment. However, few studies have examined the impact that these compounds have on methanogenesis and how they are degraded and transformed during the treatment process. In this study, a laboratory-scale expanded granular sludge bed (EGSB) reactor was operated with MSW incineration leachate containing various concentrations of FA (1500 mg/L to 8000 mg/L) provided as the influent. We found that FA degradation rates decreased from 86% to 72% when FA concentrations in the reactor were increased, and that molecular size, level of humification and aromatization of the residual FA macromolecules all increased after bio-methanogenic treatment. Increasing FA influent concentrations also inhibited growth of hydrogenotrophic methanogens from the genus Methanobacterium and syntrophic bacteria from the genus Syntrophomonas, which resulted in a decrease in methane production and a concomitant increase in CO 2 content in the biogas. Sequences most similar to species from the genus Anaerolinea went up as FA concentrations increased. Bacteria from this genus are capable of extracellular electron transfer and may be using FA as an electron acceptor for growth or as a shuttle for syntrophic exchange with other microorganisms in the reactor. In order to determine whether FA could serve as an electron shuttle to promote syntrophy in an anaerobic digester, co-cultures of Geobacter metallireducens and G. sulfurreducens were grown in the presence of FA from raw leachate or from residual bioreactor effluent. While raw FA stimulated electron transfer between these two bacteria, residual FA did not have any electron shuttling abilities, indicating that FA underwent a significant transformation during the bio-methanogenic treatment process. These results are

  19. Methanogenic Paraffin Biodegradation: Alkylsuccinate Synthase Gene Quantification and Dicarboxylic Acid Production.

    Science.gov (United States)

    Oberding, Lisa K; Gieg, Lisa M

    2018-01-01

    Paraffinic n -alkanes (>C 17 ) that are solid at ambient temperature comprise a large fraction of many crude oils. The comparatively low water solubility and reactivity of these long-chain alkanes can lead to their persistence in the environment following fuel spills and pose serious problems for crude oil recovery operations by clogging oil production wells. However, the degradation of waxy paraffins under the anoxic conditions characterizing contaminated groundwater environments and deep subsurface energy reservoirs is poorly understood. Here, we assessed the ability of a methanogenic culture enriched from freshwater fuel-contaminated aquifer sediments to biodegrade the model paraffin n -octacosane (C 28 H 58 ). Compared with that in controls, the consumption of n -octacosane was coupled to methane production, demonstrating its biodegradation under these conditions. Smithella was postulated to be an important C 28 H 58 degrader in the culture on the basis of its high relative abundance as determined by 16S rRNA gene sequencing. An identified assA gene (known to encode the α subunit of alkylsuccinate synthase) aligned most closely with those from other Smithella organisms. Quantitative PCR (qPCR) and reverse transcription qPCR assays for assA demonstrated significant increases in the abundance and expression of this gene in C 28 H 58 -degrading cultures compared with that in controls, suggesting n -octacosane activation by fumarate addition. A metabolite analysis revealed the presence of several long-chain α,ω-dicarboxylic acids only in the C 28 H 58 -degrading cultures, a novel observation providing clues as to how methanogenic consortia access waxy hydrocarbons. The results of this study broaden our understanding of how waxy paraffins can be biodegraded in anoxic environments with an application toward bioremediation and improved oil recovery. IMPORTANCE Understanding the methanogenic biodegradation of different classes of hydrocarbons has important

  20. A mathematical model for the interactive behavior of sulfate-reducing bacteria and methanogens during anaerobic digestion.

    Science.gov (United States)

    Ahammad, S Ziauddin; Gomes, James; Sreekrishnan, T R

    2011-09-01

    Anaerobic degradation of waste involves different classes of microorganisms, and there are different types of interactions among them for substrates, terminal electron acceptors, and so on. A mathematical model is developed based on the mass balance of different substrates, products, and microbes present in the system to study the interaction between methanogens and sulfate-reducing bacteria (SRB). The performance of major microbial consortia present in the system, such as propionate-utilizing acetogens, butyrate-utilizing acetogens, acetoclastic methanogens, hydrogen-utilizing methanogens, and SRB were considered and analyzed in the model. Different substrates consumed and products formed during the process also were considered in the model. The experimental observations and model predictions showed very good prediction capabilities of the model. Model prediction was validated statistically. It was observed that the model-predicted values matched the experimental data very closely, with an average error of 3.9%.

  1. Heavy-machinery traffic impacts methane emissions as well as methanogen abundance and community structure in oxic forest soils.

    Science.gov (United States)

    Frey, Beat; Niklaus, Pascal A; Kremer, Johann; Lüscher, Peter; Zimmermann, Stephan

    2011-09-01

    Temperate forest soils are usually efficient sinks for the greenhouse gas methane, at least in the absence of significant amounts of methanogens. We demonstrate here that trafficking with heavy harvesting machines caused a large reduction in CH(4) consumption and even turned well-aerated forest soils into net methane sources. In addition to studying methane fluxes, we investigated the responses of methanogens after trafficking in two different forest sites. Trafficking generated wheel tracks with different impact (low, moderate, severe, and unaffected). We found that machine passes decreased the soils' macropore space and lowered hydraulic conductivities in wheel tracks. Severely compacted soils yielded high methanogenic abundance, as demonstrated by quantitative PCR analyses of methyl coenzyme M reductase (mcrA) genes, whereas these sequences were undetectable in unaffected soils. Even after a year after traffic compression, methanogen abundance in compacted soils did not decline, indicating a stability of methanogens here over time. Compacted wheel tracks exhibited a relatively constant community structure, since we found several persisting mcrA sequence types continuously present at all sampling times. Phylogenetic analysis revealed a rather large methanogen diversity in the compacted soil, and most mcrA gene sequences were mostly similar to known sequences from wetlands. The majority of mcrA gene sequences belonged either to the order Methanosarcinales or Methanomicrobiales, whereas both sites were dominated by members of the families Methanomicrobiaceae Fencluster, with similar sequences obtained from peatland environments. The results show that compacting wet forest soils by heavy machinery causes increases in methane production and release.

  2. Application of stable isotope measurements and microbiological analysis for detecting methanogenic activity in a temperate forest wetland

    Science.gov (United States)

    Itoh, M.; Katsuyama, C.; Kondo, N.; Ohte, N.; Kato, K.

    2009-12-01

    Generally, forest soils act as a sink for methane (CH4). However, wetlands in riparian zones are recently reported to be “hot spots” of CH4 emissions, especially in forests under a humid climate. To understand how environmental conditions (i.e. hydrological and/or geomorphic condition) control on CH4 production, we investigated both methanogenic pathways (CO2/H2 reduction and acetate fermentation) and metahanogenic microbial communities in a wetland in a temperate forest catchment, central Japan. We used stable carbon isotopic analysis for detecting change in methanogenic pathways, and applied microbiological analysis for understanding the structure of methanogenic community. CH4 emission rates in wetland were strongly dependent on soil temperatures, and were highest in summer and lowest in winter. δ13CO2 increased with CH4 production in every summer, suggesting preferential use of 12CO2 as substrate for CO2/H2 reduction methanogenesis during high CH4 production period. δ13CH4 also increased in summer with δ13CO2. δ13CH4 changed more wildly than δ13CO2 did in summer with normal precipitation when CH4 production was strongly activated under high temperature and high groundwater table condition. This indicates increase in acetoclastic methanogenesis under hot and wet condition, considering that acetclastic methnogens produce heavier CH4 than that from CO2/H2 reducing pathway. Methanogen community composition estimated by cloning and sequence analyses implied that both acetoclastic and CO2/H2 reducing methanogens prevailed in wetland soil sampled in summer. This was consistent with the results of isotope measuremaents. Our results contribute to understand fully how the CH4 production changes with environmental conditions, with considering the activities of both main methanogenic pathway (from CO2 and acetate).

  3. Hydrogen limitation and syntrophic growth among natural assemblages of thermophilic methanogens at deep-sea hydrothermal vents

    Directory of Open Access Journals (Sweden)

    Begüm D. Topçuoğlu

    2016-08-01

    Full Text Available Thermophilic methanogens are common autotrophs at hydrothermal vents, but their growth constraints and dependence on H2 syntrophy in situ are poorly understood. Between 2012 and 2015, methanogens and H2-producing heterotrophs were detected by growth at 80°C and 55°C at most diffuse (7-40°C hydrothermal vent sites at Axial Seamount. Microcosm incubations of diffuse hydrothermal fluids at 80°C and 55°C demonstrated that growth of thermophilic and hyperthermophilic methanogens is primarily limited by H2 availability. Amendment of microcosms with NH4+ generally had no effect on CH4 production. However, annual variations in abundance and CH4 production were observed in relation to the eruption cycle of the seamount. Microcosm incubations of hydrothermal fluids at 80°C and 55°C supplemented with tryptone and no added H2 showed CH4 production indicating the capacity in situ for methanogenic H2 syntrophy. 16S rRNA genes were found in 80°C microcosms from H2-producing archaea and H2-consuming methanogens, but not for any bacteria. In 55°C microcosms, sequences were found from the H2-producing bacteria and H2-consuming methanogens and sulfate-reducing bacteria. A co-culture of representative organisms showed that Thermococcus paralvinellae supported the syntrophic growth of Methanocaldococcus bathoardescens at 82°C and Methanothermococcus sp. strain BW11 at 60°C. The results demonstrate that modeling of subseafloor methanogenesis should focus primarily on H2 availability and temperature, and that thermophilic H2 syntrophy can support methanogenesis within natural microbial assemblages and may be an important energy source for thermophilic autotrophs in marine geothermal environments.

  4. Comparison of methanogen diversity of yak (Bos grunniens) and cattle (Bos taurus) from the Qinghai-Tibetan plateau, China

    Science.gov (United States)

    2012-01-01

    Background Methane emissions by methanogen from livestock ruminants have significantly contributed to the agricultural greenhouse gas effect. It is worthwhile to compare methanogen from “energy-saving” animal (yak) and normal animal (cattle) in order to investigate the link between methanogen structure and low methane production. Results Diversity of methanogens from the yak and cattle rumen was investigated by analysis of 16S rRNA gene sequences from rumen digesta samples from four yaks (209 clones) and four cattle (205 clones) from the Qinghai-Tibetan Plateau area (QTP). Overall, a total of 414 clones (i.e. sequences) were examined and assigned to 95 operational taxonomic units (OTUs) using MOTHUR, based upon a 98% species-level identity criterion. Forty-six OTUs were unique to the yak clone library and 34 OTUs were unique to the cattle clone library, while 15 OTUs were found in both libraries. Of the 95 OTUs, 93 putative new species were identified. Sequences belonging to the Thermoplasmatales-affiliated Linage C (TALC) were found to dominate in both libraries, accounting for 80.9% and 62.9% of the sequences from the yak and cattle clone libraries, respectively. Sequences belonging to the Methanobacteriales represented the second largest clade in both libraries. However, Methanobrevibacter wolinii (QTPC 110) was only found in the cattle library. The number of clones from the order Methanomicrobiales was greater in cattle than in the yak clone library. Although the Shannon index value indicated similar diversity between the two libraries, the Libshuff analysis indicated that the methanogen community structure of the yak was significantly different than those from cattle. Conclusion This study revealed for the first time the molecular diversity of methanogen community in yaks and cattle in Qinghai-Tibetan Plateau area in China. From the analysis, we conclude that yaks have a unique rumen microbial ecosystem that is significantly different from that of cattle

  5. Effects of mineral salt supplement on enteric methane emissions, ruminal fermentation and methanogen community of lactating cows.

    Science.gov (United States)

    Li, Xiaohua; Liu, Chong; Chen, Yongxing; Shi, Rongguang; Cheng, Zhenhua; Dong, Hongmin

    2017-08-01

    We evaluated the effects of mineral salt supplement on enteric methane emissions, ruminal fermentation and methanogen community of dairy cows over a whole lactation period. Ten Holstein cows fed a total mixed ration (TMR) diet were randomly allocated into two groups, one supplied with mineral salts as the treatment group and the other as the control group. The methane measurement showed that the ingestion of mineral salts lowered enteric methane emissions significantly (P methane emissions by mineral salt intake could be attributed to decreased density of methanogenic archaea and that fluctuations in methane emission over the lactation period might be related to Methanobrevibacter diversity. © 2016 Japanese Society of Animal Science.

  6. Immobilization patterns and dynamics of acetate-utilizing methanogens in sterile granular sludge from upflow anaerobic sludge blanket (UASB) reactors

    DEFF Research Database (Denmark)

    Schmidt, Jens Ejbye; Ahring, Birgitte Kiær

    1999-01-01

    Sterile granular sludge was inoculated with either Methanosarcina mazeii S-6, Methanosaeta concilii GP-6, or both species in acetate-fea upflow anaerobic sludge blanket (UASB) reactors to investigate the immobilization patterns and dynamics of aceticlastic methanogens in granular sludge. After......, but where the acetate concentration was low this strain was immobilized on support material as single cells or small clumps, The data clearly show that the two aceticlastic methanogens immobilize differently in UASB systems, depending on the conditions found throughout the UASB reactor....

  7. Immobilization patterns and dynamics of acetate-utilizing methanogens immobilized in sterile granular sludge in upflow anaerobic sludge blanket reactors

    DEFF Research Database (Denmark)

    Schmidt, Jens Ejbye; Ahring, Birgitte Kiær

    1999-01-01

    Sterile granular sludge was inoculated with either Methanosarcina mazeii S-6, Methanosaeta concilii GP-6, or both species in acetate-fea upflow anaerobic sludge blanket (UASB) reactors to investigate the immobilization patterns and dynamics of aceticlastic methanogens in granular sludge. After......, but where the acetate concentration was low this strain was immobilized on support material as single cells or small clumps, The data clearly show that the two aceticlastic methanogens immobilize differently in UASB systems, depending on the conditions found throughout the UASB reactor....

  8. Long-term effects of operating temperature and sulphate addition on the methanogenic community structure of anaerobic hybrid reactors.

    Science.gov (United States)

    Pender, Seán; Toomey, Margaret; Carton, Micheál; Eardly, Dónal; Patching, John W; Colleran, Emer; O'Flaherty, Vincent

    2004-02-01

    The diversity, population dynamics, and activity profiles of methanogens in anaerobic granular sludges from two anaerobic hybrid reactors treating a molasses wastewater both mesophilically (37 degrees C) and thermophilically (55 degrees C) during a 1081 day trial were determined. The influent to one of the reactors was supplemented with sulphate, after an acclimation period of 112 days, to determine the effect of competition with sulphate-reducing bacteria on the methanogenic community structure. Sludge samples were removed from the reactors at intervals throughout the operational period and examined by amplified ribosomal DNA (rDNA) restriction analysis (ARDRA) and partial sequencing of 16S rRNA genes. In total, 18 operational taxonomic units (OTUs) were identified, 12 of which were sequenced. The methanogenic communities in both reactors changed during the operational period. The seed sludge and the reactor biomass sampled during mesophilic operation, both in the presence and absence of sulphate, was characterised by a predominance of Methanosaeta spp. Following temperature elevation, the dominant methanogenic sequences detected in the non-sulphate supplemented reactor were closely related to Methanocorpusculum parvum. By contrast, the dominant OTUs detected in the sulphate-supplemented reactor upon temperature increase were related to the hydrogen-utilising methanogen, Methanobacterium thermoautotrophicum. The observed methanogenic community structure in the reactors correlated with the operational performance of the reactors during the trial and with physiological measurements of the reactor biomass. Both reactors achieved chemical oxygen demand (COD) removal efficiencies of over 90% during mesophilic operation, with or without sulphate supplementation. During thermophilic operation, the presence of sulphate resulted in decreased reactor performance (effluent acetate concentrations of >3000 mg/l and biogas methane content of acetate at 55 degrees C was

  9. Renewable Generators' Consortium: ensuring a market for green electricity

    International Nuclear Information System (INIS)

    1999-03-01

    This project summary focuses on the objectives and key achievements of the Renewable Generators Consortium (RGC) which was established to help renewable energy projects under the Non-Fossil Fuel Obligation (NFFO) to continue to generate in the open liberated post-1998 electricity market. The background to the NFFO is traced, and the development of the Consortium, and the attitudes of generators and suppliers to the Consortium are discussed along with the advantages of collective negotiations through the RGC, the Heads of Terms negotiations, and the success of RGC which has demonstrated the demand for green electricity

  10. Establishing an International Soil Modelling Consortium

    Science.gov (United States)

    Vereecken, Harry; Schnepf, Andrea; Vanderborght, Jan

    2015-04-01

    -change-feedback processes, bridge basic soil science research and management, and facilitate the communication between science and society . To meet these challenges an international community effort is required, similar to initiatives in systems biology, hydrology, and climate and crop research. We therefore propose to establish an international soil modelling consortium with the aims of 1) bringing together leading experts in modelling soil processes within all major soil disciplines, 2) addressing major scientific gaps in describing key processes and their long term impacts with respect to the different functions and ecosystem services provided by soil, 3) intercomparing soil model performance based on standardized and harmonized data sets, 4) identifying interactions with other relevant platforms related to common data formats, protocols and ontologies, 5) developing new approaches to inverse modelling, calibration, and validation of soil models, 6) integrating soil modelling expertise and state of the art knowledge on soil processes in climate, land surface, ecological, crop and contaminant models, and 7) linking process models with new observation, measurement and data evaluation technologies for mapping and characterizing soil properties across scales. Our consortium will bring together modelers and experimental soil scientists at the forefront of new technologies and approaches to characterize soils. By addressing these aims, the consortium will contribute to improve the role of soil modeling as a knowledge dissemination instrument in addressing key global issues and stimulate the development of translational research activities. This presentation will provide a compelling case for this much-needed effort, with a focus on tangible benefits to the scientific and food security communities.

  11. SEEA SOUTHEAST CONSORTIUM FINAL TECHNICAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Block, Timothy [Southeast Energy Efficiency Alliance; Ball, Kia [Southeast Energy Efficiency Alliance; Fournier, Ashley [Southeast Energy Efficiency Alliance

    2014-01-21

    In 2010 the Southeast Energy Efficiency Alliance (SEEA) received a $20 million Energy Efficiency and Conservation Block Grant (EECBG) under the U.S. Department of Energy’s Better Building Neighborhood Program (BBNP). This grant, funded by the American Recovery and Reinvestment Act, also included sub-grantees in 13 communities across the Southeast, known as the Southeast Consortium. The objective of this project was to establish a framework for energy efficiency retrofit programs to create models for replication across the Southeast and beyond. To achieve this goal, SEEA and its project partners focused on establishing infrastructure to develop and sustain the energy efficiency market in specific localities across the southeast. Activities included implementing minimum training standards and credentials for marketplace suppliers, educating and engaging homeowners on the benefits of energy efficiency through strategic marketing and outreach and addressing real or perceived financial barriers to investments in whole-home energy efficiency through a variety of financing mechanisms. The anticipated outcome of these activities would be best practice models for program design, marketing, financing, data collection and evaluation as well as increased market demand for energy efficiency retrofits and products. The Southeast Consortium’s programmatic impacts along with the impacts of the other BBNP grantees would further the progress towards the overall goal of energy efficiency market transformation. As the primary grantee SEEA served as the overall program administrator and provided common resources to the 13 Southeast Consortium sub-grantees including contracted services for contractor training, quality assurance testing, data collection, reporting and compliance. Sub-grantee programs were located in cities across eight states including Alabama, Florida, Georgia, Louisiana, North Carolina, South Carolina, Tennessee, Virginia and the U.S. Virgin Islands. Each sub

  12. Archaea and Bacteria Acclimate to High Total Ammonia in a Methanogenic Reactor Treating Swine Waste

    Directory of Open Access Journals (Sweden)

    Sofia Esquivel-Elizondo

    2016-01-01

    Full Text Available Inhibition by ammonium at concentrations above 1000 mgN/L is known to harm the methanogenesis phase of anaerobic digestion. We anaerobically digested swine waste and achieved steady state COD-removal efficiency of around 52% with no fatty-acid or H2 accumulation. As the anaerobic microbial community adapted to the gradual increase of total ammonia-N (NH3-N from 890±295 to 2040±30 mg/L, the Bacterial and Archaeal communities became less diverse. Phylotypes most closely related to hydrogenotrophic Methanoculleus (36.4% and Methanobrevibacter (11.6%, along with acetoclastic Methanosaeta (29.3%, became the most abundant Archaeal sequences during acclimation. This was accompanied by a sharp increase in the relative abundances of phylotypes most closely related to acetogens and fatty-acid producers (Clostridium, Coprococcus, and Sphaerochaeta and syntrophic fatty-acid Bacteria (Syntrophomonas, Clostridium, Clostridiaceae species, and Cloacamonaceae species that have metabolic capabilities for butyrate and propionate fermentation, as well as for reverse acetogenesis. Our results provide evidence countering a prevailing theory that acetoclastic methanogens are selectively inhibited when the total ammonia-N concentration is greater than ~1000 mgN/L. Instead, acetoclastic and hydrogenotrophic methanogens coexisted in the presence of total ammonia-N of ~2000 mgN/L by establishing syntrophic relationships with fatty-acid fermenters, as well as homoacetogens able to carry out forward and reverse acetogenesis.

  13. Effect of didecyl dimethyl ammonium chloride on nitrate reduction in a mixed methanogenic culture.

    Science.gov (United States)

    Tezel, U; Pierson, J A; Pavlostathis, S G

    2008-01-01

    The effect of the quaternary ammonium compound, didecyl dimethyl ammonium chloride (DDAC), on nitrate reduction was investigated at concentrations up to 100 mg/L in a batch assay using a mixed, mesophilic (35 degrees C) methanogenic culture. Glucose was used as the carbon and energy source and the initial nitrate concentration was 70 mg N/L. Dissimilatory nitrate reduction to ammonia (DNRA) and to dinitrogen (denitrification) were observed at DDAC concentrations up to 25 mg/L. At and above 50 mg DDAC/L, DNRA was inhibited and denitrification was incomplete resulting in accumulation of nitrous oxide. At DDAC concentrations above 10 mg/L, production of nitrous oxide, even transiently, resulted in complete, long-term inhibition of methanogenesis and accumulation of volatile fatty acids. Fermentation was inhibited at and above 75 mg DDAC/L. DDAC suppressed microbial growth and caused cell lysis at a concentration 50 mg/L or higher. Most of the added DDAC was adsorbed on the biomass. Over 96% of the added DDAC was recovered from all cultures at the end of the 100-days incubation period, indicating that DDAC did not degrade in the mixed methanogenic culture under the conditions of this study.

  14. Early stages in biofilm development in methanogenic fluidized-bed reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lauwers, A.M.; Heinen, W.; Gorris, L.G.M.; Drift, C. van der (Katholieke Univ. Nijmegen (Netherlands). Dept. of Microbiology and Evolution Biology)

    1990-06-01

    Biofilm development in methanogenic fluidized-bed reactors with sand as the carrier was studied on a laboratory scale. The microorganisms present in consecutive layers of the biofilm of mature sludge granules were prelimilarily characterized on the basis of their morphology, element composition and adhesion capacity and were compared to bacteria which take part in the initial colonization of sand. The early phase of biofilm development was monitored with reactors receiving waste-waters containing different mixtures of volatile fatty acids and inoculated with fluidized-bed reactor effluent for different lengths of time. The results obtained indicate that facultative anaerobic bacteria abundantly present in the outermost biofilm layers of mature sludge granules are probably the main primary colonizers of the sand. Methanothrix spp. or other methanogens were rarely observed among the primary colonizers. The course of biofilm formation was comparable under the various start-up conditions employed including variations in waste-water composition, inoculation and anaerobicity. However, omission of waste-water and thus of substrate resulted in rapid wash-out of the attached biomass. (orig.).

  15. Chemical structure-based predictive model for methanogenic anaerobic biodegradation potential.

    Science.gov (United States)

    Meylan, William; Boethling, Robert; Aronson, Dallas; Howard, Philip; Tunkel, Jay

    2007-09-01

    Many screening-level models exist for predicting aerobic biodegradation potential from chemical structure, but anaerobic biodegradation generally has been ignored by modelers. We used a fragment contribution approach to develop a model for predicting biodegradation potential under methanogenic anaerobic conditions. The new model has 37 fragments (substructures) and classifies a substance as either fast or slow, relative to the potential to be biodegraded in the "serum bottle" anaerobic biodegradation screening test (Organization for Economic Cooperation and Development Guideline 311). The model correctly classified 90, 77, and 91% of the chemicals in the training set (n = 169) and two independent validation sets (n = 35 and 23), respectively. Accuracy of predictions of fast and slow degradation was equal for training-set chemicals, but fast-degradation predictions were less accurate than slow-degradation predictions for the validation sets. Analysis of the signs of the fragment coefficients for this and the other (aerobic) Biowin models suggests that in the context of simple group contribution models, the majority of positive and negative structural influences on ultimate degradation are the same for aerobic and methanogenic anaerobic biodegradation.

  16. Abiotic and biotic transformations of 1,1,1-trichloroethane under methanogenic conditions

    International Nuclear Information System (INIS)

    Vogel, T.M.; McCarty, P.L.

    1987-01-01

    A common industrial solvent, 1,1,1-trichloroethane (TCA), is one of the most frequently found contaminants in ground water. The fate of TCA in ground water is complicated by the different possible abiotic and biotic transformations that it may undergo. Abiotic transformation of TCA can result in a mixture of 1,1-dichloro-ethylene (1,1-DCE) and acetic acid, as shown by others. This study confirms that TCA can be biotransformed by reductive dehalogenation to 1,1-dichloroethane (1,1-DCA) and chloroethane (CA) under methanogenic conditions. Also, reductive dehalogenation of 1,1-DCE to vinyl chloride (VC) is confirmed. This study demonstrates that these transformations can occur stoichiometrically. In addition, [ 14 C]TCA, [ 14 C]-1,1-DCA, [ 14 C]-1,1-DCE, [ 14 C]CA, and [ 14 C]VC were at least partially mineralized to 14 CO 2 under similar methanogenic conditions.23 references, 3 figures, 4 tables

  17. Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions

    International Nuclear Information System (INIS)

    Vogel, T.M.; McCarty, P.L.

    1985-01-01

    Tetrachloroethylene (PCE) and trichloroethylene (TCE), common industrial solvents, are among the most frequent contaminants found in groundwater supplies. Due to the potential toxicity and carcinogenicity of chlorinated ethylenes, knowledge about their transformation potential is important in evaluating their environmental fate. The results of this study confirm that PCE can be transformed by reductive dehalogenation to TCE, dichloroethylene, and vinyl chloride (VC) under anaerobic conditions. In addition, [ 14 C]PCE was at least partially mineralized to CO 2 . Mineralization of 24% of the PCE occurred in a continuous-flow fixed-film methanogenic column with a liquid detention time of 4 days. TCE was the major intermediate formed, but traces of dichloroethylene isomers and VC were also found. In other column studies under a different set of methanogenic conditions, nearly quantitative conversion of PCE to VC was found. These studies clearly demonstrate that TCE and VC are major intermediates in PCE biotransformation under anaerobic conditions and suggest that the potential exists for the complete mineralization of PCE to CO 2 in soil and aquifer systems and in biological treatment processes

  18. Unexpected competitiveness of Methanosaeta populations at elevated acetate concentrations in methanogenic treatment of animal wastewater.

    Science.gov (United States)

    Chen, Si; Cheng, Huicai; Liu, Jiang; Hazen, Terry C; Huang, Vicki; He, Qiang

    2017-02-01

    Acetoclastic methanogenesis is a key metabolic process in anaerobic digestion, a technology with broad applications in biogas production and waste treatment. Acetoclastic methanogenesis is known to be performed by two archaeal genera, Methanosaeta and Methanosarcina. The conventional model posits that Methanosaeta populations are more competitive at low acetate levels (competitiveness of Methanosaeta at elevated acetate was further supported by the enrichment of Methanosaeta with high concentrations of acetate (20 mM). The dominance of Methanosaeta in the methanogen community could be reproduced in anaerobic digesters with the direct addition of acetate to above 20 mM, again supporting the competitiveness of Methanosaeta over Methanosarcina at elevated acetate levels. This study for the first time systematically demonstrated that the dominance of Methanosaeta populations in anaerobic digestion could be linked to the competitiveness of Methanosaeta at elevated acetate concentrations. Given the importance of acetoclastic methanogenesis in biological methane production, findings from this study could have major implications for developing strategies for more effective control of methanogenic treatment processes.

  19. Low Pressure Tolerance by Methanogens in an Aqueous Environment: Implications for Subsurface Life on Mars

    Science.gov (United States)

    Mickol, R. L.; Kral, T. A.

    2017-12-01

    The low pressure at the surface of Mars (average: 6 mbar) is one potentially biocidal factor that any extant life on the planet would need to endure. Near subsurface life, while shielded from ultraviolet radiation, would also be exposed to this low pressure environment, as the atmospheric gas-phase pressure increases very gradually with depth. Few studies have focused on low pressure as inhibitory to the growth or survival of organisms. However, recent work has uncovered a potential constraint to bacterial growth below 25 mbar. The study reported here tested the survivability of four methanogen species ( Methanothermobacter wolfeii, Methanosarcina barkeri, Methanobacterium formicicum, Methanococcus maripaludis) under low pressure conditions approaching average martian surface pressure (6 mbar - 143 mbar) in an aqueous environment. Each of the four species survived exposure of varying length (3 days - 21 days) at pressures down to 6 mbar. This research is an important stepping-stone to determining if methanogens can actively metabolize/grow under these low pressures. Additionally, the recently discovered recurring slope lineae suggest that liquid water columns may connect the surface to deeper levels in the subsurface. If that is the case, any organism being transported in the water column would encounter the changing pressures during the transport.

  20. Effects of biopretreatment on pyrolysis behaviors of corn stalk by methanogen.

    Science.gov (United States)

    Wang, Tipeng; Ye, Xiaoning; Yin, Jun; Lu, Qiang; Zheng, Zongming; Dong, Changqing

    2014-07-01

    The study investigated the effects of methanogen pretreatment on pyrolysis behaviors of corn stalk (CS) by using Py-GC/MS analysis and thermogravimetric analysis. Results indicated that biopretreatment changed considerably the pyrolysis behaviors of CS from four weight loss stages to two weight loss stages. Increasing biopretreatment time from 5 days to 25 days enhanced the kinds and contents of chemicals in volatile products. In pyrolysis products, the contents of sugars, linear ketones and furans decreased from 1.43%, 12.60% and 7.38% to 1.25%, 10.22% and 3.25%, respectively, and the contents of phenols increased from 15.08% to 27.84%. The most content change from 6.83% to 13.63% indicated that methanogen pretreatment improved the pyrolysis selectivity of CS to product the 4-VP, but it was disadvantageous to 5-hydroxymethyl furfural, levoglucose and furfural. The changes of chemical compositions and structure of CS after biopretreatment were the main reason of the differences. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Low Pressure Tolerance by Methanogens in an Aqueous Environment: Implications for Subsurface Life on Mars.

    Science.gov (United States)

    Mickol, R L; Kral, T A

    2017-12-01

    The low pressure at the surface of Mars (average: 6 mbar) is one potentially biocidal factor that any extant life on the planet would need to endure. Near subsurface life, while shielded from ultraviolet radiation, would also be exposed to this low pressure environment, as the atmospheric gas-phase pressure increases very gradually with depth. Few studies have focused on low pressure as inhibitory to the growth or survival of organisms. However, recent work has uncovered a potential constraint to bacterial growth below 25 mbar. The study reported here tested the survivability of four methanogen species (Methanothermobacter wolfeii, Methanosarcina barkeri, Methanobacterium formicicum, Methanococcus maripaludis) under low pressure conditions approaching average martian surface pressure (6 mbar - 143 mbar) in an aqueous environment. Each of the four species survived exposure of varying length (3 days - 21 days) at pressures down to 6 mbar. This research is an important stepping-stone to determining if methanogens can actively metabolize/grow under these low pressures. Additionally, the recently discovered recurring slope lineae suggest that liquid water columns may connect the surface to deeper levels in the subsurface. If that is the case, any organism being transported in the water column would encounter the changing pressures during the transport.

  2. Steady state characteristics of acclimated hydrogenotrophic methanogens on inorganic substrate in continuous chemostat reactors.

    Science.gov (United States)

    Ako, Olga Y; Kitamura, Y; Intabon, K; Satake, T

    2008-09-01

    A Monod model has been used to describe the steady state characteristics of the acclimated mesophilic hydrogenotrophic methanogens in experimental chemostat reactors. The bacteria were fed with mineral salts and specific trace metals and a H(2)/CO(2) supply was used as a single limited substrate. Under steady state conditions, the growth yield (Y(CH4)) reached 11.66 g cells per mmol of H(2)/CO(2) consumed. The daily cells generation average was 5.67 x 10(11), 5.25 x 10(11), 4.2 x 10(11) and 2.1 x 10(11) cells/l-culture for the dilutions 0.071/d, 0.083/d, 0.1/d and 0.125/d, respectively. The maximum specific growth rate (mu(max)) and the Monod half-saturation coefficient (K(S)) were 0.15/d and 0.82 g/L, respectively. Using these results, the reactor performance was simulated. During the steady state, the simulation predicts the dependence of the H(2)/CO(2) concentration (S) and the cell concentration (X) on the dilution rate. The model fitted the experimental data well and was able to yield a maximum methanogenic activity of 0.24 L CH(4)/g VSS.d. The dilution rate was estimated to be 0.1/d. At the dilution rate of 0.14/d, the exponential cells washout was achieved.

  3. Multi-University Southeast INIE Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Ayman Hawari; Nolan Hertel; Mohamed Al-Sheikhly; Laurence Miller; Abdel-Moeze Bayoumi; Ali Haghighat; Kenneth Lewis

    2010-12-29

    2 Project Summary: The Multi-University Southeast INIE Consortium (MUSIC) was established in response to the US Department of Energy’s (DOE) Innovations in Nuclear Infrastructure and Education (INIE) program. MUSIC was established as a consortium composed of academic members and national laboratory partners. The members of MUSIC are the nuclear engineering programs and research reactors of Georgia Institute of Technology (GIT), North Carolina State University (NCSU), University of Maryland (UMD), University of South Carolina (USC), and University of Tennessee (UTK). The University of Florida (UF), and South Carolina State University (SCSU) were added to the MUSIC membership in the second year. In addition, to ensure proper coordination between the academic community and the nation’s premier research and development centers in the fields of nuclear science and engineering, MUSIC created strategic partnerships with Oak Ridge National Laboratory (ORNL) including the Spallation Neutron Source (SNS) project and the Joint Institute for Neutron Scattering (JINS), and the National Institute of Standards and Technology (NIST). A partnership was also created with the Armed Forces Radiobiology Research Institute (AFRRI) with the aim of utilizing their reactor in research if funding becomes available. Consequently, there are three university research reactors (URRs) within MUSIC, which are located at NCSU (1-MW PULSTAR), UMD (0.25-MW TRIGA) and UF (0.10-MW Argonaut), and the AFRRI reactor (1-MW TRIGA MARK F). The overall objectives of MUSIC are: a) Demonstrate that University Research Reactors (URR) can be used as modern and innovative instruments of research in the basic and applied sciences, which include applications in fundamental physics, materials science and engineering, nondestructive examination, elemental analysis, and contributions to research in the health and medical sciences, b) Establish a strong technical collaboration between the nuclear engineering

  4. Multi-University Southeast INIE Consortium

    International Nuclear Information System (INIS)

    Hawari, Ayman; Hertel, Nolan; Al-Sheikhly, Mohamed; Miller, Laurence; Bayoumi, Abdel-Moeze; Haghighat, Ali; Lewis, Kenneth

    2010-01-01

    The Multi-University Southeast INIE Consortium (MUSIC) was established in response to the US Department of Energy's (DOE) Innovations in Nuclear Infrastructure and Education (INIE) program. MUSIC was established as a consortium composed of academic members and national laboratory partners. The members of MUSIC are the nuclear engineering programs and research reactors of Georgia Institute of Technology (GIT), North Carolina State University (NCSU), University of Maryland (UMD), University of South Carolina (USC), and University of Tennessee (UTK). The University of Florida (UF), and South Carolina State University (SCSU) were added to the MUSIC membership in the second year. In addition, to ensure proper coordination between the academic community and the nation's premier research and development centers in the fields of nuclear science and engineering, MUSIC created strategic partnerships with Oak Ridge National Laboratory (ORNL) including the Spallation Neutron Source (SNS) project and the Joint Institute for Neutron Scattering (JINS), and the National Institute of Standards and Technology (NIST). A partnership was also created with the Armed Forces Radiobiology Research Institute (AFRRI) with the aim of utilizing their reactor in research if funding becomes available. Consequently, there are three university research reactors (URRs) within MUSIC, which are located at NCSU (1-MW PULSTAR), UMD (0.25-MW TRIGA) and UF (0.10-MW Argonaut), and the AFRRI reactor (1-MW TRIGA MARK F). The overall objectives of MUSIC are: (a) Demonstrate that University Research Reactors (URR) can be used as modern and innovative instruments of research in the basic and applied sciences, which include applications in fundamental physics, materials science and engineering, nondestructive examination, elemental analysis, and contributions to research in the health and medical sciences, (b) Establish a strong technical collaboration between the nuclear engineering faculty and the MUSIC URRs

  5. Consortium for Petroleum & Natural Gas Stripper Wells

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, Joel [Pennsylvania State Univ., University Park, PA (United States)

    2011-12-01

    The United States has more oil and gas wells than any other country. As of December 31, 2004, there were more than half a million producing oil wells in the United States. That is more than three times the combined total for the next three leaders: China, Canada, and Russia. The Stripper Well Consortium (SWC) is a partnership that includes domestic oil and gas producers, service and supply companies, trade associations, academia, the Department of Energy’s Strategic Center for Natural Gas and Oil (SCNGO) at the National Energy Technology Laboratory (NETL), and the New York State Energy Research and Development Authority (NYSERDA). The Consortium was established in 2000. This report serves as a final technical report for the SWC activities conducted over the May 1, 2004 to December 1, 2011 timeframe. During this timeframe, the SWC worked with 173 members in 29 states and three international countries, to focus on the development of new technologies to benefit the U.S. stripper well industry. SWC worked with NETL to develop a nationwide request-for-proposal (RFP) process to solicit proposals from the U.S. stripper well industry to develop and/or deploy new technologies that would assist small producers in improving the production performance of their stripper well operations. SWC conducted eight rounds of funding. A total of 132 proposals were received. The proposals were compiled and distributed to an industry-driven SWC executive council and program sponsors for review. Applicants were required to make a formal technical presentation to the SWC membership, executive council, and program sponsors. After reviewing the proposals and listening to the presentations, the executive council made their funding recommendations to program sponsors. A total of 64 projects were selected for funding, of which 59 were fully completed. Penn State then worked with grant awardees to issue a subcontract for their approved work. SWC organized and hosted a total of 14 meetings

  6. Astroparticle Physics European Consortium Town Meeting Conference

    CERN Document Server

    2016-01-01

    The Astroparticle Physics European Consortium (APPEC) invites you to a town meeting at the Grand Amphithéatre de Sorbonne in Paris on the 6th and 7th April 2016 to discuss an update of the 2011 APPEC Astroparticle Physics roadmap, to be published in September 2016. In 2014 APPEC decided to launch an update of the 2011 Roadmap, transforming it to a “resource aware” roadmap. The intention was to gauge the financial impact of the beginnings of operation of the large global scale observatories put forward in the previous roadmap and to examine the possibilities of international coordination of future global initiatives. The APPEC Scientific Advisory Committee examined the field and prepared a set of recommendations. Based on these recommendations, the APPEC General Assembly drafted a set of “considerations” to be published by end of February 2016 and be debated in an open dialogue with the community, through the web page but primarily at the town meeting of 6-7 April. Based on this debate the final re...

  7. The nation's first consortium to address waste management issues

    International Nuclear Information System (INIS)

    Mikel, C.J.

    1991-01-01

    On July 26, 1989, the secretary of the Department of Energy (DOE), Admiral James Watkins, announced approval of the Waste-Management Education and Research Consortium (WERC). The consortium is composed of New Mexico State University (NMSU), the University of New Mexico, the New Mexico Institute of Mining and Technology, Los Alamos National Laboratory, and Sandia National Laboratories. This pilot program is expected to form a model for other regional and national programs. The WERC mission is to expand the national capability to address issues associated with the management of hazardous, radioactive, and solid waste. Research, technology transfer, and education/training are the three areas that have been identified to accomplish the objectives set by the consortium. The members of the consortium will reach out to the DOE facilities, other government agencies and facilities, and private institutions across the country. Their goal is to provide resources for solutions to waste management problems

  8. Epidemiology of Endometrial Cancer Consortium (E2C2)

    Science.gov (United States)

    The Epidemiology of Endometrial Cancer Consortium studies the etiology of this common cancer and build on resources from existing studies by combining data across studies in order to advance the understanding of the etiology of this disease.

  9. Regional Development and the European Consortium of Innovative Universities.

    Science.gov (United States)

    Hansen, Saskia Loer; Kokkeler, Ben; van der Sijde, P. C.

    2002-01-01

    The European Consortium of Innovative Universities is a network that shares information not just among universities but with affiliated incubators, research parks, and other regional entities. The learning network contributes to regional development.(JOW)

  10. Toxic effects exerted on methanogenic, nitrifying and denitrifying bacteria by chemicals used in a milk analysis laboratory

    NARCIS (Netherlands)

    Lopez-Fiuza, J.; Buys, B.; Mosquera-Corral, A.; Omil, F.; Mendez, R.

    2002-01-01

    The toxic effects caused by the chemicals contained in wastewaters generated by laboratories involved in raw milk analyses were assessed using batch assays. These assays were carried out separately with methanogenic, ammonium-oxidizing, nitrite-oxidizing and denitrifying bacteria. Since sodium azide

  11. Stable acetate production in extreme-thermophilic (70°C) mixed culture fermentation by selective enrichment of hydrogenotrophic methanogens

    Science.gov (United States)

    Zhang, Fang; Zhang, Yan; Ding, Jing; Dai, Kun; van Loosdrecht, Mark C. M.; Zeng, Raymond J.

    2014-06-01

    The control of metabolite production is difficult in mixed culture fermentation. This is particularly related to hydrogen inhibition. In this work, hydrogenotrophic methanogens were selectively enriched to reduce the hydrogen partial pressure and to realize efficient acetate production in extreme-thermophilic (70°C) mixed culture fermentation. The continuous stirred tank reactor (CSTR) was stable operated during 100 days, in which acetate accounted for more than 90% of metabolites in liquid solutions. The yields of acetate, methane and biomass in CSTR were 1.5 +/- 0.06, 1.0 +/- 0.13 and 0.4 +/- 0.05 mol/mol glucose, respectively, close to the theoretical expected values. The CSTR effluent was stable and no further conversion occurred when incubated for 14 days in a batch reactor. In fed-batch experiments, acetate could be produced up to 34.4 g/L, significantly higher than observed in common hydrogen producing fermentations. Acetate also accounted for more than 90% of soluble products formed in these fed-batch fermentations. The microbial community analysis revealed hydrogenotrophic methanogens (mainly Methanothermobacter thermautotrophicus and Methanobacterium thermoaggregans) as 98% of Archaea, confirming that high temperature will select hydrogenotrophic methanogens over aceticlastic methanogens effectively. This work demonstrated a potential application to effectively produce acetate as a value chemical and methane as an energy gas together via mixed culture fermentation.

  12. Thioredoxin-linked redox control of metabolism in Methanocaldococcus jannaschii, an evolutionarily deeply-rooted hyperthermophilic methanogenic archaeon

    Science.gov (United States)

    Thioredoxin (Trx), a small redox protein, controls multiple processes in eukaryotes and bacteria by changing the thiol redox status of selected proteins. We have investigated this aspect in methanarchaea. These ancient methanogens produce methane almost exclusively from H2 plus CO2 carried approxima...

  13. Methanogenic community changes, and emissions of methane and other gases, during storage of acidified and untreated pig slurry

    DEFF Research Database (Denmark)

    Petersen, Søren O; Højberg, Ole; Poulsen, Morten

    2014-01-01

    H was nearly constant at values of 5.5 and 6.5. Ammonia losses were reduced by 84 and 49%, respectively, while CH4 emission with both acidification techniques was reduced by >90%. T-RFLP fingerprints showed little effect of acidification or storage time. A major T-RF of 105 bp could represent methanogens...

  14. Variation of carbon isotope fractionation in hydrogenotrophic methanogenic microbial cultures and environmental samples at different energy status

    NARCIS (Netherlands)

    Penning, H.; Plugge, C.M.; Galand, P.E.; Conrad, R.

    2005-01-01

    Methane is a major product of anaerobic degradation of organic matter and an important greenhouse gas. Its stable carbon isotope composition can be used to reveal active methanogenic pathways, if associated isotope fractionation factors are known. To clarify the causes that lead to the wide

  15. Environmental drivers of differences in microbial community structure in crude oil reservoirs across a methanogenic gradient

    Directory of Open Access Journals (Sweden)

    Jenna L Shelton

    2016-09-01

    Full Text Available Stimulating in situ microbial communities in oil reservoirs to produce natural gas is a potentially viable strategy for recovering additional fossil fuel resources following traditional recovery operations. Little is known about what geochemical parameters drive microbial population dynamics in biodegraded, methanogenic oil reservoirs. We investigated if microbial community structure was significantly impacted by the extent of crude oil biodegradation, extent of biogenic methane production, and formation water chemistry. Twenty-two oil production wells from north central Louisiana, USA, were sampled for analysis of microbial community structure and fluid geochemistry. Archaea were the dominant microbial community in the majority of the wells sampled. Methanogens, including hydrogenotrophic and methylotrophic organisms, were numerically dominant in every well, accounting for, on average, over 98% of the total archaea present. The dominant Bacteria groups were Pseudomonas, Acinetobacter, Enterobacteriaceae, and Clostridiales, which have also been identified in other microbially-altered oil reservoirs. Comparing microbial community structure to fluid (gas, water, and oil geochemistry revealed that the relative extent of biodegradation, salinity, and spatial location were the major drivers of microbial diversity. Archaeal relative abundance was independent of the extent of methanogenesis, but closely correlated to the extent of crude oil biodegradation; therefore, microbial community structure is likely not a good sole predictor of methanogenic activity, but may predict the extent of crude oil biodegradation. However, when the shallow, highly biodegraded, low salinity wells were excluded from the statistical analysis, no environmental parameters could explain the differences in microbial community structure. This suggests that the microbial community structure of the 5 shallow up-dip wells was different than the 17 deeper, down-dip wells, and that

  16. Effects of Spartina alterniflora invasion on the communities of methanogens and sulfate-reducing bacteria in estuarine marsh sediments

    Directory of Open Access Journals (Sweden)

    Jemaneh eZeleke

    2013-08-01

    Full Text Available The effect of plant invasion on the microorganisms of soil sediments is very important for estuary ecology. The community structures of methanogens and sulfate-reducing bacteria (SRB as a function of Spartina alterniflora invasion in Phragmites australis-vegetated sediments of the Dongtan wetland in the Yangtze River estuary, China, were investigated using 454 pyrosequencing and quantitative real-time PCR (qPCR of the methyl coenzyme M reductase A (mcrA and dissimilatory sulfite-reductase (dsrB genes. Sediment samples were collected from two replicate locations, and each location included three sampling stands each covered by monocultures of P. australis, S. alterniflora and both plants (transition stands, respectively. qPCR analysis revealed higher copy numbers of mcrA genes in sediments from S. alterniflora stands than P. australis stands (5- and 7.5-fold more in the spring and summer, respectively, which is consistent with the higher methane flux rates measured in the S. alterniflora stands (up to 8.01 ± 5.61 mg m-2 h-1. Similar trends were observed for SRB, and they were up to two orders of magnitude higher than the methanogens. Diversity indices indicated a lower diversity of methanogens in the S. alterniflora stands than the P. australis stands. In contrast, insignificant variations were observed in the diversity of SRB with the invasion. Although Methanomicrobiales and Methanococcales, the hydrogenotrophic methanogens, dominated in the salt marsh, Methanomicrobiales displayed a slight increase with the invasion and growth of S. alterniflora, whereas the later responded differently. Methanosarcina, the metabolically diverse methanogens, did not vary with the invasion of, but Methanosaeta, the exclusive acetate utilizers, appeared to increase with S. alterniflora invasion. In SRB, sequences closely related to the families Desulfobacteraceae and Desulfobulbaceae dominated in the salt marsh, although they displayed minimal changes with the S

  17. Climate Clever Clovers: New Paradigm to Reduce the Environmental Footprint of Ruminants by Breeding Low Methanogenic Forages Utilizing Haplotype Variation

    Directory of Open Access Journals (Sweden)

    Parwinder Kaur

    2017-09-01

    Full Text Available Mitigating methane production by ruminants is a significant challenge to global livestock production. This research offers a new paradigm to reduce methane emissions from ruminants by breeding climate-clever clovers. We demonstrate wide genetic diversity for the trait methanogenic potential in Australia’s key pasture legume, subterranean clover (Trifolium subterraneum L.. In a bi-parental population the broadsense heritability in methanogenic potential was moderate (H2 = 0.4 and allelic variation in a region of Chr 8 accounted for 7.8% of phenotypic variation. In a genome-wide association study we identified four loci controlling methanogenic potential assessed by an in vitro fermentation system. Significantly, the discovery of a single nucleotide polymorphism (SNP on Chr 5 in a defined haplotype block with an upstream putative candidate gene from a plant peroxidase-like superfamily (TSub_g18548 and a downstream lectin receptor protein kinase (TSub_g18549 provides valuable candidates for an assay for this complex trait. In this way haplotype variation can be tracked to breed pastures with reduced methanogenic potential. Of the quantitative trait loci candidates, the DNA-damage-repair/toleration DRT100-like protein (TSub_g26967, linked to avoid the severity of DNA damage induced by secondary metabolites, is considered central to enteric methane production, as are disease resistance (TSub_g26971, TSub_g26972, and TSub_g18549 and ribonuclease proteins (TSub_g26974, TSub_g26975. These proteins are good pointers to elucidate the genetic basis of in vitro microbial fermentability and enteric methanogenic potential in subterranean clover. The genes identified allow the design of a suite of markers for marker-assisted selection to reduce rumen methane emission in selected pasture legumes. We demonstrate the feasibility of a plant breeding approach without compromising animal productivity to mitigate enteric methane emissions, which is one of the most

  18. Methanogenic population dynamics during startup of a full-scale anaerobic sequencing batch reactor treating swine waste.

    Science.gov (United States)

    Angenent, Largus T; Sung, Shihwu; Raskin, Lutgarde

    2002-11-01

    Changes in methanogenic population levels were followed during startup of a full-scale, farm-based anaerobic sequencing batch reactor (ASBR) and these changes were linked to operational and performance data. The ASBR was inoculated with anaerobic digester sludge from a municipal wastewater treatment facility. During an acclimation period of approximately 3 months, the ASBR content was diluted to maintain a total ammonia-N level of approximately 2000mg l(-1). After this acclimation period, the volatile solids loading rate was increased to its design value of 1.7g l(-1) day(-1) with a 15-day hydraulic retention time, which increased the total ammonia-N level in the ASBR to approximately 3,600 mg l(-1). The 16S ribosomal RNA (rRNA) levels of the acetate-utilizing methanogens of the genus Methanosarcina decreased from 3.8% to 1.2% (expressed as a percentage of the total 16S rRNA levels) during this period, while the 16S rRNA levels of Methanosaeta concilii remained low (below 2.2%). Methane production and reactor performance were not affected as the 16S rRNA levels of the hydrogen-utilizing methanogens of the order Methanomicrobiales increased from 2.3% to 7.0%. Hence, it is likely that during operation with high ammonia levels, the major route of methane production is through a syntrophic relationship between acetate-oxidizing bacteria and hydrogen-utilizing methanogens. Anaerobic digestion at total ammonia-N levels exceeding 3500mg l(-1) was sustainable apparently due to the acclimation of hydrogen-utilizing methanogens to high ammonia levels.

  19. 25 CFR 1000.73 - Once a Tribe/Consortium has been awarded a grant, may the Tribe/Consortium obtain information...

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 2 2010-04-01 2010-04-01 false Once a Tribe/Consortium has been awarded a grant, may the Tribe/Consortium obtain information from a non-BIA bureau? 1000.73 Section 1000.73 Indians OFFICE OF THE... § 1000.73 Once a Tribe/Consortium has been awarded a grant, may the Tribe/Consortium obtain information...

  20. Increased methane production in cyanobacteria and methanogenic microbe co-cultures.

    Science.gov (United States)

    Yeung, Tracey; Kwan, Matthew; Adler, Lewis; Mills, Toby J; Neilan, Brett A; Conibeer, Gavin; Patterson, Robert

    2017-11-01

    A novel light-to-bioenergy system produced 3.5 times the baseline methane output using a co-culture of cyanobacteria (Oscillatoria sp.) and a methanogenic microbial community. Analysis of micronutrients in the system during the growth phase indicated that cobalt, iron, nickel and zinc were not appreciably consumed. The stable consumption and return of macronutrients calcium and magnesium were also observed. Essential macronutrients nitrogen, in the form of nitrate, and phosphorus showed no cycling during the growth phase and were depleted at rates of 0.35mg/L/day and 0.40µg/L/day, respectively. Biofilm formation increased the resilience of biomass to bacterial degradation in an anaerobic digester, as shown by viability assays of cyanobacterial biofilms in the co-culture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Competition between Methanogens and Acetogens in Biocathodes: A Comparison between Potentiostatic and Galvanostatic Control

    Directory of Open Access Journals (Sweden)

    Sam D. Molenaar

    2017-01-01

    Full Text Available Microbial electrosynthesis is a useful form of technology for the renewable production of organic commodities from biologically catalyzed reduction of CO2. However, for the technology to become applicable, process selectivity, stability and efficiency need strong improvement. Here we report on the effect of different electrochemical control modes (potentiostatic/galvanostatic on both the start-up characteristics and steady-state performance of biocathodes using a non-enriched mixed-culture inoculum. Based on our results, it seems that kinetic differences exist between the two dominant functional microbial groups (i.e., homoacetogens and methanogens and that by applying different current densities, these differences may be exploited to steer product selectivity and reactor performance.

  2. Competition between Methanogens and Acetogens in Biocathodes: A Comparison between Potentiostatic and Galvanostatic Control.

    Science.gov (United States)

    Molenaar, Sam D; Saha, Pradip; Mol, Annemerel R; Sleutels, Tom H J A; Ter Heijne, Annemiek; Buisman, Cees J N

    2017-01-19

    Microbial electrosynthesis is a useful form of technology for the renewable production of organic commodities from biologically catalyzed reduction of CO₂. However, for the technology to become applicable, process selectivity, stability and efficiency need strong improvement. Here we report on the effect of different electrochemical control modes (potentiostatic/galvanostatic) on both the start-up characteristics and steady-state performance of biocathodes using a non-enriched mixed-culture inoculum. Based on our results, it seems that kinetic differences exist between the two dominant functional microbial groups (i.e., homoacetogens and methanogens) and that by applying different current densities, these differences may be exploited to steer product selectivity and reactor performance.

  3. Reductive transformation and inhibitory effect of ethylene under methanogenic conditions in peat-soil

    DEFF Research Database (Denmark)

    Elsgaard, Lars

    2013-01-01

    Ethylene (C2H4), which is a potent gaseous plant hormone, has often been found to accumulate in anoxic soils where pathways of anaerobic C2H4 oxidation are so far unknown and other C2H4 transformation processes are uncommon. The present study shows that ethylene was reduced almost...... stoichiometrically (89–92%) to ethane (C2H6) in peat-soil microcosms incubated under methanogenic conditions. Methanogenesis started after a prolonged anoxic lag-phase (>29 weeks) where added ethylene prevailed despite the availability of nitrate (NO3−) as an alternative electron acceptor. Methanogenesis, as well...... as ethylene reduction to ethane, was inhibited by 90% at 1% oxygen. Likewise, methanogenesis and ethane formation was gradually inhibited (to a similar extent) by increasing ethylene concentrations above 0.2%; this inhibition eventually reached 90–95% at 2.2–4.5% C2H4. The present results extend the known...

  4. Specific methanogenic activity (SMA of industrial sludge from the aerobic and anaerobic biological treatment

    Directory of Open Access Journals (Sweden)

    Danieli Schneiders

    2013-08-01

    Full Text Available In this study, specific methanogenic activity (SMA tests were performed on textile sludge and food industry sludge. The textile sludge from an activated sludge was collected at the entrance of the secondary biologic clarifier and the food sludge was collected in a UASB reactor. Once collected, the sludges were characterized and tested for SMA. It was found that the microrganisms present in the food sludge had SMA of 0.17 gCOD-CH4 gSSV.d-1 and 337.05 mL of methane production, while the microrganisms of the textile sludge presented 0.10 gCOD-CH4 gSSV.d-1 of SMA and 3.04 mL of methane production. Therefore, the food sludge was more suitable to be used as a starting inoculum in UASB.

  5. Integrated biogas upgrading and hydrogen utilization in an anaerobic reactor containing enriched hydrogenotrophic methanogenic culture

    DEFF Research Database (Denmark)

    Luo, Gang; Angelidaki, Irini

    2012-01-01

    Biogas produced by anaerobic digestion, is mainly used in a gas motor for heat and electricity production. However, after removal of CO2, biogas can be upgraded to natural gas quality, giving more utilization possibilities, such as utilization as autogas, or distant utilization by using...... the existing natural gas grid. The current study presents a new biological method for biogas upgrading in a separate biogas reactor, containing enriched hydrogenotrophic methanogens and fed with biogas and hydrogen. Both mesophilic- and thermophilic anaerobic cultures were enriched to convert CO2 to CH4...... by addition of H2. Enrichment at thermophilic temperature (55°C) resulted in CO2 and H2 bioconversion rate of 320 mL CH4/(gVSS h), which was more than 60% higher than that under mesophilic temperature (37°C). Different dominant species were found at mesophilic- and thermophilic-enriched cultures, as revealed...

  6. Effects of oxytetracycline, tylosin, and amoxicillin antibiotics on specific methanogenic activity of anaerobic biomass

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Amin

    2012-01-01

    Materials and Methods: To evaluate the inhibitory antibiotics amoxicillin, tetracycline, and tylosin on biomass activity, specific methanogenic activity (SMA using anerobic biomass batch; into 120 ml vials: 30 ml biomass and 70 ml substrate including volatile fatty acids, mainly acetic acid and various concentrations of antibiotics were added. Methane gas production replacement through solution of KOH (2 N as an absorber of CO 2 and bromine thymol blue as indicator was measured. Each batch was tested for 10 days. Results: Based on the findings, inhibitory concentration of oxytetracycline, amoxicillin, and tylosin were 8000, 9000, and 9000 mg/L, respectively. Conclusions: This study showed that with increasing concentrations of antibiotics, the produced biogas volume from biomass per unit weight is decreased. COD removal was 42-82 % due to long retention time and adsorption to flocks.

  7. Methanogenic Archaea and oral infections – ways to unravel the black box

    Directory of Open Access Journals (Sweden)

    Hans-Peter Horz

    2011-02-01

    Full Text Available Archaea, organisms that make up the third domain of cellular life are members of the human oral microflora. They are strikingly less diverse than oral bacteria and appear to be relatively rare with respect to their numerical abundance. Since they have been exclusively found in association with oral infections such as periodontitis and apical periodontitis and given their unique physiology and energy metabolism, it is highly plausible that they are more than just secondary colonizers of infected areas, but instead are actively involved in the overall poly-microbial infection process. Conversely, it is a highly challenging task to clearly demonstrate their possible active participation – mostly due to the difficulty to grow them in routine microbiology laboratories. This current review points out the importance for understanding the medical impact of methanogens and aims at devising strategies for elucidating the true function of archaea in the oral ecosystem.

  8. Vitamin and Amino Acid Auxotrophy in Anaerobic Consortia Operating under Methanogenic Conditions.

    Science.gov (United States)

    Hubalek, Valerie; Buck, Moritz; Tan, BoonFei; Foght, Julia; Wendeberg, Annelie; Berry, David; Bertilsson, Stefan; Eiler, Alexander

    2017-01-01

    Syntrophy among Archaea and Bacteria facilitates the anaerobic degradation of organic compounds to CH 4 and CO 2 . Particularly during aliphatic and aromatic hydrocarbon mineralization, as in the case of crude oil reservoirs and petroleum-contaminated sediments, metabolic interactions between obligate mutualistic microbial partners are of central importance. Using micromanipulation combined with shotgun metagenomic approaches, we describe the genomes of complex consortia within short-chain alkane-degrading cultures operating under methanogenic conditions. Metabolic reconstruction revealed that only a small fraction of genes in the metagenome-assembled genomes encode the capacity for fermentation of alkanes facilitated by energy conservation linked to H 2 metabolism. Instead, the presence of inferred lifestyles based on scavenging anabolic products and intermediate fermentation products derived from detrital biomass was a common feature. Additionally, inferred auxotrophy for vitamins and amino acids suggests that the hydrocarbon-degrading microbial assemblages are structured and maintained by multiple interactions beyond the canonical H 2 -producing and syntrophic alkane degrader-methanogen partnership. Compared to previous work, our report points to a higher order of complexity in microbial consortia engaged in anaerobic hydrocarbon transformation. IMPORTANCE Microbial interactions between Archaea and Bacteria mediate many important chemical transformations in the biosphere from degrading abundant polymers to synthesis of toxic compounds. Two of the most pressing issues in microbial interactions are how consortia are established and how we can modulate these microbial communities to express desirable functions. Here, we propose that public goods (i.e., metabolites of high energy demand in biosynthesis) facilitate energy conservation for life under energy-limited conditions and determine the assembly and function of the consortia. Our report suggests that an

  9. Ruminal fermentation of Anti-methanogenic Nitrate- and Nitro-Containing Forages In Vitro

    Directory of Open Access Journals (Sweden)

    Robin C. Anderson

    2016-08-01

    Full Text Available Nitrate, 3-nitro-1-propionic acid (NPA and 3-nitro-1-propanol (NPOH can accumulate in forages and be poisonous to animals if consumed in high enough amounts. These chemicals are also recognized as potent anti-methanogenic compounds, but plants naturally containing these chemicals have been studied little in this regard. Presently, we found that nitrate-, NPA- or NPOH-containing forages effectively decreased methane production, by 35 to 87%, during in vitro fermentation by mixed cultures of ruminal microbes compared to fermentation by cultures incubated similarly with alfalfa. Methane production was further decreased during incubation of mixed cultures also inoculated with Denitrobacterium detoxificans, a ruminal bacterium known to metabolize nitrate, NPA and NPOH. Inhibition of methanogens within the mixed cultures was greatest with the NPA- and NPOH-containing forages. Hydrogen accumulated in all the mixed cultures incubated with forages containing nitrate, NPA or NPOH but was dramatically higher, exceeding 40 µmol hydrogen/mL, in mixed cultures incubated with NPA-containing forage but not inoculated with D. detoxificans. This possibly reflects the inhibition of hydrogenase-catalyzed uptake of hydrogen produced via conversion of 50 µmol added formate per mL to hydrogen. Accumulations of volatile fatty acids revealed compensatory changes in fermentation in mixed cultures incubated with the nitrate-, NPA- and NPOH-containing forages as evidenced by lower accumulations of acetate, and in some cases higher accumulations of butyrate and lower accumulations of ammonia, iso-buytrate and iso-valerate compared to cultures incubated with alfalfa. Results reveal that nitrate, NPA and NPOH that accumulate naturally in forages can be made available within ruminal incubations to inhibit methanogenesis. Further research is warranted to determine if diets can be formulated with nitrate-, NPA- and NPOH-containing forages to achieve efficacious mitigation in

  10. Methylmercury decomposition in sediments and bacterial cultures: Involvement of methanogens and sulfate reducers in oxidative demethylation

    International Nuclear Information System (INIS)

    Oremland, R.S.; Culbertson, C.W.; Winfrey, M.R.

    1991-01-01

    The biogeochemical cycling of mercury has received considerable attention because of the toxicity of methylmercury, its bioaccumulation in biota, and its biomagnification in aquatic food chains. The formation of methylmercury is mediated primarily by microorganisms. Demethylation of monomethylmercury in freshwater and estuarine sediments and in bacterial cultures was investigated with 14 CH 3 HgI. Under anaerobiosis, results with inhibitors indicated partial involvement of both sulfate reducers and methanogens, the former dominated estuarine sediments, while both were active in freshwaters. Aerobes were the most significant demethylators in estuarine sediments, but were unimportant in freshwater sediments. Products of anaerobic demthylation were mainly 14 CO 2 as well as lesser amounts of 14 CH 4 . Acetogenic activity resulted in fixation of some 14 CO 2 produced from 14 CH 3 HgI into acetate. Aerobic demethylation in estuarine sediments produced only 14 CH 4 , while aerobic demethylation in freshwater sediments produced small amounts of both 14 CH 4 and 14 CO 2 . Two species of Desulfovibrio produced only traces of 14 CH 4 from 14 CH 3 HgI, while a culture of a methylotrophic methanogen formed traces of 14 CO 2 and 14 CH 4 when grown on trimethylamine in the presence of the 14 CH 3 HgI. These results indicate that both aerobes and anaerobes demethylate mercury in sediments, but that either group may dominate in a particular sediment type. Aerobic demethylation in the estuarine sediments appeared to proceed by the previously characterized organomercurial-lyase pathway, because methane was the sole product. This indicates the presence of an oxidative pathway, possibly one in which methylmercury serves as an analog of one-carbon substrates

  11. Influence of DNA isolation on Q-PCR-based quantification of methanogenic Archaea in biogas fermenters.

    Science.gov (United States)

    Bergmann, I; Mundt, K; Sontag, M; Baumstark, I; Nettmann, E; Klocke, M

    2010-03-01

    Quantitative real-time PCR (Q-PCR) is commonly applied for the detection of certain microorganisms in environmental samples. However, some environments, like biomass-degrading biogas fermenters, are enriched with PCR-interfering substances. To study the impact of the DNA extraction protocol on the results of Q-PCR-based analysis of the methane-producing archaeal community in biogas fermenters, nine different protocols with varying cell disruption and DNA purification approaches were tested. Differences in the quantities of the isolated DNA and the purity parameters were found, with the best cell lysis efficiencies being obtained by a combined lysozyme/SDS-based lysis. When DNA was purified by sephacryl columns, the amount of DNA decreased by one log cycle but PCR inhibitors were eliminated sufficiently. In the case of detection of methanogenic Archaea, the chosen DNA isolation protocol strongly influenced the Q-PCR-based determination of 16S rDNA copy numbers. For example, with protocols including mechanical cell disruption, the 16S rDNA of Methanobacteriales were predominantly amplified (81-90% of the total 16S rDNA copy numbers), followed by the 16S rDNA of Methanomicrobiales (9-18%). In contrast, when a lysozyme/SDS-based cell lysis was applied, the 16S rDNA copy numbers determined for these two orders were the opposite (Methanomicrobiales 82-95%, Methanobacteriales 4-18%). In extreme cases, the DNA isolation method led to discrimination of some groups of methanogens (e.g. members of the Methanosaetaceae). In conclusion, for extraction of high amounts of microbial DNA with high purity from samples of biogas plants, a combined lysozyme/SDS-based cell lysis followed by a purification step with sephacryl columns is recommended. Copyright 2010 Elsevier GmbH. All rights reserved.

  12. Methanobacterium aarhusense sp. nov., a novel methanogen isolated from a marine sediment (Aarhus Bay, Denmark).

    Science.gov (United States)

    Shlimon, Adris Georgis; Friedrich, Michael W; Niemann, Helge; Ramsing, Niels Birger; Finster, Kai

    2004-05-01

    Strain H2-LR(T), a 5-18 micro m long and 0.7 micro m wide filamentous, mesophilic, moderately halophilic, non-motile hydrogenotrophic methanogen, was isolated from marine sediment of Aarhus Bay, Denmark, 1.7 m below the sediment surface. On the basis of 16S rRNA gene comparison with sequences of known methanogens, strain H2-LR(T) could be affiliated to the genus Methanobacterium. The strain forms a distinct line of descent within this genus, with Methanobacterium oryzae (95.9 % sequence identity) and Methanobacterium bryantii (95.7 % sequence identity) as its closest relatives. The 16S rRNA-based affiliation was supported by comparison of the mcrA gene, which encodes the alpha-subunit of methyl-coenzyme M reductase. Strain H2-LR(T) grew only on H(2)/CO(2). The DNA G+C content is 34.9 mol%. Optimum growth temperature was 45 degrees C. The strain grew equally well at pH 7.5 and 8. No growth or methane production was observed below pH 5 or above pH 9. Strain H2-LR(T) grew well within an NaCl concentration range of 100 and 900 mM. No growth or methane production was observed at 1 M NaCl. At 50 mM NaCl, growth and methane production were reduced. Based on 16S rRNA gene sequence analysis, the isolate is proposed to represent a novel taxon within the genus Methanobacterium, namely Methanobacterium aarhusense sp. nov. The type strain is H2-LR(T) (=DSM 15219(T)=ATCC BAA-828(T)).

  13. Consortium Negotiations with Publishers - Past and Future

    Directory of Open Access Journals (Sweden)

    Pierre Carbone

    2007-09-01

    Full Text Available Since the mid nineties, with the development of online access to information (journals, databases, e-books, libraries strengthened their cooperation. They set up consortia at different levels around the world, generally with the support of the public authorities, for negotiating collectively with the publishers and information providers general agreements for access to these resources. This cooperation has been reinforced at the international level with the exchange of experiences and the debates in the ICOLC seminars and statements. So did the French consortium Couperin, which is now gathering more than 200 academic and research institutions. The level of access and downloading from these resources is growing with geometrical progression, and reaches a scale with no comparison to ILL or access to printed documents, but the costs did not reduce and the libraries budgets did not increase. At first, agreements with the major journal publishers were based on cross-access, and evolved rapidly to the access at a large bundle of titles in the so-called Big deal. After experiencing the advantages of the Big deal, the libraries are now more sensitive to the limits and lack of flexibility and to cost-effectiveness. These Big deals were based on a model where online access fee is built on the cost of print subscriptions, and the problem for the consortia and for the publishers is now to evolve from this print plus online model to an e-only model, no more based on the historical amount of the print subscriptions, to a new deal. In many European countries, VAT legislation is an obstacle to e-only, and this problem must be discussed at the European level. This change to e-only takes place at a moment where changes in the scientific publishing world are important (mergers of publishing houses, growth of research and of scientific publishing in the developing countries, open access and open archives movement. The transition to e-only leads also the library

  14. Comparison of methanogen diversity of yak (Bos grunniens and cattle (Bos taurus from the Qinghai-Tibetan plateau, China

    Directory of Open Access Journals (Sweden)

    Huang Xiao

    2012-10-01

    Full Text Available Abstract Background Methane emissions by methanogen from livestock ruminants have significantly contributed to the agricultural greenhouse gas effect. It is worthwhile to compare methanogen from “energy-saving” animal (yak and normal animal (cattle in order to investigate the link between methanogen structure and low methane production. Results Diversity of methanogens from the yak and cattle rumen was investigated by analysis of 16S rRNA gene sequences from rumen digesta samples from four yaks (209 clones and four cattle (205 clones from the Qinghai-Tibetan Plateau area (QTP. Overall, a total of 414 clones (i.e. sequences were examined and assigned to 95 operational taxonomic units (OTUs using MOTHUR, based upon a 98% species-level identity criterion. Forty-six OTUs were unique to the yak clone library and 34 OTUs were unique to the cattle clone library, while 15 OTUs were found in both libraries. Of the 95 OTUs, 93 putative new species were identified. Sequences belonging to the Thermoplasmatales-affiliated Linage C (TALC were found to dominate in both libraries, accounting for 80.9% and 62.9% of the sequences from the yak and cattle clone libraries, respectively. Sequences belonging to the Methanobacteriales represented the second largest clade in both libraries. However, Methanobrevibacter wolinii (QTPC 110 was only found in the cattle library. The number of clones from the order Methanomicrobiales was greater in cattle than in the yak clone library. Although the Shannon index value indicated similar diversity between the two libraries, the Libshuff analysis indicated that the methanogen community structure of the yak was significantly different than those from cattle. Conclusion This study revealed for the first time the molecular diversity of methanogen community in yaks and cattle in Qinghai-Tibetan Plateau area in China. From the analysis, we conclude that yaks have a unique rumen microbial ecosystem that is significantly different

  15. Methane emission and community composition patterns of rumen bacteria and methanogens in Holstein dairy cows as affected by silage type and dietary fat

    DEFF Research Database (Denmark)

    Poulsen, Morten; Højberg, Ole; Canibe, Nuria

    ) to investigate effects of silages with different methanogenic potential (early grass, late grass, and maize) combined with a CH4-reducing feed additive (crushed rapeseed) on bacterial and methanogenic communities in the rumen. Bacterial and methanogenic community patterns were evaluated by T-RFLP analysis of 16S...... rRNA and methyl co-enzyme M reductase (mcrA) genes, respectively. Methanogen abundances were evaluated by qPCR using two mcrA-targeting primer sets. Silage type significantly affected CH4 emissions and rumen acetate:propionate ratios, being highest for late grass and lowest for maize. Dietary fat...... significantly reduced the gross energy lost as CH4 regardless of silage type. Silage type significantly affected the bacterial community composition pattern; the grass silages favored potential hemicellulose- and cellulose-degrading bacteria, while the maize silage mainly favored potentially starch...

  16. Augmentation of a Microbial Consortium for Enhanced Polylactide (PLA) Degradation.

    Science.gov (United States)

    Nair, Nimisha R; Sekhar, Vini C; Nampoothiri, K Madhavan

    2016-03-01

    Bioplastics are eco-friendly and derived from renewable biomass sources. Innovation in recycling methods will tackle some of the critical issues facing the acceptance of bioplastics. Polylactic acid (PLA) is the commonly used and well-studied bioplastic that is presumed to be biodegradable. Considering their demand and use in near future, exploration for microbes capable of bioplastic degradation has high potential. Four PLA degrading strains were isolated and identified as Penicillium chrysogenum, Cladosporium sphaerospermum, Serratia marcescens and Rhodotorula mucilaginosa. A consortium of above strains degraded 44 % (w/w) PLA in 30 days time in laboratory conditions. Subsequently, the microbial consortium employed effectively for PLA composting.

  17. Methanol induces low temperature resilient methanogens and improves methane generation from domestic wastewater at low to moderate temperatures.

    Science.gov (United States)

    Saha, Shaswati; Badhe, Neha; De Vrieze, Jo; Biswas, Rima; Nandy, Tapas

    2015-01-01

    Low temperature (methanol is a preferred substrate by methanogens in cold habitats. The study hypothesizes that methanol can induce the growth of low-temperature resilient, methanol utilizing, hydrogenotrophs in UASB reactor. The hypothesis was tested in field conditions to evaluate the impact of seasonal temperature variations on methane yield in the presence and absence of methanol. Results show that 0.04% (v/v) methanol increased methane up to 15 times and its effect was more pronounced at lower temperatures. The qPCR analysis showed the presence of Methanobacteriales along with Methanosetaceae in large numbers. This indicates methanol induced the growth of both the hydrogenotrophic and acetoclastic groups through direct and indirect routes, respectively. This study thus demonstrated that methanol can impart resistance in methanogenic biomass to low temperature and can improve performance of UASB reactor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Nitrate decreases ruminal methane production with slight changes to ruminal methanogen composition of nitrate-adapted steers.

    Science.gov (United States)

    Zhao, Liping; Meng, Qingxiang; Li, Yan; Wu, Hao; Huo, Yunlong; Zhang, Xinzhuang; Zhou, Zhenming

    2018-03-20

    This study was conducted to examine effects of nitrate on ruminal methane production, methanogen abundance, and composition. Six rumen-fistulated Limousin×Jinnan steers were fed diets supplemented with either 0% (0NR), 1% (1NR), or 2% (2NR) nitrate (dry matter basis) regimens in succession. Rumen fluid was taken after two-week adaptation for evaluation of in vitro methane production, methanogen abundance, and composition measurements. Results showed that nitrate significantly decreased in vitro ruminal methane production at 6 h, 12 h, and 24 h (P methane reduction was significantly related to Methanobrevibacter and Methanoplanus abundance, and negatively correlated with Methanosphaera and Methanimicrococcus abundance.

  19. Molecular Genetic Diversity and Quantitation of Methanogen in Ruminal Fluid of Buffalo (Bubalus bubalis Fed Ration (Wheat Straw and Concentrate Mixture Diet

    Directory of Open Access Journals (Sweden)

    K. M. Singh

    2013-01-01

    Full Text Available High roughage diet causes more methane emissions; however, the total methanogen abundance is not influenced by roughage proportion. Technologies to reduce methane emissions are lacking, and development of inhibitors and vaccines that mitigate rumen-derived methane by targeting methanogens relies on present knowledge of the methanogens. In this work, we have investigated molecular diversity of rumen methanogens of Surti buffalo. DNA from rumen fluid was extracted, and 16S rRNA encoding genes were amplified using methanogen specific primer to generate 16S rDNA clone libraries. Seventy-six clones were randomly selected and analysed by RFLP resulting in 21 operational taxonomic units (OTUs. BLAST analysis with available sequences in database revealed sequences of 13 OTUs (55 clones showing similarity with Methanomicrobium sp, 3 OTUs (15 clones with Methanobrevibacter sp. The remaining 5 OTUs (6 clones belonged to uncultured archaea. The phylogenetic analysis indicated that methanogenic communities found in the library were clustered in the order of Methanomicrobiales (18 OTUs and Methanobacteriales (3 OTUs. The population of Methanomicrobiales, Methanobacteriales, and Methanococcales were also observed, accounting for 1.94%, 0.72%, and 0.47% of total archaea, respectively.

  20. Characterization of acetate-utilizing methanogenic bacteria, depending on varying acetate concentrations, in a biogas plant. Phase 1

    International Nuclear Information System (INIS)

    Ahring, B.K.

    1994-12-01

    The present report contains the results of a project concerning behaviour of acetate-utilizing methanogenic bacteria in mesophilic and thermophilic biogas plants, collected in 1992 - 1994 period. Labelled acetates (2-C 14 -CH 3 COOH) have been used to characterize the types of methane bacteria populations in the Danish biogas plants, the optimum acetate concentration for these bacteria and acetate metabolism in mesophilic and thermophilic biogas reactors with low acetate concentrations. 2 publications are included. (EG)

  1. Development of a Swine-Specific Fecal Pollution Marker Based on Host Differences in Methanogen mcrA Genes▿

    OpenAIRE

    Ufnar, Jennifer A.; Ufnar, David F.; Wang, Shiao Y.; Ellender, R. D.

    2007-01-01

    The goal of this study was to evaluate methanogen diversity in animal hosts to develop a swine-specific archaeal molecular marker for fecal source tracking in surface waters. Phylogenetic analysis of swine mcrA sequences compared to mcrA sequences from the feces of five animals (cow, deer, sheep, horse, and chicken) and sewage showed four distinct swine clusters, with three swine-specific clades. From this analysis, six sequences were chosen for molecular marker development and initial testin...

  2. Dynamics of two methanogenic microbiomes incubated in polycyclic aromatic hydrocarbons, naphthenic acids, and oil field produced water.

    Science.gov (United States)

    Oko, Bonahis J; Tao, Yu; Stuckey, David C

    2017-01-01

    Oil field produced water (OFPW) is widely produced in large volumes around the world. Transforming the organic matter in OFPW into bioenergy, such as biomethane, is one promising way to sustainability. However, OFPW is difficult to biologically degrade because it contains complex compounds such as naphthenic acids (NAs), or polycyclic aromatic hydrocarbons (PAHs). Although active microbial communities have been found in many oil reservoirs, little is known about how an exotic microbiome, e.g. the one which originates from municipal wastewater treatment plants, would evolve when incubated with OFPW. In this study, we harvested methanogenic biomass from two sources: a full-scale anaerobic digester (AD) treating oil and gas processing wastewater (named O&G sludge), and from a full-scale AD reactor treating multiple fractions of municipal solid wastes (named MS, short for mixed sludge). Both were incubated in replicate microcosms fed with PAHs, NAs, or OFPW. The results showed that the PAHs, NAs, and OFPW feeds could rapidly alter the methanogenic microbiomes, even after 14 days, while the O&G sludge adapted faster than the mixed sludge in all the incubations. Two rarely reported microorganisms, a hydrogenotrophic methanogen Candidatus methanoregula and a saccharolytic fermenter Kosmotoga , were found to be prevalent in the PAHs and OFPW microcosms, and are likely to play an important role in the syntrophic degradation of PAHs and OFPW, cooperating with methanogens such as Methanoregula, Methanosarcina, or Methanobacterium . The dominant phyla varied in certain patterns during the incubations, depending on the biomass source, feed type, and variation in nutrients. The sludge that originated from the oil and gas processing wastewater treatment (O&G) reactor adapted faster than the one from municipal solid waste reactors, almost certainly because the O&G biomass had been "pre-selected" by the environment. This study reveals the importance of biomass selection for other

  3. Thermophilic Anaerobic Degradation of Butyrate by a Butyrate-Utilizing Bacterium in Coculture and Triculture with Methanogenic Bacteria

    OpenAIRE

    Ahring, Birgitte K.; Westermann, Peter

    1987-01-01

    We studied syntrophic butyrate degradation in thermophilic mixed cultures containing a butyrate-degrading bacterium isolated in coculture with Methanobacterium thermoautotrophicum or in triculture with M. thermoautotrophicum and the TAM organism, a thermophilic acetate-utilizing methanogenic bacterium. Butyrate was β-oxidized to acetate with protons as the electron acceptors. Acetate was used concurrently with its production in the triculture. We found a higher butyrate degradation rate in th...

  4. Analysis of alkane-dependent methanogenic community derived from production water of a high-temperature petroleum reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Mbadinga, Serge Maurice; Li, Kai-Ping; Zhou, Lei; Wang, Li-Ying; Yang, Shi-Zhong; Liu, Jin-Feng; Mu, Bo-Zhong [East China Univ. of Science and Technology, Shanghai (China). State Key Lab. of Bioreactor Engineering and Inst. of Applied Chemistry; Gu, Ji-Dong [Hong Kong Univ. (China). School of Biological Sciences

    2012-10-15

    Microbial assemblage in an n-alkanes-dependent thermophilic methanogenic enrichment cultures derived from production waters of a high-temperature petroleum reservoir was investigated in this study. Substantially higher amounts of methane were generated from the enrichment cultures incubated at 55 C for 528 days with a mixture of long-chain n-alkanes (C{sub 15}-C{sub 20}). Stoichiometric estimation showed that alkanes-dependent methanogenesis accounted for about 19.8% of the total amount of methane expected. Hydrogen was occasionally detected together with methane in the gas phase of the cultures. Chemical analysis of the liquid cultures resulted only in low concentrations of acetate and formate. Phylogenetic analysis of the enrichment revealed the presence of several bacterial taxa related to Firmicutes, Thermodesulfobiaceae, Thermotogaceae, Nitrospiraceae, Dictyoglomaceae, Candidate division OP8 and others without close cultured representatives, and Archaea predominantly related to uncultured members in the order Archaeoglobales and CO{sub 2}-reducing methanogens. Screening of genomic DNA retrieved from the alkanes-amended enrichment cultures also suggested the presence of new alkylsuccinate synthase alpha-subunit (assA) homologues. These findings suggest the presence of poorly characterized (putative) anaerobic n-alkanes degraders in the thermophilic methanogenic enrichment cultures. Our results indicate that methanogenesis of alkanes under thermophilic condition is likely to proceed via syntrophic acetate and/or formate oxidation linked with hydrogenotrophic methanogenesis. (orig.)

  5. Identification of metabolically active methanogens in anaerobic digester by DNA Stable-Isotope Probing using 13C-acetate

    Directory of Open Access Journals (Sweden)

    V. Gowdaman

    2015-04-01

    Full Text Available Anaerobic digestion is gaining enormous attention due to the ability to covert organic wastes into biogas, an alternative sustainable energy. Methanogenic community plays a significant role in biogas production and also for proficient functioning of the anaerobic digester. Therefore, this study was carried out to investigate the methanogen diversity of a food waste anaerobic digester. After endogenous respiration, the digester samples were supplemented with isotopes of acetate to enrich methanogen population, and were analyzed using DNA-SIP (Stable-Isotope Probing. Following separation and fractionation of heavy (13C and light (12C DNA, PCR amplification was carried out using archaeal 16S rRNA gene followed by DGGE analysis. Sequencing of the prominent DGGE bands revealed the dominance of Methanocorpusculum labreanum species belonging to hydrogenotrophic Methanomicrobiales, which can produce methane in the presence of H2/CO2 and requires acetate for its growth. This is the first instance where Methanocorpusculum labreanum is being reported as a dominant species in an anaerobic digester operative on food waste.

  6. Computational Astrophysics Consortium 3 - Supernovae, Gamma-Ray Bursts and Nucleosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Woosley, Stan [Univ. of California, Santa Cruz, CA (United States)

    2014-08-29

    Final project report for UCSC's participation in the Computational Astrophysics Consortium - Supernovae, Gamma-Ray Bursts and Nucleosynthesis. As an appendix, the report of the entire Consortium is also appended.

  7. Effects of the Consortium of Pseudomonas, Bacillus and ...

    African Journals Online (AJOL)

    The effect of the consortium of Pseudomonas, Bacillus and Micrococcus spp on polycyclic aromatic hydrocarbons in crude oil was carried out using standard microbiological methods. Spectrophotometer, gas chromatography and viable count which determined the optical density, the polycyclic aromatic hydrocarbons and ...

  8. An efficient Azorean thermophilic consortium for lignocellulosic biomass degradation

    OpenAIRE

    Martins, Rita; Teixeira, Mário; Toubarro, Duarte; Simões, Nelson; Domingues, Lucília; Teixeira, J. A.

    2015-01-01

    [Excerpt] Lignocellulosic plant biomass is being envisioned by biorefinery industry as an alternative to current petroleum platform because of the large scale availability, low cost and environmentally benign production. The industrial bioprocessing designed to transform lignocellulosic biomass into biofuels are harsh and the enzymatic reactions may be severely compromised reducing the production of fermentable sugars from lignocellulosic biomass. Thermophilic bacteria consortium are a potent...

  9. The Consortium for Advancing Renewable Energy Technology (CARET)

    Science.gov (United States)

    Gordon, E. M.; Henderson, D. O.; Buffinger, D. R.; Fuller, C. W.; Uribe, R. M.

    1998-01-01

    The Consortium for Advancing Renewable Energy (CARET) is a research and education program which uses the theme of renewable energy to build a minority scientist pipeline. CARET is also a consortium of four universities and NASA Lewis Research Center working together to promote science education and research to minority students using the theme of renewable energy. The consortium membership includes the HBCUs (Historically Black Colleges and Universities), Fisk, Wilberforce and Central State Universities as well as Kent State University and NASA Lewis Research Center. The various stages of this pipeline provide participating students experiences with a different emphasis. Some emphasize building enthusiasm for the classroom study of science and technology while others emphasize the nature of research in these disciplines. Still others focus on relating a practical application to science and technology. And, of great importance to the success of the program are the interfaces between the various stages. Successfully managing these transitions is a requirement for producing trained scientists, engineers and technologists. Presentations describing the CARET program have been given at this year's HBCU Research Conference at the Ohio Aerospace Institute and as a seminar in the Solar Circle Seminar series of the Photovoltaic and Space Environments Branch at NASA Lewis Research Center. In this report, we will describe the many positive achievements toward the fulfillment of the goals and outcomes of our program. We will begin with a description of the interactions among the consortium members and end with a description of the activities of each of the member institutions .

  10. The Worker Rights Consortium Makes Strides toward Legitimacy.

    Science.gov (United States)

    Van der Werf, Martin

    2000-01-01

    Discusses the rapid growth of the Workers Rights Consortium, a student-originated group with 44 member institutions which opposes sweatshop labor conditions especially in the apparel industry. Notes disagreements about the number of administrators on the board of directors and about the role of industry representives. Compares this group with the…

  11. Academic Library Consortium in Jordan: An Evaluation Study

    Science.gov (United States)

    Ahmed, Mustafa H.; Suleiman, Raid Jameel

    2013-01-01

    Purpose: Due to the current financial and managerial difficulties that are encountered by libraries in public universities in Jordan and the geographical diffusion of these academic institutions, the idea of establishing a consortium was proposed by the Council of Higher Education to combine these libraries. This article reviews the reality of…

  12. Characteristics of a bioflocculant produced by a consortium of ...

    African Journals Online (AJOL)

    The characteristics of a bioflocculant produced by a consortium of 2 bacteria belonging to the genera Cobetia and Bacillus was investigated. The extracellular bioflocculant was composed of 66% uronic acid and 31% protein and showed an optimum flocculation (90% flocculating activity) of kaolin suspension at a dosage of ...

  13. Zijm Consortium: Engineering a Sustainable Supply Chain System

    NARCIS (Netherlands)

    Knofius, Nils; Rahimi Ghahroodi, Sajjad; van Capelleveen, Guido Cornelis; Yazdanpanah, Vahid

    2018-01-01

    In this paper we address one of the current major research areas of the Zijm consortium; engineering sustainable supply chain systems by transforming traditionally linear practices to circular systems. We illustrate this field of research with a case consisting of a network of three firms Willem

  14. A Novel Methylotrophic Bacterial Consortium for Treatment of Industrial Effluents.

    Science.gov (United States)

    Hingurao, Krushi; Nerurkar, Anuradha

    2018-01-01

    Considering the importance of methylotrophs in industrial wastewater treatment, focus of the present study was on utilization of a methylotrophic bacterial consortium as a microbial seed for biotreatment of a variety of industrial effluents. For this purpose, a mixed bacterial methylotrophic AC (Ankleshwar CETP) consortium comprising of Bordetella petrii AC1, Bacillus licheniformis AC4, Salmonella subterranea AC5, and Pseudomonas stutzeri AC8 was used. The AC consortium showed efficient biotreatment of four industrial effluents procured from fertilizer, chemical and pesticide industries, and common effluent treatment plant by lowering their chemical oxygen demand (COD) of 950-2000 mg/l to below detection limit in 60-96 h in 6-l batch reactor and 9-15 days in 6-l continuous reactor. The operating variables of wastewater treatment, viz. COD, BOD, pH, MLSS, MLVSS, SVI, and F/M ratio of these effluents, were also maintained in the permissible range in both batch and continuous reactors. Therefore, formation of the AC consortium has led to the development of an efficient microbial seed capable of treating a variety of industrial effluents containing pollutants generated from their respective industries.

  15. The Research Consortium, 1977-2010: Contributions, Milestones, and Trends

    Science.gov (United States)

    Cardinal, Bradley J.; Claman, Gayle

    2010-01-01

    Research and innovation are a cornerstone of any progressive organization. The Research Consortium (RC) has served as the principal organization fulfilling this function on behalf of the American Alliance for Health, Physical Education, Recreation and Dance (AAHPERD) throughout much of its history. The RC is an organization of approximately 5,000…

  16. THE EFFECT OF METHANOGENIC INHIBITOR FEED ON PROPIONIC ACID AND LAMB MEAT CHEMICAL QUALITY

    Directory of Open Access Journals (Sweden)

    E. Suryanto

    2012-09-01

    Full Text Available This study aimed to determine the effect of medium chain fatty acids (MCFA on propionic acids and lamb meat chemical quality. The treatment given was R1: feed without medium chain fatty acids (MCFA, while R2 dan R3 were the feed contained 1.0% and 1.5% of MCFA, respectively. The twelve heads of lambs yearling weight of 16-17 kg were used as materials. Biological trial was done for three months and then was slaughtered. Before being slaughtered, the animal was taken rumen fluid to be analyzed for propionic acid. The carcass was sampled to be analyzed for chemical composition, cholesterol and fatty acids content. This study showed that methanogenic inhibitor feed with 1.0-1.5% MCFA could be used as sheep feed, and the results: the propionic acid content in rumen increased 29.59 – 36.11%. The cholesterol content decreased 7.14-10.06%. For the meat fatty acids composition, unsaturated fatty acids increased 9.05 – 17.96%. while saturated fatty acid decreased 6.59 – 11.88%.

  17. Methanogenic biodegradation of paraffinic solvent hydrocarbons in two different oil sands tailings.

    Science.gov (United States)

    Mohamad Shahimin, Mohd Faidz; Siddique, Tariq

    2017-04-01

    Microbial communities drive many biogeochemical processes in oil sands tailings and cause greenhouse gas emissions from tailings ponds. Paraffinic solvent (primarily C 5 -C 6 ; n- and iso-alkanes) is used by some oil sands companies to aid bitumen extraction from oil sands ores. Residues of unrecovered solvent escape to tailings ponds during tailings deposition and sustain microbial metabolism. To investigate biodegradation of hydrocarbons in paraffinic solvent, mature fine tailings (MFT) collected from Albian and CNRL ponds were amended with paraffinic solvent at ~0.1wt% (final concentration: ~1000mgL -1 ) and incubated under methanogenic conditions for ~1600d. Albian and CNRL MFTs exhibited ~400 and ~800d lag phases, respectively after which n-alkanes (n-pentane and n-hexane) in the solvent were preferentially metabolized to methane over iso-alkanes in both MFTs. Among iso-alkanes, only 2-methylpentane was completely biodegraded whereas 2-methylbutane and 3-methylpentane were partially biodegraded probably through cometabolism. 16S rRNA gene pyrosequencing showed dominance of Anaerolineaceae and Methanosaetaceae in Albian MFT and Peptococcaceae and co-domination of "Candidatus Methanoregula" and Methanosaetaceae in CNRL MFT bacterial and archaeal communities, respectively, during active biodegradation of paraffinic solvent. The results are important for developing future strategies for tailings reclamation and management of greenhouse gas emissions. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Methane Production in Dairy Cows Correlates with Rumen Methanogenic and Bacterial Community Structure.

    Science.gov (United States)

    Danielsson, Rebecca; Dicksved, Johan; Sun, Li; Gonda, Horacio; Müller, Bettina; Schnürer, Anna; Bertilsson, Jan

    2017-01-01

    Methane (CH 4 ) is produced as an end product from feed fermentation in the rumen. Yield of CH 4 varies between individuals despite identical feeding conditions. To get a better understanding of factors behind the individual variation, 73 dairy cows given the same feed but differing in CH 4 emissions were investigated with focus on fiber digestion, fermentation end products and bacterial and archaeal composition. In total 21 cows (12 Holstein, 9 Swedish Red) identified as persistent low, medium or high CH 4 emitters over a 3 month period were furthermore chosen for analysis of microbial community structure in rumen fluid. This was assessed by sequencing the V4 region of 16S rRNA gene and by quantitative qPCR of targeted Methanobrevibacter groups. The results showed a positive correlation between low CH 4 emitters and higher abundance of Methanobrevibacter ruminantium clade. Principal coordinate analysis (PCoA) on operational taxonomic unit (OTU) level of bacteria showed two distinct clusters ( P microbial population or host genetic differences that is reflected in bacterial and archaeal (or methanogens) populations.

  19. Optimization of the monitoring of landfill gas and leachate in closed methanogenic landfills.

    Science.gov (United States)

    Jovanov, Dejan; Vujić, Bogdana; Vujić, Goran

    2018-06-15

    Monitoring of the gas and leachate parameters in a closed landfill is a long-term activity defined by national legislative worldwide. Serbian Waste Disposal Law defines the monitoring of a landfill at least 30 years after its closing, but the definition of the monitoring extent (number and type of parameters) is incomplete. In order to define and clear all the uncertainties, this research focuses on process of monitoring optimization, using the closed landfill in Zrenjanin, Serbia, as the experimental model. The aim of optimization was to find representative parameters which would define the physical, chemical and biological processes in the closed methanogenic landfill and to make this process less expensive. Research included development of the five monitoring models with different number of gas and leachate parameters and each model has been processed in open source software GeoGebra which is often used for solving optimization problems. The results of optimization process identified the most favorable monitoring model which fulfills all the defined criteria not only from the point of view of mathematical analyses, but also from the point of view of environment protection. The final outcome of this research - the minimal required parameters which should be included in the landfill monitoring are precisely defined. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Biotransformation of chlorinated aliphatic solvents in the presence of aromatic compounds under methanogenic conditions

    International Nuclear Information System (INIS)

    Liang, L.N.; Grbic-Galic, D.

    1993-01-01

    Transformation of carbon tetrachloride (CT) and tetrachloroethylene (PCE) was studied under methanogenic conditions, in the presence or absence of toluene, ethylbenzene, phenol, and benzoate. Microbial inoculate for the experiments were derived from three groundwater aquifers contaminated by jet fuel or creosote. CT and PCE were reductively dechlorinated in all the examined castes (CT to chloroform [CF]; PCE to trichloroethylene [TCE], trans-1,2-dichloroethylene [DCE], and vinyl chloride [VC]). In the aquifer microcosms, the electron donors used for the reductive transformations were most likely the unidentified organic compounds present on aquifer solids, or storage materials in microorganisms. Alternatively, molecular hydrogen from the anaerobic incubator atmosphere could have been used. The addition of benzoate caused a decrease in rates of dechlorination if benzoate was transformed. Phenol and ethylbenzene were not degraded and did not influence the transformation of CT or PCE. Toluene, in most of the studied cases, had no influence on reductive dechlorination of either CT or PCE. Only in microcosms derived from a JP-4 jet fuel-contaminated aquifer did the anaerobic degradation of toluene occur simultaneously with reductive dechlorination of PCE, suggesting that toluene might possibly have been used as an electron donor for reductive transformation of chlorinated solvents

  1. Anaerobic Digestion of Sugarcane Vinasse Through a Methanogenic UASB Reactor Followed by a Packed Bed Reactor.

    Science.gov (United States)

    Cabrera-Díaz, A; Pereda-Reyes, I; Oliva-Merencio, D; Lebrero, R; Zaiat, M

    2017-12-01

    The anaerobic treatment of raw vinasse in a combined system consisting in two methanogenic reactors, up-flow anaerobic sludge blanket (UASB) + anaerobic packed bed reactors (APBR), was evaluated. The organic loading rate (OLR) was varied, and the best condition for the combined system was 12.5 kg COD m -3 day -1 with averages of 0.289 m 3 CH 4  kg COD r -1 for the UASB reactor and 4.4 kg COD m -3 day -1 with 0.207 m 3 CH 4  kg COD r -1 for APBR. The OLR played a major role in the emission of H 2 S conducting to relatively stable quality of biogas emitted from the APBR, with H 2 S concentrations <10 mg L -1 . The importance of the sulphate to COD ratio was demonstrated as a result of the low biogas quality recorded at the lowest ratio. It was possible to develop a proper anaerobic digestion of raw vinasse through the combined system with COD removal efficiency of 86.7% and higher CH 4 and a lower H 2 S content in biogas.

  2. Micro-scale H2-CO2 dynamics in a hydrogenotrophic methanogenic membrane reactor

    Directory of Open Access Journals (Sweden)

    Emilio Garcia-Robledo

    2016-08-01

    Full Text Available Biogas production is a key factor in a sustainable energy supply. It is possible to get biogas with very high methane content if the biogas reactors are supplied with exogenous hydrogen, and one of the technologies for supplying hydrogen is through gas permeable membranes. In this study the activity and stratification of hydrogen consumption above such a membrane was investigated by use of microsensors for hydrogen and pH. A hydrogenotrophic methanogenic community that was able to consume the hydrogen flux within 0.5 mm of the membrane with specific rates of up to 30 m3 H2 m-3 day-1 developed within 3 days in fresh manure and was already established at time zero when analyzing slurry from a biogas plant. The hydrogen consumption was dependent on a simultaneous carbon dioxide supply and was inhibited when carbon dioxide depletion elevated the pH to 9.2. The activity was only partially restored when the carbon dioxide supply was resumed. Bioreactors supplied with hydrogen gas should thus be carefully monitored and either have the hydrogen supply disrupted or be supplemented with carbon dioxide when the pH rises to values about 9.

  3. Transformation of trinitrotoluene to triaminotoluene by mixed cultures incubated under methanogenic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, P.; Chow, T.; Adrian, N.R.

    2000-04-01

    2,4,6-Trinitrotoluene (TNT) is an explosive widely used by the military. Although it is no longer manufactured in the US, large amounts of wastewater are generated annually from load, assembly, packing, and demilitarization operations. Granular-activated carbon adsorption is the standard technology for treating wastewater containing TNT and maintaining discharges within the limits established under the National Pollutant Discharge Elimination System. Studies evaluating biological treatment of pink water with an anaerobic fluidized-bed, granular-activated carbon bioreactor have been promising, but the fate of TNT is unknown. The authors investigated the anaerobic transformation of TNT by biofilm microorganisms obtained from a wastewater treatment plant receiving explosive manufacturing wastewater. The TNT was transformed to a mixture of 2-amino-4,6-dinitrotoluene; 4-amino-2,6-dinitrotoluene; 2,4-diamino-6-nitrotoluene; and 2,6-diamino-4-nitrotoluene before culminating in the formation of triaminotoluene (TAT). Triaminotoluene was susceptible to further degradation under anaerobic conditions, but its fate was not determined. Methane formation was inhibited but resumed after the depletion of the diaminonitrotoluene isomers. These studies demonstrate near stoichiometric formation of TAT from TNT and the transformation of 2-amino-4,6-dinitrotoluene to 2,4-diamino-6-nitrotoluene and 2,6-diamino-4-nitrotoluene by a mixed culture incubated under methanogenic conditions. This evidence indicates TAT is also a likely end-product of TNT biodegradation in the anaerobic fluidized fed bioreactor.

  4. APPLICATION OF RESPIROMETRIC TESTS FOR ASSESSMENT OF METHANOGENIC BACTERIA ACTIVITY IN WASTEWATER SLUDGE PROCESSING

    Directory of Open Access Journals (Sweden)

    Małgorzata Cimochowicz-Rybicka

    2013-07-01

    Full Text Available Production of a methane-rich gas (‘biogas’ is contemporary popular sludges processing technology which allows to generate thermal and/or electric energy. Formal requirements issued by the European Union to promote so called renewable energy resources made these process more attractive leading to its application in WWTPs which were designed based on different sludge handling processes. Authors (as active design engineers noted that dimensioning sludge digestion chamber is usually based on SRT assessment without any emphasis on sludge characteristics. Bio-mass characteristics and the estimation of its activity with respect to methane production are of great importance, from both scientific and practical points of view, as anaerobic digestion appears to be one of crucial processes in municipal wastewater handling and disposal. The authors propose respirometric tests to estimate a biomass potential to produce ‘a biogas’ and several years’ laboratory and full scale experience proved its usefulness and reliability both as a measurement and a design tool applicable in sludge handling. Dimensioning method proposed by authors, allows to construct and optimize operation of digestion chambers based on a methanogenic activity.

  5. Isotope fractionation during the anaerobic consumption of acetate by methanogenic and sulfate-reducing microorganisms

    Science.gov (United States)

    Gövert, D.; Conrad, R.

    2009-04-01

    During the anaerobic degradation of organic matter in anoxic sediments and soils acetate is the most important substrate for the final step in production of CO2 and/or CH4. Sulfate-reducing bacteria (SRB) and methane-producing archaea both compete for the available acetate. Knowledge about the fractionation of 13C/12C of acetate carbon by these microbial groups is still limited. Therefore, we determined carbon isotope fractionation in different cultures of acetate-utilizing SRB (Desulfobacter postgatei, D. hydrogenophilus, Desulfobacca acetoxidans) and methanogens (Methanosarcina barkeri, M. acetivorans). Including literature values (e.g., Methanosaeta concilii), isotopic enrichment factors (epsilon) ranged between -35 and +2 permil, possibly involving equilibrium isotope effects besides kinetic isotope effects. The values of epsilon were dependent on the acetate-catabolic pathway of the particular microorganism, the methyl or carboxyl position of acetate, and the relative availability or limitation of the substrate acetate. Patterns of isotope fractionation in anoxic lake sediments and rice field soil seem to reflect the characteristics of the microorganisms actively involved in acetate catabolism. Hence, it might be possible using environmental isotopic information to determine the type of microbial metabolism converting acetate to CO2 and/or CH4.

  6. Low pressure microenvironments: Methane production at 50 mbar and 100 mbar by methanogens

    Science.gov (United States)

    Mickol, Rebecca L.; Kral, Timothy A.

    2018-04-01

    Low pressure is often overlooked in terms of possible biocidal effects when considering a habitable environment on Mars. Few experiments have investigated the ability for microorganisms to actively grow under low pressure conditions, despite the atmosphere being a location on Earth where organisms could be exposed to these pressures. Three species of methanogens (Methanobacterium formicicum, Methanosarcina barkeri, Methanococcus maripaludis) were tested for their ability to actively grow (demonstrate an increase in methane production and optical density) within low-pressure microenvironments at 50 mbar or 100 mbar. M. formicicum was the only species to demonstrate both an increase in methane and an increase in optical density during the low-pressure exposure period for experiments conducted at 50 mbar and 100 mbar. In certain experiments, M. barkeri showed an increase in optical density during the low-pressure exposure period, likely due to the formation of multicellular aggregates, but minimal methane production (conditions. Results indicate that low pressure exposure may just be inhibitory during the exposure itself, and metabolism may resume following incubation under more ideal conditions. Further work is needed to address growth/survival under Mars surface pressures.

  7. Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens

    Energy Technology Data Exchange (ETDEWEB)

    McInerney, M J [Univ. of Illinois, Urbana; Bryant, M P; Pfennig, N

    1979-01-01

    A new species of anaerobic bacterium that degrades the even-numbered carbon fatty acids, butyrate, caproate and caprylate, to acetate and H/sub 2/ and the odd-numbered carbon fatty acids, valerate and heptanoate, to acetate, propionate and H/sub 2/ was obtained in coculture with either an H/sub 2/-utilizing methanogen or H/sub 2/-utilizing desulfovibrio. The organism could be grown only in syntrophic association with the H/sub 2/-utilizer and no other energy sources or combination of electron donor and acceptors were utilized. It was a Gram-negative helical rod with 2 to 8 flagella, about 20 nm in diameter, inserted in a linear fashion about 130 nm or more apart along the concave side of the cell. It grew with a generation time of 84 h in co-culture with Methanospirillum hungatii and was present in numbers of at least 4.5 x 10/sup -6/ per g of anaerobic digest or sludge.

  8. The presence of hydrogenotrophic methanogens in the inoculum improves methane gas production in microbial electrolysis cells.

    KAUST Repository

    Siegert, Michael; Li, Xiu-Fen; Yates, Matthew D; Logan, Bruce E

    2014-01-01

    High current densities in microbial electrolysis cells (MECs) result from the predominance of various Geobacter species on the anode, but it is not known if archaeal communities similarly converge to one specific genus. MECs were examined here on the basis of maximum methane production and current density relative to the inoculum community structure. We used anaerobic digester (AD) sludge dominated by acetoclastic Methanosaeta, and an anaerobic bog sediment where hydrogenotrophic methanogens were detected. Inoculation using solids to medium ratio of 25% (w/v) resulted in the highest methane production rates (0.27 mL mL(-1) cm(-2), gas volume normalized by liquid volume and cathode projected area) and highest peak current densities (0.5 mA cm(-2)) for the bog sample. Methane production was independent of solid to medium ratio when AD sludge was used as the inoculum. 16S rRNA gene community analysis using pyrosequencing and quantitative PCR confirmed the convergence of Archaea to Methanobacterium and Methanobrevibacter, and of Bacteria to Geobacter, despite their absence in AD sludge. Combined with other studies, these findings suggest that Archaea of the hydrogenotrophic genera Methanobacterium and Methanobrevibacter are the most important microorganisms for methane production in MECs and that their presence in the inoculum improves the performance.

  9. Activity of toluene-degrading Pseudomonas putida in the early growth phase of a biofilm for waste gas treatment

    DEFF Research Database (Denmark)

    Pedersen, A.R.; Møller, S.; Molin, S.

    1997-01-01

    A biological trickling filter for treatment of toluene-containing waste gas was studied. The overall kinetics of the biofilm growth was followed in the early growth phase. A rapid initial colonization took place during the first three days. The biofilm thickness increased exponentially, whereas...

  10. Inland valley research in sub-Saharan Africa; priorities for a regional consortium

    NARCIS (Netherlands)

    Jamin, J.Y.; Andriesse, W.; Thiombiano, L.; Windmeijer, P.N.

    1996-01-01

    These proceedings are an account of an international workshop in support of research strategy development for the Inland Valley Consortium in sub-Saharan Africa. This consortium aims at concerted research planning for rice-based cropping systems in the lower parts of inland valleys. The Consortium

  11. Intergenomic evolution and metabolic cross-talk between rumen and thermophilic autotrophic methanogenic archaea.

    Science.gov (United States)

    Bharathi, M; Chellapandi, P

    2017-02-01

    Methanobrevibacter ruminantium M1 (MRU) is a rumen methanogenic archaean that can be able to utilize formate and CO 2 /H 2 as growth substrates. Extensive analysis on the evolutionary genomic contexts considered herein to unravel its intergenomic relationship and metabolic adjustment acquired from the genomic content of Methanothermobacter thermautotrophicus ΔH. We demonstrated its intergenomic distance, genome function, synteny homologs and gene families, origin of replication, and methanogenesis to reveal the evolutionary relationships between Methanobrevibacter and Methanothermobacter. Comparison of the phylogenetic and metabolic markers was suggested for its archaeal metabolic core lineage that might have evolved from Methanothermobacter. Orthologous genes involved in its hydrogenotrophic methanogenesis might be acquired from intergenomic ancestry of Methanothermobacter via Methanobacterium formicicum. Formate dehydrogenase (fdhAB) coding gene cluster and carbon monoxide dehydrogenase (cooF) coding gene might have evolved from duplication events within Methanobrevibacter-Methanothermobacter lineage, and fdhCD gene cluster acquired from bacterial origins. Genome-wide metabolic survey found the existence of four novel pathways viz. l-tyrosine catabolism, mevalonate pathway II, acyl-carrier protein metabolism II and glutathione redox reactions II in MRU. Finding of these pathways suggested that MRU has shown a metabolic potential to tolerate molecular oxygen, antimicrobial metabolite biosynthesis and atypical lipid composition in cell wall, which was acquainted by metabolic cross-talk with mammalian bacterial origins. We conclude that coevolution of genomic contents between Methanobrevibacter and Methanothermobacter provides a clue to understand the metabolic adaptation of MRU in the rumen at different environmental niches. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. A Heme-based Redox Sensor in the Methanogenic Archaeon Methanosarcina acetivorans*

    Science.gov (United States)

    Molitor, Bastian; Stassen, Marc; Modi, Anuja; El-Mashtoly, Samir F.; Laurich, Christoph; Lubitz, Wolfgang; Dawson, John H.; Rother, Michael; Frankenberg-Dinkel, Nicole

    2013-01-01

    Based on a bioinformatics study, the protein MA4561 from the methanogenic archaeon Methanosarcina acetivorans was originally predicted to be a multidomain phytochrome-like photosensory kinase possibly binding open-chain tetrapyrroles. Although we were able to show that recombinantly produced and purified protein does not bind any known phytochrome chromophores, UV-visible spectroscopy revealed the presence of a heme tetrapyrrole cofactor. In contrast to many other known cytoplasmic heme-containing proteins, the heme was covalently attached via one vinyl side chain to cysteine 656 in the second GAF domain. This GAF domain by itself is sufficient for covalent attachment. Resonance Raman and magnetic circular dichroism data support a model of a six-coordinate heme species with additional features of a five-coordination structure. The heme cofactor is redox-active and able to coordinate various ligands like imidazole, dimethyl sulfide, and carbon monoxide depending on the redox state. Interestingly, the redox state of the heme cofactor has a substantial influence on autophosphorylation activity. Although reduced protein does not autophosphorylate, oxidized protein gives a strong autophosphorylation signal independent from bound external ligands. Based on its genomic localization, MA4561 is most likely a sensor kinase of a two-component system effecting regulation of the Mts system, a set of three homologous corrinoid/methyltransferase fusion protein isoforms involved in methyl sulfide metabolism. Consistent with this prediction, an M. acetivorans mutant devoid of MA4561 constitutively synthesized MtsF. On the basis of our results, we postulate a heme-based redox/dimethyl sulfide sensory function of MA4561 and propose to designate it MsmS (methyl sulfide methyltransferase-associated sensor). PMID:23661702

  13. Alkaliphilus crotonatoxidans sp. nov., a strictly anaerobic, crotonate-dismutating bacterium isolated from a methanogenic environment.

    Science.gov (United States)

    Cao, Xianhua; Liu, Xiaoli; Dong, Xiuzhu

    2003-07-01

    Two bacterial strains were isolated from methanogenic butyrate-oxidizing mixed cultures. The cells were straight to slightly curved, gram-positive rods that were motile by means of multiple flagella and formed endospores. Growth was observed in the temperature range 15-45 degrees C (optimum 37 degrees C) and pH range 5.5-9.0 (optimum pH 7.5). The novel isolates were strictly anaerobic chemo-organotrophs capable of utilizing yeast extract, peptone, tryptone and a variety of sugars and organic acids, but not glucose. None of the accessory electron acceptors tested (elemental sulfur, thiosulfate or fumarate) improved growth, except crotonate, which was dismutated to butyrate and acetate. The G + C content of the DNA of one of the isolates, strain B11-2T, was 30.6 mol%. Phylogenetic analysis based on 16S rDNA sequence similarity between strain B11-2T and some other strictly anaerobic, spore-forming bacteria indicated that the novel isolates represented a species in cluster XI within the low-GC gram-positive bacteria, being most closely related to Alkaliphilus transvaalensis JCM 10712T. DNA-DNA relatedness between strain B11-2T and A. transvaalensis JCM 10712T was 21%. On the basis of physiological and molecular properties, and cellular fatty acid and cell wall compositions, the novel isolates are proposed to represent a novel species of the genus Alkaliphilus, for which the name Alkaliphilus crotonatoxidans is proposed (type strain B11-2T=AS 1.2897T=JCM 11672T).

  14. Strategies for the startup of methanogenic inverse fluidized-bed reactors using colonized particles.

    Science.gov (United States)

    Alvarado-Lassman, A; Sandoval-Ramos, A; Flores-Altamirano, M G; Vallejo-Cantú, N A; Méndez-Contreras, J M

    2010-05-01

    One of the inconveniences in the startup of methanogenic inverse fluidized-bed reactors (IFBRs) is the long period required for biofilm formation and stabilization of the system. Previous researchers have preferred to start up in batch mode to shorten stabilization times. Much less work has been done with continuous-mode startup for the IFBR configuration of reactors. In this study, we prepared two IFBRs with similar characteristics to compare startup times for batch- and continuous-operation modes. The reactors were inoculated with a small quantity of colonized particles and run for a period of 3 months, to establish the optimal startup strategy using synthetic media as a substrate (glucose as a source of carbon). After the startup stage, the continuous- and batch-mode reactors removed more than 80% of the chemical oxygen demand (COD) in 51 and 60 days of operation, respectively; however, at the end of the experiments, the continuous-mode reactor had more biomass attached to the support media than the batch-mode reactor. Both reactors developed fully covered support media, but only the continuous-mode reactor had methane yields close to the theoretical value that is typical of stable reactors. Then, a combined startup strategy was proposed, with industrial wastewater as the substrate, using a sequence of batch cycles followed by continuous operation, which allows stable operation at an organic loading rate of 20 g COD/L x d in 15 days. Using a fraction of colonized support as an inoculum presents advantages, with respect to previously reported strategies.

  15. EFFECTS OF AMARANTHS’ SEEDS ON DEHYDROGENASE ACTIVITY AND GASES EMISSION IN METHANOGENIC BIOREACTORS

    Directory of Open Access Journals (Sweden)

    Victor COVALIOV

    2015-12-01

    Full Text Available The influence of amaranths‘ seeds as the source of squalene on the dehydrogenase activity and efficiency of methane production were investigated in methanogenic bench-scale (5000 ml bioreactors used to treat the mixture of distillery wastes and farmyard manure. The adding of amaranth seeds to the methanogenic bioreactor has an inhibitory effect on the dehydrogenase activity and stimulates the process of methanogenesis. Dehydrogenase activity decreased with the increase of doses of squalene and its trend had a close connection with doses (R2=0.77-0.78. The methane content in the total amount of gases is 65.3-71.3% in a bioreactor with the additive of amaranth seeds in a dose of 50 mg l-1, which is 22.1% higher than in the the control bioreactor without additives. The increase in squalene concentration higher than 0.0005% is not rational because its stimulating effect on the methanogenic process decreases. Anaerobic digestion of alcohol distillery industry wastes with manure is a complex nonlinear time-varying microbiological process. Dehydrogenase activity trends in the experiment are described by the power function for 5 hours observations and by the logarithmic function for 120 hours of observations. Trends of CH4 are described by the polynomial function in all periods of testing. Correlation coefficients are 0.37 and 0.70 for CH4 after 5 and 120 hours of the anaerobic digestion. Dehydrogenase activity is in the close negative connection with the amount of gases, including methane. Correlation analysis between dehydrogenase activity and the release of gases has revealed the moderate and strongly negative link during 24 hours after the start of the experiment.EFECTUL SEMINŢELOR DE AMARANT ASUPRA ACTIVITĂŢII DEHIDROGENAZEI ŞI EMISIEI GAZELOR ÎN BIOREACTOARELE METANOGENEÎn bioreactoare metanogene unite consecutiv, cu volum de 5000 ml, utilizate pentru tratarea amestecului de borhot de la distilarea alcoolului cu gunoi de grajd, a fost

  16. DoD Alcohol and Substance Abuse Consortium Award

    Science.gov (United States)

    2017-10-01

    formerly ORG 34517) in Veterans with Co-morbid PTSD/AUD” (Principal Investigator: Dewleen G. Baker, MD) The primary objective of this study is to...test the efficacy, safety, and tolerability of a novel GR antagonist PT150 (formerly ORG 34517) for AUD/PTSD dual diagnosis treatment in veterans. The...Pharmacotherapies for Alcohol and Substance Abuse (PASA) Consortium PI: Rick Williams, PhD & Thomas Kosten, MD Org : RTI International Study Research Planning

  17. p-Cresol mineralization by a nitrifying consortium

    International Nuclear Information System (INIS)

    Silva-Luna, C. D.; Gomez, J.; Houbron, E.; Cuervo Lopez, F. M.; Texier, A. C.

    2009-01-01

    Nitrification and denitrification processes are considered economically feasible technologies for nitrogen removal from wastewater. Knowledge of the toxic or inhibitory effects of cresols on the nitrifying respiratory process is still insufficient. The aim of this study was to evaluate the kinetic behavior and oxidizing ability of a nitrifying consortium exposed to p-cresol in batch cultures. Biotransformation of p-cresol was investigated by identifying the different intermediates formed. (Author)

  18. Mission Connect Mild TBI Translational Research Consortium, Post Traumatic Hypopituitarism

    Science.gov (United States)

    2010-08-01

    10 Aug 2010 4. TITLE AND SUBTITLE The Mission Connect MTBI Translational Research Consortium 5a. CONTRACT NUMBER Post traumatic hypopituitarism 5b...distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The purpose of this project is to identify the incidence of post traumatic hypopituitarism ...June 21, 2010; however, none have reached the six month milestone for blood testing 15. SUBJECT TERMS post traumatic hypopituitarism 16. SECURITY

  19. Preferential methanogenic biodegradation of short-chain n-alkanes by microbial communities from two different oil sands tailings ponds.

    Science.gov (United States)

    Mohamad Shahimin, Mohd Faidz; Foght, Julia M; Siddique, Tariq

    2016-05-15

    Oil sands tailings ponds harbor diverse anaerobic microbial communities capable of methanogenic biodegradation of solvent hydrocarbons entrained in the tailings. Mature fine tailings (MFT) from two operators (Albian and CNRL) that use different extraction solvents were incubated with mixtures of either two (n-pentane and n-hexane) or four (n-pentane, n-hexane, n-octane and n-decane) n-alkanes under methanogenic conditions for ~600 d. Microbes in Albian MFT began methane production by ~80 d, achieving complete depletion of n-pentane and n-hexane in the two-alkane mixture and their preferential biodegradation in the four-alkane mixture. Microbes in CNRL MFT preferentially metabolized n-octane and n-decane in the four-alkane mixture after a ~80 d lag but exhibited a lag of ~360 d before commencing biodegradation of n-pentane and n-hexane in the two-alkane mixture. 16S rRNA gene pyrosequencing revealed Peptococcaceae members as key bacterial n-alkane degraders in all treatments except CNRL MFT amended with the four-alkane mixture, in which Anaerolineaceae, Desulfobacteraceae (Desulfobacterium) and Syntrophaceae (Smithella) dominated during n-octane and n-decane biodegradation. Anaerolineaceae sequences increased only in cultures amended with the four-alkane mixture and only during n-octane and n-decane biodegradation. The dominant methanogens were acetoclastic Methanosaetaceae. These results highlight preferential n-alkane biodegradation by microbes in oil sands tailings from different producers, with implications for tailings management and reclamation. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Time Course-Dependent Methanogenic Crude Oil Biodegradation: Dynamics of Fumarate Addition Metabolites, Biodegradative Genes, and Microbial Community Composition

    Directory of Open Access Journals (Sweden)

    Courtney R. A. Toth

    2018-01-01

    Full Text Available Biodegradation of crude oil in subsurface petroleum reservoirs has adversely impacted most of the world's oil, converting this resource to heavier forms that are of lower quality and more challenging to recover. Oil degradation in deep reservoir environments has been attributed to methanogenesis over geological time, yet our understanding of the processes and organisms mediating oil transformation in the absence of electron acceptors remains incomplete. Here, we sought to identify hydrocarbon activation mechanisms and reservoir-associated microorganisms that may have helped shape the formation of biodegraded oil by incubating oilfield produced water in the presence of light (°API = 32 or heavy crude oil (°API = 16. Over the course of 17 months, we conducted routine analytical (GC, GC-MS and molecular (PCR/qPCR of assA and bssA genes, 16S rRNA gene sequencing surveys to assess microbial community composition and activity changes over time. Over the incubation period, we detected the formation of transient hydrocarbon metabolites indicative of alkane and alkylbenzene addition to fumarate, corresponding with increases in methane production and fumarate addition gene abundance. Chemical and gene-based evidence of hydrocarbon biodegradation under methanogenic conditions was supported by the enrichment of hydrocarbon fermenters known to catalyze fumarate addition reactions (e.g., Desulfotomaculum, Smithella, along with syntrophic bacteria (Syntrophus, methanogenic archaea, and several candidate phyla (e.g., “Atribacteria”, “Cloacimonetes”. Our results reveal that fumarate addition is a possible mechanism for catalyzing the methanogenic biodegradation of susceptible saturates and aromatic hydrocarbons in crude oil, and we propose the roles of community members and candidate phyla in our cultures that may be involved in hydrocarbon transformation to methane in crude oil systems.

  1. Metabolism of reduced methylated sulfur compounds in anaerobic sediments and by a pure culture of an estuarine methanogen

    International Nuclear Information System (INIS)

    Kiene, R.P.; Oremland, R.S.; Catena, A.; Miller, L.G.; Capone, A.G.

    1986-01-01

    Addition of dimethylsulfide (DMS), dimethyldisulfide (DMDS), or methane thiol (MSH) to a diversity of anoxic aquatic sediments (e.g., fresh water, estuarine, alkaline/hypersaline) stimulated methane production. The yield of methane recovered from DMS was often 52 to 63%, although high concentrations of DMS (as well as MSH and DMDS) inhibited methanogenesis in some types of sediments. Production of methane from these reduced methylated sulfur compounds was blocked by 2-bromoethanesulfonic acid. Sulfate did not influence the metabolism of millimolar levels of DMS, DMDs, or MSH added to sediments. However, when DMS was added at ∼2-3=M levels as [ 14 C]DMS, metabolism by sediments resulted in a 14 CH 4 / 14 CO 2 ratio of only 0.06. Addition of molybdate increased the ratio of 1.8, while 2-bromoethanesulfonic acid decreased it to 0, but did not block 14 CO 2 production. These results indicate the methanogens and sulfate reducers compete for DMS when it is present at low concentrations; however, at high concentrations, DMS is a noncompetitive substrate for methanogens. Metabolism of DMS by sediments resulted in the appearance of MSH as a transient intermediate. A pure culture of an obligately methylotrophic estuarine methanogen was isolated which was capable of growth on DMS. Metabolism of DMS by the culture also resulted in the transient appearance of MSH, but the organism could grow on neither MSH nor DMDS. The culture metabolized [ 14 C]-DMS to yield a 14 CH 4 / 14 CO 2 ratio of ∼ 2.8

  2. Morphology and Phylogeny of a New Species of Anaerobic Ciliate, Trimyema finlayi n. sp., with Endosymbiotic Methanogens.

    Science.gov (United States)

    Lewis, William H; Sendra, Kacper M; Embley, T Martin; Esteban, Genoveva F

    2018-01-01

    Many anaerobic ciliated protozoa contain organelles of mitochondrial ancestry called hydrogenosomes. These organelles generate molecular hydrogen that is consumed by methanogenic Archaea, living in endosymbiosis within many of these ciliates. Here we describe a new species of anaerobic ciliate, Trimyema finlayi n. sp., by using silver impregnation and microscopy to conduct a detailed morphometric analysis. Comparisons with previously published morphological data for this species, as well as the closely related species, Trimyema compressum , demonstrated that despite them being similar, both the mean cell size and the mean number of somatic kineties are lower for T. finlayi than for T. compressum , which suggests that they are distinct species. This was also supported by analysis of the 18S rRNA genes from these ciliates, the sequences of which are 97.5% identical (6 substitutions, 1479 compared bases), and in phylogenetic analyses these sequences grouped with other 18S rRNA genes sequenced from previous isolates of the same respective species. Together these data provide strong evidence that T. finlayi is a novel species of Trimyema , within the class Plagiopylea. Various microscopic techniques demonstrated that T. finlayi n. sp. contains polymorphic endosymbiotic methanogens, and analysis of the endosymbionts' 16S rRNA gene showed that they belong to the genus Methanocorpusculum , which was confirmed using fluorescence in situ hybridization with specific probes. Despite the degree of similarity and close relationship between these ciliates, T. compressum contains endosymbiotic methanogens from a different genus, Methanobrevibacter . In phylogenetic analyses of 16S rRNA genes, the Methanocorpusculum endosymbiont of T. finlayi n. sp. grouped with sequences from Methanomicrobia, including the endosymbiont of an earlier isolate of the same species, ' Trimyema sp.,' which was sampled approximately 22 years earlier, at a distant (∼400 km) geographical location

  3. Morphology and Phylogeny of a New Species of Anaerobic Ciliate, Trimyema finlayi n. sp., with Endosymbiotic Methanogens

    Directory of Open Access Journals (Sweden)

    William H. Lewis

    2018-02-01

    Full Text Available Many anaerobic ciliated protozoa contain organelles of mitochondrial ancestry called hydrogenosomes. These organelles generate molecular hydrogen that is consumed by methanogenic Archaea, living in endosymbiosis within many of these ciliates. Here we describe a new species of anaerobic ciliate, Trimyema finlayi n. sp., by using silver impregnation and microscopy to conduct a detailed morphometric analysis. Comparisons with previously published morphological data for this species, as well as the closely related species, Trimyema compressum, demonstrated that despite them being similar, both the mean cell size and the mean number of somatic kineties are lower for T. finlayi than for T. compressum, which suggests that they are distinct species. This was also supported by analysis of the 18S rRNA genes from these ciliates, the sequences of which are 97.5% identical (6 substitutions, 1479 compared bases, and in phylogenetic analyses these sequences grouped with other 18S rRNA genes sequenced from previous isolates of the same respective species. Together these data provide strong evidence that T. finlayi is a novel species of Trimyema, within the class Plagiopylea. Various microscopic techniques demonstrated that T. finlayi n. sp. contains polymorphic endosymbiotic methanogens, and analysis of the endosymbionts’ 16S rRNA gene showed that they belong to the genus Methanocorpusculum, which was confirmed using fluorescence in situ hybridization with specific probes. Despite the degree of similarity and close relationship between these ciliates, T. compressum contains endosymbiotic methanogens from a different genus, Methanobrevibacter. In phylogenetic analyses of 16S rRNA genes, the Methanocorpusculum endosymbiont of T. finlayi n. sp. grouped with sequences from Methanomicrobia, including the endosymbiont of an earlier isolate of the same species, ‘Trimyema sp.,’ which was sampled approximately 22 years earlier, at a distant (∼400 km

  4. Abundance and diversity of methanogens: potential role in high arsenic groundwater in Hetao Plain of Inner Mongolia, China.

    Science.gov (United States)

    Wang, Y H; Li, P; Dai, X Y; Zhang, R; Jiang, Z; Jiang, D W; Wang, Y X

    2015-05-15

    To investigate the community diversity and abundance of methanogens and their potential role in high arsenic groundwater, 17 groundwater samples from Hetao Plain of Inner Mongolia were investigated with an integrated method including 16S rRNA gene clone library, quantitative polymerase chain reaction and geochemistry analyses. Total arsenic (AsTot) concentrations were 82.7-1088.7 μg/L and arsenite (AsIII) mostly dominated in these samples with percentages of 0.04-0.79. CH₄ concentrations ranged from 0.01 to 292 μg/L and distinctly elevated only when AsTot were relatively high and SO₄(2-) were distinctly low. Principal component analysis indicated that these samples were divided into three groups according to the variations of AsTot, CH₄ and SO₄(2-). AsTot concentrations were distinctly high in the group with high CH₄ and low SO₄(2-) comparing to the other two groups (one with high CH₄ and high SO₄(2-), the other with low CH₄ and SO₄(2-)). The mcrA gene (methyl coenzyme-M reductase gene) based phylogenetic analysis of methanogens population showed that methanogenic archaea was diverse but mainly composed of Methanomicrobiales, Methanosarcinales, Methanobacteria and unidentified groups, with Methanomicrobiales being distinctly dominant (50.6%). The mcrA gene abundance in high arsenic groundwater ranged from 3.01 × 10(3) to 3.80 × 10(6)copies/L and accounted for 0-30.2% of total archaeal 16S rRNA genes. The abundance of mcrA genes was positively correlated with the concentrations of AsTot (R=0.59), AsIII (R=0.57) and FeII (R=0.79), while it was negatively correlated with oxidation-reduction potential (R=-0.66) and SO₄(2-) concentration (R=-0.64). These results implied that methanogenic archaea might accelerate As release in groundwater aquifers in Hetao Plain. Copyright © 2015. Published by Elsevier B.V.

  5. Distribution of benthic phototrophs, sulfate reducers, and methanogens in two adjacent saltern evaporation ponds in Eilat, Israel

    Czech Academy of Sciences Publication Activity Database

    Sørensen, K.; Řeháková, Klára; Zapomělová, Eliška; Oren, A.

    2009-01-01

    Roč. 56, 2-3 (2009), s. 275-284 ISSN 0948-3055. [GAP workshop /8./. Eilat, 30.03.2008-08.04.2008] R&D Projects: GA ČR(CZ) GA206/06/0462; GA AV ČR(CZ) KJB600960703; GA AV ČR(CZ) 1QS600170504 Institutional research plan: CEZ:AV0Z60170517; CEZ:AV0Z60050516 Keywords : salterns * microbial community * molecular ecology * phototrohs * sulfate reducers * methanogens Subject RIV: EH - Ecology, Behaviour Impact factor: 1.743, year: 2009

  6. Methane fluxes and the functional groups of methanotrophs and methanogens in a young Arctic landscape on Disko Island, West Greenland

    DEFF Research Database (Denmark)

    Christiansen, Jesper Riis; Barrera Romero, Alejandro Jose; Jørgensen, Niels O. G.

    2015-01-01

    and activity indicates that the age of an Arctic landscape is not important for the CH4 consumption but can be very important for CH4 production. Considering the prevalence of dry landscapes and contrasting ages of high Arctic soils, our results highlight that well-drained soils should not be overlooked......Arctic soils are known to be important methane (CH4) consumers and sources. This study integrates in situ fluxes of CH4 between upland and wetland soils with potential rates of CH4 oxidation and production as well as abundance and diversity of the methanotrophs and methanogens measured...... as an important component of Arctic net CH4 budget....

  7. tRNA-dependent cysteine biosynthetic pathway represents a strategy to increase cysteine contents by preventing it from thermal degradation: thermal adaptation of methanogenic archaea ancestor.

    Science.gov (United States)

    Qu, Ge; Wang, Wei; Chen, Ling-Ling; Qian, Shao-Song; Zhang, Hong-Yu

    2009-10-01

    Although cysteine (Cys) is beneficial to stabilize protein structures, it is not prevalent in thermophiles. For instance, the Cys contents in most thermophilic archaea are only around 0.7%. However, methanogenic archaea, no matter thermophilic or not, contain relatively abundant Cys, which remains elusive for a long time. Recently, Klipcan et al. correlated this intriguing property of methanogenic archaea with their unique tRNA-dependent Cys biosynthetic pathway. But, the deep reasons underlying the correlation are ambiguous. Considering the facts that free Cys is thermally labile and the tRNA-dependent Cys biosynthesis avoids the use of free Cys, we speculate that the unique Cys biosynthetic pathway represents a strategy to increase Cys contents by preventing it from thermal degradation, which may be relevant to the thermal adaptation of methanogenic archaea ancestor.

  8. Efficiency of consortium for in-situ bioremediation and CO2 evolution method of refines petroleum oil in microcosms study

    OpenAIRE

    Dutta, Shreyasri; Singh, Padma

    2017-01-01

    An in-situ bioremediation study was conducted in a laboratory by using mixed microbial consortium. An indigenous microbial consortium was developed by assemble of two Pseudomonas spp. and two Aspergillus spp. which were isolated from various oil contaminated sites of India. The laboratory feasibility study was conducted in a 225 m2 block. Six treatment options-Oil alone, Oil+Best remediater, Oil+Bacterial consortium, Oil+Fungal consortium, Oil+Mixed microbial consortium, Oil+Indigenous microf...

  9. Heavy-Machinery Traffic Impacts Methane Emissions as Well as Methanogen Abundance and Community Structure in Oxic Forest Soils▿†

    Science.gov (United States)

    Frey, Beat; Niklaus, Pascal A.; Kremer, Johann; Lüscher, Peter; Zimmermann, Stephan

    2011-01-01

    Temperate forest soils are usually efficient sinks for the greenhouse gas methane, at least in the absence of significant amounts of methanogens. We demonstrate here that trafficking with heavy harvesting machines caused a large reduction in CH4 consumption and even turned well-aerated forest soils into net methane sources. In addition to studying methane fluxes, we investigated the responses of methanogens after trafficking in two different forest sites. Trafficking generated wheel tracks with different impact (low, moderate, severe, and unaffected). We found that machine passes decreased the soils' macropore space and lowered hydraulic conductivities in wheel tracks. Severely compacted soils yielded high methanogenic abundance, as demonstrated by quantitative PCR analyses of methyl coenzyme M reductase (mcrA) genes, whereas these sequences were undetectable in unaffected soils. Even after a year after traffic compression, methanogen abundance in compacted soils did not decline, indicating a stability of methanogens here over time. Compacted wheel tracks exhibited a relatively constant community structure, since we found several persisting mcrA sequence types continuously present at all sampling times. Phylogenetic analysis revealed a rather large methanogen diversity in the compacted soil, and most mcrA gene sequences were mostly similar to known sequences from wetlands. The majority of mcrA gene sequences belonged either to the order Methanosarcinales or Methanomicrobiales, whereas both sites were dominated by members of the families Methanomicrobiaceae Fencluster, with similar sequences obtained from peatland environments. The results show that compacting wet forest soils by heavy machinery causes increases in methane production and release. PMID:21742929

  10. Succession of methanogenic archaea in rice straw incorporated into a Japanese rice field: estimation by PCR-DGGE and sequence analyses

    Directory of Open Access Journals (Sweden)

    Atsuo Sugano

    2005-01-01

    Full Text Available The succession and phylogenetic profiles of methanogenic archaeal communities associated with rice straw decomposition in rice-field soil were studied by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE analysis followed by 16S rDNA sequencing. Nylon bags containing either leaf sheaths or blades were buried in the plowed layer of a Japanese rice field under drained conditions during the off-crop season and under flooded conditions after transplanting. In addition, rice straw samples that had been buried in the rice field under drained conditions during the off-crop season were temporarily removed during spring plowing and then re-buried in the same rice field under flooded conditions at transplanting. Populations of methanogenic archaea were examined by amplification of the 16S rRNA genes in the DNA extracted from the rice straw samples. No PCR product was produced for samples of leaf sheath or blade prior to burial or after burial under drained conditions, indicating that the methanogen population was very small during decomposition of rice straw under oxic conditions. Many common bands were observed in rice straw samples of leaf sheath and blade during decomposition of rice straw under flooded conditions. Cluster analysis based on DGGE patterns divided methanogenic archaeal communities into two groups before and after the mid-season drainage. Sequence analysis of DGGE bands that were commonly present were closely related to Methanomicrobiales and Rice cluster I. Methanomicrobiales, Rice cluster I and Methanosarcinales were major members before the mid-season drainage, whereas the DGGE bands that characterized methanogenic archaeal communities after the mid-season drainage were closely related to Methanomicrobiales. These results indicate that mid-season drainage affected the methanogenic archaeal communities irrespective of their location on rice straw (sheath and blade and the previous history of decomposition

  11. Influence of Martian regolith analogs on the activity and growth of methanogenic archaea, with special regard to long-term desiccation

    Directory of Open Access Journals (Sweden)

    Janosch eSchirmack

    2015-03-01

    Full Text Available Methanogenic archaea have been studied as model organisms for possible life on Mars for several reasons: they can grow lithoautotrophically by using hydrogen and carbon dioxide as energy and carbon sources, respectively; they are anaerobes; and they evolved at a time when conditions on early Earth are believed to have looked similar to those of early Mars. As Mars is currently dry and cold and as water might be available only at certain time intervals, any organism living on this planet would need to cope with desiccation. On Earth there are several regions with low water availability as well, e.g. permafrost environments, desert soils and salt pans. Here, we present the results of a set of experiments investigating the influence of different Martian regolith analogs on the metabolic activity and growth of three methanogenic strains exposed to culture conditions as well as long-term desiccation. In most cases, concentrations below 1 %wt of regolith in the media resulted in an increase of methane production rates, whereas higher concentrations decreased the rates, thus prolonging the lag phase. Further experiments showed that methanogenic archaea are capable of producing methane when incubated on a water-saturated sedimentary matrix of regolith lacking nutrients. Survival of methanogens under these conditions was analyzed with a 400 day desiccation experiment in the presence of regolith analogs. All tested strains of methanogens survived the desiccation period as it was determined through reincubation on fresh medium and via qPCR following propidium monoazide treatment to identify viable cells. The survival of long-term desiccation and the ability of active metabolism on water-saturated MRAs strengthens the possibility of methanogenic archaea or physiologically similar organisms to exist in environmental niches on Mars. The best results were achieved in presence of a phyllosilicate, which provides insights of possible positive effects in habitats

  12. The impact of road salt runoff on methanogens and other lacustrine prokaryotes

    Science.gov (United States)

    Sprague, E.; Dupuis, D.; Koretsky, C.; Docherty, K. M.

    2017-12-01

    Road salt deicers are widely used in regions that experience icy winters. The resulting saline runoff can negatively impact freshwater lake ecosystems. Saline runoff can cause density stratification, resulting in persistently anoxic hypolimnia. This may result in a shift in the structure of the hypolimnetic prokaryotic community, with potential increases in anaerobic and halotolerant taxa. Specifically, anoxia creates a habitat suitable for the proliferation of obligately anaerobic Archaeal methanogens. As a result, more persistent and expanded anoxic zones due to road salt runoff have the potential to increase hypolimnetic methane concentrations. If a portion of this methane is released to the atmosphere, it could be a currently uncharacterized contributor to atmospheric greenhouse gas emissions. This study examines two urban, eutrophic lakes with significant road salt influx and one rural, eutrophic lake with little road salt influx. All three lakes are located in southwest Michigan. Samples were taken from the water column at every meter at the deepest part of each lake, with a sample from the sediment-water interface, in May, August, and November 2016 and February 2017. The V4 and V5 hypervariable regions of the 16S rRNA gene in Bacteria and Archaea were amplified and sequenced using an Illumina MiSeq approach. Abundance of the mcrA gene, a marker for Archaeal methyl coenzyme A reductase, was quantified using qPCR. Water column methane levels, sediment methane production, water surface methane flux and a suite of supporting geochemical parameters were measured to determine changes in redox stratification in each lake and across seasons. Results indicate significant changes in the 16S rRNA-based community associated with depth, season, salinity and lake. Cyanobacteria, Actinobacteria, and Proteobacteria were among the phyla with the highest overall relative abundance. Sediment samples had more copies of the mcrA gene than the water column samples. In most

  13. Anaerobic biodegradability and methanogenic toxicity of key constituents in copper chemical mechanical planarization effluents of the semiconductor industry.

    Science.gov (United States)

    Hollingsworth, Jeremy; Sierra-Alvarez, Reyes; Zhou, Michael; Ogden, Kimberly L; Field, Jim A

    2005-06-01

    Copper chemical mechanical planarization (CMP) effluents can account for 30-40% of the water discharge in semiconductor manufacturing. CMP effluents contain high concentrations of soluble copper and a complex mixture of organic constituents. The aim of this study is to perform a preliminary assessment of the treatability of CMP effluents in anaerobic sulfidogenic bioreactors inoculated with anaerobic granular sludge by testing individual compounds expected in the CMP effluents. Of all the compounds tested (copper (II), benzotriazoles, polyethylene glycol (M(n) 300), polyethylene glycol (M(n) 860) monooleate, perfluoro-1-octane sulfonate, citric acid, oxalic acid and isopropanol) only copper was found to be inhibitory to methanogenic activity at the concentrations tested. Most of the organic compounds tested were biodegradable with the exception of perfluoro-1-octane sulfonate and benzotriazoles under sulfate reducing conditions and with the exception of the same compounds as well as Triton X-100 under methanogenic conditions. The susceptibility of key components in CMP effluents to anaerobic biodegradation combined with their low microbial inhibition suggest that CMP effluents should be amenable to biological treatment in sulfate reducing bioreactors.

  14. Shifts of methanogenic communities in response to permafrost thaw results in rising methane emissions and soil property changes.

    Science.gov (United States)

    Wei, Shiping; Cui, Hongpeng; Zhu, Youhai; Lu, Zhenquan; Pang, Shouji; Zhang, Shuai; Dong, Hailiang; Su, Xin

    2018-05-01

    Permafrost thaw can bring negative consequences in terms of ecosystems, resulting in permafrost collapse, waterlogging, thermokarst lake development, and species composition changes. Little is known about how permafrost thaw influences microbial community shifts and their activities. Here, we show that the dominant archaeal community shifts from Methanomicrobiales to Methanosarcinales in response to the permafrost thaw, and the increase in methane emission is found to be associated with the methanogenic archaea, which rapidly bloom with nearly tenfold increase in total number. The mcrA gene clone libraries analyses indicate that Methanocellales/Rice Cluster I was predominant both in the original permafrost and in the thawed permafrost. However, only species belonging to Methanosarcinales showed higher transcriptional activities in the thawed permafrost, indicating a shift of methanogens from hydrogenotrophic to partly acetoclastic methane-generating metabolic processes. In addition, data also show the soil texture and features change as a result of microbial reproduction and activity induced by this permafrost thaw. Those data indicate that microbial ecology under warming permafrost has potential impacts on ecosystem and methane emissions.

  15. High-rate continuous hydrogen production by Thermoanaerobacterium thermosaccharolyticum PSU-2 immobilized on heat-pretreated methanogenic granules

    Energy Technology Data Exchange (ETDEWEB)

    O-Thong, Sompong [Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, DK-2800, Kgs Lyngby (Denmark); Department of Biology, Faculty of Science, Thaksin University, Patthalung 93110 (Thailand); Prasertsan, Poonsuk [Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat-Yai, Songkhla 90120 (Thailand); Karakashev, Dimitar; Angelidaki, Irini [Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, DK-2800, Kgs Lyngby (Denmark)

    2008-11-15

    Biohydrogen production from Thermoanaerobacterium thermosaccharolyticum strain PSU-2 was examined in upflow anaerobic sludge blanket (UASB) reactor and carrier-free upflow anaerobic reactor (UA), both fed with sucrose and operating at 60 C. Heat-pretreated methanogenic granules were used as carrier to immobilize T. thermosaccharolyticum strain PSU-2 in UASB reactor operated at a hydraulic retention time (HRT) ranging from 0.75 to 24 h and corresponding sucrose loading rate from 58.5 to 2.4 mmol sucrose l{sup -1} h{sup -1}. In comparison with hydrogen production rate of 12.1 mmol H{sub 2} l{sup -1} h{sup -1} obtained by carrier-free reactor upflow anaerobic (UA) system, a greatly improved hydrogen production rate up to 152 mmol H{sub 2} l{sup -1} h{sup -1} was demonstrated by the granular cells in UASB system. The biofilm of T. thermosaccharolyticum strain PSU-2 developed on treated methanogenic granules in UASB reactor substantially enhanced biomass retention (3 times), and production of hydrogen (12 times) compared to carrier-free reactor. It appears to be the most preferred process for highly efficient dark fermentative hydrogen production from sugar containing wastewater under thermophilic conditions. (author)

  16. Methanogenic degradation of toilet-paper cellulose upon sewage treatment in an anaerobic membrane bioreactor at room temperature.

    Science.gov (United States)

    Chen, Rong; Nie, Yulun; Kato, Hiroyuki; Wu, Jiang; Utashiro, Tetsuya; Lu, Jianbo; Yue, Shangchao; Jiang, Hongyu; Zhang, Lu; Li, Yu-You

    2017-03-01

    Toilet-paper cellulose with rich but refractory carbon sources, are the main insoluble COD fractions in sewage. An anaerobic membrane bioreactor (AnMBR) was configured for sewage treatment at room temperature and its performance on methanogenic degradation of toilet paper was highlighted. The results showed, high organic removal (95%), high methane conversion (90%) and low sludge yield (0.08gVSS/gCOD) were achieved in the AnMBR. Toilet-paper cellulose was fully biodegraded without accumulation in the mixed liquor and membrane cake layer. Bioconversion efficiency of toilet paper approached 100% under a high organic loading rate (OLR) of 2.02gCOD/L/d and it could provide around 26% of total methane generation at most of OLRs. Long sludge retention time and co-digestion of insoluble/soluble COD fractions achieving mutualism of functional microorganisms, contributed to biodegradation of toilet-paper cellulose. Therefore the AnMBR successfully implemented simultaneously methanogenic bioconversion of toilet-paper cellulose and soluble COD in sewage at room temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Involvement of formate as an interspecies electron carrier in a syntrophic acetate-oxidizing anaerobic microorganism in coculture with methanogens.

    Science.gov (United States)

    Hattori, S; Luo, H; Shoun, H; Kamagata, Y

    2001-01-01

    To determine whether formate is involved in interspecies electron transfer between substrate-oxidizing bacteria and hydrogenotrophic microorganisms under anaerobic conditions, a syntrophic acetate-oxidizing bacterium Thermacetogenium phaeum strain PB was cocultured either with a formate /H2-utilizing methanogen strain TM (designated as PB/TM coculture), or an H2-utilizing methanogen strain deltaH (designated as PB/deltaH coculture). Acetate oxidation and subsequent methanogenesis in PB/TM coculture were found to be significantly faster than in PB/deltaH coculture. Formate dehydrogenase and hydrogenase were both detected in strains PB and TM. H2 partial pressures in the PB/TM coculture were kept lower (20 to 40 Pa) than those of the PB/deltaH coculture (40 to 60 Pa) during the exponential growth phase. Formate was also detected in both PB/TM and PB/deltaH cocultures, and the concentration of formate was maintained at a lower level in the PB/TM coculture (5 to 9 microM) than in the PB/deltaH coculture. Thermodynamic calculations revealed that the concentrations of both H2 and formate severely affect the syntrophic oxidation of acetate. These results strongly indicate that not only H2 but also formate may be involved in interspecies electron transfer.

  18. Reducing methane emissions and the methanogen population in the rumen of Tibetan sheep by dietary supplementation with coconut oil.

    Science.gov (United States)

    Ding, Xuezhi; Long, Ruijun; Zhang, Qian; Huang, Xiaodan; Guo, Xusheng; Mi, Jiandui

    2012-10-01

    The objective was to evaluate the effect of dietary coconut oil on methane (CH(4)) emissions and the microbial community in Tibetan sheep. Twelve animals were assigned to receive either a control diet (oaten hay) or a mixture diet containing concentrate (maize meal), in which coconut oil was supplemented at 12 g/day or not for a period of 4 weeks. CH(4) emissions were measured by using the 'tunnel' technique, and microbial communities were examined using quantitative real-time PCR. Daily CH(4) production for the control and forage-to-concentrate ratio of 6:4 was 17.8 and 15.3 g, respectively. Coconut oil was particularly effective at reducing CH(4) emissions from Tibetan sheep. The inclusion of coconut oil for the control decreased CH(4) production (in grams per day) by 61.2%. In addition, there was a positive correlation between the number of methanogens and the daily CH(4) production (R = 0.95, P coconut oil supplemented at 12 g/day decreases the number of methanogens by 77% and a decreases in the ruminal fungal population (85-95%) and Fibrobacter succinogenes (50-98%) but an increase in Ruminococcus flavefaciens (25-70%). The results from our experiment suggest that adding coconut oil to the diet can reduce CH(4) emissions in Tibetan sheep and that these reductions persist for at least the 4-week feeding period.

  19. Thermophilic anaerobic degradation of butyrate by a butyrate-utilizing bacterium in coculture and triculture with methanogenic bacteria.

    Science.gov (United States)

    Ahring, B K; Westermann, P

    1987-02-01

    We studied syntrophic butyrate degradation in thermophilic mixed cultures containing a butyrate-degrading bacterium isolated in coculture with Methanobacterium thermoautotrophicum or in triculture with M. thermoautotrophicum and the TAM organism, a thermophilic acetate-utilizing methanogenic bacterium. Butyrate was beta-oxidized to acetate with protons as the electron acceptors. Acetate was used concurrently with its production in the triculture. We found a higher butyrate degradation rate in the triculture, in which both hydrogen and acetate were utilized, than in the coculture, in which acetate accumulated. Yeast extract, rumen fluid, and clarified digestor fluid stimulated butyrate degradation, while the effect of Trypticase was less pronounced. Penicillin G, d-cycloserine, and vancomycin caused complete inhibition of butyrate utilization by the cultures. No growth or degradation of butyrate occurred when 2-bromoethanesulfonic acid or chloroform, specific inhibitors of methanogenic bacteria, was added to the cultures and common electron acceptors such as sulfate, nitrate, and fumarate were not used with butyrate as the electron donor. Addition of hydrogen or oxygen to the gas phase immediately stopped growth and butyrate degradation by the cultures. Butyrate was, however, metabolized at approximately the same rate when hydrogen was removed from the cultures and was metabolized at a reduced rate in the cultures previously exposed to hydrogen.

  20. Effect of Nitrooxy Compounds with Different Molecular Structures on the Rumen Methanogenesis, Metabolic Profile, and Methanogenic Community.

    Science.gov (United States)

    Jin, Wei; Meng, Zhenxiang; Wang, Jing; Cheng, Yanfen; Zhu, Weiyun

    2017-08-01

    Rumen in vitro fermentation was used to evaluate the capacity of nitrooxy compounds to mitigate rumen methane production. The following three nitrooxy compounds, each with different molecular structures, were evaluated: 2,2-dimethyl-3-(nitrooxy) propanoic (DNP), N-[2-(Nitrooxy)ethyl]-3-pyridinecarboxamide (NPD), and nitroglycerin (NG). All three compounds substantially decreased the total gas production, methane production, and the acetate:propionate ratio, while increasing hydrogen production. The growth of methanogens was specifically inhibited by all three compounds, without affecting the abundance of bacteria, anaerobic fungi, or protozoa. However, inhibition of methanogenesis required a much higher dose of DNP when compared to NPD or NG. Further investigations were conducted on NG to determine its effects on the methanogenic community. NG reduced the relative abundance of Methanomassiliicoccales, while increasing the relative abundance of Methanobrevibacter and Methanosphaera. Overall, the results suggested that all three of these nitrooxy compounds could specifically inhibit rumen methanogenesis, but NPD and NG were much more efficient than DNP at rumen methane mitigation.

  1. Cultivation of algae consortium in a dairy farm wastewater for biodiesel production

    Directory of Open Access Journals (Sweden)

    S. Hena

    2015-06-01

    Full Text Available Dairy farm wastewaters are potential resources for production of microalgae biofuels. A study was conducted to evaluate the capability of production of biodiesel from consortium of native microalgae culture in dairy farm treated wastewater. Native algal strains were isolated from dairy farm wastewaters collection tank (untreated wastewater as well as from holding tank (treated wastewater. The consortium members were selected on the basis of fluorescence response after treating with Nile red reagent. Preliminary studies of two commercial and consortium of ten native strains of algae showed good growth in wastewaters. A consortium of native strains was found capable to remove more than 98% nutrients from treated wastewater. The biomass production and lipid content of consortium cultivated in treated wastewater were 153.54 t ha−1 year−1 and 16.89%, respectively. 72.70% of algal lipid obtained from consortium could be converted into biodiesel.

  2. Northern New Jersey Nursing Education Consortium: a partnership for graduate nursing education.

    Science.gov (United States)

    Quinless, F W; Levin, R F

    1998-01-01

    The purpose of this article is to describe the evolution and implementation of the Northern New Jersey Nursing Education consortium--a consortium of seven member institutions established in 1992. Details regarding the specific functions of the consortium relative to cross-registration of students in graduate courses, financial disbursement of revenue, faculty development activities, student services, library privileges, and institutional research review board mechanisms are described. The authors also review the administrative organizational structure through which the work conducted by the consortium occurs. Both the advantages and disadvantages of such a graduate consortium are explored, and specific examples of recent potential and real conflicts are fully discussed. The authors detail governance and structure of the consortium as a potential model for replication in other environments.

  3. Kansas Consortium Plug-in Hybrid Medium Duty

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2012-03-31

    On September 30, 2008, the US Department of Energy (DoE), issued a cooperative agreement award, DE-FC26-08NT01914, to the Metropolitan Energy Center (MEC), for a project known as “Kansas Consortium Plug-in Hybrid Medium Duty Certification” project. The cooperative agreement was awarded pursuant to H15915 in reference to H. R. 2764 Congressionally Directed Projects. The original agreement provided funding for The Consortium to implement the established project objectives as follows: (1) to understand the current state of the development of a test protocol for PHEV configurations; (2) to work with industry stakeholders to recommend a medium duty vehicle test protocol; (3) to utilize the Phase 1 Eaton PHEV F550 Chassis or other appropriate PHEV configurations to conduct emissions testing; (4) and to make an industry PHEV certification test protocol recommendation for medium duty trucks. Subsequent amendments to the initial agreement were made, the most significant being a revised Scope of Project Objectives (SOPO) that did not address actual field data since it was not available as originally expected. This project was mated by DOE with a parallel project award given to the South Coast Air Quality Management District (SCAQMD) in California. The SCAQMD project involved designing, building and testing of five medium duty plug-in hybrid electric trucks. SCAQMD had contracted with the Electric Power Research Institute (EPRI) to manage the project. EPRI provided the required match to the federal grant funds to both the SCAQMD project and the Kansas Consortium project. The rational for linking the two projects was that the data derived from the SCAQMD project could be used to validate the protocols developed by the Kansas Consortium team. At the same time, the consortium team would be a useful resource to SCAQMD in designating their test procedures for emissions and operating parameters and determining vehicle mileage. The years between award of the cooperative

  4. Bioremoval of Am-241 and Cs-137 from liquid radioactive wasters by bacterial consortiums

    International Nuclear Information System (INIS)

    Ferreira, Rafael Vicente de Padua; Lima, Josenilson B. de; Gomes, Mirella C.; Borba, Tania R.; Bellini, Maria Helena; Marumo, Julio Takehiro; Sakata, Solange Kazumi

    2011-01-01

    This paper evaluates the capacity of two bacterial consortiums of impacted areas in removing the Am-241 and Cs-137 from liquid radioactive wastes.The experiments indicated that the two study consortiums were able to remove 100% of the Cs-137 and Am-241 presents in the waste from 4 days of contact. These results suggest that the bio removal with the selected consortiums, can be a viable technique for the treatment of radioactive wastes containing Am-241 and Cs-137

  5. Legacy Clinical Data from the Mission Connect Mild TBI Translational Research Consortium

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-16-2-0026 TITLE: Legacy Clinical Data from the Mission Connect Mild TBI Translational Research Consortium PRINCIPAL...2017 4. TITLE AND SUBTITLE Legacy Clinical Data from the Mission Connect Mild TBI Translational Research 5a. CONTRACT NUMBER Consortium 5b. GRANT...mTBI) Translational Research Consortium was to improve the diagnosis and treatment of mTBI. We enrolled a total of 88 mTBI patients and 73 orthopedic

  6. Geodesy and the UNAVCO Consortium: Three Decades of Innovations

    Science.gov (United States)

    Rowan, L. R.; Miller, M. M.; Meertens, C. M.; Mattioli, G. S.

    2015-12-01

    UNAVCO, a non-profit, university consortium that supports geoscience research using geodesy, began with the ingenious recognition that the nascent Global Positioning System constellation (GPS) could be used to investigate earth processes. The consortium purchased one of the first commercially available GPS receivers, Texas Instrument's TI-4100 NAVSTAR Navigator, in 1984 to measure plate deformation. This early work was highlighted in a technology magazine, GPSWorld, in 1990. Over a 30-year period, UNAVCO and the community have helped advance instrument design for mobility, flexibility, efficiency and interoperability, so research could proceed with higher precision and under ever challenging conditions. Other innovations have been made in data collection, processing, analysis, management and archiving. These innovations in tools, methods and data have had broader impacts as they have found greater utility beyond research for timing, precise positioning, safety, communication, navigation, surveying, engineering and recreation. Innovations in research have expanded the utility of geodetic tools beyond the solid earth science through creative analysis of the data and the methods. For example, GPS sounding of the atmosphere is now used for atmospheric and space sciences. GPS reflectrometry, another critical advance, supports soil science, snow science and ecological research. Some research advances have had broader impacts for society by driving innovations in hazards risk reduction, hazards response, resource management, land use planning, surveying, engineering and other uses. Furthermore, the geodetic data is vital for the design of space missions, testing and advancing communications, and testing and dealing with interference and GPS jamming. We will discuss three decades (and counting) of advances by the National Science Foundation's premiere geodetic facility, consortium and some of the many geoscience principal investigators that have driven innovations in

  7. The IRIS consortium: international cooperation in advanced reactor development

    International Nuclear Information System (INIS)

    Carelli, M.; Petrovic, B.; Miller, K.; Lombardi, C.; Ricotti, M.E.

    2005-01-01

    Besides its many outstanding technical innovations in the design and safety, the most innovative feature of the International Reactor Innovative and Secure (IRIS), is perhaps the international cooperation which carries on its development. IRIS is designed by an international consortium which currently numbers 21 organizations from ten countries across four continents. It includes reactor, fuel and fuel cycle vendors, component manufacturers, laboratories, academia, architect engineers and power producers. The defining organizational characteristics of IRIS is that while Westinghouse has overall lead and responsibility, this lead is of the type of 'primus inter pares' (first among equals) rather than the traditional owner versus suppliers/contractors relationship. All members of the IRIS consortium contribute and expect to have a return, should IRIS be successfully deployed, commensurate to their investment. The nature of such return will be tailored to the type of each organization, because it will of course be of a different nature for say a component manufacturer, university, or architect engineer. One fundamental tenet of the consortium is that all members, regardless of their amount of contribution, have equal access to all information developed within the project. Technical work is thus being coordinated by integrated subgroups and the whole team meets twice a year to perform an overall review of the work, discuss policy and strategy and plan future activities. Personnel from consortium members have performed internships, mostly at Westinghouse locations in Pittsburgh, Pennsylvania, and Windsor, Connecticut, but also at other members, as it has been the case for several graduate students. In fact, more than one hundred students at the various universities have been working on IRIS, most of them conducting graduate theses at the master or doctoral level. The IRIS experience has proved very helpful to the students in successfully landing their employment choice

  8. Simultaneous production of acetate and methane from glycerol by selective enrichment of hydrogenotrophic methanogens in extreme-thermophilic (70 °C) mixed culture fermentation

    International Nuclear Information System (INIS)

    Zhang, Fang; Zhang, Yan; Chen, Yun; Dai, Kun; Loosdrecht, Mark C.M. van; Zeng, Raymond J.

    2015-01-01

    Highlights: • Simultaneous production of acetate and methane from glycerol was investigated. • Acetate accounted for more than 90% of metabolites in liquid solutions. • The maximum concentration of acetate was above 13 g/L. • 93% of archaea were hydrogenotrophic methanogens. • Thermoanaerobacter was main bacterium and its percentage was 92%. - Abstract: The feasibility of simultaneous production of acetate and methane from glycerol was investigated by selective enrichment of hydrogenotrophic methanogens in an extreme-thermophilic (70 °C) fermentation. Fed-batch experiments showed acetate was produced at the concentration up to 13.0 g/L. A stable operation of the continuous stirred tank reactor (CSTR) was reached within 100 days. Acetate accounted for more than 90 w/w% of metabolites in the fermentation liquid. The yields of methane and acetate were close to the theoretical yields with 0.74–0.80 mol-methane/mol-glycerol and 0.63–0.70 mol-acetate/mol-glycerol. The obtained microbial community was characterized. Hydrogenotrophic methanogens, mainly Methanothermobacter thermautotrophicus formed 93% of the methanogenogenic community. This confirms that a high temperature (70 °C) could effectively select for hydrogenotrophic methanogenic archaea. Thermoanaerobacter spp. was the main bacterium forming 91.5% of the bacterial population. This work demonstrated the conversion of the byproduct of biodiesel production, glycerol, to acetate as a chemical and biogas for energy generation

  9. Identification of novel potential acetate-oxidizing bacteria in an acetate-fed methanogenic chemostat based on DNA stable isotope probing.

    Science.gov (United States)

    Wang, Hui-Zhong; Gou, Min; Yi, Yue; Xia, Zi-Yuan; Tang, Yue-Qin

    2018-05-11

    Acetate is a significant intermediate of anaerobic fermentation. There are two pathways for converting acetate to CH 4 and CO 2 : acetoclastic methanogenesis by acetoclastic methanogens, and syntrophic acetate oxidation by acetate-oxidizing bacteria (AOB) and hydrogenotrophic methanogens. Detailed investigations of syntrophic acetate-oxidizing bacteria (SAOB) should contribute to the elucidation of the microbial mechanisms of methanogenesis. In this study, we investigated the major phylogenetic groups of acetate-utilizing bacteria (AUB) in a mesophilic methanogenic chemostat fed with acetate as the sole carbon source by using DNA stable isotope probing (SIP) technology. The results indicated that acetoclastic methanogenesis and acetate oxidization/hydrogenotrophic methanogenesis coexisted in the mesophilic chemostat fed with acetate, operated at a dilution rate of 0.1 d -1 . OTU Ace13(9-17) (KU869530), Ace13(9-4) (KU667241), and Ace13(9-23) (KU667236), assigned to the phyla Firmicutes and Bacteroidetes, were probably potential SAOB in the chemostat, which needs further investigation. Species in the phyla Proteobacteria, Deferribacteres, Acidobacteria, Spirochaetes and Actinobacteria were probably capable of utilizing acetate for their growth. Methanoculleus was likely to be the preferred hydrogenotrophic methanogen for syntrophy with AOB in the chemostat.

  10. Effect of UVC Radiation on Hydrated and Desiccated Cultures of Slightly Halophilic and Non-Halophilic Methanogenic Archaea: Implications for Life on Mars.

    Science.gov (United States)

    Sinha, Navita; Kral, Timothy A

    2018-05-12

    Methanogens have been considered models for life on Mars for many years. In order to survive any exposure at the surface of Mars, methanogens would have to endure Martian UVC radiation. In this research, we irradiated hydrated and desiccated cultures of slightly halophilic Methanococcus maripaludis and non-halophilic Methanobacterium formicicum for various time intervals with UVC (254 nm) radiation. The survivability of the methanogens was determined by measuring methane concentrations in the headspace gas samples of culture tubes after re-inoculation of the methanogens into their growth-supporting media following exposure to UVC radiation. Hydrated M. maripaludis survived 24 h of UVC exposure, while in a desiccated condition they endured for 16 h. M. formicicum also survived UVC radiation for 24 h in a liquid state; however, in a desiccated condition, the survivability of M. formicicum was only 12 h. Some of the components of the growth media could have served as shielding agents that protected cells from damage caused by exposure to ultraviolet radiation. Overall, these results suggest that limited exposure (12⁻24 h) to UVC radiation on the surface of Mars would not necessarily be a limiting factor for the survivability of M. maripaludis and M. formicicum .

  11. INFLUENCE OF METRONIDAZOLE, CO, CO2, AND METHANOGENS ON THE FERMENTATIVE METABOLISM OF THE ANAEROBIC FUNGUS NEOCALLIMASTIX SP STRAIN L2

    NARCIS (Netherlands)

    MARVINSIKKEMA, FD; REES, E; KRAAK, MN; GOTTSCHAL, JC; PRINS, RA

    The effects of metronidazole, CO, methanogens, and CO, on the fermentation of glucose by the anaerobic fungus Neocallimastix sp. strain L2 were investigated. Both metronidazole and CO caused a shift in the fermentation products from predominantly H-2, acetate, and formate to lactate as the major

  12. Glycan array data management at Consortium for Functional Glycomics.

    Science.gov (United States)

    Venkataraman, Maha; Sasisekharan, Ram; Raman, Rahul

    2015-01-01

    Glycomics or the study of structure-function relationships of complex glycans has reshaped post-genomics biology. Glycans mediate fundamental biological functions via their specific interactions with a variety of proteins. Recognizing the importance of glycomics, large-scale research initiatives such as the Consortium for Functional Glycomics (CFG) were established to address these challenges. Over the past decade, the Consortium for Functional Glycomics (CFG) has generated novel reagents and technologies for glycomics analyses, which in turn have led to generation of diverse datasets. These datasets have contributed to understanding glycan diversity and structure-function relationships at molecular (glycan-protein interactions), cellular (gene expression and glycan analysis), and whole organism (mouse phenotyping) levels. Among these analyses and datasets, screening of glycan-protein interactions on glycan array platforms has gained much prominence and has contributed to cross-disciplinary realization of the importance of glycomics in areas such as immunology, infectious diseases, cancer biomarkers, etc. This manuscript outlines methodologies for capturing data from glycan array experiments and online tools to access and visualize glycan array data implemented at the CFG.

  13. Determinism and Contingency Shape Metabolic Complementation in an Endosymbiotic Consortium.

    Science.gov (United States)

    Ponce-de-Leon, Miguel; Tamarit, Daniel; Calle-Espinosa, Jorge; Mori, Matteo; Latorre, Amparo; Montero, Francisco; Pereto, Juli

    2017-01-01

    Bacterial endosymbionts and their insect hosts establish an intimate metabolic relationship. Bacteria offer a variety of essential nutrients to their hosts, whereas insect cells provide the necessary sources of matter and energy to their tiny metabolic allies. These nutritional complementations sustain themselves on a diversity of metabolite exchanges between the cell host and the reduced yet highly specialized bacterial metabolism-which, for instance, overproduces a small set of essential amino acids and vitamins. A well-known case of metabolic complementation is provided by the cedar aphid Cinara cedri that harbors two co-primary endosymbionts, Buchnera aphidicola BCc and Ca . Serratia symbiotica SCc, and in which some metabolic pathways are partitioned between different partners. Here we present a genome-scale metabolic network (GEM) for the bacterial consortium from the cedar aphid i BSCc. The analysis of this GEM allows us the confirmation of cases of metabolic complementation previously described by genome analysis (i.e., tryptophan and biotin biosynthesis) and the redefinition of an event of metabolic pathway sharing between the two endosymbionts, namely the biosynthesis of tetrahydrofolate. In silico knock-out experiments with i BSCc showed that the consortium metabolism is a highly integrated yet fragile network. We also have explored the evolutionary pathways leading to the emergence of metabolic complementation between reduced metabolisms starting from individual, complete networks. Our results suggest that, during the establishment of metabolic complementation in endosymbionts, adaptive evolution is significant in the case of tryptophan biosynthesis, whereas vitamin production pathways seem to adopt suboptimal solutions.

  14. Inner-City Energy and Environmental Education Consortium

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-11

    The numbers of individuals with adequate education and training to participate effectively in the highly technical aspects of environmental site cleanup are insufficient to meet the increasing demands of industry and government. Young people are particularly sensitive to these issues and want to become better equipped to solve the problems which will confront them during their lives. Educational institutions, on the other hand, have been slow in offering courses and curricula which will allow students to fulfill these interests. This has been in part due to the lack of federal funding to support new academic programs. This Consortium has been organized to initiate focused educational effort to reach inner-city youth with interesting and useful energy and environmental programs which can lead to well-paying and satisfying careers. Successful Consortium programs can be replicated in other parts of the nation. This report describes a pilot program in Washington, DC, Philadelphia, and Baltimore with the goal to attract and retain inner-city youth to pursue careers in energy-related scientific and technical areas, environmental restoration, and waste management.

  15. The Latin American Consortium of Studies in Obesity (LASO)

    Science.gov (United States)

    Bautista, L. E.; Casas, J. P.; Herrera, V. M.; Miranda, J. J.; Perel, P.; Pichardo, R.; González, A.; Sanchez, J. R.; Ferreccio, C.; Aguilera, X.; Silva, E.; Oróstegui, M.; Gómez, L. F.; Chirinos, J. A.; Medina-Lezama, J.; Pérez, C. M.; Suárez, E.; Ortiz, A. P.; Rosero, L.; Schapochnik, N.; Ortiz, Z.; Ferrante, D.

    2009-01-01

    Summary Current, high-quality data are needed to evaluate the health impact of the epidemic of obesity in Latin America. The Latin American Consortium of Studies of Obesity (LASO) has been established, with the objectives of (i) Accurately estimating the prevalence of obesity and its distribution by sociodemographic characteristics; (ii) Identifying ethnic, socioeconomic and behavioural determinants of obesity; (iii) Estimating the association between various anthropometric indicators or obesity and major cardiovascular risk factors and (iv) Quantifying the validity of standard definitions of the various indexes of obesity in Latin American population. To achieve these objectives, LASO makes use of individual data from existing studies. To date, the LASO consortium includes data from 11 studies from eight countries (Argentina, Chile, Colombia, Costa Rica, Dominican Republic, Peru, Puerto Rico and Venezuela), including a total of 32 462 subjects. This article describes the overall organization of LASO, the individual studies involved and the overall strategy for data analysis. LASO will foster the development of collaborative obesity research among Latin American investigators. More important, results from LASO will be instrumental to inform health policies aiming to curtail the epidemic of obesity in the region. PMID:19438980

  16. A programmable Escherichia coli consortium via tunable symbiosis.

    Directory of Open Access Journals (Sweden)

    Alissa Kerner

    Full Text Available Synthetic microbial consortia that can mimic natural systems have the potential to become a powerful biotechnology for various applications. One highly desirable feature of these consortia is that they can be precisely regulated. In this work we designed a programmable, symbiotic circuit that enables continuous tuning of the growth rate and composition of a synthetic consortium. We implemented our general design through the cross-feeding of tryptophan and tyrosine by two E. coli auxotrophs. By regulating the expression of genes related to the export or production of these amino acids, we were able to tune the metabolite exchanges and achieve a wide range of growth rates and strain ratios. In addition, by inverting the relationship of growth/ratio vs. inducer concentrations, we were able to "program" the co-culture for pre-specified attributes with the proper addition of inducing chemicals. This programmable proof-of-concept circuit or its variants can be applied to more complex systems where precise tuning of the consortium would facilitate the optimization of specific objectives, such as increasing the overall efficiency of microbial production of biofuels or pharmaceuticals.

  17. Response of Methanogenic Microbial Communities to Desiccation Stress in Flooded and Rain-Fed Paddy Soil from Thailand

    Directory of Open Access Journals (Sweden)

    Andreas Reim

    2017-05-01

    Full Text Available Rice paddies in central Thailand are flooded either by irrigation (irrigated rice or by rain (rain-fed rice. The paddy soils and their microbial communities thus experience permanent or arbitrary submergence, respectively. Since methane production depends on anaerobic conditions, we hypothesized that structure and function of the methanogenic microbial communities are different in irrigated and rain-fed paddies and react differently upon desiccation stress. We determined rates and relative proportions of hydrogenotrophic and aceticlastic methanogenesis before and after short-term drying of soil samples from replicate fields. The methanogenic pathway was determined by analyzing concentrations and δ13C of organic carbon and of CH4 and CO2 produced in the presence and absence of methyl fluoride, an inhibitor of aceticlastic methanogenesis. We also determined the abundance (qPCR of genes and transcripts of bacterial 16S rRNA, archaeal 16S rRNA and methanogenic mcrA (coding for a subunit of the methyl coenzyme M reductase and the composition of these microbial communities by T-RFLP fingerprinting and/or Illumina deep sequencing. The abundances of genes and transcripts were similar in irrigated and rain-fed paddy soil. They also did not change much upon desiccation and rewetting, except the transcripts of mcrA, which increased by more than two orders of magnitude. In parallel, rates of CH4 production also increased, in rain-fed soil more than in irrigated soil. The contribution of hydrogenotrophic methanogenesis increased in rain-fed soil and became similar to that in irrigated soil. However, the relative microbial community composition on higher taxonomic levels was similar between irrigated and rain-fed soil. On the other hand, desiccation and subsequent anaerobic reincubation resulted in systematic changes in the composition of microbial communities for both Archaea and Bacteria. It is noteworthy that differences in the community composition were

  18. Impact of high-concentrate feeding and low ruminal pH on methanogens and protozoa in the rumen of dairy cows.

    Science.gov (United States)

    Hook, Sarah E; Steele, Michael A; Northwood, Korinne S; Wright, André-Denis G; McBride, Brian W

    2011-07-01

    Non-lactating dairy cattle were transitioned to a high-concentrate diet to investigate the effect of ruminal pH suppression, commonly found in dairy cattle, on the density, diversity, and community structure of rumen methanogens, as well as the density of rumen protozoa. Four ruminally cannulated cows were fed a hay diet and transitioned to a 65% grain and 35% hay diet. The cattle were maintained on an high-concentrate diet for 3 weeks before the transition back to an hay diet, which was fed for an additional 3 weeks. Rumen fluid and solids and fecal samples were obtained prior to feeding during weeks 0 (hay), 1, and 3 (high-concentrate), and 4 and 6 (hay). Subacute ruminal acidosis was induced during week 1. During week 3 of the experiment, there was a significant increase in the number of protozoa present in the rumen fluid (P=0.049) and rumen solids (P=0.004), and a significant reduction in protozoa in the rumen fluid in week 6 (P=0.003). No significant effect of diet on density of rumen methanogens was found in any samples, as determined by real-time PCR. Clone libraries were constructed for weeks 0, 3, and 6, and the methanogen diversity of week 3 was found to differ from week 6. Week 3 was also found to have a significantly altered methanogen community structure, compared to the other weeks. Twenty-two unique 16S rRNA phylotypes were identified, three of which were found only during high-concentrate feeding, three were found during both phases of hay feeding, and seven were found in all three clone libraries. The genus Methanobrevibacter comprised 99% of the clones present. The rumen fluid at weeks 0, 3, and 6 of all the animals was found to contain a type A protozoal population. Ultimately, high-concentrate feeding did not significantly affect the density of rumen methanogens, but did alter methanogen diversity and community structure, as well as protozoal density within the rumen of nonlactating dairy cattle. Therefore, it may be necessary to monitor the

  19. Effect of nitrogen fertilizer and/or rice straw amendment on methanogenic archaeal communities and methane production from a rice paddy soil.

    Science.gov (United States)

    Bao, Qiongli; Huang, Yizong; Wang, Fenghua; Nie, Sanan; Nicol, Graeme W; Yao, Huaiying; Ding, Longjun

    2016-07-01

    Nitrogen fertilization and returning straw to paddy soil are important factors that regulate CH4 production. To evaluate the effect of rice straw and/or nitrate amendment on methanogens, a paddy soil was anaerobically incubated for 40 days. The results indicated that while straw addition increased CH4 production and the abundances of mcrA genes and their transcripts, nitrate amendment showed inhibitory effects on them. The terminal restriction fragment length polymorphism (T-RFLP) analysis based on mcrA gene revealed that straw addition obviously changed methanogenic community structure. Based on mcrA gene level, straw-alone addition stimulated Methanosarcinaceaes at the early stage of incubation (first 11 days), but nitrate showed inhibitory effect. The relative abundance of Methanobacteriaceae was also stimulated by straw addition during the first 11 days. Furthermore, Methanosaetaceae were enriched by nitrate-alone addition after 11 days, while Methanocellaceae were enriched by nitrate addition especially within the first 5 days. The transcriptional methanogenic community indicated more dynamic and complicated responses to straw and/or nitrate addition. Based on mcrA transcript level, nitrate addition alone resulted in the increase of Methanocellaceae and the shift from Methanosarcinaceae to Methanosaetaceae during the first 5 days of incubation. Straw treatments increased the relative abundance of Methanobacteriaceae after 11 days. These results demonstrate that nitrate addition influences methanogens which are transcriptionally and functionally active and can alleviate CH4 production associated with straw amendment in paddy soil incubations, presumably through competition for common substrates between nitrate-utilizing organisms and methanogens.

  20. High-rate continuous hydrogen production by Thermoanaerobacterium thermosaccharolyticum PSU-2 immobilized on heat-pretreated methanogenic granules

    DEFF Research Database (Denmark)

    O-Thong, Sompong; Prasertsan, P.; Karakashev, Dimitar Borisov

    2008-01-01

    as carrier to immobilize T. thermosaccharolyticum strain PSU-2 in UASB reactor operated at a hydraulic retention time (HRT) ranging from 0.75 to 24h and corresponding sucrose loading rate from 58.5 to 2.4 mmol sucrose l(-1)h(-1). In comparison with hydrogen production rate of 12.1 mmol H(2)l(-1)h(-1......) obtained by carrier-free reactor upflow anaerobic (UA) system, a greatly improved hydrogen production rate up to 152 mmol H(2)l(-1)h(-1) was demonstrated by the granular cells in UASB system. The biofilm of T. thermosaccharolyticum strain PSU-2 developed on treated methanogenic granules in UASB reactor...... substantially enhanced biomass retention (3 times), and production of hydrogen (12 times) compared to carrier-free reactor. It appears to be the most preferred process for highly efficient dark fermentative hydrogen production from sugar containing wastewater under thermophilic conditions. (C) 2008...

  1. Mitigation of methane emission from Holstein dairy cows: Effects of dietary manipulation on bacterial and methanogen communities

    DEFF Research Database (Denmark)

    Poulsen, Morten

    2012-01-01

    ). Future demands for meat and milk are expected to increase, with concomitant increase in CH4 emissions to the atmosphere. Thus, reducing CH4 emission from ruminant production constitutes a massive challenge. Using in vitro rumen fluid fermentations and in vivo animal trials we investigated 1) effects...... of carbohydrate fermentation and pH on CH4 production and on bacterial community composition, and 2) effects of dietary manipulation (primarily through fat supplementation aiming at reducing enteric CH4 production) on community composition and activity of the rumen microbiota, with particular focus...... on methanogenic archaea. In vitro fermentations revealed that pH and carbohydrate source had only minor effects on the rumen bacterial community composition, but significantly affected volatile fatty acid production patterns. pH significantly affected CH4 emission from rumen fluid, with optimum CH4 production...

  2. The Activities of the European Consortium on Nuclear Data Development and Analysis for Fusion

    International Nuclear Information System (INIS)

    Fischer, U.; Avrigeanu, M.; Avrigeanu, V.; Cabellos, O.; Kodeli, I.; Koning, A.; Konobeyev, A.Yu.; Leeb, H.; Rochman, D.; Pereslavtsev, P.; Sauvan, P.; Sublet, J.-C.; Trkov, A.; Dupont, E.; Leichtle, D.; Izquierdo, J.

    2014-01-01

    This paper presents an overview of the activities of the European Consortium on Nuclear Data Development and Analysis for Fusion. The Consortium combines available European expertise to provide services for the generation, maintenance, and validation of nuclear data evaluations and data files relevant for ITER, IFMIF and DEMO, as well as codes and software tools required for related nuclear calculations

  3. 77 FR 43237 - Genome in a Bottle Consortium-Work Plan Review Workshop

    Science.gov (United States)

    2012-07-24

    ... in human whole genome variant calls. A principal motivation for this consortium is to enable... standards and quantitative performance metrics are needed to achieve the confidence in measurement results... principal motivation for this consortium is to enable science-based regulatory oversight of clinical...

  4. Consortium de recherche pour le développement de l'agriculture en ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Research Consortium for the Development of Agriculture in Haiti. Even before it was hit by a devastating earthquake in January 2010, Haiti's children suffered some of the worst rates of undernutrition in Latin America and the Caribbean. View moreResearch Consortium for the Development of Agriculture in Haiti ...

  5. A Long Island Consortium Takes Shape. Occasional Paper No. 76-1.

    Science.gov (United States)

    Taylor, William R.

    This occasional paper, the first in a "new" series, describes the background, activities, and experiences of the Long Island Consortium, a cooperative effort of two-year and four-year colleges committed to organizing a model program of faculty development. The consortium was organized under an initial grant from the Lilly Endowment. In May and…

  6. The creation of the SAVE consortium – Saving Asia's Vultures from ...

    African Journals Online (AJOL)

    This article describes the background to this problem, caused mainly by the veterinary drug diclofenac, and the establishment and structure of the SAVE consortium created to help coordinate the necessary conservation response. The lessons learnt in Asia and the working model of such a consortium are presented, which ...

  7. Ophthalmic epidemiology in Europe : the "European Eye Epidemiology" (E3) consortium

    NARCIS (Netherlands)

    Delcourt, Cecile; Korobelnik, Jean-Francois; Buitendijk, Gabrielle H. S.; Foster, Paul J.; Hammond, Christopher J.; Piermarocchi, Stefano; Peto, Tunde; Jansonius, Nomdo; Mirshahi, Alireza; Hogg, Ruth E.; Bretillon, Lionel; Topouzis, Fotis; Deak, Gabor; Grauslund, Jakob; Broe, Rebecca; Souied, Eric H.; Creuzot-Garcher, Catherine; Sahel, Jose; Daien, Vincent; Lehtimaki, Terho; Hense, Hans-Werner; Prokofyeva, Elena; Oexle, Konrad; Rahi, Jugnoo S.; Cumberland, Phillippa M.; Schmitz-Valckenberg, Steffen; Fauser, Sascha; Bertelsen, Geir; Hoyng, Carel; Bergen, Arthur; Silva, Rufino; Wolf, Sebastian; Lotery, Andrew; Chakravarthy, Usha; Fletcher, Astrid; Klaver, Caroline C. W.

    The European Eye Epidemiology (E3) consortium is a recently formed consortium of 29 groups from 12 European countries. It already comprises 21 population-based studies and 20 other studies (case-control, cases only, randomized trials), providing ophthalmological data on approximately 170,000

  8. The Activities of the European Consortium on Nuclear Data Development and Analysis for Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, U., E-mail: ulrich.fischer@kit.edu [Karlsruhe Institute of Technology, Institute for Neutron Physic and Reactor Technology, 76344 Eggenstein-Leopoldshafen (Germany); Avrigeanu, M.; Avrigeanu, V. [Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), RO-077125 Magurele (Romania); Cabellos, O. [Departamento de Ingenieria Nuclear, Universidad Politecnica de Madrid, 28006 Madrid (Spain); Kodeli, I. [Jozef Stefan Institute (JSI), Jamova 39, 1000 Ljubljana (Slovenia); Koning, A. [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755 LE Petten (Netherlands); Konobeyev, A.Yu. [Karlsruhe Institute of Technology, Institute for Neutron Physic and Reactor Technology, 76344 Eggenstein-Leopoldshafen (Germany); Leeb, H. [Technische Universitaet Wien, Atominstitut, Wiedner Hauptstrasse 8–10, 1040 Wien (Austria); Rochman, D. [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755 LE Petten (Netherlands); Pereslavtsev, P. [Karlsruhe Institute of Technology, Institute for Neutron Physic and Reactor Technology, 76344 Eggenstein-Leopoldshafen (Germany); Sauvan, P. [Universidad Nacional de Educacion a Distancia, C. Juan del Rosal, 12, 28040 Madrid (Spain); Sublet, J.-C. [Euratom/CCFE Fusion Association, Culham Science Centre, OX14 3DB (United Kingdom); Trkov, A. [Jozef Stefan Institute (JSI), Jamova 39, 1000 Ljubljana (Slovenia); Dupont, E. [OECD Nuclear Energy Agency, Paris (France); Leichtle, D.; Izquierdo, J. [Fusion for Energy, Barcelona (Spain)

    2014-06-15

    This paper presents an overview of the activities of the European Consortium on Nuclear Data Development and Analysis for Fusion. The Consortium combines available European expertise to provide services for the generation, maintenance, and validation of nuclear data evaluations and data files relevant for ITER, IFMIF and DEMO, as well as codes and software tools required for related nuclear calculations.

  9. Northeast Artificial Intelligence Consortium Annual Report - 1988 Parallel Vision. Volume 9

    Science.gov (United States)

    1989-10-01

    supports the Northeast Aritificial Intelligence Consortium (NAIC). Volume 9 Parallel Vision Report submitted by Christopher M. Brown Randal C. Nelson...NORTHEAST ARTIFICIAL INTELLIGENCE CONSORTIUM ANNUAL REPORT - 1988 Parallel Vision Syracuse University Christopher M. Brown and Randal C. Nelson...Technical Director Directorate of Intelligence & Reconnaissance FOR THE COMMANDER: IGOR G. PLONISCH Directorate of Plans & Programs If your address has

  10. 34 CFR 636.5 - What are the matching contribution and planning consortium requirements?

    Science.gov (United States)

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What are the matching contribution and planning... PROGRAM General § 636.5 What are the matching contribution and planning consortium requirements? (a) The... agreed to by the members of a planning consortium. (Authority: 20 U.S.C. 1136b, 1136e) ...

  11. Measuring Consortium Impact on User Perceptions: OhioLINK and LibQUAL+[TM

    Science.gov (United States)

    Gatten, Jeffrey N.

    2004-01-01

    What is the impact of an academic library consortium on the perceptions of library services experienced by users of the member institutions' libraries? What is the impact of an academic library consortium on the perceptions of library services experienced by users of the member institutions libraries? In 2002 and 2003, OhioLINK (Ohio's consortium…

  12. Activities of the Alabama Consortium on forestry education and research, 1993-1999

    Science.gov (United States)

    John Schelhas

    2002-01-01

    The Alabama Consortium on Forestry Education and Research was established in 1992 to promote communication and collaboration among diverse institutions involved in forestry in the State of Alabama. It was organized to advance forestry education and research in ways that could not be accomplished by individual members alone. This report tells the story of the consortium...

  13. Development of a swine-specific fecal pollution marker based on host differences in methanogen mcrA genes.

    Science.gov (United States)

    Ufnar, Jennifer A; Ufnar, David F; Wang, Shiao Y; Ellender, R D

    2007-08-01

    The goal of this study was to evaluate methanogen diversity in animal hosts to develop a swine-specific archaeal molecular marker for fecal source tracking in surface waters. Phylogenetic analysis of swine mcrA sequences compared to mcrA sequences from the feces of five animals (cow, deer, sheep, horse, and chicken) and sewage showed four distinct swine clusters, with three swine-specific clades. From this analysis, six sequences were chosen for molecular marker development and initial testing. Only one mcrA sequence (P23-2) showed specificity for swine and therefore was used for environmental testing. PCR primers for the P23-2 clone mcrA sequence were developed and evaluated for swine specificity. The P23-2 primers amplified products in P23-2 plasmid DNA (100%), pig feces (84%), and swine waste lagoon surface water samples (100%) but did not amplify a product in 47 bacterial and archaeal stock cultures and 477 environmental bacterial isolates and sewage and water samples from a bovine waste lagoon and a polluted creek. Amplification was observed in only one sheep sample out of 260 human and nonswine animal fecal samples. Sequencing of PCR products from pig feces demonstrated 100% similarity to pig mcrA sequence from clone P23-2. The minimal amount of DNA required for the detection was 1 pg for P23-2 plasmid, 1 ng for pig feces, 50 ng for swine waste lagoon surface water, 1 ng for sow waste influent, and 10 ng for lagoon sludge samples. Lower detection limits of 10(-6) g of wet pig feces in 500 ml of phosphate-buffered saline and 10(-4) g of lagoon waste in estuarine water were established for the P23-2 marker. This study was the first to utilize methanogens for the development of a swine-specific fecal contamination marker.

  14. Isotopic composition of methane and inferred methanogenic substrates along a salinity gradient in a hypersaline microbial mat system.

    Science.gov (United States)

    Potter, Elyn G; Bebout, Brad M; Kelley, Cheryl A

    2009-05-01

    The importance of hypersaline environments over geological time, the discovery of similar habitats on Mars, and the importance of methane as a biosignature gas combine to compel an understanding of the factors important in controlling methane released from hypersaline microbial mat environments. To further this understanding, changes in stable carbon isotopes of methane and possible methanogenic substrates in microbial mat communities were investigated as a function of salinity here on Earth. Microbial mats were sampled from four different field sites located within salterns in Baja California Sur, Mexico. Salinities ranged from 50 to 106 parts per thousand (ppt). Pore water and microbial mat samples were analyzed for the carbon isotopic composition of dissolved methane, dissolved inorganic carbon (DIC), and mat material (particulate organic carbon or POC). The POC delta(13)C values ranged from -6.7 to -13.5 per thousand, and DIC delta(13)C values ranged from -1.4 to -9.6 per thousand. These values were similar to previously reported values. The delta(13)C values of methane ranged from -49.6 to -74.1 per thousand; the methane most enriched in (13)C was obtained from the highest salinity area. The apparent fractionation factors between methane and DIC, and between methane and POC, within the mats were also determined and were found to change with salinity. The apparent fractionation factors ranged from 1.042 to 1.077 when calculated using DIC and from 1.038 to 1.068 when calculated using POC. The highest-salinity area showed the least fractionation, the moderate-salinity area showed the highest fractionation, and the lower-salinity sites showed fractionations that were intermediate. These differences in fractionation are most likely due to changes in the dominant methanogenic pathways and substrates used at the different sites because of salinity differences.

  15. Experience of the Paris Research Consortium Climate-Environment-Society

    Science.gov (United States)

    Joussaume, Sylvie; Pacteau, Chantal; Vanderlinden, Jean Paul

    2016-04-01

    It is now widely recognized that the complexity of climate change issues translates itself into a need for interdisciplinary approaches to science. This allows to first achieve a more comprehensive vision of climate change and, second, to better inform the decision-making processes. However, it seems that willingness alone is rarely enough to implement interdisciplinarity. The purpose of this presentation is to mobilize reflexivity to revisit and analyze the experience of the Paris Consortium for Climate-Environment-Society. The French Consortium Climate-Environment-Society aims to develop, fund and coordinate interdisciplinary research into climate change and its impacts on society and environment. Launched in 2007, the consortium relies on the research expertise of 17 laboratories and federation in the Paris area working mainly in the fields of climatology, hydrology, ecology, health sciences, and the humanities and social sciences. As examples, economists and climatologists have studied greenhouse gas emission scenarios compatible with climate stabilization goals. Historical records have provided both knowledge about past climate change and vulnerability of societies. Some regions, as the Mediterranean and the Sahel, are particularly vulnerable and already have to cope with water availability, agricultural production and even health issues. A project showed that millet production in West Africa is expected to decline due to warming in a higher proportion than observed in recent decades. Climate change also raises many questions concerning health: combined effects of warming and air quality, impacts on the production of pollens and allergies, impacts on infectious diseases. All these issues lead to a need for approaches integrating different disciplines. Furthermore, climate change impacts many ecosystems which, in turn, affect its evolution. Our experience shows that interdisciplinarity supposes, in order to take shape, the conjunction between programming

  16. The fungal consortium of Andromeda polifolia in bog habitats

    Directory of Open Access Journals (Sweden)

    N.V. Filippova

    2015-09-01

    Full Text Available (1 Andromeda polifolia (bog rosemary is a common plant species in northern circumboreal peatlands. While not a major peat-forming species in most peatlands, it is characterised by a substantial woody below-ground biomass component that contributes directly to the accumulation of organic matter below the moss surface, as well as sclerophyllous leaf litter that contributes to the accumulation of organic matter above the moss surface. Rather little is known about the fungal communities associated with this plant species. Hence, we investigated the fungal consortium of A. polifolia in three distinct vegetation communities of ombrotrophic bogs near Khanty-Mansiysk, West Siberia, Russia, in 2012 and 2013. These vegetation communities were forested bog (Tr = treed, Sphagnum-dominated lawn (Ln, and Eriophorum-Sphagnum-dominated hummock (Er. (2 In total, 37 fungal taxa, belonging to five classes and 16 families, were identified and described morphologically. Seven fungal species were previously known from Andromeda as host. Others are reported for the first time, thus considerably expanding the fungal consortium of this dwarf shrub. Most taxa were saprobic on fallen leaves of A. polifolia found amongst Sphagnum in the bog. Two taxa were parasitic on living plant tissues and one taxon was saprobic on dead twigs. Three taxa, recorded only on A. polifolia leaves and on no other plant species or materials, may be host-specific to this dwarf shrub. (3 A quantitative analysis of the frequency of occurrence of all taxa showed that one taxon (Coccomyces duplicarioides was very abundant, 64 % of the taxa occurred frequently, and 32 % of the taxa occurred infrequently. The mean Shannon diversity index of the community was 2.4. (4 There were no statistical differences in the fungal community composition of A. polifolia in the three vegetation communities investigated in this study. Redundancy analysis suggested that some fungal taxa were positively, and others

  17. Mineralization of linear alkylbenzene sulfonate by a four-member aerobic bacterial consortium

    International Nuclear Information System (INIS)

    Jimenez, L.; Breen, A.; Thomas, N.; Sayler, G.S.; Federle, T.W.

    1991-01-01

    A bacterial consortium capable of linear alkylbenzene sulfonate (LAS) mineralization under aerobic conditions was isolated from a chemostat inoculated with activated sludge. The consortium, designated KJB, consisted of four members, all of which were gram-negative, rod-shaped bacteria that grew in pairs and short chains. Three isolates had biochemical properties characteristic of Pseudomonas spp.; the fourth showed characteristics of the Aeromonas spp. Cell suspensions were grown together in minimal medium with [ 14 C]LAS as the only carbon source. After 13 days of incubation, more than 25% of the [ 14 C]LAS was mineralized to 14 CO 2 by the consortium. Pure bacterial cultures and combinations lacking any one member of the KJB bacterial consortium did not mineralize LAS. Three isolates carried out primary biodegradation of the surfactant, and one did not. This study shows that the four bacteria complemented each other and synergistically mineralized LAS, indicating catabolic cooperation among the four consortium members

  18. Consortium for Offshore Aviation Research : description of current projects

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    The five projects which are currently underway or being evaluated through the Consortium for Offshore Aviation Research (COAR) were described. The projects are: (1) the use of narrow-beam, high intensity searchlights as approach aids for helicopter landings on helidecks in low visibility conditions, (2) establishment of a precipitation and fog characterization facility forecasting, (3) use of ice-phobic materials for airframe anti-icing, (4) use of differential global positioning satellite systems for offshore operations, and (5) the development of a virtual reality head-up-display for the approach to the Hibernia helideck (or any other helideck) to facilitate low visibility landings. Seed funding for these projects has been provided by the European Space Agency. Additional support is being provided by Hibernia, Petro-Canada, Husky Oil and Chevron Oil Canada. Initiatives to increase the number of partners are underway. 1 fig

  19. Consortium for Algal Biofuel Commercialization (CAB-COMM) Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mayfield, Stephen P. [Univ. of California, San Diego, CA (United States)

    2015-12-04

    The Consortium for Algal Biofuel Commercialization (CAB-Comm) was established in 2010 to conduct research to enable commercial viability of alternative liquid fuels produced from algal biomass. The main objective of CAB-Comm was to dramatically improve the viability of algae as a source of liquid fuels to meet US energy needs, by addressing several significant barriers to economic viability. To achieve this goal, CAB-Comm took a diverse set of approaches on three key aspects of the algal biofuels value chain: crop protection; nutrient utilization and recycling; and the development of genetic tools. These projects have been undertaken as collaboration between six academic institutions and two industrial partners: University of California, San Diego; Scripps Institution of Oceanography; University of Nebraska, Lincoln; Rutgers University; University of California, Davis; Johns Hopkins University; Sapphire Energy; and Life Technologies.

  20. Caspian Pipeline Consortium, Bellwether of Russia's Investment climate?

    International Nuclear Information System (INIS)

    Dellecker, A.

    2008-01-01

    The Caspian Pipeline Consortium (CPC), a shipper-owned oil pipeline carrying Caspian oil to Russia's Black Sea port of Novorossyisk, remains to this day the only oil export pipeline on Russian territory that is not under the control of the state company Transneft. Completed in 2001, the CPC was, from the start, the product of a fragile balance of power between states eager to maintain control of hydrocarbon flows and private companies able to finance the necessary infrastructure. Despite its economic success, the future of the CPC currently hinges on a share-holding dispute pitting Russia against private shareholders. This essay places the CPC dossier in the broader context of Russia's investment climate and argues that the dispute's dynamic is an important bellwether of the Russian energy policy. (author)

  1. On the Need to Establish an International Soil Modeling Consortium

    Science.gov (United States)

    Vereecken, H.; Vanderborght, J.; Schnepf, A.

    2014-12-01

    Soil is one of the most critical life-supporting compartments of the Biosphere. Soil provides numerous ecosystem services such as a habitat for biodiversity, water and nutrients, as well as producing food, feed, fiber and energy. To feed the rapidly growing world population in 2050, agricultural food production must be doubled using the same land resources footprint. At the same time, soil resources are threatened due to improper management and climate change. Despite the many important functions of soil, many fundamental knowledge gaps remain, regarding the role of soil biota and biodiversity on ecosystem services, the structure and dynamics of soil communities, the interplay between hydrologic and biotic processes, the quantification of soil biogeochemical processes and soil structural processes, the resilience and recovery of soils from stress, as well as the prediction of soil development and the evolution of soils in the landscape, to name a few. Soil models have long played an important role in quantifying and predicting soil processes and related ecosystem services. However, a new generation of soil models based on a whole systems approach comprising all physical, mechanical, chemical and biological processes is now required to address these critical knowledge gaps and thus contribute to the preservation of ecosystem services, improve our understanding of climate-change-feedback processes, bridge basic soil science research and management, and facilitate the communication between science and society. To meet these challenges an international community effort is required, similar to initiatives in systems biology, hydrology, and climate and crop research. Our consortium will bring together modelers and experimental soil scientists at the forefront of new technologies and approaches to characterize soils. By addressing these aims, the consortium will contribute to improve the role of soil modeling as a knowledge dissemination instrument in addressing key

  2. Signalling in malaria parasites – The MALSIG consortium#

    Directory of Open Access Journals (Sweden)

    Doerig C.

    2009-09-01

    Full Text Available Depending on their developmental stage in the life cycle, malaria parasites develop within or outside host cells, and in extremely diverse contexts such as the vertebrate liver and blood circulation, or the insect midgut and hemocoel. Cellular and molecular mechanisms enabling the parasite to sense and respond to the intra- and the extra-cellular environments are therefore key elements for the proliferation and transmission of Plasmodium, and therefore are, from a public health perspective, strategic targets in the fight against this deadly disease. The MALSIG consortium, which was initiated in February 2009, was designed with the primary objective to integrate research ongoing in Europe and India on i the properties of Plasmodium signalling molecules, and ii developmental processes occurring at various points of the parasite life cycle. On one hand, functional studies of individual genes and their products in Plasmodium falciparum (and in the technically more manageable rodent model Plasmodium berghei are providing information on parasite protein kinases and phosphatases, and of the molecules governing cyclic nucleotide metabolism and calcium signalling. On the other hand, cellular and molecular studies are elucidating key steps of parasite development such as merozoite invasion and egress in blood and liver parasite stages, control of DNA replication in asexual and sexual development, membrane dynamics and trafficking, production of gametocytes in the vertebrate host and further parasite development in the mosquito. This article, which synthetically reviews such signalling molecules and cellular processes, aims to provide a glimpse of the global frame in which the activities of the MALSIG consortium will develop over the next three years.

  3. International technical assistance example. Consortium action in Bulgaria

    International Nuclear Information System (INIS)

    Mattei, J.M.; Milhem, J.L.

    1993-03-01

    The safety status achieved last year at the Kozloduy Nuclear Power Plant (NPP) and the capability of the Bulgarian Nuclear Safety Authority (BNSA) to assess the safety of the plant and the adequacy of proposed improvements have been matters of international concern. However, the Kozloduy NPP contributes 35-40 per cent of the electrical generating capacity in Bulgaria. For further operation of the plants, it is therefore, essential that safety is improved. In july 1991, the Commission of the European Communities (CEC) instituted a Six Months Emergency Action Programme for Bulgaria under the PHARE regional nuclear safety programme. The programme consisted of three parts: - an industrial emergency programme supporting the utility of the Kozloduy NPP, - a study to evaluate Bulgaria's electricity needs, - technical assistance for reinforcement of the Bulgarian Nuclear Safety Authority. For the third part, complementary to the industrial emergency programme carried out by the WANO (World Association of Nuclear Operators), a Consortium of expert institutions and regulatory from EC member states was established by CEC for assistance to BNSA. The Consortium consisted of: - Institut de Protection et de Surete Nucleaire (IPSN), France, technical support of the French regulatory body, - Gesellschaft fur Anlagen und Reaktorsicherheit (GRS) mbH, Germany, an organization in safety engineering, technical support of governmental regulatory body, - AIB-Vincotte Nuclear (AVN), Belgium, the organization authorized by the Belgian Government for licensing and inspection of nuclear power plants, - UK Atomic Energy Authority (AEA Technology), an independent UK Government owned nuclear R and D and consultancy organization, - Nuclear Installations Inspectorate (NII) of the Health and Safety Executive, United Kingdom, the nuclear regulatory body for the United Kingdom

  4. International technical assistance example. Consortium action in Bulgaria; Exemple d`assistance internationale. Cas de la Bulgarie, action du consortium

    Energy Technology Data Exchange (ETDEWEB)

    Mattei, J M; Milhem, J L [CEA Centre d` Etudes de Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire; Heuser, F W; Kelm, P [Gesellschaft fuer Reaktorsicherheit mbH (GRS), Koeln (Germany)

    1993-03-01

    The safety status achieved last year at the Kozloduy Nuclear Power Plant (NPP) and the capability of the Bulgarian Nuclear Safety Authority (BNSA) to assess the safety of the plant and the adequacy of proposed improvements have been matters of international concern. However, the Kozloduy NPP contributes 35-40 per cent of the electrical generating capacity in Bulgaria. For further operation of the plants, it is therefore, essential that safety is improved. In july 1991, the Commission of the European Communities (CEC) instituted a Six Months Emergency Action Programme for Bulgaria under the PHARE regional nuclear safety programme. The programme consisted of three parts: - an industrial emergency programme supporting the utility of the Kozloduy NPP, - a study to evaluate Bulgaria`s electricity needs, - technical assistance for reinforcement of the Bulgarian Nuclear Safety Authority. For the third part, complementary to the industrial emergency programme carried out by the WANO (World Association of Nuclear Operators), a Consortium of expert institutions and regulatory from EC member states was established by CEC for assistance to BNSA. The Consortium consisted of: - Institut de Protection et de Surete Nucleaire (IPSN), France, technical support of the French regulatory body, - Gesellschaft fur Anlagen und Reaktorsicherheit (GRS) mbH, Germany, an organization in safety engineering, technical support of governmental regulatory body, - AIB-Vincotte Nuclear (AVN), Belgium, the organization authorized by the Belgian Government for licensing and inspection of nuclear power plants, - UK Atomic Energy Authority (AEA Technology), an independent UK Government owned nuclear R and D and consultancy organization, - Nuclear Installations Inspectorate (NII) of the Health and Safety Executive, United Kingdom, the nuclear regulatory body for the United Kingdom.

  5. Ecotoxicological effects of enrofloxacin and its removal by monoculture of microalgal species and their consortium.

    Science.gov (United States)

    Xiong, Jiu-Qiang; Kurade, Mayur B; Jeon, Byong-Hun

    2017-07-01

    Enrofloxacin (ENR), a fluoroquinolone antibiotic, has gained big scientific concern due to its ecotoxicity on aquatic microbiota. The ecotoxicity and removal of ENR by five individual microalgae species and their consortium were studied to correlate the behavior and interaction of ENR in natural systems. The individual microalgal species (Scenedesmus obliquus, Chlamydomonas mexicana, Chlorella vulgaris, Ourococcus multisporus, Micractinium resseri) and their consortium could withstand high doses of ENR (≤1 mg L -1 ). Growth inhibition (68-81%) of the individual microalgae species and their consortium was observed in ENR (100 mg L -1 ) compared to control after 11 days of cultivation. The calculated 96 h EC 50 of ENR for individual microalgae species and microalgae consortium was 9.6-15.0 mg ENR L -1 . All the microalgae could recover from the toxicity of high concentrations of ENR during cultivation. The biochemical characteristics (total chlorophyll, carotenoid, and malondialdehyde) were significantly influenced by ENR (1-100 mg L -1 ) stress. The individual microalgae species and microalgae consortium removed 18-26% ENR at day 11. Although the microalgae consortium showed a higher sensitivity (with lower EC 50 ) toward ENR than the individual microalgae species, the removal efficiency of ENR by the constructed microalgae consortium was comparable to that of the most effective microalgal species. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. NASA Systems Engineering Research Consortium: Defining the Path to Elegance in Systems

    Science.gov (United States)

    Watson, Michael D.; Farrington, Phillip A.

    2016-01-01

    The NASA Systems Engineering Research Consortium was formed at the end of 2010 to study the approaches to producing elegant systems on a consistent basis. This has been a transformative study looking at the engineering and organizational basis of systems engineering. The consortium has engaged in a variety of research topics to determine the path to elegant systems. In the second year of the consortium, a systems engineering framework emerged which structured the approach to systems engineering and guided our research. This led in the third year to set of systems engineering postulates that the consortium is continuing to refine. The consortium has conducted several research projects that have contributed significantly to the understanding of systems engineering. The consortium has surveyed the application of the NASA 17 systems engineering processes, explored the physics and statistics of systems integration, and considered organizational aspects of systems engineering discipline integration. The systems integration methods have included system exergy analysis, Akaike Information Criteria (AIC), State Variable Analysis, Multidisciplinary Coupling Analysis (MCA), Multidisciplinary Design Optimization (MDO), System Cost Modelling, System Robustness, and Value Modelling. Organizational studies have included the variability of processes in change evaluations, margin management within the organization, information theory of board structures, social categorization of unintended consequences, and initial looks at applying cognitive science to systems engineering. Consortium members have also studied the bidirectional influence of policy and law with systems engineering.

  7. Exploitation of sweet sorghum biomass for biofuel production using mixed acidogenic and methanogenic cultures and pure cultures of ruminococcus albus

    International Nuclear Information System (INIS)

    Ntaikou, I.; Antonopoulou, G.; Marazioti, C.; Lyberatos, G.

    2008-01-01

    Full text: The present study focuses on the exploitation of sweet sorghum biomass for gas biofuel production in continuous and batch systems. Sweet sorghum is an annual C 4 plant of tropical origin, well-adapted to sub-tropical and temperate regions and highly productive in biomass. It is rich in readily fermentable sugars and thus it can be considered as an excellent raw material for biohydrogen production from many different fermentative microorganisms. Extraction of free sugars from the sorghum stalks was achieved using water at 30 degrees centigrade. After the extraction process a liquid fraction (sorghum extract), rich in sucrose, and a solid fraction (sorghum cellulosic-hemicellulosic residues or sorghum bagasse), containing the cellulose and hemicelluloses, were obtained. A two-step continuous process was developed for the biological hydrogen production and the subsequent production of biogas from sweet sorghum extract. In the first reactor sugars were fermented to hydrogen, volatile fatty acids and alcohols b mixed acidogenic culture derived from the indigenous microfauna of sweet sorghum. The hydrogen producing reactor was operated at five different hydraulic retention times (HRT), i.e 24h, 12h, 8h, 6h and 4h. The HRT of 12h proved to be the most effective leading to the production 10.4 L H 2 /kg sweet sorghum biomass. Subsequently, the effluent was fed to the methanogenic reactor, where all the residual organic compounds were digested by an acclimated methanogenic culture derived from activated sludge. The operation of the methanogenic reactor was studied at three different HRTs, i.e 20d, 15d and 10d with the latter being the most prosing leading to the production 35.2 L CH 4 /kg sweet sorghum biomass. Both continuous and batch cultures were used for the investigation of hydrogen production from sweet sorghum biomass using Ruminococcus albus. R. albus is an important, fibrolytic bacterium of the rumen that can hydrolyse both cellulose and hemicellulose

  8. ISPRS STUDENT CONSORTIUM: THE NETWORK OF YOUTH IN GEOINFORMATION SOCIETY

    Directory of Open Access Journals (Sweden)

    C. O. Kivilcim

    2012-07-01

    Full Text Available The ISPRS Student Consortium (SC initiative started at the 20th ISPRS Congress in Istanbul, 2004.After four years of volunteer activity, an official structure for volunteers was needed. With the implementation of the SC Statutes in the ISPRS Beijing Congress in 2008, the first ISPRS Student Consortium Board Members were elected. Since this day, SC volunteers and supporters have continued to contribute through numerous activities in order to promote the Society and connect young people with a similar interest in the profession. So far, promotional activities have taken place in various places in Europe, North and Central America, Asia and Australia. SC members have not only participated in the events, but also organized activities, taken responsibilities and represented youth in ISPRS midterm symposiums and ISPRS Centenary Celebrations as well as other related events. Summer schools, as the main SC event, are organized with the help of ISPRS TC VI/5 and are focused on the needs and interests of scientific communities around the world. The SC community has been constantly growing with almost 750 members over 85 countries at present, registered through our self-developed website. The organization also publishes its own Newsletter four times per year, with the intention to transmit the messages and news from ISPRS and the SC. The Newsletter is a perfect platform for presenting useful technical, educational and informational material prepared by members and distributed freely among the supporters. Throughout time, the SC has received guiding, motivational and administrative support from WG VI/5 as well as TC VI and the ISPRS Council. Activities have been financially supported by foundations, commercial enterprises and academic organizations and many SC members have received grants to present their work in different scientific events. In addition, the SC has started and established permanent connections and signed agreements for better networking with

  9. Isolation, identification and fibrolytic characteristics of rumen fungi grown with indigenous methanogen from yaks (Bos grunniens) grazing on the Qinghai-Tibetan Plateau.

    Science.gov (United States)

    Wei, Y-Q; Yang, H-J; Luan, Y; Long, R-J; Wu, Y-J; Wang, Z-Y

    2016-03-01

    To obtain co-cultures of anaerobic fungi and their indigenously associated methanogens from the rumen of yaks grazing on the Qinghai-Tibetan Plateau and investigate their morphology features and ability to degrade lignocellulose. Twenty fungus-methanogen co-cultures were obtained by Hungate roll-tube technique. The fungi were identified as Orpinomyces, Neocallimastix and Piromyces genera based on the morphological characteristics and internal transcribed spacer 1 sequences analysis. All methanogens were identified as Methanobrevibacter sp. by 16S rRNA gene sequencing. There were four types of co-cultures: Neocallimastix with Methanobrevibacter ruminantium, Orpinomyces with M. ruminantium, Orpinomyces with Methanobrevibacter millerae and Piromyces with M. ruminantium among 20 co-cultures. In vitro studies with wheat straw as substrate showed that the Neocallimastix with M. ruminantium co-cultures and Piromyces with M. ruminantium co-cultures exhibited higher xylanase, filter paper cellulase (FPase), ferulic acid esterase, acetyl esterase activities, in vitro dry matter digestibility, gas, CH4 , acetate production, ferulic acid and p-coumaric acid releases. The Neocallimastix frontalis Yak16 with M. ruminantium co-culture presented the strongest lignocellulose degradation ability among 20 co-cultures. Twenty fungus-methanogen co-cultures were obtained from the rumen of grazing yaks. The N. frontalis with M. ruminantium co-cultures were highly effective combination for developing a fermentative system that bioconverts lignocellulose to high activity fibre-degrading enzyme, CH4 and acetate. The N. frontalis with M. ruminantium co-cultures from yaks grazing on the Qinghai-Tibetan Plateau present great potential in lignocellulose biodegradation industry. © 2015 The Society for Applied Microbiology.

  10. Application of real-time PCR to determination of combined effect of antibiotics on Bacteria, Methanogenic Archaea, Archaea in anaerobic sequencing batch reactors.

    Science.gov (United States)

    Aydin, Sevcan; Ince, Bahar; Ince, Orhan

    2015-06-01

    This study evaluated the long-term effects of erythromycin-tetracycline-sulfamethoxazole (ETS) and sulfamethoxazole-tetracycline (ST) antibiotic combinations on the microbial community and examined the ways in which these antimicrobials impact the performance of anaerobic reactors. Quantitative real-time PCR was used to determine the effect that different antibiotic combinations had on the total and active Bacteria, Archae and Methanogenic Archae. Three primer sets that targeted metabolic genes encoding formylterahydrofolate synthetase, methyl-coenzyme M reductase and acetyl-coA synthetase were also used to determine the inhibition level on the mRNA expression of the homoacetogens, methanogens and specifically acetoclastic methanogens, respectively. These microorganisms play a vital role in the anaerobic degradation of organic waste and targeting these gene expressions offers operators or someone at a treatment plant the potential to control and the improve the anaerobic system. The results of the investigation revealed that acetogens have a competitive advantage over Archaea in the presence of ETS and ST combinations. Although the efficiency with which methane production takes place and the quantification of microbial populations in both the ETS and ST reactors decreased as antibiotic concentrations increased, the ETS batch reactor performed better than the ST batch reactor. According to the expression of genes results, the syntrophic interaction of acetogens and methanogens is critical to the performance of the ETS and ST reactors. Failure to maintain the stability of these microorganisms resulted in a decrease in the performance and stability of the anaerobic reactors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Exploring Archaeal Communities And Genomes Across Five Deep-Sea Brine Lakes Of The Red Sea With A Focus On Methanogens

    KAUST Repository

    Guan, Yue

    2015-12-15

    The deep-sea hypersaline lakes in the Red Sea are among the most challenging, extreme, and unusual environments on the planet Earth. Despite their harshness to life, they are inhabited by diverse and novel members of prokaryotes. Methanogenesis was proposed as one of the main metabolic pathways that drive microbial colonization in similar habitats. However, not much is known about the identities of the methane-producing microbes in the Red Sea, let alone the way in which they could adapt to such poly extreme environments. Combining a range of microbial community assessment, cultivation and omics (genomics, transcriptomics, and single amplified genomics) approaches, this dissertation seeks to fill these gaps in our knowledge by studying archaeal composition, particularly methanogens, their genomic capacities and transcriptomic characteristics in order to elucidate their diversity, function, and adaptation to the deep-sea brines of the Red Sea. Although typical methanogens are not abundant in the samples collected from brine pool habitats of the Red Sea, the pilot cultivation experiment has revealed novel halophilic methanogenic species of the domain Archaea. Their physiological traits as well as their genomic and transcriptomic features unveil an interesting genetic and functional adaptive capacity that allows them to thrive in the unique deep-sea hypersaline environments in the Red Sea.

  12. Diversity of methanogens and sulfate-reducing bacteria in the interfaces of five deep-sea anoxic brines of the Red Sea

    KAUST Repository

    Guan, Yue

    2015-11-01

    Oceanic deep hypersaline anoxic basins (DHABs) are characterized by drastic changes in physico-chemical conditions in the transition from overlaying seawater to brine body. Brine-seawater interfaces (BSIs) of several DHABs across the Mediterranean Sea have been shown to possess methanogenic and sulfate-reducing activities, yet no systematic studies have been conducted to address the potential functional diversity of methanogenic and sulfate-reducing communities in the Red Sea DHABs. Here, we evaluated the relative abundance of Bacteria and Archaea using quantitative PCR and conducted phylogenetic analyses of nearly full-length 16S rRNA genes as well as functional marker genes encoding the alpha subunits of methyl-coenzyme M reductase (mcrA) and dissimilatory sulfite reductase (dsrA). Bacteria predominated over Archaea in most locations, the majority of which were affiliated with Deltaproteobacteria, while Thaumarchaeota were the most prevalent Archaea in all sampled locations. The upper convective layers of Atlantis II Deep, which bear increasingly harsh environmental conditions, were dominated by members of the class Thermoplasmata (Marine Benthic Group E and Mediterranean Sea Brine Lakes Group 1). Our study revealed unique microbial compositions, the presence of niche-specific groups, and collectively, a higher diversity of sulfate-reducing communities compared to methanogenic communities in all five studied locations. © 2015 Institut Pasteur.

  13. Assessment of microbial communities associated with fermentative-methanogenic biodegradation of aromatic hydrocarbons in groundwater contaminated with a biodiesel blend (B20).

    Science.gov (United States)

    Ramos, Débora Toledo; da Silva, Márcio Luís Busi; Nossa, Carlos Wolfgang; Alvarez, Pedro J J; Corseuil, Henry Xavier

    2014-09-01

    A controlled field experiment was conducted to assess the potential for fermentative-methanogenic biostimulation (by ammonium-acetate injection) to enhance biodegradation of benzene, toluene, ethylbenzene and xylenes (BTEX) as well as polycyclic aromatic hydrocarbons (PAHs) in groundwater contaminated with biodiesel B20 (20:80 v/v soybean biodiesel and diesel). Changes in microbial community structure were assessed by pyrosequencing 16S rRNA analyses. BTEX and PAH removal began 0.7 year following the release, concomitantly with the increase in the relative abundance of Desulfitobacterium and Geobacter spp. (from 5 to 52.7 % and 15.8 to 37.3 % of total Bacteria 16S rRNA, respectively), which are known to anaerobically degrade hydrocarbons. The accumulation of anaerobic metabolites acetate and hydrogen that could hinder the thermodynamic feasibility of BTEX and PAH biotransformations under fermentative/methanogenic conditions was apparently alleviated by the growing predominance of Methanosarcina. This suggests the importance of microbial population shifts that enrich microorganisms capable of interacting syntrophically to enhance the feasibility of fermentative-methanogenic bioremediation of biodiesel blend releases.

  14. Diversity of methanogens and sulfate-reducing bacteria in the interfaces of five deep-sea anoxic brines of the Red Sea

    KAUST Repository

    Guan, Yue; Hikmawan, Tyas; Antunes, Andre; Ngugi, David; Stingl, Ulrich

    2015-01-01

    Oceanic deep hypersaline anoxic basins (DHABs) are characterized by drastic changes in physico-chemical conditions in the transition from overlaying seawater to brine body. Brine-seawater interfaces (BSIs) of several DHABs across the Mediterranean Sea have been shown to possess methanogenic and sulfate-reducing activities, yet no systematic studies have been conducted to address the potential functional diversity of methanogenic and sulfate-reducing communities in the Red Sea DHABs. Here, we evaluated the relative abundance of Bacteria and Archaea using quantitative PCR and conducted phylogenetic analyses of nearly full-length 16S rRNA genes as well as functional marker genes encoding the alpha subunits of methyl-coenzyme M reductase (mcrA) and dissimilatory sulfite reductase (dsrA). Bacteria predominated over Archaea in most locations, the majority of which were affiliated with Deltaproteobacteria, while Thaumarchaeota were the most prevalent Archaea in all sampled locations. The upper convective layers of Atlantis II Deep, which bear increasingly harsh environmental conditions, were dominated by members of the class Thermoplasmata (Marine Benthic Group E and Mediterranean Sea Brine Lakes Group 1). Our study revealed unique microbial compositions, the presence of niche-specific groups, and collectively, a higher diversity of sulfate-reducing communities compared to methanogenic communities in all five studied locations. © 2015 Institut Pasteur.

  15. Low-temperature (10°C) anaerobic digestion of dilute dairy wastewater in an EGSB bioreactor: microbial community structure, population dynamics, and kinetics of methanogenic populations.

    Science.gov (United States)

    Bialek, Katarzyna; Cysneiros, Denise; O'Flaherty, Vincent

    2013-01-01

    The feasibility of anaerobic digestion of dairy wastewater at 10°C was investigated in a high height : diameter ratio EGSB reactor. Stable performance was observed at an applied organic loading rate (OLR) of 0.5-2 kg COD m(-3) d(-1) with chemical oxygen demand (COD) removal efficiencies above 85%. When applied OLR increased to values above 2 kg COD m(-3) d(-1), biotreatment efficiency deteriorated, with methanogenesis being the rate-limiting step. The bioreactor recovered quickly (3 days) after reduction of the OLR. qPCR results showed a reduction in the abundance of hydrogenotrophic methanogenic Methanomicrobiales and Methanobacteriales throughout the steady state period followed by a sharp increase in their numbers (111-fold) after the load shock. Specific methanogenic activity and maximum substrate utilising rate (A(max)) of the biomass at the end of trial indicated increased activity and preference towards hydrogenotrophic methanogenesis, which correlated well with the increased abundance of hydrogenotrophic methanogens. Acetoclastic Methanosaeta spp. remained at stable levels throughout the trial. However, increased apparent half-saturation constant (K(m)) at the end of the trial indicated a decrease in the specific substrate affinity for acetate of the sludge, suggesting that Methanosaeta spp., which have high substrate affinity, started to be outcompeted in the reactor.

  16. Low-Temperature (10°C Anaerobic Digestion of Dilute Dairy Wastewater in an EGSB Bioreactor: Microbial Community Structure, Population Dynamics, and Kinetics of Methanogenic Populations

    Directory of Open Access Journals (Sweden)

    Katarzyna Bialek

    2013-01-01

    Full Text Available The feasibility of anaerobic digestion of dairy wastewater at 10°C was investigated in a high height : diameter ratio EGSB reactor. Stable performance was observed at an applied organic loading rate (OLR of 0.5–2 kg COD m−3 d−1 with chemical oxygen demand (COD removal efficiencies above 85%. When applied OLR increased to values above 2 kg COD m−3 d−1, biotreatment efficiency deteriorated, with methanogenesis being the rate-limiting step. The bioreactor recovered quickly (3 days after reduction of the OLR. qPCR results showed a reduction in the abundance of hydrogenotrophic methanogenic Methanomicrobiales and Methanobacteriales throughout the steady state period followed by a sharp increase in their numbers (111-fold after the load shock. Specific methanogenic activity and maximum substrate utilising rate (Amax of the biomass at the end of trial indicated increased activity and preference towards hydrogenotrophic methanogenesis, which correlated well with the increased abundance of hydrogenotrophic methanogens. Acetoclastic Methanosaeta spp. remained at stable levels throughout the trial. However, increased apparent half-saturation constant (Km at the end of the trial indicated a decrease in the specific substrate affinity for acetate of the sludge, suggesting that Methanosaeta spp., which have high substrate affinity, started to be outcompeted in the reactor.

  17. The Climate Change Consortium of Wales (C3W)

    Science.gov (United States)

    Hendry, K. R.; Reis, J.; Hall, I. R.

    2011-12-01

    In response to the complexity and multidisciplinary nature of climate change research, the Climate Change Consortium of Wales (C3W) was formed in 2009 by the Welsh universities of Aberystwyth, Bangor, Cardiff and Swansea. Initially funded by Welsh Government, through the Higher Education Funding Council for Wales, the Countryside Council for Wales and the universities, C3W aims to bring together climate change researchers from a wide range of disciplines to explore scientific and sociological drivers, impacts and implications at local, national and international scale. The specific aims are to i) improve our fundamental understanding of the causes, nature, timing and consequences of climate change on Planet Earth's environment and on humanity, and ii) to reconfigure climate research in Wales as a recognisable centre of excellence on the world stage. In addition to improving the infrastructure for climate change research, we aim to improve communication, networking, collaborative research, and multidisciplinary data assimilation within and between the Welsh universities, and other UK and international institutions. Furthermore, C3W aims to apply its research by actively contributing towards national policy development, business development and formal and informal education activities within and beyond Wales.

  18. Brain Vascular Malformation Consortium: Overview, Progress and Future Directions.

    Science.gov (United States)

    Akers, Amy L; Ball, Karen L; Clancy, Marianne; Comi, Anne M; Faughnan, Marie E; Gopal-Srivastava, Rashmi; Jacobs, Thomas P; Kim, Helen; Krischer, Jeffrey; Marchuk, Douglas A; McCulloch, Charles E; Morrison, Leslie; Moses, Marsha; Moy, Claudia S; Pawlikowska, Ludmilla; Young, William L

    2013-04-01

    Brain vascular malformations are resource-intensive to manage effectively, are associated with serious neurological morbidity, lack specific medical therapies, and have no validated biomarkers for disease severity and progression. Investigators have tended to work in "research silos" with suboptimal cross-communication. We present here a paradigm for interdisciplinary collaboration to facilitate rare disease research. The Brain Vascular Malformation Consortium (BVMC) is a multidisciplinary, inter-institutional group of investigators, one of 17 consortia in the Office of Rare Disease Research Rare Disease Clinical Research Network (RDCRN). The diseases under study are: familial Cerebral Cavernous Malformations type 1, common Hispanic mutation (CCM1-CHM); Sturge-Weber Syndrome (SWS); and brain arteriovenous malformation in hereditary hemorrhagic telangiectasia (HHT). Each project is developing biomarkers for disease progression and severity, and has established scalable, relational databases for observational and longitudinal studies that are stored centrally by the RDCRN Data Management and Coordinating Center. Patient Support Organizations (PSOs) are a key RDCRN component in the recruitment and support of participants. The BVMC PSOs include Angioma Alliance, Sturge Weber Foundation , and HHT Foundation International . Our networks of clinical centers of excellence in SWS and HHT, as well as our PSOs, have enhanced BVMC patient recruitment. The BVMC provides unique and valuable resources to the clinical neurovascular community, and recently reported findings are reviewed. Future planned studies will apply successful approaches and insights across the three projects to leverage the combined resources of the BVMC and RDCRN in advancing new biomarkers and treatment strategies for patients with vascular malformations.

  19. Dedicated Beamline Facilities for Catalytic Research. Synchrotron Catalysis Consortium (SCC)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jingguang [Columbia Univ., New York, NY; Frenkel, Anatoly [Yeshiva Univ., New York, NY (United States); Rodriguez, Jose [Brookhaven National Lab. (BNL), Upton, NY (United States); Adzic, Radoslav [Brookhaven National Lab. (BNL), Upton, NY (United States); Bare, Simon R. [UOP LLC, Des Plaines, IL (United States); Hulbert, Steve L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Karim, Ayman [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mullins, David R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Overbury, Steve [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-03-04

    Synchrotron spectroscopies offer unique advantages over conventional techniques, including higher detection sensitivity and molecular specificity, faster detection rate, and more in-depth information regarding the structural, electronic and catalytic properties under in-situ reaction conditions. Despite these advantages, synchrotron techniques are often underutilized or unexplored by the catalysis community due to various perceived and real barriers, which will be addressed in the current proposal. Since its establishment in 2005, the Synchrotron Catalysis Consortium (SCC) has coordinated significant efforts to promote the utilization of cutting-edge catalytic research under in-situ conditions. The purpose of the current renewal proposal is aimed to provide assistance, and to develop new sciences/techniques, for the catalysis community through the following concerted efforts: Coordinating the implementation of a suite of beamlines for catalysis studies at the new NSLS-II synchrotron source; Providing assistance and coordination for catalysis users at an SSRL catalysis beamline during the initial period of NSLS to NSLS II transition; Designing in-situ reactors for a variety of catalytic and electrocatalytic studies; Assisting experimental set-up and data analysis by a dedicated research scientist; Offering training courses and help sessions by the PIs and co-PIs.

  20. Consortium analysis of 7 candidate SNPs for ovarian cancer

    DEFF Research Database (Denmark)

    Ramus, S.J.; Vierkant, R.A.; Johnatty, S.E.

    2008-01-01

    The Ovarian Cancer Association Consortium selected 7 candidate single nucleotide polymorphisms (SNPs), for which there is evidence from previous studies of an association with variation in ovarian cancer or breast cancer risks. The SNPs selected for analysis were F31I (rs2273535) in AURKA, N372H...... (rs144848) in BRCA2, rs2854344 in intron 17 of RB1, rs2811712 5' flanking CDKN2A, rs523349 in the 3' UTR of SRD5A2, D302H (rs1045485) in CASP8 and L10P (rs1982073) in TGFB1. Fourteen studies genotyped 4,624 invasive epithelial ovarian cancer cases and 8,113 controls of white non-Hispanic origin...... was suggestive although no longer statistically significant (ordinal OR 0.92, 95% CI 0.79-1.06). This SNP has also been shown to have an association with decreased risk in breast cancer. There was a suggestion of an association for AURKA, when one study that caused significant study heterogeneity was excluded...

  1. SUNrises on the International Plant Nucleus Consortium: SEB Salzburg 2012.

    Science.gov (United States)

    Graumann, Katja; Bass, Hank W; Parry, Geraint

    2013-01-01

    The nuclear periphery is a dynamic, structured environment, whose precise functions are essential for global processes-from nuclear, to cellular, to organismal. Its main components-the nuclear envelope (NE) with inner and outer nuclear membranes (INM and ONM), nuclear pore complexes (NPC), associated cytoskeletal and nucleoskeletal components as well as chromatin are conserved across eukaryotes (Fig. 1). In metazoans in particular, the structure and functions of nuclear periphery components are intensely researched partly because of their involvement in various human diseases. While far less is known about these in plants, the last few years have seen a significant increase in research activity in this area. Plant biologists are not only catching up with the animal field, but recent findings are pushing our advances in this field globally. In recognition of this developing field, the Annual Society of Experimental Biology Meeting in Salzburg kindly hosted a session co-organized by Katja Graumann and David E. Evans (Oxford Brookes University) highlighting new insights into plant nuclear envelope proteins and their interactions. This session brought together leading researchers with expertise in topics such as epigenetics, meiosis, nuclear pore structure and functions, nucleoskeleton and nuclear envelope composition. An open and friendly exchange of ideas was fundamental to the success of the meeting, which resulted in founding the International Plant Nucleus Consortium. This review highlights new developments in plant nuclear envelope research presented at the conference and their importance for the wider understanding of metazoan, yeast and plant nuclear envelope functions and properties.

  2. Phosphorus mobilizing consortium Mammoth P™ enhances plant growth

    Science.gov (United States)

    Bell, Colin; Mancini, Lauren M.; Lee, Melanie N.; Conant, Richard T.; Wallenstein, Matthew D.

    2016-01-01

    Phosphorus (P) is a critical nutrient used to maximize plant growth and yield. Current agriculture management practices commonly experience low plant P use efficiency due to natural chemical sorption and transformations when P fertilizer is applied to soils. A perplexing challenge facing agriculture production is finding sustainable solutions to deliver P more efficiently to plants. Using prescribed applications of specific soil microbial assemblages to mobilize soil bound—P to improve crop nutrient uptake and productivity has rarely been employed. We investigated whether inoculation of soils with a bacterial consortium developed to mobilize soil P, named Mammoth PTM, could increase plant productivity. In turf, herbs, and fruits, the combination of conventional inorganic fertilizer combined with Mammoth PTM increased productivity up to twofold compared to the fertilizer treatments without the Mammoth PTM inoculant. Jalapeño plants were found to bloom more rapidly when treated with either Mammoth P. In wheat trials, we found that Mammoth PTM by itself was able to deliver yields equivalent to those achieved with conventional inorganic fertilizer applications and improved productivity more than another biostimulant product. Results from this study indicate the substantial potential of Mammoth PTM to enhance plant growth and crop productivity. PMID:27326379

  3. Advances in Metal Supported Cells in the METSOFC EU Consortium

    DEFF Research Database (Denmark)

    McKenna, Brandon J.; Christiansen, Niels; Schauperl, Richard

    2012-01-01

    Employing a mechanically robust metal support as the structural element in SOFC has been the objective of various development efforts. The EU-sponsored project “METSOFC”, completed at the end of 2011, resulted in a number of advancements towards implementing this strategy. These include robust me...... outcomes of the METSOFC consortium are covered, along with associated work supported by the Danish National Advanced Technology Foundation.......Employing a mechanically robust metal support as the structural element in SOFC has been the objective of various development efforts. The EU-sponsored project “METSOFC”, completed at the end of 2011, resulted in a number of advancements towards implementing this strategy. These include robust...... metal supported cells (MSCs) having low ASR at low temperature, incorporation into small stacks of powers approaching ½kW, and stack tolerance to various operation cycles. DTU Energy Conversion's (formerly Risø DTU) research into planar MSCs has produced an advanced cell design with high performance...

  4. 2000 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Kitsap Peninsula, Washington

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TerraPoint surveyed and created this data for the Puget Sound LiDAR Consortium under contract. The area surveyed is approximately 1,146 square miles and covers part...

  5. 2003 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Snohomish County, Washington

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TerraPoint surveyed and created this data for the Puget Sound LiDAR Consortium under contract. The area surveyed is approximately 167 square miles and covers a...

  6. Monitoring Consortiums: A Cost-Effective Means to Enhancing Watershed Data Collection and Analysis

    Science.gov (United States)

    Monitoring is essential for tracking overall watershed health, but monitoring costs are a limiting factor. As demonstrated in the four case studies, consortiums can reduce costs and improve cooperation among partners.

  7. 77 FR 12041 - Applications for New Awards; Migrant Education Program (MEP) Consortium Incentive Grants Program

    Science.gov (United States)

    2012-02-28

    ... involvement of migratory parents in the education of migratory students whose education is interrupted... DEPARTMENT OF EDUCATION Applications for New Awards; Migrant Education Program (MEP) Consortium Incentive Grants Program AGENCY: Office of Elementary and Secondary Education, Department of Education...

  8. Federal Laboratory Consortium Recognizes Unituxin Collaborators with Excellence in Technology Transfer Awards | Poster

    Science.gov (United States)

    The Federal Laboratory Consortium (FLC) presented an Excellence in Technology Transfer award to the group that collaborated to bring Unituxin (dinutuximab, also known as ch14.18), an immunotherapy for neuroblastoma, to licensure.

  9. 2013 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Tulalip Partnership

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In October 2012, WSI (Watershed Sciences, Inc.) was contracted by the Puget Sound LiDAR Consortium (PSLC)to collect Light Detection and Ranging (LiDAR) data on a...

  10. 2003 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Lewis County, Washington

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TerraPoint surveyed and created this data for the Puget Sound LiDAR Consortium under contract. The area surveyed is approximately 100 square miles and covers part of...

  11. 2014 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Willapa Valley (Delivery 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In January, 2014 WSI, a Quantum Spatial (QSI) company, was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR) data...

  12. 2013 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Saddle Mountain

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In October 2013, WSI, a Quantum Spatial Company (QSI), was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR) data...

  13. 2015 Puget Sound LiDAR Consortium (PSLC) LiDAR: WA DNR Lands (P2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In June 2014, WSI, a Quantum Spatial Inc. (QSI) company, was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR)...

  14. 2015 Puget Sound LiDAR Consortium (PSLC) LiDAR: WA DNR Lands (P1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In June 2014, WSI, a Quantum Spatial Inc. (QSI) company, was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR)...

  15. Hydrogen Production by Geobacter Species and a Mixed Consortium in a Microbial Electrolysis Cell

    KAUST Repository

    Call, D. F.; Wagner, R. C.; Logan, B. E.

    2009-01-01

    A hydrogen utilizing exoelectrogenic bacterium (Geobacter sulfurreducens) was compared to both a nonhydrogen oxidizer (Geobacter metallireducens) and a mixed consortium in order to compare the hydrogen production rates and hydrogen recoveries

  16. 2009 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Lewis County, Washington

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WSI) collected Light Detection and Ranging (LiDAR) data for the Lewis County survey area for the Puget Sound LiDAR Consortium. This data...

  17. Novel fungal consortium pretreatment of waste oat straw to enhance economic and efficient biohydrogen production

    Directory of Open Access Journals (Sweden)

    Lirong Zhou

    2016-12-01

    Full Text Available Bio-pretreatment using a fungal consortium to enhance the efficiency of lignocellulosic biohydrogen production was explored.  A fungal consortium comprised of T. viride and P. chrysosporium as microbial inoculum was compared with untreated and single-species-inoculated samples. Fungal bio-pretreatment was carried out at atmospheric conditions with limited external energy input.  The effectiveness of the pretreatment is evaluated according to its lignin removal and digestibility. Enhancement of biohydrogen production is observed through scanning electron microscopy (SEM analysis. Fungal consortium pretreatment effectively degraded oat straw lignin (by >47% in 7 days leading to decomposition of cell-wall structure as revealed in SEM images, increasing biohydrogen yield. The hydrogen produced from the fungal consortium pretreated straw increased by 165% 6 days later, and was more than produced from either a single fungi species of T. viride or P. chrysosponium pretreated straw (94% and 106%, respectively. No inhibitory effect on hydrogen production was observed.

  18. Report of the 4th Workshop for Technology Transfer for Intelligent Compaction Consortium.

    Science.gov (United States)

    2016-03-01

    On October 2728, 2015, the Kentucky Transportation Cabinet (KYTC) hosted the 4th workshop for : the Technology Transfer for Intelligent Compaction Consortium (TTICC), a Transportation Pooled Fund : (TPF5(233)) initiative designed to identify, s...

  19. Promoting Academic Development: A History of the International Consortium for Educational Development (ICED)

    Science.gov (United States)

    Mason O'Connor, Kristine

    2016-01-01

    This essay traces the history of the International Consortium for Educational Development (ICED) through document analysis and email interviews with founding and prominent ICED members. It also provides a summary of the themes and locations of all the ICED conferences.

  20. Apparent Minimum Free Energy Requirements for Methanogenic Archaea and Sulfate-Reducing Bacteria in an Anoxic Marine Sediment

    Science.gov (United States)

    Hoehler, Tori M.; Alperin, Marc J.; Albert, Daniel B.; Martens, Christopher S.; DeVincenzi, Don (Technical Monitor)

    2000-01-01

    Among the most fundamental constraints governing the distribution of microorganisms in the environment is the availability of chemical energy at biologically useful levels. To assess the minimum free energy yield that can support microbial metabolism in situ, we examined the thermodynamics of H2-consuming processes in anoxic sediments from Cape Lookout Bight, NC, USA. Depth distributions of H2 partial pressure, along with a suite of relevant concentration data, were determined in sediment cores collected in November (at 14.5 C) and August (at 27 C) and used to calculate free energy yields for methanogenesis and sulfate reduction. At both times of year, and for both processes, free energy yields gradually decreased (became less negative) with depth before reaching an apparent asymptote. Sulfate reducing bacteria exhibited an asymptote of -19.1 +/- 1.7 kj(mol SO4(2-)(sup -1) while methanogenic archaea were apparently supported by energy yields as small as -10.6 +/- 0.7 kj(mol CH4)(sup -1).

  1. Distance-decay and taxa-area relationships for bacteria, archaea and methanogenic archaea in a tropical lake sediment.

    Directory of Open Access Journals (Sweden)

    Davi Pedroni Barreto

    Full Text Available The study of of the distribution of microorganisms through space (and time allows evaluation of biogeographic patterns, like the species-area index (z. Due to their high dispersal ability, high reproduction rates and low rates of extinction microorganisms tend to be widely distributed, and they are thought to be virtually cosmopolitan and selected primarily by environmental factors. Recent studies have shown that, despite these characteristics, microorganisms may behave like larger organisms and exhibit geographical distribution. In this study, we searched patterns of spatial diversity distribution of bacteria and archaea in a contiguous environment. We collected 26 samples of a lake sediment, distributed in a nested grid, with distances between samples ranging from 0.01 m to 1000 m. The samples were analyzed using T-RFLP (Terminal restriction fragment length polymorphism targeting mcrA (coding for a subunit of methyl-coenzyme M reductase and the genes of Archaeal and Bacterial 16S rRNA. From the qualitative and quantitative results (relative abundance of operational taxonomic units we calculated the similarity index for each pair to evaluate the taxa-area and distance decay relationship slopes by linear regression. All results were significant, with mcrA genes showing the highest slope, followed by Archaeal and Bacterial 16S rRNA genes. We showed that the microorganisms of a methanogenic community, that is active in a contiguous environment, display spatial distribution and a taxa-area relationship.

  2. Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and Methanogens in anorexic patients.

    Directory of Open Access Journals (Sweden)

    Fabrice Armougom

    Full Text Available BACKGROUND: Studies of the bacterial communities of the gut microbiota have revealed a shift in the ratio of Firmicutes and Bacteroidetes in obese patients. Determining the variations of microbial communities in feces may be beneficial for the identification of specific profiles in patients with abnormal weights. The roles of the archaeon Methanobrevibacter smithii and Lactobacillus species have not been described in these studies. METHODS AND FINDINGS: We developed an efficient and robust real-time PCR tool that includes a plasmid-based internal control and allows for quantification of the bacterial divisions Bacteroidetes, Firmicutes, and Lactobacillus as well as the methanogen M. smithii. We applied this technique to the feces of 20 obese subjects, 9 patients with anorexia nervosa, and 20 normal-weight healthy controls. Our results confirmed a reduction in the Bacteroidetes community in obese patients (p<0.01. We found a significantly higher Lactobacillus species concentration in obese patients than in lean controls (p=0.0197 or anorexic patients (p=0.0332. The M. smithii concentration was much higher in anorexic patients than in the lean population (p=0.0171. CONCLUSIONS: Lactobacillus species are widely used as growth promoters in the farm industry and are now linked to obesity in humans. The study of the bacterial flora in anorexic patients revealed an increase in M. smithii. This increase might represent an adaptive use of nutrients in this population.

  3. Ecophysiology of Uncultured Filamentous Anaerobes Belonging to the Phylum KSB3 That Cause Bulking in Methanogenic Granular Sludge▿ †

    Science.gov (United States)

    Yamada, Takeshi; Kikuchi, Kae; Yamauchi, Toshihiro; Shiraishi, Koji; Ito, Tsukasa; Okabe, Satoshi; Hiraishi, Akira; Ohashi, Akiyoshi; Harada, Hideki; Kamagata, Yoichi; Nakamura, Kazunori; Sekiguchi, Yuji

    2011-01-01

    A filamentous bulking of a methanogenic granular sludge caused by uncultured filamentous bacteria of the candidate phylum KSB3 in an upflow anaerobic sludge blanket (UASB) system has been reported. To characterize the physiological traits of the filaments, a polyphasic approach consisting of rRNA-based activity monitoring of the KSB3 filaments using the RNase H method and substrate uptake profiling using microautoradiography combined with fluorescence in situ hybridization (MAR-FISH) was conducted. On the basis of rRNA-based activity, the monitoring of a full-scale UASB reactor operated continuously revealed that KSB3 cells became active and predominant (up to 54% of the total 16S rRNA) in the sludge when the carbohydrate loading to the system increased. Batch experiments with a short incubation of the sludge with maltose, glucose, fructose, and maltotriose at relatively low concentrations (approximately 0.1 mM) in the presence of yeast extract also showed an increase in KSB3 rRNA levels under anaerobic conditions. MAR-FISH confirmed that the KSB3 cells took up radioisotopic carbons from [14C]maltose and [14C]glucose under the same incubation conditions in the batch experiments. These results suggest that one of the important ecophysiological characteristics of KSB3 cells in the sludge is carbohydrate degradation in wastewater and that high carbohydrate loadings may trigger an outbreak of KSB3 bacteria, causing sludge bulking in UASB systems. PMID:21257808

  4. Effect of methanogenic substrates on anaerobic oxidation of methane and sulfate reduction by an anaerobic methanotrophic enrichment.

    KAUST Repository

    Meulepas, Roel J W

    2010-05-06

    Anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SR) is assumed to be a syntrophic process, in which methanotrophic archaea produce an interspecies electron carrier (IEC), which is subsequently utilized by sulfate-reducing bacteria. In this paper, six methanogenic substrates are tested as candidate-IECs by assessing their effect on AOM and SR by an anaerobic methanotrophic enrichment. The presence of acetate, formate or hydrogen enhanced SR, but did not inhibit AOM, nor did these substrates trigger methanogenesis. Carbon monoxide also enhanced SR but slightly inhibited AOM. Methanol did not enhance SR nor did it inhibit AOM, and methanethiol inhibited both SR and AOM completely. Subsequently, it was calculated at which candidate-IEC concentrations no more Gibbs free energy can be conserved from their production from methane at the applied conditions. These concentrations were at least 1,000 times lower can the final candidate-IEC concentration in the bulk liquid. Therefore, the tested candidate-IECs could not have been produced from methane during the incubations. Hence, acetate, formate, methanol, carbon monoxide, and hydrogen can be excluded as sole IEC in AOM coupled to SR. Methanethiol did inhibit AOM and can therefore not be excluded as IEC by this study.

  5. Optimization of food waste hydrolysis in leach bed coupled with methanogenic reactor: effect of pH and bulking agent.

    Science.gov (United States)

    Xu, Su Yun; Lam, Hoi Pui; Karthikeyan, O Parthiba; Wong, Jonathan W C

    2011-02-01

    The effects of pH and bulking agents on hydrolysis/acidogenesis of food waste were studied using leach bed reactor (LBR) coupled with methanogenic up-flow anaerobic sludge blanket (UASB) reactor. The hydrolysis rate under regulated pH (6.0) was studied and compared with unregulated one during initial experiment. Then, the efficacies of five different bulking agents, i.e. plastic full particles, plastic hollow sphere, bottom ash, wood chip and saw dust were experimented under the regulated pH condition. Leachate recirculation with 50% water replacement was practiced throughout the experiment. Results proved that the daily leachate recirculation with pH control (6.0) accelerated the hydrolysis rate (59% higher volatile fatty acids) and methane production (up to 88%) compared to that of control without pH control. Furthermore, bottom ash improved the reactor alkalinity, which internally buffered the system that improved the methane production rate (0.182 l CH(4)/g VS(added)) than other bulking agents. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Synergistic function of four novel thermostable glycoside hydrolases from a long-term enriched thermophilic methanogenic digester

    Directory of Open Access Journals (Sweden)

    Meng eWang

    2015-05-01

    Full Text Available In biofuel production from lignocellulose, low thermostability and product inhibition strongly restrict the enzyme activities and production process. Application of multiple thermostable glycoside hydrolases, forming an enzyme cocktail, can result in a synergistic action and therefore improve production efficiency and reduce operational costs. Therefore, increasing enzyme thermostabilities and compatibility are important for the biofuel industry. In this study, we reported the screening, cloning and biochemical characterization of four novel thermostable lignocellulose hydrolases from a metagenomic library of a long-term dry thermophilic methanogenic digester community, which were highly compatible with optimal conditions and specific activities. The optimal temperatures of the four enzymes, β-xylosidase, xylanase, β-glucosidase, and cellulase ranged from 60°C to 75°C, and over 80% residual activities were observed after 2 h incubation at 50°C. Mixtures of these hydrolases retained high residual synergistic activities after incubation with cellulose, xylan, and steam-exploded corncob at 50°C for 72 h. In addition, about 55% dry weight of steam-exploded corncob was hydrolyzed to glucose and xylose by the synergistic action of the four enzymes at 50°C for 48 h. This work suggested that since different enzymes from a same ecosystem could be more compatible, screening enzymes from a long-term enriching community could be a favorable strategy.

  7. Stratification of Diversity and Activity of Methanogenic and Methanotrophic Microorganisms in a Nitrogen-Fertilized Italian Paddy Soil

    Directory of Open Access Journals (Sweden)

    Annika Vaksmaa

    2017-11-01

    Full Text Available Paddy fields are important ecosystems, as rice is the primary food source for about half of the world’s population. Paddy fields are impacted by nitrogen fertilization and are a major anthropogenic source of methane. Microbial diversity and methane metabolism were investigated in the upper 60 cm of a paddy soil by qPCR, 16S rRNA gene amplicon sequencing and anoxic 13C-CH4 turnover with a suite of electron acceptors. The bacterial community consisted mainly of Acidobacteria, Chloroflexi, Proteobacteria, Planctomycetes, and Actinobacteria. Among archaea, Euryarchaeota and Bathyarchaeota dominated over Thaumarchaeota in the upper 30 cm of the soil. Bathyarchaeota constituted up to 45% of the total archaeal reads in the top 5 cm. In the methanogenic community, Methanosaeta were generally more abundant than the versatile Methanosarcina. The measured maximum methane production rate was 444 nmol gdwh-1, and the maximum rates of nitrate-, nitrite-, and iron-dependent anaerobic oxidation of methane (AOM were 57 nmol, 55 nmol, and 56 nmol gdwh-1, respectively, at different depths. qPCR revealed a higher abundance of ‘Candidatus Methanoperedens nitroreducens’ than methanotrophic NC10 phylum bacteria at all depths, except at 60 cm. These results demonstrate that there is substantial potential for AOM in fertilized paddy fields, with ‘Candidatus Methanoperedens nitroreducens’ archaea as a potential important contributor.

  8. Non-Psychrophilic Methanogens Capable of Growth Following Long-Term Extreme Temperature Changes, with Application to Mars

    Directory of Open Access Journals (Sweden)

    Rebecca L. Mickol

    2018-04-01

    Full Text Available Although the martian environment is currently cold and dry, geomorphological features on the surface of the planet indicate relatively recent (<4 My freeze/thaw episodes. Additionally, the recent detections of near-subsurface ice as well as hydrated salts within recurring slope lineae suggest potentially habitable micro-environments within the martian subsurface. On Earth, microbial communities are often active at sub-freezing temperatures within permafrost, especially within the active layer, which experiences large ranges in temperature. With warming global temperatures, the effect of thawing permafrost communities on the release of greenhouse gases such as carbon dioxide and methane becomes increasingly important. Studies examining the community structure and activity of microbial permafrost communities on Earth can also be related to martian permafrost environments, should life have developed on the planet. Here, two non-psychrophilic methanogens, Methanobacterium formicicum and Methanothermobacter wolfeii, were tested for their ability to survive long-term (~4 year exposure to freeze/thaw cycles varying in both temperature and duration, with implications both for climate change on Earth and possible life on Mars.

  9. Non-Psychrophilic Methanogens Capable of Growth Following Long-Term Extreme Temperature Changes, with Application to Mars.

    Science.gov (United States)

    Mickol, Rebecca L; Laird, Sarah K; Kral, Timothy A

    2018-04-23

    Although the martian environment is currently cold and dry, geomorphological features on the surface of the planet indicate relatively recent (<4 My) freeze/thaw episodes. Additionally, the recent detections of near-subsurface ice as well as hydrated salts within recurring slope lineae suggest potentially habitable micro-environments within the martian subsurface. On Earth, microbial communities are often active at sub-freezing temperatures within permafrost, especially within the active layer, which experiences large ranges in temperature. With warming global temperatures, the effect of thawing permafrost communities on the release of greenhouse gases such as carbon dioxide and methane becomes increasingly important. Studies examining the community structure and activity of microbial permafrost communities on Earth can also be related to martian permafrost environments, should life have developed on the planet. Here, two non-psychrophilic methanogens, Methanobacterium formicicum and Methanothermobacter wolfeii , were tested for their ability to survive long-term (~4 year) exposure to freeze/thaw cycles varying in both temperature and duration, with implications both for climate change on Earth and possible life on Mars.

  10. Nutrient and energy content, in vitro ruminal fermentation characteristics and methanogenic potential of alpine forage plant species during early summer.

    Science.gov (United States)

    Jayanegara, Anuraga; Marquardt, Svenja; Kreuzer, Michael; Leiber, Florian

    2011-08-15

    Plants growing on alpine meadows are reported to be rich in phenols. Such compounds may affect ruminal fermentation and reduce the plants' methanogenic potential, making alpine grazing advantageous in this respect. The objective of this study was to quantify nutrients and phenols in Alpine forage grasses, herbs and trees collected over 2 years and, in a 24 h in vitro incubation, their effects on ruminal fermentation parameters. The highest in vitro gas production, resulting in metabolisable energy values around 10 MJ kg⁻¹, were found with Alchemilla xanthochlora and Crepis aurea (herbaceous species) and with Sambucus nigra leaves and flowers (tree species). Related to the amount of total gas production, methane formation was highest with Nardus stricta, and lowest with S. nigra and A. xanthochlora. In addition, Castanea sativa leaves led to an exceptional low methane production, but this was accompanied by severely impaired ruminal fermentation. When the data were analysed by principal component analysis, phenol concentrations were negatively related with methane proportion in total gas. Variation in methane production potential across the investigated forages was small. The two goals of limited methane production potential and high nutritive value for ruminants were met best by A. xanthochlora and S. nigra. Copyright © 2011 Society of Chemical Industry.

  11. Long-term competition between sulfate reducing and methanogenic bacteria in UASB reactors treating volatile fatty acids.

    Science.gov (United States)

    Omil, F; Lens, P; Visser, A; Hulshoff Pol, L W; Lettinga, G

    1998-03-20

    The competition between acetate utilizing methane-producing bacteria (MB) and sulfate-reducing bacteria (SRB) was studied in mesophilic (30 degrees C) upflow anaerobic sludge bed (UASB) reactors (upward velocity 1 m h-1; pH 8) treating volatile fatty acids and sulfate. The UASB reactors treated a VFA mixture (with an acetate:propionate:butyrate ratio of 5:3:2 on COD basis) or acetate as the sole substrate at different COD:sulfate ratios. The outcome of the competition was evaluated in terms of conversion rates and specific methanogenic and sulfidogenic activities. The COD:sulfate ratio was a key factor in the partitioning of acetate utilization between MB and SRB. In excess of sulfate (COD:sulfate ratio lower than 0.67), SRB became predominant over MB after prolonged reactor operation: 250 and 400 days were required to increase the amount of acetate used by SRB from 50 to 90% in the reactor treating, respectively, the VFA mixture or acetate as the sole substrate. The competition for acetate was further studied by dynamic simulations using a mathematical model based on the Monod kinetic parameters of acetate utilizing SRB and MB. The simulations confirmed the long term nature of the competition between these acetotrophs. A high reactor pH (+/-8), a short solid retention time (acetate-utilising SRB to outcompete MB. Copyright 1998 John Wiley & Sons, Inc.

  12. Rationale and design of the multiethnic Pharmacogenomics in Childhood Asthma consortium

    DEFF Research Database (Denmark)

    Farzan, Niloufar; Vijverberg, Susanne J; Andiappan, Anand K

    2017-01-01

    AIM: International collaboration is needed to enable large-scale pharmacogenomics studies in childhood asthma. Here, we describe the design of the Pharmacogenomics in Childhood Asthma (PiCA) consortium. MATERIALS & METHODS: Investigators of each study participating in PiCA provided data...... corticosteroid users. Among patients from 13 studies with available data on asthma exacerbations, a third reported exacerbations despite inhaled corticosteroid use. In the future pharmacogenomics studies within the consortium, the pharmacogenomics analyses will be performed separately in each center...

  13. Highly migratory shark fisheries research by the National Shark Research Consortium (NSRC), 2002-2007

    OpenAIRE

    Hueter, Robert E.; Cailliet, Gregor M.; Ebert, David A.; Musick, John A.; Burgess, George H.

    2007-01-01

    The National Shark Research Consortium (NSRC) includes the Center for Shark Research at Mote Marine Laboratory, the Pacific Shark Research Center at Moss Landing Marine Laboratories, the Shark Research Program at the Virginia Institute of Marine Science, and the Florida Program for Shark Research at the University of Florida. The consortium objectives include shark-related research in the Gulf of Mexico and along the Atlantic and Pacific coasts of the U.S., education and scientific cooperation.

  14. Washoe Tribe Nevada Inter-Tribal Energy Consortium Energy Organization Enhancement Project Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Jennifer [Washoe Tribe of NV and Ca

    2014-11-06

    The Washoe Tribe of Nevada and California was awarded funding from the Department of Energy to complete the Nevada Inter-Tribal Energy Consortium Energy Organization Enhancement Project. The main goal of the project was to enhance the capacity of the Nevada Inter-Tribal Energy Consortium (NITEC) to effectively assist tribes within Nevada to technically manage tribal energy resources and implement tribal energy projects.

  15. The Pharmaceutical Industry Beamline of Pharmaceutical Consortium for Protein Structure Analysis

    International Nuclear Information System (INIS)

    Nishijima, Kazumi; Katsuya, Yoshio

    2002-01-01

    The Pharmaceutical Industry Beamline was constructed by the Pharmaceutical Consortium for Protein Structure Analysis which was established in April 2001. The consortium is composed of 22 pharmaceutical companies affiliating with the Japan Pharmaceutical Manufacturers Association. The beamline is the first exclusive on that is owned by pharmaceutical enterprises at SPring-8. The specification and equipments of the Pharmaceutical Industry Beamline is almost same as that of RIKEN Structural Genomics Beamline I and II. (author)

  16. Northeast Artificial Intelligence Consortium Annual Report. Volume 2. 1988 Discussing, Using, and Recognizing Plans (NLP)

    Science.gov (United States)

    1989-10-01

    Encontro Portugues de Inteligencia Artificial (EPIA), Oporto, Portugal, September 1985. [15] N. J. Nilsson. Principles Of Artificial Intelligence. Tioga...FI1 F COPY () RADC-TR-89-259, Vol II (of twelve) Interim Report October 1969 AD-A218 154 NORTHEAST ARTIFICIAL INTELLIGENCE CONSORTIUM ANNUAL...7a. NAME OF MONITORING ORGANIZATION Northeast Artificial Of p0ilcabe) Intelligence Consortium (NAIC) Rome_____ Air___ Development____Center

  17. Methanogenic community development in anaerobic granular bioreactors treating trichloroethylene (TCE)-contaminated wastewater at 37 °C and 15 °C.

    Science.gov (United States)

    Siggins, Alma; Enright, Anne-Marie; O'Flaherty, Vincent

    2011-04-01

    Four expanded granular sludge bed (EGSB) bioreactors were seeded with a mesophilically-grown granular sludge and operated in duplicate for mesophilic (37 °C; R1 & R2) and low- (15°; R3 & R4) temperature treatment of a synthetic volatile fatty acid (VFA) based wastewater (3 kg COD m(-3) d(-1)) with one of each pair (R1 & R3) supplemented with increasing concentrations of trichloroethylene (TCE; 10, 20, 40, 60 mg l(-1)) and one acting as a control. Bioreactor performance was evaluated by % COD removal efficiency and % biogas methane (CH(4)) content. Quantitative Polymerase Chain Reaction (qPCR) was used to investigate the methanogenic community composition and dynamics in the bioreactors during the trial, while specific methanogenic activity (SMA) and toxicity assays were utilized to investigate the activity and TCE/dichloroethylene (DCE) toxicity thresholds of key trophic groups, respectively. At both 37 °C and 15 °C, TCE levels of 60 mg l(-1) resulted in the decline of % COD removal efficiencies to 29% (Day 235) and 37% (Day 238), respectively, and in % biogas CH(4) to 54% (Day 235) and 5% (Day 238), respectively. Despite the inhibitory effect of TCE on the anaerobic digestion process, the main drivers influencing methanogenic community development, as determined by qPCR and Non-metric multidimensional scaling analysis, were (i) wastewater composition and (ii) operating temperature. At the apical TCE concentration both SMA and qPCR of methanogenic archaea suggested that acetoclastic methanogens were somewhat inhibited by the presence of TCE and/or its degradation derivatives, while competition by dechlorinating organisms may have limited the availability of H(2) for hydrogenotrophic methanogenesis. In addition, there appeared to be an inverse correlation between SMA levels and TCE tolerance, a finding that was supported by the analysis of the inhibitory effect of TCE on two additional biomass sources. The results indicate that low-temperature anaerobic

  18. Biodegradation mechanisms and kinetics of azo dye 4BS by a microbial consortium.

    Science.gov (United States)

    He, Fang; Hu, Wenrong; Li, Yuezhong

    2004-10-01

    A microbial consortium consisting of a white-rot fungus 8-4* and a Pseudomonas 1-10 was isolated from wastewater treatment facilities of a local dyeing house by enrichment, using azo dye Direct Fast Scarlet 4BS as the sole source of carbon and energy, which had a high capacity for rapid decolorization of 4BS. To elucidate the decolorization mechanisms, decolorization of 4BS was compared between individual strains and the microbial consortium under different treatment processes. The microbial consortium showed a significant improvement on dye decolorization rates under either static or shaking culture, which might be attributed to the synergetic reaction of single strains. From the curve of COD values and the UV-visible spectra of 4BS solutions before and after decolorization cultivation with the microbial consortium, it was found that 4BS could be mineralized completely, and the results had been used for presuming the degrading pathway of 4BS. This study also examined the kinetics of 4BS decolorization by immobilized microbial consortium. The results demonstrated that the optimal decolorization activity was observed in pH range between four and 9, temperature range between 20 and 40 degrees C and the maximal specific decolorization rate occurred at 1,000 mg l(-1) of 4BS. The proliferation and distribution of microbial consortium were also microscopically observed, which further confirmed the decolorization mechanisms of 4BS.

  19. Prebiotics Mediate Microbial Interactions in a Consortium of the Infant Gut Microbiome.

    Science.gov (United States)

    Medina, Daniel A; Pinto, Francisco; Ovalle, Aline; Thomson, Pamela; Garrido, Daniel

    2017-10-04

    Composition of the gut microbiome is influenced by diet. Milk or formula oligosaccharides act as prebiotics, bioactives that promote the growth of beneficial gut microbes. The influence of prebiotics on microbial interactions is not well understood. Here we investigated the transformation of prebiotics by a consortium of four representative species of the infant gut microbiome, and how their interactions changed with dietary substrates. First, we optimized a culture medium resembling certain infant gut parameters. A consortium containing Bifidobacterium longum subsp. infantis , Bacteroides vulgatus , Escherichia coli and Lactobacillus acidophilus was grown on fructooligosaccharides (FOS) or 2'-fucosyllactose (2FL) in mono- or co-culture. While Bi. infantis and Ba. vulgatus dominated growth on 2FL, their combined growth was reduced. Besides, interaction coefficients indicated strong competition, especially on FOS. While FOS was rapidly consumed by the consortium, B. infantis was the only microbe displaying significant consumption of 2FL. Acid production by the consortium resembled the metabolism of microorganisms dominating growth in each substrate. Finally, the consortium was tested in a bioreactor, observing similar predominance but more pronounced acid production and substrate consumption. This study indicates that the chemical nature of prebiotics modulate microbial interactions in a consortium of infant gut species.

  20. Results From the John Glenn Biomedical Engineering Consortium. A Success Story for NASA and Northeast Ohio

    Science.gov (United States)

    Nall, Marsha M.; Barna, Gerald J.

    2009-01-01

    The John Glenn Biomedical Engineering Consortium was established by NASA in 2002 to formulate and implement an integrated, interdisciplinary research program to address risks faced by astronauts during long-duration space missions. The consortium is comprised of a preeminent team of Northeast Ohio institutions that include Case Western Reserve University, the Cleveland Clinic, University Hospitals Case Medical Center, The National Center for Space Exploration Research, and the NASA Glenn Research Center. The John Glenn Biomedical Engineering Consortium research is focused on fluid physics and sensor technology that addresses the critical risks to crew health, safety, and performance. Effectively utilizing the unique skills, capabilities and facilities of the consortium members is also of prime importance. Research efforts were initiated with a general call for proposals to the consortium members. The top proposals were selected for funding through a rigorous, peer review process. The review included participation from NASA's Johnson Space Center, which has programmatic responsibility for NASA's Human Research Program. The projects range in scope from delivery of prototype hardware to applied research that enables future development of advanced technology devices. All of the projects selected for funding have been completed and the results are summarized. Because of the success of the consortium, the member institutions have extended the original agreement to continue this highly effective research collaboration through 2011.