WorldWideScience

Sample records for tokamak jet based

  1. Study of the trace tritium content in deuterium plasmas of the JET tokamak based on neutron emission spectroscopy measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ringmar, David

    2001-02-01

    This thesis describes a study of the evolution of the trace tritium content in the JET tokamak. The study is based on measurements of the neutron emission, which were performed with the magnetic proton recoil (MPR) spectrometer. Data analysis procedures used to extract the results are described in some detail. The thesis also describes a simplified theoretical model to calculate the absolute tritium concentration with a comparison to the experimental results. The present study covers the time period 1996-2000 and the evolution of neutron emission spectroscopy (NES) results are compared with information from related diagnostic sources, and used to discuss the important issue of how tritium is retained in the JET tokamak.

  2. Study of the trace tritium content in deuterium plasmas of the JET tokamak based on neutron emission spectroscopy measurements

    International Nuclear Information System (INIS)

    Ringmar, David

    2001-02-01

    This thesis describes a study of the evolution of the trace tritium content in the JET tokamak. The study is based on measurements of the neutron emission, which were performed with the magnetic proton recoil (MPR) spectrometer. Data analysis procedures used to extract the results are described in some detail. The thesis also describes a simplified theoretical model to calculate the absolute tritium concentration with a comparison to the experimental results. The present study covers the time period 1996-2000 and the evolution of neutron emission spectroscopy (NES) results are compared with information from related diagnostic sources, and used to discuss the important issue of how tritium is retained in the JET tokamak

  3. A cross-tokamak neural network disruption predictor for the JET and ASDEX Upgrade tokamaks

    Science.gov (United States)

    Windsor, C. G.; Pautasso, G.; Tichmann, C.; Buttery, R. J.; Hender, T. C.; EFDA Contributors, JET; ASDEX Upgrade Team

    2005-05-01

    First results are reported on the prediction of disruptions in one tokamak, based on neural networks trained on another tokamak. The studies use data from the JET and ASDEX Upgrade devices, with a neural network trained on just seven normalized plasma parameters. In this way, a simple single layer perceptron network trained solely on JET correctly anticipated 67% of disruptions on ASDEX Upgrade in advance of 0.01 s before the disruption. The converse test led to a 69% success rate in advance of 0.04 s before the disruption in JET. Only one overall time scaling parameter is allowed between the devices, which can be introduced from theoretical arguments. Disruption prediction performance based on such networks trained and tested on the same device shows even higher success rates (JET, 86%; ASDEX Upgrade, 90%), despite the small number of inputs used and simplicity of the network. It is found that while performance for networks trained and tested on the same device can be improved with more complex networks and many adjustable weights, for cross-machine testing the best approach is a simple single layer perceptron. This offers the basis of a potentially useful technique for large future devices such as ITER, which with further development might help to reduce disruption frequency and minimize the need for a large disruption campaign to train disruption avoidance systems.

  4. A cross-tokamak neural network disruption predictor for the JET and ASDEX Upgrade tokamaks

    International Nuclear Information System (INIS)

    Windsor, C.G.; Buttery, R.J.; Hender, T.C.; Pautasso, G.; Tichmann, C.

    2005-01-01

    First results are reported on the prediction of disruptions in one tokamak, based on neural networks trained on another tokamak. The studies use data from the JET and ASDEX Upgrade devices, with a neural network trained on just seven normalized plasma parameters. In this way, a simple single layer perceptron network trained solely on JET correctly anticipated 67% of disruptions on ASDEX Upgrade in advance of 0.01 s before the disruption. The converse test led to a 69% success rate in advance of 0.04 s before the disruption in JET. Only one overall time scaling parameter is allowed between the devices, which can be introduced from theoretical arguments. Disruption prediction performance based on such networks trained and tested on the same device shows even higher success rates (JET, 86%; ASDEX Upgrade, 90%), despite the small number of inputs used and simplicity of the network. It is found that while performance for networks trained and tested on the same device can be improved with more complex networks and many adjustable weights, for cross-machine testing the best approach is a simple single layer perceptron. This offers the basis of a potentially useful technique for large future devices such as ITER, which with further development might help to reduce disruption frequency and minimize the need for a large disruption campaign to train disruption avoidance systems

  5. Conceptual analysis of a tokamak reactor with lithium dust jet

    International Nuclear Information System (INIS)

    Kuteev, B.V.; Krylov, S.V.; Sergeev, V.Yu.; Skokov, V.G.; Timokhin, V.M.

    2010-01-01

    The steady-state operation of tokamak reactors requires radiating a substantial part of the fusion energy dissipated in plasma to make more uniform the heat loads onto the first wall and to reduce the erosion of the divertor plates. One of the approaches to realize this goal uses injection of lithium dust jet into the scrape-off layer (SOL). A quantitative conceptual analysis of the reactor parameters with lithium dust jet injection is presented here. The effects of the lithium on the core and SOL plasma are considered. The first results of developing the lithium jet injection technology and its application to the T-10 tokamak are also presented.

  6. q=1 advanced tokamak experiments in JET and comparison with ASDEX Upgrade

    International Nuclear Information System (INIS)

    Joffrin, E.; Wolf, R.; Alper, B.

    2002-01-01

    The ASDEX Upgrade advanced tokamak scenario with central q close to 1 has been reproduced on JET. For almost identical q profiles, the comparative analysis does show similar features like the fishbone activity and the current profile evolution. In JET, transport analyses indicates that an internal transport barrier (ITB) has been produced. Gradient length criterions based on the ion temperature gradient turbulence stabilization are used to characterize the ITBs in both devices. The trigger of ITBs is associated with rational surfaces in both devices although the underlying physics for this triggering seems different. This experiment has the prospect to get closer to identity experiments between the two tokamaks. (author)

  7. Hybrid model for simulation of plasma jet injection in tokamak

    Science.gov (United States)

    Galkin, Sergei A.; Bogatu, I. N.

    2016-10-01

    Hybrid kinetic model of plasma treats the ions as kinetic particles and the electrons as charge neutralizing massless fluid. The model is essentially applicable when most of the energy is concentrated in the ions rather than in the electrons, i.e. it is well suited for the high-density hyper-velocity C60 plasma jet. The hybrid model separates the slower ion time scale from the faster electron time scale, which becomes disregardable. That is why hybrid codes consistently outperform the traditional PIC codes in computational efficiency, still resolving kinetic ions effects. We discuss 2D hybrid model and code with exact energy conservation numerical algorithm and present some results of its application to simulation of C60 plasma jet penetration through tokamak-like magnetic barrier. We also examine the 3D model/code extension and its possible applications to tokamak and ionospheric plasmas. The work is supported in part by US DOE DE-SC0015776 Grant.

  8. Liquid gallium jet-plasma interaction studies in ISTTOK tokamak

    International Nuclear Information System (INIS)

    Gomes, R.B.; Fernandes, H.; Silva, C.; Sarakovskis, A.; Pereira, T.; Figueiredo, J.; Carvalho, B.; Soares, A.; Duarte, P.; Varandas, C.; Lielausis, O.; Klyukin, A.; Platacis, E.; Tale, I.; Alekseyv, A.

    2009-01-01

    Liquid metals have been pointed out as a suitable solution to solve problems related to the use of solid walls submitted to high power loads allowing, simultaneously, an efficient heat exhaustion process from fusion devices. The most promising candidate materials are lithium and gallium. However, lithium has a short liquid state temperature range when compared with gallium. To explore further this property, ISTTOK tokamak is being used to test the interaction of a free flying liquid gallium jet with the plasma. ISTTOK has been successfully operated with this jet without noticeable discharge degradation and no severe effect on the main plasma parameters or a significant plasma contamination by liquid metal. Additionally the response of an infrared sensor, intended to measure the jet surface temperature increase during its interaction with the plasma, has been studied. The jet power extraction capability is extrapolated from the heat flux profiles measured in ISTTOK plasmas.

  9. Redeposition effects on the target plates of the JET tokamak

    International Nuclear Information System (INIS)

    Coad, J.P.

    1994-01-01

    Complete tiles from the X-point target region of the JET tokamak can be analysed by ion beam techniques in a special chamber equipped to handle beryllium- and tritium-contaminated samples. From the amounts of deuterium co-deposited during plasma operations, and the pattern of beryllium deposits remaining from regular Be evaporation in the torus, erosion and redeposition effects at the target area can be determined. The largest amounts of net redeposition occur in the 'private zone' and near the inner separatrix. There appears to be a net transfer of material from the outer to the inner strike zone: the data are compared with models for divertor transport. (Author)

  10. LH-power coupling in advanced tokamak plasmas in JET

    International Nuclear Information System (INIS)

    Joffrin, E.; Erents, K.; Gormezano, C.

    2000-02-01

    Lower Hybrid Current Drive (LHCD) is the most efficient tool to generate non-inductive current in tokamak plasmas. In JET, significant modifications of the current profile have been recently achieved in coupling up to 3MW of LH power in optimised shear discharges. However, the improved particle confinement during optimised shear plasmas results in a sharp decrease of the electron density in front the launcher close or below the cut-off density (ne=1.7.10 17 m -3 for f LH =37GHz) and makes difficult the coupling of the LH power. Deuterium gas near the launcher can help to improve the coupling, but has also the effect of increasing the ELM activity leading to the erosion of the internal transport barrier (ITB). Future development of lower hybrid launcher should include the constraints imposed by scenario such as the optimised shear. (author)

  11. Controlled thermonuclear fusion in TOKAMAK type reactors, the European example: Joint European Torus (JET)

    International Nuclear Information System (INIS)

    Paris, P.J.; Yassen, F.; Assis, A.S. de; Raposo, C.

    1988-07-01

    The development of controlled thermonuclear reaction in TOKAMAK type reactors, and the main projects in the world are presented. The main characteristics of the JET (Joint European Torus) program, the perspectives for energy production, and the international cooperation for viable use of the TOKAMAK are analysed. (M.C.K.) [pt

  12. Perturbative transport experiments in JET Advanced Tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Mantica, P.; Gorini, G.; Sozzi, C. [Istituto di Fisica del Plasma, EURATOM-ENEA-CNR Association, Milan (Italy); Imbeaux, F.; Sarazin, Y.; Garbet, X. [Association Euratom-CEA, St. Paul-lez-Durance Cedex (France); Kinsey, J. [Lehigh Univ., Bethlehem, Pennsylvania (United States); Budny, R. [Princeton Plasma Physics Lab, New Jersey (United States); Coffey, I.; Parail, V.; Walden, A. [Euratom/UKAEA Fusion Association, Abingdon, Oxon (United Kingdom); Dux, R. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Garzotti, L. [Istituto Gas Ionizzati, Padova (Italy); Ingesson, C. [FOM-Instituut voor Plasmafysica, Nieuwegein (Netherlands); Kissick, M. [University of California, Los Angeles (United States)

    2003-07-01

    Perturbative transport experiments have been performed in JET Advanced Tokamak plasmas either in conditions of fully developed Internal Transport Barrier (ITB) or during a phase where an ITB was not observed. Transient peripheral cooling was induced by either Laser Ablation or Shallow Pellet Injection and the ensuing travelling cold pulse was used to probe the plasma transport in the electron and, for the first time, also in the ion channel. Cold pulses travelling through ITBs are observed to erode the ITB outer part, but, if the inner ITB portion survives, it strongly damps the propagating wave. The result is discussed in the context of proposed possible pictures for ITB formation. In the absence of an ITB, the cold pulse shows a fast propagation in the outer plasma half, which is consistent with a region of stiff transport, while in the inner half it slows down but shows the peculiar feature of amplitude growing while propagating. The data are powerful tests for the validation of theoretical transport models. (author)

  13. Development on JET of Advanced Tokamak Operations for ITER

    International Nuclear Information System (INIS)

    Tuccillo, A.A.; Crisanti, F.; Litaudon, X.

    2005-01-01

    Recent research on Advanced Tokamak in JET has focused on scenarii with both monotonic and reversed shear q profiles having plasma parameters as relevant as possible for extrapolation to ITER. Wide ITBs, R∼3.7m, are formed at ITER relevant triangularity δ∼0.45, with n e /n G ∼60% and ELMs moderated by Ne injection. At higher current (I P ≤3.5MA, δ∼0.25) wide ITBs sitting at R≥ 3.5m (positive shear region) have been developed, generally MHD events terminate these barrier otherwise limited in strength by power availability. ITBs with core density close to Greenwald value are obtained with plasma target preformed by opportune timing of LHCD, pellet injection and small amount of NBI power. ITB start with toroidal rotation 4 times lower than the standard NBI heated ITBs. Full CD is achieved in reversed shear ITBs at 3T/1.8 MA, by using 10MW NBI, 5MW ICRH and 3MW LH. Wide ITBs located at R=3.6m, without impurity accumulation and type-III ELMs edge can be sustained for a time close to neo-classical resistive time. These discharges have been extended to the maximum duration allowed by subsystems (20s) with the JET record of injected energy: E∼330 MJ. Integrated control of pressure and current profile isit; feature used in these discharges. Central ICRF mode conversion electron heating, added to about 14MW NBI power, produced impressive ITBs with equivalent Q DT ∼ 0.25. Conversely ion ITBs are obtained with low torque injection, by ICRH 3 He minority heating of ions, on pure LHCD electron ITBs. Similarity experiments between JET and AUG have compared the dynamics of ITBs and have been the starting point of Hybrid Scenarios activity, then developed at ρ* as low as ρ*∼3*10 -3 . The development of hybrid regime with dominant electron heating has also started. Injection of trace of tritium and a mixture of Ar/Ne allowed studying fuel and impurities transport in many of the explored AT scenarios. (author)

  14. Neutron measurements on the JET tokamak by means of bubble detectors

    International Nuclear Information System (INIS)

    Gherendi, M.; Craciunescu, T.; Pantea, A.; Zoita, V.; Edlington, T.; Kiptily, V.; Popovichev, S.; Murari, A.

    2009-01-01

    Full text: The bubble detectors (superheated fluid detectors - SHFDs) are based on suspensions of superheated fluid droplets which vaporise into bubbles when nucleated by radiation interactions. The active detecting medium is in the form of microscopic (20-50 μm) droplets suspended within an elastic polymer. The bubble detectors are of interest for neutron detection in nuclear fusion devices due to some particular characteristics: - High neutron detection efficiency (counts/unit fluence) that ranges from about 4x10 -2 to 4x10 -5 ; - Almost flat, threshold-type energy response over a broad energy range (10's keV to 10's MeV); - The possibility of having any energy threshold within the above-mentioned energy range; - Practically zero sensitivity to gamma-radiation; - Good spatial resolution (sub-centimetre resolution in the image plane). A series of the neutron measurements have been carried out by means of bubble detectors on the JET tokamak, at Culham Science Centre, Abingdon, UK, during the experimental campaigns C17-C26 (2007-2009). The neutron field parameters (yield, fluence, energy distribution) at a specific location outside the JET Torus Hall have been measured using three types of bubble detectors (BD-PND, DEFENDER, and BDS). The bubble detector measurement location is situated at the end of a vertical collimated line of sight, behind the TOFOR neutron time-of-flight spectrometer. The field-of-view is defined by a variable pre-collimator located on top of the JET tokamak. This paper reports only on the neutron fluence measurements. Spatial (radial and toroidal) distributions of the neutron fluence have been obtained with a two-dimensional array having up to 30 bubble detectors. The operation of the bubble detector array as a neutron pinhole camera having a radial resolution at the JET vacuum chamber mid-plane of about 55 mm was demonstrated in measurements using various openings of the pre-collimator. (authors)

  15. The critical temperature gradient model of plasma transport: applications to Jet and future tokamaks

    International Nuclear Information System (INIS)

    Rebut, P.H.; Lallia, P.P.; Watkins, M.L.

    1989-01-01

    The diversity and complexity of behaviour in tokamak plasmas place strong constraints on any model attempting a description in terms of a single underlying phenomenon. Assuming that turbulence in the magnetic topology is the underlying phenomenon, specific expressions for electron and ion heat flux are derived from heuristic and dimensional arguments. When used in plasma transport codes, rather satisfactory simulations of experimental results are achieved in different sized tokamaks in various regimes of operation. Predictions are given for the expected performance of JET at full planned power and implications for next step tokamaks are indicated

  16. Transient heat transport studies in JET conventional and advanced tokamak plasmas

    International Nuclear Information System (INIS)

    Mantica, P.; Coffey, I.; Dux, R.

    2003-01-01

    Transient transport studies are a valuable complement to steady-state analysis for the understanding of transport mechanisms and the validation of physics-based transport models. This paper presents results from transient heat transport experiments in JET and their modelling. Edge cold pulses and modulation of ICRH (in mode conversion scheme) have been used to provide detectable electron and ion temperature perturbations. The experiments have been performed in conventional L-mode plasmas or in Advanced Tokamak regimes, in the presence of an Internal Transport Barrier (ITB). In conventional plasmas, the issues of stiffness and non-locality have been addressed. Cold pulse propagation in ITB plasmas has provided useful insight into the physics of ITB formation. The use of edge perturbations for ITB triggering has been explored. Modelling of the experimental results has been performed using both empirical models and physics-based models. Results of cold pulse experiments in ITBs have also been compared with turbulence simulations. (author)

  17. TFTR/JET INTOR workshop on plasma transport tokamaks

    International Nuclear Information System (INIS)

    Singer, C.E.

    1985-01-01

    This report summarizes the proceedings of a Workshop on transport models for prediction and analysis of tokamak plasma confinement. Summaries of papers on theory, predictive modeling, and data analysis are included

  18. Fusion Energy-Production from a Deuterium-Tritium Plasma in the Jet Tokamak

    NARCIS (Netherlands)

    Rebut, P. H.; Gibson, A.; Huguet, M.; Adams, J. M.; Alper, B.; Altmann, H.; Andersen, A.; Andrew, P.; Angelone, M.; Aliarshad, S.; Baigger, P.; Bailey, W.; Balet, B.; Barabaschi, P.; Barker, P.; Barnsley, R.; Baronian, M.; Bartlett, D. V.; Baylor, L.; Bell, A. C.; Benali, G.; Bertoldi, P.; Bertolini, E.; Bhatnagar, V.; Bickley, A. J.; Binder, D.; Bindslev, H.; Bonicelli, T.; Booth, S. J.; Bosia, G.; Botman, M.; Boucher, D.; Boucquey, P.; Breger, P.; Brelen, H.; Brinkschulte, H.; Brooks, D.; Brown, A.; Brown, T.; Brusati, M.; Bryan, S.; Brzozowski, J.; Buchse, R.; Budd, T.; Bures, M.; Businaro, T.; Butcher, P.; Buttgereit, H.; Caldwellnichols, C.; Campbell, D. J.; Card, P.; Celentano, G.; Challis, C. D.; Chankin, A. V.; Cherubini, A.; Chiron, D.; Christiansen, J.; Chuilon, P.; Claesen, R.; Clement, S.; Clipsham, E.; Coad, J. P.; Coffey, I. H.; Colton, A.; Comiskey, M.; Conroy, S.; Cooke, M.; Cooper, D.; Cooper, S.; Cordey, J. G.; Core, W.; Corrigan, G.; Corti, S.; Costley, A. E.; Cottrell, G.; Cox, M.; Cripwell, P.; Dacosta, O.; Davies, J.; Davies, N.; de Blank, H.; De Esch, H.; Dekock, L.; Deksnis, E.; Delvart, F.; Dennehinnov, G. B.; Deschamps, G.; Dickson, W. J.; Dietz, K. J.; Dmitrenko, S. L.; Dmitrieva, M.; Dobbing, J.; Doglio, A.; Dolgetta, N.; Dorling, S. E.; Doyle, P. G.; Duchs, D. F.; Duquenoy, H.; Edwards, A.; Ehrenberg, J.; Ekedahl, A.; Elevant, T.; Erents, S.K.; Eriksson, L. G.; Fajemirokun, H.; Falter, H.; Freiling, J.; Freville, F.; Froger, C.; Froissard, P.; Fullard, K.; Gadeberg, M.; Galetsas, A.; Gallagher, T.; Gambier, D.; Garribba, M.; Gaze, P.; Giannella, R.; Gill, R. D.; Girard, A.; Gondhalekar, A.; Goodall, D.; Gormezano, C.; Gottardi, N. A.; Gowers, C.; Green, B. J.; Grievson, B.; Haange, R.; Haigh, A.; Hancock, C. J.; Harbour, P. J.; Hartrampf, T.; Hawkes, N. C.; Haynes, P.; Hemmerich, J. L.; Hender, T.; Hoekzema, J.; Holland, D.; Hone, M.; Horton, L.; How, J.; Huart, M.; Hughes, I.; Hughes, T. P.; Hugon, M.; Huo, Y.; Ida, K.; Ingram, B.; Irving, M.; Jacquinot, J.; Jaeckel, H.; Jaeger, J. F.; Janeschitz, G.; Jankovicz, Z.; Jarvis, O. N.; Jensen, F.; Jones, E. M.; Jones, H. D.; Jones, Lpdf; Jones, S.; Jones, T. T. C.; Junger, J. F.; Junique, F.; Kaye, A.; Keen, B. E.; Keilhacker, M.; Kelly, G. J.; Kerner, W.; Khudoleev, A.; Konig, R.; Konstantellos, A.; Kovanen, M.; Kramer, G.; Kupschus, P.; Lasser, R.; Last, J. R.; Laundy, B.; Laurotaroni, L.; Laveyry, M.; Lawson, K.; Lennholm, M.; Lingertat, J.; Litunovski, R. N.; Loarte, A.; Lobel, R.; Lomas, P.; Loughlin, M.; Lowry, C.; Lupo, J.; Maas, A. C.; Machuzak, J.; Macklin, B.; Maddison, G.; Maggi, C. F.; Magyar, G.; Mandl, W.; Marchese, V.; Marcon, G.; Marcus, F.; Mart, J.; Martin, D.; Martin, E.; Martinsolis, R.; Massmann, P.; Matthews, G.; McBryan, H.; McCracken, G.; McKivitt, J.; Meriguet, P.; Miele, P.; Miller, A.; Mills, J.; Mills, S. F.; Millward, P.; Milverton, P.; Minardi, E.; Mohanti, R.; Mondino, P. L.; Montgomery, D.; Montvai, A.; Morgan, P.; Morsi, H.; Muir, D.; Murphy, G.; Myrnas, R.; Nave, F.; Newbert, G.; Newman, M.; Nielsen, P.; Noll, P.; Obert, W.; Obrien, D.; Orchard, J.; Orourke, J.; Ostrom, R.; Ottaviani, M.; Pain, M.; Paoletti, F.; Papastergiou, S.; Parsons, W.; Pasini, D.; Patel, D.; Peacock, A.; Peacock, N.; Pearce, R. J. M.; Pearson, D.; Peng, J. F.; Desilva, R. P.; Perinic, G.; Perry, C.; Petrov, M.; Pick, M. A.; Plancoulaine, J.; Poffe, J. P.; Pohlchen, R.; Porcelli, F.; Porte, L.; Prentice, R.; Puppin, S.; Putvinskii, S.; Radford, G.; Raimondi, T.; Deandrade, M. C. R.; Reichle, R.; Reid, J.; Richards, S.; Righi, E.; Rimini, F.; Robinson, D.; Rolfe, A.; Ross, R. T.; Rossi, L.; Russ, R.; Rutter, P.; Sack, H. C.; Sadler, G.; Saibene, G.; Salanave, J. L.; Sanazzaro, G.; Santagiustina, A.; Sartori, R.; Sborchia, C.; Schild, P.; Schmid, M.; Schmidt, G.; Schunke, B.; Scott, S. M.; Serio, L.; Sibley, A.; Simonini, R.; Sips, A.C.C.; Smeulders, P.; Smith, R.; Stagg, R.; Stamp, M.; Stangeby, P.; Stankiewicz, R.; Start, D. F.; Steed, C. A.; Stork, D.; Stott, P.E.; Stubberfield, P.; Summers, D.; Summers, H.; Svensson, L.; Tagle, J. A.; Talbot, M.; Tanga, A.; Taroni, A.; Terella, C.; Terrington, A.; Tesini, A.; Thomas, P. R.; Thompson, E.; Thomsen, K.; Tibone, F.; Tiscornia, A.; Trevalion, P.; Tubbing, B.; Vanbelle, P.; Vanderbeken, H.; Vlases, G.; von Hellermann, M.; Wade, T.; Walker, C.; Walton, R.; Ward, D.; Watkins, M. L.; Watkins, N.; Watson, M. J.; Weber, S.; Wesson, J.; Wijnands, T. J.; Wilks, J.; Wilson, D.; Winkel, T.; Wolf, R.; Wong, D.; Woodward, C.; Wu, Y.; Wykes, M.; Young, D.; Young, I. D.; Zannelli, L.; Zolfaghari, A.; Zwingmann, W.

    1992-01-01

    The paper describes a series of experiments in the Joint European Torus (JET), culminating in the first tokamak discharges in deuterium-tritium fuelled mixtures. The experiments were undertaken within limits imposed by restrictions on vessel activation and tritium usage. The objectives were: (i) to

  19. Plasma jet source parameter optimisation and experiments on injection into Globus-M spherical tokamak

    International Nuclear Information System (INIS)

    Gusev, V.K.; Petrov, Yu.V.; Sakharov, N.V.; Semenov, A.A.; Voronin, A.V.

    2005-01-01

    Results of theoretical and experimental research on the plasma sources and injection of plasma and gas jet produced by the modified source into tokamak Globus-M are presented. An experimental test stand was developed for investigation of intense plasma jet generation. Optimisation of pulsed coaxial accelerator parameters by means of analytical calculations is performed with the aim of achieving the highest flow velocity at limited coaxial electrode length and discharge current. The optimal parameters of power supply to generate a plasma jet with minimal impurity contamination and maximum flow velocity were determined. A comparison of experimental and calculation results is made. Plasma jet parameters are measured, such as: impurity species content, pressure distribution across the jet, flow velocity, plasma density, etc. Experiments on the interaction of a higher kinetic energy plasma jet with the magnetic field and plasma of the Globus-M tokamak were performed. Experimental results on plasma and gas jet injection into different Globus-M discharge phases are presented and discussed. Results are presented on the investigation of plasma jet injection as the source for discharge breakdown, plasma current startup and initial density rise. (author)

  20. First experimental results with the Current Limit Avoidance System at the JET tokamak

    Energy Technology Data Exchange (ETDEWEB)

    De Tommasi, G. [Associazione EURATOM-ENEA-CREATE, Università di Napoli Federico II, Via Claudio 21, 80125 Napoli (Italy); Galeani, S. [Dipartimento di Informatica, Sistemi e Produzione, Università di Roma, Tor Vergata, Rome (Italy); Jachmich, S. [Association EURATOM-Belgian State, Koninklijke Militaire School - Ecole Royale Militaire, B-1000 Brussels (Belgium); Joffrin, E. [IRFM-CEA, Centre de Cadarache, 13108 Saint-paul-lez-Durance (France); Lennholm, M. [EFDA Close Support Unit, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); European Commission, B-1049 Brussels (Belgium); Lomas, P.J. [Euratom-CCFE, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); Neto, A.C. [Associazione EURATOM-IST, Instituto de Plasmas e Fusao Nuclear, IST, 1049-001 Lisboa (Portugal); Maviglia, F. [Associazione EURATOM-ENEA-CREATE, Via Claudio 21, 80125 Napoli (Italy); McCullen, P. [Euratom-CCFE, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); Pironti, A. [Associazione EURATOM-ENEA-CREATE, Università di Napoli Federico II, Via Claudio 21, 80125 Napoli (Italy); Rimini, F.G. [Euratom-CCFE, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); Sips, A.C.C. [European Commission, B-1049 Brussels (Belgium); Varano, G.; Vitelli, R. [Dipartimento di Informatica, Sistemi e Produzione, Università di Roma, Tor Vergata, Rome (Italy); Zaccarian, L. [CNRS, LAAS, 7 Avenue du Colonel Roche, F-31400 Toulouse (France); Universitè de Toulouse, LAAS, F-31400 Toulouse (France)

    2013-06-15

    The Current Limit Avoidance System (CLA) has been recently deployed at the JET tokamak to avoid current saturations in the poloidal field (PF) coils when the eXtreme Shape Controller is used to control the plasma shape. In order to cope with the current saturation limits, the CLA exploits the redundancy of the PF coils system to automatically obtain almost the same plasma shape using a different combination of currents in the PF coils. In the presence of disturbances it tries to avoid the current saturations by relaxing the constraints on the plasma shape control. The CLA system has been successfully implemented on the JET tokamak and fully commissioned in 2011. This paper presents the first experimental results achieved in 2011–2012 during the restart and the ITER-like wall campaigns at JET.

  1. High kinetic energy plasma jet generation and its injection into the Globus-M spherical tokamak

    International Nuclear Information System (INIS)

    Voronin, A.V.; Gusev, V.K.; Petrov, Yu.V.; Sakharov, N.V.; Abramova, K.B.; Sklyarova, E.M.; Tolstyakov, S.Yu.

    2005-01-01

    Progress in the theoretical and experimental development of the plasma jet source and injection of hydrogen plasma and neutral gas jets into the Globus-M spherical tokamak is discussed. An experimental test bed is described for investigation of intense plasma jets that are generated by a double-stage plasma gun consisting of an intense source for neutral gas production and a conventional pulsed coaxial accelerator. A procedure for optimizing the accelerator parameters so as to achieve the maximum possible flow velocity with a limited discharge current and a reasonable length of the coaxial electrodes is presented. The calculations are compared with experiment. Plasma jet parameters, among them pressure distribution across the jet, flow velocity, plasma density, etc, were measured. Plasma jets with densities of up to 10 22 m -3 , total numbers of accelerated particles (1-5) x 10 19 , and flow velocities of 50-100 km s -1 were successfully injected into the plasma column of the Globus-M tokamak. Interferometric and Thomson scattering measurements confirmed deep jet penetration and a fast density rise ( 19 to 1 x 10 19 ) did not result in plasma degradation

  2. A generic access to shot-based data for European Tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Signoret, J.; Imbeaux, F. [Association EURATOM-CEA, CEA / DSM / Institut de Recherche sur la Fusion par confinement Magnetique, CEA-Cadarache, 13 - ST-Paul-Lez-Durance (France)

    2009-07-01

    The EFDA Integrated Tokamak Modeling Task Force has defined a data structure offering a generic representation of the properties of physics problems and tokamak subsystem characteristics. It gathers the hardware description, modeling results and data measured during experiments, structured in terms of Consistent Physical Objects (CPOs). A generic tool has been developed to retrieve shot-based data from the various European tokamak databases: Exp2ITM. A tokamak specific XML 'mapping file' is used to map the local data formats to the ITM (Integrated Tokamak Modeling) data format. Exp2ITM is then dynamically generated from the ITM data structure and uses generic procedures to import the shot-based data. Successful tests show we have managed to import into the ITM DB experimental data from Jet and Tore-Supra. This document is a poster. (authors)

  3. ISTTOK tokamak plasmas influence on a liquid gallium jet dynamic behavior

    International Nuclear Information System (INIS)

    Gomes, R.B.; Silva, C.; Fernandes, H.; Duarte, P.; Nedzelskiy, I.; Lielausis, O.; Klyukin, A.; Platacis, E.

    2011-01-01

    The main concern in using free flowing liquid metals in fusion devices is related to their interaction with magnetic fields. On ISTTOK tokamak, liquid gallium jets are injected deep into the plasma along a vertical direction. The influence of the plasma interaction on the jet has been investigated monitoring the liquid metal behavior using a fast frame camera. A radial shift on its trajectory has been detected and found to depend on the toroidal magnetic field magnitude and principally on the plasma position within the chamber. The analysis performed to understand the dynamics of the jet perturbation by the plasma is presented in this paper. The jet surface temperature increase during this interaction has also been measured, using absolutely calibrated multichannel IR sensors, to evaluate the jet power exhaustion capability.

  4. ISTTOK tokamak plasmas influence on a liquid gallium jet dynamic behavior

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, R.B., E-mail: gomes@ipfn.ist.utl.pt [Associacao EURATOM/IST, Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, 1049-001 Lisboa (Portugal); Silva, C.; Fernandes, H.; Duarte, P.; Nedzelskiy, I. [Associacao EURATOM/IST, Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, 1049-001 Lisboa (Portugal); Lielausis, O.; Klyukin, A.; Platacis, E. [Association EURATOM/University of Latvia, Institute of Solid State Physics, 8 Kengaraga Str., LV-1063 Riga (Latvia)

    2011-08-01

    The main concern in using free flowing liquid metals in fusion devices is related to their interaction with magnetic fields. On ISTTOK tokamak, liquid gallium jets are injected deep into the plasma along a vertical direction. The influence of the plasma interaction on the jet has been investigated monitoring the liquid metal behavior using a fast frame camera. A radial shift on its trajectory has been detected and found to depend on the toroidal magnetic field magnitude and principally on the plasma position within the chamber. The analysis performed to understand the dynamics of the jet perturbation by the plasma is presented in this paper. The jet surface temperature increase during this interaction has also been measured, using absolutely calibrated multichannel IR sensors, to evaluate the jet power exhaustion capability.

  5. Liquid jets for fast plasma termination in tokamaks

    International Nuclear Information System (INIS)

    Rosenbluth, M.N.; Putvinskij, S.V.; Parks, P.B.

    1997-01-01

    Recent simulations by Putvisnkij et al. (PSI Conference, 1996) have shown that introducing impurities into the plasma in order to mitigate adverse disruption effects in ITER may actually be deleterious because of a potentially unwelcome phenomenon: generation of multi-MeV runaway electrons by the collisional avalanche mechanism (Rosenbluth, M.N., et al., in Fusion Energy 1996 (Proc. 16th Int. Conf. Montreal, 1996) Vol. 2, IAEA, Vienna (in press) Paper FP-26). The injection of a liquid hydrogen jet to deliver a massive density increase is proposed as a means of avoiding runaways, while providing the same beneficial effects as impurities. A discussion of many jet related topics, such as ablation/penetration, jet breakup time and stability, is presented. Owing to an ablation pressure instability, it is predicted that the jet will quickly break up into a regular chain of droplets with dimensions of approximately the size of the jet radius. It is found that while deep penetration in the plasma can easily be achieved, bubble growth and disruptive boiling (flashing) during the propagation in the vacuum gap between the nozzle exit and the plasma are the main processes limiting the jet survival time. Calculations indicate that for ITER reference parameters, the jet can remain coherent in vacuum for a distance ∼ 1 m before disintegrating. On the basis of this present understanding, the prospect for the safe termination of ITER discharges by high density liquid jet injection appears promising. (author). 20 refs, 6 figs, 3 tabs

  6. A New Generation of Real-Time Systems in the JET Tokamak

    Science.gov (United States)

    Alves, Diogo; Neto, Andre C.; Valcarcel, Daniel F.; Felton, Robert; Lopez, Juan M.; Barbalace, Antonio; Boncagni, Luca; Card, Peter; De Tommasi, Gianmaria; Goodyear, Alex; Jachmich, Stefan; Lomas, Peter J.; Maviglia, Francesco; McCullen, Paul; Murari, Andrea; Rainford, Mark; Reux, Cedric; Rimini, Fernanda; Sartori, Filippo; Stephen, Adam V.; Vega, Jesus; Vitelli, Riccardo; Zabeo, Luca; Zastrow, Klaus-Dieter

    2014-04-01

    Recently, a new recipe for developing and deploying real-time systems has become increasingly adopted in the JET tokamak. Powered by the advent of x86 multi-core technology and the reliability of JET's well established Real-Time Data Network (RTDN) to handle all real-time I/O, an official Linux vanilla kernel has been demonstrated to be able to provide real-time performance to user-space applications that are required to meet stringent timing constraints. In particular, a careful rearrangement of the Interrupt ReQuests' (IRQs) affinities together with the kernel's CPU isolation mechanism allows one to obtain either soft or hard real-time behavior depending on the synchronization mechanism adopted. Finally, the Multithreaded Application Real-Time executor (MARTe) framework is used for building applications particularly optimised for exploring multi-core architectures. In the past year, four new systems based on this philosophy have been installed and are now part of JET's routine operation. The focus of the present work is on the configuration aspects that enable these new systems' real-time capability. Details are given about the common real-time configuration of these systems, followed by a brief description of each system together with results regarding their real-time performance. A cycle time jitter analysis of a user-space MARTe based application synchronizing over a network is also presented. The goal is to compare its deterministic performance while running on a vanilla and on a Messaging Real time Grid (MRG) Linux kernel.

  7. Evidence of Inward Toroidal Momentum Convection in the JET Tokamak

    DEFF Research Database (Denmark)

    Tala, T.; Zastrow, K.-D.; Ferreira, J.

    2009-01-01

    Experiments have been carried out on the Joint European Torus tokamak to determine the diffusive and convective momentum transport. Torque, injected by neutral beams, was modulated to create a periodic perturbation in the toroidal rotation velocity. Novel transport analysis shows the magnitude...... and profile shape of the momentum diffusivity are similar to those of the ion heat diffusivity. A significant inward momentum pinch, up to 20 m/s, has been found. Both results are consistent with gyrokinetic simulations. This evidence is complemented in plasmas with internal transport barriers....

  8. Fast ions and momentum transport in JET tokamak plasmas

    International Nuclear Information System (INIS)

    Salmi, A.

    2012-01-01

    Fast ions are an inseparable part of fusion plasmas. They can be generated using electromagnetic waves or injected into plasmas as neutrals to heat the bulk plasma and to drive toroidal rotation and current. In future power plants fusion born fast ions deliver the main heating into the plasma. Understanding and controlling the fast ions is of crucial importance for the operation of a power plant. Furthermore, fast ions provide ways to probe the properties of the thermal plasma and get insight of its confinement properties. In this thesis, numerical code packages are used and developed to simulate JET experiments for a range of physics issues related to fast ions. Namely, the clamping fast ion distribution at high energies with RF heating, fast ion ripple torque generation and the toroidal momentum transport properties using NBI modulation technique are investigated. Through a comparison of numerical simulations and the JET experimental data it is shown that the finite Larmor radius effects in ion cyclotron resonance heating are important and that they can prevent fast ion tail formation beyond certain energy. The identified mechanism could be used for tailoring the fast ion distribution in future experiments. Secondly, ASCOT simulations of NBI ions in a ripple field showed that most of the reduction of the toroidal rotation that has been observed in the JET enhanced ripple experiments could be attributed to fast ion ripple torque. Finally, fast ion torque calculations together with momentum transport analysis have led to the conclusion that momentum transport in not purely diffusive but that a convective component, which increases monotonically in radius, exists in a wide range of JET plasmas. Using parameter scans, the convective transport has been shown to be insensitive to collisionality and q-profile but to increase strongly against density gradient. (orig.)

  9. Fast ions and momentum transport in JET tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Salmi, A.

    2012-07-01

    Fast ions are an inseparable part of fusion plasmas. They can be generated using electromagnetic waves or injected into plasmas as neutrals to heat the bulk plasma and to drive toroidal rotation and current. In future power plants fusion born fast ions deliver the main heating into the plasma. Understanding and controlling the fast ions is of crucial importance for the operation of a power plant. Furthermore, fast ions provide ways to probe the properties of the thermal plasma and get insight of its confinement properties. In this thesis, numerical code packages are used and developed to simulate JET experiments for a range of physics issues related to fast ions. Namely, the clamping fast ion distribution at high energies with RF heating, fast ion ripple torque generation and the toroidal momentum transport properties using NBI modulation technique are investigated. Through a comparison of numerical simulations and the JET experimental data it is shown that the finite Larmor radius effects in ion cyclotron resonance heating are important and that they can prevent fast ion tail formation beyond certain energy. The identified mechanism could be used for tailoring the fast ion distribution in future experiments. Secondly, ASCOT simulations of NBI ions in a ripple field showed that most of the reduction of the toroidal rotation that has been observed in the JET enhanced ripple experiments could be attributed to fast ion ripple torque. Finally, fast ion torque calculations together with momentum transport analysis have led to the conclusion that momentum transport in not purely diffusive but that a convective component, which increases monotonically in radius, exists in a wide range of JET plasmas. Using parameter scans, the convective transport has been shown to be insensitive to collisionality and q-profile but to increase strongly against density gradient. (orig.)

  10. JET Tokamak, preparation of a safety case for tritium operations

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, Helen, E-mail: helen.boyer@ccfe.ac.uk [CCFE, Culham Science Centre (United Kingdom); Plummer, David; Johnston, Jane [CCFE, Culham Science Centre (United Kingdom)

    2016-11-01

    Highlights: • A safety case incorporating technical and ITER related upgrades. • Hazard analysis reworked to include new modelling assessments. • Fitness for purpose assessment of safety controls. - Abstract: A new Safety Case is required to permit tritium operations on JET during the forthcoming DTE2 campaign. The outputs, benefits and lessons learned associated with the production of this Safety Case are presented. The changes that have occurred to the Safety Case methodology since the last JET tritium Safety Case are reviewed. Consideration is given to the effects of modifications, particularly ITER related changes, made to the JET and the impact these have on the hazard assessments as well as normal operations. Several specialized assessments, including recent MELCOR modelling, have been undertaken to support the production of this Safety Case and the impact of these assessments is outlined. Discussion of the preliminary actions being taken to progress implementation of this Safety Case is provided, highlighting new methods to improve the dissemination of the key Safety Case results to the plant operators. Finally, the work required to complete this Safety Case, before the next tritium campaign, is summarized.

  11. Tokamak

    International Nuclear Information System (INIS)

    Wesson, John.

    1996-01-01

    This book is the first compiled collection about tokamak. At first chapter tokamak is represented from fusion point of view and also the necessary conditions for producing power. The following chapters are represent plasma physics, the specifications of tokamak, plasma heating procedures and problems related to it, equilibrium, confinement, magnetohydrodynamic stability, instabilities, plasma material interaction, plasma measurement and experiments regarding to tokamak; an addendum is also given at the end of the book

  12. Remote handling installation of diagnostics in the JET Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Allan, P., E-mail: Peter.Allan@ccfe.ac.uk [JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Loving, A.B. [JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Omran, H. [JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Oxford Technologies Ltd, 7 Nuffield Way, Abingdon OX14 1RJ (United Kingdom); Collins, S.; Thomas, J. [JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Parsloe, A.; Merrigan, I. [JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); British Nuclear Services, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Hassall, I. [JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Oxford Technologies Ltd, 7 Nuffield Way, Abingdon OX14 1RJ (United Kingdom)

    2011-10-15

    The requirement for an upgrade of the diagnostics for the JET ITER Like Wall (ILW) while maintaining personnel exposure to contamination as low as reasonably practicable or ALARP, has necessitated the development of a bespoke set of diagnostic components. These components, by virtue of their design and location, require a versatile yet comprehensive suite of remote handling tools to undertake their in-vessel installation. The installation of the various diagnostic components is covered in multiple tasks. Each task requires careful assessment and design of tools that can successfully interface with the components and comply with the handling and installation requirements. With remote maintenance a requirement, the looms/conduits were designed to be modular with connections which are electrically connected when the module is fitted or conversely disconnected when removed. The shape of each complex and often bulky component is verified during the design phase, to ensure that it can be delivered and installed to its specified location in the torus. This is done by matching the kinematic capabilities of the remote handling system and the path of the component through the torus by using a state of the art virtual reality system.

  13. Experimental studies of Alfven modes stability on the JET tokamak

    International Nuclear Information System (INIS)

    Testa, D.; Fasoli, A.; Borba, D.N.

    2002-01-01

    The linear stability properties of Alfven modes are studied on JET using an active excitation technique. The Saddle Coils drive low amplitude, vertical bar δB/B vertical bar ∼ 10 -6 , stable plasma modes with toroidal mode number n=0 / 2. The diagnostic technique uses repetitive sweeps of the driving frequency in a pre-defined range, controlled in real-time. The plasma response is extracted from background noise using synchronous detection, and is used to identify in real-time the resonance corresponding to a global mode. When a resonance is found, the real-time controller locks to that frequency and tracks the mode. This provides a direct evaluation of the mode damping rate, γ/ω from the width of the frequency sweep. Two systems are used to measure fast fluctuation data. The KC1F system is a 8-channel, 1MHz/4s continuous digitizer used to analyze magnetic and reflectometry data in the frequency range 5≤f(kHz) ≤500. This system is particularly suitable to follow the time evolution of the instability. The CATS system collects and digitizes a large number of channels generally using short time snapshots. This system is useful to determine the position of the instability using the cross-correlation between the magnetic and other radially localized measurements, such as soft X-rays, reflectometry or electron cyclotron emission

  14. Characterisation, modelling and control of advanced scenarios in the european tokamak jet; Caracterisation, modelisation et controle des scenarios avances dans le tokamak europeen jet

    Energy Technology Data Exchange (ETDEWEB)

    Tresset, G

    2002-09-26

    The advanced scenarios, developed for less than ten years with the internal transport barriers and the control of current profile, give rise to a 'new deal' for the tokamak as a future thermonuclear controlled fusion reactor. The Joint European Torus (JET) in United Kingdom is presently the most powerful device in terms of fusion power and it has allowed to acquire a great experience in these improved confinement regimes. The reduction of turbulent transport, considered now as closely linked to the shape of current profile optimised for instance by lower hybrid current drive or the self-generated bootstrap current, can be characterised by a dimensionless criterion. Most of useful information related to the transport barriers are thus available. Large database analysis and real time plasma control are envisaged as attractive applications. The so-called 'S'-shaped transport models exhibit some interesting properties in fair agreement with the experiments, while the non-linear multivariate dependencies of thermal diffusivity can be approximated by a neural network, suggesting a new approach for transport investigation and modelling. Finally, the first experimental demonstrations of real time control of internal transport barriers and current profile have been performed on JET. Sophisticated feedback algorithms have been proposed and are being numerically tested to achieve steady-state and efficient plasmas. (author)

  15. Characterisation, modelling and control of advanced scenarios in the european tokamak jet; Caracterisation, modelisation et controle des scenarios avances dans le tokamak europeen jet

    Energy Technology Data Exchange (ETDEWEB)

    Tresset, G

    2002-09-26

    The advanced scenarios, developed for less than ten years with the internal transport barriers and the control of current profile, give rise to a 'new deal' for the tokamak as a future thermonuclear controlled fusion reactor. The Joint European Torus (JET) in United Kingdom is presently the most powerful device in terms of fusion power and it has allowed to acquire a great experience in these improved confinement regimes. The reduction of turbulent transport, considered now as closely linked to the shape of current profile optimised for instance by lower hybrid current drive or the self-generated bootstrap current, can be characterised by a dimensionless criterion. Most of useful information related to the transport barriers are thus available. Large database analysis and real time plasma control are envisaged as attractive applications. The so-called 'S'-shaped transport models exhibit some interesting properties in fair agreement with the experiments, while the non-linear multivariate dependencies of thermal diffusivity can be approximated by a neural network, suggesting a new approach for transport investigation and modelling. Finally, the first experimental demonstrations of real time control of internal transport barriers and current profile have been performed on JET. Sophisticated feedback algorithms have been proposed and are being numerically tested to achieve steady-state and efficient plasmas. (author)

  16. Safety analysis of water cooled components inside the JET thermonuclear fusion tokamak

    International Nuclear Information System (INIS)

    Ageladarakis, P.; O'Dowd, N.; Papastergiou, S.

    1998-04-01

    The transient thermal behaviour of a number of components, installed in the vessel of the world's largest Fusion Tokamak (JET) has been examined with a theoretical model, which simulated normal operational conditions and abnormal scenarios namely: Loss of Coolant Flow; Loss of Torus Vacuum; and combinations. A number of theoretical results related to water and cryogenically cooled devices have been validated by a comprehensive experimental campaign conducted both inside the JET plasma chamber and in a test rig. The performance of water cooled components which may be subjected to boiling or freeze-up risks in case of a Loss of Water Flow event has also been analysed. Time constants of transient temperature changes were determined by the model while protective actions were prescribed in order to safeguard the equipment against associated risks. A completely automatic safety protection system has been designed on the basis of these analyses and implemented in the routine JET operation. During operation of JET the safety code reacted several times within the specified time limits and protected the relevant components during real off-normal events. (author)

  17. Direct measurements of damping rates and stability limits for low frequency MHD modes and Alfven Eigenmodes in the JET tokamak

    International Nuclear Information System (INIS)

    Fasoli, A.F.; Testa, D.; Jaun, A.; Sharapov, S.; Gormezano, C.

    2001-01-01

    The linear stability properties of global modes that can be driven by resonant energetic particles or by the bulk plasma are studied using an external excitation method based on the JET saddle coil antennas. Low toroidal mode number, stable plasma modes are driven by the saddle coils and detected by magnetic probes to measure their structure, frequency and damping rate, both in the Alfven Eigenmode (AE) frequency range and in the low frequency Magneto-Hydro-Dynamic (MHD) range. For AEs, the dominant damping mechanisms are identified for different plasma conditions of relevance for reactors. Spectra and damping rates of low frequency MHD modes that are localized at the foot of the internal transport barrier and can affect the plasma performance in advanced tokamak scenarios have been directly measured for the first time. This gives the possibility of monitoring in real time the approach to the instability boundary. (author)

  18. Liquid gallium jet as a limiter in tokamak: design of the stand

    International Nuclear Information System (INIS)

    Lielausis, O.; Platacis, E.; Klukins, A.

    2005-01-01

    Full text: Plasma facing surfaces should be considered as the most loaded components of the proposed fusion devices. Load densities (up to 1 GW/m 2 ) would result in unacceptably high levels of thermal stresses and erosion. Solutions have been proposed when plasma is contacting not a solid material but a liquid metal in permanent motion. Usually, because of its low Z-number, lithium is considered as the most compatible with plasma. In the given research gallium is used - an essentially more convenient in practice material, outstanding by its low saturated vapor pressure. On tokamak ISTTOK (Portugal, R=0.46m; a=0.085m; B T =0.45 T; I p =8 kA) it is proposed to replace the existing metallic limiter by a liquid gallium jet. The jet forming nozzle is connected with the constant pressure vessel (at the level 1.3 m) by a 1/4 '' SS tube. For an exact determination of the jets length on the level 0.7 m an electrically controlled flow interrupting valve is installed. The metal is brought up into the pressure vessel by an e.m. pump on permanent magnets. The loop is designed in such a way that the liquid metal remains properly insulated both from the plasma vessel walls as well as from the plasma potential

  19. Nanoparticle Plasma Jet as Fast Probe for Runaway Electrons in Tokamak Disruptions

    Science.gov (United States)

    Bogatu, I. N.; Galkin, S. A.

    2017-10-01

    Successful probing of runaway electrons (REs) requires fast (1 - 2 ms) high-speed injection of enough mass able to penetrate through tokamak toroidal B-field (2 - 5 T) over 1 - 2 m distance with large assimilation fraction in core plasma. A nanoparticle plasma jet (NPPJ) from a plasma gun is a unique combination of millisecond trigger-to-delivery response and mass-velocity of 100 mg at several km/s for deep direct injection into current channel of rapidly ( 1 ms) cooling post-TQ core plasma. After C60 NPPJ test bed demonstration we started to work on ITER-compatible boron nitride (BN) NPPJ. Once injected into plasma, BN NP undergoes ablative sublimation, thermally decomposes into B and N, and releases abundant B and N high-charge ions along plasma-traversing path and into the core. We present basic characteristics of our BN NPPJ concept and first results from B and N ions on Zeff > 1 effect on REs dynamics by using a self-consistent model for RE current density. Simulation results of BNQ+ NPPJ penetration through tokamak B-field to RE beam location performed with Hybrid Electro-Magnetic code (HEM-2D) are also presented. Work supported by U.S. DOE SBIR Grant.

  20. Commercial feasibility of fusion power based on the tokamak concept

    International Nuclear Information System (INIS)

    Reid, R.L.; Steiner, D.

    1977-01-01

    The impact of plasma operating characteristics, engineering options, and technology on the capital cost trends of tokamak power plants is determined. Tokamak power systems are compared to other advanced energy systems and found to be economically competitive. A three-phase strategy for demonstrating commercial feasibility of fusion power, based on a common-site multiple-unit concept, is presented

  1. Characterisation, modelling and control of advanced scenarios in the european tokamak jet

    International Nuclear Information System (INIS)

    Tresset, G.

    2002-01-01

    The advanced scenarios, developed for less than ten years with the internal transport barriers and the control of current profile, give rise to a 'new deal' for the tokamak as a future thermonuclear controlled fusion reactor. The Joint European Torus (JET) in United Kingdom is presently the most powerful device in terms of fusion power and it has allowed to acquire a great experience in these improved confinement regimes. The reduction of turbulent transport, considered now as closely linked to the shape of current profile optimised for instance by lower hybrid current drive or the self-generated bootstrap current, can be characterised by a dimensionless criterion. Most of useful information related to the transport barriers are thus available. Large database analysis and real time plasma control are envisaged as attractive applications. The so-called 'S'-shaped transport models exhibit some interesting properties in fair agreement with the experiments, while the non-linear multivariate dependencies of thermal diffusivity can be approximated by a neural network, suggesting a new approach for transport investigation and modelling. Finally, the first experimental demonstrations of real time control of internal transport barriers and current profile have been performed on JET. Sophisticated feedback algorithms have been proposed and are being numerically tested to achieve steady-state and efficient plasmas. (author)

  2. Transitions in Al-like, Mg-like and Na-like Kr and Mo, observed in the JET tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Jupen, C; Denne, B; Martinson, I [JET Joint Undertaking, Abingdon, Oxon (UK)

    1990-05-01

    Spectra of highly ionized Kr and Mo, emitted from the JET tokamak plasmas, have been recorded in the region 30-335 A. Detailed analysis of the n=3, {Delta}n=0 transitions in Kr XXIV-XXVI and Mo XXX-XXXII has resulted in a number of new spectral classifications. Some isoelectronic regularities for Al-like and Mg-like ions are discussed. (orig.).

  3. Pedestal evolution physics in low triangularity JET tokamak discharges with ITER-like wall

    Science.gov (United States)

    Bowman, C.; Dickinson, D.; Horvath, L.; Lunniss, A. E.; Wilson, H. R.; Cziegler, I.; Frassinetti, L.; Gibson, K.; Kirk, A.; Lipschultz, B.; Maggi, C. F.; Roach, C. M.; Saarelma, S.; Snyder, P. B.; Thornton, A.; Wynn, A.; Contributors, JET

    2018-01-01

    The pressure gradient of the high confinement pedestal region at the edge of tokamak plasmas rapidly collapses during plasma eruptions called edge localised modes (ELMs), and then re-builds over a longer time scale before the next ELM. The physics that controls the evolution of the JET pedestal between ELMs is analysed for 1.4 MA, 1.7 T, low triangularity, δ  =  0.2, discharges with the ITER-like wall, finding that the pressure gradient typically tracks the ideal magneto-hydrodynamic ballooning limit, consistent with a role for the kinetic ballooning mode. Furthermore, the pedestal width is often influenced by the region of plasma that has second stability access to the ballooning mode, which can explain its sometimes complex evolution between ELMs. A local gyrokinetic analysis of a second stable flux surface reveals stability to kinetic ballooning modes; global effects are expected to provide a destabilising mechanism and need to be retained in such second stable situations. As well as an electron-scale electron temperature gradient mode, ion scale instabilities associated with this flux surface include an electro-magnetic trapped electron branch and two electrostatic branches propagating in the ion direction, one with high radial wavenumber. In these second stability situations, the ELM is triggered by a peeling-ballooning mode; otherwise the pedestal is somewhat below the peeling-ballooning mode marginal stability boundary at ELM onset. In this latter situation, there is evidence that higher frequency ELMs are paced by an oscillation in the plasma, causing a crash in the pedestal before the peeling-ballooning boundary is reached. A model is proposed in which the oscillation is associated with hot plasma filaments that are pushed out towards the plasma edge by a ballooning mode, draining their free energy into the cooler plasma there, and then relaxing back to repeat the process. The results suggest that avoiding the oscillation and maximising the region

  4. Studies of Be migration in the JET tokamak using AMS with 10Be marker

    Science.gov (United States)

    Bykov, I.; Bergsåker, H.; Possnert, G.; Zhou, Y.; Heinola, K.; Pettersson, J.; Conroy, S.; Likonen, J.; Petersson, P.; Widdowson, A.

    2016-03-01

    The JET tokamak is operated with beryllium limiter tiles in the main chamber and tungsten coated carbon fiber composite tiles and solid W tiles in the divertor. One important issue is how wall materials are migrating during plasma operation. To study beryllium redistribution in the main chamber and in the divertor, a 10Be enriched limiter tile was installed prior to plasma operations in 2011-2012. Methods to take surface samples have been developed, an abrasive method for bulk Be tiles in the main chamber, which permits reuse of the tiles, and leaching with hot HCl to remove all Be deposited at W coated surfaces in the divertor. Quantitative analysis of the total amount of Be in cm2 sized samples was made with inductively coupled plasma atomic emission spectroscopy (ICP-AES). The 10Be/9Be ratio in the samples was measured with accelerator mass spectrometry (AMS). The experimental setup and methods are described in detail, including sample preparation, measures to eliminate contributions in AMS from the 10B isobar, possible activation due to plasma generated neutrons and effects of diffusive isotope mixing. For the first time marker concentrations are measured in the divertor deposits. They are in the range 0.4-1.2% of the source concentration, with moderate poloidal variation.

  5. Identification of minority ion cyclotron emission during radio frequency heating in the JET tokamak

    International Nuclear Information System (INIS)

    Cottrell, G.A.

    1999-11-01

    First measurements and identification of Minority Ion Cyclotron Emission (MICE) during ICRF (H)D minority heating in the JET tokamak are presented. An inner wall radiofrequency (rf) probe shows the new single MICE spectral line, downshifted from the heating, frequency and appearing ∼ 400 ms after the ICRH switch-on. The line is narrow (Δω / ω) ∼ 0.04), characterised by the ion cyclotron frequency of minority protons in the outer edge mid-plane plasma and is observed irrespective of whether single or multi-frequency ICRH is applied. Threshold conditions for MICE are: coupled RF power to the plasma P rf ≥ 4.5 MW; total fast ion energy content W fast ≥ 0.6 MJ. At the time of the rapid switch-on of MICE, the measured power loss from the energetic minority ions is ∼ 0.1 ± 0.1 MW, constituting rf . The observations are consistent with the classical evolution and population of the plasma edge with ∼ 3 MeV ICRH protons on orbits near the outboard limiters. Particle loss and energy filtering contribute to a local non-Maxwellian energetic ion distribution which is susceptible to ion cyclotron instability

  6. A simultaneous description of fast wave e-TTMP and ion current drive effects on shear in a tokamak: theory and experiments in JET

    International Nuclear Information System (INIS)

    Bhatnagar, V.P.; Bosia, G.; Jacquinot, J.; Porcelli, F.

    1993-01-01

    A controlled local modification of the plasma-current profile, the safety factor q or shear (dq/dr) in a tokamak can lead to an improvement in its performance. For example, enhanced confinement in JET discharges with deep pellet injection is found to be associated with a reversal of the shear. Also, a significant control over the sawteeth behaviour in the JET tokamak has been found to occur when the shear at the q = 1 surface is modified by a dipolar-current driven by ICRF in the minority-ion heating regime. This could give a handle on the ejection of fast particles and hence on burn control in a reactor. The above sawtooth control may also be used to ease the ash removal in a reactor. When an ICRH antenna array is phased (Δφ ≠ 0 or π), the excited asymmetric k // -spectrum can drive non inductive currents by interaction of waves both with electrons (TTMP and e-Landau damping) and ions at minority (fundamental) or harmonic cyclotron resonances depending upon the scenario. Therefore, in any modeling of ICRF current drive, both (electron and ion) current drive mechanisms must be included simultaneously to correctly represent the non inductive current drive profile. To devise scenarios of shear control by minority current drive, that take advantage of the inherent electron current drive as well, we have developed a model based on earlier theories to calculate, for the first time, the two effects simultaneously. (author) 11 refs., 5 figs

  7. Blob/hole formation and zonal-flow generation in the edge plasma of the JET tokamak

    DEFF Research Database (Denmark)

    Xu, G.S.; Naulin, Volker; Fundamenski, W.

    2009-01-01

    The first experimental evidence showing the connection between blob/hole formation and zonal-flow generation was obtained in the edge plasma of the JET tokamak. Holes as well as blobs are observed to be born in the edge shear layer, where zonal-flows shear off meso-scale coherent structures......, leading to disconnection of positive and negative pressure perturbations. The newly formed blobs transport azimuthal momentum up the gradient of the azimuthal flow and drive the zonal-flow shear while moving outwards. During this process energy is transferred from the meso-scale coherent structures...

  8. A key to improved ion core confinement in the JET tokamak: ion stiffness mitigation due to combined plasma rotation and low magnetic shear.

    Science.gov (United States)

    Mantica, P; Angioni, C; Challis, C; Colyer, G; Frassinetti, L; Hawkes, N; Johnson, T; Tsalas, M; deVries, P C; Weiland, J; Baiocchi, B; Beurskens, M N A; Figueiredo, A C A; Giroud, C; Hobirk, J; Joffrin, E; Lerche, E; Naulin, V; Peeters, A G; Salmi, A; Sozzi, C; Strintzi, D; Staebler, G; Tala, T; Van Eester, D; Versloot, T

    2011-09-23

    New transport experiments on JET indicate that ion stiffness mitigation in the core of a rotating plasma, as described by Mantica et al. [Phys. Rev. Lett. 102, 175002 (2009)] results from the combined effect of high rotational shear and low magnetic shear. The observations have important implications for the understanding of improved ion core confinement in advanced tokamak scenarios. Simulations using quasilinear fluid and gyrofluid models show features of stiffness mitigation, while nonlinear gyrokinetic simulations do not. The JET experiments indicate that advanced tokamak scenarios in future devices will require sufficient rotational shear and the capability of q profile manipulation.

  9. Tokamak devices: towards controlled fusion

    International Nuclear Information System (INIS)

    Trocheris, M.

    1975-01-01

    The Tokamak family is from Soviet Union. These devices were exclusively studied at the Kurchatov Institute in Moscow for more than ten years. The first occidental Tokamak started in 1970 at Princeton. The TFR (Tokamak Fontenay-aux-Roses) was built to be superior to the Russian T4. Tokamak future is now represented by the JET (Joint European Tokamak) [fr

  10. Local Physics Basis of Confinement Degradation in JET ELMy H-Mode Plasmas and Implications for Tokamak Reactors

    International Nuclear Information System (INIS)

    Budny, R.V.; Alper, B.; Borba, D.; Cordey, J.G.; Ernst, D.R.; Gowers, C.

    2001-01-01

    First results of gyrokinetic analysis of JET [Joint European Torus] ELMy [Edge Localized Modes] H-mode [high-confinement modes] plasmas are presented. ELMy H-mode plasmas form the basis of conservative performance predictions for tokamak reactors of the size of ITER [International Thermonuclear Experimental Reactor]. Relatively high performance for long duration has been achieved and the scaling appears to be favorable. It will be necessary to sustain low Z(subscript eff) and high density for high fusion yield. This paper studies the degradation in confinement and increase in the anomalous heat transport observed in two JET plasmas: one with an intense gas puff and the other with a spontaneous transition between Type I to III ELMs at the heating power threshold. Linear gyrokinetic analysis gives the growth rate, gamma(subscript lin) of the fastest growing modes. The flow-shearing rate omega(subscript ExB) and gamma(subscript lin) are large near the top of the pedestal. Their ratio decreases approximately when the confinement degrades and the transport increases. This suggests that tokamak reactors may require intense toroidal or poloidal torque input to maintain sufficiently high |gamma(subscript ExB)|/gamma(subscript lin) near the top of the pedestal for high confinement

  11. Vessel thermal map real-time system for the JET tokamak

    Directory of Open Access Journals (Sweden)

    D. Alves

    2012-05-01

    Full Text Available The installation of international thermonuclear experimental reactor-relevant materials for the plasma facing components (PFCs in the Joint European Torus (JET is expected to have a strong impact on the operation and protection of the experiment. In particular, the use of all-beryllium tiles, which deteriorate at a substantially lower temperature than the formerly installed carbon fiber composite tiles, imposes strict thermal restrictions on the PFCs during operation. Prompt and precise responses are therefore required whenever anomalous temperatures are detected. The new vessel thermal map real-time application collects the temperature measurements provided by dedicated pyrometers and infrared cameras, groups them according to spatial location and probable offending heat source, and raises alarms that will trigger appropriate protective responses. In the context of the JET global scheme for the protection of the new wall, the system is required to run on a 10 ms cycle communicating with other systems through the real-time data network. In order to meet these requirements a commercial off-the-shelf solution has been adopted based on standard x86 multicore technology. Linux and the multithreaded application real-time executor (MARTe software framework were respectively the operating system of choice and the real-time framework used to build the application. This paper presents an overview of the system with particular technical focus on the configuration of its real-time capability and the benefits of the modular development approach and advanced tools provided by the MARTe framework.

  12. Sub-millisecond electron density profile measurement at the JET tokamak with the fast lithium beam emission spectroscopy system

    Science.gov (United States)

    Réfy, D. I.; Brix, M.; Gomes, R.; Tál, B.; Zoletnik, S.; Dunai, D.; Kocsis, G.; Kálvin, S.; Szabolics, T.; JET Contributors

    2018-04-01

    Diagnostic alkali atom (e.g., lithium) beams are routinely used to diagnose magnetically confined plasmas, namely, to measure the plasma electron density profile in the edge and the scrape off layer region. A light splitting optics system was installed into the observation system of the lithium beam emission spectroscopy diagnostic at the Joint European Torus (JET) tokamak, which allows simultaneous measurement of the beam light emission with a spectrometer and a fast avalanche photodiode (APD) camera. The spectrometer measurement allows density profile reconstruction with ˜10 ms time resolution, absolute position calculation from the Doppler shift, spectral background subtraction as well as relative intensity calibration of the channels for each discharge. The APD system is capable of measuring light intensities on the microsecond time scale. However ˜100 μs integration is needed to have an acceptable signal to noise ratio due to moderate light levels. Fast modulation of the beam up to 30 kHz is implemented which allows background subtraction on the 100 μs time scale. The measurement covers the 0.9 background subtraction, the relative calibration, and the comprehensive error calculation, runs a Bayesian density reconstruction code, and loads results to the JET database. The paper demonstrates the capability of the APD system by analyzing fast phenomena like pellet injection and edge localized modes.

  13. Jet-Based Local Image Descriptors

    DEFF Research Database (Denmark)

    Larsen, Anders Boesen Lindbo; Darkner, Sune; Dahl, Anders Lindbjerg

    2012-01-01

    We present a general novel image descriptor based on higherorder differential geometry and investigate the effect of common descriptor choices. Our investigation is twofold in that we develop a jet-based descriptor and perform a comparative evaluation with current state-of-the-art descriptors on ...

  14. Systems for the safe operation of the JET tokamak with tritium

    International Nuclear Information System (INIS)

    Stork, D.; Ageladarakis, P.; Bell, A.C.

    1999-01-01

    In 1997, the JET device was operated for an extensive campaign with deuterium-tritium (D-T) plasmas (the DTE1 campaign). A comprehensive network of machine protection systems was necessary so that this experimental campaign could be executed safely without damage to the machine or release of activated material. This network had been developed over many years of JET deuterium plasma operation and therefore the modifications for D-T operation was not a significant problem. The DTE1 campaign was executed successfully and safely and the machine protection systems proved reliable and robust and, in the limited cases where they were required to act, functioned correctly. The machine protection systems at JET are described and their categorisation and development over time are summarised. The management, commissioning and operational experience during DTE1 are discussed and some examples of fault scenarios are described. The experience with protection systems at JET highlights the importance of correct design and philosophy decisions being taken at an early stage. It is shown that this experience will be invaluable data input to the safe operation of future large fusion machines. (orig.)

  15. Radial electric field in JET advanced tokamak scenarios with toroidal field ripple

    NARCIS (Netherlands)

    Crombe, K.; Andrew, Y.; Biewer, T. M.; Blanco, E.; de Vries, P. C.; Giroud, C.; Hawkes, N. C.; Meigs, A.; Tala, T.; von Hellermann, M.; Zastrow, K. D.

    2009-01-01

    A dedicated campaign has been run on JET to study the effect of toroidal field (TF) ripple on plasma performance. Radial electric field measurements from experiments on a series of plasmas with internal transport barriers (ITBs) and different levels of ripple amplitude are presented. They have been

  16. Edge pedestal characteristics in JET and JT-60U tokamaks under variable toroidal field ripple

    NARCIS (Netherlands)

    Urano, H.; Saibene, G.; Oyama, N.; Parail, V.; P. de Vries,; Sartori, R.; Kamada, Y.; Kamiya, K.; Loarte, A.; Lonnroth, J.; Sakamoto, Y.; Salmi, A.; Shinohara, K.; Takenaga, H.; Yoshida, M.

    2011-01-01

    The effects of toroidal field (TF) ripple on the edge pedestal characteristics were examined in the TF ripple scan experiments at the plasma current I(p) of 1.1 MA in JET and JT-60U. The TF ripple amplitude delta(R) was defined as a value averaged over the existing ripple wells at the separatrix on

  17. Tokamak experiments

    International Nuclear Information System (INIS)

    Robinson, D.C.

    1987-01-01

    With the advent of the new large tokamaks JET, JT-60 and TFTR important advances in magnetic confinement have been made. These include the exploitation of radio frequency and neutral beam heating on a much larger scale than previously, the demonstration of regimes of improved confinement and the demonstration of current drive at the Megamp level. A number of small and medium sized tokamaks have also come into operation recently such as WT-3 in Japan with an emphasis on radio frequency current drive and HL-1 a medium sized tokamak in China. Each of these new tokamaks is addressing specific problems which remain for the future development of the system. Of these particular problems: β, density and q limits remain important issues for the future development of the tokamak. β limits are being addressed on the DIII-D device in the USA. The anomalous confinement that the tokamak displays is being explored in detail on the TEXT device in the USA. Two other problems are impurity control and current drive. There is significant emphasis on divertor configurations at the present time with their enhanced confinement in the so called H mode. Due to improved discharge cleaning techniques and the ability to repetitively refuel using pellets, purer plasmas can be obtained even without divertors. Current drive remains a crucial issue for quasi of near steady state operation of the tokamak in the future and many current drive schemes are being investigated. (author) [pt

  18. Tokamak plasma shape identification based on the boundary integral equations

    International Nuclear Information System (INIS)

    Kurihara, Kenichi; Kimura, Toyoaki

    1992-05-01

    A necessary condition for tokamak plasma shape identification is discussed and a new identification method is proposed in this article. This method is based on the boundary integral equations governing a vacuum region around a plasma with only the measurement of either magnetic fluxes or magnetic flux intensities. It can identify various plasmas with low to high ellipticities with the precision determined by the number of the magnetic sensors. This method is applicable to real-time control and visualization using a 'table-look-up' procedure. (author)

  19. Local magnetic shear control in a tokamak via fast wave minority ion current drive: Theory and experiments in JET

    International Nuclear Information System (INIS)

    Bhatnagar, V.P.; Start, D.F.H.; Jacquinot, J.; Chaland, F.; Cherubini, A.; Porcelli, F.

    1994-01-01

    When an ion cyclotron resonance heating (ICRH) antenna array is phased (Δ Φ ≠ 0 or π), the excited asymmetric k parallel spectrum can drive non-inductive currents by interaction of fast waves both with electrons (transit time magnetic pumping (e-TTMP) and Landau damping (e-LD)) and with ions at minority (fundamental) or harmonic cyclotron resonances, depending upon the scenario. On the basis of earlier theories, a simplified description is presented that includes the minority ion and electron current drive effects simultaneously in a 3-D ray tracing calculation in the tokamak geometry. The experimental results of sawtooth stabilization or destabilization in JET using the minority ion current drive scheme are presented. This scheme allows a modification of the local current density gradient (or the magnetic shear) at the q = 1 surface resulting in a control of a sawteeth. The predictions of the above model of current drive and its effects on sawtooth period calculated in conjunction with a model of stability of internal resistive kink modes, that encompasses the effects of both the fast particle pressure and the local (q = 1) magnetic shear, are found to be qualitatively in good agreement with the experimental results. Further, the results are discussed of our model of fast wave current drive scenarios of magnetic shear reversal with a view to achieving long duration high confinement regimes in the forthcoming experimental campaign on JET. Finally, the results are presented of minority current drive for sawtooth control in next step devices such as the International Thermonuclear Experimental Reactor (ITER). (author). 44 refs, 23 figs, 3 tabs

  20. Technical design of a solid tungsten divertor row for the ITER-like wall in the JET tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Mertens, P.; Knaup, M.; Neubauer, O.; Sadakov, S.; Schweer, B.; Terra, A.; Samm, U. [Forschungszentrum Juelich, Association EURATOM-FZJ (DE). Inst. fuer Energieforschung IEF-4 (Plasmaphysik); Pintsuk, G. [Forschungszentrum Juelich, Association EURATOM-FZJ (DE). Inst. fuer Energieforschung IEF-2 (Werkstoffstruktur und Eigenschaften)

    2009-07-01

    ITER (originally International Thermonuclear Experimental Reactor) is now under construction in Cadarache, France. In order to investigate plasma scenarios compatible with an ITER relevant mix of materials, a new, complete inner wall will be installed in the JET tokamak vessel (Culham, UK) in 2010. The plasmafacing components in the main chamber will be made of beryllium whereas the exposed areas in the divertor shall be made of tungsten, mostly of tungsten coatings on a carbon-fibre composite substrate. A notable exception is the central row of tiles where the outer strike point is located. Fig. 1 illustrates it with a camera view during a suitable discharge which shows the emission of atomic hydrogen, hence the main interaction regions. Plasma-facing components at this position are exposed to very high particle fluxes which cause material sputtering, and to extremely high heat loads without active cooling, which is not available. It was accordingly decided to resort to solid tungsten in this particular case. An overview of the conceptual design was presented earlier. Manufacturing is just starting, so the technical design has been frozen to the largest extent as presented in the following. (orig.)

  1. Global sawtooth instability measured by magnetic coils in the JET tokamak

    International Nuclear Information System (INIS)

    Duperrex, P.A.; Pochelon, A.; Edwards, A.; Snipes, J.

    1992-05-01

    This paper describes measurements of the sawtooth instability in JET, in which the instability wave function is shown to extend to the edge where it is measured using magnetic coils. The numerous magnetic probes in JET allow the time evolution of the (n=0,1,2,3) toroidal Fourier components to be analysed. The n=1 magnetic component is similar to the m=1 soft X-ray centroid motion. This fact indicates the potential of edge signals in retrieving the poloidal mode spectrum of the q=m/n=1 surface. The spectrum evolution of the instability is compared for normal sawteeth (NST) and quasi-stabilised 'monster' sawteeth (MST). The spectrum is slowly decreasing with n for NST and all the components belong to one ballooning-like deformation, whereas MST show a large n=1 kink-like motion with small and independent accompanying higher n modes. Important equilibrium changes occur already during the growth of the instability and the growth rate is much faster than exponential. Both these facts imply a non-linear nature of the instability growth. Parametric dependence of growthrates, amplitudes, toroidal spectrum shape, etc., are studied to characterize the NST and MST instabilities. (author) 20 figs., 2 tabs., 46 refs

  2. Probability distribution functions for ELM bursts in a series of JET tokamak discharges

    International Nuclear Information System (INIS)

    Greenhough, J; Chapman, S C; Dendy, R O; Ward, D J

    2003-01-01

    A novel statistical treatment of the full raw edge localized mode (ELM) signal from a series of previously studied JET plasmas is tested. The approach involves constructing probability distribution functions (PDFs) for ELM amplitudes and time separations, and quantifying the fit between the measured PDFs and model distributions (Gaussian, inverse exponential) and Poisson processes. Uncertainties inherent in the discreteness of the raw signal require the application of statistically rigorous techniques to distinguish ELM data points from background, and to extrapolate peak amplitudes. The accuracy of PDF construction is further constrained by the relatively small number of ELM bursts (several hundred) in each sample. In consequence the statistical technique is found to be difficult to apply to low frequency (typically Type I) ELMs, so the focus is narrowed to four JET plasmas with high frequency (typically Type III) ELMs. The results suggest that there may be several fundamentally different kinds of Type III ELMing process at work. It is concluded that this novel statistical treatment can be made to work, may have wider applications to ELM data, and has immediate practical value as an additional quantitative discriminant between classes of ELMing behaviour

  3. Microinstability-based model for anomalous thermal confinement in tokamaks

    International Nuclear Information System (INIS)

    Tang, W.M.

    1986-03-01

    This paper deals with the formulation of microinstability-based thermal transport coefficients (chi/sub j/) for the purpose of modelling anomalous energy confinement properties in tokamak plasmas. Attention is primarily focused on ohmically heated discharges and the associated anomalous electron thermal transport. An appropriate expression for chi/sub e/ is developed which is consistent with reasonable global constraints on the current and electron temperature profiles as well as with the key properties of the kinetic instabilities most likely to be present. Comparisons of confinement scaling trends predicted by this model with the empirical ohmic data base indicate quite favorable agreement. The subject of anomalous ion thermal transport and its implications for high density ohmic discharges and for auxiliary-heated plasmas is also addressed

  4. An overview on plasma disruption mitigation and avoidance in tokamak

    International Nuclear Information System (INIS)

    He Kaihui; Pan Chuanhong; Feng Kaiming

    2002-01-01

    Plasma disruption, which seems to be unavoidable in Tokamak operation, occurs very fast and uncontrolled. In order to keep Tokamak plasma from disruption and mitigate the disruption frequency, the research on Tokamak plasma major disruption constitutes one of the main topics in plasma physics. The phenomena and processes of the precursor, thermal quench, current quench, VDE, halo current and runaway electrons generation during plasma disruption are analyzed in detail and systematically based on the data obtained from current Tokamaks such as TFTR, JET, JT-60U and ASDEX-U, etc. The methods to mitigate and avoid disruption in Tokamak are also highlighted schematically. Therefore, it is helpful and instructive for plasma disruption research in next generation large Tokamak such as ITER-FEAT

  5. Compact fusion energy based on the spherical tokamak

    Science.gov (United States)

    Sykes, A.; Costley, A. E.; Windsor, C. G.; Asunta, O.; Brittles, G.; Buxton, P.; Chuyanov, V.; Connor, J. W.; Gryaznevich, M. P.; Huang, B.; Hugill, J.; Kukushkin, A.; Kingham, D.; Langtry, A. V.; McNamara, S.; Morgan, J. G.; Noonan, P.; Ross, J. S. H.; Shevchenko, V.; Slade, R.; Smith, G.

    2018-01-01

    Tokamak Energy Ltd, UK, is developing spherical tokamaks using high temperature superconductor magnets as a possible route to fusion power using relatively small devices. We present an overview of the development programme including details of the enabling technologies, the key modelling methods and results, and the remaining challenges on the path to compact fusion.

  6. Theory-based transport simulation of tokamaks: density scaling

    International Nuclear Information System (INIS)

    Ghanem, E.S.; Kinsey, J.; Singer, C.; Bateman, G.

    1992-01-01

    There has been a sizeable amount of work in the past few years using theoretically based flux-surface-average transport models to simulate various types of experimental tokamak data. Here we report two such studies, concentrating on the response of the plasma to variation of the line averaged electron density. The first study reported here uses a transport model described by Ghanem et al. to examine the response of global energy confinement time in ohmically heated discharges. The second study reported here uses a closely related and more recent transport model described by Bateman to examine the response of temperature profiles to changes in line-average density in neutral-beam-heated discharges. Work on developing a common theoretical model for these and other scaling experiments is in progress. (author) 5 refs., 2 figs

  7. Radial electric field in JET advanced tokamak scenarios with toroidal field ripple

    Energy Technology Data Exchange (ETDEWEB)

    Crombe, K [Postdoctoral Fellow of the Research Foundation - Flanders (FWO), Department of Applied Physics, Ghent University, Rozier 44, B-9000 Gent (Belgium); Andrew, Y; De Vries, P C; Giroud, C; Hawkes, N C; Meigs, A; Zastrow, K-D [EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom); Biewer, T M [Oak Ridge National Laboratory, Oak Ridge, TN 37831-6169, TN (United States); Blanco, E [Laboratorio Nacional de Fusion, Asociacion EURATOM-CIEMAT, Madrid (Spain); Tala, T [VTT Technical Research Centre of Finland, Association EURATOM-Tekes, PO Box 1000, FIN-02044 VTT (Finland); Von Hellermann, M [FOM Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein (Netherlands)], E-mail: Kristel.Crombe@jet.uk

    2009-05-15

    A dedicated campaign has been run on JET to study the effect of toroidal field (TF) ripple on plasma performance. Radial electric field measurements from experiments on a series of plasmas with internal transport barriers (ITBs) and different levels of ripple amplitude are presented. They have been calculated from charge exchange measurements of impurity ion temperature, density and rotation velocity profiles, using the force balance equation. The ion temperature and the toroidal and poloidal rotation velocities are compared in plasmas with both reversed and optimized magnetic shear profiles. Poloidal rotation velocity (v{sub {theta}}) in the ITB region is measured to be of the order of a few tens of km s{sup -1}, significantly larger than the neoclassical predictions. Increasing levels of the TF ripple are found to decrease the ion temperature gradient in the ITB region, a measure for the quality of the ITB, and the maximum value of v{sub {theta}} is reduced. The poloidal rotation term dominates in the calculations of the total radial electric field (E{sub r}), with the largest gradient in E{sub r} measured in the radial region coinciding with the ITB.

  8. Atomic spectroscopy on fusion relevant ions and studies of light impurities in the JET tokamak

    International Nuclear Information System (INIS)

    Tunklev, M.

    1999-03-01

    The spectrum and energy levels of C IV and the 3l-4l system of the Mg-like ions in the iron group elements have been investigated. This has led to several hundred identified transitions, many of them previously unknown. Using the Charge Exchange Diagnostic system at JET, ion temperatures, rotation velocities and densities have been derived from visible spectroscopic measurements on fully ionised light impurities, such as He, C, N and Ne. The existence of plume contribution from beam produced hydrogen-like ions has been proven beyond any doubt to affect the deduction of the active charge exchange signal of He II. In the case of C VI the plume signal was estimated to be at least a factor of five lower than the active charge exchange signal. Line integrated passive charge exchange emission between neutral background atoms and fully stripped impurity ions has been investigated and modelled. When the synthetic spectrum is fitted into the experimentally detected spectra the neutral background density can be deduced. The importance of including background atoms (H, D and T) as charge exchange donors, not only in state 2s, but also in state 1s, has shown to be crucial in high temperature shots. Transport of light impurities has been studied with gas puff injections into steady state H-mode plasmas. The results suggest that light impurities are transported as described by the neo-classical Pfirsch-Schlueter regime at the edge, whilst in the centre, sawtoothing, preferably to Banana transport, is mixing the plasma and increases the measured values on the diffusion. For the peaking of impurities in a steady state plasma an anomalous treatment was more in agreement with the experimental data. Certain confinement information, previously predicted theoretically as a part of the peaking equation, has been experimentally verified

  9. Flow Channel Influence of a Collision-Based Piezoelectric Jetting Dispenser on Jet Performance

    Directory of Open Access Journals (Sweden)

    Can Zhou

    2018-04-01

    Full Text Available To improve the jet performance of a bi-piezoelectric jet dispenser, mathematical and simulation models were established according to the operating principle. In order to improve the accuracy and reliability of the simulation calculation, a viscosity model of the fluid was fitted to a fifth-order function with shear rate based on rheological test data, and the needle displacement model was fitted to a nine-order function with time based on real-time displacement test data. The results show that jet performance is related to the diameter of the nozzle outlet and the cone angle of the nozzle, and the impacts of the flow channel structure were confirmed. The approach of numerical simulation is confirmed by the testing results of droplet volume. It will provide a reliable simulation platform for mechanical collision-based jet dispensing and a theoretical basis for micro jet valve design and improvement.

  10. Theory-based scaling of the SOL width in circular limited tokamak plasmas

    International Nuclear Information System (INIS)

    Halpern, F.D.; Ricci, P.; Labit, B.; Furno, I.; Jolliet, S.; Loizu, J.; Mosetto, A.; Arnoux, G.; Silva, C.; Gunn, J.P.; Horacek, J.; Kočan, M.; LaBombard, B.

    2013-01-01

    A theory-based scaling for the characteristic length of a circular, limited tokamak scrape-off layer (SOL) is obtained by considering the balance between parallel losses and non-linearly saturated resistive ballooning mode turbulence driving anomalous perpendicular transport. The SOL size increases with plasma size, resistivity, and safety factor q. The scaling is verified against flux-driven non-linear turbulence simulations, which reveal good agreement within a wide range of dimensionless parameters, including parameters closely matching the TCV tokamak. An initial comparison of the theory against experimental data from several tokamaks also yields good agreement. (letter)

  11. A two-time-scale dynamic-model approach for magnetic and kinetic profile control in advanced tokamak scenarios on JET

    International Nuclear Information System (INIS)

    Moreau, D.; Mazon, D.; Ariola, M.; Tommasi, G. De; Laborde, L.; Piccolo, F.; Sartori, F.; Zabeo, L.; Boboc, A.; Brix, M.; Challis, C.D.; Felton, R.; Hawkes, N.; Tala, T.; Bouvier, E.; Cordoliani, V.; Brzozowski, J.; Cocilovo, V.; Crisanti, F.; Luna, E. de la

    2008-01-01

    Real-time simultaneous control of several radially distributed magnetic and kinetic plasma parameters is being investigated on JET, in view of developing integrated control of advanced tokamak scenarios. This paper describes the new model-based profile controller which has been implemented during the 2006-2007 experimental campaigns. The controller aims to use the combination of heating and current drive (H and CD) systems-and optionally the poloidal field (PF) system-in an optimal way to regulate the evolution of plasma parameter profiles such as the safety factor, q(x), and gyro-normalized temperature gradient, ρ Te *(x). In the first part of the paper, a technique for the experimental identification of a minimal dynamic plasma model is described, taking into account the physical structure and couplings of the transport equations, but making no quantitative assumptions on the transport coefficients or on their dependences. To cope with the high dimensionality of the state space and the large ratio between the time scales involved, the model identification procedure and the controller design both make use of the theory of singularly perturbed systems by means of a two-time-scale approximation. The second part of the paper provides the theoretical basis for the controller design. The profile controller is articulated around two composite feedback loops operating on the magnetic and kinetic time scales, respectively, and supplemented by a feedforward compensation of density variations. For any chosen set of target profiles, the closest self-consistent state achievable with the available actuators is uniquely defined. It is reached, with no steady state offset, through a near-optimal proportional-integral control algorithm. Conventional optimal control is recovered in the limiting case where the ratio of the plasma confinement time to the resistive diffusion time tends to zero. Closed-loop simulations of the controller response have been performed in preparation for

  12. Prospects for pilot plants based on the tokamak, spherical tokamak and stellarator

    International Nuclear Information System (INIS)

    Menard, J.E.; Bromberg, L.; Brown, T.; Burgess, Thomas W.; Dix, D.; Gerrity, T.; Goldston, R.J.; Hawryluk, R.; Kastner, R.; Kessel, C.; Malang, S.; Minervini, J.; Neilson, G.H.; Neumeyer, C.L.; Prager, S.; Sawan, M.; Sheffield, J.; Sternlieb, A.; Waganer, L.; Whyte, D.G.; Zarnstorff, M.C.

    2011-01-01

    A potentially attractive next-step towards fusion commercialization is a pilot plant, i.e. a device ultimately capable of small net electricity production in as compact a facility as possible and in a configuration scalable to a full-size power plant. A key capability for a pilot-plant programme is the production of high neutron fluence enabling fusion nuclear science and technology (FNST) research. It is found that for physics and technology assumptions between those assumed for ITER and nth-of-a-kind fusion power plant, it is possible to provide FNST-relevant neutron wall loading in pilot devices. Thus, it may be possible to utilize a single facility to perform FNST research utilizing reactor-relevant plasma, blanket, coil and auxiliary systems and maintenance schemes while also targeting net electricity production. In this paper three configurations for a pilot plant are considered: the advanced tokamak, spherical tokamak and compact stellarator. A range of configuration issues is considered including: radial build and blanket design, magnet systems, maintenance schemes, tritium consumption and self-sufficiency, physics scenarios and a brief assessment of research needs for the configurations.

  13. Analysis of ELM stability with extended MHD models in JET, JT-60U and future JT-60SA tokamak plasmas

    Science.gov (United States)

    Aiba, N.; Pamela, S.; Honda, M.; Urano, H.; Giroud, C.; Delabie, E.; Frassinetti, L.; Lupelli, I.; Hayashi, N.; Huijsmans, G.; JET Contributors, the; Research Unit, JT-60SA

    2018-01-01

    The stability with respect to a peeling-ballooning mode (PBM) was investigated numerically with extended MHD simulation codes in JET, JT-60U and future JT-60SA plasmas. The MINERVA-DI code was used to analyze the linear stability, including the effects of rotation and ion diamagnetic drift ({ω }* {{i}}), in JET-ILW and JT-60SA plasmas, and the JOREK code was used to simulate nonlinear dynamics with rotation, viscosity and resistivity in JT-60U plasmas. It was validated quantitatively that the ELM trigger condition in JET-ILW plasmas can be reasonably explained by taking into account both the rotation and {ω }* {{i}} effects in the numerical analysis. When deuterium poloidal rotation is evaluated based on neoclassical theory, an increase in the effective charge of plasma destabilizes the PBM because of an acceleration of rotation and a decrease in {ω }* {{i}}. The difference in the amount of ELM energy loss in JT-60U plasmas rotating in opposite directions was reproduced qualitatively with JOREK. By comparing the ELM affected areas with linear eigenfunctions, it was confirmed that the difference in the linear stability property, due not to the rotation direction but to the plasma density profile, is thought to be responsible for changing the ELM energy loss just after the ELM crash. A predictive study to determine the pedestal profiles in JT-60SA was performed by updating the EPED1 model to include the rotation and {ω }* {{i}} effects in the PBM stability analysis. It was shown that the plasma rotation predicted with the neoclassical toroidal viscosity degrades the pedestal performance by about 10% by destabilizing the PBM, but the pressure pedestal height will be high enough to achieve the target parameters required for the ITER-like shape inductive scenario in JT-60SA.

  14. Maximum likelihood bolometric tomography for the determination of the uncertainties in the radiation emission on JET TOKAMAK

    Science.gov (United States)

    Craciunescu, Teddy; Peluso, Emmanuele; Murari, Andrea; Gelfusa, Michela; JET Contributors

    2018-05-01

    The total emission of radiation is a crucial quantity to calculate the power balances and to understand the physics of any Tokamak. Bolometric systems are the main tool to measure this important physical quantity through quite sophisticated tomographic inversion methods. On the Joint European Torus, the coverage of the bolometric diagnostic, due to the availability of basically only two projection angles, is quite limited, rendering the inversion a very ill-posed mathematical problem. A new approach, based on the maximum likelihood, has therefore been developed and implemented to alleviate one of the major weaknesses of traditional tomographic techniques: the difficulty to determine routinely the confidence intervals in the results. The method has been validated by numerical simulations with phantoms to assess the quality of the results and to optimise the configuration of the parameters for the main types of emissivity encountered experimentally. The typical levels of statistical errors, which may significantly influence the quality of the reconstructions, have been identified. The systematic tests with phantoms indicate that the errors in the reconstructions are quite limited and their effect on the total radiated power remains well below 10%. A comparison with other approaches to the inversion and to the regularization has also been performed.

  15. The tokamak as a neutron source

    International Nuclear Information System (INIS)

    Hendel, H.W.; Jassby, D.L.

    1989-11-01

    This paper describes the tokamak in its role as a neutron source, with emphasis on experimental results for D-D neutron production. The sections summarize tokamak operation, sources of fusion and non-fusion neutrons, principal neutron detection methods and their calibration, neutron energy spectra and fluxes outside the tokamak plasma chamber, history of neutron production in tokamaks, neutron emission and fusion power gain from JET and TFTR (the largest present-day tokamaks), and D-T neutron production from burnup of D-D tritons. This paper also discusses the prospects for future tokamak neutron production and potential applications of tokamak neutron sources. 100 refs., 16 figs., 4 tabs

  16. Jet identification based on probability calculations using Bayes' theorem

    International Nuclear Information System (INIS)

    Jacobsson, C.; Joensson, L.; Lindgren, G.; Nyberg-Werther, M.

    1994-11-01

    The problem of identifying jets at LEP and HERA has been studied. Identification using jet energies and fragmentation properties was treated separately in order to investigate the degree of quark-gluon separation that can be achieved by either of these approaches. In the case of the fragmentation-based identification, a neural network was used, and a test of the dependence on the jet production process and the fragmentation model was done. Instead of working with the separation variables directly, these have been used to calculate probabilities of having a specific type of jet, according to Bayes' theorem. This offers a direct interpretation of the performance of the jet identification and provides a simple means of combining the results of the energy- and fragmentation-based identifications. (orig.)

  17. Study of the triton-burnup process in different JET scenarios using neutron monitor based on CVD diamond

    Energy Technology Data Exchange (ETDEWEB)

    Nemtsev, G., E-mail: g.nemtsev@iterrf.ru; Amosov, V.; Meshchaninov, S.; Rodionov, R. [Institution “Project center ITER,” Moscow (Russian Federation); Popovichev, S. [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Collaboration: EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)

    2016-11-15

    We present the results of analysis of triton burn-up process using the data from diamond detector. Neutron monitor based on CVD diamond was installed in JET torus hall close to the plasma center. We measure the part of 14 MeV neutrons in scenarios where plasma current varies in a range of 1-3 MA. In this experiment diamond neutron monitor was also able to detect strong gamma bursts produced by runaway electrons arising during the disruptions. We can conclude that CVD diamond detector will contribute to the study of fast particles confinement and help predict the disruption events in future tokamaks.

  18. EDITORIAL: Special section on recent progress on radio frequency heating and current drive studies in the JET tokamak Special section on recent progress on radio frequency heating and current drive studies in the JET tokamak

    Science.gov (United States)

    Ongena, Jef; Mailloux, Joelle; Mayoral, Marie-Line

    2009-04-01

    This special cluster of papers summarizes the work accomplished during the last three years in the framework of the Task Force Heating at JET, whose mission it is to study the optimisation of heating systems for plasma heating and current drive, launching and deposition questions and the physics of plasma rotation. Good progress and new physics insights have been obtained with the three heating systems available at JET: lower hybrid (LH), ion cyclotron resonance heating (ICRH) and neutral beam injection (NBI). Topics covered in the present issue are the use of edge gas puffing to improve the coupling of LH waves at large distances between the plasma separatrix and the LH launcher. Closely linked with this topic are detailed studies of the changes in LH coupling due to modifications in the scrape-off layer during gas puffing and simultaneous application of ICRH. We revisit the fundamental ICRH heating of D plasmas, include new physics results made possible by recently installed new diagnostic capabilities on JET and point out caveats for ITER when NBI is simultaneously applied. Other topics are the study of the anomalous behaviour of fast ions from NBI, and a study of toroidal rotation induced by ICRH, both again with possible implications for ITER. In finalizing this cluster of articles, thanks are due to all colleagues involved in preparing and executing the JET programme under EFDA in recent years. We want to thank the EFDA leadership for the special privilege of appointing us as Leaders or Deputies of Task Force Heating, a wonderful and hardworking group of colleagues. Thanks also to all other European and non-European scientists who contributed to the JET scientific programme, the Operations team of JET and the colleagues of the Close Support Unit (CSU). Thanks are also due to the Editors, Editorial Board and referees of Plasma Physics and Controlled Fusion together with the publishing staff of IOP Publishing who have supported and contributed substantially to

  19. Power supply system on HT-7 tokamak for diagnostic neutral beam based on PLC

    International Nuclear Information System (INIS)

    Zhang Jian; Liu Baohua; Ding Tonghai; Du Shaowu

    2006-01-01

    A power supply system for diagnostic neutral beam on the HT-7 Tokamak was developed. Its logic control system based on S7-300 PLC was described. The experimental results show that the system is easy to operate and its performance is reliable. (authors)

  20. Microcomputer based system to control the load of a capacitor array in the TJ-1 Tokamak

    International Nuclear Information System (INIS)

    Alberdi Primicia, J.; Asenjo, L.; Sanz, J.A.

    1990-01-01

    The power to create the magnetic field in the TJ-1 TOKAMAK is provide by an array of 16 capacitor sets. The total capacity of this array is 8.1F. This work describes a computer system based on the Motorola M-6800 microprocessor which controls the load of the capacitor set-and establishes the conditions for the reactor trigger. (author)

  1. Microcomputer Based System to control the Load of a Capacitor Array in the TJ-1 Tokamak

    International Nuclear Information System (INIS)

    Alberdi, J.; Asenso, L.; Sanz, J. A.

    1990-01-01

    The power to create the magnetic fields in the TJ-1 Tokamak is provides by an array of 16 capacitor sets. The total capacity of this array is 8. 1F. This work describes a computer system based on the Motorola M-6800 micro- processor which controls the load of the capacitor set and stablished the conditions for the reactor trigger. (Author)

  2. More Insight of Piezoelectric-based Synthetic Jet Actuators

    Science.gov (United States)

    Housley, Kevin; Amitay, Michael

    2016-11-01

    Increased understanding of the internal flow of piezoelectric-based synthetic jet actuators is needed for the development of specialized actuator cavity geometries to increase jet momentum coefficients and tailor acoustic resonant frequencies. Synthetic jet actuators can benefit from tuning of the structural resonant frequency of the piezoelectric diaphragm(s) and the acoustic resonant frequency of the actuator cavity such that they experience constructive coupling. The resulting coupled behavior produces increased jet velocities. The ability to design synthetic jet actuators to operate with this behavior at select driving frequencies allows for them to be better used in flow control applications, which sometimes require specific jet frequencies in order to utilize the natural instabilities of a given flow field. A parametric study of varying actuator diameters was conducted to this end. Phase-locked data were collected on the jet velocity, the cavity pressure at various locations, and the three-dimensional deformation of the surface of the diaphragm. These results were compared to previous analytical work on the interaction between the structural resonance of the diaphragm and the acoustic resonance of the cavity. Funded by the Boeing Company.

  3. A novel ultra-thin 3D detector-For plasma diagnostics at JET and ITER tokamaks

    International Nuclear Information System (INIS)

    Garcia, Francisco; Pelligrini, G.; Balbuena, J.; Lozano, M.; Orava, R.; Ullan, M.

    2009-01-01

    A novel ultra-thin silicon detector called U3DTHIN has been designed and built for applications that range from Neutral Particle Analyzers (NPA) used in Corpuscular Diagnostics of High Temperature Plasma to very low X-ray spectroscopy. The main purpose of this detector is to provide a state-of-the-art solution to upgrade the current detector system of the NPAs at JET and also to pave the road for the future detection systems of the ITER experimental reactor. Currently the NPAs use a very thin scintillator-photomultiplier tube [F. Garcia, S.S. Kozlovsky, D.V. Balin, Background Properties of CEM, MCP and PMT detectors at n-γ irradiation. Preprint PNPI-2392, Gatchina, 2000, p. 9 ; F. Garcia, S.S. Kozlovsky, V.V. Ianovsky, Scintillation Detectors with Low Sensitivity to n-γ Background. Preprint PNPI-2391, Gatchina, 2000, p. 8 ], and their main drawbacks are poor energy resolution, intrinsic scintillator nonlinearity, and relative low count rate capability and finally poor signal-to-background discrimination for the low-energy channels. The proposed new U3DTHIN detector is based on very thin sensitive substrate, which will provide nearly 100% detection efficiency for ions and at the same time very low sensitivity for neutron and gamma backgrounds. To achieve a very fast collection of the charge carriers generated by the incident ions, a 3D electrode structure [S. Parker, C. Kenney, J. Segal, Nucl. Instr. and Meth. A 395 (1997) 328 ; G. Pellegrini, P. Roy, A. Al-Ajili, R. Bates, L. Haddad, M. Horn, K. Mathieson, J. Melone, V. O'Shea, K.M. Smith, Nucl. Instr. and Meth. A 487 (2002) 19 ] has been introduced in the sensitive volume of the detector. The geometry of the electrode is known to be rad-hard. One of the most innovative features of these detectors is the optimal combination of the thin entrance window and the sensitive substrate thickness, which allows a very large dynamic range for ion detection. GEANT4 simulations were performed to find the losses of energy in

  4. Overview of erosion–deposition diagnostic tools for the ITER-Like Wall in the JET tokamak

    International Nuclear Information System (INIS)

    Rubel, M.; Coad, J.P.; Widdowson, A.; Matthews, G.F.; Esser, H.G.; Hirai, T.; Likonen, J.; Linke, J.; Lungu, C.P.; Mayer, M.; Pedrick, L.; Ruset, C.

    2013-01-01

    This paper presents scientific and technical issues related to the development of erosion–deposition diagnostic tools for JET operated with the ITER-Like Wall: beryllium and tungsten marker tiles and several types of wall probes installed in the main chamber and in the divertor. Markers tiles are the standard limiter and divertor components additionally coated first with a thin sandwich of Ni–Be and Mo–W for, beryllium and tungsten markers, respectively. Both types of markers are embedded in regular arrays of limiter and divertor tiles. Coated W–Be probes are also inserted in the Be-covered Inconel cladding tiles on the central column. Other types of erosion–deposition diagnostic tools are: rotating collectors, deposition traps, louver clips, quartz microbalance and mirrors for the First Mirror Test at JET for ITER. The specific role of these tools is discussed in detail

  5. Transitions in boronlike Ni XXIV, Ge XXVIII, Kr XXXII and Mo XXXVIII and fluorinelike Zr XXXII and Mo XXXIV, observed in the JET tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Myrnaes, R [Dept. of Physics, Univ. of Lund (Sweden); Jupen, C [Dept. of Physics, Univ. of Lund (Sweden); Miecznik, G [Dept. of Physics, Univ. of Lund (Sweden); Martinson, I [Dept. of Physics, Univ. of Lund (Sweden); Denne-Hinnov, B [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1994-01-01

    Spectra of highly ionized Ni, Ge, Kr, Zr and Mo obtained from the JET tokamak have been studied. In total 20 new lines have been classified as n = 2, [Delta]n = 0 transitions in B-like and F-like ions. Among the identified lines are M1 transitions within the 2s[sup 2]2p[sup 5] [sup 2]P ground term of F-like Zr and Mo and within the 2s[sup 2]2p [sup 2]P ground term of B-like Mo. Furthermore, for B-like Ni, Kr and Mo, the 2s2p[sup 2] [sup 4]P[sub 1/2] and [sup 4]P[sub 5/2] levels, which decay by spin-forbidden transitions, have been found. From the observed wavelengths 20 new energy levels were determined. The experiments have been complemented with multiconfiguration Dirac-Fock (MCDF) calculations and semiempirical analyses of transition energies in the B I and F I isoelectronic sequences. (orig.).

  6. Tokamak engineering mechanics

    International Nuclear Information System (INIS)

    Song, Yuntao; Wu, Weiyue; Du, Shijun

    2014-01-01

    Provides a systematic introduction to tokamaks in engineering mechanics. Includes design guides based on full mechanical analysis, which makes it possible to accurately predict load capacity and temperature increases. Presents comprehensive information on important design factors involving materials. Covers the latest advances in and up-to-date references on tokamak devices. Numerous examples reinforce the understanding of concepts and provide procedures for design. Tokamak Engineering Mechanics offers concise and thorough coverage of engineering mechanics theory and application for tokamaks, and the material is reinforced by numerous examples. Chapter topics include general principles, static mechanics, dynamic mechanics, thermal fluid mechanics and multiphysics structural mechanics of tokamak structure analysis. The theoretical principle of the design and the methods of the analysis for various components and load conditions are presented, while the latest engineering technologies are also introduced. The book will provide readers involved in the study of mechanical/fusion engineering with a general understanding of tokamak engineering mechanics.

  7. A programmatic framework for the Tokamak Physics Experiment (TPX)

    International Nuclear Information System (INIS)

    Thomassen, K.I.; Goldston, R.J.; Neilson, G.H.

    1993-01-01

    Significant advances have been made in the confinement of reactor-grade plasmas, so that the authors are now preparing for experiments at the open-quotes power breakevenclose quotes level in the JET and TFTR experiments. In ITER the authors will extend the performance of tokamaks into the burning plasma regime, develop the technology of fusion reactors, and produce over a gigawatt of fusion power. Besides taking these crucial steps toward the technical feasibility of fusion, the authors must also take steps to ensure its economic acceptability. The broad requirements for economically attractive tokamak reactors based on physics advancements have been set forth in a number of studies. An advanced physics data base is emerging from a physics program of concept improvement using existing tokamaks around the world. This concept improvements program is emerging as the primary focus of the US domestic tokamak program, and a key element of that program is the proposed Tokamak Physics Experiment (TPX). With TPX the authors can develop the scientific data base for compact, continuously-operating fusion reactors, using advanced steady-state control techniques to improve plasma performance. The authors can develop operating techniques needed to ensure the success of ITER and provide first-time experience with several key fusion reactor technologies. This paper explains the relationships of TPX to the current US fusion physics program, to the ITER program, and to the development of an attractive tokamak demonstration plant for this next stage in the fusion program

  8. Advanced tokamak reactors based on the spherical torus (ATR/ST). Preliminary design considerations

    International Nuclear Information System (INIS)

    Miller, R.L.; Krakowski, R.A.; Bathke, C.G.; Copenhaver, C.; Schnurr, N.M.; Engelhardt, A.G.; Seed, T.J.; Zubrin, R.M.

    1986-06-01

    Preliminary design results relating to an advanced magnetic fusion reactor concept based on the high-beta, low-aspect-ratio, spherical-torus tokamak are summarized. The concept includes resistive (demountable) toroidal-field coils, magnetic-divertor impurity control, oscillating-field current drive, and a flowing liquid-metal breeding blanket. Results of parametric tradeoff studies, plasma engineering modeling, fusion-power-core mechanical design, neutronics analyses, and blanket thermalhydraulics studies are described. The approach, models, and interim results described here provide a basis for a more detailed design. Key issues quantified for the spherical-torus reactor center on the need for an efficient drive for this high-current (approx.40 MA) device as well as the economic desirability to increase the net electrical power from the nominal 500-MWe(net) value adopted for the baseline system. Although a direct extension of present tokamak scaling, the stablity and transport of this high-beta (approx.0.3) plasma is a key unknown that is resoluble only by experiment. The spherical torus generally provides a route to improved tokamak reactors as measured by considerably simplified coil technology in a configuration that allows a realistic magnetic divertor design, both leading to increased mass power density and reduced cost

  9. Overview of Tokamak Results

    International Nuclear Information System (INIS)

    Unterberg, Bernhard; Samm, Ulrich

    2004-01-01

    An overview is given of recent results obtained in tokamak devices. We introduce basic confinement scenarios as L-mode, H-mode and plasmas with an internal transport barrier and discuss methods for profile control. Important findings in DT-experiments at JET as α-particle heating are described. Methods for power exhaust like plasma regimes with a radiating mantle and radiative divertor scenarios are discussed. The overall impact of plasma edge conditions on the general plasma performance in tokamaks is illustrated by describing the impact of wall conditions on confinement and the edge operational diagram of H-mode plasmas

  10. International tokamak reactor conceptual design overview

    International Nuclear Information System (INIS)

    Stacey, W.M. Jr.

    1983-01-01

    The International Tokamak Reactor (INTOR) Workshop is an unique collaborative effort among Euratom, Japan, the USA and the USSR, under the auspices of the IAEA, to assess, define, design, construct and operate the next major experiment in the World Tokamak Program beyond the TFTR, JET, JT-60, T-15 generation. During the Zero-Phase (1979), a technical data base assessment was performed, leading to a positive assessment of feasibility. During Phase-I (1/80-6/81), a conceptual design was developed to define the concept. The programmatic objectives are that INTOR should: (1) be the maximum reasonable step beyond the TFTR, JET, JT-60, T-15 generation of tokamaks, (2) demonstrate the plasma performance required for tokamak DEMOs, (3) test the development and integration into a reactor system of those technologies required for a DEMO, (4) serve as a test facility for blanket, tritium production, materials, and plasma engineering technology, (5) test fusion reactor component reliability, (6) test the maintainability of a fusion reactor, and (7) test the factors affecting the reliability, safety and environmental acceptability of a fusion reactor. A conceptual design has been developed to define a device which is consistent with these objectives. The design concept could, with a reasonable degree of confidence, be developed into a workable engineering design of a tokamak that met the performance objectives of INTOR. There is some margin in the design to allow for uncertainty. While design solutions have been found for all of the critical issues, the overall design may not yet be optimal. (author)

  11. The deduction of low-Z ion temperature and densities in the JET tokamak using charge exchange recombination spectroscopy

    International Nuclear Information System (INIS)

    Boileau, A.; Hellermann, M. von; Horton, L.D.; Spence, J.; Summers, H.P.

    1989-01-01

    A charge exchange recombination spectroscopy (CXRS) diagnostic has been established on JET to study fully stripped low-Z species. Ion temperature in the plasma centre is measured from visible lines of helium, carbon and oxygen excited by charge exchange with heating neutral beam particles. Coincident cold components produced at the plasma edge are apparent on helium and carbon spectra and most spectra are subject to accidental blending from other species' edge plasma emission. The charge exchange feature can be isolated from the various composite lines and all three impurities agree on the same temperature within experimental error. Observed column emissivities are converted into absolute impurity densities using a neutral beam attenuation code and charge exchange effective rate coefficients. Comprehensive new calculations have been performed to obtain the effective rate coefficients. The models take detailed account of cascading and the influence of the plasma environment in causing l-mixing, and allow the n-dependence of the rate coefficients to be addressed experimentally. The effective ion charge reconstructed from simultaneous measurements of the densities of dominant impurities shows good agreement with the value inferred from visible Bremsstrahlung. Some illustrative results are shown for helium (helium discharge or minority r.f.. heating), carbon and oxygen concentrations monitored during characteristic operating regimes. (author)

  12. Improved feature selection based on genetic algorithms for real time disruption prediction on JET

    International Nuclear Information System (INIS)

    Rattá, G.A.; Vega, J.; Murari, A.

    2012-01-01

    Highlights: ► A new signal selection methodology to improve disruption prediction is reported. ► The approach is based on Genetic Algorithms. ► An advanced predictor has been created with the new set of signals. ► The new system obtains considerably higher prediction rates. - Abstract: The early prediction of disruptions is an important aspect of the research in the field of Tokamak control. A very recent predictor, called “Advanced Predictor Of Disruptions” (APODIS), developed for the “Joint European Torus” (JET), implements the real time recognition of incoming disruptions with the best success rate achieved ever and an outstanding stability for long periods following training. In this article, a new methodology to select the set of the signals’ parameters in order to maximize the performance of the predictor is reported. The approach is based on “Genetic Algorithms” (GAs). With the feature selection derived from GAs, a new version of APODIS has been developed. The results are significantly better than the previous version not only in terms of success rates but also in extending the interval before the disruption in which reliable predictions are achieved. Correct disruption predictions with a success rate in excess of 90% have been achieved 200 ms before the time of the disruption. The predictor response is compared with that of JET's Protection System (JPS) and the ADODIS predictor is shown to be far superior. Both systems have been carefully tested with a wide number of discharges to understand their relative merits and the most profitable directions of further improvements.

  13. Improved feature selection based on genetic algorithms for real time disruption prediction on JET

    Energy Technology Data Exchange (ETDEWEB)

    Ratta, G.A., E-mail: garatta@gateme.unsj.edu.ar [GATEME, Facultad de Ingenieria, Universidad Nacional de San Juan, Avda. San Martin 1109 (O), 5400 San Juan (Argentina); JET EFDA, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); Vega, J. [Asociacion EURATOM/CIEMAT para Fusion, Avda. Complutense, 40, 28040 Madrid (Spain); JET EFDA, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); Murari, A. [Associazione EURATOM-ENEA per la Fusione, Consorzio RFX, 4-35127 Padova (Italy); JET EFDA, Culham Science Centre, OX14 3DB Abingdon (United Kingdom)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer A new signal selection methodology to improve disruption prediction is reported. Black-Right-Pointing-Pointer The approach is based on Genetic Algorithms. Black-Right-Pointing-Pointer An advanced predictor has been created with the new set of signals. Black-Right-Pointing-Pointer The new system obtains considerably higher prediction rates. - Abstract: The early prediction of disruptions is an important aspect of the research in the field of Tokamak control. A very recent predictor, called 'Advanced Predictor Of Disruptions' (APODIS), developed for the 'Joint European Torus' (JET), implements the real time recognition of incoming disruptions with the best success rate achieved ever and an outstanding stability for long periods following training. In this article, a new methodology to select the set of the signals' parameters in order to maximize the performance of the predictor is reported. The approach is based on 'Genetic Algorithms' (GAs). With the feature selection derived from GAs, a new version of APODIS has been developed. The results are significantly better than the previous version not only in terms of success rates but also in extending the interval before the disruption in which reliable predictions are achieved. Correct disruption predictions with a success rate in excess of 90% have been achieved 200 ms before the time of the disruption. The predictor response is compared with that of JET's Protection System (JPS) and the ADODIS predictor is shown to be far superior. Both systems have been carefully tested with a wide number of discharges to understand their relative merits and the most profitable directions of further improvements.

  14. A MARTe based simulator for the JET Vertical Stabilization system

    Energy Technology Data Exchange (ETDEWEB)

    Bellizio, Teresa, E-mail: teresa.bellizio@unina.it [Associazione EURATOM-ENEA-CREATE, University di Napoli Federico II, Via Claudio 21, 80125 Napoli (Italy); De Tommasi, Gianmaria; Risoli, Nicola; Albanese, Raffaele [Associazione EURATOM-ENEA-CREATE, University di Napoli Federico II, Via Claudio 21, 80125 Napoli (Italy); Neto, Andre [Associacao EURATOM/IST, Inst. de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior, Tecnico, P-1049-001 Lisboa (Portugal)

    2011-10-15

    Validation by means of simulation is a crucial step when developing real-time control systems. Modeling and simulation are an essential tool since the early design phase, when the control algorithms are designed and tested. This phase is commonly carried out in off-line environments such as Matlab and Simulink. A MARTe-based simulator has been recently developed to validate the new JET Vertical Stabilization (VS) system. MARTe is the multi-thread framework used at JET to deploy hard real-time control systems. This paper presents the software architecture of the MARTe-based simulator and it shows how this tool has been effectively used to evaluate the effects of Edge Localized Modes (ELMs) on the VS system. By using the simulator it is possible to analyze different plasma configurations, extrapolating the limit of the new vertical amplifier in terms of the energy of the largest rejectable ELM.

  15. Jet observables without jet algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Bertolini, Daniele; Chan, Tucker; Thaler, Jesse [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States)

    2014-04-02

    We introduce a new class of event shapes to characterize the jet-like structure of an event. Like traditional event shapes, our observables are infrared/collinear safe and involve a sum over all hadrons in an event, but like a jet clustering algorithm, they incorporate a jet radius parameter and a transverse momentum cut. Three of the ubiquitous jet-based observables — jet multiplicity, summed scalar transverse momentum, and missing transverse momentum — have event shape counterparts that are closely correlated with their jet-based cousins. Due to their “local” computational structure, these jet-like event shapes could potentially be used for trigger-level event selection at the LHC. Intriguingly, the jet multiplicity event shape typically takes on non-integer values, highlighting the inherent ambiguity in defining jets. By inverting jet multiplicity, we show how to characterize the transverse momentum of the n-th hardest jet without actually finding the constituents of that jet. Since many physics applications do require knowledge about the jet constituents, we also build a hybrid event shape that incorporates (local) jet clustering information. As a straightforward application of our general technique, we derive an event-shape version of jet trimming, allowing event-wide jet grooming without explicit jet identification. Finally, we briefly mention possible applications of our method for jet substructure studies.

  16. Track-based improvement in the jet transverse momentum resolution for ATLAS

    CERN Document Server

    Marshall, Z; Schwartzmann, A

    2011-01-01

    We present a track-based method for improving the jet momentum resolution in ATLAS. Information is added to the reconstructed jet after the standard jet energy scale corrections have been applied. Track-based corrections are implemented, and a 10 − 15% improvement in the jet transverse momentum resolution at low pT is achieved. The method is explained, and some validation and physics results are presented. Additional variables are described and analyzed for their resolution improvement potential.

  17. Design and development of AXUV-based soft X-ray diagnostic camera for Aditya Tokamak

    International Nuclear Information System (INIS)

    Raval, Jayesh V.; Purohit, Shishir; Joisa, Y. Shankara

    2015-01-01

    The hot tokamak plasma emits Soft X-rays (SXR) in accordance with the temperature and density which are important to be studied. A silicon photo diode array (AXUV16ELG, Opto-diode, USA) based prototype SXR diagnostics is designed and developed for ADITYA tokamak for the study of SXR radial intensity profile, internal disruption (Saw-tooth crash), MHD instabilities. The diagnostic is having an array of 16 detector of millimeter dimension in a linear configuration. Absolute Extreme Ultra Violate (AXUV) detector offers compact size, improved time response with considerably good quantum efficiency in the soft X-ray range (200 eV to 10 keV). The diagnostic is designed in competence with the ADITYA tokamak protocol. The diagnostic design geometry allows detector view the plasma through a slot hole (0.5 cm X 0.05 cm), 10 μm Beryllium foil filter window, cutting off energies below 750 eV. The diagnostic was installed on Aditya vacuum vessel at radial port no 7 enabling the diagnostics to view the core plasma. The spatial resolution designed for diagnostic configuration is 1.3 cm at plasma centre. The signal generated from SXR detector is acquired with a dedicated single board computer based data acquisition system at 50 kHz. The diagnostic took observation for the ohmically heated plasma. The data was then processed to construct spatial and temporal profile of SXR intensity for Aditya plasma. This information was complimentary to the Silicon surface barrier detector (SBD) based array for the same plasma discharge. The cross calibration between the two was considerably satisfactory under the assumptions considered. (author)

  18. CORBA-based solution for remote participation in SST-1 tokamak control and operation

    Energy Technology Data Exchange (ETDEWEB)

    Mahajan, Kirti [Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar 382428 (India)]. E-mail: kirti@ipr.res.in; Ravikiran, M. [Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar 382428 (India); Gulati, Hitesh [Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar 382428 (India); Dave, H.J. [Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar 382428 (India); Kumar, Neeraj [Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar 382428 (India); Patel, Kirit [Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar 382428 (India); Kumar, Aveg [Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar 382428 (India); Raju, D. [Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar 382428 (India); Bhandarkar, M. [Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar 382428 (India); Chudasama, H. [Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar 382428 (India); Kulkarni, S.V. [Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar 382428 (India); Saxena, Y.C. [Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar 382428 (India)

    2006-07-15

    The steady state superconducting tokamak (SST-1) central control system is a distributed heterogeneous process communication system built on socket programming. It consists of machine, experiment and discharge control plus timing and a database. The software controls and monitors SST-1 subsystems: water-cooling, power supplies, cryogenics and vacuum over a local area network (LAN). The SST-1 control room is the place where all the activities like session announcement, machine control, experiment control, discharge control and monitoring are performed. We have realized that, instead of having a single monitoring place, we should have multiple monitoring points and it should be made possible to control the experiment from any PC over the LAN. In order to meet such requirements for remote participation in tokamak operation, we are upgrading the existing software. The upgraded software is based on Common Object Request Broker Architecture (CORBA) technology. The software is utilizing CORBA-services such as event service, naming services, interface repository and security services. The inherent features of CORBA make the software, platform and language independent. The software supports a variety of communication paradigms including publish-subscribe, peer-to-peer, and request-reply. Based on this software, one can participate in SST-1 tokamak operation from the LAN, or a wide area network (WAN) connection anywhere on the Internet. Each user can customize plasma parameters and diagnostics data that he wants to monitor, at any time without any change in the software and a copy of these parameters will be available to him. This paper focuses on the publish-subscribe communication paradigm and its application for a machine monitoring system.

  19. CORBA-based solution for remote participation in SST-1 tokamak control and operation

    International Nuclear Information System (INIS)

    Mahajan, Kirti; Ravikiran, M.; Gulati, Hitesh; Dave, H.J.; Kumar, Neeraj; Patel, Kirit; Kumar, Aveg; Raju, D.; Bhandarkar, M.; Chudasama, H.; Kulkarni, S.V.; Saxena, Y.C.

    2006-01-01

    The steady state superconducting tokamak (SST-1) central control system is a distributed heterogeneous process communication system built on socket programming. It consists of machine, experiment and discharge control plus timing and a database. The software controls and monitors SST-1 subsystems: water-cooling, power supplies, cryogenics and vacuum over a local area network (LAN). The SST-1 control room is the place where all the activities like session announcement, machine control, experiment control, discharge control and monitoring are performed. We have realized that, instead of having a single monitoring place, we should have multiple monitoring points and it should be made possible to control the experiment from any PC over the LAN. In order to meet such requirements for remote participation in tokamak operation, we are upgrading the existing software. The upgraded software is based on Common Object Request Broker Architecture (CORBA) technology. The software is utilizing CORBA-services such as event service, naming services, interface repository and security services. The inherent features of CORBA make the software, platform and language independent. The software supports a variety of communication paradigms including publish-subscribe, peer-to-peer, and request-reply. Based on this software, one can participate in SST-1 tokamak operation from the LAN, or a wide area network (WAN) connection anywhere on the Internet. Each user can customize plasma parameters and diagnostics data that he wants to monitor, at any time without any change in the software and a copy of these parameters will be available to him. This paper focuses on the publish-subscribe communication paradigm and its application for a machine monitoring system

  20. Full power in the European tokamak

    International Nuclear Information System (INIS)

    Lallia, P.P.; Hugon, M.

    1987-01-01

    A new research campaign begins at Jet (Abingdon, UK). At this occasion, authors review and compare the performances of the three big Tokamaks that are currently in competition: Jet, JT60 and TFTR, insisting upon the European one. Conditions of ignition are reviewed together and energy losses are specified. Magnetic configurations used in tokamaks are shown, together with the technological responses brought these last years

  1. Comparison of gaseous exhaust indices of the F109 turbofan using three different blends of petroleum-based Jet-A and camelina-based Jet-A

    Science.gov (United States)

    Kozak, Brian John

    This research project focused on the collection and comparison of gaseous exhaust emissions of the F109 turbofan engine using petroleum-based Jet-A and two different blends of camelina-based Jet-A. Simulated landing and takeoff cycles were used to collect gaseous exhaust emissions. Unburned hydrocarbon (HC), nitrogen oxide (NOx), and carbon moNOxide (CO) exhaust indices (EIm) were calculated using ICAO Annex 16 Volume II formulae. Statistical analyses were performed on the Elm data. There was no significant difference in HC EIm and CO EI m among the three fuels at takeoff thrust. There were significant differences among the fuels for NOx EIm. 50% Jet-A 50% camelina produced the highest NOx EIm, then 75% Jet-A 25% camelina and finally Jet-A. At climb thrust, both blends of camelina fuel produced higher NOx EIm but no difference in CO EIm and HC EIm as Jet-A. At approach thrust, both blends of camelina fuel produced higher NOx EIm, lower CO EIm, and no difference in HC EIm as Jet-A. At idle thrust, there was no significant difference among the fuels for NOx EIm. There were significant differences among the fuels for HC EIm. Jet-A and 50% Jet-A 50% both produced higher HC EIm as 75% Jet-A 25% camelina. There were significant differences among the fuels for CO EI m. Jet-A produced the highest CO EIm, then 75% Jet-A 25% camelina and finally 50% Jet-A 50% camelina.

  2. Loss less real-time data compression based on LZO for steady-state Tokamak DAS

    International Nuclear Information System (INIS)

    Pujara, H.D.; Sharma, Manika

    2008-01-01

    The evolution of data acquisition system (DAS) for steady-state operation of Tokamak has been technology driven. Steady-state Tokamak demands a data acquisition system which is capable enough to acquire data losslessly from diagnostics. The needs of loss less continuous acquisition have a significant effect on data storage and takes up a greater portion of any data acquisition systems. Another basic need of steady state of nature of operation demands online viewing of data which loads the LAN significantly. So there is strong demand for something that would control the expansion of both these portion by a way of employing compression technique in real time. This paper presents a data acquisition systems employing real-time data compression technique based on LZO. It is a data compression library which is suitable for data compression and decompression in real time. The algorithm used favours speed over compression ratio. The system has been rigged up based on PXI bus and dual buffer mode architecture is implemented for loss less acquisition. The acquired buffer is compressed in real time and streamed to network and hard disk for storage. Observed performance of measure on various data type like binary, integer float, types of different type of wave form as well as compression timing overheads has been presented in the paper. Various software modules for real-time acquiring, online viewing of data on network nodes have been developed in LabWindows/CVI based on client server architecture

  3. Real-time control of Tokamak plasmas: from control of physics to physics-based control

    International Nuclear Information System (INIS)

    Felici, F. A. A.

    2011-11-01

    shown effective stabilization of both 3/2 and 2/1 NTMs, and have localized the most effective deposition location. Studies of current-profile driven destabilization of tearing modes in TCV plasmas with significant amounts of ECCD show a great sensitivity to details of the current profile, but failed to identify a stationary region in the parameter space in which NTMs are always destabilized, suggesting that transient effects play a role. The simultaneous control of magnetic and kinetic plasma profiles is another key requirement for advanced tokamak operation. While control of kinetic plasma profiles around an operating point can be handled using standard linear control techniques, the strongly nonlinear physics of the coupled profiles complicates the problem. Since internal magnetic quantities are difficult to measure with sufficient spatial and temporal resolution – even after years of diagnostic development – routine control of tokamak plasma profiles remains a daunting and challenging task. In this thesis, physics understanding of plasma current and energy transport is embedded in the control solution. The new lightweight transport code RAPTOR (RApid Plasma Transport simulatOR) has been derived focusing on simplicity and speed of simulation for real-time control. The partial differential equation for current diffusion is solved in real-time during a plasma shot in the TCV control system using RAPTOR. For the first time, this concept is applied experimentally to the tokamak current density profile problem. The real-time simulation gives a physics-model based estimate of key plasma quantities, to be controlled or monitored in real-time by different control systems. Any available diagnostics can be included into the simulation providing additional constraints and removing measurement uncertainties. The real-time simulation approach holds the advantage that knowledge of the plasma profiles is no longer restricted to those points in space and time where they are

  4. Latest results from JET

    International Nuclear Information System (INIS)

    Bickerton, R.J.

    1989-01-01

    The Joint European Torus (JET) is a large tokamak designed with the essential objective of obtaining and studying plasmas with parameters close to those envisaged for an eventual power-generating, nuclear-fusion reactor. JET is situated on a site near Abingdon, Oxon, UK. JET is the largest single project of the nuclear fusion research programme of the European Atomic Energy Community (EURATOM). The tokamak started operation in mid 1983 after a five year construction period. The scientific and technical results achieved so far are summarised in this article. (orig.)

  5. PXIe based data acquisition and control system for ECRH systems on SST-1 and Aditya tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Jatinkumar J., E-mail: jatin@ipr.res.in [Institute for Plasma Research, Bhat, Gandhinagar (India); Shukla, B.K.; Rajanbabu, N.; Patel, H.; Dhorajiya, P.; Purohit, D. [Institute for Plasma Research, Bhat, Gandhinagar (India); Mankadiya, K. [Optimized Solutions Pvt. Ltd (India)

    2016-11-15

    Highlights: • Data Aquisition and control system (DAQ). • PXIe hardware–(PXI–PCI bus extension for Instrumention Express). • RHVPS–Regulated High Voltage Power supply. • SST1–Steady state superconducting tokamak. - Abstract: In Steady State Superconducting (SST-1) tokamak, various RF heating sub-systems are used for plasma heating experiments. In SST-1, Two Electron Cyclotron Resonance Heating (ECRH) systems have been installed for pre-ionization, heating and current drive experiments. The 42 GHz gyrotron based ECRH system is installed and in operation with SST-1 plasma experiments. The 82.6 GHz gyrotron delivers 200 kW CW power (1000 s) while the 42 GHz gyrotron delivers 500 kW power for 500 ms duration. Each gyrotron system consists of various auxiliary power supplies, the crowbar unit and the water cooling system. The PXIe (PCI bus extension for Instrumentation Express)bus based DAC (Data Acquisition and Control) system has been designed, developed and under implementation for safe and reliable operation of the gyrotron. The Control and Monitoring Software applications have been developed using NI LabView 2014 software with real time support on windows platform.

  6. PXIe based data acquisition and control system for ECRH systems on SST-1 and Aditya tokamak

    International Nuclear Information System (INIS)

    Patel, Jatinkumar J.; Shukla, B.K.; Rajanbabu, N.; Patel, H.; Dhorajiya, P.; Purohit, D.; Mankadiya, K.

    2016-01-01

    Highlights: • Data Aquisition and control system (DAQ). • PXIe hardware–(PXI–PCI bus extension for Instrumention Express). • RHVPS–Regulated High Voltage Power supply. • SST1–Steady state superconducting tokamak. - Abstract: In Steady State Superconducting (SST-1) tokamak, various RF heating sub-systems are used for plasma heating experiments. In SST-1, Two Electron Cyclotron Resonance Heating (ECRH) systems have been installed for pre-ionization, heating and current drive experiments. The 42 GHz gyrotron based ECRH system is installed and in operation with SST-1 plasma experiments. The 82.6 GHz gyrotron delivers 200 kW CW power (1000 s) while the 42 GHz gyrotron delivers 500 kW power for 500 ms duration. Each gyrotron system consists of various auxiliary power supplies, the crowbar unit and the water cooling system. The PXIe (PCI bus extension for Instrumentation Express)bus based DAC (Data Acquisition and Control) system has been designed, developed and under implementation for safe and reliable operation of the gyrotron. The Control and Monitoring Software applications have been developed using NI LabView 2014 software with real time support on windows platform.

  7. Plasma performance of TFCX and JET with sawtoothing

    International Nuclear Information System (INIS)

    Hively, L.M.; Mikkelsen, D.R.

    1984-11-01

    The plasma performance is assessed for two tokamak reactor experiments, the Tokamak Fusion Core Experiment (TFCX) and the Joint European Torus (JET). Both machines appear ignitable for a reasonable range of transport assumptions

  8. Tokamaks. 2. ed.

    International Nuclear Information System (INIS)

    Wesson, John; Campbell, D.J.; Connor, J.W.

    1997-01-01

    It is interesting to recall the state of tokamak research when the first edition of this book was written. My judgement of the level of real understanding at that time is indicated by the virtual absence of comparisons of experiment with theory in that edition. The need then was for a 'handbook' which collected in a single volume the concepts and models which form the basis of everyday tokamak research. The experimental and theoretical endeavours of the subsequent decade have left almost all of this intact, but have brought a massive development of the subject. Firstly, there are now several areas where the experimental behaviour is described in terms of accepted theory. This is particularly true of currents parallel to the magnetic field, and of the stability limitations on the plasma pressure. Next there has been the research on large tokamaks, hardly started at the writing of the first edition. Now our thinking is largely based on the results from these tokamaks and this work has led to the long awaited achievement of significant amounts of fusion power. Finally, the success of tokamak research has brought us face to face with the problems involved in designing and building a tokamak reactor. The present edition maintains the aim of providing a simple introduction to basic tokamak physics, but also includes an account of the advances outlined above. (Author)

  9. Impinging jet-based fluidic diodes for hybrid synthetic jet actuators

    Czech Academy of Sciences Publication Activity Database

    Kordík, Jozef; Broučková, Zuzana; Trávníček, Zdeněk

    2015-01-01

    Roč. 18, č. 3 (2015), s. 449-458 ISSN 1343-8875 R&D Projects: GA ČR GPP101/12/P556 Institutional support: RVO:61388998 Keywords : synthetic jet * hybrid synthetic jet * volumetric efficiency Subject RIV: BK - Fluid Dynamics Impact factor: 0.720, year: 2015 http://link.springer.com/article/10.1007%2Fs12650-014-0251-0

  10. Lyapunov-based distributed control of the safety-factor profile in a tokamak plasma

    International Nuclear Information System (INIS)

    Bribiesca Argomedo, Federico; Witrant, Emmanuel; Prieur, Christophe; Brémond, Sylvain; Nouailletas, Rémy; Artaud, Jean-François

    2013-01-01

    A real-time model-based controller is developed for the tracking of the distributed safety-factor profile in a tokamak plasma. Using relevant physical models and simplifying assumptions, theoretical stability and robustness guarantees were obtained using a Lyapunov function. This approach considers the couplings between the poloidal flux diffusion equation, the time-varying temperature profiles and an independent total plasma current control. The actuator chosen for the safety-factor profile tracking is the lower hybrid current drive, although the results presented can be easily extended to any non-inductive current source. The performance and robustness of the proposed control law is evaluated with a physics-oriented simulation code on Tore Supra experimental test cases. (paper)

  11. Microinstability-based models for confinement properties and ignition criteria in tokamaks

    International Nuclear Information System (INIS)

    Tang, W.M.; Bishop, C.M.; Coppi, B.; Kaye, S.M.; Perkins, F.W.; Redi, M.H.; Rewoldt, G.

    1987-02-01

    This paper reports on results of theoretical studies dealing with: (1) the use of microinstability-based thermal transport models to interpret the anomalous confinement properties observed in key tokamak experiments such as TFTR and (2) the likely consequences of the presence of such instabilities for future ignition devices. Transport code simulations using profile-consistent forms of anomalous thermal diffusivities due to drift-type instabilities have yielded good agreement with the confinement times and temperatures observed in TFTR under a large variety of operating conditions including pellet-fuelling in both ohmic- and neutral-beam-heated discharges. With regard to achieving an optimal ignition margin, the adverse temperature scaling of anomalous losses caused by drift modes leads to the conclusion that it is best to operate at the maximum allowable density while holding the temperature close to the minimum value required for ignition

  12. Metal shell technology based upon hollow jet instability

    International Nuclear Information System (INIS)

    Kendall, J.M.; Lee, M.C.; Wang, T.G.

    1982-01-01

    Spherical shells of submillimeter size are sought as ICF targets. Such shells must be dimensionally precise, smooth, of high strength, and composed of a high atomic number material. We describe a technology for the production of shells based upon the hydrodynamic instability of an annular jet of molten metal. We have produced shells in the 0.7--2.0 mm size range using tin as a test material. Specimens exhibit good sphericity, fair concentricity, and excellent finish over most of the surface. Work involving a gold--lead--antimony alloy is in progress. Droplets of this are amorphous and possess superior surface finish. The flow of tin models that of the alloy well; experiments on both metals show that the technique holds considerable promise

  13. Parametric Study of Synthetic-Jet-Based Flow Control on a Vertical Tail Model

    Science.gov (United States)

    Monastero, Marianne; Lindstrom, Annika; Beyar, Michael; Amitay, Michael

    2015-11-01

    Separation control over the rudder of the vertical tail of a commercial airplane using synthetic-jet-based flow control can lead to a reduction in tail size, with an associated decrease in drag and increase in fuel savings. A parametric, experimental study was undertaken using an array of finite span synthetic jets to investigate the sensitivity of the enhanced vertical tail side force to jet parameters, such as jet spanwise spacing and jet momentum coefficient. A generic wind tunnel model was designed and fabricated to fundamentally study the effects of the jet parameters at varying rudder deflection and model sideslip angles. Wind tunnel results obtained from pressure measurements and tuft flow visualization in the Rensselaer Polytechnic Subsonic Wind Tunnel show a decrease in separation severity and increase in model performance in comparison to the baseline, non-actuated case. The sensitivity to various parameters will be presented.

  14. Tokamaks (Second Edition)

    Energy Technology Data Exchange (ETDEWEB)

    Stott, Peter [JET, UK (United Kingdom)

    1998-10-01

    The first edition of John Wesson's book on tokamaks, published in 1987, established itself as essential reading for researchers in the field of magnetic confinement fusion: it was an excellent introduction for students to tokamak physics and also a valuable reference work for the more experienced. The second edition, published in 1997, has been completely rewritten and substantially enlarged (680 pages compared with 300). The new edition maintains the aim of providing a simple introduction to basic tokamak physics, but also includes discussion of the substantial advances in fusion research during the past decade. The new book, like its predecessor, is well written and commendable for its clarity and accuracy. In fact many of the chapters are written by a series of co-authors bringing the benefits of a wide range of expertise but, by careful editing, Wesson has maintained a uniformity of style and presentation. The chapter headings and coverage for the most part remain the same - but are expanded considerably and brought up to date. The most substantial change is that the single concluding chapter in the first edition on 'Experiments' has been replaced by three chapters: 'Tokamak experiments' which deals with some of the earlier key experiments plus a selection of recent small and medium-sized devices, 'Large experiments' which gives an excellent summary of the main results from the four large tokamaks - TFTR, JET, JT60/JT60U and DIII-D, and 'The future' which gives a very short (possibly too short in my opinion) account of reactors and ITER. This is an excellent book, which I strongly recommend should have a place - on the desk rather than in the bookshelf - of researchers in magnetic confinement fusion. (book review)

  15. Tokamaks (Second Edition)

    International Nuclear Information System (INIS)

    Stott, Peter

    1998-01-01

    The first edition of John Wesson's book on tokamaks, published in 1987, established itself as essential reading for researchers in the field of magnetic confinement fusion: it was an excellent introduction for students to tokamak physics and also a valuable reference work for the more experienced. The second edition, published in 1997, has been completely rewritten and substantially enlarged (680 pages compared with 300). The new edition maintains the aim of providing a simple introduction to basic tokamak physics, but also includes discussion of the substantial advances in fusion research during the past decade. The new book, like its predecessor, is well written and commendable for its clarity and accuracy. In fact many of the chapters are written by a series of co-authors bringing the benefits of a wide range of expertise but, by careful editing, Wesson has maintained a uniformity of style and presentation. The chapter headings and coverage for the most part remain the same - but are expanded considerably and brought up to date. The most substantial change is that the single concluding chapter in the first edition on 'Experiments' has been replaced by three chapters: 'Tokamak experiments' which deals with some of the earlier key experiments plus a selection of recent small and medium-sized devices, 'Large experiments' which gives an excellent summary of the main results from the four large tokamaks - TFTR, JET, JT60/JT60U and DIII-D, and 'The future' which gives a very short (possibly too short in my opinion) account of reactors and ITER. This is an excellent book, which I strongly recommend should have a place - on the desk rather than in the bookshelf - of researchers in magnetic confinement fusion. (book review)

  16. Continuous tokamaks

    International Nuclear Information System (INIS)

    Peng, Y.K.M.

    1978-04-01

    A tokamak configuration is proposed that permits the rapid replacement of a plasma discharge in a ''burn'' chamber by another one in a time scale much shorter than the elementary thermal time constant of the chamber first wall. With respect to the chamber, the effective duty cycle factor can thus be made arbitrarily close to unity minimizing the cyclic thermal stress in the first wall. At least one plasma discharge always exists in the new tokamak configuration, hence, a continuous tokamak. By incorporating adiabatic toroidal compression, configurations of continuous tokamak compressors are introduced. To operate continuous tokamaks, it is necessary to introduce the concept of mixed poloidal field coils, which spatially groups all the poloidal field coils into three sets, all contributing simultaneously to inducing the plasma current and maintaining the proper plasma shape and position. Preliminary numerical calculations of axisymmetric MHD equilibria in continuous tokamaks indicate the feasibility of their continued plasma operation. Advanced concepts of continuous tokamaks to reduce the topological complexity and to allow the burn plasma aspect ratio to decrease for increased beta are then suggested

  17. Research into controlled fusion in tokamaks

    International Nuclear Information System (INIS)

    Zacek, F.

    1992-01-01

    During the thirty years of tokamak research, physicists have been approaching step by step the reactor breakeven condition defined by the Lawson criterion. JET, the European Community tokamak is probably the first candidate among the world largest tokamaks to reach the ignition threshold and thus to demonstrate the physical feasibility of thermonuclear reaction. The record plasma parameters achieved in JET at H plasma modes due to powerful additional plasma heating and due to substantial reduction of plasma impurities, opened the door to the first experiment with a deuterium-tritium plasma. In the paper, the conditions and results of these tritium experiments are described in detail. The prospects of the world tokamak research and of the participation of Czechoslovak physicists are also discussed. (J.U.) 3 figs., 6 refs

  18. Study of an optimal configuration of a transmutation reactor based on a low-aspect-ratio tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Bong Guen, E-mail: bghong@jbnu.ac.kr [Department of Quantum System Engineering, Chonbuk National University, 567 Baekje-daero, Jeonju, Jeonbuk 54896 (Korea, Republic of); Kim, Hoseok [Department of Applied Plasma Engineering, Chonbuk National University, 567 Baekje-daero, Jeonju, Jeonbuk 54896 (Korea, Republic of)

    2016-11-15

    Highlights: • Optimum configuration of a transmutation reactor based on a low aspect ratio tokamak was found. • Inboard and outboard radial build are determined by plasma physics, engineering and neutronics constraints. • Radial build and equilibrium fuel cycle play a major role in determining the transmutation characteristics. - Abstract: We determine the optimal configuration of a transmutation reactor based on a low-aspect-ratio tokamak. For self-consistent determination of the radial build of the reactor components, we couple a tokamak systems analysis with a radiation transport calculation. The inboard radial build of the reactor components is obtained from plasma physics and engineering constraints, while outboard radial builds are mainly determined by constraints on neutron multiplication, the tritium-breeding ratio, and the power density. We show that the breeding blanket model has an effect on the radial build of a transmutation blanket. A burn cycle has to be determined to keep the fast neutron fluence plasma-facing material below its radiation damage limit. We show that the radial build of the transmutation reactor components and the equilibrium fuel cycle play a major role in determining the transmutation characteristics.

  19. A modularized operator interface framework for Tokamak based on MVC design pattern

    International Nuclear Information System (INIS)

    Yin, Xuan; Zheng, Wei; Zhang, Ming; Zhang, Jing; Zhuang, G.; Ding, T.

    2014-01-01

    Highlights: • Our framework is based on MVC design pattern. • XML is used to cope with minor difference between different applications. • Functions dealing with EPICS and MDSplus have been modularized into reusable modules. • The modularized framework will shorten J-TEXT's software development cycle. - Abstract: Facing various and continually changing experimental needs, the J-TEXT Tokamak experiment requires home-made software applications developed for different sub-systems. Though dealing with different specific problems, these software applications usually share a lot of functionalities in common. With the goal of improving the productivity of research groups, J-TEXT has designed a C# desktop application framework which is mainly focused on operator interface development. Following the Model–View–Controller (MVC) design pattern, the main functionality dealing with Experimental Physics and Industrial Control System (EPICS) or MDSplus has been modularized into reusable modules. Minor difference among applications can be coped with XML configuration files. In this case, developers are able to implement various kinds of operator interface without knowing the implementation details of the bottom functions in Models, mainly focusing on Views and Controllers. This paper presents J-TEXT C# desktop application framework, introducing the technology of fast development of the modularized operator interface. Some experimental applications designed in this framework have been already deployed in J-TEXT, and will be introduced in this paper

  20. Design of Tokamak synchronous data acquisition system based on PXI express

    International Nuclear Information System (INIS)

    Liu Rui; Zheng Wei; Zhang Ming; Weng Chuqiao; Zhuang Ge; Ding Tonghai; Yu Kexun

    2014-01-01

    With the development of J-TEXT device, the original data acquisition system can't meet the experiment's requirement on stability, modularity and sampling rate, so a new data acquisition system needs to be built. This paper introduces the design and implementation of the distributed Tokamak synchronous high-speed data acquisition system based on PXI Express. The acquisition unit consists of PXIe case Nl PXIe 1062Q, PXIe controller NI PXIe-8133 and high-speed synchronous data acquisition card Nl PXIe-6368, compatible with the latest standard of ITER CODAC, so it has good mechanical sealing, strong modularity and high sampling rate etc. The system takes a synchronous difference acquisition for diagnosis signal. The data storage adopts MDSplus which is the general database in the nuclear fusion field. The test and experimental results show that the system can work continuously and stably at 2 MSps sampling rate, and meet the requirement of experiment device's operation well. (authors)

  1. Detritiation of tiles from tokamaks by laser cleaning

    International Nuclear Information System (INIS)

    Coad, J. Paul; Widdowson, Anna; Farcage, Daniel; Semerok, Alexander; Thro, P.-Y.; Likonen, Jari; Renvall, Tommi

    2007-01-01

    Laser ablation has been used to clean surfaces or to decontaminate hot cells by removing paint, and has been tested on deposited carbon layers from the TEXTOR tokamak. This paper reports on successful trials in the Beryllium Handling Facility of a pulsed laser cleaning system to remove H-isotope containing carbon deposits on tiles from the JET tokamak. The laser beam is rastered over the surface of the tiles to remove the deposit. Two types of JET carbon-fibre composite (CFC) tiles were treated. The first was covered with carbon-based deposits up to 300 μm thick with high H-isotope content, the other was covered with a mixed Be/C film ∼ 50 microns thick. One scan of the laser was sufficient to completely change the appearance and expose the fibre planes. From cross-sectional micrographs, it was found that overall three scans provided the most effective settings for complete film removal. An area 250 cm 2 of the second tile was cleaned in 20 minutes, clearly demonstrating the efficiency of laser cleaning for the removal of tokamak deposits such as likely to occur in ITER. (authors)

  2. Disruption generated secondary runaway electrons in present day tokamaks

    International Nuclear Information System (INIS)

    Pankratov, I.M.; Jaspers, R.

    2000-01-01

    An analysis of the runaway electron secondary generation during disruptions in present day tokamaks (JET, JT-60U, TEXTOR) was made. It was shown that even for tokamaks with the plasma current I approx 100 kA the secondary generation may dominate the runaway production during disruptions. In the same time in tokamaks with I approx 1 MA the runaway electron secondary generation during disruptions may be suppressed

  3. A Key to Improved Ion Core Confinement in the JET Tokamak: Ion Stiffness Mitigation due to Combined Plasma Rotation and Low Magnetic Shear

    DEFF Research Database (Denmark)

    Mantica, P.; Challis, C.; Peeters, A.G.

    2011-01-01

    New transport experiments on JET indicate that ion stiffness mitigation in the core of a rotating plasma, as described by Mantica et al. Phys. Rev. Lett. 102 175002 (2009)] results from the combined effect of high rotational shear and low magnetic shear. The observations have important implicatio...

  4. A key to improved ion core confinement in the JET tokamak : ion stiffness mitigation due to combined plasma rotation and low magnetic Shear

    NARCIS (Netherlands)

    Mantica, P.; Angioni, C.; Challis, C.; Colyer, G.; Frassinetti, L.; Hawkes, N.C.; Johnson, T.; Tsalas, M.; de Vries, P.C.; Weiland, J.; Baiocchi, B.; Beurskens, M.N.A.; Figueiredo, A.C.A.; Giroud, C.; Hobirk, J.; Joffrin, E.; Lerche, E.; Naulin, V.; Peeters, A.G.; Salmi, A.; Sozzi, C.; Strintzi, D.; Staebler, G.; Tala, T.; Van Eester, D.; Versloot, T.W.

    2011-01-01

    New transport experiments on JET indicate that ion stiffness mitigation in the core of a rotating plasma, as described by Mantica et al. Phys. Rev. Lett. 102 175002 (2009)] results from the combined effect of high rotational shear and low magnetic shear. The observations have important implications

  5. Plasma Sprayed Tungsten-based Coatings and their Usage in Edge Plasma Region of Tokamaks

    Czech Academy of Sciences Publication Activity Database

    Matějíček, Jiří; Weinzettl, Vladimír; Dufková, Edita; Piffl, Vojtěch; Peřina, Vratislav

    2006-01-01

    Roč. 51, č. 2 (2006), s. 179-191 ISSN 0001-7043 Grant - others:Evropská unie EFDA Task TW-5-TVM-PSW (EU – Euratom) Institutional research plan: CEZ:AV0Z20430508; CEZ:AV0Z10480505 Keywords : plasma sprayed coatings * fusion * plasma facing components * tungsten * tokamak Subject RIV: BL - Plasma and Gas Discharge Physics

  6. New type of discharge-produced plasma source for extreme ultraviolet based on liquid tin jet electrodes

    NARCIS (Netherlands)

    Koshelev, K.N.; Krivtsun, V.M.; Ivanov, V.; Yakushev, O.; Chekmarev, A.; Koloshnikov, V.; Snegirev, E.; Medvedev, Viacheslav

    2012-01-01

    A new approach for discharge-produced plasma (DPP) extreme ultraviolet (EUV) sources based on the usage of two liquid metallic alloy jets as discharge electrodes has been proposed and tested. Discharge was ignited using laser ablation of one of the cathode jets. A system with two jet electrodes was

  7. Spatial Resolution of the ECE for JET Typical Parameters

    International Nuclear Information System (INIS)

    Tribaldos, V.

    2000-01-01

    The purpose of this report is to obtain estimations of the spatial resolution of the electron cyclotron emission (ECE) phenomena for the typical plasmas found in JET tokamak. The analysis of the spatial resolution of the ECE is based on the underlying physical process of emission and a working definition is presented and discussed. In making these estimations a typical JET pulse is being analysed taking into account the magnetic configuration, the density and temperature profiles, obtained with the EFIT code and from the LIDAR diagnostic. Ray tracing simulations are performed for a Maxwellian plasma taking into account the antenna pattern. (Author) 5 refs

  8. Reconnection in tokamaks

    International Nuclear Information System (INIS)

    Pare, V.K.

    1983-01-01

    Calculations with several different computer codes based on the resistive MHD equations have shown that (m = 1, n = 1) tearing modes in tokamak plasmas grow by magnetic reconnection. The observable behavior predicted by the codes has been confirmed in detail from the waveforms of signals from x-ray detectors and recently by x-ray tomographic imaging

  9. Tokamak COMPASS

    Czech Academy of Sciences Publication Activity Database

    Řípa, Milan; Křenek, Petr

    2011-01-01

    Roč. 17, č. 1 (2011), s. 32-34 ISSN 1210-4612 Institutional research plan: CEZ:AV0Z20430508 Keywords : fusion * tokamak * Compass * Golem * Institute of Plasma Physics AVCR v.v * NBI * diagnostics Subject RIV: BL - Plasma and Gas Discharge Physics

  10. The Tokamak IST-TOK

    International Nuclear Information System (INIS)

    Varandas, C.A.F.; Cabral, J.A.C.; Manso, M.E.

    1991-01-01

    A small tokamak is under construction at the Portuguese Technical Superior Institute. The main objective is to create a home based laboratory in which an independent scientific program might be developed. (L.C.J.A.). 14 refs, 6 figs

  11. Neutronics analysis of the conceptual design of a component test facility based on the spherical tokamak

    International Nuclear Information System (INIS)

    Zheng, S.; Voss, G.M.; Pampin, R.

    2010-01-01

    One of the crucial aspects of fusion research is the optimisation and qualification of suitable materials and components. To enable the design and construction of DEMO in the future, ITER is taken to demonstrate the scientific and technological feasibility and IFMIF will provide rigorous testing of small material samples. Meanwhile, a dedicated, small-scale components testing facility (CTF) is proposed to complement and extend the functions of ITER and IFMIF and operate in association with DEMO so as to reduce the risk of delays during this phase of fusion power development. The design of a spherical tokamak (ST)-based CTF is being developed which offers many advantages over conventional machines, including lower tritium consumption, easier maintenance, and a compact assembly. The neutronics analysis of this system is presented here. Based on a three-dimensional neutronics model generated by the interface programme MCAM from CAD models, a series of nuclear and radiation protection analyses were carried out using the MCNP code and FENDL2.1 nuclear data library to assess the current design and guide its development if needed. The nuclear analyses addresses key neutronics issues such as the neutron wall loading (NWL) profile, nuclear heat loads, and radiation damage to the coil insulation and to structural components, particularly the stainless steel vessel wall close to the NBI ports where shielding is limited. The shielding of the divertor coil and the internal Poloidal Field (PF) coil, which is introduced in the expanded divertor design, are optimised to reduce their radiation damage. The preliminary results show that the peak radiation damage to the structure of martensitic/ferritic steel is about 29 dpa at the mid-plane assuming a life of 12 years at a duty factor 33%, which is much lower than its ∼150 dpa limit. In addition, TBMs installed in 8 mid-plane ports and 6 lower ports, and 60% 6 Li enrichment in the Li 4 SiO 4 breeder, the total tritium generation is

  12. Overview of JET results

    International Nuclear Information System (INIS)

    Pamela, J.

    2003-01-01

    Scientific and technical activities on JET focus on the issues likely to affect the ITER design and operation. The physics of the ITER reference mode of operation, the ELMy H-mode, has progressed significantly: the extrapolation of ELM size to ITER has been re-evaluated; NTMs have been shown to be metastable in JET, and can be avoided via sawtooth destabilisation by ICRH; α-simulation experiments were carried out by accelerating 4 He beam ions by ICRH, providing a new tool for fast particle and MHD studies with up to 80-90% of plasma heating by fast 4 He ions. With or without impurity seeding, quasi-steady sate high confinement (H 98 =1), high density (n e /n GR = 0.9-1) and high β (β N =2) ELMy H-mode has been achieved by operating near the ITER triangularity (δ∼0.40-0.5) and safety factor (q 95 ∼3), at Z eff ∼1.5-2. In Advanced Tokamak scenarios, internal transport barriers are now characterised in real time with a new criterion ρ* T ; tailoring of the current profile with LHCD provides reliable access to a variety of q profiles, with significantly lowered access power for barrier formation; rational q surfaces appear to be associated with ITB formation; Alfven cascades are observed in RS plasmas, providing an identification of q profile evolution; plasmas with 'current holes' were observed and explained by modelling. Transient high confinement Advanced Tokamak regimes with H89=3.3, β N =2.4 and ITER relevant q<5 are achievable in reversed magnetic shear. Quasistationary internal transport barriers are developed with full non-inductive current drive, including ∼50% bootstrap current. Record duration of ITBs was achieved, up to 11 s, approaching the resistive time. Pressure and current profiles of Advanced Tokamak regimes are controlled by a real time feedback system, in separate experiments. The erosion and co-deposition data base progressed significantly, in particular with a new quartz microbalance diagnostic allowing shot by shot measurements of

  13. Prediction of hydraulic force and momentum on pelton turbine jet deflector based on cfd simulation

    International Nuclear Information System (INIS)

    Popovski, Boro

    2015-01-01

    The numerical simulation of three-dimensional turbulent flow through the jet-distributor, free stream jet and deflector of Pelton Turbine is presented in this work. The calculations are performed using the CFD package Ansys CFX (Navie-Stokes equations and the k-omega SST turbulent model). A traditional definition for calculation of hydraulic forces and momentum on the jet deflector and a method for experimental evaluation are described. The steps for flow modelling, mesh (grid) generation, as well as the results obtained from the numerical simulation of the flow and stress deformation calculations of the jet-deflector are presented. This work corresponds with the actual approach of methods development for flow simulation and calculations of Pelton Turbines. The kinematic and dynamic parameters are calculated based on CFD simulations. The results of the calculations represents reliable tool in the procedure of development and construction of Pelton Turbines. (author)

  14. An Engineering Method of Civil Jet Requirements Validation Based on Requirements Project Principle

    Science.gov (United States)

    Wang, Yue; Gao, Dan; Mao, Xuming

    2018-03-01

    A method of requirements validation is developed and defined to meet the needs of civil jet requirements validation in product development. Based on requirements project principle, this method will not affect the conventional design elements, and can effectively connect the requirements with design. It realizes the modern civil jet development concept, which is “requirement is the origin, design is the basis”. So far, the method has been successfully applied in civil jet aircraft development in China. Taking takeoff field length as an example, the validation process and the validation method of the requirements are detailed introduced in the study, with the hope of providing the experiences to other civil jet product design.

  15. Scrape-off layer based modelling of the density limit in beryllated JET limiter discharges

    International Nuclear Information System (INIS)

    Borrass, K.; Campbell, D.J.; Clement, S.; Vlases, G.C.

    1993-01-01

    The paper gives a scrape-off layer based interpretation of the density limit in beryllated JET limiter discharges. In these discharges, JET edge parameters show a complicated time evolution as the density limit is approached and the limit is manifested as a non-disruptive density maximum which cannot be exceeded by enhanced gas puffing. The occurrence of Marfes, the manner of density control and details of recycling are essential elements of the interpretation. Scalings for the maximum density are given and compared with JET data. The relation to disruptive density limits, previously observed in JET carbon limiter discharges, and to density limits in divertor discharges is discussed. (author). 18 refs, 10 figs, 1 tab

  16. A tokamak with nearly uniform coil stress based on virial theorem

    International Nuclear Information System (INIS)

    Tsutsui, H.

    2002-01-01

    A novel tokamak concept with a new type of toroidal field (TF) coils and a central solenoid (CS) whose stress is much reduced to a theoretical limit determined by the virial theorem has been devised. Recently, we had developed a tokamak with force-balanced coils (FBCs) which are multi-pole helical hybrid coils combining TF coils and a CS coil. The combination reduces the net electromagnetic force in the direction of major radius. In this work, we have extended the FBC concept using the virial theorem. High-field coils should accordingly have same averaged principal stresses in all directions, whereas conventional FBC reduces stress in the toroidal direction only. Using a shell model, we have obtained the poloidal rotation number of helical coils which satisfy the uniform stress condition, and named the coil as virial-limited coil (VLC). VLC with circular cross section of aspect ratio A=2 reduces maximum stress to 60% compared with that of TF coils. In order to prove the advantage of VLC concept, we have designed a small VLC tokamak Todoroki-II. The plasma discharge in Todoroki-II will be presented. (author)

  17. The technological achievements and experience at JET

    International Nuclear Information System (INIS)

    Pick, M.

    1998-12-01

    The Joint European Torus, JET, the largest and most successful Tokamak in the world, was conceived from the start as a research project with very ambitious aims and a bold approach to extrapolations of the physics and technology base as well as the international nature of its organisation. Throughout its operating life JET has maintained this approach and, with its innovative and flexible design, has extended its performance far beyond the initially intended boundaries thereby retaining a lead in virtually all areas of fusion research. JET has shown a willingness to venture far beyond the technology base of the time into new areas and dimensions. The paper will highlight a few examples which illustrate the approach taken in JET to work closely with industry and the European Associations to extend the technology beyond the current state of the art whilst maintaining a tight grip on the fundamental requirements of cost and time schedule. These range from large scale integrated systems as well as small scale technological breakthroughs. Large scale systems include the Active Gas Handling System for the on-line reprocessing of the tritium-deuterium fuel, the Remote Handling System which was integrated into the JET machine from the very beginning, the JET Power Supply system as well as, most importantly, the design of the JET structure itself which permitted the fast maintenance and repair of all major sub-units. Other notable advances include the Neutral Beam Injection and Radio Frequency Heating systems, the large open structure cryo-pumps and the novel cryo-transmission lines. Some of the associated technologies required major advances in the area of diagnostics, high power handling components, carbon fibre reinforced carbon materials as well as in the whole field of beryllium technology and beryllium handling. The success of JET has shown that it serves as a model for future machines both from an engineering point of view as well as in its approach to management

  18. The physics of an ignited tokamak

    International Nuclear Information System (INIS)

    Troyon, F.

    1990-10-01

    There appears to be a consensus that time has come to embark on the design and construction of the next generation of tokamaks which is at the origin of the ITER initiative. Different proposals have been made based on different appreciation as to the size of the step which can be taken, related to considerations of cost, risk and duration of construction. A class of devices which may be considered the last the very high-field, high density ALCATOR-Frascati line of tokamaks have been proposed for some years specifically for this purpose. Today there remain three such projects: Ignitor, Ignitex and CIT. The technology chosen limits the pulse length to a few seconds. These devices have evolved through the years becoming larger and much more expensive than originally anticipated, increasing the pressure to do more than just a simple demonstration of ignition. There is another class of more ambitious devices which aim at creating long burning plasmas in conditions as close as possible to those of a tokamak reactor in order to address all the plasma physics problems associated with long burn. Three such projects, NET, the european next step after JET, ITER and JIT are good examples of this approach. The ideal would be to design a device with sufficient margin to study burning plasmas over a wide range of parameters. The object of this didactic presentation is to describe the common physics basis of all these projects, compare their expected performance using present knowledge and list the physics problems associated with a burning plasma experiment. The comparison is not meant to be a judgement since the important parameter is the cost/benefit ratio which is a matter of appreciation at this stage. 6 refs., 3 figs., 1 tab

  19. Fabrication and characterization of tungsten and graphite based PFC for divertor target elements of ITER like tokamak application

    Energy Technology Data Exchange (ETDEWEB)

    Khirwadkar, S.S., E-mail: sameer@ipr.res.in [Institute For Plasma Research, Bhat, Gandhinagar, Gujarat (India); Singh, K.P.; Patil, Y.; Khan, M.S.; Buch, J.J.U.; Patel, Alpesh; Tripathi, Sudhir [Institute For Plasma Research, Bhat, Gandhinagar, Gujarat (India); Jaman, P.M.; Rangaraj, L.; Divakar, C. [Materials Science Division, National Aerospace Laboratories, CSIR, Bangalore, Karnataka (India)

    2011-10-15

    The development of the fabrication technology of macro-brush configuration of tungsten (W) and carbon (graphite and CFC) plasma facing components (PFCs) for ITER like tokamak application is presented. The fabrication of qualified joint of PFC is a requirement for fusion tokamak. Vacuum brazing method has been employed for joining of W/CuCrZr and C/CuCrZr. Oxygen free high conductivity (OFHC) copper casting on W tiles was performed followed by machining, polishing and ultrasonic cleaning of the samples prior to vacuum brazing. The W/CuCrZr and graphite/CuCrZr based test mockups were vacuum brazed using silver free alloys. The mechanical shear and tensile strengths were evaluated for the W/CuCrZr and graphite/CuCrZr brazed joint samples. The micro-structural examination of the joints showed smooth interface. The details of fabrication and characterization procedure for macro-brush tungsten and carbon based PFC test mockups are presented.

  20. Confinement and diffusion in tokamaks

    International Nuclear Information System (INIS)

    McWilliams, R.

    1988-01-01

    The effect of electric field fluctuations on confinement and diffusion in tokamak is discussed. Based on the experimentally determined cross-field turbolent diffusion coefficient, D∼3.7*cT e /eB(δn i /n i ) rms which is also derived by a simple theory, the cross-field diffusion time, tp=a 2 /D, is calculated and compared to experimental results from 51 tokamak for standard Ohmic operation

  1. FPGA based Fuzzy Logic Controller for plasma position control in ADITYA Tokamak

    International Nuclear Information System (INIS)

    Suratia, Pooja; Patel, Jigneshkumar; Rajpal, Rachana; Kotia, Sorum; Govindarajan, J.

    2012-01-01

    Highlights: ► Evaluation and comparison of the working performance of FLC is done with that of PID Controller. ► FLC is designed using MATLAB Fuzzy Logic Toolbox, and validated on ADITYA RZIP model. ► FLC was implemented on a FPGA. The close-loop testing is done by interfacing FPGA to MATLAB/Simulink. ► Developed FLC controller is able to maintain the plasma column within required range of ±0.05 m and was found to give robust control against various disturbances and faster and smoother response compared to PID Controller. - Abstract: Tokamaks are the most promising devices for obtaining nuclear fusion energy from high-temperature, ionized gas termed as Plasma. The successful operation of tokamak depends on its ability to confine plasma at the geometric center of vacuum vessel with sufficient stability. The quality of plasma discharge in ADITYA Tokamak is strongly related to the radial position of the plasma column in the vacuum vessel. If the plasma column approaches too near to the wall of vacuum vessel, it leads to minor or complete disruption of plasma. Hence the control of plasma position throughout the entire plasma discharge duration is a fundamental requirement. This paper describes Fuzzy Logic Controller (FLC) which is designed for radial plasma position control. This controller is tested and evaluated on the ADITYA RZIP control model. The performance of this FLC was compared with that of Proportional–Integral–Derivative (PID) Controller and the response was found to be faster and smoother. FLC was implemented on a Field Programmable Gate Array (FPGA) chip with the use of a Very High-Speed Integrated-Circuits Hardware Description-Language (VHDL).

  2. Integral equation based stability analysis of short wavelength drift modes in tokamaks

    International Nuclear Information System (INIS)

    Hirose, A.; Elia, M.

    2003-01-01

    Linear stability of electron skin-size drift modes in collisionless tokamak discharges has been investigated in terms of electromagnetic, kinetic integral equations in which neither ions nor electrons are assumed to be adiabatic. A slab-like ion temperature gradient mode persists in such a short wavelength regime. However, toroidicity has a strong stabilizing influence on this mode. In the electron branch, the toroidicity induced skin-size drift mode previously predicted in terms of local kinetic analysis has been recovered. The mode is driven by positive magnetic shear and strongly stabilized for negative shear. The corresponding mixing length anomalous thermal diffusivity exhibits favourable isotope dependence. (author)

  3. Preliminary Design of Alborz Tokamak

    Science.gov (United States)

    Mardani, M.; Amrollahi, R.; Saramad, S.

    2012-04-01

    The Alborz tokamak is a D-shape cross section tokamak that is under construction in Amirkabir University of Technology. The most important part of the tokamak design is the design of TF coils. In this paper a refined design of the TF coil system for the Alborz tokamak is presented. This design is based on cooper cable conductor with 5 cm width and 6 mm thickness. The TF coil system is consist of 16 rectangular shape coils, that makes the magnetic field of 0.7 T at the plasma center. The stored energy in total is 160 kJ, and the power supply used in this system is a capacitor bank with capacity of C = 1.32 mF and V max = 14 kV.

  4. Abrasive slurry jet cutting model based on fuzzy relations

    Science.gov (United States)

    Qiang, C. H.; Guo, C. W.

    2017-12-01

    The cutting process of pre-mixed abrasive slurry or suspension jet (ASJ) is a complex process affected by many factors, and there is a highly nonlinear relationship between the cutting parameters and cutting quality. In this paper, guided by fuzzy theory, the fuzzy cutting model of ASJ was developed. In the modeling of surface roughness, the upper surface roughness prediction model and the lower surface roughness prediction model were established respectively. The adaptive fuzzy inference system combines the learning mechanism of neural networks and the linguistic reasoning ability of the fuzzy system, membership functions, and fuzzy rules are obtained by adaptive adjustment. Therefore, the modeling process is fast and effective. In this paper, the ANFIS module of MATLAB fuzzy logic toolbox was used to establish the fuzzy cutting model of ASJ, which is found to be quite instrumental to ASJ cutting applications.

  5. Feasibility of Producing and Using Biomass-Based Diesel and Jet Fuel in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Milbrandt, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kinchin, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); McCormick, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-12-01

    The study summarizes the best available public data on the production, capacity, cost, market demand, and feedstock availability for the production of biomass-based diesel and jet fuel. It includes an overview of the current conversion processes and current state-of-development for the production of biomass-based jet and diesel fuel, as well as the key companies pursuing this effort. Thediscussion analyzes all this information in the context of meeting the RFS mandate, highlights uncertainties for the future industry development, and key business opportunities.

  6. Plasma diagnostics on large tokamaks

    International Nuclear Information System (INIS)

    Orlinskij, D.V.; Magyar, G.

    1988-01-01

    The main tasks of the large tokamaks which are under construction (T-15 and Tore Supra) and of those which have already been built (TFTR, JET, JT-60 and DIII-D) together with their design features which are relevant to plasma diagnostics are briefly discussed. The structural features and principal characteristics of the diagnostic systems being developed or already being used on these devices are also examined. The different diagnostic methods are described according to the physical quantities to be measured: electric and magnetic diagnostics, measurements of electron density, electron temperature, the ion components of the plasma, radiation loss measurements, spectroscopy of impurities, edge diagnostics and study of plasma stability. The main parameters of the various diagnostic systems used on the six large tokamaks are summarized in tables. (author). 351 refs, 44 figs, 22 tabs

  7. Nonrigid, Linear Plasma Response Model Based on Perturbed Equilibria for Axisymmetric Tokamak Control Design

    International Nuclear Information System (INIS)

    Welander, A.S.; Deranian, R.D.; Humphreys, D.A.; Leuer, J.A.; Walker, M.L.

    2005-01-01

    Tokamak control design relies on an accurate linear model of the plasma response, which can often dominate the local field variations in regions under active feedback control. For example, when fluxes at selected points on the plasma boundary are regulated in DIII-D, the plasma response to a change in a coil current gives rise to a flux change which can be larger than and opposite to the flux change caused by the coil alone.In the past, rigid plasma models have been used for linear stability and shape control design. In a rigid model, the plasma current profile is considered fixed and moves rigidly in response to control coils to maintain radial and vertical force balance. In a nonrigid model, however, changes in the plasma shape and current profile are taken into account. Such models are expected to be important for future advanced tokamak control design. The present work describes development of a nonrigid plasma response model for high-accuracy multivariable control design and provides comparisons of model predictions against DIII-D experimental data. The linear perturbed plasma response model is calculated rapidly from an existing equilibrium solution

  8. Microcomputer based system to control the load of a capacitor array in the TJ-1 Tokamak; Sistema de control de carga de condensadores del TJ-1

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, J.; Asenjo, L.; Sanz, J.A.

    1990-12-31

    The power to create the magnetic field in the TJ-1 TOKAMAK is provide by an array of 16 capacitor sets. The total capacity of this array is 8.1F. This work describes a computer system based on the Motorola M-6800 microprocessor which controls the load of the capacitor set-and stablishes the conditions for the reactor trigger. (author)

  9. Microcomputer based system to control the load of a capacitor array in the TJ-1 Tokamak. Sistema de control de carga de condensadores del TJ-1

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, J.; Asenjo, L.; Sanz, J.A.

    1990-01-01

    The power to create the magnetic field in the TJ-1 TOKAMAK is provide by an array of 16 capacitor sets. The total capacity of this array is 8.1F. This work describes a computer system based on the Motorola M-6800 microprocessor which controls the load of the capacitor set-and stablishes the conditions for the reactor trigger. (author)

  10. Microcomputer Based System to control the Load of a Capacitor Array in the TJ-1 Tokamak; Sistema de Control de Carga de Condensadores del TJ-1

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, J; Asenso, L; Sanz, J A

    1990-07-01

    The power to create the magnetic fields in the TJ-1 Tokamak is provides by an array of 16 capacitor sets. The total capacity of this array is 8. 1F. This work describes a computer system based on the Motorola M-6800 micro- processor which controls the load of the capacitor set and stablished the conditions for the reactor trigger. (Author)

  11. Development of laser-based technology for the routine first wall diagnostic on the tokamak EAST: LIBS and LIAS

    Science.gov (United States)

    Hu, Z.; Gierse, N.; Li, C.; Liu, P.; Zhao, D.; Sun, L.; Oelmann, J.; Nicolai, D.; Wu, D.; Wu, J.; Mao, H.; Ding, F.; Brezinsek, S.; Liang, Y.; Ding, H.; Luo, G.; Linsmeier, C.; EAST Team

    2017-12-01

    A laser based method combined with spectroscopy, such as laser-induced breakdown spectroscopy (LIBS) and laser-induced ablation spectroscopy (LIAS), is a promising technology for plasma-wall interaction studies. In this work, we report the development of in situ laser-based diagnostics (LIBS and LIAS) for the assessment of static and dynamic fuel retention on the first wall without removing the tiles between and during plasma discharges in the Experimental Advanced Superconducting Tokamak (EAST). The fuel retention on the first wall was measured after different wall conditioning methods and daily plasma discharges by in situ LIBS. The result indicates that the LIBS can be a useful tool to predict the wall condition in EAST. With the successful commissioning of a refined timing system for LIAS, an in situ approach to investigate fuel retention is proposed.

  12. Experimental validation of a Lyapunov-based controller for the plasma safety factor and plasma pressure in the TCV tokamak

    Science.gov (United States)

    Mavkov, B.; Witrant, E.; Prieur, C.; Maljaars, E.; Felici, F.; Sauter, O.; the TCV-Team

    2018-05-01

    In this paper, model-based closed-loop algorithms are derived for distributed control of the inverse of the safety factor profile and the plasma pressure parameter β of the TCV tokamak. The simultaneous control of the two plasma quantities is performed by combining two different control methods. The control design of the plasma safety factor is based on an infinite-dimensional setting using Lyapunov analysis for partial differential equations, while the control of the plasma pressure parameter is designed using control techniques for single-input and single-output systems. The performance and robustness of the proposed controller is analyzed in simulations using the fast plasma transport simulator RAPTOR. The control is then implemented and tested in experiments in TCV L-mode discharges using the RAPTOR model predicted estimates for the q-profile. The distributed control in TCV is performed using one co-current and one counter-current electron cyclotron heating actuation.

  13. The ARIES tokamak reactor study

    International Nuclear Information System (INIS)

    1989-10-01

    The ARIES study is a community effort to develop several visions of tokamaks as fusion power reactors. The aims are to determine the potential economics, safety, and environmental features of a range of possible tokamak reactors, and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Three ARIES visions are planned, each having a different degree of extrapolation from the present data base in physics and technology. The ARIES-I design assumes a minimum extrapolation from current tokamak physics (e.g., 1st stability) and incorporates technological advances that can be available in the next 20 to 30 years. ARIES-II is a DT-burning tokamak which would operate at a higher beta in the 2nd MHD stability regime. It employs both potential advances in the physics and expected advances in technology and engineering. ARIES-II will examine the potential of the tokamak and the D 3 He fuel cycle. This report is a collection of 14 papers on the results of the ARIES study which were presented at the IEEE 13th Symposium on Fusion Engineering (October 2-6, 1989, Knoxville, TN). This collection describes the ARIES research effort, with emphasis on the ARIES-I design, summarizing the major results, the key technical issues, and the central conclusions

  14. Probing supersymmetry based on precise jet measurements at the CMS experiment

    CERN Document Server

    Goebel, Kristin; Sander, Christian

    Abstract The search for new physics beyond the standard model of particle physics is one of the main goals of the CMS experiment at the CERN Large Hadron Collider. Many theories, for instance supersymmetry, involve the possible production of new coloured particles which feature jets as their experimental signature. Thus, it is important to have a good understanding of jet-related properties in order to allow such searches. In the rst part of this thesis, a measurement of the jet transverse-momentum resolution is presented. This is based on the analysis of proton-proton collision data recorded at a centre-of-mass energy of p s = 8 TeV by the CMS experiment. The measurement utilizes the transverse momentum balance of dijet events at particle level. The main focus is on the determination of the data-to-simulation ratio of the jet transverse-momentum resolution which can be used to correct the jet resolution in simulated events to match the one observed in data. This ratio has been determined with a signicantly i...

  15. JET Joint Undertaking

    International Nuclear Information System (INIS)

    Keen, B.E.; Kupschus, P.

    1984-09-01

    The report is in sections, as follows. (1) Introduction and summary. (2) A brief description of the origins of the JET Project within the EURATOM fusion programme and the objectives and aims of the device. The basic JET design and the overall philosophy of operation are explained and the first six months of operation of the machine are summarised. The Project Team Structure adopted for the Operation Phase is set out. Finally, in order to set JET's progress in context, other large tokamaks throughout the world and their achievements are briefly described. (3) The activities and progress within the Operation and Development Department are set out; particularly relating to its responsibilities for the operation and maintenance of the tokamak and for developing the necessary engineering equipment to enhance the machine to full performance. (4) The activities and progress within the Scientific Department are described; particularly relating to the specification, procurement and operation of diagnostic equipment; definition and execution of the programme; and the interpretation of experimental results. (5) JET's programme plans for the immediate future and a broad outline of the JET Development Plan to 1990 are given. (author)

  16. Varennes Tokamak

    International Nuclear Information System (INIS)

    Cumyn, P.B.

    A consortium of five organizations under the leadership of IREQ, the Institute de Recherche d'Hydro-Quebec has completed a conceptual design study for a tokamak device, and in January 1981 its construction was authorized with funding being provided principally by Hydro-Quebec and the National Research Council, as well as by the Ministre d'Education du Quebec and Natural Sciences and Engineering Research Council of Canada (NSERC). The device will form the focus of Canada's magnetic-fusion program and will be located in IREQ's laboratories in Varennes. Presently the machine layout is being finalized from the physics point of view and work has started on equipment design and specification. The Tokamak de Varennes will be an experimental device, the purpose of which is to study plasma and other fusion related phenomena. In particular it will study: 1. Plasma impurities and plasma/liner interaction; 2. Long pulse or quasi-continuous operation using plasma rampdown and eventually plasma current reversal in order to maintain the plasma; and 3. Advanced diagnostics

  17. Tokamaks - Third Edition

    International Nuclear Information System (INIS)

    Rogister, A L

    2004-01-01

    an introduction to diagnostics for tokamaks. The complexity of fusion plasmas is attested to by the discovery of new phenomena and new operational regimes as machine size and power increased and the diagnostic tools improved over the forty years of research on magnetic confinement. The history of those discoveries in the devices which have been built worldwide after the results obtained on the first tokamaks at the Kurchatov Institute had been confirmed is outlined in chapters 11-12. Particular emphasis is naturally given to the results from the larger tokamaks: ASDEX Upgrade, DIII-D, TFTR, JT-60/JT-60U and JET. Chapter 13 is devoted to the International Tokamak Experimental Reactor and prospects beyond ITER. Examples of operational regimes and of often unexpected phenomena are the linear and saturated ohmic confinement modes, confinement degradation when auxiliary heating is applied, the high energy confinement mode, the formation of internal transport barriers in weak or negative central shear discharges, sawtooth relaxations, disruptions, multifaceted asymmetric radiation from the edge, edge localised modes, etc. The relevant observations are described very thoroughly with the support of numerous selected figures and their physical interpretation, a major topic of the book, is carefully discussed on the basis of simplified but convincing mathematical models. With respect to the previous edition (1997), a few additions have been introduced; those concern plasma rotation (section 3.13), internal transport barriers (4.14), the role of radial electric field shear (4.19), turbulence simulations (4.21), impurity transport (4.22) and neoclassical drive of tearing modes (7.3). It is my personal feeling that some of those additions should have been somewhat more elaborated. A few pages have finally been added concerning the TCV, START, MAST, NSTX and ASDEX Upgrade tokamaks. With this book, John Wesson offers the fusion community a very precious and thorough survey of

  18. The JET project and the European fusion research programme

    International Nuclear Information System (INIS)

    Wuester, H.-O.

    1984-01-01

    The paper concerns the Joint European Torus (JET) project and the European Fusion Research Programme. Fusion as an energy source and commercial fusion power are briefly discussed. The main features of the JET apparatus and the tokamak magnetic field configuration are given. Also described are the specific aims of JET, and the proposed future fusion reactor programme. (U.K.)

  19. Digital decoration by continuous ink jet system for ceramic products based in water inks

    International Nuclear Information System (INIS)

    Colores Ceramicos, S. A.; Talleres Foro, S. L.

    2010-01-01

    A new continuous ink jet system for digital ceramic decoration using water based dispersed ceramic pigment has been developed, that increases drastically the sustainability of the process. During the development of this work, different equipment for any application and the consumables and design tools have been also developed. (Author)

  20. Moeller polarimeter for VEPP-3 storage ring based on internal polarized gas jet target

    International Nuclear Information System (INIS)

    Dyug, M.V.; Grigoriev, A.V.; Kiselev, V.A.; Lazarenko, B.A.; Levichev, E.B.; Mikaiylov, A.I.; Mishnev, S.I.; Nikitin, S.A.; Nikolenko, D.M.; Rachek, I.A.; Shestakov, Yu.V.; Toporkov, D.K.; Zevakov, S.A.; Zhilich, V.N.

    2005-01-01

    A new method to determine the polarization of an electron beam circulating in a storage ring by a non-destructive way, based on measuring the asymmetry in scattering of beam electrons on electrons of the internal polarized gas jet target, has been developed and tested at the VEPP-3 storage ring

  1. High Performance Computation of a Jet in Crossflow by Lattice Boltzmann Based Parallel Direct Numerical Simulation

    Directory of Open Access Journals (Sweden)

    Jiang Lei

    2015-01-01

    Full Text Available Direct numerical simulation (DNS of a round jet in crossflow based on lattice Boltzmann method (LBM is carried out on multi-GPU cluster. Data parallel SIMT (single instruction multiple thread characteristic of GPU matches the parallelism of LBM well, which leads to the high efficiency of GPU on the LBM solver. With present GPU settings (6 Nvidia Tesla K20M, the present DNS simulation can be completed in several hours. A grid system of 1.5 × 108 is adopted and largest jet Reynolds number reaches 3000. The jet-to-free-stream velocity ratio is set as 3.3. The jet is orthogonal to the mainstream flow direction. The validated code shows good agreement with experiments. Vortical structures of CRVP, shear-layer vortices and horseshoe vortices, are presented and analyzed based on velocity fields and vorticity distributions. Turbulent statistical quantities of Reynolds stress are also displayed. Coherent structures are revealed in a very fine resolution based on the second invariant of the velocity gradients.

  2. JET and COMPASS asymmetrical disruptions

    Czech Academy of Sciences Publication Activity Database

    Gerasimov, S.N.; Abreu, P.; Baruzzo, M.; Drozdov, V.; Dvornova, A.; Havlíček, Josef; Hender, T.C.; Hronová-Bilyková, Olena; Kruezi, U.; Li, X.; Markovič, Tomáš; Pánek, Radomír; Rubinacci, G.; Tsalas, M.; Ventre, S.; Villone, F.; Zakharov, L.E.

    2015-01-01

    Roč. 55, č. 11 (2015), s. 113006-113006 ISSN 0029-5515 R&D Projects: GA MŠk(CZ) LM2011021 Institutional support: RVO:61389021 Keywords : tokamak * asymmetrical disruption * JET * COMPASS Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 4.040, year: 2015

  3. Economic evaluation of tokamak power plants

    International Nuclear Information System (INIS)

    Reid, R.L.; Steiner, D.

    1977-01-01

    This study reports the impact of plasma operating characteristics, engineering options, and technology on the capital cost trends of tokamak power plants. Tokamak power systems are compared to other advanced energy systems and found to be economically competitive. A three-phase strategy for demonstrating commercial feasibility of fusion power, based on a common-site multiple-unit concept, is presented

  4. A new high speed, Ultrascale+ based board for the ATLAS jet calorimeter trigger system

    CERN Document Server

    Rocco, Elena; The ATLAS collaboration

    2018-01-01

    A new high speed Ultrascale+ based board for the ATLAS jet calorimeter trigger system To cope with the enhanced luminosity at the Large Hadron Collider (LHC) in 2021, the ATLAS collaboration is planning a major detector upgrade. As a part of this, the Level 1 trigger based on calorimeter data will be upgraded to exploit the fine granularity readout using a new system of Feature EXtractors (FEX), which each reconstruct different physics objects for the trigger selection. The jet FEX (jFEX) system is conceived to provide jet identification (including large area jets) and measurements of global variables within a latency budget of less then 400ns. It consists of 6 modules. A single jFEX module is an ATCA board with 4 large FPGAs of the Xilinx Ultrascale+ family, that can digest a total input data rate of ~3.6 Tb/s using up to 120 Multi Gigabit Transceiver (MGT), 24 electrical optical devices, board control and power on the mezzanines to allow flexibility in upgrading controls functions and components without aff...

  5. Atmospheric pressure plasma jet with high-voltage power supply based on piezoelectric transformer.

    Science.gov (United States)

    Babij, Michał; Kowalski, Zbigniew W; Nitsch, Karol; Silberring, Jerzy; Gotszalk, Teodor

    2014-05-01

    The dielectric barrier discharge plasma jet, an example of the nonthermal atmospheric pressure plasma jet (APPJ), generates low-temperature plasmas that are suitable for the atomization of volatile species and can also be served as an ionization source for ambient mass and ion mobility spectrometry. A new design of APPJ for mass spectrometry has been built in our group. In these plasma sources magnetic transformers (MTs) and inductors are typically used in power supplies but they present several drawbacks that are even more evident when dealing with high-voltage normally used in APPJs. To overcome these disadvantages, high frequency generators with the absence of MT are proposed in the literature. However, in the case of miniaturized APPJs these conventional power converters, built of ferromagnetic cores and inductors or by means of LC resonant tank circuits, are not so useful as piezoelectric transformer (PT) based power converters due to bulky components and small efficiency. We made and examined a novel atmospheric pressure plasma jet with PT supplier served as ionization source for ambient mass spectrometry, and especially mobile spectrometry where miniaturization, integration of components, and clean plasma are required. The objective of this paper is to describe the concept, design, and implementation of this miniaturized piezoelectric transformer-based atmospheric pressure plasma jet.

  6. Atmospheric pressure plasma jet with high-voltage power supply based on piezoelectric transformer

    Energy Technology Data Exchange (ETDEWEB)

    Babij, Michał; Kowalski, Zbigniew W., E-mail: zbigniew.w.kowalski@pwr.wroc.pl; Nitsch, Karol; Gotszalk, Teodor [Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław (Poland); Silberring, Jerzy [AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059 Kraków (Poland)

    2014-05-15

    The dielectric barrier discharge plasma jet, an example of the nonthermal atmospheric pressure plasma jet (APPJ), generates low-temperature plasmas that are suitable for the atomization of volatile species and can also be served as an ionization source for ambient mass and ion mobility spectrometry. A new design of APPJ for mass spectrometry has been built in our group. In these plasma sources magnetic transformers (MTs) and inductors are typically used in power supplies but they present several drawbacks that are even more evident when dealing with high-voltage normally used in APPJs. To overcome these disadvantages, high frequency generators with the absence of MT are proposed in the literature. However, in the case of miniaturized APPJs these conventional power converters, built of ferromagnetic cores and inductors or by means of LC resonant tank circuits, are not so useful as piezoelectric transformer (PT) based power converters due to bulky components and small efficiency. We made and examined a novel atmospheric pressure plasma jet with PT supplier served as ionization source for ambient mass spectrometry, and especially mobile spectrometry where miniaturization, integration of components, and clean plasma are required. The objective of this paper is to describe the concept, design, and implementation of this miniaturized piezoelectric transformer-based atmospheric pressure plasma jet.

  7. Tokamak physics

    International Nuclear Information System (INIS)

    Haines, M.G.

    1984-01-01

    The physical conditions required for breakeven in thermonuclear fusion are derived, and the early conceptual ideas of magnetic confinement and subsequent development are followed, leading to present-day large scale tokamak experiments. Confinement and diffusion are developed in terms of particle orbits, whilst magnetohydrodynamic stability is discussed from energy considerations. From these ideas are derived the scaling laws that determine the physical size and parameters of this fusion configuration. It becomes clear that additional heating is required. However there are currently several major gaps in our understanding of experiments; the causes of anomalous electron energy loss and the major current disruption, the absence of the 'bootstrap' current and what physics determines the maximum plasma pressure consistent with stability. The understanding of these phenomena is a major challenge to plasma physicists. (author)

  8. Magnetic confinement experiment. I: Tokamaks

    International Nuclear Information System (INIS)

    Goldston, R.J.

    1995-08-01

    Reports were presented at this conference of important advances in all the key areas of experimental tokamak physics: Core Plasma Physics, Divertor and Edge Physics, Heating and Current Drive, and Tokamak Concept Optimization. In the area of Core Plasma Physics, the biggest news was certainly the production of 9.2 MW of fusion power in the Tokamak Fusion Test Reactor, and the observation of unexpectedly favorable performance in DT plasmas. There were also very important advances in the performance of ELM-free H- (and VH-) mode plasmas and in quasi-steady-state ELM'y operation in JT-60U, JET, and DIII-D. In all three devices ELM-free H-modes achieved nTτ's ∼ 2.5x greater than ELM'ing H-modes, but had not been sustained in quasi-steady-state. Important progress has been made on the understanding of the physical mechanism of the H-mode in DIII-D, and on the operating range in density for the H-mode in Compass and other devices

  9. JET contributions to the workshop on the new phase for JET: the pumped divertor proposal

    International Nuclear Information System (INIS)

    1989-09-01

    Contributions to the Workshop consist of 13 papers on the new phase of operation of JET, including an outline of the objectives of the study of impurity control and the operating domain relative to the next generation of tokamaks. Studies are presented on the pumped divertor proposed for JET, diagnostic measurements required, and the performance expectations in the new configuration. (U.K.)

  10. Base isolation technique for tokamak type fusion reactor using adaptive control

    International Nuclear Information System (INIS)

    Koizumi, T.; Tsujiuchi, N.; Kishimoto, F.; Iida, H.; Fujita, T.

    1991-01-01

    In this paper relating to the isolation device of heavy structure such as nuclear fusion reactor, a control rule for reducing the response acceleration and relative displacement simultaneously was formulated, and the aseismic performance was improved by employing the adaptive control method of changing the damping factors of the system adaptively every moment. The control rule was studied by computer simulation, and the aseismic effect was evaluated in an experiment employing a scale model. As a results, the following conclusions were obtained. (1) By employing the control rule presented in this paper, both absolute acceleration and relative displacement can be reduced simultaneously without making the system unstable. (2) By introducing this control rule in a scale model assuming the Tokamak type fusion reactor, the response acceleration can be suppressed down to 78 % and also the relative displacement to 79 % as compared with the conventional aseismic method. (3) The sensitivities of absolute acceleration and relative displacement with respect to the control gain are not equal. However, by employing the relative weighting factor between the absolute acceleration and relative displacement, it is possible to increase the control capability for any kind of objective structures and appliances. (author)

  11. Theory and theory-based models for the pedestal, edge stability and ELMs in tokamaks

    International Nuclear Information System (INIS)

    Guzdar, P.N.; Mahajan, S.M.; Yoshida, Z.; Dorland, W.; Rogers, B.N.; Bateman, G.; Kritz, A.H.; Pankin, A.; Voitsekhovitch, I.; Onjun, T.; Snyder, S.

    2005-01-01

    Theories for equilibrium and stability of H-modes, and models for use within integrated modeling codes with the objective of predicting the height, width and shape of the pedestal at the edge of H-mode plasmas in tokamaks, as well as the onset and frequency of Edge Localized Modes (ELMs), are developed. A theory model for relaxed plasma states with flow, which uses two-fluid Hall-MHD equations, predicts that the natural scale length of the pedestal is the ion skin depth and the pedestal width is larger than the ion poloidal gyro-radius, in agreement with experimental observations. Computations with the GS2 code are used to identify micro-instabilities, such as electron drift waves, that survive the strong flow shear, diamagnetic flows, and magnetic shear that are characteristic of the pedestal. Other instabilities on the pedestal and gyro-radius scale, such as the Kelvin-Helmholtz instability, are also investigated. Time-dependent integrated modeling simulations are used to follow the transition from L-mode to H-mode and the subsequent evolution of ELMs as the heating power is increased. The flow shear stabilization that produces the transport barrier at the edge of the plasma reduces different modes of anomalous transport and, consequently, different channels of transport at different rates. ELM crashes are triggered in the model by pressure-driven ballooning modes or by current-driven peeling modes. (author)

  12. Plasma shape reconstruction of merging spherical tokamak based on modified CCS method

    Science.gov (United States)

    Ushiki, Tomohiko; Inomoto, Michiaki; Itagaki, Masafumi; McNamara, Steven

    2017-10-01

    The merging start-up method is the one of the CS-free start-up schemes that has the advantage of high plasma temperature and density because it involves reconnection heating and compression processes. In order to achieve optimal merging operations, the initial two STs should have identical plasma currents and shapes, and then move symmetrically toward the center of the device with appropriate velocity. Furthermore, from the viewpoint of the compression effect, controlling the plasma major radius is also important. To realize the active feedback control of the plasma currents, the positions, and the shapes of the two initial STs and to optimize the plasma parameters described above, accurate estimation of the plasma boundary shape is highly important. In the present work, the Modified-CCS method is demonstrated to reconstruct the plasma boundary shapes as well as the eddy current profiles in the UTST (The University of Tokyo) and ST40 device (Tokamak Energy Ltd). The present research results demonstrate the effectiveness of the M-CCS method in the reconstruction analyses of ST merging.

  13. Jet Joint Undertaking. Vol. 2

    International Nuclear Information System (INIS)

    1989-06-01

    The scientific, technical, experimental and theoretical investigations related to JET tokamak are presented. The JET Joint Undertaking, Volume 2, includes papers presented at: the 15th European Conference on controlled fusion and plasma heating, the 15th Symposium on fusion technology, the 12th IAEA Conference on plasma physics and controlled nuclear fusion research, the 8th Topical Meeting on technology of fusion. Moreover, the following topics, concerning JET, are discussed: experience with wall materials, plasma performance, high power ion cyclotron resonance heating, plasma boundary, results and prospects for fusion, preparation for D-T operation, active gas handling system and remote handling equipment

  14. Enhanced fuel efficiency on tractor-trailers using synthetic jet-based active flow control

    Science.gov (United States)

    Amitay, Michael; Menicovich, David; Gallardo, Daniele

    2016-04-01

    The application of piezo-electrically-driven synthetic-jet-based active flow control to reduce drag on tractor-trailers was explored experimentally in wind tunnel testing as well as full-scale road tests. Aerodynamic drag accounts for more than 50% of the usable energy at highway speeds, a problem that applies primarily to trailer trucks. Therefore, a reduction in aerodynamic drag results in large saving of fuel and reduction in CO2 emissions. The active flow control technique that is being used relies on a modular system comprised of distributed, small, highly efficient actuators. These actuators, called synthetic jets, are jets that are synthesized at the edge of an orifice by a periodic motion of a piezoelectric diaphragm(s) mounted on one (or more) walls of a sealed cavity. The synthetic jet is zero net mass flux (ZNMF), but it allows momentum transfer to flow. It is typically driven near diaphragm and/or cavity resonance, and therefore, small electric input [O(10W)] is required. Another advantage of this actuator is that no plumbing is required. The system doesn't require changes to the body of the truck, can be easily reconfigured to various types of vehicles, and consumes small amounts of electrical power from the existing electrical system of the truck. Preliminary wind tunnel results showed up to 18% reduction in fuel consumption, whereas road tests also showed very promising results.

  15. The technological achievements and experience at JET

    International Nuclear Information System (INIS)

    Pick, M.A.

    1999-01-01

    The Joint European Torus, JET, the largest and most successful Tokamak in the world, was conceived from the start as a research project with very ambitious aims and a bold approach to extrapolations of the physics and technology base as well as the international nature of its organisation. Throughout its operating life the JET team has maintained this approach and, with its innovative and flexible design, has extended its performance far beyond the initially intended boundaries thereby retaining a lead in virtually all areas of fusion research. The team has shown a willingness to venture far beyond the technology base of the time into new areas and dimensions. The paper will highlight a few examples which illustrate the approach taken in JET to work closely with industry and the European Associations to extend the technology beyond the current state of the art whilst maintaining a tight grip on the fundamental requirements of cost and time schedule. These range from large scale integrated systems as well as small scale technological breakthroughs. Large scale systems include the Active Gas Handling System for the on-line reprocessing of the tritium-deuterium fuel, the Remote Handling System which was integrated into the JET machine from the very beginning, the JET Power Supply system as well as, most importantly, the design of the JET structure itself which permitted the fast maintenance and repair of all major sub-units. Other notable advances include the Neutral Beam Injection and Radio Frequency Heating systems, the large open structure cryo-pumps and the novel cryo-transmission lines. Some of the associated technologies required major advances in the area of diagnostics, high power handling components, carbon fibre reinforced carbon materials as well as in the whole field of beryllium technology and beryllium handling. (orig.)

  16. Laminated chemical and physical micro-jet actuators based on conductive media

    Science.gov (United States)

    Gadiraju, Priya D.

    2008-04-01

    This dissertation presents the development of electrically-powered, lamination-based microactuators for the realization of large arrays of high impulse and short duration micro-jets with potential applications in the field of micro-electro-mechanical systems (MEMS). Microactuators offer unique control opportunities by converting the input electrical or chemical energy stored in a propellant into useful mechanical energy. This small and precise control obtained can potentially be applied towards aerodynamic control and transdermal drug delivery applications. This thesis work discusses the feasibility of using microactuators for two such applications: Control of the motion of a spinning projectile by utilizing the chemically-driven microjets ejected from the actuators, and enhancement of the permeability properties of skin by selectively ablating the stratum corneum layer of skin using the physical microjets ejected from the actuators. This enhanced permeability of skin can later be used for the delivery of high molecular weight drugs for transdermal drug delivery. The development of electrically powered microactuators starts by fabricating an array of radially firing microactuators using lamination-based microfabrication techniques that potentially enable batch fabrication at low cost. The microactuators of this thesis consist of three main parts: a micro chamber in which the propellant is stored; two electrode structures through which electrical energy is supplied to the propellant; and a micro nozzle through which the propellant or released gases from the propellant are expanded as a jet. Once the actuators are fabricated, they are integrated with MEMS-process-compatible propellants and optimized so as to produce instantaneous ignition of the propellant. This instantaneous ignition is achieved either by making the propellant itself conductive, thus, passing an electric current directly through the propellant; or by discharging an arc across the propellant by

  17. PPPL tokamak program

    International Nuclear Information System (INIS)

    Furth, H.P.

    1984-10-01

    The economic prospects of the tokamak are reviewed briefly and found to be favorable - if the size of ignited tokamak plasmas can be kept small and appropriate auxiliary systems can be developed. The main objectives of the Princeton Plasma Physics Laboratory tokamak program are: (1) exploration of the physics of high-temperature toroidal confinement, in TFTR; (2) maximization of the tokamak beta value, in PBX; (3) development of reactor-relevant rf techniques, in PLT

  18. Steady state technologies for tokamak based fusion neutron sources and hybrids

    International Nuclear Information System (INIS)

    Azizov, E.A.; Kuteev, B.V.

    2015-01-01

    Full text of publication follows. The development of demonstration fusion neutron sources for fusion nuclear science activity and hybrid applications has reached the stage of conceptual design on the basis of tokamak device in Russia. The conceptual design of FNS-ST has been completed in details (plasma current 1.5 MA, magnetic field 1.5 T, major radius 0.5 m, aspect ratio 1.67 and auxiliary heating power up to 15 MW) [1, 2]. A comparison of physical plasma parameters and economics for FNS-ST and a conventional tokamak FNS-CT (plasma current 1.5 MA, magnetic field 6.7 T, major radius 2.25 m, aspect ratio 3 and auxiliary heating power up to 30 MW) has been fulfilled [3]. This study suggested the feasibility to reach 1-20 MW of fusion power using these magnetic configuration options. Nevertheless, the efficiency of neutron production Q remains comparable for both due to the beam fusion input. The total ST-economics for the full project including operation and utilization costs is by a factor of 2 better than of CT. Zero [4] and one-dimensional [5] models have been developed and used in this system analysis. The characteristics of plasma confinement, stability and current drive in operation have been confirmed by numerous benchmarking simulations of modern experiments. Scenarios allowing us to reach and maintain steady state operation have been considered and optimized. The results of these studies will be presented. Prospective technical solutions for SSO-technology systems have been evaluated, and the choice of enabling technologies and materials of the basic FNS options has been made. A conceptual design of a thin-wall water cooled vacuum chamber for heat loadings up to 1.5 MW/m 2 has been fulfilled. The chamber consists of 2 mm Be tiles, pre-shaped CuCrZr 1 mm shell and 1 mm of stainless steel shell as a structural material. A concept of double-null divertor for FNS-ST has been offered that is capable to withstand heat fluxes up to 6 MW/m 2 . Lithium dust

  19. Theory-based model for the pedestal, edge stability and ELMs in tokamaks

    International Nuclear Information System (INIS)

    Pankin, A.Y.; Bateman, G.; Brennan, D.P.; Schnack, D.D.; Snyder, P.B.; Voitsekhovitch, I.; Kritz, A.H.; Janeschitz, G.; Kruger, S.; Onjun, T.; Pacher, G.W.; Pacher, H.D.

    2006-01-01

    An improved model for triggering edge localized mode (ELM) crashes is developed for use within integrated modelling simulations of the pedestal and ELM cycles at the edge of H-mode tokamak plasmas. The new model is developed by using the BALOO, DCON and ELITE ideal MHD stability codes to derive parametric expressions for the ELM triggering threshold. The whole toroidal mode number spectrum is studied with these codes. The DCON code applies to low mode numbers, while the BALOO code applies to only high mode numbers and the ELITE code applies to intermediate and high mode numbers. The variables used in the parametric stability expressions are the normalized pressure gradient and the parallel current density, which drive ballooning and peeling modes. Two equilibria motivated by DIII-D geometry with different plasma triangularities are studied. It is found that the stable region in the high triangularity discharge covers a much larger region of parameter space than the corresponding stability region in the low triangularity discharge. The new ELM trigger model is used together with a previously developed model for pedestal formation and ELM crashes in the ASTRA integrated modelling code to follow the time evolution of the temperature profiles during ELM cycles. The ELM frequencies obtained in the simulations of low and high triangularity discharges are observed to increase with increasing heating power. There is a transition from second stability to first ballooning mode stability as the heating power is increased in the high triangularity simulations. The results from the ideal MHD stability codes are compared with results from the resistive MHD stability code NIMROD

  20. JET Joint Undertaking

    International Nuclear Information System (INIS)

    Keen, B.E.

    1986-03-01

    This is an overview summary of the scientific and technical advances at JET during the year 1985, supplemented by appendices of detailed contributions (in preprint form) of eight of the more important JET articles produced during that year. It is aimed not only at specialists and experts but also at a more general scientific community. Thus there is a brief summary of the background to the project, a description of the basic objectives of JET and the principle design features of the machine. The new structure of the Project Team is also explained. Developments and future plans are included. Improvements considered are those which are designed to overcome certain limitations encountered generally on Tokamaks, particularly those concerned with density limits, with plasma MHD behaviour, with impurities and with plasma transport. There is also a complete list of articles, reports and conference papers published in 1985 - there are 167 such items listed. (UK)

  1. Status of tokamak research

    International Nuclear Information System (INIS)

    Rawls, J.M.

    1979-10-01

    An overall review of the tokamak program is given with particular emphasis upon developments over the past five years in the theoretical and experimental elements of the program. A summary of the key operating parameters for the principal tokamaks throughout the world is given. Also discussed are key issues in plasma confinement, plasma heating, and tokamak design

  2. Development of the scintillator-based probe for fast-ion losses in the HL-2A tokamak

    International Nuclear Information System (INIS)

    Zhang, Y. P.; Liu, Yi; Yuan, G. L.; Song, X. Y.; Yang, J. W.; Li, X.; Chen, W.; Li, Y.; Yan, L. W.; Song, X. M.; Yang, Q. W.; Duan, X. R.; Luo, X. B.; Liu, Y. Q.; Hua, Y.; Isobe, M.

    2014-01-01

    A new scintillator-based lost fast-ion probe (SLIP) has been developed and operated in the HL-2A tokamak [L. W. Yan, X. R. Duan, X. T. Ding, J. Q. Dong, Q. W. Yang, Yi Liu, X. L. Zou, D. Q. Liu, W. M. Xuan, L. Y. Chen, J. Rao, X. M. Song, Y. Huang, W. C. Mao, Q. M. Wang, Q. Li, Z. Cao, B. Li, J. Y. Cao, G. J. Lei, J. H. Zhang, X. D. Li, W. Chen, J. Chen, C. H. Cui, Z. Y. Cui, Z. C. Deng, Y. B. Dong, B. B. Feng, Q. D. Gao, X. Y. Han, W. Y. Hong, M. Huang, X. Q. Ji, Z. H. Kang, D. F. Kong, T. Lan, G. S. Li, H. J. Li, Qing Li, W. Li, Y. G. Li, A. D. Liu, Z. T. Liu, C. W. Luo, X. H. Mao, Y. D. Pan, J. F. Peng, Z. B. Shi, S. D. Song, X. Y. Song, H. J. Sun, A. K. Wang, M. X. Wang, Y. Q. Wang, W. W. Xiao, Y. F. Xie, L. H. Yao, D. L. Yu, B. S. Yuan, K. J. Zhao, G. W. Zhong, J. Zhou, J. C. Yan, C. X. Yu, C. H. Pan, Y. Liu, and the HL-2A Team , Nucl. Fusion 51, 094016 (2011)] to measure the losses of neutral beam ions. The design of the probe is based on the concept of the α-particle detectors on Tokamak Fusion Test Reactor (TFTR) using scintillator plates. The probe is capable of traveling across an equatorial plane port and sweeping the aperture angle rotationally with respect to the axis of the probe shaft by two step motors, in order to optimize the radial position and the collimator angle. The energy and the pitch angle of the lost fast ions can be simultaneously measured if the two-dimensional image of scintillation light intensity due to the impact of the lost fast ions is detected. Measurements of the fast-ion losses using the probe have been performed during HL-2A neutral beam injection discharges. The clear experimental evidence of enhanced losses of beam ions during disruptions has been obtained by means of the SLIP system. A detailed description of the probe system and the first experimental results are reported

  3. Development of the scintillator-based probe for fast-ion losses in the HL-2A tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y. P., E-mail: zhangyp@swip.ac.cn; Liu, Yi; Yuan, G. L.; Song, X. Y.; Yang, J. W.; Li, X.; Chen, W.; Li, Y.; Yan, L. W.; Song, X. M.; Yang, Q. W.; Duan, X. R. [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041 (China); Luo, X. B.; Liu, Y. Q.; Hua, Y. [Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610041 (China); Isobe, M. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5259 (Japan)

    2014-05-15

    A new scintillator-based lost fast-ion probe (SLIP) has been developed and operated in the HL-2A tokamak [L. W. Yan, X. R. Duan, X. T. Ding, J. Q. Dong, Q. W. Yang, Yi Liu, X. L. Zou, D. Q. Liu, W. M. Xuan, L. Y. Chen, J. Rao, X. M. Song, Y. Huang, W. C. Mao, Q. M. Wang, Q. Li, Z. Cao, B. Li, J. Y. Cao, G. J. Lei, J. H. Zhang, X. D. Li, W. Chen, J. Chen, C. H. Cui, Z. Y. Cui, Z. C. Deng, Y. B. Dong, B. B. Feng, Q. D. Gao, X. Y. Han, W. Y. Hong, M. Huang, X. Q. Ji, Z. H. Kang, D. F. Kong, T. Lan, G. S. Li, H. J. Li, Qing Li, W. Li, Y. G. Li, A. D. Liu, Z. T. Liu, C. W. Luo, X. H. Mao, Y. D. Pan, J. F. Peng, Z. B. Shi, S. D. Song, X. Y. Song, H. J. Sun, A. K. Wang, M. X. Wang, Y. Q. Wang, W. W. Xiao, Y. F. Xie, L. H. Yao, D. L. Yu, B. S. Yuan, K. J. Zhao, G. W. Zhong, J. Zhou, J. C. Yan, C. X. Yu, C. H. Pan, Y. Liu, and the HL-2A Team , Nucl. Fusion 51, 094016 (2011)] to measure the losses of neutral beam ions. The design of the probe is based on the concept of the α-particle detectors on Tokamak Fusion Test Reactor (TFTR) using scintillator plates. The probe is capable of traveling across an equatorial plane port and sweeping the aperture angle rotationally with respect to the axis of the probe shaft by two step motors, in order to optimize the radial position and the collimator angle. The energy and the pitch angle of the lost fast ions can be simultaneously measured if the two-dimensional image of scintillation light intensity due to the impact of the lost fast ions is detected. Measurements of the fast-ion losses using the probe have been performed during HL-2A neutral beam injection discharges. The clear experimental evidence of enhanced losses of beam ions during disruptions has been obtained by means of the SLIP system. A detailed description of the probe system and the first experimental results are reported.

  4. Development of the scintillator-based probe for fast-ion losses in the HL-2A tokamak

    Science.gov (United States)

    Zhang, Y. P.; Liu, Yi; Luo, X. B.; Isobe, M.; Yuan, G. L.; Liu, Y. Q.; Hua, Y.; Song, X. Y.; Yang, J. W.; Li, X.; Chen, W.; Li, Y.; Yan, L. W.; Song, X. M.; Yang, Q. W.; Duan, X. R.

    2014-05-01

    A new scintillator-based lost fast-ion probe (SLIP) has been developed and operated in the HL-2A tokamak [L. W. Yan, X. R. Duan, X. T. Ding, J. Q. Dong, Q. W. Yang, Yi Liu, X. L. Zou, D. Q. Liu, W. M. Xuan, L. Y. Chen, J. Rao, X. M. Song, Y. Huang, W. C. Mao, Q. M. Wang, Q. Li, Z. Cao, B. Li, J. Y. Cao, G. J. Lei, J. H. Zhang, X. D. Li, W. Chen, J. Chen, C. H. Cui, Z. Y. Cui, Z. C. Deng, Y. B. Dong, B. B. Feng, Q. D. Gao, X. Y. Han, W. Y. Hong, M. Huang, X. Q. Ji, Z. H. Kang, D. F. Kong, T. Lan, G. S. Li, H. J. Li, Qing Li, W. Li, Y. G. Li, A. D. Liu, Z. T. Liu, C. W. Luo, X. H. Mao, Y. D. Pan, J. F. Peng, Z. B. Shi, S. D. Song, X. Y. Song, H. J. Sun, A. K. Wang, M. X. Wang, Y. Q. Wang, W. W. Xiao, Y. F. Xie, L. H. Yao, D. L. Yu, B. S. Yuan, K. J. Zhao, G. W. Zhong, J. Zhou, J. C. Yan, C. X. Yu, C. H. Pan, Y. Liu, and the HL-2A Team, Nucl. Fusion 51, 094016 (2011)] to measure the losses of neutral beam ions. The design of the probe is based on the concept of the α-particle detectors on Tokamak Fusion Test Reactor (TFTR) using scintillator plates. The probe is capable of traveling across an equatorial plane port and sweeping the aperture angle rotationally with respect to the axis of the probe shaft by two step motors, in order to optimize the radial position and the collimator angle. The energy and the pitch angle of the lost fast ions can be simultaneously measured if the two-dimensional image of scintillation light intensity due to the impact of the lost fast ions is detected. Measurements of the fast-ion losses using the probe have been performed during HL-2A neutral beam injection discharges. The clear experimental evidence of enhanced losses of beam ions during disruptions has been obtained by means of the SLIP system. A detailed description of the probe system and the first experimental results are reported.

  5. Very forward jet, Mueller Navelet jets and jet gap jet measurements in CMS

    CERN Document Server

    Cerci, Salim

    2018-01-01

    The measurements of very forward jet, Mueller-Navelet jets and jet-gap-jet events are presented for different collision energies. The analyses are based on data collected with the CMS detector at the LHC. Jets are defined through the anti-$k_\\mathrm{t}$ clustering algorithm for different cone sizes. Jet production studies provide stringent tests of quantum chromodynamics (QCD) and contribute to tune Monte Carlo (MC) simulations and phenomenological models. The measurements are compared to predictions from various Monte Carlo event generators.

  6. Plasma boundary phenomena in tokamaks

    International Nuclear Information System (INIS)

    Stangeby, P.C.

    1989-06-01

    The focus of this review is on processes occurring at the edge, and on the connection between boundary plasma - the scrape-off layer (SOL) and the radiating layer - and central plasma processes. Techniques used for edge diagnosis are reviewed and basic experimental information (n e and T e ) is summarized. Simple models of the SOL are summarized, and the most important effects of the boundary plasma - the influence on the fuel particles, impurities, and energy - on tokamak operation dealt with. Methods of manipulating and controlling edge conditions in tokamaks and the experimental data base for the edge during auxiliary heating of tokamaks are reviewed. Fluctuations and asymmetries at the edge are also covered. (9 tabs., 134 figs., 879 refs.)

  7. Understanding of hysteresis behaviors at the L-H-L transitions in tokamak plasma based on bifurcation concept

    Energy Technology Data Exchange (ETDEWEB)

    Chatthong, B. [Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkla (Thailand); Onjun, T. [School of Manufacturing Systems and Mechanical Engineering, Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani (Thailand)

    2016-08-15

    The hysteresis behaviour at the L-H-L transitions in tokamak plasma is investigated based on bifurcation concept. The formation of an edge transport barrier (ETB) is modeled via thermal and particle transport equations with the flow shear suppression effect on anomalous transport included. The anomalous transport is modeled based on critical gradients threshold and the flow shear is calculated from the force balance equation, couples the two transport equations leading to a non-linear behaviour. Analytical investigation reveals that the fluxes versus gradients space exhibits bifurcation behaviour with s -curve soft bifurcation type. Apparently, the backward H-L transition occurs at lower values than that of the forward L-H transition, illustrating hysteresis behaviour. The hysteresis properties, i.e. locations of threshold fluxes, gradients and their ratios are analyzed as a function of neoclassical and anomalous transport values and critical gradients. It is found that the minimum heat flux for maintaining H -mode depends on several plasma parameters including the strength of anomalous transport and neoclassical transport. In particular, the hysteresis depth becomes larger when neoclassical transport decreases or anomalous transport increases. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. STARFIRE: a commercial tokamak reactor

    International Nuclear Information System (INIS)

    1979-12-01

    The purpose of this document is to provide an interim status report on the STARFIRE project for the period of May to September 1979. The basic objective of the STARFIRE project is to develop a design concept for a commercial tokamak fusion electric power plant based on the deuterium/tritium/lithium fuel cycle. The key technical objective is to develop the best embodiment of the tokamak as a power reactor consistent with credible engineering solutions to design problems. Another key goal of the project is to give careful attention to the safety and environmental features of a commercial fusion reactor

  9. Investigative Research on the Effect of Zero-Mass Jets on the Base Drag of Axisymmatric Bodies at Sunersonic Speeds

    National Research Council Canada - National Science Library

    Fasel, Hermann

    2000-01-01

    ... out. For low subsonic Mach numbers, we have found that zero-mass jets that are generated by high-frequency forcing can have a significant effect on the flow structures that develop downstream of the base...

  10. Tokamak Systems Code

    International Nuclear Information System (INIS)

    Reid, R.L.; Barrett, R.J.; Brown, T.G.

    1985-03-01

    The FEDC Tokamak Systems Code calculates tokamak performance, cost, and configuration as a function of plasma engineering parameters. This version of the code models experimental tokamaks. It does not currently consider tokamak configurations that generate electrical power or incorporate breeding blankets. The code has a modular (or subroutine) structure to allow independent modeling for each major tokamak component or system. A primary benefit of modularization is that a component module may be updated without disturbing the remainder of the systems code as long as the imput to or output from the module remains unchanged

  11. Life cycle assessment of residual lignocellulosic biomass-based jet fuel with activated carbon and lignosulfonate as co-products.

    Science.gov (United States)

    Pierobon, Francesca; Eastin, Ivan L; Ganguly, Indroneil

    2018-01-01

    Bio-jet fuels are emerging as a valuable alternative to petroleum-based fuels for their potential for reducing greenhouse gas emissions and fossil fuel dependence. In this study, residual woody biomass from slash piles in the U.S. Pacific Northwest is used as a feedstock to produce iso-paraffinic kerosene, through the production of sugar and subsequent patented proprietary fermentation and upgrading. To enhance the economic viability and reduce the environmental impacts of iso-paraffinic kerosene, two co-products, activated carbon and lignosulfonate, are simultaneously produced within the same bio-refinery. A cradle-to-grave life cycle assessment (LCA) is performed for the residual woody biomass-based bio-jet fuel and compared against the cradle-to-grave LCA of petroleum-based jet fuel. This paper also discusses the differences in the environmental impacts of the residual biomass-based bio-jet fuel using two different approaches, mass allocation and system expansion, to partition the impacts between the bio-fuel and the co-products, which are produced in the bio-refinery. The environmental assessment of biomass-based bio-jet fuel reveals an improvement along most critical environmental criteria, as compared to its petroleum-based counterpart. However, the results present significant differences in the environmental impact of biomass-based bio-jet fuel, based on the partitioning method adopted. The mass allocation approach shows a greater improvement along most of the environmental criteria, as compared to the system expansion approach. However, independent of the partitioning approach, the results of this study reveal that more than the EISA mandated 60% reduction in the global warming potential could be achieved by substituting petroleum-based jet fuel with residual woody biomass-based jet fuel. Converting residual woody biomass from slash piles into bio-jet fuel presents the additional benefit of avoiding the impacts of slash pile burning in the forest, which

  12. An Orientation-Based Unification of Young Jetted AGN: The Case of 3C 286

    Energy Technology Data Exchange (ETDEWEB)

    Berton, Marco [Dipartimento di Fisica e Astronomia “G. Galilei,” Università di Padova, Padova (Italy); Brera Astronomical Observatory (INAF), Merate (Italy); Foschini, Luigi; Caccianiga, Alessandro [Brera Astronomical Observatory (INAF), Merate (Italy); Ciroi, Stefano [Dipartimento di Fisica e Astronomia “G. Galilei,” Università di Padova, Padova (Italy); Congiu, Enrico [Dipartimento di Fisica e Astronomia “G. Galilei,” Università di Padova, Padova (Italy); Brera Astronomical Observatory (INAF), Merate (Italy); Cracco, Valentina; Frezzato, Michele; La Mura, Giovanni; Rafanelli, Piero, E-mail: marco.berton@unipd.it [Dipartimento di Fisica e Astronomia “G. Galilei,” Università di Padova, Padova (Italy)

    2017-07-25

    In recent years, the old paradigm according to which only high-mass black holes can launch powerful relativistic jets in active galactic nuclei (AGN) has begun to crumble. The discovery of γ-rays coming from narrow-line Seyfert 1 galaxies (NLS1s), usually considered young and growing AGN harboring a central black hole with mass typically lower than 10{sup 8} M{sub ⊙}, indicated that also these low-mass AGN can produce powerful relativistic jets. The search for parent population of γ-ray emitting NLS1s revealed their connection with compact steep-spectrum sources (CSS). In this proceeding we present a review of the current knowledge of these sources, we present the new important case of 3C 286, classified here for the fist time as NLS1, and we finally provide a tentative orientation based unification of NLS1s and CSS sources.

  13. An Orientation-Based Unification of Young Jetted AGN: The Case of 3C 286

    International Nuclear Information System (INIS)

    Berton, Marco; Foschini, Luigi; Caccianiga, Alessandro; Ciroi, Stefano; Congiu, Enrico; Cracco, Valentina; Frezzato, Michele; La Mura, Giovanni; Rafanelli, Piero

    2017-01-01

    In recent years, the old paradigm according to which only high-mass black holes can launch powerful relativistic jets in active galactic nuclei (AGN) has begun to crumble. The discovery of γ-rays coming from narrow-line Seyfert 1 galaxies (NLS1s), usually considered young and growing AGN harboring a central black hole with mass typically lower than 10 8 M ⊙ , indicated that also these low-mass AGN can produce powerful relativistic jets. The search for parent population of γ-ray emitting NLS1s revealed their connection with compact steep-spectrum sources (CSS). In this proceeding we present a review of the current knowledge of these sources, we present the new important case of 3C 286, classified here for the fist time as NLS1, and we finally provide a tentative orientation based unification of NLS1s and CSS sources.

  14. A Novel Bearing Lubricating Device Based on the Piezoelectric Micro-Jet

    Directory of Open Access Journals (Sweden)

    Kai Li

    2016-02-01

    Full Text Available A novel bearing lubricating device, which is embedded in gyroscope’s bearing system and based on the theory of the piezoelectric micro-jet, was designed for this study. The embedded structure of a bearing lubricating system can make effective use of the limited space of bearing systems without increasing the whole mass of the system. The drop-on-demand (DOD lubrication can be realized by the piezoelectric micro-jet system to implement the long acting lubrication of the bearing system. A mathematical model of inlet boundary conditions was established to carry on the numerical simulation based on CFD. The motion states of the droplets with different voltage excitations were analyzed via numerical simulations, and the injection performances of the piezoelectric micro-jet lubricating device were tested in accordance with past experiments. The influences of different parameters of voltage excitation on injection performance were obtained, and the methods of adjusting the injection performance to meet different requirements are given according to the analyses of the results. The mathematical model and numerical simulation method were confirmed by comparing the results of past simulations and experiments.

  15. Design of FPGA based high-speed data acquisition and real-time data processing system on J-TEXT tokamak

    International Nuclear Information System (INIS)

    Zheng, W.; Liu, R.; Zhang, M.; Zhuang, G.; Yuan, T.

    2014-01-01

    Highlights: • It is a data acquisition system for polarimeter–interferometer diagnostic on J-TEXT tokamak based on FPGA and PXIe devices. • The system provides a powerful data acquisition and real-time data processing performance. • Users can implement different data processing applications on the FPGA in a short time. • This system supports EPICS and has been integrated into the J-TEXT CODAC system. - Abstract: Tokamak experiment requires high-speed data acquisition and processing systems. In traditional data acquisition system, the sampling rate, channel numbers and processing speed are limited by bus throughput and CPU speed. This paper presents a data acquisition and processing system based on FPGA. The data can be processed in real-time before it is passed to the CPU. It provides processing ability for more channels with higher sampling rates than the traditional data acquisition system while ensuring deterministic real-time performance. A working prototype is developed for the newly built polarimeter–interferometer diagnostic system on the Joint Texas Experimental Tokamak (J-TEXT). It provides 16 channels with 120 MHz maximum sampling rate and 16 bit resolution. The onboard FPGA is able to calculate the plasma electron density and Faraday rotation angel. A RAID 5 storage device is adopted providing 700 MB/s read–write speed to buffer the data to the hard disk continuously for better performance

  16. Scintillator based detector for fast-ion losses induced by magnetohydrodynamic instabilities in the ASDEX upgrade tokamak.

    Science.gov (United States)

    García-Muñoz, M; Fahrbach, H-U; Zohm, H

    2009-05-01

    A scintillator based detector for fast-ion losses has been designed and installed on the ASDEX upgrade (AUG) tokamak [A. Herrmann and O. Gruber, Fusion Sci. Technol. 44, 569 (2003)]. The detector resolves in time the energy and pitch angle of fast-ion losses induced by magnetohydrodynamics (MHD) fluctuations. The use of a novel scintillator material with a very short decay time and high quantum efficiency allows to identify the MHD fluctuations responsible for the ion losses through Fourier analysis. A Faraday cup (secondary scintillator plate) has been embedded behind the scintillator plate for an absolute calibration of the detector. The detector is mounted on a manipulator to vary its radial position with respect to the plasma. A thermocouple on the inner side of the graphite protection enables the safety search for the most adequate radial position. To align the scintillator light pattern with the light detectors a system composed by a lens and a vacuum-compatible halogen lamp has been allocated within the detector head. In this paper, the design of the scintillator probe, as well as the new technique used to analyze the data through spectrograms will be described. A last section is devoted to discuss the diagnosis prospects of this method for ITER [M. Shimada et al., Nucl. Fusion 47, S1 (2007)].

  17. Orbit-based analysis of nonlinear energetic ion dynamics in tokamaks. II. Mechanisms for rapid chirping and convective amplification

    Energy Technology Data Exchange (ETDEWEB)

    Bierwage, Andreas [National Institutes for Quantum and Radiological Science and Technology, Rokkasho Fusion Institute, Aomori 039-3212 (Japan); Shinohara, Kouji [National Institutes for Quantum and Radiological Science and Technology, Naka Fusion Institute, Ibaraki 311-0193 Japan (Japan)

    2016-04-15

    The nonlinear interactions between shear Alfvén modes and tangentially injected beam ions in the 150–400 keV range are studied numerically in realistic geometry for a JT-60U tokamak scenario. In Paper I, which was reported in the companion paper, the recently developed orbit-based resonance analysis method was used to track the resonant frequency of fast ions during their nonlinear evolution subject to large magnetic and electric drifts. Here, that method is applied to map the wave-particle power transfer from the canonical guiding center phase space into the frequency-radius plane, where it can be directly compared with the evolution of the fluctuation spectra of fast-ion-driven modes. Using this technique, we study the nonlinear dynamics of strongly driven shear Alfvén modes with low toroidal mode numbers n = 1 and n = 3. In the n = 3 case, both chirping and convective amplification can be attributed to the mode following the resonant frequency of the radially displaced particles, i.e., the usual one-dimensional phase locking process. In the n = 1 case, a new chirping mechanism is found, which involves multiple dimensions, namely, wave-particle trapping in the radial direction and phase mixing across velocity coordinates.

  18. CAMAC throughput of a new RISC-based data acquisition computer at the DIII-D tokamak

    International Nuclear Information System (INIS)

    VanderLaan, J.F.; Cummings, J.W.

    1993-10-01

    The amount of experimental data acquired per plasma discharge at DIII-D has continued to grow. The largest shot size in May 1991 was 49 Mbyte; in May 1992, 66 Mbyte; and in April 1993, 80 Mbyte. The increasing load has prompted the installation of a new Motorola 88100-based MODCOMP computer to supplement the existing core of three older MODCOMP data acquisition CPUs. New Kinetic Systems CAMAC serial highway driver hardware runs on the 88100 VME bus. The new operating system is MODCOMP REAL/IX version of AT ampersand T System V UNIX with real-time extensions and networking capabilities; future plans call for installation of additional computers of this type for tokamak and neutral beam control functions. Experiences with the CAMAC hardware and software will be chronicled, including observation of data throughput. The Enhanced Serial Highway crate controller is advertised as twice as fast as the previous crate controller, and computer I/O speeds are expected to also increase data rates

  19. CAMAC throughput of a new RISC-based data acquisition computer at the DIII-D tokamak

    Science.gov (United States)

    Vanderlaan, J. F.; Cummings, J. W.

    1993-10-01

    The amount of experimental data acquired per plasma discharge at DIII-D has continued to grow. The largest shot size in May 1991 was 49 Mbyte; in May 1992, 66 Mbyte; and in April 1993, 80 Mbyte. The increasing load has prompted the installation of a new Motorola 88100-based MODCOMP computer to supplement the existing core of three older MODCOMP data acquisition CPU's. New Kinetic Systems CAMAC serial highway driver hardware runs on the 88100 VME bus. The new operating system is MODCOMP REAL/IX version of AT&T System V UNIX with real-time extensions and networking capabilities; future plans call for installation of additional computers of this type for tokamak and neutral beam control functions. Experiences with the CAMAC hardware and software will be chronicled, including observation of data throughput. The Enhanced Serial Highway crate controller is advertised as twice as fast as the previous crate controller, and computer I/O speeds are expected to also increase data rates.

  20. Study of Cetane Properties of ATJ Blends Based on World Survey of Jet Fuels

    Science.gov (United States)

    2016-01-28

    FAME Fatty Acid Methyl Ester JP-8 Jet Propellant-8 max. Maximum OCONUS Outside the Contiguous United States PADD Petroleum Administration for...47.4 47.9 13 Jet A - FAME Sensitive 42.34 39.79 41.3 41 14 Jet A - PADD 1 49.39 48.48 48.5 45.7 15 Jet A - PADD 2 41.48 40.37 39.4 39.9 16 Jet A

  1. Delving into QCD jets

    International Nuclear Information System (INIS)

    Konishi, K.

    1980-01-01

    The author discusses, in an introductory fashion, the latest developments in the study of hadronic jets produced in hard processes, based on perturbative QCD. Emphasis is on jet calculus (and its applications and generalizations), and on the appearance of a parton-like consistent, over-all picture of jet evolution in momentum, colour, and real space-time. (Auth.)

  2. First experiments in JET

    International Nuclear Information System (INIS)

    Rebut, P.H.; Bartlett, D.V.; Baeumel, G.

    1985-01-01

    Results obtained from JET since June 1983 are described which show that this large tokamak behaves in a similar manner to smaller tokamaks, but with correspondingly improved plasma parameters. Long-duration hydrogen and deuterium plasmas (>10 s) have been obtained with electron temperatures reaching >4 keV for power dissipations =1.6), loss of vertical stability occurred, as expected from previous calculations. Forces of several hundred tonnes (at Isub(p)=2.7 MA) were transmitted to the vacuum vessel. Measured confinement times are larger than the corresponding INTOR values. The maximum achievable density is limited by disruptions. Impurity levels determine this limiting density, and the paper concludes with proposals to reduce these. In addition, progress in neutral injection and RF heating is described, as well as preparations for D-T operation. (author)

  3. Probing supersymmetry based on precise jet measurements at the CMS experiment

    International Nuclear Information System (INIS)

    Goebel, Kristin

    2015-02-01

    The search for new physics beyond the standard model of particle physics is one of the main goals of the CMS experiment at the CERN Large Hadron Collider. Many theories, for instance supersymmetry, involve the possible production of new coloured particles which feature jets as their experimental signature. Thus, it is important to have a good understanding of jet-related properties in order to allow such searches. In the first part of this thesis, a measurement of the jet transverse-momentum resolution is presented. This is based on the analysis of proton-proton collision data recorded at a centre-of-mass energy of √(s)=8 TeV by the CMS experiment. The measurement utilizes the transverse momentum balance of dijet events at particle level. The main focus is on the determination of the data-to-simulation ratio of the jet transverse-momentum resolution which can be used to correct the jet resolution in simulated events to match the one observed in data. This ratio has been determined with a significantly improved precision compared to previous analyses for the pseudorapidity range 0.0≤ vertical stroke η vertical stroke ≤5.0. The second part of the thesis focuses on searches for supersymmetry in final states with several jets, missing transverse momentum and no isolated leptons. A search performed with collision data recorded at √(s)=8 TeV is presented which is mainly sensitive to the production of light-flavour squarks and gluinos as well as the gluino-mediated production of third generation particles. In this analysis, the main challenge arises from a precise determination of background contributions from standard model processes as the analysis is performed in an extreme kinematic phase space. In this thesis, a method to estimate QCD background contributions relying on the jet-p T response is presented and necessary modifications for a correct prediction of high jet multiplicity events are introduced. In the analysis, results consistent with standard model

  4. Active galaxies. A strong magnetic field in the jet base of a supermassive black hole.

    Science.gov (United States)

    Martí-Vidal, Ivan; Muller, Sébastien; Vlemmings, Wouter; Horellou, Cathy; Aalto, Susanne

    2015-04-17

    Active galactic nuclei (AGN) host some of the most energetic phenomena in the universe. AGN are thought to be powered by accretion of matter onto a rotating disk that surrounds a supermassive black hole. Jet streams can be boosted in energy near the event horizon of the black hole and then flow outward along the rotation axis of the disk. The mechanism that forms such a jet and guides it over scales from a few light-days up to millions of light-years remains uncertain, but magnetic fields are thought to play a critical role. Using the Atacama Large Millimeter/submillimeter Array (ALMA), we have detected a polarization signal (Faraday rotation) related to the strong magnetic field at the jet base of a distant AGN, PKS 1830-211. The amount of Faraday rotation (rotation measure) is proportional to the integral of the magnetic field strength along the line of sight times the density of electrons. The high rotation measures derived suggest magnetic fields of at least tens of Gauss (and possibly considerably higher) on scales of the order of light-days (0.01 parsec) from the black hole. Copyright © 2015, American Association for the Advancement of Science.

  5. A new high speed, Ultrascale+ based board for the ATLAS jet calorimeter trigger system

    CERN Document Server

    Rocco, Elena; The ATLAS collaboration

    2018-01-01

    To cope with the enhanced luminosity at the Large Hadron Collider (LHC) in 2021, the ATLAS collaboration is planning a major detector upgrade. As a part of this, the Level 1 trigger based on calorimeter data will be upgraded to exploit the fine granularity readout using a new system of Feature EXtractors (FEX), which each reconstruct different physics objects for the trigger selection. The jet FEX (jFEX) system is conceived to provide jet identification (including large area jets) and measurements of global variables within a latency budget of less then 400ns. It consists of 6 modules. A single jFEX module is an ATCA board with 4 large FPGAs of the Xilinx Ultrascale+ family, that can digest a total input data rate of ~3.6 Tb/s using up to 120 Multi Gigabit Transceiver (MGT), 24 electrical optical devices, board control and power on the mezzanines to allow flexibility in upgrading controls functions and components without affecting the main board. The 24-layers stack-up was carefully designed to preserve the s...

  6. The JET project: introduction and background

    International Nuclear Information System (INIS)

    Pease, R.S.

    1987-01-01

    The Joint European Torus, JET, is an experiment, undertaken by 15 partners from 12 nations of Western Europe, to get information on the magnetic confinement of high-temperature plasma in conditions close to those needed for energy-producing controlled thermonuclear fusion reactors. Physically, JET is a very powerful toroidal-pinch electric discharge in a strong stabilizing magnetic field, a system known as a tokamak. The paper summarizes the main features of a tokamak and relates them to the papers in this symposium. (author)

  7. CAD-model based remote handling control system for NET and JET

    International Nuclear Information System (INIS)

    Leinemann, K.; Kuehneapfel, U.; Ludwig, A.

    1989-01-01

    For maintenance work in fusion plants a supervisory control system concept was developed, which organized a close, problem-suited cooperation of man and machine, based on shared control and mutual help. The central module on the task control level of the control system is a real-time simulator based on a three-dimensional CAD-model. This simulator serves for planning and of-line programming of maintenance sequences, and, in th execution phase, for integrated viewing, combining TV and synthetic scene presentation. A first implementation of a geometric simulator and its integration in an overall control system was realized for JET. (author). 5 refs.; 7 figs

  8. Jet Vertex Charge Reconstruction

    CERN Document Server

    Nektarijevic, Snezana; The ATLAS collaboration

    2015-01-01

    A newly developed algorithm called the jet vertex charge tagger, aimed at identifying the sign of the charge of jets containing $b$-hadrons, referred to as $b$-jets, is presented. In addition to the well established track-based jet charge determination, this algorithm introduces the so-called \\emph{jet vertex charge} reconstruction, which exploits the charge information associated to the displaced vertices within the jet. Furthermore, the charge of a soft muon contained in the jet is taken into account when available. All available information is combined into a multivariate discriminator. The algorithm has been developed on jets matched to generator level $b$-hadrons provided by $t\\bar{t}$ events simulated at $\\sqrt{s}$=13~TeV using the full ATLAS detector simulation and reconstruction.

  9. Global gyrokinetic simulation of tokamak transport

    International Nuclear Information System (INIS)

    Furnish, G.; Horton, W.; Kishimoto, Y.; LeBrun, M.J.; Tajima, T.

    1998-10-01

    A kinetic simulation code based on the gyrokinetic ion dynamics in global general metric (including a tokamak with circular or noncircular cross-section) has been developed. This gyrokinetic simulation is capable of examining the global and semi-global driftwave structures and their associated transport in a tokamak plasma. The authors investigate the property of the ion temperature gradient (ITG) or η i (η i ≡ ∂ ell nT i /∂ ell n n i ) driven drift waves in a tokamak plasma. The emergent semi-global drift wave modes give rise to thermal transport characterized by the Bohm scaling

  10. Neoclassical alpha-particle losses in tokamaks allowing for large orbit widths

    International Nuclear Information System (INIS)

    Cox, M.; O'Brien, M.R.; Zaitsev, F.S.

    1994-01-01

    Alpha-particle physics is of particular importance now that research into controlled fusion has reached thermonuclear parameters and D-T fuel has been used in JET and TFTR. Here we address the important topic of α-particle transport: if transport is too low helium ash accumulates quenching the burn; if it is too high heating of the plasma by fast α-particles is insufficient to maintain the burn. We give results from simulations of α-particle distributions (f α ) which self-consistently treat α-particle birth, collisional slowing down and neoclassical radial transport. The (steady-state) f α is calculated by the FPP code as a function of speed (v), pitch-angle (θ) and flux surface radius (r). This code is based on a 3D Fokker-Planck theory of 'banana regime' neoclassical effects in tokamaks which can treat large deviations of fast ion orbits from flux surfaces and non-Maxwellian distributions. The code reproduces standard neoclassical results for Maxwellian distributions in the large aspect ratio (ε) and small orbit width (Δ) limits (e.g. radial fluxes, conductivities and bootstrap currents), but can also be used for small ε and large Δ which are difficult to treat analytically. The code is particularly useful for α-particle studies as (a) the experimental evidence is that fast ion transport is usually consistent with neoclassical theory, unlike electron or thermal ion transport, and (b) trapped fast ion orbits can deviate greatly from flux surfaces. An alternative to this Fokker-Planck treatment is Monte Carlo modelling. However, representation of the detailed structure of f α (θ,v,r) would require very large number of particles, and hence be very slow. Calculations have been made for parameters typical of TFTR, JET, SSTR (an 'advanced tokamak' reactor) and STR (a tight aspect ratio or 'spherical' tokamak reactor, though only the JET results are discussed in detail. (author) 4 refs., 4 figs

  11. Adjoint-based Sensitivity of Jet Noise to Near-nozzle Forcing

    Science.gov (United States)

    Chung, Seung Whan; Vishnampet, Ramanathan; Bodony, Daniel; Freund, Jonathan

    2017-11-01

    Past efforts have used optimal control theory, based on the numerical solution of the adjoint flow equations, to perturb turbulent jets in order to reduce their radiated sound. These efforts have been successful in that sound is reduced, with concomitant changes to the large-scale turbulence structures in the flow. However, they have also been inconclusive, in that the ultimate level of reduction seemed to depend upon the accuracy of the adjoint-based gradient rather than a physical limitation of the flow. The chaotic dynamics of the turbulence can degrade the smoothness of cost functional in the control-parameter space, which is necessary for gradient-based optimization. We introduce a route to overcoming this challenge, in part by leveraging the regularity and accuracy with a dual-consistent, discrete-exact adjoint formulation. We confirm its properties and use it to study the sensitivity and controllability of the acoustic radiation from a simulation of a M = 1.3 turbulent jet, whose statistics matches data. The smoothness of the cost functional over time is quantified by a minimum optimization step size beyond which the gradient cannot have a certain degree of accuracy. Based on this, we achieve a moderate level of sound reduction in the first few optimization steps. This material is based [in part] upon work supported by the Department of Energy, National Nuclear Security Administration, under Award Number DE-NA0002374.

  12. Disassembly of JT-60 tokamak device and ancillary facilities for JT-60 tokamak

    International Nuclear Information System (INIS)

    Okano, Fuminori; Ichige, Hisashi; Miyo, Yasuhiko; Kaminaga, Atsushi; Sasajima, Tadayuki; Nishiyama, Tomokazu; Yagyu, Jun-ichi; Ishige, Youichi; Suzuki, Hiroaki; Komuro, Kenichi; Sakasai, Akira; Ikeda, Yoshitaka

    2014-03-01

    The disassembly of JT-60 tokamak device and its peripheral equipments, where the total weight was about 5400 tons, started in 2009 and accomplished in October 2012. This disassembly was required process for JT-60SA project, which is the Satellite Tokamak project under Japan-EU international corroboration to modify the JT-60 to the superconducting tokamak. This work was the first experience of disassembling a large radioactive fusion device based on Radiation Hazard Prevention Act in Japan. The cutting was one of the main problems in this disassembly, such as to cut the welded parts together with toroidal field coils, and to cut the vacuum vessel into two. After solving these problems, the disassembly completed without disaster and accident. This report presents the outline of the JT-60 disassembly, especially tokamak device and ancillary facilities for tokamak device. (author)

  13. Destruction of α-synuclein based amyloid fibrils by a low temperature plasma jet

    Science.gov (United States)

    Karakas, Erdinc; Munyanyi, Agatha; Greene, Lesley; Laroussi, Mounir

    2010-10-01

    Amyloid fibrils are ordered beta-sheet aggregates that are associated with a number of neurodegenerative diseases such as Alzheimer and Parkinson. At present, there is no cure for these progressive and debilitating diseases. Here we report initial studies that indicate that low temperature atmospheric pressure plasma can break amyloid fibrils into smaller units in vitro. The plasma was generated by the "plasma pencil," a device capable of emitting a long, low temperature plasma plume/jet. This avenue of research may facilitate the development of a plasma-based medical treatment.

  14. Destruction of α-synuclein based amyloid fibrils by a low temperature plasma jet

    International Nuclear Information System (INIS)

    Karakas, Erdinc; Laroussi, Mounir; Munyanyi, Agatha; Greene, Lesley

    2010-01-01

    Amyloid fibrils are ordered beta-sheet aggregates that are associated with a number of neurodegenerative diseases such as Alzheimer and Parkinson. At present, there is no cure for these progressive and debilitating diseases. Here we report initial studies that indicate that low temperature atmospheric pressure plasma can break amyloid fibrils into smaller units in vitro. The plasma was generated by the 'plasma pencil', a device capable of emitting a long, low temperature plasma plume/jet. This avenue of research may facilitate the development of a plasma-based medical treatment.

  15. The machinability of nickel-based alloys in high-pressure jet assisted (HPJA turning

    Directory of Open Access Journals (Sweden)

    D. Kramar

    2013-10-01

    Full Text Available Due to their mechanical, thermal and chemical properties, nickel-based alloys are generally included among materials that are hard to machine. An experimental study has been performed to investigate the capabilities of conventional and high-pressure jet assisted (HPJA turning of hard-to-machine materials, namely Inconel 718. The capabilities of different hard turning procedures are compared by means of chip breakability. The obtained results show that HPJA method offers a significant increase in chip breakability, under the same cutting conditions (cutting speed, feed rate, depth of cut.

  16. Tokamak engineering mechanics

    CERN Document Server

    Song, Yuntao; Du, Shijun

    2013-01-01

    Tokamak Engineering Mechanics offers concise and thorough coverage of engineering mechanics theory and application for tokamaks, and the material is reinforced by numerous examples. Chapter topics include general principles, static mechanics, dynamic mechanics, thermal fluid mechanics and multiphysics structural mechanics of tokamak structure analysis. The theoretical principle of the design and the methods of the analysis for various components and load conditions are presented, while the latest engineering technologies are also introduced. The book will provide readers involved in the study

  17. Advanced Tokamak Stability Theory

    Science.gov (United States)

    Zheng, Linjin

    2015-03-01

    The intention of this book is to introduce advanced tokamak stability theory. We start with the derivation of the Grad-Shafranov equation and the construction of various toroidal flux coordinates. An analytical tokamak equilibrium theory is presented to demonstrate the Shafranov shift and how the toroidal hoop force can be balanced by the application of a vertical magnetic field in tokamaks. In addition to advanced theories, this book also discusses the intuitive physics pictures for various experimentally observed phenomena.

  18. Tokamak confinement scaling laws

    International Nuclear Information System (INIS)

    Connor, J.

    1998-01-01

    The scaling of energy confinement with engineering parameters, such as plasma current and major radius, is important for establishing the size of an ignited fusion device. Tokamaks exhibit a variety of modes of operation with different confinement properties. At present there is no adequate first principles theory to predict tokamak energy confinement and the empirical scaling method is the preferred approach to designing next step tokamaks. This paper reviews a number of robust theoretical concepts, such as dimensional analysis and stability boundaries, which provide a framework for characterising and understanding tokamak confinement and, therefore, generate more confidence in using empirical laws for extrapolation to future devices. (author)

  19. Tokamak concept innovations

    International Nuclear Information System (INIS)

    1986-04-01

    This document contains the results of the IAEA Specialists' Meeting on Tokamak Concept Innovations held 13-17 January 1986 in Vienna. Although it is the most advanced fusion reactor concept the tokamak is not without its problems. Most of these problems should be solved within the ongoing R and D studies for the next generation of tokamaks. Emphasis for this meeting was placed on innovations that would lead to substantial improvements in a tokamak reactor, even if they involved a radical departure from present thinking

  20. Statistical analysis of JET disruptions

    International Nuclear Information System (INIS)

    Tanga, A.; Johnson, M.F.

    1991-07-01

    In the operation of JET and of any tokamak many discharges are terminated by a major disruption. The disruptive termination of a discharge is usually an unwanted event which may cause damage to the structure of the vessel. In a reactor disruptions are potentially a very serious problem, hence the importance of studying them and devising methods to avoid disruptions. Statistical information has been collected about the disruptions which have occurred at JET over a long span of operations. The analysis is focused on the operational aspects of the disruptions rather than on the underlining physics. (Author)

  1. Pneumatic pellet injector for JET

    International Nuclear Information System (INIS)

    Andelfinger, C.; Buechl, K.; Jacobi, D.; Sandmann, W.; Schiedeck, J.; Schilling, H.B.; Weber, G.

    1983-07-01

    Pellet injection is a useful tool for plasma diagnostics of tokamaks. Pellets can be applied for investigation of particle, energy and impurity transport, fueling efficiency and magnetic surfaces. Design, operation and control of a single shot pneumatic pellet gun is described in detail including all supplies, the vacuum system and the diagnostics of the pellet. The arrangement of this injector in the torus hall and the interfaces to the JET system and CODAS are considered. A guide tube system for pellet injection is discussed but it will not be recommended for JET. (orig.)

  2. Ion temperature profiles in JET

    International Nuclear Information System (INIS)

    Hellermann, M. von; Mandl, W.; Summers, H.P.; Weisen, H.

    1989-01-01

    The results presented in this paper have shown some extreme cases of ion temperature profiles illustrating the different operation modes of the JET tokamak. In the three examples of low-density high temperature, high-density moderates and high-density high-confinement plasmas comparable values of a maximum fusion product n d T i τ E in the order of 10 20 keV m -3 sec are achieved. (author) 1 ref., 7 figs

  3. Polarimetry data inversion in conditions of tokamak plasma: Model based tomography concept

    International Nuclear Information System (INIS)

    Bieg, B.; Chrzanowski, J.; Kravtsov, Yu. A.; Mazon, D.

    2015-01-01

    Highlights: • Model based plasma tomography is presented. • Minimization procedure for the error function is suggested to be performed using the gradient method. • model based procedure of data inversion in the case of joint polarimetry–interferometry data. - Abstract: Model based plasma tomography is studied which fits a hypothetical multi-parameter plasma model to polarimetry and interferometry experimental data. Fitting procedure implies minimization of the error function, defined as a sum of squared differences between theoretical and empirical values. Minimization procedure for the function is suggested to be performed using the gradient method. Contrary to traditional tomography, which deals exclusively with observational data, model-based tomography (MBT) operates also with reasonable model of inhomogeneous plasma distribution and verifies which profile of a given class better fits experimental data. Model based tomography (MBT) restricts itself by definite class of models for instance power series, Fourier expansion etc. The basic equations of MBT are presented which generalize the equations of model based procedure of polarimetric data inversion in the case of joint polarimetry–interferometry data.

  4. Polarimetry data inversion in conditions of tokamak plasma: Model based tomography concept

    Energy Technology Data Exchange (ETDEWEB)

    Bieg, B. [Maritime University of Szczecin, Waly Chrobrego 1-2, 70-500 Szczecin (Poland); Chrzanowski, J., E-mail: j.chrzanowski@am.szczecin.pl [Maritime University of Szczecin, Waly Chrobrego 1-2, 70-500 Szczecin (Poland); Kravtsov, Yu. A. [Maritime University of Szczecin, Waly Chrobrego 1-2, 70-500 Szczecin (Poland); Space Research Institute, Profsoyuznaya St. 82/34 Russian Academy of Science, Moscow 117997 (Russian Federation); Mazon, D. [CEA, IRFM, F-13108 Saint Paul-lez-Durance (France)

    2015-10-15

    Highlights: • Model based plasma tomography is presented. • Minimization procedure for the error function is suggested to be performed using the gradient method. • model based procedure of data inversion in the case of joint polarimetry–interferometry data. - Abstract: Model based plasma tomography is studied which fits a hypothetical multi-parameter plasma model to polarimetry and interferometry experimental data. Fitting procedure implies minimization of the error function, defined as a sum of squared differences between theoretical and empirical values. Minimization procedure for the function is suggested to be performed using the gradient method. Contrary to traditional tomography, which deals exclusively with observational data, model-based tomography (MBT) operates also with reasonable model of inhomogeneous plasma distribution and verifies which profile of a given class better fits experimental data. Model based tomography (MBT) restricts itself by definite class of models for instance power series, Fourier expansion etc. The basic equations of MBT are presented which generalize the equations of model based procedure of polarimetric data inversion in the case of joint polarimetry–interferometry data.

  5. Status of the COMPASS tokamak and characterization of the first H-mode

    Science.gov (United States)

    Pánek, R.; Adámek, J.; Aftanas, M.; Bílková, P.; Böhm, P.; Brochard, F.; Cahyna, P.; Cavalier, J.; Dejarnac, R.; Dimitrova, M.; Grover, O.; Harrison, J.; Háček, P.; Havlíček, J.; Havránek, A.; Horáček, J.; Hron, M.; Imríšek, M.; Janky, F.; Kirk, A.; Komm, M.; Kovařík, K.; Krbec, J.; Kripner, L.; Markovič, T.; Mitošinková, K.; Mlynář, J.; Naydenkova, D.; Peterka, M.; Seidl, J.; Stöckel, J.; Štefániková, E.; Tomeš, M.; Urban, J.; Vondráček, P.; Varavin, M.; Varju, J.; Weinzettl, V.; Zajac, J.; the COMPASS Team

    2016-01-01

    This paper summarizes the status of the COMPASS tokamak, its comprehensive diagnostic equipment and plasma scenarios as a baseline for the future studies. The former COMPASS-D tokamak was in operation at UKAEA Culham, UK in 1992-2002. Later, the device was transferred to the Institute of Plasma Physics of the Academy of Sciences of the Czech Republic (IPP AS CR), where it was installed during 2006-2011. Since 2012 the device has been in a full operation with Type-I and Type-III ELMy H-modes as a base scenario. This enables together with the ITER-like plasma shape and flexible NBI heating system (two injectors enabling co- or balanced injection) to perform ITER relevant studies in different parameter range to the other tokamaks (ASDEX-Upgrade, DIII-D, JET) and to contribute to the ITER scallings. In addition to the description of the device, current status and the main diagnostic equipment, the paper focuses on the characterization of the Ohmic as well as NBI-assisted H-modes. Moreover, Edge Localized Modes (ELMs) are categorized based on their frequency dependence on power density flowing across separatrix. The filamentary structure of ELMs is studied and the parallel heat flux in individual filaments is measured by probes on the outer mid-plane and in the divertor. The measurements are supported by observation of ELM and inter-ELM filaments by an ultra-fast camera.

  6. Adaptive predictors based on probabilistic SVM for real time disruption mitigation on JET

    Science.gov (United States)

    Murari, A.; Lungaroni, M.; Peluso, E.; Gaudio, P.; Vega, J.; Dormido-Canto, S.; Baruzzo, M.; Gelfusa, M.; Contributors, JET

    2018-05-01

    Detecting disruptions with sufficient anticipation time is essential to undertake any form of remedial strategy, mitigation or avoidance. Traditional predictors based on machine learning techniques can be very performing, if properly optimised, but do not provide a natural estimate of the quality of their outputs and they typically age very quickly. In this paper a new set of tools, based on probabilistic extensions of support vector machines (SVM), are introduced and applied for the first time to JET data. The probabilistic output constitutes a natural qualification of the prediction quality and provides additional flexibility. An adaptive training strategy ‘from scratch’ has also been devised, which allows preserving the performance even when the experimental conditions change significantly. Large JET databases of disruptions, covering entire campaigns and thousands of discharges, have been analysed, both for the case of the graphite and the ITER Like Wall. Performance significantly better than any previous predictor using adaptive training has been achieved, satisfying even the requirements of the next generation of devices. The adaptive approach to the training has also provided unique information about the evolution of the operational space. The fact that the developed tools give the probability of disruption improves the interpretability of the results, provides an estimate of the predictor quality and gives new insights into the physics. Moreover, the probabilistic treatment permits to insert more easily these classifiers into general decision support and control systems.

  7. Compact, Lightweight, Ceramic Matrix Composite (CMC) Based Acoustic Liners for Reducing Subsonic Jet Aircraft Engine Noise

    Science.gov (United States)

    Kiser, J. Douglas; Grady, Joseph E.; Miller, Christopher J.; Hultgren, Lennart S.; Jones, Michael G.

    2016-01-01

    Recent developments have reduced fan and jet noise contributions to overall subsonic aircraft jet-engine noise. Now, aircraft designers are turning their attention toward reducing engine core noise. The NASA Glenn Research Center and NASA Langley Research Center have teamed to investigate the development of a compact, lightweight acoustic liner based on oxide/oxide ceramic matrix composite (CMC) materials. The NASA team has built upon an existing oxide/oxide CMC sandwich structure concept that provides monotonal noise reduction. Oxide/oxide composites have good high temperature strength and oxidation resistance, which could allow them to perform as core liners at temperatures up to 1000C (1832F), and even higher depending on the selection of the composite constituents. NASA has initiated the evaluation of CMC-based liners that use cells of different lengths (variable-depth channels) or effective lengths to achieve broadband noise reduction. Reducing the overall liner thickness is also a major goal, to minimize the volume occupied by the liner. As a first step toward demonstrating the feasibility of our concepts, an oxide/oxide CMC acoustic testing article with different channel lengths was tested. Our approach, summary of test results, current status, and goals for the future are reported.

  8. Development of key fusion technologies at JET

    International Nuclear Information System (INIS)

    2001-01-01

    The recent operational phase in JET in which Deuterium-Tritium fuel was used (DTE1) resulted in record breaking fusion performance. In addition to important contributions in plasma physics, the JET Team has also made major advances in demonstrating the viability of some of the key technologies required for the realisation of future fusion power. Two of the most important technological areas which have been successfully demonstrated in JET are the ITER scale tritium processing plant and the exchange of the divertor and maintenance of the interior of JET by totally remote means. The experiment also provided the first data on tritium retention and co-deposition in a diverted tokamak. Of the 35g of tritium injected into the JET torus, about 6g remained in the tokamak. The amount resides mainly on cool surfaces at the inboard divertor side. The precise, safe and timely execution of the remote handling shutdown proved that the design, function, performance and operational methodology of the RH equipment prepared over the years at JET are appropriate for the successful and rapid replacement of components in an activated tokamak environment. (author)

  9. Development of key fusion technologies at JET

    International Nuclear Information System (INIS)

    1999-01-01

    The recent operational phase in JET in which Deuterium-Tritium fuel was used (DTE1) resulted in record breaking fusion performance. In addition to important contributions in plasma physics, the JET Team has also made major advances in demonstrating the viability of some of the key technologies required for the realisation of future fusion power. Two of the most important technological areas which have been successfully demonstrated in JET are the ITER scale tritium processing plant and the exchange of the divertor and maintenance of the interior of JET by totally remote means. The experiment also provided the first data on tritium retention and co-deposition in a diverted tokamak. Of the 35g of tritium injected into the JET torus, about 6g remained in the tokamak. The amount resides mainly on cool surfaces at the inboard divertor side. The precise, safe and timely execution of the remote handling shutdown proved that the design, function, performance and operational methodology of the RH equipment prepared over the years at JET are appropriate for the successful and rapid replacement of components in an activated tokamak environment. (author)

  10. Three-dimensional Magnetohydrodynamical Simulations of the Morphology of Head–Tail Radio Galaxies Based on the Magnetic Tower Jet Model

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Zhaoming; Yuan, Feng [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Li, Hui; Li, Shengtai, E-mail: zmgan@shao.ac.cn, E-mail: fyuan@shao.ac.cn, E-mail: hli@lanl.gov, E-mail: sli@lanl.gov [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2017-04-10

    The distinctive morphology of head–tail radio galaxies reveals strong interactions between the radio jets and their intra-cluster environment, the general consensus on the morphology origin of head–tail sources is that radio jets are bent by violent intra-cluster weather. We demonstrate in this paper that such strong interactions provide a great opportunity to study the jet properties and also the dynamics of the intra-cluster medium (ICM). By three-dimensional magnetohydrodynamical simulations, we analyze the detailed bending process of a magnetically dominated jet, based on the magnetic tower jet model. We use stratified atmospheres modulated by wind/shock to mimic the violent intra-cluster weather. Core sloshing is found to be inevitable during the wind-cluster core interaction, which induces significant shear motion and could finally drive ICM turbulence around the jet, making it difficult for the jet to survive. We perform a detailed comparison between the behavior of pure hydrodynamical jets and the magnetic tower jet and find that the jet-lobe morphology could not survive against the violent disruption in all of our pure hydrodynamical jet models. On the other hand, the head–tail morphology is well reproduced by using a magnetic tower jet model bent by wind, in which hydrodynamical instabilities are naturally suppressed and the jet could always keep its integrity under the protection of its internal magnetic fields. Finally, we also check the possibility for jet bending by shock only. We find that shock could not bend the jet significantly, and thus could not be expected to explain the observed long tails in head–tail radio galaxies.

  11. Data acquisition and processing based on the multi-microcomputers data communication system for the physics experiments of HL-1 tokamak

    International Nuclear Information System (INIS)

    Ren Libo; Liu Aiping; Xu Wenbin; Ao Xueling; Gao Lanbin; Yan Derong

    1989-08-01

    The data acquisition and processing system and automatic monitor system based on the data communication of multimicrocomputers for the physics experiments of HL-1 tokamak are described. The data communications between microcomputers are completed with parallel and serial interfaces. The signals from Rokofski coils, single loop turn, soft X-ray absorb spectrometer, microwave interfermeter, bolometer, soft X-ray sawtooth Au-Si surface barrier detectors and magnetic probes have been acquired and processed. Plasma parameters have been obtained. Specially, the electron density profiles have been obtained for the first time, and the simulation about plasma radius, horizontal displacement, electron temperature and electron line-average density has been completed

  12. Silicon drift detector based X-ray spectroscopy diagnostic system for the study of non-thermal electrons at Aditya tokamak.

    Science.gov (United States)

    Purohit, S; Joisa, Y S; Raval, J V; Ghosh, J; Tanna, R; Shukla, B K; Bhatt, S B

    2014-11-01

    Silicon drift detector based X-ray spectrometer diagnostic was developed to study the non-thermal electron for Aditya tokamak plasma. The diagnostic was mounted on a radial mid plane port at the Aditya. The objective of diagnostic includes the estimation of the non-thermal electron temperature for the ohmically heated plasma. Bi-Maxwellian plasma model was adopted for the temperature estimation. Along with that the study of high Z impurity line radiation from the ECR pre-ionization experiments was also aimed. The performance and first experimental results from the new X-ray spectrometer system are presented.

  13. FAR-TECH's Nanoparticle Plasma Jet System and its Application to Disruptions, Deep Fueling, and Diagnostics

    Science.gov (United States)

    Thompson, J. R.; Bogatu, I. N.; Galkin, S. A.; Kim, J. S.

    2012-10-01

    Hyper-velocity plasma jets have potential applications in tokamaks for disruption mitigation, deep fueling and diagnostics. Pulsed power based solid-state sources and plasma accelerators offer advantages of rapid response and mass delivery at high velocities. Fast response is critical for some disruption mitigation scenario needs, while high velocity is especially important for penetration into tokamak plasma and its confining magnetic field, as in the case of deep fueling. FAR-TECH is developing the capability of producing large-mass hyper-velocity plasma jets. The prototype solid-state source has produced: 1) >8.4 mg of H2 gas only, and 2) >25 mg of H2 and >180 mg of C60 in a H2/C60 gas mixture. Using a coaxial plasma gun coupled to the source, we have successfully demonstrated the acceleration of composite H/C60 plasma jets, with momentum as high as 0.6 g.km/s, and containing an estimated C60 mass of ˜75 mg. We present the status of FAR-TECH's nanoparticle plasma jet system and discuss its application to disruptions, deep fueling, and diagnostics. A new TiH2/C60 solid-state source capable of generating significantly higher quantities of H2 and C60 in <0.5 ms will be discussed.

  14. Tokamak control simulator

    International Nuclear Information System (INIS)

    Edelbaum, T.N.; Serben, S.; Var, R.E.

    1976-01-01

    A computer model of a tokamak experimental power reactor and its control system is being constructed. This simulator will allow the exploration of various open loop and closed loop strategies for reactor control. This paper provides a brief description of the simulator and some of the potential control problems associated with this class of tokamaks

  15. A new shape reproduction method based on the Cauchy-condition surface for real-time tokamak reactor control

    International Nuclear Information System (INIS)

    Kurihara, K.

    2000-01-01

    A new shape reproduction method is investigated on the basis of an applied mathematical approach. An analytically exact solution of Maxwell's equations in a static current field yields an (boundary) integral equation. In application of this equation to tokamak plasma shape reproduction, it is made clear that a Cauchy condition (both Dirichlet and Neumann conditions) on a hypothetical surface is necessarily identified. To calculate the Cauchy condition using magnetic sensor signals, conversion to numerical formulation of this method is conducted. Then, reproduction errors by this method are evaluated through two numerical tests: The first test uses ideal signals produced from a full equilibrium code in the JT-60 geometry, and the second test uses actual sensor signals in JT-60 experiments. In addition, it is shown that positioning and shape of the Cauchy condition surface is insensitive to reproduction error. Finally, this method is clarified to have preferable features for real-time tokamak reactor control

  16. Disruptions in Tokamaks

    International Nuclear Information System (INIS)

    Bondeson, A.

    1987-01-01

    This paper discusses major and minor disruptions in Tokamaks. A number of models and numerical simulations of disruptions based on resistive MHD are reviewed. A discussion is given of how disruptive current profiles are correlated with the experimentally known operational limits in density and current. It is argued that the q a =2 limit is connected with stabilization of the m=2/n=1 tearing mode for a approx.< 2.7 by resistive walls and mode rotation. Experimental and theoretical observations indicate that major disruptions usually occur in at least two phases, first a 'predisruption', or loss of confinement in the region 1 < q < 2, leaving the q approx.= 1 region almost unaffected, followed by a final disruption of the central part, interpreted here as a toroidal n = 1 external kink mode. (author)

  17. Plasma internal inductance dynamics in a tokamak

    International Nuclear Information System (INIS)

    Romero, J.A.

    2010-01-01

    A lumped parameter model for tokamak plasma current and inductance time evolution as a function of plasma resistance, non-inductive current drive sources and boundary voltage or poloidal field coil current drive is presented. The model includes a novel formulation leading to exact equations for internal inductance and plasma current dynamics. Having in mind its application in a tokamak inductive control system, the model is expressed in state space form, the preferred choice for the design of control systems using modern control systems theory. The choice of system states allows many interesting physical quantities such as plasma current, inductance, magnetic energy, and resistive and inductive fluxes be made available as output equations. The model is derived from energy conservation theorem, and flux balance theorems, together with a first order approximation for flux diffusion dynamics. The validity of this approximation has been checked using experimental data from JET showing an excellent agreement.

  18. Runaway acceleration during magnetic reconnection in tokamaks

    International Nuclear Information System (INIS)

    Helander, P; Eriksson, L-G; Andersson, F

    2002-01-01

    In this paper, the basic theory of runaway electron production is reviewed and recent progress is discussed. The mechanisms of primary and secondary generation of runaway electrons are described and their dynamics during a tokamak disruption is analysed, both in a simple analytical model and through numerical Monte Carlo simulation. A simple criterion for when these mechanisms generate a significant runaway current is derived, and the first self-consistent simulations of the electron kinetics in a tokamak disruption are presented. Radial cross-field diffusion is shown to inhibit runaway avalanches, as indicated in recent experiments on JET and JT-60U. Finally, the physics of relativistic post-disruption runaway electrons is discussed, in particular their slowing down due to emission of synchrotron radiation, and their ability to produce electron-positron pairs in collisions with bulk plasma ions and electrons

  19. JET Project: progress in construction and management

    International Nuclear Information System (INIS)

    Bertolini, E.

    1978-01-01

    The JET Project of the European Community aims to construct and operate one of the largest Tokamak Devices foreseen at present in the field of Fusion Research. The aim of the experiment is to produce and study plasma conditions approaching those needed in a thermonuclear reactor and therefore will involve operation with deuterium--tritium gas

  20. The LIDAR Thomson Scattering Diagnostic on JET

    DEFF Research Database (Denmark)

    Salzmann, H.; Bundgaard, J.; Gadd, A.

    1988-01-01

    By combining the time‐of‐flight or LIDAR principle with a Thomson backscatter diagnostic, spatial profiles of the electron temperature and density are measured in a magnetically confined fusion plasma. This technique was realized for the first time on the JET tokamak. A ruby laser (3‐J pulse ener...

  1. Progress in Neutron Diagnostics at JET

    Czech Academy of Sciences Publication Activity Database

    Mlynář, Jan; Bonheure, G.; Murari, A.; Bertalot, L.; Angelone, M.; Pillon, M.; Conroy, S.; Ericsson, G.; Kaellne, J.; Popovichev, S.

    2006-01-01

    Roč. 56, suppl.B (2006), B118-B124 ISSN 0011-4626. [Symposium on Plasma Physics and Technology /22nd./. Praha, 26.6.2006-29.6.2006] Institutional research plan: CEZ:AV0Z20430508 Keywords : tokamak * JET * fusion * neutrons diagnostics Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.568, year: 2006

  2. Degradation of carbon-based materials under ablative conditions produced by a high enthalpy plasma jet

    Directory of Open Access Journals (Sweden)

    Gilberto Petraconi

    2010-04-01

    Full Text Available A stationary experiment was performed to study the degradation of carbon-based materials by immersion in a plasma jet. In the experiment, graphite and C/C composite were chosen as the target materials, and the reactive plasma jet was generated by an air plasma torch. For macroscopic study of the material degradation, the sample’s mass losses were measured as function of the exposure time under various temperatures on the sample surface. A microscopic analysis was then carried out for the study of microscopic aspects of the erosion of material surface. These experiments showed that the mass loss per unit area is approximately proportional to the exposure time and strongly depends on the temperature of the material surface. The mass erosion rate of graphite was appreciably higher than the C/C composite. The ablation rate in the carbon matrix region in C/C composite was also noticeably higher than that in the fiber region. In addition, the latter varied according to the orientation of fibers relatively to the flow direction. These tests indicated an excellent ablation resistance of the C/C composite, thus being a reliable material for rocket nozzles and heat shielding elements of the protection systems of hypersonic apparatuses from aerodynamic heating.

  3. Dynamic analysis of ITER tokamak. Based on results of vibration test using scaled model

    International Nuclear Information System (INIS)

    Takeda, Nobukazu; Kakudate, Satoshi; Nakahira, Masataka

    2005-01-01

    The vibration experiments of the support structures with flexible plates for the ITER major components such as toroidal field coil (TF coil) and vacuum vessel (VV) were performed using small-sized flexible plates aiming to obtain its basic mechanical characteristics such as dependence of the stiffness on the loading angle. The experimental results were compared with the analytical ones in order to estimate an adequate analytical model for ITER support structure with flexible plates. As a result, the bolt connection of the flexible plates on the base plate strongly affected on the stiffness of the flexible plates. After studies of modeling the connection of the bolts, it is found that the analytical results modeling the bolts with finite stiffness only in the axial direction and infinite stiffness in the other directions agree well with the experimental ones. Based on this, numerical analysis regarding the actual support structure of the ITER VV and TF coil was performed. The support structure composed of flexible plates and connection bolts was modeled as a spring composed of only two spring elements simulating the in-plane and out-of-plane stiffness of the support structure with flexible plates including the effect of connection bolts. The stiffness of both spring models for VV and TF coil agree well with that of shell models, simulating actual structures such as flexible plates and connection bolts based on the experimental results. It is therefore found that the spring model with the only two values of stiffness enables to simplify the complicated support structure with flexible plates for the dynamic analysis of the VV and TF coil. Using the proposed spring model, the dynamic analysis of the VV and TF coil for the ITER were performed to estimate the integrity under the design earthquake. As a result, it is found that the maximum relative displacement of 8.6 mm between VV and TF coil is much less than 100 mm, so that the integrity of the VV and TF coil of the

  4. RETRACTED: Determination of confinement efficiency in tokamaks based on current independent flux loops technique

    Directory of Open Access Journals (Sweden)

    A. Salar Elahi

    Full Text Available This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal.This article has been retracted at the request of the Editors-in-Chief.After a thorough investigation, the Editors have concluded that the acceptance of this article was based upon the positive advice of at least one illegitimate reviewer report. The report was submitted from an email account which was provided to the journal as a suggested reviewer during the submission of the article. Although purportedly a real reviewer account, the Editors have concluded that this was not of an appropriate, independent reviewer.This manipulation of the peer-review process represents a clear violation of the fundamentals of peer review, our publishing policies, and publishing ethics standards. Apologies are offered to the reviewers whose identities were assumed and to the readers of the journal that this deception was not detected during the submission process.

  5. Design assumptions and bases for small D-T-fueled Sperical Tokamak (ST) fusion core

    International Nuclear Information System (INIS)

    Peng, Y.K.M.; Galambos, J.D.; Fogarty, P.J.

    1996-01-01

    Recent progress in defining the assumptions and clarifying the bases for a small D-T-fueled ST fusion core are presented. The paper covers several issues in the physics of ST plasmas, the technology of neutral beam injection, the engineering design configuration, and the center leg material under intense neutron irradiation. This progress was driven by the exciting data from pioneering ST experiments, a heightened interest in proof-of-principle experiments at the MA level in plasma current, and the initiation of the first conceptual design study of the small ST fusion core. The needs recently identified for a restructured fusion energy sciences program have provided a timely impetus for examining the subject of this paper. Our results, though preliminary in nature, strengthen the case for the potential realism and attractiveness of the ST approach

  6. Gyrosheath near the tokamak edge

    International Nuclear Information System (INIS)

    Hazeltine, R.D.; Xiao, H.; Valanju, P.M.

    1993-03-01

    A new model for the structure of the radial electric field profile in the edge during the H-mode is proposed. Charge separation caused by the difference between electron and ion gyromotion, or more importantly in a tokamak, the banana motion (halo effect) can self-consistently produce an electric dipole moment that causes the sheared radial electric field. The calculated results based on the model are consistent with D-III D and TEXTOR experimental results

  7. Neutronic analysis of JET external neutron monitor response

    Energy Technology Data Exchange (ETDEWEB)

    Snoj, Luka, E-mail: luka.snoj@ijs.si [Reactor Physics Division, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Lengar, Igor; Čufar, Aljaž [Reactor Physics Division, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Syme, Brian; Popovichev, Sergey [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, OX14 3DB, United Kingdom (United Kingdom); Batistoni, Paola [ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati, Roma (Italy); Conroy, Sean [VR Association, Uppsala University, Department of Physics and Astronomy, PO Box 516, SE-75120 Uppsala (Sweden)

    2016-11-01

    Highlights: • We model JET tokamak containing JET remote handling system. • We investigate effect of remote handling system on external neutron monitor response. • Remote handling system correction factors are calculated. • Integral correction factors are relatively small, i.e up to 8%. - Abstract: The power output of fusion devices is measured in terms of the neutron yield which relates directly to the fusion yield. JET made a transition from Carbon wall to ITER-Like Wall (Beryllium/Tungsten/Carbon) during 2010–11. Absolutely calibrated measurement of the neutron yield by JET neutron monitors was ensured by direct measurements using a calibrated {sup 252}Cf neutron source (NS) deployed by the in-vessel remote handling system (RHS) inside the JET vacuum vessel. Neutronic calculations were required in order to understand the neutron transport from the source in the vacuum vessel to the fission chamber detectors mounted outside the vessel on the transformer limbs of the tokamak. We developed a simplified computational model of JET and the JET RHS in Monte Carlo neutron transport code MCNP and analyzed the paths and structures through which neutrons reach the detectors and the effect of the JET RHS on the neutron monitor response. In addition we performed several sensitivity studies of the effect of substantial massive structures blocking the ports on the external neutron monitor response. As the simplified model provided a qualitative picture of the process only, some calculations were repeated using a more detailed full 3D model of the JET tokamak.

  8. Study of heat fluxes on plasma facing components in a tokamak from measurements of temperature by infrared thermography

    International Nuclear Information System (INIS)

    Daviot, R.

    2010-05-01

    The goal of this thesis is the development of a method of computation of those heat loads from measurements of temperature by infrared thermography. The research was conducted on three issues arising in current tokamaks but also future ones like ITER: the measurement of temperature on reflecting walls, the determination of thermal properties for deposits observed on the surface of tokamak components and the development of a three-dimensional, non-linear computation of heat loads. A comparison of several means of pyrometry, monochromatic, bi-chromatic and photothermal, is performed on an experiment of temperature measurement. We show that this measurement is sensitive to temperature gradients on the observed area. Layers resulting from carbon deposition by the plasma on the surface of components are modeled through a field of equivalent thermal resistance, without thermal inertia. The field of this resistance is determined, for each measurement points, from a comparison of surface temperature from infrared thermographs with the result of a simulation, which is based on a mono-dimensional linear model of components. The spatial distribution of the deposit on the component surface is obtained. Finally, a three-dimensional and non-linear computation of fields of heat fluxes, based on a finite element method, is developed here. Exact geometries of the component are used. The sensitivity of the computed heat fluxes is discussed regarding the accuracy of the temperature measurements. This computation is applied to two-dimensional temperature measurements of the JET tokamak. Several components of this tokamak are modeled, such as tiles of the divertor, upper limiter and inner and outer poloidal limiters. The distribution of heat fluxes on the surface of these components is computed and studied along the two main tokamak directions, poloidal and toroidal. Toroidal symmetry of the heat loads from one tile to another is shown. The influence of measurements spatial resolution

  9. Recent results on confinement in JET

    International Nuclear Information System (INIS)

    Campbell, D.J.

    1992-01-01

    The JET device is the world's largest tokamak and has been utilized in plasma heating experiments at total powers of up to 35MW using both neutral beam injection (NBI) and ion cyclotron resonance heating (ICRH). At the highest performance, JET plasmas have achieved conditions equivalent to energy ''breakeven''. A principal aim of the JET experiment is the investigation of plasma heating and confinement in plasma regimes relevant to thermonuclear ignition. The central issues in confinement physics involved in these advances are briefly reviewed and the most recent investigations of transport in high performance plasmas are summarized. (Author)

  10. Starfire: a commercial tokamak reactor

    International Nuclear Information System (INIS)

    Baker, C.C.; Abdou, M.A.; DeFreece, D.A.; Trachsel, C.A.; Graumann, D.; Kokoszenski, J.

    1979-01-01

    The basic objective of the STARFIRE Project is to develop a design concept for a commercial tokamak fusion electric power plant based on the deuterium/tritium/lithium fuel cycle. The key technical objective is to develop the best embodiment of the tokamak as a power reactor consistent with credible engineering solutions to design problems. Another key goal of the project is to give careful attention to the safety and environmental features of a commercial fusion reactor. The STARFIRE Project was initiated in May 1979, with the goal of completing the design study by October 1980. The purpose of this paper is to present an overview of the major parameters and design features that have been tentatively selected for STARFIRE

  11. Comprehensive numerical modelling of tokamaks

    International Nuclear Information System (INIS)

    Cohen, R.H.; Cohen, B.I.; Dubois, P.F.

    1991-01-01

    We outline a plan for the development of a comprehensive numerical model of tokamaks. The model would consist of a suite of independent, communicating packages describing the various aspects of tokamak performance (core and edge transport coefficients and profiles, heating, fueling, magnetic configuration, etc.) as well as extensive diagnostics. These codes, which may run on different computers, would be flexibly linked by a user-friendly shell which would allow run-time specification of packages and generation of pre- and post-processing functions, including workstation-based visualization of output. One package in particular, the calculation of core transport coefficients via gyrokinetic particle simulation, will become practical on the scale required for comprehensive modelling only with the advent of teraFLOP computers. Incremental effort at LLNL would be focused on gyrokinetic simulation and development of the shell

  12. Impact of Alternative Jet Fuels on Engine Exhaust Composition During the 2015 ECLIF Ground-Based Measurements Campaign.

    Science.gov (United States)

    Schripp, Tobias; Anderson, Bruce; Crosbie, Ewan C; Moore, Richard H; Herrmann, Friederike; Oßwald, Patrick; Wahl, Claus; Kapernaum, Manfred; Köhler, Markus; Le Clercq, Patrick; Rauch, Bastian; Eichler, Philipp; Mikoviny, Tomas; Wisthaler, Armin

    2018-04-17

    The application of fuels from renewable sources ("alternative fuels") in aviation is important for the reduction of anthropogenic carbon dioxide emissions, but may also attribute to reduced release of particles from jet engines. The present experiment describes ground-based measurements in the framework of the ECLIF (Emission and Climate Impact of Alternative Fuels) campaign using an Airbus A320 (V2527-A5 engines) burning six fuels of chemically different composition. Two reference Jet A-1 with slightly different chemical parameters were applied and further used in combination with a Fischer-Tropsch synthetic paraffinic kerosene (FT-SPK) to prepare three semi synthetic jet fuels (SSJF) of different aromatic content. In addition, one commercially available fully synthetic jet fuel (FSJF) featured the lowest aromatic content of the fuel selection. Neither the release of nitrogen oxide or carbon monoxide was significantly affected by the different fuel composition. The measured particle emission indices showed a reduction up to 50% (number) and 70% (mass) for two alternative jet fuels (FSJF, SSJF2) at low power settings in comparison to the reference fuels. The reduction is less pronounced at higher operating conditions but the release of particle number and particle mass is still significantly lower for the alternative fuels than for both reference fuels. The observed correlation between emitted particle mass and fuel aromatics is not strict. Here, the H/C ratio is a better indicator for soot emission.

  13. Alfven Spectroscopy for Advanced Scenarios on JET

    Energy Technology Data Exchange (ETDEWEB)

    Sharapov, S. E.

    2007-07-01

    Advanced tokamak scenarios on JET exhibit outstanding quality fusion-grade plasmas, with internal transport barriers (ITBs) capable of supporting gradients {nabla} T{sub i}{approx_equal} 150 keV/m (with T{sub i}(0){approx_equal} 40 keV), and with q(r)-profiles ranging from monotonic to deep shear reversal, including the limiting case of toroidal current holes. It was found experimentally, that in reversed shear JET discharges the ITB start from so-called ITB triggering events, which are seen as increases in electron temperature within, e.g. r/a {<=} 0.4 by {delta} T{sub e}/T{sub e}{approx} 10-30%. If main heating power is applied at this time, an ITB is formed easily. Without an extra-heating power the improved confinement effect is lost in about 100 msec. Here, we investigate the magnetic field topology at the time of the ITB triggering events in JET plasmas. Alfven spectroscopy based on discrete spectrum of Alfven eigenmodes (AEs) excited by ICRH-accelerated and/or NBI-produced energetic ions is used for determining the evolution of the q(r)- profiles. Recently developed interferometry diagnostics of AEs significantly extended time resolution and sensitivity of Alfven spectroscopy on JET and made it possible to perform the ITB triggering event studies with a high accuracy. The ITB triggering events are found to occur when q{sub min} (t) passes values q{sub min} integer (majority of the cases), q{sub min}= half-integer, and when q(r=0)--infinity (current hole is triggered). This experimental data is compared to the density of rational surfaces transport theory. (Author)

  14. Alfven Spectroscopy for Advanced Scenarios on JET

    International Nuclear Information System (INIS)

    Sharapov, S. E.

    2007-01-01

    Advanced tokamak scenarios on JET exhibit outstanding quality fusion-grade plasmas, with internal transport barriers (ITBs) capable of supporting gradients ∇ T i ≅ 150 keV/m (with T i (0)≅ 40 keV), and with ) q(r) -profiles ranging from monotonic to deep shear reversal, including the limiting case of toroidal current holes. It was found experimentally, that in reversed shear JET discharges the ITB start from so-called ITB triggering events, which are seen as increases in electron temperature within, e.g. r/a ≤ 0.4 by Δ T e /T e ∼ 10-30%. If main heating power is applied at this time, an ITB is formed easily. Without an extra-heating power the improved confinement effect is lost in about 100 msec. Here, we investigate the magnetic field topology at the time of the ITB triggering events in JET plasmas. Alfven spectroscopy based on discrete spectrum of Alfven eigenmodes (AEs) excited by ICRH-accelerated and/or NBI-produced energetic ions is used for determining the evolution of the q(r)- profiles. Recently developed interferometry diagnostics of AEs significantly extended time resolution and sensitivity of Alfven spectroscopy on JET and made it possible to perform the ITB triggering event studies with a high accuracy. The ITB triggering events are found to occur when q m in (t) passes values q m ininteger (majority of the cases), q m in= half-integer, and when q(r=0)--∞ (current hole is triggered). This experimental data is compared to the idensity of rational surfaces transport theory. (Author)

  15. Steady State Advanced Tokamak (SSAT): The mission and the machine

    International Nuclear Information System (INIS)

    Thomassen, K.; Goldston, R.; Nevins, B.; Neilson, H.; Shannon, T.; Montgomery, B.

    1992-03-01

    Extending the tokamak concept to the steady state regime and pursuing advances in tokamak physics are important and complementary steps for the magnetic fusion energy program. The required transition away from inductive current drive will provide exciting opportunities for advances in tokamak physics, as well as important impetus to drive advances in fusion technology. Recognizing this, the Fusion Policy Advisory Committee and the US National Energy Strategy identified the development of steady state tokamak physics and technology, and improvements in the tokamak concept, as vital elements in the magnetic fusion energy development plan. Both called for the construction of a steady state tokamak facility to address these plan elements. Advances in physics that produce better confinement and higher pressure limits are required for a similar unit size reactor. Regimes with largely self-driven plasma current are required to permit a steady-state tokamak reactor with acceptable recirculating power. Reliable techniques of disruption control will be needed to achieve the availability goals of an economic reactor. Thus the central role of this new tokamak facility is to point the way to a more attractive demonstration reactor (DEMO) than the present data base would support. To meet the challenges, we propose a new ''Steady State Advanced Tokamak'' (SSAT) facility that would develop and demonstrate optimized steady state tokamak operating mode. While other tokamaks in the world program employ superconducting toroidal field coils, SSAT would be the first major tokamak to operate with a fully superconducting coil set in the elongated, divertor geometry planned for ITER and DEMO

  16. Tokamak reactor studies

    International Nuclear Information System (INIS)

    Baker, C.C.

    1981-01-01

    This paper presents an overview of tokamak reactor studies with particular attention to commercial reactor concepts developed within the last three years. Emphasis is placed on DT fueled reactors for electricity production. A brief history of tokamak reactor studies is presented. The STARFIRE, NUWMAK, and HFCTR studies are highlighted. Recent developments that have increased the commercial attractiveness of tokamak reactor designs are discussed. These developments include smaller plant sizes, higher first wall loadings, improved maintenance concepts, steady-state operation, non-divertor particle control, and improved reactor safety features

  17. Tokamak ARC damage

    International Nuclear Information System (INIS)

    Murray, J.G.; Gorker, G.E.

    1985-01-01

    Tokamak fusion reactors will have large plasma currents of approximately 10 MA with hundreds of megajoules stored in the magnetic fields. When a major plasma instability occurs, the disruption of the plasma current induces voltage in the adjacent conducting structures, giving rise to large transient currents. The induced voltages may be sufficiently high to cause arcing across sector gaps or from one protruding component to another. This report reviews a tokamak arcing scenario and provides guidelines for designing tokamaks to minimize the possibility of arc damage

  18. Survey of Tokamak experiments

    International Nuclear Information System (INIS)

    Bickerton, R.J.

    1977-01-01

    The survey covers the following topics:- Introduction and history of tokamak research; review of tokamak apparatus, existing and planned; remarks on measurement techniques and their limitations; main results in terms of electron and ion temperatures, plasma density, containment times, etc. Empirical scaling; range of operating densities; impurities, origin, behaviour and control (including divertors); data on fluctuations and instabilities in tokamak plasmas; data on disruptive instabilities; experiments on shaped cross-sections; present experimental evidence on β limits; auxiliary heating; experimental and theoretical problems for the future. (author)

  19. Tokamak ARC damage

    Energy Technology Data Exchange (ETDEWEB)

    Murray, J.G.; Gorker, G.E.

    1985-01-01

    Tokamak fusion reactors will have large plasma currents of approximately 10 MA with hundreds of megajoules stored in the magnetic fields. When a major plasma instability occurs, the disruption of the plasma current induces voltage in the adjacent conducting structures, giving rise to large transient currents. The induced voltages may be sufficiently high to cause arcing across sector gaps or from one protruding component to another. This report reviews a tokamak arcing scenario and provides guidelines for designing tokamaks to minimize the possibility of arc damage.

  20. A new Disruption Mitigation System for deuterium–tritium operation at JET

    Energy Technology Data Exchange (ETDEWEB)

    Kruezi, Uron, E-mail: uron.kruezi@ccfe.ac.uk [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Jachmich, Stefan [Laboratory for Plasma Physic, ERM/KMS, B-1000 Brussels (Belgium); Koslowski, Hans Rudolf [Forschungszentrum Jülich GmbH, IEK-4, 52425 Jülich (Germany); Lehnen, Michael [ITER Organization, Route de Vinon-sur-Verdon, CS90046, 13067 St. Paul Lez Durance Cedex (France); Brezinsek, Sebastijan [Forschungszentrum Jülich GmbH, IEK-4, 52425 Jülich (Germany); Matthews, Guy [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom)

    2015-10-15

    Highlights: • A Disruption Mitigation System based on massive gas injections has been designed. • The DMS has been installed at the JET-tokamak for routine machine protection. • The DMS is capable of a throughput of up to 4.6 kPa m{sup 3}. • The new DMS is compatible with the deuterium–tritium operation at JET. - Abstract: Disruptions, the fast accidental losses of plasma current and stored energy in tokamaks, represent a significant risk to the mechanical structure as well as the plasma facing components of reactor-scale fusion facilities like ITER. At JET, the tokamak experiment closest to ITER in terms of operating parameters and size, massive gas injection has been established as a disruption mitigation method. As a “last resort” measure it reduces thermal and electromagnetic loads during disruptions which can potentially have a serious impact on the beryllium and tungsten plasma-facing materials of the main chamber and divertor. For the planned deuterium–tritium experiments, a new Disruption Mitigation System (DMS) has been designed and installed and is presented in this article. The new DMS at JET consists of an all metal gate valve compatible with gas injections, a fast high pressure eddy current driven valve, a high voltage power supply and a gas handling system providing six supply lines for pure and mixed noble and flammable gases (Ar, Ne, Kr, D{sub 2}, etc.). The valve throughput varies with the injection pressure and gas type (efficiency – injected/charged gas 50–97%); the maximum injected amount of gas is approximately 4.6 kPa m{sup 3} (at maximum system pressure of 5.0 MPa).

  1. A new Disruption Mitigation System for deuterium–tritium operation at JET

    International Nuclear Information System (INIS)

    Kruezi, Uron; Jachmich, Stefan; Koslowski, Hans Rudolf; Lehnen, Michael; Brezinsek, Sebastijan; Matthews, Guy

    2015-01-01

    Highlights: • A Disruption Mitigation System based on massive gas injections has been designed. • The DMS has been installed at the JET-tokamak for routine machine protection. • The DMS is capable of a throughput of up to 4.6 kPa m"3. • The new DMS is compatible with the deuterium–tritium operation at JET. - Abstract: Disruptions, the fast accidental losses of plasma current and stored energy in tokamaks, represent a significant risk to the mechanical structure as well as the plasma facing components of reactor-scale fusion facilities like ITER. At JET, the tokamak experiment closest to ITER in terms of operating parameters and size, massive gas injection has been established as a disruption mitigation method. As a “last resort” measure it reduces thermal and electromagnetic loads during disruptions which can potentially have a serious impact on the beryllium and tungsten plasma-facing materials of the main chamber and divertor. For the planned deuterium–tritium experiments, a new Disruption Mitigation System (DMS) has been designed and installed and is presented in this article. The new DMS at JET consists of an all metal gate valve compatible with gas injections, a fast high pressure eddy current driven valve, a high voltage power supply and a gas handling system providing six supply lines for pure and mixed noble and flammable gases (Ar, Ne, Kr, D_2, etc.). The valve throughput varies with the injection pressure and gas type (efficiency – injected/charged gas 50–97%); the maximum injected amount of gas is approximately 4.6 kPa m"3 (at maximum system pressure of 5.0 MPa).

  2. Subtask 3.11 - Production of CBTL-Based Jet Fuels from Biomass-Based Feedstocks and Montana Coal

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Ramesh

    2014-06-01

    The Energy & Environmental Research Center (EERC), in partnership with the U.S. Department of Energy (DOE) and Accelergy Corporation, an advanced fuels developer with technologies exclusively licensed from Exxon Mobil, undertook Subtask 3.11 to use a recently installed bench-scale direct coal liquefaction (DCL) system capable of converting 45 pounds/hour of pulverized, dried coal to a liquid suitable for upgrading to fuels and/or chemicals. The process involves liquefaction of Rosebud mine coal (Montana coal) coupled with an upgrading scheme to produce a naphthenic fuel. The upgrading comprises catalytic hydrotreating and saturation to produce naphthenic fuel. A synthetic jet fuel was prepared by blending equal volumes of naphthenic fuel with similar aliphatic fuel derived from biomass and 11 volume % of aromatic hydrocarbons. The synthetic fuel was tested using standard ASTM International techniques to determine compliance with JP-8 fuel. The composite fuel thus produced not only meets but exceeds the military aviation fuel-screening criteria. A 500-milliliter synthetic jet fuel sample which met internal screening criteria was submitted to the Air Force Research Laboratory (AFRL) at Wright–Patterson Air Force Base, Dayton, Ohio, for evaluation. The sample was confirmed by AFRL to be in compliance with U.S. Air Force-prescribed alternative aviation fuel initial screening criteria. The results show that this fuel meets or exceeds the key specification parameters for JP-8, a petroleum-based jet fuel widely used by the U.S. military. JP-8 specifications include parameters such as freeze point, density, flash point, and others; all of which were met by the EERC fuel sample. The fuel also exceeds the thermal stability specification of JP-8 fuel as determined by the quartz crystalline microbalance (QCM) test also performed at an independent laboratory as well as AFRL. This means that the EERC fuel looks and acts identically to petroleum-derived jet fuel and can be used

  3. Introducing minimum Fisher regularisation tomography to AXUV and soft x-ray diagnostic systems of the COMPASS tokamak

    International Nuclear Information System (INIS)

    Mlynar, J.; Weinzettl, V.; Imrisek, M.; Odstrcil, M.; Havlicek, J.; Janky, F.; Alper, B.; Murari, A.

    2012-01-01

    The contribution focuses on plasma tomography via the minimum Fisher regularisation (MFR) algorithm applied on data from the recently commissioned tomographic diagnostics on the COMPASS tokamak. The MFR expertise is based on previous applications at Joint European Torus (JET), as exemplified in a new case study of the plasma position analyses based on JET soft x-ray (SXR) tomographic reconstruction. Subsequent application of the MFR algorithm on COMPASS data from cameras with absolute extreme ultraviolet (AXUV) photodiodes disclosed a peaked radiating region near the limiter. Moreover, its time evolution indicates transient plasma edge cooling following a radial plasma shift. In the SXR data, MFR demonstrated that a high resolution plasma positioning independent of the magnetic diagnostics would be possible provided that a proper calibration of the cameras on an x-ray source is undertaken.

  4. Tokamak burn cycle study: a data base for comparing long pulse and steady-state power reactors

    International Nuclear Information System (INIS)

    Ehst, D.A.; Brooks, J.N.; Cha, Y.; Evans, K. Jr.; Hassanein, A.; Kim, S.; Majumdar, S.; Misra, B.; Stevens, H.C.

    1983-11-01

    Several distinct operating modes (conventional ohmic, noninductive steady state, internal transformer, etc.) have been proposed for tokamaks. Our study focuses on capital costs and lifetime limitations of reactor subsystems in an attempt to quantify sensitivity to pulsed operation. Major problem areas considered include: thermal fatigue on first wall, limiter/divertor; thermal energy storage; fatigue and eddy current heating in toroidal field coils; electric power supply costs; and noninductive driver costs. We assume a high availability and low cost of energy will be mandatory for a commercial fusion reactor, and we characterize improvements in physics (current drive efficiency) and engineering (superior materials) which will help achieve these goals for different burn cycles

  5. Superconducting magnets and cryogenics for the steady state superconducting tokamak SST-1

    International Nuclear Information System (INIS)

    Saxena, Y.C.

    2000-01-01

    SST-1 is a steady state superconducting tokamak for studying the physics of the plasma processes in tokamak under steady state conditions and to learn technologies related to the steady state operation of the tokamak. SST-1 will have superconducting magnets made from NbTi based conductors operating at 4.5 K temperature. The design of the superconducting magnets and the cryogenic system of SST-1 tokamak are described. (author)

  6. Maximization of integral outlet quantities of an axisymmetric synthetic jet actuator based on a loudspeaker

    Czech Academy of Sciences Publication Activity Database

    Kordík, Jozef; Trávníček, Zdeněk

    2016-01-01

    Roč. 114, March (2016), č. článku 02152. ISSN 2101-6275. [International Conference on Experimental Fluid Mechanics /10./. Praha, 17.11.2015-20.11.2015] R&D Projects: GA ČR GA14-08888S Institutional support: RVO:61388998 Keywords : synthetic jet * synthetic jet actuator * resonance Subject RIV: JU - Aeronautics, Aerodynamics, Aircrafts

  7. Performance of synthetic jet actuators based on hybrid and double-acting principles

    Czech Academy of Sciences Publication Activity Database

    Trávníček, Zdeněk; Tesař, Václav; Kordík, Jozef

    2008-01-01

    Roč. 11, č. 3 (2008), s. 221-229 ISSN 1343-8875 R&D Projects: GA ČR GA101/07/1499; GA AV ČR(CZ) IAA200760801 Institutional research plan: CEZ:AV0Z20760514 Keywords : synthetic jet * impinging jet * actuator Subject RIV: BK - Fluid Dynamics Impact factor: 0.943, year: 2008

  8. Real-time control of current and pressure profiles in tokamak plasmas

    International Nuclear Information System (INIS)

    Laborde, L.

    2005-12-01

    Recent progress in the field of 'advanced tokamak scenarios' prefigure the operation regime of a future thermonuclear fusion power plant. Compared to the reference regime, these scenarios offer a longer plasma confinement time thanks to increased magnetohydrodynamic stability and to a better particle and energy confinement through a reduction of plasma turbulence. This should give access to comparable fusion performances at reduced plasma current and could lead to a steady state fusion reactor since the plasma current could be entirely generated non-inductively. Access to this kind of regime is provided by the existence of an internal transport barrier, linked to the current profile evolution in the plasma, which leads to steep temperature and pressure profiles. The comparison between heat transport simulations and experiments allowed the nature of the barriers to be better understood as a region of strongly reduced turbulence. Thus, the control of this barrier in a stationary manner would be a remarkable progress, in particular in view of the experimental reactor ITER. The Tore Supra and JET tokamaks, based in France and in the United Kingdom, constitute ideal instruments for such experiments: the first one allows stationary plasmas to be maintained during several minutes whereas the second one provides unique fusion performances. In Tore Supra, real-time control experiments have been accomplished where the current profile width and the pressure profile gradient were controlled in a stationary manner using heating and current drive systems as actuators. In the JET tokamak, the determination of an empirical static model of the plasma allowed the current and pressure profiles to be simultaneously controlled and so an internal transport barrier to be sustained. Finally, the identification of a dynamic model of the plasma led to the definition of a new controller capable, in principle, of a more efficient control. (author)

  9. Development of an Organosilicon-Based Superhydrophobic/Icephobic Surface Using an Atmospheric Pressure Plasma Jet =

    Science.gov (United States)

    Asadollahi, Siavash

    During the past few decades, plasma-based surface treatment methods have gained a lot of interest in various applications such as thin film deposition, surface etching, surface activation and/or cleaning, etc. Generally, in plasma-based surface treatment methods, high-energy plasma-generated species are utilized to modify the surface structure or the chemical composition of a substrate. Unique physical and chemical characteristics of the plasma along with the high controllability of the process makes plasma treatment approaches very attractive in several industries. Plasma-based treatment methods are currently being used or investigated for a number of practical applications, such as adhesion promotion in auto industry, wound management and cancer treatment in biomedical industry, and coating development in aerospace industry. In this study, a two-step procedure is proposed for the development of superhydrophobic/icephobic coatings based on atmospheric-pressure plasma treatment of aluminum substrates using air and nitrogen plasma. The effects of plasma parameters on various surface properties are studied in order to identify the optimum conditions for maximum coating efficiency against icing and wetting. In the first step, the interactions between air or nitrogen plasma and the aluminum surface are studied. It is shown that by reducing jet-to-substrate distance, air plasma treatment, unlike nitrogen plasma treatment, is capable of creating micro-porous micro-roughened structures on the surface, some of which bear a significant resemblance to the features observed in laser ablation of metals with short and ultra-short laser pulses. The formation of such structures in plasma treatment is attributed to a transportation of energy from the jet to the surface over a very short period of time, in the range of picoseconds to microseconds. This energy transfer is shown to occur through a streamer discharge from the rotating arc source in the jet body to a close proximity of

  10. Core transport properties in JT-60U and JET identity plasmas

    NARCIS (Netherlands)

    Litaudon, X.; Sakamoto, Y.; de Vries, P. C.; Salmi, A.; Tala, T.; Angioni, C.; Benkadda, S.; Beurskens, M. N. A.; Bourdelle, C.; Brix, M.; Crombe, K.; Fujita, T.; Futatani, S.; Garbet, X.; Giroud, C.; Hawkes, N. C.; Hayashi, N.; Hoang, G. T.; Hogeweij, G. M. D.; Matsunaga, G.; Nakano, T.; Oyama, N.; Parail, V.; Shinohara, K.; Suzuki, T.; Takechi, M.; Takenaga, H.; Takizuka, T.; Urano, H.; Voitsekhovitch, I.; Yoshida, M.

    2011-01-01

    The paper compares the transport properties of a set of dimensionless identity experiments performed between JET and JT-60U in the advanced tokamak regime with internal transport barrier, ITB. These International Tokamak Physics Activity, ITPA, joint experiments were carried out with the same plasma

  11. Novel cavitation fluid jet polishing process based on negative pressure effects.

    Science.gov (United States)

    Chen, Fengjun; Wang, Hui; Tang, Yu; Yin, Shaohui; Huang, Shuai; Zhang, Guanghua

    2018-04-01

    Traditional abrasive fluid jet polishing (FJP) is limited by its high-pressure equipment, unstable material removal rate, and applicability to ultra-smooth surfaces because of the evident air turbulence, fluid expansion, and a large polishing spot in high-pressure FJP. This paper presents a novel cavitation fluid jet polishing (CFJP) method and process based on FJP technology. It can implement high-efficiency polishing on small-scale surfaces in a low-pressure environment. CFJP uses the purposely designed polishing equipment with a sealed chamber, which can generate a cavitation effect in negative pressure environment. Moreover, the collapse of cavitation bubbles can spray out a high-energy microjet and shock wave to enhance the material removal. Its feasibility is verified through researching the flow behavior and the cavitation results of the negative pressure cavitation machining of pure water in reversing suction flow. The mechanism is analyzed through a computational fluid dynamics simulation. Thus, its cavitation and surface removal mechanisms in the vertical CFJP and inclined CFJP are studied. A series of polishing experiments on different materials and polishing parameters are conducted to validate its polishing performance compared with FJP. The maximum removal depth increases, and surface roughness gradually decreases with increasing negative outlet pressures. The surface becomes smooth with the increase of polishing time. The experimental results confirm that the CFJP process can realize a high material removal rate and smooth surface with low energy consumption in the low-pressure environment, together with compatible surface roughness to FJP. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Development of a physiologically based pharmacokinetic model for inhalation of jet fuels in the rat.

    Science.gov (United States)

    Martin, Sheppard A; Campbell, Jerry L; Tremblay, Raphael T; Fisher, Jeffrey W

    2012-01-01

    The pharmacokinetic behavior of the majority of jet fuel constituents has not been previously described in the framework of a physiologically based pharmacokinetic (PBPK) model for inhalation exposure. Toxic effects have been reported in multiple organ systems, though exposure methods varied across studies, utilizing either vaporized or aerosolized fuels. The purpose of this work was to assess the pharmacokinetics of aerosolized and vaporized fuels, and develop a PBPK model capable of describing both types of exposures. To support model development, n-tetradecane and n-octane exposures were conducted at 89 mg/m(3) aerosol+vapor and 1000-5000 ppm vapor, respectively. Exposures to JP-8 and S-8 were conducted at ~900-1000 mg/m(3), and ~200 mg/m(3) to a 50:50 blend of both fuels. Sub-models were developed to assess the behavior of representative constituents and grouped unquantified constituents, termed "lumps", accounting for the remaining fuel mass. The sub-models were combined into the first PBPK model for petroleum and synthetic jet fuels. Inhalation of hydrocarbon vapors was described with simple gas-exchange assumptions for uptake and exhalation. For aerosol droplets systemic uptake occurred in the thoracic region. Visceral tissues were described using perfusion and diffusion-limited equations. The model described kinetics at multiple fuel concentrations, utilizing a chemical "lumping" strategy to estimate parameters for fractions of speciated and unspeciated hydrocarbons and gauge metabolic interactions. The model more accurately simulated aromatic and lower molecular weight (MW) n-alkanes than some higher MW chemicals. Metabolic interactions were more pronounced at high (~2700-1000 mg/m(3)) concentrations. This research represents the most detailed assessment of fuel pharmacokinetics to date.

  13. Are jets really there

    International Nuclear Information System (INIS)

    Lillethun, E.

    1976-09-01

    Based on the results of high energy proton-proton collisions obtained at the CERN ISR in 1972-73, the production of 'jets' is discussed. Jets in e + e - collisions are also discussed and the parameters 'sphericity' and 'rapidity' are used in analysis of the data. The jets studied have been defined as having at least one particle of high transverse momentum. It is not clear whether the jets represent new physics or are another way of stating that resonances (rho,K*, Δ, N* etc.) are produced with high p(sub T), and that in such production the high transverse momentum must be balanced essentially locally in the collision. (JIW)

  14. Design of Tokamak plasma with high Tc superconducting coils

    International Nuclear Information System (INIS)

    Uchimoto, T.; Miya, K.; Yoshida, Y.; Yamada, T.

    1999-01-01

    This paper presents a design of tokamak plasma in light of how the small ignited tokamak is possible with use of the HTSC coils as plasma stabilizer. The same data base and formulas as ITER are here used and any innovative technology other than the HTSC stabilizing coils is not assumed. (author)

  15. Tokamak simulation code manual

    International Nuclear Information System (INIS)

    Chung, Moon Kyoo; Oh, Byung Hoon; Hong, Bong Keun; Lee, Kwang Won

    1995-01-01

    The method to use TSC (Tokamak Simulation Code) developed by Princeton plasma physics laboratory is illustrated. In KT-2 tokamak, time dependent simulation of axisymmetric toroidal plasma and vertical stability have to be taken into account in design phase using TSC. In this report physical modelling of TSC are described and examples of application in JAERI and SERI are illustrated, which will be useful when TSC is installed KAERI computer system. (Author) 15 refs., 6 figs., 3 tabs

  16. Mode particle resonances during near-tangential neutral beam injection in large tokamaks

    International Nuclear Information System (INIS)

    Kaita, R.; White, R.B.; Morris, A.W.; Fredrickson, E.D.; McGuire, K.M.; Medley, S.S.; Scott, S.D.

    1988-01-01

    Coherent magnetohydrodynamic modes have been observed during neutral beam injection in TFTR and JET. Periodic bursts of oscillations were detected with several plasma diagnostics, and Fokker-Planck calculations show that the populations of trapped particles in both tokamaks are sufficient to account for fishbone destabilization. Estimates of mode parameters are in reasonable agreement with the experiments, and they indicate that the fishbone mode may continue to affect the performance of intensely heated tokamaks. 13 refs., 1 fig., 1 tab

  17. JET experiments with tritium and deuterium–tritium mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Horton, Lorne, E-mail: Lorne.Horton@jet.uk [JET Exploitation Unit, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); European Commission, B-1049 Brussels (Belgium); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Batistoni, P. [Unità Tecnica Fusione - ENEA C. R. Frascati - via E. Fermi 45, Frascati (Roma), 00044, Frascati (Italy); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Boyer, H.; Challis, C.; Ćirić, D. [CCFE, Culham Science Centre, Abingdon OX14 3DB, Oxon (United Kingdom); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Donné, A.J.H. [EUROfusion Programme Management Unit, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); FOM Institute DIFFER, PO Box 1207, NL-3430 BE Nieuwegein (Netherlands); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Eriksson, L.-G. [European Commission, B-1049 Brussels (Belgium); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Garcia, J. [CEA, IRFM, F-13108 Saint Paul Lez Durance (France); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Garzotti, L.; Gee, S. [CCFE, Culham Science Centre, Abingdon OX14 3DB, Oxon (United Kingdom); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Hobirk, J. [Max-Planck-Institut für Plasmaphysik, D-85748 Garching (Germany); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Joffrin, E. [CEA, IRFM, F-13108 Saint Paul Lez Durance (France); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); and others

    2016-11-01

    Highlights: • JET is preparing for a series of experiments with tritium and deuterium–tritium mixtures. • Physics objectives include integrated demonstration of ITER operating scenarios, isotope and alpha physics. • Technology objectives include neutronics code validation, material studies and safety investigations. • Strong emphasis on gaining experience in operation of a nuclear tokamak and training scientists and engineers for ITER. - Abstract: Extensive preparations are now underway for an experiment in the Joint European Torus (JET) using tritium and deuterium–tritium mixtures. The goals of this experiment are described as well as the progress that has been made in developing plasma operational scenarios and physics reference pulses for use in deuterium–tritium and full tritium plasmas. At present, the high performance plasmas to be tested with tritium are based on either a conventional ELMy H-mode at high plasma current and magnetic field (operation at up to 4 MA and 4 T is being prepared) or the so-called improved H-mode or hybrid regime of operation in which high normalised plasma pressure at somewhat reduced plasma current results in enhanced energy confinement. Both of these regimes are being re-developed in conjunction with JET's ITER-like Wall (ILW) of beryllium and tungsten. The influence of the ILW on plasma operation and performance has been substantial. Considerable progress has been made on optimising performance with the all-metal wall. Indeed, operation at the (normalised) ITER reference confinement and pressure has been re-established in JET albeit not yet at high current. In parallel with the physics development, extensive technical preparations are being made to operate JET with tritium. The state and scope of these preparations is reviewed, including the work being done on the safety case for DT operation and on upgrading machine infrastructure and diagnostics. A specific example of the latter is the planned calibration at

  18. The hydrogen laminar jet

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Sanz, M. [Departamento de Motopropulsion y Termofluidomecanica, ETSI Aeronauticos, Universidad Politecnica de Madrid, 28040 Madrid (Spain); Rosales, M. [Department Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, 28911, Leganes (Spain); Instituto de Innovacion en Mineria y Metalurgia, Avenida del Valle 738, Santiago (Chile); Sanchez, A.L. [Department Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, 28911, Leganes (Spain)

    2010-04-15

    Numerical and asymptotic methods are used to investigate the structure of the hydrogen jet discharging into a quiescent air atmosphere. The analysis accounts in particular for the variation of the density and transport properties with composition. The Reynolds number of the flow R{sub j}, based on the initial jet radius a, the density {rho}{sub j} and viscosity {mu}{sub j} of the jet and the characteristic jet velocity u{sub j}, is assumed to take moderately large values, so that the jet remains slender and stable, and can be correspondingly described by numerical integration of the continuity, momentum and species conservation equations written in the boundary-layer approximation. The solution for the velocity and composition in the jet development region of planar and round jets, corresponding to streamwise distances of order R{sub j}a, is computed numerically, along with the solutions that emerge both in the near field and in the far field. The small value of the hydrogen-to-air molecular weight ratio is used to simplify the solution by considering the asymptotic limit of vanishing jet density. The development provides at leading-order explicit analytical expressions for the far-field velocity and hydrogen mass fraction that describe accurately the hydrogen jet near the axis. The information provided can be useful in particular to characterize hydrogen discharge processes from holes and cracks. (author)

  19. Analysis of toroidal rotation data for the DIII-D tokamak

    International Nuclear Information System (INIS)

    John, H.St.; Burrell, K.H.; Groebner, R.; DeBoo, J.; Gohil, P.

    1989-01-01

    Both poloidal and toroidal rotation are observed during routine neutral beam heating operation of the DIII-D tokamak. Poloidal rotation results and the empirical techniques used to measure toroidal and poloidal rotation speeds are described by Groebner et al. Here we concentrate on the analysis of recent measurements of toroidal rotation made during diverted, H-mode operation of the DIII-D tokamak during co- and counter-neutral beam injection of hydrogen into deuterium plasmas. Similar studies have been previously reported for Doublet III, ASDEX, TFTR, JET and other tokamaks. (author) 13 refs., 4 figs

  20. Prototype tokamak fusion reactor based on SiC/SiC composite material focusing on easy maintenance

    International Nuclear Information System (INIS)

    Nishio, S.; Ueda, S.; Kurihara, R.; Kuroda, T.; Miura, H.; Sako, K.; Takase, H.; Seki, Y.; Adachi, J.; Yamazaki, S.; Hashimoto, T.; Mori, S.; Shinya, K.; Murakami, Y.; Senda, I.; Okano, K.; Asaoka, Y.; Yoshida, T.

    2000-01-01

    If the major part of the electric power demand is to be supplied by tokamak fusion power plants, the tokamak reactor must have an ultimate goal, i.e. must be excellent in construction cost, safety aspect and operational availability (maintainability and reliability), simultaneously. On way to the ultimate goal, the approach focusing on the safety and the availability (including reliability and maintainability) issues must be the more promising strategy. The tokamak reactor concept with the very high aspect ratio configuration and the structural material of SiC/SiC composite is compatible with this approach, which is called the DRastically Easy Maintenance (DREAM) approach. This is because SiC/SiC composite is a low activation material and an insulation material, and the high aspect ratio configuration leads to a good accessibility for the maintenance machines. As the intermediate steps along this strategy between the experimental reactor such as international thermonuclear experimental reactor (ITER) and the ultimate goal, a prototype reactor and an initial phase commercial reactor have been investigated. Especially for the prototype reactor, the material and technological immaturities are considered. The major features of the prototype and commercial type reactors are as follows. The fusion powers of the prototype and the commercial type are 1.5 and 5.5 GW, respectively. The major/minor radii for the prototype and the commercial type are of 12/1.5 m and 16/2 m, respectively. The plasma currents for the prototype and the commercial type are 6 and 9.2 MA, respectively. The coolant is helium gas, and the inlet/outlet temperatures of 500/800 and 600/900 deg. C for the prototype and the commercial type, respectively. The thermal efficiencies of 42 and 50% are obtainable in the prototype and the commercial type, respectively. The maximum toroidal field strengths of 18 and 20 tesla are assumed in the prototype and the commercial type, respectively. The thermal

  1. Can better modelling improve tokamak control?

    International Nuclear Information System (INIS)

    Lister, J.B.; Vyas, P.; Ward, D.J.; Albanese, R.; Ambrosino, G.; Ariola, M.; Villone, F.; Coutlis, A.; Limebeer, D.J.N.; Wainwright, J.P.

    1997-01-01

    The control of present day tokamaks usually relies upon primitive modelling and TCV is used to illustrate this. A counter example is provided by the successful implementation of high order SISO controllers on COMPASS-D. Suitable models of tokamaks are required to exploit the potential of modern control techniques. A physics based MIMO model of TCV is presented and validated with experimental closed loop responses. A system identified open loop model is also presented. An enhanced controller based on these models is designed and the performance improvements discussed. (author) 5 figs., 9 refs

  2. Spherical tokamak power plant design issues

    International Nuclear Information System (INIS)

    Hender, T.C.; Bond, A.; Edwards, J.; Karditsas, P.J.; McClements, K.G.; Mustoe, J.; Sherwood, D.V.; Voss, G.M.; Wilson, H.R.

    2000-01-01

    The very high β potential of the spherical tokamak has been demonstrated in the START experiment. Systems code studies show the cost of electricity from spherical tokamak power plants, operating at high β in second ballooning mode stable regime, is comparable with fossil fuels and fission. Outline engineering designs are presented based on two concepts for the central rod of the toroidal field (TF) circuit - a room temperature water cooled copper rod or a helium cooled cryogenic aluminium rod. For the copper rod case the TF return limbs are supported by the vacuum vessel, while for the aluminium rod the TF coils form an independent structure. In both cases thermohydraulic and stress calculations indicate the viability of the design. Two-dimensional neutronics calculations show the feasibility of tritium self-sufficiency without an inboard blanket. The spherical tokamak has unique maintenance possibilities based on lowering major component structures into a hot cell beneath the device and these are discussed

  3. Performance evaluation of bipolar and tripolar excitations during nozzle-jetting-based alginate microsphere fabrication

    Science.gov (United States)

    Herran, C. Leigh; Huang, Yong; Chai, Wenxuan

    2012-08-01

    Microspheres, small spherical (polymeric) particles with or without second phase materials embedded or encapsulated, are important for many biomedical applications such as drug delivery and organ printing. Scale-up fabrication with the ability to precisely control the microsphere size and morphology has always been of great manufacturing interest. The objective of this work is to experimentally study the performance differences of bipolar and tripolar excitation waveforms in using drop-on-demand (DOD)-based single nozzle jetting for alginate microsphere fabrication. The fabrication performance has been evaluated based on the formability of alginate microspheres as a function of materials properties (sodium alginate and calcium chloride concentrations) and operating conditions. The operating conditions for each excitation include voltage rise/fall times, dwell times and excitation voltage amplitudes. Overall, the bipolar excitation is more robust in making spherical, monodispersed alginate microspheres as good microspheres for its wide working range of material properties and operating conditions, especially during the fabrication of highly viscous materials such as the 2% sodium alginate solution. For both bipolar and tripolar excitations, the sodium alginate concentration and the voltage dwell times should be carefully selected to achieve good microsphere formability.

  4. Performance evaluation of bipolar and tripolar excitations during nozzle-jetting-based alginate microsphere fabrication

    International Nuclear Information System (INIS)

    Leigh Herran, C; Huang, Yong; Chai, Wenxuan

    2012-01-01

    Microspheres, small spherical (polymeric) particles with or without second phase materials embedded or encapsulated, are important for many biomedical applications such as drug delivery and organ printing. Scale-up fabrication with the ability to precisely control the microsphere size and morphology has always been of great manufacturing interest. The objective of this work is to experimentally study the performance differences of bipolar and tripolar excitation waveforms in using drop-on-demand (DOD)-based single nozzle jetting for alginate microsphere fabrication. The fabrication performance has been evaluated based on the formability of alginate microspheres as a function of materials properties (sodium alginate and calcium chloride concentrations) and operating conditions. The operating conditions for each excitation include voltage rise/fall times, dwell times and excitation voltage amplitudes. Overall, the bipolar excitation is more robust in making spherical, monodispersed alginate microspheres as good microspheres for its wide working range of material properties and operating conditions, especially during the fabrication of highly viscous materials such as the 2% sodium alginate solution. For both bipolar and tripolar excitations, the sodium alginate concentration and the voltage dwell times should be carefully selected to achieve good microsphere formability. (paper)

  5. Jet fragmentation

    International Nuclear Information System (INIS)

    Saxon, D.H.

    1985-10-01

    The paper reviews studies on jet fragmentation. The subject is discussed under the topic headings: fragmentation models, charged particle multiplicity, bose-einstein correlations, identified hadrons in jets, heavy quark fragmentation, baryon production, gluon and quark jets compared, the string effect, and two successful models. (U.K.)

  6. Time-Accurate Simulations of Synthetic Jet-Based Flow Control for An Axisymmetric Spinning Body

    National Research Council Canada - National Science Library

    Sahu, Jubaraj

    2004-01-01

    .... A time-accurate Navier-Stokes computational technique has been used to obtain numerical solutions for the unsteady jet-interaction flow field for a spinning projectile at a subsonic speed, Mach...

  7. The Tokar Gap Jet: Regional Circulation, Diurnal Variability, and Moisture Transport Based on Numerical Simulations

    KAUST Repository

    Davis, Shannon R.; Pratt, Lawrence J.; Jiang, Houshuo

    2015-01-01

    The structure, variability, and regional connectivity of the Tokar Gap jet (TGJ) are described using WRF Model analyses and supporting atmospheric datasets from the East African–Red Sea–Arabian Peninsula (EARSAP) region during summer 2008. Sources

  8. Joint research using small tokamaks

    International Nuclear Information System (INIS)

    Gryaznevich, M.P.; Del Bosco, E.; Malaquias, A.; Mank, G.; Oost, G. van

    2005-01-01

    Small tokamaks have an important role in fusion research. More than 40 small tokamaks are operational. Research on small tokamaks has created a scientific basis for the scaling-up to larger tokamaks. Well-known scientific and engineering schools, which are now determining the main directions of fusion science and technology, have been established through research on small tokamaks. Combined efforts within a network of small and medium size tokamaks will further enhance the contribution of small tokamaks. A new concept of interactive co-ordinated research using small tokamaks in the mainstream fusion science areas, in testing of new diagnostics, materials and technologies as well as in education, training and broadening of the geography of fusion research in the scope of the IAEA Co-ordinated Research Project is presented. (author)

  9. Joint research using small tokamaks

    International Nuclear Information System (INIS)

    Gryaznevich, M.P.; Bosco, E. Del; Malaquias, A.; Mank, G.; Oost, G. van; He, Yexi; Hegazy, H.; Hirose, A.; Hron, M.; Kuteev, B.; Ludwig, G.O.; Nascimento, I.C.; Silva, C.; Vorobyev, G.M.

    2005-01-01

    Small tokamaks have an important role in fusion research. More than 40 small tokamaks are operational. Research on small tokamaks has created a scientific basis for the scaling-up to larger tokamaks. Well-known scientific and engineering schools, which are now determining the main directions of fusion science and technology, have been established through research on small tokamaks. Combined efforts within a network of small and medium size tokamaks will further enhance the contribution of small tokamaks. A new concept of interactive coordinated research using small tokamaks in the mainstream fusion science areas, in testing of new diagnostics, materials and technologies as well as in education, training and broadening of the geography of fusion research in the scope of the IAEA Coordinated Research Project, is presented

  10. Tokamak engineering test reactor

    International Nuclear Information System (INIS)

    Conn, R.W.; Jassby, D.L.

    1975-07-01

    The design criteria for a tokamak engineering test reactor can be met by operating in the two-component mode with reacting ion beams, together with a new blanket-shield design based on internal neutron spectrum shaping. A conceptual reactor design achieving a neutron wall loading of about 1 MW/m 2 is presented. The tokamak has a major radius of 3.05 m, the plasma cross-section is noncircular with a 2:1 elongation, and the plasma radius in the midplane is 55 cm. The total wall area is 149 m 2 . The plasma conditions are T/sub e/ approximately T/sub i/ approximately 5 keV, and ntau approximately 8 x 10 12 cm -3 s. The plasma temperature is maintained by injection of 177 MW of 200-keV neutral deuterium beams; the resulting deuterons undergo fusion reactions with the triton-target ions. The D-shaped toroidal field coils are extended out to large major radius (7.0 m), so that the blanket-shield test modules on the outer portion of the torus can be easily removed. The TF coils are superconducting, using a cryogenically stable TiNb design that permits a field at the coil of 80 kG and an axial field of 38 kG. The blanket-shield design for the inner portion of the torus nearest the machine center line utilizes a neutron spectral shifter so that the first structural wall behind the spectral shifter zone can withstand radiation damage for the reactor lifetime. The energy attenuation in this inner blanket is 8 x 10 -6 . If necessary, a tritium breeding ratio of 0.8 can be achieved using liquid lithium cooling in the []outer blanket only. The overall power consumption of the reactor is about 340 MW(e). A neutron wall loading greater than 1 MW/m 2 can be achieved by increasing the maximum magnetic field or the plasma elongation. (auth)

  11. Development of ion diagnostic system based on electrostatic probe in the boundary plasma of the JFT-2M tokamak

    International Nuclear Information System (INIS)

    Uehara, Kazuya; Kawakami, Tomohide; Amemiya, Hiroshi; Hoethker, K.; Cosler, A.; Bieger, W.

    1995-06-01

    An ion diagnostic system using electrostatic probes for measurements in the JFT-2M tokamak boundary plasma has been developed under the collaboration program between KFA and JAERI. The rotating double probe system, on which the Hoethker double probe and Amemiya asymmetric probe can mounted, are manufactured at KFA workshop while the linear driver to support the rotating double probe, the ion toothbrush probe, the Katsumata probe and the cubic Mach probe are developed at JAERI. This report describes the hardware of this probe system for ion diagnostics in the boundary plasma and preliminary data obtained by means of this system. Furthermore, results on the transport are estimated on the basis of these probe data. (author)

  12. Analysis and Performance of the Thomson Scattering Diagnostics on HT-7 Tokamak Based on I-EMCCD

    International Nuclear Information System (INIS)

    Shao Chunqiang; Zhao Junyu; Zang Qing; Han Xiaofeng; Xi Xiaoqi; Yang Jianhua; Chen Hui; Hu Ailan

    2014-01-01

    A visible light imaging Thomson scattering (VIS-TVTS) diagnostic system has been developed for the measurement of plasma electron temperature on the HT-7 tokamak. The system contains a Nd:YAG laser (λ = 532 nm, repetition rate 10 Hz, total pulse duration ≍ 10 ns, pulse energy > 1.0 J), a grating spectrometer, an image intensifier (I.I.) lens coupled with an electron multiplying CCD (EMCCD) and a data acquisition and analysis system. In this paper, the measurement capability of the system is analyzed. In addition to the performance of the system, the capability of measuring plasma electron temperature has been proved. The profile of electron temperature is presented with a spatial resolution of about 0.96 cm (seven points) near the center of the plasma

  13. Serial clustering of extratropical cyclones and relationship with NAO and jet intensity based on the IMILAST cyclone database

    Science.gov (United States)

    Ulbrich, Sven; Pinto, Joaquim G.; Economou, Theodoros; Stephenson, David B.; Karremann, Melanie K.; Shaffrey, Len C.

    2017-04-01

    Cyclone families are a frequent synoptic weather feature in the Euro-Atlantic area, particularly during wintertime. Given appropriate large-scale conditions, such series (clusters) of storms may cause large socio-economic impacts and cumulative losses. Recent studies analyzing reanalysis data using single cyclone tracking methods have shown that serial clustering of cyclones occurs on both flanks and downstream regions of the North Atlantic storm track. Based on winter (DJF) cyclone counts from the IMILAST cyclone database, we explore the representation of serial clustering in the ERA-Interim period and its relationship with the NAO-phase and jet intensity. With this aim, clustering is estimated by the dispersion of winter (DJF) cyclone passages for each grid point over the Euro-Atlantic area. Results indicate that clustering over the Eastern North Atlantic and Western Europe can be identified for all methods, although the exact location and the dispersion magnitude may vary. The relationship between clustering and (i) the NAO-phase and (ii) jet intensity over the North Atlantic is statistically evaluated. Results show that the NAO-index and the jet intensity show a strong contribution to clustering, even though some spread is found between methods. We conclude that the general features of clustering of extratropical cyclones over the North Atlantic and Western Europe are robust to the choice of tracking method. The same is true for the influence of the NAO and jet intensity on cyclone dispersion.

  14. Fractal based observables to probe jet substructure of quarks and gluons

    Science.gov (United States)

    Davighi, Joe; Harris, Philip

    2018-04-01

    New jet observables are defined which characterize both fractal and scale-dependent contributions to the distribution of hadrons in a jet. These infrared safe observables, named Extended Fractal Observables (EFOs), have been applied to quark-gluon discrimination to demonstrate their potential utility. The EFOs are found to be individually discriminating and only weakly correlated to variables used in existing discriminators. Consequently, their inclusion improves discriminator performance, as here demonstrated with particle level simulation from the parton shower.

  15. Turbulent jet in confined counterflow

    Indian Academy of Sciences (India)

    The mean flowfield of a turbulent jet issuing into a confined, uniform counterflow was investigated computationally. Based on dimensional analysis, the jet penetration length was shown to scale with jet-to-counterflow momentum flux ratio. This scaling and the computational results reproduce the well-known correct limit of ...

  16. Comparison of different current transducers used at JET within the range 5–100 kA for plasma control and monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, R., E-mail: robjsalmon@gmail.com; Smith, P.; West, A.; Shaw, S.R.; Rendell, D.

    2015-10-15

    Highlights: • Zero-flux current transducers with sensory windings, Hall-effect DCCTs, Rogowski coils, shunt resistors and Faraday effect current transducers are reviewed. • All technologies have displayed good performance over 30 years of operation. • Faraday-effect current transducers have improved accuracy of the toroidal magnets current measurement on JET to 0.1%. • The improvement in accuracy has improved resolution on JET plasma kinetic profiles. - Abstract: The JET machine uses a variety of current transducers for control and protection of the plasma, the coils and their associated power supplies. This paper reviews the various measuring technologies, within the range 5–100 kA, used on JET to assist with the selection of high-current transducers for future plasma control/tokamak applications; these include Rogowski coils, coaxial shunts, Hall-effect transducers, zero-flux CTs and a Faraday-effect optical transducer. The paper considers reliability, accuracy and usability based on up to 30 years of operational experience of the transducers. Accuracy of the magnet current measurements is important in the control of tokamak plasmas and there has been considerable effort to improve it. Recently a Faraday-effect optical current sensor has been used to measure up to 67 kA in the Toroidal Field (TF) coil circuit. This measurement system has been calibrated at JET to verify its 0.1% accuracy. In addition, the data acquisition system for this measurement is automatically calibrated at the start of each JET pulse. The improved accuracy has been shown to enhance the spatial consistency of kinetic profiles at JET [1]. Due to its portability the JET project intends to employ the same Faraday-effect current transducer to calibrate other high current transducers by temporarily fitting it to other busbars, such as those in the Ohmic Heating network.

  17. Classical tokamak transport theory

    International Nuclear Information System (INIS)

    Nocentini, Aldo

    1982-01-01

    A qualitative treatment of the classical transport theory of a magnetically confined, toroidal, axisymmetric, two-species plasma is presented. The 'weakly collisional' ('banana' and 'plateau') and 'collision dominated' ('Pfirsch-Schlueter' and 'highly collisional') regimes, as well as the Ware effect are discussed. The method used to evaluate the diffusion coffieicnts of particles and heat in the weakly collisional regime is based on stochastic argument, that requires an analysis of the characteristic collision frequencies and lengths for particles moving in a tokamak-like magnetic field. The same method is used to evaluate the Ware effect. In the collision dominated regime on the other hand, the particle and heat fluxes across the magnetic field lines are dominated by macroscopic effects so that, although it is possible to present them as diffusion (in fact, the fluxes turn out to be proportional to the density and temperature gradients), a macroscopic treatment is more appropriate. Hence, fluid equations are used to inveatigate the collision dominated regime, to which particular attention is devoted, having been shown relatively recently that it is more complicated than the usual Pfirsch-Schlueter regime. The whole analysis presented here is qualitative, aiming to point out the relevant physical mechanisms involved in the various regimes more than to develop a rigorous mathematical derivation of the diffusion coefficients, for which appropriate references are given. (author)

  18. ICIT contribution to JET gamma-ray diagnostics enhancement

    International Nuclear Information System (INIS)

    Soare, S.; Curuia, M.; Zoita, V.

    2010-01-01

    Full text: Gamma-ray emission of tokamak plasmas is the result of the interaction of fast ions (fusion reaction products, including alpha particles, NBI ions, ICRH-accelerated ions) with main plasma impurities (e.g., carbon, beryllium). Gamma-ray diagnostics involve both gamma-ray imaging (cameras) and gamma-ray spectrometry (spectrometers). For the JET tokamak, gamma-ray diagnostics have been used to provide information on the characteristics of the fast ion population in plasmas. Two gamma-ray diagnostics enhancements project have been launched by JET and the MEdC/EURATOM Association has agreed to lead both of them with ICIT as projects leader. (authors)

  19. Advanced commercial tokamak study

    International Nuclear Information System (INIS)

    Thomson, S.L.; Dabiri, A.E.; Keeton, D.C.; Brown, T.G.; Bussell, G.T.

    1985-12-01

    Advanced commercial tokamak studies were performed by the Fusion Engineering Design Center (FEDC) as a participant in the Tokamak Power Systems Studies (TPSS) project coordinated by the Office of Fusion Energy. The FEDC studies addressed the issues of tokamak reactor cost, size, and complexity. A scoping study model was developed to determine the effect of beta on tokamak economics, and it was found that a competitive cost of electricity could be achieved at a beta of 10 to 15%. The implications of operating at a beta of up to 25% were also addressed. It was found that the economics of fusion, like those of fission, improve as unit size increases. However, small units were found to be competitive as elements of a multiplex plant, provided that unit cost and maintenance time reductions are realized for the small units. The modular tokamak configuration combined several new approaches to develop a less complex and lower cost reactor. The modular design combines the toroidal field coil with the reactor structure, locates the primary vacuum boundary at the reactor cell wall, and uses a vertical assembly and maintenance approach. 12 refs., 19 figs

  20. Study on shielding design method of radiation streaming in a tokamak-type DT fusion reactor based on Monte Carlo calculation

    International Nuclear Information System (INIS)

    Sato, Satoshi

    2003-09-01

    In tokamak-type DT nuclear fusion reactor, there are various type slits and ducts in the blanket and the vacuum vessel. The helium production in the rewelding location of the blanket and the vacuum vessel, the nuclear properties in the super-conductive TF coil, e.g. the nuclear heating rate in the coil winding pack, are enhanced by the radiation streaming through the slits and ducts, and they are critical concern in the shielding design. The decay gamma ray dose rate around the duct penetrating the blanket and the vacuum vessel is also enhanced by the radiation streaming through the duct, and they are also critical concern from the view point of the human access to the cryostat during maintenance. In order to evaluate these nuclear properties with good accuracy, three dimensional Monte Carlo calculation is required but requires long calculation time. Therefore, the development of the effective simple design evaluation method for radiation streaming is substantially important. This study aims to establish the systematic evaluation method for the nuclear properties of the blanket, the vacuum vessel and the Toroidal Field (TF) coil taking into account the radiation streaming through various types of slits and ducts, based on three dimensional Monte Carlo calculation using the MNCP code, and for the decay gamma ray dose rates penetrated around the ducts. The present thesis describes three topics in five chapters as follows; 1) In Chapter 2, the results calculated by the Monte Carlo code, MCNP, are compared with those by the Sn code, DOT3.5, for the radiation streaming in the tokamak-type nuclear fusion reactor, for validating the results of the Sn calculation. From this comparison, the uncertainties of the Sn calculation results coming from the ray-effect and the effect due to approximation of the geometry are investigated whether the two dimensional Sn calculation can be applied instead of the Monte Carlo calculation. Through the study, it can be concluded that the

  1. A protection system for the JET ITER-like wall based on imaging diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Arnoux, G.; Balboa, I.; Balshaw, N.; Beldishevski, M.; Cramp, S.; Felton, R.; Goodyear, A.; Horton, A.; Kinna, D.; McCullen, P.; Obrejan, K.; Patel, K.; Lomas, P. J.; Rimini, F.; Stamp, M.; Stephen, A.; Thomas, P. D.; Williams, J.; Wilson, J.; Zastrow, K.-D. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); and others

    2012-10-15

    The new JET ITER-like wall (made of beryllium and tungsten) is more fragile than the former carbon fiber composite wall and requires active protection to prevent excessive heat loads on the plasma facing components (PFC). Analog CCD cameras operating in the near infrared wavelength are used to measure surface temperature of the PFCs. Region of interest (ROI) analysis is performed in real time and the maximum temperature measured in each ROI is sent to the vessel thermal map. The protection of the ITER-like wall system started in October 2011 and has already successfully led to a safe landing of the plasma when hot spots were observed on the Be main chamber PFCs. Divertor protection is more of a challenge due to dust deposits that often generate false hot spots. In this contribution we describe the camera, data capture and real time processing systems. We discuss the calibration strategy for the temperature measurements with cross validation with thermal IR cameras and bi-color pyrometers. Most importantly, we demonstrate that a protection system based on CCD cameras can work and show examples of hot spot detections that stop the plasma pulse. The limits of such a design and the associated constraints on the operations are also presented.

  2. Magnet design considerations for Tokamak fusion reactors

    International Nuclear Information System (INIS)

    Purcell, J.R.; Chen, W.; Thomas, R.

    1976-01-01

    Design problems for superconducting ohmic heating and toroidal field coils for large Tokamak fusion reactors are discussed. The necessity for making these coils superconducting is explained, together with the functions of these coils in a Tokamak reactor. Major problem areas include materials related aspects and mechanical design and cryogenic considerations. Projections and comparisons are made based on existing superconducting magnet technology. The mechanical design of large-scale coils, which can contain the severe electromagnetic loading and stress generated in the winding, are emphasized. Additional major tasks include the development of high current conductors for pulsed applications to be used in fabricating the ohmic heating coils. It is important to note, however, that no insurmountable technical barriers are expected in the course of developing superconducting coils for Tokamak fusion reactors. (Auth.)

  3. Advanced statistics for tokamak transport colinearity and tokamak to tokamak variation

    International Nuclear Information System (INIS)

    Riedel, K.S.

    1989-03-01

    This is a compendium of three separate articles on the statistical analysis of tokamak transport. The first article is an expository introduction to advanced statistics and scaling laws. The second analyzes two important problems of tokamak data---colinearity and tokamak to tokamak variation in detail. The third article generalizes the Swamy random coefficient model to the case of degenerate matrices. Three papers have been processed separately

  4. Tokamak Engineering Technology Facility scoping study

    Energy Technology Data Exchange (ETDEWEB)

    Stacey, W.M. Jr.; Abdou, M.A.; Bolta, C.C.

    1976-03-01

    A scoping study for a Tokamak Engineering Technology Facility (TETF) is presented. The TETF is a tokamak with R = 3 m and I/sub p/ = 1.4 MA based on the counterstreaming-ion torus mode of operation. The primary purpose of TETF is to demonstrate fusion technologies for the Experimental Power Reactor (EPR), but it will also serve as an engineering and radiation test facility. TETF has several technological systems (e.g., superconducting toroidal-field coil, tritium fuel cycle, impurity control, first wall) that are prototypical of EPR.

  5. Tokamak Engineering Technology Facility scoping study

    International Nuclear Information System (INIS)

    Stacey, W.M. Jr.; Abdou, M.A.; Bolta, C.C.

    1976-03-01

    A scoping study for a Tokamak Engineering Technology Facility (TETF) is presented. The TETF is a tokamak with R = 3 m and I/sub p/ = 1.4 MA based on the counterstreaming-ion torus mode of operation. The primary purpose of TETF is to demonstrate fusion technologies for the Experimental Power Reactor (EPR), but it will also serve as an engineering and radiation test facility. TETF has several technological systems (e.g., superconducting toroidal-field coil, tritium fuel cycle, impurity control, first wall) that are prototypical of EPR

  6. Microwave Tokamak Experiment

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The Microwave Tokamak Experiment, now under construction at the Laboratory, will use microwave heating from a free-electron laser. The intense microwave pulses will be injected into the tokamak to realize several goals, including a demonstration of the effects of localized heat deposition within magnetically confined plasma, a better understanding of energy confinement in tokamaks, and use of the new free-electron laser technology for plasma heating. The experiment, soon to be operational, provides an opportunity to study dense plasmas heated by powers unprecedented in the electron-cyclotron frequency range required by the especially high magnetic fields used with the MTX and needed for reactors. 1 references, 5 figures, 3 tables

  7. Texas Experimental Tokamak

    International Nuclear Information System (INIS)

    Wootton, A.J.

    1993-04-01

    This progress report covers the period from November 1, 1990 to April 30, 1993. During that period, TEXT was operated as a circular tokamak with a material limiter. It was devoted to the study of basic plasma physics, in particular to study of fluctuations, turbulence, and transport. The purpose is to operate and maintain TEXT Upgrade as a complete facility for applied tokamak physics, specifically to conduct a research program under the following main headings: (1) to elucidate the mechanisms of working gas, impurity, and thermal transport in tokamaks, in particular to understand the role of turbulence; (2) to study physics of the edge plasma, in particular the turbulence; (3) to study the physics or resonant magnetic fields (ergodic magnetic divertors, intra island pumping); and (4) to study the physics of electron cyclotron heating (ECRH). Results of studies in each of these areas are reported

  8. Magnetic ''islandography'' in tokamaks

    International Nuclear Information System (INIS)

    Callen, J.D.; Waddell, B.V.; Hicks, H.R.

    1978-09-01

    Tearing modes are shown to be responsible for most of the experimentally observed macroscopic behavior of tokamak discharges. The effects of these collective magnetic perturbations on magnetic topology and plasma transport in tokamaks are shown to provide plausible explanations for: internal disruptions (m/n = 1); Mirnov oscillations (m/n = 2,3...); and major disruptions (coupling of 2/1-3/2 modes). The nonlinear evolution of the tearing modes is followed with fully three-dimensional computer codes. The effects on plasma confinement of the magnetic islands or stochastic field lines induced by the macroscopic tearing modes are discussed and compared with experiment. Finally, microscopic magnetic perturbations are shown to provide a natural model for the microscopic anomalous transport processes in tokamaks

  9. Accelerator technology in tokamaks

    International Nuclear Information System (INIS)

    Kustom, R.L.

    1977-01-01

    This article presents the similarities in the technology required for high energy accelerators and tokamak fusion devices. The tokamak devices and R and D programs described in the text represent only a fraction of the total fusion program. The technological barriers to producing successful, economical tokamak fusion power plants are as many as the plasma physics problems to be overcome. With the present emphasis on energy problems in this country and elsewhere, it is very likely that fusion technology related R and D programs will vigorously continue; and since high energy accelerator technology has so much in common with fusion technology, more scientists from the accelerator community are likely to be attracted to fusion problems

  10. ARIES tokamak reactor study

    International Nuclear Information System (INIS)

    Steiner, D.; Embrechts, M.

    1990-07-01

    This is a status report on technical progress relative to the tasks identified for the fifth year of Grant No. FG02-85-ER52118. The ARIES tokamak reactor study is a multi-institutional effort to develop several visions of the tokamak as an attractive fusion reactor with enhanced economic, safety, and environmental features. The ARIES study is being coordinated by UCLA and involves a number of institutions, including RPI. The RPI group has been pursuing the following areas of research in the context of the ARIES-I design effort: MHD equilibrium and stability analyses; plasma-edge modeling and blanket materials issues. Progress in these areas is summarized herein

  11. Internal disruption in tokamaks

    International Nuclear Information System (INIS)

    Kuvshinov, B.N.; Savrukhin, P.V.

    1990-01-01

    A review of results of experimental and theoretical investigations of internal disruption in tokamaks is given. Specific features of various types of saw-tooth oscillations are described and their classification is performed. Theoretical models of the process of development of internal disruption instability are discussed. Effect of internal disruption on parameters of plasma, confined in tokamak, is considered. Scalings of period and amplitude of saw-tooth oscillations, as well as version radius are presented. Different methods for stabilizing instability of internal disruption are described

  12. Internal disruptions in tokamaks

    International Nuclear Information System (INIS)

    Kuvshinov, B.N.; Savrukhin, P.V.

    1990-01-01

    Experimental and theoretical studies of the phenomenon of internal disruptions in tokamaks are reviewed. A classification scheme is introduced and the features of different types of sawtooth oscillations are described. A theoretical model for the development of the internal disruption instability is discussed. The effect of internal disruptions on the parameters of plasma confined in tokamaks is discussed. Scaling laws for the period and amplitude of sawtooth oscillations, as well as for the inversion radius, are presented. Different methods of stabilizing the internal disruption instability are described

  13. Conceptual Design for a Bulk Tungsten Divertor Tile in JET

    International Nuclear Information System (INIS)

    Mertens, P.; Neubauer, O.; Philipps, V.; Schweer, B.; Samm, U.; Hirai, T.; Sadakov, S.

    2006-01-01

    With ITER on the verge of being build, the ITER-like Wall project (ILW) for JET aims at providing the plasma chamber of the tokamak with an environment of mixed materials which will be relevant to the support of decisions to the first wall construction and, from the point of view of plasma physics, to the corresponding investigations of possible plasma configuration and plasma-wall interaction. In both respects, tungsten plays a key role in the divertor cladding whereas beryllium will be used for the vessel's first wall. For the central tile, also called LB-SRP for '' Load-Bearing Septum Replacement Plate '', resort to bulk tungsten is envisaged in order to cope with the high loads expected (up to 10 MW/m 2 for about 10 s). This is indeed the preferred plasma-facing component for positioning the outer strike-point in the divertor. Forschungszentrum Juelich has developed a conceptual design for this tile, based on an assembly of tungsten blades or lamellae. It was selected in the frame of an extensive R-and-D study in search of a suitable, inertially cooled component(T. Hirai et al., R-and-D on full tungsten divertor and beryllium wall for JET ITER-like Wall Project: this conference). As reported elsewhere, the design is actually driven by electromagnetic considerations in the first place(S. Sadakov et al., Detailed electromagnetic analysis for optimisation of a tungsten divertor plate for JET: this conference). The lamellae are grouped in four stacks per tile which are independently attached to an equally re-designed supporting structure. A so-called adapter plate, also a new design, takes care of an appropriate interface to the base carrier of JET, onto which modules of two tiles are positioned and screwed by remote handling (RH) procedures. The compatibility of the design on the whole with RH requirements is another essential ingredient which was duly taken into account throughout. The concept and the underlying philosophy will be presented along with important

  14. Synthetic neutron camera and spectrometer in JET based on AFSI-ASCOT simulations

    Science.gov (United States)

    Sirén, P.; Varje, J.; Weisen, H.; Koskela, T.; contributors, JET

    2017-09-01

    The ASCOT Fusion Source Integrator (AFSI) has been used to calculate neutron production rates and spectra corresponding to the JET 19-channel neutron camera (KN3) and the time-of-flight spectrometer (TOFOR) as ideal diagnostics, without detector-related effects. AFSI calculates fusion product distributions in 4D, based on Monte Carlo integration from arbitrary reactant distribution functions. The distribution functions were calculated by the ASCOT Monte Carlo particle orbit following code for thermal, NBI and ICRH particle reactions. Fusion cross-sections were defined based on the Bosch-Hale model and both DD and DT reactions have been included. Neutrons generated by AFSI-ASCOT simulations have already been applied as a neutron source of the Serpent neutron transport code in ITER studies. Additionally, AFSI has been selected to be a main tool as the fusion product generator in the complete analysis calculation chain: ASCOT - AFSI - SERPENT (neutron and gamma transport Monte Carlo code) - APROS (system and power plant modelling code), which encompasses the plasma as an energy source, heat deposition in plant structures as well as cooling and balance-of-plant in DEMO applications and other reactor relevant analyses. This conference paper presents the first results and validation of the AFSI DD fusion model for different auxiliary heating scenarios (NBI, ICRH) with very different fast particle distribution functions. Both calculated quantities (production rates and spectra) have been compared with experimental data from KN3 and synthetic spectrometer data from ControlRoom code. No unexplained differences have been observed. In future work, AFSI will be extended for synthetic gamma diagnostics and additionally, AFSI will be used as part of the neutron transport calculation chain to model real diagnostics instead of ideal synthetic diagnostics for quantitative benchmarking.

  15. Enhancement of aerodynamic performance of a heaving airfoil using synthetic-jet based active flow control.

    Science.gov (United States)

    Wang, Chenglei; Tang, Hui

    2018-05-25

    In this study, we explore the use of synthetic jet (SJ) in manipulating the vortices around a rigid heaving airfoil, so as to enhance its aerodynamic performance. The airfoil heaves at two fixed pitching angles, with the Strouhal number, reduced frequency and Reynolds number chosen as St  =  0.3, k  =  0.25 and Re  =  100, respectively, all falling in the ranges for natural flyers. As such, the vortex force plays a dominant role in determining the airfoil's aerodynamic performance. A pair of in-phase SJs is implemented on the airfoil's upper and lower surfaces, operating with the same strength but in opposite directions. Such a fluid-structure interaction problem is numerically solved using a lattice Boltzmann method based numerical framework. It is found that, as the airfoil heaves with zero pitching angle, its lift and drag can be improved concurrently when the SJ phase angle [Formula: see text] relative to the heave motion varies between [Formula: see text] and [Formula: see text]. But this concurrent improvement does not occur as the airfoil heaves with [Formula: see text] pitching angle. Detailed inspection of the vortex evolution and fluid stress over the airfoil surface reveals that, if at good timing, the suction and blowing strokes of the SJ pair can effectively delay or promote the shedding of leading edge vortices, and mitigate or even eliminate the generation of trailing edge vortices, so as to enhance the airfoil's aerodynamic performance. Based on these understandings, an intermittent operation of the SJ pair is then proposed to realize concurrent lift and drag improvement for the heaving airfoil with [Formula: see text] pitching angle.

  16. Overview of the JET results

    Czech Academy of Sciences Publication Activity Database

    Romanelli, F.; Abhangi, M.; Abreu, P.; Aftanas, Milan; Afzal, M.; Aggarwal, K.M.; Aho-Mantila, L.; Ahonen, E.; Aints, M.; Airila, M.; Albanese, R.; Bílková, Petra; Cahyna, Pavel; Dejarnac, Renaud; Ďuran, Ivan; Fuchs, Vladimír; Horáček, Jan; Imríšek, M.; Janky, Filip; Ješko, Karol; Markovič, Tomáš; Mlynář, Jan; Peterka, Matěj; Petržílka, Václav; Tomeš, Matěj; Vondráček, Petr

    2015-01-01

    Roč. 55, č. 10 (2015), s. 104001 ISSN 0029-5515. [Fusion Energy Conference (FEC)/25./. St Petersburg, 13.10.2014-18.10.2014] Institutional support: RVO:61389021 Keywords : ITER-like wall * JET * tokamaks * magnetic confinement Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 4.040, year: 2015 http://iopscience.iop.org/article/10.1088/0029-5515/55/10/104001/meta;jsessionid=3FA2A9AC9BDFE6B4A43C77C9CF6C0DF0.c2.iopscience.cld.iop.org

  17. Metal-mesh based transparent electrode on a 3-D curved surface by electrohydrodynamic jet printing

    International Nuclear Information System (INIS)

    Seong, Baekhoon; Yoo, Hyunwoong; Jang, Yonghee; Ryu, Changkook; Byun, Doyoung; Nguyen, Vu Dat

    2014-01-01

    Invisible Ag mesh transparent electrodes (TEs), with a width of 7 μm, were prepared on a curved glass surface by electrohydrodynamic (EHD) jet printing. With a 100 μm pitch, the EHD jet printed the Ag mesh on the convex glass which had a sheet resistance of 1.49 Ω/□. The printing speed was 30 cm s −1 using Ag ink, which had a 10 000 cPs viscosity and a 70 wt% Ag nanoparticle concentration. We further showed the performance of a 3-D transparent heater using the Ag mesh transparent electrode. The EHD jet printed an invisible Ag grid transparent electrode with good electrical and optical properties with promising applications on printed optoelectronic devices. (technical note)

  18. CPV cells cooling system based on submerged jet impingement: CFD modeling and experimental validation

    Science.gov (United States)

    Montorfano, Davide; Gaetano, Antonio; Barbato, Maurizio C.; Ambrosetti, Gianluca; Pedretti, Andrea

    2014-09-01

    Concentrating photovoltaic (CPV) cells offer higher efficiencies with regard to the PV ones and allow to strongly reduce the overall solar cell area. However, to operate correctly and exploit their advantages, their temperature has to be kept low and as uniform as possible and the cooling circuit pressure drops need to be limited. In this work an impingement water jet cooling system specifically designed for an industrial HCPV receiver is studied. Through the literature and by means of accurate computational fluid dynamics (CFD) simulations, the nozzle to plate distance, the number of jets and the nozzle pitch, i.e. the distance between adjacent jets, were optimized. Afterwards, extensive experimental tests were performed to validate pressure drops and cooling power simulation results.

  19. Plasma-gun fueling for tokamak reactors

    International Nuclear Information System (INIS)

    Ehst, D.A.

    1980-11-01

    In light of the uncertain extrapolation of gas puffing for reactor fueling and certain limitations to pellet injection, the snowplow plasma gun has been studied as a fueling device. Based on current understanding of gun and plasma behavior a design is proposed, and its performance is predicted in a tokamak reactor environment

  20. Design parameters of Tokamak-7 system

    International Nuclear Information System (INIS)

    Ivanov, D.P.; Keilin, V.E.; Klimenko, E.Yu.; Strelkov, V.S.

    Superconducting windings for the main magnetic field of Tokamak-7 are discussed. The parameters of this facility are based on the use of commercially available superconducting materials for fields up to 80 kOe. Experimental parameters are described. (U.S.)

  1. An Arduino microcontroller based digitalization of a vertical traversing mechanism used for the analysis of jet flows

    Science.gov (United States)

    Rahman, S. M. Rakibur; Roshid, S. M. Al Mamun Or; Nishan, Ishtiaque Ahmed

    2017-12-01

    This paper deals with the design of a drive system of traversing mechanism used to position the pitot tube in desired position of the jet flow field. In this system a stepper motor is driven by a `dual H bridge' motor driver and programmed Arduino microcontroller. The stepper motor is made to move in precise steps to obtain desired movement of the traversing mechanism. The jet flow is characterized in three distinct zones - initial zone, transition zone and developed zone. Each zone can be divided into required number of segments based on variation of velocity. By assigning number of segments, step range and number of steps in each segment as inputs, it is possible to collect data in all the flow zones according to our programmed schedule. The system will allow taking a large number of readings automatically.

  2. A novel device for hazardous substances degradation based on double-cavitating-jets impingement: Parameters optimization and efficiency assessment.

    Science.gov (United States)

    Tao, Yuequn; Cai, Jun; Huai, Xiulan; Liu, Bin

    2017-08-05

    Hydrodynamic cavitation is an effective advanced oxidation process. But sometimes it cannot obtain satisfactory treatment efficiency by using hydrodynamic cavitation individually, so it is necessary to introduce intensive methods. Based on double-cavitating-jets impingement, this paper presents a novel device that has advantages of strong heat and mass transfer and efficient chemical reactions. Based on the device, a series of experimental investigations on degradation of a basic dye, i.e. Rhodamine B were carried out. Significant Rhodamine B removal from aqueous solution was observed during 2h treatment and the degradation reaction conformed to pseudo-first-order kinetics. The synergetic effects between double-cavitating-jets impingement and Fenton chemistry on simultaneous degradation of Rhodamine B were confirmed. Both single-variable experiments and orthogonal experiments were carried out to study the effects of initial hydrogen peroxide, ferrous sulfate and Rhodamine B concentrations and the optimum conditions were found out. Effects of jet inlet pressure in the range of 6-12MPa and solution pH value in the range of 2-8 were also investigated. The cavitation yield was evaluated to assess the energy efficiency. The present treatment scheme showed advantages in terms of reducing the demand of hydrogen peroxide concentration and enhancing the treatment efficiency in large scale operation. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Microchip-based electrochemical detection using a 3-D printed wall-jet electrode device.

    Science.gov (United States)

    Munshi, Akash S; Martin, R Scott

    2016-02-07

    Three dimensional (3-D) printing technology has evolved dramatically in the last few years, offering the capability of printing objects with a variety of materials. Printing microfluidic devices using this technology offers various advantages such as ease and uniformity of fabrication, file sharing between laboratories, and increased device-to-device reproducibility. One unique aspect of this technology, when used with electrochemical detection, is the ability to produce a microfluidic device as one unit while also allowing the reuse of the device and electrode for multiple analyses. Here we present an alternate electrode configuration for microfluidic devices, a wall-jet electrode (WJE) approach, created by 3-D printing. Using microchip-based flow injection analysis, we compared the WJE design with the conventionally used thin-layer electrode (TLE) design. It was found that the optimized WJE system enhances analytical performance (as compared to the TLE design), with improvements in sensitivity and the limit of detection. Experiments were conducted using two working electrodes - 500 μm platinum and 1 mm glassy carbon. Using the 500 μm platinum electrode the calibration sensitivity was 16 times higher for the WJE device (as compared to the TLE design). In addition, use of the 1 mm glassy carbon electrode led to limit of detection of 500 nM for catechol, as compared to 6 μM for the TLE device. Finally, to demonstrate the versatility and applicability of the 3-D printed WJE approach, the device was used as an inexpensive electrochemical detector for HPLC. The number of theoretical plates was comparable to the use of commercially available UV and MS detectors, with the WJE device being inexpensive to utilize. These results show that 3-D-printing can be a powerful tool to fabricate reusable and integrated microfluidic detectors in configurations that are not easily achieved with more traditional lithographic methods.

  4. Onset of a Large Ejective Solar Eruption from a Typical Coronal-jet-base Field Configuration

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Navin Chandra; Magara, Tetsuya; Moon, Yong-Jae [School of Space Research, Kyung Hee University, Yongin, Gyeonggi-Do, 446-701 (Korea, Republic of); Sterling, Alphonse C.; Moore, Ronald L., E-mail: navin@khu.ac.kr, E-mail: njoshi98@gmail.com [NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States)

    2017-08-10

    Utilizing multiwavelength observations and magnetic field data from the Solar Dynamics Observatory ( SDO )/Atmospheric Imaging Assembly (AIA), SDO /Helioseismic and Magnetic Imager (HMI), the Geostationary Operational Environmental Satellite ( GOES ), and RHESSI , we investigate a large-scale ejective solar eruption of 2014 December 18 from active region NOAA 12241. This event produced a distinctive “three-ribbon” flare, having two parallel ribbons corresponding to the ribbons of a standard two-ribbon flare, and a larger-scale third quasi-circular ribbon offset from the other two. There are two components to this eruptive event. First, a flux rope forms above a strong-field polarity inversion line and erupts and grows as the parallel ribbons turn on, grow, and spread apart from that polarity inversion line; this evolution is consistent with the mechanism of tether-cutting reconnection for eruptions. Second, the eruption of the arcade that has the erupting flux rope in its core undergoes magnetic reconnection at the null point of a fan dome that envelops the erupting arcade, resulting in formation of the quasi-circular ribbon; this is consistent with the breakout reconnection mechanism for eruptions. We find that the parallel ribbons begin well before (∼12 minutes) the onset of the circular ribbon, indicating that tether-cutting reconnection (or a non-ideal MHD instability) initiated this event, rather than breakout reconnection. The overall setup for this large-scale eruption (diameter of the circular ribbon ∼10{sup 5} km) is analogous to that of coronal jets (base size ∼10{sup 4} km), many of which, according to recent findings, result from eruptions of small-scale “minifilaments.” Thus these findings confirm that eruptions of sheared-core magnetic arcades seated in fan–spine null-point magnetic topology happen on a wide range of size scales on the Sun.

  5. High beta tokamaks

    International Nuclear Information System (INIS)

    Dory, R.A.; Berger, D.P.; Charlton, L.A.; Hogan, J.T.; Munro, J.K.; Nelson, D.B.; Peng, Y.K.M.; Sigmar, D.J.; Strickler, D.J.

    1978-01-01

    MHD equilibrium, stability, and transport calculations are made to study the accessibility and behavior of ''high beta'' tokamak plasmas in the range β approximately 5 to 15 percent. For next generation devices, beta values of at least 8 percent appear to be accessible and stable if there is a conducting surface nearby

  6. Sawtooth phenomena in tokamaks

    International Nuclear Information System (INIS)

    Kuvshinov, B.N.; Savrukhin, P.V.

    1989-01-01

    A review of experimental and theoretical investigaions of sawtooth phenomena in tokamaks is presented. Different types of sawtooth oscillations, scaling laws and methods of interanl disruption stabilization are described. Theoretical models of the sawtooth instability are discussed. 122 refs.; 4 tabs

  7. Research using small tokamaks

    International Nuclear Information System (INIS)

    1993-01-01

    This document consists of a collection of papers presented at the IAEA Technical Committee Meeting on Research Using Small Tokamaks. It contains 22 papers on a wide variety of research aspects, including diagnostics, design, transport, equilibrium, stability, and confinement. Some of these papers are devoted to other concepts (stellarators, compact tori). Refs, figs and tabs

  8. Research using small tokamaks

    International Nuclear Information System (INIS)

    1991-01-01

    The technical reports contained in this collection of papers on research using small tokamaks fall into four main categories, i.e., (i) experimental work (heating, stability, plasma radial profiles, fluctuations and transport, confinement, ultra-low-q tokamaks, wall physics, a.o.), (ii) diagnostics (beam probes, laser scattering, X-ray tomography, laser interferometry, electron-cyclotron absorption and emission systems), (iii) theory (strong turbulence, effects of heating on stability, plasma beta limits, wave absorption, macrostability, low-q tokamak configurations and bootstrap currents, turbulent heating, stability of vortex flows, nonlinear islands growth, plasma-drift-induced anomalous transport, ergodic divertor design, a.o.), and (iv) new technical facilities (varistors applied to establish constant current and loop voltage in HT-6M), lower-hybrid-current-drive systems for HT-6B and HT-6M, radio-frequency systems for HT-6M ICR heating experimentation, and applications of fiber optics for visible and vacuum ultraviolet radiation detection as applied to tokamaks and reversed-field pinches. A total number of 51 papers are included in the collection. Refs, figs and tabs

  9. Compact tokamak reactors

    International Nuclear Information System (INIS)

    Wootton, A.J.; Wiley, J.C.; Edmonds, P.H.; Ross, D.W.

    1997-01-01

    The possible use of tokamaks for thermonuclear power plants is discussed, in particular tokamaks with low aspect ratio and copper toroidal field coils. Three approaches are presented. First, the existing literature is reviewed and summarized. Second, using simple analytic estimates, the size of the smallest tokamak to produce an ignited plasma is derived. This steady state energy balance analysis is then extended to determine the smallest tokamaks power plant, by including the power required to drive the toroidal field and by considering two extremes of plasma current drive efficiency. Third, the analytic results are augmented by a numerical calculation that permits arbitrary plasma current drive efficiency and different confinement scaling relationships. Throughout, the importance of various restrictions is emphasized, in particular plasma current drive efficiency, plasma confinement, plasma safety factor, plasma elongation, plasma beta, neutron wall loading, blanket availability and recirculation of electric power. The latest published reactor studies show little advantage in using low aspect ratios to obtain a more compact device (and a low cost of electricity) unless either remarkably high efficiency plasma current drive and low safety factor are combined, or unless confinement (the H factor), the permissible elongation and the permissible neutron wall loading increase as the aspect ratio is reduced. These results are reproduced with the analytic model. (author). 22 refs, 3 figs

  10. Texas Experimental Tokamak

    International Nuclear Information System (INIS)

    Wootton, A.J.

    1990-04-01

    This paper discusses the following work on the text tokamak: data systems; particle confinement; impurity transport; plasma rotation; runaway electrons; electron cyclotron heating; FIR system; transient transport; internal turbulence; edge turbulence; ion temperature; EML experiments; impurity pellet experiments; MHD experiments and analysis; TEXT Upgrade; and Upgrade diagnostics

  11. JET:Preparing the future in fusion

    Czech Academy of Sciences Publication Activity Database

    Mlynář, Jan; Ongena, J.; Ďuran, Ivan; Hron, Martin; Pánek, Radomír; Petržílka, Václav; Žáček, František

    2004-01-01

    Roč. 54, suppl.C (2004), C28-C38 ISSN 0011-4626. [Symposium on Plasma Physics and Technology /21st/. Praha, 14.06.2004-17.06.2004] R&D Projects: GA ČR GA202/04/0360 Institutional research plan: CEZ:AV0Z2043910 Keywords : fusion, tokamak, JET EFDA, ITER Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.292, year: 2004

  12. Pneumatic pellet injectors for TFTR and JET

    International Nuclear Information System (INIS)

    Combs, S.K.; Milora, S.L.

    1986-01-01

    This paper describes the development of pneumatic hydrogen pellet injectors for plasma fueling applications on the Tokamak Fusion Test Reactor (TFTR) and the Joint European Torus (JET). The performance parameters of these injectors represent an extension of previous experience and include pellet sizes in the range 2-6 mm in diameter and speeds approaching 2 km/s. Design features and operating characteristics of these pneumatic injectors are presented

  13. From use cases of the Joint European Torus towards integrated commissioning requirements of the ITER tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Neto, A.C. [Fusion for Energy, 08019 Barcelona (Spain); Stephen, A. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Sartori, F.; Cavinato, M. [Fusion for Energy, 08019 Barcelona (Spain); Farthing, J.W. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Ranz, R.; Saibene, G. [Fusion for Energy, 08019 Barcelona (Spain); Winter, A. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Arnoux, G. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Alves, D. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Blackman, T.; Boboc, A.; Card, P.J.; Dalley, S.; Day, I.E. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); De Tommasi, G. [Consorzio CREATE/Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli (Italy); Drewelow, P.; Elsmore, C.; Ivings, E.; Felton, R. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); and others

    2015-10-15

    The Joint European Torus (JET) is the largest tokamak currently in operation in the world. One of the greatest challenges of JET is the integrated commissioning of all its major plant systems. This is driven, partially, by the size and complexity of its operational infrastructure and also by the fact that, being an international environment, it has to address the issues of integrating, commissioning and maintaining plant systems developed by third parties. The ITER tokamak, now in construction, is a fusion device twice the size of JET and, being a joint effort between the European Union, China, India, Japan, South Korea, the Russian Federation and the USA, it will share on a wider scale all of the JET challenges regarding integration and integrated commissioning of very large and complex plant systems. With the scope of taking advantage from the history and experience of JET, Fusion for Energy (F4E) has worked together with the Culham Centre for Fusion Energy (CCFE), the host and operator of JET, for the provision of ITER relevant user experiences related to the integrated commissioning of the tokamak. This work presents and discusses the main results and the methods that were used to extract and translate the commissioning experience information into ITER requirements.

  14. DeepJet: a deep-learned multiclass jet-tagger for slim and fat jets

    CERN Multimedia

    CERN. Geneva; Qu, Huilin; Stoye, Markus; Kieseler, Jan; Verzetti, Mauro

    2018-01-01

    We present a customized neural network architecture for both, slim and fat jet tagging. It is based on the idea to keep the concept of physics objects, like particle flow particles, as a core element of the network architecture. The deep learning algorithm works for most of the common jet classes, i.e. b, c, usd and gluon jets for slim jets and W, Z, H, QCD and top classes for fat jets. The developed architecture promising gains in performance as shown in simulation of the CMS collaboration. Currently the tagger is under test in real data in the CMS experiment.

  15. Present status of Tokamak research

    International Nuclear Information System (INIS)

    Basu, Jayanta

    1991-01-01

    The scenario of thermonuclear fusion research is presented, and the tokamak which is the most promising candidate as a fusion reactor is introduced. A brief survey is given of the most noteworthy tokamaks in the global context, and fusion programmes relating to Next Step devices are outlined. Supplementary heating of tokamak plasma by different methods is briefly reviewed; the latest achievements in heating to fusion temperatures are also reported. The progress towards the high value of the fusion product necessary for ignition is described. The improvement in plasma confinement brought about especially by the H-mode, is discussed. The latest situation in pushing up Β for increasing the efficiency of a tokamak is elucidated. Mention is made of the different types of wall treatment of the tokamak vessel for impurity control, which has led to a significant improvement in tokamak performance. Different methods of current drive for steady state tokamak operation are reviewed, and the issue of current drive efficiency is addressed. A short resume is given of the various diagnostic methods which are employed on a routine basis in the major tokamak centres. A few diagnostics recently developed or proposed in the context of the advanced tokamaks as well as the Next Step devices are indicated. The important role of the interplay between theory, experiment and simulation is noted, and the areas of investigation requiring concerted effort for further progress in tokamak research are identified. (author). 17 refs

  16. Measurement of diabetic wounds with optical coherence tomography-based air-jet indentation system and a material testing system.

    Science.gov (United States)

    Choi, M-C; Cheung, K-K; Ng, G Y-F; Zheng, Y-P; Cheing, G L-Y

    2015-11-01

    Material testing system is a conventional but destructive method for measuring the biomechanical properties of wound tissues in basic research. The recently developed optical coherence tomography-based air-jet indentation system is a non-destructive method for measuring these properties of soft tissues in a non-contact manner. The aim of the study was to examine the correlation between the biomechanical properties of wound tissues measured by the two systems. Young male Sprague-Dawley rats with streptozotocin-induced diabetic were wounded by a 6 mm biopsy punch on their hind limbs. The biomechanical properties of wound tissues were assessed with the two systems on post-wounding days 3, 7, 10, 14, and 21. Wound sections were stained with picro-sirius red for analysis on the collagen fibres. Data obtained on the different days were charted to obtain the change in biomechanical properties across the time points, and then pooled to examine the correlation between measurements made by the two devices. Qualitative analysis to determine any correlation between indentation stiffness measured by the air-jet indentation system and the orientation of collagen fibres. The indentation stiffness is significantly negatively correlated to the maximum load, maximum tensile stress, and Young's modulus by the material testing system (all pair-jet indentation system to evaluate the biomechanical properties of wounds in a non-contact manner. It is a potential clinical device to examine the biomechanical properties of chronic wounds in vivo in a repeatable manner.

  17. Quark and gluon jet properties in symmetric three-jet events

    CERN Document Server

    Buskulic, Damir; De Bonis, I; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Odier, P; Pietrzyk, B; Chmeissani, M; Crespo, J M; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Orteu, S; Pacheco, A; Padilla, C; Palla, Fabrizio; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Farilla, A; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Natali, S; Nuzzo, S; Ranieri, A; Raso, G; Romano, F; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Alemany, R; Bazarko, A O; Bonvicini, G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Jacobsen, R; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Mir, L M; Moneta, L; Oest, T; Palazzi, P; Pater, J R; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wildish, T; Witzeling, W; Wotschack, J; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rossignol, J M; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Wäänänen, A; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Rougé, A; Rumpf, M; Tanaka, R; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Delfino, M C; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Braun, O; Geweniger, C; Graefe, G; Hanke, P; Hepp, V; Kluge, E E; Putzer, A; Rensch, B; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Abbaneo, D; Beuselinck, R; Binnie, David M; Cameron, W; Colling, D J; Dornan, Peter J; Moutoussi, A; Nash, J; San Martin, G; Sedgbeer, J K; Stacey, A M; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Bowdery, C K; Brodbeck, T J; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Whelan, E P; Williams, M I; Galla, A; Greene, A M; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Konstantinidis, N P; Nicod, D; Payre, P; Rousseau, D; Talby, M; Sadouki, A; Thulasidas, M; Trabelsi, K; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Brown, D; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Park, H J; Park, I C; Schune, M H; Simion, S; Veillet, J J; Videau, I; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Verdini, P G; Walsh, J; Betteridge, A P; Blair, G A; Bryant, L M; Cerutti, F; Chambers, J T; Gao, Y; Green, M G; Johnson, D L; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Edwards, M; Maley, P; Norton, P R; Thompson, J C; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Beddall, A; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Köksal, A; Letho, M; Newton, W M; Rankin, C; Reeve, J; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Feigl, E; Grupen, Claus; Lutters, G; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Ragusa, F; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Bellantoni, L; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Greening, T C; Harton, J L; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Schmitt, M; Scott, I J; Sharma, V; Turk, J; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G

    1996-01-01

    Quark and gluon jets with the same energy, 24GeV, are compared in symmetric three-jet configurations from hadronic Z decays observed by the ALEPH detector. Jets are defined using the Durham algorithm. Gluon jets are identified using an anti-tag on b jets, based on either a track impact parameter method or a high transverse momentum lepton tag. The comparison of gluon and mixed flavour quark jets shows that gluon jets have a softer fragmentation function, a larger angular width and a higher particle multiplicity. Evidence is also presented which shows that the corresponding differences between gluon and heavy flavour jets are significantly smaller.

  18. Correlation of the tokamak H-mode density limit with ballooning stability at the separatrix

    Science.gov (United States)

    Eich, T.; Goldston, R. J.; Kallenbach, A.; Sieglin, B.; Sun, H. J.; ASDEX Upgrade Team; Contributors, JET

    2018-03-01

    We show for JET and ASDEX Upgrade, based on Thomson-scattering measurements, a clear correlation of the density limit of the tokamak H-mode high-confinement regime with the approach to the ideal ballooning instability threshold at the periphery of the plasma. It is shown that the MHD ballooning parameter at the separatrix position α_sep increases about linearly with the separatrix density normalized to Greenwald density, n_e, sep/n_GW for a wide range of discharge parameters in both devices. The observed operational space is found to reach at maximum n_e, sep/n_GW≈ 0.4 -0.5 at values for α_sep≈ 2 -2.5, in the range of theoretical predictions for ballooning instability. This work supports the hypothesis that the H-mode density limit may be set by ballooning stability at the separatrix.

  19. Transient electromagnetic analysis in tokamaks using TYPHOON code

    International Nuclear Information System (INIS)

    Belov, A.V.; Duke, A.E.; Korolkov, M.D.; Kotov, V.L.; Kukhtin, V.P.; Lamzin, E.A.; Sytchevsky, S.E.

    1996-01-01

    The transient electromagnetic analysis of conducting structures in tokamaks is presented. This analysis is based on a three-dimensional thin conducting shell model. The finite element method has been used to solve the corresponding integrodifferential equation. The code TYPHOON has been developed to calculate transient processes in tokamaks. Calculation tests and the code verification have been carried out. The calculation results of eddy current and force distibution and a.c. losses for different construction elements for both ITER and TEXTOR tokamaks magnetic systems are presented. (orig.)

  20. Implementation of a new Disruption Mitigation System into the control system of JET

    Energy Technology Data Exchange (ETDEWEB)

    Jachmich, Stefan, E-mail: s.jachmich@fz-juelich.de [Laboratory for Plasma Physics, Ecole Royale Militaire/Koninklijke Militaire School, B-1000 Brussels (Belgium); Kruezi, Uron; Card, Peter; Deakin, Kieron; Kinna, David [Culham Centre for Fusion Energy, Abingdon, Oxon OX14 3DB (United Kingdom); Koslowski, Hans Rudolf; Lambertz, Horst Toni [Forschungszentrum Jülich GmbH, IEK-4, 52425 Jülich (Germany); Lehnen, Michael [ITER Organization, Route de Vinon-sur-Verdon, CS90046, 13067 St Paul Lez Durance Cedex (France)

    2015-10-15

    Highlights: • A new Disruption Mitigation System based on Massive Gas Injection has been installed at JET. • The control of the attached gas handling system had to be integrated into the JET-operation. • An interlock system has been built to cope with the interaction of the DMS with other auxiliary systems. • The system has been commissioned and first example of DMS used to ameliorate a disruption are shown. - Abstract: A new Disruption Mitigation System (DMS) based on Massive Gas Injections (MGI) has been installed at the JET-tokamak. The key component of this system is a fast eddy current driven valve, which is capable of injecting up to 4.6 × 10{sup −3} MPa m{sup 3} in less than 5 ms. Along with this valve a new gas handling system has been installed, whose control had to be integrated into the JET-operation. The operation of the DMS requires interaction with several other systems. Although Massive Gas Injections are used to ameliorate potentially severe damage to the tokamak plant and plasma facing components caused by disruptions, they introduce a high risk for example to auxiliary heating systems or diagnostics, which could be damaged by high vacuum pressures. In addition to this, the presence of high pressure (of noble and flammable gases) in combination with high voltages represents a risk not only to the actual DMS plant itself (in case of a failure) but also to personnel in the vicinity. These varieties of risks have been addressed and are described in this article.

  1. Numerical study of the influence of dielectric tube on propagation of atmospheric pressure plasma jet based on coplanar dielectric barrier discharge

    Science.gov (United States)

    Haixin, HU; Feng, HE; Ping, ZHU; Jiting, OUYANG

    2018-05-01

    A 2D fluid model was employed to simulate the influence of dielectric on the propagation of atmospheric pressure helium plasma jet based on coplanar dielectric barrier discharge (DBD). The spatio-temporal distributions of electron density, ionization rate, electrical field, spatial charge and the spatial structure were obtained for different dielectric tubes that limit the helium flow. The results show that the change of the relative permittivity of the dielectric tube where the plasma jet travels inside has no influence on the formation of DBD itself, but has great impact on the jet propagation. The velocity of the plasma jet changes drastically when the jet passes from a tube of higher permittivity to one of lower permittivity, resulting in an increase in jet length, ionization rate and electric field, as well as a change in the distribution of space charges and discharge states. The radius of the dielectric tube has a great influence on the ring-shaped or solid bullet structure. These results can well explain the behavior of the plasma jet from the dielectric tube into the ambient air and the hollow bullet in experiments.

  2. Recent results and near-term expectations in Tokamak fusion research in the U.S., Europe, and Japan

    International Nuclear Information System (INIS)

    Meade, D.

    1993-01-01

    The development of fusion is often thought about in terms of three different activities: scientific feasibility, engineering feasibility, and economic feasibility. This paper discusses the scientific feasibility of fusion. Reactor temperatures, reactor densities and confinement, particle control, plasma power handling, and self-heating are some of the issues examined. Collaboration and results from research at the Tokamak Fusion Test Reactor (TFTR) at Princeton, the JT-60U in Japan, and JET, the Joint European Torus Tokamak in Oxford are presented

  3. Large Aspect Ratio Tokamak Study

    International Nuclear Information System (INIS)

    Reid, R.L.; Holmes, J.A.; Houlberg, W.A.; Peng, Y.K.M.; Strickler, D.J.; Brown, T.G.; Wiseman, G.W.

    1980-06-01

    The Large Aspect Ratio Tokamak Study (LARTS) at Oak Ridge National Laboratory (ORNL) investigated the potential for producing a viable longburn tokamak reactor by enhancing the volt-second capability of the ohmic heating transformer through the use of high aspect ratio designs. The plasma physics, engineering, and economic implications of high aspect ratio tokamaks were assessed in the context of extended burn operation. Using a one-dimensional transport code plasma startup and burn parameters were addressed. The pulsed electrical power requirements for the poloidal field system, which have a major impact on reactor economics, were minimized by optimizing the startup and shutdown portions of the tokamak cycle. A representative large aspect ratio tokamak with an aspect ratio of 8 was found to achieve a burn time of 3.5 h at capital cost only approx. 25% greater than that of a moderate aspect ratio design tokamak

  4. Study of runaway electron generation during major disruptions in JET

    Czech Academy of Sciences Publication Activity Database

    Plyusnin, V.V.; Riccardo, V.; Jaspers, R.; Alper, B.; Kiptily, V.G.; Mlynář, Jan; Popovichev, S.; de La Luna, E.; Andersson, F.

    2006-01-01

    Roč. 46, č. 2 (2006), s. 277-284 ISSN 0029-5515 Institutional research plan: CEZ:AV0Z2043910 Keywords : JET * tokamak * fusion * dicsruption * runaway electrons * tomography Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.839, year: 2006

  5. Jet substructure using semi-inclusive jet functions in SCET

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Zhong-Bo [Theoretical Division, Los Alamos National Laboratory,Los Alamos, NM 87545 (United States); Department of Physics and Astronomy, University of California,Los Angeles, CA 90095 (United States); Ringer, Felix; Vitev, Ivan [Theoretical Division, Los Alamos National Laboratory,Los Alamos, NM 87545 (United States)

    2016-11-25

    We propose a new method to evaluate jet substructure observables in inclusive jet measurements, based upon semi-inclusive jet functions in the framework of Soft Collinear Effective Theory (SCET). As a first example, we consider the jet fragmentation function, where a hadron h is identified inside a fully reconstructed jet. We introduce a new semi-inclusive fragmenting jet function G{sub i}{sup h}(z=ω{sub J}/ω,z{sub h}=ω{sub h}/ω{sub J},ω{sub J},R,μ), which depends on the jet radius R and the large light-cone momenta of the parton ‘i’ initiating the jet (ω), the jet (ω{sub J}), and the hadron h (ω{sub h}). The jet fragmentation function can then be expressed as a semi-inclusive observable, in the spirit of actual experimental measurements, rather than as an exclusive one. We demonstrate the consistency of the effective field theory treatment and standard perturbative QCD calculations of this observable at next-to-leading order (NLO). The renormalization group (RG) equation for the semi-inclusive fragmenting jet function G{sub i}{sup h}(z,z{sub h},ω{sub J},R,μ) are also derived and shown to follow exactly the usual timelike DGLAP evolution equations for fragmentation functions. The newly obtained RG equations can be used to perform the resummation of single logarithms of the jet radius parameter R up to next-to-leading logarithmic (NLL{sub R}) accuracy. In combination with the fixed NLO calculation, we obtain NLO+NLL{sub R} results for the hadron distribution inside the jet. We present numerical results for pp→(jet h)X in the new framework, and find excellent agreement with existing LHC experimental data.

  6. Jet substructure using semi-inclusive jet functions in SCET

    International Nuclear Information System (INIS)

    Kang, Zhong-Bo; Ringer, Felix; Vitev, Ivan

    2016-01-01

    We propose a new method to evaluate jet substructure observables in inclusive jet measurements, based upon semi-inclusive jet functions in the framework of Soft Collinear Effective Theory (SCET). As a first example, we consider the jet fragmentation function, where a hadron h is identified inside a fully reconstructed jet. We introduce a new semi-inclusive fragmenting jet function G_i"h(z=ω_J/ω,z_h=ω_h/ω_J,ω_J,R,μ), which depends on the jet radius R and the large light-cone momenta of the parton ‘i’ initiating the jet (ω), the jet (ω_J), and the hadron h (ω_h). The jet fragmentation function can then be expressed as a semi-inclusive observable, in the spirit of actual experimental measurements, rather than as an exclusive one. We demonstrate the consistency of the effective field theory treatment and standard perturbative QCD calculations of this observable at next-to-leading order (NLO). The renormalization group (RG) equation for the semi-inclusive fragmenting jet function G_i"h(z,z_h,ω_J,R,μ) are also derived and shown to follow exactly the usual timelike DGLAP evolution equations for fragmentation functions. The newly obtained RG equations can be used to perform the resummation of single logarithms of the jet radius parameter R up to next-to-leading logarithmic (NLL_R) accuracy. In combination with the fixed NLO calculation, we obtain NLO+NLL_R results for the hadron distribution inside the jet. We present numerical results for pp→(jet h)X in the new framework, and find excellent agreement with existing LHC experimental data.

  7. Inkwells for on-demand deposition rate measurement in aerosol-jet based 3D printing

    International Nuclear Information System (INIS)

    Gu, Yuan; Das, Siddhartha; Gutierrez, David; Hines, D R

    2017-01-01

    Aerosol-jet printing (AJP) is an important direct-write printing technology based on additive manufacturing methods. Numerous research groups have utilized AJP for the fabrication of electronic circuits and devices. However, there has not been any real-time or even any on-demand method for quantitatively measuring and/or setting the deposition rate of an AJ ink stream. In this paper, we present a method for measuring the deposition rate of an AJ ink stream by printing into an array of inkwells that were fabricated using photolithography and were characterized using x-ray tomography and optical profilometry. These inkwell arrays were then used to establish a set of deposition rates namely 0.0011, 0.0024, 0.0035, 0.0046 and 0.0059 mm 3 s −1 that were subsequently compared with independently-measured deposition rates obtained by printing the ink stream into a weighing pan for a specified time and calculating the resulting deposition rate from the weight of the printed sample. From this comparison, it is observed that, for a human operator, the error in setting a specific deposition rate is less for inkwell fill times greater than 3 s and greater for fill times less than 3 s. This observation indicates that the average volume of an inkwell array should be at least three times the desired deposition rate ( V inkwell   >  3 R ). It was also observed that when the diameter of the inkwell was only slightly larger than the ink stream diameter, the ink uniformly wets the sidewall of the inkwell and results in a well filled inkwell for which the point at which it is just fully filled is easily observable. Finally, the interactions of the ink with both ‘philic’ and ‘phobic’ inkwells were studied illustrating the ability to use inkwells of various materials for setting the desired deposition rates for a variety of AJ printable inks. (technical note)

  8. Front end embedded microprocessors in the JET computer-based control system, past, present and future

    International Nuclear Information System (INIS)

    Steed, C.A.; VanderBeken, H.; Browne, M.L.; Fullard, K.; Reed, K.; Tilley, M.; Schmidt, V.

    1987-01-01

    A brief history of the use of Front End Microprocessors in the JET Control and Data Acquisition System (CODAS) is presented. The present expansion in their use from 2 or 3 in 1983 to 27 now, is covered along with the reasoning behind their present usage. Finally, their future planned use in the area of remote handling is discussed and the authors present views on the use of front end processing in future large distributed control systems are presented

  9. Female Reproductive Effects of Exposure to Jet Fuel at U.S. Air Force Bases

    Science.gov (United States)

    2001-05-01

    System of Tank Entry Workers" (See Appendix VI). James Kesner ( National Institute of Occupational Safety and Health) has received NIOSH support to evaluate...time employment at the Centers for Disease Control’s National Institutes for Occupational Safety and Health. Another doctoral quantitative... Neurasthenic symptoms in workers occupationally exposed to jet fuel. Acta Psychiat Scand 60:39-49 (1979). (29) Langman JM. Xylene: its toxicity

  10. Acute Dermal Irritation Study of Ten Jet Fuels in New Zealand White Rabbits: Comparison of Synthetic and Bio-Based Jet Fuels with Petroleum JP-8

    Science.gov (United States)

    2014-02-18

    C.A. 2008. Comparative Evaluation of Semi-Synthetic Jet Fuels. Dayton OH: Universal Technology Corporation. http://crcao.org/publications/aviation...Acrobat, PDF) Master Schedule Maintains the master schedule for the company. Metasys DDC Electronic Environmental Control System Controls and

  11. The European Integrated Tokamak Modelling (ITM) effort: achievements and first physics results

    International Nuclear Information System (INIS)

    Falchetto, G.L.; Nardon, E.; Artaud, J.F.; Basiuk, V.; Huynh, Ph.; Imbeaux, F.; Coster, D.; Scott, B.D.; Coelho, R.; Alves, L.L.; Bizarro, João P.S.; Ferreira, J.; Figueiredo, A.; Figini, L.; Nowak, S.; Farina, D.; Kalupin, D.; Boulbe, C.; Faugeras, B.; Dinklage, A.

    2014-01-01

    A selection of achievements and first physics results are presented of the European Integrated Tokamak Modelling Task Force (EFDA ITM-TF) simulation framework, which aims to provide a standardized platform and an integrated modelling suite of validated numerical codes for the simulation and prediction of a complete plasma discharge of an arbitrary tokamak. The framework developed by the ITM-TF, based on a generic data structure including both simulated and experimental data, allows for the development of sophisticated integrated simulations (workflows) for physics application. The equilibrium reconstruction and linear magnetohydrodynamic (MHD) stability simulation chain was applied, in particular, to the analysis of the edge MHD stability of ASDEX Upgrade type-I ELMy H-mode discharges and ITER hybrid scenario, demonstrating the stabilizing effect of an increased Shafranov shift on edge modes. Interpretive simulations of a JET hybrid discharge were performed with two electromagnetic turbulence codes within ITM infrastructure showing the signature of trapped-electron assisted ITG turbulence. A successful benchmark among five EC beam/ray-tracing codes was performed in the ITM framework for an ITER inductive scenario for different launching conditions from the equatorial and upper launcher, showing good agreement of the computed absorbed power and driven current. Selected achievements and scientific workflow applications targeting key modelling topics and physics problems are also presented, showing the current status of the ITM-TF modelling suite. (paper)

  12. Tokamaks: from A D Sakharov to the present (the 60-year history of tokamaks)

    International Nuclear Information System (INIS)

    Azizov, E A

    2012-01-01

    The paper is prepared on the basis of the report presented at the session of the Physical Sciences Division of the Russian Academy of Sciences (RAS) at the Lebedev Physical Institute, RAS on 25 May 2011, devoted to the 90-year jubilee of Academician Andrei D Sakharov - the initiator of controlled nuclear fusion research in the USSR. The 60-year history of plasma research work in toroidal devices with a longitudinal magnetic field suggested by Andrei D Sakharov and Igor E Tamm in 1950 for the confinement of fusion plasma and known at present as tokamaks is described in brief. The recent (2006) agreement among Russia, the EU, the USA, Japan, China, the Republic of Korea, and India on the joint construction of the international thermonuclear experimental reactor (ITER) in France based on the tokamak concept is discussed. Prospects for using the tokamak as a thermonuclear (14 MeV) neutron source are examined. (conferences and symposia)

  13. The ARIES tokamak fusion reactor study

    International Nuclear Information System (INIS)

    Bartlit, J.R.; Bathke, C.G.; Krakowski, R.A.; Miller, R.L.; Beecraft, W.R.; Hogan, J.T.; Peng, Y.K.M.; Reid, R.L.; Strickler, D.J.; Whitson, J.C.; Blanchard, J.P.; Emmert, G.A.; Santarius, J.F.; Sviatoslavsky, I.N.; Wittenberg, L.J.

    1989-01-01

    The ARIES study is a community effort to develop several visions of the tokamak as fusion power reactors. The aims are to determine their potential economics, safety, and environmental features and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Three ARIES visions are planned, each having a different degree of extrapolation from the present data base in physics and technology. The ARIES-I design assumes a minimum extrapolation from current tokamak physics (e.g., 1st stability) and incorporates technological advances that can be available in the next 20 to 30 years. ARIES-II is a DT-burning tokamak in 2nd stability regime and employs both potential advances in the physics and expected advances in technology and engineering; and ARIES-III is a conceptual D 3 He reactor. This paper focuses on the ARIES-I design. Parametric systems studies show that the optimum 1st stability tokamak has relatively low plasma current (∼ 12 MA), high plasma aspect ratio (∼ 4-6), and high magnetic field (∼ 24 T at the coil). ARIES-I is 1,000 MWe (net) reactor with a plasma major radius of 6.5 m, a minor radius of 1.4 m, a neutron wall loading of about 2.8 MW/m 2 , and a mass power density of about 90 kWe/ton. The ARIES-I reactor operates at steady state using ICRF fast waves to drive current in the plasma core and lower-hybrid waves for edge-plasma current drive. The current-drive system supplements a significant (∼ 57%) bootstrap current contribution. The impurity control system is based on high-recycling poloidal divertors. Because of the high field and large Lorentz forces in the toroidal-field magnets, innovative approaches with high-strength materials and support structures are used. 24 refs., 4 figs., 1 tab

  14. Runaway electron generation in tokamak disruptions

    International Nuclear Information System (INIS)

    Helander, P.; Andersson, F.; Fueloep, T.; Smith, H.; Anderson, D.; Lisak, M.; Eriksson, L.-G.

    2005-01-01

    The time evolution of the plasma current during a tokamak disruption is calculated by solving the equations for runaway electron production simultaneously with the induction equation for the toroidal electric field. The resistive diffusion time in a post-disruption plasma is typically comparable to the runaway avalanche growth time. Accordingly, the toroidal electric field induced after the thermal quench of a disruption diffuses radially through the plasma at the same time as it accelerates runaway electrons, which in turn back-react on the electric field. When these processes are accounted for in a self-consistent way, it is found that (1) the efficiency and time scale of runaway generation agrees with JET experiments; (2) the runaway current profile typically becomes more peaked than the pre-disruption current profile; and (3) can easily become radially filamented. It is also shown that higher runaway electron generation is expected if the thermal quench is sufficiently fast. (author)

  15. Carbon deposition and hydrogen retention in tokamak

    International Nuclear Information System (INIS)

    Tanabe, Tetsuo

    2006-01-01

    The results of measurements on co-deposition of hydrogen isotopes and wall materials, hydrogen retention, redeposition of carbon and deposition of hydrogen on PMI of JT-60U are described. From above results, selection of plasma facing material and ability of carbon wall is discussed. Selection of plasma facing materials in fusion reactor, characteristics of carbon materials as the plasma facing materials, erosion, transport and deposition of carbon impurity, deposition of tritium in JET, results of PMI in JT-60, application of carbon materials to PFM of ITER, and future problems are stated. Tritium co-deposition in ITER, erosion and transport of carbon in tokamak, distribution of tritium deposition on graphite tile used as bumper limiter of TFTR, and measurement results of deposition of tritium on the Mark-IIA divertor tile and comparison between them are described. (S.Y.)

  16. Thresholds of ion turbulence in tokamaks

    International Nuclear Information System (INIS)

    Garbet, X.; Laurent, L.; Mourgues, F.; Roubin, J.P.; Samain, A.; Zou, X.L.

    1991-01-01

    The linear thresholds of ionic turbulence are numerically calculated for the Tokamaks JET and TORE SUPRA. It is proved that the stability domain at η i >0 is determined by trapped ion modes and is characterized by η i ≥1 and a threshold L Ti /R of order (0.2/0.3)/(1+T i /T e ). The latter value is significantly smaller than what has been previously predicted. Experimental temperature profiles in heated discharges are usually marginal with respect to this criterium. It is also shown that the eigenmodes are low frequency, low wavenumber ballooned modes, which may produce a very large transport once the threshold ion temperature gradient is reached

  17. Energetics of turbulent transport processes in tokamaks

    International Nuclear Information System (INIS)

    Haas, F.A.; Thyagaraja, A.

    1987-01-01

    The effect of electromagnetic turbulence on electrons and ions under Tokamak conditions is considered using a kinetic description. Taking the magnetic fluctuation spectrum as given, the density fluctuation spectrum is self-consistently calculated taking account of quasi-neutrality. The calculation is valid for arbitrary collisionality and appropriate to low frequencies typical of experiment. In addition to the usual enhancement of the radial electron energy transport, it is found that the turbulent fluctuations can heat the plasma at rates comparable to ordinary ohmic heating under well-defined conditions. Interestingly, electromagnetic turbulence appears to imply only an insignificant correction to the toroidal resistance of the plasma as estimated from Spitzer resistivity. The scalings of anomalous transport, fluctuations and heating with temperature and plasma volume are investigated. The assumption that the magnetic fluctuation spectrum of the turbulence is invariant under a wide range of conditions is shown to result in interesting consequences for JET-like plasmas. (author)

  18. Auxiliary radiofrequency heating of tokamaks, Task 3

    International Nuclear Information System (INIS)

    Scharer, J.E.

    1991-07-01

    The research performed under this grant during the past three years has been concentrated on the following several key tokamak ICRF (Ion Cyclotron Range of Frequencies) coupling and heating issues: efficient coupling during the L- to H-mode transition by analysis and computer simulation of ICRF antennas edge plasma profiles; analysis of both dielectric-filled waveguide and coil ICRF antenna coupling to plasma edge profiles; benchmarking the codes to compare with current JET, D-IIID and ASDEX experimental results; ICRF full-wave field solutions, power conservation and heating analyses; and the effects of fusion alpha particle or ion tail populations on the ICRF absorption. Research progress, publications, and conference and workshop presentations are summarized in this report. 15 refs

  19. A dimensionless criterion for characterising internal transport barriers in tokamaks

    International Nuclear Information System (INIS)

    Tresset, G.; Litaudon, X.; Moreau, D.

    2000-07-01

    A simple criterion, based on a dimensionless parameter (ρ T * =ρ s /L T ) related to drift wave turbulence stabilisation and anomalous transport theory, is proposed in order to characterise the emergence and the space-time evolution of internal transport barriers (ITB's) during a tokamak discharge. The underlying physics which led us to consider the possible relevance of this parameter as a local indicator of a bifurcated plasma state is the breaking of the gyro-Bohm turbulence scaling by the diamagnetic velocity shear, which has been observed in various numerical simulations [e.g. X. Garbet and R.E. Waltz, Phys. Plasmas 3(1996) 1898]. The presence of an ITB is inferred when ρ T * exceeds a threshold value. The main features like the emergence time, location and even dynamics of ITB's can then be summarized on a single graphical representation consistent with measurement uncertainties. The validity of such a criterion is demonstrated on the Optimized Shear (OS) database of JET in several experimental configurations. Large database analysis and realtime control of OS discharges are envisaged as the most attractive applications. (author)

  20. Tokamak reactor startup power

    International Nuclear Information System (INIS)

    Weldon, D.M.; Murray, J.G.

    1983-01-01

    Tokamak startup with ohmic heating (OH)-induced voltages requires rather large voltages and power supplies. On present machines, with no radiofrequency (rf)-assist provisions, hundreds of volts have been specified for their designs. With the addition of electron cyclotron resonant heating (ECRH) assist, the design requirements have been lowered. To obtain information on the cost and complexity associated with this ECRH-assisted, OH-pulsed startup voltage for ignition-type machines, a trade-off study was completed. The Fusion Engineering Device (FED) configuration was selected as a model because information was available on the structure. The data obtained are applicable to all tokamaks of this general size and complexity, such as the Engineering Test Reactor

  1. Tokamak fusion reactor exhaust

    International Nuclear Information System (INIS)

    Harrison, M.F.A.; Harbour, P.J.; Hotston, E.S.

    1981-08-01

    This report presents a compilation of papers dealing with reactor exhaust which were produced as part of the TIGER Tokamak Installation for Generating Electricity study at Culham. The papers are entitled: (1) Exhaust impurity control and refuelling. (2) Consideration of the physical problems of a self-consistent exhaust and divertor system for a long burn Tokamak. (3) Possible bundle divertors for INTOR and TIGER. (4) Consideration of various magnetic divertor configurations for INTOR and TIGER. (5) A appraisal of divertor experiments. (6) Hybrid divertors on INTOR. (7) Refuelling and the scrape-off layer of INTOR. (8) Simple modelling of the scrape-off layer. (9) Power flow in the scrape-off layer. (10) A model of particle transport within the scrape-off plasma and divertor. (11) Controlled recirculation of exhaust gas from the divertor into the scrape-off plasma. (U.K.)

  2. Theory of tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    White, R B [Princeton Univ., NJ (USA). Plasma Physics Lab.

    1989-01-01

    The book covers the consequences of ideal and resistive magnetohydrodynamics, these theories being responsible for most of what is well understood regarding the physics of tokamak discharges. The focus is on the description of equilibria, the linear and nonlinear theory of large scale modes, and single particle guiding center motion, including simple neoclassical effects. modern methods of general magnetic coordinates are used, and the student is introduced to the onset of chaos in Hamiltonian systems in the discussion of destruction of magnetic surfaces. Much of the book is devoted to the description of the limitations placed on tokamak operating parameters given by ideal and resistive modes, and current ideas about how to extend and optimize these parameters. (author). refs.; figs.

  3. Axisymmetric tokamak scapeoff transport

    International Nuclear Information System (INIS)

    Singer, C.E.; Langer, W.D.

    1982-08-01

    We present the first self-consistent estimate of the magnitude of each term in a fluid treatment of plasma transport for a plasma lying in regions of open field lines in an axisymmetric tokamak. The fluid consists of a pure hydrogen plasma with sources which arise from its interaction with neutral hydrogen atoms. The analysis and results are limited to the high collisionality regime, which is optimal for a gaseous neutralizer divertor, or to a cold plasma mantle in a tokamak reactor. In this regime, both classical and neoclassical transport processes are important, and loss of particles and energy by diamagnetic flow are also significant. The prospect of extending the analysis to the lower collisionality regimes encountered in many existing experiments is discussed

  4. Mechanism for rapid sawtooth crashes in tokamaks

    International Nuclear Information System (INIS)

    Aydemir, A.Y.; Hazeltine, R.D.

    1986-09-01

    The sawtooth oscillations in the soft x-ray signals observed in tokamaks are associated with periodic changes in the central electron temperature, T/sub e/. Typically, a slow phase during which the central temperature slowly rises is followed by a fast drop in T/sub e/, associated with flattening of the central temperature. The time scale of the slow phase is determined by various transport processes such as ohmic heating. The resistive internal kink mode was invoked by Kadomtsev to explain the crash phase of the oscillations. Fast crash times observed in the large tokamaks are studied here, especially the fast crashes observed in JET. These sawtooth oscillations are characterized by the absence of any discrenible precursor oscillations, and a rapid collapse of the central temperature in about 100 microseconds. During the crash phase, the hot core region rapidly moves outward and is replaced by colder plasma. Then, this highly asymmetric state relaxes (in ∼100μsec) to a poloidally symmetric state in which a ring of hot plasma surrounds the colder core plasma, producing a hollow pressure profile

  5. Sawtooth driven particle transport in tokamak plasmas

    International Nuclear Information System (INIS)

    Nicolas, T.

    2013-01-01

    The radial transport of particles in tokamaks is one of the most stringent issues faced by the magnetic confinement fusion community, because the fusion power is proportional to the square of the pressure, and also because accumulation of heavy impurities in the core leads to important power losses which can lead to a 'radiative collapse'. Sawteeth and the associated periodic redistribution of the core quantities can significantly impact the radial transport of electrons and impurities. In this thesis, we perform numerical simulations of sawteeth using a nonlinear tridimensional magnetohydrodynamic code called XTOR-2F to study the particle transport induced by sawtooth crashes. We show that the code recovers, after the crash, the fine structures of electron density that are observed with fast-sweeping reflectometry on the JET and TS tokamaks. The presence of these structure may indicate a low efficiency of the sawtooth in expelling the impurities from the core. However, applying the same code to impurity profiles, we show that the redistribution is quantitatively similar to that predicted by Kadomtsev's model, which could not be predicted a priori. Hence finally the sawtooth flushing is efficient in expelling impurities from the core. (author) [fr

  6. Heuristic drift-based model of the power scrape-off width in low-gas-puff H-mode tokamaks

    International Nuclear Information System (INIS)

    Goldston, R.J.

    2012-01-01

    A heuristic model for the plasma scrape-off width in low-gas-puff tokamak H-mode plasmas is introduced. Grad B and curv B drifts into the scrape-off layer (SOL) are balanced against near-sonic parallel flows out of the SOL, to the divertor plates. The overall particle flow pattern posited is a modification for open field lines of Pfirsch–Schlüter flows to include order-unity sinks to the divertors. These assumptions result in an estimated SOL width of ∼2aρ p /R. They also result in a first-principles calculation of the particle confinement time of H-mode plasmas, qualitatively consistent with experimental observations. It is next assumed that anomalous perpendicular electron thermal diffusivity is the dominant source of heat flux across the separatrix, investing the SOL width, derived above, with heat from the main plasma. The separatrix temperature is calculated based on a two-point model balancing power input to the SOL with Spitzer–Härm parallel thermal conduction losses to the divertor. This results in a heuristic closed-form prediction for the power scrape-off width that is in reasonable quantitative agreement both in absolute magnitude and in scaling with recent experimental data. Further work should include full numerical calculations, including all magnetic and electric drifts, as well as more thorough comparison with experimental data.

  7. Density limits in Tokamaks

    International Nuclear Information System (INIS)

    Tendler, M.

    1984-06-01

    The energy loss from a tokamak plasma due to neutral hydrogen radiation and recycling is of great importance for the energy balance at the periphery. It is shown that the requirement for thermal equilibrium implies a constraint on the maximum attainable edge density. The relation to other density limits is discussed. The average plasma density is shown to be a strong function of the refuelling deposition profile. (author)

  8. Tokamak pump limiters

    International Nuclear Information System (INIS)

    Conn, R.W.

    1984-05-01

    Recent experiments with a scoop limiter without active internal pumping have been carried out in the PDX tokamak with up to 6MW of auxiliary neutral beam heating. Experiments have also been done with a rotating head pump limiter in the PLT tokamak in conjunction with RF plasma heating. Extensive experiments have been done in the ISX-B tokamak and first experiments have been completed with the ALT-I limiter in TEXTOR. The pump limiter modules in these latter two machines have internal getter pumping. Experiments in ISX-B are with ohmic and auxiliary neutral beam heating. The results in ISX-B and TEXTOR show that active density control and particle removal is achieved with pump limiters. In ISX-B, the boundary layer (or scape-off layer) plasma partially screens the core plasma from gas injection. In both ISX-B and TEXTOR, the pressure internal to the module scales linearly with plasma density but in ISX-B, with neutral beam injection, a nonlinear increase is observed at the highest densities studied. Plasma plugging is the suspected cause. Results from PDX suggest that a region may exist in which core plasma energy confinement improves using a pump limiter during neutral beam injection. Asymmetric radial profiles and an increased edge electron temperature are observed in discharges with improved confinement. The injection of small amounts of neon into ISX-B has more clearly shown an improved electron core energy confinement during neutral beam injection. While carried out with a regular limiter, this Z-mode of operation is ideal for use with pump limiters and should be a way to achieve energy confinement times similar to values for H-mode tokamak plasmas. The implication of all these results for the design of a reactor pump limiter is described

  9. Modular tokamak magnetic system

    International Nuclear Information System (INIS)

    Yang, T.F.

    1988-01-01

    This patent describes a tokamak reactor including a vacuum vessel, toroidal confining magnetic field coils disposed concentrically around the minor radius of the vacuum vessel, and poloidal confining magnetic field coils, an ohmic heating coil system comprising at least one magnetic coil disposed concentrically around a toroidal field coil, wherein the magnetic coil is wound around the toroidal field coil such that the ohmic heating coil enclosed the toroidal field coil

  10. Tokamak pump limiters

    International Nuclear Information System (INIS)

    Conn, R.W.; California Univ., Los Angeles

    1984-01-01

    Recent experiments with a scoop limiter without active internal pumping have been carried out in the PDX tokamak with up to 6 MW of auxiliary neutral beam heating. Experiments have also been performed with a rotating head pump limiter in the PLT tokamak in conjunction with RF plasma heating. Extensive experiments have been done in the ISX-B tokamak and first experiments have been completed with the ALT-I limiter in TEXTOR. The pump limiter modules in these latter two machines have internal getter pumping. Experiments in ISX-B are with ohmic and auxiliary neutral beam heating. The results in ISX-B and TEXTOR show that active density control and particle removal is achieved with pump limiters. In ISX-B, the boundary layer (or scrape-off layer) plasma partially screens the core plasma from gas injection. In both ISX-B and TEXTOR, the pressure internal to the module scales linearly with plasma density but in ISX-B, with neutral beam injection, a nonlinear increase is observed at the highest densities studied. Plasma plugging is the suspected cause. Results from PDX suggest that a regime may exist in which core plasma energy confinement improves using a pump limiter during neutral beam injection. Asymmetric radial profiles and an increased edge electron temperature are observed in discharges with improved confinement. The injection of small amounts of neon into ISX-B has more clearly shown an improved electron core energy confinement during neutral beam injection. While carried out with a regular limiter, this 'Z-mode' of operation is ideal for use with pump limiters and should be a way to achieve energy confinement times similar to values for H-mode tokamak plasmas. The implication of all these results for the design of a reactor pump limiter is described. (orig.)

  11. TPX tokamak construction management

    International Nuclear Information System (INIS)

    Knutson, D.; Kungl, D.; Seidel, P.; Halfast, C.

    1995-01-01

    A construction management contract normally involves the acquisition of a construction management firm to assist in the design, planning, budget conformance, and coordination of the construction effort. In addition the construction management firm acts as an agent in the awarding of lower tier contracts. The TPX Tokamak Construction Management (TCM) approach differs in that the construction management firm is also directly responsible for the assembly and installation of the tokamak including the design and fabrication of all tooling required for assembly. The Systems Integration Support (SIS) contractor is responsible for the architect-engineering design of ancillary systems, such as heating and cooling, buildings, modifications and site improvements, and a variety of electrical requirements, including switchyards and >4kV power distribution. The TCM will be responsible for the procurement of materials and the installation of the ancillary systems, which can either be performed directly by the TCM or subcontracted to a lower tier subcontractor. Assurance that the TPX tokamak is properly assembled and ready for operation when turned over to the operations team is the primary focus of the construction management effort. To accomplish this a disciplined constructability program will be instituted. The constructability effort will involve the effective and timely integration of construction expertise into the planning, component design, and field operations. Although individual component design groups will provide liaison during the machine assembly operations, the construction management team is responsible for assembly

  12. Diffusion in a tokamak with helical magnetic cells

    International Nuclear Information System (INIS)

    Wakatani, Masahiro

    1975-05-01

    In a tokamak with helical magnetic cells produced by a resonant helical magnetic field, diffusion in the collisional regime is studied. The diffusion coefficient is greatly enhanced near the resonant surface even for a weak helical magnetic field. A theoretical model for disruptive instabilities based on the enhanced transport due to helical magnetic cells is discussed. This may explain experiments of the tokamak with resonant helical fields qualitatively. (author)

  13. Jet Joint Undertaking. Annual report 1990

    International Nuclear Information System (INIS)

    1991-05-01

    The Joint European Torus is the largest project in the coordinated fusion programme of the European Atomic Energy Community (EURATOM). A brief general introduction provides an overview of the planning of the Report. This is followed by a description of JET and the Euratom and International Fusion Programmes, which summarize the main features of the JET apparatus and its experimental programme and explains the position of the Project in the overall Euratom programme. In addition, this relates and compares JET to other large fusion devices throughout the world. The following section reports on the technical status of the machine including: technical changes and achievements during 1989; details of the operational organization of experiments and pulse statistics; and progress on enhancements in machine systems for future operation. This is followed by the results of JET operations in 1990 under various operating conditions, including ohmic heating, radio-frequency (RF) heating, neutral beam (NB) heating and various combined scenarios in different magnetic field configurations; the overall global and local behaviour observed; and the progress towards reactor conditions. In particular, the comparative performance between JET and other tokamaks, in terms of the triple fusion product, shows the substantial achievements made by JET since the start of operations in 1983. The second part of the Report explains the organization and management of the Project and describes the administration of JET. In particular, it sets out the budget situation; contractual arrangements during 1990; and details of the staffing arrangements and complement

  14. An Operational Model for the Prediction of Jet Blast

    Science.gov (United States)

    2012-01-09

    This paper presents an operational model for the prediction of jet blast. The model was : developed based upon three modules including a jet exhaust model, jet centerline decay : model and aircraft motion model. The final analysis was compared with d...

  15. Improvement of tokamak performance by injection of electrons

    International Nuclear Information System (INIS)

    Ono, Masayuki.

    1992-12-01

    Concepts for improving tokamak performance by utilizing injection of hot electrons are discussed. Motivation of this paper is to introduce the research work being performed in this area and to refer the interested readers to the literature for more detail. The electron injection based concepts presented here have been developed in the CDX, CCT, and CDX-U tokamak facilities. The following three promising application areas of electron injection are described here: 1. Non-inductive current drive, 2. Plasma preionization for tokamak start-up assist, and 3. Charging-up of tokamak flux surfaces for improved plasma confinement. The main motivation for the dc-helicity injection current drive is in its efficiency that, in theory, is independent of plasma density. This property makes it attractive for driving currents in high density reactor plasmas

  16. Boosted jets

    International Nuclear Information System (INIS)

    Juknevich, J.

    2014-01-01

    We present a study of the substructure of jets high transverse momentum at hadron colliders. A template method is introduced to distinguish heavy jets by comparing their energy distributions to the distributions of a set of templates which describe the kinematical information from signal or background. As an application, a search for a boosted Higgs boson decaying into bottom quarks in association with a leptonically decaying W boson is presented as well. (author)

  17. Maintaining persistence and adherence with subcutaneous growth-hormone therapy in children: comparing jet-delivery and needle-based devices

    Directory of Open Access Journals (Sweden)

    Spoudeas HA

    2014-09-01

    Full Text Available Helen A Spoudeas,1 Priti Bajaj,2 Nathan Sommerford3 1London Centre for Paediatric Endocrinology, University College London, London, 2Ferring Pharmaceuticals, London, 3Health Informatics Research, Sciensus Ltd, Brighton, UK Purpose: Persistence and adherence with subcutaneous growth hormone (GH; somatropin therapy in children is widely acknowledged to be suboptimal. This study aimed to investigate how the use of a jet-delivery device, ZomaJet®, impacts on medication-taking behaviors compared to needle-based devices.Materials and methods: A retrospective cohort study of children aged ≤18 years was conducted using a UK-based, nationwide database of GH home-delivery schedules. Data were evaluated for the period between January 2010 and December 2012 for 6,061 children receiving either Zomacton® (somatropin via the ZomaJet jet-delivery device or one of six brands of GH all administered via needle-based devices. Persistence was analyzed for patients with appropriate data, measured as the time interval between first and last home deliveries. An analysis of adherence was conducted only for patients using ZomaJet who had appropriate data, measured by proportion of days covered. Brand switches were identified for all patients.Results: Persistence with GH therapy was significantly longer in patients using ZomaJet compared to needle-based devices (599 days versus 535 days, respectively, n=4,093; P<0.001; this association was observed in both sexes and across age subgroups (≤10 and 11–16 years. The majority (58% of patients using ZomaJet were classed as adherent (n=728. Only 297 patients (5% switched GH brand (n=6,061, and patients tended to use ZomaJet for longer than other devices before switching.Conclusion: It appears important that the choice of a jet-delivery device is offered to children prescribed daily GH therapy. These devices may represent a much-needed effective strategy for maintaining persistence with subcutaneous GH administration in

  18. The Tokar Gap Jet: Regional Circulation, Diurnal Variability, and Moisture Transport Based on Numerical Simulations

    KAUST Repository

    Davis, Shannon R.

    2015-05-14

    The structure, variability, and regional connectivity of the Tokar Gap jet (TGJ) are described using WRF Model analyses and supporting atmospheric datasets from the East African–Red Sea–Arabian Peninsula (EARSAP) region during summer 2008. Sources of the TGJ’s unique quasi-diurnal nature and association with atypically high atmospheric moisture transport are traced back to larger-scale atmospheric dynamics influencing its forcing. These include seasonal shifts in the intertropical convergence zone (ITCZ), variability of the monsoon and North African wind regimes, and ties to other orographic flow patterns. Strong modulation of the TGJ by regional processes such as the desert heating cycle, wind convergence at the ITCZ surface front, and the local land–sea breeze cycle are described. Two case studies present the interplay of these influences in detail. The first of these was an “extreme” gap wind event on 12 July, in which horizontal velocities in the Tokar Gap exceeded 26 m s−1 and the flow from the jet extended the full width of the Red Sea basin. This event coincided with development of a large mesoscale convective complex (MCC) and precipitation at the entrance of the Tokar Gap as well as smaller gaps downstream along the Arabian Peninsula. More typical behavior of the TGJ during the 2008 summer is discussed using a second case study on 19 July. Downwind impact of the TGJ is evaluated using Lagrangian model trajectories and analysis of the lateral moisture fluxes (LMFs) during jet events. These results suggest means by which TGJ contributes to large LMFs and has potential bearing upon Sahelian rainfall and MCC development.

  19. A fluid model for the edge pressure pedestal height and width in tokamaks based on the transport constraint of particle, energy, and momentum balance

    Energy Technology Data Exchange (ETDEWEB)

    Stacey, W. M., E-mail: weston.stacey@nre.gatech.edu [Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2016-06-15

    A fluid model for the tokamak edge pressure profile required by the conservation of particles, momentum and energy in the presence of specified heating and fueling sources and electromagnetic and geometric parameters has been developed. Kinetics effects of ion orbit loss are incorporated into the model. The use of this model as a “transport” constraint together with a “Peeling-Ballooning (P-B)” instability constraint to achieve a prediction of edge pressure pedestal heights and widths in future tokamaks is discussed.

  20. Multi-viewpoint imaging based simulations of sensors for APS jet monitoring

    Czech Academy of Sciences Publication Activity Database

    Djakov, B. E.; Oliver, D.H.; Enikov, R.; Vasileva, E.; Chumak, Oleksiy; Hrabovský, Milan

    2010-01-01

    Roč. 223, č. 1 (2010), 012008-012008 ISSN 1742-6588. [International Summer School on Vacuum, Electron, and Ion Technologies (VEIT 2009)/16th./. Sunny Beach, 28.09.2009-02.10.2009] R&D Projects: GA AV ČR KJB100430701 Institutional research plan: CEZ:AV0Z20430508 Keywords : plasma jet * plasma flow fluctuations * image processing Subject RIV: BL - Plasma and Gas Discharge Physics http://iopscience.iop.org/1742-6596/223/1/012008

  1. Emerging Jets

    CERN Document Server

    Schwaller, Pedro; Weiler, Andreas

    2015-01-01

    In this work, we propose a novel search strategy for new physics at the LHC that utilizes calorimeter jets that (i) are composed dominantly of displaced tracks and (ii) have many different vertices within the jet cone. Such emerging jet signatures are smoking guns for models with a composite dark sector where a parton shower in the dark sector is followed by displaced decays of dark pions back to SM jets. No current LHC searches are sensitive to this type of phenomenology. We perform a detailed simulation for a benchmark signal with two regular and two emerging jets, and present and implement strategies to suppress QCD backgrounds by up to six orders of magnitude. At the 14 TeV LHC, this signature can be probed with mediator masses as large as 1.5 TeV for a range of dark pion lifetimes, and the reach is increased further at the high-luminosity LHC. The emerging jet search is also sensitive to a broad class of long-lived phenomena, and we show this for a supersymmetric model with R-parity violation. Possibilit...

  2. Emerging jets

    Energy Technology Data Exchange (ETDEWEB)

    Schwaller, Pedro; Stolarski, Daniel [European Organization for Nuclear Research (CERN), Geneva (Switzerland). TH-PH Div.; Weiler, Andreas [European Organization for Nuclear Research (CERN), Geneva (Switzerland). TH-PH Div.; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2015-02-15

    In this work, we propose a novel search strategy for new physics at the LHC that utilizes calorimeter jets that (i) are composed dominantly of displaced tracks and (ii) have many different vertices within the jet cone. Such emerging jet signatures are smoking guns for models with a composite dark sector where a parton shower in the dark sector is followed by displaced decays of dark pions back to SM jets. No current LHC searches are sensitive to this type of phenomenology. We perform a detailed simulation for a benchmark signal with two regular and two emerging jets, and present and implement strategies to suppress QCD backgrounds by up to six orders of magnitude. At the 14 TeV LHC, this signature can be probed with mediator masses as large as 1.5 TeV for a range of dark pion lifetimes, and the reach is increased further at the high-luminosity LHC. The emerging jet search is also sensitive to a broad class of long-lived phenomena, and we show this for a supersymmetric model with R-parity violation. Possibilities for discovery at LHCb are also discussed.

  3. Emerging jets

    International Nuclear Information System (INIS)

    Schwaller, Pedro; Stolarski, Daniel

    2015-02-01

    In this work, we propose a novel search strategy for new physics at the LHC that utilizes calorimeter jets that (i) are composed dominantly of displaced tracks and (ii) have many different vertices within the jet cone. Such emerging jet signatures are smoking guns for models with a composite dark sector where a parton shower in the dark sector is followed by displaced decays of dark pions back to SM jets. No current LHC searches are sensitive to this type of phenomenology. We perform a detailed simulation for a benchmark signal with two regular and two emerging jets, and present and implement strategies to suppress QCD backgrounds by up to six orders of magnitude. At the 14 TeV LHC, this signature can be probed with mediator masses as large as 1.5 TeV for a range of dark pion lifetimes, and the reach is increased further at the high-luminosity LHC. The emerging jet search is also sensitive to a broad class of long-lived phenomena, and we show this for a supersymmetric model with R-parity violation. Possibilities for discovery at LHCb are also discussed.

  4. Status of the tokamak program

    Science.gov (United States)

    Sheffield, J.

    1981-08-01

    For a specific configuration of magnetic field and plasma to be economically attractive as a commercial source of energy, it must contain a high-pressure plasma in a stable fashion while thermally isolating the plasma from the walls of the containment vessel. The tokamak magnetic configuration is presently the most successful in terms of reaching the considered goals. Tokamaks were developed in the USSR in a program initiated in the mid-1950s. By the early 1970s tokamaks were operating not only in the USSR but also in the U.S., Australia, Europe, and Japan. The advanced state of the tokamak program is indicated by the fact that it is used as a testbed for generic fusion development - for auxiliary heating, diagnostics, materials - as well as for specific tokamak advancement. This has occurred because it is the most economic source of a large, reproducible, hot, dense plasma. The basic tokamak is considered along with tokamak improvements, impurity control, additional heating, particle and power balance in a tokamak, aspects of microscopic transport, and macroscopic stability.

  5. Magnetic confinement experiment -- 1: Tokamaks

    International Nuclear Information System (INIS)

    Goldston, R.J.

    1994-01-01

    This report reviews presentations made at the 15th IAEA Conference on Plasma Physics and Controlled Nuclear Fusion on experimental tokamak physics, particularly on advances in core plasma physics, divertor and edge physics, heating and current drive, and tokamak concept optimization

  6. The density limit in Tokamaks

    International Nuclear Information System (INIS)

    Alladio, F.

    1985-01-01

    A short summary of the present status of experimental observations, theoretical ideas and understanding of the density limit in tokamaks is presented. It is the result of the discussion that was held on this topic at the 4th European Tokamak Workshop in Copenhagen (December 4th to 6th, 1985). 610 refs

  7. Traveling magnetopause distortion related to a large-scale magnetosheath plasma jet: THEMIS and ground-based observations

    Science.gov (United States)

    Dmitriev, A. V.; Suvorova, A. V.

    2012-08-01

    Here, we present a case study of THEMIS and ground-based observations of the perturbed dayside magnetopause and the geomagnetic field in relation to the interaction of an interplanetary directional discontinuity (DD) with the magnetosphere on 16 June 2007. The interaction resulted in a large-scale local magnetopause distortion of an "expansion - compression - expansion" (ECE) sequence that lasted for ˜15 min. The compression was caused by a very dense, cold, and fast high-βmagnetosheath plasma flow, a so-called plasma jet, whose kinetic energy was approximately three times higher than the energy of the incident solar wind. The plasma jet resulted in the effective penetration of magnetosheath plasma inside the magnetosphere. A strong distortion of the Chapman-Ferraro current in the ECE sequence generated a tripolar magnetic pulse "decrease - peak- decrease" (DPD) that was observed at low and middle latitudes by some ground-based magnetometers of the INTERMAGNET network. The characteristics of the ECE sequence and the spatial-temporal dynamics of the DPD pulse were found to be very different from any reported patterns of DD interactions with the magnetosphere. The observed features only partially resembled structures such as FTE, hot flow anomalies, and transient density events. Thus, it is difficult to explain them in the context of existing models.

  8. Near-kHz 3D tracer-based LIF imaging of a co-flow jet using toluene

    International Nuclear Information System (INIS)

    Miller, V A; Troutman, V A; Hanson, R K

    2014-01-01

    This work demonstrates tracer-based, high-repetition-rate planar (15 kHz) and three-dimensional (940 Hz) laser-induced fluorescence imaging. An off-the-shelf, pulsed, frequency-quadrupled Nd:YAG laser at 266 nm is used as the excitation light source, and a high-frame-rate intensified relay optic with a slow P46 phosphor coupled to a CMOS camera is used to image the fluorescence. Four different tracers are investigated (3-pentanone, acetone, anisole, and toluene) and relative signal levels are measured in the potential core of a laminar co-flow jet. Resulting SNR values range from 6 to 44 for the different tracers, and relative signal levels and SNR for each tracer are provided as an engineering-basis for tracer-based imaging diagnostic design. It was found that signal levels from anisole (relative to toluene) are about ten times less than suggested by other literature, owing to uncertainty in the reported absorption cross sections. Using toluene as a tracer and a custom-made piezo-actuated steering optic to scan the laser sheet, 3D LIF imaging at 940 Hz is demonstrated by visualizing a co-flow jet mixing with ambient air. (paper)

  9. Synthetic jets based on micro magneto mechanical systems for aerodynamic flow control

    International Nuclear Information System (INIS)

    Gimeno, L; Merlen, A; Talbi, A; Viard, R; Pernod, P; Preobrazhensky, V

    2010-01-01

    A magneto-mechanical micro-actuator providing an axisymmetric synthetic microjet for active flow control was designed, fabricated and characterized. The micro-actuator consists of an enclosed cavity with a small orifice in one face and a high flexible elastomeric (PDMS) membrane in the opposite one. The membrane vibration is achieved using a magnetic actuation chosen for its capacity for providing large out of plane displacements and forces necessary for the performances aimed for. The paper presents first numerical simulations of the flow performed during the design process in order to identify a general jet formation criterion and optimize the device's performances. The fabrication process of this micro-magneto-mechanical system (MMMS) is then briefly described. The full size of the device, including packaging and actuation, does not exceed 1 cm 3 . The evaluation of the performances of the synthetic jet with 600 µm orifice was performed. The results show that the optimum working point is in the frequency range 400–700 Hz which is in accordance with the frequency response of the magnet-membrane mechanical resonator. In this frequency range, the microjet reaches maximum speeds ranging from 25 m s −1 to 55 m s −1 for an electromagnetic power consumption of 500 mW. Finally the axial velocity transient and stream-wise behaviours in the near and far fields are reported and discussed.

  10. Time dependent approach of TeV blazars based on a model of inhomogeneous stratified jet

    International Nuclear Information System (INIS)

    Boutelier, T.

    2009-05-01

    The study of the emission and variability mechanisms of TeV blazars has been the subject of intensive research for years. The homogeneous one-zone model commonly used is puzzling since it yields very high Lorentz factor, in contradiction with other observational evidences. In this work, I describe a new time dependent multi-zone approach, in the framework of the two-flow model. I compute the emission of a full jet, where relativistic electron-positron pairs distributed in pileup propagate. The evolution and the emission of the plasma is computed taking into account a turbulent heating term, some radiative cooling, and a pair production term due to photo-annihilation process. Applied to PKS 2155-304, the model allows the reproduction of the full spectra, as well as the simultaneous multi wavelength variability, with a relatively small Lorentz factor. The variability is explained by the instability of the pair creation process. Nonetheless, the value is still high to agree with other observational evidences in radio. Hence, I show in the last part of this work how to conciliate high Lorentz factor with the absence of apparent superluminal movement in radio, by taking into account the effect of the opening angle on the appearance of relativistic jets. (author)

  11. Progress in understanding heat transport at JET

    International Nuclear Information System (INIS)

    Mantica, P.; Garbet, X.; Angioni, C.

    2005-01-01

    This paper reports recent progress in understanding heat transport mechanisms either in conventional or advanced tokamak scenarios in JET. A key experimental tool has been the use of perturbative transport techniques, both by ICH power modulation and by edge cold pulses. The availability of such results has allowed careful comparison with theoretical modelling using 1D empirical or physics based transport models, 3D fluid turbulence simulations or gyrokinetic stability analysis. In conventional L- and H-mode plasmas the issue of temperature profile stiffness has been addressed. JET results are consistent with the concept of a critical inverse temperature gradient length above which transport is enhanced by the onset of turbulence. A threshold value R/L Te ∼5 has been found for the onset of stiff electron transport, while the level of electron stiffness appears to vary strongly with plasma parameters, in particular with the ratio of electron and ion heating: electrons become stiffer when ions are strongly heated, resulting in larger R/L Ti values. This behaviour has also been found theoretically, although quantitatively weaker than in experiments. In plasmas characterized by Internal Transport Barriers (ITB), the properties of heat transport inside the ITB layer and the ITB formation mechanisms have been investigated. The plasma current profile is found to play a major role in ITB formation. The effect of negative magnetic shear on electron and ion stabilization is demonstrated both experimentally and theoretically using turbulence codes. The role of rational magnetic surfaces in ITB triggering is well assessed experimentally, but still lacks a convincing theoretical explanation. Attempts to trigger an ITB by externally induced magnetic reconnection using saddle coils have shown that MHD islands in general do not produce a sufficient variation of ExB flow shear to lead to ITB formation. First results of perturbative transport in ITBs show that the ITB is a narrow

  12. Neural net prediction of tokamak plasma disruptions

    International Nuclear Information System (INIS)

    Hernandez, J.V.; Lin, Z.; Horton, W.; McCool, S.C.

    1994-10-01

    The computation based on neural net algorithms in predicting minor and major disruptions in TEXT tokamak discharges has been performed. Future values of the fluctuating magnetic signal are predicted based on L past values of the magnetic fluctuation signal, measured by a single Mirnov coil. The time step used (= 0.04ms) corresponds to the experimental data sampling rate. Two kinds of approaches are adopted for the task, the contiguous future prediction and the multi-timescale prediction. Results are shown for comparison. Both networks are trained through the back-propagation algorithm with inertial terms. The degree of this success indicates that the magnetic fluctuations associated with tokamak disruptions may be characterized by a relatively low-dimensional dynamical system

  13. Conceptual design for a bulk tungsten divertor tile in JET

    International Nuclear Information System (INIS)

    Mertens, Ph.; Hirai, T.; Linke, J.; Neubauer, O.; Pintsuk, G.; Philipps, V.; Sadakov, S.; Samm, U.; Schweer, B.

    2007-01-01

    The ITER-like Wall project (ILW) for JET aims at providing the plasma chamber of the tokamak with an environment of mixed materials which will be relevant for the actual first wall construction on ITER. Tungsten plays a key role in the divertor cladding. For the central tile, also called LB-SRP for 'load-bearing septum replacement plate', bulk tungsten is envisaged in order to cope with the high heat loads expected (up to 10 MW/m 2 for 10 s). The outer strike-point in the divertor will be positioned on this tile for the most relevant configurations. Forschungszentrum Juelich (FZJ) has developed a conceptual design based on an assembly of tungsten blades or lamellae. An appropriate interface with the base carrier of JET, on which modules of two tiles are positioned and fixed by remote handling procedures, is a substantial part of the integral design. Important issues are the electromagnetic forces and expected temperature distributions. Material choices combine tungsten, TZM TM , Inconel and ceramic parts. The completed design has been finalised in a proposal to the ILW project, with utmost ITER-relevance

  14. Photon + jets at D0

    Energy Technology Data Exchange (ETDEWEB)

    Sonnenschein, Lars; /RWTH Aachen U.

    2009-06-01

    Photon plus jet production has been studied by the D0 experiment in Run II of the Fermilab Tevatron Collider at a centre of mass energy of {radical}s = 1.96 TeV. Measurements of the inclusive photon, inclusive photon plus jet, photon plus heavy flavour jet cross sections and double parton interactions in photon plus three jet events are presented. They are based on integrated luminosities between 0.4 fb{sup -1} and 1.0 fb{sup -1}. The results are compared to perturbative QCD calculations in various approximations.

  15. Tokamak instrumentation and controls

    International Nuclear Information System (INIS)

    Becraft, W.R.; Bettis, E.S.; Houlberg, W.A.; Onega, R.J.; Stone, R.S.

    1979-02-01

    The three areas of study emphasis to date are: (1) Physics implications for controls, (2) Computer simulation, and (3) Shutdown/aborts. This document reports on the FY 78 efforts (the first year of these studies) to address these problems. Transient scenario options for the startup of a tokamak are developed, and the implications for the control system are discussed. This document also presents a hybrid computer simulation (analog and digital) of the Impurity Study Experiment (ISX-B) which is now being used for corroborative controls investigations. The simulation will be expanded to represent a TNS/ETF machine

  16. Demonstration tokamak power plant

    International Nuclear Information System (INIS)

    Abdou, M.; Baker, C.; Brooks, J.; Ehst, D.; Mattas, R.; Smith, D.L.; DeFreece, D.; Morgan, G.D.; Trachsel, C.

    1983-01-01

    A conceptual design for a tokamak demonstration power plant (DEMO) was developed. A large part of the study focused on examining the key issues and identifying the R and D needs for: (1) current drive for steady-state operation, (2) impurity control and exhaust, (3) tritium breeding blanket, and (4) reactor configuration and maintenance. Impurity control and exhaust will not be covered in this paper but is discussed in another paper in these proceedings, entitled Key Issues of FED/INTOR Impurity Control System

  17. Maximum entropy tokamak configurations

    International Nuclear Information System (INIS)

    Minardi, E.

    1989-01-01

    The new entropy concept for the collective magnetic equilibria is applied to the description of the states of a tokamak subject to ohmic and auxiliary heating. The condition for the existence of steady state plasma states with vanishing entropy production implies, on one hand, the resilience of specific current density profiles and, on the other, severe restrictions on the scaling of the confinement time with power and current. These restrictions are consistent with Goldston scaling and with the existence of a heat pinch. (author)

  18. The preparation of ZnO based gas-sensing thin films by ink-jet printing method

    International Nuclear Information System (INIS)

    Shen Wenfeng; Zhao Yan; Zhang Caibei

    2005-01-01

    An ink-jet printing technique was applied to prepare ZnO based gas-sensing thin films. ZnO inks with appropriate viscosity and surface tension were prepared by sol-gel techniques, and printed onto substrates using a commercial printer. After the drying and heating treatment processes, continuous ZnO films were formed and studied by scanning electron microscopy, X-ray diffraction and by a home-made gas sensitivity measuring system. It was found that the morphology and electrical properties of the films changed significantly with the thickness of the films, which can be adjusted simply by printing on the film with increasing frequency. Highest resistance and sensitivity to acetone vapor were obtained when the film was prepared by printing only once on it. Different dopants with certain concentrations could be added into the films by printing with different dopant inks and printing frequency. All Pd, Ag, and ZrO 2 dopants increased both the resistivity and the sensitivity of the films (180 ppm acetone). This work showed that the ink-jet printing technique was a convenient and low cost method to prepare films with controlled film thickness and dopant concentration

  19. Analysis of JET ELMy time series

    International Nuclear Information System (INIS)

    Zvejnieks, G.; Kuzovkov, V.N.

    2005-01-01

    Full text: Achievement of the planned operational regime in the next generation tokamaks (such as ITER) still faces principal problems. One of the main challenges is obtaining the control of edge localized modes (ELMs), which should lead to both long plasma pulse times and reasonable divertor life time. In order to control ELMs the hypothesis was proposed by Degeling [1] that ELMs exhibit features of chaotic dynamics and thus a standard chaos control methods might be applicable. However, our findings which are based on the nonlinear autoregressive (NAR) model contradict this hypothesis for JET ELMy time-series. In turn, it means that ELM behavior is of a relaxation or random type. These conclusions coincide with our previous results obtained for ASDEX Upgrade time series [2]. [1] A.W. Degeling, Y.R. Martin, P.E. Bak, J. B.Lister, and X. Llobet, Plasma Phys. Control. Fusion 43, 1671 (2001). [2] G. Zvejnieks, V.N. Kuzovkov, O. Dumbrajs, A.W. Degeling, W. Suttrop, H. Urano, and H. Zohm, Physics of Plasmas 11, 5658 (2004)

  20. Plasma features and alpha particle transport in low-aspect ratio tokamak reactor

    International Nuclear Information System (INIS)

    Xu Qiang; Wang Shaojie

    1997-06-01

    The results of the experiment and theory from low-aspect ratio tokamak devices have proved that the MHD stability will be improved. Based on present plasma physics and extrapolation to reduced aspect ratio, the feature of physics of low-aspect ratio tokamak reactor is discussed primarily. Alpha particle confinement and loss in the self-justified low-aspect ratio tokamak reactor parameters and the effect of alpha particle confinement and loss for different aspect ratio are calculated. The results provide a reference for the feasible research of compact tokamak reactor. (9 refs., 2 figs., 3 tabs.)

  1. Magneto-hydro-dynamic simulation of Edge-Localised-Modes in tokamaks

    International Nuclear Information System (INIS)

    Pamela, S.

    2010-01-01

    In order to produce energy from fusion reactions in a tokamak, the plasma must reach temperatures higher than that of our sun. The operation regime called H-mode enables one to acquire a plasma confinement close to fusion conditions. Due to the formation of a transport barrier at the plasma edge, turbulent transport is reduced, and the total plasma pressure increases, resulting in a strong pressure gradient at the edge. If this pressure gradient, localised at the plasma-vacuum boundary, becomes too steep, a magneto-hydro-dynamic instability is triggered and part of the plasma pressure is lost. This instability, hence called Edge-Localised-Mode, provokes large heat fluxes on some of the plasma-facing components of the machine, which could set operational limits for a tokamak the size of ITER. In order to understand this instability, and to determine the non-linear mechanisms behind the ELMs, the JOREK code is used. The work presented in this thesis is based on MHD simulations of ballooning modes (responsible for ELMs) with the JOREK code. At first, simulations are done for standard plasmas, inspired of experimental machines. In particular, the plasma rotation at equilibrium, in the region of the edge pressure gradient, is studied in order to obtain an analysis of the effects that such a rotation can have on the linear stability of ELMs and on their non-linear evolution. Then, as a second step, simulations are applied to plasmas of the experimental tokamaks JET and MAST (England). This permits the direct comparison of simulation results with experimental observations, with the main goal of improving our global understanding of ELMs. Adding to this physics aspect, the confrontation of the JOREK code with diagnostics of JET and MAST brings to a validation of simulations, which should prove that the simulations which were obtained do correspond to ELM instabilities. This first step towards the validation of the code is crucial concerning the simulation of ELMs in ITER

  2. Quark and gluon jet properties in symmetric three-jet events

    Science.gov (United States)

    Buskulic, D.; Casper, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Minard, M.-N.; Odier, P.; Pietrzyk, B.; Chmeissani, M.; Crespo, J. M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Juste, A.; Martinez, M.; Orteu, S.; Pacheco, A.; Padilla, C.; Palla, F.; Pascual, A.; Perlas, J. A.; Riu, I.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Farilla, A.; Gelao, G.; Girone, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Natali, S.; Nuzzo, S.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Alemany, R.; Bazarko, A. O.; Bonvicini, G.; Cattaneo, M.; Comas, P.; Coyle, P.; Drevermann, H.; Forty, R. W.; Frank, M.; Hagelberg, R.; Harvey, J.; Jacobsen, R.; Janot, P.; Jost, B.; Kneringer, E.; Knobloch, J.; Lehraus, I.; Martin, E. B.; Mato, P.; Minten, A.; Miquel, R.; Mir, Ll. M.; Moneta, L.; Oest, T.; Palazzi, P.; Pater, J. R.; Pusztaszeri, J.-F.; Ranjard, F.; Rensing, P.; Rolandi, L.; Schlatter, D.; Schmelling, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Venturi, A.; Wachsmuth, H.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Barrès, A.; Boyer, C.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rossignol, J.-M.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Wäänänen, A.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Bourdon, P.; Rougé, A.; Rumpf, M.; Tanaka, R.; Valassi, A.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Focardi, E.; Parrini, G.; Corden, M.; Delfino, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Dorris, S. J.; Halley, A. W.; Knowles, I. G.; Lynch, J. G.; O'Shea, V.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Thompson, A. S.; Thomson, F.; Thorn, S.; Turnbull, R. M.; Becker, U.; Braun, O.; Geweniger, C.; Graefe, G.; Hanke, P.; Hepp, V.; Kluge, E. E.; Putzer, A.; Rensch, B.; Schmidt, M.; Sommer, J.; Stenzel, H.; Tittel, K.; Werner, S.; Wunsch, M.; Abbaneo, D.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Colling, D. J.; Dornan, P. J.; Moutoussi, A.; Nash, J.; San Martin, G.; Sedgbeer, J. K.; Stacey, A. M.; Dissertori, G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Brodbeck, T. J.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Sloan, T.; Whelan, E. P.; Williams, M. I.; Galla, A.; Greene, A. M.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.-G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Diaconu, C.; Etienne, F.; Konstantinidis, N.; Nicod, D.; Payre, P.; Rousseau, D.; Talby, M.; Sadouki, A.; Thulasidas, M.; Trabelsi, K.; Abt, I.; Assmann, R.; Bauer, C.; Blum, W.; Brown, D.; Dietl, H.; Dydak, F.; Ganis, G.; Gotzhein, C.; Jakobs, K.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; Denis, R. St.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Nikolic, I.; Park, H. J.; Park, I. C.; Schune, M.-H.; Simion, S.; Veillet, J.-J.; Videau, I.; Azzurri, P.; Bagliesi, G.; Batignani, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Fantechi, R.; Ferrante, I.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Rizzo, G.; Sanguinetti, G.; Sciabà, A.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Vannini, C.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Blair, G. A.; Bryant, L. M.; Cerutti, F.; Chambers, J. T.; Gao, Y.; Green, M. G.; Johnson, D. L.; Medcalf, T.; Perrodo, P.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Edwards, M.; Maley, P.; Norton, P. R.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Johnson, R. P.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Beddall, A.; Booth, C. N.; Boswell, R.; Brew, C. A. J.; Cartwright, S.; Combley, F.; Koksal, A.; Letho, M.; Newton, W. M.; Rankin, C.; Reeve, J.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Cowan, G.; Feigl, E.; Grupen, C.; Lutters, G.; Minguet-Rodriguez, J.; Rivera, F.; Saraiva, P.; Smolik, L.; Stephan, F.; Apollonio, M.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Ragusa, F.; Rothberg, J.; Wasserbaech, S.; Armstrong, S. R.; Bellantoni, L.; Elmer, P.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; González, S.; Grahl, J.; Greening, T. C.; Harton, J. L.; Hayes, O. J.; Hu, H.; McNamara, P. A.; Nachtman, J. M.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Schmitt, M.; Scott, I. J.; Sharma, V.; Turk, J. D.; Walsh, A. M.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zheng, M.; Zobernig, G.; Aleph Collaboration

    1996-02-01

    Quark and gluon jets with the same energy, 24 GeV, are compared in symmetric three-jet configurations from hadronic Z decays observed by the ALEPH detector. Jets are defined using the Durham algorithm. Gluon jets are identified using an anti-tag on b jets, based on a track impact parameter method. The comparison of gluon and mixed flavour quark jets shows that gluon jets have a softer fragmentation function, a larger angular width and a higher particle multiplicity, Evidence is presented which shows that the corresponding differences between gluon and b jets are significantly smaller. In a statistically limited comparison the multiplicity in c jets was found to be comparable with that observed for the jets of mixed quark flavour.

  3. Intrinsic bioremediation of jet fuel contamination at George Air Force Base

    International Nuclear Information System (INIS)

    Wilson, J.T.; Sewell, G.W.; Doyle, G.; Miller, R.N.

    1995-01-01

    The rate of intrinsic bioremediation of BTEX compounds in groundwater from a spill of JP-4 jet fuel was estimated by comparing attenuation of the concentrations of the compounds along a flow path. Concentrations of the trimethylbenzenes (TMB) were used to correct for attenuation due to dilution. Analysis of core samples identified the depth interval in the aquifer that was occupied by the groundwater plume. A downhole flowmeter test identified the local hydraulic conductivity of the depth interval occupied by the plume. Time of travel between wells along the flowpath was calculated from the hydraulic gradient and hydraulic conductivity, assuming an effective porosity of 0.3. First-order rate constants were calculated from attenuation (corrected for dilution or dispersion) and the estimated residence time of groundwater between the wells

  4. Model-based radiation scalings for the ITER-like divertors of JET and ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Aho-Mantila, L., E-mail: leena.aho-mantila@vtt.fi [VTT Technical Research Centre of Finland, FI-02044 VTT (Finland); Bonnin, X. [LSPM – CNRS, Université Paris 13, Sorbonne Paris Cité, F-93430 Villetaneuse (France); Coster, D.P. [Max-Planck Institut für Plasmaphysik, D-85748 Garching (Germany); Lowry, C. [EFDA JET CSU, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Wischmeier, M. [Max-Planck Institut für Plasmaphysik, D-85748 Garching (Germany); Brezinsek, S. [Forschungszentrum Jülich, Institut für Energie- und Klimaforschung Plasmaphysik, 52425 Jülich (Germany); Federici, G. [EFDA PPP& T Department, D-85748 Garching (Germany)

    2015-08-15

    Effects of N-seeding in L-mode experiments in ASDEX Upgrade and JET are analysed numerically with the SOLPS5.0 code package. The modelling yields 3 qualitatively different radiative regimes with increasing N concentration, when initially attached outer divertor conditions are studied. The radiation pattern is observed to evolve asymmetrically, with radiation increasing first in the inner divertor, then in the outer divertor, and finally on closed field lines above the X-point. The properties of these radiative regimes are observed to be sensitive to cross-field drifts and they differ between the two devices. The modelled scaling of the divertor radiated power with the divertor neutral pressure is similar to an experimental scaling law for H-mode radiation. The same parametric dependencies are not observed in simulations without drifts.

  5. Synthetic Jet Actuator-Based Aircraft Tracking Using a Continuous Robust Nonlinear Control Strategy

    Directory of Open Access Journals (Sweden)

    N. Ramos-Pedroza

    2017-01-01

    Full Text Available A robust nonlinear control law that achieves trajectory tracking control for unmanned aerial vehicles (UAVs equipped with synthetic jet actuators (SJAs is presented in this paper. A key challenge in the control design is that the dynamic characteristics of SJAs are nonlinear and contain parametric uncertainty. The challenge resulting from the uncertain SJA actuator parameters is mitigated via innovative algebraic manipulation in the tracking error system derivation along with a robust nonlinear control law employing constant SJA parameter estimates. A key contribution of the paper is a rigorous analysis of the range of SJA actuator parameter uncertainty within which asymptotic UAV trajectory tracking can be achieved. A rigorous stability analysis is carried out to prove semiglobal asymptotic trajectory tracking. Detailed simulation results are included to illustrate the effectiveness of the proposed control law in the presence of wind gusts and varying levels of SJA actuator parameter uncertainty.

  6. Optimal diameter of nozzles of synthetic jet actuators based on electrodynamic transducers

    Czech Academy of Sciences Publication Activity Database

    Kordík, Jozef; Trávníček, Zdeněk

    2017-01-01

    Roč. 86, September (2017), s. 281-294 ISSN 0894-1777 R&D Projects: GA ČR(CZ) GA16-16596S Institutional support: RVO:61388998 Keywords : synthetic jet * volumetric flux * momentum flux Subject RIV: BK - Fluid Dynamics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.830, year: 2016 http://ac.els-cdn.com/S0894177717300742/1-s2.0-S0894177717300742-main.pdf?_tid=6ea733c0-355f-11e7-b903-00000aab0f27&acdnat=1494407145_e51e007a0043b8f660576ad000820efd

  7. NASA Jet Noise Research

    Science.gov (United States)

    Henderson, Brenda

    2016-01-01

    The presentation highlights NASA's jet noise research for 2016. Jet-noise modeling efforts, jet-surface interactions results, acoustic characteristics of multi-stream jets, and N+2 Supersonic Aircraft system studies are presented.

  8. Theory of energetic/alpha particle effects on magnetohydrodynamic modes in tokamaks

    International Nuclear Information System (INIS)

    Chen, L.; White, R.B.; Rewoldt, G.; Colestock, P.; Rutherford, P.H.; Chen, Y.P.; Ke, F.J.; Tsai, S.T.; Bussac, M.N.

    1989-01-01

    The presence of energetic particles is shown to qualitatively modify the stability properties of ideal as well as resistive magnetohydrodynamic (MHD) modes in tokamaks. Specifically, we demonstrate that, consistent with highpower ICRF heating experiments in JET, high energy trapped particles can effectively stabilize the sawtooth mode, providing a possible route to stable high current tokamak operation. An alternative stabilization scheme employing barely circulating energetic particles is also proposed. Finally, we present analytical and numerical studies on the excitations of high-n MHD modes via transit resonances with circulating alpha particles. 14 refs., 3 figs

  9. Topology of tokamak orbits

    International Nuclear Information System (INIS)

    Rome, J.A.; Peng, Y.K.M.

    1978-09-01

    Guiding center orbits in noncircular axisymmetric tokamak plasmas are studied in the constants of motion (COM) space of (v, zeta, psi/sub m/). Here, v is the particle speed, zeta is the pitch angle with respect to the parallel equilibrium current, J/sub parallels/, and psi/sub m/ is the maximum value of the poloidal flux function (increasing from the magnetic axis) along the guiding center orbit. Two D-shaped equilibria in a flux-conserving tokamak having β's of 1.3% and 7.7% are used as examples. In this space, each confined orbit corresponds to one and only one point and different types of orbits (e.g., circulating, trapped, stagnation and pinch orbits) are represented by separate regions or surfaces in the space. It is also shown that the existence of an absolute minimum B in the higher β (7.7%) equilibrium results in a dramatically different orbit topology from that of the lower β case. The differences indicate the confinement of additional high energy (v → c, within the guiding center approximation) trapped, co- and countercirculating particles whose orbit psi/sub m/ falls within the absolute B well

  10. ITER tokamak device

    International Nuclear Information System (INIS)

    Doggett, J.; Salpietro, E.; Shatalov, G.

    1991-01-01

    The results of the Conceptual Design Activities for the International Thermonuclear Experimental Reactor (ITER) are summarized. These activities, carried out between April 1988 and December 1990, produced a consistent set of technical characteristics and preliminary plans for co-ordinated research and development support of ITER; and a conceptual design, a description of design requirements and a preliminary construction schedule and cost estimate. After a description of the design basis, an overview is given of the tokamak device, its auxiliary systems, facility and maintenance. The interrelation and integration of the various subsystems that form the ITER tokamak concept are discussed. The 16 ITER equatorial port allocations, used for nuclear testing, diagnostics, fuelling, maintenance, and heating and current drive, are given, as well as a layout of the reactor building. Finally, brief descriptions are given of the major ITER sub-systems, i.e., (i) magnet systems (toroidal and poloidal field coils and cryogenic systems), (ii) containment structures (vacuum and cryostat vessels, machine gravity supports, attaching locks, passive loops and active coils), (iii) first wall, (iv) divertor plate (design and materials, performance and lifetime, a.o.), (v) blanket/shield system, (vi) maintenance equipment, (vii) current drive and heating, (viii) fuel cycle system, and (ix) diagnostics. 11 refs, figs and tabs

  11. Dust Measurements in Tokamaks

    International Nuclear Information System (INIS)

    Rudakov, D; Yu, J; Boedo, J; Hollmann, E; Krasheninnikov, S; Moyer, R; Muller, S; Yu, A; Rosenberg, M; Smirnov, R; West, W; Boivin, R; Bray, B; Brooks, N; Hyatt, A; Wong, C; Fenstermacher, M; Groth, M; Lasnier, C; McLean, A; Stangeby, P; Ratynskaia, S; Roquemore, A; Skinner, C; Solomon, W M

    2008-01-01

    Dust production and accumulation impose safety and operational concerns for ITER. Diagnostics to monitor dust levels in the plasma as well as in-vessel dust inventory are currently being tested in a few tokamaks. Dust accumulation in ITER is likely to occur in hidden areas, e.g. between tiles and under divertor baffles. A novel electrostatic dust detector for monitoring dust in these regions has been developed and tested at PPPL. In DIII-D tokamak dust diagnostics include Mie scattering from Nd:YAG lasers, visible imaging, and spectroscopy. Laser scattering resolves size of particles between 0.16-1.6 (micro)m in diameter; the total dust content in the edge plasmas and trends in the dust production rates within this size range have been established. Individual dust particles are observed by visible imaging using fast-framing cameras, detecting dust particles of a few microns in diameter and larger. Dust velocities and trajectories can be determined in 2D with a single camera or 3D using multiple cameras, but determination of particle size is problematic. In order to calibrate diagnostics and benchmark dust dynamics modeling, pre-characterized carbon dust has been injected into the lower divertor of DIII-D. Injected dust is seen by cameras, and spectroscopic diagnostics observe an increase of carbon atomic, C2 dimer, and thermal continuum emissions from the injected dust. The latter observation can be used in the design of novel dust survey diagnostics

  12. Axisymmetric control in tokamaks

    International Nuclear Information System (INIS)

    Humphreys, D.A.

    1991-02-01

    Vertically elongated tokamak plasmas are intrinsically susceptible to vertical axisymmetric instabilities as a result of the quadrupole field which must be applied to produce the elongation. The present work analyzes the axisymmetric control necessary to stabilize elongated equilibria, with special application to the Alcator C-MOD tokamak. A rigid current-conserving filamentary plasma model is applied to Alcator C-MOD stability analysis, and limitations of the model are addressed. A more physically accurate nonrigid plasma model is developed using a perturbed equilibrium approach to estimate linearized plasma response to conductor current variations. This model includes novel flux conservation and vacuum vessel stabilization effects. It is found that the nonrigid model predicts significantly higher growth rates than predicted by the rigid model applied to the same equilibria. The nonrigid model is then applied to active control system design. Multivariable pole placement techniques are used to determine performance optimized control laws. Formalisms are developed for implementing and improving nominal feedback laws using the C-MOD digital-analog hybrid control system architecture. A proportional-derivative output observer which does not require solution of the nonlinear Ricatti equation is developed to help accomplish this implementation. The nonrigid flux conserving perturbed equilibrium plasma model indicates that equilibria with separatrix elongation of at least κ sep = 1.85 can be stabilized robustly with the present control architecture and conductor/sensor configuration

  13. International tokamak reactor conceptual design overview

    International Nuclear Information System (INIS)

    Stacey, W.M. Jr.

    1981-01-01

    The International Tokamak Reactor (INTOR) Workshop is an unique collaborative effort among Euratom, Japan, the USA and USSR. The Zero-Phase of the INTOR Workshop, which was conducted during 1979, assessed the technical data base that would support the construction of the next major device in the tokamak program to operate in the early 1990s and defined the objectives and characteristics of this device. The INTOR workshop was extended into phase-1, the Definition Phase, in early 1980. The objective of the Phase-1 Workshop was to develop a conceptual design of the INTOR experiment. The purpose of this paper is to give an overview of the work of the Phase-1 INTOR Workshop (January 1980-June 1981, with emphasis upon the conceptual design

  14. Tokamak Fusion Core Experiment maintenance study

    International Nuclear Information System (INIS)

    Snyder, A.M.; Watts, K.D.

    1985-01-01

    The recently completed Tokamak Fusion Core Experiment (TFCX) design project was carried out to investigate potential next generation tokamak concepts. An important aspect of this project was the early development and incorporation of remote maintainability throughout the design process. This early coordination and incorporation of maintenance aspects to the design of the device and facilities would assure that the machine could ultimately be maintained and repaired in an efficient and cost effective manner. To meet this end, a rigorously formatted engineering trade study was performed to determine the preferred configuration for the TFCX reactor based primarily on maintenance requirements. The study indicated that the preferred design was one with an external vacuum vessel and torrodial field coils that could be removed via a simple radial motion. The trade study is presented and the preferred TFCX configuration is described

  15. Turbulence and abnormal transport in tokamak plasmas

    International Nuclear Information System (INIS)

    Garbet, X.

    1988-09-01

    Microinstabilities in linear and nonlinear tokamak plasmas were studied. A variational method based on the existence of a system of angular variables and action for the charged particles in the magnetic configuration of a tokamak is described. The corresponding functional, extremal in relation to the fluctuating electromagnetic field, is calculated analytically, taking into account the effects of the toroidal geometry. A numerical code, TORRID, was derived from these principles and the main instabilities, especially ion instabilities and microtearing, were studied linearly. Nonlinear methods were also applied to microtearing. Quasi-linear transport coefficients are derived from a principle of minimum entropy production. Thermal ionic conductivity and viscosity are calculated for an ionic turbulence [fr

  16. Interpretation of heat and density pulse propagation in tokamaks

    International Nuclear Information System (INIS)

    Sips, A.C.C.; Costley, A.E.; O'Rourke, J.O.

    1991-01-01

    This paper addresses two key issues in current research on sawtooth induced heat and density pulse measurements in Tokamaks and their interpretation. First, heat and density pulses in JET and TXT show different qualitative behaviour implying substantially different transport coefficients. Second, a new description of the heat pulse has been used to describe measurements cannot be simulated with the widely used diffusive model. In this paper, we show that consistency between all these measurements can be obtained assuming a diffusive propagation for the heat and density pulses and using linearised coupled transport equations. (author) 6 refs., 5 figs

  17. Impurity production and transport in the boundary layer of tokamaks

    International Nuclear Information System (INIS)

    McCracken, G.M.

    1987-01-01

    The processes by which impurities are produced and enter the discharge are discussed. Emphasis is placed on sputtering at the limiter and an analytical global model is described which incorporates the self-stabilizing effects whch control the edge temperature. Predictions of the scaling of edge temperature and of total radiated power are compared with experimental data from JET and other tokamaks operating with limiters. Under many conditions the scaling of the edge conditions and of the radiated power is accurately predicted. Impurity transport in the boundary and the question of how to control the boundary layer is then discussed. The example of the Impurity Control Limiter on DITE is described. (author)

  18. Alpha particle losses during sawtooth activity in Tokamaks

    International Nuclear Information System (INIS)

    Anderson, D.; Lisak, M.

    1988-01-01

    The time evolution of the direct losses of fusion produced alpha particles in Tokamak plasmas characterized by sawtooth activity is investigated. The alpha particle loss rate during a sawtooth period is predicted to change invertedly with the change in bulk plasma parameters but also to contain a characteristic burst at the sawtooth crash. The spectrum of the lost alpha particles is also discussed. The predictions for the time evolution and the spectrum of the losses are in qualitative agreement with recently obtained losses of 15 MeV fusion produced protons in JET. (authors)

  19. Modelling dust transport in tokamaks

    International Nuclear Information System (INIS)

    Martin, J.D.; Martin, J.D.; Bacharis, M.; Coppins, M.; Counsell, G.F.; Allen, J.E.; Counsell, G.F.

    2008-01-01

    The DTOKS code, which models dust transport through tokamak plasmas, is described. The floating potential and charge of a dust grain in a plasma and the fluxes of energy to and from it are calculated. From this model, the temperature of the dust grain can be estimated. A plasma background is supplied by a standard tokamak edge modelling code (B2SOLPS5.0), and dust transport through MAST (the Mega-Amp Spherical Tokamak) and ITER plasmas is presented. We conclude that micron-radius tungsten dust can reach the separatrix in ITER. (authors)

  20. Liquid tin limiter for FTU tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Vertkov, A., E-mail: avertkov@yandex.ru [JSC “Red Star”, Moscow (Russian Federation); Lyublinski, I. [JSC “Red Star”, Moscow (Russian Federation); NRNU MEPhI, Moscow (Russian Federation); Zharkov, M. [JSC “Red Star”, Moscow (Russian Federation); Mazzitelli, G.; Apicella, M.L.; Iafrati, M. [Associazione EURATOM-ENEA sulla Fusione, C. R. Frascati, Frascati, Rome, Italy, (Italy)

    2017-04-15

    Highlights: • First steady state operating liquid tin limiter TLL is under study on FTU tokamak. • The cooling system with water spray coolant for TLL has been developed and tested. • High corrosion resistance of W and Mo in molten Sn confirmed up to 1000 °C. • Wetting process with Sn has been developed for Mo and W. - Abstract: The liquid Sn in a matrix of Capillary Porous System (CPS) has a high potential as plasma facing material in steady state operating fusion reactor owing to its physicochemical properties. However, up to now it has no experimental confirmation in tokamak conditions. First steady state operating limiter based on the CPS with liquid Sn installed on FTU tokamak and its experimental study is in progress. Several aspects of the design, structural materials and operation parameters of limiter based on tungsten CPS with liquid Sn are considered. Results of investigation of corrosion resistance of Mo and W in Sn and their wetting process are presented. The heat removal for limiter steady state operation is provided by evaporation of flowing gaswater spray. The effectiveness of such heat removal system is confirmed in modelling tests with power flux up to 5 MW/m2.

  1. Model-based dynamic resistive wall mode identification and feedback control in the DIII-D tokamak

    International Nuclear Information System (INIS)

    In, Y.; Kim, J.S.; Edgell, D.H.; Strait, E.J.; Humphreys, D.A.; Walker, M.L.; Jackson, G.L.; Chu, M.S.; Johnson, R.; La Haye, R.J.; Okabayashi, M.; Garofalo, A.M.; Reimerdes, H.

    2006-01-01

    A new model-based dynamic resistive wall mode (RWM) identification and feedback control algorithm has been developed. While the overall RWM structure can be detected by a model-based matched filter in a similar manner to a conventional sensor-based scheme, it is significantly influenced by edge-localized-modes (ELMs). A recent study suggested that such ELM noise might cause the RWM control system to respond in an undesirable way. Thus, an advanced algorithm to discriminate ELMs from RWM has been incorporated into this model-based control scheme, dynamic Kalman filter. Specifically, the DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] resistive vessel wall was modeled in two ways: picture frame model or eigenmode treatment. Based on the picture frame model, the first real-time, closed-loop test results of the Kalman filter algorithms during DIII-D experimental operation are presented. The Kalman filtering scheme was experimentally confirmed to be effective in discriminating ELMs from RWM. As a result, the actuator coils (I-coils) were rarely excited during ELMs, while retaining the sensitivity to RWM. However, finding an optimized set of operating parameters for the control algorithm requires further analysis and design. Meanwhile, a more advanced Kalman filter based on a more accurate eigenmode model has been developed. According to this eigenmode approach, significant improvement in terms of control performance has been predicted, while maintaining good ELM discrimination

  2. Physics of the interaction between runaway electrons and the background plasma of the current quench in tokamak disruptions

    Science.gov (United States)

    Reux, Cedric

    2017-10-01

    Runaway electrons are created during disruptions of tokamak plasmas. They can be accelerated in the form of a multi-MA beam at energies up to several 10's of MeV. Prevention or suppression of runaway electrons during disruptions will be essential to ensure a reliable operation of future tokamaks such as ITER. Recent experiments showed that the suppression of an already accelerated beam with massive gas injection was unsuccessful at JET, conversely to smaller tokamaks. This was attributed to a dense, cold background plasma (up to several 1020 m-3 accompanying the runaway beam. The present contribution reports on the latest experimental results obtained at JET showing that some mitigation efficiency can be restored by changing the features of the background plasma. The density, temperature, position of the plasma and the energy of runaways were characterized using a combined analysis of interferometry, soft X-rays, bolometry, magnetics and hard X-rays. It showed that lower density background plasmas were obtained using smaller amounts of gas to trigger the disruption, leading to an improved penetration of the mitigation gas. Based on the observations, a physical model of the creation of the background plasma and its subsequent evolution is proposed. The plasma characteristics during later stages of the disruption are indeed dependent on the way it was initially created. The sustainment of the plasma during the runaway beam phase is then addressed by making a power balance between ohmic heating, power transfer from runaway electrons, radiation and atomic processes. Finally, a model of the interaction of the plasma with the mitigation gas is proposed to explain why massive gas injection of runaway beams works only in specific situations. This aims at pointing out which parameters bear the most importance if this mitigation scheme is to be used on larger devices like ITER. Acknowledgement: This work has been carried out within the framework of the EUROfusion Consortium

  3. Tokamak building-design considerations for a large tokamak device

    International Nuclear Information System (INIS)

    Barrett, R.J.; Thomson, S.L.

    1981-01-01

    Design and construction of a satisfactory tokamak building to support FED appears feasible. Further, a pressure vessel building does not appear necessary to meet the plant safety requirements. Some of the building functions will require safety class systems to assure reliable and safe operation. A rectangular tokamak building has been selected for FED preconceptual design which will be part of the confinement system relying on ventilation and other design features to reduce the consequences and probability of radioactivity release

  4. Jet supercooling and molecular jet spectroscopy

    International Nuclear Information System (INIS)

    Wharton, L.; Levy, D.

    1979-01-01

    The marriage of the laser and the seeded supersonic jet has generated a family of new optical spectroscopic results. We shall discuss the essential features of the technique and some results. The results will include structural and dynamical views of NO 2 , NaAr, and I 2 -noble gas complexes. The extension of the method to heavier systems is illustrated with free base phthalocyanine

  5. Research using small tokamaks

    International Nuclear Information System (INIS)

    1991-05-01

    The technical reports in this document were presented at the IAEA Technical Committee Meeting ''Research on Small Tokamaks'', September 1990, in three sessions, viz., (1) Plasma Modes, Control, and Internal Phenomena, (2) Edge Phenomena, and (3) Advanced Configurations and New Facilities. In Section (1) experiments at controlling low mode number modes, feedback control using external coils, lower-hybrid current drive for the stabilization of sawtooth activity and continuous (1,1) mode, and unmodulated and fast modulated ECRH mode stabilization experiments were reported, as well as the relation to disruptions and transport of low m,n modes and magnetic island growth; static magnetic perturbations by helical windings causing mode locking and sawtooth suppression; island widths and frequency of the m=2 tearing mode; ultra-fast cooling due to pellet injection; and, finally, some papers on advanced diagnostics, i.e., lithium-beam activated charge-exchange spectroscopy, and detection through laser scattering of discrete Alfven waves. In Section (2), experimental edge physics results from a number of machines were presented (positive biasing on HYBTOK II enhancing the radial electric field and improving confinement; lower hybrid current drive on CASTOR improving global particle confinement, good current drive efficiency in HT-6B showing stabilization of sawteeth and Mirnov oscillations), as well as diagnostic developments (multi-chord time resolved soft and ultra-soft X-ray plasma radiation detection on MT-1; measurements on electron capture cross sections in multi-charged ion-atom collisions; development of a diagnostic neutral beam on Phaedrus-T). Theoretical papers discussed the influence of sheared flow and/or active feedback on edge microstability, large edge electric fields, and two-fluid modelling of non-ambipolar scrape-off layers. Section (3) contained (i) a proposal to construct a spherical tokamak ''Proto-Eta'', (ii) an analysis of ultra-low-q and runaway

  6. Jet Tomography versus Holography at RHIC and LHC

    Directory of Open Access Journals (Sweden)

    Torrieri G.

    2011-04-01

    Full Text Available We compare pQCD based jet tomography to AdS/CFT based jet holography approach to address the heavy quark jet puzzle and discuss future tests at RHIC and LHC that could help decide which paradigm can provide the most consistent quantitative theory to explain modification of jet observabkles in high energy nuclear collisions.

  7. Atmospheric Pressure Plasma Jet-Assisted Synthesis of Zeolite-Based Low-k Thin Films.

    Science.gov (United States)

    Huang, Kai-Yu; Chi, Heng-Yu; Kao, Peng-Kai; Huang, Fei-Hung; Jian, Qi-Ming; Cheng, I-Chun; Lee, Wen-Ya; Hsu, Cheng-Che; Kang, Dun-Yen

    2018-01-10

    Zeolites are ideal low-dielectric constant (low-k) materials. This paper reports on a novel plasma-assisted approach to the synthesis of low-k thin films comprising pure-silica zeolite MFI. The proposed method involves treating the aged solution using an atmospheric pressure plasma jet (APPJ). The high reactivity of the resulting nitrogen plasma helps to produce zeolite crystals with high crystallinity and uniform crystal size distribution. The APPJ treatment also remarkably reduces the time for hydrothermal reaction. The zeolite MFI suspensions synthesized with the APPJ treatment are used for the wet deposition to form thin films. The deposited zeolite thin films possessed dense morphology and high crystallinity, which overcome the trade-off between crystallinity and film quality. Zeolite thin films synthesized using the proposed APPJ treatment achieve low leakage current (on the order of 10 -8 A/cm 2 ) and high Young's modulus (12 GPa), outperforming the control sample synthesized without plasma treatment. The dielectric constant of our zeolite thin films was as low as 1.41. The overall performance of the low-k thin films synthesized with the APPJ treatment far exceed existing low-k films comprising pure-silica MFI.

  8. Separation and reconstruction of high pressure water-jet reflective sound signal based on ICA

    Science.gov (United States)

    Yang, Hongtao; Sun, Yuling; Li, Meng; Zhang, Dongsu; Wu, Tianfeng

    2011-12-01

    The impact of high pressure water-jet on the different materials target will produce different reflective mixed sound. In order to reconstruct the reflective sound signals distribution on the linear detecting line accurately and to separate the environment noise effectively, the mixed sound signals acquired by linear mike array were processed by ICA. The basic principle of ICA and algorithm of FASTICA were described in detail. The emulation experiment was designed. The environment noise signal was simulated by using band-limited white noise and the reflective sound signal was simulated by using pulse signal. The reflective sound signal attenuation produced by the different distance transmission was simulated by weighting the sound signal with different contingencies. The mixed sound signals acquired by linear mike array were synthesized by using the above simulated signals and were whitened and separated by ICA. The final results verified that the environment noise separation and the reconstruction of the detecting-line sound distribution can be realized effectively.

  9. A Portable, Air-Jet-Actuator-Based Device for System Identification

    Science.gov (United States)

    Staats, Wayne; Belden, Jesse; Mazumdar, Anirban; Hunter, Ian

    2010-11-01

    System identification (ID) of human and robotic limbs could help in diagnosis of ailments and aid in optimization of control parameters and future redesigns. We present a self-contained actuator, which uses the Coanda effect to rapidly switch the direction of a high speed air jet to create a binary stochastic force input to a limb for system ID. The design of the actuator is approached with the goal of creating a portable device, which could deployed on robot or human limbs for in situ identification. The viability of the device is demonstrated by performing stochastic system ID on an underdamped elastic beam system with fixed inertia and stiffness, and variable damping. The non-parametric impulse response yielded from the stochastic system ID is modeled as a second order system, and the resultant parameters are found to be in excellent agreement with those found using more traditional system ID techniques. The current design could be further miniaturized and developed as a portable, wireless, on-site multi-axis system identification system for less intrusive and more widespread use.

  10. Natural current profiles in tokamaks

    International Nuclear Information System (INIS)

    Biskamp, D.

    1986-01-01

    It is proposed that a certain class of equilibrium, which follow from an elementary variational principle, are the natural current profiles in tokamaks, to which actual discharge profiles tend to relax. (orig.)

  11. Alcator C-Mod Tokamak

    Data.gov (United States)

    Federal Laboratory Consortium — Alcator C-Mod at the Massachusetts Institute of Technology is operated as a DOE national user facility. Alcator C-Mod is a unique, compact tokamak facility that uses...

  12. JUST: Joint Upgraded Spherical Tokamak

    International Nuclear Information System (INIS)

    Azizov, E.A.; Dvorkin, N.Ya.; Filatov, O.G.

    1997-01-01

    The main goals, ideas and the programme of JUST, spherical tokamak (ST) for the plasma burn investigation, are presented. The place and prospects of JUST in thermonuclear investigations are discussed. (author)

  13. New directions in tokamak reactors

    International Nuclear Information System (INIS)

    Baker, C.C.

    1985-01-01

    New directions for tokamak research are briefly mentioned. Some of the areas for new considerations are the following: reactor size, beta ratio, current drivers, blankets, impurity control, and modular designs

  14. First experiments with SST-1 tokamak

    International Nuclear Information System (INIS)

    Saxena, Y.C.

    2005-01-01

    SST-1, a steady state superconducting tokamak, is undergoing commissioning tests at the Institute for Plasma Research. The objectives of SST-1 include studying the physics of the plasma processes in a tokamak under steady state conditions and learning technologies related to the steady state operation of the tokamak. These studies are expected to contribute to the tokamak physics database for very long pulse operations. Superconducting (SC) magnets are deployed for both the toroidal and poloidal field coils in SST-1. An Ohmic transformer is provided for plasma breakdown and initial current ramp up. SST-1 deploys a fully welded ultra high vacuum vessel. Liquid nitrogen cooled radiation shield are deployed between the vacuum vessel and SC magnets as well as SC magnets and cryostat, to minimize the radiation losses at the SC magnets. The auxiliary current drive is based on 1.0 MW of Lower Hybrid current drive (LHCD) at 3.7 GHz. Auxiliary heating systems include 1 MW of Ion Cyclotron Resonance Frequency system (ICRF) at 22 MHz to 91 MHz, 0.2 MW of Electron Cyclotron Resonance heating at 84 GHz and a Neutral Beam Injection (NBI) system with peak power of 0.8 MW (at 80 keV) with variable beam energy in range of 10-80 keV. The ICRF system would also be used for initial breakdown and wall conditioning experiments. Detailed commissioning tests on the cryogenic system and experiments on the hydraulic characters and cool down features of single TF coils have been completed prior to the cool down of the entire superconducting system. Results of the single TF magnet cool down, and testing of the magnet system are presented. First experiments related to the breakdown and the current ramp up will subsequently be carried out. (author)

  15. A global solution of the ICRH problem based on the combined use of a planar coupling model and hot-plasma ray-tracing in tokamak geometry

    International Nuclear Information System (INIS)

    Koch, R.; Bhatnagar, V.P.; Messiaen, A.M.; Eester, D. van

    1986-01-01

    The global solution of the theoretical problem of Ion Cyclotron Resonance Heating in tokamak plasmas is obtained by a subdivision of the problem into two simpler ones by virtue of the ''single pass absorption'' hypothesis. The coupling problem is solved in planar geometry, allowing computation of both the antenna electrical properties and the Radio-Frequency (RF) field distribution in the plasma facing the antenna. Starting from this field distribution, the initial conditions for ray-tracing are derived and the propagation and absorption of waves in the plasma bulk is solved in the geometric optics limit taking into account the full tokamak geometry and the kinetic wave description. In the minority heating, redistribution of the minority absorbed power to the other species is carred out using standard quasilinear theory. (orig.)

  16. Dust limit management strategy in tokamaks

    International Nuclear Information System (INIS)

    Rosanvallon, S.; Grisolia, C.; Andrew, P.; Ciattaglia, S.; Delaporte, P.; Douai, D.; Garnier, D.; Gauthier, E.; Gulden, W.; Hong, S.H.; Pitcher, S.; Rodriguez, L.; Taylor, N.; Tesini, A.; Vartanian, S.; Vatry, A.; Wykes, M.

    2009-01-01

    Dust is produced in tokamaks by the interaction between the plasma and the plasma facing components. Dust has not yet been of a major concern in existing tokamaks mainly because the quantity is small and these devices are not nuclear facilities. However, in ITER and in future reactors, it will represent operational and potential safety issues. From a safety point of view, in order to control the potential dust hazard, the current ITER strategy is based on a defense in depth approach designed to provide reliable confinement systems, to avoid failures, and to measure and minimise the dust inventory. In addition, R and D is put in place for optimisation of the proposed methods, such as improvement of measurement, dust cleaning and the reduction of dust production. The aim of this paper is to present the approach for the control of the dust inventory, relying on the monitoring of envelope values and the development of removal techniques already developed in the existing tokamaks or plasma dedicated devices or which will need further research and development in order to be integrated in ITER.

  17. Dust limit management strategy in tokamaks

    Science.gov (United States)

    Rosanvallon, S.; Grisolia, C.; Andrew, P.; Ciattaglia, S.; Delaporte, P.; Douai, D.; Garnier, D.; Gauthier, E.; Gulden, W.; Hong, S. H.; Pitcher, S.; Rodriguez, L.; Taylor, N.; Tesini, A.; Vartanian, S.; Vatry, A.; Wykes, M.

    2009-06-01

    Dust is produced in tokamaks by the interaction between the plasma and the plasma facing components. Dust has not yet been of a major concern in existing tokamaks mainly because the quantity is small and these devices are not nuclear facilities. However, in ITER and in future reactors, it will represent operational and potential safety issues. From a safety point of view, in order to control the potential dust hazard, the current ITER strategy is based on a defense in depth approach designed to provide reliable confinement systems, to avoid failures, and to measure and minimise the dust inventory. In addition, R&D is put in place for optimisation of the proposed methods, such as improvement of measurement, dust cleaning and the reduction of dust production. The aim of this paper is to present the approach for the control of the dust inventory, relying on the monitoring of envelope values and the development of removal techniques already developed in the existing tokamaks or plasma dedicated devices or which will need further research and development in order to be integrated in ITER.

  18. Modeling of noble gas injection into tokamak plasmas

    International Nuclear Information System (INIS)

    Morozov, D.Kh.; Yurchenko, E.I.; Lukash, V.E.; Baronova, E.O.; Rozhansky, V.A.; Senichenkov, I.Yu.; Veselova, I.Yu.; Schneider, R.

    2005-01-01

    Noble gas injection for mitigation of the disruption in DIII-D is simulated. The simulation of the first two stages is performed: of the neutral gas jet penetration through the background plasmas, and of the thermal quench. In order to simulate the first stage the 1.5-dimensional numerical code LLP with improved radiation model for noble gas is used. It is demonstrated that the jet remains mainly neutral and thus is able to penetrate to the central region of the tokamak in accordance with experimental observations. Plasma cooling at this stage is provided by the energy exchange with the jet. The radiation is relatively small, and the plasma thermal energy is spent mainly on the jet expansion. The magnetic surfaces in contact with the jet are cooled significantly. The cooling front propagates towards the plasma center. The simulations of the plasma column dynamics in the presence of moving jet is performed by means of the free boundary transport modeling DINA code. It has been shown that the cooling front is accompanied by strongly localized 'shark fin-like' perturbation in toroidal current density profile. After few milliseconds the jet (together with the current perturbation) achieves the region where safety factor is slightly higher than unity and a new type of the non-local kink mode develops. The unstable kink perturbation is non-resonant for any magnetic surface, both inside the plasma column, and in the vacuum space. The mode disturbs mainly the core region. The growth time of the 'shark fin-like' mode is higher than the Alfven time by a factor of 100 for DIII-D parameters. Hence, the simulation describes the DIII-D experimental results, at least, qualitatively. (author)

  19. Asymmetric electron cyclotron emission from superthermal electrons in the TFR Tokamak

    International Nuclear Information System (INIS)

    1981-03-01

    Measurements of electron cyclotron radiation near the fundamental frequency on the high and low magnetic field side of the TFR Tokamak are reported. In the presence of a superthermal electron component the measured intensities are asymmetric. A theoretical explanation based on the combined effects of the electron relativistic mass variation and the 1/R variation of the tokamak magnetic field is discussed

  20. Numerical Tokamak Project code comparison

    International Nuclear Information System (INIS)

    Waltz, R.E.; Cohen, B.I.; Beer, M.A.

    1994-01-01

    The Numerical Tokamak Project undertook a code comparison using a set of TFTR tokamak parameters. Local radial annulus codes of both gyrokinetic and gyrofluid types were compared for both slab and toroidal case limits assuming ion temperature gradient mode turbulence in a pure plasma with adiabatic electrons. The heat diffusivities were found to be in good internal agreement within ± 50% of the group average over five codes

  1. Spherical tokamak development in Brazil

    International Nuclear Information System (INIS)

    Ludwig, G.O.; Del Bosco, E.; Ferreira, J.G.; Berni, L.A.; Oliveira, R.M.; Andrade, M.C.R.; Shibata, C.S.; Ueda, M.; Barroso, J.J.; Castro, P.J.; Barbosa, L.F.W.; Patire Junior, H.; The high-power microwave sources group

    2003-01-01

    This paper describes the general characteristics of spherical tokamaks, or spherical tori, with a brief overview of work in this area already performed or in progress at several institutions worldwide. The paper presents also the steps in the development of the ETE (Experimento Tokamak Esferico) project, its research program, technical characteristics and operating conditions as of December, 2002 at the Associated Plasma Laboratory (LAP) of the National Space Research Institute (INPE) in Brazil. (author)

  2. Enhancement of confinement in tokamaks

    International Nuclear Information System (INIS)

    Furth, H.P.

    1986-01-01

    The analysis begins by identifying a hypothetical model of tokamak confinement that is designed to take into account the conflict between Tsub(e)(r)-profile shapes arising from microscopic transport and J(r)-profile shapes required for gross stability. On the basis of this model, a number of hypothetical lines of advance are developed. Some TFTR experiments that may point the way to a particularly attractive type of tokamak reactor regime are discussed. (author)

  3. Spherical tokamak development in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Gerson Otto; Bosco, Edson Del; Ferreira, Julio Guimaraes [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma] (and others)

    2003-07-01

    The general characteristics of spherical tokamaks, or spherical tori, with a brief view of work in this area already performed or in progress at several institutions worldwide are described. The paper presents also the steps in the development of the ETE (Experiment Tokamak spheric) project, its research program, technical characteristics and operating conditions as of December, 2002 a the Associated Plasma Laboratory (LAP) of the National Space Research Institute (INPE) in Brazil. (author)

  4. Spherical tokamak development in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, G.O.; Del Bosco, E.; Ferreira, J.G.; Berni, L.A.; Oliveira, R.M.; Andrade, M.C.R.; Shibata, C.S.; Ueda, M.; Barroso, J.J.; Castro, P.J. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma; Barbosa, L.F.W. [Universidade do Vale do Paraiba (UNIVAP), Sao Jose dos Campos, SP (Brazil). Faculdade de Engenharia, Arquitetura e Urbanismo; Patire Junior, H. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Div. de Mecanica Espacial e Controle; The high-power microwave sources group

    2003-12-01

    This paper describes the general characteristics of spherical tokamaks, or spherical tori, with a brief overview of work in this area already performed or in progress at several institutions worldwide. The paper presents also the steps in the development of the ETE (Experimento Tokamak Esferico) project, its research program, technical characteristics and operating conditions as of December, 2002 at the Associated Plasma Laboratory (LAP) of the National Space Research Institute (INPE) in Brazil. (author)

  5. Spherical tokamak development in Brazil

    International Nuclear Information System (INIS)

    Ludwig, Gerson Otto; Bosco, Edson Del; Ferreira, Julio Guimaraes

    2003-01-01

    The general characteristics of spherical tokamaks, or spherical tori, with a brief view of work in this area already performed or in progress at several institutions worldwide are described. The paper presents also the steps in the development of the ETE (Experiment Tokamak spheric) project, its research program, technical characteristics and operating conditions as of December, 2002 a the Associated Plasma Laboratory (LAP) of the National Space Research Institute (INPE) in Brazil. (author)

  6. High Beta Tokamak research

    International Nuclear Information System (INIS)

    Navratil, G.A.; Mauel, M.E.; Ivers, T.H.; Sankar, M.K.V.; Eisner, E.; Gates, D.; Garofalo, A.; Kombargi, R.; Maurer, D.; Nadle, D.; Xiao, Q.

    1993-01-01

    During the past 6 months, experiments have been conducted with the HBT-EP tokamak in order to (1) test and evaluate diagnostic systems, (2) establish basic machine operation, (3) document MHD behavior as a function of global discharge parameters, (4) investigate conditions leading to passive stabilization of MHD instabilities, and (5) quantify the external saddle coil current required for DC mode locking. In addition, the development and installation of new hardware systems has occurred. A prototype saddle coil was installed and tested. A five-position (n,m) = (1,2) external helical saddle coil was attached for mode-locking experiments. And, fabrication of the 32-channel UV tomography and the multipass Thomson scattering diagnostics have begun in preparation for installation later this year

  7. Anomalous transport in tokamaks

    International Nuclear Information System (INIS)

    Wootton, A.J.

    1989-01-01

    A review is presented of what is known about anomalous transport in tokamaks. It is generally thought that this anomalous transport is the result of fluctuations in various plasma parameters. In the plasma edge detailed measurements of the quantities required to directly determine the fluctuation driven fluxes are available. The total flux of particles is well explained by the measured electrostatic fluctuation driven flux. However, a satisfactory model to explain the origin of the fluctuations has not been identified. The processes responsible for determining the edge energy flux are less clear, but electrostatic convection plays an important part. In the confinement region experimental observations are presently restricted to measurements of density and potential fluctuations and their correlations. The characteristics of the measured fluctuations are discussed and compared with the predictions of various models. Comparisons between measured particle, electron heat and ion heat fluxes, and those fluxes predicted to result from the measured fluctuations, are made. Magnetic fluctuations is discussed

  8. Tokamak hybrid study

    International Nuclear Information System (INIS)

    Tenney, F.H.

    1976-09-01

    A report on one year of study of a tokamak hybrid reactor is presented. The plasma is maintained by both D and T beams. To obtain long burn times a poloidal field divertor is required. Both the single null and the double null style of divertor are considered. The blanket consists of a neutron multiplier region containing natural uranium followed by burner regions of molten salt (flibe) loaded with PuF 3 to enhance the energy multiplication. Economic analysis has been applied only recently to a variety of reactor sizes and plasma conditions. Early indications suggest that the most attractive hybrids will have large plasmas of major radius in excess of 8 meters

  9. Tokamak hybrid study

    International Nuclear Information System (INIS)

    Tenney, F.H.

    1976-01-01

    A report on one year of study of a tokamak hybrid reactor is given. The plasma is maintained by both D and T beams. To obtain long burn times a poloidal field divertor is required. Both the single null and the double null style of divertor are considered. The blanket consists of a neutron multiplier region containing natural uranium followed by burner regions of molten salt (flibe) loaded with PuF 3 to enhance the energy multiplication. Economic analysis has been applied only recently to a variety of reactor sizes and plasma conditions. Early indications suggest that the most attractive hybrids will have large plasmas of major radius in excess of 8 meters

  10. The Compact Ignition Tokamak

    International Nuclear Information System (INIS)

    Schmidt, J.

    1987-01-01

    The author discusses his lab's plan for completing the Compact Ignition Tokamak (CIT) conceptual design during calendar year 1987. Around July 1 they froze the subsystem envelopes on the device to continue with the conceptual design. They did this by formalizing a general requirements document. They have been developing the management plan and submitted a version to the DOE July 10. He describes a group of management activities. They released the vacuum vessel Request For Proposals (RFP) on August 5. An RFP to do a major part of the system engineering on the device is being developed. They intend to assemble the device outside of the test cell, then move it into the the test cell, install it there, and bring to the test cell many of the auxiliary facilities from TFTR, for example, power supplies

  11. Plasma turbulence in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Caldas, Ibere L.; Heller, M.V.A.P.; Brasilio, Z.A. [Sao Paulo Univ., SP, RJ (Brazil). Inst. de Fisica

    1997-12-31

    Full text. In this work we summarize the results from experiments on electrostatic and magnetic fluctuations in tokamak plasmas. Spectral analyses show that these fluctuations are turbulent, having a broad spectrum of wavectors and a broad spectrum of frequencies at each wavector. The electrostatic turbulence induces unexpected anomalous particle transport that deteriorates the plasma confinement. The relationship of these fluctuations to the current state of plasma theory is still unclear. Furthermore, we describe also attempts to control this plasma turbulence with external magnetic perturbations that create chaotic magnetic configurations. Accordingly, the magnetic field lines may become chaotic and then induce a Lagrangian diffusion. Moreover, to discuss nonlinear coupling and intermittency, we present results obtained by using numerical techniques as bi spectral and wavelet analyses. (author)

  12. Q-profiles in JET

    International Nuclear Information System (INIS)

    Gill, R.D.; Edwards, A.W.; Keegan, B.; Lazzaro, E.; O'Rourke, J.; Weller, A.; Zasche, D.

    1989-01-01

    Tokamak q-profiles play a central role in the determination of plasma stability and q(r) towards the plasma centre is particularly important for the sawtooth instability. On JET, q(r) has been determined from magnetic measurements and Faraday rotation. Further information about the position of the q=1 surface has been found from the sawtooth inversion radius, the position of the snake and the resonance effect observed on visible light and X-ray emission during pellet injection. In addition the shear at the q=1 surface has been measured from pellet ablation. This result is supported by the movement of the snake caused by a sawtooth crash. A summary of these data will be made after presenting the new results from pellet ablation. (author) 5 refs., 8 figs

  13. Study on assembly techniques and procedures for ITER tokamak device

    International Nuclear Information System (INIS)

    Obara, Kenjiro; Kakudate, Satoshi; Shibanuma, Kiyoshi; Sago, Hiromi; Ue, Koichi; Shimizu, Katsusuke; Onozuka, Masanori

    2006-06-01

    The International Thermonuclear Experimental Reactor (ITER) tokamak is mainly composed of a doughnut-shaped vacuum vessel (VV), four types of superconducting coils such as toroidal field coils (TF coils) arranged around the VV, and in-vessel components, such as blanket and divertor. The dimensions and weight of the respective components are around a few ten-meters and several hundred-tons. In addition, the whole tokamak assembly, which are composed of these components, are roughly estimated, 26 m in diameter, 18 m in height and over 16,500 tons in total weight. On the other hand, as for positioning and assembly tolerances of the VV and the TF coil are required to be a high accuracy of ±3 mm in spite of large size and heavy weight. The assembly procedures and techniques of the ITER tokamak are therefore studied, taking account of the tolerance requirements as well as the configuration of the tokamak with large size and heavy weight. Based on the above backgrounds, the assembly procedures and techniques, which are able to assemble the tokamak with high accuracy, are described in the present report. The tokamak assembly operations are categorized into six work break down structures (WBS), i.e., (1) preparation for assembly operations, (2) sub-assembly of the 40deg sector composed of 40deg VV sector, two TF coils and thermal shield between VV and TF coil at the assembly hall, (3) completion of the doughnut-shaped tokamak assembly composed of nine 40deg sectors in the cryostat at the tokamak pit, (4) measurement of positioning and accuracy after the completion of the tokamak assembly, (5) installation of the ex-vessel components, and (6) installation of in-vessel components. In the present report, two assembly operations of (2) and (3) in the above six WBS, which are the most critical in the tokamak assembly, are mainly described. The report describes the following newly developed tokamak assembly procedures and techniques, jigs and tools for assembly and metrology

  14. Application of CO2 Snow Jet Cleaning in Conjunction with Laboratory Based Total Reflection X-Ray Fluorescence

    Science.gov (United States)

    Schmeling, M.; Burnett, D. S.; Allton, J. H.; Rodriquez, M.; Tripa, C. E.; Veryovkin, I. V.

    2013-01-01

    The Genesis mission was the first mission returning solar material to Earth since the Apollo program [1,2]. Unfortunately the return of the space craft on September 8, 2004 resulted in a crash landing, which shattered the samples into small fragments and exposed them to desert soil and other debris. Thus only small fragments of the original collectors are available, each having different degrees of surface contamination. Thorough surface cleaning is required to allow for subsequent analysis of solar wind material embedded within. An initial cleaning procedure was developed in coordination with Johnson Space Center which focused on removing larger sized particulates and a thin film organic contamination acquired during collection in space [3]. However, many of the samples have additional residues and more rigorous and/or innovative cleaning steps might be necessary. These cleaning steps must affect only the surface to avoid leaching and re-distribution of solar wind material from the bulk of the collectors. To aid in development and identification of the most appropriate cleaning procedures each sample has to be thoroughly inspected before and after each cleaning step. Laboratory based total reflection X-ray fluorescence (TXRF) spectrometry lends itself to this task as it is a non-destructive and surface sensitive analytical method permitting analysis of elements from aluminum onward present at and near the surface of a flat substrate [4]. The suitability of TXRF has been demonstrated for several Genesis solar wind samples before and after various cleaning methods including acid treatment, gas cluster ion beam, and CO2 snow jet [5 - 7]. The latter one is non-invasive and did show some promise on one sample [5]. To investigate the feasibility of CO2 snow jet cleaning further, several flown Genesis samples were selected to be characterized before and after CO2 snow application with sample 61052 being discussed below.

  15. Runaway beam studies during disruptions at JET-ILW

    International Nuclear Information System (INIS)

    Reux, C.; Plyusnin, V.; Alper, B.; Alves, D.; Bazylev, B.; Belonohy, E.; Brezinsek, S.; Decker, J.; Devaux, S.; Vries, P. de; Fil, A.

    2015-01-01

    Highlights: • Runaway electrons (RE) have been obtained at JET-ILW using massive argon injection. • The runaway electron domain entry points are similar between JET-C and JET-ILW. • Inside the runaway electron domain, higher RE currents are observed with JET-ILW. • RE impact has been observed without material melting up to 100 kA RE current. • Heat deposition of 2 ± 1 mm is confirmed by measurements and simulations. - Abstract: Runaway electrons (RE) during disruptions are a concern for future tokamaks including ITER with its metallic wall. Although RE are rare in spontaneous disruptions with the JET ITER-like Wall (JET-ILW), RE beams up to 380 kA were obtained using massive injection (MGI) of argon in JET-ILW divertor discharges. Entry points into the RE domain defined by operational parameters (toroidal field, argon fraction in MGI) are unchanged but higher RE currents have been obtained inside the JET-ILW MGI-generated RE domain when compared to JET-C. This might be due to the influence of the metallic wall on the current quench plasma. Temperatures of 900 °C have been observed following RE impacts on beryllium tiles. Heat deposition depth of ∼2 mm has to be assumed to match the tile cooling time. 3D simulations of the RE energy deposition using the ENDEP/MEMOS codes show that material melting is unlikely with 100 kA RE beams

  16. Runaway beam studies during disruptions at JET-ILW

    Energy Technology Data Exchange (ETDEWEB)

    Reux, C., E-mail: cedric.reux@cea.fr [JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Plyusnin, V. [JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Instituto de Plasmas e Fuso Nuclear, Instituto Superior Tcnico, Universidade de Lisboa, Lisboa (Portugal); Alper, B. [JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Alves, D. [JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Instituto de Plasmas e Fuso Nuclear, Instituto Superior Tcnico, Universidade de Lisboa, Lisboa (Portugal); Bazylev, B. [JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Institut für Hochleistungsimpuls und Mikrowellentechnik, Karlsruhe Institute of Technology, Campus Nord, 76021 Karlsruhe (Germany); Belonohy, E. [JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); EFDA-CSU, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Brezinsek, S. [JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Forschungszentrum Jülich GmbH, Institut für Energie-und Klimaforschung-Plasmaphysik, 52425 Jülich (Germany); Decker, J. [JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Devaux, S. [JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Vries, P. de [JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); ITER Organization, Route de Vinon sur Verdon, 13115 St Paul Lez Durance (France); Fil, A. [JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); and others

    2015-08-15

    Highlights: • Runaway electrons (RE) have been obtained at JET-ILW using massive argon injection. • The runaway electron domain entry points are similar between JET-C and JET-ILW. • Inside the runaway electron domain, higher RE currents are observed with JET-ILW. • RE impact has been observed without material melting up to 100 kA RE current. • Heat deposition of 2 ± 1 mm is confirmed by measurements and simulations. - Abstract: Runaway electrons (RE) during disruptions are a concern for future tokamaks including ITER with its metallic wall. Although RE are rare in spontaneous disruptions with the JET ITER-like Wall (JET-ILW), RE beams up to 380 kA were obtained using massive injection (MGI) of argon in JET-ILW divertor discharges. Entry points into the RE domain defined by operational parameters (toroidal field, argon fraction in MGI) are unchanged but higher RE currents have been obtained inside the JET-ILW MGI-generated RE domain when compared to JET-C. This might be due to the influence of the metallic wall on the current quench plasma. Temperatures of 900 °C have been observed following RE impacts on beryllium tiles. Heat deposition depth of ∼2 mm has to be assumed to match the tile cooling time. 3D simulations of the RE energy deposition using the ENDEP/MEMOS codes show that material melting is unlikely with 100 kA RE beams.

  17. Taking the lag out of jet lag through model-based schedule design.

    Science.gov (United States)

    Dean, Dennis A; Forger, Daniel B; Klerman, Elizabeth B

    2009-06-01

    Travel across multiple time zones results in desynchronization of environmental time cues and the sleep-wake schedule from their normal phase relationships with the endogenous circadian system. Circadian misalignment can result in poor neurobehavioral performance, decreased sleep efficiency, and inappropriately timed physiological signals including gastrointestinal activity and hormone release. Frequent and repeated transmeridian travel is associated with long-term cognitive deficits, and rodents experimentally exposed to repeated schedule shifts have increased death rates. One approach to reduce the short-term circadian, sleep-wake, and performance problems is to use mathematical models of the circadian pacemaker to design countermeasures that rapidly shift the circadian pacemaker to align with the new schedule. In this paper, the use of mathematical models to design sleep-wake and countermeasure schedules for improved performance is demonstrated. We present an approach to designing interventions that combines an algorithm for optimal placement of countermeasures with a novel mode of schedule representation. With these methods, rapid circadian resynchrony and the resulting improvement in neurobehavioral performance can be quickly achieved even after moderate to large shifts in the sleep-wake schedule. The key schedule design inputs are endogenous circadian period length, desired sleep-wake schedule, length of intervention, background light level, and countermeasure strength. The new schedule representation facilitates schedule design, simulation studies, and experiment design and significantly decreases the amount of time to design an appropriate intervention. The method presented in this paper has direct implications for designing jet lag, shift-work, and non-24-hour schedules, including scheduling for extreme environments, such as in space, undersea, or in polar regions.

  18. Taking the lag out of jet lag through model-based schedule design.

    Directory of Open Access Journals (Sweden)

    Dennis A Dean

    2009-06-01

    Full Text Available Travel across multiple time zones results in desynchronization of environmental time cues and the sleep-wake schedule from their normal phase relationships with the endogenous circadian system. Circadian misalignment can result in poor neurobehavioral performance, decreased sleep efficiency, and inappropriately timed physiological signals including gastrointestinal activity and hormone release. Frequent and repeated transmeridian travel is associated with long-term cognitive deficits, and rodents experimentally exposed to repeated schedule shifts have increased death rates. One approach to reduce the short-term circadian, sleep-wake, and performance problems is to use mathematical models of the circadian pacemaker to design countermeasures that rapidly shift the circadian pacemaker to align with the new schedule. In this paper, the use of mathematical models to design sleep-wake and countermeasure schedules for improved performance is demonstrated. We present an approach to designing interventions that combines an algorithm for optimal placement of countermeasures with a novel mode of schedule representation. With these methods, rapid circadian resynchrony and the resulting improvement in neurobehavioral performance can be quickly achieved even after moderate to large shifts in the sleep-wake schedule. The key schedule design inputs are endogenous circadian period length, desired sleep-wake schedule, length of intervention, background light level, and countermeasure strength. The new schedule representation facilitates schedule design, simulation studies, and experiment design and significantly decreases the amount of time to design an appropriate intervention. The method presented in this paper has direct implications for designing jet lag, shift-work, and non-24-hour schedules, including scheduling for extreme environments, such as in space, undersea, or in polar regions.

  19. Performance of large-R jets and jet substructure reconstruction with the ATLAS detector

    CERN Document Server

    The ATLAS collaboration

    2012-01-01

    This paper presents the application of techniques to study jet substructure. The performance of modified jet algorithms for a variety of jet types and event topologies is investigated. Properties of jets subjected to the mass-drop filtering, trimming and pruning algorithms are found to have a reduced sensitivity to multiple proton-proton interactions and exhibit improved stability at high luminosity. Monte Carlo studies of the signal-background discrimination with jet grooming in new physics searches based on jet invariant mass and jet substructure properties are also presented. The application of jet trimming is shown to improve the robustness of large-R jet measurements, reduce sensitivity to the superfluous effects due to the intense environment of the high luminosity LHC, and improve the physics potential of searches for heavy boosted objects. The analyses presented in this note use the full 2011 ATLAS dataset, corresponding to an integrated luminosity of 4.7 \\pm 0.2 fb−1 .

  20. Detritiation studies for JET decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Perevezentsev, A.N.; Bell, A.C.; Williams, J.; Brennan, P.D. [EURATOM/UKAEA Fussion Association, Culham Science Centre, Abingdon (United Kingdom)

    2007-07-01

    JET is the world largest tokamak and has the capacity of operating with a tritium plasma. Three experimental campaigns, the Preliminary Tritium Experiment (0.1g T{sub 2}) in 1991, the Trace Tritium Experiment (5g T{sub 2}) in 2005, and the large experiment, the Deuterium-Tritium Experiment (DTE1) (100g T{sub 2}) in 1997, were carried out at JET with tritium plasmas. In DTE1 about 35 grams of tritium were fed directly into the vacuum vessel, with about 30% of this tritium being retained inside the vessel. In several years time JET will cease experimental operations and enter a decommissioning phase. In preparation for this the United Kingdom Atomic Energy Authority, the JET Operator, has been carrying out studies of various detritiation techniques. The materials which have been the subject of these studies include solid materials, such as various metals (Inconel 600 and 625, stainless steel 316L, beryllium, 'oxygen-free' copper, aluminium bronze), carbon fibre composite tiles, 'carbon' flakes and dust present in the vacuum vessel and also soft housekeeping materials. Liquid materials include organic liquids, such as vacuum oils and scintillation cocktails, and water. Detritiation of gas streams was also investigated. The purpose of the studies was to select and experimentally prove primary and auxiliary technologies for in-situ detritiation of in-vessel components and ex-situ detritiation of components removed from the vessel. The targets of ex-vessel detritiation were a reduction of the tritium inventory in and the rate of tritium out-gassing from the materials, and conversion, if possible, of intermediate level waste to low level waste and a reduction in volume of waste for disposal. The results of experimental trials and their potential application are presented. (orig.)

  1. Nucleosynthesis in Jets from Collapsars

    International Nuclear Information System (INIS)

    Fujimoto, Shin-ichiro; Nishimura, Nobuya; Hashimoto, Masa-aki

    2008-01-01

    We investigate nucleosynthesis inside magnetically driven jets ejected from collapsars, or rotating magnetized stars collapsing to a black hole, based on two-dimensional magnetohydrodynamic simulation of the collapsars during the core collapse. We follow the evolution of the abundances of about 4000 nuclides from the collapse phase to the ejection phase using a large nuclear reaction network. We find that the r-process successfully operates only in the energetic jets (>10 51 erg), so that U and Th are synthesized abundantly, even when the collapsars have a relatively small magnetic field (10 10 G) and a moderately rotating core before the collapse. The abundance patterns inside the jets are similar to that of the r-elements in the solar system. The higher energy jets have larger amounts of 56 Ni. Less energetic jets, which have small amounts of 56 Ni, could induce GRB without supernova, such as GRB060505 and GRB060614

  2. Heuristic Drift-based Model of the Power Scrape-off width in H-mode Tokamaks

    International Nuclear Information System (INIS)

    Goldston, Robert J.

    2011-01-01

    An heuristic model for the plasma scrape-off width in H-mode plasmas is introduced. Grad B and curv B drifts into the SOL are balanced against sonic parallel flows out of the SOL, to the divertor plates. The overall particle flow pattern posited is a modification for open field lines of Pfirsch-Shlueter flows to include sinks to the divertors. These assumptions result in an estimated SOL width of ∼ 2αρ p /R. They also result in a first-principles calculation of the particle confinement time of H-mode plasmas, qualitatively consistent with experimental observations. It is next assumed that anomalous perpendicular electron thermal diffusivity is the dominant source of heat flux across the separatrix, investing the SOL width, defined above, with heat from the main plasma. The separatrix temperature is calculated based on a two-point model balancing power input to the SOL with Spitzer-Haerm parallel thermal conduction losses to the divertor. This results in a heuristic closed-form prediction for the power scrape-off width that is in reasonable quantitative agreement both in absolute magnitude and in scaling with recent experimental data from deuterium plasmas. Further work should include full numerical calculations, including all magnetic and electric drifts, as well as more thorough comparison with experimental data.

  3. An Heuristic Drift-Based Model of the Power Scrape-Off Width in H-Mode Tokamaks

    International Nuclear Information System (INIS)

    Goldston, Robert J.

    2011-01-01

    An heuristic model for the plasma scrape-off width in H-mode plasmas is introduced. Grad B and curv B drifts into the SOL are balanced against sonic parallel flows out of the SOL, to the divertor plates. The overall mass flow pattern posited is a modification for open field lines of Pfirsch-Shlueter flows to include sinks to the divertors. These assumptions result in an estimated SOL width of 2αρ p /R. They also result in a first-principles calculation of the particle confinement time of H-mode plasmas, qualitatively consistent with experimental observations. It is next assumed that anomalous perpendicular electron thermal diffusivity is the dominant source of heat flux across the separatrix, investing the SOL width, defined above, with heat from the main plasma. The separatrix temperature is calculated based on a two-point model balancing power input to the SOL with Spitzer-Haerm parallel thermal conduction losses to the divertor. This results in an heuristic closed-form prediction for the power scrape-off width that is in remarkable quantitative agreement both in absolute magnitude and in scaling with recent experimental data. Further work should include full numerical calculations, including all magnetic and electric drifts, as well as more thorough comparison with experimental data.

  4. Stationary Flowing Liquid Lithium (SFLiLi) systems for tokamaks

    Science.gov (United States)

    Zakharov, Leonid; Gentile, Charles; Roquemore, Lane

    2013-10-01

    The present approach to magnetic fusion which relies on high recycling plasma-wall interaction has exhausted itself at the level of TFTR, JET, JT-60 devices with no realistic path to the burning plasma. Instead, magnetic fusion needs a return to its original idea of insulation of the plasma from the wall, which was the dominant approach in the 1970s and upon implementations has a clear path to the DEMO device with PDT ~= 100 MW and Qelectric > 1 . The SFLiLi systems of this talk is the technology tool for implementation of the guiding idea of magnetic fusion. It utilizes the unique properties of flowing LiLi to pump plasma particles and, thus, insulate plasma from the walls. The necessary flow rate, ~= 1 g3/s, is very small, thus, making the use of lithium practical and consistent with safety requirements. The talk describes how chemical activity of LiLi, which is the major technology challenge of using LiLi in tokamaks, is addressed by SFLiLi systems at the level of already performed (HT-7) experiment, and in ongoing implementations for a prototype of SFLiLi for tokamak divertors and the mid-plane limiter for EAST tokamak (to be tested in the next experimental campaign). This work is supported by US DoE contract No. DE-AC02-09-CH11466.

  5. The energy principle applied to diverted tokamak configurations

    International Nuclear Information System (INIS)

    Atanasiu, C. V.; Guenter, S.; Lackner, K.; Moraru, A.; Zakharov, L. E.; Subbotin, A. A.

    2008-01-01

    Writing the expression of the potential energy in terms of the perturbation of the flux function, and performing an Euler minimisation, one obtains a system of ordinary differential equations in that perturbation. For a diverted configuration, the usual vanishing boundary conditions for the perturbed flux function at the magnetic axis and at infinity can no longer be used. In place of the vanishing boundary conditions at infinity, an approach to fix 'natural' boundary conditions for the system of differential equations for the perturbed flux function, just at the plasma boundary has been developed. As an example of application of our approaches, a particular equilibrium configuration of the ASDEX Upgrade tokamak has been considered and a detailed investigation of the dependence of the tearing stability parameter Δ' on plasma shape is given for a realistic tokamak equilibrium. The results shown are at least in qualitative agreement with experimental observations on ASDEX Upgrade and JET of a stabilizing influence of triangularity. The knowledge of Δ' for realistic tokamak plasmas is especially important for understanding of the plasma stability against NTMs. (authors)

  6. Steady-state operation requirements of tokamak fusion reactor concepts

    International Nuclear Information System (INIS)

    Knobloch, A.F.

    1991-06-01

    In the last two decades tokamak conceptual reactor design studies have been deriving benefit from progressing plasma physics experiments, more depth in theory and increasing detail in technology and engineering. Recent full-scale reactor extrapolations such as the US ARIES-I and the EC Reference Reactor study provide information on rather advanced concepts that are called for when economic boundary conditions are imposed. The ITER international reactor design activity concentrated on defining the next step after the JET generation of experiments. For steady-state operation as required for any future commercial tokamak fusion power plants it is essential to have non-inductive current drive. The current drive power and other internal power requirements specific to magnetic confinement fusion have to be kept as low as possible in order to attain a competitive overall power conversion efficiency. A high plasma Q is primarily dependent on a high current drive efficiency. Since such conditions have not yet been attained in practice, the present situation and the degree of further development required are characterized. Such development and an appropriately designed next-step tokamak reactor make the gradual realization of high-Q operation appear feasible. (orig.)

  7. JET joint undertaking. Annual report 1986

    International Nuclear Information System (INIS)

    1987-06-01

    The scientific, technical, and administrative status of the JET tokamak program is summarized. The Euratom and international fusion programs are outlined. Main performance results are: volume average electron density = 0.5 (10 20 m -3 ); central electron temperature = 8.0 keV; central ion temperature = 12.5 keV; global energy confinement time = 0.9 sec; and fusion parameter performance parameter (simultaneous temperature, density, and energy confinement time) = 2.0 (10 20 m -3 keV

  8. Measurement of the effective plasma ion mass in large tokamaks

    International Nuclear Information System (INIS)

    Lister, J.B.; Villard, L.; Ridder, G. de

    1997-01-01

    There is not yet a straightforward method for the measurement of the D-T ratio in the centre of a tokamak plasma. One of the simpler measurements put forward in the past is the interpretation of the MHD spectrum in the frequency range of the Global Alfven Eigenmodes (GAE). However, the frequencies of these modes do not only depend on the plasma mass, but are also quite strongly dependent on the details of the current and density profiles, creating a problem of deconvolution of the estimate of the plasma mass from an implicit relationship between several measurable plasma parameters and the detected eigenmode frequencies. This method has been revised to assess its likely precision for the JET tokamak. The low n GAE modes are sometimes too close to the continuum edge to be detectable and the interpretation of the GAE spectrum is rendered less direct than had been hoped. We present a statistical study on the precision with which the D-T ratio could be estimated from the GAE spectrum on JET. (author) 4 figs., 8 refs

  9. An inkjet vision measurement technique for high-frequency jetting

    International Nuclear Information System (INIS)

    Kwon, Kye-Si; Jang, Min-Hyuck; Park, Ha Yeong; Ko, Hyun-Seok

    2014-01-01

    Inkjet technology has been used as manufacturing a tool for printed electronics. To increase the productivity, the jetting frequency needs to be increased. When using high-frequency jetting, the printed pattern quality could be non-uniform since the jetting performance characteristics including the jetting speed and droplet volume could vary significantly with increases in jet frequency. Therefore, high-frequency jetting behavior must be evaluated properly for improvement. However, it is difficult to measure high-frequency jetting behavior using previous vision analysis methods, because subsequent droplets are close or even merged. In this paper, we present vision measurement techniques to evaluate the drop formation of high-frequency jetting. The proposed method is based on tracking target droplets such that subsequent droplets can be excluded in the image analysis by focusing on the target droplet. Finally, a frequency sweeping method for jetting speed and droplet volume is presented to understand the overall jetting frequency effects on jetting performance

  10. An inkjet vision measurement technique for high-frequency jetting

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kye-Si, E-mail: kskwon@sch.ac.kr; Jang, Min-Hyuck; Park, Ha Yeong [Department of Mechanical Engineering, Soonchunhyang University 22, Soonchunhyang-Ro, Shinchang, Asan Chungnam 336-745 (Korea, Republic of); Ko, Hyun-Seok [Department of Electrical and Robot Engineering, Soonchunhyang University, 22, Soonchunhyang-Ro, Shinchang, Asan Chungnam 336-745 (Korea, Republic of)

    2014-06-15

    Inkjet technology has been used as manufacturing a tool for printed electronics. To increase the productivity, the jetting frequency needs to be increased. When using high-frequency jetting, the printed pattern quality could be non-uniform since the jetting performance characteristics including the jetting speed and droplet volume could vary significantly with increases in jet frequency. Therefore, high-frequency jetting behavior must be evaluated properly for improvement. However, it is difficult to measure high-frequency jetting behavior using previous vision analysis methods, because subsequent droplets are close or even merged. In this paper, we present vision measurement techniques to evaluate the drop formation of high-frequency jetting. The proposed method is based on tracking target droplets such that subsequent droplets can be excluded in the image analysis by focusing on the target droplet. Finally, a frequency sweeping method for jetting speed and droplet volume is presented to understand the overall jetting frequency effects on jetting performance.

  11. Bibliography of fusion product physics in tokamaks

    International Nuclear Information System (INIS)

    Hively, L.M.; Sigmar, D.J.

    1989-09-01

    Almost 700 citations have been compiled as the first step in reviewing the recent research on tokamak fusion product effects in tokamaks. The publications are listed alphabetically by the last name of the first author and by subject category

  12. Task III: auxillary heating in tokamaks and tandem mirrors. Progress report on fusion plasma theory

    International Nuclear Information System (INIS)

    Scharer, J.E.

    1986-06-01

    The research we have accomplished with this grant has focused on ICRF coupling, wave propagation, heating and breakeven studies for tokamaks such as JET. The highlights include fundamental work on a differential equation for wave fields incorporating equilibrium gradients, strong absorption and mode conversion and a new wave power absorption and conservation relation for ICRF in inhomogeneous plasmas. We have also formulated and developed a code which solves differential equation for ICRF waveguide coupling in tokamak edge density regions. We are also examining the excitation of ion Bernstein waves from fast magnetosonic waves occurring in density gradients. Our current efforts involve the explanation of current JET ICRF results such as the large electron sawteeth in the core region in terms of hot, non-Maxwellian ICRF theory

  13. Multi-megajoule heating of large tokamaks with high energy heavy ion beams

    International Nuclear Information System (INIS)

    Dei-Cas, R.

    1981-07-01

    The fast neutral injection heating and RF heating for tokamak like plasmas are now well established. We consider in this paper the use of high energy (approximately 1 GeV) heavy ions (Xe 132 ) to reach ignition in JET or INTOR like tokamaks. The main advantages of such a method will be outlined. The capture and the confinement of heavy ions have been analysed in a particular case and with the described RF linac it seems possible to inject in the order of 50 MJ in 1 sec with a modest increase of the effective charge Zsub(eff)<1.05 in a JET-like plasma for a particle life time of 1 sec and then the additional radiated power should be maintained at a relatively low level in comparison to the injected power

  14. Identifying a new particle with jet substructures

    International Nuclear Information System (INIS)

    Han, Chengcheng; Kim, Doojin; Kim, Minho; Postech, Pohang

    2017-01-01

    Here, we investigate a potential of determining properties of a new heavy resonance of mass O(1)TeV which decays to collimated jets via heavy Standard Model intermediary states, exploiting jet substructure techniques. Employing the Z gauge boson as a concrete example for the intermediary state, we utilize a "merged jet" defined by a large jet size to capture the two quarks from its decay. The use of the merged jet bene ts the identification of a Z-induced jet as a single, reconstructed object without any combinatorial ambiguity. We also find that jet substructure procedures may enhance features in some kinematic observables formed with subjet four-momenta extracted from a merged jet. This observation motivates us to feed subjet momenta into the matrix elements associated with plausible hypotheses on the nature of the heavy resonance, which are further processed to construct a matrix element method (MEM)-based observable. For both moderately and highly boosted Z bosons, we demonstrate that the MEM in combination with jet substructure techniques can be a very powerful tool for identifying its physical properties. Finally, we discuss effects from choosing different jet sizes for merged jets and jet-grooming parameters upon the MEM analyses.

  15. START: the creation of a spherical tokamak

    International Nuclear Information System (INIS)

    Sykes, Alan

    1992-01-01

    The START (Small Tight Aspect Ratio Tokamak) plasma fusion experiment is now operational at AEA Fusion's Culham Laboratory. It is the world's first experiment to explore an extreme limit of the tokamak - the Spherical Tokamak - which theoretical studies predict may have substantial advantages in the search for economic fusion power. The Head of the START project, describes the concept, some of the initial experimental results and the possibility of developing a spherical tokamak power reactor. (author)

  16. The scientific success of JET

    International Nuclear Information System (INIS)

    Keilhacker, M.; Gibson, A.; Gormezano, C.; Rebut, P.H.

    2001-01-01

    The paper highlights the JET work in physics and technology during the period of the JET Joint Undertaking (1978-1999), with special emphasis on what has been learned for extrapolation to a NEXT STEP device. - Global confinement scaling has been extended to high currents and heating powers. Dimensionless scaling experiments of ELMy H mode plasmas suggest that bulk plasma transport is gyro-Bohm and predict ignition for a device with ITER-FDR parameters. Experiments in which the plasma elongation and triangularity were varied independently show a strong increase of confinement time with elongation (τ E ∼κ α 0.8±0.3 ), thus supporting a basic design principle of ITER-FEAT. With the Pellet Enhanced Performance (PEP) mode, JET has discovered the beneficial effect of reversed magnetic shear on confinement, opening the possibility of advanced tokamak scenarios. - With a three stage programme of progressively more closed divertors, JET has demonstrated the benefits of divertor closure, in particular, of high divertor neutral pressure which facilitates helium removal. It has also shown that in detached (or semidetached) radiative divertor plasmas the average power load on the target plates of a NEXT STEP device should be tolerable but, in addition, that the transient power loads during ELMs could cause problems. - In 1991 JET has demonstrated the first ever controlled production of a megawatt of fusion power. More extensive D-T experiments in 1997 (DTE1) have established new records in fusion performance: 16 MW transient fusion power with Q in =0.62 (i.e. close to breakeven, Q in =1) and 4 MW steady state fusion power with Q in =0.18 for 4 s. DTE1 has also allowed a successful test of various reactor ICRF heating schemes and a clear demonstration of alpha particle heating, consistent with classical expectations. - JET has developed and tested some of the most important technologies for a NEXT STEP and a reactor, in particular the safe handling of tritium and the

  17. Modelling magnetic forces during asymmetric vertical displacement events at JET

    International Nuclear Information System (INIS)

    Riccardo, V.; Walker, S.; Noll, P.

    2000-01-01

    Asymmetric vertical disruption events (AVDEs) are fortunately rare, but can induce large lateral forces which can cause significant mechanical damage to tokamaks. In this paper we present a simple model which allows the lateral forces generated during such a disruption to be estimated as a function of relatively easily obtained electromagnetic parameters: the asymmetries in the vertical current moment. This model is validated by using it to predict the displacement history of the JET tokamak caused by a number of major AVDEs. It is shown that the predicted forces and displacements agree well with quantities measured during these disruptions. One conclusion from the model is that the maximum sideways displacement scales with the product of the plasma current and the toroidal field, and this recipe is now used at JET to assess a priori the hazards of performing high current and high field pulses when they are known to be likely to disrupt. (author)

  18. Plasma edge physics in an actively cooled tokamak

    International Nuclear Information System (INIS)

    Gunn, J.P.; Adamek, A.; Boucher, C.

    2005-01-01

    Tore Supra is a large tokamak with a plasma of circular cross section (major radius 2.4 m and minor radius 0.72 m) lying on a toroidal limiter. Tore Supra's main mission is the development of technology to inject up to 25 MW of microwave heating power and extract it continuously for up to 1000 s in steady state without uncontrolled overheating of, or outgassing from, plasma-facing components. The entire first wall of the tokamak is actively cooled by a high pressure water loop and special carbon fiber composite materials have been designed to handle power fluxes up to 10 MW/m 2 . The edge plasma on open magnetic flux surfaces that intersect solid objects plays an important role in the overall behaviour of the plasma. The transport of sputtered impurity ions and the fueling of the core plasma are largely governed by edge plasma density, temperature, and flow profiles. Measurements of these quantities are becoming more reliable and frequent in many tokamaks, and it has become clear that we do not understand them very well. Classical two-dimensional fluid modelling fails to reproduce many aspects of the experimental observations such as the significant thickness of the edge plasma, and the near-sonic flows that occur where none should be expected. It is suspected that plasma turbulence is responsible for these anomalies. In the Tore Supra tokamak, various kinds of Langmuir probes are used to characterize the edge plasma. We will present original measurements that demonstrate the universality of many phenomena that have been observed in X-point divertor tokamaks, especially concerning the ion flows. As in the JET tokamak, surprisingly large values of parallel Mach number are measured midway between the two strike zones, where one would expect to find nearly stagnant plasma if the particle source were poloidally uniform. We will present results of a novel experiment that provides evidence for a poloidally localized particle and energy source on the outboard midplane of

  19. Boosted Jet Tagging with Jet-Images and Deep Neural Networks

    International Nuclear Information System (INIS)

    Kagan, Michael; Oliveira, Luke de; Mackey, Lester; Nachman, Benjamin; Schwartzman, Ariel

    2016-01-01

    Building on the jet-image based representation of high energy jets, we develop computer vision based techniques for jet tagging through the use of deep neural networks. Jet-images enabled the connection between jet substructure and tagging with the fields of computer vision and image processing. We show how applying such techniques using deep neural networks can improve the performance to identify highly boosted W bosons with respect to state-of-the-art substructure methods. In addition, we explore new ways to extract and visualize the discriminating features of different classes of jets, adding a new capability to understand the physics within jets and to design more powerful jet tagging methods

  20. Moving Divertor Plates in a Tokamak

    International Nuclear Information System (INIS)

    Zweben, S.J.; Zhang, H.

    2009-01-01

    Moving divertor plates could help solve some of the problems of the tokamak divertor through mechanical ingenuity rather than plasma physics. These plates would be passively heated on each pass through the tokamak and cooled and reprocessed outside the tokamak. There are many design options using varying plate shapes, orientations, motions, coatings, and compositions

  1. Fusion potential for spherical and compact tokamaks

    International Nuclear Information System (INIS)

    Sandzelius, Mikael

    2003-02-01

    The tokamak is the most successful fusion experiment today. Despite this, the conventional tokamak has a long way to go before being realized into an economically viable power plant. In this master thesis work, two alternative tokamak configurations to the conventional tokamak has been studied, both of which could be realized to a lower cost. The fusion potential of the spherical and the compact tokamak have been examined with a comparison of the conventional tokamak in mind. The difficulties arising in the two configurations have been treated from a physical point of view concerning the fusion plasma and from a technological standpoint evolving around design, materials and engineering. Both advantages and drawbacks of either configuration have been treated relative to the conventional tokamak. The spherical tokamak shows promising plasma characteristics, notably a high β-value but have troubles with high heat loads and marginal tritium breeding. The compact tokamak operates at a high plasma density and a high magnetic field enabling it to be built considerably smaller than any other tokamak. The most notable down-side being high heat loads and neutron transport problems. With the help of theoretical reactor studies, extrapolating from where we stand today, it is conceivable that the spherical tokamak is closer of being realized of the two. But, as this study shows, the compact tokamak power plant concept offers the most appealing prospect

  2. Fusion potential for spherical and compact tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Sandzelius, Mikael

    2003-02-01

    The tokamak is the most successful fusion experiment today. Despite this, the conventional tokamak has a long way to go before being realized into an economically viable power plant. In this master thesis work, two alternative tokamak configurations to the conventional tokamak has been studied, both of which could be realized to a lower cost. The fusion potential of the spherical and the compact tokamak have been examined with a comparison of the conventional tokamak in mind. The difficulties arising in the two configurations have been treated from a physical point of view concerning the fusion plasma and from a technological standpoint evolving around design, materials and engineering. Both advantages and drawbacks of either configuration have been treated relative to the conventional tokamak. The spherical tokamak shows promising plasma characteristics, notably a high {beta}-value but have troubles with high heat loads and marginal tritium breeding. The compact tokamak operates at a high plasma density and a high magnetic field enabling it to be built considerably smaller than any other tokamak. The most notable down-side being high heat loads and neutron transport problems. With the help of theoretical reactor studies, extrapolating from where we stand today, it is conceivable that the spherical tokamak is closer of being realized of the two. But, as this study shows, the compact tokamak power plant concept offers the most appealing prospect.

  3. Moving Divertor Plates in a Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    S.J. Zweben, H. Zhang

    2009-02-12

    Moving divertor plates could help solve some of the problems of the tokamak divertor through mechanical ingenuity rather than plasma physics. These plates would be passively heated on each pass through the tokamak and cooled and reprocessed outside the tokamak. There are many design options using varying plate shapes, orientations, motions, coatings, and compositions.

  4. Tokamak Physics Experiment (TPX) design

    International Nuclear Information System (INIS)

    Schmidt, J.A.

    1995-01-01

    TPX is a national project involving a large number of US fusion laboratories, universities, and industries. The element of the TPX requirements that is a primary driver for the hardware design is the fact that TPX tokamak hardware is being designed to accommodate steady state operation if the external systems are upgraded from the 1,000 second initial operation. TPX not only incorporates new physics, but also pioneers new technologies to be used in ITER and other future reactors. TPX will be the first tokamak with fully superconducting magnetic field coils using advanced conductors, will have internal nuclear shielding, will use robotics for machine maintenance, and will remove the continuous, concentrated heat flow from the plasma with new dispersal techniques and with special materials that are actively cooled. The Conceptual Design for TPX was completed during Fiscal Year 1993. The Preliminary Design formally began at the beginning of Fiscal Year 1994. Industrial contracts have been awarded for the design, with options for fabrication, of the primary tokamak hardware. A large fraction of the design and R and D effort during FY94 was focused on the tokamak and in turn on the tokamak magnets. The reason for this emphasis is because the magnets require a large design and R and D effort, and are critical to the project schedule. The magnet development is focused on conductor development, quench protection, and manufacturing R and D. The Preliminary Design Review for the Magnets is planned for fall, 1995

  5. Ideal magnetohydrodynamic simulations of unmagnetized dense plasma jet injection into a hot strongly magnetized plasma

    OpenAIRE

    Liu, Wei; Hsu, Scott C.

    2010-01-01

    We present results from three-dimensional ideal magnetohydrodynamic simulations of unmagnetized dense plasma jet injection into a uniform hot strongly magnetized plasma, with the aim of providing insight into core fueling of a tokamak with parameters relevant for ITER and NSTX (National Spherical Torus Experiment). Unmagnetized dense plasma jet injection is similar to compact toroid injection but with much higher plasma density and total mass, and consequently lower required injection velocit...

  6. Economic trends of tokamak power plants independent of physics scaling models

    International Nuclear Information System (INIS)

    Reid, R.L.; Steiner, D.

    1978-01-01

    This study examines the effects of plasma radius, field on axis, plasma impurity level, and aspect ratio on power level and unit capital cost, $/kW/sub e/, of tokamak power plants sized independent of plasma physics scaling models. It is noted that tokamaks sized in this manner are thermally unstable based on trapped particle scaling relationships. It is observed that there is an economic advantage for larger power level tokamaks achieved by physics independent sizing; however, the incentive for increased power levels is less than that for fission reactors. It is further observed that the economic advantage of these larger power level tokamaks is decreased when plasma thermal stability measures are incorporated, such as by increasing the plasma impurity concentration. This trend of economy with size obtained by physics independent sizing is opposite to that observed when the tokamak designs are constrained to obey the trapped particle and empirical scaling relationships

  7. Jet mass reconstruction with the ATLAS Detector in early Run 2 data

    CERN Document Server

    The ATLAS collaboration

    2016-01-01

    This note presents the details of the ATLAS jet mass reconstruction for groomed large-radius jets. The jet mass scale calibrations are determined from Monte Carlo simulation. An alternative jet mass definition that incorporates tracking information called the track-assisted jet mass is introduced and its performance is compared to the traditional calorimeter-based jet mass definition. Events enriched in boosted $W$, $Z$ boson and top quark jets are used to directly compare the jet mass scale and jet mass resolution between data and simulation. This in-situ technique is also extended to constrain the jet energy scale and resolution.

  8. Resistive instabilities in tokamaks

    International Nuclear Information System (INIS)

    Rutherford, P.H.

    1985-10-01

    Low-m tearing modes constitute the dominant instability problem in present-day tokamaks. In this lecture, the stability criteria for representative current profiles with q(0)-values slightly less than unit are reviewed; ''sawtooth'' reconnection to q(0)-values just at, or slightly exceeding, unity is generally destabilizing to the m = 2, n = 1 and m = 3, n = 2 modes, and severely limits the range of stable profile shapes. Feedback stabilization of m greater than or equal to 2 modes by rf heating or current drive, applied locally at the magnetic islands, appears feasible; feedback by island current drive is much more efficient, in terms of the radio-frequency power required, then feedback by island heating. Feedback stabilization of the m = 1 mode - although yielding particularly beneficial effects for resistive-tearing and high-beta stability by allowing q(0)-values substantially below unity - is more problematical, unless the m = 1 ideal-MHD mode can be made positively stable by strong triangular shaping of the central flux surfaces. Feedback techniques require a detectable, rotating MHD-like signal; the slowing of mode rotation - or the excitation of non-rotating modes - by an imperfectly conducting wall is also discussed

  9. Tokamak experimental power reactor

    International Nuclear Information System (INIS)

    Stacey, W.M. Jr.; Abdou, M.A.; Brooks, J.N.

    1978-01-01

    A tokamak experimental power reactor has been designed that is capable of producing net electric power over a wide range of possible operating conditions. A net production of 81 MW of electricity is expected from the design reference conditions that assume a value of 0.07 for beta-toroidal, a maximum toroidal magnetic field of 9 T and a thermal conversion efficiency of 30%. Impurity control is achieved through the use of a low-Z first wall coating. This approach allows a burn time of 60 seconds without the incorporation of a divertor. The system is cooled by a dual pressurized water/steam system that could potentially provide thermal efficiencies as high as 39%. The first surface facing the plasma is a low-Z coated water cooled panel that is attached to a 20 cm thick blanket module. The vacuum boundary is removed a total of 22 cm from the plasma, thereby minimizing the amount of radiation damage in this vital component. Consideration is given in the design to the possible use of the EPR as a materials test reactor. It is estimated that the total system could be built for less than 550 million dollars

  10. Tokamak experimental power reactor

    International Nuclear Information System (INIS)

    Stacey, W.M. Jr.; Abdou, M.A.; Bertoncini, P.J.

    1976-01-01

    A conceptual design has been developed for a tokamak Experimental Power Reactor to operate at net electrical power conditions with a plant capacity factor of 50 percent for 10 yr. The EPR operates in a pulsed mode at a frequency of approximately 1/min, with approximately 75 percent duty cycle, is capable of producing approximately 72 MWe and requires 42 MWe. The annual tritium consumption is 16 kg. The EPR vacuum chamber is 6.25 m in major radius and 2.4 m in minor radius, is constructed of 2 cm thick stainless steel, and has 2 cm thick detachable, beryllium-coated coolant panels mounted on the interior. A 0.28 m stainless steel blanket and a shield ranging from 0.6 to 1.0 m surround the vacuum vessel. The coolant is H 2 O. Sixteen niobium-titanium superconducting toroidal field coils provide a field of 10 T at the coil and 4.47 T at the plasma. Superconducting ohmic heating and equilibrium field coils provide 135 V-s to drive the plasma current. Plasma heating is accomplished by 12 neutral beam injectors which provide 60 MW. The energy transfer and storage system consists of a central superconducting storage ring, a homopolar energy storage unit, and a variety of inductor-convertors

  11. LHCb jet reconstruction

    International Nuclear Information System (INIS)

    Francisco, Oscar; Rangel, Murilo; Barter, William; Bursche, Albert; Potterat, Cedric; Coco, Victor

    2012-01-01

    Full text: The Large Hadron Collider (LHC) is the most powerful particle accelerator in the world. It has been designed to collide proton beams at an energy up to 14 TeV in the center of mass. In 2011, the data taking was done with a center of mass energy of 7 TeV, the instant luminosity has reached values greater than 4 X 10 32 cm -2 s -1 and the integrated luminosity reached the value of 1,02fb -1 on the LHCb. The jet reconstruction is fundamental to observe events that can be used to test perturbative QCD (pQCD). It also provides a way to observe standard model channels and searches for new physics like SUSY. The anti-kt algorithm is a jet reconstruction algorithm that is based on the distance of the particles on the space ηX φ and on the transverse momentum of particles. To maximize the energy resolution all information about the trackers and the colorimeters are used on the LHCb experiment to create objects called particle flow objects that are used as input to anti-kt algorithm. The LHCb is specially interesting for jets studies because its η region is complementary to the others main experiments on LHC. We will present the first results of jet reconstruction using 2011 LHCb data. (author)

  12. LHCb jet reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Francisco, Oscar; Rangel, Murilo [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil); Barter, William [University of Cambridge, Cambridge (United Kingdom); Bursche, Albert [Universitat Zurich, Zurich (Switzerland); Potterat, Cedric [Universitat de Barcelona, Barcelona (Spain); Coco, Victor [Nikhef National Institute for Subatomic Physics, Amsterdam (Netherlands)

    2012-07-01

    Full text: The Large Hadron Collider (LHC) is the most powerful particle accelerator in the world. It has been designed to collide proton beams at an energy up to 14 TeV in the center of mass. In 2011, the data taking was done with a center of mass energy of 7 TeV, the instant luminosity has reached values greater than 4 X 10{sup 32} cm{sup -2}s{sup -1} and the integrated luminosity reached the value of 1,02fb{sup -1} on the LHCb. The jet reconstruction is fundamental to observe events that can be used to test perturbative QCD (pQCD). It also provides a way to observe standard model channels and searches for new physics like SUSY. The anti-kt algorithm is a jet reconstruction algorithm that is based on the distance of the particles on the space {eta}X {phi} and on the transverse momentum of particles. To maximize the energy resolution all information about the trackers and the colorimeters are used on the LHCb experiment to create objects called particle flow objects that are used as input to anti-kt algorithm. The LHCb is specially interesting for jets studies because its {eta} region is complementary to the others main experiments on LHC. We will present the first results of jet reconstruction using 2011 LHCb data. (author)

  13. Design and operation of remote maintenance systems in JET

    International Nuclear Information System (INIS)

    Raimondi, T.

    1987-01-01

    The JET tokamak is a joint European project aimed at proving the viability of nuclear fusion as a source of energy. A remote handling system is being developed for this large experimental facility. Force feedback servomanipulators and TV cameras are positioned at work locations by large transporters. Positioning and tele-operation are computer-assisted. Special tools are being devised to facilitate difficult tasks

  14. Runaway beam studies during disruptions at JET-ILW

    Czech Academy of Sciences Publication Activity Database

    Reux, C.; Plyusnin, V.; Alper, B.; Alves, D.; Bazylev, B.; Belonohy, E.; Brezinsek, S.; Decker, J.; Devaux, S.; de Vries, P.; Fil, A.; Gerasimov, S.; Lupelli, I.; Jachmich, S.; Khilkevitch, E.M.; Kiptily, V.; Koslowski, R.; Kruezi, U.; Lehnen, M.; Manzanares, A.; Mlynář, Jan; Nardon, E.; Nilsson, E.; Riccardo, V.; Saint-Laurent, F.; Shevelev, A.E.; Sozzi, C.

    2015-01-01

    Roč. 463, August (2015), s. 143-149 ISSN 0022-3115. [PLASMA-SURFACE INTERACTIONS 21: International Conference on Plasma-Surface Interactions in Controlled Fusion Devices. Kanazawa, 26.05.2014-30.05.2014] Institutional support: RVO:61389021 Keywords : tokamak * JET * runaway electrons * disruptions * ILW Subject RIV: JF - Nuclear Energetics OBOR OECD: Nuclear related engineering Impact factor: 2.199, year: 2015 http://www.sciencedirect.com/science/article/pii/S0022311514006850

  15. The role of the spherical tokamak in clarifying tokamak physics

    International Nuclear Information System (INIS)

    Morris, A.W.; Akers, R.J.; Connor, J.W.; Counsell, G.F.; Gryaznevich, M.P.; Hender, T.C.; Maddison, G.P.; Martin, T.J.; McClements, K.G.; Roach, C.M.; Robinson, D.C.; Sykes, A.; Valovic, M.; Wilson, H.R.; Fonck, R.J.; Gusev, V.; Kaye, S.M.; Majeski, R.; Peng, Y.-K.M.; Medvedev, S.; Sharapov, S.; Walsh, M.J.

    1999-01-01

    The spherical tokamak (ST) provides a unique environment in which to perform complementary and exacting tests of the tokamak physics required for a burning plasma experiment of any aspect ratio, while also having the potential for long-term fusion applications in its own right. New experiments are coming on-line in the UK (MAST), USA (NSTX, Pegasus), Russia (Globus-M), Brazil (ETE) and elsewhere, and the status of these devices will be reported, along with newly-analysed data from START. Those physics issues where the ST provides an opportunity to remove degeneracy in the databases or clarify one's understanding will be emphasized. (author)

  16. The JET neutron emission profile monitor

    International Nuclear Information System (INIS)

    Adams, J.M.; Syme, D.B.; Watkins, N.; Jarvis, O.N.; Sadler, G.J.

    1993-01-01

    This paper provides a technical description of the neutron emission profile monitor as used routinely at the Joint European Torus (JET), and includes representative examples of its operational capabilities. The primary function of this instrument is to measure the neutron emission as a function of both position and time in a poloidal (vertical along major radius) section through the torus. For the first time the spatially localised effects of sawteeth (magnetic relaxation phenomena) have been observed using a neutron diagnostic. The total (global) neutron emission can be obtained from the profile monitor data by performing a volume integral over the plasma; the absolute neutron emission rates agree with those obtained from the JET time-resolved neutron monitor to within ±15%. This was the first such instrument routinely in use on any tokamak. It provides unique data which are independent of all other diagnostic measurements. (orig.)

  17. Confinement and stability in JET: recent results

    International Nuclear Information System (INIS)

    Campbell, D.J.

    1990-01-01

    The versatility of the JET device allows a wide range of tokamak operating regimes to be explored and plasmas bounded both by material limiters and by a magnetic separatrix have been investigated extensively. This has permitted the confinement and mhd stability properties of plasmas heated to temperatures above 10keV by neutral beam injection or ion cyclotron resonance heating to be studied in detail. The results of recent analyses of transport and confinement in the L- and H-mode regimes in JET are discussed and the properties of H-mode plasmas produced by both major forms of heating are compared. Several aspects of the mhd stability of such plasmas, particularly at high toroidal beta, β θ , and at the density limit, are reviewed. (author)

  18. Conceptual design of the steady state tokamak reactor (SSTR)

    International Nuclear Information System (INIS)

    Oikawa, A.; Kikuchi, M.; Seki, Y.; Nishio, S.; Ando, T.; Ohara, Y.; Takizuka, Tani, K.; Ozeki, T.; Koizumi, K.; Ikeda, B.; Suzuki, Y.; Ueda, N.; Kageyama, T.; Yamada, M.; Mizoguchi, T.; Iida, F.; Ozawa, Y.; Mori, S.; Yamazaki, S.; Kobayashi, T.; Adachi, H.J.; Shinya, K.; Ozaki, A.; Asahara, M.; Konishi, K.; Yokogawa, N.

    1992-01-01

    This paper reports that on the basis of a high bootstrap current fraction observation with JT-60, the concept of steady state tokamak reactor , the SSTR, was conceived and was evolved with the design activity of the SSTR at JAERI. Also results of ITER/FER design activities has enhanced the SSTR design. Moreover the remarkable progress of R and D for fusion reactor engineering, especially in the development of superconducting coils and negative ion based NBI at JAERI have promoted the SSTR conceptual design as a realistic power reactor. Although present fusion power reactor designs are currently considered to be too large and costly, results of the SSTR conceptual design suggest that an efficient and promising tokamak reactor will be feasible. The conceptual design of the SSTR provides a realistic reference for a demo tokamak reactor

  19. Jet Car Track Site

    Data.gov (United States)

    Federal Laboratory Consortium — Located in Lakehurst, New Jersey, the Jet Car Track Site supports jet cars with J57 engines and has a maximum jet car thrust of 42,000 pounds with a maximum speed of...

  20. Jet Crackle

    Science.gov (United States)

    2015-06-23

    crackle is correlated to signals with intermittent periods of steepened shock-like waves followed by weaker, longer, rounded rarefaction regions, but to...turbulence is concentrated in a weakly curved (for a typical round jet) shear layer between the high-speed potential core flow and the surrounding co-flow...decreases into the acoustic field. The effect of varying dc between −0.1 and −0.003δm(t)/∆U causes the Nδm/Lx curves to shift downward as fewer waves