WorldWideScience

Sample records for title compound c7h3f3o2

  1. New metal-organic frameworks of [M(C6H5O7)(C6H6O7)(C6H7O7)(H2O)] . H2O (M=La, Ce) and [Ce2(C2O4)(C6H6O7)2] . 4H2O

    International Nuclear Information System (INIS)

    Weng Shengfeng; Wang, Yun-Hsin; Lee, Chi-Shen

    2012-01-01

    Two novel materials, [M(C 6 H 5 O 7 )(C 6 H 6 O 7 )(C 6 H 7 O 7 )(H 2 O)] . H 2 O (M=La(1a), Ce(1b)) and [Ce 2 (C 2 O 4 )(C 6 H 6 O 7 ) 2 ] . 4H 2 O (2), with a metal-organic framework (MOF) were prepared with hydrothermal reactions and characterized with photoluminescence, magnetic susceptibility, thermogravimetric analysis and X-ray powder diffraction in situ. The crystal structures were determined by single-crystal X-ray diffraction. Compound 1 crystallized in triclinic space group P1-bar (No. 2); compound 2 crystallized in monoclinic space group P2 1 /c (No. 14). The structure of 1 is built from a 1D MOF, composed of deprotonated citric ligands of three kinds. Compound 2 contains a 2D MOF structure consisting of citrate and oxalate ligands; the oxalate ligand arose from the decomposition in situ of citric acid in the presence of Cu II ions. Photoluminescence spectra of compounds 1b and 2 revealed transitions between the 5d 1 excited state and two levels of the 4f 1 ground state ( 2 F 5/2 and 2 F 7/2 ). Compounds 1b and 2 containing Ce III ion exhibit a paramagnetic property with weak antiferromagnetic interactions between the two adjacent magnetic centers. - Graphical Abstract: [M(C 6 H 5 O 7 )(C 6 H 6 O 7 )(C 6 H 7 O 7 )(H 2 O)] . H 2 O (M=La(1a), Ce(1b)) and [Ce 2 (C 2 O 4 )(C 6 H 6 O 7 ) 2 ] . 4H 2 O (2)—with 1D and 2D structures were synthesized and characterized. Highlights: ► Two MOF – [M(C 6 H 5 O 7 )(C 6 H 6 O 7 )(C 6 H 7 O 7 )(H 2 O)] . H 2 O (M=La(1a), Ce(1b)) and [Ce 2 (C 2 O 4 )(C 6 H 6 O 7 ) 2 ] . 4H 2 O (2) – with 1D and 2D structures. ► The adjacent chains of the 1D framework were correlated with each other through an oxalate ligand to form a 2D layer structure. ► The source of the oxalate ligand was the decomposition in situ of citric acid oxidized in the presence of Cu II ions.

  2. (3aS,7aS-5-[(S-3,3,3-Trifluoro-2-methoxy-2-phenylpropanoyl]-2,3,4,5,6,7-hexahydro-1H-pyrrolo[3,4-c]pyridin-3(2H-one monohydrate

    Directory of Open Access Journals (Sweden)

    Huichun Zhu

    2010-01-01

    Full Text Available rac-Benzyl 3-oxohexahydro-1H-pyrrolo[3,4-c]pyridine-5(6H-carboxylate was separated by chiral chromatography, and one of the enantiomers ([α]22D = +10° was hydrogenated in the presence of Pd/C in methanol, producing octahydro-3H-pyrrolo[3,4-c]pyridin-3-one. The latter was reacted with (2R-3,3,3-trifluoro-2-methoxy-2-phenylpropanoyl chloride [(R-(−-Mosher acid chloride], giving rise to the title compound, C17H19F3N2O3·H2O. The present structure established the absolute configuration of the pyrrolopiperidine fragment based on the known configuration of the (R-Mosher acid chloride. The piperidine ring has a somewhat distorted chair conformation and is cis-fused with the five-membered envelope-shaped ring; the plane of the exocyclic amide bond is approximately orthogonal to the plane of the phenyl ring, making a dihedral angle of 82.31 (3°. The water molecule acts as an acceptor to the proton of the amino group in an N—H...O interaction, and as a double proton donor in O—H...O hydrogen bonds, generating infinite bands along the a axis.

  3. Synthesis and Molecular Structure of 6-Amino-3-benzylmercapto-1,2,4-triazolo[3,4-f][1,2,4]triazin-8(7H-one

    Directory of Open Access Journals (Sweden)

    Gene-Hsiang Lee

    2006-03-01

    Full Text Available The title compound 6-amino-3-benzylmercapto-1,2,4-triazolo[3,4-f][1,2,4]-triazin-8(7H-one (4, molecular formula C11H10N6OS, was obtained by the reaction of3-amino-2-benzyl-6-hydrazino-1,2,4-triazin-5(2H-one (3 with carbon disulfide in awater/pyridine mixture. Compound 4 can also be synthesized by reacting6-amino-3(2Hmercapto-1,2,4-triazolo[3,4-f][1,2,4]triazin-8(7H-one (7 with benzylbromide in methanolic ammonia water. The compound crystallizes in the monoclinicspace group P21/c with a = 7.2926(15, b = 14.456(2, c = 11.436(2 å, β = 105.30(2°, V= 1162.9(4 å3 and Z = 4, resulting in a density Dcalc of 1.567 g/cm3. Molecules of 4 arelinked by extensive intermolecular N-H···N and N-H···O hydrogen bonding [graph set R22 (9]. The structure is further stabilized by π-π stacking interactions. 2

  4. Clean to dirty limit and T c suppression in NdFeAsO0.7F0.3 studied by H c2 analysis

    Science.gov (United States)

    Pallecchi, I.; Tarantini, C.; Shen, Y.; Singh, R. K.; Newman, N.; Cheng, P.; Jia, Y.; Wen, H.-H.; Putti, M.

    2018-07-01

    In this work, we investigate the temperature dependence of the upper critical field, dH c2/dT, in an increasingly disordered NdFeAsO0.7F0.3 (NdFeAs(O,F)) single crystal that has been progressively irradiated up to a 5.25 × 1016 cm- 2 total α-particle dose. For the H∣∣ab-plane, dH c2/dT does not vary remarkably with irradiation, while for the H∣∣c-axis it increases sharply after the first irradiation of 3.60 × 1015 cm-2 and then more gradually with further irradiation doses. Focusing on the H∣∣c-axis, we develop a phenomenological analysis of the H c2 slope which allows us to inspect the crossover from the clean to the dirty regime. From the H c2 slope normalized to the critical temperature and to its clean limit value, we extract the ratio of the coherence length ξ BCS to the mean free path {\\ell } and we find that when T c is reduced by a factor of four from its pristine value, ξ BCS/{\\ell } becomes as large as ˜7 and {\\ell } reaches values of ˜1.8 nm, indicating that NdFeAs(O,F) is well into the dirty regime. Our analysis of the H c2 slope also allows us to compare the pair-breaking effectiveness of scattering in different superconductors, showing similarity between unconventional NdFeAs(O,F) and moderate-T c phonon-mediated devices, such as MgB2 and A15 compounds, but much a stronger difference with YBa2Cu3O7-δ . This work thus shows that dH c2/dT is a reliable parameter, providing an alternative to residual resistivity, for investigating the pair-breaking mechanism induced by impurity scattering in superconductors.

  5. Synthesis, crystal structure and Raman spectrum of Ba{sub 7}[BO{sub 3}]{sub 3}Br(O{sub 1.33}F{sub 1.33})

    Energy Technology Data Exchange (ETDEWEB)

    Reckeweg, Olaf; DiSalvo, Francis J. [Cornell Univ., Ithaca, NY (United States). Dept. of Chemistry and Chemical Biology; Schulz, Armin [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)

    2017-05-01

    In addition to amorphous material and Ba{sub 7}[BO{sub 3}]{sub 4-x}F{sub 2-3x}, air and moisture sensitive single crystals of Ba{sub 7}[BO{sub 3}]{sub 3}Br(O{sub 1.33}F{sub 1.33}) were formed from H{sub 3}BO{sub 3}, Ba(OH){sub 2}, BaF{sub 2} and BaBr{sub 2} . H{sub 2}O in alumina crucibles open to the atmosphere at 1300 K for 13 h. Ba{sub 7}[BO{sub 3}]{sub 3}Br(O{sub 1.33}F{sub 1.33}) crystallizes in the hexagonal space group P6{sub 3}mc (no. 186, Z=2) with the lattice parameters a=1118.1(2) and c=723.93(13) pm. The Raman spectrum of the title compounds was also acquired and is compared to literature data.

  6. Synthesis and X-ray crystal structure of (OsO(3)F(2))(2)2XeOF(4) and the Raman spectra of (OsO(3)F(2))(infinity), (OsO(3)F(2))(2), and (OsO(3)F(2))(2)2XeOF(4).

    Science.gov (United States)

    Hughes, Michael J; Mercier, Hélène P A; Schrobilgen, Gary J

    2009-05-18

    The adduct, (OsO(3)F(2))(2)2XeOF(4), was synthesized by dissolution of the infinite chain polymer, (OsO(3)F(2))(infinity), in XeOF(4) solvent at room temperature followed by removal of excess XeOF(4) under dynamic vacuum at 0 degrees C. Continued pumping at 0 degrees C resulted in removal of associated XeOF(4), yielding (OsO(3)F(2))(2), a new low-temperature phase of OsO(3)F(2). Upon standing at 25 degrees C for 1(1)/(2) h, (OsO(3)F(2))(2) underwent a phase transition to the known monoclinic phase, (OsO(3)F(2))(infinity). The title compounds, (OsO(3)F(2))(infinity), (OsO(3)F(2))(2), and (OsO(3)F(2))(2)2XeOF(4) have been characterized by low-temperature (-150 degrees C) Raman spectroscopy. Crystallization of (OsO(3)F(2))(2)2XeOF(4) from XeOF(4) solution at 0 degrees C yielded crystals suitable for X-ray structure determination. The structural unit contains the (OsO(3)F(2))(2) dimer in which the OsO(3)F(3) units are joined by two Os---F---Os bridges having fluorine bridge atoms that are equidistant from the osmium centers (2.117(5) and 2.107(4) A). The dimer coordinates to two XeOF(4) molecules through Os-F...Xe bridges in which the Xe...F distances (2.757(5) A) are significantly less than the sum of the Xe and F van der Waals radii (3.63 A). The (OsO(3)F(2))(2) dimer has C(i) symmetry in which each pseudo-octahedral OsO(3)F(3) unit has a facial arrangement of oxygen ligands with XeOF(4) molecules that are only slightly distorted from their gas-phase C(4v) symmetry. Quantum-chemical calculations using SVWN and B3LYP methods were employed to calculate the gas-phase geometries, natural bond orbital analyses, and vibrational frequencies of (OsO(3)F(2))(2), (OsO(3)F(2))(2)2XeOF(4), XeOF(4), OsO(2)F(4), and (mu-FOsO(3)F(2))(2)OsO(3)F(-) to aid in the assignment of the experimental vibrational frequencies of (OsO(3)F(2))(2), (OsO(3)F(2))(2)2XeOF(4), and (OsO(3)F(2))(infinity). The vibrational modes of the low-temperature polymeric phase, (OsO(3)F(2))(infinity), have been

  7. 5-[(3-Fluorophenyl(2-hydroxy-6-oxocyclohex-1-en-1-ylmethyl]-6-hydroxy-1,3-dimethylpyrimidine-2,4(1H,3H-dione

    Directory of Open Access Journals (Sweden)

    Assem Barakat

    2016-09-01

    Full Text Available 5-[(3-Fluorophenyl(2-hydroxy-6-oxocyclohex-1-en-1-yl-methyl]-6-hydroxy-1,3-di-methylpyrimidine-2,4(1H,3H-dione 3 was synthesized via a multicomponent reaction. The Aldol–Michael addition reactions of N,N-dimethylbarbituric acid, cyclohexane-1,3-dione, and 3-fluorobenzaldehyde in aqueous solution gave the product in high yield. The molecular structure of the compound was confirmed by spectroscopic methods and X-ray crystallography. The title compound (C19H19FN2OH2O crystallizes in the Monoclinic form, P21/c, a = 7.8630 (5 Å, b = 20.0308 (13 Å, c = 11.3987 (8 Å, β = 104.274 (3°, V = 1739.9 (2° Å3, Z = 4, Rint = 0.117, wR(F2 = 0.124, T = 100 K.

  8. meso-4,4′-Difluoro-2,2′-{[(3aR,7aS-2,3,3a,4,5,6,7,7a-octahydro-1H-1,3-benzimidazole-1,3-diyl]bis(methylene}diphenol

    Directory of Open Access Journals (Sweden)

    Augusto Rivera

    2013-02-01

    Full Text Available In the crystal structure of the title compound, C21H24F2N2O2, there are two intramolecular O—H...N hydrogen bonds involving the N atoms of the imidazolidine ring and the hydroxy groups. The crystal studied was a meso compound obtained by the reaction of the aminal (2S,7R,11S,16R-1,8,10,17-tetraazapentacyclo[8.8.1.18,17.02,7.011,16]cosane with 4-fluorophenol. The imidazolidine ring has a twisted conformation with a CH—CH—N—CH2 torsion angle of 44.99 (14° and, surprisingly, the lone pairs of the N atoms are disposed in a syn isomerism, making the title compound an exception to the typical `rabbit-ear effect' in 1,2-diamines. In the crystal, molecules are linked via C—H...F hydrogen bonds, forming chains along the c-axis direction. These chains are linked via another C—H...F hydrogen bond, forming a three-dimensional network.

  9. catena-Poly[[[diaqua(2-fluorobenzoato-κ2O,O′strontium]-μ3-2-fluorobenzoato-κ5O:O,O′:O′,F] monohydrate

    Directory of Open Access Journals (Sweden)

    Zhu-Nian Jin

    2011-04-01

    Full Text Available In the title compound, {[Sr(C7H4FO22(H2O2H2O}n, the SrII atom is coordinated by six O atoms and one F atom from four 2-fluorobenzoate ligands and two water molecules, resulting in an irregular SrFO8 coordination environment. The μ3-2-fluorobenzoate ligand bridges three symmetry-related SrII atoms, giving rise to a chain structure extending along [010]. The polymeric chains are connected via O—H...O hydrogen bonds into a two-dimensional supramolecular structure parallel to (100.

  10. Hydrothermal synthesis, structural elucidation, spectroscopic studies, thermal behavior and luminescence properties of a new 3-d compound: FeAlF2(C10H8N2)(HPO4)2(H2O)

    Science.gov (United States)

    Bouzidia, Nabaa; Salah, Najet; Hamdi, Besma; Ben Salah, Abdelhamid

    2017-04-01

    The study of metal phosphate has been a proactive field of research thanks to its applied and scientific importance, especially in terms of the development of optical devices such as solid state lasers as well as optical fibers. The present paper seeks to investigate the synthesis, crystal structure, elemental analysis and properties of FeAlF2(C10H8N2)(HPO4)2(H2O) compound investigated by spectroscopic studies (FT-IR and FT-Raman), thermal behavior and luminescence. The Hirshfeld surface analysis and 2-D fingerprint plot have been performed to explore the behavior of these weak interactions and crystal cohesion. This investigation shows that the molecules are connected by hydrogen bonds of the type Osbnd H⋯O and Osbnd H⋯F. In addition, the 2,2'‒bipyridine ligand plays a significant role in the construction of 3-D supramolecular framework via π‒π stacking. FT‒IR and FT‒Raman spectra were used so as to ease the responsibilities of the vibration modes of the title compound. The thermal analysis (TGA) study shows a mass loss evolution as a temperature function. Finally, the optical properties were evaluated by photoluminescence spectroscopy.

  11. An open-framework three-dimensional indium oxalate: [In(OH)(C2O4)(H2O)]3.H2O

    International Nuclear Information System (INIS)

    Yang Sihai; Li Guobao; Tian Shujian; Liao Fuhui; Lin Jianhua

    2005-01-01

    By hydrothermal reaction of In 2 O 3 with H 2 C 2 O 4 .2H 2 O in the presence of H 3 BO 3 at 155 deg. C, an open-framework three-dimensional indium oxalate of formula [In(OH)(C 2 O 4 )(H 2 O)] 3 .H 2 O (1) has been obtained. The compound crystallizes in the trigonal system, space group R3c with a=18.668(3)A, c=7.953(2)A, V=2400.3(7)A 3 , Z=6, R 1 =0.0352 at 298K. The small pores in 1 are filled with water molecules. It loses its filled water at about 180 deg. C without the change of structure, then the bounded water at 260 deg. C, and completely decompounds at 324 deg. C. The residue is confirmed to be In 2 O 3

  12. [2,6-Difluoro-3-(pyridin-2-yl-κNpyridin-4-yl-κC4](pentane-2,4-dionato-κ2O,O′iridium(III

    Directory of Open Access Journals (Sweden)

    Kaijun Luo

    2013-11-01

    Full Text Available The title compound, [Ir(C10H5F2N22(C5H7O2], has a distorted octahedral coordination geometry around the IrIII atom, retaining the cis-C,C/trans-N,N chelate disposition in two 2,6-difluoro-3-(pyridin-2-yl-κNpyridin-4-yl ligands which are nearly mutually perpendicular [dihedral angle = 82.75 (15°]. The molecular structure is stabilized by weak C—H...O and C—H...F hydrogen-bond interactions. The crystal structure is stabilized by π–π stacking interactions (centroid–centroid distance = 3.951 Å.

  13. Hydrothermal syntheses, structural, Raman, and luminescence studies of Cm[M(CN)2]3.3H2O and Pr[M(CN)2]3.3H2O (M=Ag, Au)

    International Nuclear Information System (INIS)

    Assefa, Zerihun; Haire, Richard G.; Sykora, Richard E.

    2008-01-01

    We have prepared Cm[Au(CN) 2 ] 3 .3H 2 O and Cm[Ag(CN) 2 ] 3 .3H 2 O as a part of our continuing investigations into the chemistry of the 5f-elements' dicyanometallates. Single crystals of Cm[Au(CN) 2 ] 3 .3H 2 O were obtained from the reaction of CmCl 3 and KAu(CN) 2 under mild hydrothermal conditions. Due to similarities in size, the related praseodymium compounds were also synthesized and characterized for comparison with the actinide systems. The compounds crystallize in the hexagonal space group P6 3 /mcm, where the curium and the transition metals interconnect through cyanide bridging. Crystallographic data (Mo Kα, λ=0.71073 A): Cm[Au(CN) 2 ] 3 .3H 2 O (1), a=6.6614(5) A, c=18.3135(13) A, V=703.77(9), Z=2; Pr[Au(CN) 2 ] 3 .3H 2 O (3), a=6.6662(8) A, c=18.497(3) A, V=711.83(17), Z=2; Pr[Ag(CN) 2 ] 3 .3H 2 O (4), a=6.7186(8) A, c=18.678(2) A, V=730.18(14), Z=2. The Cm 3+ and/or Pr 3+ ions are coordinated to six N-bound CN - groups resulting in a trigonal prismatic arrangement. Three oxygen atoms of coordinated water molecules tricap the trigonal prismatic arrangement providing a coordination number of nine for the f-elements. The curium ions in both compounds exhibit a strong red emission corresponding to the 6 D 7/2 → 8 S 7/2 transition. This transition is observed at 16,780 cm -1 , with shoulders at 17,080 and 16,840 cm -1 for the Ag complex, while the emission is red shifted by ∼100 cm -1 in the corresponding gold complex. The Pr systems also provide well-resolved emissions upon f-f excitation. - Graphical abstract: Coordination polymeric compounds between a trans-plutonium element, curium and transition metal ions, gold(I) and silver(I), were prepared using the hydrothermal synthetic procedure. The curium ion and the transition metals are interconnected through cyanide bridging. The Cm ion has a tricapped trigonal prismatic coordination environment with coordination number of nine. Detail photoluminescence studies of the complexes are also reported

  14. Synthesis and characteristics of a novel 3-D organic amine oxalate: (enH2)1.5[Bi3(C2O4)6(CO2CONHCH2CH2NH3)].6.5H2O

    International Nuclear Information System (INIS)

    Yu Xiaohong; Zhang Hanhui; Cao Yanning; Chen Yiping; Wang Zhen

    2006-01-01

    A novel 3-D compound of (enH 2 ) 1.5 [Bi 3 (C 2 O 4 ) 6 (CO 2 CONHCH 2 CH 2 NH 3 )].6.5H 2 O has been hydrothermally synthesized and characterized by IR, ultraviolet-visible diffuse reflection integral spectrum (UV-Vis DRIS), fluorescence spectra, TGA and single crystal X-ray diffraction. It crystallizes in the monoclinic system, space group C2/c with a=31.110(8)A, b=11.544(3)A, c=22.583(6)A, β=112.419(3) o , V=7497(3)A 3 , Z=8, R 1 =0.0463 and wR 2 =0.1393 for unique 7686 reflections I>2σ(I). In the title compound, the Bi atoms have eight-fold and nine-fold coordination with respect to the oxygen atoms, with the Bi atoms in distorted dodecahedron and monocapped square antiprism, respectively. The 3-D framework of the title compound contains channels and is composed of linkages between Bi atoms and oxalate units, forming honeycomb-like layers with two kinds of 6+6 membered aperture, and pillared by oxalate ligands and monamide groups. The channels have N-ethylamine oxalate monamide group - CO 2 CONHCH 2 CH 2 NH 3 + , which is formed by the in situ reaction of en and oxalate acid. At room temperature, the complex exhibits intense blue luminescence with an emission peak at 445nm

  15. 2-(4-Fluoroanilino-3-(2-hydroxyethylquinazolin-4(3H-one

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available The molecular and crystal structures of the title compound, C16H14FN3O2, are stabilized by intramolecular N—H...O and intermolecular O—H...O hydrogen bonds. The existence of non-classical intramolecular C—H...N hydrogen bonds provides a dihedral angle between the fluoro-substituted benzene and pyrimidinone rings of 7.9 (1°.

  16. Ethyl 2-[(2-hydroxybenzylideneamino]-6-methyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxylate

    Directory of Open Access Journals (Sweden)

    Naki Çolak

    2013-07-01

    Full Text Available The title compound, C18H20N2O3S, exists as the phenol–imine form in the crystal and there are bifurcated intramolecular O—H...(N/O hydrogen bonds present. The conformation about the C=N bond is anti (1E; the C=N imine bond length is 1.287 (4 Å and the C=N—C angle is 122.5 (3°. In the tetrahydrothienopyridine moiety, the six-membered ring has a flattened-boat conformation. In the crystal, molecules are stacked nearly parallel to (110 and a weak C—H...π interaction is observed. The carbonyl O atom is disordered over two positions and was refined with a fixed occupancy ratio of 0.7:0.3.

  17. Synthesis and crystal structure of new uranyl selenite(IV)-selenate(VI) [C5H14N][(UO2)3(SeO4)4(HSeO3)(H2O)](H2SeO3)(HSeO4)

    International Nuclear Information System (INIS)

    Krivovichev, S.V.; Tananaev, I.G.; Myasoedov, B.F.; Kalenberg, V.

    2006-01-01

    Crystals of new uranyl selenite(IV)-selenate(VI) [C 5 H 14 N][(UO 2 ) 3 (SeO 4 ) 4 (HSeO 3 )(H 2 O)](H 2 SeO 3 )(HSeO 4 ) are obtained by the method of evaporation from aqueous solutions. Compound has triclinic lattice, space group P1-bar, a=11.7068(9), b=14.8165(12), c=16.9766(15), α=73.899(6), β=76.221(7), γ=89.361(6) Deg, V=2743.0(4) A 3 , Z=2. Laminated complexes (UO 2 ) 3 (SeO 4 ) 4 (HSeO 3 )(H 2 O)] 3- are the basis of the structure. [HSe(VI)O 4 ] - , [H 2 Se(IV)O 3 ] complexes and protonated methylbutylamine cations are disposed between layers [ru

  18. Extended networks, porous sheets, and chiral frameworks. Thorium materials containing mixed geometry anions: Structures and properties of Th(SeO3)(SeO4), Th(IO3)2(SeO4)(H2O)3.H2O, and Th(CrO4)(IO3)2

    International Nuclear Information System (INIS)

    Sullens, Tyler A.; Almond, Philip M.; Byrd, Jessica A.; Beitz, James V.; Bray, Travis H.; Albrecht-Schmitt, Thomas E.

    2006-01-01

    Three novel Th(IV) compounds containing heavy oxoanions, Th(SeO 3 )(SeO 4 ) (1), Th(IO 3 ) 2 (SeO 4 )(H 2 O) 3 .H 2 O (2), and Th(CrO 4 )(IO 3 ) 2 (3), have been synthesized under mild hydrothermal conditions. Each of these three distinct structures contain trigonal pyramidal and tetrahedral oxoanions. Compound 1 adopts a three-dimensional structure formed from ThO 9 tricapped trigonal prisms, trigonal pyramidal selenite, SeO 3 2- , anions containing Se(IV), and tetrahedral selenate, SeO 4 2- , anions containing Se(VI). The structure of 2 contains two-dimensional porous sheets and occluded water molecules. The Th centers are found as isolated ThO 9 tricapped trigonal prisms and are bound by four trigonal pyramidal iodate anions, two tetrahedral selenate anions, and three coordinating water molecules. In the structure of 3, the Th(IV) cations are found as ThO 9 tricapped trigonal prisms. Each Th center is bound by six IO 3 1- anions and three CrO 4 2- anions forming a chiral three-dimensional structure. Second-harmonic generation of 532nm light from 1064nm radiation by a polycrystalline sample of 3 was observed. Crystallographic data (193K, MoKα, λ=0.71073): 1; monoclinic, P2 1 /c; a=7.0351(5)A, b=9.5259(7)A, c=9.0266(7)A, β=103.128(1), Z=4, R(F)=2.47% for 91 parameters with 1462 reflections with I>2σ(I); 2, monoclinic, P2 1 /n, a=7.4889(9)A, b=8.002(1)A, c=20.165(3)A, β=100.142(2), Z=4, R(F)=4.71% for 158 parameters with 2934 reflections with I>2σ(I); 3, orthorhombic, P2 1 2 1 2 1 , a=7.3672(5)A, b=9.3617(6)A, c=11.9201(7)A, Z=4, R(F)=2.04% for 129 parameters with 2035 reflections with I>2σ(I)

  19. 5-Fluoro-6′H,7H,8′H-spiro[indoline-3,7′-pyrano[3,2-c:5,6-c′]di-1-benzopyran]-2,6′,8′-trione

    Directory of Open Access Journals (Sweden)

    J. Suresh

    2012-03-01

    Full Text Available In the title compound, C26H12FNO6, the central pyran ring and both benzopyran systems are nonplanar, having total puckering amplitudes of 0.139 (2, 0.050 (1 and 0.112 (2 Å, respectively. The central pyran ring adopts a boat conformation. The crystal structure is stabilized by C—H...O, N—H...O, N—H...F and C—H...π interactions.

  20. Synthesis and crystal structure of a new neodymium(III) selenate-selenite: Nd2(SeO4)(SeO3)2(H2O)2

    International Nuclear Information System (INIS)

    Feng Meiling; Mao Jianggao

    2005-01-01

    The title new neodymium(III) selenate-selenite was obtained by hydrothermal reactions of neodymium(III) oxide, H 2 SeO 4 and 1,10-phenanthroline at 140 o C. Its structure was established by single-crystal X-ray diffraction. The title compound crystallizes in the monoclinic space group C2/c with cell parameters of a = 12.258(2) A, b 7.1024(15) A, c = 13.391(3) A, β = 104.250(2) o . The structure of Nd 2 (SeO 4 )(SeO 3 ) 2 (H 2 O) 2 is isomorphous with that of Er 2 (SeO 4 )(SeO 3 ) 2 (H 2 O) 2 , which was refined in the monoclinic space group C2 with the disordered selenate group. It features an ordered 3D network with channels along b-axis. The selenate or selenite groups alone can form a 2D layer with the Nd(III) ions. IR spectrum, TGA and luminescent studies have also been performed

  1. Design and syntheses of hybrid metal-organic materials based on K3[M(C2O4)33H2O [M(III)=Fe, Al, Cr] metallotectons

    Science.gov (United States)

    Sun, Yayong; Zong, Yingxia; Ma, Haoran; Zhang, Ao; Liu, Kang; Wang, Debao; Wang, Wenqiang; Wang, Lei

    2016-05-01

    By using K3[M(C2O4)33H2O [M(III)=Fe, Al, Cr] (C2O42-=oxalate) metallotectons as the starting material, we have synthesized eight novel complexes with formulas [{Fe(C2O4)2(H2O)2}2]·(H-L1)2·H2O 1, [Fe(C2O4)Cl2]·(H2-L2)0.5·(L2)0.5·H2O 2, [{Fe(C2O4)1.5Cl2}2]·(H-L3)43, [Fe2(C2O4)Cl8]·(H2-L4)2·2H2O 4, K[Al(C2O4)3]·(H2-L5)·2H2O 5, K[Al(C2O4)3]·(H-L6)2·2H2O 6, K[Cr(C2O4)32H2O 7, Na[Fe(C2O4)3]·(H-L6)2·2H2O 8 (with L1=4-dimethylaminopyridine, L2=2,3,5,6-tetramethylpyrazine, L3=2-aminobenzimidazole, L4=1,4-bis-(1H-imidazol-1-yl)benzene, L5=1,4-bis((2-methylimidazol-1-yl)methyl)benzene, L6=2-methylbenzimidazole). Their structures have been determined by single-crystal X-ray diffraction analyses, elemental analyses, IR spectra and thermogravimetric analyses. Compound 3 is a 2D H-bonded supramolecular architecture. Others are 3D supramolecular structures. Compound 1 shows a [Fe(C2O4)2(H2O)2]- unit and 3D antionic H-bonded framework. Compound 2 features a [Fe(C2O4)Cl2]- anion and 1D iron-oxalate-iron chain. Compound 3 features a [Fe2(C2O4)3Cl4]4- unit. Compound 4 features distinct [Fe2(C2O4)Cl8]4- units, which are mutual linked by water molecules to generated a 2D H-bonded network. Compound 5 features infinite ladder-like chains constructed by [Al(C2O4)3]3- units and K+ cations. The 1D chains are further extended into 3D antionic H-bonded framework through O-H···O H-bonds. Compounds 6-8 show 2D [KAl(C2O4)3]2- layer, [KCr(C2O4)3]2- layer and [NaFe(C2O4)3]2- layer, respectively.

  2. Tert-butyl 3-oxo-2,3,4,5,6,7-hexahydro-1H-pyrazolo[4,3-c]pyridine-5-carboxylate

    Directory of Open Access Journals (Sweden)

    Tara Shahani

    2010-01-01

    Full Text Available In the title compound, C11H17N3O3, the pyrazole ring is approximately planar, with a maximum deviation of 0.005 (2 Å, and forms a dihedral angle of 5.69 (13° with the plane through the six atoms of the piperidine ring. In the crystal, pairs of intermolecular N—H...O hydrogen bonds form dimers with neighbouring molecules, generating R22(8 ring motifs. These dimers are further linked into two-dimensional arrays parallel to the bc plane by intermolecular N—H...O and C—H...O hydrogen bonds.

  3. (3R,6S,7aS-3-Phenyl-6-(phenylsulfanylperhydropyrrolo[1,2-c]oxazol-5-one

    Directory of Open Access Journals (Sweden)

    Anthony D. Woolhouse

    2009-05-01

    Full Text Available Molecules of the title compound [systematic name: (2R,5S,7S-2-phenyl-7-phenylsulfanyl-1-aza-3-oxabicyclo[3.3.0]octan-8-one], C18H17NO2S, form high quality crystals even though they are only packed using C—H...O(carbonyl and weak C—H...S interactions. The dihedral angle between the aromatic rings is 85.53 (5°. The fused rings adopt envelope and twist conformations.

  4. 7-Diethylamino-2-oxo-2H-chromene-3-carbohydrazide

    Directory of Open Access Journals (Sweden)

    Li-Jun Zhang

    2011-05-01

    Full Text Available The asymmetric unit of the title compound, C14H17N3O3, contains two independent molecules with different conformations of the ethyl groups. In the crystal, intermolecular N—H...O hydrogen bonds link the molecules into ribbons extending along the a axis.

  5. A neodymium(III)-ammonium complex involving oxalate and carbonate ligands: (NH4)2[Nd2(C2O4)3(CO3)(H2O)].H2O.

    Science.gov (United States)

    Trombe, Jean-Christian; Galy, Jean; Enjalbert, Renée

    2002-10-01

    The title compound, diammonium aqua-mu-carbonato-tri-mu-oxalato-dineodymium(III) hydrate, (NH(4))(2)[Nd(2)(CO(3))(C(2)O(4))(3)(H(2)O)].H(2)O, involving the two ligands oxalate and carbonate, has been prepared hydrothermally as single crystals. The Nd atoms form a tetranuclear unit across the inversion centre at (1/2, 1/2, 1/2). Starting from this tetranuclear unit, the oxalate ligands serve to develop a three-dimensional network. The carbonate group acts as a bis-chelating ligand to two Nd atoms, and is monodentate to a third Nd atom. The oxalate groups are all bis-chelating. The two independent Nd atoms are ninefold coordinated and the coordination polyhedron of these atoms is a distorted monocapped antiprism.

  6. Structure of LaH(PO3H)2.3H2O

    International Nuclear Information System (INIS)

    Loukili, M.; Durand, J.; Larbot, A.; Cot, L.; Rafiq, M.

    1991-01-01

    Lanthanum hydrogen bis(hydrogenphosphite) trihydrate, LaH(Po 3 H) 2 .3H 2 O, M r =353.8, monoclinic, P2 1 /c, a=9.687 (3), b=7.138 (2), c=13.518 A, β=104.48 (3) deg, V=905.0 (5) A 3 , Z=4, D m =2.56 (2), D x =2.598 Mg m -3 , λ(MoKα)=0.71073 A, μ(MoKα)=5.103 mm -1 , F(000)=672, T=300 K, R=0.032 for 1018 independent observed reflections. The structure contains two phosphite anions connected by a hydrogen bond. The La 3+ cation is eight coordinated by seven O atoms from phosphite anions and one O atom of a water molecule. (orig.)

  7. Systems Li2B4O7 (Na2B4O7, K2B4O7)-N2H3H4OH-H2O at 25 deg C

    International Nuclear Information System (INIS)

    Skvortsov, V.G.; Sadetdinov, Sh.V.; Akimov, V.M.; Mitrasov, Yu.N.; Petrova, O.V.; Klopov, Yu.N.

    1994-01-01

    Phase equilibriums in the Li 2 B 4 O 7 (Na 2 B 4 O 7 , K 2 B 4 O 7 )-N 2 H 3 H 4 OH-H 2 O systems were investigated by methods of isothermal solubility, refractometry and PH-metry at 25 deg C for the first time. Lithium and sodium tetraborates was established to form phases of changed composition mM 2 B 4 O 7 ·nN 2 H 3 C 2 H 4 OH·XH 2 O, where M=Li, Na with hydrazine ethanol. K 2 B 4 O 7 ·4H 2 O precipitates in solid phase in the case of potassium salt. Formation of isomorphous mixtures was supported by X-ray diffraction and IR spectroscopy methods

  8. 7,7′-(3,3′-Dibenzyl-3H,3H-4,4′-bi-1,2,3-triazole-5,5′-diylbis(4-methyl-2H-chromen-2-one

    Directory of Open Access Journals (Sweden)

    Michael J. Ferguson

    2008-10-01

    Full Text Available The title compound, a bis-5,5′-triazole, C38H28N6O4, was observed as a side-product from the Sharpless–Meldal click reaction of the corresponding coumarin alkyne and benzylazide. Although the compound was present as a minor component, it crystallized in preference to the major product. The two triazole rings are almost orthogonal to each other [dihedral angle = 83.8 (1°]. However the 4 and 4′ coumarin systems are close to coplanar with their respective triazole rings [23.6 (1 and 15.1 (1°]. Each of the benzene rings packs approximately face-to-face with the opposing coumarin ring systems, with interplanar angles of 7.7 (1 and 25.3 (1° and distances of 3.567 (2 and 3.929 (2 Å between the respective centroids of the opposing rings.

  9. Semiconducting perovskites (2-XC6H4C2H4NH3)2SnI4 (X = F, Cl, Br): steric interaction between the organic and inorganic layers.

    Science.gov (United States)

    Xu, Zhengtao; Mitzi, David B; Dimitrakopoulos, Christos D; Maxcy, Karen R

    2003-03-24

    Two new semiconducting hybrid perovskites based on 2-substituted phenethylammonium cations, (2-XC(6)H(4)C(2)H(4)NH(3))(2)SnI(4) (X = Br, Cl), are characterized and compared with the previously reported X = F compound, with a focus on the steric interaction between the organic and inorganic components. The crystal structure of (2-ClC(6)H(4)C(2)H(4)NH(3))(2)SnI(4) is solved in a disordered subcell [C2/m, a = 33.781(7) A, b = 6.178(1) A, c = 6.190(1) A, beta = 90.42(3)(o), and Z = 2]. The structure is similar to the known (2-FC(6)H(4)C(2)H(4)NH(3))(2)SnI(4) structure with regard to both the conformation of the organic cations and the bonding features of the inorganic sheet. The (2-BrC(6)H(4)C(2)H(4)NH(3))(2)SnI(4) system adopts a fully ordered monoclinic cell [P2(1)/c, a = 18.540(2) A, b = 8.3443(7) A, c = 8.7795(7) A, beta = 93.039(1)(o), and Z = 2]. The organic cation adopts the anti conformation, instead of the gauche conformation observed in the X = F and Cl compounds, apparently because of the need to accommodate the additional volume of the bromo group. The steric effect of the bromo group also impacts the perovskite sheet, causing notable distortions, such as a compressed Sn-I-Sn bond angle (148.7(o), as compared with the average values of 153.3 and 154.8(o) for the fluoro and chloro compounds, respectively). The optical absorption features a substantial blue shift (lowest exciton peak: 557 nm, 2.23 eV) relative to the spectra of the fluoro and chloro compounds (588 and 586 nm, respectively). Also presented are transport properties for thin-film field-effect transistors (TFTs) based on spin-coated films of the two hybrid semiconductors.

  10. Novel 2D or 3D alkaline-earth metal sulfonate-phosphonates based on [O 3S-C 2H 4-PO 3H] 2- ligand

    Science.gov (United States)

    Du, Zi-Yi; Wen, He-Rui; Xie, Yong-Rong

    2008-11-01

    Three novel alkaline-earth metal sulfonate-phosphonates based on [O 3S-C 2H 4-PO 3H] 2- ligand, namely, [Ca(O 3SC 2H 4PO 3H)(H 2O) 2] ( 1), [Sr(O 3SC 2H 4PO 3H)] ( 2) and [Ba 2(O 3SC 2H 4PO 3H) 2] ( 3), have been synthesized by hydrothermal reactions. They represent the first structurally characterized alkaline-earth metal complexes of phosphonic acid attached with a sulfonate group. The structure of compound 1 features a 2D layer based on 1D chains of [Ca 2(PO 3) 2] bridged by -CH 2-CH 2-SO 3- groups. Compounds 2 and 3 show pillar-layer architecture based on two different inorganic layers linked by -CH 2-CH 2- groups. The inorganic layer in compound 2 features a 1D chain of edge-sharing SrO 8 polyhedra whereas that in compound 3 features an edge-sharing Ba 2O 14 di-polyhedral unit which is further corner-shared with four neighboring ones. The [O 3S-C 2H 4-PO 3H] 2- ligand shows diverse coordination modes in the three alkaline-earth metal sulfonate-phosphonates.

  11. Et2NH2C6H3(CO23SnBr2.4H2O: SYNTHESIS AND INFRARED STUDY

    Directory of Open Access Journals (Sweden)

    DAOUDA NDOYE

    2014-01-01

    Full Text Available The title compound has been obtained on allowing [C6H3(CO23(Et2NH23] to react with SnBr4. The molecular structure of Et2NH2C6H3(CO23SnBr2.4H2O has been determined on the basis of the infrared data. The suggested structure is a dimer in which each tin atom is hexacoordinated by two chelating C6H3(CO233- anions and two Br atoms. Cy2NH2+cations are involved through hydrogen bonds with non-coordinating CO2 groups. The suggested structure is a cage.

  12. [Pr2(pdc3(Hpdc(H2O4]n·n(H3hp·8n(H2O, a One-Dimensional Coordination Polymer Containing PrO6N3 Tri-Capped Trigonal Prisms and PrO8N Mono-Capped Square Anti-Prisms (H2pdc = Pyridine 2,6-Dicarboxylic Acid, C7H5NO4; 3hp = 3-Hydroxy Pyridine, C5H5NO

    Directory of Open Access Journals (Sweden)

    Shahzad Sharif

    2012-08-01

    Full Text Available The synthesis, structure and some properties of the one-dimensional coordination polymer, [Pr2(pdc3(Hpdc]n·n(H3hp·8n(H2O, (H2pdc = pyridine 2,6-dicarboxylic acid, C7H5NO4; 3hp = 3-hydroxypyridine, C5H5NO are described. One of the Pr3+ ions is coordinated by two O,N,O-tridentate pdc2− ligands and one tridentate Hpdc− anion to generate a fairly regular PrO6N3 tri-capped trigonal prism, with the N atoms acting as the caps. The second Pr3+ ion is coordinated by one tridentate pdc2− dianion, four water molecules and two monodentate bridging pdc2− ligands to result in a PrO8N coordination polyhedron that approximates to a mono-capped square-anti-prism. The ligands bridge the metal-atom nodes into a chain, which extends in the [100] direction. The H3hp+ cation and uncoordinated water molecules occupy the inter-chain regions and an N–HLO and numerous O–HLO hydrogen bonds consolidate the structure. The H3hp+ species appears to intercalate between pendant pdc rings to consolidate the polymeric structure. Crystal data: 1 (C33H43N5O29Pr2, Mr = 1255.54, triclinic,  (No. 2, Z = 2, a = 13.2567(1 Å, b = 13.6304(2 Å, c = 13.6409(2 Å, α = 89.695(1°, β = 63.049(1°, γ = 86.105(1°, V = 2191.16(5 Å3, R(F = 0.033, wR(F2 = 0.084.

  13. N-Cyclohexyl-2-(5-fluoro-1H-indol-3-yl-2-oxoacetamide

    Directory of Open Access Journals (Sweden)

    Dan-Li Tian

    2011-07-01

    Full Text Available In title compound, C16H17FN2O2, the cyclohexane ring adopts a chair conformation.. The crystal packing is stabilized by weak π–π stacking interactions [centroid–centroid distance = 3.503 (5 Å] and intermolecular C—H...O, N—H...O and N—H...F hydrogen-bond interactions.

  14. Syntheses, crystal structures, NMR spectroscopy, and vibrational spectroscopy of Sr(PO{sub 3}F).H{sub 2}O and Sr(PO{sub 3}F)

    Energy Technology Data Exchange (ETDEWEB)

    Jantz, Stephan G.; Hoeppe, Henning A. [Lehrstuhl fuer Festkoerperchemie, Institut fuer Physik, Universitaet Augsburg (Germany); Wuellen, Leo van; Fischer, Andreas [Lehrstuhl fuer Chemische Physik und Materialwissenschaften, Institut fuer Physik, Universitaet Augsburg (Germany); Libowitzky, Eugen [Institute for Mineralogy and Crystallography, Faculty of Geosciences, Geography and Astronomy, University of Vienna (Austria); Baran, Enrique J. [Centro de Quimica Inorganica (CEQUINOR/CONICET, UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (Argentina); Weil, Matthias [Institute for Chemical Technologies and Analytics, Division Structural Chemistry, Vienna University of Technology (Austria)

    2016-03-15

    Single crystals of Sr(PO{sub 3}F).H{sub 2}O {P2_1/c, Z = 4, a = 7.4844(2) Aa, b = 7.0793(2) Aa, c = 8.4265(2) Aa, β = 108.696(1) , V = 422.91(2) Aa"3, 2391 F_o"2, 70 parameters, R_1[F"2 > 2σ(F"2)] = 0.036; wR_2(F"2 all) = 0.049, S = 1.054} were grown from an aqueous solution by a metathesis reaction. The structure comprises [SrO{sub 8}] polyhedra and PO{sub 3}F tetrahedra that form a layered arrangement parallel to (100). The topotactic dehydration of this phase proceeds between 80 and 140 C to afford Sr(PO{sub 3}F). The monazite-type crystal structure of Sr(PO{sub 3}F) was elucidated from the X-ray powder data by simulated annealing [P2{sub 1}/c, Z = 4, a = 6.71689(9) Aa, b = 7.11774(11) Aa, c = 8.66997(13) Aa, β = 128.0063(7) , V = 326.605(8) Aa{sup 3}, R{sub p} = 0.010, R{sub wp} = 0.015, R{sub F} = 0.030]. During dehydration, the structure of Sr(PO{sub 3}F) .H{sub 2}O collapses along [100] from a layered arrangement into a framework structure, accompanied by a change of the coordination number of the Sr{sup 2+} ions from eight to nine. The magic-angle spinning (MAS) NMR and vibrational spectroscopy data of both phases are discussed. (Copyright copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Hydrothermal synthesis and crystal structure of the Ni2(C4H4N2)(V4O12)(H2O)2 and Ni3(C4H4N2)3(V8O23) inorganic-organic hybrid compounds. Thermal, spectroscopic and magnetic studies of the hydrated phase

    International Nuclear Information System (INIS)

    Larrea, Edurne S.; Mesa, Jose L.; Pizarro, Jose L.; Arriortua, Maria I.; Rojo, Teofilo

    2007-01-01

    Ni 2 (C 4 H 4 N 2 )(V 4 O 12 )(H 2 O) 2 , 1, and Ni 3 (C 4 H 4 N 2 ) 3 (V 8 O 23 ), 2, have been synthesized using mild hydrothermal conditions at 170 deg. C under autogenous pressure. Both phases crystallize in the P-1 triclinic space group, with the unit-cell parameters, a=7.437(7), b=7.571(3), c=7.564(4) A, α=65.64(4), β=76.09(4), γ=86.25(3) o for 1 and a=8.566(2), b=9.117(2), c=12.619(3) A, α=71.05(2), β=83.48(4), γ=61.32(3) o for 2, being Z=2 for both compounds. The crystal structure of the three-dimensional 1 is constructed from layers linked between them through the pyrazine molecules. The sheets are formed by edge-shared [Ni 2 O 6 (H 2 O) 2 N 2 ] nickel(II) dimers octahedra and rings composed by four [V 4 O 12 ] vanadium(V) tetrahedra linked through vertices. The crystal structure of 2 is formed from vertex shared [VO 4 ] tetrahedra that give rise to twelve member rings. [NiO 4 (C 4 H 4 N 2 ) 2 ] ∞ chains, resulting from [NiO 4 N 2 ] octahedra and pyrazine molecules, give rise to a 3D skeleton when connecting to [VO 4 ] tetrahedra. Diffuse reflectance measurements of 1 indicate a slightly distorted octahedral geometry with values of Dq=880, B=980 and C=2700 cm -1 . Magnetic measurements of 1, carried out in the 5.0-300 K range, indicate the existence of antiferromagnetic couplings with a Neel temperature near to 38 K. - Graphical abstract: Crystal structure of a sheet of Ni 2 (C 4 H 4 N 2 )(V 4 O 12 )(H 2 O) 2

  16. Crystal structures of 2-methoxyisoindoline-1,3-dione, 1,3-dioxoisoindolin-2-yl methyl carbonate and 1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-2-yl methyl carbonate: three anticonvulsant compounds

    Directory of Open Access Journals (Sweden)

    Fortune Ezemobi

    2014-12-01

    Full Text Available The title compounds, C9H7NO3, (1, C10H7NO5, (2, and C14H9NO5, (3, are three potentially anticonvulsant compounds. Compounds (1 and (2 are isoindoline derivatives and (3 is an isoquinoline derivative. Compounds (2 and (3 crystallize with two independent molecules (A and B in their asymmetric units. In all three cases, the isoindoline and benzoisoquinoline moieties are planar [r.m.s. deviations are 0.021 Å for (1, 0.04 and 0.018 Å for (2, and 0.033 and 0.041 Å for (3]. The substituents attached to the N atom are almost perpendicular to the mean planes of the heterocycles, with dihedral angles of 89.7 (3° for the N—O—Cmethyl group in (1, 71.01 (4 and 80.00 (4° for the N—O—C(=OO—Cmethyl groups in (2, and 75.62 (14 and 74.13 (4° for the same groups in (3. In the crystal of (1, there are unusual intermolecular C=O...C contacts of 2.794 (1 and 2.873 (1 Å present in molecules A and B, respectively. There are also C—H...O hydrogen bonds and π–π interactions [inter-centroid distance = 3.407 (3 Å] present, forming slabs lying parallel to (001. In the crystal of (2, the A and B molecules are linked by C—H...O hydrogen bonds, forming slabs parallel to (10-1, which are in turn linked via a number of π–π interactions [the most significant centroid–centroid distances are 3.4202 (7 and 3.5445 (7 Å], forming a three-dimensional structure. In the crystal of (3, the A and B molecules are linked via C—H...O hydrogen bonds, forming a three-dimensional structure, which is consolidated by π–π interactions [the most significant inter-centroid distances are 3.575 (3 and 3.578 (3 Å].

  17. Synthesis, Molecular Structure and Characterization of Allylic Derivatives of 6-Amino-3-methyl-1,2,4-triazolo[3,4-f][1,2,4]-triazin-8(7H-one

    Directory of Open Access Journals (Sweden)

    Gene-Hsiang Lee

    2006-06-01

    Full Text Available 1-Allyl- (2 and 7-allyl-6-amino-3-methyl-1,2,4-triazolo[3,4-f][1,2,4]triazin-8(7H-one (3 were obtained via the 18-crown-6-ether catalyzed room temperature reactionof 6-amino-3-methyl-1,2,4-triazolo[3,4-f][1,2,4]triazin-8(7H-one (1 with potassiumcarbonate and allyl bromide in dry acetone. The structures of these two derivatives wereverified by 2D-NMR measurements, including gHSQC and gHMBC measurements. Theminor compound 2 may possess aromatic character. A single crystal X-ray diffractionexperiment indicated that the major compound 3 crystallizes from dimethyl sulfoxide in themonoclinic space group P21/n and its molecular structure includes an attached dimethylsulfoxide molecule, resulting in the molecular formula C10H16N6O2S. Molecular structuresof 3 are linked by extensive intermolecular N-H···N hydrogen bonding [graph set C 1 (7]. 1Each molecule is attached to the dimethyl sulfoxide oxygen via N-H···O intermolecularhydrogen bonding. The structure is further stabilized by π-π stacking interactions.

  18. [KDy(Hptc3(H3ptc]n·2n(Hbipy·5n(H2O, a Layered Coordination Polymer Containing DyO6N3 Tri-Capped Trigonal Prisms (H3ptc = Pyridine 2,4,6-Tricarboxylic Acid, C8H5NO6; Bipy = 2,2'-Bipyridine, C10H8N2

    Directory of Open Access Journals (Sweden)

    Shoaib Anwar

    2012-08-01

    Full Text Available The synthesis, structure and properties of the bimetallic layered coordination polymer, [KDy(C8H3NO63(C8H5NO6]n·2n(C10H9N2·5n(H2O = [KDy(Hptc3(H3ptc]n·2n(Hbipy·5n(H2O, are described. The Dy3+ ion is coordinated by three O,N,O-tridentate doubly-deprotonated pyridine tri-carboxylate (Hptc ligands to generate a fairly regular DyO6N3 tri-capped trigonal prism, with the N atoms acting as the caps. The potassium ion is coordinated by an O,N,O-tridentate H3ptc molecule as well as monodentate and bidentate Hptc ligands to result in an irregular KNO9 coordination geometry. The ligands bridge the metal-atom nodes into a bimetallic, layered, coordination polymer, which extends as corrugated layers in the (010 plane, with the mono-protonated bipyridine cations and water molecules occupying the inter-layer regions: Unlike related structures, there are no dysprosium–water bonds. Many O–HLO and N–HLO hydrogen bonds consolidate the structure. Characterization and bioactivity data are described. Crystal data: C52H42DyKN8O29, Mr = 1444.54, triclinic,  (No. 2, Z = 2, a = 9.188(2 Å, b = 15.7332(17 Å, c = 19.1664(19 Å, α = 92.797(6°, β = 92.319(7°, γ = 91.273(9°, V = 2764.3(7 Å3, R(F = 0.029, wR(F2 = 0.084.

  19. (Carbonyl-1κC)bis-[2,3(η)-cyclo-penta-dien-yl][μ(3)-(S-methyl trithio-carbonato)methylidyne-1:2:3κC,S'':C:C](triphenyl-phosphine-1κP)(μ(3)-sulfido-1:2:3κS)dicobalt(II)iron(II) trifluoro-methane-sulfonate.

    Science.gov (United States)

    Manning, Anthony R; McAdam, C John; Palmer, Anthony J; Simpson, Jim

    2008-04-10

    The asymmetric unit of the title compound, [FeCo(2)(C(5)H(5))(2)(C(3)H(3)S(3))S(C(18)H(15)P)(CO)]CF(3)SO(3), consists of a triangular irondicobalt cluster cation and a trifluoro-methane-sulfonate anion. In the cation, the FeCo(2) triangle is symmetrically capped on one face by an S atom and on the other by a C atom linked to a methyl trithio-carbonate residue that bridges the Fe-C bond. Each Co atom carries a cyclo-penta-dienyl ligand while the Fe atom coordinates to one carbonyl and one triphenyl-phosphine ligand. In the crystal structure, the cation is linked to the anion by a number of weak non-classical C-H⋯O and C-H⋯F hydrogen bonds and weak S⋯O (3.317 Å) and S⋯F (3.198 Å) inter-actions. The structure is further stabilized by additional inter-molecular C-H⋯O, C-H⋯F and O⋯O (2.942 Å) contacts, together with an unusual S⋯π(Cp) inter-action (S⋯centroid distance = 3.385 Å), generating an extended network.

  20. The OsO(3)F(+) and mu-F(OsO(3)F)(2)(+) cations: their syntheses and study by Raman and (19)F NMR spectroscopy and electron structure calculations and X-ray crystal structures of [OsO(3)F][PnF(6)] (Pn = As, Sb), [OsO(3)F][HF](2)[AsF(6)], [OsO(3)F][HF][SbF(6)], and [OsO(3)F][Sb(3)F(16)].

    Science.gov (United States)

    Gerken, Michael; Dixon, David A; Schrobilgen, Gary J

    2002-01-28

    The fluoride ion donor properties of OsO(3)F(2) have been investigated. The salts [OsO(3)F][AsF(6)], [OsO(3)F][HF](2)[AsF(6)], mu-F(OsO(3)F)(2)[AsF(6)], [OsO(3)F][HF](2)[SbF(6)], and [OsO(3)F][HF][SbF(6)] have been prepared by reaction of OsO(3)F(2) with AsF(5) and SbF(5) in HF solvent and have been characterized in the solid state by Raman spectroscopy. The single-crystal X-ray diffraction studies of [OsO(3)F][AsF(6)] (P2(1)/n, a = 7.0001(11) A, c = 8.8629(13) A, beta = 92.270(7) degrees, Z = 4, and R(1) = 0.0401 at -126 degrees C), [OsO(3)F][SbF(6)] (P2(1)/c, a = 5.4772(14) A, b = 10.115(3) A, c = 12.234(3) A, beta = 99.321(5) degrees, Z = 4, and R(1) = 0.0325 at -173 degrees C), [OsO(3)F][HF](2)[AsF(6)] (P2(1)/n, a = 5.1491(9) A, b = 8.129(2) A, c = 19.636(7) A, beta = 95.099(7) degrees, Z = 4, and R(1) = 0.0348 at -117 degrees C), and [OsO(3)F][HF][SbF(6)] (Pc, a = 5.244(4) A, b = 9.646(6) A, c = 15.269(10) A, beta = 97.154(13) degrees, Z = 4, and R(1) = 0.0558 at -133 degrees C) have shown that the OsO(3)F(+) cations exhibit strong contacts to the anions and HF solvent molecules giving rise to cyclic, dimeric structures in which the osmium atoms have coordination numbers of 6. The reaction of OsO(3)F(2) with neat SbF(5) yielded [OsO(3)F][Sb(3)F(16)], which has been characterized by (19)F NMR spectroscopy in SbF(5) and SO(2)ClF solvents and by Raman spectroscopy and single-crystal X-ray diffraction in the solid state (P4(1)m, a = 10.076(6) A, c = 7.585(8) A, Z = 2, and R(1) = 0.0858 at -113 degrees C). The weak fluoride ion basicity of the Sb(3)F(16)(-) anion resulted in an OsO(3)F(+) cation (C(3)(v) point symmetry) that is well isolated from the anion and in which the osmium is four-coordinate. The geometrical parameters and vibrational frequencies of OsO(3)F(+), ReO(3)F, mu-F(OsO(3)F)(2)(+), (FO(3)Os--FPnF(5))(2), and (FO(3)Os--(HF)(2)--FPnF(5))(2) (Pn = As, Sb) have been calculated using density functional theory methods.

  1. Thermal decomposition of heavy rare-earth butanoates, Ln(C3H7CO2)3 (Ln = Er, Tm, Yb and Lu) in argon

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Yue, Zhao; Tang, Xiao

    2016-01-01

    was observed in all four compounds, but its course depends on the rare-earth element. Decomposition to sesquioxides proceeds via the formation of dioxymonocarbonates (Ln2O2CO3) and release of 4-heptanone (C3H7COC3H7) as well as carbon dioxide (CO2) without evidence for an intermediate oxobutanoate stage...... of Ln2O2CO3 and Ln2O3. The stability of this intermediate state seems to decrease with the mass of the rare-earth elements. Complete conversion to Ln2O3 is reached at about 1100 °C. The overall thermal decomposition behaviour of the title compounds is different from previous reports for other rare....... During the decomposition of Ln2O2CO3 into the respective sesquioxides (Ln2O3), an intermediate plateau extending from approximately 550 to 850 °C appears in the TG traces. The overall composition during this stage corresponds approximately to Ln2O2.8(CO3)0.2, but the state is more probably a mixture...

  2. 6-Chloro-7-fluoro-4-oxo-4H-chromene-3-carbaldehyde

    Directory of Open Access Journals (Sweden)

    Yoshinobu Ishikawa

    2014-07-01

    Full Text Available In the title compound, C10H4ClFO3, a chlorinated and fluorinated 3-formylchromone derivative, all atoms are essentially coplanar (r.m.s. = 0.0336 Å for the non-H atoms, with the largest deviation from the least-squares plane [0.062 (2 Å] being for a benzene-ring C atom. In the crystal, molecules are linked through stacking interactions [centroid–centroid distance between the benzene and pyran rings = 3.958 (3 Å and interplanar distance = 3.259 (3 Å], C—H...O hydrogen bonds, and short C...O contacts [2.879 (3 Å]. Unsymmetrical halogen–halogen interactions between the Cl and F atoms [Cl...F = 3.049 (3 Å, C—Cl...F = 148.10 (9° and C—F...Cl = 162.06 (13°] are also formed, giving a meandering two-dimensional network along the a axis.

  3. Synthesis, characterization and sorption properties of functionalized Cr-MIL-101-X (X=–F, –Cl, –Br, –CH3, –C6H4, –F2, –(CH3)2) materials

    International Nuclear Information System (INIS)

    Buragohain, Amlan; Couck, Sarah; Van Der Voort, Pascal; Denayer, Joeri F.M.; Biswas, Shyam

    2016-01-01

    Four existing and three new functionalized chromium terephthalates having MIL-101 topology and denoted as Cr-MIL-101-X (existing ones with X=–F, 1-F; –Cl, 2-Cl; –Br, 3-Br; –CH 3 , 4-CH 3 ; new ones with X=–C 6 H 4 , 5-C 6 H 4 ; –F 2 , 6-F 2 , –(CH 3 ) 2 , 7-(CH 3 ) 2 ) were synthesized under hydrothermal conditions. All the materials except 5-C 6 H 4 could be prepared by a general synthetic route, in which the mixtures of CrO 3 , H 2 BDC-X (BDC=1,4-benzenedicarboxylate) linkers, conc. HCl and water with a molar ratio of 1:1:3.9:222.2 were reacted at 180 °C for 144 h. Compared to the 144 h of synthesis time, three of the compounds, namely 1-Cl, 2-Br and 5-C 6 H 4 , could be prepared in much shorter reaction times (12–18 h at 180–210 °C). The materials possess high thermal stability up to 270–300 °C in an air atmosphere. The activated compounds exhibit significant porosity (S BET range: 1273–2135 m 2 g −1 ). At 0 °C and 1 bar, the CO 2 adsorption capacities of the compounds fall in the 1.72.9 mmol g −1 range. Compounds 1-F and 6-F 2 showed enhanced CO 2 uptake values compared to parent Cr-MIL-101. The benzene adsorption capacities of the compounds lie in the range of 66.2–139.5 molecules per unit cell at 50 °C and p/p 0 =0.35. The increased benzene uptake value of 1-F compared to un-functionalized Cr-MIL-101 and 4-CH 3 suggests that the fluorination has induced more hydrophobicity in Cr-MIL-101 as compared to the methylation. - Graphical abstract: Benzene adsorption by seven functionalized Cr-MIL-101-X metal-organic framework (MOF) materials Display Omitted - Highlights: • Seven functionalized Cr-MIL-101-X materials were synthesized solvothermally. • All Cr-MIL-101-X materials exhibited high thermal stability up to 270–300 °C in air. • All Cr-MIL-101-X compounds displayed considerable porosity towards N 2 , CO 2 and benzene. • Mono- and di-fluorinated Cr-MIL-101 materials showed enhanced CO 2 adsorption capacities.

  4. 2,2,7-Trichloro-3,4-dihydronaphthalen-1(2H-one

    Directory of Open Access Journals (Sweden)

    Ben Capuano

    2009-09-01

    Full Text Available The title compound, C10H7Cl3O, obtained as a major byproduct from a classical Schmidt reaction. The cyclohexyl ring is distorted from a classical chair conformation, as observed for monocyclic analogues, presumably due to conjugation of the planar annulated benzo ring and the ketone group (r.m.s. deviation 0.024 Å. There are no significant intermolecular interactions.

  5. Galvanomagnetic properties of atomically disordered compounds YBa2Cu3O7

    International Nuclear Information System (INIS)

    Kar'kin, A.E.; Goshchitskij, B.N.

    2001-01-01

    To clarify the peculiarities of the metal-dielectric transition (MDT) in the HTSC type compounds one investigated into the galvanomagnetic properties of YBa 2 Cu 3 O 7 polycrystalline specimens irradiated by fast neutrons under 80 K temperature with F = 2x10 19 cm -2 fluence and subsequent to their exposure to the isochronal annealings within 150-390 K temperature range. It was determined that temperature dependences of R H Hall coefficient and of MR magnetic resistances of YBa 2 Cu 3 O 7 polycrystalline compounds disordered by fast neutrons retained the anomalous properties peculiar to the HTSC type disordered compounds in spite of the fact that conductivity was not a metallic one. This behavior is explained by the fact that in the disordered compounds there are two co-existing electron phases with conductivity as to the localized and the metallic states. Concentration of metallic phase is lower than threshold of passing, that is why, conductivity of this system is of dielectric type while R H and MR have temperature dependences similar to metallic phase that are renormalized by magnitude [ru

  6. 1,5-Dimethyl-4-(1-methyl-3-oxo-3-phenylprop-1-enylamino-2-phenyl-1H-pyrazol-3(2H-one

    Directory of Open Access Journals (Sweden)

    Hualing Zhu

    2011-07-01

    Full Text Available In the title compound, C21H21N3O2, an intramolecular N—H...O interaction generates an S(6 ring, which stablizes the enamine–keto tautomer. The S(6 ring makes dihedral angles of 33.07 (7, 56.50 (8 and 38.59 (8°, respectively, with the benzoylacetone benzene ring and the antipyrine pyrazole and benzene rings.

  7. 6,7-Dichloro-3-(2,4-dichlorobenzylquinoxalin-2(1H-one

    Directory of Open Access Journals (Sweden)

    Jinpeng Zhang

    2012-08-01

    Full Text Available In the title compound, C15H8Cl4N2O, the quinoxaline ring system is almost planar, with a dihedral angle between the benzene and pyrazine rings of 3.1 (2°. The 2,4-dichlorophenyl ring is approximately perpendicular to the pyrazine ring, with a dihedral angle of 86.47 (13° between them. The crystal packing features intermolecular N—H...O hydrogen bonds and π–π stacking interactions, with centroid–centroid distances in the range 3.699 (3–4.054 (3 Å.

  8. 3-(4-Fluorophenyl-1-[1′-(4-fluorophenyl-2-oxo-5′,6′,7′,7a′-tetrahydro-1H-indole-3(2H-spiro-3′(2H-1H′-pyrrolizin-2′-yl]prop-2-en-1-one

    Directory of Open Access Journals (Sweden)

    S. Sriman Narayanan

    2008-09-01

    Full Text Available In the title compound, C29H24F2N2O2, one of the pyrrolidine rings of the pyrrolizine system is disordered over two sites, with occupancy factors 0.734:0.266 (12. Both components of the disordered pyrrolidine ring adopt envelope conformations, whereas the other pyrrolidine ring adopts a twist conformation. The molecules are linked into centrosymmetric dimers by N—H...O hydrogen bonds and the dimers are connected via C—H...π interactions. The crystal structure is also stabilized by intermolecular C—H...F hydrogen bonds.

  9. Crystal structure and thermochemical properties of a novel coordination compound sodium pyruvate C3H3O3Na(s)

    International Nuclear Information System (INIS)

    Gao, Zhen-Fei; Di, You-Ying; Liu, Su-Zhou; Lu, Dong-Fei; Dou, Jian-Min

    2014-01-01

    Graphical abstract: A novel coordination compound sodium pyruvate C 3 H 3 O 3 Na(s) is synthesised. Elemental analysis and X-ray crystallography are used to characterise the composition and crystal structure of the compound. The lattice potential energy and ionic volume of the anion are obtained from crystallographic data. The standard molar enthalpy of formation of the compound is calculated by an isoperibol solution-reaction calorimeter. Molar enthalpies of dissolution of the compound at various molalities are measured at T = 298.15 K. According to Pitzer’s theory, molar enthalpy of dissolution of the title compound at infinite dilution is calculated. The values of relative apparent molar enthalpies and relative partial molar enthalpies of the solvent and the compound at different concentrations m/(mol · kg −1 ) are derived. - Highlights: • The sodium pyruvate was synthesised and crystal structure was determined. • The enthalpy change of the synthesis reaction was obtained. • Standard molar enthalpy of formation was obtained. • Molar enthalpy of dissolution at infinite dilution was calculated. - Abstract: A novel coordination compound sodium pyruvate C 3 H 3 O 3 Na(s) is synthesised by a liquid phase reaction. The compound has an obvious bioactivity and can be used as the biological carbon source and the chemical identification of primary and secondary alcohols. It can be also used to determinate transaminase. Elemental analysis and X-ray crystallography are used to characterise the composition and crystal structure of the compound. Single crystal X-ray analysis reveals that the compound is formed by one CH 3 COCOO − anion and one Na + cation. An obvious feature of the crystal structure is the formation of the five-membered chelate ring by the coordination of O1 of carboxylate and O3 of keto form with Na + cation, and it is good for the stability of the compound in structure. The lattice potential energy and ionic volume of the anion are obtained

  10. {2-[(3,5-Dichloro-2-oxidobenzylideneamino-κ2N,O]-3-methylpentanoato-κO}(N,N′-dimethylformamide-κOcopper(II

    Directory of Open Access Journals (Sweden)

    Xiao Zhen Feng

    2008-05-01

    Full Text Available In the title compound, [Cu(C13H13Cl2NO3(C3H7NO], the CuII atom is coordinated in a slightly distorted square-planar geometry by two O atoms and one N atom from the tridentate chiral ligand 2-[(3,5-dichloro-2-oxidobenzylideneamino]-3-methylpentanoate and by one O atom from dimethylformamide. In the crystal structure, the Cu atom forms contacts with Cl and O atoms of two units (Cu...Cl and Cu...O = 3.401 and 2.947 Å, respectively, thereby forming an approximately octahedral arrangement. A three-dimensional network is constructed through Cl...Cu, O...Cu, Cl...Cl contacts and C—H...O hydrogen bonds.

  11. Nd2(SeO3)2(SeO4) . 2H2O - a mixed-valence compound containing selenium in the oxidation states +IV and +VI

    International Nuclear Information System (INIS)

    Berdonosov, P.S.; Dityat'yev, O.A.; Dolgikh, V.A.; Schmidt, P.; Ruck, Michael; Lightfoot, P.

    2004-01-01

    Pale pink crystals of Nd 2 (SeO 3 ) 2 (SeO 4 ) . 2H 2 O were synthesized under hydrothermal conditions from H 2 SeO 3 and Nd 2 O 3 at about 200 C. X-ray diffraction on powder and single-crystals revealed that the compound crystallizes with the monoclinic space group C 2/c (a = 12.276(1) A, b = 7.0783(5) A, c = 13.329(1) A, β = 104.276(7) ). The crystal structure of Nd 2 (SeO 3 ) 2 (SeO 4 ) . 2H 2 O is an ordered variant of the corresponding erbium compound. Eight oxygen atoms coordinate the Nd III atom in the shape of a bi-capped trigonal prism. The oxygen atoms are part of pyramidal (Se IV O 3 ) 2- groups, (Se VI O 4 ) 2- tetrahedra and water molecules. The [NdO 8 ] polyhedra share edges to form chains oriented along [010]. The selenate ions link these chains into layers parallel to (001). The layers are interconnected by the selenite ions into a three-dimensional framework. The dehydration of Nd 2 (SeO 3 ) 2 (SeO 4 ) . 2H 2 O starts at 260 C. The thermal decomposition into Nd 2 SeO 5 , SeO 2 and O 2 at 680 C is followed by further loss of SeO 2 leaving cubic Nd 2 O 3 . (Abstract Copyright [2004], Wiley Periodicals, Inc.) [de

  12. A novel fluffy nanostructured 3D network of Ni(C7H4O5) for supercapacitors

    International Nuclear Information System (INIS)

    Chen, Qiulin; Lei, Shuijin; Chen, Lianfu; Deng, Peiqin; Xiao, Yanhe; Cheng, Baochang

    2017-01-01

    Highlights: • The fluffy 3D network of Ni(C 7 H 4 O 5 ) complex is firstly prepared on Ni foam. • The fluffy 3D network shows high areal capacitance and excellent cycle stability. • The fluffy network has large superior pseudocapacitive performance than the powder. • An asymmetric supercapacitor with high capacitance and energy density is assembled. - Abstract: Supercapacitors have raised considerable research interest in recent years due to their extensive potential application in next-generation energy storage. It is always of great importance to develop new electrode materials for supercapacitors so far. In this research, nickel gallate complex (Ni(C 7 H 4 O 5 )) nanostructures are successfully grown on nickel foam by a facile hydrothermal route, which can be directly used as the electrodes for supercapacitors. X-ray diffraction patterns show that the sample is amorphous. The scanning electron microscopy images reveal that the products consist of novel fluffy 3D network with a mass of fibers. The electrochemical measurements demonstrate that the prepared Ni(C 7 H 4 O 5 ) electrode possesses the specific capacitance of 3.688 F cm −2 (1229.3 F g −1 ) at a current density of 9 mA cm −2 (3 A g −1 ). It presents an excellent cycling stability with a capacitance retention of 87.9% after 5000 cycles even at a very high current density of 40 mA cm −2 . An asymmetric supercapacitor device is assembled using the Ni(C 7 H 4 O 5 ) sample as positive electrode and activated carbon as negative one. A high gravimetric capacitance of 71.4 F g −1 at a current density of 0.5 A g −1 can be achieved. The fabricated device delivers the highest energy density of 23.8 W h kg −1 at a power density of 388.2 W kg −1 with a voltage window of 1.55 V. This strategy should be extended to other organometallic compounds for supercapacitors.

  13. The Co-III-C bond in (1-thia-4,7-diazacyclodecyl-kappa N-3(4),N-7,C-10)(1,4,7-triazacyclononane-kappa N-3(1),N-4,N-7)-cobalt(III) dithionate hydrate

    DEFF Research Database (Denmark)

    Harris, Pernille; Kofod, P.; Song, Y.S.

    2003-01-01

    In the title compound, [Co(C6H15N3)(C7H15N2S)]S2O6.H2O, the Co-C bond distance is 1.9930 (13) Angstrom, which is shorter than for related compounds with the linear 1,6-diamino-3-thiahexan-4-ide anion in place of the macrocyclic 1-thia-4,7-diazacyclodecan-8-ide anion. The coordinated carbanion pro...... produces an elongation of 0.102 (7) Angstrom of the Co-N bond to the 1,4,7-triazacyclononane N atom in the trans position. This relatively small trans influence is presumably a result of the triamine ligand forming strong bonds to the Co-III atom....

  14. Crystal structure, quantum mechanical investigation, IR and NMR spectroscopy of two new organic perchlorates: (C6H18N3)·(ClO4)3H2O (I) and (C9H11N2)·ClO4(II)

    Science.gov (United States)

    Bayar, I.; Khedhiri, L.; Soudani, S.; Lefebvre, F.; Ferretti, V.; Ben Nasr, C.

    2018-06-01

    The reaction of perchloric acid with 1-(2-aminoethyl)piperazine or 5,6-dimethyl-benzimidazole results in the formation of 1-(2-amonioethyl)piperazine-1,4-dium triperchlorate hydrate (C6H18N3)·(ClO4)3·H2O (I) or 5,6-dimethyl-benzylimidazolium perchlorate (C9H11N2)·ClO4(II). Both compounds were fully structurally characterized including single crystal X-ray diffraction analysis. Compound (I) crystallizes in the centrosymmetric triclinic space group P 1 bar with the lattice parameters a = 7.455 (2), b = 10.462 (2), c = 10.824 (2) Å, α = 80.832 (2), β = 88.243 (2), γ = 88.160 (2) °, Z = 2 and V = 832.77 (3) Å3. Compound (II) has been found to belong to the P21/c space group of the monoclinic system, with a = 7.590 (3), b = 9.266 (3), c = 16.503 (6) Å, β = 107.38 (2) °, V = 1107.69 (7) Å3 and Z = 4. The structures of (I) and (II) consist of slightly distorted [ClO4]- tetrahedra anions and 1-(2-amonioethyl)piperazine-1,4-dium trication (I) or 5,6-dimethyl-benzylimidazolium cations (II) and additionally a lattice water in (I). The crystal structures of (I) and (II) exhibit complex three-dimensional networks of H-bonds connecting all their components. In the atomic arrangement of (I), the ClO4- anions form corrugated chains, while in (II) the atomic arrangement exhibits wide pseudo-hexagonal channels of ClO4 tetrahedra including the organic entities. The lattice water serves as a link between pairs of cations and pairs of anions via several Osbnd H⋯O and N-H⋯O interactions in compound (I). The vibrational absorption bands were identified by infrared spectroscopy. These compounds were also investigated by solid-state 13C, 35Cl and 15N NMR spectroscopy. DFT calculations allowed the attribution of the IR and NMR bands. Intermolecular interactions were investigated by Hirshfeld surfaces. Electronic properties such as HOMO and LUMO energies were derived.

  15. 2-(5-Fluoro-3-isopropylsulfanyl-7-methyl-1-benzofuran-2-ylacetic acid

    Directory of Open Access Journals (Sweden)

    Hong Dae Choi

    2012-04-01

    Full Text Available The title compound, C14H15FO3S, was prepared by alkaline hydrolysis of ethyl 2-(5-fluoro-3-isopropylsulfanyl-7-methyl-1-benzofuran-2-ylacetate. In the crystal, molecules are linked via pairs of O—H...O hydrogen bonds, forming inversion dimers. These dimers are connected by weak C—H...O hydrogen bonds.

  16. (3-Benzoyl-1,7,7-trimethylbicyclo[2.2.1]heptan-2-olato-κ2O,Obis[2-(2-pyridylphenyl-κ2C1,N]iridium(III

    Directory of Open Access Journals (Sweden)

    Kaijun Luo

    2011-11-01

    Full Text Available The title compound, [Ir(C11H8N2(C17H19O2], has an octahedral coordination geometry around the IrIII atom, retaining the cis-C,C,trans–N,N chelate disposition of the two 2-phenylpyridine ligands. The chelate rings are nearly mutually perpendicular [the interplanar angles range from 85.48 (17 to 89.17 (19°]. The two 2-(2-pyridylphenyl ligands are approximately planar, with the plane of the phenyl ring being inclined to that of the pyridine ring by 2.3 (3 and 5.1 (3° in the two ligands. The interplanar angle between the phenyl ring in 3-benzoyl-camphor and the IrO2C3 chelate ring is 35.5 (2°.

  17. 2-[4-(Dimethylaminophenyl]-3,3-difluoro-3H-naphtho[1,2-e][1,3,2]oxazaborinin-2-ium-3-uide

    Directory of Open Access Journals (Sweden)

    Błażej Dziuk

    2017-08-01

    Full Text Available In the title compound, C19H17BF2N2O, a twist about the N—C single bond is observed, making the cross conjugation not as efficient as in the case of a planar structure. The borone complex has tetrahedral geometry. In the crystal, molecules are conected by weak C—H...F hydrogen bonds.

  18. Diethyl 4,4′-dihydroxy-3,3′-{[(3aRS,7aRS-2,3,3a,4,5,6,7,7a-octahydro-1H-1,3-benzimidazole-1,3-diyl]bis(methylene}dibenzoate

    Directory of Open Access Journals (Sweden)

    Augusto Rivera

    2011-11-01

    Full Text Available The heterocyclic ring in the title compound, C27H34N2O6, has an envelope conformation on one of the bridgehead C atoms [Q(2 = 0.4487 (19 Å and ϕ = 291.3 (2°]. Two strong intramolecular O—H...N hydrogen bonds stabilize the molecular conformation. The benzoate groups differ in the relative orientations of the ethyl groups, as quantified by the values of the C—O—C—C torsion angles of −86.5 (2 and −178.97 (17°. The carbonyl groups are nearly coplanar with the benzene rings, forming C—C—C—O torsion angles of 0.9 (3 and 3.4 (3°. The crystal structure is stabilized by weak intermolecular C—H...O interactions.

  19. Poly[(μ3-benzene-1,3,5-tricarboxylato-κ3O1:O3:O5(μ2-2-methylimidazolato-κ2N:N′tris(2-methylimidazole-κNdizinc(II

    Directory of Open Access Journals (Sweden)

    Palanikumar Maniam

    2011-06-01

    Full Text Available Hydrothermal reaction involving zinc nitrate hexahydrate, trisodium benzene-1,3,5-tricarboxylate (Na3BTC and 2-methylimidazole (2-MeImH yielded the title compound, [Zn2(C9H3O6(C4H5N2(C4H6N23]. In this mixed-ligand metal-organic compound, Zn2+ ions are coordinated by N atoms from 2-MeImH molecules and (2-MeIm− ions, as well as by O atoms from (BTC3− ions. This results in two different distorted tetrahedra, viz. ZnN3O and ZnN2O2. These tetrahedra are interconnected via (BTC3− ions and N:N′-bridging (2-MeIm− ions, thus forming a layered structure in the bc plane. Hydrogen bonds between the O atoms of carboxylate ions and NH groups of 2-MeImH ligands link the layers into a three-dimensional structure.

  20. Tris(dibenzoylmethanido-κ2O,O′[(6S,8S-(+-7,7-dimethyl-3-(2-pyridyl-5,6,7,8-tetrahydro-6,8-methanoisoquinoline-κ2N,N′]gadolinium(III

    Directory of Open Access Journals (Sweden)

    Xi-Li Li

    2009-09-01

    Full Text Available In the title compound, [Gd(C15H11O23(C17H18N2], the GdIII atom is coordinated by six O atoms from three β-diketonate ligands and two N atoms from a chiral ligand LS,S-(+-7,7-dimethyl-3-(2-pyridyl-5,6,7,8-tetrahydro-6,8-methanoisoquinoline, in a coordination geometry best described as distorted square-antiprismatic.

  1. Structural and thermal studies of H2La2/3Ta2O7, a protonated layered perovskite

    International Nuclear Information System (INIS)

    Le Berre, F.; Crosnier-Lopez, M.P.; Fourquet, J.L.

    2006-01-01

    We have synthesised the new protonated layered perovskite H 2 La 2/3 Ta 2 O 7 which is related to the Ruddlesden-Popper family. This compound is obtained by ionic exchange starting from Li 2 La 2/3 Ta 2 O 7 maintained in dilute HNO 3 at 60 deg. C. Thermal X-ray diffraction and DTA/TGA revealed interesting dehydration properties with formation of a layered anhydrous phase leading at higher temperature (1550 deg. C) to La 1/3 TaO 3 . This latter compound exhibits the original lanthanum ordering expected similarly to that of the Li form, while at 900 deg. C a metastable form, presenting a disordered La distribution, is observed

  2. 1,2,3,3-Tetramethyl-7-nitro-3,4-dihydroisoquinolinium tetrafluoroborate

    Directory of Open Access Journals (Sweden)

    Mouna Bouzid

    2016-04-01

    Full Text Available The title salt, C13H17N2O2+·BF4−, was prepared by the methylation of the imine with Meerwein salt in dichloromethane. The asymmetric unit comprises a 1,3,3-trimethyl-7-nitro-3,4-dihydroisoquinolinium cation and a tetrafluoroborate anion. The coordination around the boron atom in the tetrafluoroborate anion is tetrahedral. The heterocyclic ring adopts a half-chair conformation. The crystal packing is governed by means of C—H...F contacts, which lead to the formation of a three-dimensional network.

  3. THE SYMMETRY BREAKING PHENOMENON IN 1,2,3-TRIOXOLENE AND C2Y3Z2 (Z= O, S, Se, Te, Z= H, F COMPOUNDS: A PSEUDO JAHN-TELLER ORIGIN STUDY

    Directory of Open Access Journals (Sweden)

    Ali Reza Ilkhani

    Full Text Available 1,2,3-Trioxolene (C2O3H2 is an intermediate in the acetylene ozonolysis reaction which is called primary ozonide intermediate. The symmetry breaking phenomenon were studied in C2O3H2 and six its derivatives then oxygen atoms of the molecule are substituted by sulphur, selenium, tellurium (C2Y3H2 and hydrogen ligands are replaced with fluorine atoms (C2Y3F2. Based on calculation results, all seven C2Y3Z2 considered in the series were puckered from unstable planar configuration with C2v symmetry to a Cs symmetry stable geometry. The vibronic coupling interaction between the 1A1 ground state and the first excited state 1B1 via the (1A1+1B1 ⊗b1 pseudo Jahn-Teller effect problem is the reason of the breaking symmetry phenomenon and un-planarity of the C2Y3 ring in the C2Y3Z2 series.

  4. 5-tert-Butyl 3-ethyl 1-isopropyl-4,5,6,7-tetrahydro-1H-pyrazolo[4,3-c]pyridine-3,5-dicarboxylate

    Directory of Open Access Journals (Sweden)

    Huan-Mei Guo

    2011-12-01

    Full Text Available In the title compound, C17H27N3O4, the six-membered ring adopts a half-chair conformation with the N atom and the adjacent methylene C atom displaced by −0.391 (2 and 0.358 (2 Å, respectively, from the plane of the other four atoms. In the crystal, molecules are linked by weak C—H...O interactions.

  5. 2-(5,7-Dimethyl-3-methylsulfanyl-1-benzofuran-2-ylacetic acid

    Directory of Open Access Journals (Sweden)

    Hong Dae Choi

    2008-08-01

    Full Text Available The title compound, C13H14O3S, was prepared by alkaline hydrolysis of ethyl 2-(5,7-dimethyl-3-methylsulfanyl-1-benzofuran-2-ylacetate. In the crystal structure, the carboxyl groups are involved in intermolecular O—H...O hydrogen bonds, which link the molecules into centrosymmetric dimers. These dimers are further packed into stacks along the a axis by weak C—H...π interactions.

  6. (2RS-2-(2,4-Difluorophenyl-1-[(4-iodobenzyl(methylamino]-3-(1H-1,2,4-triazol-1-ylpropan-2-ol

    Directory of Open Access Journals (Sweden)

    Hui-Ping Xiong

    2012-08-01

    Full Text Available In the title compound (common name: iodiconazole, C19H19F2IN4O, there is an intramolecular O—H...N hydrogen bond and molecules are linked by weak interactions only, namely C—H...N, C—H...O and C—H...F hydrogen bonds, and π-electron ring–π-electron ring interactions between the triazole rings with centroid–centroid distances of 3.725 (3 Å.

  7. Design and syntheses of hybrid metal–organic materials based on K{sub 3}[M(C{sub 2}O{sub 4}){sub 3}]·3H{sub 2}O [M(III)=Fe, Al, Cr] metallotectons

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yayong; Zong, Yingxia; Ma, Haoran; Zhang, Ao; Liu, Kang; Wang, Debao, E-mail: dbwang@qust.edu.cn; Wang, Wenqiang; Wang, Lei, E-mail: inorchemwl@126.com

    2016-05-15

    By using K{sub 3}[M(C{sub 2}O{sub 4}){sub 3}]·3H{sub 2}O [M(III)=Fe, Al, Cr] (C{sub 2}O{sub 4}{sup 2−}=oxalate) metallotectons as the starting material, we have synthesized eight novel complexes with formulas [{Fe(C_2O_4)_2(H_2O)_2}{sub 2}]·(H–L{sub 1}){sub 2H{sub 2}O 1, [Fe(C{sub 2}O{sub 4})Cl{sub 2}]·(H{sub 2}–L{sub 2}){sub 0.5}·(L{sub 2}){sub 0.5}·H{sub 2}O 2, [{Fe(C_2O_4)_1_._5Cl_2}{sub 2}]·(H–L{sub 3}){sub 4}3, [Fe{sub 2}(C{sub 2}O{sub 4})Cl{sub 8}]·(H{sub 2}–L{sub 4}){sub 22H{sub 2}O 4, K[Al(C{sub 2}O{sub 4}){sub 3}]·(H{sub 2}–L{sub 5})·2H{sub 2}O 5, K[Al(C{sub 2}O{sub 4}){sub 3}]·(H–L{sub 6}){sub 22H{sub 2}O 6, K[Cr(C{sub 2}O{sub 4}){sub 3}]·2H{sub 2}O 7, Na[Fe(C{sub 2}O{sub 4}){sub 3}]·(H–L{sub 6}){sub 22H{sub 2}O 8 (with L{sub 1}=4-dimethylaminopyridine, L{sub 2}=2,3,5,6-tetramethylpyrazine, L{sub 3}=2-aminobenzimidazole, L{sub 4}=1,4-bis-(1H-imidazol-1-yl)benzene, L{sub 5}=1,4-bis((2-methylimidazol-1-yl)methyl)benzene, L{sub 6}=2-methylbenzimidazole). Their structures have been determined by single-crystal X-ray diffraction analyses, elemental analyses, IR spectra and thermogravimetric analyses. Compound 3 is a 2D H-bonded supramolecular architecture. Others are 3D supramolecular structures. Compound 1 shows a [Fe(C{sub 2}O{sub 4}){sub 2}(H{sub 2}O){sub 2}]{sup −} unit and 3D antionic H-bonded framework. Compound 2 features a [Fe(C{sub 2}O{sub 4})Cl{sub 2}]{sup -} anion and 1D iron-oxalate-iron chain. Compound 3 features a [Fe{sub 2}(C{sub 2}O{sub 4}){sub 3}Cl{sub 4}]{sup 4−} unit. Compound 4 features distinct [Fe{sub 2}(C{sub 2}O{sub 4})Cl{sub 8}]{sup 4−} units, which are mutual linked by water molecules to generated a 2D H-bonded network. Compound 5 features infinite ladder-like chains constructed by [Al(C{sub 2}O{sub 4}){sub 3}]{sup 3−} units and K{sup +} cations. The 1D chains are further extended into 3D antionic H-bonded framework through O–H···O H-bonds. Compounds 6–8 show 2D [KAl(C{sub 2}O

  8. Two anionically derivatized scandium oxoselenates(IV): ScF[SeO3] and Sc2O2[SeO3

    Science.gov (United States)

    Greiner, Stefan; Chou, Sheng-Chun; Schleid, Thomas

    2017-02-01

    Scandium fluoride oxoselenate(IV) ScF[SeO3] and scandium oxide oxoselenate(IV) Sc2O2[SeO3] could be synthesized through solid-state reactions. ScF[SeO3] was obtained phase-pure, by reacting mixtures of Sc2O3, ScF3 and SeO2 (molar ratio: 1:1:3) together with CsBr as fluxing agent in corundum crucibles embedded into evacuated glassy silica ampoules after firing at 700 °C for seven days. Sc2O2[SeO3] first emerged as by-product during the attempts to synthesize ScCl[SeO3] following aforementioned synthesis route and could later be reproduced from appropriate Sc2O3/SeO3 mixtures. ScF[SeO3] crystallizes monoclinically in space group P21/m with a=406.43(2), b =661.09(4), c=632.35(4) pm, β=93.298(3)° and Z=2. Sc2O2[SeO3] also crystallizes in the monoclinic system, but in space group P21/n with a=786.02(6), b=527.98(4), c=1086.11(8) pm, β=108.672(3)° for Z=4. The crystal structures of both compounds are strongly influenced by the stereochemically active lone pairs of the ψ1-tetrahedral [SeO3]2- anions. They also show partial structures, where the derivatizing F- or O2- anions play an important role. For ScF[SeO3] chains of the composition 2+∞ 1[FS c 2 / 2 ] form from connected [FSc2]5+ dumbbells, while [OSc3]7+ pyramids and [OSc4]10+ tetrahedra units are condensed to layers according to 2+ ∞ 2[O2Sc2 ] in Sc2O2[SeO3].

  9. catena-Poly[[bis[2-(2,3-dimethylanilinobenzoato-κO]cadmium(II]-di-μ-3-pyridylmethanol-κ2N:O2O:N

    Directory of Open Access Journals (Sweden)

    Tadeusz Lis

    2008-03-01

    Full Text Available In the crystal structure of the title compound, [Cd(C15H14NO22(C6H7NO2]n, the Cd atom displays a distorted octahedral geometry, including two pyridine N atoms and two hydroxyl O from four symmetry-related 3-pyridylmethanol (3-pyme ligands and two carboxylate O atoms from mefenamate [2-(2,3-dimethylanilinobenzoate] anions. The Cd atoms are connected via the bridging 3-pyme ligands into chains, that extend in the a-axis direction. The Cd atom is located on a center of inversion, whereas the 3-pyme ligands and the mefenamate anions occupy general positions.

  10. 4,4′-Difluoro-2,2′-{[(3aRS,7aRS-2,3,3a,4,5,6,7,7a-octahydro-1H-1,3-benzimidazole-1,3-diyl]bis(methylene]}diphenol

    Directory of Open Access Journals (Sweden)

    Augusto Rivera

    2011-06-01

    Full Text Available In the crystal structure of the title compound, C21H24F2N2O2, the two N atoms of the imidazolidine moiety are linked to the hydroxy groups by intramolecular O—H...N hydrogen-bonding interactions. The crystal studied was a racemic mixture of RR and SS enatiomers. The cyclohexane ring adopts a chair conformation and the imidazolidine group to which it is fused has a twisted envelope conformation.

  11. (Z-Ethyl 3-(4-chlorophenyl-2-cyano-3-(2,6-difluorobenzamidoacrylate

    Directory of Open Access Journals (Sweden)

    Zhang Xiaoyan

    2008-12-01

    Full Text Available The title compound, C19H13ClF2N2O3, was prepared by the reaction of (Z-ethyl 3-amino-3-(4-chlorophenyl-2-cyanoacrylate and 2,6-difluorobenzoyl chloride. The dihedral angle between the chlorobenzene and fluorobenzene rings is 37.0 (1°. The ethyl group is disordered over two positions [occupancies = 0.52 (2:0.48 (2]. In addition to intramolecular N—H...O and N—H...F hydrogen bonds, the crystal packing shows the molecules to be connected by intermolecular C—H...O and C—H...N hydrogen bonds.

  12. Copper(II) perrhenate Cu(C{sub 3}H{sub 7}OH){sub 2}(ReO{sub 4}){sub 2}: Synthesis from isopropanol and CuReO{sub 4}, structure and properties

    Energy Technology Data Exchange (ETDEWEB)

    Mikhailova, D., E-mail: d.mikhailova@ifw-dresden.de [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM), Hermann-von-Helmholtz-Platz 1, D-76434 Eggenstein-Leopoldshafen (Germany); Institute for Complex Materials, IFW Dresden, Helmholtzstrasse 20, D-01069 Dresden (Germany); Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, D-01187 Dresden (Germany); Engel, J.M. [Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 2, D-64287 Darmstadt (Germany); Schmidt, M. [Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, D-01187 Dresden (Germany); Tsirlin, A.A. [National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn (Estonia); Ehrenberg, H. [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM), Hermann-von-Helmholtz-Platz 1, D-76434 Eggenstein-Leopoldshafen (Germany); Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 2, D-64287 Darmstadt (Germany)

    2015-12-15

    The crystal structure of Cu{sup +}Re{sup 7+}O{sub 4} is capable of a quasi-reversible incorporation of C{sub 3}H{sub 7}OH molecules. A room-temperature reaction between CuReO{sub 4} and C{sub 3}H{sub 7}OH under oxidizing conditions leads to the formation of a novel metal-organic hybrid compound Cu{sup 2+}(C{sub 3}H{sub 7}OH){sub 2}(ReO{sub 4}){sub 2}. Upon heating under reducing conditions, this compound transforms back into CuReO{sub 4}, albeit with ReO{sub 2} and metallic Cu as by-products. The crystal structure of Cu(C{sub 3}H{sub 7}OH){sub 2}(ReO{sub 4}){sub 2} solved from single-crystal X-ray diffraction (Pbca, a=10.005(3) Å, b=7.833(2) Å, and c=19.180(5) Å) reveals layers of corner-sharing CuO{sub 6}-octahedra and ReO{sub 4}-tetrahedra, whereas isopropyl groups are attached to both sides of these layers, thus providing additional connections within the layers through hydrogen bonds. Cu(C{sub 3}H{sub 7}OH){sub 2}(ReO{sub 4}){sub 2} is paramagnetic down to 4 K because the spatial arrangement of the Cu{sup 2+} half-filled orbitals prevents magnetic superexchange. The paramagnetic effective moment of 2.0(1) μ{sub B} is slightly above the spin-only value and typical for Cu{sup 2+} ions. - Highlights: • Novel Cu(C{sub 3}H{sub 7}OH){sub 2}(ReO{sub 4}){sub 2} compound has a sequence of inorganic and organic layers. • Hydrogen bonds provide an additional bonding Isopropanol molecules serve as a reducing agent during decomposition. • No direct Cu-O-Re-O-Cu connections via d{sub x2-y2} orbital of Cu{sup 2+} explain paramagnetism. • Hydrogen bonds provide an additional bonding. • Isopropanol molecules serve as a reducing agent during decomposition.

  13. (Carbonyl-1κC)bis­[2,3(η5)-cyclo­penta­dien­yl][μ3-(S-methyl trithio­carbonato)methylidyne-1:2:3κ4 C,S′′:C:C](triphenyl­phosphine-1κP)(μ3-sulfido-1:2:3κ3 S)dicobalt(II)iron(II) trifluoro­methane­sulfonate

    Science.gov (United States)

    Manning, Anthony R.; McAdam, C. John; Palmer, Anthony J.; Simpson, Jim

    2008-01-01

    The asymmetric unit of the title compound, [FeCo2(C5H5)2(C3H3S3)S(C18H15P)(CO)]CF3SO3, consists of a triangular irondicobalt cluster cation and a trifluoro­methane­sulfonate anion. In the cation, the FeCo2 triangle is symmetrically capped on one face by an S atom and on the other by a C atom linked to a methyl trithio­carbonate residue that bridges the Fe—C bond. Each Co atom carries a cyclo­penta­dienyl ligand while the Fe atom coordinates to one carbonyl and one triphenyl­phosphine ligand. In the crystal structure, the cation is linked to the anion by a number of weak non-classical C—H⋯O and C—H⋯F hydrogen bonds and weak S⋯O (3.317 Å) and S⋯F (3.198 Å) inter­actions. The structure is further stabilized by additional inter­molecular C—H⋯O, C—H⋯F and O⋯O (2.942 Å) contacts, together with an unusual S⋯π(Cp) inter­action (S⋯centroid distance = 3.385 Å), generating an extended network. PMID:21202187

  14. Synthesis, crystal structure and biological activity of a novel 1,2,3-thidiazole compound

    International Nuclear Information System (INIS)

    Ke, W.

    2013-01-01

    A new 1,2,3-thiadiazole compound was synthesized and characterized by 1H NMR, MS and HRMS. The crystal structure of the title compound (C/sub 12/H/sub 11/ClN/sub 2/O/sub 4/S/sub 2/, Mr = 346.80) has been determined by single-crystal X-ray diffraction. The crystal is of triclinic, space group P-1 with a = 8.4425(17) A, b = 8.9801(18) A, c = 9.859(2) A, alpha = 84.36(3) degree, beta = 86.71(3)degree, lambda = 83.25(3) degree, V = 737.9(3)A3, Z 2, F(000) = 356, Dc = 1.561 g/cm/sup 3/, mu = 0.557 mm-1, the final R1 0.0380 and wR2 = 0.0982 for 2160 observed reflections with I > 2sigma(I). A total of 12585 reflections were collected, of which 2601 were independent (Rint 0.0364). The herbicidal activity of title compound was determined, the results showed the title compound displayed excellent herbicidal activity against Brassica campestris. (author)

  15. The Osmium(VIII) Oxofluoro Cations OsO(2)F(3)(+) and F(cis-OsO(2)F(3))(2)(+): Syntheses, Characterization by (19)F NMR Spectroscopy and Raman Spectroscopy, X-ray Crystal Structure of F(cis-OsO(2)F(3))(2)(+)Sb(2)F(11)(-), and Density Functional Theory Calculations of OsO(2)F(3)(+), ReO(2)F(3), and F(cis-OsO(2)F(3))(2)(+).

    Science.gov (United States)

    Casteel, William J.; Dixon, David A.; Mercier, Hélène P. A.; Schrobilgen, Gary J.

    1996-07-17

    Osmium dioxide tetrafluoride, cis-OsO(2)F(4), reacts with the strong fluoride ion acceptors AsF(5) and SbF(5) in anhydrous HF and SbF(5) solutions to form orange salts. Raman spectra are consistent with the formation of the fluorine-bridged diosmium cation F(cis-OsO(2)F(3))(2)(+), as the AsF(6)(-) and Sb(2)F(11)(-) salts, respectively. The (19)F NMR spectra of the salts in HF solution are exchange-averaged singlets occurring at higher frequency than those of the fluorine environments of cis-OsO(2)F(4). The F(cis-OsO(2)F(3))(2)(+)Sb(2)F(11)(-) salt crystallizes in the orthorhombic space group Imma. At -107 degrees C, a = 12.838(3) Å, b = 10.667(2) Å, c = 11.323(2) Å, V = 1550.7(8) Å(3), and Z = 4. Refinement converged with R = 0.0469 [R(w) = 0.0500]. The crystal structure consists of discrete fluorine-bridged F(cis-OsO(2)F(3))(2)(+) and Sb(2)F(11)(-) ions in which the fluorine bridge of the F(cis-OsO(2)F(3))(2)(+) cation is trans to an oxygen atom (Os-O 1.676 Å) of each OsO(2)F(3) group. The angle at the bridge is 155.2(8) degrees with a bridging Os---F(b) distance of 2.086(3) Å. Two terminal fluorine atoms (Os-F 1.821 Å) are cis to the two oxygen atoms (Os-O 1.750 Å), and two terminal fluorine atoms of the OsO(2)F(3) group are trans to one another (1.813 Å). The OsO(2)F(3)(+) cation was characterized by (19)F NMR and by Raman spectroscopy in neat SbF(5) solution but was not isolable in the solid state. The NMR and Raman spectroscopic findings are consistent with a trigonal bipyramidal cation in which the oxygen atoms and a fluorine atom occupy the equatorial plane and two fluorine atoms are in axial positions. Density functional theory calculations show that the crystallographic structure of F(cis-OsO(2)F(3))(2)(+) is the energy-minimized structure and the energy-minimized structures of the OsO(2)F(3)(+) cation and ReO(2)F(3) are trigonal bipyramidal having C(2)(v)() point symmetry. Attempts to prepare the OsOF(5)(+) cation by oxidative fluorination of cis-OsO

  16. 2-Methyl-3-(2-methylphenyl-7-nitroquinazolin-4(3H-one

    Directory of Open Access Journals (Sweden)

    Edward R. T. Tiekink

    2012-03-01

    Full Text Available In the title methaqualone analogue, C16H13N3O3, the 2-tolyl group is almost orthogonal [dihedral angle = 85.20 (5°] to the fused ring system (r.m.s. deviation of fitted non-H atoms = 0.029 Å. In the crystal, twofold symmetry generates two-molecule aggregates linked by C—H...O and π–π interactions [ring centroid–centroid distance = 3.4967 (6 Å].

  17. CsSc{sub 3}F{sub 6}[SeO{sub 3}]{sub 2}. A new rare-earth metal(III) fluoride oxoselenate(IV) with sections of the ReO{sub 3}-type structure

    Energy Technology Data Exchange (ETDEWEB)

    Greiner, Stefan; Schleid, Thomas [Institut fuer Anorganische Chemie, Universitaet Stuttgart (Germany)

    2017-09-04

    A new representative of rare-earth metal(III) fluoride oxoselenates(IV) derivatized with alkali metals could be synthesized via solid-state reactions. Colorless single crystals of CsSc{sub 3}F{sub 6}[SeO{sub 3}]{sub 2} were obtained through the reaction of Sc{sub 2}O{sub 3}, ScF{sub 3}, and SeO{sub 2} (molar ratio 1:1:3) with CsBr as reactant and fluxing agent. For this purpose, corundum crucibles embedded as liners into evacuated silica ampoules were applied as containers for these reactions at 700 C for seven days. The new quintenary compound crystallizes in the trigonal space group P3m1 with a = 565.34(4) and c = 1069.87(8) pm (c/a = 1.892) for Z = 1. The crystal structure of CsSc{sub 3}F{sub 6}[SeO{sub 3}]{sub 2} contains two crystallographically different Sc{sup 3+} cations. Each (Sc1){sup 3+} is surrounded by six fluoride anions as octahedron, while the octahedra about (Sc2){sup 3+} are formed by three fluoride anions and three oxygen atoms from three terminal [SeO{sub 3}]{sup 2-} anions. The [(Sc1)F{sub 6}]{sup 3-} octahedra link via common F{sup -} vertices to six fac-[(Sc2)F{sub 3}O{sub 3}]{sup 6-} octahedra forming {sup 2}{sub ∞}{[Sc_3F_6O_6]"9"-} layers parallel to (001). These layers are separated by oxygen-coordinated Cs{sup +} cations (C.N. = 12), arranging for the charge compensation, while Se{sup 4+} cations within the layers surrounded by three oxygen atoms as ψ{sup 1}-tetrahedral [SeO{sub 3}]{sup 2-} units complete the structure. EDX measurements confirmed the composition of the title compound and single-crystal Raman studies showed the typical vibrational modes of isolated [SeO{sub 3}]{sup 2-} anions with ideal C{sub 3v} symmetry. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. 2-Methylsulfanyl-5,6-dihydro-2H-1,3-dithiolo[4,5-b][1,4]dioxin-2-ium tetrafluoroborate

    Directory of Open Access Journals (Sweden)

    Guoquan Zhou

    2012-04-01

    Full Text Available The title compound, C6H7O2S3+·BF4−, consists of a planar 2-thioxo-1,3-dithiol-4,5-yl unit [maximum deviation from the ring plane = 0.020 (3 Å], with an ethylenedioxy group fused at the 4,5-positions; the ethylenedioxy C atoms are disordered over two positions with site-occupancy factors of 0.5. The 1,4-dioxine ring has a twist-chair conformation. Weak cation–anion S...F interactions [3.022 (4–3.095 (4 Å] and an S...O [3.247 (4 Å] interaction are present.

  19. (3′R-3′-Benzyl-2′,3′-dihydro-1H-spiro[indole-3,1′-naphtho[2,3-c]pyrrole]-2,4′,9′-trione

    Directory of Open Access Journals (Sweden)

    Garima Sharma

    2012-09-01

    Full Text Available In the title compound, C26H18N2O3, the maximum deviations from planarity for the tetrahydro-1H-naphtho[2,3-c]pyrrole and indoline rings systems are 0.091 (1 and 0.012 (2 Å, respectively. These ring systems make a dihedral angle of 89.95 (6° with each other and they make dihedral angles of 73.42 (8 and 71.28 (9°, respectively, with the benzene ring. In the crystal, inversion dimers linked by pairs of N—H...O hydrogen bonds generate R22(8 loops and C—H...O interactions connect the dimers into corrugated sheets lying parallel to the bc plane.

  20. Synthesis and structure of a 1,6-hexyldiamine heptaborate, [H3N(CH2)6NH3][B7O10(OH)3

    International Nuclear Information System (INIS)

    Yang Sihai; Li Guobao; Tian Shujian; Liao Fuhui; Xiong Ming; Lin Jianhua

    2007-01-01

    A new 1,6-hexyldiamine heptaborate, [H 3 N(CH 2 ) 6 NH 3 ][B 7 O 10 (OH) 3 ] (1), has been solvothermally synthesized and characterized by single-crystal X-ray diffraction, FTIR, elemental analysis, and thermogravimetric analysis. Compound 1 crystallizes in monoclinic system, space group P2 1 /n with a=8.042(2) A, b=20.004(4) A, c=10.103(2) A, and β=90.42(3) deg. The anionic [B 7 O 10 (OH) 3 ] n 2n- layers are interlinked via hydrogen bonding to form a 3D supramolecular network containing large channels, in which the templated [H 3 N(CH 2 ) 6 NH 3 ] 2+ cations are located. - Graphical abstract: A layered 1,6-hexyldiamine heptaborate, [H 3 N(CH 2 ) 6 NH 3 ][B 7 O 10 (OH) 3 ], was solvothermally synthesized at 150 deg. C. It is a layer borate and crystallized in monoclinic space group P2 1 /n with a=8.042(2) A, b=20.004(4) A, c=10.103(2) A, β=90.42(3) deg

  1. Synthesis and anti-HIV activity of novel 3-substituted phenyl-6,7-dimethoxy-3a,4-dihydro-3H-indeno[1,2-c]isoxazole analogues.

    Science.gov (United States)

    Ali, Mohamed A; Ismail, Rusli; Choon, Tan S; Yoon, Yeong K; Wei, Ang C; Pandian, Suresh; Samy, Jeyabalan G; De Clercq, Eric; Pannecouque, Christophe

    2011-01-01

    A series of novel 3-(substituted phenyl)-6,7-dimethoxy-3a,4-dihydro-3H-indeno[1,2-c]isoxazole analogues were synthesized by the reaction of 5,6-dimethoxy-2-[(E)-1-phenylmethylidene]-1-indanone with hydroxylamine hydrochloride. The title compounds were tested for their in vitro anti-HIV activity. Among the compounds, (4g) showed a promising anti-HIV activity in the in vitro testing against IIIB and ROD strains. The IC50 of both IIIB and ROD were found to be 9.05 microM and > 125 microM, respectively.

  2. Triaquabis(1H-imidazolebis[μ2-2-(oxaloaminobenzoato(3−]dicopper(IIcalcium(II heptahydrate

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2008-02-01

    Full Text Available In the title heterotrinuclear coordination compound, [CaCu2(C9H4NO52(C3H4N22(H2O37H2O, the Ca2+ cation is in a pentagonal–bipyramidal geometry and bridges two (1H-imidazole[2-(oxaloaminobenzoato(3−]copper(II units in its equatorial plane. Each CuII atom has a normal square-planar geometry. The molecule has approximate local (non-crystallographic mirror symmetry and 23 classical hydrogen bonds are found in the crystal structure.

  3. Synthesis and the crystal and molecular structures of 4-(piperidyl-1)-2-phenylpyrido[2,3-a]anthraquinone-7,12 Mono- and dibromohydrates (HL)Br . 3H2O and (H2L)Br2 . 3H2O

    International Nuclear Information System (INIS)

    Kovalchukova, O. V.; Stash, A. I.; Belsky, V. K.; Strashnova, S. B.; Zaitsev, B. E.; Ryabov, M. A.

    2009-01-01

    4-(Piperidyl-1)-2-phenylpyrido[2,3-a]anthraquinone-7,12 monobromohydrate (HL)Br . 3H 2 O (I) and 4-(piperidyl-1)-2-phenylpyrido[2,3-a]anthraquinone-7,12 dibromohydrate (H 2 L)Br 2 . 3H 2 O (II) are isolated in the crystalline state. The crystal structures of compounds I and II are determined using X-ray diffraction. It is established that the protonation of 4-(piperidyl-1)-2-phenylpyrido[2,3-a]anthraquinone-7,12 proceeds primarily through the pyridine atom at pH 2-3. The attachment of the second proton occurs through the piperidine nitrogen atom at pH ∼ 1.

  4. 1,4-Dimethyl-3-phenyl-3H-pyrazolo[3,4-c]isoquinolin-5(4H-one

    Directory of Open Access Journals (Sweden)

    Giuseppe Daidone

    2008-05-01

    Full Text Available The title compound, C18H15N3O, is the product of the thermal decomposition of the diazonium salt derived from 2-amino-N-methyl-N-(3-methyl-1-phenyl-1H-pyrazol-5-ylbenzamide. It is characterized by a trans orientation of the methyl groups with respect to the tricyclic ring system. The molecule has a nearly planar phenylpyrazolo[3,4-c]isoquinolin-5-one system, the largest deviation from the mean plane being 0.066 (2 Å for the O atom. The dihedral angle between the phenyl substituent and the heterotricycle is 67 (1°. The packing is stabilized by C—H...N hydrogen-bond interactions, with the formation of molecular chains along the c axis.

  5. Three closely related 4,5,6,7-tetrahydro-1H-pyrazolo[4,3-c]pyridines: synthesis, molecular conformations and hydrogen bonding in zero, one and two dimensions.

    Science.gov (United States)

    Sagar, Belakavadi K; Harsha, Kachigere B; Yathirajan, Hemmige S; Rangappa, Kanchugarakoppal S; Rathore, Ravindranath S; Glidewell, Christopher

    2017-03-01

    In each of 1-(4-fluorophenyl)-5-methylsulfonyl-3-[4-(trifluoromethyl)phenyl]-4,5,6,7-tetrahydro-1H-pyrazolo[4,3-c]pyridine, C 21 H 19 F 4 N 3 O 2 S, (I), 1-(4-chlorophenyl)-5-methylsulfonyl-3-[4-(trifluoromethyl)phenyl]-4,5,6,7-tetrahydro-1H-pyrazolo[4,3-c]pyridine, C 21 H 19 ClF 3 N 3 O 2 S, (II), and 1-(3-methylphenyl)-5-methylsulfonyl-3-[4-(trifluoromethyl)phenyl]-4,5,6,7-tetrahydro-1H-pyrazolo[4,3-c]pyridine, C 22 H 22 F 3 N 3 O 2 S, (III), the reduced pyridine ring adopts a half-chair conformation with the methylsulfonyl substituent occupying an equatorial site. Although compounds (I) and (II) are not isostructural, having the space groups Pbca and P2 1 2 1 2 1 , respectively, their molecular conformations are very similar, but the conformation of compound (III) differs from those of (I) and (II) in the relative orientation of the N-benzyl and methylsulfonyl substituents. In compounds (II) and (III), but not in (I), the trifluoromethyl groups are disordered over two sets of atomic sites. Molecules of (I) are linked into centrosymmetric dimers by C-H...π(arene) hydrogen bonds, molecules of (II) are linked by two C-H...O hydrogen bonds to form ribbons of R 3 3 (18) rings, which are themselves further linked by a C-Cl...π(arene) interaction, and a combination of C-H...O and C-H...π(arene) hydrogen bonds links the molecules of (III) into sheets. Comparisons are made with the structures of some related compounds.

  6. Magnetic measurements and neutron diffraction study of the layered hybrid compounds Mn(C8H4O4)(H2O)2 and Mn2(OH)2(C8H4O4)

    International Nuclear Information System (INIS)

    Sibille, Romain; Mesbah, Adel; Mazet, Thomas; Malaman, Bernard; Capelli, Silvia; François, Michel

    2012-01-01

    Mn(C 8 H 4 O 4 )(H 2 O) 2 and Mn 2 (OH) 2 (C 8 H 4 O 4 ) layered organic–inorganic compounds based on manganese(II) and terephthalate molecules (C 8 H 4 O 4 2− ) have been studied by DC and AC magnetic measurements and powder neutron diffraction. The dihydrated compound behaves as a 3D antiferromagnet below 6.5 K. The temperature dependence of its χT product is typical of a 2D Heisenberg system and allows determining the in-plane exchange constant J≈−7.4 K through the carboxylate bridges. The magnetic structure confirms the in-plane nearest neighbor antiferromagnetic interactions and the 3D ordering. The hydroxide based compound also orders as a 3D antiferromagnet with a higher Néel temperature (38.5 K). Its magnetic structure is described from two antiferromagnetically coupled ferromagnetic sublattices, in relation with the two independent metallic sites. The isothermal magnetization data at 2 K are consistent with the antiferromagnetic ground-state of these compounds. However, in both cases, a slope change points to field-induced modification of the magnetic structure. - Graphical abstract: The macroscopic magnetic properties and magnetic structures of two metal-organic frameworks based on manganese (II) and terephthalate molecules are presented. Highlights: ► Magnetic study of Mn(C 8 H 4 O 4 )(H 2 O) 2 and Mn 2 (OH) 2 (C 8 H 4 O 4 ). ► Two compounds with common features (interlayer linker/distance, S=5/2 spin). ► Magnetic measurements quantitatively analyzed to deduce exchange constants. ► Magnetic structures determined from neutron powder diffraction experiments.

  7. The crystal structure of Cs{sub 2}S{sub 2}O{sub 3}.H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, Verena; Schlosser, Marc; Pfitzner, Arno [Regensburg Univ. (Germany). Inst. fuer Anorganische Chemie

    2016-08-01

    A reinvestigation of the alkali metal thiosulfates has led to the new phase Cs{sub 2}S{sub 2}O{sub 3}.H{sub 2}O. At first cesium thiosulfate monohydrate was obtained as a byproduct of the synthesis of Cs{sub 4}In{sub 2}S{sub 5}. Further investigations were carried out using the traditional synthesis reported by J. Meyer and H. Eggeling. Cs{sub 2}S{sub 2}O{sub 3}.H{sub 2}O crystallizes in transparent, colorless needles. The crystal structure of the title compound was determined by single crystal X-ray diffraction at room temperature: space group C2/m (No. 12), unit cell dimensions: a = 11.229(4), b = 5.851(2), c = 11.260(5) Aa, β = 95.89(2) , with Z = 4 and a cell volume of V = 735.9(5) Aa{sup 3}. The positions of all atoms including the hydrogen atoms were located in the structure refinement. Cs{sub 2}S{sub 2}O{sub 3}.H{sub 2}O is isotypic with Rb{sub 2}S{sub 2}O{sub 3}.H{sub 2}O. Isolated tetrahedra [S{sub 2}O{sub 3}]{sup 2-} are coordinated by the alkali metal cations, and in addition they serve as acceptors for hydrogen bonding. For both Cs atoms the shortest distances are observed to oxygen atoms of the S{sub 2}O{sub 3}{sup 2-} anions whereas the terminating sulfur atom has its shortest contacts to the water hydrogen atoms. Thus, an extended hydrogen bonding network is formed. The title compound has also been characterized by IR spectroscopy. IR spectroscopy reveals the vibrational bands of the water molecules at 3385 cm{sup -1}. They show a red shift in the OH stretching and bending modes as compared to free water. This is due both to the S..H hydrogen bonding and to the coordination of H{sub 2}O molecules to the cesium atoms.

  8. tert-Butyl 3-(8-bromo-4H,10H-1,2-oxazolo[4,3-c][1]benzoxepin-10-yl-2-methyl-1H-indole-1-carboxylate

    Directory of Open Access Journals (Sweden)

    Ankur Trigunait

    2010-08-01

    Full Text Available In the title compound, C25H23BrN2O4, the seven-membered ring adopts a twisted-boat conformation. The indole ring system is planar within 0.021 (2 Å and the ester group [–C(=O—O—C–] is almost coplanar with it [dihedral angle = 3.0 (2°]. The conformation of the ester group is influenced by intramolecular C—H...O interactions. In the crystal structure, molecules are linked into chains along the b axis by C—H...N hydrogen bonds.

  9. (2-Methyl-4-oxo-4H-pyran-3-olato-κ2O3,O4bis(triphenylphosphane-κPcopper(I–triphenylphosphane–methanol (1/1/1

    Directory of Open Access Journals (Sweden)

    Fabian M. A. Muller

    2011-05-01

    Full Text Available In the title compound, [Cu(C6H5O3(C18H15P2C18H15P·CH3OH, the pyran-4-one ring is appromimately planar (r.m.s deviation = 0.0138 Å, with the CuI atom 0.451 (5 Å out of the plane. The CuI atom has a distorted tetrahedral coordination. The O—Cu—O angle is 80.07 (8° and the P—Cu—P angle is 123.49 (3°. The crystal packing is stablized by intramolecular C—H...O interactions and intermolecular C—H...O and O—H...O interactions.

  10. Nonacarbonyl-1κ3C,2κ3C,3κ3C-μ-bis(diphenylarsinomethane-1:2κ2As:As'-[tris(2-chloroethyl phosphite-3κP]-triangulo-triruthenium(0

    Directory of Open Access Journals (Sweden)

    Omar bin Shawkataly

    2010-08-01

    Full Text Available In the title triangulo-triruthenium(0 compound, [Ru3(C25H22As2(C6H12Cl3O3P(CO9], the bis(diphenylarsinomethane ligand bridges an Ru—Ru bond and the monodentate phosphine ligand bonds to the third Ru atom. Both the arsine and phosphine ligands are equatorial with respect to the Ru3 triangle. In addition, each Ru atom carries one equatorial and two axial terminal carbonyl ligands. In the crystal packing, the molecules are linked by intermolecular C—H...O hydrogen bonds into a three-dimensional framework. Weak intermolecular C—H...π interactions further stabilize the crystal structure.

  11. 2,6-Diaminopyridinium bis(4-hydroxypyridine-2,6-dicarboxylato-κ3O2,N,O6ferrate(III dihydrate

    Directory of Open Access Journals (Sweden)

    Andya Nemati

    2008-10-01

    Full Text Available The reaction of iron(II sulfate heptahydrate with the proton-transfer compound (pydaH(hypydcH (pyda = pyridine-2,6-diamine; hypydcH2 = 4-hydroxypyridine-2,6-dicarboxylic acid in an aqueous solution led to the formation of the title compound, (C5H8N3[Fe(C7H3NO52]·2H2O. The anion is a six-coordinated complex with a distorted octahedral geometry around the FeIII atom. Extensive intermolecular O—H...O, N—H...O and C—H...O hydrogen bonds, involving the complex anion, (pydaH+ counter-ion and two uncoordinated water molecules, and π–π [centroid-to-centroid distance 3.323 (11 Å] and C—O...π [O–centroid distance 3.150 (15 Å] interactions connect the various components into a supramolecular structure.

  12. Wear Behavior of Cold Pressed and Sintered Al2O3/TiC/CaF2Al2O3/TiC Laminated Ceramic Composite

    Institute of Scientific and Technical Information of China (English)

    Xuefeng YANG; Jian CHENG; Peilong SONG; Shouren WANG; Liying YANG; Yanjun WANG; Ken MAO

    2013-01-01

    A novel laminated Al2O3/TiC/CaF2-Al2O3/TiC sandwich ceramic composite was fabricated through cold pressing and sintering to achieve better anti-wear performance,such as low friction coefficient and low wear rate.Al2O3/TiC/CaF2 and Al2O3/TiC composites were alternatively built layer-by-layer to obtain a sandwich structure.Solid lubricant CaF2 was added evenly into the Al2O3/TiC/CaF2 layer to reduce the friction and wear.Al2O3/TiC ceramic was also cold pressed and sintered for comparison.Friction analysis of the two ceramics was then conducted via a wear-and-tear machine.Worn surface and surface compositions were examined by scanning electron microscopy and energy dispersion spectrum,respectively.Results showed that the laminated Al2O3/TiC/CaF2-Al2O3/TiC sandwich ceramic composite has lower friction coefficient and lower wear rate than those of Al2O3/TiC ceramic alone because of the addition of CaF2 into the laminated Al2O3/TiC/CaF2-Al2O3/TiC sandwich ceramic composite.Under the friction load,the tiny CaF2 particles were scraped from the Al2O3/TiC/CaF2 layer and spread on friction pairs before falling off into micropits.This process formed a smooth,self-lubricating film,which led to better anti-wear properties.Adhesive wear is the main wear mechanism of Al2O3/TiC/CaF2 layer and abrasive wear is the main wear mechanism of Al2O3/TiC layer.

  13. Bis(acetylacetonato-κ2O,O′(2-amino-1-methyl-1H-benzimidazole-κN3oxidovanadium(IV

    Directory of Open Access Journals (Sweden)

    Zukhra Ch. Kadirova

    2009-07-01

    Full Text Available The title mixed-ligand oxidovanadium(IV compound, [VO(C5H7O22(C8H9N3], contains a VIV atom in a distorted octahedral coordination, which is typical for such complexes. The vanadyl group and the N-heterocyclic ligand are cis to each other. The coordination bond is located at the endocyclic N atom of the benzimidazole ligand. Intramolecular hydrogen bonds between the exo-NH2 group H atoms and acetylacetonate O atoms stabilize the crystal structure.

  14. 10-{4-[(2-Hydroxybenzylideneamino]phenyl}-5,5-difluoro-1,3,7,9-tetramethyl-5H-dipyrrolo[1,2-c:2′,1′-f][1,3,2]diazaborinin-4-ium-5-uide

    Directory of Open Access Journals (Sweden)

    Zhensheng Li

    2013-07-01

    Full Text Available The title compound, C26H24BF2N3O, comprises a boron–dipyrromethene (BODIPY framework and a phenolic Schiff base substituent group. The BODIPY unit is close to planar [maximum deviation from the least-squares plane = 0.040 (3 Å], and forms a dihedral angle of 80.38 (13° with the meso-substituent phenyl ring and an angle of 56.57 (13° with the phenolic ring in the extended substituent chain. An intramolecular O—H...N hydrogen bond is formed between the phenolic hydroxyl group and the Schiff base N-atom. The crystal studied was a non-merohedral twin with a BASF factor of 0.447 (3 for the two components.

  15. Non-condensed (oxo)nitridosilicates: La{sub 3}-[SiN{sub 4}]F and the polymorph o-La{sub 3}-[SiN{sub 3}O]O

    Energy Technology Data Exchange (ETDEWEB)

    Durach, Dajana; Schnick, Wolfgang [Department of Chemistry, Chair in Inorganic Solid-State Chemistry, University of Munich (LMU) (Germany)

    2015-08-15

    The isotypic compounds La{sub 3}[SiN{sub 4}]F and La{sub 3}[SiN{sub 3}O]O were synthesized in a radio-frequency furnace at 1600 C. The crystal structures [Pnma (no. 62), Z = 4; La{sub 3}(SiN{sub 4})F: a = 9.970(3), b = 7.697(2), c = 6.897(2) Aa, V = 529.3(3) Aa{sup 3}; La{sub 3}(SiON{sub 3})O: a = 9.950(2), b = 7.6160(15), c = 6.9080(14) Aa, V = 523.48(18) Aa{sup 3}] were elucidated from single-crystal X-ray diffraction data and corroborated by Rietveld refinement, lattice-energy calculations (Madelung part of lattice energy, MAPLE) and Raman/FTIR spectroscopy. Both compounds are homeotypic with Na{sub 2}Pr[GeO{sub 4}]OH forming a network of vertex-sharing FLa{sub 6}/OLa{sub 6} octahedra, whose voids are filled with non-condensed SiN{sub 4}/SiN{sub 3}O tetrahedra. o-La{sub 3}[SiON{sub 3}]O is the orthorhombic polymorph of this compound, which probably represents the high-temperature modification, whereas the tetragonal polymorph t-La{sub 3}[SiON{sub 3}]O represents the low-temperature modification. While the space group of the t-polymorph [I4/mcm (no. 140)] differs from the new La{sub 3}[SiN{sub 4}]F and o-La{sub 3}[SiN{sub 3}O]O, the crystal structure contains the same linking pattern. (Copyright copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Synthesis, characterization and sorption properties of functionalized Cr-MIL-101-X (X=–F, –Cl, –Br, –CH{sub 3}, –C{sub 6}H{sub 4}, –F{sub 2}, –(CH{sub 3}){sub 2}) materials

    Energy Technology Data Exchange (ETDEWEB)

    Buragohain, Amlan [Department of Chemistry, Indian Institute of Technology Guwahati, 781039 Assam (India); Couck, Sarah [Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels (Belgium); Van Der Voort, Pascal [Department of Inorganic and Physical Chemistry, Ghent University, COMOC – Center for Ordered Materials, Organometallics and Catalysis, Krijgslaan 281-S3, 9000 Ghent (Belgium); Denayer, Joeri F.M. [Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels (Belgium); Biswas, Shyam, E-mail: sbiswas@iitg.ernet.in [Department of Chemistry, Indian Institute of Technology Guwahati, 781039 Assam (India)

    2016-06-15

    Four existing and three new functionalized chromium terephthalates having MIL-101 topology and denoted as Cr-MIL-101-X (existing ones with X=–F, 1-F; –Cl, 2-Cl; –Br, 3-Br; –CH{sub 3}, 4-CH{sub 3}; new ones with X=–C{sub 6}H{sub 4}, 5-C{sub 6}H{sub 4}; –F{sub 2}, 6-F{sub 2}, –(CH{sub 3}){sub 2}, 7-(CH{sub 3}){sub 2}) were synthesized under hydrothermal conditions. All the materials except 5-C{sub 6}H{sub 4} could be prepared by a general synthetic route, in which the mixtures of CrO{sub 3}, H{sub 2}BDC-X (BDC=1,4-benzenedicarboxylate) linkers, conc. HCl and water with a molar ratio of 1:1:3.9:222.2 were reacted at 180 °C for 144 h. Compared to the 144 h of synthesis time, three of the compounds, namely 1-Cl, 2-Br and 5-C{sub 6}H{sub 4}, could be prepared in much shorter reaction times (12–18 h at 180–210 °C). The materials possess high thermal stability up to 270–300 °C in an air atmosphere. The activated compounds exhibit significant porosity (S{sub BET} range: 1273–2135 m{sup 2} g{sup −1}). At 0 °C and 1 bar, the CO{sub 2} adsorption capacities of the compounds fall in the 1.72.9 mmol g{sup −1} range. Compounds 1-F and 6-F{sub 2} showed enhanced CO{sub 2} uptake values compared to parent Cr-MIL-101. The benzene adsorption capacities of the compounds lie in the range of 66.2–139.5 molecules per unit cell at 50 °C and p/p{sub 0}=0.35. The increased benzene uptake value of 1-F compared to un-functionalized Cr-MIL-101 and 4-CH{sub 3} suggests that the fluorination has induced more hydrophobicity in Cr-MIL-101 as compared to the methylation. - Graphical abstract: Benzene adsorption by seven functionalized Cr-MIL-101-X metal-organic framework (MOF) materials Display Omitted - Highlights: • Seven functionalized Cr-MIL-101-X materials were synthesized solvothermally. • All Cr-MIL-101-X materials exhibited high thermal stability up to 270–300 °C in air. • All Cr-MIL-101-X compounds displayed considerable porosity towards N{sub 2

  17. Synthesis, single-crystal structure determination and Raman spectra of the tricyanomelaminates NaA{sub 5}[C{sub 6}N{sub 9}]{sub 2} . 4 H{sub 2}O (A = Rb, Cs)

    Energy Technology Data Exchange (ETDEWEB)

    Reckeweg, Olaf; DiSalvo, Francis J. [Cornell Univ., Ithaca, NY (United States). Baker Lab.; Schulz, Armin [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)

    2016-07-01

    Transparent colorless crystals of NaA{sub 5}[C{sub 6}N{sub 9}]{sub 2} . 4 H{sub 2}O (A = Rb, Cs) were obtained by blending aqueous solutions of Na{sub 3}[C{sub 6}N{sub 9}] and RbF or CsF, respectively, and subsequent evaporation of the water under ambient conditions. Both compounds crystallize in the space group P2{sub 1}/m (no. 11) with the cell parameters a = 815.56(16), b = 1637.7(4) and c = 1036.4(3) pm, and β = 110.738(12) for NaRb{sub 5}[C{sub 6}N{sub 9}]{sub 2} . 4 H{sub 2}O and a = 843.32(6), b = 1708.47(11) and c = 1052.42(7) pm, and β = 112.034(2) for NaCs{sub 5}[C{sub 6}N{sub 9}]{sub 2} . 4 H{sub 2}O, respectively. Raman spectra of the title compounds complement our results.

  18. 2,4,6-Triamino-1,3,5-triazine-1,3-diium aquapentafluoridoaluminate

    Directory of Open Access Journals (Sweden)

    V. Maisonneuve

    2008-04-01

    Full Text Available The title compound, (C3H8N6[AlF5(H2O], was obtained by solvothermal synthesis from the reaction of aluminium hydroxide, 1,3,5-triazine-2,4,6-triamine (melamine, aqueous HF and water at 323 K for 48 h. The structure consists of [AlF5(H2O]2− octahedra and diprotonated melaminium cations. Cohesion is ensured by a three-dimensional network of hydrogen bonds.

  19. 3H-1,2-Benzodithiole-3-thione

    Directory of Open Access Journals (Sweden)

    Khaled Boukebbous

    2016-10-01

    Full Text Available The almost planar (r.m.s. deviation = 0.034 Å title compound, C7H4S3, was synthesized by reacting 2,2-dithiodibenzoic acid with phosphorus pentasulfide in xylene solution. In the crystal, short S...S [3.3727 (14, 3.3765 (13 and 3.4284 (13 Å] contacts and aromatic π–π stacking [shortest centroid–centroid separation = 3.618 (2 Å] are observed.

  20. 3′,7′,7′-Trimethyl-1′-phenyl-5′,6′,7′,8′-tetrahydrospiro[indoline-3,4′-(1H,4H-pyrazolo[3,4-b]chromene]-2,5′-dione

    Directory of Open Access Journals (Sweden)

    Li-Qin Zhao

    2010-12-01

    Full Text Available The title spirooxindole compound, C26H23N3O3, was prepared by the reaction of isatin, 3-methyl-1-phenyl-2-pyrazolin-5-one and 5,5-dimethylcyclohexane-1,3-dione in an ethanol solution. The fused cyclohexene ring adopts an envelope conformation. The dihedral angle between the aromatic and pyrazoline rings is 23.70 (8°. An intramolecular C—H...O interaction occurs. The crystal structure is stabilized by N—H...N hydrogen-bonding interactions, leading to a zigzag chain along the b axis.

  1. Structure of β-TlMo2P3O13

    International Nuclear Information System (INIS)

    Costentin, G.; Borel, M.M.; Grandin, A.; Leclaire, A.; Raveau, B.

    1991-01-01

    Thallium molybdenum triphosphate, TlMo 2 P 3 O 13 , M r =679.16, monoclinic, P2 1 /c, a=9.7536 (3), b=19.0640 (16), c=6.3945 (7) A, β=107.099 (7) 0 , V=1136 (2) A 3 , Z=4, D m not measured, D x =4.08 Mg m -3 , λ(MoKα)=0.71073 A, μ=16.90 mm -1 , F(000)=314, T=293 K, 951 reflections, R=0.047, ωR=0.047. The lattice is built up from MoO 6 , PO 4 and P 2 O 7 groups delimiting tunnels where the Tl + ions are located. The title compound is isotyopic with β-KMo 2 P 3 O 13 . (orig.)

  2. A novel synthesis of octahydropyrido[3,2-c]carbazole framework of aspidospermidine alkaloids and a combined computational, FT-IR, NMR, NBO, NLO, FMO, MEP study of the cis-4a-Ethyl-1-(2hydroxyethyl)-2,3,4,4a,5,6,7,11c-octahydro-1H-pyrido[3,2-c]carbazole

    Science.gov (United States)

    Uludağ, Nesimi; Serdaroğlu, Goncagul; Yinanc, Abdullah

    2018-06-01

    In this study, we performed a novel synthesis of the octahydropyrido[3,2-c]carbazole derivative 6 from 1 in five steps with a 34% overall yield. We also developed a unique compound 2 by a cyclization reaction from the cyanoethylation of compound 1, which is an intermediate step in the synthesis of Aspidospermidine. The parent compound of Aspidospermidine alkaloids, comprise a large family of diverse structures. As a result, we obtained octahydropyrido[3,2-c]carbazole (6)and the proposed method may be applicable to other alkaloids. All quantum chemical calculations of the cis-4a-Ethyl-1-(2-hydroxyethyl)-2,3,4,4a,5,6,7,11c-octahydro-1H-pyrido[3,2-c]carbazole have been performed with the DFT/B3LYP and HF methods by using the Gaussian 09W software package. The most stable conformer obtained from the Potential Energy Surface (PES) scan analysis at the B3LYP/6-31G** level of theory in the gas phase was used as the starting structure of the title compound to further computational analysis. The Natural Bond Orbital (NBO) and NLO analyses were performed to evaluate the intra-molecular interactions contributing to the molecular stability and to predict the optical properties of the title compound, respectively. Gauge-Independent Atomic Orbital (GIAO) approach was used to determine the 1H and 1C NMR chemical shifts of the title compound by subtracting the shielding constants of TMS at both methods. The calculated vibrational frequencies of the title compound were assigned by using the VEDA program and were scaled down by using the scaling factor 0.9668 for B3LYP/6-311++G(d, p) and 0.9050 for HF/6-311++G(d, p) to improve the calculated vibrational frequencies. The FMO (frontier molecular orbital) analysis was evaluated to predict the chemical and physical properties of the title compound and the HOMO, LUMO, and MEP diagrams were visualized by GaussView 4.1 program to present the reactive site of the title compound.

  3. Investigation into complexing in Re7-H3O+-SO42--H2O system

    International Nuclear Information System (INIS)

    Sinyakova, G.S.

    1979-01-01

    Using the methods of spectrophotometry and conductometry it is shown, that in the ReO 4 - -H 3 O + -SO 4 2- -H 2 O system interaction between rhenium (7) and sulfuric acid takes place in a wide concentration range. In low-acid solutions at pH 2.0-0.9 rhenium(7) complex with proton is formed at the ratio of 1:1 with lgK 1 =3.30+-0.02. In 1-10 mol. sulfuric acid observed is consecutive complexing at the rhenium(7) - sulfuric acid ratio in the complex of 1:1 and 1:2 respectively with lgK 2 =0.93+-0.13 and lgK 3 =0.34+-0.03. At the background of concentrated perchloric acid rhenium (7) and sodium sulfate form two complex compounds at rhenium (7) - sodium sulfate ratio of 1:1 and 1:2 with lgK 1 =1.86+-0.02 and lgK 2 =2.35+-0.03

  4. N-(4-Chloro-1,3-benzothiazol-2-yl-2-(3-methylphenylacetamide monohydrate

    Directory of Open Access Journals (Sweden)

    H. S. Yathirajan

    2011-10-01

    Full Text Available In the title compound, C16H13ClN2OS·H2O, the dihedral angle between the mean planes of the benzothiazole ring system and the methylphenyl ring is 79.3 (6°. The crystal packing features intermolecular O—H...N, O—H...O and N—H...O hydrogen bonds involving the water molecule and weak C—H...O, C—H...Cg and π–π stacking interactions [centroid–centroid distances = 3.8743 (7, 3.7229 (7 and 3.7076 (8 Å].

  5. Crystal structure of (E-4,4,4-trifluoro-3-phenylbut-2-enoic acid

    Directory of Open Access Journals (Sweden)

    Alexey Barkov

    2015-12-01

    Full Text Available In the title compound, C10H7F3O2, the dihedral angle between the benzene ring and the ethylene plane is 76.34 (11°. In the crystal, O—H...O hydrogen bonds link the molecules into C(4 chains propagating in [010].

  6. Ethyl 3-[7-ethoxy-6-(4-methoxybenzenesulfonamido-2H-indazol-2-yl]propanoate

    Directory of Open Access Journals (Sweden)

    Najat Abbassi

    2012-04-01

    Full Text Available In the title compound, C21H25N3O6S, the dihedral angle between the methoxybenzene and indazole rings is 74.96 (5°. The crystal packing is stabilized by an N—H...O hydrogen bond into a two-dimensional network. In addition, C—H...π interactions and a π–π contact, with a centroid–centroid distance of 3.5333 (6 Å, are observed. The crystal packing is stabilized by N—H...O and C—H...O hydrogen bonds.

  7. 2′-Methyl-2′-nitro-1′-phenyl-2′,3′,5′,6′,7′,7a'-hexahydrospiro[indoline-3,3′-1′H-pyrrolizin]-2-one

    Directory of Open Access Journals (Sweden)

    Yaghoub Sarrafi

    2008-08-01

    Full Text Available The title compound, C21H21N3O3, was synthesized by a multi-component 1,3-dipolar cycloaddition of azomethine ylide, derived from isatin and proline by a decarboxylative route, and (E-1-phenyl-2-nitropropene. In the molecule, the spiro junction links a planar oxindole ring and a pyrrolidine ring in an envelope conformation. The molecular packing is stabilized by an intermolecular N—H...N interaction of the oxindole and pyrrolizidine rings.

  8. Heterocyclic Analogues of Xanthone and Xanthione. 1H-Pyrano[2,3-c:6,5-c]dipyrazol-4(7H-ones and Thiones: Synthesis and NMR Data

    Directory of Open Access Journals (Sweden)

    Wolfgang Holzer

    2010-09-01

    Full Text Available The synthesis of the title compounds is described. Reaction of 1-substituted 2-pyrazolin-5-ones with 5-chloro-1-phenyl-1H-pyrazole-4-carbonyl chloride or 5-chloro-3-methyl-1-phenyl-1H-pyrazole-4-carbonyl chloride, respectively, using calcium hydroxide in refluxing 1,4-dioxane gave the corresponding 4-heteroaroylpyrazol-5-ols, which were cyclized into 1H-pyrano[2,3-c:6,5-c]dipyrazol-4(7H-ones by treatment with K2CO3/DMF. The latter were converted into the corresponding thiones upon reaction with Lawesson’s reagent. Detailed NMR spectroscopic investigations (1H, 13C, 15N of the ring systems and their precursors are presented.

  9. Bis(2,2′-bipyridine-κ2N,N′(3-methylbenzoato-κ2O,O′zinc 3-methylbenzoate–3-methylbenzoic acid–water (1/1/2

    Directory of Open Access Journals (Sweden)

    Qiu-qi Ye

    2012-09-01

    Full Text Available The title compound, [Zn(C8H7O2(C10H8N22](C8H7O2·C8H8O2·2H2O, is comprised of a Zn2+ cation, two 2,2′-bipydine (bipy ligands and one 3-methylbenzoate anion (L− together with one uncoordinating L− anion, one uncoordinating HL molecule and two lattice water molecules. The ZnII atom is coordinated by four N atoms of two bipy ligands and two O atoms from one L− ligand in a distorted octahedral geometry. Pairs of centrosymmetrically related complex molecules form dimers via slipped π-stacking interactions between bipy ligands with an interplanar distance of 3.470 (4 Å. The dimers are linked into supramolecular chains along [111], via C—H...O hydrogen bonds. The uncoordinated L− anions, HL molecules and water molecules are connected with each other via O—H...O hydrogen bonds, forming chains between the metal complex chains and binding them together via C—H...O contacts. The resulting layers parallel to (010 are further assembled into a three-dimensional supramolecular architecture through additional C—H...O interactions.

  10. 1-[(2E-3-Phenylprop-2-en-1-yl]-1H-indole-2,3-dione

    Directory of Open Access Journals (Sweden)

    Fatima Zahrae Qachchachi

    2016-04-01

    Full Text Available In the title compound, C17H13NO2, the indole ring is essentially planar (r.m.s. deviation = 0.027 Å and is oriented at an angle of 69.33 (7° with respect to the phenyl ring. In the crystal, C—H...O hydrogen bonds link the molecules, forming zigzag chains propagating along the a-axis direction. Within the chains there are π–π stacking interactions [centroid–centroid distances = 3.7163 (8 and 3.7162 (8 Å] involving isatin groups of neighbouring molecules.

  11. Inorganic-organic hybrid structure: Synthesis, structure and magnetic properties of a cobalt phosphite-oxalate, [C4N2H12][Co4(HPO3)2(C2O4)3

    International Nuclear Information System (INIS)

    Mandal, Sukhendu; Natarajan, Srinivasan

    2005-01-01

    A hydrothermal reaction of a mixture of cobalt (II) oxalate, phosphorous acid, piperazine and water at 150 o C for 96h followed by heating at 180 o C for 24h gave rise to a new inorganic-organic hybrid solid, [C 4 N 2 H 12 ][Co 4 (HPO 3 ) 2 (C 2 O 4 ) 3 ], I. The structure consists of edge-shared CoO 6 octahedra forming a [Co 2 O 10 ] dimers that are connected by HPO 3 and C 2 O 4 units forming a three-dimensional structure with one-dimensional channels. The amine molecules are positioned within these channels. The oxalate units have a dual role of connecting within the plane of the layer as well as out of the plane. Magnetic susceptibility measurement shows the compound orders antiferromagnetically at low temperature (T N =22K). Crystal data: I, monoclinic, space group=P2 1 /c (No. 14). a=7.614(15), b=7.514(14), c=17.750(3)A, β=97.351(3) o , V=1007.30(3)A 3 , Z=2, ρ calc =2.466g/cm 3 , μ (MoKα) =3.496mm -1 , R 1 =0.0310 and wR 2 =0.0807 data [I>2σ(I)

  12. Field induced 4f5d [Re(salen)]2O3[Dy(hfac)3(H2O)]2 single molecule magnet.

    Science.gov (United States)

    Pointillart, Fabrice; Bernot, K; Sessoli, R; Gatteschi, D

    2010-05-03

    The reaction between the mononuclear [ReO(salen)(OMe)] (salen(2-) = N,N'-ethan-1,2-diylbis(salicylidenamine) dianion) and Dy(hfac)(3).2H(2)O (hfac(-) = 1,1,1,5,5,5-hexafluoroacetylacetonate anion) complexes lead to the formation of a compound with the formula {[Re(salen)](2)O(3)[Dy(hfac)(3)(H(2)O)](2)}(CHCl(3))(2)(CH(2)Cl(2))(2) noted (Dy(2)Re(2)). This compound has been characterized by single crystal and powder X-ray diffraction and has been found isostructural to the Y(III) derivative (Y(2)Re(2)) that we previously reported. The cyclic voltammetry demonstrates the redox activity of the system. The characterization of both static and dynamic magnetic properties is reported. Static magnetic data has been analyzed after the cancellation of the crystal field contribution by two different methods. Weak ferromagnetic exchange interactions between the Dy(III) ions are highlighted. The compound Dy(2)Re(2) displays slow relaxation of the magnetization when an external magnetic field is applied. Alternating current susceptibility shows a thermally activated behavior with pre-exponential factors of 7.13 (+/-0.10) x 10(-6) and 5.76 (+/-0.27) x 10(-7) s, and energy barriers of 4.19 (+/-0.02) and 8.52 (+/-0.55) K respectively for low and high temperature regimes.

  13. 2-Aminopyrimidine-3,3,3-triphenylpropanoic acid (1/1).

    Science.gov (United States)

    Serafin, Mateusz F; Wheeler, Kraig A

    2007-11-01

    The title bimolecular compound, C(4)H(5)N(3).C(21)H(18)O(2), constructed from 2-aminopyrimidine and 3,3,3-triphenylpropanoic acid, forms a tetramolecular hydrogen-bonded motif via O-H...N, N-H...O and N-H...N contacts. This aggregate organizes to give crystal-packing motifs with hydrophilic and hydrophobic regions.

  14. Two ternary mixed-anion chlorides with divalent europium: Eu{sub 2}H{sub 3}Cl and Eu{sub 7}F{sub 12}Cl{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Reckeweg, Olaf [Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853-1301 (United States); Institut fuer Anorganische Chemie, Universitaet Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany); DiSalvo, Francis J. [Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853-1301 (United States); Wolf, Sarah; Schleid, Thomas [Institut fuer Anorganische Chemie, Universitaet Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany)

    2014-06-15

    Dark ruby-red, transparent, triangular plate-shaped single crystals of Eu{sub 2}H{sub 3}Cl and colorless, transparent, needle-shaped single crystals of Eu{sub 7}F{sub 12}Cl{sub 2} were obtained by solid-state reactions of Eu, NaH, NaCl, and Na (2:4:1:2 molar ratio) or Eu, EuCl{sub 3}, and LiF (1:1:4 molar ratio), respectively, in silica-jacketed tantalum ampoules at 900 C for 13 h. Eu{sub 2}H{sub 3}Cl crystallizes isotypically to Ba{sub 2}H{sub 3}X (X = Cl, Br, I) in the trigonal space group P anti 3m1 (no. 164) with lattice parameters a = 409.67(4) and c = 696.18(7) pm, whereas Eu{sub 7}F{sub 12}Cl{sub 2} crystallizes isotypically to Ba{sub 7}F{sub 12}Cl{sub 2} or Sr{sub 7}H{sub 12}Cl{sub 2} in the hexagonal space group P anti 6 (no. 174) with lattice parameters a = 1002.31(5) and c = 392.54(2) pm. Both compounds contain Eu{sup 2+} cations with coordination numbers as high as nine (Eu{sub 7}F{sub 12}Cl{sub 2}) and ten (Eu{sub 2}H{sub 3}Cl) with respect to the halide anions (F{sup -} or H{sup -} and Cl{sup -}). The structural results are corroborated by EUTAX and MAPLE calculations on both ternary mixed-anion europium(II) chlorides in comparison to these for related binary and ternary compounds with divalent europium. (Copyright copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. mer-Bis[3,5-difluoro-2-(2-pyridylphenyl-κ2C1,N]{5-(2-pyridyl-κN-3-[3-(4-vinylbenzyloxyphenyl]-1,2,4-triazol-1-ido}iridium(III methanol solvate

    Directory of Open Access Journals (Sweden)

    Peter G. Jones

    2010-01-01

    Full Text Available In the title compound, [Ir(C11H6F2N2(C22H17N4O]·CH3OH, the coordination at iridium is essentially octahedral, but with distortions associated with the bite angles of the ligands [76.25 (9–80.71 (12°] and the differing trans influences of C and N ligands [Ir—N = 2.04 Å (average trans to N but 2.14 Å trans to C]. All three bidentate ligands have coordinating ring systems that are almost coplanar [interplanar angles = 1.7 (1–3.8 (2°]. The vinylbenzyl group is disordered over two positions with occupations of 0.653 (4 and 0.347 (4. The methanol solvent molecule is involved in a classical O—H...N hydrogen bond to a triazole N atom.

  16. Syntheses, Raman spectra, and X-ray crystal structures of [XeF(5)][mu-F(OsO(3)F(2))(2)] and [M][OsO(3)F(3)] (M = XeF(5)(+), Xe(2)F(11)(+)).

    Science.gov (United States)

    Hughes, Michael J; Mercier, Hélène P A; Schrobilgen, Gary J

    2010-04-05

    Stoichiometric amounts of XeF(6) and (OsO(3)F(2))(infinity) react at 25-50 degrees C to form salts of the known XeF(5)(+) and Xe(2)F(11)(+) cations, namely, [XeF(5)][mu-F(OsO(3)F(2))(2)], [XeF(5)][OsO(3)F(3)], and [Xe(2)F(11)][OsO(3)F(3)]. Although XeF(6) is oxophilic toward a number of transition metal and main-group oxides and oxide fluorides, fluoride/oxide metathesis was not observed. The series provides the first examples of noble-gas cations that are stabilized by metal oxide fluoride anions and the first example of a mu-F(OsO(3)F(2))(2)(-) salt. Both [XeF(5)][mu-F(OsO(3)F(2))(2)] and [Xe(2)F(11)][OsO(3)F(3)] are orange solids at room temperature. The [XeF(5)][OsO(3)F(3)] salt is an orange liquid at room temperature that solidifies at 5-0 degrees C. When the salts are heated at 50 degrees C under 1 atm of N(2) for more than 2 h, significant XeF(6) loss occurs. The X-ray crystal structures (-173 degrees C) show that the salts exist as discrete ion pairs and that the osmium coordination spheres in OsO(3)F(3)(-) and mu-F(OsO(3)F(2))(2)(-) are pseudo-octahedral OsO(3)F(3)-units having facial arrangements of oxygen and fluorine atoms. The mu-F(OsO(3)F(2))(2)(-) anion is comprised of two symmetry-related OsO(3)F(2)-groups that are fluorine-bridged to one another. Ion pairing results from secondary bonding interactions between the fluorine/oxygen atoms of the anions and the xenon atom of the cation, with the Xe...F/O contacts occurring opposite the axial fluorine and from beneath the equatorial XeF(4)-planes of the XeF(5)(+) and Xe(2)F(11)(+) cations so as to avoid the free valence electron lone pairs of the xenon atoms. The xenon atoms of [XeF(5)][mu-F(OsO(3)F(2))(2)] and [Xe(2)F(11)][OsO(3)F(3)] are nine-coordinate and the xenon atom of [XeF(5)][OsO(3)F(3)] is eight-coordinate. Quantum-chemical calculations at SVWN and B3LYP levels of theory were used to obtain the gas-phase geometries, vibrational frequencies, and NBO bond orders, valencies, and NPA charges of

  17. (E-3-Methyl-6-(3-oxo-3-(thiophen-2-yl-1-propenyl-2(3H-benzothiazolone

    Directory of Open Access Journals (Sweden)

    Yordanka Ivanova

    2016-04-01

    Full Text Available The title compound, (E-3-methyl-6-(3-oxo-3-(thiophen-2-yl-1-propenyl-2(3H-benzothiazolone, was synthesized by Claisen-Schmidt condensation of 3-methyl-2(3H-benzothiazolone-6-carbaldehyde with 2-acetylthiophene in 94% yield. The structure of the target compound was confirmed using 1H-NMR, 13C-NMR, IR, MS, and elemental analysis.

  18. 2,3-Diaminopyridinium 6-carboxypyridine-2-carboxylate

    Directory of Open Access Journals (Sweden)

    Mahsa Foroughian

    2011-12-01

    Full Text Available The asymmetric unit of the title proton-transfer compound, C5H8N3C7H4NO4−, consists of one mono-deprotonated pyridine-2,6-dicarboxylic acid as anion and one protonated 2,3-diaminopyridine as cation. The crystal packing shows extensive O—H...O, N—H...O and N—H...N hydrogen bonds. Thre are also several π–π interactions between the anions and also between the cations [centriod–centroid distances = 3.6634 (7, 3.7269 (7, 3.6705 (7 and 3.4164 (7 Å].

  19. 6-Hydroxy-5-[(2-hydroxy-4,4-dimethyl-6-oxocyclohex-1-enyl(4-nitrophenylmethyl]-1,3-dimethylpyrimidine-2,4(1H,3H-dione

    Directory of Open Access Journals (Sweden)

    N. Sureshbabu

    2013-11-01

    Full Text Available In the title compound, C21H23N3O7, the pyrimidinedione ring adopts a screw-boat conformation, whereas the cyclohexenone ring adopts an envelope conformation, with the C atom bearing the methyl groups as the flap atom. The dihedral angle between the mean planes of the pyrimidinedione and cyclohexenone rings is 58.78 (2°. The pyrimidinedione and cyclohexenone rings form dihedral angles of 59.94 (3 and 54.73 (2°, respectively, with the 4-nitrophenyl ring. Relatively strong intramolecular O—H...O hydrogen bonds are observed. In the crystal, molecules are linked by C—H...O hydrogen bonds, forming a chain along the c-axis direction.

  20. Bis[bis(3,5-diamino-1H-1,2,4-triazol-4-ium)copper(I)] tris(hexafluoridosilicate)

    OpenAIRE

    Marian Mys'kiv; Evgeny Goreshnik

    2010-01-01

    In the title compound, [Cu(C2H6N5)2]2(SiF6)3, the asymmetric unit is composed of one [Cu(HL)2]3+ cation (where L is 3,5-diamino-1,2,4-triazole) and one and a half SiF62− anions. The rather large positively charged guanazole ligand moiety promotes the low metal coordination number of 2 for the CuI atom. The compound was obtained using the electrochemical alternating-current technique starting from an ethanol–methanol solution of CuSiF6·4H2O and guanazole. In the cr...

  1. Nd(BrO3)3-Yb(BrO3)3-H2O and Nd2(SeO4)3-Yb2(SeO4)3-H2O systems at 25 deg C

    International Nuclear Information System (INIS)

    Serebrennikov, V.V.; Batyreva, V.A.; Tsybukova, T.N.

    1981-01-01

    Using the methods of isothermal solubility the Nd(BrO 3 ) 3 - Yb(BrO 3 ) 3 -H 2 O and Nd 2 (SeO 4 ) 3 -Yb 2 (SeO 4 ) 3 -H 2 O systems are studied at 25 deg C. The compositions of the solid phases are determined by the method of ''residues''. The formation of two series of solid solutions in both systems is established. Besides, there is a crystallization region of Nd 2 (SeO 4 ) 3 in the system of selenates. The solubility diagrams of the systems are presented [ru

  2. Hydrothermal synthesis and crystal structures of Na{sub 2}Be{sub 3}(SeO{sub 3}){sub 4}.H{sub 2}O and Cs{sub 2}[Mg(H{sub 2}O){sub 6}]{sub 3}(SeO{sub 3}){sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Chen; Mei, Dajiang; Sun, Chuanling; Liu, Yunsheng; Wu, Yuandong [College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science (China)

    2017-09-04

    The selenites, Na{sub 2}Be{sub 3}(SeO{sub 3}){sub 4}.H{sub 2}O and Cs{sub 2}[Mg(H{sub 2}O){sub 6}]{sub 3}(SeO{sub 3}){sub 4}, were synthesized under hydrothermal conditions. The crystal structures of Na{sub 2}Be{sub 3}(SeO{sub 3}){sub 4}.H{sub 2}O and Cs{sub 2}[Mg(H{sub 2}O){sub 6}]{sub 3}(SeO{sub 3}){sub 4} were determined by single-crystal X-ray diffractions. Na{sub 2}Be{sub 3}(SeO{sub 3}){sub 4}.H{sub 2}O crystallizes in the triclinic space group P1 (no. 2) with unit cell parameters a = 4.8493(9), b = 12.013(2), c = 12.077(2) Aa, and Z = 2, whereas Cs{sub 2}[Mg(H{sub 2}O){sub 6}]{sub 3}(SeO{sub 3}){sub 4} crystallizes in the monoclinic space group C2/m (no. 12) with lattice cell parameters a = 12.596(6), b = 7.297(4), c = 16.914(8) Aa, and Z = 2. Na{sub 2}Be{sub 3}(SeO{sub 3}){sub 4}.H{sub 2}O features a three-dimensional open framework structure formed by BeO{sub 4} tetrahedra and SeO{sub 3} trigonal pyramids. Na cations and H{sub 2}O molecules are located in different tunnels. Cs{sub 2}[Mg(H{sub 2}O){sub 6}]{sub 3}(SeO{sub 3}){sub 4} has a structure composed of isolated [Mg(H{sub 2}O){sub 6}] octahedra and SeO{sub 3} trigonal pyramids interacted by hydrogen bonds, and Cs cations are resided in-between. Both compounds were characterized by thermogravimetric analysis and FT-IR spectroscopy. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Synthesis and X-ray structure of the dysprosium(III complex derived from the ligand 5-chloro-1,3-diformyl-2-hydroxybenzene-bis-(2-hydroxybenzoylhydrazone [Dy2(C22H16ClN4O53](SCN 3.(H2O.(CH3OH

    Directory of Open Access Journals (Sweden)

    Aliou H. Barry

    2003-12-01

    Full Text Available The title compound [Dy2(C22H16ClN4O53](SCN 3.(H2O.(CH3OH has been synthesized and its crystal structure determined by single X-ray diffraction at room temperature. The two nine coordinated Dy(III are bound to three macromolecules ligand through the phenolic oxygens of the p-chlorophenol moieties, the nitrogen atoms and the carbonyl functions of the hydrazonic moieties. The phenolic oxygen atoms of the 2-hydroxybenzoyl groups are not bonded to the metal ions. In the bases of the coordination polyhedra the six Dy-N bonds are in the range 2.563(13-2.656(13 Å and the twelve Dy-O bonds are in the range 2.281(10-2.406(10 Å.

  4. Synthesis, crystal structure and thermal decomposition mechanism of the complex [Sm(p-BrBA)3bipy.H2O]2.H2O

    International Nuclear Information System (INIS)

    Zhang Haiyan; Zhang Jianjun; Ren Ning; Xu Suling; Tian Liang; Bai Jihai

    2008-01-01

    A new binuclear samarium (III) complex [Sm(p-BrBA) 3 bipy.H 2 O] 2 .H 2 O (p-BrBA = p-bromobenzoic acid; bipy = 2,2'-bipyridine) has been synthesized and characterized by elemental analysis, UV, IR, molar conductance and TG-DTG techniques. The structure of the complex was established by single crystal X-ray diffraction. It crystallizes in triclinic, space group P1-bar with a = 8.2476(7) A, b = 13.3483(10) A, c = 15.9035(13) A, α 73.9160(10) o , β = 78.9630(10) o , γ = 74.4770(10) o , Z = 1, D c 1.947 g cm -3 , F(000) = 910. The carboxylic groups are bonded to the samarium ion in two modes: bidentate bridging, monodentate. Each center Sm 3+ ion is eight-coordinated by one 2,2'-bipyridine molecular, four bidentate bridging and a monodentate carboxylic group, as well as one water molecular. The coordination polyhedron around each Sm 3+ ion can be described as bi-capped triangular prism geometry. The thermal decomposition behavior of the title complex in a static air atmosphere was investigated by TG-DTG and IR techniques

  5. (C2N2H10)[Fe xV1-x(HPO3)F3] (x = 0.44, 0.72): Two new organically templated phosphites

    International Nuclear Information System (INIS)

    Cisneros, Jose L.; Fernandez-Armas, Sergio; Mesa, Jose L.; Pizarro, Jose L.; Arriortua, Maria I.; Rojo, Teofilo

    2006-01-01

    (C 2 N 2 H 10 )[Fe x V 1-x (HPO 3 )F 3 ] (x = 0.44, 0.72) have been synthesized using mild solvothermal conditions under autogenous pressure and the ethylenediamine molecule as templating agent. The crystal structures have been determined from X-ray single-crystal diffraction data. The compounds crystallize in the orthorhombic P2 1 2 1 2 1 space group with Z = 4 and unit-cell parameters a = 12.8494(9), b = 9.5430(6), c = 6.4372(5) A, and a = 12.8578(1), b = 9.5342(1), c = 6.4370(7) A for (C 2 N 2 H 10 )[Fe 0.44 V 0.56 (HPO 3 )F 3 ] and (C 2 N 2 H 10 )[Fe 0.72 V 0.28 (HPO 3 )F 3 ] (1) and (2), respectively. These isostructural compounds exhibit a monodimensional crystal structure formed by pillared double anionic chains with the formula [M(HPO 3 )F 3 ] 2- , extended along the [0 0 1] direction. These doubled ionic chains are the result of the linking of two simple chains in which there are alternating octahedral [MO 3 F 3 ] and tetrahedral groups [HPO 3 ]. The ethylendiammonium cations are placed in the space delimited by three different chains. The metallic ions are interconnected by the pseudo-pyramidal (HPO 3 ) 2- phosphite oxoanions, adopting a slightly distorted octahedral geometry. The IR spectra show bands corresponding to the phosphite oxoanion and the ethylendiamonium cation at 2400 and 1600 cm -1 , respectively. The thermogravimetric analyses show that these phases are stable up to ca. 280 deg. C, at higher temperatures, the decomposition of the crystal structure begins by calcination of the organic cation and the elimination of the fluoride anions. The diffuse reflectance spectra show bands of the V 3+ ion (d 2 ) in octahedral symmetry. The values of the Dq (1540, 1540 cm -1 ), and Racah parameters, B (560, 535 cm -1 ) and C (3055, 3140 cm -1 ) for (1) and (2), respectively, correspond with those usually found for octahedrically coordinated V(III) compounds. Magnetic measurements, performed on a powered sample from 5.0 to 300 K at 1000 G, in the ZFC and

  6. 2,2-Dimethyl-2,3-dihydropyrano[2,3-a]carbazol-4(11H-one

    Directory of Open Access Journals (Sweden)

    Makuteswaran Sridharan

    2008-11-01

    Full Text Available The title compound, C17H15NO2, was prepared from 1-hydroxycarbazole and 3,3-dimethylacrylic acid with a mixture of AlCl3 and POCl3 as the cyclization catalyst. Owing to the presence of the –CMe2– group, the molecule is not quite planar. In the crystal structre, strong N—H...O hydrogen bonds and weaker C—H...π interactions occur, and a slipped π–π stacking interaction [centroid–centroid separation = 3.8425 (8 Å] is also observed.

  7. Tris(2,2′-bipyridine-κ2N,N′cobalt(III bis[bis(pyridine-2,6-dicarboxylato-κ3O2,N,O6cobaltate(III] perchlorate dimethylformamide hemisolvate 1.3-hydrate

    Directory of Open Access Journals (Sweden)

    Irina A. Golenya

    2012-10-01

    Full Text Available In the title compound, [Co(C10H8N23][Co(C7H3NO42]2(ClO4·0.5C3H7NO·1.3H2O, the CoIII atom in the complex cation is pseudooctahedrally coordinated by six N atoms of three chelating bipyridine ligands. The CoIII atom in the complex anion is coordinated by two pyridine N atoms and four carboxylate O atoms of two doubly deprotonated pyridine-2,6-dicarboxylate ligands in a distorted octahedral geometry. One dimethylformamide solvent molecule and two water molecules are half-occupied and one water molecule is 0.3-occupied. O—H...O hydrogen bonds link the water molecules, the perchlorate anions and the complex anions. π–π interactions between the pyridine rings of the complex anions are also observed [centroid–centroid distance = 3.804 (3 Å].

  8. Neutron diffraction analysis of HRh[P(C6H5)3]4

    International Nuclear Information System (INIS)

    Bau, R.; Stevens, R.C.; McLean, M.; Koetzle, T.F.

    1987-01-01

    We have collected neutron diffraction data on a large single crystal of the title compound. The most surprising result is an extremely short Rh-H distance of 1.31(8) A, presumably caused by steric interactions involving the bulky triphenyl phosphine ligands. Crystallographic details: HRh[P(C 6 H 5 ) 3 ] 4 . 1 / 2 C 6 H 6 crystallizes in the space group Pa3, with a = b = c = 22.776(3) A, Z = 8. Data were collected at the Brookhaven High Flux Beam reactor at a temperature of -23 0 C, λ = 1.15882(7) A -1 . Least-squares refinement (in which the phenyl rings were treated as rigid groups) resulted in an R factor [based on data with f > 4σ(F)] of 0.12 for 914 reflections and 95 parameters. 10 refs

  9. (2RS)-2-(2,4-Difluoro-phen-yl)-1-[(4-iodo-benz-yl)(meth-yl)amino]-3-(1H-1,2,4-tri-azol-1-yl)propan-2-ol.

    Science.gov (United States)

    Xiong, Hui-Ping; Gao, Shou-Hong; Li, Chun-Tong; Wu, Zhi-Jun

    2012-08-01

    IN THE TITLE COMPOUND (COMMON NAME: iodiconazole), C(19)H(19)F(2)IN(4)O, there is an intra-molecular O-H⋯N hydrogen bond and mol-ecules are linked by weak inter-actions only, namely C-H⋯N, C-H⋯O and C-H⋯F hydrogen bonds, and π-electron ring-π-electron ring inter-actions between the triazole rings with centroid-centroid distances of 3.725 (3) Å.

  10. Synthesis and crystal structure of Na6[(UO2)3O(OH)3(SeO4)2]2·10H2O

    International Nuclear Information System (INIS)

    Baeva, E.Eh.; Serezhkina, L.B.; Virovets, A.V.; Peresypkina, E.V.

    2006-01-01

    The complex Na 6 [(UO 2 ) 3 O(OH) 3 (SeO 4 ) 2 ] 2 ·10H 2 O (I) is synthesized and studied by monocrystal X-ray diffraction. The compound crystallizes in the orthorhombic crystal system with the unit cell parameters: a=14.2225(7) A, b=18.3601(7) A, c=16.5406(6) A, V=4319.2(3) A 3, Z=4, space group Cmcm, R 1 =0.0406. Compound I is found to be a representative of the crystal-chemical group A 3 M 3 M 3 2 T 2 3 (A=UO 2 2+ , M 3 =O 2- , M 2 =OH - , T 3 =SeO 4 2- ) of the uranyl complexes; it contains layer uranium-containing groups [(UO 2 ) 3 O(OH) 3 (SeO 4 ) 2 ] 3- . These layers are linked to form a three-dimensional cage through bonds formed by the sodium atoms with the oxygen atoms of the uranyl ions and SeO 4 groups that belong to different layers [ru

  11. Methanesulfonates of high-valent metals. Syntheses and structural features of MoO_2(CH_3SO_3)_2, UO_2(CH_3SO_3)_2, ReO_3(CH_3SO_3), VO(CH_3SO_3)_2, and V_2O_3(CH_3SO_3)_4 and their thermal decomposition under N_2 and O_2 atmosphere

    International Nuclear Information System (INIS)

    Betke, Ulf; Neuschulz, Kai; Wickleder, Mathias S.

    2011-01-01

    Oxide methanesulfonates of Mo, U, Re, and V have been prepared by reaction of MoO_3, UO_2(CH_3COO)_2.2 H_2O, Re_2O_7(H_2O)_2, and V_2O_5 with CH_3SO_3H or mixtures thereof with its anhydride. These compounds are the first examples of solvent-free oxide methanesulfonates of these elements. MoO_2(CH_3SO_3)_2 (Pbca, a=1487.05(4), b=752.55(2), c=1549.61(5) pm, V=1.73414(9) nm"3, Z=8) contains [MoO_2] moieties connected by [CH_3SO_3] ions to form layers parallel to (100). UO_2(CH_3SO_3)_2 (P2_1/c, a=1320.4(1), b=1014.41(6), c=1533.7(1) pm, β=112.80(1) "c"i"r"c"l"e, V=1.8937(3) nm"3, Z=8) consists of linear UO_2"2"+ ions coordinated by five [CH_3SO_3] ions, forming a layer structure. VO(CH_3SO_3)_2 (P2_1/c, a=1136.5(1), b=869.87(7), c=915.5(1) pm, β=113.66(1) "c"i"r"c"l"e, V=0.8290(2) nm"3, Z=4) contains [VO] units connected by methanesulfonate anions to form corrugated layers parallel to (100). In ReO_3(CH_3SO_3) (P anti 1, a=574.0(1), b=1279.6(3), c=1641.9(3) pm, α=102.08(2), β=96.11(2), γ=99.04(2) "c"i"r"c"l"e, V=1.1523(4) nm"3, Z=8) a chain structure exhibiting infinite O-[ReO_2]-O-[ReO_2]-O chains is formed. Each [ReO_2]-O-[ReO_2] unit is coordinated by two bidentate [CH_3SO_3] ions. V_2O_3(CH_3SO_3)_4 (I2/a, a=1645.2(3), b=583.1(1), c=1670.2(3) pm, β=102.58(3), V=1.5637(5) pm"3, Z=4) adopts a chain structure, too, but contains discrete [VO]-O-[VO] moieties, each coordinated by two bidentate [CH_3SO_3] ligands. Additional methanesulfonate ions connect the [V_2O_3] groups along [001]. Thermal decomposition of the compounds was monitored under N_2 and O_2 atmosphere by thermogravimetric/differential thermal analysis and XRD measurements. Under N_2 the decomposition proceeds with reduction of the metal leading to the oxides MoO_2, U_3O_7, V_4O_7, and VO_2; for MoO_2(CH_3SO_3)_2, a small amount of MoS_2 is formed. If the thermal decomposition is carried out in a atmosphere of O_2 the oxides MoO_3 and V_2O_5 are formed. (Copyright copyright 2011 WILEY-VCH Verlag

  12. Syntheses, crystal structures, and properties of the isotypic pair [Cr(H{sub 2}O){sub 6}]{sub 2}[B{sub 12}H{sub 12}]{sub 3}.15H{sub 2}O and [In(H{sub 2}O){sub 6}]{sub 2}[B{sub 12}H{sub 12}]{sub 3}.15H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Van, Nguyen-Duc; Kleeberg, Fabian M.; Schleid, Thomas [Institut fuer Anorganische Chemie, Universitaet Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany)

    2015-11-15

    Single crystals of [Cr(H{sub 2}O){sub 6}]{sub 2}[B{sub 12}H{sub 12}]{sub 3}.15H{sub 2}O and [In(H{sub 2}O){sub 6}]{sub 2}[B{sub 12}H{sub 12}]{sub 3}.15H{sub 2}O were obtained by reactions of aqueous solutions of the acid (H{sub 3}O){sub 2}[B{sub 12}H{sub 12}] with chromium(III) hydroxide and indium metal shot, respectively. The title compounds crystallize isotypically in the trigonal system with space group R anti 3c (a = 1157.62(3), c = 6730.48(9) pm for the chromium, a = 1171.71(3), c = 6740.04(9) pm for the indium compound, Z = 6). The arrangement of the quasi-icosahedral [B{sub 12}H{sub 12}]{sup 2-} dianions can be considered as stacking of two times nine layers with the sequence..ABCCABBCA.. and the metal trications arrange in a cubic closest packed..abc.. stacking sequence. The metal trications are octahedrally coordinated by six water molecules of hydration, while another fifteen H{sub 2}O molecules fill up the structures as zeolitic crystal water or second-sphere hydrating species. Between these free and the metal-bonded water molecules, bridging hydrogen bonds are found. Furthermore, there is also evidence of hydrogen bonding between the anionic [B{sub 12}H{sub 12}]{sup 2-} clusters and the free zeolitic water molecules according to B-H{sup δ-}..{sup δ+}H-O interactions. Vibrational spectroscopy studies prove the presence of these hydrogen bonds and also show slight distortions of the dodecahydro-closo-dodecaborate anions from their ideal icosahedral symmetry (I{sub h}). Thermal decomposition studies for the example of [Cr(H{sub 2}O){sub 6}]{sub 2}[B{sub 12}H{sub 12}]{sub 3}.15H{sub 2}O gave no hints for just a simple multi-stepwise dehydration process. (Copyright copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. 4,4′-Dichloro-2,2′-[(3aR,7aR/3aS,7aS-2,3,3a,4,5,6,7,7a-octahydro-1H-1,3-benzimidazole-1,3-diylbis(methylene]diphenol

    Directory of Open Access Journals (Sweden)

    Michal Dušek

    2010-10-01

    Full Text Available Molecules of the the title compound, C21H24Cl2N2O2, are located on a twofold rotation axis, which passes through the C atom linking the two N atoms. Two intramolecular O—H...N hydrogen bonds were observed. In the crystal, non-classical intermolecular C—H...O hydrogen bonds link the molecules into chains along the a axis. The crystal studied was a racemic twin.

  14. 2-(7-Methyl-1H-indol-3-ylacetonitrile

    Directory of Open Access Journals (Sweden)

    Yu-Hua Ge

    2012-01-01

    Full Text Available In the title compound, C11H10N2, the carbonitrile group is twisted away from the indole plane [Ccy—Cme—Car—Car = 66.6 (2°; cy = cyanide, me = methylene and ar = aromatic]. In the crystal, N—H...N hydrogen bonds link the molecules into C(7 chains propagating in the [001] direction.

  15. 6-Butyl-5-(4-methoxyphenoxy-3-phenyl-3H-1,2,3-triazolo[4,5-d]pyrimidin-7(6H-one

    Directory of Open Access Journals (Sweden)

    Hong-Mei Wang

    2009-12-01

    Full Text Available The asymmetric unit of the title compound, C21H21N5O3, consists of two geometrically similar molecules. The fused rings of the triazolo[4,5-d]pyrimidine system are nearly coplanar, making dihedral angels of 1.48 (18 and 1.34 (16°, and the phenyl rings are twisted by 12.3 (1 and 8.7 (1° with respect to the triazolopyrimidine plane. The ethyl groups of the n-butyl side chains are disordered over two sites in each of the independent molecules, the ratios of occupancies being 0.60:0.40 and 0.61:0.39.

  16. Systems Li[sub 2]B[sub 4]O[sub 7] (Na[sub 2]B[sub 4]O[sub 7], K[sub 2]B[sub 4]O[sub 7])-N[sub 2]H[sub 3]H[sub 4]OH-H[sub 2]O at 25 deg C. Sistemy Li[sub 2]B[sub 4]O[sub 7] (Na[sub 2]B[sub 4]O[sub 7], K[sub 2]B[sub 4]O[sub 7])-N[sub 2]H[sub 3]H[sub 4]OH-H[sub 2]O pri 25 grad S

    Energy Technology Data Exchange (ETDEWEB)

    Skvortsov, V G; Sadetdinov, Sh V; Akimov, V M; Mitrasov, Yu N; Petrova, O V; Klopov, Yu N [Chuvashskij Gosudarstvennyj Pedagogicheskij Inst., Cheboksary (Russian Federation) Universitet Druzhby Narodov, Moscow (Russian Federation)

    1994-02-01

    Phase equilibriums in the Li[sub 2]B[sub 4]O[sub 7] (Na[sub 2]B[sub 4]O[sub 7], K[sub 2]B[sub 4]O[sub 7])-N[sub 2]H[sub 3]H[sub 4]OH-H[sub 2]O systems were investigated by methods of isothermal solubility, refractometry and PH-metry at 25 deg C for the first time. Lithium and sodium tetraborates was established to form phases of changed composition mM[sub 2]B[sub 4]O[sub 7][center dot]nN[sub 2]H[sub 3]C[sub 2]H[sub 4]OH[center dot]XH[sub 2]O, where M=Li, Na with hydrazine ethanol. K[sub 2]B[sub 4]O[sub 7][center dot]4H[sub 2]O precipitates in solid phase in the case of potassium salt. Formation of isomorphous mixtures was supported by X-ray diffraction and IR spectroscopy methods.

  17. The synthesis of the 2H, 3H, and 14C-isotopomers of 2'-deoxy-2',2'-difluorocytidine hydrochloride, an anti-tumor compound

    International Nuclear Information System (INIS)

    Wheeler, W.J.; Mabry, T.E.; Jones, C.D.

    1991-01-01

    The 2 H, 3 H, and 14 C-isotopomers of 2'-deoxy-2', 2'-difluorocytidine hydrochloride (gemcitabine hydrochloride) have been synthesized in two radiochemical steps from the reaction of bis-trimethylsilylcytosine-[2- 14 C] and 3,5-O-bis-benzoyl-1-O-methanesulfonyl-2-deoxy-2,2-difluororibose. A mixture of anomers of 3',5'-dibenzoyl-2'-deoxy-2',2'-difluorocytidine or its 14 C-isotopomer were obtained which were readily separated by crystallization from ethyl acetate. Deprotection using methanolic ammonia yielded the target compound. The 2 H and 3 H-isotopomers were prepared by deuterium (or tritium) gas hydrogenolysis of 5-iodo-2'-deoxy-2',2'-difluorocytidine. (author)

  18. Structural characterization of a new vacancy ordered perovskite modification found for Ba3Fe3O7F (BaFeO2.333F0.333): Towards understanding of vacancy ordering for different perovskite-type ferrites

    International Nuclear Information System (INIS)

    Clemens, Oliver

    2015-01-01

    The new vacancy ordered perovskite-type compound Ba 3 Fe 3 O 7 F (BaFeO 2.33 F 0.33 ) was prepared by topochemical low-temperature fluorination of Ba 2 Fe 2 O 5 (BaFeO 2.5 ) using stoichiometric amounts of polyvinylidene difluoride (PVDF). The vacancy order was found to be unique so far for perovskite compounds, and the connectivity pattern can be explained by the formula Ba 3 (FeX 6/2 ) (FeX 5/2 ) (FeX 3/2 X 1/1 ), with X=O/F. Mössbauer measurements were used to confirm the structural analysis and agree with the presence of Fe 3+ in the above mentioned coordination environments. Group–subgroup relationships were used to build a starting model for the structure solution and to understand the relationship to the cubic perovskite structure. Furthermore, a comparison of a variety of vacancy-ordered iron-containing perovskite-type structures is given, highlighting the factors which favour one structure type over the other depending on the composition. - Graphical abstract: The crystal structure of Ba 3 Fe 3 O 7 F in comparison to other perovskite type ferrites. - Highlights: • The crystal structure of Ba 3 Fe 3 O 7 F in comparison to other perovskite type ferrites. • Ba 3 Fe 3 O 7 F was synthesized by low temperature fluorination of Ba 2 Fe 2 O 5 . • Ba 3 Fe 3 O 7 F shows a unique vacancy order not found for other perovskite type compounds. • The structure of Ba 3 Fe 3 O 7 F was solved using group–subgroup relationships. • A systematic comparison to other ferrite type compounds reveals structural similarities and differences. • The A-site coordination of the cation is shown to play an important role for the type of vacancy order found

  19. 1,5-Dimethyl-2-phenyl-1H-pyrazol-3(2H-one–4,4′-(propane-2,2-diylbis[1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H-one] (1/1

    Directory of Open Access Journals (Sweden)

    Krzysztof Lyczko

    2013-01-01

    Full Text Available The asymmetric unit of the title compound, C11H12N2C25H28N4O2, contains two different molecules. The smaller is known as antipyrine [systematic name: 1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H-one] and the larger is built up from two antypirine molecules which are connected through a C atom of the pyrazolone ring to a central propanyl part [systematic name: 4,4′-(propane-2,2-diylbis[1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H-one]. Intramolecular C—H...O hydrogen bonds occur in the latter molecule. In the crystal, C—H...O hydrogen bonds link the molecules into a two-dimensional network parallel to (001.

  20. Ce2O3-SO3-H2O system at 150 and 200 deg C

    International Nuclear Information System (INIS)

    Belokoskov, V.I.; Trofimov, G.V.; Govorukhina, O.A.

    1978-01-01

    The solubility, solid phase composition and crystal characteristics in the Ce 2 O 3 -SO 3 -H 2 O system have been studied in a broad range of sulfuric acid concentrations (25 to 80% SO 3 ) at temperatures from 150 to 200 deg C. It has been established that in the system the equilibrium had been reached after 15 to 20 days. At 150 deg C, Ce 2 (SO 4 ) 3 x2H 2 O, Ce 2 (SO 4 ) 3 xH 2 O sulfates and Ce 2 (SO 4 ) 3 x3H 2 SO 4 acid salt crystallize in the system. At 200 deg C, the same sulfates crystallize in the system, except that the bisaturation points of the system are shifted, with respect to 150 deg C, into the region of higher SO 3 concentration and correspond to solutions with a SO 3 concentration of 57.8 and 65%. The solubility of cerium(3) at 150 deg C is about 0.5% Ce 2 O 3 . An increase in temperature up to 200 deg C leads to a slightly higher solubility of cerium sulfates

  1. (E-3-Propoxymethylidene-2,3-dihydro-1H-pyrrolo[2,1-b]quinazolin-9-one monohydrate

    Directory of Open Access Journals (Sweden)

    Burkhon Zh Elmuradov

    2010-05-01

    Full Text Available The title compound, C15H16N2O2·H2O, was synthesized via the alkylation of 3-hydroxymethylidene-2,3-dihydro-1H-pyrrolo[2,1-b]quinazolin-9-one with n-propyl iodide in the presence of sodium hydroxide. The organic molecule and the water molecule both lie on a crystallographic mirror plane. In the crystal structure, intermolecular O—H...O and O—H...N hydrogen bonds link the components into extended chains along [100].

  2. 1,4-Dihydroxyquinoxaline-2,3(1H,4H-dione

    Directory of Open Access Journals (Sweden)

    Wolfgang Frey

    2008-03-01

    Full Text Available The asymmetric unit of the title compound, C8H6N2O4, contains one half-molecule; a twofold rotation axis bisects the molecule. The quinoxaline ring is planar, which can be attributed to electron delocalization. In the crystal structure, intermolecular O—H...O hydrogen bonds link the molecules into R22(10 motifs, leading to layers, which interact via phenyl–phenyl interactions (C...C distances in the range 3.238–3.521 Å.

  3. Barium contributions to the valence electronic structure of YBa2Cu3O7-δ, PrBa2Cu3O7-δ, and other barium-containing compounds

    International Nuclear Information System (INIS)

    Mueller, D.R.; Wallace, J.S.; Jia, J.J.; O'Brien, W.L.; Dong, Q.; Callcott, T.A.; Miyano, K.E.; Ederer, D.L.

    1995-01-01

    Monochromatic photon beams were used to excite barium N IV,V soft x-ray emission spectra from YBa 2 Cu 3 O 7-δ , PrBa 2 Cu 3 O 7-δ , BaF 2 , and BaTiO 3 . Near threshold excitation was used to demonstrate that small contributions to the barium N V and N IV emission spectra in the energy region above the 5p→4d core-core transitions do not arise as satellite emission from transitions in multiply excited atoms but rather occur as a result of transitions from the valence states. The emission spectrum of YBa 2 Cu 3 O 7-δ and PrBa 2 Cu 3 O 7-δ reveals a contribution to the electronic density of states at the barium site in the region near the Fermi level. The YBa 2 Cu 3 O 7compound is a superconductor and PrBa 2 Cu 3 O 7-δ is an insulator. It has been proposed that the difference between them is due to mixing of praseodymium and barium among the sites occupied by yttrium and barium, with an accompanying change in electronic structure. However, our measurements indicate that the barium partial density of states for the two compounds are essentially identical

  4. NCI calculations for understanding a physical phase transition in (C6H14N2)[Mn(H2O)6](SeO4)2

    Science.gov (United States)

    Naïli, Houcine; François, Michel; Norquist, Alexander J.; Rekik, Walid

    2017-12-01

    An organically templated manganese selenate, (C6H14N2)[Mn(H2O)6](SeO4)2, has been synthesized by slow evaporation and crystallographically characterized. The title compound crystallizes at room temperature in the monoclinic centrosymmetric space group P21/n, with the following unit cell parameters: a = 7.2373(4) Å; b = 12.5600(7) Å; c = 10.1945(7) Å; β = 91.155(4)°, V = 926.50(10) Å3and Z = 2. Its crystal structure is built of manganese(II) cations coordinated by six water molecules in octahedral geometry, disordered dabcodiium cations and selenate anions, resulting in an extensive hydrogen-bonding network. Differential scanning calorimetry (DSC) measurement indicated that the precursor undergoes a reversible phase transition at about 216 and 218 K during the cooling and heating processes respectively. Below this temperature the title compound is noncentrosymmetric with space group P21 and lattice parameters a = 7.2033(8) Å; b = 12.4981(13) Å; c = 10.0888(11) Å; β = 91.281(2)°, V = 908.04(17) Å3 and Z = 2. The disorder-order transformation of the C atoms of (C6H14N2)2+ cation may drive the structural phase transition. The low temperature phase obtained by breaking symmetry presents a fully ordered structure. The noncovalent interaction (NCI) method was used not only to locate, quantify, and visualize intermolecular interactions in the high and low temperature phases but also to confirm the phase transition detected by DSC measurement. The thermal decomposition of this new compound proceeds through four stages giving rise to the manganese oxide as final product at 850 °C.

  5. Poly[[diaqua-μ4-pyrazine-2,3-dicarboxylato-κ6N,O2:O2′:O3,O3′:O3-strontium(II] monohydrate

    Directory of Open Access Journals (Sweden)

    Vahid Amani

    2008-07-01

    Full Text Available In the title compound, {[Sr(C6H2N2O4(H2O2H2O}n, the SrII ions are bridged by the pyrazine-2,3-dicarboxylate ligands with the formation of two-dimensional polymeric layers parallel to the ac plane. Each SrII ion is eight-coordinated by one N and five O atoms from the four ligands and two water molecules. The coordination polyhedron is derived from a pentagonal bipyramid with an O atom at the apex on one side of the equatorial plane and two O atoms sharing the apical site on the other side. The coordinated and uncoordinated water molecules are involved in O—H...O and O—H...N hydrogen bonds, which consolidate the crystal structure.

  6. Synthesis and X-ray Crystallography of [Mg(H2O)6][AnO2(C2H5COO)3]2 (An = U, Np, or Pu).

    Science.gov (United States)

    Serezhkin, Viktor N; Grigoriev, Mikhail S; Abdulmyanov, Aleksey R; Fedoseev, Aleksandr M; Savchenkov, Anton V; Serezhkina, Larisa B

    2016-08-01

    Synthesis and X-ray crystallography of single crystals of [Mg(H2O)6][AnO2(C2H5COO)3]2, where An = U (I), Np (II), or Pu (III), are reported. Compounds I-III are isostructural and crystallize in the trigonal crystal system. The structures of I-III are built of hydrated magnesium cations [Mg(H2O)6](2+) and mononuclear [AnO2(C2H5COO)3](-) complexes, which belong to the AB(01)3 crystallochemical group of uranyl complexes (A = AnO2(2+), B(01) = C2H5COO(-)). Peculiarities of intermolecular interactions in the structures of [Mg(H2O)6][UO2(L)3]2 complexes depending on the carboxylate ion L (acetate, propionate, or n-butyrate) are investigated using the method of molecular Voronoi-Dirichlet polyhedra. Actinide contraction in the series of U(VI)-Np(VI)-Pu(VI) in compounds I-III is reflected in a decrease in the mean An═O bond lengths and in the volume and sphericity degree of Voronoi-Dirichlet polyhedra of An atoms.

  7. 2,5-Bis[(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctylsulfanyl]-1,3,4-thiadiazole

    Directory of Open Access Journals (Sweden)

    Gabriel Partl

    2017-02-01

    Full Text Available The title compound, C18H8F26N2S3, was obtained by double S-perfluorohexylethylation of dipotassium 1,3,4-thiadiazole-2,5-dithiolate in methanol. The molecule exhibits twofold rotational symmetry, with the S atom lying on the rotation axis. The fluorocarbon chains adopt helical conformations and the F atoms of the two terminal C atoms are disordered over two sets of sites. No directional intermolecular interactions occur in the crystal.

  8. Vibrational spectroscopic (FT-IR, FT-Raman) and quantum mechanical study of 4-(2-chlorophenyl)-2-ethyl-9-methyl-6H-thieno[3,2-f] [1,2,4]triazolo[4,3-a][1,4] diazepine

    Science.gov (United States)

    Kuruvilla, Tintu K.; Prasana, Johanan Christian; Muthu, S.; George, Jacob

    2018-04-01

    The spectroscopic properties of 4-(2-chlorophenyl)-2-ethyl-9-methyl-6H-thieno [3,2-f] [1,2,4] triazolo [4,3-a] [1,4] diazepine were investigated in the present study using FT-IR and FT-Raman techniques. The results obtained were compared with quantum mechanical methods, as it serves as an important tool in interpreting and predicting vibrational spectra. The optimized molecular geometry, the vibrational wavenumbers, the infrared intensities and Raman scattering were calculated using density functional theory B3LYP method with 6-311++g (d,p) basis set. All the experimental results were in line with the theoretical data. The molecular electrostatic potential (MEP) and HOMO LUMO energies of the title compound were accounted. The results indicated that the title compound has a lower softness value (0.27) and high electrophilicity index (4.98) hence describing its biological activity. Further, natural bond orbital was also analyzed as part of the work. Fukui functions were calculated in order to explain the chemical selectivity or the reactivity site in 4-(2-chlorophenyl)-2-ethyl-9-methyl-6H-thieno [3,2-f] [1,2,4] triazolo [4,3-a] [1,4] diazepine. The thermodynamic properties of the title compound were closely examined at different temperatures. It revealed the correlations between heat capacity (C), entropy (S) and enthalpy changes (H) with temperatures. The paper further explains that the title compound can act as good antidepressant through molecular docking studies.

  9. Isolation and structures of sulfonium salts derived from thioethers: [{o-C(6)H(4)(CH(2)SMe)(2)}H][NbF(6)] and [{[9]aneS(3)}H][NbF(6)].

    Science.gov (United States)

    Jura, Marek; Levason, William; Reid, Gillian; Webster, Michael

    2009-10-07

    Two very unusual sulfonium salts, [{o-C(6)H(4)(CH(2)SMe)(2)}H][NbF(6)] and [{[9]aneS(3)}H][NbF(6)], obtained from reaction of the thioethers with NbF(5) in CH(2)Cl(2) solution, are reported and their structures described; the eight-coordinate tetrafluoro Nb(v) cation of the dithioether is obtained from the same reaction.

  10. 7-Chloro-4-oxo-4H-chromene-3-carbaldehyde

    Directory of Open Access Journals (Sweden)

    Yoshinobu Ishikawa

    2014-08-01

    Full Text Available In the title compound, C10H5ClO3, a chlorinated 3-formylchromone derivative, all atoms are essentially coplanar (r.m.s. deviation = 0.0592 Å for all non-H atoms, with the largest deviation from the least-squares plane [0.1792 (19 Å] being for the chromone-ring carbonyl O atom. In the crystal, molecules are linked through C—H...O hydrogen bonds to form tetrads, which are assembled by stacking interactions [centroid–centroid distance between the pyran rings = 3.823 (3 Å] and van der Waals contacts between the Cl atoms [Cl...Cl = 3.4483 (16 Å and C—Cl...Cl = 171.73 (7°] into a three-dimensional architecture.

  11. Mild hydrothermal synthesis, crystal structure, spectroscopic and magnetic properties of the [MxIIM2.5-xIII(H2O)2(HPIIIO3)y(PVO4)2-yF] [M=Fe, x=2.08, y=1.58; M=Co, Ni, x=2.5, y=2] compounds

    International Nuclear Information System (INIS)

    Orive, Joseba; Mesa, Jose L.; Legarra, Estibaliz; Plazaola, Fernando; Arriortua, Maria I.; Rojo, Teofilo

    2009-01-01

    The [M x II M 2.5-x III (H 2 O) 2 (HP III O 3 ) y (P V O 4 ) 2-y F] [M=Fe (1), x=2.08, y=1.58; M=Co (2), x=2.5, y=2; Ni (3), x=2.5, y=2] compounds have been synthesized using mild hydrothermal conditions at 170 deg. C during five days. Single-crystals of (1) and (2), and polycrystalline sample of (3) were obtained. These isostructural compounds crystallize in the orthorhombic system, space group Aba2, with a=9.9598(2), b=18.8149(4) and c=8.5751(2) A for (1), a=9.9142(7), b=18.570(1) and c=8.4920(5) A for (2) and a=9.8038(2), b=18.2453(2) and c=8.4106(1) A for (3), with Z=8 in the three phases. An X-ray diffraction study reveals that the crystal structure is composed of a three-dimensional skeleton formed by [MO 5 F] and [MO 4 F 2 ] (M=Fe, Co and Ni) octahedra and [HPO 3 ] tetrahedra, partially substituted by [PO 4 ] tetrahedra in phase (1). The IR spectra show the vibrational modes of the water molecules and those of the (HPO 3 ) 2- tetrahedral oxoanions. The thermal study indicates that the limit of thermal stability of these phases is 195 deg. C for (1) and 315 deg. C for (2) and (3). The electronic absorption spectroscopy shows the characteristic bands of the Fe(II), Co(II) and Ni(II) high-spin cations in slightly distorted octahedral geometry. Magnetic measurements indicate the existence of global antiferromagnetic interactions between the metallic centers with a ferromagnetic transition in the three compounds at 28, 14 and 21 K for (1), (2) and (3), respectively. Compound (1) exhibits a hysteresis loop with remnant magnetization and coercive field values of 0.72 emu/mol and 880 Oe, respectively. - Abstract: Polyhedral view of the crystal structure of the [M x II M 2.5-x III (H 2 O) 2 (HP III O 3 ) y (P IV O 4 ) 2-y F] [M=Fe, x=2.08, y=1.58; M=Co, Ni, x=2.5, y=2] compounds showing the sheets along the [001] direction.

  12. Diethyl 3H-naphtho[2,1-b]pyran-2,3-dicarboxylate

    Directory of Open Access Journals (Sweden)

    Abdullah Mohamed Asiri

    2009-04-01

    Full Text Available The sp3-hybridized methine C atom in the title compound, C19H18O5, lies out of the mean plane of the remaining 13 atoms of the naphthopyran fused-ring system by 0.571 (1 Å, and its H atom occupies a pseudo-equatorial site.

  13. Structurally characterized 1,1,3,3-tetramethylguanidine solvated magnesium aryloxide complexes: [Mg(mu-OEt)(DBP)(H-TMG)]2, [Mg(mu-OBc)(DBP)(H-TMG)]2, [Mg(mu-TMBA)(DBP)(H-TMG)]2, [Mg(mu-DPP)(DBP)(H-TMG)]2, [Mg(BMP)2(H-TMG)2], [Mg(O-2,6-Ph2C6H3)2 (H-TMG)2].

    Science.gov (United States)

    Monegan, Jessie D; Bunge, Scott D

    2009-04-06

    The synthesis and structural characterization of several 1,1,3,3-tetramethylguanidine (H-TMG) solvated magnesium aryloxide complexes are reported. Bu(2)Mg was successfully reacted with H-TMG, HOC(6)H(3)(CMe(3))(2)-2,6 (H-DBP), and either ethanol, a carboxylic acid, or diphenyl phosphate in a 1:1 ratio to yield the corresponding [Mg(mu-L)(DBP)(H-TMG)](2) where L = OCH(2)CH(3) (OEt, 1), O(2)CC(CH(3))(3) (OBc, 2), O(2)C(C(6)H(2)-2,4,6-(CH(3))(3)) (TMBA, 3), or O(2)P(OC(6)H(5))(2) (DPP, 4). Bu(2)Mg was also reacted with two equivalents of H-TMG and HOC(6)H(3)(CMe(3))-2-(CH(3))-6 (BMP) or HO-2,6-Ph(2)C(6)H(3) to yield [Mg(BMP)(2)(H-TMG)(2)] (5) and [Mg(O-2,6-Ph(2)C(6)H(3))(2)(H-TMG)(2)] (6). Compounds 1-6 were characterized by single-crystal X-ray diffraction. Polymerization of l- and rac-lactide with 1 was found to generate polylactide (PLA). A discussion concerning the relevance of compounds 2 - 4 to the structure of Mg-activated phosphatase enzymes is also provided. The bulk powders for all complexes were found to be in agreement with the crystal structures based on elemental analyses, FT-IR spectroscopy, and (1)H, (13)C and (31)P NMR studies.

  14. Poly[[aqua(μ2-4,4′-bipyridine-κ2N:N′[μ3-3-bromo-2-(carboxylatomethylbenzoato-κ3O1:O1′:O2]cadmium] monohydrate

    Directory of Open Access Journals (Sweden)

    Yangmei Liu

    2012-08-01

    Full Text Available In the title compound, {[Cd(C9H5BrO4(C10H8N2(H2O]·H2O}n, the CdII atom has a distorted octahedral coordination geometry. Two N atoms from two 4,4′-bipyridine (bipy ligands occupy the axial positions, while the equatorial positions are furnished by three carboxylate O atoms from three 3-bromo-2-(carboxylatomethylbenzoate (bcb ligands and one O atom from a water molecule. The bipy and bcb ligands link the CdII atoms into a three-dimensional network. O—H...O hydrogen bonds and π–π interactions between the pyridine and benzene rings [centroid–centroid distance = 3.736 (4 Å] are present in the crystal.

  15. Optical characterization of Tm3+ doped Bi2O3-GeO2-Ga2O3 glasses in absence and presence of BaF2

    Science.gov (United States)

    Han, Kexuan; Zhang, Peng; Wang, Shunbin; Guo, Yanyan; Zhou, Dechun; Yu, Fengxia

    2016-01-01

    In this paper, Two new Bi2O3-GeO2-Ga2O3 glasses (one presence of BaF2) doped with 1mol% Tm2O3 were prepared by melt-quenching technique. Differential thermal analysis (DTA), the absorption, Raman, IR spectra and fluorescence spectra were measured. The Judd–Ofelt intensity parameters, emission cross section, absorption cross section, and gain coefficient of Tm3+ ions were comparatively investigated. After the BaF2 introduced, the glass showed a better thermal stability, lower phonon energy and weaker OH− absorption coefficient, meanwhile, a larger ~1.8 μm emission cross section σem (7.56 × 10−21 cm2) and a longer fluorescence lifetime τmea (2.25 ms) corresponding to the Tm3+: 4F3 → 3H6 transition were obtained, which is due to the addition of fluoride in glass could reduce the quenching rate of hydroxyls and raise the cross-relaxation (3H6 + 3H4 → 3F4 + 3F4) rate. Our results suggest that the Tm3+ doped Bi2O3-GeO2-Ga2O3 glass with BaF2 might be potential to the application in efficient ~1.8 μm lasers system. PMID:27506152

  16. Optical characterization of Tm(3+) doped Bi2O3-GeO2-Ga2O3 glasses in absence and presence of BaF2.

    Science.gov (United States)

    Han, Kexuan; Zhang, Peng; Wang, Shunbin; Guo, Yanyan; Zhou, Dechun; Yu, Fengxia

    2016-08-10

    In this paper, Two new Bi2O3-GeO2-Ga2O3 glasses (one presence of BaF2) doped with 1mol% Tm2O3 were prepared by melt-quenching technique. Differential thermal analysis (DTA), the absorption, Raman, IR spectra and fluorescence spectra were measured. The Judd-Ofelt intensity parameters, emission cross section, absorption cross section, and gain coefficient of Tm(3+) ions were comparatively investigated. After the BaF2 introduced, the glass showed a better thermal stability, lower phonon energy and weaker OH(-) absorption coefficient, meanwhile, a larger ~1.8 μm emission cross section σem (7.56 × 10(-21) cm(2)) and a longer fluorescence lifetime τmea (2.25 ms) corresponding to the Tm(3+): (4)F3 → (3)H6 transition were obtained, which is due to the addition of fluoride in glass could reduce the quenching rate of hydroxyls and raise the cross-relaxation ((3)H6 + (3)H4 → (3)F4 + (3)F4) rate. Our results suggest that the Tm(3+) doped Bi2O3-GeO2-Ga2O3 glass with BaF2 might be potential to the application in efficient ~1.8 μm lasers system.

  17. (4S)-4-(3,4-Dichloro?phen?yl)-1?-methyl-4?-phenyl-3,4-dihydronaphthalene-2-spiro-3?-pyrrolidine-2?-spiro-1??-acenaphthyl?ene-1,2??(2H,1??H)-dione

    OpenAIRE

    Murugan, R.; Gunasekaran, B.; Narayanan, S. Sriman; Manivannan, V.

    2008-01-01

    In the title compound, C37H27Cl2NO2, the 3,4-dichloro?phenyl ring makes a dihedral angle of 46.66?(6)? with the phenyl ring. The mol?ecular structure is stabilized by weak intra?molecular C?H?O inter?actions and the crystal structure is stabilized by weak inter?molecular C?H?O inter?actions. The C?C?C?C?C five-membered ring is planar, while the C?C?C?C?N five-membered ring adopts a half-chair conformation.

  18. Solvothermal synthesis, crystal structure, and second-order nonlinear optical properties of a new noncentrosymmetric gallium-organic framework material, [N(C3H7)4]3Ga3[C6H3(CO2)3]4

    Science.gov (United States)

    Lee, Dong Woo; Jo, Vinna; Ok, Kang Min

    2012-10-01

    A novel noncentrosymmetric (NCS) gallium-organic framework material, [N(C3H7)4]3Ga3[C6H3(CO2)3]4 (CAUMOF-11) has been synthesized by a solvothermal reaction using Ga(NO3)3·xH2O, 1,3,5-C6H3(CO2H)3, N(C3H7)4Cl, HNO3, and HCON(CH3)2 at 180 °C. The structure of the reported material has been determined by single-crystal X-ray diffraction. CAUMOF-11 has an anionic three-dimensional framework with aligned four-coordinate GaO4 tetrahedra and 1,3,5-benzenetricarboxylate groups. Tetrapropylammonim cations reside within the channel and maintain the charge balance. Detailed structural analyses with full characterization including infrared spectroscopy, thermogravimetric analysis, elemental analysis, ion-exchange reactions, topotactic decomposition, and gas adsorption experiments are reported. Powder second-harmonic generating (SHG) measurements on CAUMOF-11, using 1064 nm radiation, exhibit SHG efficiency of 15 times that of α-SiO2 and the material is phase-matchable (type-1).

  19. Crystal structure of 2-amino-N-(2-fluorophenyl-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxamide

    Directory of Open Access Journals (Sweden)

    K. Chandra Kumar

    2015-11-01

    Full Text Available In the title compound, C15H15FN2OS, the dihedral angle between the planes of the benzothiophene ring system and the fluorobenzene ring is 3.74 (14°. The six-membered ring of the benzothiophene moiety adopts a half-chair conformation. The molecular conformation is consolidated by intramolecular N—H...F and N—H...O hydrogen bonds. In the crystal, molecules are linked by N—H...O hydrogen bonds, generating C(6 [001] chains.

  20. 1-Allyl-3-amino-1H-pyrazole-4-carboxylic acid

    Directory of Open Access Journals (Sweden)

    Feng-Ling Yang

    2008-12-01

    Full Text Available The title compound, C7H9N3O2, was prepared by alkaline hydrolysis of ethyl 1-allyl-3-amino-1H-pyrazole-4-carboxylate. The crystal structure is stabilized by three types of intermolecular hydrogen bond (N—H...O, N—H...N and O—H...N.

  1. Crystal structure of bis-(μ-3-nitro-benzoato)-κ3O,O':O3O:O,O'-bis-[bis-(3-cyano-pyridine-κN1)(3-nitro-benzoato-κ2O,O')cadmium].

    Science.gov (United States)

    Hökelek, Tuncer; Akduran, Nurcan; Özen, Azer; Uğurlu, Güventürk; Necefoğlu, Hacali

    2017-03-01

    The asymmetric unit of the title compound, [Cd 2 (C 7 H 4 NO 4 ) 4 (C 6 H 4 N 2 ) 4 ], contains one Cd II atom, two 3-nitro-benzoate (NB) anions and two 3-cyano-pyridine (CPy) ligands. The two CPy ligands act as monodentate N(pyridine)-bonding ligands, while the two NB anions act as bidentate ligands through the carboxyl-ate O atoms. The centrosymmetric dinuclear complex is generated by application of inversion symmetry, whereby the Cd II atoms are bridged by the carboxyl-ate O atoms of two symmetry-related NB anions, thus completing the distorted N 2 O 5 penta-gonal-bipyramidal coordination sphere of each Cd II atom. The benzene and pyridine rings are oriented at dihedral angles of 10.02 (7) and 5.76 (9)°, respectively. In the crystal, C-H⋯N hydrogen bonds link the mol-ecules, enclosing R 2 2 (26) ring motifs, in which they are further linked via C-H⋯O hydrogen bonds, resulting in a three-dimensional network. In addition, π-π stacking inter-actions between parallel benzene rings and between parallel pyridine rings of adjacent mol-ecules [shortest centroid-to-centroid distances = 3.885 (1) and 3.712 (1) Å, respectively], as well as a weak C-H⋯π inter-action, may further stabilize the crystal structure.

  2. 9-Ethyl-2,3-dihydro-9H-carbazol-4(1H-one

    Directory of Open Access Journals (Sweden)

    S. Sriman Narayanan

    2008-09-01

    Full Text Available In the title compound, C28H30N2O2, the cyclohexene ring system adopts a sofa conformation. The crystal structure is stabilized by C—H...O interactions between methyl H atoms of the ethyl substituents and the O atoms of carbonyl groups of adjacent molecules, and by an intermolecular carbonyl–carbonyl interactions [3.207 (2 Å

  3. Crystal structure of 5-[bis(methylsulfonylmethyl]-1,3-dimethyl-5-(methylsulfonylpyrimidine-2,4,6(1H,3H,5H-trione

    Directory of Open Access Journals (Sweden)

    Eyad Mallah

    2015-01-01

    Full Text Available In the title compound, C10H16N2O9S3, the pyrimidine ring of the 1,3-dimethyl barbituric acid moiety has an envelope conformation with the C atom carrying the methylsulfonyl and bis(methylsulfonylmethyl substituents as the flap. The dihedral angle between mean plane of the pyrimidine ring and the S/C/S plane is 72.4 (3°. In the crystal, molecules are linked via C—H...O hydrogen bonds, forming a three-dimensional structure.

  4. Synthesis and Electrochemical Studies of ReO3 Type Phase Nb3O7F

    Directory of Open Access Journals (Sweden)

    D. Saritha

    2018-04-01

    Full Text Available In latest era, explore for alternative materials to carbonaceous negative electrodes working at higher potential in lithium ion batteries is given enormous significance to avoid lithium plating and electrolyte decomposition. Niobium based oxides show enhanced results as choice to carbonaceous anodes and also Nb5+/4+ redox couple working at approximately 1.5V vs. lithium.The redox potential of the niobium metal ion (~1.5V and the structure of Nb3O7F encourage us lithium insertion studies. Nb3O7F compound has been synthesized through a simple solid state method to explore as anode material. A structural and electrochemical property of this compound is studied in detail.The charge-discharge curves are obtained galvanostatically at C/5 rate. In first discharge step, 5.3 Li can be inserted into four step process between 3.0 – 1.0 V with a specific capacity of 350 mAhg-1. Four plateaus are observed at 1.65, 1.3,1.2 and 1.1V. During charge 1.3 Li can be extracted with an irreversible capacity loss. The total first-charge capacity is 86 mAhg-1 corresponding to the extraction of 1.3 Li. These cells show a reversible capacity 86 mAhg-1 after 25 cycles. The detailed results will be described and discussed.

  5. Solid-State Synthesis and Structure of the Enigmatic Ammonium Octaborate: (NH4)2[B7O9(OH)5]·3/4B(OH)3·5/4H2O.

    Science.gov (United States)

    Neiner, Doinita; Sevryugina, Yulia V; Schubert, David M

    2016-09-06

    The compound known since the 19th century as ammonium octaborate was structurally characterized revealing the ammonium salt of the ribbon isomer of the heptaborate anion, [B7O9(OH)5](2-), with boric acid and water molecules. Of composition (NH4)2B7.75O12.63·4.88H2O, it approximates the classical ammonium octaborate composition (NH4)2B8O13·6H2O and has the structural formula {(NH4)2[B7O9(OH)5]}4·3B(OH)3·5H2O. It spontaneously forms at room temperature in solid-state mixtures of ammonium tetraborate and ammonium pentaborate. It crystallizes in the monoclinic space group P21/c with a = 11.4137(2) Å, b = 11.8877(2) Å, c = 23.4459(3) Å, β = 90.092(1)°, V = 3181.19(8) Å(3), and Z = 2 and contains well-ordered ammonium cations and [B7O9(OH)5](2-) anions and disordered B(OH)3 and H2O molecules linked by extensive H bonding. Expeditious solid-state formation of the heptaborate anion under ambient conditions has important implications for development of practical syntheses of industrially useful borates.

  6. catena-Poly[[bis(μ3-5-hydroxyisophthalatobis(pyrazino[2,3-f][1,10]phenanthrolinedicadmium] dihydrate

    Directory of Open Access Journals (Sweden)

    Peng-Cheng Zhao

    2012-04-01

    Full Text Available The title coordination polymer, {[Cd2(C8H4O52(C14H8N42]·2H2O}n, has a layered structure. The asymmetric unit contains two CdII ions, two pyrazino[2,3-f][1,10]phenanthroline, two 5-hydroxyisophthalate (hip ligands and two lattice water molecules. Each CdII ion is coordinated by two N atoms from a chelating pyrazino[2,3-f][1,10]phenanthroline and four O atoms from three different hip ligands, resulting in a distorted CdN2O4 octahedral coordination environment. The hip ligand connects adjacent CdII ions, forming forming layers parallel to (010. Intralayer O—H...O hydrogen bonds involving the hydroxy groups and solvent water molecules consolidate the crystal packing.

  7. Structuring effects of [Ln6O(OH)8(NO3)6(H2O)12]2+ entities

    International Nuclear Information System (INIS)

    Guillou, O.; Daiguebonne, C.; Calvez, G.; Le Dret, F.; Car, P.-E.

    2008-01-01

    In order to obtain highly porous lanthanide-based coordination polymers we are currently investigating reactions between [Ln 6 O(OH) 8 (NO 3 ) 6 (H 2 O) 12 ] 2+ di-cationic hexanuclear entities and sodium salts of benzene-poly-carboxylic acids. Two new coordination polymers obtained during this study are reported here. In both cases, the hexanuclear entity has been destroyed during the reaction. However the resulting compounds are original thanks to a structuring effect of the poly-metallic complex. The first compound of chemical formula [Y 2 (C 8 H 4 O 4 ) 3 (DMF)(H 2 O)],2DMF crystallizes in the monoclinic system, space group P121/n (n o 14) with a = 16.0975(3) A, b = 14.4605(3) A, c = 17.7197(4) A, β = 92.8504(9) o and Z = 4. The second compound of chemical formula Y 2 (NO 3 ) 2 (C 10 H 2 O 8 )(DMF) 4 crystallizes in the triclinic system, space group P-1 (n o 2) with a = 7.5312(3) A, b = 9.0288(3) A, c = 13.1144(6) A, α = 92.6008(14) o , β = 94.9180(14) o , γ = 112.1824(16) o and Z = 2. Both crystal structures are 2D. Both crystal structures are described and the original structural features are highlighted and related to a potential structuring effect of the hexanuclear precursor

  8. Structure determination of two structural analogs, named 3-[1-(2-fluoro-4-biphenyl)ethyl]-6-(4-fluorophenyl)-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole (C23H16F2N4S) and 3-[1-(2-fluoro-4-biphenyl)ethyl]-6-(4-chlorophenyl)-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole (C23H16ClFN4S) by synchrotron X-ray powder diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Gündoğdu, Gülsüm; Aytaç, Sevim Peri; Müller, Melanie; Tozkoparan, Birsen; Kaynak, Filiz Betül

    2017-12-01

    Two novel compounds, 3-[1-(2-fluoro-4-biphenyl)ethyl]-6-(4-fluorophenyl)-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole (C23H16F2N4S) (1) and 3-[1-(2-fluoro-4-biphenyl)ethyl]-6-(4-chlorophenyl)-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole (C23H16ClFN4S) (2), have been designed and synthesized as cytotoxic agents. The compounds were characterized by infrared, proton nuclear magnetic resonance, mass spectral data, elemental analysis and X-ray powder diffraction. The present study comprises spectral data and crystal structures of these novel compounds determined from synchrotron X-ray powder diffraction data. The structure solutions were obtained by simulated annealing. The final structures were achieved by Rietveld refinement using soft restraints for all bond lengths, bond angles, and planar groups. Both compounds crystallize in space group$P\\bar 1$,Z= 2, with the unit-cell parametersa= 6.37433(9),b= 11.3641(2),c= 14.09115(19) Å,α= 80.1740(8)°,β= 85.1164(8)°,γ= 80.9831(10)°,V= 991.55(3) Å3of compound (1) anda= 6.53736(6),b= 11.55725(15),c= 14.01373(13) Å,α= 80.3323(7)°,β= 84.8939(6)°,γ= 79.3954(8)°,V= 1024.08(2) Å3of compound (2). Structural analyses reveal that the title compounds are isostructural.

  9. Synthesis and Physical Properties of the Oxofluoride Cu2(SeO3)F2.

    Science.gov (United States)

    Mitoudi-Vagourdi, Eleni; Papawassiliou, Wassilios; Müllner, Silvia; Jaworski, Aleksander; Pell, Andrew J; Lemmens, Peter; Kremer, Reinhard K; Johnsson, Mats

    2018-04-16

    Single crystals of the new compound Cu 2 (SeO 3 )F 2 were successfully synthesized via a hydrothermal method, and the crystal structure was determined from single-crystal X-ray diffraction data. The compound crystallizes in the orthorhombic space group Pnma with the unit cell parameters a = 7.066(4) Å, b = 9.590(4) Å, and c = 5.563(3) Å. Cu 2 (SeO 3 )F 2 is isostructural with the previously described compounds Co 2 TeO 3 F 2 and CoSeO 3 F 2 . The crystal structure comprises a framework of corner- and edge-sharing distorted [CuO 3 F 3 ] octahedra, within which [SeO 3 ] trigonal pyramids are present in voids and are connected to [CuO 3 F 3 ] octahedra by corner sharing. The presence of a single local environment in both the 19 F and 77 Se solid-state MAS NMR spectra supports the hypothesis that O and F do not mix at the same crystallographic positions. Also the specific phonon modes observed with Raman scattering support the coordination around the cations. At high temperatures the magnetic susceptibility follows the Curie-Weiss law with Curie temperature of Θ = -173(2) K and an effective magnetic moment of μ eff ∼ 2.2 μ B . Antiferromagnetic ordering below ∼44 K is indicated by a peak in the magnetic susceptibility. A second though smaller peak at ∼16 K is tentatively ascribed to a magnetic reorientation transition. Both transitions are also confirmed by heat capacity measurements. Raman scattering experiments propose a structural phase instability in the temperature range 6-50 K based on phonon anomalies. Further changes in the Raman shift of modes at ∼46 K and ∼16 K arise from transitions of the magnetic lattice in accordance with the susceptibility and heat capacity measurements.

  10. 4-[(3-Phenyl-4,5-dihydroisoxazol-5-ylmethyl]-2H-benzo[b][1,4]thiazin-3(4H-one

    Directory of Open Access Journals (Sweden)

    Nada Kheira Sebbar

    2016-06-01

    Full Text Available In the title compound, C18H16N2O2S, the 5-dihydroisoxazol-5-yl ring and its phenyl substituent are nearly coplanar, with the largest deviation from the mean plane being 0.0184 (16 Å. The thiomorpholin-3-one ring adopts a screw-boat conformation and the attached benzene ring makes a dihedral angle of 42.26 (7° with the mean plane through the 3-phenyl-4,5-dihydroisoxazol-5-yl ring system. In the crystal, molecules are linked by pairs of C—H...N hydrogen bonds, forming inversion dimers. These dimers are linked via C—H...O hydrogen bonds, generating a three-dimensional network.

  11. 1-(2-Ethoxy-2-methyl-2H-chromen-3-ylethanone

    Directory of Open Access Journals (Sweden)

    Afsaneh Zonouzi

    2009-04-01

    Full Text Available The Csp3 atom of the chromenyl fused-ring system in the title compound, C14H16O3, deviates by 0.407 (2 Å from the plane of the other atoms (r.m.s. deviation = 0.041 Å. The ethoxy substituent occupies a pseudo-axial position.

  12. Bis[2-(2-aminoethyl-1H-benzimidazole-κ2N2,N3](nitrato-κ2O,O′cobalt(II chloride trihydrate

    Directory of Open Access Journals (Sweden)

    Jing Zhao

    2012-06-01

    Full Text Available In the title compound, [Co(NO3(C9H11N32]Cl·3H2O, the CoII atom is coordinated by four N atoms from two chelating 2-(2-aminoethyl-1H-benzimidazole ligands and two O atoms from one nitrate anion in a distorted octahedral coordination environment. In the crystal, N—H...Cl, N—H...O, O—H...Cl and O—H...O hydrogen bonds link the complex cations, chloride anions and solvent water molecules into a three-dimensional network. π–π interactions between the imidazole and benzene rings and between the benzene rings are observed [centroid–centroid distances = 3.903 (3, 3.720 (3, 3.774 (3 and 3.926 (3 Å].

  13. Crystal structure of 3,4a,7,7,10a-pentamethyl-3-vinyldodecahydro-1H-benzo[f]chromen-9-ol isolated from Sideritis perfoliata

    Directory of Open Access Journals (Sweden)

    Ísmail Çelik

    2016-10-01

    Full Text Available The asymmetric unit of the title compound, C20H34O2, contains two crystallographically independent molecules (1 and 2 with similar conformations. In both molecules, the cyclohexane rings adopt a chair conformation, while the oxane rings are also puckered. In the crystal, O—H...O hydrogen bonds connect adjacent molecules, forming C(6 helical chains located around a 21 screw axis and running along the crystallographic a axis. The packing of these chains is governed only by van der Waals interactions. Semi-empirical PM3 quantum chemical calculations are in a satisfactory agreement with the structural results of the X-ray structure analysis. The absolute structure was indeterminate in the present experiment.

  14. Atom-radical reaction dynamics of O(3P)+C3H5→C3H4+OH: Nascent rovibrational state distributions of product OH

    Science.gov (United States)

    Park, Jong-Ho; Lee, Hohjai; Kwon, Han-Cheol; Kim, Hee-Kyung; Choi, Young-Sang; Choi, Jong-Ho

    2002-08-01

    The reaction dynamics of ground-state atomic oxygen [O(3P)] with allyl radicals (C3H5) has been investigated by applying a combination of crossed beams and laser induced fluorescence techniques. The reactants O(3P) and C3H5 were produced by the photodissociation of NO2 and the supersonic flash pyrolysis of precursor allyl iodide, respectively. A new exothermic channel of O(3P)+C3H5→C3H4+OH was observed and the nascent internal state distributions of the product OH (X 2Π:υ″=0,1) showed substantial bimodal internal excitations of the low- and high-N″ components without Λ-doublet and spin-orbit propensities in the ground and first excited vibrational states. With the aid of the CBS-QB3 level of ab initio theory and Rice-Ramsperger-Kassel-Marcus calculations, it is predicted that on the lowest doublet potential energy surface the major reaction channel of O(3P) with C3H5 is the formation of acrolein (CH2CHCHO)+H, which is consistent with the previous bulk kinetic experiments performed by Gutman et al. [J. Phys. Chem. 94, 3652 (1990)]. The counterpart C3H4 of the probed OH product in the title reaction is calculated to be allene after taking into account the factors of reaction enthalpy, barrier height and the number of intermediates involved along the reaction pathway. On the basis of population analyses and comparison with prior calculations, the statistical picture is not suitable to describe the reactive atom-radical scattering processes, and the dynamics of the title reaction is believed to proceed through two competing dynamical pathways. The major low N″-components with significant vibrational excitation may be described by the direct abstraction process, while the minor but extraordinarily hot rotational distribution of high N″-components implies that some fraction of reactants is sampled to proceed through the indirect short-lived addition-complex forming process.

  15. 3-[(R-3,3-Dichloro-2-hydroxypropyl]-8-hydroxy-6-methoxy-1H-isochromen-1-one

    Directory of Open Access Journals (Sweden)

    Yong-Cheng Lin

    2008-09-01

    Full Text Available The title compound, C13H12Cl2O5, is an isocoumarin compound which has been isolated from the ethyl acetate extract of the fermentation broth of actinomycete Streptomyces sp. (V4 from the South China Sea. There are intra- and intermolecular hydrogen bonds and halogen bonds [Cl...Cl = 3.434 (2 Å; C—Cl...Cl = 121.6°]. The intermolecular O—H...O hydrogen bonds link molecules into chains along the b axis.

  16. Hydrothermal synthesis of 4ZnO·B2O3·H2O:Ln3 + (Ln = Eu, Tb) phosphors: Morphology-tunable and luminescence properties

    Science.gov (United States)

    Cao, Shiwei; Jiao, Yang; Han, Weifang; Ge, Chunhua; Song, Bo; Wang, Jie; Zhang, Xiangdong

    2018-02-01

    4ZnO·B2O3·H2O:Ln3 + (Ln = Eu, Tb) phosphors with different morphologies have been successfully synthesized via one-step hydrothermal method through regulating the molar amount of Eu3 + and Tb3 +. Comprehensive scanning electron microscopy (SEM), X-ray diffraction (XRD) Fourier transform infrared spectrum (FT-IR) and inductively coupled plasma atomic emission spectrometer (ICP-AES) characterizations all confirm that obtained products are 4ZnO·B2O3·H2O:Ln3 + (Ln = Eu, Tb). The experimental results displayed that the morphology and photoluminescence of compounds is regularly changed with increased the molar amount of rare earth ions. For the Eu3 +-doped, Tb3 +-doped and Eu3 +/Tb3 + co-doped 4ZnO·B2O3·H2O phosphors of morphologies, the rod-like structures gradually changed to flower-like structures, fine wire-like structure and hybrid structure, respectively. To their photoluminescence, the Eu3 + shows a red emission (615 nm); the Tb3 + shows a green emission (545 nm); for the Eu3 +/Tb3 + co-doped 4ZnO·B2O3·H2O phosphors, a combination of blue (5d-4f of Eu2 +), green (5D4-7F5 of Tb3 +) and red (5D0-7F2 of Eu3 +) emissions emerges to achieve white emission. In addition, the energy transfer among Eu3 +, Eu2 + and Tb3 + ions was also discussed.

  17. Description and crystal structure of albrechtschraufite, MgCa{sub 4}F{sub 2}[UO{sub 2}(CO{sub 3}){sub 3}]{sub 2}.17-18H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Mereiter, K. [Vienna Univ. of Technology (Austria). Inst. of Chemical Technologies and Analytics

    2013-04-15

    Albrechtschraufite, MgCa{sub 4}F{sub 2}[UO{sub 2}(CO{sub 3}){sub 3}]{sub 2}.17-18H{sub 2}O, triclinic, space group P anti 1, a = 13.569(2), b = 13.419(2), c = 11.622(2) Aa, α = 115.82(1), β = 107.61(1), γ = 92.84(1) (structural unit cell, not reduced), V = 1774.6(5) Aa{sup 3}, Z = 2, Dc = 2.69 g/cm{sup 3} (for 17.5 H{sub 2}O), is a mineral that was found in small amounts with schroeckingerite, NaCa{sub 3}F[UO{sub 2}(CO{sub 3}){sub 3}](SO{sub 4}).10H{sub 2}O, on a museum specimen of uranium ore from Joachimsthal (Jachymov), Czech Republic. The mineral forms small grain-like subhedral crystals (= 0.2 mm) that resemble in appearance liebigite, Ca{sub 2}[UO{sub 2}(CO{sub 3}){sub 3}]. ∝ 11H{sub 2}O. Colour pale yellow-green, luster vitreous, transparent, pale bluish green fluorescence under ultraviolet light. Optical data: Biaxial negative, nX = 1.511(2), nY = 1.550(2), nZ = 1.566(2), 2V = 65(1) (λ = 589 nm), r < v weak. After qualitative tests had shown the presence of Ca, U, Mg, CO{sub 2} and H{sub 2}O, the chemical formula was determined by a crystal structure analysis based on X-ray four-circle diffractometer data. The structure was later on refined with data from a CCD diffractometer to R1 = 0.0206 and wR2 = 0.0429 for 9,236 independent observed reflections. The crystal structure contains two independent [UO{sub 2}(CO{sub 3}){sub 3}]{sup 4-} anions of which one is bonded to two Mg and six Ca while the second is bonded to only one Mg and three Ca. Magnesium forms a MgF{sub 2}(O{sub carbonate}){sub 3}(H{sub 2}O) octahedron that is linked via the F atoms with three Ca atoms so as to provide each F atom with a flat pyramidal coordination by one Mg and two Ca. Calcium is 7- and 8-coordinate forming CaFO{sub 6}, CaF{sub 2}O{sub 2}(H{sub 2}O){sub 4}, CaFO{sub 3}(H{sub 2}O){sub 4} and CaO{sub 2}(H{sub 2}O){sub 6} coordination polyhedra. The crystal structure is built up from MgCa{sub 3}F{sub 2}[UO{sub 2}(CO{sub 3}){sub 3}].8H{sub 2}O layers parallel to (001) which

  18. Propane-1,3-diammonium bis[aquachlorido(4-hydroxypyridine-2,6-dicarboxylato-κ3O2,N,O6mercurate(II] tetrahydrate

    Directory of Open Access Journals (Sweden)

    Hossein Aghabozorg

    2008-08-01

    Full Text Available The reaction of mercury(II chloride dihydrate, propane-1,3-diamine and 4-hydroxypyridine-2,6-dicarboxylic acid in a 1:1:1 molar ratio in aqueous solution, resulted in the formation of the title compound, (C3H12N2[Hg(C7H3NO5Cl(H2O]2·4H2O or (pnH2[Hg(hypydcCl(H2O]2·4H2O (where pn is propane-1,3-diamine and hypydcH2 is 4-hydroxypyridine-2,6-dicarboxylic acid. The metal atom is coordinated by one chloride group, one water molecule cis to the chloride ligand and one (hypydc2− ligand. The coordinated water molecule is almost perpendicular to the plane of the aromatic ring of (hypydc2−. The geometry of the resulting HgClNO3 coordination can be described as distorted square-pyramidal. This structure also contains propane-1,3-diammonium (site symmetry 2 as a counter-ion and four uncoordinated water molecules. There is a wide range of non-covalent interactions consisting of hydrogen bonding [of the types O—H...O, N—H...O and C—H...O, with D...A ranging from 2.548 (5 to 3.393 (6 Å] and ion pairing.

  19. 6-Methoxy-1-(4-methoxyphenyl-1,2,3,4-tetrahydro-9H-β-carbolin-2-ium acetate

    Directory of Open Access Journals (Sweden)

    Mohd Mustaqim Rosli

    2012-05-01

    Full Text Available In the title compound, C19H21N2O2C2H3O2−, the 1H-indole ring system is essentially planar [maximum deviation = 0.0257 (14 Å] and forms a dihedral angle of 87.92 (7 Å with the benzene ring attached to the tetrahydropyridinium fragment. The tetrahydropyridinium ring adopts a half-chair conformation. In the crystal, cations and anions are linked by interionic N—H...O, C—H...O and C—H...N hydrogen bonds into chains along the a axis.

  20. Carbonate hydrates of the heavy alkali metals: preparation and structure of Rb{sub 2}CO{sub 3} . 1.5 H{sub 2}O und Cs{sub 2}CO{sub 3} . 3 H{sub 2}O; Carbonat-Hydrate der schweren Alkalimetalle: Darstellung und Struktur von Rb{sub 2}CO{sub 3} . 1,5 H{sub 2}O und Cs{sub 2}CO{sub 3} . 3 H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Cirpus, V.; Wittrock, J.; Adam, A. [Koeln Univ. (Germany). Inst. fuer Anorganische Chemie

    2001-03-01

    Rb{sub 2}CO{sub 3} . 1.5 H{sub 2}O and Cs{sub 2}CO{sub 3} . 3 H{sub 2}O were prepared from aqueous solution and by means of the reaction of dialkylcarbonates with RbOH and CsOH resp. in hydrous alcoholes. Based on four-circle diffractometer data, the crystal structures were determined (Rb{sub 2}CO{sub 3} . 1.5 H{sub 2}O: C2/c (no. 15), Z = 8, a = 1237.7(2) pm, b = 1385.94(7) pm, c = 747.7(4) pm, {beta} = 120.133(8) , V{sub EZ} = 1109.3(6) . 10{sup 6} pm{sup 3}; Cs{sub 2}CO{sub 3} . 3 H{sub 2}O: P2/c (no. 13), Z = 2, a = 654.5(2) pm, b = 679.06(6) pm, c = 886.4(2) pm, {beta} = 90.708(14) , V{sub EZ} = 393.9(2) . 10{sup 6} pm{sup 3}). Rb{sub 2}CO{sub 3} . 1.5 H{sub 2}O is isostructural with K{sub 2}CO{sub 3} . 1.5 H{sub 2}O. In case of Cs{sub 2}CO{sub 3} . 3 H{sub 2}O no comparable structure is known. Both structures show {sub {infinity}}{sup 1}[(CO{sub 3}{sup 2-})(H{sub 2}O)]-chains, being connected via additional H{sub 2}O forming columns (Rb{sub 2}CO{sub 3} . 1.5 H{sub 2}O) and layers (Cs{sub 2}CO{sub 3} . 3 H{sub 2}O), respectively. (orig.)

  1. 4-(2,3-Dihydroxybenzylideneamino-3-methyl-1H-1,2,4-triazol-5(4H-one

    Directory of Open Access Journals (Sweden)

    Şamil Işık

    2009-12-01

    Full Text Available All the non-H atoms of the title compound, C10H10N4O3, are almost coplanar, the maximum deviation from planarity being 0.065 (3 Å. The dihedral angle between the aromatic rings is 1.66 (6°. The molecule adopts the enol–imine tautomeric form with an intramolecular hydrogen-bonding interaction between the Schiff base N atom and the hydroxy group. In the crystal, intermolecular N—H...O and O—H...O hydrogen bonds link the molecules into a three-dimensional network.

  2. [(2S-2-(3,5-Dichloro-2-oxidobenzylideneamino-3-(4-hydroxyphenylpropionato-κ3O,N,O′](dimethylformamide-κOcopper(II

    Directory of Open Access Journals (Sweden)

    Hong Liang

    2008-04-01

    Full Text Available In the title complex, [Cu(C16H11Cl2NO4(C3H7NO] , the CuII atom is coordinated by two O atoms and one N atom from the tridentate ligand L2− {LH2 = (2S-[2-(3,5-dichloro-2-hydroxybenzylideneimino]-3-(4-hydroxyphenylpropionic acid} and one O atom from a dimethylformamide molecule, resulting in a slightly distorted square-planar geometry. The structure forms a one-dimensional chain through weak coordination bonds [Cu...O 3.080 (1, Cu...Cl 3.269 (1 Å] and a three-dimensional network through O—H...O and C—H...O hydrogen bonds.

  3. 2-(5-Fluoro-3-methylsulfanyl-1-benzofuran-2-ylacetic acid

    Directory of Open Access Journals (Sweden)

    Hong Dae Choi

    2009-08-01

    Full Text Available The title compound, C11H9FO3S, was prepared by alkaline hydrolysis of ethyl 2-(5-fluoro-3-methylsulfanyl-1-benzofuran-2-ylacetate. In the crystal structure, the carboxyl groups are involved in intermolecular O—H...O hydrogen bonds, which link the molecules into centrosymmetric dimers. These dimers are further packed into stacks along the b axis by intermolecular C—H...O and C—H...F interactions.

  4. (E-N-[2-(9-Fluorenylidene-3a,5,7-trimethyl-3,3a-dihydro-2H-indol-3-ylidene]-2,4,6-trimethylaniline

    Directory of Open Access Journals (Sweden)

    Norihiro Tokitoh

    2008-02-01

    Full Text Available The title compound, C33H30N2, has an E configuration at the imine double bond. The angle between the least-squares planes of the imine C=N—C group and the benzene ring of the 2,4,6-trimethylphenyl substituent is 85.38 (11°. The crystal structure is sustained mainly by intermolecular π–π interactions (3.510 Å between the two fluorene rings and some C—H...π interactions.

  5. 1-(4,5-Dinitro-10-azatricyclo[6.3.1.02,7]dodeca-2,4,6-trien-10-yl-2,2,2-trifluoroethanone

    Directory of Open Access Journals (Sweden)

    Jin-Tang Wang

    2008-12-01

    Full Text Available In the title compound, C13H10F3N3O5, a derivative of andrographolide, the five-membered ring adopts an envelope conformation, while the non-planar six-membered ring has a chair conformation. An intramolecular C—H...F hydrogen bond results in the formation of a non-planar six-membered ring adopting a twisted conformation. In the crystal structure, intermolecular C—H...O hydrogen bonds link the molecules into centrosymmetric dimers.

  6. Crystal structure of rac-3-[2,3-bis(phenylsulfanyl-3H-indol-3-yl]propanoic acid

    Directory of Open Access Journals (Sweden)

    Wayland E. Noland

    2015-11-01

    Full Text Available The title compound, C23H19NO2S2, was obtained as an unexpected regioisomer from an attempted synthesis of an intermediate for a substituent-effect study on ergot alkaloids. This is the first report of a 1H-indole monothioating at the 2- and 3-positions to give a 3H-indole. In the crystal, the acid H atom is twisted roughly 180° from the typical carboxy conformation and forms centrosymmetric O—H...N hydrogen-bonded dimers with the indole N atom of an inversion-related molecule. Together with a weak C—H...O hydrogen bond involving the carbonyl O atom, chains are formed along [100].

  7. Two new two-dimensional organically templated phosphite compounds: (C6H16N2)0.5[M(HPO3)F], M=Fe(II) and Co(II): Solvothermal synthesis, crystal structures, thermal, spectroscopic, and magnetic properties

    International Nuclear Information System (INIS)

    Fernandez-Armas, Sergio; Mesa, Jose L.; Pizarro, Jose L.; Chung, U-Chan; Arriortua, Maria I.; Rojo, Teofilo

    2005-01-01

    The organically templated (C 6 H 16 N 2 ) 0.5 [M(HPO 3 )F] [M(II)=Fe (1) and Co (2)] compounds have been synthesized by using mild hydrothermal conditions under autogeneous pressure. The crystal structures have been determined from X-ray single-crystal diffraction data. The compounds are isostructural and crystallize in the C2/c monoclinic space group. The unit-cell parameters are a=5.607(1), b=21.276(4), c=11.652(1)A, β=93.74(1) deg. for the iron phase and a=5.5822(7), b=21.325(3), c=11.4910(1)A, β=93.464(9) o for the cobalt compound with Z=4. The crystal structure of these compounds consists of [M(HPO 3 )F] - anionic sheets. The layers are constructed from chains which contain [M 2 O 6 F 3 ] dimeric units linked by fluoride ions. The trans-1,4-diaminocyclohexane cations are placed in the interlayer space. The IR and Raman spectra show the bands corresponding to the phosphite oxoanion and organic dication. The Dq and Racah (B and C) parameters have been calculated from the diffuse reflectance spectra in the visible region. Dq parameter is 790cm -1 for compound (1). For phase (2) the Dq value is 725cm -1 and B and C are 930 and 4100cm -1 , respectively. The thermal evolution of the molar magnetic susceptibilities of these compounds show maxima at 20.0 and 6.0K for the iron(II) and cobalt(II) phases, respectively. These results indicate the existence of antiferromagnetic interactions in both compounds

  8. N1-(Thiophen-2-ylmethyl-N3,N3-bis[3-(thiophen-2-ylmethylammoniopropyl]propane-1,3-diammonium hexafluoridosilicate methanol trisolvate

    Directory of Open Access Journals (Sweden)

    Md. Alamgir Hossain

    2013-12-01

    Full Text Available In the title compound, C24H40N4S34+·2SiF62−·3CH3OH, the central tertiary amine function is protonated and is connected to three thiophen-2-ylmethylamino-n-propyl groups, forming the arms of a T-shaped cation that has two pockets. Each arm contains one protonated secondary amine function, and each pocket is occupied by one SiF62− anion bonded via two N—H...F interactions with the protonated amine group on the middle arm, while two methanol solvent molecules are N—H...O hydrogen-bonded with the other secondary protonated amine groups on the side arms. Weak O—H...O and O—H...F hydrogen bonds between the solvent molecules and between the solvent molecules and the anions, respectively, are also observed. All three thiophene groups in the arms are disordered over two sets of sites, with occupancy ratios of 0.828 (3:0.172 (3, 0.910 (2:0.090 (2 and 0.890 (3:0.110 (3.

  9. 1,3,4-Tri-O-acetyl-2-N-(trifluoroacetyl-β-l-fucose

    Directory of Open Access Journals (Sweden)

    David C. McCutcheon

    2014-02-01

    Full Text Available The title compound, C14H18F3NO8, was produced through conjugation of 1,3,4-tri-O-acetyl-2-azidodeoxy-α,β-l-fucose with trifluoroacetyl chloride in the presence of bis(diphenylphosphinoethane in tetrahydrofuran at room temperature. The X-ray crystal structure reveals that the β-anomer of the product mixture crystallizes from ethyl acetate/hexanes. The compound exists in a typical chair conformation with the maximum possible number of substituents, four out of five, located in the sterically preferred equatorial positions. The major directional force facilitating packing of the molecules are N—H...O hydrogen bonds involving the amide moieties of neighboring molecules, which connect molecules stacked along the a-axis direction into infinite strands with a C11(4 graph-set motif. Formation of the strands is assisted by a number of weaker C—H...O interactions involving the methine and methyl H atoms. These strands are connected through further C—H...O and C—H...F interactions into a three dimensional network

  10. Butane-1,4-diammonium bis(pyridine-2,6-dicarboxylato-κ3O2,N,O6cadmate(II dihydrate

    Directory of Open Access Journals (Sweden)

    Najmeh Firoozi

    2008-10-01

    Full Text Available In the title compound, (C4H14N2[Cd(C7H3NO42]·2H2O, the CdII ion is coordinated by four O atoms [Cd—O = 2.2399 (17–2.2493 (17 Å] and two N atoms [Cd—N = 2.3113 (15 and 2.3917 (15 Å] from two tridentate pyridine-2,6-dicarboxylato ligands in a distorted octahedral geometry. The uncoordinated water molecules are involved in O—H...O and N—H...O hydrogen bonds, which contribute to the formation of a three-dimensional supramolecular structure, along with π–π stacking interactions [centroid–centroid distances of 3.5313 (13 and 3.6028 (11 Å between the pyridine rings of neighbouring dianions].

  11. Study of UO{sub 2}F{sub 2} - H{sub 2}O - HF compounds; Etude des composes UO{sub 2}F{sub 2} - H{sub 2}O - HF

    Energy Technology Data Exchange (ETDEWEB)

    Neveu, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    We study various compounds resulting from the interaction of UO{sub 2}F{sub 2} with H{sub 2}O and HF (gas), and various triple compounds UO{sub 2}F{sub 2} - H{sub 2}O - HF; the conditions of decomposition and the thermodynamic limits of stability are specified. (author) [French] Nous etudions divers composes formes par reaction de UO{sub 2}F{sub 2} avec H{sub 2}O et HF (gaz) et divers composes triples UO{sub 2}F{sub 2} - H{sub 2}O - HF, en essayant de preciser les decompositions et domaines d'exisfence thermodynamiques de ces corps. (auteur)

  12. 1-[3-(2-Benzyloxy-6-hydroxy-4-methylphenyl-5-[3,5-bis(trifluoromethylphenyl]-4,5-dihydro-1H-pyrazol-1-yl]propane-1-one

    Directory of Open Access Journals (Sweden)

    U. H. Patel

    2013-06-01

    Full Text Available In the title compound, C28H24F6N2O3, the mean plane of the central pyrazoline ring forms dihedral angles of 2.08 (9 and 69.02 (16° with the 2-benzyloxy-6-hydroxy-4-methylphenyl and 3,5-bis(trifluoromethylphenyl rings, respectively. The dihedral angle between the mean planes of the pyrazoline and 3,5-bis(trifluoromethylphenyl rings is 68.97 (9°. An intramolecular O—H...N hydrogen bond is observed, which forms an S(6 graph-set motif. In the crystal, pairs of weak C—H...F halogen interactions link the molecules into inversion dimers while molecular chains along [100] are formed by C—H...O contacts.

  13. Crystal structure of bis(μ-3-nitrobenzoato-κ3O,O′:O3O:O,O′-bis[bis(3-cyanopyridine-κN1(3-nitrobenzoato-κ2O,O′cadmium

    Directory of Open Access Journals (Sweden)

    Tuncer Hökelek

    2017-03-01

    Full Text Available The asymmetric unit of the title compound, [Cd2(C7H4NO44(C6H4N24], contains one CdII atom, two 3-nitrobenzoate (NB anions and two 3-cyanopyridine (CPy ligands. The two CPy ligands act as monodentate N(pyridine-bonding ligands, while the two NB anions act as bidentate ligands through the carboxylate O atoms. The centrosymmetric dinuclear complex is generated by application of inversion symmetry, whereby the CdII atoms are bridged by the carboxylate O atoms of two symmetry-related NB anions, thus completing the distorted N2O5 pentagonal–bipyramidal coordination sphere of each CdII atom. The benzene and pyridine rings are oriented at dihedral angles of 10.02 (7 and 5.76 (9°, respectively. In the crystal, C—H...N hydrogen bonds link the molecules, enclosing R22(26 ring motifs, in which they are further linked via C—H...O hydrogen bonds, resulting in a three-dimensional network. In addition, π–π stacking interactions between parallel benzene rings and between parallel pyridine rings of adjacent molecules [shortest centroid-to-centroid distances = 3.885 (1 and 3.712 (1 Å, respectively], as well as a weak C—H...π interaction, may further stabilize the crystal structure.

  14. cyclo-Tetrakis(μ-3-acetyl-4-methyl-1H-pyrazole-5-carboxylato-κ4N2,O3:N1,O5tetrakis[aquacopper(II] tetradecahydrate

    Directory of Open Access Journals (Sweden)

    Sergey Malinkin

    2011-09-01

    Full Text Available The title compound, [Cu4(C7H6N2O34(H2O4]·14H2O, a tetranuclear [2 × 2] grid-type complex with S4 symmetry, contains four CuII atoms which are bridged by four pyrazolecarboxylate ligand anions and are additionally bonded to a water molecule. Each CuII atom is coordinated by two O atoms of the carboxylate and acetyl groups, two pyrazole N atoms of doubly deprotonated 3-acetyl-4-methyl-1H-pyrazole-5-carboxylic acid and one O atom of a water molecule. The geometry at each CuII atom is distorted square-pyramidal, with the two N and two O atoms in the equatorial plane and O atoms in the axial positions. O—H...O hydrogen-bonding interactions additionally stabilize the structure. One of the uncoordinated water molecules shows half-occupancy.

  15. Ethyl (E)-2-(2,7-dimethyl-5-oxo-4H,5H-pyrano[4,3-b]pyran-4-ylidene)acetate

    OpenAIRE

    Oulemda Bassou; Hakima Chicha; Latifa Bouissane; El Mostapha Rakib; Mohamed Saadi; Lahcen El Ammari

    2017-01-01

    In the title compound, C14H14O5, the two heterocyclic rings are coplanar (r.m.s. deviation = 0.008 Å), with the largest deviation from the mean plane being 0.012 (1) Å. The mean plane through the acetate group is inclined slightly with respect to the oxopyrano[4,3-b]pyran-4-yl system, as indicated by the dihedral angle of 1.70 (7)° between them. Two intramolecular hydrogen bonds, completing S(6) ring motifs, are observed in the molecule. In the crystal, molecules are linked by weak C—H...O hy...

  16. Standard Molar Enthalpy of Formation of RE(C5H8NS2)3(o-phen)

    Institute of Scientific and Technical Information of China (English)

    MENG Xiang-Xin; GAO Sheng-Li; CHEN San-Ping; YANG Xu-Wu; XIE Gang; SHI Qi-Zhen

    2005-01-01

    Five solid ternary complexes of RE(C5H8NS2)3(o-phen) (RE=Ho, Er, Tm, Yb, Lu) have been synthesized in absolute ethanol by rare earth chloride low hydrate reacting with the mixed ligands of ammonium pyrrolidinedithiocarbamate (APDC) and 1,10-phenanthroline·H2O (o-phen·H2O) in the ordinary laboratory atmosphere without any cautions against moisture or air. IR spectra of the complexes showed that the RE3+ coordinated with six sulfur atoms of three PDC- and two nitrogen atoms of o-phen·H2O. It was assumed that the coordination number of RE3+was eight. The constant-volume combustion energies of the complexes, △cU, were determined as (-16788.46±7.74), (- 15434.53± 8.28), (- 15287.807.31), (- 15200.50±7.22) and (- 15254.34±6.61) kJ·mol-1, respectively, by a precise rotating-bomb calorimeter at 298.15 K. Its standard molar enthalpies of combustion, △cH m,and standard molar enthalpies of formation, △fH m, were calculated as (-16803.95 ±7.74), (-15450.02±8.28),(-15303.29±9.28), (-15215.99±7.22), (-15269.83±6.61) kJ·mol-1 and (-1115.42±8.94), (-2477.80±9.15), (-2619.95 ±10.44), (-2670.17 ± 8.22), ( -2650.06± 8.49) kJ·mol-1, respectively.

  17. 2-Methyl-1H-benzimidazol-3-ium hydrogen phthalate

    Directory of Open Access Journals (Sweden)

    YuanQi Yu

    2011-10-01

    Full Text Available The asymmetric unit of the title compound, C8H9N2C8H5O4−, contains two independent ion pairs. In each 2-methyl-1H-benzimidazolium ion, an intramolecular O—H...O bond forms an S(7 graph-set motif. In the crystal, the components are linked by N—H...O hydrogen bonds, forming chains along [210]. Further stabilization is provided by weak C—H...O hydrogen bonds.

  18. 5-(2,5-Dioxooxolan-3-yl-8-methyl-3,3a,4,5-tetrahydro-1H-naphtho[1,2-c]furan-1,3-dione

    Directory of Open Access Journals (Sweden)

    Y. Z. Guo

    2013-02-01

    Full Text Available In the title compound, C17H14O6, the dihedral angle between the two anhydride rings is 76.01 (8°while the dihedral angles between the benzene and anhydride rings are 42.60 (7 and 68.94 (7°. The cyclohexene ring of the tetrahydronaphthalene unit exhibits an envelope conformation.

  19. Hydrogen-bonded Three-Dimensional Networks Encapsulating One-dimensional Covalent Chains: [Cu(3-ampy)(H2O)4](SO4)·(H2O) (3-ampy = 3-Aminopyridine)

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A three-dimensional complex [Cu(3-ampy)(H2O)4](SO4)·(H2O) (3-ampy = 3-aminopyridine) has been synthesized. Crystallographic data: C5H16CuN2O9S, Mr = 343.80, triclinic, space group P, a = 7.675(2), b = 8.225(3), c = 10.845(3) (A), α= 86.996(4), β = 76.292(4),γ = 68.890(4)°, V = 620.0(3) (A)3, Z = 2, Dc = 1.841 g/cm3, F(000) = 354 and μ = 1.971 mm-1. The structure was refined to R = 0.0269 and wR = 0.0659 for 1838 observed reflections (I > 2σ(Ⅰ)). The structure consists of [Cu(3-ampy)(H2O)4]2+ cations, SO42- anions and lattice water molecules. 3-Ampy acting as a bidentate bridging ligand generates a 1D covalent chain. A supramolecular 2D framework is formed through π-π stacking of pyridine rings. The lattice water molecules and SO42- anions are located between the adjacent 2D frameworks. The hydrogen bonding interactions from lattice water molecules and SO42- anions to coordinate water extend the 2D framework into a 3D network.

  20. (1S,3R,8S,9R,10S-2,2-Dichloro-3,7,7,10-tetramethyl-9,10-epoxytricyclo[6.4.0.01,3]dodecane

    Directory of Open Access Journals (Sweden)

    Moha Berraho

    2010-12-01

    Full Text Available The title compound, C16H24Cl2O, was synthesized from β-himachalene (3,5,5,9-tetramethyl-2,4a,5,6,7,8-hexahydro-1H-benzocycloheptene, which was isolated from the essential oil of the Atlas cedar (cedrus atlantica. The molecule forms an extended sheet of two fused rings which exhibit different conformations. The six-membered ring has a half-chair conformation, while the seven-membered ring displays a chair conformation; the dihedral angle between the two rings is 38.2 (1°.

  1. The dehydration of SrTeO3(H2O)--a topotactic reaction for preparation of the new metastable strontium oxotellurate(IV) phase ε-SrTeO3.

    Science.gov (United States)

    Stöger, Berthold; Weil, Matthias; Baran, Enrique J; González-Baró, Ana C; Malo, Sylvie; Rueff, Jean Michel; Petit, Sebastien; Lepetit, Marie Bernadette; Raveau, Bernard; Barrier, Nicolas

    2011-05-28

    Microcrystalline single-phase strontium oxotellurate(IV) monohydrate, SrTeO(3)(H(2)O), was obtained by microwave-assisted hydrothermal synthesis under alkaline conditions at 180 °C for 30 min. A temperature of 220 °C and longer reaction times led to single crystal growth of this material. The crystal structure of SrTeO(3)(H(2)O) was determined from single crystal X-ray diffraction data: P2(1)/c, Z = 4, a = 7.7669(5), b = 7.1739(4), c = 8.3311(5) Å, β = 107.210(1)°, V = 443.42(5) Å(3), 1403 structure factors, 63 parameters, R[F(2)>2σ(F(2))] = 0.0208, wR(F(2) all) = 0.0516, S = 1.031. SrTeO(3)(H(2)O) is isotypic with the homologous BaTeO(3)(H(2)O) and is characterised by a layered assembly parallel to (100) of edge-sharing [SrO(6)(H(2)O)] polyhedra capped on each side of the layer by trigonal-prismatic [TeO(3)] units. The cohesion of the structure is accomplished by moderate O-H···O hydrogen bonding interactions between donor water molecules and acceptor O atoms of adjacent layers. In a topochemical reaction, SrTeO(3)(H(2)O) condensates above 150 °C to the metastable phase ε-SrTeO(3) and transforms upon further heating to δ-SrTeO(3). The crystal structure of ε-SrTeO(3), the fifth known polymorph of this composition, was determined from combined electron microscopy and laboratory X-ray powder diffraction studies: P2(1)/c, Z = 4, a = 6.7759(1), b = 7.2188(1), c = 8.6773(2) Å, β = 126.4980(7)°, V = 341.20(18) Å(3), R(Fobs) = 0.0166, R(Bobs) = 0.0318, Rwp = 0.0733, Goof = 1.38. The structure of ε-SrTeO(3) shows the same basic set-up as SrTeO(3)(H(2)O), but the layered arrangement of the hydrous phase transforms into a framework structure after elimination of water. The structural studies of SrTeO(3)(H(2)O) and ε-SrTeO(3) are complemented by thermal analysis and vibrational spectroscopic measurements.

  2. 4,4′-Diiodo-2,2′-[(3aR,7aR-2,3,3a,4,5,6,7,7a-octahydro-1H-1,3-benzimidazole-1,3-diylbis(methylene]diphenol

    Directory of Open Access Journals (Sweden)

    Augusto Rivera

    2011-09-01

    Full Text Available In the crystal structure of the title compound, C21H24I2N2O2, the two N atoms of the imidazolidine moiety are linked to the hydroxy groups by intramolecular O—H...N hydrogen-bonding interactions. The cyclohexane ring adopts a chair conformation and the heterocyclic ring to which it is fused has a twisted envelope conformation.

  3. Dicarbonyl[2-hydroxy-3,5,7-tris(morpholinomethylcyclohepta-2,4,6-trienonato(1–-κ2O1,O2]rhodium(I

    Directory of Open Access Journals (Sweden)

    G. Steyl

    2008-12-01

    Full Text Available In the title compound, [Rh(C22H32N3O5(CO2], the RhI atom is coordinated by two carbonyl ligands and two tropolonate O atoms in a distorted square-planar geometry. It is an example of a new type of tropolone derivative that has not been characterized via solid-state methods. Weak intramolecular C—H...N and intermolecular C—H...O hydrogen bonds, and π–π stacking interactions between the tropolone rings [centroid–centroid distance = 3.590 (8 Å] are observed in the crystal structure.

  4. Emission analysis of RE3+ (RE = Sm, Dy):B2O3-TeO2-Li2O-AlF3 glasses.

    Science.gov (United States)

    Raju, C Nageswara; Sailaja, S; Kumari, S Pavan; Dhoble, S J; Kumar, V Ramesh; Ramanaiah, M V; Reddy, B Sudhakar

    2013-01-01

    This article reports on the optical properties of 0.5% mol of Sm(3+), Dy(3+) ion-doped B2O3-TeO2-Li2O-AlF3 (LiAlFBT) glasses. The glass samples were characterized by optical absorption and emission spectra. Judd-Ofelt theory was applied to analyze the optical absorption spectra and calculate the intensity parameters and radiative properties of the emission transitions. The emission spectra of Sm(3+) and Dy(3+):LiAlFBT glasses showed a bright reddish-orange emission at 598 nm ((4)G5/2 → (6)H7/2) and an intense yellow emission at 574 nm ((4)F9/2 → (6)H13/2), respectively. Full width at half maximum (FWHM), stimulated emission cross section, gain bandwidth and optical gain values were also calculated to extend the applications of the Sm(3+) and Dy(3+):LiAlFBT glasses. Copyright © 2012 John Wiley & Sons, Ltd.

  5. Understanding overpressure in the FAA aerosol can test by C3H2F3Br (2-BTP).

    Science.gov (United States)

    Linteris, Gregory Thomas; Babushok, Valeri Ivan; Pagliaro, John Leonard; Burgess, Donald Raymond; Manion, Jeffrey Alan; Takahashi, Fumiaki; Katta, Viswanath Reddy; Baker, Patrick Thomas

    2016-05-01

    Thermodynamic equilibrium calculations, as well as perfectly-stirred reactor (PSR) simulations with detailed reaction kinetics, are performed for a potential halon replacement, C 3 H 2 F 3 Br (2-BTP, C 3 H 2 F 3 Br, 2-Bromo-3,3,3-trifluoropropene), to understand the reasons for the unexpected enhanced combustion rather than suppression in a mandated FAA test. The high pressure rise with added agent is shown to depend on the amount of agent, and is well-predicted by an equilibrium model corresponding to stoichiometric reaction of fuel, oxygen, and agent. A kinetic model for the reaction of C 3 H 2 F 3 Br in hydrocarbon-air flames has been applied to understand differences in the chemical suppression behavior of C 3 H 2 F 3 Br vs. CF 3 Br in the FAA test. Stirred-reactor simulations predict that in the conditions of the FAA test, the inhibition effectiveness of C 3 H 2 F 3 Br at high agent loadings is relatively insensitive to the overall stoichiometry (for fuel-lean conditions), and the marginal inhibitory effect of the agent is greatly reduced, so that the mixture remains flammable over a wide range of conditions. Most important, the flammability of the agent-air mixtures themselves (when compressively preheated), can support low-strain flames which are much more difficult to extinguish than the easy-to extinguish, high-strain primary fireball from the impulsively released fuel mixture. Hence, the exothermic reaction of halogenated hydrocarbons in air should be considered in other situations with strong ignition sources and low strain flows, especially at preheated conditions.

  6. Co3(PO4)2·4H2O

    Science.gov (United States)

    Lee, Young Hoon; Clegg, Jack K.; Lindoy, Leonard F.; Lu, G. Q. Max; Park, Yu-Chul; Kim, Yang

    2008-01-01

    Single crystals of Co3(PO4)2·4H2O, tricobalt(II) bis­[ortho­phosphate(V)] tetra­hydrate, were obtained under hydro­thermal conditions. The title compound is isotypic with its zinc analogue Zn3(PO4)2·4H2O (mineral name hopeite) and contains two independent Co2+ cations. One Co2+ cation exhibits a slightly distorted tetra­hedral coordination, while the second, located on a mirror plane, has a distorted octa­hedral coordination environment. The tetra­hedrally coordinated Co2+ is bonded to four O atoms of four PO4 3− anions, whereas the six-coordinate Co2+ is cis-bonded to two phosphate groups and to four O atoms of four water mol­ecules (two of which are located on mirror planes), forming a framework structure. In addition, hydrogen bonds of the type O—H⋯O are present throughout the crystal structure. PMID:21200978

  7. A 3d-4f complex constructed by the assembly of a cationic template, [Cu(en){sub 2}]{sup 2+}, and a 3D anionic coordination polymer, [Sm{sub 2}(C{sub 2}O{sub 4}){sub 3}(C{sub 5}O{sub 5})(H{sub 2}O){sub 2}]{sup 2-}

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Szu-Yu; Yeh, Chang-Tsung; Wang, Chih-Chieh [Department of Chemistry, Soochow University, Taipei, Taiwan (China); Lee, Gene-Hsiang [Instrumentation Center, National Taiwan University, Taipei, Taiwan (China); Sheu, Hwo-Shuenn [National Synchrotron Radiation Research Center, Hsinchu, Taiwan (China)

    2017-05-18

    A three-dimensional (3D) 3d-4f complex, [Cu(en){sub 2}][Sm{sub 2}(C{sub 5}O{sub 5})(C{sub 2}O{sub 4}){sub 3}(H{sub 2}O){sub 2}].8H{sub 2}O (1) (en = ethylenediamine, C{sub 5}O{sub 5}{sup 2-} = dianion of 4,5-dihydroxycyclopent-4-ene-1,2,3-trione), were prepared via the in-situ ring-opening oxidation reaction of croconate in the presence of the template-directed complex, [Cu(en){sub 2}]{sup 2+} cation. The structural characterization determined by X-ray diffraction determination reveals that the 3D anionic coordination polymer of [Sm{sub 2}(C{sub 2}O{sub 4}){sub 3}(C{sub 5}O{sub 5})(H{sub 2}O){sub 2}]{sup 2-} in 1 can be describe in terms of in-plane 2D honeycomb-like [Sm{sub 2}(C{sub 2}O{sub 4}){sub 3}] layered frameworks bridged by oxalate with bis-chelating mode, being mutually interlinked via the bridge of μ{sub 1,2,3,4}-croconate ligands with bis-chelating coordination mode to complete the 3D open framework, which gives rise to 1D channels with pore size of 14.023 x 11.893 Aa (longest atom-atom contact distances) along the b axis. The structure-directing complex, [Cu(en){sub 2}]{sup 2+}, and solvated water molecules are resided into these honeycomb-type hexagonal channels. The thermal stability of 1 was further studied by TGA and in-situ powder X-ray diffraction measurement. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Synthesis, characterization, electrochemical investigation and antioxidant activities of a new hybrid cyclohexaphosphate: Cu1.5Li(C2H10N2)P6O18·7H2O

    Science.gov (United States)

    Sleymi, Samira; Lahbib, Karima; Rahmouni, Nihed; Rzaigui, Mohamed; Besbes-Hentati, Salma; Abid, Sonia

    2017-09-01

    A new organic-inorganic hybrid transition metal phosphate, Cu1.5Li(C2H10N2)P6O18·7H2O, has been prepared and characterized by X-ray diffraction, spectroscopy (infrared, Raman, diffuse reflectance and UV-Vis) and thermal analysis (TG). In addition, its electrochemical behaviors, as well as its antioxidant and antibacterial activities, have been investigated. Its structure is built up by the alternate linkages between copper and phosphate polyhedra, forming puckered layers with intersecting 12-membered rings, in which the ethylenediammonium cations reside. This compound is the first framework structure constructed from cyclohexaphosphates and three distinct copper cations. Cyclic voltammetry study in an acetonitrile solution reveals the facile anodic oxidation of its organic part on a platinum disk and a progressive growing of a thin film, though the repetitive cycling of potential. The title compound was tested for its in vitro antioxidant activities by 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2‧-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), Ferrous chelating ability (FIC) and Ferric Reducing Power (FRP) methods. The antioxidant activity of Cu1.5Li(C2H10N2)P6O18·7H2O was analyzed simultaneously with its antibacterial capacity against Escherichia coli, Salmonella typhimurium, Staphylococus aureus, Enterococcus feacium, Streptococcus agalactiae and Candida albicans. The tested compound showed significant antioxidant activities with low antibacterial properties.

  9. 3-(1H-Indol-3-yl-2-(2-nitrobenzenesulfonamidopropanoic acid including an unknown solvate

    Directory of Open Access Journals (Sweden)

    Islam Ullah Khan

    2012-07-01

    Full Text Available In the title compound, C17H15N3O6S, which crystallized with highly disordered methanol and/or water solvent molecules, the dihedral angle between the the indole and benzene ring systems is 5.3 (2°, which allows for the formation of intramolecular π–π stacking interactions [centroid–centroid separations = 3.641 (3 and 3.694 (3 Å] and an approximate overall U-shape for the molecule. In the crystal, dimers linked by pairs of Ns—H...Oc (s = sulfonamide and c = carboxylate hydrogen bonds generate R22(10 loops, whereas Ni—H...π (i = indole interactions lead to chains propagating in [100] or [010]. Together, these lead to a three-dimensional network in which the solvent voids are present as intersecting (two-dimensional systems of [100] and [010] channels. The title compound was found to contain a heavily disordered solvent molecule, which could be methanol or water or a mixture of the two. Due to its uncertain nature and the unresolvable disorder, the data were processed with the SQUEEZE option in PLATON [Spek (2009. Acta Cryst. D65, 148–155], which revealed 877.8 Å3 of solvent-accessible volume per unit cell and 126 electron-units of scattering density or 109.7 Å3 (16 electron units per organic molecule.. This was not included in the calculations of overall formula weight, density and absorption coefficient.

  10. 3-Chloro-2-ethyl-6-nitro-2H-indazole

    Directory of Open Access Journals (Sweden)

    Mohamed Mokhtar Mohamed Abdelahi

    2017-05-01

    Full Text Available In the title compound, C9H8ClN3O2, the orientation of the ethyl substituent is partly determined by an intramolecular C—H...Cl hydrogen bond. The indazole moiety is slightly folded with an angle of 0.70 (8° between the five- and six-membered rings. In the crystal, molecules pack in layers parallel to [100] through C—H...π(ring and N...;O...π(ring interactions.

  11. Three new d10 transition metal selenites containing PO4 tetrahedron: Cd7(HPO4)2(PO4)2(SeO3)2, Cd6(PO4)1.34(SeO3)4.66 and Zn3(HPO4)(SeO3)2(H2O)

    Science.gov (United States)

    Ma, Yun-Xiang; Gong, Ya-Ping; Hu, Chun-li; Mao, Jiang-Gao; Kong, Fang

    2018-06-01

    Three new d10 transition metal selenites containing PO4 tetrahedron, namely, Cd7(HPO4)2(PO4)2(SeO3)2 (1), Cd6(PO4)1.34(SeO3)4.66 (2) and Zn3(HPO4)(SeO3)2(H2O) (3), have been synthesized by hydrothermal reaction. They feature three different structural types. Compound 1 exhibits a novel 3D network composed of 3D cadmium selenite open framework with phosphate groups filled in the 1D helical tunnels. The structure of compound 2 displays a new 3D framework consisted of 2D cadmium oxide layers bridged by SeO3 and PO4 groups. Compound 3 is isostructural with the reported solids of Co3(SeO3)3-x(PO3OH)x(H2O) when x is equal to 1.0. Its structure could be viewed as a 3D zinc oxide open skeleton with SeO3 and HPO4 polyhedra attached on the wall of the tunnels. They represent the only examples in metal selenite phosphates in addition to the above cobalt compounds. Optical diffuse reflectance spectra revealed that these solids are insulators, which are consistent with the results of band structure computations based on DFT algorithm.

  12. Bis[μ-1,2-bis(1H-imidazol-1-ylmethylbenzene-κ2N3:N3′]disilver(I 3-carboxylato-4-hydroxybenzenesulfonate methanol solvate trihydrate

    Directory of Open Access Journals (Sweden)

    Hong-Mei Sun

    2009-09-01

    Full Text Available In the title compound, [Ag2(C14H14N42](C7H4O6S·CH3OH·3H2O, the complex dication has a binuclear structure in which each AgI ion is two-coordinated in a slightly distorted linear coordination geometry. The two AgI atoms are bridged by two 1,2-bis[(1H-imidazol-1-ylmethyl]benzene (IBI ligands, forming a 22-membered ring. In the dication, π–π interactions are observed between the imidazole rings with centroid–centroid distances of 3.472 (3 and 3.636 (3 Å. In the crystal, the uncoordinated water molecules, anions and methanol solvent molecules are linked into chains along the b axis by O—H...O hydrogen bonds. In addition, π–π interactions are observed between the benzene rings of the IBI ligands, with a centroid–centroid distance of 3.776 (2 Å. The sulfonate group is disordered over two orientations with occupancies of 0.676 (12 and 0.324 (12.

  13. 4,4′-Dibromo-2,2′-{[(3aS,7aS-2,3,3a,4,5,6,7,7a-octahydro-1H-1,3-benzimidazole-1,3-diyl]bis(methylidene}diphenol

    Directory of Open Access Journals (Sweden)

    Augusto Rivera

    2011-04-01

    Full Text Available The cyclohexane ring in the title compound, C21H24Br2N2O2, adopts a chair conformation and the five-membered ring to which it is fused has a twisted envelope conformation. The asymmetric unit contains one half-molecule, which is related to the other half by a twofold rotation axis. The two N atoms of the five-membered ring are linked to the hydroxy groups by intramolecular O—H...N hydrogen bonds. In the crystal, intermolecular C—H...O and C—H...π interactions occur.

  14. 2,3-Diamino-pyridinium 6-carb-oxy-pyridine-2-carboxyl-ate.

    Science.gov (United States)

    Foroughian, Mahsa; Foroumadi, Alireza; Notash, Behrouz; Bruno, Giuseppe; Amiri Rudbari, Hadi; Aghabozorg, Hossein

    2011-12-01

    The asymmetric unit of the title proton-transfer compound, C(5)H(8)N(3) (+)·C(7)H(4)NO(4) (-), consists of one mono-deprotonated pyridine-2,6-dicarb-oxy-lic acid as anion and one protonated 2,3-diamino-pyridine as cation. The crystal packing shows extensive O-H⋯O, N-H⋯O and N-H⋯N hydrogen bonds. Thre are also several π-π inter-actions between the anions and also between the cations [centriod-centroid distances = 3.6634 (7), 3.7269 (7), 3.6705 (7) and 3.4164 (7) Å].

  15. 4-Hydroxy-6-methyl-3-[3-(thiophen-2-ylacryloyl]-2H-pyran-2-one

    Directory of Open Access Journals (Sweden)

    Salima Thabti

    2013-04-01

    Full Text Available The title compound, C13H10O4S, crystallizes with two molecules in the asymmetric unit in which the rings make dihedral angles of 3.9 (1 and 6.0 (1°; this planarity is due in part to the presence of an intramolecular O—H...O hydrogen bond, which generates an S(6 ring in each molecule. Both molecules represent E isomers with respect to the central C=C bond. In the crystal, molecules are linked by C—H...O interactions into a three-dimensional network.

  16. 4,4′-Dimethoxy-2,2′-{[(3aRS,7aRS-2,3,3a,4,5,6,7,7a-octahydro-1H-1,3-benzimidazole-1,3-diyl]bis(methylene}diphenol

    Directory of Open Access Journals (Sweden)

    Augusto Rivera

    2011-09-01

    Full Text Available The title compound, C23H30N2O4, is a Mannich base useful for studying the effect of an electron-donating phenol substituent on intramolecular hydrogen bonding. In the molecular structure, the cyclohexane ring adopts a chair conformation and the five-membered ring has a twisted envelope conformation. Each methoxy group is oriented in the same plane of the respective aromatic ring, showing torsion angles below 11.8 (3° and bond angles between the methoxy group and the aromatic ring of 116.6 (2 and 116.6 (1°. The structure shows interactions between two the N atoms of the heterocyclic ring and the hydroxy groups by intramolecular O—H...N hydrogen-bonding interactions. In the crystal, C—H...O interactions are observed. The crystal studied was a racemic mixture of RR and SS enantiomers.

  17. C=C bond cleavage on neutral VO3(V2O5)n clusters.

    Science.gov (United States)

    Dong, Feng; Heinbuch, Scott; Xie, Yan; Bernstein, Elliot R; Rocca, Jorge J; Wang, Zhe-Chen; Ding, Xun-Lei; He, Sheng-Gui

    2009-01-28

    The reactions of neutral vanadium oxide clusters with alkenes (ethylene, propylene, 1-butene, and 1,3-butadiene) are investigated by experiments and density function theory (DFT) calculations. Single photon ionization through extreme ultraviolet radiation (EUV, 46.9 nm, 26.5 eV) is used to detect neutral cluster distributions and reaction products. In the experiments, we observe products (V(2)O(5))(n)VO(2)CH(2), (V(2)O(5))(n)VO(2)C(2)H(4), (V(2)O(5))(n)VO(2)C(3)H(4), and (V(2)O(5))(n)VO(2)C(3)H(6), for neural V(m)O(n) clusters in reactions with C(2)H(4), C(3)H(6), C(4)H(6), and C(4)H(8), respectively. The observation of these products indicates that the C=C bonds of alkenes can be broken on neutral oxygen rich vanadium oxide clusters with the general structure VO(3)(V(2)O(5))(n=0,1,2...). DFT calculations demonstrate that the reaction VO(3) + C(3)H(6) --> VO(2)C(2)H(4) + H(2)CO is thermodynamically favorable and overall barrierless at room temperature. They also provide a mechanistic explanation for the general reaction in which the C=C double bond of alkenes is broken on VO(3)(V(2)O(5))(n=0,1,2...) clusters. A catalytic cycle for alkene oxidation on vanadium oxide is suggested based on our experimental and theoretical investigations. The reactions of V(m)O(n) with C(6)H(6) and C(2)F(4) are also investigated by experiments. The products VO(2)(V(2)O(5))(n)C(6)H(4) are observed for dehydration reactions between V(m)O(n) clusters and C(6)H(6). No product is detected for V(m)O(n) clusters reacting with C(2)F(4). The mechanisms of the reactions between VO(3) and C(2)F(4)/C(6)H(6) are also investigated by calculations at the B3LYP/TZVP level.

  18. (E-3-Methyl-6-(3-oxo-3-(3,4,5-trimethoxyphenylprop-1-en-1-yl-2(3H-benzothiazolone

    Directory of Open Access Journals (Sweden)

    Yordanka Ivanova

    2016-09-01

    Full Text Available The title compound, (E-3-methyl-6-(3-oxo-3-(3,4,5-trimethoxyphenylprop-1-en-1-yl-2(3H-benzothiazolone, was synthesized by both an acid- and base-catalyzed aldol condensation of 3-methyl-6-acetyl-2(3H-benzothiazolone and 3,4,5-trimethoxyacetophenone. The structure of the target compound was confirmed using 1H-NMR, 13C-NMR, IR, MS, and elemental analysis.

  19. Methyl 5,7-dihydroxy-2,2,9-trimethyl-6,11-dioxo-6,11-dihydro-2H-anthra[2,3-b]pyran-8-carboxylate

    Directory of Open Access Journals (Sweden)

    Annelise Lobstein

    2008-12-01

    Full Text Available The title compound, C22H18O7, also known as laurentiquinone B, is a new anthraquinone which was isolated from Vismia laurentii, a Cameroonian medicinal plant. The asymmetric unit contains two independent molecules. Each of them contains four fused rings, three of which are coplanar and typical of anthracene, while the heterocyclic rings adopt envelope conformations. Intramolecular O—H...O hydrogen bonds result in the formation of two planar rings, which are also almost coplanar with the adjacent rings. In the crystal structure, intermolecular O—H...O and C—H...O hydrogen bonds link the molecules and a π–π contact is also present [centroid-centroid distance = 3.967 (3 Å].

  20. X-ray and NQR studies of bromoindate(III) complexes. [C2H5NH3]4InBr7, [C(NH2)3]3InBr6, and [H3NCH2C(CH3)2CH2NH3]InBr5

    International Nuclear Information System (INIS)

    Iwakiri, Takeharu; Ishihara, Hideta; Terao, Hiromitsu; Lork, Enno; Gesing, Thorsten M.

    2017-01-01

    The crystal structures of [C 2 H 5 NH 3 ] 4 InBr 7 (1), [C(NH 2 ) 3 ] 3 InBr 6 (2), and [H 3 NCH 2 C(CH 3 ) 2 CH 2 NH 3 ]InBr 5 (3) were determined at 100(2) K: monoclinic, P2 1 /n, a=1061.94(3), b=1186.40(4), c=2007.88(7) pm, β= 104.575(1) , Z=4 for 1; monoclinic, C2/c, a=3128.81(12), b=878.42(3), c=2816.50(10) pm, β=92.1320(10) , Z=16 for 2; orthorhombic, P2 1 2 1 2 1 , a=1250.33(5), b=1391.46(6), c=2503.22(9) pm, Z=4 for 3. The structure of 1 contains an isolated octahedral [InBr 6 ] 3- ion and a Br - ion. The structure of 2 contains three different isolated octahedral [InBr 6 ] 3- ions. The structure of 3 has a corner-shared double-octahedral [In 2 Br 11 ] 5- ion and an isolated tetrahedral [InBr 4 ] - ion. The 81 Br nuclear quadrupole resonance (NQR) lines of the terminal Br atoms of the compounds are widely spread in frequency, and some of them show unusual positive temperature dependence. These observations manifest the N-H..Br-In hydrogen bond networks developed between the cations and anions to stabilize the crystal structures. The 81 Br NQR and differential thermal analysis (DTA) measurements have revealed the occurrence of unique phase transitions in 1 and 3. When the bond angles were estimated from the electric field gradient (EFG) directions calculated by the molecular orbital (MO) methods, accurate values were obtained for [InBr 6 ] 3- of 1 and for [In 2 Br 11 ] 5- and [InBr 4 ] - of 3, except for several exceptions in those for the latter two ions. On the other hand, the calculations of 81 Br NQR frequencies have produced up to 1.4 times higher values than the observed ones.

  1. Study of the unimolecular decompositions of the (C3H6)+2 and (c-C3H6)+2 complexes

    International Nuclear Information System (INIS)

    Tzeng, W.; Ono, Y.; Linn, S.H.; Ng, C.Y.

    1985-01-01

    The major product channels identified in the unimolecular decompositions ofC 3 H + 6 xC 3 H 6 and c-C 3 H + 6 xc-C 3 H 6 in the total energy [neutral (C 3 H 6 ) 2 or (c-C 3 H 6 ) 2 heat of formation plus excitation energy] range of approx.230--450 kcal/mol are C 3 H + 7 +C 3 H 5 , C 4 H + 7 +C 2 H 5 , C 4 H + 8 +C 2 H 4 , and C 5 H + 9 +CH 3 . The measured appearance energy for C 4 H + 7 (9.54 +- 0.04 eV) from (C 3 H 6 ) 2 is equal to the thermochemical threshold for the formation of C 4 H + 7 +C 2 H 5 from (C 3 H 6 ) 2 , indicating that the exit potential energy barrier for the ion--molecule reaction C 3 H + 6 +C 3 H 6 →C 4 H + 7 +C 2 H 5 is negligible. There is evidence that the formations of C 4 H + 7 +C 2 H 4 +H from (C 3 H 6 ) + 2 and (c-C 3 H 6 ) + 2 also proceed with high probabilities when they are energetically allowed. The variations of the relative abundances for C 4 H + 7 ,C 4 H + 8 , and C 5 H + 9 from (C 3 H 6 ) + 2 and (c-C 3 H 6 ) + 2 as a function of ionizing photon energy are in qualitative agreement, suggesting that (C 3 H 6 ) + 2 and (c-C 3 H 6 ) + 2 rearrange to similar C 6 H + 12 isomers prior to fragmentation. The fact that C 6 H + 11 is found to be a primary ion from the unimolecular decomposition of (c-C 3 H 6 ) + 2 but not (C 3 H 6 ) + 2 supports the conclusion that the distribution of C 6 H + 12 collision complexes involved in the C 3 H + 6 +C 3 H 6 reactions is different from that in the cyclopropane ion--molecule reactions

  2. 2′-Hydroxymethyl-1′-(4-methylphenyl-2′-nitro-1′,2′,5′,6′,7′,7a′-hexahydrospiro[indoline-3,3′-pyrrolizin]-2-one

    Directory of Open Access Journals (Sweden)

    S. Sathya

    2012-02-01

    Full Text Available In the title compound, C22H23N3O4, the tolyl ring is almost perpendicular [83.86 (7°] to the best plane through the eight atoms of the pyrrolizidine ring system. The molecular conformation is stabilized by an intramolecular O—H...O hydrogen bond. The crystal packing features inversion dimers with R22(8 motifs linked by pairs of N—H...O hydrogen bonds.

  3. Co3(PO42·4H2O

    Directory of Open Access Journals (Sweden)

    Yang Kim

    2008-10-01

    Full Text Available Single crystals of Co3(PO42·4H2O, tricobalt(II bis[orthophosphate(V] tetrahydrate, were obtained under hydrothermal conditions. The title compound is isotypic with its zinc analogue Zn3(PO42·4H2O (mineral name hopeite and contains two independent Co2+ cations. One Co2+ cation exhibits a slightly distorted tetrahedral coordination, while the second, located on a mirror plane, has a distorted octahedral coordination environment. The tetrahedrally coordinated Co2+ is bonded to four O atoms of four PO43− anions, whereas the six-coordinate Co2+ is cis-bonded to two phosphate groups and to four O atoms of four water molecules (two of which are located on mirror planes, forming a framework structure. In addition, hydrogen bonds of the type O—H...O are present throughout the crystal structure.

  4. Crystal structure, quantum mechanical investigation, IR and NMR spectroscopy of two new organic salts: (C8H12NO)·[NO3] (I) and (C8H14N4)·[ClO4]2 (II)

    Science.gov (United States)

    Bayar, I.; Khedhiri, L.; Soudani, S.; Lefebvre, F.; Pereira da Silva, P. S.; Ben Nasr, C.

    2018-06-01

    Two new organic-inorganic hybrid materials, 4-methoxybenzylammonium nitrate, (C8H12NO)·[NO3] (I), and 2-(1-piperazinyl)pyrimidinium bis(perchlorate), (C8H14N4)·[ClO4]2(II), have been synthesized by an acid/base reaction at room temperature, their structures were determined by single crystal X-ray diffraction. Compound (I) crystallizes in the orthorhombic system and Pnma space group with a = 15.7908 (7), b = 6.8032 (3), c = 8.7091 (4) Å, V = 935.60 (7) Å3 with Z = 4. Full-matrix least-squares refinement converged at R = 0.038 and wR(F2) = 0.115. Compound (II) belongs to the monoclinic system, space group P21/c with the following parameters: a = 10.798(2), b = 7.330(1), c = 21.186(2) Å, β = 120.641 (4)°, V = 1442.7 (3) Å3and Z = 4. The structure was refined to R = 0.044, wR(F2) = 0.132. In the structures of (I) and (II), the anionic and cationic entities are interconnected by hydrogen bonding contacts forming three-dimensional networks. Intermolecular interactions were investigated by Hirshfeld surfaces and the contacts of the four different chloride atoms in (II) were compared. The Molecular Electrostatic Potential (MEP) maps and the HOMO and LUMO energy gaps of both compounds were computed. The vibrational absorption bands were identified by infrared spectroscopy. These compounds were also investigated by solid-state 13C, 35Cl and 15N NMR spectroscopy. DFT calculations allowed the attribution of the IR and NMR bands.

  5. Crystal structure of 2-[(3aS,6R-3,3,6-trimethyl-3,3a,4,5,6,7-hexahydro-2H-indazol-2-yl]thiazol-4(5H-one

    Directory of Open Access Journals (Sweden)

    Abdellah N'ait Ousidi

    2016-03-01

    Full Text Available The title compound, C13H19N3OS, is a new thiazolidin-4-one derivative prepared and isolated as the pure (3aS,6R-diastereisomer from (R-thiosemicarbazone pulegone. It crystallized with two independent molecules (A and B in the asymmetric unit. The compound is composed of a hexhydroindazole ring system (viz. a five-membered dihydropyrazole ring fused to a cyclohexyl ring with a thiazole-4-one ring system attached to one of the pyrazole N atoms (at position 2. The overall geometry of the two molecules differs slightly, with the mean planes of the pyrazole and thiazole rings being inclined to one another by 10.4 (1° in molecule A and 0.9 (1° in molecule B. In the crystal, the A and B molecules are linked via C—H...O hydrogen bonds, forming slabs parallel to the ab plane. There are C—H...π interactions present within the layers, and between the layers, so forming a three-dimensional structure.

  6. Synthesis and magnetic properties of heteronuclear 3d-4f compound

    International Nuclear Information System (INIS)

    Cristovao, B.; Ferenc, W.

    2007-01-01

    A novel heteronuclear 3d-4f compound having formula NdCu 3 L 3 ·13H 2 O (where H 3 L = Schiff base derived from 5-bromosalicylaldehyde and glycylglycine and L 3 = C 11 H 8 N 2 O 4 Br) was obtained. It was characterized by elemental and thermal analyses and magnetic measurements. The Cu(II)-Nd(III) compound is stable up to 323 K. During dehydration process the water molecules are lost in two stages. The magnetic susceptibility data for this complex change with temperature according to the Curie-Weiss law with Θ = -35 K. The magnetic moment values decrease from 5.00μ B at 303 K to 4.38μB at 76 K. (author)

  7. Crystal structure of tetraaquabis(1,3-dimethyl-2,6-dioxo-7H-purin-7-ido-κN7cobalt(II

    Directory of Open Access Journals (Sweden)

    Hicham El Hamdani

    2017-09-01

    Full Text Available The title complex, [Co(C7H7N4O22(H2O4], comprises mononuclear molecules consisting of a CoII ion, two deprotonated theophylline ligands (systematic name: 1,3-dimethyl-7H-purine-2,6-dione and four coordinating water molecules. The CoII atom lies on an inversion centre and has a slightly distorted octahedral coordination environment, with two N atoms of two trans-oriented theophylline ligands and the O atoms of four water molecules. An intramolecular hydrogen bond stabilizes this conformation. A three-dimensional supramolecular network structure is formed by intermolecular O—H...O and O—H...N hydrogen bonds.

  8. Crystal structure of [(2R,3R,4S)-3,4-bis(acet-yloxy)-5-iodo-3,4-di-hydro-2H-pyran-2-yl]methyl acetate.

    Science.gov (United States)

    Zukerman-Schpector, Julio; Caracelli, Ignez; Stefani, Hélio A; Shamim, Anwar; Tiekink, Edward R T

    2015-01-01

    In the title compound, C12H15IO7, the 3,4-di-hydro-2H-pyran ring is in a distorted half-boat conformation with the atom bearing the acet-yloxy group adjacent to the C atom bearing the methyl-acetate group lying 0.633 (6) Å above the plane of the remaining ring atoms (r.m.s. deviation = 0.0907 Å). In the crystal, mol-ecules are linked into a supra-molecular chain along the a axis through two C-H⋯O inter-actions to the same acceptor carbonyl O atom; these chains pack with no specific inter-molecular inter-actions between them.

  9. 1,3-Dibenzyl-6-bromo-1H-imidazo[4,5-b]pyridin-2(3H-one

    Directory of Open Access Journals (Sweden)

    S. Dahmani

    2010-04-01

    Full Text Available The imidazopyridine fused-ring in the title compound, C20H16BrN3O, is planar (r.m.s. deviation = 0.011 Å. The phenyl rings of the benzyl substitutents twist away from the central five-membered ring in opposite directions; the rings are aligned at 61.3 (1 and 71.2 (1° with respect to this ring.

  10. Bis(1H-imidazole-κN3bis(1-naphthaleneacetato-κ2O,O′cadmium(II

    Directory of Open Access Journals (Sweden)

    Hong-Mian Wu

    2008-05-01

    Full Text Available In the mononuclear title compound, [Cd(C12H9O22(C3H4N22], the CdII centre has a distorted octahedral coordination geometry defined by four O atoms from two naphthaleneacetate ligands and two N atoms from two imidazole ligands. The molecules are linked by N—H...O hydrogen bonds, forming a layer network.

  11. 3-{2-[2-(2-Fluorobenzylidenehydrazinyl]-1,3-thiazol-4-yl}-2H-chromen-2-one

    Directory of Open Access Journals (Sweden)

    Afsheen Arshad

    2010-06-01

    Full Text Available In the title compound, C19H12FN3O2S, the chromene ring system and the thiazole ring are approximately planar [maximum deviations of 0.023 (3 Å and 0.004 (2 Å, respectively]. The chromene ring system is inclined at angles of 4.78 (10 and 26.51 (10° with respect to the thiazole and benzene rings, respectively, while the thiazole ring makes a dihedral angle of 23.07 (12° with the benzene ring. The molecular structure is stabilized by an intramolecular C—H...O hydrogen bond, which generates an S(6 ring motif. The crystal packing is consolidated by intermolecular N—H...O hydrogen bonds, which link the molecules into chains parallel to [100], and by C—H...π and π–π [centroid–centroid distance = 3.4954 (15 Å] stacking interactions.

  12. Nqrs Data for C6H7F7N2OSb2 (Subst. No. 0880)

    Science.gov (United States)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume A `Substances Containing Ag … C10H15' of Volume 48 `Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III `Condensed Matter'. It contains an extract of Section `3.2 Data tables' of the Chapter `3 Nuclear quadrupole resonance data' providing the NQRS data for C6H7F7N2OSb2 (Subst. No. 0880)

  13. rac-Dimethyl 2-(tert-butylamino-5-oxo-4,5-dihydropyrano[3,2-c]chromene-3,4-dicarboxylate

    Directory of Open Access Journals (Sweden)

    S. Antony Inglebert

    2011-11-01

    Full Text Available The title compound, C20H21NO7, is asymmetric with a chiral centre located in the pyran ring and crystallizes as a racemate. The molecular framework is somewhat bent; the coumarin moiety and the pyran ring are inclined by 7.85 (5°. The molecular structure is characterized by an intramolecular N—H...O hydrogen bond, which generates an S(6 ring motif, and the crystal packing is stabilized by intermolecular C—H...O hydrogen bonds. The 3-carboxylate O atom is involved in both of them, having a bifurcated character.

  14. Ethyl (E-2-(2,7-dimethyl-5-oxo-4H,5H-pyrano[4,3-b]pyran-4-ylideneacetate

    Directory of Open Access Journals (Sweden)

    Oulemda Bassou

    2017-02-01

    Full Text Available In the title compound, C14H14O5, the two heterocyclic rings are coplanar (r.m.s. deviation = 0.008 Å, with the largest deviation from the mean plane being 0.012 (1 Å. The mean plane through the acetate group is inclined slightly with respect to the oxopyrano[4,3-b]pyran-4-yl system, as indicated by the dihedral angle of 1.70 (7° between them. Two intramolecular hydrogen bonds, completing S(6 ring motifs, are observed in the molecule. In the crystal, molecules are linked by weak C—H...O hydrogen bonds involving the same acceptor atom, forming chains propagating along the c-axis direction and enclosing R21(6 ring motifs. The chains are linked via offset π–π interactions [intercentroid distance = 3.622 (1 Å], involving inversion-related oxopyrano[4,3-b]pyran-4-yl ring systems, forming slabs parallel to the bc plane.

  15. 4,4′-Dichloro-3,3′,5,5′-tetramethyl-2,2′-[(3aR,7aR/3aS,7aS-2,3,3a,4,5,6,7,7a-octahydro-1H-1,3-benzimidazole-1,3-diylbis(methylene]diphenol

    Directory of Open Access Journals (Sweden)

    Augusto Rivera

    2011-08-01

    Full Text Available In the title compound, C25H32Cl2N2O2, there are two intramolecular O—H... N hydrogen-bonding interactions between the hydroxy groups on the aromatic rings and the two N atoms of the heterocyclic group. The cyclohexane ring adopts a chair conformation and the imidazolidine unit to which it is fused has a twisted envelope conformation. The asymmetric unit comprises one half-molecule which is completed by a twofold rotation axis. A C—H...O interaction is observed in the crystal structure.

  16. 4-(4-Chlorophenyl-6-hydroxy-5-(2-thienylcarbonyl-6-(trifluoromethyl-3,4,5,6-tetrahydropyrimidin-2(1H-one monohydrate

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Mosslemin

    2009-06-01

    Full Text Available The asymmetric unit of the title compound, C16H12ClF3N2O3H2O, contains two crystallographically independent organic molecules and two water molecules. The organic species are linked by an intermolecular O—H...O hydrogen bond, while the water molecules are connected to them through intermolecular O—H...N hydrogen bonds. The thiophene and phenyl rings are oriented at dihedral angles of 62.35 (4 in the first independent molecule and 60.74 (5° in the second, while the pyrimidine rings adopt twisted conformations in both molecules. Intramolecular N—H...F interactions result in the formation of two five-membered rings having envelope conformations. In the crystal structure, further intermolecular O—H...O and N—H...O hydrogen bonds link the molecules into chains.

  17. Wet chemical passivation of YBa2Cu3O(7-x)

    Science.gov (United States)

    Vasquez, R. P.; Hunt, B. D.; Foote, M. C.

    1990-01-01

    Wet chemical techniques are described for treatment of YBa2Cu3O(7-x) surfaces, which result in the formation of native compounds known to have little or no reactivity to water. Suitable native compounds include CuI, BaSO4, CuS, Cu2S, YF3, and the oxalates. Formation of surface layers in which these nonreactive native compounds are major constituents is verified with X-ray photoelectron spectroscopy (XPS) measurements on YBa2Cu3O(7-x) films treated with dilute solutions of HI, H2SO4, Na2S, HF, or H2C2O4. No significant changes are observed in the XPS spectra when the sulfide, sulfate, or oxalate films are dipped in water, while the iodide and fluoride films show evidence of reaction with water. X-ray diffraction measurements show that the superconducting phase is absent in the sulfide film, but is unaffected by the oxalate and sulfate treatments.

  18. (5S,6R-6-Bromo-6-methyl-5-phenyl-3,4,5,6-tetrahydro-2H-cyclopenta[b]pyran-7-one

    Directory of Open Access Journals (Sweden)

    Winai Ieawsuwan

    2011-10-01

    Full Text Available The title compound, C15H15BrO2, was synthesized by a Brønsted acid-catalysed domino electrocyclization-halogenation reaction. The five-membered ring is essentially planar (r.m.s. deviation 0.006 Å and forms a dihedral angle of 72.7 (3° with the attached phenyl ring. The six-membered heterocycle adopts a half-chair conformation. The crystal packing is stabilized by a C—H...O contact.

  19. Tris(2,2′-bipyridine-κ2 N,N′)cobalt(III) bis­[bis­(pyridine-2,6-dicarboxyl­ato-κ3 O 2,N,O 6)cobaltate(III)] perchlorate dimethyl­formamide hemisolvate 1.3-hydrate

    Science.gov (United States)

    Golenya, Irina A.; Boyko, Alexander N.; Kotova, Natalia V.; Haukka, Matti; Iskenderov, Turganbay S.

    2012-01-01

    In the title compound, [Co(C10H8N2)3][Co(C7H3NO4)2]2(ClO4)·0.5C3H7NO·1.3H2O, the CoIII atom in the complex cation is pseudoocta­hedrally coordinated by six N atoms of three chelating bipyridine ligands. The CoIII atom in the complex anion is coordinated by two pyridine N atoms and four carboxyl­ate O atoms of two doubly deprotonated pyridine-2,6-dicarboxyl­ate ligands in a distorted octa­hedral geometry. One dimethyl­formamide solvent mol­ecule and two water mol­ecules are half-occupied and one water mol­ecule is 0.3-occupied. O—H⋯O hydrogen bonds link the water mol­ecules, the perchlorate anions and the complex anions. π–π inter­actions between the pyridine rings of the complex anions are also observed [centroid–centroid distance = 3.804 (3) Å]. PMID:23125573

  20. 3-(4-Fluorophenylsulfinyl-5-iodo-2-methyl-1-benzofuran

    Directory of Open Access Journals (Sweden)

    Hong Dae Choi

    2010-07-01

    Full Text Available In the title compound, C15H10FIO2S, the O atom and the 4-fluorophenyl group of the 4-fluorophenylsulfinyl substituent are located on opposite sides of the plane through the benzofuran fragment; the 4-fluorophenyl ring is nearly perpendicular to this plane, making a dihedral angle of 83.37 (7°. The crystal structure is stabilized by weak intermolecular C—H...O hydrogen bonds and an I...O interaction [I...O = 3.255 (2 Å]. The crystal structure also exhibits intermolecular C—F...π interactions [3.068 (2 Å], and aromatic π–π interactions between the furan and benzene rings of neighbouring benzofuran fragments [centroid–centroid distance = 3.636 (2 Å].

  1. Preparation of YBa2Cu3O7-δ powders by the thermal decomposition of a heteronuclear complex, CuY1/3Ba2/3(dhbaen)(NO3)1/3(H2O)3

    International Nuclear Information System (INIS)

    Hasegawa, E.; Aono, H.; Sadaoka, Y.; Traversa, E.

    1999-01-01

    YBa 2 Cu 3 O 7-δ powders were prepared by the thermal decomposition of a heteronuclear complex, CuY 1/3 Ba 2/3 (dhbaen)(NO 3 ) 1/3 (H 2 O) 3 . The products of the complex thermal decomposition were analyzed by TG-DTA, XRD, SEM-Auger and XPS. The decomposition of the CuY 1/3 Ba 2/3 -complex was obtained at about 500 C and the product was a mixture of oxides and carbonates. The formation of YBa 2 Cu 3 O 7-δ proceeded at 800 C, with a gradual decomposition of the carbonates. A homogeneous distribution of each element, Y, Ba, and Cu, was observed for the decomposed CuY 1/3 Ba 2/3 -complex by SEM-Auger analysis. The binding energy values of Ba3d 5/2 and O1s photolines from Ba and O in the superconductive lattice did not shift during the sputtering period. Furthermore, the formation of Ba rich regions on the surface was depressed by using the complex as a starting material for homogeneous 123-oxide, YBa 2 Cu 3 O 7-δ . (orig.)

  2. Understanding overpressure in the FAA aerosol can test by C3H2F3Br (2-BTP)✩

    Science.gov (United States)

    Linteris, Gregory Thomas; Babushok, Valeri Ivan; Pagliaro, John Leonard; Burgess, Donald Raymond; Manion, Jeffrey Alan; Takahashi, Fumiaki; Katta, Viswanath Reddy; Baker, Patrick Thomas

    2018-01-01

    Thermodynamic equilibrium calculations, as well as perfectly-stirred reactor (PSR) simulations with detailed reaction kinetics, are performed for a potential halon replacement, C3H2F3Br (2-BTP, C3H2F3Br, 2-Bromo-3,3,3-trifluoropropene), to understand the reasons for the unexpected enhanced combustion rather than suppression in a mandated FAA test. The high pressure rise with added agent is shown to depend on the amount of agent, and is well-predicted by an equilibrium model corresponding to stoichiometric reaction of fuel, oxygen, and agent. A kinetic model for the reaction of C3H2F3Br in hydrocarbon-air flames has been applied to understand differences in the chemical suppression behavior of C3H2F3Br vs. CF3Br in the FAA test. Stirred-reactor simulations predict that in the conditions of the FAA test, the inhibition effectiveness of C3H2F3Br at high agent loadings is relatively insensitive to the overall stoichiometry (for fuel-lean conditions), and the marginal inhibitory effect of the agent is greatly reduced, so that the mixture remains flammable over a wide range of conditions. Most important, the flammability of the agent-air mixtures themselves (when compressively preheated), can support low-strain flames which are much more difficult to extinguish than the easy-to extinguish, high-strain primary fireball from the impulsively released fuel mixture. Hence, the exothermic reaction of halogenated hydrocarbons in air should be considered in other situations with strong ignition sources and low strain flows, especially at preheated conditions. PMID:29628525

  3. 6-Bromo-1,3-di-2-propynyl-1H-imidazo[4,5-b]pyridin-2(3H-one

    Directory of Open Access Journals (Sweden)

    S. Dahmani

    2010-04-01

    Full Text Available The room-temperature reaction of propargyl bromide and 6-bromo-1,3-dihydroimidazo[4,5-b]pyridin-2-one in dimethylformamide yields the title compound, C12H8BrN3O, which features nitrogen-bound propynyl substituents. The imidazopyridine fused ring is almost planar (r.m.s. deviation = 0.011 Å; the propynyl chains point in opposite directions relative to the fused ring. One acetylenic H atom is hydrogen bonded to the carbonyl O atom of an inversion-related molecule, forming a dimer; adjacent dimers are linked by a second acetylene–pyridine C—H...N interaction, forming a layer motif.

  4. 3-Aminobenzoic acid–4,4′-bipyridine (2/3

    Directory of Open Access Journals (Sweden)

    Pornsuda Lhengwan

    2012-08-01

    Full Text Available The asymmetric unit of the title compound, 3C10H8N2·2C7H7NO2, consists of three molecules of 4,4′-bipyridine (bpy and two molecules of 3-aminobenzoic acid (bza. Two molecules of bza and two molecules of bpy are connected via O—H...N, N—H...N and N—H...O hydrogen bonds, forming forming infinite double-stranded zigzag chains along the c axis. The third molecule of bpy is linked to the chain by weak C—H...O interactions. Adjacent chains are linked via π–π interactions [centroid–centroid distances = 3.759 (33.928 (3 Å] involving the pyridine rings of bpy molecules, resulting in a sheet-like structure parallel to (100. These sheets are stacked via C—H...π interactions, resulting finally in the formation of a three-dimensional supramolecular structure.

  5. 5-[(E-(2-Hydroxybenzylideneamino]-1H-1,3-benzimidazole-2(3H-thione

    Directory of Open Access Journals (Sweden)

    Hoong-Kun Fun

    2011-01-01

    Full Text Available There are two molecules in the asymmetric unit of the title compound, C14H11N3OS. In each, the benzimidazole ring system is essentially planar, with maximum deviations of 0.010 (2 and 0.006 (2 Å, and makes dihedral angles of 8.70 (9 and 13.75 (8°, respectively, with the hydroxy-substituted benzene rings. Each molecule adopts an E configuration about the central C=N double bond. In the crystal, the two independent molecules are connected via intermolecular N—H...S hydrogen bonds, forming dimers. Furthermore, the dimers are connected by N—H...O hydrogen bonds into molecular ribbons along the c axis. There is an intramolecular O—H...N hydrogen bond in each molecule, which generates an S(6 ring motif.

  6. 2-(4-Methoxy-1H-indol-3-ylacetonitrile

    Directory of Open Access Journals (Sweden)

    Yong-Hong Lu

    2012-01-01

    Full Text Available In the title compound, C11H10N2O, the cyanide group is twisted away from the indole-ring plane [Ccy—Cme—Car—Car = 70.7 (2°; cy = cyanide, me = methylene, ar = aromatic], whereas the methoxy C atom is almost coplanar with the ring system [displacement = 0.014 (5 Å]. In the crystal, N—H...N hydrogen bonds link the molecules into C(7 chains propagating in [100].

  7. (E-6-Amino-1,3-dimethyl-5-[(pyridin-2-ylmethylideneamino]pyrimidine-2,4(1H,3H-dione

    Directory of Open Access Journals (Sweden)

    Irvin Booysen

    2011-09-01

    Full Text Available In the title compound, C12H13N5O2, a Schiff-base-derived chelate ligand, the non-aromatic heterocycle and its substituents essentially occupy one common plane (r.m.s. of fitted non-H atoms = 0.0503 Å. The N=C bond is E-configured. Intracyclic angles in the pyridine moiety cover the range 117.6 (2–124.1 (2°. Intra- and intermolecular N—H...N and N—H...O hydrogen bonds are observed in the crystal structure, as are intra- and intermolecular C—H...O contacts which, in total, connect the molecules into a three-dimensional network. The shortest ring-centroid-to-ring-centroid distance of 3.5831 (14 Å is between the two different types of six-membered rings.

  8. Syntheses and multi-NMR study of fac- and mer-OsO(3)F(2)(NCCH(3)) and the X-ray crystal structure (n = 2) and Raman spectrum (n = 0) of fac-OsO(3)F(2)(NCCH(3)).nCH(3)CN.

    Science.gov (United States)

    Hughes, Michael J; Gerken, Michael; Mercier, Hélène P A; Schrobilgen, Gary J

    2010-06-07

    Dissolution of the infinite chain polymer, (OsO(3)F(2))(infinity), in CH(3)CN solvent at -40 degrees C followed by solvent removal under vacuum at -40 degrees C yielded fac-OsO(3)F(2)(NCCH(3)).nCH(3)CN (n >/= 2). Continued pumping at -40 degrees C with removal of uncoordinated CH(3)CN yielded fac-OsO(3)F(2)(NCCH(3)). Both fac-OsO(3)F(2)(NCCH(3)).nCH(3)CN and fac-OsO(3)F(2)(NCCH(3)) are yellow-brown solids and were characterized by low-temperature (-150 degrees C) Raman spectroscopy. The crystal structure (-173 degrees C) of fac-OsO(3)F(2)(NCCH(3)).2CH(3)CN consists of two co-crystallized CH(3)CN molecules and a pseudo-octahedral OsO(3)F(2).NCCH(3) molecule in which three oxygen atoms are in a facial arrangement and CH(3)CN is coordinated trans to an oxygen atom in an end-on fashion. The Os---N bond length (2.205(3) A) is among the shortest M---N adduct bonds observed for a d(0) transition metal oxide fluoride. The (19)F NMR spectrum of (OsO(3)F(2))(infinity) in CH(3)CN solvent (-40 degrees C) is a singlet (-99.6 ppm) corresponding to fac-OsO(3)F(2)(NCCH(3)). The (1)H, (15)N, (13)C, and (19)F NMR spectra of (15)N-enriched OsO(3)F(2)(NCCH(3)) were recorded in SO(2)ClF solvent (-84 degrees C). Nitrogen-15 enrichment resulted in splitting of the (19)F resonance of fac-OsO(3)F(2)((15)NCCH(3)) into a doublet ((2)J((15)N-(19)F), 21 Hz). In addition, a doublet of doublets ((2)J((19)F(ax)-(19)F(eq)), 134 Hz; (2)J((15)N-(19)F(eq)), 18 Hz) and a doublet ((2)J((19)F(ax)-(19)F(eq)), 134 Hz) were observed in the (19)F NMR spectrum that have been assigned to mer-OsO(3)F(2)((15)NCCH(3)); however, coupling of (15)N to the axial fluorine-on-osmium environment could not be resolved. The nitrogen atom of CH(3)CN is coordinated trans to a fluorine ligand in the mer-isomer. Quantum-chemical calculations at the SVWN and B3LYP levels of theory were used to calculate the energy-minimized gas-phase geometries, vibrational frequencies of fac- and mer-OsO(3)F(2)(NCCH(3)) and of CH(3)CN. The

  9. 5-Imino-3,4-diphenyl-1H-pyrrol-2-one

    Directory of Open Access Journals (Sweden)

    Evgeny Bulatov

    2014-02-01

    Full Text Available The title compound, C16H12N2O, exists in the crystalline state as the 5-imino-3,4-diphenyl-1H-pyrrol-2-one tautomer. The dihedral angles between the pyrrole and phenyl rings are 35.3 (2 and 55.3 (2°. In the crystal, inversion dimers linked by pairs of N—H...N hydrogen bonds generate a graph-set motif of R22(8 via N—H...N hydrogen bonds.

  10. Syntheses, structures, and properties of Ag4(Mo2O5)(SeO4)2(SeO3) and Ag2(MoO3)3SeO3

    International Nuclear Information System (INIS)

    Ling Jie; Albrecht-Schmitt, Thomas E.

    2007-01-01

    Ag 4 (Mo 2 O 5 )(SeO 4 ) 2 (SeO 3 ) has been synthesized by reacting AgNO 3 , MoO 3 , and selenic acid under mild hydrothermal conditions. The structure of this compound consists of cis-MoO 2 2+ molybdenyl units that are bridged to neighboring molybdenyl moieties by selenate anions and by a bridging oxo anion. These dimeric units are joined by selenite anions to yield zigzag one-dimensional chains that extended down the c-axis. Individual chains are polar with the C 2 distortion of the Mo(VI) octahedra aligning on one side of each chain. However, the overall structure is centrosymmetric because neighboring chains have opposite alignment of the C 2 distortion. Upon heating Ag 4 (Mo 2 O 5 )(SeO 4 ) 2 (SeO 3 ) looses SeO 2 in two distinct steps to yield Ag 2 MoO 4 . Crystallographic data: (193 K; MoKα, λ=0.71073 A): orthorhombic, space group Pbcm, a=5.6557(3), b=15.8904(7), c=15.7938(7) A, V=1419.41(12), Z=4, R(F)=2.72% for 121 parameters with 1829 reflections with I>2σ(I). Ag 2 (MoO 3 ) 3 SeO 3 was synthesized by reacting AgNO 3 with MoO 3 , SeO 2 , and HF under hydrothermal conditions. The structure of Ag 2 (MoO 3 ) 3 SeO 3 consists of three crystallographically unique Mo(VI) centers that are in 2+2+2 coordination environments with two long, two intermediate, and two short bonds. These MoO 6 units are connected to form a molybdenyl ribbon that extends along the c-axis. These ribbons are further connected together through tridentate selenite anions to form two-dimensional layers in the [bc] plane. Crystallographic data: (193 K; MoKα, λ=0.71073 A): monoclinic, space group P2 1 /n, a=7.7034(5), b=11.1485(8), c=12.7500(9) A, β=105.018(1) V=1002.7(2), Z=4, R(F)=3.45% for 164 parameters with 2454 reflections with I>2σ(I). Ag 2 (MoO 3 ) 3 SeO 3 decomposes to Ag 2 Mo 3 O 10 on heating above 550 deg. C. - Graphical abstract: A view of the one-dimensional [(Mo 2 O 5 )(SeO 4 ) 2 (SeO 3 )] 4- chains that extend down the c-axis in the structure of Ag 4 (Mo 2 O 5 )(SeO 4

  11. 9-Furfurylidene-2,3-dimethyl-6,7,8,9-tetrahydro-4H-thieno[2′,3′:4,5]pyrimidino[1,2-a]pyridin-4-one

    Directory of Open Access Journals (Sweden)

    Khusnutdin M. Shakhidoyatov

    2010-03-01

    Full Text Available The title compound, C17H16N2O2S, was obtained by condensation of 2,3-dimethylthieno[2′,3′:4,5]pyrimidino[1,2-a]pyridin-4-one with furfural in the presence of sodium hydroxide. One of the methylene groups of the tetrahydropyrido ring is disordered over two positions in a 0.87 (1:0.13 (1 ratio. The thieno[2,3-d]pyrimidin-4-one unit and the furan ring are both planar (r.m.s. deviation = 0.535 Å, and coplanar with each other, forming a dihedral angle of 5.4 (1°. Four weak intermolecular hydrogen bonds (C—H...O and C—H...N are observed in the structure, which join molecules into a network parallel to (101.

  12. 3′,6′-Bis(ethylamino-2′,7′-dimethyl-2-{2-(E-[(thiophen-2-ylmethylideneamino]ethyl}spiro[isoindoline-1,9′-xanthen]-3-one methanol monosolvate

    Directory of Open Access Journals (Sweden)

    Rui Guo

    2012-05-01

    Full Text Available The title compound, C33H34N4O2S·CH3OH, was prepared as a spirolactam ring formation of rhodamine 6 G dye for comparison with a ring-opened form. The xanthene and spirolactam rings are approximately planar [r.m.s. deviations from planarity = 0.122 (3 and 0.072 (6 Å, respectively]. The dihedral angles formed by the spirolactam and thiophene rings with the xanthene ring system are 89.7 (6 and 86.5 (2°, respectively. The crystal structure features N—H...O and C—H...O hydrogen bonds.

  13. 3-[2-(5H-Indolo[2,3-b]quinoxalin-5-ylethyl]-1,3-oxazolidin-2-one

    Directory of Open Access Journals (Sweden)

    Abdussalam Alsubari

    2010-09-01

    Full Text Available The title compound, C19H16N4O2, has an almost planar fused N-heterocyclic system (r.m.s. deviation = 0.031 Å and an almost planar five-membered 1,3-oxazolidine ring (r.m.s. deviation = 0.015 Å at the ends of an ethylene chain [N—C—C—N torsion angle = −65.6 (2°]. The ring systems are inclined at 38.1 (1° to one another.

  14. 2-Hydroxy-1,6,7,8-tetramethoxy-3-methylanthraquinone

    Directory of Open Access Journals (Sweden)

    Shu-Juan Yu

    2008-02-01

    Full Text Available The title compound, C19H18O7, also known as chrysoobtusin, was isolated from Cassia tora L. (Leguminosae. The anthraquinone ring system is almost planar, the dihedral angle between the two benzene rings being 4.27 (4°. The structure is stabilized by intra- and intermolecular O—H...O and C—H...O hydrogen bonds, and by weak π–π stacking interactions along the b axis, with a centroid–centroid distance between related benzene rings of 3.800 (4 Å.

  15. 2-(2,4-Dichlorophenyl-N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-ylacetamide

    Directory of Open Access Journals (Sweden)

    B. Narayana

    2013-01-01

    Full Text Available In the crystal structure of the title compound, C19H17Cl2N3O2, the molecules form dimers of the R22(10 type through N—H...O hydrogen bonding. As a result of steric repulsion, the amide group is rotated with respect to both the dichlorophenyl and 2,3-dihydro-1H-pyrazol-4-yl rings, making dihedral angles of 80.70 (13 and 64.82 (12°, respectively. The dihedral angle between the dichlorophenyl and 2,3-dihydro-1H-pyrazol-4-yl rings is 48.45 (5° while that between the 2,3-dihydro-1H-pyrazol-4-yl and phenyl rings is 56.33 (6°.

  16. rac-6-Hydroxy-4-(4-nitrophenyl-5-(2-thienylcarbonyl-6-(trifluoromethyl-3,4,5,6-tetrahydropyrimidin-2(1H-one monohydrate

    Directory of Open Access Journals (Sweden)

    Jian-Li Zhang

    2010-11-01

    Full Text Available The title compound, C16H12F3N3O5S·H2O, was prepared by reaction of 4-nitrobenzaldehyde, 4,4,4-trifluoro-1-(thiophen-2-ylbutane-1,3-dione and urea. The asymmetric unit contains two independent molecules, with essentially identical geometries and conformations. The dihydropyrimidine rings adopt a half-chair conformation. The dihedral angles between the benzene ring and the thiophene ring are 54.82 (8 and 58.72 (8° in the two molecules. The molecular conformation of one of the molecules is stabilized by two intramolecular O—H...O hydrogen bonds, generating an S(6 ring. The crystal structure is stabilized by intermolecular O—H...O and N—H...O hydrogen bonds.

  17. Three closely related (2E,2′E-3,3′-(1,4-phenylenebis[1-(methoxyphenylprop-2-en-1-ones]: supramolecular assemblies in one dimension mediated by hydrogen bonding and C—H...π interactions

    Directory of Open Access Journals (Sweden)

    Aijia Sim

    2017-06-01

    Full Text Available In the title compounds, (2E,2′E-3,3′-(1,4-phenylenebis[1-(2-methoxyphenylprop-2-en-1-one], C26H22O4 (I, (2E,2′E-3,3′-(1,4-phenylenebis[1-(3-methoxyphenylprop-2-en-1-one], C26H22O4 (II and (2E,2′E-3,3′-(1,4-phenylenebis[1-(3,4-dimethoxyphenylprop-2-en-1-one], C28H26O6 (III, the asymmetric unit consists of a half-molecule, completed by crystallographic inversion symmetry. The dihedral angles between the central and terminal benzene rings are 56.98 (8, 7.74 (7 and 7.73 (7° for (I, (II and (III, respectively. In the crystal of (I, molecules are linked by pairs of C—H...π interactions into chains running parallel to [101]. The packing for (II and (III, features inversion dimers linked by pairs of C—H...O hydrogen bonds, forming R22(16 and R22(14 ring motifs, respectively, as parts of [201] and [101] chains, respectively.

  18. (1R,3R,4R,6S-4-(7-Methoxy-2-oxo-2H-chromen-6-yl-1-methyl-3,6-dioxabicyclo[3.1.0]hexan-2-yl acetate

    Directory of Open Access Journals (Sweden)

    Wong Phakhodee

    2012-12-01

    Full Text Available In the title compound, C17H16O7, which was isolated from the leaves of Micromelum integerrimum, the furan ring adopts an envelope conformation with the O atom as the flap. An intramolecular C—H...O hydrogen bond occurs. The carbonyl O atom is disordered in a 0.57 (8:0.43 (8 ratio. In the crystal, molecules are linked by weak C—H...O hydrogen bonds into a C(10 chain along [010].

  19. IR and Raman spectra of LaH(SeO3)2 and FeH(SeO3)2

    International Nuclear Information System (INIS)

    Ratheesh, R.; Suresh, G.; Nayar, V.U.; Morris, R.E.

    1995-01-01

    The infrared and Raman spectra of LaH(SeO 3 ) 2 and FeH(SeO 3 ) 2 crystals are recorded and analysed. Bands confirm the coexistence of HSeO 3 - and SeO 3 2- ions in both LaH(SeO 3 ) 2 and FeH(SeO 3 ) 2 crystals. The Se-OH stretching vibrations are observed to be at lower wavenumbers in LaH(SeO 3 ) 2 than that in the iron compound in agreement with the short O-O distance in the former. Observed bands indicate that the SeO 3 2- ions are more angularly distorted in FeH(SeO 3 ) 2 crystal. ABC bands, characteristic of strong hydrogen bonded systems are observed in the infrared spectra of both the crystals. (author). 15 refs., 2 figs., 1 tab

  20. (S-2-(2-Pyrrolidinio-1H-benzimidazol-3-ium dichloride monohydrate

    Directory of Open Access Journals (Sweden)

    Dai Jing

    2009-06-01

    Full Text Available In the title compound, C11H15N32+·2Cl−·H2O, one N atom of the imidazole ring and the N atom of the pyrrolidine ring are protonated. The crystal structure is stabilized by aromatic π–π interactions between the benzene rings of neighbouring benzimidazole systems [centroid–centroid duistance = 3.712 (2 Å]. The crystal structure is further stabilized by intermolecular N—H...Cl, O—H...Cl and N—H...O hydrogen bonds.

  1. Crystal structure of 2-(1,3,7,9-tetramethyl-2,4,6,8-tetraoxo-1,2,3,4,6,7,8,9-octahydropyrido[2,3-d:6,5-d′]dipyrimidin-5-ylbenzamide dimethylformamide hemisolvate

    Directory of Open Access Journals (Sweden)

    Armen Ayvazyan

    2014-10-01

    Full Text Available The title compound, C20H18N6O5·0.5C3H7NO, crystallized as a dimethylformamide (DMF solvate. In the main molecule, the dihedral angle between the pyridodipyrimidine fused-ring system and the benzamide substituent is 82.26 (11°. In the crystal, the benzamide molecules are linked by N—H...O hydrogen bonds to generate tetramers with an approximate square-prismatic shape, which appears to correlate with the tetragonal crystal symmetry. The DMF molecule is disordered about a crystallographic twofold axis and accepts a C—H...O interaction from the benzamide molecule.

  2. Aquabis(3,5-dimethyl-1H-pyrazole-κN(oxalato-κ2O,O′copper(II

    Directory of Open Access Journals (Sweden)

    Andrii I. Buvailo

    2008-01-01

    Full Text Available In the title compound, [Cu(C2O4(C5H8N22(H2O], the CuII atom is coordinated in a slightly distorted square-pyramidal geometry by two N atoms belonging to the two 3,5-dimethyl-1H-pyrazole ligands, two O atoms of the oxalate anion providing an O,O′-chelating coordination mode, and an O atom of the water molecule occupying the apical position. The crystal packing shows a well defined layer structure. Intra-layer connections are realised through a system of hydrogen bonds while the nature of the inter-layer interactions is completely hydrophobic, including no hydrogen-bonding interactions.

  3. 2,3-Diamino?pyridinium 6-carb?oxy?pyridine-2-carboxyl?ate

    OpenAIRE

    Foroughian, Mahsa; Foroumadi, Alireza; Notash, Behrouz; Bruno, Giuseppe; Amiri Rudbari, Hadi; Aghabozorg, Hossein

    2011-01-01

    The asymmetric unit of the title proton-transfer compound, C5H8N3C7H4NO4−, consists of one mono-deprotonated pyridine-2,6-dicarboxylic acid as anion and one protonated 2,3-diaminopyridine as cation. The crystal packing shows extensive O—H...O, N—H...O and N—H...N hydrogen bonds. Thre are also several π–π interactions between the anions and also between the cations [centriod–centroid distances = 3.6634&...

  4. 1-Propyl-1H-indole-2,3-dione

    Directory of Open Access Journals (Sweden)

    Fatima Zahrae Qachchachi

    2016-04-01

    Full Text Available In the title compound, C11H11NO2, the 1H-indole-2,3-dione unit is essentially planar, with an r.m.s. deviation of 0.0387 (13 Å. This plane makes a dihedral angle of 72.19 (17° with the plane of the propyl substituent. In the crystal, chains propagating along the b axis are formed through C—H...O hydrogen bonds.

  5. (Acetylacetonato-κ2O,O′bis[5-methoxy-2-(naphth[1,2-d][1,3]oxazol-2-ylphenyl-κ2C1,N]iridium(III

    Directory of Open Access Journals (Sweden)

    Yuan-Yuan Zhou

    2011-10-01

    Full Text Available In the title compound, [Ir(C18H12NO22(C5H7O2], the Ir atom is O,O′-chelated by the acetylacetonate group and C,N-chelated by the 2-arylnaphth[1,2-d]oxazole groups. The six-coordinate metal atom displays a distorted octahedral geometry. Intramolecular C—H...O hydrogen bonds occur. In the crystal, intermolecular C—H...O hydrogen bonds link the molecules into columns parallel to the b axis.

  6. 2-Ethoxy-4-[2-(3-nitrophenylhydrazonomethyl]phenol

    Directory of Open Access Journals (Sweden)

    Jun-Qiang Chen

    2009-10-01

    Full Text Available The title Schiff base compound, C15H15N3O4, was prepared from a condensation reaction of 3-ethoxy-4-hydroxybenzaldehyde and 3-nitrophenylhydrazine. The molecule is nearly planar; the dihedral angle between the hydroxybenzene ring and the nitrobenzene ring is 6.57 (7°. O—H...O, O—H...N and C—H...O hydrogen bonding helps to stabilize the crystal structure.

  7. 9-(3-Bromo-5-chloro-2-hydroxyphenyl-10-(2-hydroxyethyl-3,6-diphenyl-3,4,9,10-tetrahydroacridine-1,8(2H,5H-dione

    Directory of Open Access Journals (Sweden)

    Mehmet Akkurt

    2014-06-01

    Full Text Available In the title compound, C33H27BrClNO4, the dihydropyridine ring adopts a flattened boat conformation. The molecular conformation is stabilized by an intramolecular O—H...O hydrogen bond, with an S(8 ring motif. In the crystal, O—H...O, C—H...O and C—H...Cl hydrogen bonds, and C—H...π interactions link the molecules, forming a three-dimensional network. In the acridinedione ring system, the two ring C atoms at the 2- and 3-positions, and the C atom at the 6-position and the atoms of the phenyl ring attached to the C atom at the 6-position are disordered over two sets of sites with occupancy ratios of 0.783 (5:0.217 (5 and 0.526 (18:0.474 (18, respectively.

  8. (2,3,7,8,12,13,17,18-Octaethylporphyrinato-κ4Ncobalt(II–2-nitrobenzaldehyde (1/2

    Directory of Open Access Journals (Sweden)

    Anissa Mansour

    2012-09-01

    Full Text Available The asymmetric unit of the title compound, [Co(C36H44N4]·2C7H5NO3, is composed of one half of the complex, arranged about an inversion center, and a complete 2-nitrobenzaldehyde (NBA molecule. The structure consists of columns that contain interleaved molecules of NBA and [CoII(OEP] (OEP is 2,3,7,8,12,13,17,18-octaethylporphyrin, which are stacked along the a axis. The CoII atom is involved in a π interaction with the ring of the NBA molecule with a centroid–metal distance of 3.508 (6 Å. There is an intramolecular C—H...O hydrogen bond in the NBA molecule.

  9. Poly[propane-1,3-diammonium [cuprate(II-bis(μ2-pyridine-2,3-dicarboxylato] trihydrate

    Directory of Open Access Journals (Sweden)

    Shabnam Hooshmand

    2008-02-01

    Full Text Available The title polymeric compound {(C3H12N2[Cu(C7H3NO42]·3H2O}n or {(pnH2[Cu(py-2,3-dc23H2O}n (pn is propane-1,3-diamine and py-2,3-dcH2 is pyridine-2,3-dicarboxylic acid, was synthesized by reaction of copper(II chloride dihydrate with a proton-transfer compound, propane-1,3-diammonium pyridine-2,3-dicarboxylate or (pnH2(py-2,3-dc, in aqueous solution. The anion is a six-coordinate complex (site symmetry overline{1}, with a distorted octahedral geometry around CuII, consisting of two bidentate pyridine-2,3-dicarboxylate groups and two O atoms of bridging ligands from (py-2,3-dc2− fragments, which are located in trans positions. The (pnH22+ cation is disordered over two sites by the center of inversion. Intermolecular hydrogen bonds, π–π [centroid–centroid distances of 3.539 (3 Å] and C—O...π stacking interactions [O...Cg = 3.240 (5 Å; Cg is the center of the pyridine ring], connect the various components into a supramolecular structure.

  10. A novel layered bimetallic phosphite intercalating with organic amines: Synthesis and characterization of Co(H2O)4Zn4(HPO3)6.C2N2H1

    International Nuclear Information System (INIS)

    Lin Zhien; Fan Wei; Gao Feifei; Chino, Naotaka; Yokoi, Toshiyuki; Okubo, Tatsuya

    2006-01-01

    A new layered cobalt-zinc phosphite, Co(H 2 O) 4 Zn 4 (HPO 3 ) 6 .C 2 N 2 H 1 has been synthesized in the presence of ethylenediamine as the structure-directing agent. The compound crystallizes in the monoclinic system, space group Cc (No. 9), a=18.2090(8), b=9.9264(7), c=15.4080(7) A, β=114.098(4) o , V=2542.3(2) A 3 , Z=4, R=0.0323, wR=0.0846. The structure consists of ZnO 4 tetrahedra, CoO 6 octahedra and HPO 3 pseudopyramids through their vertices forming bimetallic phosphite layers parallel to the ab plane. Organic cations, which reside between the inorganic layers, are mobile and can be exchanged by NH 4 + cations without the collapse of the framework

  11. 2'-Fluoro-3',5'-dimethoxy-acetanilide.

    Science.gov (United States)

    Xie, Kai; Lou, Yuan-Yuan; Zheng, Jin; Zhao, Qing-Jie; Wei, Ya-Bing

    2008-12-24

    Mol-ecules of the title compound, C(10)H(12)FNO(3), are nearly planar considering all non-H atoms with a mean deviation of 0.0288 Å. Mol-ecules are linked through inter-molecular N-H⋯O and N-H⋯F hydrogen bonds.

  12. Investigation into complexing in Re/sup 7/-H/sub 3/O/sup +/-SO/sub 4//sup 2 -/-H/sub 2/O system

    Energy Technology Data Exchange (ETDEWEB)

    Sinyakova, G S [AN Latvijskoj SSR, Riga. Inst. Neorganicheskoj Khimii

    1979-10-01

    Using the methods of spectrophotometry and conductometry it is shown, that in the ReO/sub 4//sup -/-H/sub 3/O/sup +/-SO/sub 4//sup 2 -/-H/sub 2/O system interaction between rhenium (7) and sulfuric acid takes place in a wide concentration range. In low-acid solutions at pH 2.0-0.9 rhenium(7) complex with proton is formed at the ratio of 1:1 with lgK/sub 1/=3.30+-0.02. In 1-10 mol. sulfuric acid observed is consecutive complexing at the rhenium(7) - sulfuric acid ratio in the complex of 1:1 and 1:2 respectively with lgK/sub 2/=0.93+-0.13 and lgK/sub 3/=0.34+-0.03. At the background of concentrated perchloric acid rhenium (7) and sodium sulfate form two complex compounds at rhenium (7) - sodium sulfate ratio of 1:1 and 1:2 with lgK/sub 1/=1.86+-0.02 and lgK/sub 2/=2.35+-0.03.

  13. (Dimethylformamide-κO(2-hydroxybenzoato-κ2O1,O1′[tris(1-methyl-1H-benzimidazol-2-ylmethyl-κN3amine-κN]manganese(II perchlorate dimethylformamide monosolvate

    Directory of Open Access Journals (Sweden)

    Baoliang Qi

    2010-10-01

    Full Text Available In the title complex, [Mn(C7H5O3(C27H27N7(C3H7NO]ClOC3H7NO, the MnII ion is coordinated in a slightly distorted monocapped trigonal-prismatic geometry. The tris(1-methyl-1H-benzimidazol-2-ylmethylamine (Mentb ligand coordinates in a tetradentate mode and the coordination is completed by a bis-chelating salicylate ligand and a dimethylformamide ligand. The hydroxy group and the ortho H atoms of the salicylate ligand were refined as disordered over two sites with occupancies of 0.581 (8 and 0.419 (8. Both disorder components of the hydroxy group form intramolecular O—H...O hydrogen bonds.

  14. Triphenylbis(2,4,5-trifluoro-3-methoxybenzoatoantimony(V

    Directory of Open Access Journals (Sweden)

    Daqi Wang

    2008-10-01

    Full Text Available In the title compound, [Sb(C6H53(C8H4F3O32], the Sb atom lies on an inversion centre and exhibits a trigonal bipyramidal geometry with the axial positions occupied by the O atoms of two carboxylate groups and the equatorial positions occupied by C atoms of the phenyl groups. Intramolecular C—H...O hydrogen bonds stabilize the molecular conformation. In the crystal structure, molecules are connected by intermolecular C—H...O hydrogen-bonding interactions, forming a layer structure parallel to (overline{2}01.

  15. A novel organic–inorganic hybrid with Anderson type polyanions as building blocks: (C{sub 6}H{sub 10}N{sub 3}O{sub 2}){sub 2}Na(H{sub 2}O){sub 2}[Al(OH){sub 6}Mo{sub 6}O{sub 18}]·6H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Thabet, Safa, E-mail: safathabet@hotmail.fr [Laboratoire de matériaux et cristallochimie, Département de chimie, Institut Supérieur des Sciences Appliquées et Technologier, Avenue El Mourouj, 5111 Mahdia (Tunisia); Ayed, Brahim, E-mail: brahimayed@yahoo.fr [Laboratoire de matériaux et cristallochimie, Département de chimie, Institut Supérieur des Sciences Appliquées et Technologier, Avenue El Mourouj, 5111 Mahdia (Tunisia); Haddad, Amor [Laboratoire de matériaux et cristallochimie, Département de chimie, Institut Supérieur des Sciences Appliquées et Technologier, Avenue El Mourouj, 5111 Mahdia (Tunisia)

    2012-11-15

    Graphical abstract: Display Omitted Highlights: ► Synthesis of a novel inorganic–organic hybrid compound based on Anderson polyoxomolybdates. ► Characterization by X-ray diffraction, IR and UV–Vis spectroscopies of the new compound. ► Potential applications in catalysis, biochemical analysis and electrical conductivity of the organic–inorganic compound. -- Abstract: A new organic–inorganic hybrid compound based on Anderson polyoxomolybdates, (C{sub 6}H{sub 10}N{sub 3}O{sub 2}){sub 2}Na(H{sub 2}O){sub 2}[Al(OH){sub 6}Mo{sub 6}O{sub 18}]·6H{sub 2}O (1) have been isolated by the conventional solution method and characterized by single-crystal X-ray diffraction, infrared, ultraviolet spectroscopy and Thermogravimetric Analysis (TGA). This compound crystallized in the triclinic system, space group P−1, with a = 94.635(1) Å, b = 10.958(1) Å, c = 11.602(1) Å, α = 67.525(1)°, β = 71.049(1)°, γ = 70.124(1)° and Z = 1. The crystal structures of the compounds exhibit three-dimensional supramolecular assembly based on the extensive hydrogen bonding interactions between organic cations, sodium cations, water molecules and Anderson polyoxoanions. The infrared spectrum fully confirms the X-ray crystal structure and the UV spectrum of the title compound exhibits an absorption peak at 210 nm.

  16. [Mechanism and performance of styrene oxidation by O3/H2O2].

    Science.gov (United States)

    He, Jue-Cong; Huang, Qian-Ru; Ye, Qi-Hong; Luo, Yu-Wei; Zhang, Zai-Li; Fan, Qing-Juan; Wei, Zai-Shan

    2013-10-01

    It can produce a large number of free radicals in O3/H2O2, system, ozone and free radical coupling oxidation can improve the styrene removal efficiency. Styrene oxidation by O3/H2O2 was investigated. Ozone dosage, residence time, H2o2 volume fraction, spray density and molar ratio of O3/C8H8 on styrene removal were evaluated. The experimental results showed that styrene removal efficiency achieved 85.7%. The optimal residence time, H2O2, volume fraction, spray density and O3/C8H8 molar ratio were 20. 6 s, 10% , 1.72 m3.(m2.h)-1 and 0.46, respectively. The gas-phase degradation intermediate products were benzaldehyde(C6H5CHO) and benzoic acid (C6H5 COOH) , which were identified by means of gas chromatography-mass spectrometry(GC-MS). The degradation mechanism of styrene is presented.

  17. Cationic polyhydrido cluster complexes. Crystal and molecular structures of (Ir3(Ph2P(CH2)3PPh2)3(H)7(CO))2+ and (Ir3(Ph2P(CH2)2(2-py))3(H)7)2+

    International Nuclear Information System (INIS)

    Hsienhau Wang; Casalnuovo, A.L.; Johnson, B.J.; Mueting, A.M.; Pignolet, L.H.

    1988-01-01

    Two new cationic polyhydrido cluster complexes of iridium have been synthesized and characterized by single-crystal x-ray diffraction and by ir and 1 H and 31 P NMR spectroscopy (Ir 3 (dppp) 3 (H) 7 (CO)) 2+ (2) and (Ir3 (PN) 3 (H) 7)2+ (5), where dppp = 1,3-bis(diphenylphosphino)propane and PN = 1-(2-pyridyl)-2-(diphenylphosphino)ethane, were synthesized by the reaction of CO with (Ir 3 (dppp) 3 (H) 7 ) 2+ (1) in CH 2 Cl 2 solution and H 2 with (Ir(PN)(COD)) + (4) in CH 3 OH solution, respectively. Crystal structures for both compounds is reported. The hydride positions were not located in the crystal structure analyses but were deduced from structural and 1 H NMR data. The molecular structure of 2 consists of a bilateral triangle of three iridium atoms with a carbonyl at the vertex and a chelating dppp ligand on each iridium atom. 1 H NMR data with use of acetone-d 6 as solvent showed that 2 possesses four doubly bridging hydrides and three terminal hydrides, yielding C 1 symmetry. The molecular structure of 5 consists of an approximately equilateral triangle of three iridium atoms (average Ir-Ir distance 2.746 (1) angstrom) with one PN ligand chelated to each iridium atom. 1 H NMR analysis, with use of CD 2 Cl 2 as solvent, showed that 5 has one triply bridging hydride and six terminal hydrides, giving C 3 symmetry. (Ir 3 (dppp) 3 (H) 7 (CH 3 C 6 H 4 NC)) 2+ (3) a complex structurally analogous to 2, was synthesized from 1 and p-tolyl isocyanide in CH 2 Cl 2 solution and characterized by ir and 1 H and 31 P NMR spectroscopy. 44 refs., 3 figs., 3 tabs

  18. Solubility of NaNd(CO3)2.6H2O(c) in concentrated Na2CO3 and NaHCO3 solutions

    International Nuclear Information System (INIS)

    Rao, L.; Rai, D.; Felmy, A.R.; Fulton, R.W.; Novak, C.F.

    1996-01-01

    NaNd(CO 3 ) 2 x 6 H 2 O(c) was identified to be the final equilibrium solid phase in suspensions containing concentrated sodium carbonate (0.1 to 2.0 M) and sodium bicarbonate (0.1 to 1.0 M), with either NaNd(CO 3 ) 2 x 6 H 2 O(c) or Nd 2 (CO 3 ) 3 x xH 2 O(s) as initial solids. A thermodynamic model, based on Pitzer's specific into-interaction approach, was developed to interpret the solubility of NaNd(CO 3 ) 2 x 6 H 2 O(c) as functions of sodium carbonate and sodium bicarbonate concentrations. In this model, the solubility data of NaNd(CO 3 ) 2 x 6 H 2 O(c) were explained by assuming the formation of NdCO 3 + , Nd(CO 3 ) 2 - and Nd(CO 3 ) 3 3- species and invoking the specific ion interactions between Na + and Nd(CO 3 ) 3 3- . Ion interaction parameters for Na + -Nd(CO 3 ) 3 3- were developed to fit the solubility data. Based on the model calculations, Nd(CO 3 ) 3 3- was the predominant aqueous neodymium species in 0.1 to 2 M sodium carbonate and 0.1 to 1 M sodium bicarbonate solutions. The logarithm of the NaNd(CO 3 ) 2 x 6 H 2 O solubility product (NaNd(CO 3 ) 2 x 6 H 2 O(c)=Na + +Nd 3+ +2 CO 3 2- +6 H 2 O) was calculated to be -21.39. This model also provided satisfactory interpretation of the solubility data of the analogous Am(III) system in less concentrated carbonate and bicarbonate solutions. (orig.)

  19. Crystal structure of 3-{5-[3-(4-fluorophenyl-1-isopropyl-1H-indol-2-yl]-1H-pyrazol-1-yl}indolin-2-one ethanol monosolvate

    Directory of Open Access Journals (Sweden)

    Md. Lutfor Rahman

    2016-03-01

    Full Text Available The title indolin-2-one compound, C28H23FN4O·C2H6O, crystallizes as a 1:1 ethanol solvate. The ethanol molecule is disordered over two positions with refined site occupancies of 0.560 (14 and 0.440 (14. The pyrazole ring makes dihedral angles of 84.16 (10 and 85.33 (9° with the indolin-2-one and indole rings, respectively, whereas the dihedral angle between indolin-2-one and indole rings is 57.30 (7°. In the crystal, the components are linked by N—H...O and O—H...O hydrogen bonds, forming an inversion molecule–solvate 2:2 dimer with R44(12 ring motifs. The crystal structure is consolidated by π–π interaction between pairs of inversion-related indolin-2-one rings [interplanar spacing = 3.599 (2 Å].

  20. 2-(4-Fluorophenyl-2H-chromen-4(3H-one

    Directory of Open Access Journals (Sweden)

    Michał Wera

    2012-02-01

    Full Text Available In the crystal structure of the title compound, C15H11FO2, molecules form inversion dimers through pairs of weak C—H...O hydrogen bonds. Dimers oriented in parallel, linked by C—H...π contacts, are arranged in columns along the b axis. The fluorophenyl ring and the benzene ring of the 2H-chromen-4(3H-one unit are inclined to one another by 70.41 (16°. They are respectively parallel in a given column or almost perpendicular [oriented at an angle of 87.8 (1°] in neighbouring (inversely oriented columns, forming a herringbone pattern.

  1. 2-[3-Furyl(hydroxy)methyl]-2,3-dimethylcyclohexanone.

    Science.gov (United States)

    García, Esther; Mendoza, Virgilio; Guzmán, José Agustín; Maldonado Graniel, Luis Angel; Hernández-Ortega, Simón

    2002-06-01

    Contribution No. 1750 of the Instituto de Quimica, UNAM, Mexico. In the molecule of the title compound, C(13)H(18)O(3), there is a syn relationship between the two vicinal methyl groups. The six-membered ring adopts a chair conformation, with one equatorial and two axial groups, and the furyl group is almost parallel to the ketone group. Intermolecular hydrogen bonds [O[bond]H...O[double bond]C 2.814 (3) A] form chains along [100].

  2. 5-Isobutyl-4-phenylsulfonyl-1H-pyrazol-3(2H-one

    Directory of Open Access Journals (Sweden)

    M. Venkatesh

    2010-12-01

    Full Text Available The title compound, C13H16N2O3S, consists of two crystallographically independent molecules with similar geometries and exists in a keto form, the C=O bond lengths being 1.267 (2 and 1.254 (2 Å. In both molecules, the pyrazole rings are approximately planar, with maximum deviations of 0.017 (2 and 0.010 (2 Å, and the dihedral angles between the pyrazole and phenyl rings are 83.63 (11 and 70.07 (12°. In one molecule, an intramolecular C—H...O hydrogen bond with an S(6 ring motif is observed. In the crystal, intermolecular N—H...O and C—H...O hydrogen bonds link the molecules into two-dimensional networks parallel to the ab plane.

  3. (2R,3aR,4S,7R,7aS,9R,10aR,11S,14R,14aS-rel-3a,4,7,7a,10a,11,14,14a-Octahydro-4,14:7,11-diepoxy-2,9-propanonaphtho[1,2-f:5,6-f′]diisoindole-1,3,8,10-tetrone (9CI: a cyclophane derived from naphtho[1,2-c:5,6-c]difuran

    Directory of Open Access Journals (Sweden)

    Peter W. Dibble

    2008-09-01

    Full Text Available The title compound, C25H18N2O6, is a naphthalenophane styled in the manner of Warrener's alicyclic cyclophanes or molecular racks wherein a trimethylene tether is perfectly staggered between the two N atoms such that the central methylene H atoms point toward the naphthalene π-system. The dihedral angle between the mean planes of the two benzene rings is 7.61 (7°.

  4. Bi[NC5H3(CO2)2](OH2)xF (x=1 and 2): New one-dimensional Bi-coordination materials—Reversible hydration and topotactic decomposition to α-Bi2O3

    International Nuclear Information System (INIS)

    Jeon, Hye Rim; Lee, Dong Woo; Ok, Kang Min

    2012-01-01

    Two one-dimensional bismuth-coordination materials, Bi[NC 5 H 3 (CO 2 ) 2 ](OH 2 ) x F (x=1 and 2), have been synthesized by hydrothermal reactions using Bi 2 O 3 , 2,6-NC 5 H 3 (CO 2 H) 2 , HF, and water at 180 °C. Structures of the two materials were determined by single-crystal X-ray diffraction. Although they have different crystal structures, both Bi-organic materials shared a common structural motif, a one-dimensional chain structure consisting of Bi 3+ cations and pyridine dicarboxylate linkers. Detailed structural analyses include infrared spectroscopy, thermogravimetric analysis, and reversible hydration reactions for the coordinated water molecules were reported. Also, thermal decomposition of the rod-shaped Bi[NC 5 H 3 (CO 2 ) 2 ](OH 2 )F single crystals at 800 °C led to α-Bi 2 O 3 that maintained the same morphology of the original crystals. - Graphical abstract: Calcination of the Bi[NC 5 H 3 (CO 2 ) 2 ](OH 2 )F single crystals at 800 °C results in the α-Bi 2 O 3 rods that maintain the original morphology of the crystals. Highlights: ► Synthesis of one-dimensional chain Bi-organic frameworks. ► Reversible hydration reactions of Bi[NC 5 H 3 (CO 2 ) 2 ](OH 2 )F. ► Topotactic decomposition maintaining the same morphology of the original crystals.

  5. Crystal structure and Hirshfeld surface analysis of (2E,2′E-3,3′-(1,4-phenylenebis[1-(2,4-difluorophenylprop-2-en-1-one

    Directory of Open Access Journals (Sweden)

    Huey Chong Kwong

    2017-12-01

    Full Text Available The asymmetric unit of the title compound, C24H14F4O2, comprises of one and a half molecules; the half-molecule is completed by crystallographic inversion symmetry. In the crystal, molecules are linked into a three-dimensional network by C—H...F and C—H...O hydrogen bonds. Some of the C—H...F links are unusually short (< 2.20 Å. Hirshfeld surface analyses (dnorm surfaces and two-dimensional fingerprint plots for the title compound are presented and discussed.

  6. Structure of ferroelastic K3H(SeO4)2

    International Nuclear Information System (INIS)

    Ichikawa, M.; Sato, S.; Komukae, M.; Osaka, T.

    1992-01-01

    Tripotassium hydrogenbis(selenate), K 3 H(SeO 4 ) 2 , M r = 404.2, monoclinic, A2/a, a = 10.1291 (8), b = 5.9038 (5), c = 14.961 (1) A, β = 103.640 (8) 0 , V = 869.5 (1) A 3 , Z = 4, D x = 3.086 Mg m -3 , λ(Mo Kα) = 0.71073 A, μ = 9.86 mm -1 , F(000) = 760, T = 299 K, R(F) = 0.0294 for 1670 unique reflections. K 3 H(SeO 4 ) 2 is isomorphous with most M 3 H(XO 4 ) 2 -type crystals (M=K,Rb and Cs; Cs; X = S and Se); two SeO 4 groups are connected by a crystallographically symmetric hydrogen bond into a dimer. The bond distances and angles in the SeO 4 group are similar to those in Rb 3 H(SeO 4 ) 2 and Rb 3 D(SeO 4 ) 2 . The hydrogen-bond length, 2.524 (5) A, is the shortest among the members of the M 3 H(SeO 4 ) 2 family exhibiting the low-temperature phase transition. (orig.)

  7. Synthesis and physicochemical investigation of vanadium tripolyphosphate, H2VP3O10·3H2O (3)

    International Nuclear Information System (INIS)

    Lyutsko, V.A.; Romanij, T.V.

    1987-01-01

    The new compound - vanadium dihydrotripolyphosphate, H 2 VP 3 O 10 x3H 2 O of the modification III has been prepared by interaction of the metalic vanadium and orthophosphoric acid at 483 K. It has been investigated by chemical analysis, thin layer chromatography, X-ray phase analysis, infrared spectroscopy and thermal analysis

  8. Crystal structure of 2-methyl-1H-imidazol-3-ium aquatrichlorido(oxalato-κ2O,O′stannate(IV

    Directory of Open Access Journals (Sweden)

    Mouhamadou Birame Diop

    2015-05-01

    Full Text Available The tin(IV atom in the complex anion of the title salt, (C4H7N2[Sn(C2O4Cl3(H2O], is in a distorted octahedral coordination environment defined by three chlorido ligands, an oxygen atom from a water molecule and two oxygen atoms from a chelating oxalate anion. The organic cation is linked through a bifurcated N—H...O hydrogen bond to the free oxygen atoms of the oxalate ligand of the complex [Sn(H2OCl3(C2O4]− anion. Neighbouring stannate(IV anions are linked through O—H...O hydrogen bonds involving the water molecule and the two non-coordinating oxalate oxygen atoms. In combination with additional N—H...Cl hydrogen bonds between cations and anions, a three-dimensional network is spanned.

  9. 5-Imino-3,4-diphenyl-1H-pyrrol-2-one

    Science.gov (United States)

    Bulatov, Evgeny; Chulkova, Tatiana; Haukka, Matti

    2014-01-01

    The title compound, C16H12N2O, exists in the crystalline state as the 5-imino-3,4-di­phenyl­-1H-pyrrol-2-one tautomer. The dihedral angles between the pyrrole and phenyl rings are 35.3 (2) and 55.3 (2)°. In the crystal, inversion dimers linked by pairs of N—H⋯N hydrogen bonds generate a graph-set motif of R 2 2(8) via N—H⋯N hydrogen bonds. PMID:24764881

  10. Crystal structure of (1S,3R,8R,9R-2,2-dichloro-3,7,7-trimethyl-10-methylenetricyclo[6.4.0.01,3]dodecan-9-ol

    Directory of Open Access Journals (Sweden)

    Ahmed Benzalim

    2016-08-01

    Full Text Available The title compound, C16H24Cl2O, was synthesized by treating (1S,3R,8S,9R,10S-2,2-dichloro-3,7,7,10-tetramethyl-9,10-epoxytricyclo[6.4.0.01,3]dodecane with a concentrated solution of hydrobromic acid. It is built up from three fused rings: a cycloheptane ring, a cyclohexyl ring bearing alkene and hydroxy substituents, and a cyclopropane ring bearing two chlorine atoms. The asymmetric unit contains two molecules linked by an O—H...O hydrogen bond. In the crystal, further O—H...O hydrogen bonds build up an R44(8 cyclic tetramer. One of the molecules presents disorder that affects the seven-membered ring. In both molecules, the six-membered rings display a chair conformation, whereas the seven-membered rings display conformations intermediate between boat and twist-boat for the non-disordered molecule and either a chair or boat and twist-boat for the disordered molecule owing to the disorder. The absolute configuration for both molecules is 1S,3R,8R,9R and was deduced from the chemical pathway and further confirmed by the X-ray structural analysis.

  11. Axial zero-field splitting in mononuclear Co(ii) 2-N substituted N-confused porphyrin: Co(2-NC3H5-21-Y-CH2C6H4CH3-NCTPP)Cl (Y = o, m, p) and Co(2-NC3H5-21-CH2C6H5-NCTPP)Cl.

    Science.gov (United States)

    Lai, Ya-Yuan; Chang, Yu-Chang; Chen, Jyh-Horung; Wang, Shin-Shin; Tung, Jo-Yu

    2016-03-21

    The inner C-benzyl- and C-o-xylyl (or m-xylyl, p-xylyl)-substituted cobalt(ii) complexes of a 2-N-substituted N-confused porphyrin were synthesized from the reaction of 2-NC3H5NCTPPH (1) and CoCl2·6H2O in toluene (or o-xylene, m-xylene, p-xylene). The crystal structures of diamagnetic chloro(2-aza-2-allyl-5,10,15,20-tetraphenyl-21-hydrogen-21-carbaporphyrinato-N,N',N'')zinc(ii) [Zn(2-NC3H5-21-H-NCTPP)Cl; 3 ] and paramagnetic chloro(2-aza-2-allyl-5,10,15,20-tetraphenyl-21-benzyl-21-carbaporphyrinato-N,N',N'')cobalt(ii) [Co(2-NC3H5-21-CH2C6H5NCTPP)Cl; 7], and chloro(2-aza-2-allyl-5,10,15,20-tetraphenyl-21-Y-xylyl-21-carbaporphyrinato-N,N',N'')cobalt(ii) [Co(2-NC3H5-21-Y-CH2C6H4CH3NCTPP)Cl] [Y = o (8), m (9), p (10)] were determined. The coordination sphere around the Zn(2+) (or Co(2+)) ion in 3 (or 7-10) is a distorted tetrahedron (DT). The free energy of activation at the coalescence temperature Tc for the exchange of phenyl ortho protons o-H (26) with o-H (22) in 3 in a CDCl3 solvent is found to be ΔG = 61.4 kJ mol(-1) through (1)H NMR temperature-dependent measurements. The axial zero-field splitting parameter |D| was found to vary from 35.6 cm(-1) in 7 (or 30.7 cm(-1) in 8) to 42.0 cm(-1) in 9 and 46.9 cm(-1) in 10 through paramagnetic susceptibility measurements. The magnitude of |D| can be related to the coordination sphere at the cobalt sites.

  12. 9-{[4-(Dimethylaminobenzyl]amino}-5-(4-hydroxy-3,5-dimethoxyphenyl-5,5a,8a,9-tetrahydrofuro[3′,4′:6,7]naphtho[2,3-d][1,3]dioxol-6(8H-one methanol monosolvate

    Directory of Open Access Journals (Sweden)

    Hong Chen

    2011-11-01

    Full Text Available In the title compound, C30H32N2O7·CH4O, the tetrahydrofuran ring and the six-membered ring fused to it both display envelope conformations, with the ring C atom opposite the carbonyl group and the adjacent bridgehead C atom as the flaps, respectively. In the crystal structure, intermolecular O—H...O hydrogen bonds link all moieties into ribbons along [010]. Weak intermolecular C—H...O interactions consolidate the crystal packing further.

  13. 3-(Aminocarbonylpyridinium diaqua-bis(pyridine-2,6-dicarboxylatobismuthate(III monohydrate

    Directory of Open Access Journals (Sweden)

    Janet Soleimannejad

    2012-07-01

    Full Text Available The asymmetric unit of the ionic title compound, (C6H7N2O[Bi(C7H3NO42(H2O2H2O or (acpyH[Bi(pydc2(H2O2H2O, contains an [Bi(pydc2(H2O2]− anion (where pydcH2 is pyridine-2,6-dicarboxylic acid, a protonated 3-(aminocarbonylpyridine as counter-ion, (acpyH+, and one uncoordinated water molecule. The anion is an eight-coordinate complex with a square-antiprismatic geometry around the BiIII atom. In the crystal, extensive O—H...O and N—H...O hydrogen bonds, as well as ion pairing, C=O...π interactions [O...centroid distance = 3.583 (5 Å], π–π stacking [centroid–centroid distance = 3.864 (3 Å], and C—H...π and C—H...O interactions, play an important role in the formation and stabilization of the three-dimensional supramolecular structure.

  14. Hexaaquabis[3,5-bis(hydroxyimino-1-methyl-2,4,6-trioxocyclohexanido-κ2N3,O4]barium tetrahydrate

    Directory of Open Access Journals (Sweden)

    Nguyen Dinh Do

    2013-11-01

    Full Text Available In the title compound, [Ba(C7H5N2O52(H2O6]·4H2O, the Ba2+ cation lies on a twofold rotation axis and is ten-coordinated by two 3,5-bis(hydroxyimino-1-methyl-2,4,6-trioxocyclohexanide oxo O atoms [Ba—O = 2.8715 (17 Å], two hydroxyimino N atoms [Ba—N = 3.036 (2 Å], and six water molecules [Ba—O = 2.847 (2, 2.848 (2, and 2.880 (2 Å]. The 3,5-bis(hydroxyimino-1-methyl-2,4,6-trioxocyclohexanide monoanions act in a bidentate chelating manner, coordinating through an N atom of the non-deprotonated hydroxyimino group and an O atom of the neighboring oxo group. Two lattice water molecules are located in the cavities of the framework and are involved in hydrogen bonding to O atoms of one of the coordinating water molecules and the O atom of a keto group of the ligand. As a result, a three-dimensional network is formed.

  15. Ethyl 1-cyclopropyl-6,7-difluoro-8-methoxy-4-oxo-1,4-dihydroquinoline-3-carboxylate

    Directory of Open Access Journals (Sweden)

    De-Cai Wang

    2008-11-01

    Full Text Available In the title compound, C16H15F2NO4, the dihedral angle between the three-membered ring and the quinoline ring system is 64.3 (3°. In the crystal structure, intermolecular C—H...O hydrogen bonds link the molecules, forming a column running along [101].

  16. Ethyl 2-[1-(3-methylbutyl-4-phenyl-1H-1,2,3-triazol-5-yl]-2-oxoacetate

    Directory of Open Access Journals (Sweden)

    Muhammad Hafeez

    2013-12-01

    Full Text Available In the title compound, C17H21N3O3, the non-planar (r.m.s. deviation = 0.212 Å ethyl (oxoacetate group is oriented towards the phenyl substituent. The triazole and benzene rings are twisted with respect to each other, making a dihedral angle of 41.69 (6°. In the crystal, molecules are arranged into centrosymmetric R22(10 dimers via pairs of C—H...O interactions involving the ethyl (oxoacetate groups. In addition, the triazole rings show π–π stacking interactions, with their centroids at a distance of 3.745 (2 Å.

  17. Rethinking Sensitized Luminescence in Lanthanide Coordination Polymers and MOFs: Band Sensitization and Water Enhanced Eu Luminescence in [Ln(C15H9O5)3(H2O)3]n (Ln = Eu, Tb).

    Science.gov (United States)

    Einkauf, Jeffrey D; Kelley, Tanya T; Chan, Benny C; de Lill, Daniel T

    2016-08-15

    A coordination polymer [Ln(C15H9O9)3(H2O)3]n (1-Ln = Eu(III), Tb(III)) assembled from benzophenonedicarboxylate was synthesized and characterized. The organic component is shown to sensitize lanthanide-based emission in both compounds, with quantum yields of 36% (Eu) and 6% (Tb). Luminescence of lanthanide coordination polymers is currently described from a molecular approach. This methodology fails to explain the luminescence of this system. It was found that the band structure of the organic component rather than the molecular triplet state was able to explain the observed luminescence. Deuterated (Ln(C15H9O9)3(D2O)3) and dehydrated (Ln(C15H9O9)3) analogues were also studied. When bound H2O was replaced by D2O, lifetime and emission increased as expected. Upon dehydration, lifetimes increased again, but emission of 1-Eu unexpectedly decreased. This reduction is reasoned through an unprecedented enhancement effect of the compound's luminescence by the OH/OD oscillators in the organic-to-Eu(III) energy transfer process.

  18. (1-Phenyl-1H-1,2,3-triazol-4-ylmethyl pyridine-3-carboxylate

    Directory of Open Access Journals (Sweden)

    Zakirjon Karimov

    2010-07-01

    Full Text Available In the title compound, C15H12N4O2, the dihedral angle between the planes of the nicotinoyloxy fragment and triazole ring is 88.61 (5°. The dihedral angle between the planes of triazole and benzene rings is 16.54 (11°. The crystal structure is stabilized by intermolecular C—H...N, C—H...O and C—H...π(triazole hydrogen bonds and aromatic π–π stacking interactions between the benzene and triazole rings [centroid–centroid distance = 3.895 (1 Å

  19. Incorporation of μ3-CO3 into an MnIII/MnIV Mn12 cluster: {[(cyclam)MnIV(μ-O)2MnIII(H2O)(μ-OH)]6(μ3-CO3)2}Cl8·24H2O

    Science.gov (United States)

    Levaton, Ben B.; Olmstead, Marilyn M.

    2010-01-01

    The centrosymmetric title cluster, hexa­aquadi-μ3-carbonato-hexa­cyclamhexa-μ2-hydroxido-dodeca-μ2-oxido-hexa­mang­an­ese(IV)hexa­manganese(III) octa­chloride tetra­cosa­hydrate, [Mn12(CO3)2O12(OH)6(C10H24N4)6(H2O)6]Cl8·24H2O, has two μ3-CO3 groups that not only bridge octahedrally coordinated MnIII ions but also act as acceptors to two different kinds of hydrogen bonds. The carbonate anion is planar within experimental error and has an average C—O distance of 1.294 (4) Å. The crystal packing is stabilized by O—H⋯Cl, O—H⋯O, N—H⋯Cl and N—H⋯O hydrogen bonds. Two of the four independent chloride ions are disordered over five positions, and eight of the 12 independent water mol­ecules are disordered over 21 positions. PMID:21587382

  20. 2,3-Diphenylmaleimide 1-methylpyrrolidin-2-one monosolvate

    Directory of Open Access Journals (Sweden)

    Evgeny Bulatov

    2014-03-01

    Full Text Available In the title compound, C16H11NO2·C5H9NO, the dihedral angles between the maleimide and phenyl rings are 34.7 (2 and 64.8 (2°. In the crystal, the 2,3-diphenylmaleimide and 1-methylpyrrolidin-2-one molecules form centrosymmetrical dimers via pairs of strong N—H...O hydrogen bonds and π–π stacking interactions between the two neighboring maleimide rings [centroid–centroid distance = 3.495 (2 Å]. The dimers are further linked by weak C—H...O and C—H...π hydrogen bonds into a three-dimensional framework.

  1. 6a-Nitro-6-(2,2,7,7-tetramethyltetrahydro-3aH-bis[1,3]dioxolo[4,5-b:4′,5′-d]pyran-5-yl-6a,6b,7,8,9,11a-hexahydro-6H-spiro[chromeno[3,4-a]pyrrolizine-11,11′-indeno[1,2-b]quinoxaline

    Directory of Open Access Journals (Sweden)

    T. Anuradha

    2014-01-01

    Full Text Available In the title compound, C39H38N4O8, the quinoxaline and indene subunits are essentially planar, with maximum deviations of 0.071 (2 and 0.009 (2 Å, respectively. The indenoquinoxaline system forms a dihedral angle of 72.81 (3° with the chromenopyrrolizine system. The two dioxolane rings, as well as the pyran ring of the chromeno group and the terminal pyrrolizine, each adopt an envelope conformation with O and C as flap atoms. The central pyrrolizine ring adopts a twisted conformation. Intramolecular C—H...O and C—H...N hydrogen bonds occur. The crystal structure exhibits C—H...O hydrogen bonds, and is further stablized by C—H...π interactions, forming a two-dimensional network along the bc plane.

  2. (μ-3-Acetyl-5-carboxylato-4-methylpyrazolido-1:2κ4N2,O3:N1,O5-μ-chlorido-tetrapyridine-1κ2N,2κ2N-chlorido-1κCl-dicopper(II propan-2-ol solvate

    Directory of Open Access Journals (Sweden)

    Sergey Malinkin

    2009-10-01

    Full Text Available The title compound, [Cu2(C7H6N2O3Cl2(C5H5N4]·C3H8O, is a binuclear pyrazolate complex, in which the two CuII atoms have different coordination numbers and are connected by a bridging Cl atom. One CuII atom has a distorted square-pyramidal coordination environment formed by two pyridine N atoms, one bridging Cl atom and an N,O-chelating pyrazolate ligand. The other CuII atom adopts an octahedral geometry defined by two pyridine N atoms at the axial positions, two Cl atoms and the coordinated pyrazolate ligand in the equatorial plane. An O—H...O hydrogen bond connects the complex molecules and propan-2-ol solvent molecules into pairs. These pairs form columns along the a axis.

  3. 2-Oxo-2H-chromen-3-yl benzoate

    Directory of Open Access Journals (Sweden)

    Konan René Kambo

    2017-05-01

    Full Text Available In the title compound, C16H10O4, the dihedral angle between the coumarin ring system (r.m.s. deviation = 0.015 Å and the benzoate group is 83.58 (9°, which compares to a value of 81.8° obtained from a DFT calculation at the B3LYP/6–311 G(d,p level. In the crystal, C—O...π and C—H...π interactions and aromatic π–π [Cg...Cg = 3.7214 (14 and 3.7059 (14 Å] stacking generate a three-dimensional network.

  4. Solid-state synthesis, structure and properties of a novel open-framework cadmium selenite bromide: [Cd10(SeO3)8Br4]·HBr·H2O

    International Nuclear Information System (INIS)

    Chen, Wen-Tong; Wang, Ming-Sheng; Wang, Guan-E; Chen, Hui-Fen; Guo, Guo-Cong

    2013-01-01

    A novel open-framework cadmium selenite bromide, [Cd 10 (SeO 3 ) 8 Br 4 ]·HBr·H 2 O (1), has been obtained by a solid-state reaction at 450 °C, and the structure has been determined by single-crystal X-ray diffraction analysis. Compound 1 crystallizes in Pbcm of the orthorhombic system: a=10.882(3), b=16.275(5), c=18.728(6) Å, V=3317(2) Å 3 , R1/wR2=0.0411/0.0659. Compound 1 is characteristic of a novel 3-D open-framework structure, composing ∞ 2 [CdSeO 3 ] layers and the pillars of edge-shared CdO 3 Br 2 square pyramids. The lattice water molecules and the HBr molecules locate in the voids of the framework. Optical absorption spectrum of 1 reveals the presence of an optical gap of 1.65 eV. Solid-state photoluminescent study indicates that compound 1 exhibits strong violet emission. TG–DSC measurement shows that compound 1 is thermally stable up to 200 °C. - Graphical abstract: A metal selenite halide has been synthesized and features a 3-D open-framework structure, composing edge-shared CdO 8 decahedra and pillars of edge-sharing pentahedra. UV–vis, TG–DSC and luminescent measurements are also reported. Highlights: • This paper reports a novel cadmium selenite bromide obtained by an intermediate-temperature solid-state reaction. • The title compound is characteristic of a novel 3-D open-framework structure, composing ∞ 2 [CdSeO 3 ] layers and the pillars of edge-shared CdO 3 Br 2 square pyramids. • The title compound is thermally stable up to 200 °C. • The title compound has an optical gap of 1.65 eV and exhibits strong violet emission

  5. Poly[[diaquabis(2,2′-bipyridine-κ2N,N′(μ3-5-hydroxyisophthalato-κ5O1,O1′:O3,O3′:O3′(μ3-5-hydroxyisophthalato-κ4O1,O1′:O3:O3′(μ2-5-hydroxyisophthalato-κ3O1,O1′:O3didysprosium(III] dihydrate

    Directory of Open Access Journals (Sweden)

    Yan-Lin Zhang

    2011-10-01

    Full Text Available The polymeric title compound, {[Dy2(C8H4O53(C10H8N22(H2O22H2O}n, contains two independent DyIII ions, both of which are nine-coordinated in a distorted tricapped trigonal–prismatic geometry. One DyIII ion is coordinated by five 5-hydroxyisophthalate (hip ligands and one 2,2′-bipyridine (bpy ligand and the other by three hip ligands, one bpy ligand and two water molecules. The DyIII ions are bridged by the carboxylate groups of the hip ligands, forming a three-dimensional framework. O—H...O hydrogen bonds are present in the crystal structure.

  6. Triosmium cluster compounds containing isocyanide and hydride ligands. Crystal and molecular structures of (μ-H)(H)Os3(CO)10(CN-t-C4H9) and (μ-H)2Os3(CO)9(CN-t-C4H9)

    International Nuclear Information System (INIS)

    Adams, R.D.; Golembski, N.M.

    1979-01-01

    The structures of the compounds (μ-H)(H)Os 3 (CO) 10 (CN-t-C 4 H 9 ) and (μ-H) 2 Os 3 (CO) 9 (CN-t-C 4 H 9 ) have been revealed by x-ray crystallographic techniques. For (μ-H)(H)Os 3 (CO) 10 (CN-t-C 4 H 9 ): a = 9.064 (3), b = 12.225 (3), c = 20.364 (4) A; β = 98.73 (3) 0 ; space group P2 1 /c[C/sub 2h/ 5 ], No. 14; Z = 4; d/sub calcd/ = 2.79 g cm -3 . This compound contains a triangular cluster of three osmium atoms; Os(1)--Os(2) = 2.930 (1) A, Os(1)--Os(3) = 2.876 (1) A, and Os(2)--Os(3) = 3.000 (1) A. There are ten linear terminal carbonyl groups and one linear terminal isocyanide ligand which occupies an axial coordination site. The hydrogen atoms were not observed crystallographically, but their positions are strongly inferred from considerations of molecular geometry. For (μ-H) 2 Os 3 (CO) 9 (CN-t-C 4 H 9 ): a = 15.220 (8), b = 12.093 (6), c = 23.454 (5) A; space group Pbcn [D/sub 2h/ 14 ], No. 60; Z = 8; d/sub calcd/ = 2.79 g cm -3 . The compound is analogous to the parent carbonyl (μ-H) 2 Os 3 (CO) 10 and has two normal and one short osmium--osmium bonds: Os(1)--Os(2) = 2.827 (1) A, Os(1)--Os(3) = 2.828 (1) A, Os(2)--Os(3) = 2.691 (1) A. The isocyanide ligand resides in an equatorial coordination site on osmium Os(2). The hydrogen atoms were not observed but are believed to occupy bridging positions as in the parent carbonyl complex. 2 figures, 7 tables

  7. Crystal structure of (CH3H6)3[Y(Edta)F2]xH2O

    International Nuclear Information System (INIS)

    Mistryukov, V.Eh.; Sergeev, A.V.; Chuklanova, E.B.; Mikhajlov, Yu.N.; Shchel okov, R.N.

    1997-01-01

    Difluoroethylenediaminetetraacetatoyttriate of guanidinium of the composition (CH 3 H 6 ) 3 [Y(Edta)F 2 ]xH 2 has been synthesized and studied by X-ray diffraction method. The crystals are monoclinic, unit cell parameters are as follows: a = 17.61(1), b = 10.435 (5), c = 13.467(8) A, β 100.70 (5), Z = 4, sp.gr. P2 1 /n. The structure is solved by the method of heavy atom and refined by means of the least square method in anisotropic approximation for other than hydrogen atoms up to R = 0.050; hydrogen atoms except H atoms in water molecule, localized from difference synthesis, are incorporated in the refining in fixed positions

  8. Subsolidus phase relations of Bi2O3-Nd2O3-CuO

    International Nuclear Information System (INIS)

    Sun Yezhou

    1997-01-01

    The subsolidus phase relations of the Bi 2 O 3 -Nd 2 O 3 -CuO ternary system and its binary systems along with crystallographic parameters of the compounds were investigated by X-ray powder diffraction and differential thermal analysis. The room temperature section of the phase diagram of the Bi 2 O 3 -Nd 2 O 3 -CuO system can be divided into two diphase regions and six triphase regions. No ternary compound was found. There exist two solid solutions (α, β) and a compound Bi 0.55 Nd 0.45 O 1.5 in the (Bi 2 O 2 ) 1-x (Nd 2 O 3 ) x system. Both solid solution α (0.05≤x≤0.30) and β (0.53≤x≤0.73) belong to the rhombohedral system (R3m). The lattice parameters represented by a hexagonal cell are a=3.9832(4), c=27.536(5) A for Bi 0.8 Nd 0.2 O 1.5 (α phase) and a=3.8826(3), c=9.727(1) A for Bi 0.4 Nd 0.8 O 1.5 (β phase). The Bi 0.55 Nd 0.45 O 1.5 compound crystallizes in a face-centered cubic (f.c.c.) lattice with a=5.5480(2) A. (orig.)

  9. 2-Chloroquinazolin-4(3H-one

    Directory of Open Access Journals (Sweden)

    Dong-Lei Cao

    2012-06-01

    Full Text Available In the title compound, C8H5ClN2O, the quinazoline system is approximately planar with a maximum deviation from the least-squares plane of 0.034 (2 Å. In the crystal, classical N—H...O and weak non-classical C—H...N hydrogen bonds link the molecules.

  10. Phase relations in the SiC-Al2O3-Pr2O3 system

    International Nuclear Information System (INIS)

    Pan, W.; Wu, L.; Jiang, Y.; Huang, Z.

    2016-01-01

    Phase relations in the Si-Al-Pr-O-C system, including the SiC-Al 2 O 3 -Pr 2 O 3 , the Al 2 O 3 -Pr 2 O 3 -SiO 2 and the SiC-Al 2 O 3 -Pr 2 O 3 -SiO 2 subsystems, were determined by means of XRD phase analysis of solid-state-reacted samples fabricated by using SiC, Al 2 O 3 , Pr 2 O 3 and SiO 2 powders as the starting materials. Subsolidus phase diagrams of the systems were presented. Two Pr-aluminates, namely PrAlO 3 (PrAP) and PrAl 11 O 18 (β(Pr) β-Al 2 O 3 type) were formed in the SiC-Al 2 O 3 -Pr 2 O 3 system. SiC was compatible with both of them. Pr-silicates of Pr 2 SiO 5 , Pr 2 Si 2 O 7 and Pr 9.33 Si 6 O 26 (H(Pr) apatite type) were formed owing to presence of SiO 2 impurity in the SiC powder. The presence of the SiO 2 extended the ternary system of SiC-Al 2 O 3 -Pr 2 O 3 into a quaternary system of SiC-Al 2 O 3 -SiO 2 -Pr 2 O 3 (Si-Al-Pr-O-C). SiC was compatible with Al 2 O 3 , Pr 2 O 3 and the Pr-silicates. The effect of SiO 2 on the phase relations and liquid phase sintering of SiC ceramics was discussed.

  11. Crystal structure of 4-(1H-indol-3-yl-2-(4-methoxyphenyl-6-phenylpyridine-3-carbonitrile

    Directory of Open Access Journals (Sweden)

    R. Vishnupriya

    2014-10-01

    Full Text Available In the title compound, C27H19N3O, the dihedral angles between the plane of the pyridine ring and those of the indole (r.m.s. deviation = 0.018 Å, phenyl and methoxybenzene substituents are 33.60 (6, 25.28 (7 and 49.31 (7°, respectively. The N atom of the carbonitrile group is significantly displaced [0.288 (2 Å] from the plane of the pyridine ring, perhaps due to steric crowding. In the crystal, inversion dimers linked by pairs of N—H...Nn (n = nitrile hydrogen bonds generate R22(16 loops. Aromatic π–π stacking [centroid–centroid separation = 3.6906 (7 Å] and very weak C—H...π interactions are also observed".

  12. 1-[2-Oxo-1′-phenyl-2′,3′,5′,6′,7′,7a'-hexahydroindoline-3-spiro-3′-1′H-pyrrolizin-2′-yl]-3-phenylprop-2-en-1-one

    Directory of Open Access Journals (Sweden)

    S. Sriman Narayanan

    2008-09-01

    Full Text Available In the title compound, C29H26N2O2, one of the pyrrolidine rings in the pyrrolizine system is disordered, with site occupancies of ca 0.55 and 0.45. Both components of the disordered pyrrolidine ring adopt envelope conformations, whereas the other pyrrolidine ring adopts a twist conformation. The molecules are linked into centrosymmetric dimers by N—H...O hydrogen bonds and the dimers are connected via C—H...π interactions.

  13. [(E-2-(3,5-Dibromo-2-oxidobenzylideneamino-3-(4-hydroxyphenylpropionato-κ3O,N,O′](dimethylformamide-κOcopper(II

    Directory of Open Access Journals (Sweden)

    Hong Liang

    2008-04-01

    Full Text Available In the title complex, [Cu(C16H11Br2NO4(C3H7NO]2, there are two unique molecules in the asymmetric unit. Each CuII atom is coordinated by two O atoms and one N atom from the tridentate ligand L2− [LH2 = (E-2-(3,5-dibromo-2-hydroxybenzylideneamino-2-(4-hydroxyphenylacetic acid] and the O atom of a dimethylformamide molecule to give a slightly distorted square-planar geometry. The two unique molecules form a dimer through weak C—H...O hydrogen bonds. In the dimer, the Cu...Cu distance is 3.712 (1 Å. In the crystal structure, molecules form a one-dimensional chain through C—H...O hydrogen bonds. These are further aggregated into a three-dimensional network by O—H...O and C—H...O hydrogen bonds.

  14. (E-Methyl 3-(3,4-dimethoxyphenyl-2-[(1,3-dioxoisoindolin-2-ylmethyl]acrylate

    Directory of Open Access Journals (Sweden)

    D. Kannan

    2012-04-01

    Full Text Available In the title compound, C21H19NO6, the isoindole ring system is essentially planar [maximum deviation = 0.019 (2 Å for the N atom] and is oriented at a dihedral angle of 51.3 (1° with respect to the benzene ring. The two methoxy groups are almost coplanar with the attached benzene ring [C—O—C—C = 3.7 (4 and 4.3 (4°]. The molecular conformation is stabilized by an intramolecular C—H...O hydrogen bond, which generates an S(9 ring motif. In the crystal, molecules are linked through bifurcated C—H...(O,O hydrogen bonds having R12(5 ring motifs, forming chains along the b-axis direction. The crystal packing is further stabilzed by π–π interactions [centriod–centroid distance = 3.463 (1 Å].

  15. (S,Z-3-Phenyl-2-[(1,1,1-trichloro-7-methoxy-2,7-dioxohept-3-en-4-ylamino]propanoic acid monohydrate

    Directory of Open Access Journals (Sweden)

    Alex Fabiani Claro Flores

    2014-02-01

    Full Text Available In the title compound, C17H18Cl3NO5·H2O, intramolecular N—H...O and C—H...Cl hydrogen bonds form S(6 and S(5 ring motifs, respectively. The chiral organic molecule is connected to the solvent water molecule by a short O—H...O hydrogen bond. In the crystal, a weak C—H...Cl interaction connects the organic molecules along [100] while the water molecules act as bridges between the organic molecules in both the [100] and [010] directions, generating layers parallel to the ab plane.

  16. 2-{[2-Methyl-3-(2-methylphenyl-4-oxo-3,4-dihydroquinazolin-8-yl]oxy}acetonitrile

    Directory of Open Access Journals (Sweden)

    Adel S. El-Azab

    2012-07-01

    Full Text Available In the title compound, C18H15N3O2, the fused ring system is almost planar [the dihedral angle between the six-membered rings is 1.81 (6°]. The 2-tolyl ring is approximately orthogonal to this plane [dihedral angle = 83.03 (7°] as is the acetonitrile group [C—O—C—C torsion angle = 79.24 (14°] which is also syn to the methyl substituent of the tolyl group. In the crystal, supramolecular layers are formed in the bc plane mediated by C—H...O, C—H...N and C—H...π interactions. The tolyl group is disordered over two positions in a 0.852 (3:0.148 (3 ratio.

  17. Activation of sp3-CH Bonds in a Mono(pentamethylcyclopentadienyl)yttrium Complex. X-ray Crystal Structures and Dynamic Behavior of Cp*Y(o-C6H4CH2NMe2)2 and Cp*Y[o-C6H4CH2NMe(CH2-μ)][μ-o-C6H4CH2NMe(CH2-μ)]YCp*[THF

    NARCIS (Netherlands)

    Booij, Martin; Kiers, Niklaas H.; Meetsma, Auke; Teuben, Jan H.; Smeets, Wilberth J.J.; Spek, Anthony L.

    1989-01-01

    Reaction of Y(o-C6H4CH2NMe2)3 (1) with Cp*H gives Cp*Y(o-C6H4CH2NMe2)2 (2), which crystallizes in the monoclinic space group P21/n (No. 14) with a = 18.607 (4) Å, b = 15.633 (3) Å, c = 8.861 (3) Å, β = 102.73 (3)°, and Z = 4. Least-squares refinement with 3006 independent reflections (F > 4.0σ(F))

  18. 2,2,3,3,5,5,6,6-Octa-p-tolyl-1,4-dioxa-2,3,5,6-tetragermacyclohexane dichloromethane disolvate

    Directory of Open Access Journals (Sweden)

    Monika L. Amadoruge

    2009-09-01

    Full Text Available The title compound, C56H56Ge4O2·2CH2Cl2 or Tol8Ge4O2·2CH2Cl2 (Tol = p-CH3C6H4, was obtained serendipitously during the attempted synthesis of a branched oligogermane from Tol3GeNMe2 and PhGeH3. The molecule contains an inversion center in the middle of the Ge4O2 ring which is in a chair conformation. The Ge—Ge bond distance is 2.4418 (5 Å and the Ge—O bond distances are 1.790 (2 and 1.785 (2 Å. The torsion angles within the Ge4O2 ring are −56.7 (1 and 56.1 (1° for the Ge—Ge—O—Ge angles and −43.9 (1° for the O—Ge—Ge—O angle.

  19. Synthesis of binuclear rhodacarboranes from dianions 1,4- and 1,3-C6H4(CH2-9-C2H2B9H9-7,8-nido)22- and (Ph3P)3RhCl

    International Nuclear Information System (INIS)

    Zakharkin, L.I.; Zhigareva, G.G.

    1996-01-01

    Dianions 1,4 and 1,3-C 6 H 4 (CH 2 -9-C 2 H 2 B 9 H 9 -7,8-nido) 2 2- obtained from nido 7,8-dicarbollide-ion and 1,4-bis(bromomethyl) and 1,3-bis(bromomethyl)benzenes react with (Ph 3 P) 3 RhCl to give binuclear rhodacarboranes, 1,4- and 1,3-[3,3-(Ph 3 P) 2 -3-H-3,1,2-RhC 2 B 9 H 10 -4-CH 2 ] 2 C 6 H 6 with chemical reaction yield 85% and 87% respectively. 7 refs., 1 fig., 1 tab

  20. Ethyl 4-oxo-2,3,4,9-tetrahydro-1H-carbazole-3-carboxylate

    Directory of Open Access Journals (Sweden)

    Cevher Gündoğdu

    2011-06-01

    Full Text Available In the title compound, C15H15NO3, the carbazole skeleton includes an ethoxycarbonyl group at the 3-position. In the indole ring system, the benzene and pyrrole rings are nearly coplanar, forming a dihedral angle of 0.89 (4°. The cyclohexenone ring has an envelope conformation. In the crystal, intermolecular N—H...O and C—H...O hydrogen bonds link the molecules into a three dimensional network. A weak C—H...π interaction is also observed.

  1. Na3Co2(AsO4(As2O7: a new sodium cobalt arsenate

    Directory of Open Access Journals (Sweden)

    Abderrahmen Guesmi

    2012-07-01

    Full Text Available In the title compound, trisodium dicobalt arsenate diarsenate, Na3Co2AsO4As2O7, the two Co atoms, one of the two As and three of the seven O atoms lie on special positions, with site symmetries 2 and m for the Co, m for the As, and 2 and twice m for the O atoms. The two Na atoms are disordered over two general and special positions [occupancies 0.72 (3:0.28 (3 and 0.940 (6:0.060 (6, respectively]. The main structural feature is the association of the CoO6 octahedra in the ab plane, forming Co4O20 units, which are corner- and edge-connected via AsO4 and As2O7 arsenate groups, giving rise to a complex polyhedral connectivity with small tunnels, such as those running along the b- and c-axis directions, in which the Na+ ions reside. The structural model is validated by both bond-valence-sum and charge-distribution methods, and the distortion of the coordination polyhedra is analyzed by means of the effective coordination number.

  2. 5′-Methylsulfanyl-4′-oxo-7′-phenyl-3′,4′-dihydro-1′H-spiro[cyclohexane-1,2′-quinazoline]-8′-carbonitrile dimethylformamide monosolvate

    Directory of Open Access Journals (Sweden)

    Xuan Liu

    2011-08-01

    Full Text Available In the title compound, C21H21N3OS·C3H7NO, the carbonitrile molecule is built up of two fused six-membered rings and one six-membered ring linked through a spiro C atom. The 1,3-diaza ring adopts an envelope conformation and the cyclohexane ring adopts a chair conformation. The dihedral angle between the aromatic rings is 46.7 (3°. In the crystal, the components are linked by N—H...O hydrogen bonds.

  3. Observations of VOC emissions and photochemical products over US oil- and gas-producing regions using high-resolution H3O+ CIMS (PTR-ToF-MS

    Directory of Open Access Journals (Sweden)

    A. Koss

    2017-08-01

    Full Text Available VOCs related to oil and gas extraction operations in the United States were measured by H3O+ chemical ionization time-of-flight mass spectrometry (H3O+ ToF-CIMS/PTR-ToF-MS from aircraft during the Shale Oil and Natural Gas Nexus (SONGNEX campaign in March–April 2015. This work presents an overview of major VOC species measured in nine oil- and gas-producing regions, and a more detailed analysis of H3O+ ToF-CIMS measurements in the Permian Basin within Texas and New Mexico. Mass spectra are dominated by small photochemically produced oxygenates and compounds typically found in crude oil: aromatics, cyclic alkanes, and alkanes. Mixing ratios of aromatics were frequently as high as those measured downwind of large urban areas. In the Permian, the H3O+ ToF-CIMS measured a number of underexplored or previously unreported species, including aromatic and cycloalkane oxidation products, nitrogen heterocycles including pyrrole (C4H5N and pyrroline (C4H7N, H2S, and a diamondoid (adamantane or unusual monoterpene. We additionally assess the specificity of a number of ion masses resulting from H3O+ ion chemistry previously reported in the literature, including several new or alternate interpretations.

  4. Observations of VOC emissions and photochemical products over US oil- and gas-producing regions using high-resolution H3O+ CIMS (PTR-ToF-MS)

    Science.gov (United States)

    Koss, Abigail; Yuan, Bin; Warneke, Carsten; Gilman, Jessica B.; Lerner, Brian M.; Veres, Patrick R.; Peischl, Jeff; Eilerman, Scott; Wild, Rob; Brown, Steven S.; Thompson, Chelsea R.; Ryerson, Thomas; Hanisco, Thomas; Wolfe, Glenn M.; St. Clair, Jason M.; Thayer, Mitchell; Keutsch, Frank N.; Murphy, Shane; de Gouw, Joost

    2017-08-01

    VOCs related to oil and gas extraction operations in the United States were measured by H3O+ chemical ionization time-of-flight mass spectrometry (H3O+ ToF-CIMS/PTR-ToF-MS) from aircraft during the Shale Oil and Natural Gas Nexus (SONGNEX) campaign in March-April 2015. This work presents an overview of major VOC species measured in nine oil- and gas-producing regions, and a more detailed analysis of H3O+ ToF-CIMS measurements in the Permian Basin within Texas and New Mexico. Mass spectra are dominated by small photochemically produced oxygenates and compounds typically found in crude oil: aromatics, cyclic alkanes, and alkanes. Mixing ratios of aromatics were frequently as high as those measured downwind of large urban areas. In the Permian, the H3O+ ToF-CIMS measured a number of underexplored or previously unreported species, including aromatic and cycloalkane oxidation products, nitrogen heterocycles including pyrrole (C4H5N) and pyrroline (C4H7N), H2S, and a diamondoid (adamantane) or unusual monoterpene. We additionally assess the specificity of a number of ion masses resulting from H3O+ ion chemistry previously reported in the literature, including several new or alternate interpretations.

  5. Carbonyl[4-(2,3-dimethylphenylaminopent-3-en-2-onato-κ2N,O](triphenylphosphine-κPrhodium(I

    Directory of Open Access Journals (Sweden)

    Gertruida J. S. Venter

    2009-11-01

    Full Text Available In the title compound, [Rh(C13H16NO(C18H15P(CO], the coordination geometry of the RhI atom is square-planar, formed by the coordinating N and O atoms of the bidentate enaminoketonate ligand, one C atom from the carbonyl group and a P atom from triphenylphosphine. The complex displays a 0.591 (3:0.409 (3 ratio disorder of the phenyl unit of the monoanionic N,O-bidentate ligand. Intramolecular hydrogen bonding is observed between a C—H group of the triphenylphosphine unit and the O atom of the enaminoketonate ligand.

  6. Dimethyl 4,4′-dihydroxy-3,3′-{[(3aRS,7aRS-2,3,3a,4,5,6,7,7a-octahydro-1H-1,3-benzimidazole-1,3-diyl]bis(methylene}dibenzoate

    Directory of Open Access Journals (Sweden)

    Augusto Rivera

    2011-11-01

    Full Text Available The title compound, C25H30N2O6, has the imidazolidine ring in an envelope conformation. There are two intramolecular O—H...N hydrogen-bond interactions with graph-set motif S(6. The cyclohexane ring adopts a slightly distorted chair conformation. One methyl carboxylate substituent forms a dihedral angle of 12.00 (5° with the plane of the benzene ring, while the other methyl carboxylate group is almost coplanar, making a dihedral angle of 2.26 (9°. In the crystal, pairs of intermolecular C—H...O hydrogen bonds form racemic dimers, corresponding to an R22(18 graph-set motif. Further weak C—H...O interactions generate a chain running along the c axis.

  7. (7aR-1-[(2R,5S,E-6-Hydroxy-5,6-dimethylhept-3-en-2-yl]-7a-methylhexahydro-1H-inden-4(2H-one

    Directory of Open Access Journals (Sweden)

    Marcos L. Rivadulla

    2013-02-01

    Full Text Available The chiral title compound, C19H32O2, contains a [4.3.0]-bicyclic moiety in which the shared C—C bond presents a trans configuration and a side chain in which the C=C double bond shows an E conformation. The conformations of five- and six-membered rings are envelope (with the bridgehead atom bearing the methyl substituent as the flap and chair, respectively, with a dihedral angle of 4.08 (17° between the idealized planes of the rings. In the crystal, the molecules are self-assembled via classical O—H...O hydrogen bonds, forming chains along [112]; these chains are linked by weak non-classical C—H...O hydrogen bonds, giving a two-dimensional supramolecular structure parallel to (010. The absolute configuration was established according to the configuration of the starting material.

  8. Crystal structure of triaqua(1,10-phenanthroline-κ2N,N′(2,4,5-trifluoro-3-methoxybenzoato-κO1cobalt(II 2,4,5-trifluoro-3-methoxybenzoate

    Directory of Open Access Journals (Sweden)

    Junshan Sun

    2014-11-01

    Full Text Available The title salt, [Co(C8H4F3O3(C12H8N2(H2O3](C8H4F3O3, was obtained under solvothermal conditions by the reaction of 2,4,5-trifluoro-3-methoxybenzoic acid with CoCl2 in the presence of 1,10-phenanthroline (phen. The CoII ion is octahedrally coordinated by two N atoms [Co—N = 2.165 (2 and 2.129 (2 Å] from the phen ligand, by one carboxylate O atom [Co—O = 2.107 (1 Å] and by three O atoms from water molecules [Co—O = 2.093 (1, 2.102 (1 and 2.114 (1 Å]. The equatorial positions of the slightly distorted octahedron are occupied by the N atoms, the carboxylate O and one water O atom. An intra- and intermolecular O—H...O hydrogen-bonding network between the water-containing complex cation and the organic anion leads to the formation of ribbons parallel to [010].

  9. Di-n-butyl 4,4′-dihydroxy-3,3′-{[(3aRS,7aRS-2,3,3a,4,5,6,7,7a-octahydro-1H-1,3-benzimidazole-1,3-diyl]bis(methylene}dibenzoate

    Directory of Open Access Journals (Sweden)

    Augusto Rivera

    2011-09-01

    Full Text Available The complete molecule of the title compound, C31H42N2O6, is generated by crystallographic twofold symmetry, with one C atom lying on the axis. The dihedral angle between the aromatic rings is 57.03 (6°. The central heterocyclic ring adopts a half-chair conformation. The molecular conformation is stabilized by two intramolecular O—H...N hydrogen bonds with the N atoms of the heterocyclic ring as the acceptors. In the crystal, molecules are linked into chains along the c axis by non-classical C—H...O hydrogen bonds.

  10. 2-[3-(4-Methoxyphenyl-1-phenyl-1H-pyrazol-5-yl]phenol

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available The title compound, C22H18N2O2, was derived from 1-(2-hydroxyphenyl-3-(4-methoxyphenylpropane-1,3-dione. The central pyrazole ring forms dihedral angles of 16.83 (5, 48.97 (4 and 51.68 (4°, respectively, with the methoxyphenyl, phenyl and hydroxyphenyl rings. The crystal packing is stabilized by O—H...N hydrogen bonding.

  11. Crystal structure of diquabis (3-hydroxybenzoato-κO)bis(nicotinamide-κN)zinc(II)

    International Nuclear Information System (INIS)

    Sahin, O.; Buyukgungor, O.; Koese, D. A.; Necefoglu, H.

    2010-01-01

    The title compound, [Zn(C 7 H 5 O 3 ) 2 (C 6 H 6 N 2 O) 2 (H 2 O) 2 ], is a two-dimensional hydrogen-bonded supramolecular complex. The Zn I I ion resides on the centre of symmetry and is in an octahedral coordination environment comprising two pyridyl N atoms, two carboxylate O atoms and two O atoms from water molecules. Intermolecular N-H...O and O-H...O hydrogen bonds produce R 1 1 (6), R 2 2 (7), R 2 2 (8), R 2 2 (16), R 2 2 (20), R 2 2 (22) and R 3 3 (30) rings which lead to a one-dimensional polymeric chains. An extensive two-dimensional network of N-H...O, O-H...O, C-H...O hydrogen bonds, and C-H...π interactions are responsible for crystal stabilization.

  12. Phase formation in the Li2MoO4–K2MoO4–In2(MoO4)3 system and crystal structures of new compounds K3InMo4O15 and LiK2In(MoO4)3

    International Nuclear Information System (INIS)

    Khal’baeva, Klara M.; Solodovnikov, Sergey F.; Khaikina, Elena G.; Kadyrova, Yuliya M.; Solodovnikova, Zoya A.; Basovich, Olga M.

    2012-01-01

    XRD study of solid-phase interaction in the Li 2 MoO 4 –K 2 MoO 4 –In 2 (MoO 4 ) 3 system was performed. The boundary K 2 MoO 4 –In 2 (MoO 4 ) 3 system is an non-quasibinary join of the K 2 O–In 2 O 3 –MoO 3 system where a new polymolybdate K 3 InMo 4 O 15 isotypic to K 3 FeMo 4 O 15 was found. In the structure (a=33.2905(8), b=5.8610(1), c=15.8967(4) Å, β=90.725(1)°, sp. gr. C2/c, Z=8, R(F)=0.0407), InO 6 octahedra, Mo 2 O 7 diortho groups and MoO 4 tetrahedra form infinite ribbons {[In(MoO 4 ) 2 (Mo 2 O 7 )] 3− } ∞ along the b-axis. Between the chains, 8- to 10-coordinate potassium cations are located. A subsolidus phase diagram of the Li 2 MoO 4 –K 2 MoO 4 –In 2 (MoO 4 ) 3 system was constructed and a novel triple molybdate LiK 2 In(MoO 4 ) 3 was revealed. Its crystal structure (a=7.0087(2), b=9.2269(3), c=10.1289(3) Å, β=107.401(1)°, sp. gr. P2 1 , Z=2, R(F)=0.0280) contains an open framework of vertex-shared MoO 4 tetrahedra, InO 6 octahedra and LiO 5 tetragonal pyramids with nine- and seven-coordinate potassium ions in the framework channels. - Graphical abstract: Exploring the Li 2 MoO 4 –K 2 MoO 4 –In 2 (MoO 4 ) 3 system showed its partial non-quasibinarity and revealed new compounds K 3 InMo 4 O 15 (isotypic to K 3 FeMo 4 O 15 ) and LiK 2 In(MoO 4 ) 3 which were structurally studied. An open framework of the latter is formed by vertex-shared MoO 4 tetrahedra, InO 6 octahedra and LiO 5 tetragonal pyramids. Highlights: ► Subsolidus phase relations in the Li 2 MoO 4 –K 2 MoO 4 –In 2 (MoO 4 ) 3 system were explored. ► The K 2 MoO 4 –In 2 (MoO 4 ) 3 system is a non-quasibinary join of the K 2 O–In 2 O 3 –MoO 3 system. ► New compounds K 3 InMo 4 O 15 and LiK 2 In(MoO 4 ) 3 were obtained and structurally studied. ► K 3 InMo 4 O 15 is isotypic to K 3 FeMo 4 O 15 and carries bands of InO 6 , MoO 4 and Mo 2 O 7 units. ► An open framework of LiK 2 In(MoO 4 ) 3 is formed by polyhedra MoO 4 , InO 6 and LiO 5 .

  13. 4-(2,4-Dichlorophenyl-2-(1H-indol-3-yl-6-methoxypyridine-3,5-dicarbonitrile

    Directory of Open Access Journals (Sweden)

    M. N. Ponnuswamy

    2008-10-01

    Full Text Available In the title compound, C22H12Cl2N4O, the indole ring system and the benzene ring form dihedral angles of 21.18 (7° and 68.43 (8°, respectively, with the pyridine ring. The methoxy group is coplanar with the pyridine ring. In the crystal structure N—H...N intermolecular hydrogen bonds link the molecules into C(10 chains running along [011]. Intramolecular C—H...N hydrogen bonds are also observed.

  14. Ca2 Al2 SiO7 :Ce3+ phosphors for mechanoluminescence dosimetry.

    Science.gov (United States)

    Tiwari, Geetanjali; Brahme, Nameeta; Sharma, Ravi; Bisen, D P; Sao, Sanjay Kumar; Sahu, Ishwar Prasad

    2016-12-01

    A series of Ce 3+ ion single-doped Ca 2 Al 2 SiO 7 phosphors was synthesized by a combustion-assisted method at an initiating temperature of 600 °C. The samples were annealed at 1100 °C for 3h and their X-ray diffraction patterns confirmed a tetragonal structure. The phase structure, particle size, surface morphology and elemental analysis were analyzed using X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy techniques. Thermoluminescence (TL) intensity increased with increase in ultraviolet (UV) light exposure time up to 15 min. With further increase in the UV irradiation time the TL intensity decreases. The increase in TL intensity indicates that trap concentration increased with UV exposure time. A broad peak at 121 °C suggested the existence of a trapping level. The peak of mechanoluminescence (ML) intensity versus time curve increased linearly with increasing impact velocity of the moving piston. Mechanoluminescence intensity increased with increase in UV irradiation time up to 15 min. Under UV-irradiation excitation, the TL and ML emission spectra of Ca 2 Al 2 SiO 7 :Ce 3+ phosphor showed the characteristic emission of Ce 3+ peaking at 400 nm (UV-violet) and originating from the Ce 3+ transitions of 5d-4f ( 2 F 5/2 and 2 F 7/2 ). The photoluminescence (PL) emission spectra for Ca 2 Al 2 SiO 7 :Ce 3+ were similar to the ML/TL emission spectra. The mechanism of ML excitation and the suitability of the Ca 2 Al 2 SiO 7 :Ce 3+ phosphor for radiation dosimetry are discussed. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Synthesis, structure and magnetic properties of a new iron phosphonate-oxalate with 3D framework: [Fe(O3PCH3)(C2O4)0.5(H2O)

    International Nuclear Information System (INIS)

    Zhang Yangyang; Qi Yue; Zhang Ying; Liu Ziyu; Zhao Yinfeng; Liu Zhongmin

    2007-01-01

    A new iron phosphonate-oxalate [Fe(O 3 PCH 3 )(C 2 O 4 ) 0.5 (H 2 O)] (1), has been synthesized under hydrothermal condition. The single-crystal X-ray diffraction studies reveal that 1 consists of layers of vertex-linked FeO 6 octahedra and O 3 PC tetrahedra, which are further connected by bis-chelate oxalate bridges, giving to a 3D structure with 10-membered channels. Crystal data: monoclinic, P2 1 /n (no. 14), a=4.851(2)A, b=16.803(7)A, c=7.941(4)A, β=107.516(6) o , V=617.2(5)A 3 , Z=4, R 1 =0.0337 and wR 2 =0.0874 for 1251 reflections [I>2σ(I)]. Mossbauer spectroscopy measurement confirms the existence of high-spin Fe(III) in 1. Magnetic studies show that 1 exhibits weak ferromagnetism with T N =30K due to a weak spin canting

  16. (Diethyl ether{1-[2-(1-methyl-1H-imidazol-2-yl-κN3-1,1-diphenylethyl]-(1,2,3,3a,7a-η-indenyl}lithium(I

    Directory of Open Access Journals (Sweden)

    Maxim V. Borzov

    2009-05-01

    Full Text Available In the title compound, [Li(C27H23N2(C4H10O], the Li atom possesses a nearly planar trigonal coordination environment (assuming the cyclopentadienyl ring of the indenyl group occupies one coordination place. The diethyl ether ligand adopts a nearly planar W-type conformation.

  17. 2,2,6-Trimethyl-5-[2-(4-methylphenylethynyl]-4H-1,3-dioxin-4-one

    Directory of Open Access Journals (Sweden)

    Ignez Caracelli

    2009-11-01

    Full Text Available The 1,3-dioxin-4-one ring in the title compound, C16H16O3, is in a half-boat conformation with the quaternary O—C(CH32—O atom lying 0.546 (1 Å out of the plane defined by the remaining five atoms. The crystal structure is consolidated by C—H...O contacts that lead to supramolecular layers.

  18. Poly[μ2-benzene-1,3-dicarboxylato-κ2O:O′-μ2-1,3-di-4-pyridylpropane-κ2N:N′-zinc(II

    Directory of Open Access Journals (Sweden)

    En Tang

    2008-02-01

    Full Text Available The title compound, [Zn(C8H4O4(C13H14N2]n, was obtained by the hydrothermal reaction of Zn(OAc2·H2O with 1,3-di-4-pyridylpropane (bpp and isophthalic acid (H2ip. The ZnII ion is coordinated by two bpp and two ip ligands in a distorted tetrahedral environment. Each ligand coordinates in a bridging mode to connect ZnII ions into a three-dimensional diamondoid-type structure.

  19. Na/sub 3/Sb/sub 3/As/sub 2/O/sub 14/: An arsenic antimonate with intersecting tunnels

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, A.; Jouini, T.; Ghedira, M.

    1988-07-15

    Na/sub 3/Sb/sub 3/As/sub 2/O/sub 14/, M/sub r/=808.06, monoclinic, P2/sub 1//a, a=12.67(4), b=7.31(1), c=6.52(1) A, ..beta..=107.1(2)/sup 0/, V=577.17 A/sup 3/, Z=2, D/sub m/=4.603 (in bromobenzene), D/sub x/=4.618 Mg m/sup -3/, ..mu../sub Mo/=13.18 mm/sup -1/ F(000)=728. The final R and wR values are 0.0359 and 0.0422 respectively for 845 unique reflections. This structure consists of sheets of corner-sharing SbO/sub 6/ octahedra linked together by AsO/sub 4/ tetrahedra to form a continuous three-dimensional skeleton with intersecting b-axis and c-axis tunnels. The Na/sup +/(1) ions are located at the intersections of these two tunnels and the Na/sup +/(2) ions in the tunnel running along c. The replacement of the Na/sup +/ ions by K/sup +/ results in a modification of the structure which is discussed, and leads to the compound K/sub 3/Sb/sub 3/As/sub 2/O/sub 14/ isotypic to the corresponding phosphate. The title compound exhibits ion exchange properties in an acid aqueous solution.

  20. Ethyl 2-(3,4-dimethyl-5,5-dioxo-1H,4H-benzo[e]pyrazolo[4,3-c][1,2]thiazin-1-ylacetate

    Directory of Open Access Journals (Sweden)

    Sana Aslam

    2012-10-01

    Full Text Available In the title molecule, C15H17N3O4S, the heterocyclic thiazine ring adopts a twist-boat conformation, which differs from that in related compounds, with adjacent S and C atoms displaced by 0.981 (4 and 0.413 (5 Å, respectively, on the same side of the mean plane formed by the remaining ring atoms. The mean plane of the benzene ring makes a dihedral angle of 23.43 (14° with the mean plane of the pyrazole ring. In the crystal, molecules are connected by weak C—H...O hydrogen bonds to form a three-dimensional network. The H atoms of the methyl group attached to the pyrazole ring were refined over six sites with equal occupancies.

  1. Structure elucidation of 3-[1-(6-methoxy-2-naphtyl)ethyl]-6-(2,4-dichlorophenyl)-7H-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazine, C23H18Cl2N4OS from synchrotron X-ray powder diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Gündoğdu, Gülsüm; Aytaç, Sevim Peri; Müller, Melanie; Tozkoparan, Birsen; Kaynak, Filiz Betül

    2017-12-01

    The 3-[1-(6-methoxy-2-naphtyl)ethyl]-6-(2,4-dichlorophenyl)-7H-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazine, C23H18Cl2N4OS compound was synthesized, as a member of the family of novel potential anticancer agents. The structure of the title compound was characterized by IR,1H-NMR, mass spectroscopy, and elemental analysis, previously. In this study, the crystal structure of this compound has been determined from synchrotron X-ray powder diffraction data. The crystal structure was solved by simulated annealing and the final structure was achieved by Rietveld refinement method using soft restrains on all interatomic bond lengths and angles. This compound crystallizes in space groupP21,Z= 2, with the unit-cell parametersa= 15.55645(11) Å,b= 8.61693(6) Å,c= 8.56702(6) Å,β= 104.3270(4)°, andV= 1112.68(1) Å3. In the crystal structure, strong C-H∙∙∙πand weak intermolecular hydrogen-bonding interactions link the molecules into a three-dimensional network. The molecules are in a head-to-head arrangement in the unit cell.

  2. Propane-1,2-diammonium bis(pyridine-2,6-dicarboxylato-κ3O,N,O′nickelate(II tetrahydrate

    Directory of Open Access Journals (Sweden)

    Mohammad Ghadermazi

    2008-07-01

    Full Text Available The reaction of nickel(II nitrate hexahydrate, propane-1,2-diamine and pyridine-2,6-dicarboxylic acid in a 1:2:2 molar ratio in aqueous solution resulted in the formation of the title compound, (C3H12N2[Ni(C7H3NO42]·4H2O or (p-1,2-daH2[Ni(pydc2]·4H2O (where p-1,2-da is propane-1,2-diamine and pydcH2 is pyridine-2,6-dicarboxylic acid. The geometry of the resulting NiN2O4 coordination can be described as distorted octahedral. Considerable C=O...π stacking interactions are observed between the carboxylate C=O groups and the pyridine rings of the (pydc2− fragments, with O...π distances of 3.1563 (12 and 3.2523 (12 Å and C=O...π angles of 95.14 (8 and 94.64 (8°. In the crystal structure, a wide range of non-covalent interactions, consisting of hydrogen bonding [O—H...O, N—H...O and C—H...O, with D...A distances ranging from 2.712 (2 to 3.484 (2 Å], ion pairing, π–π [centroid-to-centroid distance = 3.4825 (8 Å] and C=O...π stacking, connect the various components to form a supramolecular structure.

  3. Poly[(6-carboxypicolinato-κ3O2,N,O6(μ3-pyridine-2,6-dicarboxylato-κ5O2,N,O6:O2′:O6′dysprosium(III

    Directory of Open Access Journals (Sweden)

    Xu Li

    2009-11-01

    Full Text Available In the title complex, [Dy(C7H3NO4(C7H4NO4]n, one of the ligands is fully deprotonated while the second has lost only one H atom. Each DyIII ion is coordinated by six O atoms and two N atoms from two pyridine-2,6-dicarboxylate and two 6-carboxypicolinate ligands, displaying a bicapped trigonal-prismatic geometry. The average Dy—O bond distance is 2.40 Å, some 0.1Å longer than the corresponding Ho—O distance in the isotypic holmium complex. Adjacent DyIII ions are linked by the pyridine-2,6-dicarboxylate ligands, forming a layer in (100. These layers are further connected by π–π stacking interactions between neighboring pyridyl rings [centroid–centroid distance = 3.827 (3 Å] and C—H...O hydrogen-bonding interactions, assembling a three-dimensional supramolecular network. Within each layer, there are other π–π stacking interactions between neighboring pyridyl rings [centroid–centroid distance = 3.501 (2 Å] and O—H...O and C—H...O hydrogen-bonding interactions, which further stabilize the structure.

  4. (2SR,3SR-Isopropyl 3-{[dimethyl(phenylsilyl]methyl}-2-hydroxy-2-vinylpent-4-enoate

    Directory of Open Access Journals (Sweden)

    Martin Hiersemann

    2010-12-01

    Full Text Available The relative configuration of the title compound, C19H28O3Si, which was synthesized using a dienolate-[2,3]-Wittig rearrangement, was corroborated by single-crystal X-ray diffraction analysis. The Si—C bond distances are in the range 1.858 (2–1.880 (2 Å and an intramolecular O—H...O hydrogen bond helps to stabilize the molecular conformation.

  5. Improved modification for the density-functional theory calculation of thermodynamic properties for C-H-O composite compounds.

    Science.gov (United States)

    Liu, Min Hsien; Chen, Cheng; Hong, Yaw Shun

    2005-02-08

    A three-parametric modification equation and the least-squares approach are adopted to calibrating hybrid density-functional theory energies of C(1)-C(10) straight-chain aldehydes, alcohols, and alkoxides to accurate enthalpies of formation DeltaH(f) and Gibbs free energies of formation DeltaG(f), respectively. All calculated energies of the C-H-O composite compounds were obtained based on B3LYP6-311++G(3df,2pd) single-point energies and the related thermal corrections of B3LYP6-31G(d,p) optimized geometries. This investigation revealed that all compounds had 0.05% average absolute relative error (ARE) for the atomization energies, with mean value of absolute error (MAE) of just 2.1 kJ/mol (0.5 kcal/mol) for the DeltaH(f) and 2.4 kJ/mol (0.6 kcal/mol) for the DeltaG(f) of formation.

  6. Non-isothermal synergetic catalytic effect of TiF{sub 3} and Nb{sub 2}O{sub 5} on dehydrogenation high-energy ball milled MgH{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tiebang, E-mail: tiebangzhang@nwpu.edu.cn; Hou, Xiaojiang; Hu, Rui; Kou, Hongchao; Li, Jinshan

    2016-11-01

    MgH{sub 2}-M (M = TiF{sub 3} or Nb{sub 2}O{sub 5} or both of them) composites prepared by high-energy ball milling are used in this work to illustrate the dehydrogenation behavior of MgH{sub 2} with the addition of catalysts. The phase compositions, microstructures, particle morphologies and distributions of MgH{sub 2} with catalysts have been evaluated. The non-isothermal synergetic catalytic-dehydrogenation effect of TiF{sub 3} and Nb{sub 2}O{sub 5} evaluated by differential scanning calorimetry gives the evidences that the addition of catalysts is an effective strategy to destabilize MgH{sub 2} and reduce hydrogen desorption temperatures and activation energies. Depending on additives, the desorption peak temperatures of catalyzed MgH{sub 2} reduce from 417 °C to 341 °C for TiF{sub 3} and from 417 °C to 336 °C for Nb{sub 2}O{sub 5}, respectively. The desorption peak temperature reaches as low as 310 °C for MgH{sub 2} catalyzed by TiF{sub 3} coupling with Nb{sub 2}O{sub 5}. The non-isothermal synergetic catalytic effect of TiF{sub 3} and Nb{sub 2}O{sub 5} is mainly attributed to electronic exchange reactions with hydrogen molecules, which improve the recombination of hydrogen atoms during dehydrogenation process of MgH{sub 2}. - Highlights: • Catalytic surface for MgH{sub 2} is achieved by high-energy ball milling. • Non-isothermal dehydrogenation behavior of MgH{sub 2} with TiF{sub 3} and/or Nb{sub 2}O{sub 5} is illustrated. • Dehydrogenation activation energies of synergetic catalyzed MgH{sub 2} are obtained. • Synergetic catalytic-dehydrogenation mechanism of TiF{sub 3} and Nb{sub 2}O{sub 5} is proposed.

  7. 1-{(Z-[2-Methoxy-5-(trifluoromethylanilino]methylidene}naphthalen-2(1H-one

    Directory of Open Access Journals (Sweden)

    Hakan Kargılı

    2013-02-01

    Full Text Available The title compound, C19H14F3NO2, crystallizes in the keto–amine tautomeric form, with a strong intramolecular N—H...O hydrogen bond. The molecule is almost planar; the dihedral angle between the naphthalene ring system and the benzene ring is 4.60 (7°. In the crystal, molecules are linked into chains along the c axis by C—H...O hydrogen bonds. The F atoms of the trifluoromethyl group are disordered over two positions with refined site occupancies of 0.668 (9 and 0.332 (9.

  8. Synthesis of Novel 2-(Substituted aminoalkylthiopyrimidin-4(3H-ones as Potential Antimicrobial Agents

    Directory of Open Access Journals (Sweden)

    Mohamed I. Attia

    2013-12-01

    Full Text Available 5-Alkyl-6-(substituted benzyl-2-thiouracils 3a,c were reacted with (2-chloroethyl diethylamine hydrochloride to afford the corresponding 2-(2-diethylaminoethylthiopyrimidin- 4(3H-ones 4a,b. Reaction of 3a–c with N-(2-chloroethylpyrrolidine hydrochloride and/or N-(2-chloroethylpiperidine hydrochloride gave the corresponding 2-[2-(pyrrolidin-1-ylethyl]-thiopyrimidin-4(3H-ones 5a–c and 2-[2-(piperidin-1-ylethyl]thiopyrimidin-4(3H-ones 6a,b, respectively. Treatment of 3a–d with N-(2-chloroethylmorpholine hydrochloride under the same reaction conditions formed the corresponding 2-[2-(morpholin-4-ylethyl]thiopyrimidines 6c–f. On the other hand, 3a,b were reacted with N-(2-bromoethylphthalimide and/or N-(3-bromopropylphthalimide to furnish the corresponding 2-[2-(N-phthalimidoethyl]-pyrimidines 7a,b and 2-[3-(N-phthalimido-propyl]pyrimidines 7c,d, respectively. Compounds 3a–d, 4a,b, 5a–c, 6a–f and 7a–d were screened against Gram-positive bacteria (Staphylococcus aureus ATCC 29213, Bacillus subtilis NRRL 4219 and Bacillus cereus, yeast-like pathogenic fungus (Candida albicans ATCC 10231 and a fungus (Aspergillusniger NRRL 599. The best antibacterial activity was displayed by compounds 3a, 3b, 4a, 5a, 5b, 6d, 6f, 7b and 7d, whereas compounds 4b, 5b, 5c, 6a, 6b and 6f exhibited the best antifungal activity.

  9. Actividad antiparasitaria de nuevas dihidrodibenzo[c,f]tiazolo[3,2-a] azepin-3(2H-onas contra Leishmania chagasi y Trypanosoma cruzi Antiparasitic activity of novel dihydrodibenzo[c,f]tiazolo[3,2-a] azepin-3(2H-ones agaisnt Leishmania chagasi and Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Sandra Milena Leal Pinto

    2009-12-01

    Chagas disease are considered public health problems in several countries and new chemotherapeutic approaches are needed to control these diseases. Objective: The aim of this study was to evaluate the antiparasitic activity of 7 new dihydrodibenzo[c,f]thiazolo[3.2-a]azepin-3(2H-ones on Leishmania chagasi, Trypanosoma cruzi, and the cytotoxicity on Vero and THP-1 cells. Materials and methods: The antiparasitic activities were determined microscopically counting living parasites compared with untreated control, and the mammalian cell toxicities using the MTT colorimetric test. (Extracellular and intracellular forms of the parasites used and mammalian cells were treated with different concentrations (0.3-600 μM of compounds for 3-5 days. The activities of the compounds were expressed as the concentration to inhibit 50% percent of parasites (IC50 and the concentration to kill 50% of the mammalian cells (CC50. Results: 4 compounds (4a, 4b, 4d, 4g were active against T. cruzi epimastigotes with ranges of IC50 from 11.28 to 32.66 μM, and three (4a, 4c, 4g inhibited the intracellular form (IC50 = 18.42-23.62 μM, with low toxicity on mammalian cells. In L. chagasi, 6 compounds (4a-d, 4g were active against promastigote forms (IC50= 8.27-28.59 μM. Compound 4d was partially active against intracellular amastigotes of L. chagasi (IC50= 59.36 μM. Conclusions: The compounds 4a and 4g were actives on both T. cruzi and L. chagasi parasites with low toxicity on mammalian cells. Further studies of genotoxicity, mechanisms of action and evaluation of its activity in experimental models are necessaries. Salud UIS 2009; 41: 268-274.

  10. 2,2′-[(3aRS,7aRS-Perhydrobenzimidazole-1,3-diylbis(methylene]diphenol

    Directory of Open Access Journals (Sweden)

    Augusto Rivera

    2010-04-01

    Full Text Available The molecular structure of the title compound, C21H26N2O2, shows two intramolecular O—H...N hydrogen-bonding interactions. In the crystal structure, molecular chains are formed along the c axis through weak C—H...O interactions. Neighbouring chains are weakly associated along the a axis via C—H...π interactions.

  11. Synthesis and structure of bis[(2E)-3-(2-furyl)prop-2-enoato]triphenylantimony Ph{sub 3}Sb[O{sub 2}CCH=CH(C{sub 4}H{sub 3}O)]{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Kalistratova, O. S., E-mail: Olga.Kalistratova@yandex.ru; Andreev, P. V.; Gushchin, A. V.; Somov, N. V.; Chuprunov, E. V. [Lobachevsky State University of Nizhny Novgorod (Russian Federation)

    2016-05-15

    Bis[(2E)-3-(2-furyl)prop-2-enoato]triphenylantimony Ph{sub 3}Sb[O{sub 2}CCH=CH(C{sub 4}H{sub 3}O)]{sub 2} is obtained for the first time by the reaction of triphenylantimony, hydrogen peroxide, and 2-furylpropene acid. The X-ray diffraction data show that the central atom of antimony is coordinated in the shape of a distorted trigonal bipyramid. The base of the bipyramid is formed by carbon atoms of phenyl ligands, and the apical vertices are occupied by acid residues. The IR and NMR spectra agree with the composition and structure of the compound.

  12. 4-{(E-[2-(4-Iodobutoxybenzylidene]amino}-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H-one

    Directory of Open Access Journals (Sweden)

    Hoong-Kun Fun

    2010-07-01

    Full Text Available The title Schiff base compound, C22H24IN3O2, adopts an E configuration about the central C=N bond. The pyrazolone ring makes a dihedral angle of 49.68 (10° with its attached phenyl ring. The phenolate plane makes dihedral angles of 16.78 (9 and 50.54 (9°, respectively, with the pyrazolone ring and the terminal phenyl ring. An intramolecular C—H...O hydrogen bond generates an S(6 ring motif. In the crystal structure, an intermolecular C—H...O hydrogen bond is also observed.

  13. Synthesis and crystal structure of trans-[Ni(pyzdcH)M 2 (H 2 O) 2 ...

    African Journals Online (AJOL)

    The determined structure of the title compound C24H20Ni2N8O20 consists of the mononuclear trans-[Ni(pyzdc)2(H2O)2], (pyzdc = pyrazine-2,3- dicarboxylate). The Ni(II) atom is hexa-coordinated by two (pyzdcH)- groups and two water molecules. The coordinated water molecules are in trans-diaxial positions and the ...

  14. (Acetato-κO{bis[(2,4-dimethyl-1H-pyrazol-1-ylmethyl][(pyridin-2-ylmethyl]amine}cobalt(II hexafluoridophosphate

    Directory of Open Access Journals (Sweden)

    Fan Yu

    2012-10-01

    Full Text Available In the title compound, [Co(CH3CO2(C18H24N6]PF6, the CoII atom is pentacoordinated in a distorted trigonal–bipyramidal geometry by four N atoms from a tripodal ligand and one O atom from a monodentate acetate ligand. The crystal packing is stabilized by intermolecular C—H...F and C—H...O hydrogen bonds.

  15. Ethyl 1-oxo-1,2,3,4-tetrahydro-9H-carbazole-3-carboxylate

    Directory of Open Access Journals (Sweden)

    Tuncer Hökelek

    2009-07-01

    Full Text Available The title compound, C15H15NO3, contains a carbazole skeleton with an ethoxycarbonyl group at the 3 position. In the indole ring system, the benzene and pyrrole rings are nearly coplanar, forming a dihedral angle of 1.95 (8°. The cyclohexenone ring has an envelope conformation. In the crystal structure, pairs of strong N—H...O hydrogen bonds link the molecules into centrosymmetric dimers with R22(10 ring motifs. π–π contacts between parallel pyrrole rings [centroid–centroid distance = 3.776 (2 Å] may further stabilize the structure. A weak C—H...π interaction is also observed.

  16. Static susceptibility and heat capacity studies on V{sub 3}O{sub 7}.H{sub 2}O{sub 7} nanobelts

    Energy Technology Data Exchange (ETDEWEB)

    Hellmann, I., E-mail: i.hellmann@ifw-dresden.d [Leibniz-Institut fuer Festkoerper- und Werkstoffforschung (IFW) Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany); Zakharova, G.S.; Volkov, V.L. [Institute of Solid State Chemistry, Ural Division, Russian Academy of Sciences, Pervomaiskaya ul. 91, Yekaterinburg 620219 (Russian Federation); Taeschner, C.; Leonhardt, A.; Buechner, B.; Klingeler, R. [Leibniz-Institut fuer Festkoerper- und Werkstoffforschung (IFW) Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany)

    2010-04-15

    V{sub 3}O{sub 7}.H{sub 2}O nanobelts were prepared by a hydrothermal method at 190 deg. C using V{sub 2}O{sub 5}.nH{sub 2}O gel and H{sub 2}C{sub 2}O{sub 4}.2H{sub 2}O as starting agents. The obtained nanobelts have diameters ranging from 40 to 70 nm with lengths up to several micrometers. Measurements of the static magnetic susceptibility and the specific heat show a discontinuous phase transition at around T=145 K, which separates two regions of paramagnetic behavior.

  17. Methanesulfonates of high-valent metals. Syntheses and structural features of MoO{sub 2}(CH{sub 3}SO{sub 3}){sub 2}, UO{sub 2}(CH{sub 3}SO{sub 3}){sub 2}, ReO{sub 3}(CH{sub 3}SO{sub 3}), VO(CH{sub 3}SO{sub 3}){sub 2}, and V{sub 2}O{sub 3}(CH{sub 3}SO{sub 3}){sub 4} and their thermal decomposition under N{sub 2} and O{sub 2} atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Betke, Ulf; Neuschulz, Kai; Wickleder, Mathias S. [Carl von Ossietzky University of Oldenburg, Institute of Pure and Applied Chemistry (Germany)

    2011-11-04

    Oxide methanesulfonates of Mo, U, Re, and V have been prepared by reaction of MoO{sub 3}, UO{sub 2}(CH{sub 3}COO){sub 2}.2 H{sub 2}O, Re{sub 2}O{sub 7}(H{sub 2}O){sub 2}, and V{sub 2}O{sub 5} with CH{sub 3}SO{sub 3}H or mixtures thereof with its anhydride. These compounds are the first examples of solvent-free oxide methanesulfonates of these elements. MoO{sub 2}(CH{sub 3}SO{sub 3}){sub 2} (Pbca, a=1487.05(4), b=752.55(2), c=1549.61(5) pm, V=1.73414(9) nm{sup 3}, Z=8) contains [MoO{sub 2}] moieties connected by [CH{sub 3}SO{sub 3}] ions to form layers parallel to (100). UO{sub 2}(CH{sub 3}SO{sub 3}){sub 2} (P2{sub 1}/c, a=1320.4(1), b=1014.41(6), c=1533.7(1) pm, β=112.80(1) {sup circle}, V=1.8937(3) nm{sup 3}, Z=8) consists of linear UO{sub 2}{sup 2+} ions coordinated by five [CH{sub 3}SO{sub 3}] ions, forming a layer structure. VO(CH{sub 3}SO{sub 3}){sub 2} (P2{sub 1}/c, a=1136.5(1), b=869.87(7), c=915.5(1) pm, β=113.66(1) {sup circle}, V=0.8290(2) nm{sup 3}, Z=4) contains [VO] units connected by methanesulfonate anions to form corrugated layers parallel to (100). In ReO{sub 3}(CH{sub 3}SO{sub 3}) (P anti 1, a=574.0(1), b=1279.6(3), c=1641.9(3) pm, α=102.08(2), β=96.11(2), γ=99.04(2) {sup circle}, V=1.1523(4) nm{sup 3}, Z=8) a chain structure exhibiting infinite O-[ReO{sub 2}]-O-[ReO{sub 2}]-O chains is formed. Each [ReO{sub 2}]-O-[ReO{sub 2}] unit is coordinated by two bidentate [CH{sub 3}SO{sub 3}] ions. V{sub 2}O{sub 3}(CH{sub 3}SO{sub 3}){sub 4} (I2/a, a=1645.2(3), b=583.1(1), c=1670.2(3) pm, β=102.58(3), V=1.5637(5) pm{sup 3}, Z=4) adopts a chain structure, too, but contains discrete [VO]-O-[VO] moieties, each coordinated by two bidentate [CH{sub 3}SO{sub 3}] ligands. Additional methanesulfonate ions connect the [V{sub 2}O{sub 3}] groups along [001]. Thermal decomposition of the compounds was monitored under N{sub 2} and O{sub 2} atmosphere by thermogravimetric/differential thermal analysis and XRD measurements. Under N{sub 2} the decomposition proceeds

  18. 1-O-Acetyl-3,4,6-tri-O-benzyl-2-C-bromomethyl-2-deoxy-α-d-glucopyranose

    Directory of Open Access Journals (Sweden)

    Henok H. Kinfe

    2013-01-01

    Full Text Available In the title compound, C30H33BrO6, the pyranose ring adopts a chair conformation. Two of the O-benzyl phenyl rings lie almost perpendicular to C/C/C/O plane formed by the ring atoms not attached to these O-benzyl phenyl rings, and form dihedral angles of 85.1 (2 and 64.6 (2°, while the third O-benzyl phenyl ring is twisted so that it makes a dihedral angle 34.9 (2° to this C/C/C/O plane. This twist is ascribed to the formation of an S(8 loop stabilized by a weak intramolecular C—H...O hydrogen bond.

  19. Structure of trihydrated rare-earth acid diphosphates LnHP2O7·3H2O (Ln=La, Er)

    International Nuclear Information System (INIS)

    Ben Moussa, S.; Ventemillas, S.; Cabeza, A.; Gutierrez-Puebla, E.; Sanz, J.

    2004-01-01

    In trihydrated lanthanum acid-diphosphates LnHP 2 O 7 ·3H 2 O, prepared from acid LnCl 3 and Na 4 P 2 O 7 solutions (pH=1), two crystal forms were obtained. Layered structures of two representative members of this family have been determined by single-crystal X-ray diffraction (XRD) technique. In the case of orthorhombic LaHP 2 O 7 ·3H 2 O (type I), lanthanum cations are ninefold coordinated and diphosphate groups adopt a staggered (alternated) configuration. In the case of triclinic ErHP 2 O 7 ·3H 2 O (type II), erbium cations are eightfold coordinated and diphosphate groups adopt an eclipsed configuration. In agreement with Infrared (IR) spectroscopic data, a bended configuration for diphosphate groups has been deduced. In both structures, one-dimensional chains of edge-sharing rare-earth polyhedra are linked together by diphosphate groups to form the phosphate layers. In both diphosphates, PO 4 and HPO 4 environments have been identified by 31 P MAS-NMR technique. In the two compounds, OH groups of HPO 4 tetrahedra point out of diphosphate planes interacting with adjacent layers. In La-diphosphate, the interaction between HPO 4 groups and water molecules of adjacent layers is favored; however, in Er-diphosphate, the interaction between phosphate acid groups of contiguous layers is produced. Based on structural information deduced, differences detected in IR and NMR spectra of two disphosphates are discussed

  20. 1-Benzyl-2-(1H-indol-3-yl-5-oxopyrrolidine-2-carbonitrile

    Directory of Open Access Journals (Sweden)

    Raymond Schinazi

    2008-02-01

    Full Text Available In the title compound, C20H17N3O, a potential anti-human immunodeficiency virus type 1 (HIV-1 non-nucleoside reverse-transcriptase inhibitor, the pyrrolidine ring has an envelope conformation. In the crystal structure, adjacent molecules are connected into infinite chains via an N—H...O hydrogen bond.

  1. 3-Chloro-4-methyl­quinolin-2(1H)-one

    Science.gov (United States)

    Kassem, Mohamed G.; Ghabbour, Hazem A.; Abdel-Aziz, Hatem A.; Fun, Hoong-Kun; Ooi, Chin Wei

    2012-01-01

    The title compound, C10H8ClNO, is almost planar (r.m.s. deviation for the 13 non-H atoms = 0.023 Å). In the crystal, inversion dimers linked by pairs of N—H⋯O hydrogen bonds generate R 2 2(8) rings. Weak aromatic π–π stacking inter­actions [centroid–centroid distance = 3.7622 (12) Å] also occur. PMID:22589913

  2. 1-Benzyl-3-[3-(naphthalen-2-yloxypropyl]imidazolium hexafluorophosphate

    Directory of Open Access Journals (Sweden)

    Kun Huang

    2011-08-01

    Full Text Available In the title salt, C23H23N2O+·PF6−, the PF6− anion is highly disordered (occupancy ratios of 0.35:0.35:0.3, 0.7:0.15:0.15, 0.7:0.3 and 0.35:0.35:0.15:0.15 with the four F atoms in the equatorial plane rotating about the axial F—P—F bond. The mean plane of the imidazole ring makes dihedral angles of 82.44 (17 and 14.39 (16°, respectively, with the mean planes of the benzene ring and the naphthalene ring system. The crystal structure is stabilized by C—H...F hydrogen bonds. In addition, π–π [centroid–centroid distances = 3.7271 (19–3.8895 (17 Å] and C—H...π interactions are observed.

  3. Supramolecular architecture of 5-bromo-7-methoxy-1-methyl-1H-benzoimidazole.3H2O: Synthesis, spectroscopic investigations, DFT computation, MD simulations and docking studies

    Science.gov (United States)

    Murthy, P. Krishna; Smitha, M.; Sheena Mary, Y.; Armaković, Stevan; Armaković, Sanja J.; Rao, R. Sreenivasa; Suchetan, P. A.; Giri, L.; Pavithran, Rani; Van Alsenoy, C.

    2017-12-01

    Crystal and molecular structure of newly synthesized compound 5-bromo-7-methoxy-1-methyl-1H-benzoimidazole (BMMBI) has been authenticated by single crystal X-ray diffraction, FT-IR, FT-Raman, 1H NMR, 13C NMR and UV-Visible spectroscopic techniques; compile both experimental and theoretical results which are performed by DFT/B3LYP/6-311++G(d,p) method at ground state in gas phase. Visualize nature and type of intermolecular interactions and crucial role of these interactions in supra-molecular architecture has been investigated by use of a set of graphical tools 3D-Hirshfeld surfaces and 2D-fingerprint plots analysis. The title compound stabilized by strong intermolecular hydrogen bonds N⋯Hsbnd O and O⋯Hsbnd O, which are envisaged by dark red spots on dnorm mapped surfaces and weak Br⋯Br contacts envisaged by red spot on dnorm mapped surface. The detailed fundamental vibrational assignments of wavenumbers were aid by with help of Potential Energy distribution (PED) analysis by using GAR2PED program and shows good agreement with experimental values. Besides frontier orbitals analysis, global reactivity descriptors, natural bond orbitals and Mullikan charges analysis were performed by same basic set at ground state in gas phase. Potential reactive sites of the title compound have been identified by ALIE, Fukui functions and MEP, which are mapped to the electron density surfaces. Stability of BMMBI have been investigated from autoxidation process and pronounced interaction with water (hydrolysis) by using bond dissociation energies (BDE) and radial distribution functions (RDF), respectively after MD simulations. In order to identify molecule's most important reactive spots we have used a combination of DFT calculations and MD simulations. Reactivity study encompassed calculations of a set of quantities such as: HOMO-LUMO gap, MEP and ALIE surfaces, Fukui functions, bond dissociation energies and radial distribution functions. To confirm the potential

  4. 10-Ethyl-3-(5-methyl-1,3,4-oxadiazol-2-yl-10H-phenothiazine

    Directory of Open Access Journals (Sweden)

    Li-Cheng Sun

    2012-03-01

    Full Text Available In the title compound, C17H15N3OS, the phenothiazine ring system is slightly bent, with a dihedral angle of 13.68 (7° between the benzene rings. The dihedral angle between the oxadiazole ring and the adjacent benzene ring is 7.72 (7°. In the crystal, a π–π interaction with a centroid–centroid distance of 3.752 (2 Å is observed between the benzene rings of neighbouring molecules.

  5. Ethyl (Z-2-(4-chlorobenzylidene-3-oxobutanoate

    Directory of Open Access Journals (Sweden)

    Shaaban K. Mohamed

    2011-02-01

    Full Text Available The C=C double-bond in the title compound, C13H13ClO3, has a Z configuration. The aliphatic substituents at one end of the double bond, i.e. the CH3CO– and C2H5O2C– groups, are aligned at 82.1 (3° with respect to each other.

  6. Bi[NC5H3(CO2)2](OH2)xF (x=1 and 2): New one-dimensional Bi-coordination materials—Reversible hydration and topotactic decomposition to α-Bi2O3

    Science.gov (United States)

    Jeon, Hye Rim; Lee, Dong Woo; Ok, Kang Min

    2012-03-01

    Two one-dimensional bismuth-coordination materials, Bi[NC5H3(CO2)2](OH2)xF (x=1 and 2), have been synthesized by hydrothermal reactions using Bi2O3, 2,6-NC5H3(CO2H)2, HF, and water at 180 °C. Structures of the two materials were determined by single-crystal X-ray diffraction. Although they have different crystal structures, both Bi-organic materials shared a common structural motif, a one-dimensional chain structure consisting of Bi3+ cations and pyridine dicarboxylate linkers. Detailed structural analyses include infrared spectroscopy, thermogravimetric analysis, and reversible hydration reactions for the coordinated water molecules were reported. Also, thermal decomposition of the rod-shaped Bi[NC5H3(CO2)2](OH2)F single crystals at 800 °C led to α-Bi2O3 that maintained the same morphology of the original crystals.

  7. 1-Chloro-3-(6-nitro-1H-indazol-1-ylpropan-2-ol

    Directory of Open Access Journals (Sweden)

    Mohamed Mokhtar Mohamed Abdelahi

    2017-05-01

    Full Text Available In the title compound, C10H10ClN3O3, the side chain is oriented nearly perpendicular to the mean plane of the indazole ring system. In the crystal, complementary sets of O—H...N and C—H...O hydrogen bonds form chains of molecules stacked along the a-axis direction

  8. Investigation of ZnI2-KI-C3H7NO system by ultrasonic method

    International Nuclear Information System (INIS)

    Shevchenko, V.M.; Surovtsev, V.I.; Gorenbejn, E.Ya.

    1975-01-01

    Applicability of the ultrasonic impulses for the research of complex formation in the solutions was demonstrated using ZnI 2 -KI-C 3 H 7 NO system as an example. Changing the solvent structure during complexing was studied. It was determined that ion solvation numbers reflect electrostriction influence of ions on the surrounding solvent moleculas. The maximum effect on dimethylformamide (C 3 H 7 NO) was made by the complex compound KZnI 3 acting as destrictor and the sound speed decrease was the highest in its solution. Possibility of using adiabatic compressibility of the solutions for complexing studies is analysed

  9. (E)-6-Amino-1,3-dimethyl-5-[(pyridin-2-yl-methyl-idene)amino]-pyrimidine-2,4(1H,3H)-dione.

    Science.gov (United States)

    Booysen, Irvin; Hlela, Thulani; Ismail, Muhammed; Gerber, Thomas; Hosten, Eric; Betz, Richard

    2011-09-01

    In the title compound, C(12)H(13)N(5)O(2), a Schiff-base-derived chelate ligand, the non-aromatic heterocycle and its substituents essentially occupy one common plane (r.m.s. of fitted non-H atoms = 0.0503 Å). The N=C bond is E-configured. Intra-cyclic angles in the pyridine moiety cover the range 117.6 (2)-124.1 (2)°. Intra- and inter-molecular N-H⋯N and N-H⋯O hydrogen bonds are observed in the crystal structure, as are intra- and inter-molecular C-H⋯O contacts which, in total, connect the mol-ecules into a three-dimensional network. The shortest ring-centroid-to-ring-centroid distance of 3.5831 (14) Å is between the two different types of six-membered rings.

  10. 2-(3-Hydroxybenzylaminoacetic acid

    Directory of Open Access Journals (Sweden)

    Li-Hua Zhi

    2011-07-01

    Full Text Available There are two independent 2-(3-hydroxybenzylaminoacetic acid molecules, C9H11NO3, in the asymmetric unit of the title compound. The dihedral angle between the benzene rings of the two independent molecules is 58.12 (4°. The crystal packing is stablized by intermolecular O—H...O and N—H...O hydrogen bonds.

  11. Crystal structure of strontium osmate (8) Sr[OsO5(H2O)]x3H2O

    International Nuclear Information System (INIS)

    Nevskij, N.N; Ivanov-Ehmin, B.N.; Nevskaya, N.A.; Belov, N.V.; AN SSSR, Moscow. Inst. Kristallografii)

    1982-01-01

    Crystal structure of the Sr[OsO 5 (H 2 O)]x3H 2 O complex is studied. Rhombic P-cell has the parameters: a=6.426(1), b=7.888(1), c=14.377(5) A, Vsub(c)=729 A 3 . The R-factor equals 0.034. The coordinates of the basis atoms and isotropic temperature corrections, as well as basic interatomic distances, are determined

  12. meso-4,4′-Dimethoxy-2,2′-{[(3aR,7aS-2,3,3a,4,5,6,7,7a-octahydro-1H-benzimidazole-1,3-diyl]bis(methylene}diphenol

    Directory of Open Access Journals (Sweden)

    Augusto Rivera

    2013-07-01

    Full Text Available The title compound, C23H30N2O4, a di-Mannich base derived from 4-methoxyphenol and cis-1,2-diaminecyclohexane, has a perhydrobenzimidazolidine nucleus, in which the cyclohexane ring adopts a chair conformation and the heterocyclic ring has a half-chair conformation with a C—N—C—C torsion angles of −48.14 (15 and −14.57 (16°. The mean plane of the heterocycle makes dihedral angles of 86.29 (6 and 78.92 (6° with the pendant benzene rings. The molecular structure of the title compound shows the presence of two interactions between the N atoms of the imidazolidine ring and the hydroxyl groups through intramolecular O—H...N hydrogen bonds with graph-set motif S(6. The unobserved lone pairs of the N atoms are presumed to be disposed in a syn conformation, being only the second example of an exception to the typical `rabbit-ears' effect in 1,2-diamines.

  13. (2E)-1-(2,6-Dichloro-3-fluoro-phen-yl)-3-phenyl-prop-2-en-1-one.

    Science.gov (United States)

    Praveen, Aletti S; Yathirajan, Hemmige S; Narayana, Badiadka; Gerber, Thomas; Hosten, Eric; Betz, Richard

    2012-04-01

    In the title compound, C(15)H(9)Cl(2)FO, the F atom shows positional disorder over two positions, with site-occupancy factors of 0.747 (4) and 0.253 (4). The dihedral angle between the rings is 86.37 (10)°. In the crystal, C-H⋯O contacts connect the mol-ecules into chains along the c axis. The shortest inter-centroid distance between two aromatic systems is 3.6686 (12) Å and is apparent between the halogenated rings.

  14. Crystal structure, Hirshfeld analysis and molecular docking with the vascular endothelial growth factor receptor-2 of (3Z-5-fluoro-3-(hydroxyiminoindolin-2-one

    Directory of Open Access Journals (Sweden)

    Bianca Barreto Martins

    2017-07-01

    Full Text Available The reaction between 5-fluoroisatin and hydroxylamine hydrochloride in acidic ethanol yields the title compound, C8H5FN2O2, whose molecular structure matches the asymmetric unit and is nearly planar with an r.m.s. deviation for the mean plane through all non-H atoms of 0.0363 Å. In the crystal, the molecules are linked by N—H...N, N—H...O and O—H...O hydrogen-bonding interactions into a two-dimensional network along the (100 plane, forming rings with R22(8 and R12(5 graph-set motifs. The crystal packing also features weak π–π interactions along the [100] direction [centroid-to-centroid distance 3.9860 (5 Å]. Additionally, the Hirshfeld surface analysis indicates that the major contributions for the crystal structure are the O...H (28.50% and H...F (16.40% interactions. An in silico evaluation of the title compound with the vascular endothelial growth factor receptor-2 (VEGFR-2 was carried out. The title compound and the selected biological target VEGFR-2 show the N—H...O(GLU94, (CYS96N—H...O(isatine and (PHE95N—H...O(isatine intermolecular interactions, which suggests a solid theoretical structure–activity relationship.

  15. Crystal structure of 4-(4-chlorophenyl-6-(morpholin-4-ylpyridazin-3(2H-one

    Directory of Open Access Journals (Sweden)

    Abdullah Aydın

    2015-08-01

    Full Text Available In the title compound, C14H14ClN3O2, the morpholine ring adopts a chair conformation, with the exocyclic N—C bond in an equatorial orientation. The 1,6-dihydropyridazine ring is essentially planar, with a maximum deviation of 0.014 (1 Å, and forms a dihedral angle of 40.16 (7° with the plane of the benzene ring. In the crystal, pairs of centrosymmetrically related molecules are linked into dimers via N—H...O hydrogen bonds, forming R22(8 ring motifs. The dimers are connected via C—H...O and C—H...Cl hydrogen bonds, forming a three-dimensional network. Aromatic π–π stacking interactions [centroid–centroid distance = 3.6665 (9 Å] are also observed. Semi-empirical molecular orbital calculations were carried out using the AM1 method. The calculated dihedral angles between the pyridizine and benzene rings and between the pyridizine and morpholine (all atoms rings are 34.49 and 76.96°, respectively·The corresponding values obtained from the X-ray structure determination are 40.16 (7 and 12.97 (9°, respectively. The morpholine ring of the title compound in the calculated gas-phase seems to have a quite different orientation compared to that indicated by the X-ray structure determination.

  16. Hydrothermal synthesis and crystal structure of a new molybdenum oxide compound with manganese-o-phen subunit: [Mn(o-phen)(H2O)MoO4]·H2O (o-phen=o-phenanthroline)

    International Nuclear Information System (INIS)

    Zhang Quanzheng; Lu Canzhong; Yang Wenbin; Chen Shumei; Yu Yaqin; He Xiang; Yan Ying; Liu Jiuhui; Xu Xinjiang; Xia Changkun; Wu Xiaoyuan; Chen Lijuan

    2004-01-01

    A new one-dimensional molybdenum oxide compound with manganese-o-phen subunit: [Mn(o-phen)(H 2 O)MoO 4 ]·H 2 O (1) (o-phen=o-phenanthroline) was synthesized by the hydrothermal reaction of Na 2 MoO 4 ·2H 2 O, MnSO 4 ·H 2 O, oxalic acid, o-phenanthroline (o-phen) and water. Its structure was determined by elemental analyses, ESR spectrum, TG analysis, IR spectrum and single-crystal X-ray diffraction. Compound 1 crystallizes in triclinic system, space group P-1 with a=7.0401(2) A, b=10.4498(2) A, c=10.5720(2) A, α=73.26(7) deg., β=83.34(8) deg., γ=77.33(9) deg., V=725.5089(0) A 3 , Z=2, and R 1 =0.0322 for 2337 observed reflections. Compound 1 exhibits one-dimensional chain structure. The chains are linked up via hydrogen bonding to 2D layers, which are further assembled through π-π stacking interactions to a 3D supermolecular structure

  17. Catalyst-Dependent Chemoselective Formal Insertion of Diazo Compounds into C-C or C-H Bonds of 1,3-Dicarbonyl Compounds.

    Science.gov (United States)

    Liu, Zhaohong; Sivaguru, Paramasivam; Zanoni, Giuseppe; Anderson, Edward A; Bi, Xihe

    2018-05-08

    A catalyst-dependent chemoselective one-carbon insertion of diazo compounds into the C-C or C-H bonds of 1,3-dicarbonyl species is reported. In the presence of silver(I) triflate, diazo insertion into the C(=O)-C bond of the 1,3-dicarbonyl substrate leads to a 1,4-dicarbonyl product containing an all-carbon α-quaternary center. This reaction constitutes the first example of an insertion of diazo-derived carbenoids into acyclic C-C bonds. When instead scandium(III) triflate was applied as the catalyst, the reaction pathway switched to formal C-H insertion, affording 2-alkylated 1,3-dicarbonyl products. Different reaction pathways are proposed to account for this powerful catalyst-dependent chemoselectivity. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. N-(2-Methylphenyl-1,2-benzoselenazol-3(2H-one

    Directory of Open Access Journals (Sweden)

    Xu Zhu

    2013-10-01

    Full Text Available In the title Ebselen [systematic name: (2-phenyl-1,2-benzoisoselenazol-3-(2H-one] analogue, C14H11NOSe, the benzisoselenazolyl moiety (r.m.s. deviation = 0.0209 Å is nearly perpendicular to the N-arenyl ring, making a dihedral angle of 78.15 (11°. In the crystal, molecules are linked by C—H...O and Se...O interactions into chains along the c-axis direction. The Se...O distance [2.733 (3 Å] is longer than that in Ebselen (2.571 (3 Å].

  19. (3R,4R,4aS,7aR,12bS-3-Cyclopropylmethyl-4a,9-dihydroxy-3-methyl-7-oxo-2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-3-ium bromide

    Directory of Open Access Journals (Sweden)

    Xiangfeng Chen

    2012-02-01

    Full Text Available The title compound, C21H26NO4+·Br−, also known as R-methylnaltrexone (MNTX bromide, is a selective peripherally acting μ-opioid receptor antagonist with a oroxymorphone skeleton, synthesized by hydroxyl protection, N-methylation, deprotection and anion exchange of naltrexone. It comprises a five-ring system A/B/C/D/E. Rings C and E adopt distorted chair conformations, whereas ring D is in half-chair conformation. The C/E ring junctions are trans fused. The dihedral angle between rings D and E is 82.3 (1°, while the dihedral angles between the planes of rings C and A, and rings D and E are respectively 81.7 (1, 75.9 (1 and 12.2 (1°. In the crystal, molecules are linked by O—H...Br hydrogen bonds.

  20. Structure of NaH/sub 2/As/sub 3/O/sub 9/: A new condensed arseniate anion

    Energy Technology Data Exchange (ETDEWEB)

    Driss, A.; Jouini, T.; Durif, A.; Averbuch-Pouchot, M.T.

    1988-09-15

    (NaH/sub 2/As/sub 3/O/sub 9/)/sub n/, M/sub r/=393.77, triclinic, Panti 1, a=7.167(1), b=7.575(1), c=7.850(1) A, ..cap alpha..=109.89(1), ..beta..=107.27(1), ..gamma..=106.15(1)/sup 0/, V=346.9 A/sup 3/, Z=2, D/sub m/=3.58, D/sub x/=3.77 g cm/sup -3/, F(000)=368, lambda(Mo K anti ..cap alpha..)=0.7107 A, ..mu..=142 cm/sup -1/, final R=0.034 and wR=0.039 for 1485 reflections with F > sigma(F). A new condensed arseniate anion is found. It consists of infinite (H/sub 2/As/sub 3/O/sub 9/)/sub n//sup n-/ chains built from As/sub 4/O/sub 14/ rings linked by bidentate bridging AsO/sub 4/ tetrahedra.

  1. The structure of Na sub 3 H sub 2 As sub 3 O sub 10. Structure d'un triarseniate: Na sub 3 H sub 2 As sub 3 O sub 10

    Energy Technology Data Exchange (ETDEWEB)

    Driss, A.; Jouini, T. (Tunis Univ. (Tunisia). Dept. de Chimie)

    1990-07-15

    Na{sub 3}H{sub 2}As{sub 3}O{sub 10}, M{sub r}=455.75, monoclinic, C2/c, a=10.860 (3), b=9.323 (3), c=18.270 (5) A, {beta}=103.00 (2)deg, V=1802 (1) A{sup 3}, Z=8, D{sub x}=3.27, D{sub m} (in bromobenzene) = 3.30 Mg m{sup -3}, {lambda}(Mo K anti {alpha})=0.7107 A, {mu}=11.5 mm{sup -1}, F(000)=1712, room temperature, final R=0.035 and wR=0.038 for 578 reflections. This structure contains a triarsenate anion H{sub 2}As{sub 3}O{sub 10}{sup 3-} formed from three AsO{sub 4} tetrahedra pointing in the same direction. They are connected by hydrogen bonds to form layers parallel to held (10anti 1) together by interleaved Na{sup +} cations. Only few triarsenate structures are known. The corresponding phosphate is unknown. An explanation is proposed. (orig.).

  2. N,N-Diethyl-2-[5-(4-methoxybenzylidene-2,4-dioxo-1,3-thiazolidin-3-yl]acetamide

    Directory of Open Access Journals (Sweden)

    Vijayan Viswanathan

    2017-05-01

    Full Text Available In the title compound, C17H20N2O4S, the thiazolidine (r.m.s. deviation = 0.022 Å and phenyl rings (major and minor occupancies are inclined to one another by 6.3 (3 and 10.5 (3°, respectively. The molecular conformation is stabilized by an intramolecular C—H...S interaction. In the crystal, molecules are linked by C—H...O hydrogen bonds, which generate R22(18, R22(24 and R21(7 ring motifs. Aromatic π–π stacking interactions are also observed.

  3. The orthorhombic fluorite related compounds Ln/sub 3/RuO/sub 7/, Ln=Nd, Sm and Eu

    International Nuclear Information System (INIS)

    Van Berkel, F.P.F.; Ijdo, D.J.W.

    1986-01-01

    Fluorite-related Ru(V) compound with composition Ln/sub 3/RuO/sub 7/ have been found. These compounds with space group Cmcm adopt a superstructure of the cubic fluorite structure with a/sub orth/=2a/sub c/, b/sub orth/=c/sub orth/=a/sub c/√2. These compounds have the same structure as La/sub 3/NbO/sub 7/

  4. rac-2-(2-Amino-4-oxo-4,5-dihydro-1,3-thiazol-5-yl-2-hydroxyindane-1,3-dione

    Directory of Open Access Journals (Sweden)

    Narsimha Reddy Penthala

    2009-08-01

    Full Text Available In the crystal of the title compound, C12H8N2O4S, molecules are linked into chains by a series of intermolecular O—H...O, N—H...O and N—H...N hydrogen bonds. The ninhydrin and aminothiazolidine units make a dihedral angle of 66.41 (3°. The crystal structure indicates the presence of equimolar R and S enantiomers in the crystal lattice, due to the presence of a chiral centre in the title compound.

  5. N-(3-{[(Z-(3-Hydroxy-4-methylphenylimino]methyl}pyridin-2-ylpivalamide

    Directory of Open Access Journals (Sweden)

    Şehriman Atalay

    2016-03-01

    Full Text Available The molecular structure of the title compound, C18H21N3O2, contains pivalamide, pyridin and hydroxy-methylphenyl moieties. The whole molecule is not planar, the dihedral angle between the benzene rings being 34.84 (7°. The molecular conformation is stabilized by an intramolecular N—H...N hydrogen bond. In the crystal, molecules are linked by O—H...O, O—H...N and C—H...O hydrogen bonds. The C and H atoms of the tert-butyl group disordered over two sets of sites with an occupancy ratio of 0.692 (5:0.308 (5.

  6. Synthesis, structure and magnetic behavior of a new three-dimensional Manganese phosphite-oxalate: [C2N2H10][Mn2II(OH2)2(HPO3)2(C2O4)

    International Nuclear Information System (INIS)

    Ramaswamy, Padmini; Mandal, Sukhendu; Natarajan, Srinivasan

    2009-01-01

    A novel manganese phosphite-oxalate, [C 2 N 2 H 10 ][Mn 2 II (OH 2 ) 2 (HPO 3 ) 2 (C 2 O 4 )] has been hydothermally synthesized and its structure determined by single-crystal X-ray diffraction. The structure consists of neutral manganese phosphite layers, [Mn(HPO 3 )] ∞ , formed by MnO 6 octahedra and HPO 3 units, cross-linked by the oxalate moieties. The organic cations occupy the middle of the 8-membered one-dimensional channels. Magnetic studies indicate weak antiferromagnetic interactions between the Mn 2+ ions. - Abstract: A new antiferromagnetic three-dimensional inorganic-organic hybrid compound, [C 2 N 2 H 10 ][Mn 2 II (OH 2 ) 2 (HPO 3 ) 2 (C 2 O 4 )] has been prepared hydrothermally. The compound has neutral manganese layers pillared by oxalate units. The neutral manganese layers are shown here. Display Omitted

  7. Syntheses, structures, and physicochemical properties of diruthenium compounds of tetrachlorocatecholate with metal-metal bonded Ru(3+)(mu-OR)(2)Ru(3+) and Ru(3.5+)(mu-OR)(2)Ru(3.5+) cores (R = CH(3) and C(2)H(5)).

    Science.gov (United States)

    Miyasaka, H; Chang, H C; Mochizuki, K; Kitagawa, S

    2001-07-02

    Metal-metal bonded Ru(3+)(mu-OR)(2)Ru(3+) and Ru(3.5+)(mu-OR)(2)Ru(3.5+) (R = CH(3) and CH(3)CH(2)) compounds with tetrachlorocatecholate (Cl(4)Cat) have been synthesized in the corresponding alcohol, MeOH and EtOH, from a nonbridged Ru(2+)-Ru(3+) compound, Na(3)[Ru(2)(Cl(4)Cat)(4)(THF)].3H(2)O.7THF (1). In alcohol solvents, compound 1 is continuously oxidized by oxygen to form Ru(3+)(mu-OR)(2)Ru(3+) and Ru(3.5+)(mu-OR)(2)Ru(3.5+) species. The presence of a characteristic countercation leads to selective isolation of either Ru(3+)(mu-OR)(2)Ru(3+) or Ru(3.5+)(mu-OR)(2)Ru(3.5+) as a stable adduct species. In methanol, Ph(4)PCl and dibenzo-18-crown-6-ether afford Ru(3+)(mu-OMe)(2)Ru(3+) species, [A](2)[Ru(2)(Cl(4)Cat)(4)(mu-OMe)(2)Na(2)(MeOH)(6)] ([A](+) = Ph(4)P(+) (2), [Na(dibenzo-18-crown-6)(H(2)O)(MeOH)](+) (3)), while benzo-15-crown-5-ether provides a Ru(3.5+)(mu-OMe)(2)Ru(3.5+) species, [Na(benzo-15-crown-5)(2)][Ru(2)(Cl(4)Cat)(4)(mu-OMe)(2)Na(2)(MeOH)(6)] (4). The air oxidation of 1 in a MeOH/EtOH mixed solvent (1:1 v/v) containing benzo-15-crown-5-ether provides a Ru(3.5+)(mu-OMe)(2)Ru(3.5+) species, [Na(benzo-15-crown-5)(H(2)O)][Ru(2)(Cl(4)Cat)(2)(mu-OMe)(2)Na(2)(EtOH)(2)(H(2)O)(2)(MeOH)(2)].(benzo-15-crown-5) (5). Similarly, the oxidation of 1 in ethanol with Ph(4)PCl provides a Ru(3.5+)(mu-OEt)(2)Ru(3.5+) species, (Ph(4)P)[Ru(2)(Cl(4)Cat)(4)(mu-OEt)(2)Na(2)(EtOH)(6)] (7). A selective formation of a Ru(3+)(mu-OEt)(2)Ru(3+) species, (Ph(4)P)(2)[Ru(2)(Cl(4)Cat)(4)(mu-OEt)(2)Na(2)(EtOH)(2)(H(2)O)(2)] (6), is found in the presence of pyrazine or 2,5-dimethylpyrazine. The crystal structures of these compounds, except 2 and 7, have been determined by X-ray crystallography, and all compounds have been characterized by several spectroscopic and magnetic investigations. The longer Ru-Ru bonds are found in the Ru(3+)(mu-OR)(2)Ru(3+) species (2.606(1) and 2.628(2) A for 3 and 6, respectively) compared with those of Ru(3.5+)(mu-OMe)(2)Ru(3.5+) species (2.5260(6) A and 2.514(2

  8. 2,3-Diamino­pyridinium 6-carb­oxy­pyridine-2-carboxyl­ate

    Science.gov (United States)

    Foroughian, Mahsa; Foroumadi, Alireza; Notash, Behrouz; Bruno, Giuseppe; Amiri Rudbari, Hadi; Aghabozorg, Hossein

    2011-01-01

    The asymmetric unit of the title proton-transfer compound, C5H8N3C7H4NO4 −, consists of one mono-deprotonated pyridine-2,6-dicarb­oxy­lic acid as anion and one protonated 2,3-diamino­pyridine as cation. The crystal packing shows extensive O—H⋯O, N—H⋯O and N—H⋯N hydrogen bonds. Thre are also several π–π inter­actions between the anions and also between the cations [centriod–centroid distances = 3.6634 (7), 3.7269 (7), 3.6705 (7) and 3.4164 (7) Å]. PMID:22199823

  9. Bis(2,2′-bipyridine[1,9-bis(diphenylphosphanyl-1,2,3,4,6,7,8,9-octahydropyrimido[1,2-a]pyrimidin-5-ium]ruthenium(II hexafluoridophosphate dibromide dichloromethane disolvate monohydrate

    Directory of Open Access Journals (Sweden)

    Alain Igau

    2013-12-01

    Full Text Available In the cation of the title complex, [Ru(C31H32N3P2(C10H8N22](PF6(Br2·2CH2Cl2·H2O, the ruthenium ion is coordinated in a distorted octahedral geometry by two 2,2′-bipyridine (bpy ligands and a chelating cationic N-diphenylphosphino-1,3,4,6,7,8-hexahydro-2-pyrimido[1,2-a]pyrimidine [(PPh22-hpp] ligand. The tricationic charge of the complex is balanced by two bromide and one hexafluoridophosphate counter-anions. The compound crystallized with two molecules of dichloromethane (one of which is equally disordered about a Cl atom and a water molecule. In the crystal, one of the Br anions bridges two water molecules via O—H...Br hydrogen bonds, forming a centrosymmetric diamond-shaped R42(8 motif. The cation and anions and the solvent molecules are linked via C—H...F, C—H...Br, C—H...Cl and C—H...O hydrogen bonds, forming a three-dimensional network.

  10. Construction of New Coordination Polymers from 4’-(2,4-disulfophenyl)- 3,2’:6’3”-terpyridine: Polymorphism, pH-dependent syntheses, structures, and properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Li; Li, Chao-Jie; He, Jia-En; Chen, Yin-Yu [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Zheng, Sheng-Run, E-mail: zhengsr@scnu.edu.cn [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangzhou, 510006 (China); Fan, Jun [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Zhang, Wei-Guang, E-mail: wgzhang@scnu.edu.cn [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangzhou, 510006 (China)

    2016-01-15

    Nine new coordination compounds, namely, [Co(HDSPTP){sub 2}(H{sub 2}O){sub 4}]·4H{sub 2}O (H{sub 2}DSPTP=4’-(2,4-disulfophenyl)-3,2’:6’3”-terpyridine, 1 and 2), {[Ni(DSPTP)(H_2O)_4]·3H_2O}{sub n} (3), {[Cu(HDSPTP)_2(H_2O)_3]·8H_2O}{sub n} (4), {[Cu(HDSPTP)_2(H_2O)_3]·6H_2O}{sub n} (5), {[Cu(DSPTP)(H_2O)_2H_2O}{sub n} (6), {[Zn(DSPTP)(H_2O)_22H_2O}{sub n} (7), {[Cd(DSPTP)(H_2O)_22H_2O}{sub n} (8), and [Ag{sub 2}(DSPTP)(H{sub 2}O)]{sub n} (9), were constructed based on a new ligand containing both terpyridyl and sulfo groups. The reactions of H{sub 2}DSPTP with Co(NO{sub 3}){sub 2}.6H{sub 2}O resulted in two mononuclear complexes (compounds 1 and 2). They are polymorphisms that display different hydrogen bonding networks. They are selectively synthesized by altering the added alkalis. The reaction of H{sub 2}DSPTP with Ni(NO{sub 3}){sub 2}·6H{sub 2}O resulted in a 1D “S-shaped” coordination chain (compound 3). The reactions of Cu(II) with H{sub 2}DSPTP at different pH value resulted in the following three compounds: two kinds of 1D chains obtained at pH 3.0 and 4.0 for compounds 4 and 5, respectively, and a 3D framework based on binuclear ring units with 4-connected sra topology (Compound 6). The reactions of H{sub 2}DSPTP with ds-block ions resulted in the following three compounds: a Zn(II) (compound 7) and a Cd(II) (compound 8) 3D frameworks with structures similar to that in compound 6, and a 3D framework based on tetranuclear Ag(I) SBUs with binodal (4,8)-connected flu type 3D framework topology. The structural diversity is mainly attributed to the rich coordination modes (from monodentate to µ{sub 7}-mode) and conformations (cis–cis and cis–trans) of HDSPTP{sup −}/DSPTP{sup 2−} ligands and the metal center and can be controllable synthesized by altering the alkalis, and pH value. Thermal stability of all compounds was performed, and the thermal behaviors of compounds 6 and 8 were further explored by PXRD. Compound 6 exhibits

  11. Bis[2-(1,3-benzothiazol-2-ylphenyl-κ2C1,N][1,3-bis(4-bromophenylpropane-1,3-dionato-κ2O,O′]iridium(III

    Directory of Open Access Journals (Sweden)

    Sung Kwon Kang

    2013-08-01

    Full Text Available The title complex, [Ir(C15H9Br2O2(C13H8NS2], lies about a crystallographic twofold rotation axis passing through the IrIII atom and the central C atom of the bis(bromophenylpropane-1,3-dionate ligand. The IrIII atom adopts a distorted octahedral geometry coordinated by two N atoms in the axial positions, and two C and two O atoms in the equatorial plane. The dihedral angle between the two thiazole ring systems in the complex is 77.45 (10°.

  12. Gold(I) Complexes with N-Donor Ligands. 2.(1) Reactions of Ammonium Salts with [Au(acac-kappaC(2))(PR(3))] To Give [Au(NH(3))L](+), [(AuL)(2)(&mgr;(2)-NH(2))](+), [(AuL)(4)(&mgr;(4)-N)](+), or [(AuL)(3)(&mgr;(3)-O)](+). A New and Facile Synthesis of [Au(NH(3))(2)](+) Salts. Crystal Structure of [{AuP(C(6)H(4)OMe-4)(3)}(3)(&mgr;(3)-O)]CF(3)SO(3).

    Science.gov (United States)

    Vicente, José; Chicote, María-Teresa; Guerrero, Rita; Jones, Peter G.; Ramírez De Arellano, M. Carmen

    1997-09-24

    The complexes [Au(acac-kappaC(2))(PR(3))] (acac = acetylacetonate, R = Ph, C(6)H(4)OMe-4) react with (NH(4))ClO(4) to give amminegold(I), [Au(NH(3))(PR(3))]ClO(4), amidogold(I), [(AuPR(3))(2)(&mgr;(2)-NH(2))]ClO(4), or nitridogold(I), [(AuPR(3))(4)(&mgr;(4)-N)]ClO(4), complexes, depending on the reaction conditions. Similarly, [Au(acac-kappaC(2))(PPh(3))] reacts with (NH(3)R')OTf (OTf = CF(3)SO(3)) (1:1) or with [H(3)N(CH(2))(2)NH(2)]OTf (1:1) to give (amine)gold(I) complexes [Au(NH(2)R')(PPh(3))]OTf (R' = Me, C(6)H(4)NO(2)-4) or [(AuPPh(3))(2){&mgr;(2)-H(2)N(CH(2))(2)NH(2)}](OTf)(2), respectively. The ammonium salts (NH(2)R'(2))OTf (R' = Et, Ph) react with [Au(acac-kappaC(2))(PR(3))] (R = Ph, C(6)H(4)OMe-4) (1:2) to give, after hydrolysis, the oxonium salts [(AuPR(3))(3)(&mgr;(3)-O)]OTf (R = Ph, C(6)H(4)OMe-4). When NH(3) is bubbled through a solution of [AuCl(tht)] (tht = tetrahydrothiophene), the complex [Au(NH(3))(2)]Cl precipitates. Addition of [Au(NH(3))(2)]Cl to a solution of AgClO(4) or TlOTf leads to the isolation of [Au(NH(3))(2)]ClO(4) or [Au(NH(3))(2)]OTf, respectively. The crystal structure of [(AuPR(3))(3)(&mgr;(3)-O)]OTf.Me(2)CO (R = C(6)H(4)OMe-4) has been determined: triclinic, space group P&onemacr;, a = 14.884(3) Å, b = 15.828(3) Å, c = 16.061(3) Å, alpha = 83.39(3) degrees, beta = 86.28(3) degrees, gamma = 65.54(3) degrees, R1 (wR2) = 0.0370 (0.0788). The [(AuPR(3))(3)(&mgr;(3)-O)](+) cation shows an essentially trigonal pyramidal array of three gold atoms and one oxygen atom with O-Au-P bond angles of ca. 175 degrees and Au.Au contacts in the range 2.9585(7)-3.0505(14) Å. These cations are linked into centrosymmetric dimers through two short Au.Au [2.9585(7), 3.0919(9) Å] contacts. The gold atoms of the dimer form a six-membered ring with a chair conformation.

  13. Crystal structure of 2′-[(2′,4′-difluorobiphenyl-4-ylcarbonyl]-1′-phenyl-1′,2′,5′,6′,7′,7a'-hexahydrospiro[indole-3,3′-pyrrolizin]-2(1H-one

    Directory of Open Access Journals (Sweden)

    M. Fathimunnisa

    2015-08-01

    Full Text Available In the title pyrrolizidine derivative, C33H26F2N2O2, both pyrrolidine rings of the pyrrolizidine moiety adopt an envelope conformation. The difluorophenyl group is oriented at an angle of 54.3 (1° with respect to the oxindole moiety. The crystal packing features an N—H...O hydrogen bond, which forms an R22(8 motif, and a C—H...O interaction, which generates a C(8 chain along [010]. In addition, this chain structure is stabilized by C—H...π interactions. In one of the pyrrolidine rings, the methylene group forming the flap of an envelope and the H atoms of the adjacent methylene groups are disordered over two sets of sites, with site-occupancy factors of 0.571 (4 and 0.429 (4

  14. DFT study of uranyl peroxo complexes with H2O, F-, OH-, CO3(2-), and NO3(-).

    Science.gov (United States)

    Odoh, Samuel O; Schreckenbach, Georg

    2013-05-06

    The structural and electronic properties of monoperoxo and diperoxo uranyl complexes with aquo, fluoride, hydroxo, carbonate, and nitrate ligands have been studied using scalar relativistic density functional theory (DFT). Only the complexes in which the peroxo ligands are coordinated to the uranyl moiety in a bidentate mode were considered. The calculated binding energies confirm that the affinity of the peroxo ligand for the uranyl group far exceeds that of the F(-), OH(-), CO3(2-), NO3(-), and H2O ligands. The formation of the monoperoxo complexes from UO2(H2O)5(2+) and HO2(-) were found to be exothermic in solution. In contrast, the formation of the monouranyl-diperoxo, UO2(O2)2X2(4-) or UO2(O2)2X(4-/3-) (where X is any of F(-), OH(-), CO3(2-), or NO3(-)), complexes were all found to be endothermic in aqueous solution. This suggests that the monoperoxo species are the terminal monouranyl peroxo complexes in solution, in agreement with recent experimental work. Overall, we find that the properties of the uranyl-peroxo complexes conform to well-known trends: the coordination of the peroxo ligand weakens the U-O(yl) bonds, stabilizes the σ(d) orbitals and causes a mixing between the uranyl π- and peroxo σ- and π-orbitals. The weakening of the U-O(yl) bonds upon peroxide coordination results in uranyl stretching vibrational frequencies that are much lower than those obtained after the coordination of carbonato or hydroxo ligands.

  15. 7-Chloro-11a-phenyl-2,3,5,10,11,11a-hexahydro-1H-pyrrolo[2,1-c][1,4]benzodiazepine-5,11-dione

    Directory of Open Access Journals (Sweden)

    Vahan Martirosyan

    2008-03-01

    Full Text Available The title compound, C18H15ClN2O2, is a potential human immunodeficiency virus type-1 (HIV-1 non-nucleoside reverse transcriptase inhibitor. The pyrrolidine ring adopts an envelope and the diazepine ring a boat conformation. In the crystal structure, two isomers (R and S form centrosymmetric dimers via N—H...O hydrogen bonds.

  16. 2-Oxo-2H-chromen-7-yl 4-tert-butylbenzoate

    Directory of Open Access Journals (Sweden)

    Mohammad Ouédraogo

    2018-04-01

    Full Text Available In the title compound, C20H18O4, the benzoate ring is oriented at an acute angle of 33.10 (12° with respect to the planar (r.m.s deviation = 0.016 Å coumarin ring system. An intramolecular C—H...O hydrogen bond closes an S(6 ring motif. In the crystal, C—H...O contacts generate infinite C(6 chains along the b-axis direction. Also present are π–π stacking interactions between neighbouring pyrone and benzene rings [centroid–centroid distance = 3.7034 (18 Å] and C=O...π interactions [O...centroid = 3.760 (3 Å]. The data obtained from quantum chemical calculations performed on the title compound are in good agreement with the observed structure, although the calculated C—O—C—C torsion angle between the coumarin ring system and the benzoate ring (129.1° is somewhat lower than the observed value [141.3 (3°]. Hirshfeld surface analysis has been used to confirm and quantify the supramolecular interactions.

  17. (E)-Methyl 3-(3,4-dimeth-oxy-phen-yl)-2-[(1,3-dioxoisoindolin-2-yl)meth-yl]acrylate.

    Science.gov (United States)

    Kannan, D; Bakthadoss, M; Lakshmanan, D; Murugavel, S

    2012-04-01

    In the title compound, C(21)H(19)NO(6), the isoindole ring system is essentially planar [maximum deviation = 0.019 (2) Å for the N atom] and is oriented at a dihedral angle of 51.3 (1)° with respect to the benzene ring. The two meth-oxy groups are almost coplanar with the attached benzene ring [C-O-C-C = 3.7 (4) and 4.3 (4)°]. The mol-ecular conformation is stabilized by an intra-molecular C-H⋯O hydrogen bond, which generates an S(9) ring motif. In the crystal, mol-ecules are linked through bifurcated C-H⋯(O,O) hydrogen bonds having R(1) (2)(5) ring motifs, forming chains along the b-axis direction. The crystal packing is further stabilzed by π-π inter-actions [centriod-centroid distance = 3.463 (1) Å].

  18. 5-[(3,5-Dimethyl-1-phenyl-1H-pyrazol-4-ylmethylene]-1,3-diethyl-2-thioxodihydropyrimidine-4,6(1H,5H-dione

    Directory of Open Access Journals (Sweden)

    Salman A. Khan

    2010-03-01

    Full Text Available The title compound, 5-[(3,5-dimethyl-1-phenyl-1H-pyrazol-4-ylmethylene]-1,3-diethyl-2-thioxodihydropyrimidine-4,6(1H,5H-dione, has been synthesized by condensation of 1,3-diethyl-2-thiobarbituric acid and 3,5-dimethyl-1-phenylpyrazole-4-carbaldehyde in ethanol in the presence of pyridine. The structure of this new compound was confirmed by elemental analysis, IR, 1H-NMR, 13C-NMR and EI-MS spectral analysis.

  19. 2-Amino-4-(4-bromophenyl-8-trifluoromethyl-3,4-dihydropyrimido[1,2-a][1,3,5]triazin-6(5H-onePart 13 in the series `Fused heterocyclic systems with an s-triazine ring'. For Part 12, see Dolzhenko et al. (2008b.

    Directory of Open Access Journals (Sweden)

    Anton V. Dolzhenko

    2009-04-01

    Full Text Available The title compound, C13H9BrF3N5O, crystallizes with two independent molecules in the asymmetric unit. The pyrimidine rings of the molecules are planar [maximum deviations 0.053 (3 and 0.012 (3 Å], while the triazine rings adopt flattened half-boat conformations with the p-bromophenyl rings in the flagpole positions. The crystal packing is stabilized by a three-dimensional network of intermolecular N—H...N, N—H...O and N—H...F hydrogen bonds.

  20. (E-1-(2-Aminophenyl-3-(benzo[d][1,3]dioxol-5-ylprop-2-en-1-one

    Directory of Open Access Journals (Sweden)

    Rodrigo Abonia

    2016-12-01

    Full Text Available The title chalcone (E-1-(2-aminophenyl-3-(benzo[d][1,3]dioxol-5-ylprop-2-en-1-one was obtained in 76% yield from a NaOH catalyzed Claisen–Schmidt condensation reaction between o-aminoacetophenone and piperonal. This product will be used as a key precursor for the development of an alternative route for the total synthesis of the alkaloid Graveoline. Single crystals of the title compound suitable for X-ray diffraction were grown via slow evaporation in ethanol at room temperature. A complete crystallographic study was performed in depth to unequivocally confirm its structure. The crystal structure of the title o-aminochalcone, C16H13NO3, shows two molecules per asymmetric unit (Z = 4 and adopts an E configuration about the C=C double bond. In the title compound, the mean plane of the non-H atoms of the central chalcone fragment C—C(O—C—C—C is as follow: [root-mean-square (r.m.s. deviation = 0.0210 Å for A–B and 0.0493 for C–D molecules]. In the crystal, molecules are linked by N–H...O and C–H...O, hydrogen bonds forming S(6, R22(6 and edge-fused R44(24rings along with C(18 chains running parallel to (110.

  1. 4-(4-Bromophenyl-7,7-dimethyl-2-methylamino-3-nitro-7,8-dihydro-4H-chromen-5(6H-one including an unknown solvate

    Directory of Open Access Journals (Sweden)

    S. Antony Inglebert

    2014-05-01

    Full Text Available In the title compound, C18H19BrN2O4, the chromene unit is not quite planar (r.m.s. deviation = 0.199 Å, with the methyl C atoms lying 0.027 (4 and 1.929 (4 Å from the mean plane of the chromene unit. The six-membered carbocyclic ring of the chromene moiety adopts an envelope conformation, with the dimethyl-substituted C atom as the flap. The methylamine and nitro groups are slightly twisted from the chromene moiety, with C—N—C—O and O—N—C—C torsion angles of 2.7 (4 and −0.4 (4°, respectively. The dihedral angle between the mean plane of the chromene unit and the benzene ring is 85.61 (13°. An intramolecular N—H...O hydrogen bond generates an S(6 ring motif, which stabilizes the molecular conformation. In the crystal, molecules are linked via N—H...O hydrogen bonds, forming hexagonal rings lying parallel to the ab plane. A region of disordered electron density, most probably disordered ethanol solvent molecules, occupying voids of ca 432 Å3 for an electron count of 158, was treated using the SQUEEZE routine in PLATON [Spek (2009. Acta Cryst. D65, 148–155]. Their formula mass and unit-cell characteristics were not taken into account during refinement.

  2. Reactions of 11C recoil atoms in the systems H2O-NH3, H2O-CH4 and NH3-CH4

    International Nuclear Information System (INIS)

    Nebeling, B.

    1988-11-01

    In this study the chemical reactions of recoil carbon 11 in the binary gas mixtures H 2 O-NH 3 , H 2 O-CH 4 and NH 3 -CH 4 in different mixing ratios as well as in solid H 2 O and in a solid H 2 O-NH 3 mixture were analyzed in dependence of the dose. The analyses were to serve e.g. the simulation of chemical processes caused by solar wind, solar radiation and cosmic radiation in the coma and core of comets. They were to give further information about the role of the most important biogeneous element carbon, i.e. carbon, in the chemical evolution of the solar system. Besides the actual high energy processes resulting in the so-called primary products, also the radiation-chemical changes of the primary products were also observed in a wide range of dosing. The generation of the energetic 11 C atoms took place according to the target composition by the nuclear reactions 14 N(p,α) 11 C, 12 C( 3 He,α) 11 C or the 16 O(p,αpn) 11 C reaction. The identification of the products marked with 11 C was carried out by means of radio gas chromatography or radio liquid chromatography (HPLC). (orig./RB) [de

  3. (E-1-(4,4′′-Difluoro-5′-methoxy-1,1′:3′,1′′-terphenyl-4′-yl-3-(6-methoxynaphthalen-2-ylprop-2-en-1-one

    Directory of Open Access Journals (Sweden)

    Hoong-Kun Fun

    2011-12-01

    Full Text Available In the title compound, C33H24F2O3, the central benzene ring makes dihedral angles of 44.71 (10, 47.80 (10 and 63.68 (9° with the two fluoro-substituted benzene rings and the naphthalene ring system, respectively. In the crystal, molecules are connected via intermolecular C—H...F and C—H...O hydrogen bonds. Furthermore, the crystal structure is stabilized by weak C—H...π and π–π interactions [centroid–centroid distance = 3.6816 (13 Å].

  4. Mild hydrothermal synthesis, crystal structure, thermal behavior, spectroscopic and magnetic properties of the (NH4)[Fe(AsO4)1-x(PO4)xF] (x=0.3, 0.6, 0.8) series. Thermal transformation of (NH4)[Fe(AsO4)0.7(PO4)0.3F] into the textural porous orthorhombic Fe(AsO4)0.7(PO4)0.3

    International Nuclear Information System (INIS)

    Berrocal, Teresa; Mesa, Jose L.; Pizarro, Jose L.; Bazan, Begona; Lezama, Luis; Arriortua, Maria I.; Rojo, Teofilo

    2009-01-01

    The (NH 4 )[Fe(AsO 4 ) 1-x (PO 4 ) x F] (x=0.3, 0.6, 0.8) series of compounds has been synthesized under mild hydrothermal conditions. The compounds crystallize in the orthorhombic Pna2 1 space group, with the unit-cell parameters a=13.1718(1), b=6.5966(6), c=10.797(1) A for x=0.3; a=13.081(1), b=6.5341(6), c=10.713(1) A for x=0.6 and a=13.0329(9), b=6.4994(4), c=10.6702(6) A for x=0.8, with the volumes 938.6(1), 915.7(1) and 903.8(1) A 3 , respectively, with Z=8. Single crystals of (NH 4 )[Fe(AsO 4 ) 0.7 (PO 4 ) 0.3 F] heated under air atmosphere at 465 deg. C remain as single crystals, changing the composition to Fe(AsO 4 ) 0.7 (PO 4 ) 0.3 . This later phase belongs to the orthorhombic Imam space group, with the unit cell parameters a=13.328(2), b=6.5114(5), c=10.703(1) A, V=928.9(2) A 3 and Z=12. The crystal structure of the ammonium phases consists of a KTP three-dimensional framework constructed by chains formed by alternating Fe(2)O 4 F 2 or Fe(1)O 4 F 2 octahedra and As/P(2)O 4 or As/P(1)O 4 tetrahedra, respectively. These octahedra and tetrahedra are linked by a common oxygen vertex. The chains run along the 'a' and 'b' crystallographic axes. The crystal structure of Fe(AsO 4 ) 0.7 (PO 4 ) 0.3 is a three-dimensional skeleton derived from that of the precursor, formed from (100) sheets stacked along the [001] direction, and interconnected by chains of alternating Fe(2)O 6 octahedra and As/P(2)O 4 tetrahedra sharing a vertex in the 'a' direction. Transmission electronic microscopy of this compound indicates the existence of unconnected external cavities with a BET surface area of 3.91(3) m 2 g -1 . The diffuse reflectance spectra in the visible region show the forbidden electronic transitions characteristic of the Fe(III) d 5 -high spin cation in slightly distorted octahedral geometry, for all the compounds. The ESR spectra for all the compounds, carried out from room temperature to 4.2 K, remain isotropic with variation in temperature; the g-value is 1

  5. 2-[2-Benzoyl-3,3-bis(methylsulfanylprop-2-enylidene]malononitrile

    Directory of Open Access Journals (Sweden)

    Joseph Nirmala

    2009-08-01

    Full Text Available The title compound, C15H12N2OS2, is an example of a push–pull butadiene in which the electron-releasing methylsulfanyl groups and electron-withdrawing nitrile groups on either end of the butadiene chain enhance the conjugation in the system. Short intramolecular C—H...S interactions are observed. In the crystal structure, an O...C short contact of 2.917 (3 Å is observed.

  6. New compounds bearing [M(S_2O_7)_3]"2"- anions (M = Si, Ge, Sn): Syntheses and characterization of A_2[Si(S_2O_7)_3] (A = Na, K, Rb), A_2[Ge(S_2O_7)_3] (A = Li, Na, K, Rb, Cs), A_2[Sn(S_2O_7)_3] (A = Na, K), and the unique germanate Hg_2[Ge(S_2O_7)_3]Cl_2 with cationic "1_∞[HgCl_2_/_2]"+ chains

    International Nuclear Information System (INIS)

    Logemann, Christian; Witt, Julia; Wickleder, Mathias S.; Gunzelmann, Daniel; Senker, Juergen

    2012-01-01

    The reaction of the group 14 tetrachlorides MCl_4 (M = Si, Ge, Sn) with oleum (65 % SO_3) at elevated temperatures led to the unique anionic complexes [M(S_2O_7)_3]"2"- that show the central M atoms in coordination of three chelating S_2O_7"2"- groups. The mean distances M-O within the complexes increase from 175 pm (M = Si) via 186 pm (M = Ge) up to 200 pm (M = Sn). The charge balance for the [M(S_2O_7)_3]"2"- anions is achieved by alkaline metal ions A"+ (A = Li, Na, K, Rb, Cs) which were implemented in the syntheses in form of their sulfates. The size of the A"+ ions, i.e. their coordination requirement causes the crystallographic differences in the crystal structures, while the structure of the complex [M(S_2O_7)_3]"2"- anions remains essentially unaffected. Furthermore, we were able to characterize the unique germanate Hg_2[Ge(S_2O_7)_3]Cl_2 which forms when HgCl_2 is added as a source for the counter cation. The Hg"2"+ and the Cl"- ions form infinite cationic chains according to "1_∞[HgCl_2_/_2]"+ which take care for the charge compensation. For selected examples of the compounds the thermal behavior has been monitored by means of thermal analyses and X-ray powder diffraction. For A being an alkaline metal the decomposition product is a mixture of the sulfates A_2SO_4 and the dioxides MO_2, whereas Hg_2[Ge(S_2O_7)_3]Cl_2 shows a more complicated decomposition. The tris-(disulfato)-silicate Na_2[Si(S_2O_7)_3] has additionally been examined by solid state "2"9Si and "2"3Na NMR spectroscopic measurements. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Synthesis and fundamental properties of stable Ph(3)SnSiH(3) and Ph(3)SnGeH(3) hydrides: model compounds for the design of Si-Ge-Sn photonic alloys.

    Science.gov (United States)

    Tice, Jesse B; Chizmeshya, Andrew V G; Groy, Thomas L; Kouvetakis, John

    2009-07-06

    The compounds Ph(3)SnSiH(3) and Ph(3)SnGeH(3) (Ph = C(6)H(5)) have been synthesized as colorless solids containing Sn-MH(3) (M = Si, Ge) moieties that are stable in air despite the presence of multiple and highly reactive Si-H and Ge-H bonds. These molecules are of interest since they represent potential model compounds for the design of new classes of IR semiconductors in the Si-Ge-Sn system. Their unexpected stability and high solubility also makes them a safe, convenient, and potentially useful delivery source of -SiH(3) and -GeH(3) ligands in molecular synthesis. The structure and composition of both compounds has been determined by chemical analysis and a range of spectroscopic methods including multinuclear NMR. Single crystal X-ray structures were determined and indicated that both compounds condense in a Z = 2 triclinic (P1) space group with lattice parameters (a = 9.7754(4) A, b = 9.8008(4) A, c = 10.4093(5) A, alpha = 73.35(10)(o), beta = 65.39(10)(o), gamma = 73.18(10)(o)) for Ph(3)SnSiH(3) and (a = 9.7927(2) A, b = 9.8005(2) A, c = 10.4224(2) A, alpha = 74.01(3)(o), beta = 65.48(3)(o), gamma = 73.43(3)(o)) for Ph(3)SnGeH(3). First principles density functional theory simulations are used to corroborate the molecular structures of Ph(3)SnSiH(3) and Ph(3)SnGeH(3), gain valuable insight into the relative stability of the two compounds, and provide correlations between the Si-Sn and Ge-Sn bonds in the molecules and those in tetrahedral Si-Ge-Sn solids.

  8. Crystal structure of (2R*,3aR*-2-phenylsulfonyl-2,3,3a,4,5,6-hexahydropyrrolo[1,2-b]isoxazole

    Directory of Open Access Journals (Sweden)

    Yaiza Hernández

    2017-01-01

    Full Text Available The title compound, C12H15NO3S, was prepared by 1,3-dipolar cycloaddition of 3,4-dihydro-2H-pyrrole 1-oxide and phenyl vinyl sulfone. In the molecule, both fused five-membered rings display a twisted conformation. In the crystal, C—H...O hydrogen bonds link neighbouring molecules, forming chains running parallel to the b axis.

  9. (1R,2R,3R,4R,5S-2,3-Bis[(2S′-2-acetoxy-2-phenylacetoxy]-4-azido-1-[(2,4-dinitrophenylhydrazonomethyl]bicyclo[3.1.0]hexane

    Directory of Open Access Journals (Sweden)

    Robert McDonald

    2008-02-01

    Full Text Available In the title compound, C38H29N7O12, the five-membered ring adopts an envelope conformation in which the `flap' is cis to the cyclopropane group. This conformation is similar to those of other bicyclo[3.1.0]hexane analogues for which crystal structures have been reported. The absolute configuration of the stereogenic centers on the cyclopentane ring, as determined by comparison with the known configurations of the stereogenic centers in the (2S-2-acetoxy-2-phenylacetoxy groups, is 1(R, 2(R, 3(R, 4(R and 5(S. An intramolecular N—H...O hydrogen bond is present.

  10. Ethyl 5-cyano-4-[2-(2,4-dichlorophenoxyacetamido]-1-phenyl-1H-pyrrole-3-carboxylate

    Directory of Open Access Journals (Sweden)

    Jing Xu

    2009-08-01

    Full Text Available In the title compound, C22H17Cl2N3O4, the pyrrole ring and the 2,4-dichlorophenyl group form a dihedral angle of 8.14 (13°; the phenyl ring is twisted with respect to the pyrrole ring, forming a dihedral angle of 60.77 (14°. The C=O bond length is 1.213 (3 Å, indicating that the molecule is in the keto form, associated with a –CONH– group, and the amide group adopts the usual trans conformation. The molecule is stabilized by an intramolecular N—H...O hydrogen-bonding interaction. In the crystal, the stacked molecules exhibit intermolecular C—H...O and C—H...N hydrogen-bonding interactions.

  11. rac-Ethyl 2-hydroxy-2,7,7-trimethyl-4-(4-nitrophenyl-5-oxo-3,4,5,6,7,8-hexahydro-2H-chromene-3-carboxylate

    Directory of Open Access Journals (Sweden)

    Konstantin A. Potekhin

    2013-01-01

    Full Text Available The title molecule, C21H25NO7, has four stereogenic centres and crystallized as a racemate. It consists of enantiomeric pairs with the relative configuration rac-(1R*,2S*,3R*. The cyclohexenone ring adopts an envelope conformation; the dimethyl-substituted C atom lies 0.640 (1 Å out of the mean plane formed by the rest of the ring atoms (r.m.s. deviation = 0.016 Å. The oxacyclohexene ring adopts a half-chair conformation, the hydroxy- and carboxyl-substituted C atoms lying −0.336 (1 and 0.419 (1 Å, respectively, out of the mean plane formed by the rest of the ring atoms (r.m.s. deviation = 0.002 Å. In the crystal, O—H...O hydrogen bonds link the molecules into a chain along the c-axis direction.

  12. The C2H3O+ chemi-ion acetyl cation or O-protonated ketene

    DEFF Research Database (Denmark)

    Egsgaard, H.; Carlsen, L.

    1995-01-01

    The C2H3O+ chemi-ion sampled from a premixed methane/oxygen flame has been demonstrated to be the acetyl cation based on ion-molecule reactions with isoprene and 1,3-dioxolane.......The C2H3O+ chemi-ion sampled from a premixed methane/oxygen flame has been demonstrated to be the acetyl cation based on ion-molecule reactions with isoprene and 1,3-dioxolane....

  13. Thermal, spectroscopic and magnetic properties of the Co xNi1-x(SeO3).2H2O (x = 0, 0.4, 1) phases

    International Nuclear Information System (INIS)

    Larranaga, A.; Mesa, J.L.; Pizarro, J.L.; Pena, A.; Chapman, J.P.; Arriortua, M.I.; Rojo, T.

    2005-01-01

    The Co x Ni 1-x (SeO 3 ).2H 2 O (x = 0, 0.4, 1) family of compounds has been hydrothermally synthesized under autogeneous pressure and characterized by elemental analysis, infrared and UV-vis spectroscopies and thermogravimetric and thermodiffractometric techniques. The crystal structure of Co 0.4 Ni 0.6 (SeO 3 ).2H 2 O has been solved from single-crystal X-ray diffraction data. This phase is isostructural with the M(SeO 3 ).2H 2 O (M = Co and Ni) minerals and crystallizes in the P2 1 /n space group, with a 6.4681(7), b = 8.7816(7), c = 7.5668(7) A, β = 98.927(9) deg and Z = 4. The crystal structure of this series of compounds consists of a three-dimensional framework formed by (SeO 3 ) 2- selenite oxoanions and edge-sharing M 2 O 10 dimeric octahedra in which the metallic cations are coordinated by the oxygens belonging to both the selenite groups and water molecules. The diffuse reflectance spectra show the essential characteristics of Co(II) and Ni(II) cations in slightly distorted octahedral environments. The calculated values of the Dq and Racah (B and C) parameters are those habitually found for the 3d 7 and 3d 8 cations in octahedral coordination. The magnetic measurements indicate the existence of antiferromagnetic interactions in all the compounds. The magnetic exchange pathways involve the metal orbitals from edge-sharing dimeric octahedra and the (SeO 3 ) 2- anions which are linked to the M 2 O 10 polyhedra in three dimensions

  14. Crystallization of rare earth germanates in the K2O-Ln2O3-GeO2-H2O at 280 deg C

    International Nuclear Information System (INIS)

    Panasenko, E.B.; Begunova, R.G.; Sklokina, N.F.

    1980-01-01

    Crystallization of rare earth germanates in potassium hydroxide solutions is studied at 280 deg C. Stability limits for different crystalline phases are established. Diorthogermanates Ln 2 O 3 x2GeO 3 (three structural modifications) are formed with all lanthanides except lanthanum. Germanates-apatites 7Ln 2 O 3 x9GeO 2 are characteristic for ''large'' lanthanides La-Nd. Alkali germanate of the composition 0.5 K 2 OxLn 2 O 3 xGeO 2 xnH 2 O is realized with the elements of the end of rare earth series, i.e., Tm-Lu. Some properties of the germanates synthesized are considered [ru

  15. N-[5-Methyl-2-(2-nitrophenyl-4-oxo-1,3-thiazolidin-3-yl]pyridine-3-carboxamide monohydrate

    Directory of Open Access Journals (Sweden)

    Mehmet Akkurt

    2011-02-01

    Full Text Available In the title compound, C16H14N4O4S·H2O, the benzene and pyridine rings make a dihedral angle of 85.8 (1°. Both enantiomers of the chiral title compound are statistically disordered over the same position in the unit cell. The methyl and carbonyl group attached to the stereogenic center (C5 of the thiazolidine ring were therefore refined with common site-occupation factors of 0.531 (9 and 0.469 (9, respectively, for each stereoisomer. In the crystal, intermolecular N—H...O, O—H...O and O—H...N hydrogen bonds link the molecules, forming a three-dimensional supramolecular network. The crystal structure further shows π–π stacking interactions [centroid–centroid distance = 3.5063 (13 Å] between the pyridine rings.

  16. Crystal structure of (E)-3-fluoro-N-((5-nitrothiophen-2-yl)methylene)aniline

    Energy Technology Data Exchange (ETDEWEB)

    Karataş, Şadiye; Tanak, Hasan, E-mail: hasantanak@gmail.com [Amasya University, Department of Physics, Faculty of Arts and Sciences (Turkey); Ağar, Ayşen Alaman [Ondokuz Mayıs University, Department of Chemistry, Faculty of Arts and Sciences (Turkey)

    2016-05-15

    The structure of the title compound C{sub 11}H{sub 7}FN{sub 2}O{sub 2}S was characterized by single crystal X-ray diffraction. The compound crystallizes in the monoclinic space group P2{sub 1}/n with Z = 12, i.e. with three molecules in asymmetric unit. The molecules are not planar: the dihedral angles between the planes of thiophene and the benzene rings are 42.3(3)°, 42.0(3)°, and 48.9(2)°. In the crystal, intermolecular C–H···F interactions link the molecules through R{sub 2}{sup 2} (14) ring motif. The crystal packing is also stabilized by π···π interactions.

  17. Crystal structure of 4-(4b,8a-dihydro-9H-pyrido[3,4-b]indol-1-yl-7-methyl-2H-chromen-2-one

    Directory of Open Access Journals (Sweden)

    S. Samundeeswari

    2017-01-01

    Full Text Available The title compound, C21H14N2O2, was prepared by Pictet–Spengler cyclization of tryptamine and 4-formyl coumarin. In the molecule, the dihedral angle between the mean planes of the coumarin and β-carboline ring systems is 63.8 (2°. In the crystal, molecules are linked via N—H...N hydrogen bonds, forming chains along the b-axis direction. Within the chains, there are a number of offset π–π interactions present [shortest intercentroid distance = 3.457 (2 Å].

  18. Crystal and molecular structure of the coordination compounds of Er3+ with 1-(methoxydiphenylphosphoryl)-2-diphenylphosphorylbenzene [ErL21(NO3)2]2[Er(NO3)2(H2O)5]0.333(NO3)2.333 · 2.833H2O and its ethyl substituted derivative [ErL22(NO3)2][Er(NO3)5]0.5 · 0.5H2O

    International Nuclear Information System (INIS)

    Polyakova, I. N.; Baulin, V. E.; Ivanova, I. S.; Pyatova, E. N.; Sergienko, V. S.; Tsivadze, A. Yu.

    2015-01-01

    The coordination compounds of Er 3+ with 1-(methoxydiphenylphosphoryl)-2-diphenylphosphorylbenzene [ErL 2 1 (NO 3 ) 2 ] 2 [Er(NO 3 ) 2 (H 2 O) 5 ] 0.333 (NO 3 ) 2.333 · 2.833H 2 O (I) and its ethyl substituted derivative [ErL 2 2 (NO 3 ) 2 ][Er(NO 3 ) 5 ] 0.5 · 0.5H 2 O (II) are synthesized and their crystal structures are studied. I and II contain [ErL 2 (NO 3 ) 2 ] + complex cations of identical composition and close structure. The eight-vertex polyhedron of the Er atom in the shape of a distorted octahedron with two split trans vertices is formed by the O atoms of the phosphoryl groups of L ligands and nitrate anions. L ligands close nine-membered metallocycles. The structures contain spacious channels which are populated differently, namely, by disordered [Er(NO 3 ) 2 (H 2 O) 5 ] + complex cations, NO 3 − anions, and crystallization water molecules in I and disordered [Er(NO 3 ) 5 ] 2− complex anions and crystallization water molecules in II. The IR spectra of I and II are studied

  19. Study of interaction in the Pb(NO3)2-Cs3[Fe(CN)6]-H2O at 25 deg C

    International Nuclear Information System (INIS)

    Slivko, T.A.; Stepina, S.B.; Poletaev, I.F.; Golikova, N.B.

    1982-01-01

    The method of ''residual concentrations'' has been used to study the interaction in the lead nitrate-cesium hexacyanoferrate (3)-water system at 25 deg C. It is shown, that only one compound CsPb[Fe(CN) 6 ]x4H 2 O is formed in the studied range of the concentrations. Chemical and thermogravimetric analysis and infrared spectroscopy have been used at the determination of the compound composition. Thermolysis of the compound in the air is studied. Identification of the hydrated and waterless compound is accomplished with the help of the diffractometer DRON-1. The rate of the formation of mixed cesium hexacyanoferrates (3) with lead, zinc and nickel is compared

  20. (1S,3S,8R,9S,10R-9,10-Epoxy-3,7,7,10-tetramethyltricyclo[6.4.0.01,3]dodecane

    Directory of Open Access Journals (Sweden)

    Abdoullah Bimoussa

    2014-04-01

    Full Text Available The title compound, C16H26O, was synthesized by treating (1S,3S,8R-3,7,7,10-tetramethyltricyclo[6.4.0.01,3]dodec-9-ene with metachloroperbenzoic acid. The molecule is built up from two fused six- and seven-membered rings. The six-membered ring has a half-chair conformation, whereas the seven-membered ring displays a boat conformation. In the crystal, there are no significant intermolecular interactions present.

  1. (4-Nitrophenylmethyl 2,3-dihydro-1H-pyrrole-1-carboxylate: crystal structure and Hirshfeld analysis

    Directory of Open Access Journals (Sweden)

    Julio Zukerman-Schpector

    2018-03-01

    Full Text Available In the title compound, C12H12N2O4, the dihydropyrrole ring is almost planar (r.m.s. deviation = 0.0049 Å and is nearly coplanar with the adjacent C2O2 residue [dihedral angle = 4.56 (9°], which links to the 4-nitrobenzene substituent [dihedral angle = 4.58 (8°]. The molecule is concave, with the outer rings lying to the same side of the central C2O2 residue and being inclined to each other [dihedral angle = 8.30 (7°]. In the crystal, supramolecular layers parallel to (10-5 are sustained by nitrobenzene-C—H...O(carbonyl and pyrrole-C—H...O(nitro interactions. The layers are connected into a three-dimensional architecture by π(pyrrole–π(nitrobenzene stacking [inter-centroid separation = 3.7414 (10 Å] and nitro-O...π(pyrrole interactions.

  2. Crystal structure of 2-methylamino-4-(6-methyl-4-oxo-4H-chromen-3-yl-3-nitropyrano[3,2-c]chromen-5(4H-one with an unknown solvate

    Directory of Open Access Journals (Sweden)

    Rajamani Raja

    2015-09-01

    Full Text Available In the title compound, C23H16N2O7, the mean planes of the two chromene units (r.m.s. deviations = 0.031 and 0.064 Å are almost normal to one another with a dihedral angle of 85.59 (6°. The central six-membered pyran ring has a distorted envelope conformation, with the methine C atom at the flap. There is an intramolecular N—H...O hydrogen bond, which generates an S(6 ring motif. In the crystal, molecules are linked by pairs of N—H...O hydrogen bonds, forming inversion dimers with an R22(12 ring motif. The dimers are linked by pairs of C—H...O hydrogen bonds, enclosing R22(6 ring motifs, forming zigzag chains along [001]. The chains are linked by a second pair of C—H...O hydrogen bonds, forming slabs parallel to (110. Within the slabs there are C—H...π interactions present. A region of disordered electron density was treated with the SQUEEZE procedure in PLATON [Spek (2015. Acta Cryst. C71, 9–18] following unsuccessful attempts to model it as plausible solvent molecule(s. The given chemical formula and other crystal data do not take into account the unknown solvent molecule(s.

  3. (E-4-Methoxy-3,5-dimethyl-2-[(3-nitrophenylethenyl]pyridine

    Directory of Open Access Journals (Sweden)

    Youness El Bakri

    2016-12-01

    Full Text Available In the crystal of the title compound, C16H16N2O3, weak C—H...O hydrogen bonds involving the nitro group as acceptor form chains extending in the b-axis direction. The chains are arranged into layers by π–π stacking interactions along the c-axis direction between the substituted pyridine rings, separated by 3.624 (1 Å.

  4. Solvothermal synthesis, crystal structure, and second-order nonlinear optical properties of a new noncentrosymmetric gallium-organic framework material, [N(C{sub 3}H{sub 7}){sub 4}]{sub 3}Ga{sub 3}[C{sub 6}H{sub 3}(CO{sub 2}){sub 3}]{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Woo; Jo, Vinna [Department of Chemistry, Chung-Ang University, Seoul, 156-756 (Korea, Republic of); Ok, Kang Min, E-mail: kmok@cau.ac.kr [Department of Chemistry, Chung-Ang University, Seoul, 156-756 (Korea, Republic of)

    2012-10-15

    A novel noncentrosymmetric (NCS) gallium-organic framework material, [N(C{sub 3}H{sub 7}){sub 4}]{sub 3}Ga{sub 3}[C{sub 6}H{sub 3}(CO{sub 2}){sub 3}]{sub 4} (CAUMOF-11) has been synthesized by a solvothermal reaction using Ga(NO{sub 3}){sub 3}{center_dot}xH{sub 2}O, 1,3,5-C{sub 6}H{sub 3}(CO{sub 2}H){sub 3}, N(C{sub 3}H{sub 7}){sub 4}Cl, HNO{sub 3}, and HCON(CH{sub 3}){sub 2} at 180 Degree-Sign C. The structure of the reported material has been determined by single-crystal X-ray diffraction. CAUMOF-11 has an anionic three-dimensional framework with aligned four-coordinate GaO{sub 4} tetrahedra and 1,3,5-benzenetricarboxylate groups. Tetrapropylammonim cations reside within the channel and maintain the charge balance. Detailed structural analyses with full characterization including infrared spectroscopy, thermogravimetric analysis, elemental analysis, ion-exchange reactions, topotactic decomposition, and gas adsorption experiments are reported. Powder second-harmonic generating (SHG) measurements on CAUMOF-11, using 1064 nm radiation, exhibit SHG efficiency of 15 times that of {alpha}-SiO{sub 2} and the material is phase-matchable (type-1). - Graphical Abstract: Second-order nonlinear optical measurements on CAUMOF-11 reveal that the material is phase-matchable (type-1) with SHG efficiency of 15 times that of {alpha}-SiO{sub 2}. Highlights: Black-Right-Pointing-Pointer A new NCS Ga-organic framework was solvothermally synthesized. Black-Right-Pointing-Pointer CAUMOF-11 exhibits SHG efficiency of 15 times that of {alpha}-SiO{sub 2}. Black-Right-Pointing-Pointer Thermal decomposition of CAUMOF-11 crystal maintains the original morphology.

  5. Hydrothermal synthesis and photoluminescent properties of hierarchical GdPO4·H2O:Ln3+ (Ln3+ = Eu3+, Ce3+, Tb3+) flower-like clusters

    Science.gov (United States)

    Amurisana, Bao.; Zhiqiang, Song.; Haschaolu, O.; Yi, Chen; Tegus, O.

    2018-02-01

    3D hierarchical GdPO4·H2O:Ln3+ (Ln3+ = Eu3+, Ce3+, Tb3+) flower clusters were successfully prepared on glass slide substrate by a simple, economical hydrothermal process with the assistance of disodium ethylenediaminetetraacetic acid (Na2H2L, where L4- = (CH2COO)2N(CH2)2N(CH2COO)24-). In this process, Na2H2L was used as both a chelating agent and a structure-director. The hierarchical flower clusters have an average diameter of 7-12 μm and are composed of well-aligned microrods. The influence of the molar ratio of Na2H2L/Gd3+ and reaction time on the morphology was systematically studied. A possible crystal growth and formation mechanism of hierarchical flower clusters is proposed based on the evolution of morphology as a function of reaction time. The self-assembled GdPO4·H2O:Ln3+ superstructures exhibit strong orange-red (Eu3+, 5D0 → 7F1), green (Tb3+, 5D4 → 7F5) and near ultraviolet emissions (Ce3+, 5d → 7F5/2) under ultraviolet excitation, respectively. This study may provide a new channel for building hierarchically superstructued oxide micro/nanomaterials with optical and new properties.

  6. 2-(3-Methylphenyl-1,2-benzoselenazol-3(2H-one

    Directory of Open Access Journals (Sweden)

    Liyun Wang

    2017-04-01

    Full Text Available In the title ebselen derivative, C14H11NOSe, the nine-membered benzisoselenazolyl ring system is approximately planar (r.m.s. deviation = 0.021 Å. The dihedral angle between its mean plane and that of the 3-methylphenyl ring is 5.37 (11°. The five-membered isoselenazolyl ring is severely strained at the Se atom: Se—N = 1.889 (2 Å, Se—Car = 1.882 (3 Å and N—Se—Car = 83.30 (10°. In the crystal, molecules are linked by C—H...O hydrogen bonds and short intermolecular Se...O contacts of 2.6917 (19 Å, forming chains along the c-axis direction. Neighbouring molecules are linked by offset π–π interactions [intercentroid distance = 3.535 (2 Å]. The chains are also linked by C—H...π interactions, forming a three-dimensional structure.

  7. Atmospheric chemistry of C4F9O(CH2)3OC4F9 and CF3CFHCF2O (CH2)3OCF3CFHCF2

    DEFF Research Database (Denmark)

    Toft, A. M.; Hurley, M. D.; Wallington, T. J.

    2006-01-01

    FTIR smog chamber techniques were used to measure k(Cl + CF3CFHCF2O(CH2)(3)OCF2CFHCF3) = (2.97 +/- 0.17) x 10(-12) k(OH + CF3CFHCF2O(CH2)(3)OCF2CFHCF3) = (2.45 +/- 0.14) x 10(-13), k(Cl + C4F9O(CH2)(3)OC4F9) = (1.45 +/- 0.16) x 10(-12), and k(OH + C4F9O(CH2)(3)OC4F9) = (1.44 +/- 0.10) x 10(-13) c...

  8. [3-(5-Nitro-2-furyl-1-phenyl-1H-pyrazol-4-yl](phenylmethanone

    Directory of Open Access Journals (Sweden)

    Jia Hao Goh

    2010-05-01

    Full Text Available In the title pyrazole compound, C20H13N3O4, an intramolecular C—H...O hydrogen bond generates a seven-membered ring, producing an S(7 ring motif. The essentially planar furan and pyrazole rings [maximum deviations of 0.002 (1 and 0.007 (1 Å, respectively] are coplanar with each other, forming a dihedral angle of 3.06 (10°. The pyrazole ring forms dihedral angles of 8.51 (9 and 56.81 (9° with the two benzene rings. The nitro group is coplanar with the attached furan ring, as indicated by the dihedral angle of 2.5 (3°. In the crystal packing, intermolecular C—H...O hydrogen bonds link adjacent molecules into two-molecule-wide chains along the a axis. The crystal packing is further stabilized by weak intermolecular C—H...π and π–π interactions [centroid–centroid distance = 3.4441 (10 Å].

  9. Propyl 3-oxo-2,3-dihydro-1,2-benzothia-zole-2-carboxyl-ate.

    Science.gov (United States)

    Wang, Xiang-Hui; Yang, Jian-Xin; You, Cheng-Hang; Lin, Qiang

    2011-09-01

    The title compound, C(11)H(11)NO(3)S, was synthesized by the reaction of benzo[d]isothia-zol-3(2H)-one with propyl carbono-chloridate in toluene. The benzoisothiazolone ring system is approximately planar with a maximum deviation from the mean plane of 0.0226 (14) Å for the N atom. Weak inter-molecular C-H⋯O hydrogen bonding occurs in the crystal structure.

  10. Sterically crowded monomeric neutral bis(benzamidinato) compounds of aluminium, [PhC(NSiMe(3))(2)](2)AlX (X=Cl, H); X-ray crystal structure of [PhC(NSiMe(3))(2)]2AlH

    NARCIS (Netherlands)

    Duchateau, R; Meetsma, A; Teuben, JH

    1996-01-01

    AlCl3 reacts with [PhC(NSiMe(3))(2)]Li(OEt(2)) to afford the bis(N,N'-bis(trimethylsilyl)benzamidinato)aluminium chloro compound which, on treatment with KBEt(3)H, yields the structurally characterized monomeric hydride derivative, [PhC(NSiMe(3))(2)]2AlH, whose reactivity towards unsaturated

  11. cis-Aquadichlorido[pyrimidin-2(1H-one-κN3]copper(II

    Directory of Open Access Journals (Sweden)

    A. Guy Orpen

    2008-07-01

    Full Text Available In the title compound, [CuCl2(C4H4N2O(H2O], the CuII cation is coordinated by two chloride anions, one pyrimidin-2-one N atom and one water molecule, giving a slightly distorted square-planar geometry. In the crystal structure, the pyrimidin-2-one rings stack along the b axis, with an interplanar distance of 3.306 Å, as do the copper coordination planes (interplanar spacing = 2.998 Å. The coordination around the Jahn–Teller-distorted CuII ion is completed by long Cu...O [3.014 (5 Å] and Cu...Cl [3.0194 (15 Å] interactions with adjacent molecules involved in this stacking. Several N—H...Cl, O—H...Cl and O—H...O intermolecular hydrogen bonds form a polar three-dimensional network.

  12. 1,1′,4,5-Tetrahydrotrispiro[1,3,2-diazaphosphole-2,2′-[1,3,5,2,4,6]triazatriphosphinine-4′,6′′-dibenzo[d,f][1,3,2]dioxaphosphepine-6′,6′′′-dibenzo[d,f][1,3,2]dioxaphosphepine] acetone monosolvate

    Directory of Open Access Journals (Sweden)

    Krystal R. Fontenot

    2013-09-01

    Full Text Available The title compound, C26H22N5O4P3·C3H6O, has been achieved in a two-step synthesis that does not require chromatography. This molecule contains a seven-membered spirocyclic ring at two P-atom positions and a five-membered ring containing new P—N bonds at the other P-atom position. Endocyclic torsion angles about the central biphenyl C—C bonds are −41.5 (3 and −44.4 (3°, and P—N bonds of the central P3N3 ring are within the range 1.5665 (17–1.6171 (17 Å, while the P—O distances are in the range 1.5940 (14–1.6041 (14 Å. One N—H group makes an intermolecular N—H...N hydrogen bond, forming centrosymmetric dimers, while the other N—H group makes an N—H...O hydrogen bond to the acetone solvent molecule. The crystal was a two-component non-merohedral twin with ratio 0.811/0.189.

  13. Synthesis of 7-[α-(2-amino-[2-14C]thiazol-4-yl)-α-(Z)-methoxyimin oacetamido]-3-(1-methylpyrrolidinio)methyl-3-cephem-4-carboxylate hydrochloride ([14C]cefepime hydrochloride)

    International Nuclear Information System (INIS)

    Standridge, R.T.; Swigor, J.E.

    1993-01-01

    The title compound ([ 14 C]cefepime hydrochloride) was prepared as follows:- [ 14 C]Thiourea was condensed with ethyl 4-bromo-3-oxo-2-methoxyimino-acetate providing ethyl 2-(2-amino-4-[2- 14 C] thiazolyl)-2-methoxyi-minoacetate as the pure Z-isomer. Saponification gave the amino acid this was reacted with 1-hydroxybenzotriazole to give the activated ester. Condensation in situ with 7-amino-3-(1-methylpyrrolidinio) methyl-3-cephem-4-carboxylate yielded the product as the pure sulfate salt. Treatment of the sulfate salt with base provided the zwitterion isolated as the stable N-methyl-2-pyrrolidinone adduct. An aqueous solution of the adduct was converted to the crystalline title compound, [ 14 C]Cefepime hydrochloride hydrate, with hydrochloric acid/acetone. Radiochemical purity was 99.0% and specific activity, 34.2 μCi/mg. Overall yield from [ 14 C]thiourea was 18%. (Author)

  14. Facile synthesis technology of Li_3V_2(PO_4)_3/C adding H_2O_2 in ball mill process

    International Nuclear Information System (INIS)

    Min, Xiujuan; Mu, Deying; Li, Ruhong; Dai, Changsong

    2016-01-01

    Highlights: • Sintering time of Li_3V_2(PO_4)_3 reduced to 6 hours by adding hydrogen peroxide. • Electrochemical performance of Li_3V_2(PO_4)_3 was improved by reducing sintering time. • The Li_3V_2(PO_4)_3 production process was simplified during material synthesis stage. - Abstract: Li_3V_2(PO_4)_3/C has stable structure, high theory specific capacity and good safety performance, therefore it has become the research focus of lithium-ion batteries in recent years. The facile synthesis technology of Li_3V_2(PO_4)_3/C was characterized by adding different amounts of H_2O_2. Structure and morphology characteristics were examined by XRD, TG, Raman Spectroscopy, XPS and SEM. Electrochemical performance was investigated by constant current charging and discharging test. The results revealed that the Li_3V_2(PO_4)_3/C electrochemical performance of adding 15 mL H_2O_2 was better after sintering during 6 h. At the charge cut-off voltage of 4.3 V, the first discharge capacity at 0.2 C rate reached 127 mAh g"−"1. Because of adding H_2O_2 in the ball-mill dispersant, the vanadium pentoxide formed the wet sol. The molecular-leveled mixture increased the homogeneity of raw materials. Therefore, the addition of H_2O_2 shortened the sintering time and significantly improved the electrochemical performance of Li_3V_2(PO_4)_3/C.

  15. Cluster-enhanced X-O-2 photochemistry (X=CH3I, C3H6, C6H12, and Xe)

    NARCIS (Netherlands)

    Baklanov, A.V.; Bogdanchikov, G.A.; Vidma, K.V.; Chestakov, D.A.; Parker, D.H.

    2007-01-01

    The effect of a local environment on the photodissociation of molecular oxygen is investigated in the van der Waals complex X-O-2 (X=CH3I, C3H6, C6H12, and Xe). A single laser operating at wavelengths around 226 nm is used for both photodissociation of the van der Waals complex and simultaneous

  16. Bis(μ-2-methylquinolin-8-olato-κ3N,O:O3O:N,O-bis[(methanol-κO(nitrato-κ2O,O′lead(II

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available The molecule of the title compound, [Pb2(C10H8NO2(NO32(CH3OH2], lies about a centre of inversion. The Pb atom is chelated by nitrate and substituted quinolin-8-olate anions. The O atom of the quinolin-8-olate also bridges, to confer a six-coordinate status on the metal centre. When a longer Pb...O interaction is considered, the geometry approximates a Ψ-cube in which one of the sites is occupied by a stereochemically active lone pair.

  17. Volatile organic compounds emission control in industrial pollution source using plasma technology coupled with F-TiO2/γ-Al2O3.

    Science.gov (United States)

    Zhu, Tao; Chen, Rui; Xia, Ni; Li, Xiaoyang; He, Xianxian; Zhao, Wenjuan; Carr, Tim

    2015-01-01

    Volatile organic compounds' (VOCs) effluents, which come from many industries, are triggering serious environmental problems. As an emerging technology, non-thermal plasma (NTP) technology is a potential technology for VOCs emission control. NTP coupled with F-TiO2/γ-Al2O3 is used for toluene removal from a gaseous influent at normal temperature and atmospheric pressure. NTP is generated by dielectric barrier discharge, and F-TiO2/γ-Al2O3 can be prepared by sol-gel method in the laboratory. In the experiment, the different packed materials were packed into the plasma reactor, including γ-Al2O3, TiO2/γ-Al2O3 and F-TiO2/γ-Al2O3. Through a series of characterization methods such as X-ray diffraction, scanning electronic microscopy and Brunner-Emmet-Teller measurements, the results show that the particle size distribution of F-TiO2 is relatively smaller than that of TiO2, and the pore distribution of F-TiO2 is more uniformly distributed than that of TiO2. The relationships among toluene removal efficiency, reactor input energy density, and the equivalent capacitances of air gap and dielectric barrier layer were investigated. The results show that the synergistic technology NTP with F-TiO2/γ-Al2O3 resulted in greater enhancement of toluene removal efficiency and energy efficiency. Especially, when packing with F-TiO2/γ-Al2O3 in NTP reactor, toluene removal efficiency reaches 99% and higher. Based on the data analysis of Fourier Transform Infrared Spectroscopy, the experimental results showed that NTP reactor packed with F-TiO2/γ-Al2O3 resulted in a better inhibition for by-products formation effectively in the gas exhaust.

  18. Emission analysis of Tb3+ -and Sm3+ -ion-doped (Li2 O/Na2 O/K2 O) and (Li2 O + Na2 O/Li2 O + K2 O/K2 O + Na2 O)-modified borosilicate glasses.

    Science.gov (United States)

    Naveen Kumar Reddy, B; Sailaja, S; Thyagarajan, K; Jho, Young Dahl; Sudhakar Reddy, B

    2018-05-01

    Four series of borosilicate glasses modified by alkali oxides and doped with Tb 3+ and Sm 3+ ions were prepared using the conventional melt quenching technique, with the chemical composition 74.5B 2 O 3 + 10SiO 2 + 5MgO + R + 0.5(Tb 2 O 3 /Sm 2 O 3 ) [where R = 10(Li 2 O /Na 2 O/K 2 O) for series A and C, and R = 5(Li 2 O + Na 2 O/Li 2 O + K 2 O/K 2 O + Na 2 O) for series B and D]. The X-ray diffraction (XRD) patterns of all the prepared glasses indicate their amorphous nature. The spectroscopic properties of the prepared glasses were studied by optical absorption analysis, photoluminescence excitation (PLE) and photoluminescence (PL) analysis. A green emission corresponding to the 5 D 4 → 7 F 5 (543 nm) transition of the Tb 3+ ions was registered under excitation at 379 nm for series A and B glasses. The emission spectra of the Sm 3+ ions with the series C and D glasses showed strong reddish-orange emission at 600 nm ( 4 G 5/2 → 6 H 7/2 ) with an excitation wavelength λ exci = 404 nm ( 6 H 5/2 → 4 F 7/2 ). Furthermore, the change in the luminescence intensity with the addition of an alkali oxide and combinations of these alkali oxides to borosilicate glasses doped with Tb 3+ and Sm 3+ ions was studied to optimize the potential alkali-oxide-modified borosilicate glass. Copyright © 2017 John Wiley & Sons, Ltd.

  19. A calorimetric and thermodynamic investigation of A2[(UO2)2(MoO4)O2] compounds with A = K and Rb and calculated phase relations in the system (K2MoO4 + UO3 + H2O)

    International Nuclear Information System (INIS)

    Lelet, Maxim I.; Suleimanov, Evgeny V.; Golubev, Aleksey V.; Geiger, Charles A.; Bosbach, Dirk; Alekseev, Evgeny V.

    2015-01-01

    Highlights: • We determined the low temperature heat capacity of A 2 [(UO 2 ) 2 (MoO 4 )O 2 ] compounds with A = K and Rb. • We determined enthalpy of formation of K 2 [(UO 2 ) 2 (MoO 4 )O 2 ] by HF solution calorimetry. • We calculated Δ f G° (T = 298 K) of all phases from studied series. • Using obtained data we performed a thermodynamic modelling in the system (K 2 MoO 4 + UO 3 + H 2 O). - Abstract: A calorimetric and thermodynamic investigation of two alkali-metal uranyl molybdates with general composition A 2 [(UO 2 ) 2 (MoO 4 )O 2 ], where A = K and Rb, was performed. Both phases were synthesized by solid-state sintering of a mixture of potassium or rubidium nitrate, molybdenum (VI) oxide and gamma-uranium (VI) oxide at high temperatures. The synthetic products were characterised by X-ray powder diffraction and X-ray fluorescence methods. The enthalpy of formation of K 2 [(UO 2 ) 2 (MoO 4 )O 2 ] was determined using HF-solution calorimetry giving Δ f H° (T = 298 K, K 2 [(UO 2 ) 2 (MoO 4 )O 2 ], cr) = −(4018 ± 8) kJ · mol −1 . The low-temperature heat capacity, C p °, was measured using adiabatic calorimetry from T = (7 to 335) K for K 2 [(UO 2 ) 2 (MoO 4 )O 2 ] and from T = (7 to 326) K for Rb 2 [(UO 2 ) 2 (MoO 4 )O 2 ]. Using these C p ° values, the third law entropy at T = 298.15 K, S°, is calculated as (374 ± 1) J · K −1 · mol −1 for K 2 [(UO 2 ) 2 (MoO 4 )O 2 ] and (390 ± 1) J · K −1 · mol −1 for Rb 2 [(UO 2 ) 2 (MoO 4 )O 2 ]. These new experimental results, together with literature data, are used to calculate the Gibbs energy of formation, Δ f G°, for both phases giving: Δ f G° (T = 298 K, K 2 [(UO 2 ) 2 (MoO 4 )O 2 ], cr) = (−3747 ± 8) kJ · mol −1 and Δ f G° (T = 298 K, Rb 2 [(UO 2 ) 2 (MoO 4 )], cr) = −3736 ± 5 kJ · mol −1 . Smoothed C p °(T) values between 0 K and 320 K are presented, along with values for S° and the functions [H°(T) − H°(0)] and [G°(T) − H°(0)], for both phases. The

  20. 2-(2-Chlorophenyl-2,3-dihydroquinazolin-4(1H-one

    Directory of Open Access Journals (Sweden)

    Ming-Jian Li

    2009-09-01

    Full Text Available The title compound, C14H11ClN2O, was synthesized by the reaction of 2-chlorobenzaldehyde and 2-aminobenzamide in an ionic liquid. The pyrimidine ring adopts a skew-boat conformation and the two benzene rings make a dihedral angle of 87.1 (1°. In the crystal, N—H...O and C—H...N hydrogen bonding links the molecules along b.

  1. 3-Carboxyquinolin-1-ium-2-carboxylate monohydrate

    Directory of Open Access Journals (Sweden)

    Qing Zhang

    2012-03-01

    Full Text Available The title compound, C11H7NO4·H2O, contains a 3-carboxyquinolin-1-ium-2-carboxylate (qda zwitterion and one water molecule. In the crystal, pairs of N—H...O hydrogen bonds link the molecules into inversion dimers, and these dimers are further connected by O—H...O hydrogen bonds into a three-dimensional supramolecular architecture. In addition, π–π interactions occur between pyridine and benzene rings from different qda ligands [centroid–centroid distance = 3.749 (1 Å] and the dihedral angles of the –CO2H and –CO2 groups to the quinoline system are 8.47 (3 and 88.16 (6°, respectively.

  2. Influence of ligand polarizability on the reversible binding of O2 by trans-[Rh(X)(XNC)(PPh3)2] (X = Cl, Br, SC6F5, C2Ph; XNC = xylyl isocyanide). Structures and a kinetic study.

    Science.gov (United States)

    Carlton, Laurence; Mokoena, Lebohang V; Fernandes, Manuel A

    2008-10-06

    The complexes trans-[Rh(X)(XNC)(PPh 3) 2] (X = Cl, 1; Br, 2; SC 6F 5, 3; C 2Ph, 4; XNC = xylyl isocyanide) combine reversibly with molecular oxygen to give [Rh(X)(O 2)(XNC)(PPh 3) 2] of which [Rh(SC 6F 5)(O 2)(XNC)(PPh 3) 2] ( 7) and [Rh(C 2Ph)(O 2)(XNC)(PPh 3) 2] ( 8) are sufficiently stable to be isolated in crystalline form. Complexes 2, 3, 4, and 7 have been structurally characterized. Kinetic data for the dissociation of O 2 from the dioxygen adducts of 1- 4 were obtained using (31)P NMR to monitor changes in the concentration of [Rh(X)(O 2)(XNC)(PPh 3) 2] (X = Cl, Br, SC 6F 5, C 2Ph) resulting from the bubbling of argon through the respective warmed solutions (solvent chlorobenzene). From data recorded at temperatures in the range 30-70 degrees C, activation parameters were obtained as follows: Delta H (++) (kJ mol (-1)): 31.7 +/- 1.6 (X = Cl), 52.1 +/- 4.3 (X = Br), 66.0 +/- 5.8 (X = SC 6F 5), 101.3 +/- 1.8 (X = C 2Ph); Delta S (++) (J K (-1) mol (-1)): -170.3 +/- 5.0 (X = Cl), -120 +/- 13.6 (X = Br), -89 +/- 18.2 (X = SC 6F 5), -6.4 +/- 5.4 (X = C 2Ph). The values of Delta H (++) and Delta S (++) are closely correlated (R (2) = 0.9997), consistent with a common dissociation pathway along which the rate-determining step occurs at a different position for each X. Relative magnitudes of Delta H (++) are interpreted in terms of differing polarizabilities of ligands X.

  3. 2-Acetonyl-2-hydroxyindan-1,3-dione

    Directory of Open Access Journals (Sweden)

    Hoong-Kun Fun

    2009-06-01

    Full Text Available In the title compound, C12H10O4, the five-membered ring adopts an envelope conformation, with the Csp3 atom at the flap [deviation = 0.145 (2 Å]. In the crystal structure, molecules are linked by intermolecular O—H...O and C—H...O hydrogen bonds, forming a three-dimensional network.

  4. 8-[(3-Phenyl-1,2,4-oxadiazol-5-ylmethoxy]quinoline monohydrate

    Directory of Open Access Journals (Sweden)

    Shu-Yuan Bai

    2013-07-01

    Full Text Available In the title compound, C18H13N3O2·H2O, the oxadiazole ring forms dihedral angles 7.21 (10 and 21.25 (11° with the quinoline and benzene rings, respectively. The crystal structure features O—H...N hydrogen bonds and is further consolidated by C—H...O hydrogen-bonding interactions involving the water molecule of hydration.

  5. 2-{2,4,6-Tris(bromomethyl-3,5-bis[(1,3-dioxoisoindolin-2-ylmethyl]benzyl}isoindoline-1,3-dione toluene monosolvate

    Directory of Open Access Journals (Sweden)

    Niklas Koch

    2014-04-01

    Full Text Available In the title compound, C36H24Br3N3OC7H8, the toluene solvent molecule is associated with the receptor molecule via C—H...π bonding. The planes of the phthalimido groups are inclined at 77.0 (1, 63.0 (1 and 77.8 (1° with respect to the benzene ring. The molecular conformation is stabilized by C—H...O and C—H...Br hydrogen bonds. The crystal structure features non-classical hydrogen bonds of the C—H...N, C—H...O and C—H...Br type, leading to a three-dimensional cross-linking of molecules. The pattern of non-covalent intermolecular bonding is completed by O...Br halogen bonds [3.306 (3 Å], which link the receptor molecules into infinite strands extending along the a-axis direction.

  6. (3R,4Z-1,3-Diethyl-4-(2-oxopropylidene-2,3,4,5-tetrahydro-1H-1,5-benzodiazepin-2-one

    Directory of Open Access Journals (Sweden)

    Laila El Foujji

    2018-04-01

    Full Text Available In the title compound, C16H20N2O2, the seven-membered ring adopts a bowl-shaped conformation while the orientation of the 2-oxopropylidene substituent is determined by an intramolecular N—H...O hydrogen bond, which generates an S(6 ring. In the crystal, inversion dimers linked by pairs of very weak C—H...O interactions occur, which generate R22(8 loops.

  7. Study of structural phase transition in KD3 (Se O3)2 and Na H3(Se O3)2 by EPR

    International Nuclear Information System (INIS)

    Silva, J.C.M. da.

    1988-01-01

    The electron paramagnetic resonance of Se O - 2 centers in KD 3 (Se O 3 ) 2 and Na H 3 (Se O 3 ) 2 was done in the temperature ranges of -170 0 C o +80 0 C and +25 0 C to -185 0 C, respectively. (A.C.A.S.)

  8. 3-{2-[(3-{(E-2-[4-(Dimethylaminophenyl]ethenyl}quinoxalin-2-yloxy]ethyl}-1,3-oxazolidin-2-one monohydrate

    Directory of Open Access Journals (Sweden)

    Youssef Ramli

    2012-01-01

    Full Text Available In the title compound, C23H24N4O3·H2O, the 1,3-oxazoline ring is nearly planar [maximum deviation = 0.059 (2 Å] and its mean plane is twisted by 30.12 (8° with respect to the quinoxaline fused-ring system; the benzene ring is nearly coplanar with the quinoxaline fused-ring system [dihedral angle = 2.52 (2°]. The water molecule of crystallization is hydrogen-bond donor to an N atom of the quinoxaline ring system as well as an O atom of the oxazolinone unit, the two hydrogen bonds generating a chain running along the c axis.

  9. Structural, morphological and optical investigations on electron-beam irradiated PbF2-TeO2-B2O3-Eu2O3 glasses

    Science.gov (United States)

    Wagh, Akshatha; Petwal, Vikash; Dwivedi, Jishnu; Upadhyaya, V.; Raviprakash, Y.; Kamath, Sudha D.

    2016-09-01

    Combined structural, optical and morphological studies were carried out on Eu2O3 doped PbF2-TeO2-B2O3 glass samples, before and after being subjected to electron beam of energy 7.5 MeV. XRD confirmed the amorphous nature of the glasses even after 150 kGy electron beam irradiation. Densities of the irradiated samples showed slightly greater values when compared to their respective values before irradiation, which proved the increase in the compaction of the network. The intensities of the three prominent bands; B-O-B linkages, BO4 units and BO3 units of FT-IR spectra, of the titled glasses, showed slight decrease after electron beam irradiation. The decrement in the values of energy band gap and shift in cut-off wavelength towards red edge, proved the formation of color centers in the glass network after irradiation. The change in Hunter L values, through color measurement was a proof for the Farbe/color/absorption centers created in the glass sites after irradiation.

  10. (2E-3-(4-Chlorophenyl-1-(4-hydroxyphenylprop-2-en-1-one

    Directory of Open Access Journals (Sweden)

    Jerry P. Jasinski

    2011-04-01

    Full Text Available In the title compound, C15H11ClO2, the dihedral angle between the mean planes of the chlorobenzene and hydroxybenzene rings is 6.5 (6°. The mean plane of the prop-2-en-1-one group makes an angle of 18.0 (1° with the hydroxyphenyl ring and 11.5 (1° with the chlorophenyl ring. The crystal packing is stabilized by intermolecular O—H...O hydrogen bonds, weak C—H...O, C—H...π and π–π stacking interactions [centroid–centroid distances = 3.7771 (7 and 3.6917 (7 Å].

  11. (μ-3-Acetyl-5-carboxyl­ato-4-methyl­pyrazolido-1:2κ4 N 2,O 3:N 1,O 5)-μ-chlorido-tetra­pyridine-1κ2 N,2κ2 N-chlorido-1κCl-dicopper(II) propan-2-ol solvate

    Science.gov (United States)

    Malinkin, Sergey; Penkova, Larisa; Pavlenko, Vadim A.; Haukka, Matti; Fritsky, Igor O.

    2009-01-01

    The title compound, [Cu2(C7H6N2O3)Cl2(C5H5N)4]·C3H8O, is a binuclear pyrazolate complex, in which the two CuII atoms have different coordination numbers and are connected by a bridging Cl atom. One CuII atom has a distorted square-pyramidal coordination environment formed by two pyridine N atoms, one bridging Cl atom and an N,O-chelating pyrazolate ligand. The other CuII atom adopts an octa­hedral geometry defined by two pyridine N atoms at the axial positions, two Cl atoms and the coordinated pyrazolate ligand in the equatorial plane. An O—H⋯O hydrogen bond connects the complex mol­ecules and propan-2-ol solvent mol­ecules into pairs. These pairs form columns along the a axis. PMID:21577764

  12. 2-[(2-Chlorobenzylideneamino]-4,5,6,7-tetrahydro-1-benzothiophene-3-carbonitrile

    Directory of Open Access Journals (Sweden)

    Abdullah M. Asiri

    2011-09-01

    Full Text Available In the title compound, C16H13ClN2S, the mean planes fitted through all non-H atoms of the heterocyclic five-membered and the benzene rings are oriented at a dihedral angle of 5.19 (7°. In the crystal, a weak C—H...π interaction occurs, along with weak π–π interactions [cenroid–centroid distance = 3.7698 (11 Å].

  13. t-3-Benzyl-r-2,c-6-diphenylpiperidin-4-one oxime

    Directory of Open Access Journals (Sweden)

    R. Arulraj

    2016-12-01

    Full Text Available In the title compound, C24H24N2O [systematic name: (E-3-benzyl-2,6-diphenylpiperidin-4-one oxime], the piperidine ring adopts a slightly distorted chair conformation and the phenyl rings and the benzyl group substituents are attached equatorially. The oxime group makes a dihedral angle of 42.88 (12° with the piperidine ring. The dihedral angle between the phenyl rings is 71.96 (8°. The benzyl ring makes dihedral angles of 63.01 (8 and 59.35 (8° with the two phenyl rings. In the crystal, molecules are linked by O—H...N hydrogen bonds, forming C(7 chains along the c axis. The chains are linked by C—H...π interactions, forming slabs lying parallel to the bc plane.

  14. Zoledronate complexes. III. Two zoledronate complexes with alkaline earth metals: [Mg(C(5)H(9)N(2)O(7)P(2))(2)(H(2)O)(2)] and [Ca(C(5)H(8)N(2)O(7)P(2))(H(2)O)](n).

    Science.gov (United States)

    Freire, Eleonora; Vega, Daniel R; Baggio, Ricardo

    2010-06-01

    Diaquabis[dihydrogen 1-hydroxy-2-(imidazol-3-ium-1-yl)ethylidene-1,1-diphosphonato-kappa(2)O,O']magnesium(II), [Mg(C(5)H(9)N(2)O(7)P(2))(2)(H(2)O)(2)], consists of isolated dimeric units built up around an inversion centre and tightly interconnected by hydrogen bonding. The Mg(II) cation resides at the symmetry centre, surrounded in a rather regular octahedral geometry by two chelating zwitterionic zoledronate(1-) [or dihydrogen 1-hydroxy-2-(imidazol-3-ium-1-yl)ethylidene-1,1-diphosphonate] anions and two water molecules, in a pattern already found in a few reported isologues where the anion is bound to transition metals (Co, Zn and Ni). catena-Poly[[aquacalcium(II)]-mu(3)-[hydrogen 1-hydroxy-2-(imidazol-3-ium-1-yl)ethylidene-1,1-diphosphonato]-kappa(5)O:O,O':O',O''], [Ca(C(5)H(8)N(2)O(7)P(2))(H(2)O)](n), consists instead of a Ca(II) cation in a general position, a zwitterionic zoledronate(2-) anion and a coordinated water molecule. The geometry around the Ca(II) atom, provided by six bisphosphonate O atoms and one water ligand, is that of a pentagonal bipyramid with the Ca(II) atom displaced by 0.19 A out of the equatorial plane. These Ca(II) coordination polyhedra are ;threaded' by the 2(1) axis so that successive polyhedra share edges of their pentagonal basal planes. This results in a strongly coupled rhomboidal Ca(2)-O(2) chain which runs along [010]. These chains are in turn linked by an apical O atom from a -PO(3) group in a neighbouring chain. This O-atom, shared between chains, generates strong covalently bonded planar arrays parallel to (100). Finally, these sheets are linked by hydrogen bonds into a three-dimensional structure. Owing to the extreme affinity of zoledronic acid for bone tissue, in general, and with calcium as one of the major constituents of bone, it is expected that this structure will be useful in modelling some of the biologically interesting processes in which the drug takes part.

  15. Structure determinations for Ca3Ti2O7, Ca4Ti3O10, Ca3.6Sr0.4Ti3O10 and a refinement of Sr3Ti2O7

    International Nuclear Information System (INIS)

    Elcombe, M.M.; Kisi, E.H.; Hawkins, K.D.; White, T.J.; Goodman, P.; Matheson, S.

    1991-01-01

    The structures of the orthorhombic Ruddlesden-Popper (A n+1 B n X 3n+1 ) phases Ca 3 Ti 2 O 7 (n=2) refined from neutron powder diffraction data at λ=1.893 A. They consist of coherent intergrowths of perovskite (CaTiO 3 ) blocks, n TiO 6 octahedra thick, with single layers of CaO having a distorted NaCl configuration. TiO 6 octahedra are tilted and distorted in a very similar fashion to those in CaTiO 3 (n=∞). This fact was used to determine the space groups of the layered structures. Convergent-beam electron diffraction patterns are best matched by calculations in the above space groups which are thus confirmed. Octahedral tilt angles increase slightly in the sequence n=2, 3, ∞. Strontium addition reduces the octahedral tilt angles because of preferential substitution of Sr on the Ca sites within the perovskite blocks of Ca 4 Ti 3 O 10 . The algorithm used to produce starting models for structure refinements is thought to be generally applicable to Ruddlesden-Popper and possibly other layered perovskite structures. It furnishes the predictions: (a) all n-even compounds in the Ca n+1 Ti n O 3n+1 series will have space group Ccm2 1 , (b) all n-odd compounds in this series will have space group Pcab, (c) all A n+1 B n X 3n+1 series for which the n=∞ end member (ABX 3 ) is isostructural with CaTiO 3 will be isostructural with the compounds reported above (e.g. Ca n+1 Zr n O 3n+1 ). (orig./WL)

  16. Synthesis and crystal structure of triammine pentafluorido tantalum(V) [TaF{sub 5}(NH{sub 3}){sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Baer, Sebastian A.; Kraus, Florian [Department Chemie, Technische Universitaet Muenchen, Lichtenbergstrasse 4, 85747 Garching (Germany); Lozinsek, Matic [Department of Inorganic Chemistry and Technology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia)

    2013-07-01

    [Sr(HF){sub 3}(TaF{sub 6}){sub 2}] reacts with liquid ammonia under the formation of colorless crystals of triammine pentafluorido tantalum(V) [TaF{sub 5}(NH{sub 3}){sub 3}] (1). The structure was elucidated by low-temperature X-ray structure analysis. Compound 1 crystallizes in the monoclinic space group P2{sub 1}/c with a = 5.1525(6), b = 11.736(1), c = 10.171(1) Aa, β = 94.843(9) , V = 612.8(1) Aa{sup 3} at 123 K with Z = 4. Its structure displays discrete TaF{sub 5}(NH{sub 3}){sub 3} molecules, which are interconnected by N-H..F hydrogen bonds to form a complex three-dimensional network. The title compound is a rare example of a neutral, molecular, eight-coordinate tantalum species. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Crystal structure of (acetato-κO(ethanol-κO[(9S,17S,21S,29S-9,17,21,29-tetrahydroxy-18,30-dioxaoctacyclo[18.10.0.02,7.08,19.09,17.011,16.021,29.023,28]triaconta-1,3,5,7,11(16,12,14,19,23(28,24,26-undecaene-10,22-dione-κ3O18,O21,O22]caesium ethanol monosolvate

    Directory of Open Access Journals (Sweden)

    Ravell Bengiat

    2016-07-01

    Full Text Available The title compound, [Cs(CH3COO(C28H16O8(C2H5OH]·C2H5OH, is the product of the complexation between one vasarene analogue [1], bis ninhydrin naphthalene-1,3-diol and CsF, where the F− ion has reacted with residual acetic acid (AcOH, to form a [1]·CsOAc complex. The intermolecular interactions with the multiple oxygen-containing functional groups of the ligand, as well as O—H...O hydrogen bonds involving the ethanol solvent molecules, stabilize the complex, forming a chain along [100]. Additional parallel-displaced π–π stacking, with an interplanar distance of 3.669 (1 Å, connect several unit cells in a three-dimensional supramolecular structure, though, the larger size of AcO− (1.60 Å compared to F− (1.33 Å prevents the tight packing that was once achieved with other vasarene complexes of CsF.

  18. Synthesis, antifungal activity and docking study of 2-amino-4H-benzochromene-3-carbonitrile derivatives

    Science.gov (United States)

    Mirjalili, BiBi Fatemeh; Zamani, Leila; Zomorodian, Kamiar; Khabnadideh, Soghra; Haghighijoo, Zahra; Malakotikhah, Zahra; Ayatollahi Mousavi, Seyyed Amin; Khojasteh, Shaghayegh

    2016-07-01

    Pathogenic fungi are associated with diseases ranging from simple dermatosis to life-threatening infections, particularly in immunocompromised patients. During the past two decades, resistance to established antifungal drugs has increased dramatically and has made it crucial to identify novel antimicrobial compounds. Here, we selected 12 new compounds of 2-amino-4H-benzochromene-3-carbonitrile drivetives (C1-C12) for synthesis by using nano-TiCl4.SiO2 as efficient and green catalyst, then nine of synthetic compounds were evaluated against different species of fungi, positive gram and negative gram of bacteria. Standard and clinical strains of antibiotics sensitive and resistant fungi and bacteria were cultured in appropriate media. Biological activity of the 2-amino-4H-benzochromene-3-carbonitrile derivatives against fungi and bacteries were estimated by the broth micro-dilution method as recommended by clinical and laboratory standard institute (CLSI). In addition minimal fangicidal and bactericial concenteration of the compounds were also determined. Considering our results showed that compound 2-amino-4-(4-methyl benzoate)-4H-benzo[f]chromen-3-carbonitrile (C9) had the most antifungal activity against Aspergillus clavatus, Candida glabarata, Candida dubliniensis, Candida albicans and Candida tropicalis at concentrations ranging from 8 to ≤128 μg/mL. Also compounds 2-amino-4-(3,4-dimethoxyphenyl)-4H-benzo[f]chromen-3-carbonitrile (C4) and 2-amino-4-(4-isopropylphenyl)-4H-benzo[f]chromen-3-carbonitrile (C3) had significant inhibitory activities against Epidermophyton floccosum following 2-amino-4-(4-methylbenzoate)-4H-benzo[f]chromen-3-carbonitrile (C9), respectively. Docking simulation was performed to insert compounds C3, C4 and C9 in to CYP51 active site to determine the probable binding model.

  19. 2-(1H-Imidazol-1-yl)-3-isopropyl-1-benzothieno[3,2-d]pyrimidin-4(3H)-one

    OpenAIRE

    Xu, Sheng-Zhen

    2007-01-01

    In the title compound, C16H14N4OS, the three fused rings of the benzothieno[3,2-d]pyrimidinone unit are essentially coplanar, the maximum deviation from the mean plane being 0.067 (3) Å. The dihedral angle between the mean plane of the fused rings and the imidazole ring is 72.00 (3)°. Offset π–π stacking interactions involving the fused rings are effective in the stabilization of the crystal structure. The centroid–centroid distances between t...

  20. Thermal behaviour of pure and binary Fe(NO3)3.9H2O and (NH4)6Mo7O24.4H2O systems

    International Nuclear Information System (INIS)

    Shaheen, W.M.

    2007-01-01

    Thermal behaviour of pure ferric nitrate, ammonium molybdate and their mixtures in different ratios were investigated by means of thermal analysis (TG, DTG and DTA) techniques. Relative thermal analysis (RTA) graphical treatment of derivatographic curves of the components in the pure and binary system has been carried out as well. A series of Fe 2 O 3 -MoO 3 systems were prepared from pure and binary salts by heating at 350, 550, 750 and 1000 deg. C. The X-ray diffraction (XRD) analysis was used to characterize the phases produced from thermal treatment of investigated solids. The results revealed that pure ferric nitrate decomposed to Fe 2 O 3 at 250, while pure ammonium molybdate decomposed into MoO 3 and 340 deg. C and then melted at 790 deg. C. For the binary components, crystalline ferric or molybdenum oxides were detected beside ferric molybdate Fe 2 (MoO 4 ) 3 phase starting from 350 deg. C. Fe 2 (MoO 4 ) 3 phase was formed as a result of solid-solid interactions between the produced oxides. The thermal stability of the formed compound was significantly affected by the composition of the mixture and treatment temperature. The presence of two-component solids in the binary systems affected the thermal decomposition of their individual salt and affected their physical and chemical behaviour. The catalytic activity of the obtained pure and mixed oxides was measured using the decomposition of hydrogen peroxide reaction as a model reaction at 20-50 deg. C. It was found that the mixed oxide solids had catalytic activity higher than single oxides thermally treated at 350 and 550 deg. C. This is attributed to the increase in the concentration of active sites via creation of new ion pairs in case of binary systems. The rise in calcination temperature up to 750 and 1000 deg. C brought about drastic decrease in the activity of all solids because of changing catalyst composition and/or sintering process. The activation energies of H 2 O 2 decomposition were determined

  1. (2E-3-(3,5-Dimethyl-1-phenyl-1H-pyrazol-4-yl-1-(2,5-dimethyl-3-thienylprop-2-en-1-one

    Directory of Open Access Journals (Sweden)

    Salman A. Khan

    2010-04-01

    Full Text Available The title compound, (2E-3-(3,5-dimethyl-1-phenyl-1H-pyrazol-4-yl-1-(2,5-dimethyl-3-thienylprop-2-en-1-one (3 was synthesized in high yield by aldol condensation of 3-acetyl-2,5-dimethylthiophene and 3,5-dimethyl-1-phenylpyrazole-4-carboxaldehyde in ethanolic NaOH at room temperature. Its structure was fully characterized by elemental analysis, IR, 1H NMR, 13C NMR and EI-MS spectral analysis.

  2. (C6H16N2)Zn3(HPO3)4H2O: a new layered zinc phosphite templated by diprotonated trans-1,4-diaminocyclohexane

    International Nuclear Information System (INIS)

    Wang Yu; Yu Jihong; Li Yi; Du Yu; Xu Ruren; Ye Ling

    2003-01-01

    Employing trans-1,4-diaminocyclohexane (trans-1,4-DACH) as a template, a new two-dimensional layered zinc phosphite (C 6 H 16 N 2 )Zn 3 (HPO 3 ) 4 H 2 O (1) has been prepared hydrothermally. Single-crystal X-ray diffraction analysis shows that it crystallizes in the monoclinic space group P2 1 /n with a=10.458(2) A, b=14.720(3) A, c=13.079(3) A, β=97.93(3) deg. , V=1994.1(7) A 3 , Z=4, R 1 =0.0349 (I>2σ(I)) and wR 2 =0.0605 (all data). The inorganic layer is built up by alternation of ZnO 4 tetrahedra and HPO 3 pseudo pyramids forming a 4.6.8-net. The sheet is featured by a series of capped six-membered rings. The diprotonated trans-1,4-DACH molecules reside in the interlayer region and interact with the inorganic network through H-bonds

  3. 4-[(5-Hydroxy-3-methyl-1-phenyl-1H-pyrazol-4-ylphenylmethyl]-5-methyl-2-phenyl-1H-pyrazol-3(2H-one ethanol hemisolvate

    Directory of Open Access Journals (Sweden)

    Hoong-Kun Fun

    2009-01-01

    Full Text Available The asymmetric unit of the title compound, C27H24N4O2·0.5C2H6O, comprises two crystallographically independent molecules (A and B with slightly different conformations, and one ethanol molecule of crystallization. Intramolecular C—H...O and O—H...O hydrogen bonds generate six- and eight-membered rings, producing S(6 and S(8 ring motifs, respectively. In molecule A, one of the benzene rings is disordered over two positions, with site-occupancy factors of 0.542 (11 and 0.458 (11. The dihedral angles between the central benzene ring and the two outer benzene rings are 73.88 (9 and 82.6 (2/88.9 (2° in molecule A, and 80.81 (8 and 79.38 (8° in molecule B. In the crystal structure, molecules form infinite one-dimensional chains in the (101 plane. The crystal structure is stabilized by intermolecular O—H...N, N—H...N, N—H...O and C—H...O hydrogen bonds, weak C—H...π and π–π [centroid–centroid = 3.5496 (1 Å] interactions.

  4. Effects of micro-water on decomposition of the environment-friendly insulating medium C5F10O

    Directory of Open Access Journals (Sweden)

    Song Xiao

    2017-06-01

    Full Text Available SF6 is widely used in all kinds of high-voltage electrical equipment because of its excellent insulation and arc-extinguishing performance. However, this compound leads to serious greenhouse effect, which harms the environment. Many research institutions are now actively in search of SF6 alternative gas. C5F10O has attracted much attention as an alternative gas with low global warming potential (GWP and excellent dielectric strength. In this paper, we analyzed the possible decomposition paths of C5F10O under micro-water environment through density functional theory. We also evaluated the ionization parameters and toxicity of the decomposition products. The results show that OH• and H• produced by H2O exhibited a catalytic effect on the decomposition of C5F10O. CF4, C2F6, C3F6, C3F8, C4F10, C5F12, C6F14, C3F7COH, C3F7OH, CF3COH, C3F7H, and CF3OH were produced in the micro-water environment. Based on molecular configuration calculation, the ionization parameters of these products were inferior to perfluorocarbons, such as C3F8, leading to reduced insulation performance of the system. Moreover, CF2O and HF are hazardous to human health and equipment safety. Results will provide a basis for further study of the insulation characteristic of the C5F10O gas mixture under micro-water condition to guide the formulation of their relevant international standards prior to engineering applications.

  5. Effects of micro-water on decomposition of the environment-friendly insulating medium C5F10O

    Science.gov (United States)

    Xiao, Song; Li, Yi; Zhang, Xiaoxing; Tian, Shuangshuang; Deng, Zaitao; Tang, Ju

    2017-06-01

    SF6 is widely used in all kinds of high-voltage electrical equipment because of its excellent insulation and arc-extinguishing performance. However, this compound leads to serious greenhouse effect, which harms the environment. Many research institutions are now actively in search of SF6 alternative gas. C5F10O has attracted much attention as an alternative gas with low global warming potential (GWP) and excellent dielectric strength. In this paper, we analyzed the possible decomposition paths of C5F10O under micro-water environment through density functional theory. We also evaluated the ionization parameters and toxicity of the decomposition products. The results show that OH• and H• produced by H2O exhibited a catalytic effect on the decomposition of C5F10O. CF4, C2F6, C3F6, C3F8, C4F10, C5F12, C6F14, C3F7COH, C3F7OH, CF3COH, C3F7H, and CF3OH were produced in the micro-water environment. Based on molecular configuration calculation, the ionization parameters of these products were inferior to perfluorocarbons, such as C3F8, leading to reduced insulation performance of the system. Moreover, CF2O and HF are hazardous to human health and equipment safety. Results will provide a basis for further study of the insulation characteristic of the C5F10O gas mixture under micro-water condition to guide the formulation of their relevant international standards prior to engineering applications.

  6. 2-Methyl-1,10b-dihydro-5H-pyrazolo[1,5-c][1,3]benzoxazin-5-one

    Directory of Open Access Journals (Sweden)

    Jan Světlík

    2009-05-01

    Full Text Available In the title compound, C11H10N2O2, a potential inhibitor of the cyclooxygenase-2 isoenzyme, the pyrazoline ring exists in a flat-envelope conformation while the puckering of the central oxazine ring is more severe. As a result, the molecule as a whole is non-planar. The formal sp3 pyrazoline N atom is sp2 hybridized, with the lone-pair electrons delocalized through conjugation with the carbonyl group rather than the double bond of the pyrazoline ring.

  7. Compound effect of CaCO3 and CaSO4·2H2O on the strength of steel slag: cement binding materials

    International Nuclear Information System (INIS)

    Qi, Liqian; Liu, Jiaxiang; Liu, Qian

    2016-01-01

    In this study, we replaced 30% of the cement with steel slag to prepare binding material; additionally, small amounts of CaCO 3 and CaSO 4 ·2H 2 O were added. This was done to study the compound effect of CaCO 3 and CaSO 4 ·2H 2 O on the strength of steel slag-cement binding materials. The hydration degree of the steel slag cementitious material was analyzed by XRD, TG and SEM. The results showed that the optimum proportions of CaCO 3 and CaSO 4 ·2H 2 O were 3% and 2%, respectively. Compared with the steel slag-cement binders without adding CaCO 3 and CaSO 4 ·2H 2 O, the compressive strength increased by 59.9% at 3 days and by 17.8% at 28 days. Acting as the nucleation matrix, CaCO 3 could accelerate the hydration of C 3 S. In addition, CaCO 3 was involved in the hydration reaction, generating a new hydration product, which could stably exist in a slurry. Meanwhile, CaSO 4 ·2H 2 O could increase the number of AFt. The compound effect of CaCO 3 and CaSO 4 ·2H 2 O enhanced the intensity of steel slag-cement binding materials and improved the whole hydration behavior. (author)

  8. The effects of H+ implants on YBa2Cu3O7 superconducting materials

    International Nuclear Information System (INIS)

    Luo Chenglin; Pan Guoqiang; Han Ming; Wang Guanghou

    1993-09-01

    The variations of microstructure and electrical properties of Y-Ba-Cu O with and without H + implantation have been studied by scanning electron microscope, X-ray diffraction and IR spectrum techniques. The results have shown that these variations are directly relative to the intrinsic quality of YBa 2 Cu 3 O 7 . Microstructural change is responsible for the variations of electrical properties of YBa 2 Cu 3 O 7 superconductor. The Cu H bond formed by H + implanted into YBa 2 Cu 3 O 7 is not a key factor for these variations

  9. 3-[2-(1,3-Benzothiazol-2-ylsulfanylethyl]-1,3-oxazolidin-2-one

    Directory of Open Access Journals (Sweden)

    Yong-Hong Wen

    2010-10-01

    Full Text Available The title compound, C12H12N2S2O2, consists of a benzothiazole group and a oxazolidin-1-one linked via a flexible ethane-1,2-diyl spacer. The benzothiazole group and the oxazolidine ring are each almost planar [with maximum deviations of 0.007 (2 and 0.044 (3 Å, respectively] and make a dihedral angle of 9.35 (10°. In the crystal structure, adjacent molecules were connected through C—H...O and C—H...N hydrogen bonds, and further extended into a three-dimensional network structure through intermolecular aromatic π–π stacking interactions in which the centroid–centroid distance is 3.590 (1 Å.

  10. Effects of chlorides on the hydration of 12CaO{center_dot}7Al2O3 solid solution

    Energy Technology Data Exchange (ETDEWEB)

    Sango, H.; Miyakawa, T.; Yasue, T.; Arai, Y. [Nihon Univ., Tokyo (Japan). Faculty of Science and Engineering

    1995-01-01

    The purpose of this paper was to compare the hydration rate of C12A7ss and to study the effects of chlorides on the hydration products and the hydration rate of C12A7ss. In this paper, `C12A7ss` is a general term for C11A7{center_dot}Ca(OH)2, 11CaO{center_dot}7Al2O3{center_dot}CaF2 and 11CaO{center_dot}7Al2O3{center_dot}CaCl2. The hydration process and the hydration rate of 12CaO{center_dot}7Al2O3 solution (C12A7ss) with and without various chlorides (CaCl2, MgCl2, NaCl, NH4Cl and AlCl3) has been determined at 25{degree}C. Various C12A7ss were prepared in burning method. When C12A7ss with various chlorides are hydrated, 3CaO{center_dot} Al2O3{center_dot}CaCl2{center_dot}10H2O(Friedel`s salt) is formed as the primary hydrate. The hydration rate of C12A7ss is decreased by the coexistence of CaCl2, MgCl2, NaCl or NH4Cl except AlCl3. As a result, the setting time of C12A7ss is extended and the unhydrate exists for a long time comparatively. 14 refs., 7 figs., 1 tab.

  11. Dicyclohexylammonium (S-2-azido-3-phenylpropanoate

    Directory of Open Access Journals (Sweden)

    Sebastian J. Petrik

    2012-07-01

    Full Text Available The asymmetric unit of the title compound, C12H24N+·C9H8N3O2−, consists of two dicyclohexylammonium cations linked to two (S-2-azido-3-phenylpropanoate anions by four short N—H...O hydrogen bonds with N...O distances in the range 2.712 (32.765 (3 Å. The dicyclohexylammonium cations and the aryl and carboxylate groups of the anion are related by a pseudo-inversion centre, with overall crystallographic inversion symmetry for the structure broken by the chirality of the α-C atoms of the anions.

  12. 4-[(3-Hydroxyanilino(phenylmethylidene]-3-methyl-1-phenyl-1H-pyrazol-5(4H-one

    Directory of Open Access Journals (Sweden)

    Keraghel Saida

    2012-06-01

    Full Text Available In the title compound, C23H19N3O2, the dihedral angles formed by the pyrazolone ring with the three benzene rings are 30.91 (6, 60.96 (4 and 57.01 (4°. The ligand is in the enamine–keto form and its structure is stabilized by an intramolecular N—H...O hydrogen bond. In the crystal, O—H...N hydrogen bonds link molecules into chains parallel to [01-1].

  13. 2-[(3,5-Dimethyl-1-phenyl-1H-pyrazol-4-ylmethylene]indane-1,3-dione

    Directory of Open Access Journals (Sweden)

    Abdullah M. Asiri

    2011-02-01

    Full Text Available The title compound 2-[(3,5-dimethyl-1-phenyl-1H-pyrazol-4-ylmethylene]-indane-1,3-dione (3 was synthesized in high yield by reaction of 3,5-dimethyl-1-phenyl-pyrazole-4-carbaldehyde and indane-1,3-dione in ethanol in the presence of pyridine. The structure of this new compound was confirmed by elemental analysis, IR, 1H NMR, 13C NMR and GC-MS spectral analysis.

  14. 3-Methyl-1-(prop-2-en-1-ylquinoxalin-2(1H-one

    Directory of Open Access Journals (Sweden)

    Youssef Ramli

    2010-07-01

    Full Text Available In the molecule of the title compound, C12H12N2O, the quinoxaline ring is planar with an r.m.s. deviation of 0.007 (15 Å. The dihedral angle between the quinoxaline and propenyl planes is 82.1 (2°. The crystal packing is stabilized by offset π–π stacking between the quinoxaline rings [centroid–centroid distance = 3.8832 (9 Å].

  15. 2-{N-[(2,3,4,9-Tetrahydro-1H-carbazol-3-ylmethyl]methylsulfonamido}ethyl methanesulfonate

    Directory of Open Access Journals (Sweden)

    Mustafa Göçmentürk

    2014-01-01

    Full Text Available In the title compound, C17H24N2O5S2, the indole ring system is nearly planar [maximum deviation = 0.032 (1 Å] and the cyclohexene ring has a half-chair conformation. In the crystal, N—H...O hydrogen bonds link the molecules into a chain running along the b-axis direction. Weak C—H...O hydrogen bonds and weak C—H...π interactions are observed between the chains.

  16. Electrical properties of reactive-ion-sputtered Al{sub 2}O{sub 3} on 4H-SiC

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, Madhup, E-mail: madhup.iit@gmail.com [Microelectronics and MEMS Laboratory, Electrical Engineering Department, Indian Institute of Technology Madras, Chennai 600036 (India); Dutta, Gourab [Microelectronics and MEMS Laboratory, Electrical Engineering Department, Indian Institute of Technology Madras, Chennai 600036 (India); Mannam, Ramanjaneyulu [Department of Physics and Nano Functional Materials Technology Centre, Indian Institute of Technology Madras, Chennai 600036 (India); DasGupta, Nandita [Microelectronics and MEMS Laboratory, Electrical Engineering Department, Indian Institute of Technology Madras, Chennai 600036 (India)

    2016-05-31

    Al{sub 2}O{sub 3} was deposited on n-type 4H-SiC by reactive-ion-sputtering (RIS) at room temperature using aluminum target and oxygen as a reactant gas. Post deposition oxygen annealing was carried out at a temperature of 1100 °C. Metal-oxide-semiconductor (MOS) test structures were fabricated on 4H-SiC using RIS-Al{sub 2}O{sub 3} as gate dielectric. The C-V characteristics reveal a significant reduction in flat band voltage for oxygen annealed RIS-Al{sub 2}O{sub 3} samples (V{sub fb} = 1.95 V) compared to as-deposited Al{sub 2}O{sub 3} samples (V{sub fb} > 10 V), suggesting a reduction in negative oxide charge after oxygen annealing. Oxygen annealed RIS-Al{sub 2}O{sub 3} samples also showed significant improvement in I-V characteristics compared to as-deposited RIS-Al{sub 2}O{sub 3} samples. A systematic analysis was carried out to investigate the leakage current mechanisms present in oxygen annealed RIS-Al{sub 2}O{sub 3} on 4H-SiC at higher gate electric field and at different operating temperature. For measurement temperature (T) < 303 K, Fowler–Nordheim (FN) tunneling was found to be the dominant leakage mechanism and for higher temperature (T ≥ 303 K), a combination of FN tunneling and Poole-Frenkel (PF) emission was confirmed. The improvement in I-V characteristics of oxygen annealed RIS-Al{sub 2}O{sub 3}/4H-SiC MOS devices is attributed to large effective barrier height (Φ{sub B} = 2.53 eV) at Al{sub 2}O{sub 3}/SiC interface, due to the formation of an interfacial SiO{sub 2} layer during oxygen annealing, as confirmed from X-ray Photoelectron Spectroscopy results. Further improvement in C-V characteristics for oxygen annealed RIS-Al{sub 2}O{sub 3}/4H-SiC MOS devices was observed after forming gas annealing at 400 °C. - Highlights: • O{sub 2} annealed RIS-Al{sub 2}O{sub 3} on 4H-SiC showed better performance than other reported result. • FN, FN + PF tunneling was found in O{sub 2} annealed RIS-Al{sub 2}O{sub 3} for different temp. ranges. • Al

  17. Two new three-dimensional zinc phosphites templated by piperazine: [H2pip][Zn3(HPO3)4(H2O)2] and K[H2pip]0.5[Zn3(HPO3)4

    Science.gov (United States)

    Zhang, Xiao; Wang, Guo-Ming; Wang, Zong-Hua; Wang, Ying-Xia; Lin, Jian-Hua

    2014-01-01

    Two three-dimensional open-framework zinc phosphites with the same organically templated, [H2pip][Zn3(HPO3)4(H2O)2] (1) and K[H2pip]0.5[Zn3(HPO3)4] (2) (pip = piperazine), have been solvothermally synthesized and structurally characterized by IR, elemental analysis, thermogravimetric analysis, powder and single-crystal X-ray diffractions. Compound 1 consists of ZnO4 tetrahedra, [HPO3] pseudopyramids and [ZnO4(H2O)2] octahedra, which are linked through their vertexes to generate three-dimensional architecture with intersecting 8-membered channels along the [1 0 0], [0 0 1] and [1 0 1] directions. Compound 2 is constructed from strictly alternating ZnO4 tetrahedra and [HPO3] pseudopyramids, and exhibits (3,4)-connected inorganic framework with 8-, and 12-membered channels, in which the K+ and diprotonated H2pip2+ extra-framework cations reside, respectively. The coexistence of inorganic K+ and organic piperazine mixed templates in the structure is unique and, to the best of our knowledge, firstly observed in metal-phosphite materials. In addition, the participation of left-handed and right-handed helical chains in construction of the puckered 4.82 sheet structure in 2 is also noteworthy.

  18. Hydrothermal synthesis, structures and optical properties of A2Zn3(SeO3)4·XH2O (A=Li, Na, K; X=2 or 0)

    Science.gov (United States)

    Liu, Yunsheng; Mei, Dajiang; Xu, Jingli; Wu, Yuandong

    2015-12-01

    New alkali metal zinc selenites, A2Zn3(SeO3)4·XH2O (A=Li, Na, K; X=2 or 0) were prepared through hydrothermal reactions. Li2Zn3(SeO3)4·2H2O (1) crystallizes in the monoclinic space group P21/c with lattice parameters a=8.123(4), b=9.139(4), c=7.938(3) Å, β=112.838(9)°. Na2Zn3(SeO3)4·2H2O (2) crystallizes in the monoclinic space group C2/c with lattice parameters a=15.7940(18), b=6.5744(8), c=14.6787(17) Å, β=107.396(3)°. K2Zn3(SeO3)4 (3) crystallizes in the monoclinic space group C2/c with lattice parameters a=11.3584(12), b=8.6091(9), c=13.6816(14) Å, β=93.456(2)°. The anionic structures are composed of [Zn3O12]18- sheets, chains, and "isolated" units in compound 1, 2, 3, respectively, and trigonal pyramids SeO32-. The compounds were characterized by the solid state UV-vis-NIR diffuse reflectance spectroscopy, infrared spectra and thermogravimetric analysis.

  19. Thermal decomposition of RE(C2H5CO2)3·H2O (RE = Dy, Tb, Gd, Eu and Sm)

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude

    2014-01-01

    The thermal decomposition of Dy(III), Tb(III), Gd(III), Eu(III), and Sm(III) propionate monohydrates was studied in argon by means of simultaneous differential thermal analysis and thermogravimetry, infrared-spectroscopy, X-ray diffraction, and optical microscopy. After dehydration, which takes......, an intermediate stage involving a RE2O(C2H5CO2)4 composition was evidenced in the case of the Eu- and Sm-propionates. For all compounds, further decomposition of RE2O2CO3 into the corresponding sesquioxides (RE2O3) is accompanied by the release of CO2. The thermal decomposition of Dy- and Tb-propionates occurs...

  20. Ethyl 2-(3-oxo-1,2,3,4-tetrahydroquinoxalin-2-ylacetate

    Directory of Open Access Journals (Sweden)

    Nadeem Abad

    2018-04-01

    Full Text Available In the title compound, C12H14N2O3, the conformation of the ester substituent is partially determined by an intramolecular N—H...O hydrogen bond. The crystal packing consists of layers parallel to (\\overline{1}12 held together by N—H...O and C—H...O hydrogen bonds. The CH/NH portion of the heterocyclic ring is disordered over two sites in a 0.930 (5:0.070 (5 ratio with the disorder also extending to the O atom involved in the intramolecular N—H...O hydrogen bond.

  1. Ethyl 2-{3-[(2-chloro-1,3-thiazol-5-ylmethyl]-4-nitroimino-1,3,5-triazinan-1-yl}acetate

    Directory of Open Access Journals (Sweden)

    Chuan-wen Sun

    2010-06-01

    Full Text Available In the title compound, C11H15ClN6O4S, which belongs to the neonicotinoid class of insecticidally active heterocyclic compounds, the six-membered triazine ring adopts an opened envolope conformation. The planar nitro imine group [dihedral angle between nitro and imine groups = 1.07 (7°] and the thiazole ring are oriented at a dihedral angle of 69.62 (8°. A classical intramolecular N—H...O hydrogen bond is found in the molecular structure. Moreover, one classical intermolecular N—H...N and four non-classical C—H...O and C—H...N hydrogen bonds are also present in the crystal structure. Besides intermolecular hydrogen bonds, the Cl atom forms an intermolecular short contact [3.020 (2 Å] with one of the nitro O atoms.

  2. 1-(3-Bromopropylindoline-2,3-dione

    Directory of Open Access Journals (Sweden)

    Fatima Zahrae Qachchachi

    2016-04-01

    Full Text Available In the title compound, C11H10BrNO2, the indoline ring system has an r.m.s. deviation of 0.026 Å. The side chain (including the Br atom has a trans–gauche conformation, as indicated by the N—C—C—C and C—C—C—Br torsion angles of −177.5 (3 and 68.1 (3°, respectively. In the crystal, molecules are linked by weak C—H...O hydrogen bonds, forming a three-dimensional network.

  3. Neutron scattering studies on phase transitions in (CD3ND3)2CuCl4 and MnCl2.4H2O

    International Nuclear Information System (INIS)

    Steijger, J.J.M.

    1982-10-01

    In this thesis the results of neutron scattering experiments and measurements of the susceptibility on some compounds which display magnetic and/or structural phase transitions, are described. Following an introductory chapter, chapter 2 shows that neutron scattering can be used as a tool for unravelling problems in crystallographic and magnetic structure. The qualitative different scattering patterns for scatters are described. In chapters 3 and 4 an investigation on the layered ferromagnets (CH 3 NH 3 ) 2 CuCl 4 and (CD 3 ND 3 ) 2 CuCl 4 is described. In these materials the copper ions, which carry the magnetic moment, are more closely spaced in the ab-planes, and consequently the magnetic interactions in these planes are stronger than those in the direction perpendicular to these planes by about a factor of 10 5 . Chapter 5 presents a discussion and a calculation of demagnetizing and dipole fields. The second part of this thesis is concerned with the transition from the antiferromagnetic to the paramagnetic phase in MnCl 2 .4H 2 O in the presence of a magnetic field applied perpendicular to the preferred direction of the magnetic moments. The theory is reviewed in chapter 6 and in chapter 7 the correction procedure for inhomogeneous internal fields is applied to the measurements on MnCl 2 .4H 2 O. (Auth./C.F.)

  4. F−/OH− substitution in [H4tren]4+ and [H3tren]3+ hydroxyfluorotitanates(IV) and classification of tren cation configurations

    International Nuclear Information System (INIS)

    Lhoste, Jérôme; Body, Monique; Legein, Christophe; Ribaud, Annie; Leblanc, Marc; Maisonneuve, Vincent

    2014-01-01

    Three [H 3 tren] 3+ or [H 4 tren] 4+ hydroxyfluorotitanates(IV) are solvothermally synthesized from TiO 2 , tren amine, 40% HF aqueous solution and ethanol under microwave heating at 120 °C and 190 °C. [H 4 tren]·(TiF 4.6 (OH) 1.4 ) 2 ·2.7H 2 O (I) and β-[H 3 tren]·(TiF 4.5 (OH) 1.5 )·(F) (II) are described for the first time. The third compound, α-[H 3 tren]·(TiF 4.7 (OH) 1.3 )·(F) (III), was previously reported as a pure fluorotitanate. The structure determinations are performed from single crystal (I) and powder (II) X-ray diffraction data. The F − /OH − substitution, expected from the presence of water in the reaction medium, is characterized by chemical analyses and 19 F MAS solid state NMR experiments: all three structures are built up from Ti(F,OH) 6 2− octahedra and “free” fluoride ions or water molecules. “Free” fluoride ions are not affected by F − /OH − substitution. The electroneutrality is ensured by triprotonated or tetraprotonated tren amines which adopt specific configurations. Additionally, based on the analysis of [H 3 tren] 3+ or [H 4 tren] 4+ hydroxo/oxo/fluorometalates, a classification of the configurations of tren cations is proposed. - Graphical abstract: The ratio of the relative intensities of the 19 F NMR lines assigned to F atoms belonging to isolated TiF 6−x (OH) x octahedra and to “free” fluoride ions shows that the F − /OH − substitution concerns only F atoms bonded to titanium. - Highlights: • Three tren templated hydroxyfluorotitanates(IV) have been solvothermally synthesized. • They are built up from Ti(F,OH) 6 2− octahedra and “free” F − ions or H 2 O molecules. • F − /OH − substitution does not affect “free” F − sites. • [H 4 tren] 4+ and [H 3 tren] 3+ cations adopt specific configurations. • A classification of the configurations of tren cations is proposed

  5. Crystal structure of 1-(2,4-dimethylphenyl-2-(4-trimethylsilyl-1H-1,2,3-triazol-1-ylethanone

    Directory of Open Access Journals (Sweden)

    G. B. Venkatesh

    2014-12-01

    Full Text Available The asymmetric unit of the title compound, C15H21N3OSi, contains two molecules with similar conformations (r.m.s. overlay fit for the 20 non-H atoms = 0.163 Å. The dihedral angles between the planes of the 1,2,3-triazole and 2,4-dimethylbenzene rings are 27.0 (3 and 19.5 (3°. In the crystal, molecules are linked by very weak C—H...O and C—H...N hydrogen bonds to generate [100] chains. The chains are cross-linked by C—H...π interactions.

  6. (R,S-2′-Amino-6′-methyl-2,5′,5′-trioxo-6′H-spiro[indoline-3,4′-pyrano[3,2-c][2,1]benzothiazine]-3′-carbonitrile dimethylformamide monosolvate

    Directory of Open Access Journals (Sweden)

    Svitlana V. Shishkina

    2014-07-01

    Full Text Available The title solvate, C20H14N4O4S·C3H7NO, comprises a stereogenic centre but the centrosymmetric space group causes the presence of the racemate in the crystal. The spiro-joined fragments are almost orthogonal, with a dihedral angle of 86.8 (2° between the mean planes of the pyrane ring and the dihydroindolone ring system. The atoms of the indolinone bicycle are coplanar, with an r.m.s. deviation of 0.005 Å. In the crystal, pairs of N—H...O hydrogen bonds link the molecules into centrosymmetric dimers which are linked to the dimethylformamide solvent molecules by further N—H...O hydrogen bonds. N—H...N hydrogen bonds link neighbouring dimers into [010] chains.

  7. [Hydrogen bis(1,2,4-triazole] 1,2,4-triazolium bis(3-carboxy-4-hydroxybenzenesulfonate 1,2,4-triazole disolvate

    Directory of Open Access Journals (Sweden)

    Ming-qiang Qiu

    2010-08-01

    Full Text Available The title compound, C2H4N3+·[H(C2H3N32]+·2C7H5O6S−·2C2H3N3, consists of two types of 1,2,4-triazole monocation, one protonated at the 2-site lying across a twofold axis and the other protonated at the 4-site with the H atom disordered over a center of symmetry, a 5-sulfosalicylate anion and a neutral 1,2,4-triazole molecule. The component ions are linked into a three-dimensional network by a combination of N—H...O, N—H...N, O—H...O, O—H...N, C—H...O and C—H...N hydrogen bonds. In addition, benzene–benzene π–π interactions of 3.942 (2 Å [interplanar spacing = 3.390 (2 Å] and C—O...π (3.331 Å interactions are observed.

  8. Ilyukhinite (H3O,Na)14Ca6Mn2Zr3Si26O72(OH)23H2O, a New Mineral of the Eudialyte Group

    Science.gov (United States)

    Chukanov, N. V.; Rastsvetaeva, R. K.; Rozenberg, K. A.; Aksenov, S. M.; Pekov, I. V.; Belakovsky, D. I.; Kristiansen, R.; Van, K. V.

    2017-12-01

    A new eudialyte-group mineral, ilyukhinite, ideally (H3O,Na)14Ca6Mn2Zr3Si26O72(OH)2 · 3H2O, has been found in peralkaline pegmatite at Mt. Kukisvumchorr, Khibiny alkaline pluton, Kola Peninsula, Russia. It occurs as brownish orange, with vitreous luster anhedral grains up to 1 mm across in hydrothermally altered peralkaline rock, in association with aegirine, murmanite, albite, microcline, rhabdophane-(Ce), fluorite, sphalerite and molybdenite. The Mohs hardness is 5; cleavage is not observed. D meas 2.67(2), D calc 2.703 g/cm3. Ilyukhinite is optically uniaxial (-): ω = 1.585(2), ɛ = 1.584(2). The IR spectrum is given. The average chemical composition of ilyukhinite (wt %; electron microprobe, ranges given in parentheses; H2O determined by gas chromatography) is as follows: 3.07 (3.63-4.43) Na2O, 0.32 (0.28-0.52) K2O, 10.63 (10.26-10.90) CaO, 3.06 (2.74-3.22) MnO, 1.15 (0.93-1.37) FeO, 0.79 (0.51-0.89) La2O3, 1.21 (0.97-1.44) Ce2O3, 0.41 (0.30-0.56) Nd2O3, 0.90 (0.77-1.12) TiO2, 10.94 (10.15-11.21) ZrO2, 1.40 (0.76-1.68) Nb2O5, 51.24 (49.98-52.28) SiO2, 1.14 (0.89-1.37) SO3, 0.27 (0.19—0.38) Cl, 10.9(5 )H2O,-0.06-O = C1, total is 98.27. The empirical formula is H36.04(Na3.82K0.20)(Ca5.65Ce0.22La0.14Nd0.07)(Mn1.285Fe0.48)(Zr2.645Ti0.34)Nb0.31Si25.41S0.42Cl0.23O86.82. The crystal structure has been solved ( R = 0.046). Ilyukhinite is trigonal, R3 m; a = 14.1695(6) Å, b = 31.026(1) Å, V = 5394.7(7) Å3, Z = 3. The strongest XRD reflections [ d, Å (I, %) ( hkl)] are 11.44 (82) (101), 7.09 (70) (110), 6.02 (44) (021), 4.371 (89) 205), 3.805 (47) (303, 033), 3.376 (41) (131), 2.985 (100) (315, 128), 2.852 (92) (404). Ilyukhinite was named in memory of Vladimir V. Ilyukhin (1934-1982), an outstanding Soviet crystallographer. The type specimen of ilyukhinite has been deposited in the collection of the Natural History Museum, University of Oslo, Norway.

  9. 5-Methyl-2-phenyl-2H-pyrazol-3-ol

    Directory of Open Access Journals (Sweden)

    Feng Zhi

    2008-10-01

    Full Text Available The title compound, C10H10N2O, known as Edaravone (MCI-186, was crystallized from methanol. The two independent molecules in the asymmetric unit are linked through an O—H...O hydrogen bond. One molecule adopts a ketone form, while the other adopts an enol form. In the crystal structure, molecules are linked through intermolecular N—H...O hydrogen bonds, forming chains running along the b axis.

  10. Thermoelectric properties of the 3C, 2H, 4H, and 6H polytypes of the wide-band-gap semiconductors SiC, GaN, and ZnO

    Directory of Open Access Journals (Sweden)

    Zheng Huang

    2015-09-01

    Full Text Available We have investigated the thermoelectric properties of the 3C, 2H, 4H, and 6H polytypes of the wide-band-gap(n-type semiconductors SiC, GaN, and ZnO based on first-principles calculations and Boltzmann transport theory. Our results show that the thermoelectric performance increases from 3C to 6H, 4H, and 2H structures with an increase of hexagonality for SiC. However, for GaN and ZnO, their power factors show a very weak dependence on the polytype. Detailed analysis of the thermoelectric properties with respect to temperature and carrier concentration of 4H-SiC, 2H-GaN, and 2H-ZnO shows that the figure of merit of these three compounds increases with temperature, indicating the promising potential applications of these thermoelectric materials at high temperature. The significant difference of the polytype-dependent thermoelectric properties among SiC, GaN, and ZnO might be related to the competition between covalency and ionicity in these semiconductors. Our calculations may provide a new way to enhance the thermoelectric properties of wide-band-gap semiconductors through atomic structure design, especially hexagonality design for SiC.

  11. [(Z-1-({3-[(3-Aminopropyl(2-nitrobenzylamino]propyl}iminomethylnaphthalen-2-olato]copper(II perchlorate

    Directory of Open Access Journals (Sweden)

    Reza Azadbakht

    2011-12-01

    Full Text Available In the title compound, [Cu(C24H27N4O3]ClO4, the CuII atom has a distorted square-planar coordination geometry and is surrounded by an N3O donor set composed of a secondary amine N, a primary amine H, an imino N and a naphthalen-2-olate O atom. An intramolecular N—H...O hydrogen bond occurs. In the crystal, molecules are held together by intermolecular N—H...O hydrogen bonds, leading to the formation of a three-dimensional network.

  12. Crystal structure of 1-isopropyl-4,7-dimethyl-3-nitronaphthalene

    Directory of Open Access Journals (Sweden)

    Ahmed Benharref

    2015-09-01

    Full Text Available The title compound, C15H17NO2, was synthesized from a mixture of α-himachalene (2-methylene-6,6,9-trimethylbicyclo[5.4.01,7]undec-8-ene and β-himachalene (2,6,6,9-tetramethylbicyclo[5.4.01,7]undeca-1,8-diene, which were isolated from an oil of the Atlas cedar (Cedrus Atlantica. The naphthalene ring system makes dihedral angles of 68.6 (2 and 44.3 (2°, respectively, with its attached isopropyl C/C/C plane and the nitro group. In the crystal, molecules held together by a C—H...O interaction, forming a chain along [-101].

  13. Ethyl 4-chloro-2′-fluoro-3-hydroxy-5-methylbiphenyl-2-carboxylate

    Directory of Open Access Journals (Sweden)

    Muhammad Adeel

    2011-09-01

    Full Text Available In the title compound, C16H14ClFO3, the dihedral angle between the mean planes of the two benzene rings is 71.50 (5°. Due to an intramolecular O—H...O hydrogen bond between the hydroxy group and the carbonyl O atom of the ethyl ester group, the ethyl ester group lies within the ring plane. The crystal structure is consolidated by intermolecular C—H...O and C—H...F interactions.

  14. H-D exchange in metal carbene complexes: Structure of cluster (μ-H)(μ-OCD3)Os3(CO)9{:C(CD3)NC2H8O}

    Science.gov (United States)

    Savkov, Boris; Maksakov, Vladimir; Kuratieva, Natalia

    2015-10-01

    X-ray and spectroscopic data for the new complex (μ-H)(μ-OCH3)Os3(CO)9{:C(CD3)NC2H8O} (2) obtained in the reaction of the (μ-H)(μ-Cl)Os3(CO)9{:C(CH3)NC2H8O} (1) with NaOCD3 in CD3OD solution are reported. It is shown that cluster 1 has the property of CH-acidity inherent of Fisher type carbenes. This had demonstrated using hydrogen deuterium exchange reaction in the presence of a strong base. Bridging chlorine to metoxide ligand substitution takes place during the reaction. The molecular structure of 2 is compared with known analogues.

  15. Crystal structure of (Z-ethyl 3-[2-(5-methyl-7-nitro-1H-indole-2-carbonylhydrazinylidene]butanoate

    Directory of Open Access Journals (Sweden)

    Amal Errossafi

    2015-09-01

    Full Text Available The reaction of 5-methyl-7-nitro-1H-indole-2-carbohydrazide with ethyl acetoacetate yielded the title molecule, C16H18N4O5, in which the indole ring is almost planar, with the greatest deviation from the mean plane being 0.006 (2 Å. The nine atoms of the indole ring are almost perpendicular to the mean plane through the ethyl acetate group, as indicated by the dihedral angle of 87.02 (4° between them. In the crystal, centrosymmetric supramolecular dimers are formed via N—H...O hydrogen bonds and eight-membered amide {...HNCO}2 synthons. These are consolidated into a three-dimensional architecture by C—H...O contacts, and by π–π interactions between six-membered rings [inter-centroid distance = 3.499 (2 Å].

  16. Photon stimulated desorption investigations of positive ions of MgO, TiO2, Yb2O3, Nd2O3, H2O/Si(100), CaF2/Si and of H2O, CO and NO on Yb and Nd in the energy range 14 eV up to 800 eV

    International Nuclear Information System (INIS)

    Senf, F.

    1987-01-01

    Photon-stimulated desorption of positive ions from surfaces has been studied with synchrotron radiation in the photon energy range 14 -800 eV of the 'FLIPPER'-monochromator using a time-of-flight mass spectrometer. TiO 2 , as a prototype of a maximal valency ionic compound, shows a strong desorption of O +- in the photon energy range of the Ti 3 p → 3d- and Ti 2p → 3d-resonance as well as at the 0 1s-excitation due to intraatomic respectively intraatomic Auger decays, which is in agreement with the Knotek-Feibelman model. The desorption of F + from CaF 2 -covered silicon is found to follow the respective excitation and decay processes in Ca and F. In addition, the very large cross section for the F + desorption causes a radiation damage by photons of more than about 30 eV. The adsorbate system H 2 O/Si (100) needs a multiple electron excitation to show a significant desorption setting in only 30 eV above the 0 1s threshold. The rare earth metals Yb and Nd covered with O 2 , H 2 O, CO or NO exhibit a competitive desorption of O + partly due to intraatomic Auger decays caused by single electron excitations and partly due to multiple electron excitations. The variation of the 0 + yield with regard to the different adsorbates on Yb and Nd is unexpectedly low. A detailed investigation was concerned with thin oxidized Mg-films and differently prepared MgO-single-crystals. Here we found a very efficient desorption of O + and H + resulting from the excitation of O 1s-surface-excitons. In addition, the strong hole-hole-interaction energy of crystalline MgO appears to be responsible for a suppressed O + -signal in the energy range of the Mg 2p-excitation. (orig./BHO)

  17. Synthesis, spectral characterization and X-ray crystal structure studies of 3-(benzo[d][1,3]dioxol-5-yl)-5-(3-methylthiophen-2-yl)-4,5-dihydro-1H-pyrazole-1-carboxamide: Hirshfeld surface, DFT and thermal analysis

    Science.gov (United States)

    Kumara, Karthik; Dileep Kumar, A.; Naveen, S.; Ajay Kumar, K.; Lokanath, N. K.

    2018-06-01

    A novel pyrazole derivative, 3-(benzo[d][1,3]dioxol-5-yl)-5-(3-methylthiophen-2-yl)-4,5-dihydro-1H-pyrazole-1-carboxamide was synthesized and characterized by elemental analysis, FT-IR, NMR (1H and 13C), MS, UV-visible spectra and finally the structure was confirmed by the single crystal X-ray diffraction studies. The title compound (C16H15N3O3S) crystallized in the triclinic crystal system, with the space group Pī. A dihedral angle of 65.84(1)° between the pyrazole and the thiophene rings confirms the twisted conformation between them. The X-ray structure revealed that the pyrazole ring adopts an E-form and an envelope conformation on C7 atom. The crystal and molecular structure of the title compound is stabilized by inter molecular hydrogen bonds. The compound possesses three dimensional supramolecular self-assembly, in which Csbnd H⋯O and Nsbnd H⋯O chains build up two dimensional arrays, which are extended to 3D network through Csbnd H···Cg and Csbnd O···Cg interactions. The structure also exhibits intramolecular hydrogen bonds of the type Nsbnd H⋯N and π···π stacking interactions, which contributes to the crystal packing. Further, Hirshfeld surface analysis was carried out for the graphical visualization of several short intermolecular interactions on the molecular surface while the 2D finger-print plot provides percentage contribution of each individual atom-to-atom interactions. The thermal decomposition of the compound has been studied by thermogravimetric analysis. The molecular geometries and electronic structures of the compounds were fully optimized, calculated with ab-initio methods by HF, DFT/B3LYP functional in combination of different basis set with different solvent environment and the structural parameters were compared with the experimental data. The Mulliken atomic charges and molecular electrostatic potential on molecular van der Waals (vdW) surface were calculated to know the electrophilic and nucleophilic regions

  18. catena-Poly[[aquabis[N-(pyridin-3-ylisonicotinamide-κN1]copper(II]-μ-fumarato-κ2O1:O4

    Directory of Open Access Journals (Sweden)

    Sultan H. Qiblawi

    2012-12-01

    Full Text Available In the title compound, [Cu(C4H2O4(C11H9N3O2(H2O]n, CuII ions on crystallographic twofold rotation axes are coordinated in a square pyramidal environment by two trans O atoms belonging to two monodentate fumarate anions, two trans isonicotinamide pyridyl N-donor atoms from monodentate, pendant 3-pyridylisonicotinamide (3-pina ligands, and one apical aqua ligand, also sited on the crystallographic twofold rotation axis. The exobidentate fumarate ligands form [Cu(fumarate(3-pina2(H2O]n coordination polymer chains that are arranged parallel to [001]. In the crystal, these polymeric chains are anchored into supramolecular layers parallel to (100 by O—H...O hydrogen bonds between aqua ligands and unligating fumarate O atoms, and N—H...O(=C hydrogen bonds between 3-pina ligands. In turn, the layers aggregate by weak C—H...N and C—H...O hydrogen bonds, affording a three-dimensional network.

  19. 1,4,9,12-Tetramethoxy-14-octyl-5,8-dihydrodiindolo[3,2-b;2′,3′-h]carbazole with an unknown solvent

    Directory of Open Access Journals (Sweden)

    Norma Wrobel

    2017-03-01

    Full Text Available The title compound, 2C36H39N3OH2O, is a linear π-conjugated ladder oligomer with an alkyl chain on the central nitrogen atom. This diindolocarbazole, prepared via a twofold Cadogan reaction, adopts a sligthly convex shape, anti to the disordered octyl group. The unit cell contains nine molecules of the title compound and half a water molecule per main molecule. The water molecule forms hydrogen bridges, connecting the carbazole-NH and methoxy groups of different molecules. The crystal contains solvent molecules which are located in a channel parallel to the c axis. It was not possible to determine the position and nature of the solvent (a mixure of choroform, n-pentane and DMSO. The SQUEEZE [Spek (2015. Acta Cryst. C71, 9–18] option of PLATON was used to model the missing electron density. The given chemical formula and other crystal data do not take into account these solvent molecules.

  20. Theoretical studies of the optical and EPR spectra for VO^{2+} in Na_3C_6H_5O_7·2H_2O single crystal

    Directory of Open Access Journals (Sweden)

    Ch.-Y. Li

    2015-06-01

    Full Text Available On the basis of the perturbation formulas for a d^1 configuration ion in a tetragonal crystal field, the three optical absorption bands and electron paramagnetic resonance (EPR parameters (g factors g_i and hyperfine structure constants A_i for i = || and ⊥, respectively of VO^{2+} in Na_3C_6H_5O_7·2H_2O (TSCD single crystals were studied using the perturbation theory method. By simulating the calculated optical and EPR spectra to the observed values, local structure parameters and negative signs of the hyperfine structure constants A_i of the octahedral (VO_6^{8-} cluster in TSCD single crystal can be obtained.