WorldWideScience

Sample records for title complex c12h9n2

  1. Standard Molar Enthalpy of Formation of RE(C5H8NS2)3(C12H8N2)

    Institute of Scientific and Technical Information of China (English)

    Meng Xiangxin; Shuai Qi; Chen Sanping; Xie Gang; Gao Shengli; Shi Qizhen

    2005-01-01

    Four solid ternary complexes of RE (C5H8NS2)3(C12H8N2) (RE=Eu, Gd, Tb, Dy) were synthesized in absolute ethanol by rare earth chloride low hydrate with the mixed ligands of ammonium pyrrolidinedi-thiocarbamate (APDC) and 1, 10-phenanthroline*H2O (o-phen*H2O) in the ordinary laboratory atmosphere without any cautions against moisture or air sensitivity. IR spectra of the complexes show that the RE3+ coordinated with six sulfur atoms of three PDC- and two nitrogen atoms of o-phen*H2O. It was assumed that the coordination number of RE3+ is eight. The constant-volume combustion energies of the complexes, ΔcU, were determined as (-16937.88±9.79 ), (-17588.79±8.62 ), (-17747.14±8.25 ) and (-17840.37±8.87 ) kJ*mol-1, by a precise rotating-bomb calorimeter at 298.15 K. Its standard molar enthalpies of combustion, ΔcHθm, and standard molar enthalpies of formation, ΔfHθm, were calculated as (-16953.37±9.79), (-17604.28±8.62), (-17762.63±8.25), (-17855.86±8.87) kJ*mol-1 and (-857.04±10.52), (-282.43±9.58), (-130.08±9.13), (-55.75±9.83) kJ*mol-1.

  2. [N,N-Bis(2-aminoethylethane-1,2-diamine](ethane-1,2-diaminenickel(II thiosulfate trihydrate

    Directory of Open Access Journals (Sweden)

    Beatrix Seidlhofer

    2012-02-01

    Full Text Available The title compound, [Ni(C2H8N2(C6H18N4]S2O3·3H2O, was accidentally synthesized under solvothermal conditions applying [Ni(en3]Cl2 (en is ethane-1,2-diamine as the Ni source. The asymmetric unit consists of one discrete [Ni(tren(en]2+ complex [tren is N,N-bis(2-aminoethylethane-1,2-diamine] in which the Ni2+ cation is sixfold coordinated within a slightly distorted octahedron, one thiosulfate anion and three water molecules. In the crystal, the complex cations, anions and water molecules are linked by an intricate hydrogen-bonding network. One C atom of the tren ligand, as well as one O atom of a water molecule, are disordered over two sites and were refined using a split model (occupancy ratios = 0.85:15 and 0.60:0.40, respectively.

  3. Sandwich iridium complexes with the monoanionic carborane ligand [9-SMe2-7,8-C2B9H10]-

    International Nuclear Information System (INIS)

    Loginov, D.A.; Vinogradov, M.M.; Perekalin, D.S.; Starikova, Z.A.; Lysenko, K.A.; Petrovskij, P.V.; Kudinov, A.R.

    2006-01-01

    The reaction of the [(η-9-SMe 2 -7,8-C 2 B 9 H 10 )IrBr 2 ] 2 complex with Tl[Tl(η-7,8-C 2 B 9 H 11 )] afforded the iridacarborane compound (η-9-SMe 2 -7,8-C 2 B 9 H 10 )Ir(η-7,8-C 2 B 9 H 11 ). The cationic complex [Cp*Ir(η-9-SMe 2 -7,8-C 2 B 9 H 10 )] + PF 6 - (Cp* is pentamethylcyclopentadienyl) was synthesized by the reaction of [Cp*IrCl 2 ] 2 with Na[9-SMe 2 -7,8-C 2 B 9 H 10 ]. The structures of (η-9-SMe 2 -7,8-C 2 B 9 H 10 )Ir(η-cod) (cod is 1,5-cyclooctadiene) and [Cp*Ir(η-9-SMe 2 -7,8-C 2 B 9 H 10 ]PF 6 were established by X-ray diffraction [ru

  4. 4-(9-Anthryl-1-(2-methoxyphenylspiro[azetidin-3,9′-xanthen]-2-one

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available The stabilized conformation of the title compound, C36H25NO3, 4-(9-anthryl-1-(2-methoxyphenyl-spiro[azetidin-3,9′-xanthen]-2-one, may be compared with that of the isomeric compound 4-(9-anthryl-1-(4-methoxyphenylspiro[azetidin-3,9′-xanthen]-2-one. In the title isomer, the methoxy group is slightly twisted out of the plane of the attached benzene ring, with a C—O—C—C torsion angle of 31.5 (2°. Its β-lactam ring is essentially planar, with a maximum deviation of −0.021 (1 Å. The β-lactam ring makes dihedral angles of 18.815 (9, 83.33 (7 and 53.62 (8° with the mean planes of the benzene, xanthene and anthracene ring systems, respectively. The structure is stabilized by C—H...π, C—H...N and C—H...O interactions.

  5. New homo- and heteroleptic derivatives of trivalent ytterbium containing anion-radical 1,4-diazadiene ligands. Synthesis, properties and crystal structure of (C9H7)2Yb[2-MeC6H4NC(Me)C(Me)NC6H4Me-2] and [PhNC(Ph)C(Ph)NPh]3Yb complexes

    International Nuclear Information System (INIS)

    Gudilenkov, I.D.; Fukin, G.K.; Cherkasov, A.V.; Shavyrin, A.S.; Trifonov, A.A.; Larionova, Yu.E.

    2008-01-01

    Reaction of ytterbium bisindenyl complex (C 9 H 7 ) 2 Yb II (THF) 2 (1) with 1,4-diazabutadiene 2-MeC 6 H 4 N=C(Me)-C(Me)=NC 6 H 4 Me-2 ( Me DAD) is accompanied by the oxidation of metal atom until trivalent state and results in the formation of paramagnetic compound of metallocenes type (C 9 H 7 ) 2 Yb III ( Me DAD -. ) (3) containing 1,4-diazabutadiene anion-radical. Structure of complex 3 is ascertained by the X-ray structure analysis. Reactions of bisindenyl (1) and bisfluorenyl (C 13 H 9 ) 2 Yb II (THF) 2 (2) derivatives of bivalent ytterbium with 1,4-diazabutadiene PhN=C(Ph)-C(Ph)=NPh ( Ph DAD) (at 1:2 molar ratio of reagents) proceed with the complete break of Yb-C bonds, oxidation of ytterbium atom until trivalent state, and result in the formation of homoligand complex ( Ph DAD -. ) 3 Yb (6) containing three anion-radical 1,4-diazadiene ligands. Complex 6 was also prepared by the exchange reaction of YbCl 3 with Ph DAD -. K + (1:3) in THF. Complex 6 is characterized by the X-ray structure analysis [ru

  6. N-(2-Methylphenyl-1,2-benzoselenazol-3(2H-one

    Directory of Open Access Journals (Sweden)

    Xu Zhu

    2013-10-01

    Full Text Available In the title Ebselen [systematic name: (2-phenyl-1,2-benzoisoselenazol-3-(2H-one] analogue, C14H11NOSe, the benzisoselenazolyl moiety (r.m.s. deviation = 0.0209 Å is nearly perpendicular to the N-arenyl ring, making a dihedral angle of 78.15 (11°. In the crystal, molecules are linked by C—H...O and Se...O interactions into chains along the c-axis direction. The Se...O distance [2.733 (3 Å] is longer than that in Ebselen (2.571 (3 Å].

  7. Synthesis, single-crystal structure determination and Raman spectra of the tricyanomelaminates NaA{sub 5}[C{sub 6}N{sub 9}]{sub 2} . 4 H{sub 2}O (A = Rb, Cs)

    Energy Technology Data Exchange (ETDEWEB)

    Reckeweg, Olaf; DiSalvo, Francis J. [Cornell Univ., Ithaca, NY (United States). Baker Lab.; Schulz, Armin [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)

    2016-07-01

    Transparent colorless crystals of NaA{sub 5}[C{sub 6}N{sub 9}]{sub 2} . 4 H{sub 2}O (A = Rb, Cs) were obtained by blending aqueous solutions of Na{sub 3}[C{sub 6}N{sub 9}] and RbF or CsF, respectively, and subsequent evaporation of the water under ambient conditions. Both compounds crystallize in the space group P2{sub 1}/m (no. 11) with the cell parameters a = 815.56(16), b = 1637.7(4) and c = 1036.4(3) pm, and β = 110.738(12) for NaRb{sub 5}[C{sub 6}N{sub 9}]{sub 2} . 4 H{sub 2}O and a = 843.32(6), b = 1708.47(11) and c = 1052.42(7) pm, and β = 112.034(2) for NaCs{sub 5}[C{sub 6}N{sub 9}]{sub 2} . 4 H{sub 2}O, respectively. Raman spectra of the title compounds complement our results.

  8. One-Step Synthesis of Cu–ZnO@C from a 1D Complex [Cu0.02Zn0.98(C8H3NO6(C12H8N2]n for Catalytic Hydroxylation of Benzene to Phenol

    Directory of Open Access Journals (Sweden)

    Guanghui Wang

    2018-05-01

    Full Text Available A novel one-dimensional bimetallic complex [Cu0.02Zn0.98(C8H3NO6(C12H8N2]n (“Complex” has been synthesized by a hydrothermal method. A Cu–ZnO@C composite was obtained by a one-step pyrolysis of Complex. Correlated with the characterization results, it is confirmed that both metallic Cu0 and ZnO nanoparticles were highly dispersed on/in the carbon substrate. This simple one-step pyrolysis method avoids the high-temperature pretreatment under H2 commonly required for preparation of such Cu–ZnO catalysts. The Cu–ZnO@C composite was tested with respect to its catalytic activities for the hydroxylation of benzene to phenol with H2O2. The results indicate that the benzene conversion, phenol yield, and phenol selectivity reached the maximum values (55.7%, 32%, and 57.5%, respectively at Complex carbonized at 600 °C, and were higher than those of the commercial mixed sample. Compared with the other candidate catalysts, the turnover frequency (TOF of our Cu–ZnO@C catalyst (117.9 mmol mol−1 s−1 can be ranked at the top. The higher catalytic activities should be due to the highly dispersed metallic Cu0 and ZnO particles as well as their synergistic interaction.

  9. Synthesis of iridacarborane halide complexes [(η-9-SMe2-7,8-C2B9H10)IrX2]2 (X=Cl, Br, I)

    International Nuclear Information System (INIS)

    Kudinov, A.R.; Perekalin, D.S.; Petrovskij, P.V.

    2001-01-01

    By interaction between Na[9-SMe 2 -7,8-C 2 B 9 H 10 ] and [(Cod)IrCl] 2 (Cod - cycloocta-1,5-diene) iridium complex (η-9-SMe 2 -7,8-C 2 B 9 H 10 )Ir(Cod), which under the action of anhydrous hydrohalogenic acids HX (X=Cl, Br, I) yields iridacarborane halide complexes [(η-9-SMe 2 -7,8-C 2 B 9 H 10 )IrX 2 ] 2 , being analogs of cyclopentadienyl complexes [(C 5 Me 5 )IrX 2 ] 2 . The complexes prepared were characterized on the basis of data of elementary analysis and 1 H, 11 B NMR spectra [ru

  10. Synthesis of cationic diphosphine ruthenium complexes with nido-dicarbaundecaborate anions. Molecular structure of [RuCl(dppe)2]+[7,8-nido-C2B9H12]-

    International Nuclear Information System (INIS)

    Cheredilin, D.N.; Dolgushin, F.M.; Balagurova, E.V.; Godovikov, I.A.; Chizhevskij, I.T.

    2004-01-01

    Five new diphosphine ruthenium(II) complexes with nido-dicarbaundecaborate anions were synthesized. The composition and structure of the complexes were confirmed by data of 1 H, 31 P{ 1 H} NMR and elementary analysis. The crystal and molecular structure of solvated complex [RuCl(dppe) 2 + [7,8-nido-C 2 B 9 H 12 ] - ·CH 2 Cl 2 was ascertained by the method of X-ray diffraction analysis. It is shown that coordination sphere of ruthenium atom in the complex cation is a distorted trigonal bipyramid. The distances from ruthenium atom to phosphorus atoms are 2.398(1) and 2.391(1) A, while the angle P-Ru-P equals 175.85(5) Deg [ru

  11. trans-(2-Benzoylpyridine-κ2N,Odichlorido[2-(2-pyridylcarbonylphenyl-κ2C1,N]iridium(III dichloromethane solvate

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available The title compound, [Ir(C12H8NOCl2(C12H9NO]·CH2Cl2, which was obtained from the reaction of iridium(III chloride trihydrate and 2-benzoylpyridine, contains an IrIII atom coordinated by two N, one O, one C and two Cl atoms in trans positions, forming a distorted octahedral environment. The solvent molecule CH2Cl2 is disordered over two positions with an occupancy of 0.8:0.2.

  12. Bis[3,5-difluoro-2-(4-methylpyridin-2-ylphenyl-κ2C1,N](picolinato-κ2N,Oiridium(III chloroform monosolvate

    Directory of Open Access Journals (Sweden)

    Young-Inn Kim

    2011-09-01

    Full Text Available In the title complex, [Ir(C12H8F2N2(C6H4NO2]·CHCl3, two similar molecules of each component comprise the asymmetric unit. The independent complex molecules are linked by intermolecular π–π interactions [centroid–centroid distance = 3.830 (4 Å]. The IrIII ion adopts a distorted octahedral geometry, being coordinated by three N atoms, two C atoms, and one O atom of three bidentate ligands, with the N atoms arranged meridionally.

  13. Study of the unimolecular decompositions of the (C3H6)+2 and (c-C3H6)+2 complexes

    International Nuclear Information System (INIS)

    Tzeng, W.; Ono, Y.; Linn, S.H.; Ng, C.Y.

    1985-01-01

    The major product channels identified in the unimolecular decompositions ofC 3 H + 6 xC 3 H 6 and c-C 3 H + 6 xc-C 3 H 6 in the total energy [neutral (C 3 H 6 ) 2 or (c-C 3 H 6 ) 2 heat of formation plus excitation energy] range of approx.230--450 kcal/mol are C 3 H + 7 +C 3 H 5 , C 4 H + 7 +C 2 H 5 , C 4 H + 8 +C 2 H 4 , and C 5 H + 9 +CH 3 . The measured appearance energy for C 4 H + 7 (9.54 +- 0.04 eV) from (C 3 H 6 ) 2 is equal to the thermochemical threshold for the formation of C 4 H + 7 +C 2 H 5 from (C 3 H 6 ) 2 , indicating that the exit potential energy barrier for the ion--molecule reaction C 3 H + 6 +C 3 H 6 →C 4 H + 7 +C 2 H 5 is negligible. There is evidence that the formations of C 4 H + 7 +C 2 H 4 +H from (C 3 H 6 ) + 2 and (c-C 3 H 6 ) + 2 also proceed with high probabilities when they are energetically allowed. The variations of the relative abundances for C 4 H + 7 ,C 4 H + 8 , and C 5 H + 9 from (C 3 H 6 ) + 2 and (c-C 3 H 6 ) + 2 as a function of ionizing photon energy are in qualitative agreement, suggesting that (C 3 H 6 ) + 2 and (c-C 3 H 6 ) + 2 rearrange to similar C 6 H + 12 isomers prior to fragmentation. The fact that C 6 H + 11 is found to be a primary ion from the unimolecular decomposition of (c-C 3 H 6 ) + 2 but not (C 3 H 6 ) + 2 supports the conclusion that the distribution of C 6 H + 12 collision complexes involved in the C 3 H + 6 +C 3 H 6 reactions is different from that in the cyclopropane ion--molecule reactions

  14. 2-trans-1,2-Bis(pyridin-4-ylethene-κ2N:N′]bis{[1,2-bis(pyridin-4-ylethene-κN]bis[N-(2-hydroxyethyl-N-isopropyldithiocarbamato-κ2S,S′]cadmium} acetonitrile tetrasolvate: crystal structure and Hirshfeld surface analysis

    Directory of Open Access Journals (Sweden)

    Mukesh M. Jotani

    2016-08-01

    Full Text Available The asymmetric unit of the title compound, [Cd2(C12H10N23(C6H12NOS24]·4C2H3N, comprises a CdII atom, two dithiocarbamate (dtc anions, one and a half trans-1,2-dipyridin-4-ylethylene (bpe molecules and two acetonitrile solvent molecules. The full binuclear complex is generated by the application of a centre of inversion. The dtc ligands are chelating, one bpe molecule coordinates in a monodentate mode while the other is bidentate bridging. The resulting cis-N2S4 coordination geometry is based on an octahedron. Supramolecular layers, sustained by hydroxy-O—H...O(hydroxy and hydroxy-O—H...N(bpe hydrogen bonding, interpenetrate to form a three-dimensional architecture; voids in this arrangement are occupied by the acetonitrile solvent molecules. Additional intermolecular interactions falling within the specified framework have been analysed by Hirshfeld surface analysis, including π–π interactions.

  15. trans-Bis(5,5-diphenylhydantoinato-κN3bis(propane-1,2-diamine-κ2N,N′nickel(II

    Directory of Open Access Journals (Sweden)

    Xiaojiao Li

    2008-12-01

    Full Text Available The asymmetric unit of the title complex, [Ni(pht2(pn2] (pht is 5,5-diphenylhydantoinate and pn is propane-1,2-diamine or [Ni(C15H11N2O22(C3H10N22], contains one-half [Ni(pht2(pn2] molecule. The NiII atom is situated on a crystallographic center of inversion and shows a distorted octahedral coordination geometry. A three-dimensional network structure is assembled by inter- and intramolecular N—H...O=C interactions.

  16. Diaquabis[N,N′-(ethane-1,2-diylbis(isonicotinamide-κN]bis(hydrogen phthalato-κOnickel(II hexahydrate

    Directory of Open Access Journals (Sweden)

    Torél Beard

    2016-07-01

    Full Text Available In the title solvated coordination complex, [Ni(C8H5O42(C14H14N4O22(H2O2]·6H2O, the NiII cation is octahedrally coordinated by trans carboxylate O-atom donors from two crystallographically distinct monodentate hydrogen phthalate (Hpht− ligands, two trans aqua ligands, and trans pyridyl N-atom donors from two crystallographically distinct N,N′-(ethane-1,2-diylbis(isonicotinamide (ebin ligands. Extensive O—H...O and O—H...N hydrogen-bonding patterns involving the water molecules of crystallization anchor neighboring coordination complexes into a three-dimensional network.

  17. (4,4′-Dimethoxy-2,2′-bipyridine-κ2N,N′bis[2-(pyridin-2-ylphenyl-κC1]iridium(III hexafluoridophosphate unknown solvate

    Directory of Open Access Journals (Sweden)

    Yano Natsumi

    2016-03-01

    Full Text Available The asymmetric unit of the title complex, [Ir(C11H8N2(C12H12N2O2]PF6, comprises a [Ir(ppy2(diMeO-bpy]+ cation (Hppy = 2-phenylpyridine and diMeO-bpy = 4,4′-dimethoxy-2,2′-bipyridine and a PF6− anion. The IrIII atom is coordinated by two anionic ppy− ligands, each coordinating in a C^N cyclometalated mode, and one neutral diMeO-bpy ligand, leading to a distorted octahedral geometry defined by a cis-C2N4 donor set. Intermolecular C—F...H contacts lead to a three-dimensional architecture that define columns parallel to a. Unknown disordered solvent molecules reside in these columns with the electron density being treated with SQUEEZE [Spek (2015. Acta Cryst. C71, 9–18]. The unit-cell data do not reflect the presence of the unresolved solvent.

  18. Crystal strucutre of rac-methyl (11aR*,12S*,13R*,15aS*,15bS*-11-oxo-11,11a,12,13-tetrahydro-9H,15bH-13,15a-epoxyisoindolo[1,2-c]pyrrolo[1,2-a][1,4]benzodiazepine-12-carboxylate

    Directory of Open Access Journals (Sweden)

    Vladimir P. Zaytsev

    2014-12-01

    Full Text Available The title compound, C21H18N2O4, obtained as a racemate, contains a novel heterocyclic system, viz. isoindolo[1,2-c]pyrrolo[1,2-a][1,4]benzodiazepine. The central diazepane ring has a distorted boat conformation with two phenylene-fused and one methine C atom deviating by 0.931 (1, 0.887 (1 and 0.561 (1 Å, respectively, from the mean plane of the rest of the ring. The γ-lactone ring has an envelope conformation, with the C atom opposite to amide bond deviating by 0.355 (1 Å from its plane. In the crystal, molecules form centrosymmetric dimers through pairs of C—H...O hydrogen bonds.

  19. Crystal structure, quantum mechanical investigation, IR and NMR spectroscopy of two new organic perchlorates: (C6H18N3)·(ClO4)3H2O (I) and (C9H11N2)·ClO4(II)

    Science.gov (United States)

    Bayar, I.; Khedhiri, L.; Soudani, S.; Lefebvre, F.; Ferretti, V.; Ben Nasr, C.

    2018-06-01

    The reaction of perchloric acid with 1-(2-aminoethyl)piperazine or 5,6-dimethyl-benzimidazole results in the formation of 1-(2-amonioethyl)piperazine-1,4-dium triperchlorate hydrate (C6H18N3)·(ClO4)3·H2O (I) or 5,6-dimethyl-benzylimidazolium perchlorate (C9H11N2)·ClO4(II). Both compounds were fully structurally characterized including single crystal X-ray diffraction analysis. Compound (I) crystallizes in the centrosymmetric triclinic space group P 1 bar with the lattice parameters a = 7.455 (2), b = 10.462 (2), c = 10.824 (2) Å, α = 80.832 (2), β = 88.243 (2), γ = 88.160 (2) °, Z = 2 and V = 832.77 (3) Å3. Compound (II) has been found to belong to the P21/c space group of the monoclinic system, with a = 7.590 (3), b = 9.266 (3), c = 16.503 (6) Å, β = 107.38 (2) °, V = 1107.69 (7) Å3 and Z = 4. The structures of (I) and (II) consist of slightly distorted [ClO4]- tetrahedra anions and 1-(2-amonioethyl)piperazine-1,4-dium trication (I) or 5,6-dimethyl-benzylimidazolium cations (II) and additionally a lattice water in (I). The crystal structures of (I) and (II) exhibit complex three-dimensional networks of H-bonds connecting all their components. In the atomic arrangement of (I), the ClO4- anions form corrugated chains, while in (II) the atomic arrangement exhibits wide pseudo-hexagonal channels of ClO4 tetrahedra including the organic entities. The lattice water serves as a link between pairs of cations and pairs of anions via several Osbnd H⋯O and N-H⋯O interactions in compound (I). The vibrational absorption bands were identified by infrared spectroscopy. These compounds were also investigated by solid-state 13C, 35Cl and 15N NMR spectroscopy. DFT calculations allowed the attribution of the IR and NMR bands. Intermolecular interactions were investigated by Hirshfeld surfaces. Electronic properties such as HOMO and LUMO energies were derived.

  20. [μ-N,N′-Bis(2-aminoethylethane-1,2-diamine-κ4N1,N1′:N2,N2′]bis{[N,N′-bis(2-aminoethylethane-1,2-diamine-κ4N,N′,N′′,N′′′]cadmium} tetrakis(perchlorate

    Directory of Open Access Journals (Sweden)

    Hamid Goudarziafshar

    2012-09-01

    Full Text Available The centrosymmetric dinuclear cadmium title complex, [Cd2(C6H18N43](ClO44, was obtained by the reaction of N,N′-bis(2-aminoethylethane-1,2-diamine (trien with Cd(NO32·4H2O and sodium perchlorate in methanol. The CdII cation is coordinated by four N atoms of a non-bridging trien ligand and by two N atoms of a bridging trien ligand in a slightly distorted octahedral coordination geometry. The bridging ligand shares another two N atoms with a neighboring symmetry-equivalent CdII cation. The structure displays C—H...O and N—H...O hydrogen bonding. The perchlorate anion is disordered over two sets of sites in a 0.854 (7: 0.146 (7 ratio.

  1. The analyzing power Asub(y)[(theta) for 12C(n,nsub(0,1))12C betwen 8.9 and] 14.9 MeV neutron energy

    International Nuclear Information System (INIS)

    Woye, E.; Tornow, W.; Mack, G.; Clegg, T.B.; Wylie, W.

    1983-01-01

    The analyzing power Asub(#betta#)(theta) for 12 C(n,n) 12 C elastic scattering and for inelastic scattering to the first excited state (Jsup(π) = 2 + , Q = -4.44 MeV) of 12 C was measured in the energy range from 8.9 to 14.9 MeV in 1 MeV steps. A pulsed polarized neutron beam was produced via the 2 H(d vector,n vector) 3 He polarization transfer reaction. Monte Carlo simulations were used to correct the data for finite geometry and multiple scattering effects. The Asub(#betta#) data, together with publsihed cross-section data, were analyzed in the framework of the spherical optical model and in the coupled-channels formalism. A good description of the data has been achieved. (orig.)

  2. Polymeric anionic networks using dibromine as a crosslinker; the preparation and crystal structure of [(C4H9)4N]2[Pt2Br10].(Br2)7 and [(C4H9)4N]2[PtBr4Cl2].(Br2)6.

    Science.gov (United States)

    Berkei, Michael; Bickley, Jamie F; Heaton, Brian T; Steiner, Alexander

    2002-09-21

    The reaction of M[PtX3(CO)] (M+ = [(C4H9)4N]+, X = Br, Cl) with an excess of Br2 gives the new platinum(IV) salts, [(C4H9)4N]2[Pt2Br10].(Br2)7, 1, and [(C4H9)4N]2[PtBr4Cl2].(Br2)6, 2, which, in the solid state, contain strong Br Br interactions resulting in the formation of polymeric networks; they could provide useful solid storage reservoirs for elemental bromine.

  3. Zoledronate complexes. III. Two zoledronate complexes with alkaline earth metals: [Mg(C(5)H(9)N(2)O(7)P(2))(2)(H(2)O)(2)] and [Ca(C(5)H(8)N(2)O(7)P(2))(H(2)O)](n).

    Science.gov (United States)

    Freire, Eleonora; Vega, Daniel R; Baggio, Ricardo

    2010-06-01

    Diaquabis[dihydrogen 1-hydroxy-2-(imidazol-3-ium-1-yl)ethylidene-1,1-diphosphonato-kappa(2)O,O']magnesium(II), [Mg(C(5)H(9)N(2)O(7)P(2))(2)(H(2)O)(2)], consists of isolated dimeric units built up around an inversion centre and tightly interconnected by hydrogen bonding. The Mg(II) cation resides at the symmetry centre, surrounded in a rather regular octahedral geometry by two chelating zwitterionic zoledronate(1-) [or dihydrogen 1-hydroxy-2-(imidazol-3-ium-1-yl)ethylidene-1,1-diphosphonate] anions and two water molecules, in a pattern already found in a few reported isologues where the anion is bound to transition metals (Co, Zn and Ni). catena-Poly[[aquacalcium(II)]-mu(3)-[hydrogen 1-hydroxy-2-(imidazol-3-ium-1-yl)ethylidene-1,1-diphosphonato]-kappa(5)O:O,O':O',O''], [Ca(C(5)H(8)N(2)O(7)P(2))(H(2)O)](n), consists instead of a Ca(II) cation in a general position, a zwitterionic zoledronate(2-) anion and a coordinated water molecule. The geometry around the Ca(II) atom, provided by six bisphosphonate O atoms and one water ligand, is that of a pentagonal bipyramid with the Ca(II) atom displaced by 0.19 A out of the equatorial plane. These Ca(II) coordination polyhedra are ;threaded' by the 2(1) axis so that successive polyhedra share edges of their pentagonal basal planes. This results in a strongly coupled rhomboidal Ca(2)-O(2) chain which runs along [010]. These chains are in turn linked by an apical O atom from a -PO(3) group in a neighbouring chain. This O-atom, shared between chains, generates strong covalently bonded planar arrays parallel to (100). Finally, these sheets are linked by hydrogen bonds into a three-dimensional structure. Owing to the extreme affinity of zoledronic acid for bone tissue, in general, and with calcium as one of the major constituents of bone, it is expected that this structure will be useful in modelling some of the biologically interesting processes in which the drug takes part.

  4. Simple preparations of Pd6Cl12, Pt6Cl12, and Qn[Pt2Cl8+n], n=1, 2 (Q=TBA+, PPN+) and structural characterization of [TBA][Pt2Cl9] and [PPN]2[Pt2Cl10].C7H8.

    Science.gov (United States)

    Dell'Amico, Daniela Belli; Calderazzo, Fausto; Marchetti, Fabio; Ramello, Stefano; Samaritani, Simona

    2008-02-04

    The hexanuclear Pd6Cl12, i.e., the crystal phase classified as beta-PdCl2, was obtained by reacting [TBA]2[Pd2Cl6] with AlCl3 (or FeCl3) in CH2Cl2. The action of AlCl3 on PtCl42-, followed by digestion of the resulting solid in 1,2-C2H4Cl2 (DCE), CHCl3, or benzene, produced Pt6Cl12.DCE, Pt6Cl12.CHCl3, or Pt6Cl12.C6H6, respectively. Treating [TBA]2[PtCl6] with a slight excess of AlCl3 afforded [TBA][Pt2Cl9], whose anion was established crystallographically to be constituted by two "PtCl6" octahedra sharing a face. Dehydration of H2PtCl6.nH2O with SOCl2 gave an amorphous compound closely analyzing as PtCl4, reactive with [Q]Cl in SOCl2 to yield [Q][Pt2Cl9] or [Q]2[Pt2Cl10], depending on the [Q]Cl/Pt molar ratio (Q=TBA+, PPN+). A single-crystal X-ray diffraction study has shown [PPN]2[Pt2Cl10].C7H8 to contain dinuclear anions formed by two edge-sharing PtCl6 octahedra.

  5. Tetraaquatetrakis{μ3-3,3′-[(E,E-ethane-1,2-diylbis(nitrilomethylidyne]benzene-1,2-diolato}octazinc(II N,N-dimethylformamide hexasolvate

    Directory of Open Access Journals (Sweden)

    Lan-Sun Zheng

    2009-12-01

    Full Text Available The asymmetric unit of the title compound [Zn8(C16H12N2O44(H2O4]·6C3H7NO, consists of eight ZnII cations, four tetravalent anionic ligands, L4− (L4− = 3,3′-(1E,1′E-(ethane-1,2-diylbis(azan-1-yl-1-ylidenebis(methan-1-yl-1-ylidenedibenzene-1,2-bis(olate, four coordinated water molecules and six N,N-dimethylformamide solvate molecules. The coordination complex comprises an octanuclear ZnII unit with its ZnII centers coordinated in two discrete distorted square-pyramidal geometries. Four ZnII atoms each coordinate to two nitrogen atoms and two phenolate oxygen atoms from an individual L4− ligand and one coordinated water molecule. The other four ZnII atoms each bind to five phenolate oxygen atoms from three different L4− ligands. In the crystal structure, the ZnII complex unit, coordinated water molecules and dimethylformamide solvate molecules are linked via O—H...O and C—H...O hydrogen bonds. Molecules are connected by additional intermolecular O—H...O and C—H...O hydrogen bonds, forming an extensive three dimensional framework.

  6. (Acetylacetonato-κ2O,O′bis[5-methoxy-2-(naphth[1,2-d][1,3]oxazol-2-ylphenyl-κ2C1,N]iridium(III

    Directory of Open Access Journals (Sweden)

    Yuan-Yuan Zhou

    2011-10-01

    Full Text Available In the title compound, [Ir(C18H12NO22(C5H7O2], the Ir atom is O,O′-chelated by the acetylacetonate group and C,N-chelated by the 2-arylnaphth[1,2-d]oxazole groups. The six-coordinate metal atom displays a distorted octahedral geometry. Intramolecular C—H...O hydrogen bonds occur. In the crystal, intermolecular C—H...O hydrogen bonds link the molecules into columns parallel to the b axis.

  7. Triosmium cluster compounds containing isocyanide and hydride ligands. Crystal and molecular structures of (μ-H)(H)Os3(CO)10(CN-t-C4H9) and (μ-H)2Os3(CO)9(CN-t-C4H9)

    International Nuclear Information System (INIS)

    Adams, R.D.; Golembski, N.M.

    1979-01-01

    The structures of the compounds (μ-H)(H)Os 3 (CO) 10 (CN-t-C 4 H 9 ) and (μ-H) 2 Os 3 (CO) 9 (CN-t-C 4 H 9 ) have been revealed by x-ray crystallographic techniques. For (μ-H)(H)Os 3 (CO) 10 (CN-t-C 4 H 9 ): a = 9.064 (3), b = 12.225 (3), c = 20.364 (4) A; β = 98.73 (3) 0 ; space group P2 1 /c[C/sub 2h/ 5 ], No. 14; Z = 4; d/sub calcd/ = 2.79 g cm -3 . This compound contains a triangular cluster of three osmium atoms; Os(1)--Os(2) = 2.930 (1) A, Os(1)--Os(3) = 2.876 (1) A, and Os(2)--Os(3) = 3.000 (1) A. There are ten linear terminal carbonyl groups and one linear terminal isocyanide ligand which occupies an axial coordination site. The hydrogen atoms were not observed crystallographically, but their positions are strongly inferred from considerations of molecular geometry. For (μ-H) 2 Os 3 (CO) 9 (CN-t-C 4 H 9 ): a = 15.220 (8), b = 12.093 (6), c = 23.454 (5) A; space group Pbcn [D/sub 2h/ 14 ], No. 60; Z = 8; d/sub calcd/ = 2.79 g cm -3 . The compound is analogous to the parent carbonyl (μ-H) 2 Os 3 (CO) 10 and has two normal and one short osmium--osmium bonds: Os(1)--Os(2) = 2.827 (1) A, Os(1)--Os(3) = 2.828 (1) A, Os(2)--Os(3) = 2.691 (1) A. The isocyanide ligand resides in an equatorial coordination site on osmium Os(2). The hydrogen atoms were not observed but are believed to occupy bridging positions as in the parent carbonyl complex. 2 figures, 7 tables

  8. Low-temperature heat capacities and thermodynamic properties of ethylenediammonium tetrachlorozincate chloride (C2H10N2)2(ZnCl4)Cl2

    International Nuclear Information System (INIS)

    He, Dong-Hua; Di, You-Ying; Wang, Bin; Dan, Wen-Yan; Tan, Zhi-Cheng

    2010-01-01

    The ethylenediammonium tetrachlorozincate chloride (C 2 H 10 N 2 ) 2 (ZnCl 4 )Cl 2 was synthesized. Chemical analysis, elemental analysis, and X-ray crystallography were applied to characterize the composition and crystal structure of the complex. Low-temperature heat capacities of the compound were measured by a precision automatic adiabatic calorimeter over the temperature range from T = 77-377 K. A polynomial equation of heat capacities as a function of the reduced temperature was fitted by a least square method. Based on the polynomial equation, the smoothed heat capacities and thermodynamic functions of the title compound relative to the standard reference temperature 298.15 K were calculated at intervals of 5 K. A thermochemical cycle was designed and the enthalpy change of the solid phase reaction of ethylenediamine dihydrochloride with zinc chloride was determined to be Δ r H m o =-(17.9±0.6)kJmol -1 by an isoperibol solution-reaction calorimeter. Finally, the standard molar enthalpy of formation of the title compound was derived to be Δ f H m o [(C 2 H 10 N 2 ) 2 (ZnCl 4 )Cl 2 ,s]=-(1514.4±2.7)kJmol -1 in accordance with Hess law.

  9. (3-Methylbenzonitrile-1κN-cis-tetrakis(μ-N-phenylacetamidato-1:2κ4N:O;1:2κ4O:N-dirhodium(II(Rh—Rh

    Directory of Open Access Journals (Sweden)

    Cassandra T. Eagle

    2014-08-01

    Full Text Available The complex molecule of the title compound, [Rh2{N(C6H5COCH3}4(NCC7H7], has crystallographically-imposed mirror symmetry. The four acetamide ligands bridging the dirhodium core are arranged in a 2,2-cis manner with two N atoms and two O atoms coordinating to the unique RhII atom cis to one another. The Neq—Rh—Rh—Oeq torsion angles on the acetamide bridge are 0.75 (7 and 1.99 (9°. The axial nitrile ligand completes the distorted octahedral coordination sphere of one RhII atom and shows a nonlinear coordination, with an Rh—N—C bond angle of 162.8 (5°; the N—C bond length is 1.154 (7 Å.

  10. Interaction between exo-nido-ruthenacarborane [Cl(Ph3P)2Ru]-5,6,10-(μ-H)3-10-H-7,8-C2B9H8 and bromine

    International Nuclear Information System (INIS)

    Timofeev, S.V.; Lobanova, I.A.; Petrovskij, P.V.; Starikova, Z.A.; Bregadze, V.I.

    2001-01-01

    Interaction between exo-nido-ruthenacarborane [Cl(Ph 3 P) 2 Ru]-5,6,10-(μ-H) 3 -10-H-7,8-C 2 B 9 H 8 with bromine in CH 2 Cl 2 solutions at 0 deg C studied using the methods of elementary analysis, NMR, IR spectroscopy and X-ray diffraction analysis. It was ascertained that the reaction gives rise to bromine atom substitution for chlorine atom in octahedral surrounding of ruthenium atom with formation of complex [Br(Ph 3 P) 2 Ru]-5,6,10-(μ-H) 3 -10-H-7,8-C 2 B 9 H 8 . The complex is crystallized in monoclinic crystal system with the following unit cell parameters a = 12.592 (1), b = 20.687 (2), c = 16.628 (2) A, β = 94.372 (3) deg, sp. gr. P2 1 /n, Z = 4. Coordination octahedron of ruthenium atom is formed by three hydrogen atoms bound with boron atoms in one triangular face of carborane, two phosphorus atoms and one bromine atom [ru

  11. Di-?-cyanido-tetra?cyanido(5,5,7,12,12,14-hexa?methyl-1,4,8,11-tetra?aza?cyclo?tetra?decane)[N-(quinolin-8-yl)quinoline-2-carboxamidato]diiron(III)nickel(II) 2.07-hydrate

    OpenAIRE

    Yang, Yuqi; Zhou, Hongbo; Shen, Xiaoping

    2013-01-01

    The asymmetric unit of the title complex, [Fe2Ni(C19H12N3O)2(CN)6(C16H36N4)]?2.07H2O, contains one [Fe(qcq)(CN)3]? anion, half a [Ni(teta)]2+ cation and two partially occupied inter?stitial water mol?ecules [qcq? is the N-(quinolin-8-yl)quinoline-2-carboxamidate anion and teta is 5,5,7,12,12,14-hexa?methyl-1,4,8,11-tetra?aza?cyclo?tetra?deca?ne]. In the complex mol?ecule, two [Fe(qcq)(CN)3]? anions additionally coordinate the central [Ni(teta)]2+ cation through cyanide groups in a trans mode,...

  12. Synthesis and Characterisation of Tris(1-carboxyl-2-phenyl-1,2-ethyl eno dithiol enic-S,S') Tungsten Complex as Photo catalyst for Photolysis of H2O Molecules

    International Nuclear Information System (INIS)

    Fadhli Hadana Rahman; Rusli Daik; Mohammad Kassim; Khuzaimah; Wan Ramli Wan Daud

    2008-01-01

    Tris(1-carboxyl-2-phenyl-1,2-ethylenodithiolenic-S,S ' ) tungsten complex is one of the most promising photo catalyst to be used in photolysis of water to produce hydrogen. The first step of the synthesis involves a metathesis reaction of tetrapropylammonium bromide [((C 3 H 7 ) 4 N)Br] and ammonium tetrathiotungstate [(NH 4 ) 2 WS 4 ] to form a tetrapropylammonium tetrathiotungstate [((C 3 H 7 ) 4 N) 2 WS 4 ] (precursor). Then, the precursor was reacted with phenyl acetylenecarboxylic acid (C 9 H 6 O 2 ) to form tris(1-carboxyl-2-phenyl-1,2-ethylenodithiolenic-S,S ' ) tungsten complex (C 27 H 18 O 2 S 6 W). The infra-red, ultra violet/ visible (UV/ Vis) spectrum, nuclear magnetic resonance (NMR) and elemental micro-analysis of C, H, N and S agreed with the characteristic of the tris(1-carboxyl-2-phenyl-1,2-ethylenodithiolenic-S,S ' ) tungsten complex. The (W-S), (C-S) and (C=O) stretching frequencies were detected at 511, (1470 and 1035) and 1655 cm -1 , respectively. The 1 H NMR spectrum showed six protons in the complex. The 13 C NMR showed only 7 signals for carbon atom in the benzene ring, ethylene groups and carboxylic acid pendant group due to the symmetry of the molecules. The reaction yield was about 50 percent. Photolysis of acetone spiked H 2 O showed that the catalyst was able to produced 1.8 μmol/ h hydrogen. (author)

  13. Analyzing power Asub(y)((theta) for /sup 12/C(n,nsub(0,1))/sup 12/C betwen 8. 9 and) 14. 9 MeV neutron energy

    Energy Technology Data Exchange (ETDEWEB)

    Woye, E.; Tornow, W.; Mack, G. (Tuebingen Univ. (Germany, F.R.). Physikalisches Inst.); Floyd, C.E.; Guss, P.P.; Murphy, K.; Byrd, R.C.; Wender, S.A.; Walter, R.L. (Duke Univ., Durham, NC (USA). Dept. of Physics; Triangle Universities Nuclear Lab., Durham, NC (USA))

    1983-02-01

    The analyzing power Asub(..gamma..)(theta) for /sup 12/C(n,n)/sup 12/C elastic scattering and for inelastic scattering to the first excited state (Jsup(..pi..) = 2/sup +/, Q = -4.44 MeV) of /sup 12/C was measured in the energy range from 8.9 to 14.9 MeV in 1 MeV steps. A pulsed polarized neutron beam was produced via the /sup 2/H(d vector,n vector)/sup 3/He polarization transfer reaction. Monte Carlo simulations were used to correct the data for finite geometry and multiple scattering effects. The Asub(..gamma..) data, together with publsihed cross-section data, were analyzed in the framework of the spherical optical model and in the coupled-channels formalism. A good description of the data has been achieved.

  14. Bis[μ-1,2-bis(1H-imidazol-1-ylmethylbenzene-κ2N3:N3′]disilver(I 3-carboxylato-4-hydroxybenzenesulfonate methanol solvate trihydrate

    Directory of Open Access Journals (Sweden)

    Hong-Mei Sun

    2009-09-01

    Full Text Available In the title compound, [Ag2(C14H14N42](C7H4O6S·CH3OH·3H2O, the complex dication has a binuclear structure in which each AgI ion is two-coordinated in a slightly distorted linear coordination geometry. The two AgI atoms are bridged by two 1,2-bis[(1H-imidazol-1-ylmethyl]benzene (IBI ligands, forming a 22-membered ring. In the dication, π–π interactions are observed between the imidazole rings with centroid–centroid distances of 3.472 (3 and 3.636 (3 Å. In the crystal, the uncoordinated water molecules, anions and methanol solvent molecules are linked into chains along the b axis by O—H...O hydrogen bonds. In addition, π–π interactions are observed between the benzene rings of the IBI ligands, with a centroid–centroid distance of 3.776 (2 Å. The sulfonate group is disordered over two orientations with occupancies of 0.676 (12 and 0.324 (12.

  15. (4-Chloroacetanilido-κ2N,Obis[2-(pyridin-2-ylphenyl-κ2C1,N]iridium(III

    Directory of Open Access Journals (Sweden)

    Lijun Sun

    2013-02-01

    Full Text Available In the neutral mononuclear iridium(III title compound, [Ir(C8H7ClNO(C11H8N2], the IrIII atom adopts an octahedral geometry, and is coordinated by two 2-phenylpyridyl ligands and one anionic 4-chloroacetanilide ligand. The 2-phenylpyridyl ligands are arranged in a cis-C,C′ and cis-N,N′ fashion. Each 2-phenylpyridyl ligand forms a five-membered ring with the IrIII atom. The 2-phenylpyridyl planes are perpendicular to each other [dihedral angle = 89.9 (1°]. The Ir—C and Ir—N bond lengths are comparable to those reported for related iridium(III 2-phenylpyridyl complexes. The remaining two coordination sites are occupied by the amidate N and O atoms, which form a four-membered ring with the iridium atom (Ir—N—C—O. The amidate plane is nearly perpendicular to both 2-phenylpyridyl ligands [dihedral angles = 87.8 (2 and 88.3 (2°].

  16. trans-Dichloridotetrakis[1-(2-hydroxyethyl-1H-tetrazole-κN4]cobalt(II

    Directory of Open Access Journals (Sweden)

    Alexander S. Lyakhov

    2009-11-01

    Full Text Available The title cobalt(II complex, [CoCl2(C3H6N4O4], was obtained from metallic cobalt by direct synthesis. There are two Co atoms in the asymmetric unit, each lying on an inversion centre and adopting a distorted octahedral coordination. Classical and non-classical hydrogen bonds are responsible for formation of a three-dimensional polymeric network in the crystal.

  17. Crystal and molecular structure of 6,9-bis(trimethylamine)-nido-decarborane(12) B10H12[N(CH3)3]2

    International Nuclear Information System (INIS)

    Polyanskaya, T.M.; Volkov, V.V.

    1989-01-01

    The spatial structure of 6.9-bis(trimethylamine)-nido-decarborane (12) is established on the basis of X-ray diffraction analysis. Crystals are rhombic, a = 12.619, b = 11.804, c = 11.058A, Z=4, sp. gr. P na 2 1 . The structure is of molecular type. Main geometrical parameters of the molecule are: symmetry - C1, interatomic distances - B-B 1.66-1.90, B-N 1.61, N-C 1.50 A, angles - BBB 55.0-66.5, CNC 108, BBN 119.5 deg. The (B 10 H 12 ) cluster size between B(6) and B(9) is 3.30 A. Increase approximately by 0.1 A of lengths of external bonds B-B in comparison with internal ones and tightening approximately by 3 deg of valent angles BBB at external atoms of boron also in comparison with internal ones are observed

  18. Hydrothermal synthesis and crystal structure of the Ni2(C4H4N2)(V4O12)(H2O)2 and Ni3(C4H4N2)3(V8O23) inorganic-organic hybrid compounds. Thermal, spectroscopic and magnetic studies of the hydrated phase

    International Nuclear Information System (INIS)

    Larrea, Edurne S.; Mesa, Jose L.; Pizarro, Jose L.; Arriortua, Maria I.; Rojo, Teofilo

    2007-01-01

    Ni 2 (C 4 H 4 N 2 )(V 4 O 12 )(H 2 O) 2 , 1, and Ni 3 (C 4 H 4 N 2 ) 3 (V 8 O 23 ), 2, have been synthesized using mild hydrothermal conditions at 170 deg. C under autogenous pressure. Both phases crystallize in the P-1 triclinic space group, with the unit-cell parameters, a=7.437(7), b=7.571(3), c=7.564(4) A, α=65.64(4), β=76.09(4), γ=86.25(3) o for 1 and a=8.566(2), b=9.117(2), c=12.619(3) A, α=71.05(2), β=83.48(4), γ=61.32(3) o for 2, being Z=2 for both compounds. The crystal structure of the three-dimensional 1 is constructed from layers linked between them through the pyrazine molecules. The sheets are formed by edge-shared [Ni 2 O 6 (H 2 O) 2 N 2 ] nickel(II) dimers octahedra and rings composed by four [V 4 O 12 ] vanadium(V) tetrahedra linked through vertices. The crystal structure of 2 is formed from vertex shared [VO 4 ] tetrahedra that give rise to twelve member rings. [NiO 4 (C 4 H 4 N 2 ) 2 ] ∞ chains, resulting from [NiO 4 N 2 ] octahedra and pyrazine molecules, give rise to a 3D skeleton when connecting to [VO 4 ] tetrahedra. Diffuse reflectance measurements of 1 indicate a slightly distorted octahedral geometry with values of Dq=880, B=980 and C=2700 cm -1 . Magnetic measurements of 1, carried out in the 5.0-300 K range, indicate the existence of antiferromagnetic couplings with a Neel temperature near to 38 K. - Graphical abstract: Crystal structure of a sheet of Ni 2 (C 4 H 4 N 2 )(V 4 O 12 )(H 2 O) 2

  19. Investigation of the 9Be(a,n)12C reaction. Pt. 2

    International Nuclear Information System (INIS)

    Schmidt, D.; Boettger, R.; Klein, H.; Nolte, R.

    1992-04-01

    Differential cross sections of the 9 Be(α,n) 12 C reaction have been measured at 19 alpha energies between 7 MeV and 16 MeV. Besides the differential cross sections from the 9 Be(α,n) 12 C(g.s.) reaction, also those of the 9 Be(α,n) 12 C(E ex ) reactions were derived for excitation energies E ex = 4.439, 7.654, 9.641, 10.84, 11.83 and 12.71 MeV. Possible sources of uncertainties have been extensively investigated and the corresponding results have been published in part 1. All partial and integrated cross sections from the 9 Be(α,n) 12 C(g.s.) reaction were determined with uncertainties of less than 5%. The angular distributions were fitted to Legendre polynomial expansions by the least-squares method. A comparison of the measured cross sections with data from other authors and with an evaluation shows considerable deviations in some cases. Tests were also carried out to ascertain how well an interpolation of the Legendre coefficients reproduces the magnitude and shape of the experimentally determined angular distributions. All angular distributions are presented in figures, together with their Legendre polynomial expansions and data from the literature if available. The a l coefficients of the Legendre polynomial expansions are given in the Appendix. (orig.) [de

  20. Crystal structure of 2,2′′-bis(2,7-dichloro-9-hydroxy-9H-fluoren-9-yl-1,1′:4′,1′′-terphenyl triethylamine trisolvate

    Directory of Open Access Journals (Sweden)

    Henrik Klien

    2015-12-01

    Full Text Available In the title solvate, C44H26Cl4O2·3C6H15N, the asymmetric part of the unit cell comprises two halves of the diol molecules, 2,2′′-bis(2,7-dichloro-9-hydroxy-9H-fluoren-9-yl-1,1′:4′,1′′-terphenyl, and three molecules of triethylamine, i. e. the diol molecules are located on crystallographic symmetry centres. Two of the solvent molecules are disordered over two positions [occupancy ratios of 0.567 (3:0.433 (3 and 0.503 (3:0.497 (3]. In the diol molecules, the outer rings of the 1,1′:4′,1′′-terphenyl elements are twisted with reference to their central arene ring and the mean planes of the fluorenyl moieties are inclined with respect to the terphenyl ring to which they are connected, the latter making dihedral angles of 82.05 (8 and 82.28 (8°. The presence of two 9-fluoren-9-ol units attached at positions 2 and 2′′ of the terphenyl moiety induces a `folded' geometry which is stabilized by intramolecular C—H...O hydrogen bonds and π–π stacking interactions, the latter formed between the fluorenyl units and the central ring of the terphenyl unit [centroid–centroid distances = 3.559 (1 and 3.562 (1 Å]. The crystal is composed of 1:2 complex units, in which the solvent molecules are associated with the diol molecules via O—H...N hydrogen bonds, while the remaining solvent molecule is linked to the host by a C—H...N hydrogen bond. The given pattern of intermolecular interactions results in formation of chain structures extending along [010].

  1. (Pyridine-2-aldoximato-κ2N,N′bis[2-(pyridin-2-ylphenyl-κ2C1,N]iridium(III

    Directory of Open Access Journals (Sweden)

    Bimal Chandra Singh

    2013-03-01

    Full Text Available In the title complex, [Ir(C11H8N2(C6H5N2O], the octahedrally coordinated IrIII atom is bonded to two 2-(pyridin-2-ylphenyl ligands, through two phenyl C and two pydidine N atoms, and to one pyridine-2-aldoxime ligand through a pyridine N and an oxime N atom. The oxime O atom of the aldoxime unit forms intermolecular C—H...O hydrogen bonds, which result in a two-dimensional hydrogen-bonded polymeric network parallel to (100. C—H...π interactions are also observed.

  2. Nido-Carborane building-block reagents. 2. Bulky-substituent (alkyl)2C2B4H6 derivatives and (C6H5)2C2B4H6: synthesis and properties

    International Nuclear Information System (INIS)

    Boyter, H.A. Jr.; Grimes, R.N.

    1988-01-01

    The preparation and chemistry of nido-2,3-R 2 C 2 C 2 B 4 H 6 carboranes in which R is n-butyl, isopentyl, n-hexyl, and phenyl was investigated in order to further assess the steric and electronic influence of the R groups on the properties of the nido-C 2 B 4 cage, especially with respect to metal complexation at the C 2 B 3 face and metal-promoted oxidative fusion. The three dialkyl derivatives were prepared from the corresponding dialkylacetylenes via reaction with B 5 H 9 and triethylamine, but the diphenyl compound could not be prepared in this manner and was obtained instead in a thermal reaction of B 5 H 9 with diphenylacetylene in the absence of amine. All four carboranes are readily bridge-deprotonated by NaH in THF, and the anions of the dialkyl species, on treatment with FeCl 2 and air oxidation, generate the respective R 4 C 4 B 8 H 8 carborane fusion products were R = n-C 4 H 9 , i-C 5 H 11 or n-C 6 H 13 . The diphenylcarborane anion Ph 2 C 2 B 4 H 5 - did not form detectable metal complexes with Fe 2+ , Co 2+ , or Ni 2+ , and no evidence of a Ph 4 C 4 B 8 H 8 fusion product has been found. Treatment of Ph 2 C 2 B 4 H 6 with Cr(CO) 6 did not lead to metal coordination of the phenyl rings, unlike (PhCH 2 ) 2 C 2 B 4 H 6 , which had previously been shown to form mono- and bis(tricarbonylchromium) complexes. However, the reaction of Ph 2 C 2 B 4 H 5 - , CoCl 2 , and (PhPCH 2 ) 2 did give 1,1-(Ph 2 PCH 2 ) 2 -1-Cl-1,2,3-Co(Ph 2 C 2 B 4 H 4 ), the only case in which metal complexation of the diphenylcarborane was observed. 14 references, 3 figures, 3 tables

  3. Phylogenetic diversity and genotypical complexity of H9N2 influenza A viruses revealed by genomic sequence analysis.

    Directory of Open Access Journals (Sweden)

    Guoying Dong

    Full Text Available H9N2 influenza A viruses have become established worldwide in terrestrial poultry and wild birds, and are occasionally transmitted to mammals including humans and pigs. To comprehensively elucidate the genetic and evolutionary characteristics of H9N2 influenza viruses, we performed a large-scale sequence analysis of 571 viral genomes from the NCBI Influenza Virus Resource Database, representing the spectrum of H9N2 influenza viruses isolated from 1966 to 2009. Our study provides a panoramic framework for better understanding the genesis and evolution of H9N2 influenza viruses, and for describing the history of H9N2 viruses circulating in diverse hosts. Panorama phylogenetic analysis of the eight viral gene segments revealed the complexity and diversity of H9N2 influenza viruses. The 571 H9N2 viral genomes were classified into 74 separate lineages, which had marked host and geographical differences in phylogeny. Panorama genotypical analysis also revealed that H9N2 viruses include at least 98 genotypes, which were further divided according to their HA lineages into seven series (A-G. Phylogenetic analysis of the internal genes showed that H9N2 viruses are closely related to H3, H4, H5, H7, H10, and H14 subtype influenza viruses. Our results indicate that H9N2 viruses have undergone extensive reassortments to generate multiple reassortants and genotypes, suggesting that the continued circulation of multiple genotypical H9N2 viruses throughout the world in diverse hosts has the potential to cause future influenza outbreaks in poultry and epidemics in humans. We propose a nomenclature system for identifying and unifying all lineages and genotypes of H9N2 influenza viruses in order to facilitate international communication on the evolution, ecology and epidemiology of H9N2 influenza viruses.

  4. Bis(2,2′-bipyridine[1,9-bis(diphenylphosphanyl-1,2,3,4,6,7,8,9-octahydropyrimido[1,2-a]pyrimidin-5-ium]ruthenium(II hexafluoridophosphate dibromide dichloromethane disolvate monohydrate

    Directory of Open Access Journals (Sweden)

    Alain Igau

    2013-12-01

    Full Text Available In the cation of the title complex, [Ru(C31H32N3P2(C10H8N22](PF6(Br2·2CH2Cl2·H2O, the ruthenium ion is coordinated in a distorted octahedral geometry by two 2,2′-bipyridine (bpy ligands and a chelating cationic N-diphenylphosphino-1,3,4,6,7,8-hexahydro-2-pyrimido[1,2-a]pyrimidine [(PPh22-hpp] ligand. The tricationic charge of the complex is balanced by two bromide and one hexafluoridophosphate counter-anions. The compound crystallized with two molecules of dichloromethane (one of which is equally disordered about a Cl atom and a water molecule. In the crystal, one of the Br anions bridges two water molecules via O—H...Br hydrogen bonds, forming a centrosymmetric diamond-shaped R42(8 motif. The cation and anions and the solvent molecules are linked via C—H...F, C—H...Br, C—H...Cl and C—H...O hydrogen bonds, forming a three-dimensional network.

  5. Bis(acetylacetonato-κ2O,O′(2-amino-1-methyl-1H-benzimidazole-κN3oxidovanadium(IV

    Directory of Open Access Journals (Sweden)

    Zukhra Ch. Kadirova

    2009-07-01

    Full Text Available The title mixed-ligand oxidovanadium(IV compound, [VO(C5H7O22(C8H9N3], contains a VIV atom in a distorted octahedral coordination, which is typical for such complexes. The vanadyl group and the N-heterocyclic ligand are cis to each other. The coordination bond is located at the endocyclic N atom of the benzimidazole ligand. Intramolecular hydrogen bonds between the exo-NH2 group H atoms and acetylacetonate O atoms stabilize the crystal structure.

  6. Di-μ-cyanido-tetra-cyanido(5,5,7,12,12,14-hexa-methyl-1,4,8,11-tetra-aza-cyclo-tetra-decane)[N-(quinolin-8-yl)quinoline-2-carboxamidato]diiron(III)nickel(II) 2.07-hydrate.

    Science.gov (United States)

    Yang, Yuqi; Zhou, Hongbo; Shen, Xiaoping

    2013-05-01

    The asymmetric unit of the title complex, [Fe2Ni(C19H12N3O)2(CN)6(C16H36N4)]·2.07H2O, contains one [Fe(qcq)(CN)3](-) anion, half a [Ni(teta)](2+) cation and two partially occupied inter-stitial water mol-ecules [qcq(-) is the N-(quinolin-8-yl)quinoline-2-carboxamidate anion and teta is 5,5,7,12,12,14-hexa-methyl-1,4,8,11-tetra-aza-cyclo-tetra-deca-ne]. In the complex mol-ecule, two [Fe(qcq)(CN)3](-) anions additionally coordinate the central [Ni(teta)](2+) cation through cyanide groups in a trans mode, resulting in a trinuclear structure with the Ni(2+) cation lying on an inversion centre. The two inter-stitial water mol-ecules are partially occupied, with occupancy factors of 0.528 (10) and 0.506 (9). O-H⋯O and O-H⋯N hydrogen bonding involving the two lattice water molecules and the carbonyl function and a teta N atom in an adjacent cluster leads to the formation of layers extending parallel to (010).

  7. (μ-trans-1,2-Di-4-pyridylethylene-κ2N:N′bis[bis(N,N-diisopropyldithiocarbamato-κ2S,S′zinc(II

    Directory of Open Access Journals (Sweden)

    Hadi D. Arman

    2009-11-01

    Full Text Available The dinuclear title compound, [Zn2(C7H14NS24(C12H10N2], is centrosymmetric about the central C=C bond. The five-coordinate Zn atom is bonded to two asymmetrically chelating dithiocarbamate ligands and a pyridine N atom to define an NS4 coordination geometry tending towards a square pyramid, with the N atom in the apical site. In the crystal structure, C—H...S contacts lead to supramolecular chains.

  8. Volume properties and refraction of aqueous solutions of bisadducts of light fullerene C60 and essential amino acids lysine, threonine, and oxyproline (C60(C6H13N2O2)2, C60(C4H8NO3)2, and C60(C5H9NO2)2) at 25°C

    Science.gov (United States)

    Semenov, K. N.; Ivanova, N. M.; Charykov, N. A.; Keskinov, V. A.; Kalacheva, S. S.; Duryagina, N. N.; Garamova, P. V.; Kulenova, N. A.; Nabieva, A.

    2017-02-01

    Concentration dependences of the density of aqueous solutions of bisadducts of light fullerene C60 and essential amino acids are studied by pycnometry. Concentration dependences of the average molar volumes and partial volumes of components (H2O and corresponding bisadducts) are calculated for C60(C6H13N2O2)2-H2O, C60(C4H8NO3)2-H2O, and C60(C5H9NO2)2-H2O binary systems at 25°C. Concentration dependences of the indices of refraction of C60(C6H13N2O2)2-H2O, C60(C4H8NO3)2-H2O, and C60(C5H9NO2)2-H2O binary systems are determined at 25°C. The concentration dependences of specific refraction and molar refraction of bisadducts and aqueous solutions of them are calculated.

  9. rac-Dichlorido[3-ethoxy-3-(1-ethyl-1H-benzimidazol-2-yl-2,3-dihydro-1H-pyrrolo[1,2-a]benzimidazole]copper(II

    Directory of Open Access Journals (Sweden)

    Robert T. Stibrany

    2013-02-01

    Full Text Available The title complex, [CuCl2(C21H22N4O], contains a bis(benzimidazole unit with a chiral bridgehead C atom that forms part of a tetrahydropyrrole ring fused to one of the benzimidazoles. The chelate angle is 90.45 (9° and the dihedral angle between the essentially planar benzimidazole fragments is 26.68 (9°. The CuII coordination geometry lies approximately midway between tetrahedral and square planar. Overall, each chiral molecule contains six fused rings, and a racemic mixture is formed with symmetry-related enantiomers. In the crystal, C—H...π and C—H...Cl interactions link molecules into a supramolecular chain along the a-axis direction.

  10. 2,6-Bis(9-ethyl-9H-carbazolylmethylenecyclohexanone

    Directory of Open Access Journals (Sweden)

    Abdullah M. Asiri

    2009-10-01

    Full Text Available The title compound, 2,6-bis(ethyl-9-ethyl-9H-carbazolylmethylenecyclohexanone has been synthesized by condensation of 9-ethylcarbazole-3-aldehyde and cyclohexanone in ethanol in the presence of pyridine. The structure of this new compound was confirmed by elemental analysis, IR, 1H NMR, 13C NMR and EI-MS spectral analysis.

  11. Bis[N,N-bis(1-allyl-1H-benzimidazol-2-ylmethyl-κN3benzylamine-κN]cadmium dipicrate

    Directory of Open Access Journals (Sweden)

    Jing-Kun Yuan

    2011-06-01

    Full Text Available The crystal structure of the title compound, [Cd(C29H29N52](C6H2N3O72, consists of CdII complex cations and picrate anions. In the complex cation, the CdII ion is chelated by two bis(1-allylbenzimidazol-2-ylmethylbenzylamine (babb ligands in a distorted octahedral geometry. Extensive C—H...O hydrogen bonding occurs between cations and anions in the crystal structure.

  12. Keggin type polyoxometalate H4[αSiW12O40].nH2O as intercalant for hydrotalcite

    Directory of Open Access Journals (Sweden)

    Neza Rahayu Palapa

    2017-06-01

    Full Text Available The synthesis of hydrotalcite and polyoxometalate H4[αSiW12O40].nH2O with the ratio (2:1, (1:1, (1:2 and (1:3 has been done. The product of intercalation was characterized using FT-IR spectrophotometer, XRD, and TG-DTA. Polyoxometalate H4[αSiW12O40].nH2O intercalated layered double hydroxide was optimised to use as adsorbent Congo red dye. Characterization using FT-IR was not showing the optimal insertion process. The result using XRD characterization was showed successful of polyoxometalate H4[αSiW12O40].nH2O inserted layered double hydroxide with a ratio (1:1 which the basal spacing was expanded from 7,8 Ȧ to 9,81 Ȧ. Furthermore, the thermal analysis was performed using TG-DTA. The result show that the decomposition of polyoxometalate H4[αSiW12O40].nH2O intercalated  hydrotalcite with ratio (1:1 was occured at 80oC to 400oC with a loss of OH in the layer at 150oC to 220oC, and then the decomposition of the compound polyoxometalate H4[αSiW12O40].nH2O at 350oC to 420oC. Keywords: Hydrotalcite, Layered Double Hydroxide, Polyoxometalate, Intercalation

  13. Syntheses, crystal structures, and properties of the isotypic pair [Cr(H{sub 2}O){sub 6}]{sub 2}[B{sub 12}H{sub 12}]{sub 3}.15H{sub 2}O and [In(H{sub 2}O){sub 6}]{sub 2}[B{sub 12}H{sub 12}]{sub 3}.15H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Van, Nguyen-Duc; Kleeberg, Fabian M.; Schleid, Thomas [Institut fuer Anorganische Chemie, Universitaet Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany)

    2015-11-15

    Single crystals of [Cr(H{sub 2}O){sub 6}]{sub 2}[B{sub 12}H{sub 12}]{sub 3}.15H{sub 2}O and [In(H{sub 2}O){sub 6}]{sub 2}[B{sub 12}H{sub 12}]{sub 3}.15H{sub 2}O were obtained by reactions of aqueous solutions of the acid (H{sub 3}O){sub 2}[B{sub 12}H{sub 12}] with chromium(III) hydroxide and indium metal shot, respectively. The title compounds crystallize isotypically in the trigonal system with space group R anti 3c (a = 1157.62(3), c = 6730.48(9) pm for the chromium, a = 1171.71(3), c = 6740.04(9) pm for the indium compound, Z = 6). The arrangement of the quasi-icosahedral [B{sub 12}H{sub 12}]{sup 2-} dianions can be considered as stacking of two times nine layers with the sequence..ABCCABBCA.. and the metal trications arrange in a cubic closest packed..abc.. stacking sequence. The metal trications are octahedrally coordinated by six water molecules of hydration, while another fifteen H{sub 2}O molecules fill up the structures as zeolitic crystal water or second-sphere hydrating species. Between these free and the metal-bonded water molecules, bridging hydrogen bonds are found. Furthermore, there is also evidence of hydrogen bonding between the anionic [B{sub 12}H{sub 12}]{sup 2-} clusters and the free zeolitic water molecules according to B-H{sup δ-}..{sup δ+}H-O interactions. Vibrational spectroscopy studies prove the presence of these hydrogen bonds and also show slight distortions of the dodecahydro-closo-dodecaborate anions from their ideal icosahedral symmetry (I{sub h}). Thermal decomposition studies for the example of [Cr(H{sub 2}O){sub 6}]{sub 2}[B{sub 12}H{sub 12}]{sub 3}.15H{sub 2}O gave no hints for just a simple multi-stepwise dehydration process. (Copyright copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Bis[2-(2-aminoethyl-1H-benzimidazole-κ2N2,N3](nitrato-κ2O,O′cobalt(II chloride trihydrate

    Directory of Open Access Journals (Sweden)

    Jing Zhao

    2012-06-01

    Full Text Available In the title compound, [Co(NO3(C9H11N32]Cl·3H2O, the CoII atom is coordinated by four N atoms from two chelating 2-(2-aminoethyl-1H-benzimidazole ligands and two O atoms from one nitrate anion in a distorted octahedral coordination environment. In the crystal, N—H...Cl, N—H...O, O—H...Cl and O—H...O hydrogen bonds link the complex cations, chloride anions and solvent water molecules into a three-dimensional network. π–π interactions between the imidazole and benzene rings and between the benzene rings are observed [centroid–centroid distances = 3.903 (3, 3.720 (3, 3.774 (3 and 3.926 (3 Å].

  15. NCI calculations for understanding a physical phase transition in (C6H14N2)[Mn(H2O)6](SeO4)2

    Science.gov (United States)

    Naïli, Houcine; François, Michel; Norquist, Alexander J.; Rekik, Walid

    2017-12-01

    An organically templated manganese selenate, (C6H14N2)[Mn(H2O)6](SeO4)2, has been synthesized by slow evaporation and crystallographically characterized. The title compound crystallizes at room temperature in the monoclinic centrosymmetric space group P21/n, with the following unit cell parameters: a = 7.2373(4) Å; b = 12.5600(7) Å; c = 10.1945(7) Å; β = 91.155(4)°, V = 926.50(10) Å3and Z = 2. Its crystal structure is built of manganese(II) cations coordinated by six water molecules in octahedral geometry, disordered dabcodiium cations and selenate anions, resulting in an extensive hydrogen-bonding network. Differential scanning calorimetry (DSC) measurement indicated that the precursor undergoes a reversible phase transition at about 216 and 218 K during the cooling and heating processes respectively. Below this temperature the title compound is noncentrosymmetric with space group P21 and lattice parameters a = 7.2033(8) Å; b = 12.4981(13) Å; c = 10.0888(11) Å; β = 91.281(2)°, V = 908.04(17) Å3 and Z = 2. The disorder-order transformation of the C atoms of (C6H14N2)2+ cation may drive the structural phase transition. The low temperature phase obtained by breaking symmetry presents a fully ordered structure. The noncovalent interaction (NCI) method was used not only to locate, quantify, and visualize intermolecular interactions in the high and low temperature phases but also to confirm the phase transition detected by DSC measurement. The thermal decomposition of this new compound proceeds through four stages giving rise to the manganese oxide as final product at 850 °C.

  16. Molecular and crystal structure of nido-9-C5H5N-11-I-7,8-C2B9H10: supramolecular architecture via hydrogen bonding X-H...I (X = B, C)

    International Nuclear Information System (INIS)

    Polyanskaya, T.M.

    2006-01-01

    A monocrystal X-ray diffraction study of a new iodine-containing cluster compound 9-(pyridine)-11-iodo-decahydro-7,8-dicarba-nido-undecaborane [9-C 5 H 5 N-11-I-7,8-C 2 B 9 H 10 ] has been performed. Crystal data: C 7 H 15 B 9 NI, M = 337.39, monoclinic, space group P2 1 /c, unit cell parameters: a=9.348(1) A, b=11.159(1) A, c=13.442(2) A, β=98.13(1) deg, V=1388.1(5) A 3 , Z=4, d calc = 1.614 g/cm 3 , T = 295 K, F(000)=648, μ=2.276 mm -1 . The structure was solved by a direct method and refined in the full-matrix anisotropic approximation (isotropic for hydrogen atoms) to final agreement factors R 1 = 0.0254, wR 2 = 0.0454 for 2437 I hkl >2σ I from 3590 measured I hkl (an Enraf-Nonius CAD-4 diffractometer, λMoK α , graphite monochromator, θ/2θ-scanning). The molecules are joined into a supramolecular assembly by hydrogen bonds X-H...I (X = B, C) [ru

  17. 9-Furfurylidene-2,3-dimethyl-6,7,8,9-tetrahydro-4H-thieno[2′,3′:4,5]pyrimidino[1,2-a]pyridin-4-one

    Directory of Open Access Journals (Sweden)

    Khusnutdin M. Shakhidoyatov

    2010-03-01

    Full Text Available The title compound, C17H16N2O2S, was obtained by condensation of 2,3-dimethylthieno[2′,3′:4,5]pyrimidino[1,2-a]pyridin-4-one with furfural in the presence of sodium hydroxide. One of the methylene groups of the tetrahydropyrido ring is disordered over two positions in a 0.87 (1:0.13 (1 ratio. The thieno[2,3-d]pyrimidin-4-one unit and the furan ring are both planar (r.m.s. deviation = 0.535 Å, and coplanar with each other, forming a dihedral angle of 5.4 (1°. Four weak intermolecular hydrogen bonds (C—H...O and C—H...N are observed in the structure, which join molecules into a network parallel to (101.

  18. Supra-molecular hydrogen-bonding patterns in the N(9)-H protonated and N(7)-H tautomeric form of an N(6) -benzoyl-adenine salt: N (6)-benzoyl-adeninium nitrate.

    Science.gov (United States)

    Karthikeyan, Ammasai; Jeeva Jasmine, Nithianantham; Thomas Muthiah, Packianathan; Perdih, Franc

    2016-02-01

    In the title molecular salt, C12H10N5O(+)·NO3 (-), the adenine unit has an N (9)-protonated N(7)-H tautomeric form with non-protonated N(1) and N(3) atoms. The dihedral angle between the adenine ring system and the phenyl ring is 51.10 (10)°. The typical intra-molecular N(7)-H⋯O hydrogen bond with an S(7) graph-set motif is also present. The benzoyl-adeninium cations also form base pairs through N-H⋯O and C-H⋯N hydrogen bonds involving the Watson-Crick face of the adenine ring and the C and O atoms of the benzoyl ring of an adjacent cation, forming a supra-molecular ribbon with R 2 (2)(9) rings. Benzoyl-adeninum cations are also bridged by one of the oxygen atoms of the nitrate anion, which acts as a double acceptor, forming a pair of N-H⋯O hydrogen bonds to generate a second ribbon motif. These ribbons together with π-π stacking inter-actions between the phenyl ring and the five- and six-membered adenine rings of adjacent mol-ecules generate a three-dimensional supra-molecular architecture.

  19. Potentiometric study of rare earth complexing with trans-1,2-diaminocyclohexane-N,N'-dimalonic acid

    International Nuclear Information System (INIS)

    Smirnova, T.I.; Gorelov, I.P.

    1980-01-01

    Complexing of rare earths (Ln) and yttrium with trans-1,2-diaminocyclohexane-N, N'-dimalonic acid in aqueous solutions is studied using indirect potentiometric method with an aid of stationary mercury electrode and by the method of pH-potentiometric titration. It is shown that in the investigated solutions the LnL - and LnL 2 5- complexes are formed. At 25 deg C and ion force 0.1 stability constants of the complexes detected are determined [ru

  20. N,N′-Diphenyl-9,10-dioxo-9,10-dihydroanthracene-2,7-disulfonamide

    Directory of Open Access Journals (Sweden)

    Wei-Guan Yuan

    2013-07-01

    Full Text Available The title molecule, C26H18N2O6S2, has an overall Z-shaped conformation, in which the benzene rings are inclined to the anthraquinone mean plane by 60.60 (9 and 50.66 (13°. In the crystal, N—H...O and C—H...O hydrogen bonds link the molecules into layers parallel to the bc plane.

  1. Bis[2-(1,3-benzothiazol-2-ylphenyl-κ2C1,N][1,3-bis(4-bromophenylpropane-1,3-dionato-κ2O,O′]iridium(III

    Directory of Open Access Journals (Sweden)

    Sung Kwon Kang

    2013-08-01

    Full Text Available The title complex, [Ir(C15H9Br2O2(C13H8NS2], lies about a crystallographic twofold rotation axis passing through the IrIII atom and the central C atom of the bis(bromophenylpropane-1,3-dionate ligand. The IrIII atom adopts a distorted octahedral geometry coordinated by two N atoms in the axial positions, and two C and two O atoms in the equatorial plane. The dihedral angle between the two thiazole ring systems in the complex is 77.45 (10°.

  2. Proliferation and skeletal myotube formation capability of C2C12 and H9c2 cells on isotropic and anisotropic electrospun nanofibrous PHB scaffolds

    International Nuclear Information System (INIS)

    Ricotti, Leonardo; Genchi, Giada G; Menciassi, Arianna; Polini, Alessandro; Iandolo, Donata; Pisignano, Dario; Ciofani, Gianni; Mattoli, Virgilio; Vazão, Helena; Ferreira, Lino

    2012-01-01

    This study aims at investigating the behavior in terms of the proliferation and skeletal muscle differentiation capability of two myoblastic cell lines, C2C12 and H9c2, on both isotropic and anisotropic electrospun nanofibrous poly(hydroxybutyrate) (PHB) scaffolds, as well as on PHB films and polystyrene controls. After a careful characterization of the matrices in terms of surface morphology, surface roughness and mechanical properties, the proliferation rate and the capability of the two cell lines to form skeletal myotubes were evaluated. Genetic analyses were also performed in order to assess the differentiation level of the cells on the different substrates. We demonstrated that the aligned nanofibrous mesh decreases the proliferation activity and provides a higher differentiative stimulus. We also clarified how the nanofibrous substrate influences myotube formation, and quantified a series of myotube-related parameters for both C2C12 and H9c2 cells. (paper)

  3. Aquachlorido{6,6′-dimethoxy-2,2′-[ethane-1,2-diylbis(nitrilodimethylidyne]diphenolato-κ2O1,N,N′,O1′}cobalt(III monohydrate

    Directory of Open Access Journals (Sweden)

    Jianxin Xing

    2009-04-01

    Full Text Available The title compound, [Co(C18H18N2O4Cl(H2O]·H2O, contains a distorted octahedral cobalt(III complex with a 6,6′-dimethoxy-2,2′-[ethane-1,2-diylbis(nitrilodimethylidyne]diphenolate ligand, a chloride and an aqua ligand, and also a disordered water solvent molecule (half-occupancy. The CoIII ion is coordinated in an N2O3Cl manner. Weak O—H...O hydrogen bonds may help to stabilize the crystal packing.

  4. Bis[2-(2-pyridylmethyleneaminobenzenesulfonato-κ3N,N′,O]cadmium(II dihydrate

    Directory of Open Access Journals (Sweden)

    Miao Ou-Yang

    2008-11-01

    Full Text Available The title complex, [Cd(Paba22H2O or [Cd(C12H9N2O3S22H2O, was synthesized by the reaction of the potassium salt of 2-(2-pyridylmethyleneaminobenzenesulfonic acid (PabaK with CdCl2·2.5H2O in methanol. The CdII atom lies on a crystallographic twofold axis and is coordinated by four N atoms and two O atoms from two deprotonated tridentate 2-(2-pyridylmethyleneaminobenzenesulfonate ligands in a slightly distorted octahedral environment. There are extensive hydrogen bonds of the type O—H...O between the uncoordinated water molecules and the sulfonate O atoms, through which the complex forms a layered structure parallel to (001.

  5. Two new barium-copper-ethylene glycol complexes: Synthesis and structure of BaCu(C2H6O2)n(C2H4O2)2 (N = 3, 6)

    International Nuclear Information System (INIS)

    Love, C.P.; Page, C.J.; Torardi, C.C.

    1992-01-01

    Two crystalline barium-copper-ethylene glycol complexes have been isolated and structurally characterized by single-crystal x-ray diffraction. The solution-phase complex has also been investigated as a molecular precursor for use in sol-gel synthesis of high-temperature superconductors. The first crystalline form has the formula BaCu(C 2 H 6 O 2 ) 6 (C 2 H 4 O 2 ) 2 (1) and has been isolated directly from ethylene glycol solutions of the barium-copper salt. In this molecule, copper is coordinated to the four xygens of two ethylene glycolate ligands in a nearly square planar geometry. Barium is coordinated by three bidentate ethylene glycol molecules and three monodentate ethylene glycol molecules; the 9-fold coordination resembles a trigonal prism with each rectangular face capped. Copper and barium moieties do not share any ethylene glycol or glycolate oxygens; they are found by hydrogen bonding to form linear chains. The second crystal type has formula BaCu(C 2 H 6 O 2 ) 3 (C 2 H 4 O 2 ) 2 (2). It was prepared via crystallization of the mixed-metal alkoxide from an ethylene glycol/methyl ethyl ketone solution. As for 1, the copper is coordinated to four oxygen atoms of two ethylene glycolate ligands in a nearly square planar arrangement. Barium is 8-coordinate in a distorted cubic geometry. It is coordinated to three bidentate ethylene glycol molecules and shares two of the oxygen atoms bound to the copper (one from each coordinated ethylene glycol) to form a discrete molecular barium-copper complex

  6. Dichloridobis[1-(2,4,6-trimethylphenyl-1H-imidazole-κN3]copper(II

    Directory of Open Access Journals (Sweden)

    Yantao Zhang

    2013-11-01

    Full Text Available In the title complex, [CuCl2(C12H14N22], the Cu2+ cation is situated on an inversion centre and is coordinated by two N atoms from symmetry-related 1-mesityl-1H-imidazole ligands and by two chloride anions in a slightly distorted square-planar geometry. In the organic ligand, the dihedral angle between the benzene ring of the mesityl moiety and the imidazole ring is 76.99 (18°. Weak intramolecular C—H...Cl hydrogen-bonding interactions consolidate the molecular conformation.

  7. Dichlorido{2-[(5-methyl-1H-pyrazol-3-yl-κN2methyl]-1H-1,3-benzimidazole-κN3}zinc

    Directory of Open Access Journals (Sweden)

    Karim Chkirate

    2017-01-01

    Full Text Available The asymmetric unit of the title complex, [ZnCl2(C12H12N4], contains two independent molecules having similar conformations. The coordination about the ZnII atom is distorted tetrahedral, with the geometrical constraints of the chelating ligand responsible for the observed distortion. Each of the independent molecules forms chains in the crystal through pairs of N—H...Cl hydrogen bonds, using the pyrazole and benzimidazole N—H groups as donors. The first molecule forms chains running parallel to the b axis, while the other molecule affords the same kind of one-dimensional supramolecular structure parallel to the a axis. The structure was refined as a two-component twin with BASF = 0.0437 (4.

  8. Solvothermal synthesis and characterisation of new one-dimensional indium and gallium sulphides: [C1N4H26]0.5[InS2] and [C1N4H26]0.5[GaS2

    International Nuclear Information System (INIS)

    Vaqueiro, Paz

    2006-01-01

    Two new main group metal sulphides, [C 1 N 4 H 26 ] 0.5 [InS 2 ] (1) and [C 1 N 4 H 26 ] 0.5 [GaS 2 ] (2) have been prepared solvothermally in the presence of 1,4-bis(3-aminopropyl)piperazine and their crystal structures determined by single-crystal X-ray diffraction. Both compounds are isostructural and crystallise in the monoclinic space group P2 1 /n (Z=4), with a=6.5628(5), b=11.2008(9), c=12.6611(9) A and β=94.410(4) o (wR=0.035) for compound (1) and a=6.1094(5), b=11.2469(9), c=12.7064(10) A and β=94.313(4) o (wR=0.021) for compound (2). The structure of [C 1 N 4 H 26 ] 0.5 [MS 2 ] (M=In,Ga) consists of one-dimensional [MS 2 ] - chains which run parallel to the crystallographic a axis and are separated by diprotonated amine molecules. These materials represent the first example of solvothermally prepared one-dimensional gallium and indium sulphides. -- Graphical abstract: [C 1 N 4 H 26 ] 0.5 [InS 2 ] and [C 1 N 4 H 26 ] 0.5 [GaS 2 ], prepared under solvothermal conditions, consist of one-dimensional [MS 2 ] - chains separated by diprotonated 1,4-bis(3-aminopropyl)piperazine molecules

  9. Tris(propane-1,2-diamine-κ2N,N′nickel(II tetracyanidonickelate(II

    Directory of Open Access Journals (Sweden)

    Juraj Černák

    2008-02-01

    Full Text Available The title compound, [Ni(C3H10N23][Ni(CN4], is built up of [Ni(pn3]2+ cations (pn is 1,2-diaminopropane and [Ni(CN4]2− anions. Both NiII atoms in the cation and the anion lie on a mirror plane. The respective ions interact through Coulombic forces and through a complex network of hydrogen bonds. Extended disorder associated with the cation has been resolved. The occupancies of the respective disordered positions are 0.4:0.4:0.2.

  10. Structural characterization and Hirshfeld surface analysis of a CoII complex with imidazo[1,2-a]pyridine

    Directory of Open Access Journals (Sweden)

    Saikat Kumar Seth

    2018-05-01

    Full Text Available A new mononuclear tetrahedral CoII complex, dichloridobis(imidazo[1,2-a]pyridine-κN1cobalt(II, [CoCl2(C7H6N22], has been synthesized using a bioactive imidazopyridine ligand. X-ray crystallography reveals that the solid-state structure of the title complex exhibits both C—H...Cl and π–π stacking interactions in building supramolecular assemblies. Indeed, the molecules are linked by C—H...Cl interactions into a two-dimensional framework, with finite zero-dimensional dimeric units as building blocks, whereas π–π stacking plays a crucial role in building a supramolecular layered network. An exhaustive investigation of the diverse intermolecular interactions via Hirshfeld surface analysis enables contributions to the crystal packing of the title complex to be quantified. The fingerprint plots associated with the Hirshfeld surface clearly display each significant interaction involved in the structure, by quantifying them in an effective visual manner.

  11. 1,4,9,12-Tetramethoxy-14-octyl-5,8-dihydrodiindolo[3,2-b;2′,3′-h]carbazole with an unknown solvent

    Directory of Open Access Journals (Sweden)

    Norma Wrobel

    2017-03-01

    Full Text Available The title compound, 2C36H39N3O4·H2O, is a linear π-conjugated ladder oligomer with an alkyl chain on the central nitrogen atom. This diindolocarbazole, prepared via a twofold Cadogan reaction, adopts a sligthly convex shape, anti to the disordered octyl group. The unit cell contains nine molecules of the title compound and half a water molecule per main molecule. The water molecule forms hydrogen bridges, connecting the carbazole-NH and methoxy groups of different molecules. The crystal contains solvent molecules which are located in a channel parallel to the c axis. It was not possible to determine the position and nature of the solvent (a mixure of choroform, n-pentane and DMSO. The SQUEEZE [Spek (2015. Acta Cryst. C71, 9–18] option of PLATON was used to model the missing electron density. The given chemical formula and other crystal data do not take into account these solvent molecules.

  12. Structure and thermodynamic properties of (C5H12N)CuBr3: a new weakly coupled antiferromagnetic spin-1/2 chain complex lying in the 1D-3D dimensional cross-over regime.

    Science.gov (United States)

    Pan, Bingying; Wang, Yang; Zhang, Lijuan; Li, Shiyan

    2014-04-07

    Single crystals of a metal organic complex (C5H12N)CuBr3 (C5H12N = piperidinium, pipH for short) have been synthesized, and the structure was determined by single-crystal X-ray diffraction. (pipH)CuBr3 crystallizes in the monoclinic group C2/c. Edging-sharing CuBr5 units link to form zigzag chains along the c axis, and the neighboring Cu(II) ions with spin-1/2 are bridged by bibromide ions. Magnetic susceptibility data down to 1.8 K can be well fitted by the Bonner-Fisher formula for the antiferromagnetic spin-1/2 chain, giving the intrachain magnetic coupling constant J ≈ -17 K. At zero field, (pipH)CuBr3 shows three-dimensional (3D) order below TN = 1.68 K. Calculated by the mean-field theory, the interchain coupling constant J' = -0.91 K is obtained and the ordered magnetic moment m0 is about 0.23 μB. This value of m0 makes (pipH)CuBr3 a rare compound suitable to study the 1D-3D dimensional cross-over problem in magnetism, since both 3D order and one-dimensional (1D) quantum fluctuations are prominent. In addition, specific heat measurements reveal two successive magnetic transitions with lowering temperature when external field μ0H ≥ 3 T is applied along the a' axis. The μ0H-T phase diagram of (pipH)CuBr3 is roughly constructed.

  13. Mucosal and Systemic Immune Responses to Influenza H7N9 Antigen HA1-2 Co-Delivered Intranasally with Flagellin or Polyethyleneimine in Mice and Chickens.

    Science.gov (United States)

    Song, Li; Xiong, Dan; Song, Hongqin; Wu, Lili; Zhang, Meihua; Kang, Xilong; Pan, Zhiming; Jiao, Xinan

    2017-01-01

    Consecutive cases of human infection with H7N9 influenza viruses since 2013 in China have prompted efforts to develop an effective treatment. Subunit vaccines introduced by intranasal administration can block an infection at its primary site; flagellin (fliC) and polyethyleneimine (PEI) have been shown to be potent adjuvants. We previously generated the hemagglutinin (HA)1-2-fliC fusion protein consisting of the globular head domain (HA1-2; amino acids 62-284) of HA fused with Salmonella typhimurium fliC. In the present study, we investigated its effectiveness of both flagellin and PEI as mucosal adjuvants for the H7N9 influenza subunit vaccine. Mice immunized intranasally with HA1-2-fliC and HA1-2-PEI showed higher HA1-2-specific immunoglobulin (Ig)G and IgA titers in serum, nasal wash, and bronchial alveolar lavage fluid. Moreover, splenocyte activation and proliferation and the number of HA1-2-specific interferon (IFN)-γ- and interleukin (IL)-4-producing splenocytes were markedly increased in the fliC and PEI groups; in the latter, there were more cells secreting IL-4 than IFN-γ, suggesting that fliC induced T helper type (Th)1 and Th2 immune responses, and PEI induced Th2-biased responses, consistent with the serum antibody isotype pattern (IgG1/IgG2a ratio). Furthermore, virus challenge was performed in a chicken model. The results showed that chickens receiving fliC and PEI adjuvant vaccine exhibited robust immune responses leading to a significant reduction in viral loads of throat and cloaca compared to chickens receiving only HA1-2. These findings provide a basis for the development of H7N9 influenza HA1-2 mucosal subunit vaccines.

  14. Hexa-μ-acetato-1:2κ4O,O′;1:2κ2O:O;2:3κ4O,O′;2:3κ2O:O-bis(4,4′-dimethyl-2,2′-bipyridine-1κ2N,N′;3κ2N,N′-2-calcium-1,3-dizinc

    Directory of Open Access Journals (Sweden)

    Md. Alamgir Hossain

    2013-12-01

    Full Text Available In the centrosymmetric trinuclear ZnII...CaII...ZnII title complex, [CaZn2(CH3COO6(C12H12N22], the CaII ion lies on an inversion centre and is octahedrally coordinated by six acetate O atoms. The ZnII ion is coordinated by two N atoms from a bidentate dimethylbipyridine ligand and three O atoms from acetate ligands bridging to the CaII ion, leading to a distorted square-pyramidal coordination sphere. The Zn...Ca distance is 3.4668 (5 Å.

  15. [KDy(Hptc3(H3ptc]n·2n(Hbipy·5n(H2O, a Layered Coordination Polymer Containing DyO6N3 Tri-Capped Trigonal Prisms (H3ptc = Pyridine 2,4,6-Tricarboxylic Acid, C8H5NO6; Bipy = 2,2'-Bipyridine, C10H8N2

    Directory of Open Access Journals (Sweden)

    Shoaib Anwar

    2012-08-01

    Full Text Available The synthesis, structure and properties of the bimetallic layered coordination polymer, [KDy(C8H3NO63(C8H5NO6]n·2n(C10H9N2·5n(H2O = [KDy(Hptc3(H3ptc]n·2n(Hbipy·5n(H2O, are described. The Dy3+ ion is coordinated by three O,N,O-tridentate doubly-deprotonated pyridine tri-carboxylate (Hptc ligands to generate a fairly regular DyO6N3 tri-capped trigonal prism, with the N atoms acting as the caps. The potassium ion is coordinated by an O,N,O-tridentate H3ptc molecule as well as monodentate and bidentate Hptc ligands to result in an irregular KNO9 coordination geometry. The ligands bridge the metal-atom nodes into a bimetallic, layered, coordination polymer, which extends as corrugated layers in the (010 plane, with the mono-protonated bipyridine cations and water molecules occupying the inter-layer regions: Unlike related structures, there are no dysprosium–water bonds. Many O–HLO and N–HLO hydrogen bonds consolidate the structure. Characterization and bioactivity data are described. Crystal data: C52H42DyKN8O29, Mr = 1444.54, triclinic,  (No. 2, Z = 2, a = 9.188(2 Å, b = 15.7332(17 Å, c = 19.1664(19 Å, α = 92.797(6°, β = 92.319(7°, γ = 91.273(9°, V = 2764.3(7 Å3, R(F = 0.029, wR(F2 = 0.084.

  16. Efficacy of Live-Attenuated H9N2 Influenza Vaccine Candidates Containing NS1 Truncations against H9N2 Avian Influenza Viruses

    Directory of Open Access Journals (Sweden)

    Sujuan Chen

    2017-06-01

    Full Text Available H9N2 avian influenza virus is a zoonotic agent with a broad host range that can contribute genetic information to H5 or H7N9 subtype viruses, which are significant threats to both humans and birds. Thus, there is a great need for a vaccine to control H9N2 avian influenza. Three mutant viruses of an H9N2 virus A/chicken/Taixing/10/2010 (rTX-NS1-73, rTX-NS1-100, and rTX-NS1-128 were constructed with different NS1 gene truncations and confirmed by western blot analysis. The genetic stability, pathogenicity, transmissibility, and host immune responses toward these mutants were evaluated. The mutant virus rTX-NS1-128 exhibited the most attenuated phenotype and lost transmissibility. The expression levels of interleukin 12 in the nasal and tracheal tissues from chickens immunized with rTX-NS1-128 were significantly upregulated on day 3 post-immunization and the IgA and IgG antibody levels were significantly increased on days 7, 14, and 21 post-immunization when compared to chickens that received an inactivated vaccine. rTX-NS1-128 also protected chickens from challenge by homologous and heterologous H9N2 avian influenza viruses. The results indicate that rTX-NS1-128 can be used as a potential live-attenuated vaccine against H9N2 avian influenza.

  17. 9-Ethyl-2,3-dihydro-9H-carbazol-4(1H-one

    Directory of Open Access Journals (Sweden)

    S. Sriman Narayanan

    2008-09-01

    Full Text Available In the title compound, C28H30N2O2, the cyclohexene ring system adopts a sofa conformation. The crystal structure is stabilized by C—H...O interactions between methyl H atoms of the ethyl substituents and the O atoms of carbonyl groups of adjacent molecules, and by an intermolecular carbonyl–carbonyl interactions [3.207 (2 Å

  18. Aquachlorido{6,6′-dimethoxy-2,2′-[ethane-1,2-diylbis(nitrilomethanylylidene]diphenolato-κ2O1,N,N′,O1′}cobalt(III dimethylformamide monosolvate

    Directory of Open Access Journals (Sweden)

    Yun Wei

    2012-04-01

    Full Text Available In the title compound, [Co(C18H18N2O4Cl(H2O]·C3H7NO, the CoIII ion is six-coordinated by a tetradentate 6,6′-dimethoxy-2,2′-[ethane-1,2-diylbis(nitrilomethanylylidene]diphenolate ligand, with a chloride ion and an aqua ligand in the apical positions. The compound crystallized as a dimethylformamide (DMF monosolvate. In the crystal, complex molecules are linked via O—Hwater...O hydrogen bonds to form a dimer-like arrangement. These dimers are linked via a C—H...Cl interaction, and the DMF molecule is linked to the complex molecule by C—H...O interactions.

  19. (E-3-Propoxymethylidene-2,3-dihydro-1H-pyrrolo[2,1-b]quinazolin-9-one monohydrate

    Directory of Open Access Journals (Sweden)

    Burkhon Zh Elmuradov

    2010-05-01

    Full Text Available The title compound, C15H16N2O2·H2O, was synthesized via the alkylation of 3-hydroxymethylidene-2,3-dihydro-1H-pyrrolo[2,1-b]quinazolin-9-one with n-propyl iodide in the presence of sodium hydroxide. The organic molecule and the water molecule both lie on a crystallographic mirror plane. In the crystal structure, intermolecular O—H...O and O—H...N hydrogen bonds link the components into extended chains along [100].

  20. 2,2′-(Diselane-1,2-diyldinicotinamide N,N′-dimethylformamide disolvate

    Directory of Open Access Journals (Sweden)

    Aixia Feng

    2010-05-01

    Full Text Available The asymmetric unit of the title compound, C12H10N4O2Se2·2C3H7NO, contains two solvent molecules and two half molecules of the dinicotinamide, each of which sits on a center of symmetry passing through the middle of the Se—Se bond. In each molecule, the two pyridyl groups and diseleno group are approximately coplanar (r.m.s. deviations from planarity for all non-H atoms = 0.011 and 0.008 Å in the two molecules. Intermolecular N—H...O hydrogen bonds stablilize the crystal packing.

  1. Synthesis and crystal structures of new complexes of Np(V) glycolate with 2,2'-bipyridine, [NpO2(C10H8N2)(OOC2H2OH)].1.5H2O and [NpO2(C10H8N2)(OOC2H2OH)].2.5H2O

    International Nuclear Information System (INIS)

    Charushnikova, I.A.; Krot, N.N.; Starikova, Z.A.

    2009-01-01

    Single crystals were prepared, and the structures of two complexes of Np(V) glycolate with 2,2'-bipyridine of the compositions [NpO 2 (C 10 H 8 N 2 )(OOC 2 H 2 OH)].1.5H 2 O (I) and [NpO 2 (C 10 H 8 N 2 )(OOC 2 H 2 OH)]2.5H 2 O (II) were studied. The structures of the compounds are based on neptunyl-glycolate chains in which the glycolate anion manifests its complexation ability in different manner. In structure I, the bidentate-bridging anion links the adjacent NpO 2 - cations through the oxygen atoms of the carboxylate group. The neptunyl-glycolate chains of I exhibits the mutual coordination of the NpO 2 - cations acting toward each other simultaneously as ligands and coordinating centers. In compound II, the glycolate anion is bidentately coordinated to one neptunium atom to form a planar five-membered metallocycle [NpOCCO]. The O atom external with respect to the metallocycle is in the coordination environment of the adjacent neptunyl. The nitrogen-containing molecular ligand Bipy is included into the coordination environment of Np. The coordination polyhedron of the Np atoms in both structures is a pentagonal bipyramid in which the average Np-N bond length is 2.666 Aa (I) and 2.596 Aa (II). (orig.)

  2. Bis(1H-imidazole-κN3bis(1-naphthaleneacetato-κ2O,O′cadmium(II

    Directory of Open Access Journals (Sweden)

    Hong-Mian Wu

    2008-05-01

    Full Text Available In the mononuclear title compound, [Cd(C12H9O22(C3H4N22], the CdII centre has a distorted octahedral coordination geometry defined by four O atoms from two naphthaleneacetate ligands and two N atoms from two imidazole ligands. The molecules are linked by N—H...O hydrogen bonds, forming a layer network.

  3. The cocrystal μ-oxalato-κ4O1,O2:O1′,O2′-bis(aqua(nitrato-κO{[1-(2-pyridyl-κNethylidene]hydrazine-κN}copper(II μ-oxalato-κ4O1,O2:O1′,O2′-bis((methanol-κO(nitrato-κO{[1-(2-pyridyl-κNethylidene]hydrazine-κN}copper(II (1/1

    Directory of Open Access Journals (Sweden)

    Youssouph Bah

    2008-09-01

    Full Text Available The title cocrystal, [Cu2(C2O4(NO32(C7H9N32(H2O2][Cu2(C2O4(NO32(C7H9N32(CH4O2], is a 1:1 cocrystal of two centrosymmetric CuII complexes with oxalate dianions and Schiff base ligands. In each molecule, the CuII centre is in a distorted octahedral cis-CuN2O4 environment, the donor atoms of the N,N′-bidentate Schiff base ligand and the bridging O,O′-bidentate oxalate group lying in the equatorial plane. In one molecule, a monodentate nitrate anion and a water molecule occupy the axial sites, and in the other, a monodentate nitrate anion and a methanol molecule occupy these sites. In the crystal structure, intermolecular N—H...O, O—H...O and N—H...N hydrogen bonds link the molecules into a network. Weak intramolecular N—H...O interactions are also observed.

  4. Bis(8-hy?droxy-1-methyl?quinolin-1-ium) bis?(1,2-dicyano?ethene-1,2-dithiol?ato)nickelate(II) dihydrate

    OpenAIRE

    Guan, Zhi-Heng; Jiang, Zhang; Wang, Fang-Ming

    2011-01-01

    In the title ion-pair complex, (C10H10NO)2[Ni(C4N2S2)22H2O, the anion has crystallographically imposed centre of symmetry. The NiII atom exhibits a slightly distorted square-planar coordination geometry. In the crystal, the water molecule links anions and cations into a three-dimensional network via O—H...N, O—H...S and O—H...O hydrogen bonds. The structure is further stabilized by weak S...π contacts [S...centroid = 3.8047 (9)&#...

  5. Bis(di-2-pyridylamine-κ2N2,N2'platinum(II dibromide monohydrate

    Directory of Open Access Journals (Sweden)

    Kwang Ha

    2012-04-01

    Full Text Available The asymmetric unit of the title compound, [Pt(C10H9N32]Br2·H2O, contains two crystallographically independent half-molecules of the cationic PtII complex, two Br− anions and a lattice water molecule; an inversion centre is located at the centroid of each complex. Each PtII ion is four-coordinated in an essentially square-planar environment by four pyridine N atoms derived from the two chelating di-2-pyridylamine (dpa ligands, and the PtN4 unit is exactly planar. The chelate ring formed by the dpa ligand displays a boat conformation, with dihedral angles between the pyridine rings of 35.9 (2 and 41.0 (2°. The complex cations, Br− anions and solvent water molecules are linked by O—H...Br, N—H...Br, C—H...O and C—H...Br hydrogen bonds, forming a three-dimensional network.

  6. Diaquabis[2,6-bis(4H-1,2,4-triazol-4-ylpyridine-κN2]bis(selenocyanato-κNcobalt(II

    Directory of Open Access Journals (Sweden)

    Yuan-Yuan Liu

    2012-08-01

    Full Text Available In the title compound, [Co(NCSe2(C9H7N72(H2O2], the Co2+ cation is coordinated by two selenocyanate anions, two 2,6-bis(4H-1,2,4-triazol-4-ylpyridine ligands and two water molecules within a slightly distorted N4O2 octahedron. The asymmetric unit consists of one Co2+ cation, which is located on a center of inversion, as well as one selenocyanate anion, one 2,6-bis(4H-1,2,4-triazol-4-ylpyridine ligand and one water molecule in general positions. Intermolecular O—H...N hydrogen bonds join the complex molecules into layers parallel to the bc plane. The layers are linked by C—H...N and C—H...Se hydrogen bonds into a three-dimensional supramolecular architecture.

  7. Copper(II) complexes of alloferon 1 with point mutations (H1A) and (H9A) stability structure and biological activity.

    Science.gov (United States)

    Matusiak, Agnieszka; Kuczer, Mariola; Czarniewska, Elżbieta; Rosiński, Grzegorz; Kowalik-Jankowska, Teresa

    2014-09-01

    Mono- and polynuclear copper(II) complexes of the alloferon 1 with point mutations (H1A) A(1)GVSGH(6)GQH(9)GVH(12)G (Allo1A) and (H9A) H(1)GVSGH(6)GQA(9)GVH(12)G (Allo9A) have been studied by potentiometric, UV-visible, CD, EPR spectroscopic and mass spectrometry (MS) methods. To obtain a complete complex speciation different metal-to-ligand molar ratios ranging from 1:1 to 4:1 for Allo1A and to 3:1 for Allo9A were studied. The presence of the His residue in first position of the peptide chain changes the coordination abilities of the Allo9A peptide in comparison to that of the Allo1A. Imidazole-N3 atom of N-terminal His residue of the Allo9A peptide forms stable 6-membered chelate with the terminal amino group. Furthermore, the presence of two additional histidine residues in the Allo9A peptide (H(6),H(12)) leads to the formation of the CuL complex with 4N {NH2,NIm-H(1),NIm-H(6),NIm-H(12)} binding site in wide pH range (5-8). For the Cu(II)-Allo1A system, the results demonstrated that at physiological pH7.4 the predominant complex the CuH-1L consists of the 3N {NH2,N(-),CO,NIm} coordination mode. The inductions of phenoloxidase activity and apoptosis in vivo in Tenebrio molitor cells by the ligands and their copper(II) complexes at pH7.4 were studied. The Allo1A, Allo1K peptides and their copper(II) complexes displayed the lowest hemocytotoxic activity while the most active was the Cu(II)-Allo9A complex formed at pH7.4. The results may suggest that the N-terminal-His(1) and His(6) residues may be more important for their proapoptotic properties in insects than those at positions 9 and 12 in the peptide chain. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. properties of Cr(C,N) hard coatings deposited in Ar-C2H2-N2 plasma

    International Nuclear Information System (INIS)

    Macek, M.; Cekada, M.; Kek, D.; Panjan, P.

    2002-01-01

    Mechanical properties, microstructure and the average chemical composition of Cr(C,N) hard coatings deposited in Ar-C 2 H 2 -N 2 plasma strongly depends on the partial pressure of the reactive gases (N 2 , C 2 H 2 ) and on the type of the deposition equipment. In this study we report on the properties of Cr(C,N) hard coatings deposited by means of the triode ion plating in the BAI 730 apparatus and those prepared by sputter deposition in Balzers Sputron in the pressure range from 0.12 Pa (pure Ar) up to 0.35 Pa with different ratios (0-100%) between C 2 H 2 and N 2 . At first mechanical properties (microhardness and adhesion) of coatings were analyzed on the common way. Internal stress was measured by the radius of substrate curvature. Chemical composition of coatings was analyzed by means of AES while the Raman and XPS spectroscopy was used to determined the nature of carbon bonding in the Cr(C,N) films. Microstructure was determined by XRD as well as by means of TEM and TED. Chemical state of various elements in the coating has been studied by XPS. The ratio of the carbide bond (C-Cr) against the C-C and C-H bonds was calculated. The existence of the graphite phase in some Cr(C,N) coatings was confirmed by Raman spectroscopy. (Authors)

  9. Crystal structure of chlorido(dimethyl sulfoxide-κSbis[4-(pyridin-2-ylbenzaldehyde-κ3C2,N]iridium(III acetonitrile monosolvate

    Directory of Open Access Journals (Sweden)

    Andrew J. Peloquin

    2017-09-01

    Full Text Available The title compound, [IrCl(C12H8NO2{(CH32SO}]·H3CCN or [IrCl(fppy2(DMSO]·H3CCN [where fppy is 4-(pyridin-2-ylbenzaldehyde and DMSO is dimethyl sulfoxide], is a mononuclear iridium(III complex including two fppy ligands, a sulfur-coordinating DMSO ligand, and one terminal chloride ligand that define a distorted octahedral coordination sphere. The complex crystallizes from 1:1 DMSO–acetonitrile as an acetonitrile solvate. In the crystal, weak C—H...O and C—H...N hydrogen-bonding interactions between adjacent complexes and between the acetonitrile solvent and the complex consolidate the packing.

  10. Di-μ-cyanido-tetra­cyanido(5,5,7,12,12,14-hexa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­decane)[N-(quinolin-8-yl)quinoline-2-carboxamidato]diiron(III)nickel(II) 2.07-hydrate

    Science.gov (United States)

    Yang, Yuqi; Zhou, Hongbo; Shen, Xiaoping

    2013-01-01

    The asymmetric unit of the title complex, [Fe2Ni(C19H12N3O)2(CN)6(C16H36N4)]·2.07H2O, contains one [Fe(qcq)(CN)3]− anion, half a [Ni(teta)]2+ cation and two partially occupied inter­stitial water mol­ecules [qcq− is the N-(quinolin-8-yl)quinoline-2-carboxamidate anion and teta is 5,5,7,12,12,14-hexa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­deca­ne]. In the complex mol­ecule, two [Fe(qcq)(CN)3]− anions additionally coordinate the central [Ni(teta)]2+ cation through cyanide groups in a trans mode, resulting in a trinuclear structure with the Ni2+ cation lying on an inversion centre. The two inter­stitial water mol­ecules are partially occupied, with occupancy factors of 0.528 (10) and 0.506 (9). O—H⋯O and O—H⋯N hydrogen bonding involving the two lattice water molecules and the carbonyl function and a teta N atom in an adjacent cluster leads to the formation of layers extending parallel to (010). PMID:23723777

  11. 2-[4-(Dimethylaminophenyl]-3,3-difluoro-3H-naphtho[1,2-e][1,3,2]oxazaborinin-2-ium-3-uide

    Directory of Open Access Journals (Sweden)

    Błażej Dziuk

    2017-08-01

    Full Text Available In the title compound, C19H17BF2N2O, a twist about the N—C single bond is observed, making the cross conjugation not as efficient as in the case of a planar structure. The borone complex has tetrahedral geometry. In the crystal, molecules are conected by weak C—H...F hydrogen bonds.

  12. Bis(8-hydroxy-1-methylquinolin-1-ium bis(1,2-dicyanoethene-1,2-dithiolatonickelate(II dihydrate

    Directory of Open Access Journals (Sweden)

    Zhi-Heng Guan

    2011-12-01

    Full Text Available In the title ion-pair complex, (C10H10NO2[Ni(C4N2S22]·2H2O, the anion has crystallographically imposed centre of symmetry. The NiII atom exhibits a slightly distorted square-planar coordination geometry. In the crystal, the water molecule links anions and cations into a three-dimensional network via O—H...N, O—H...S and O—H...O hydrogen bonds. The structure is further stabilized by weak S...π contacts [S...centroid = 3.8047 (9 Å] and π–π stacking interactions [centriod–centroid distance = 3.8653 (7 Å].

  13. mer-Bis[3,5-difluoro-2-(2-pyridylphenyl-κ2C1,N]{5-(2-pyridyl-κN-3-[3-(4-vinylbenzyloxyphenyl]-1,2,4-triazol-1-ido}iridium(III methanol solvate

    Directory of Open Access Journals (Sweden)

    Peter G. Jones

    2010-01-01

    Full Text Available In the title compound, [Ir(C11H6F2N2(C22H17N4O]·CH3OH, the coordination at iridium is essentially octahedral, but with distortions associated with the bite angles of the ligands [76.25 (9–80.71 (12°] and the differing trans influences of C and N ligands [Ir—N = 2.04 Å (average trans to N but 2.14 Å trans to C]. All three bidentate ligands have coordinating ring systems that are almost coplanar [interplanar angles = 1.7 (1–3.8 (2°]. The vinylbenzyl group is disordered over two positions with occupations of 0.653 (4 and 0.347 (4. The methanol solvent molecule is involved in a classical O—H...N hydrogen bond to a triazole N atom.

  14. Diaqua[(1R,2S,4R,8R,9S,11R-2,9-dimethyl-1,4,8,11-tetraazacyclotetradecane]nickel(II dichloride dihydrate

    Directory of Open Access Journals (Sweden)

    James Alan Townsend

    2012-08-01

    Full Text Available The crystal structure of the title complex, [Ni(C12H28N4(H2O2]Cl2·2H2O, displays O—H...Cl and O—H...O hydrogen bonding. The tetraazacyclotetradecane ligand interacts with the NiII atom in the cis V configuration and the final two ligand binding sites are occupied by water.

  15. Study of complex formation between C18H36N2O6 and UO22+ cation in some binary mixed non-aqueous solutions

    Directory of Open Access Journals (Sweden)

    G.H. Rounaghi

    2017-02-01

    Full Text Available The complexation reaction between UO22+ cation and the macrobicyclic ligand C18H36N2O6 was studied in acetonitrile–dimethylformamide (AN–DMF, acetonitrile–tetrahydrofuran (AN–THF, acetonitrile–dichloromethane (AN–DCM binary solvent solutions at different temperatures using the coductometric method. In most cases, C18H36N2O6 forms a 1:1 [M:L] complex with the UO22+ cation. But in some of the studied solvent systems, in addition to formation of a 1:1 complex, a 1:2 [M:L2] complex is formed in solution. A non-linear behavior was observed for changes of logKf of the (C18H36N2O6·UO22+ complex versus the composition of the binary mixed solvents. The sequence of the stability of the (C18H36N2O6·UO22+ complex in pure solvent systems at 25 °C decreases in the order: AN > THF > DMF. In the case of binary solvent solutions, the stability constant of the complex at 25 °C was found to be: AN–DCM > AN–THF > AN–DMF. The values of thermodynamic quantities (ΔSc°,ΔHc°, for the formation of the complex were obtained from temperature dependence of the stability constant of the complex using the van't Hoff plots. The results show that in all cases, the complex is both entropy and enthalpy stabilized and both of these parameters are affected by the nature and composition of the mixed solvent systems.

  16. Synthesis and crystal structure of new uranyl selenite(IV)-selenate(VI) [C5H14N][(UO2)3(SeO4)4(HSeO3)(H2O)](H2SeO3)(HSeO4)

    International Nuclear Information System (INIS)

    Krivovichev, S.V.; Tananaev, I.G.; Myasoedov, B.F.; Kalenberg, V.

    2006-01-01

    Crystals of new uranyl selenite(IV)-selenate(VI) [C 5 H 14 N][(UO 2 ) 3 (SeO 4 ) 4 (HSeO 3 )(H 2 O)](H 2 SeO 3 )(HSeO 4 ) are obtained by the method of evaporation from aqueous solutions. Compound has triclinic lattice, space group P1-bar, a=11.7068(9), b=14.8165(12), c=16.9766(15), α=73.899(6), β=76.221(7), γ=89.361(6) Deg, V=2743.0(4) A 3 , Z=2. Laminated complexes (UO 2 ) 3 (SeO 4 ) 4 (HSeO 3 )(H 2 O)] 3- are the basis of the structure. [HSe(VI)O 4 ] - , [H 2 Se(IV)O 3 ] complexes and protonated methylbutylamine cations are disposed between layers [ru

  17. Experimental and Theoretical Studies of the Factors Affecting the Cycloplatination of the Chiral Ferrocenylaldimine (SC-[(η5-C5H5Fe{(η5-C5H4–C(H=N–CH(Me(C6H5}

    Directory of Open Access Journals (Sweden)

    Concepción López

    2014-11-01

    Full Text Available The study of the reactivity of the enantiopure ferrocenyl Schiff base (SC-[FcCH=N–CH(Me(C6H5] (1 (Fc = (η5-C5H5Fe(η5-C5H4 with cis-[PtCl2(dmso2] under different experimental conditions is reported. Four different types of chiral Pt(II have been isolated and characterized. One of them is the enantiomerically pure trans-(SC-[Pt{κ1-N[FcCH=N–CH(Me(C6H5]}Cl2(dmso] (2a in which the imine acts as a neutral N-donor ligand; while the other three are the cycloplatinated complexes: [Pt{κ2-C,N [(C6H4–N=CHFc]}Cl(dmso] (7a and the two diastereomers {(Sp,SC and (Rp,SC} of [Pt{κ2-C,N[(η5-C5H3–CH=N–{CH(Me(C6H5}]Fe(η5-C5H5}Cl(dmso] (8a and 9a, respectively. Isomers 7a-9a, differ in the nature of the metallated carbon atom [CPh (in 7a or CFc (in 8a and 9a] or the planar chirality of the 1,2-disubstituted ferrocenyl unit (8a and 9a. Reactions of 7a–9a with PPh3 gave [Pt{κ2-C,N[(C6H4–N=CHFc]}Cl(PPh3] (in 7b and the diastereomers (Sp,SC and (Rp,SC of [Pt{κ2-C,N[(η5-C5H3–CH=N–{CH(Me(C6H5}] Fe(η5-C5H5}Cl(PPh3] (8b and 9b, respectively. Comparative studies of the electrochemical properties and cytotoxic activities on MCF7 and MDA-MB231 breast cancer cell lines of 2a and cycloplatinated complexes 7b-9b are also reported. Theoretical studies based on DFT calculations have also been carried out in order to rationalize the results obtained from the cycloplatination of 1, the stability of the Pt(II complexes and their electrochemical properties.

  18. 2-{N-[(2,3,4,9-Tetrahydro-1H-carbazol-3-ylmethyl]methylsulfonamido}ethyl methanesulfonate

    Directory of Open Access Journals (Sweden)

    Mustafa Göçmentürk

    2014-01-01

    Full Text Available In the title compound, C17H24N2O5S2, the indole ring system is nearly planar [maximum deviation = 0.032 (1 Å] and the cyclohexene ring has a half-chair conformation. In the crystal, N—H...O hydrogen bonds link the molecules into a chain running along the b-axis direction. Weak C—H...O hydrogen bonds and weak C—H...π interactions are observed between the chains.

  19. catena-Poly[[[diaquabis(selenocyanato-κNiron(II]-μ-1,2-bis(pyridin-4-ylethane-κ2N:N′] 1,2-bis(pyridin-4-ylethane disolvate dihydrate

    Directory of Open Access Journals (Sweden)

    Susanne Wöhlert

    2013-06-01

    Full Text Available The title compound, {[Fe(NCSe2(C12H12N2(H2O22C12H12N2·2H2O}n, was obtained by the reaction of iron(II sulfate heptahydrate and potassium selenocyanate with 1,2-bis(pyridin-4-ylethane (bpa in water. The FeII cation is coordinated by two N-bonded selenocyanate anions, two water molecules and two 1,2-bis(pyridin-4-ylethane (bpa ligands in a slightly distorted octahedral geometry. In addition, two non-coordinating bpa molecules and two water molecules are present. The FeII cation is located on a center of inversion while the coordinating bpa ligand is located on a twofold rotation axis. The FeII cations are linked by the bpa ligands into chains along the b-axis direction, which are further connected into layers perpedicular to the c axis by O—H...N and O—H...O hydrogen bonds to the non-coordinating bpa and the water molecules. The crystal studied was twinned by pseudo-merohedry (180° rotation along c*; contribution of the minor twin component 3.7%.

  20. Crystal and Molecular Structure of Bis(2,2-diphenyl-N-(di-n-propylcarbamothioyl acetamidocopper(II Complex

    Directory of Open Access Journals (Sweden)

    Hakan Arslan

    2011-01-01

    Full Text Available Bis(2,2-diphenyl-N-(di-n-propylcarbamothioyl acetamidocopper(II complex has been synthesized and characterized by elemental analysis and FT-IR spectroscopy. The crystal and molecular structure of the title compound has been determined from single crystal X-ray diffraction data. It crystallizes in the triclinic space group P-1, with a = 13.046(2 Å, b = 13.135(2 Å, c = 13.179(2 Å, α= 67.083(4°, β= 67.968(4°, γ = 84.756(4° and Dcalc =1.330 g/cm3 for Z = 2. The crystal structure confirms that the complex is a mononuclear copper(II complex and the 2,2-diphenyl-N-(di-n-propyl-carbamothioylacetamide ligand is a bidentate chelating ligand, coordinating to the copper atom through the thiocarbonyl and carbonyl groups. This coordination has a slightly distorted square-planar geometry (O1-Cu1-O2: 86.48(11°, O1-Cu1-S1: 93.85(9°, O2-Cu1-S2: 94.20(9° and S1-Cu1-S2: 91.21(4°. The title molecule shows a cis-arrangement and C–O, C–S and C–N bond lengths of the complex suggest considerable electronic delocalization in the chelate rings.

  1. tert-Butyl 3-(8-bromo-4H,10H-1,2-oxazolo[4,3-c][1]benzoxepin-10-yl-2-methyl-1H-indole-1-carboxylate

    Directory of Open Access Journals (Sweden)

    Ankur Trigunait

    2010-08-01

    Full Text Available In the title compound, C25H23BrN2O4, the seven-membered ring adopts a twisted-boat conformation. The indole ring system is planar within 0.021 (2 Å and the ester group [–C(=O—O—C–] is almost coplanar with it [dihedral angle = 3.0 (2°]. The conformation of the ester group is influenced by intramolecular C—H...O interactions. In the crystal structure, molecules are linked into chains along the b axis by C—H...N hydrogen bonds.

  2. Axial zero-field splitting in mononuclear Co(ii) 2-N substituted N-confused porphyrin: Co(2-NC3H5-21-Y-CH2C6H4CH3-NCTPP)Cl (Y = o, m, p) and Co(2-NC3H5-21-CH2C6H5-NCTPP)Cl.

    Science.gov (United States)

    Lai, Ya-Yuan; Chang, Yu-Chang; Chen, Jyh-Horung; Wang, Shin-Shin; Tung, Jo-Yu

    2016-03-21

    The inner C-benzyl- and C-o-xylyl (or m-xylyl, p-xylyl)-substituted cobalt(ii) complexes of a 2-N-substituted N-confused porphyrin were synthesized from the reaction of 2-NC3H5NCTPPH (1) and CoCl2·6H2O in toluene (or o-xylene, m-xylene, p-xylene). The crystal structures of diamagnetic chloro(2-aza-2-allyl-5,10,15,20-tetraphenyl-21-hydrogen-21-carbaporphyrinato-N,N',N'')zinc(ii) [Zn(2-NC3H5-21-H-NCTPP)Cl; 3 ] and paramagnetic chloro(2-aza-2-allyl-5,10,15,20-tetraphenyl-21-benzyl-21-carbaporphyrinato-N,N',N'')cobalt(ii) [Co(2-NC3H5-21-CH2C6H5NCTPP)Cl; 7], and chloro(2-aza-2-allyl-5,10,15,20-tetraphenyl-21-Y-xylyl-21-carbaporphyrinato-N,N',N'')cobalt(ii) [Co(2-NC3H5-21-Y-CH2C6H4CH3NCTPP)Cl] [Y = o (8), m (9), p (10)] were determined. The coordination sphere around the Zn(2+) (or Co(2+)) ion in 3 (or 7-10) is a distorted tetrahedron (DT). The free energy of activation at the coalescence temperature Tc for the exchange of phenyl ortho protons o-H (26) with o-H (22) in 3 in a CDCl3 solvent is found to be ΔG = 61.4 kJ mol(-1) through (1)H NMR temperature-dependent measurements. The axial zero-field splitting parameter |D| was found to vary from 35.6 cm(-1) in 7 (or 30.7 cm(-1) in 8) to 42.0 cm(-1) in 9 and 46.9 cm(-1) in 10 through paramagnetic susceptibility measurements. The magnitude of |D| can be related to the coordination sphere at the cobalt sites.

  3. Bis[N-(2-aminoethylethane-1,2-diamine-κ3N,N′,N′′]copper(II tris[diamminetetrakis(thiocyanato-κNchromate(III] thiocyanate dimethyl sulfoxide tetradecasolvate monohydrate

    Directory of Open Access Journals (Sweden)

    Vitalina M. Nikitina

    2011-08-01

    Full Text Available The ionic title complex, [Cu(C4H13N32]2[Cr(NCS4(NH32]3(NCS·14C2H6OS·H2O, consists of complex [Cu(dien2]2+ cations [dien is N-(2-aminoethylethane-1,2-diamine], complex [Cr(NCS4(NH32]− anions, an NCS− counter-anion and uncoordinated dimethyl sulfoxide (DMSO and water solvent molecules. One of the Cr atoms lies on an inversion center, while the second Cr atom and the Cu atom lie in general positions. The thiocyanate counter-anion and water molecule are disordered over two positions close to an inversion center. There are several types of hydrogen-bond interactions present in the title compound, which connect the complex cations and anions into bulky [Cu2Cr3] polynuclear species. The four NH3 groups of the complex anions and six bridging DMSO O atoms link the three complex anions via hydrogen bonding into the anionic polynuclear species [Cr(NCS4(NH32]3·6DMSO. The last one is connected by four bridging DMSO O atoms with the two complex copper cations through N—H... O hydrogen bonds between the terminal NH3 groups of the anionic polynuclear species and the NH and NH2 groups of the dien ligand. One additional DMSO molecule is connected via hydrogen bonding to one of the terminal NH3 groups of the anionic polynuclear species. Another DMSO molecule is connected via hydrogen bonding to each Cu(dien2]2+ cation.

  4. Bis{(E-3-[2-(hydroxyiminopropanamido]-2,2-dimethylpropan-1-aminium} bis[μ-(E-N-(3-amino-2,2-dimethylpropyl-2-(hydroxyiminopropanamido(2−]bis{[(E-N-(3-amino-2,2-dimethylpropyl-2-(hydroxyiminopropanamide]copper(II} bis((E-{3-[2-(hydroxyiminopropanamido]-2,2-dimethylpropyl}carbamate acetonitrile disolvate

    Directory of Open Access Journals (Sweden)

    Andrii I. Buvailo

    2012-12-01

    Full Text Available The reaction between copper(II nitrate and (E-N-(3-amino-2,2-dimethylpropyl-2-(hydroxyiminopropanamide led to the formation of the dinuclear centrosymmetric copper(II title complex, (C8H18N3O22[Cu2(C8H15N3O22(C8H17N3O22](C9H16N3O42·2CH3CN, in which an inversion center is located at the midpoint of the Cu2 unit in the center of the neutral [Cu2(C8H15N3O22(C8H17N3O22] complex fragment. The Cu2+ ions are connected by two N—O bridging groups [Cu...Cu separation = 4.0608 (5 Å] while the CuII ions are five-coordinated in a square-pyramidal N4O coordination environment. The complex molecule co-crystallizes with two molecules of acetonitrile, two molecules of the protonated ligand (E-3-[2-(hydroxyiminopropanamido]-2,2-dimethylpropan-1-aminium and two negatively charged (E-{3-[2-(hydroxyiminopropanamido]-2,2-dimethylpropyl}carbamate anions, which were probably formed as a result of condensation between (E-N-(3-amino-2,2-dimethylpropyl-2-(hydroxyiminopropanamide and hydrogencarbonate anions. In the crystal, the complex fragment [Cu2(C8H15N3O22(C8H17N3O22] and the ion pair C8H18N3O2+.C9H16N3O4− are connected via an extended system of hydrogen bonds.

  5. (μ-3-Acetyl-5-carboxylato-4-methylpyrazolido-1:2κ4N2,O3:N1,O5-μ-chlorido-tetrapyridine-1κ2N,2κ2N-chlorido-1κCl-dicopper(II propan-2-ol solvate

    Directory of Open Access Journals (Sweden)

    Sergey Malinkin

    2009-10-01

    Full Text Available The title compound, [Cu2(C7H6N2O3Cl2(C5H5N4]·C3H8O, is a binuclear pyrazolate complex, in which the two CuII atoms have different coordination numbers and are connected by a bridging Cl atom. One CuII atom has a distorted square-pyramidal coordination environment formed by two pyridine N atoms, one bridging Cl atom and an N,O-chelating pyrazolate ligand. The other CuII atom adopts an octahedral geometry defined by two pyridine N atoms at the axial positions, two Cl atoms and the coordinated pyrazolate ligand in the equatorial plane. An O—H...O hydrogen bond connects the complex molecules and propan-2-ol solvent molecules into pairs. These pairs form columns along the a axis.

  6. [2,9-Bis(3,5-dimethyl-1H-pyrazol-1-yl-κN2-1,10-phenanthroline-κ2N,N′]bis(thiocyanato-κNcadmium(II

    Directory of Open Access Journals (Sweden)

    Yan Hui Chi

    2011-01-01

    Full Text Available In the title complex, [Cd(NCS2(C22H20N6], the CdII ion is in a CdN6 coordination geometry which is intermediate between octahedral and trigonal–prismatic. The dihedral angles formed between the mean planes of the pyrazole rings and the phenanthroline system are 15.74 (15 and 16.30 (13°. In the crystal, there is a π–π stacking interaction involving two symmetry-related pyrazole rings, with a centroid–centroid distance of 3.664 (3 Å. In addition, there is a relatively short intermolecular contact between C atoms [C...C = 3.399 (6 Å] involving symmetry-related pyridine rings along the a axis.

  7. Diiodido[methyl 2-(quinolin-8-yloxyacetate-κN]mercury(II

    Directory of Open Access Journals (Sweden)

    Yu-Hong Wang

    2012-08-01

    Full Text Available In the title mononuclear complex, [HgI2(C12H11NO3], the HgII ion has a distorted trigonal–planar coordination sphere defined by two I− anions and the N atom of a methyl 2-(quinolin-8-yloxyacetate ligand. In the crystal, face-to-face π–π stacking interactions, with a centroid–centroid distance of 3.563 (9 Å, are observed.

  8. CdBr2 complexes of 1,2-bis-[2-(5-H/methyl/chloro/nitro)-1H-benzimidazolyl]-1,2-ethanediols

    International Nuclear Information System (INIS)

    Aydin Tavman

    2005-01-01

    The complexes of 1,2-bis-[2-(5-H/methyl/chloro/nitro)-1H-benzimidazolyl]-1,2-ethanediols with CdBr 2 were synthesized and characterized by elemental analysis, molar conductivity, IR and NMR spectra. The ligands act as a bidentate only through both oxygen atoms of hydroxyl groups in complexes with ratio M:L=1:1 [ru

  9. Dibromidobis[1-(2-bromobenzyl-3-(pyrimidin-2-yl-1H-imidazol-2(3H-one]copper(II

    Directory of Open Access Journals (Sweden)

    Chun-Xin Lu

    2012-06-01

    Full Text Available In the title complex, [CuBr2(C14H11BrN4O2], the CuII ion is located on an inversion centre and is coordinated by two ketonic O atoms, two N atoms and two Br atoms, forming a distorted octahedral coordination environment. The two carbonyl groups are trans positioned with C=O bond lengths of 1.256 (5 Å, in agreement with a classical carbonyl bond. The Cu—O bond length is 2.011 (3 Å. The two bromobenzyl rings are approximately parallel to one another, forming a dihedral angle of 70.1 (4° with the coordination plane.

  10. Chlorogenic acid analogues from Gynura nepalensis protect H9c2 cardiomyoblasts against H2O2-induced apoptosis.

    Science.gov (United States)

    Yu, Bang-Wei; Li, Jin-Long; Guo, Bin-Bin; Fan, Hui-Min; Zhao, Wei-Min; Wang, He-Yao

    2016-11-01

    Chlorogenic acid has shown protective effect on cardiomyocytes against oxidative stress-induced damage. Herein, we evaluated nine caffeoylquinic acid analogues (1-9) isolated from the leaves of Gynura nepalensis for their protective effect against H 2 O 2 -induced H9c2 cardiomyoblast damage and explored the underlying mechanisms. H9c2 cardiomyoblasts were exposed to H 2 O 2 (0.3 mmol/L) for 3 h, and cell viability was detected with MTT assay. Hoechst 33342 staining was performed to evaluate cell apoptosis. MMPs (mitochondrial membrane potentials) were measured using a JC-1 assay kit, and ROS (reactive oxygen species) generation was measured using CM-H 2 DCFDA. The expression levels of relevant proteins were detected using Western blot analysis. Exposure to H 2 O 2 markedly decreased the viability of H9c2 cells and catalase activity, and increased LDH release and intracellular ROS production; accompanied by a loss of MMP and increased apoptotic rate. Among the 9 chlorogenic acid analogues as well as the positive control drug epigallocatechin gallate (EGCG) tested, compound 6 (3,5-dicaffeoylquinic acid ethyl ester) was the most effective in protecting H9c2 cells from H 2 O 2 -induced cell death. Pretreatment with compound 6 (1.56-100 μmol/L) dose-dependently alleviated all the H 2 O 2 -induced detrimental effects. Moreover, exposure to H 2 O 2 significantly increased the levels of Bax, p53, cleaved caspase-8, and cleaved caspase-9, and decreased the level of Bcl-2, resulting in cell apoptosis. Exposure to H 2 O 2 also significantly increased the phosphorylation of p38, JNK and ERK in the H9c2 cells. Pretreatment with compound 6 (12.5 and 25 μmol/L) dose-dependently inhibited the H 2 O 2 -induced increase in the level of cleaved caspase-9 but not of cleaved caspase-8. It also dose-dependently suppressed the H 2 O 2 -induced phosphorylation of JNK and ERK but not that of p38. Compound 6 isolated from the leaves of Gynura nepalensis potently protects H9c2

  11. Chelate-size effects on the structures, chemical behavior, properties, and catalytic activity of the new palladium(II)-allyl complexes [Pd(eta(3)-1-R-1-C3H4){FcCH=N-CH2-(CH2)(n)-NMe2}][PF6] {Fc = (eta(5)-C5H5)Fe(eta(5)-C5H4), n=2 or 1, and R-1 = h or ph}

    NARCIS (Netherlands)

    Pérez, S.; López, C.; Bosque, R.; Solans, X.; Font-Bardía, M.; Roig, A.; Molins, E.; van Leeuwen, P.W.N.M.; van Strijdonck, G.P.F.; Freixa, Z.

    2008-01-01

    The synthesis, X-ray crystal structures, and the study of the solution behavior of the palladium(II) allyl complexes [Pd(eta(3)-1R(1)-C3H4){FcCH=N-CH2-(CH2)(n)-NMe2}][PF6] {with Fc = (eta(5)-C5H5)Fe(eta(5)-C5H4), R-1 = H, and n = 2 (4) or 1 (5) or R-1 = Ph and n = 2 (6) or 1 (7)} are described. The

  12. Crystal structure of trans-dichloridobis[N-(5,5-dimethyl-4,5-dihydro-3H-pyrrol-2-yl-κNacetamide]palladium(II dihydrate

    Directory of Open Access Journals (Sweden)

    Jamal Lasri

    2017-04-01

    Full Text Available The title complex, [PdCl2(C8H14N2O22H2O, was obtained by N–O bond cleavage of the oxadiazoline rings of the trans-[dichlorido-bis(2,5,5-trimethyl-5,6,7,7a-tetrahydropyrrolo[1,2-b][1,2,4]oxadiazole-N1]palladium(II complex. The palladium(II atom exhibits an almost square-planar coordination provided by two trans-arranged chloride anions and a nitrogen atom from each of the two neutral organic ligands. In the crystal, N—H...O, O—H...O and O—H...Cl hydrogen bonds link complex molecules into double layers parallel to the bc plane.

  13. N,N′-(Ethane-1,2-diyldibenzenecarbothioamide

    Directory of Open Access Journals (Sweden)

    Masayuki Nagasawa

    2014-05-01

    Full Text Available The title compound, C16H16N2S2, adopts a gauche+–gauche+–gauche+ (g+g+g+ conformation in the NH—CH2—CH2—NH bond sequence. In the crystal, molecules are connected by pairs of N—H...S=C hydrogen bonds and C—H...π interactions, forming a tape structure along the c-axis direction.

  14. Reactivity of the parent amido complexes of iridium with olefins: C-NH2 bond formation versus C-H activation.

    Science.gov (United States)

    Mena, Inmaculada; García-Orduña, Pilar; Polo, Víctor; Lahoz, Fernando J; Casado, Miguel A; Oro, Luis A

    2017-08-29

    Herein we report on the different chemical reactivity displayed by two mononuclear terminal amido compounds depending on the nature of the coordinated diene. Hence, treatment of amido-bridged iridium complexes [{Ir(μ-NH 2 )(tfbb)} 3 ] (1; tfbb = tetrafluorobenzobarrelene) with dppp (dppp = bis(diphenylphosphane)propane) leads to the rupture of the amido bridges forming the mononuclear terminal amido compound [Ir(NH 2 )(dppp)(tfbb)] (3) in the first stage. On changing the reaction conditions, the formation of a C-NH 2 bond between the amido moiety and the coordinated diene is observed and a new dinuclear complex [{Ir(1,22 -4-κ-C 12 H 8 F 4 N)(dppp)} 2 (μ-dppp)] (4) has been isolated. On the contrary, the diiridium amido-bridged complex [{Ir(μ-NH 2 )(cod)} 2 ] (2; cod = 1,5-cyclooctadiene) in the presence of dppb (dppb = bis(diphenylphosphane)butane) allows the isolation of a mononuclear complex [Ir(1,2,3-η 3 -6-κ-C 8 H 10 )H(dppb)] (5), as a consequence of the extrusion of ammonia. The monitoring of the reaction of 2 with dppb (and dppp) allowed us to detect terminal amido complexes [Ir(NH 2 )(P-P)(cod)] (P-P = dppb (6), dppp (7)) in solution, as confirmed by an X-ray analysis of 7. Complex 7 was observed to evolve into hydrido species 5 at room temperature. DFT studies showed that C-H bond activation occurs through the deprotonation of one methylene fragment of the cod ligand by the highly basic terminal amido moiety instead of C-H oxidative addition to the Ir(i) center.

  15. Crystal structure of trans-di-chloridobis-[N-(5,5-di-methyl-4,5-di-hydro-3H-pyrrol-2-yl-κN)acetamide]palladium(II) dihydrate.

    Science.gov (United States)

    Lasri, Jamal; Eltayeb, Naser Eltaher; Haukka, Matti; Babgi, Bandar A

    2017-04-01

    The title complex, [PdCl 2 (C 8 H 14 N 2 O) 22H 2 O, was obtained by N-O bond cleavage of the oxa-diazo-line rings of the trans -[di-chlorido-bis-(2,5,5-trimethyl-5,6,7,7a-tetra-hydro-pyrrolo-[1,2- b ][1,2,4]oxa-diazole- N 1 )]palladium(II) complex. The palladium(II) atom exhibits an almost square-planar coordination provided by two trans -arranged chloride anions and a nitro-gen atom from each of the two neutral organic ligands. In the crystal, N-H⋯O, O-H⋯O and O-H⋯Cl hydrogen bonds link complex mol-ecules into double layers parallel to the bc plane.

  16. C,N-2-[(Dimethylamino)methyl]phenylplatinum Complexes Functionalized with C60 as Macromolecular Building Blocks

    NARCIS (Netherlands)

    Koten, G. van; Meijer, M.D.; Wolf, E. de; Lutz, M.H.; Spek, A.L.; Klink, G.P.M. van

    2001-01-01

    The application of platinum(II) complexes based on the N,N-dimethylbenzylamine ligand (abbreviated as H-C,N) in macromolecular synthesis was demonstrated. Two cationic C,N-platinum moieties were linked with a 4,4'-bipyridine bridge, giving [{C6H4(CH2NMe2)-2-Pt(PPh3)}2(4,4'-bpy)](BF4)2 (2), the

  17. Comparative study on catalytic behavior of polynuclear Mg-Mo-complex and FeMo-co-factor of nitrogenase in reactions with C2H2, N2 and CO

    International Nuclear Information System (INIS)

    Bardina, N.V.; Bazhenova, T.A.; Petrova, G.N.; Shilova, A.K.; Shilov, A.E.

    2006-01-01

    Catalytic reduction kinetics of C 2 H 2 in the presence of the Mg-Mo-cluster {[Mg 2 Mo 8 O 22 (MeO) 6 (MeOH) 4 ] 2- [Mg(MeOH) 6 ] 2+ }·6MeOH 1 is studied. Several interdependent coordinating centers are active in reference to substrates and inhibitors in the polynuclear Mg-Mo-complex, as in the reduced by europium amalgam (μ 6 -N)MoFe 7 S 9 ·homocitrate (FeMoco, 2). Comparison of regularities in reduction mechanism of C 2 H 2 , N 2 and CO with the participation of synthetic polynuclear complex 1 and natural cluster 2 is conducted. Regularities of the studied reactions in the systems involving natural catalytic cluster FeMoco and the synthetic Mg-Mo-complex modelling of its effect are noted to be similar. The main variations the systems show as regards to the reaction with molecular nitrogen [ru

  18. Exploring the dynamics of reaction N((2)D)+C2H4 with crossed molecular-beam experiments and quantum-chemical calculations.

    Science.gov (United States)

    Lee, Shih-Huang; Chin, Chih-Hao; Chen, Wei-Kan; Huang, Wen-Jian; Hsieh, Chu-Chun

    2011-05-14

    We conducted the title reaction using a crossed molecular-beam apparatus, quantum-chemical calculations, and RRKM calculations. Synchrotron radiation from an undulator served to ionize selectively reaction products by advantage of negligibly small dissociative ionization. We observed two products with gross formula C(2)H(3)N and C(2)H(2)N associated with loss of one and two hydrogen atoms, respectively. Measurements of kinetic-energy distributions, angular distributions, low-resolution photoionization spectra, and branching ratios of the two products were carried out. Furthermore, we evaluated total branching ratios of various exit channels using RRKM calculations based on the potential-energy surface of reaction N((2)D)+C(2)H(4) established with the method CCSD(T)/6-311+G(3df,2p)//B3LYP/6-311G(d,p)+ZPE[B3LYP/6-311G(d,p)]. The combination of experimental and computational results allows us to reveal the reaction dynamics. The N((2)D) atom adds to the C=C π-bond of ethene (C(2)H(4)) to form a cyclic complex c-CH(2)(N)CH(2) that directly ejects a hydrogen atom or rearranges to other intermediates followed by elimination of a hydrogen atom to produce C(2)H(3)N; c-CH(2)(N)CH+H is the dominant product channel. Subsequently, most C(2)H(3)N radicals, notably c-CH(2)(N)CH, further decompose to CH(2)CN+H. This work provides results and explanations different from the previous work of Balucani et al. [J. Phys. Chem. A, 2000, 104, 5655], indicating that selective photoionization with synchrotron radiation as an ionization source is a good choice in chemical dynamics research.

  19. Synthesis and characterization of a pentadentate Schiff base N3O2 ligand and its neutral technetium(V) complex. X-ray structure of (N,N'-3-azapentane-1,5-diylbis(3-(1-iminoethyl)-6-methyl-2H-pyran-2,4(3H)-dionato)(3-)-O,O',N,N',N double-prime)oxotechnetium(V)

    International Nuclear Information System (INIS)

    Shuang Liu; Rettig, S.J.; Orvig, C.

    1991-01-01

    Preparations of a potentially pentadentate ligand, N,N'-3-azapentane-1,5-diylbis(3-(1-iminoethyl)-6-methyl-2H-pyran-2,4-(3H)-dione) (H 3 apa), and its neutral technetium(V) complex, [TcO(apa)], are described. The 13 C and 1 H NMR, infrared, optical, and mass spectra of the pentadentate ligand and its technetium(V) complex are reported. The X-ray structure of [TcO(apa)] has been determined. Crystals are orthorhombic, space group Pbca, with a = 12.833 (2) angstrom, b = 33.320 (5) angstrom, c = 9.942(4) angstrom, V = 4251 (2) angstrom, and Z = 8. The structure was solved by Patterson and Fourier methods and was refined by full-matrix least-squares procedures to R = 0.028 and R W = 0.032 for 4054 reflections with I ≥ 3σ(I). The technetium(V) complex has a highly distorted octahedral coordination geometry comprising a [TcO] 3+ core and the triply deprotonated pentadentate ligand wrapping around the metal center. One of the two oxygen donor atoms of the pentadentate ligand is located trans to the Tc double-bond O bond while the remaining four donor atoms, N 3 O, occupy the equatorial sites. The distance between the deprotonated N(1) atom to the Tc center is significantly shorter than a normal Tc-N single bond length of 2.10 angstroms, but longer than that for a Tc-N triple bond. 1 H NMR spectral data reveal a rigid solution structure for the complex, which undergoes no conformational and configurational exchange at temperatures up to 50C

  20. Aqua{N-[1-(2-oxidophenylethylidene]-l-serinato}copper(II monohydrate

    Directory of Open Access Journals (Sweden)

    Qin-Long Peng

    2009-12-01

    Full Text Available In the title compound, [Cu(C11H11NO4(H2O]·H2O, each CuII ion is four-coordinated by one N and two O atoms from the tridentate Schiff base ligand, and by one O atom from the coordinated water molecule in a distorted square-planar geometry. Intermolecular O—H...O hydrogen bonds link complex molecules and solvent water molecules into flattened columns propagated in [100].

  1. Synthesis and crystal structure of Pb(Bipy)2B12H12

    International Nuclear Information System (INIS)

    Lagun, V.L.; Orlova, A.M.; Katser, S.B.; Solntsev, K.A.; Kuznetsov, N.T.

    1994-01-01

    Lead complex with B 12 H 12 2- anion and 2,2' bipyridine-lead(2) dodecahydro-closo-dodecaborate di(2,2' bipyridine) is synthesized and characterized by IF, UV and NMR spectrography methods. According to roentgen-structural analysis the crystals belong to monoclinic syngony, sp.gr. C2/m,a=17.872(4), b=18.672(5), c=9.228(7)A, β=109.11(4), V=2910(2)A 3 , Z=4. The structure consists of Pb 2 (Bipy) 4 (B 12 H 12 ) 2 dimeric units. The Pb-B distances are within the limits of 3.313-3.514A. 11 refs.; 2 figs.; 2 tabs

  2. μ3-Carbonato-κ3 O:O′:O′′-tris­{(η6-ben­zene)[(R)-1-(1-amino­ethyl)naphthyl-κ2 C 2,N]ruthenium(II)} hexa­fluorido­phosphate dichloro­methane solvate

    Science.gov (United States)

    Sortais, Jean-Baptiste; Brelot, Lydia; Pfeffer, Michel; Barloy, Laurent

    2008-01-01

    The title compound, [Ru3(C12H12N)3(CO3)(C6H6)3]PF6·CH2Cl2, was obtained unintentionally as the product of an attempted deprotonation of the monomeric parent ruthenium complex [Ru(C12H12N)(C6H6)(C2H3N)]PF6. The carbonate ligand bridges three half-sandwich cyclo­ruthenated fragments, each of them exhibiting a pseudo-tetra­hedral geometry. The configuration of the Ru atoms is S. The naphthyl groups of the enanti­opure cyclo­ruthenated benzylic amine ligands point in the same direction, adopting a propeller shape. PMID:21201869

  3. Crystal structure of cis-1-phenyl-8-(pyridin-2-ylmethyldibenzo[1,2-c:2,1-h]-2,14-dioxa-8-aza-1-borabicyclo[4.4.0]deca-3,8-diene

    Directory of Open Access Journals (Sweden)

    Gabriela Ledesma

    2017-12-01

    Full Text Available The title compound, C26H23BN2O2, was obtained as by product during synthetic attempts of a complexation reaction between the tripodal ligand H2L [N,N-bis(2-hydroxybenzyl(pyridin-2-ylmethylamine] and manganese(III acetate in the presence of NaBPh4. The isolated B-phenyl dioxazaborocine contains an N→B dative bond with a cis conformation. In the crystal, C—H...O hydrogen bonds define chains parallel to the b-axis direction. A comparative analysis with other structurally related derivatives is also included, together with a rationalization of the unexpected production of this zwitterionic heterocycle.

  4. H-D exchange in metal carbene complexes: Structure of cluster (μ-H)(μ-OCD3)Os3(CO)9{:C(CD3)NC2H8O}

    Science.gov (United States)

    Savkov, Boris; Maksakov, Vladimir; Kuratieva, Natalia

    2015-10-01

    X-ray and spectroscopic data for the new complex (μ-H)(μ-OCH3)Os3(CO)9{:C(CD3)NC2H8O} (2) obtained in the reaction of the (μ-H)(μ-Cl)Os3(CO)9{:C(CH3)NC2H8O} (1) with NaOCD3 in CD3OD solution are reported. It is shown that cluster 1 has the property of CH-acidity inherent of Fisher type carbenes. This had demonstrated using hydrogen deuterium exchange reaction in the presence of a strong base. Bridging chlorine to metoxide ligand substitution takes place during the reaction. The molecular structure of 2 is compared with known analogues.

  5. Triosmium cluster compounds containing isocyanide and hydride ligands. Crystal and molecular structure of (μ-H)(μ-eta1-C==N(H)(t-C4H9))Os3(CO)10

    International Nuclear Information System (INIS)

    Adams, R.D.; Golembeski, N.M.

    1979-01-01

    The crystal and molecular structure of the compound (μ-H)(μ-eta 1 -C==N(H)(t-C 4 H 9 ))Os 3 (CO) 10 has been determined by X-ray crystallographic methods. The compound crystallizes in the centrosymmetric monoclinic space group P2 1 /n[C/sub 2h/ 5 ]:a = 13.651 (4) A, b = 9.156 (4) A, c = 18.275 (5) A, β = 111.42 (2) 0 , V = 2126.3 (25) A 3 , Z = 4, rho/sub calcd/ = 2.92 g cm -3 . A uniform triangular cluster of three osmium atoms contains ten linear carbonyl groups and a μ-eta 1 -C==N(H)(t-C 4 H 9 ) iminyl ligand. The carbon atom of the iminyl ligand symmetrically bridges one osmium-osmium bond, as is shown by the internuclear separations Os(2)-C(11) = 2.066 (8) A and Os(3)-C(11) = 2.043 (8) A. The iminyl bond, C(11)-N, is double with the C-N distance being 1.298 (10) A

  6. Mechanochemical synthesis of 1-stanna-2,3-dicarba-closo-dodecaborane SnB9C2H11

    International Nuclear Information System (INIS)

    Volkov, V.V.; Myakishev, K.G.; Solomatina, L.Ya.

    1990-01-01

    The possibility of synthesis of 1-stanna-2, 3-dicarba-dodecaborane (2), SnB 9 C 2 H 11 by the mechanical activation of solid mixtures of CsB 9 C 2 H 12 , NaH and SnCl 2 has been studied. These solid phase mechano-chemical reactions were performed in vacuum vibration mills without any liquid solvents at room temperature. Crystalline SnB 9 C 2 H 11 was produced by sublimation in vacuum at 140 deg C. Yioeld of the sublimate was 3-6%

  7. Poly[bis[μ-4-(4-carboxyphenoxybenzoato](μ-4,4′-oxydibenzoatobis[μ-3-(pyridin-4-yl-5-(pyridin-3-yl-1H-1,2,4-triazole]dicadmium(II

    Directory of Open Access Journals (Sweden)

    Xiao-Jin Qi

    2016-07-01

    Full Text Available Three kinds of bridging ligands, 4,4′-oxydibenzoate, 4-(4-carboxyphenoxybenzoate and 3-(pyridin-4-yl-5-(pyridin-3-yl-1H-1,2,4-triazole, link the CdII cations to form the title polymeric complex, [Cd2(C14H8O5(C14H9O52(C12H9N52]n, in which each CdII cation is in a distorted N2O5 pentagonal–bipyramidal coordination geometry. The 4,4′-oxydibenzoate dianion exhibits point group symmetry 2, with the central O atom located on a twofold rotation axis. Classical N—H...O, O—H...N hydrogen bonds and weak C—H...O hydrogen bonds link the complex molecules into a three-dimensional supramolecular architecture. A solvent-accessible void of 53 (2 Å3 is observed, but no solvent molecule could reasonably located there.

  8. Bis{2-hydroxyimino-N′-[1-(2-pyridylethylidene]propanohydrazidato}zinc(II dihydrate

    Directory of Open Access Journals (Sweden)

    Yurii S. Moroz

    2010-02-01

    Full Text Available The title compound, [Zn(C10H11N4O22]·2H2O, was prepared by the reaction between Zn(CH3COO2·2H2O and 2-hydroxyimino-N′-[1-(2-pyridylethylidene]propanohydrazide (Hpop. The central ZnII atom has a distorted tetragonal-bipyramidal coordination geometry formed by two amide O atoms and four N atoms of two azomethine and two pyridine groups. In the crystal, complex molecules form layers parallel to the crystallographic b direction. The layers are connected by O—H...N and O—H...O hydrogen bonds involving the solvent water molecules.

  9. N6-Benzyladenosine Derivatives as Novel N-Donor Ligands of Platinum(II Dichlorido Complexes

    Directory of Open Access Journals (Sweden)

    Ján Vančo

    2013-06-01

    Full Text Available The platinum(II complexes trans-[PtCl2(Ln2]∙xSolv 1–13 (Solv = H2O or CH3OH, involving N6-benzyladenosine-based N-donor ligands, were synthesized; Ln stands for N6-(2-methoxybenzyladenosine (L1, involved in complex 1, N6-(4-methoxy-benzyladenosine (L2, 2, N6-(2-chlorobenzyladenosine (L3, 3, N6-(4-chlorobenzyl-adenosine (L4, 4, N6-(2-hydroxybenzyladenosine (L5, 5, N6-(3-hydroxybenzyl-adenosine (L6, 6, N6-(2-hydroxy-3-methoxybenzyladenosine (L7, 7, N6-(4-fluoro-benzyladenosine (L8, 8, N6-(4-methylbenzyladenosine (L9, 9, 2-chloro-N6-(3-hydroxy-benzyladenosine (L10, 10, 2-chloro-N6-(4-hydroxybenzyladenosine (L11, 11, 2-chloro-N6-(2-hydroxy-3-methoxybenzyladenosine (L12, 12 and 2-chloro-N6-(2-hydroxy-5-methylbenzyladenosine (L13, 13. The compounds were characterized by elemental analysis, mass spectrometry, IR and multinuclear (1H-, 13C-, 195Pt- and 15N- and two-dimensional NMR spectroscopy, which proved the N7-coordination mode of the appropriate N6-benzyladenosine derivative and trans-geometry of the title complexes. The complexes 1–13 were found to be non-toxic in vitro against two selected human cancer cell lines (HOS and MCF7; with IC50 > 50.0 µM. However, they were found (by ESI-MS study to be able to interact with the physiological levels of the sulfur-containing biogenic biomolecule L-methionine by a relatively simple 1:1 exchange mechanism (one Ln molecule was replaced by one L-methionine molecule, thus forming a mixed-nitrogen/sulfur-ligand dichlorido-platinum(II coordination species.

  10. Novel routes to 1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazines and 5,6,9,10,11,11a-hexahydro-8H-pyrido[1,2-a]pyrrolo[2,1-c]pyrazines.

    Science.gov (United States)

    Katritzky, Alan R; Jain, Ritu; Xu, Yong-Jiang; Steel, Peter J

    2002-11-15

    Condensation reactions of benzotriazole and 2-(pyrrol-1-yl)-1-ethylamine (1) with formaldehyde and glutaric dialdehyde, respectively, afforded intermediates 2 and 6. Subsequent nucleophilic substitutions of the benzotriazole group in 2 and 6 with Grignard reagents, sodium cyanide, and sodium borohydride gave 1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazines 3a-e, 4, 5 and 5,6,9,10,11,11a-hexahydro-8H-pyrido[1,2-a]pyrrolo[2,1-c]pyrazines 7a-c, 8, 9, respectively, in good yields.

  11. Tetrahedral silsesquioxane-C2H2Ti complex for hydrogen storage

    Science.gov (United States)

    Konda, Ravinder; Tavhare, Priyanka; Ingale, Nilesh; Chaudhari, Ajay

    2018-04-01

    The interaction of molecular hydrogen with tetrahedral silsesquioxane (T4)-C2H2Ti complex has been studied using Density Functional Theory with M06-2X functional and MP2 method with 6-311++G** basis set. T4-C2H2Ti complex can absorb maximum five hydrogen molecules with the gravimetric hydrogen storage capacity of 3.4 wt %. Adsorption energy calculations show that H2 adsorption on T4-C2H2Ti complex is favorable at room temperature by both the methods. We have studied the effect of temperature and pressure on Gibbs free energy corrected adsorption energies. Molecular dynamics simulations for H2 adsorbed T4-C2H2Ti complex have also been performed at 300K and show that loosely bonded H2 molecule flies away within 1fs. Various interaction energies within the complex are studied. Stability of a complex is predicted by means of a gap between Highest Occupied Molecular Orbital (HUMO) and Lowest Unoccupied Molecular Orbital (LUMO). The H2 desorption temperature for T4-C2H2Ti complex is calculated with Van't Hoff equation and it is found to be 229K.

  12. 3,6-Dibromo-9-(4-tert-butylbenzyl-9H-carbazole

    Directory of Open Access Journals (Sweden)

    Duan-Lin Cao

    2008-08-01

    Full Text Available In the title compound, C23H21Br2N, which was synthesized by the N-alkylation of 1-tert-butyl-4-(chloromethylbenzene with 3,6-dibromo-9H-carbazole, the asymmetric unit contains two unique molecules. Each carbazole ring system is essentially planar, with mean deviations of 0.0077 and 0.0089 Å for the two molecules. The carbazole planes make dihedral angles of 78.9 (2 and 81.8 (2° with the planes of the respective benzene rings.

  13. Synthesis and complex study of the crystal hydrate Zn{sub 2}ZrF{sub 8}.12H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Voit, Elena; Didenko, Nina; Gayvoronskaya, Kseniya; Slobodyuk, Arseniy; Gerasimenko, Andrey [Institute of Chemistry, Far-Eastern Branch, Russian Academy of Sciences, 159 Prosp. 100-Letiya Vladivostoka, 690022 Vladivostok (Russian Federation)

    2016-05-15

    The synthesis and study of structure and properties of a crystal hydrate of the composition Zn{sub 2}ZrF{sub 8}.12H{sub 2}O were performed by XRD, DTA analysis as well as IR, Raman, and {sup 1}H, and {sup 19}F NMR, including {sup 19}F MAS NMR spectroscopy. The compound crystallizes in the monoclinic syngony with the following unit cell parameters: a = 20.9649 (12), b = 9.6851 (6), c = 24.0209 (14) Aa, β = 103.742 (2) , space group C2/c, Z = 12. The structure is built from monomeric complex [ZrF{sub 8}]{sup 4-} and [Zn(H{sub 2}O){sub 6}]{sup 2+} linked through hydrogen bonds of different lengths (O-H..F and O-H..O). The peculiarity of the structure consists in the presence of short hydrogen bonds (interatomic O..F distances 2.5-2.6 Aa). Analysis of the IR and Raman spectra allowed interpretation of bands corresponding to vibrations of the [ZrF{sub 8}]{sup 4-} anion and to describe hydrogen bonds in the structure of Zn{sub 2}ZrF{sub 8}.12H{sub 2}O. Phase transformations in the process of thermal dehydration were studied on the basis of changes in vibrational and NMR spectra. It has been established that the interligand exchange in the complex anion takes place as early as at -103 C, whereas no reorientation of hexaaquacations was observed up to 47 C. At 58 C, the compound undergoes an incongruent melting accompanied with formation of much more stable ZnZrF{sub 6}.6H{sub 2}O and an aqueous salty liquid phase characterized with high mobility of fluorine atoms and protons, in accordance with the NMR spectroscopic data. (Copyright copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. N-(2-Chlorophenyl-2-({5-[4-(methylsulfanylbenzyl]-4-phenyl-4H-1,2,4-triazol-3-yl}sulfanylacetamide

    Directory of Open Access Journals (Sweden)

    Hoong-Kun Fun

    2011-08-01

    Full Text Available In the title molecule, C24H21ClN4OS2, the central 1,2,4-triazole ring forms dihedral angles of 89.05 (9, 86.66 (9 and 82.70 (10° with the chloro-substituted benzene ring, the methylsulfanyl-substituted benzene ring and the phenyl ring, respectively. In the crystal, molecules are linked into sheets parallel to (100 by intermolecular N—H...N and weak C—H...O hydrogen bonds.

  15. Cluster-enhanced X-O-2 photochemistry (X=CH3I, C3H6, C6H12, and Xe)

    NARCIS (Netherlands)

    Baklanov, A.V.; Bogdanchikov, G.A.; Vidma, K.V.; Chestakov, D.A.; Parker, D.H.

    2007-01-01

    The effect of a local environment on the photodissociation of molecular oxygen is investigated in the van der Waals complex X-O-2 (X=CH3I, C3H6, C6H12, and Xe). A single laser operating at wavelengths around 226 nm is used for both photodissociation of the van der Waals complex and simultaneous

  16. 2-[1-(1-Naphthyl-1H-1,2,3-triazol-4-yl]pyridine

    Directory of Open Access Journals (Sweden)

    Ulrich S. Schubert

    2009-05-01

    Full Text Available In the crystal structure of the title compound, C17H12N4, the angle between the naphthalene and 1H-1,2,3-triazole ring systems is 71.02 (4° and that between the pyridine and triazole rings is 8.30 (9°.

  17. Chlorido{(E-1-[(2-methoxyphenyldiazenyl]naphthalen-2-olato}palladium(II

    Directory of Open Access Journals (Sweden)

    Assia Mili

    2016-04-01

    Full Text Available In the title complex, [Pd(C17H13N2O2Cl], the PdII atom is tetracoordinated by an N and two O atoms of an (E-1-[(2-methoxyphenyldiazenyl]naphthalen-2-olate ligand and by a Cl atom, and has a square-planar coordination. In the crystal, molecules are linked by pairs of C—H...Cl hydrogen bonds, forming inversion dimers. The dimers are linked via offset π–π interactions [intercentroid distance = 3.546 (3 Å], forming chains running parallel to [100].

  18. Crystal structures of the 2:2 complex of 1,1′-(1,2-phenylenebis(3-m-tolylurea and tetrabutylammonium chloride or bromide

    Directory of Open Access Journals (Sweden)

    Chao Huang

    2017-09-01

    Full Text Available The title compounds, tetrabutylammonium chloride–1,1′-(1,2-phenylenebis(3-m-tolylurea (1/1, C16H36N+·Cl−·C22H22N4O2 or [(n-Bu4N+·Cl−(C22H22N4O2] (I and tetrabutylammonium bromide–1,1′-(1,2-phenylenebis(3-m-tolylurea (1/1, C16H36N+·Br−·C22H22N4O2 or [(n-Bu4N+·Br−(C22H22N4O2] (II, both comprise a tetrabutylammonium cation, a halide anion and an ortho-phenylene bis-urea molecule. Each halide ion shows four N—H...X (X = Cl or Br interactions with two urea receptor sites of different bis-urea moieties. A crystallographic inversion centre leads to the formation of a 2:2 arrangement of two halide anions and two bis-urea molecules. In the crystals, the dihedral angle between the two urea groups of the bis-urea molecule in (I [defined by the four N atoms, 165.4 (2°] is slightly smaller than that in (II [167.4 (2°], which is probably due to the smaller ionic radius of chloride compared to bromide.

  19. The replication of Bangladeshi H9N2 avian influenza viruses carrying genes from H7N3 in mammals.

    Science.gov (United States)

    Shanmuganatham, Karthik K; Jones, Jeremy C; Marathe, Bindumadhav M; Feeroz, Mohammed M; Jones-Engel, Lisa; Walker, David; Turner, Jasmine; Rabiul Alam, S M; Kamrul Hasan, M; Akhtar, Sharmin; Seiler, Patrick; McKenzie, Pamela; Krauss, Scott; Webby, Richard J; Webster, Robert G

    2016-04-20

    H9N2 avian influenza viruses are continuously monitored by the World Health Organization because they are endemic; they continually reassort with H5N1, H7N9 and H10N8 viruses; and they periodically cause human infections. We characterized H9N2 influenza viruses carrying internal genes from highly pathogenic H7N3 viruses, which were isolated from chickens or quail from live-bird markets in Bangladesh between 2010 and 2013. All of the H9N2 viruses used in this study carried mammalian host-specific mutations. We studied their replication kinetics in normal human bronchoepithelial cells and swine tracheal and lung explants, which exhibit many features of the mammalian airway epithelium and serve as a mammalian host model. All H9N2 viruses replicated to moderate-to-high titers in the normal human bronchoepithelial cells and swine lung explants, but replication was limited in the swine tracheal explants. In Balb/c mice, the H9N2 viruses were nonlethal, replicated to moderately high titers and the infection was confined to the lungs. In the ferret model of human influenza infection and transmission, H9N2 viruses possessing the Q226L substitution in hemagglutinin replicated well without clinical signs and spread via direct contact but not by aerosol. None of the H9N2 viruses tested were resistant to the neuraminidase inhibitors. Our study shows that the Bangladeshi H9N2 viruses have the potential to infect humans and highlights the importance of monitoring and characterizing this influenza subtype to better understand the potential risk these viruses pose to humans.

  20. Mitochondrial dysfunction in H9c2 cells during ischemia and amelioration with Tribulus terrestris L.

    Science.gov (United States)

    Reshma, P L; Sainu, Neethu S; Mathew, Anil K; Raghu, K G

    2016-05-01

    The present study investigates the protective effect of partially characterized Tribulus terrestris L. fruit methanol extract against mitochondrial dysfunction in cell based (H9c2) myocardial ischemia model. To induce ischemia, the cells were maintained in an ischemic buffer (composition in mM -137 NaCl, 12 KCl, 0.5 MgCl2, 0.9 CaCl2, 20 HEPES, 20 2-deoxy-d-glucose, pH-6.2) at 37°C with 0.1% O2, 5% CO2, and 95% N2 in a hypoxia incubator for 1h. Cells were pretreated with various concentrations of T. terrestris L. fruit methanol extract (10 and 25μg/ml) and Cyclosporin A (1μM) for 24h prior to the induction of ischemia. Different parameters like lactate dehydrogenase release, total antioxidant capacity, glutathione content and antioxidant enzymes were investigated. Studies were conducted on mitochondria by analyzing alterations in mitochondrial membrane potential, integrity, and dynamics (fission and fusion proteins - Mfn1, Mfn2, OPA1, Drp1 and Fis1). Various biochemical processes in mitochondria like activity of electron transport chain (ETC) complexes, oxygen consumption and ATP production was measured. Ischemia for 1h caused a significant (p≤0.05) increase in LDH leakage, decrease in antioxidant activity and caused mitochondrial dysfunction. T. terrestris L. fruit methanol extract pretreatment was found effective in safeguarding mitochondria via its antioxidant potential, mediated through various bioactives. HPLC of T. terrestris L. fruit methanol extract revealed the presence of ferulic acid, phloridzin and diosgenin. T. terrestris L. fruit ameliorate ischemic insult in H9c2 cells by safeguarding mitochondrial function. This validates the use of T. terrestris L. against heart disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Early-transition-metal ketenimine complexes. Synthesis, reactivity, and structural characterization of complexes with. eta. sup 2 (C,N)-ketenimine groups bound to the halogenobis((trimethylsilyl)cyclopentadienyl)niobium unit. X-ray structure of Nb(. eta. sup 5 -C sub 5 H sub 4 SiMe sub 3 ) sub 2 Cl(. eta. sup 2 (C,N)-PhN double bond C double bond CPh sub 2 )

    Energy Technology Data Exchange (ETDEWEB)

    Antinolo, A.; Fajardo, M.; Lopez Mardomingo, C.; Otero, A. (Univ. de Alcala de Henares (Spain)); Mourad, Y.; Mugnier, Y. (Centre National de la Recherche Scientifique, Dijon (France)); Sanz-Aparicio, J.; Fonseca, I.; Florencio, F. (CSIC, Madrid (Spain))

    1990-11-01

    The reaction of Nb({eta}{sup 5}-C{sub 5}H{sub 4}SiMe{sub 3}){sub 2}X (X = Cl, Br) with 1 equiv of various ketenimines, R{sup 1}N{double bond}C{double bond}CR{sup 2}R{sup 3}, leads to the niobium derivatives Nb({eta}{sup 5}-C{sub 5}H{sub 4}SiMe{sub 3}){sub 2}X({eta}{sup 2}(C,N)-R{sup 1}N{double bond}C{double bond}CR{sup 2}R{sup 3}) (1, X = Cl, R{sup 1} = R{sup 2} = R{sup 3} = C{sub 6}H{sub 5}; 2, X = Cl, R{sup 1} = p-CH{sub 3}-C{sub 6}H{sub 4}, R{sup 2} = R{sup 3} = C{sub 6}H{sub 5}; 3, X = Br, R{sup 1} = R{sup 2} = R{sup 3} = C{sub 6}H{sub 5}; 4, X = Br, R{sup 1} = p-CH{sub 3}-C{sub 6}H{sub 4}, R{sup 2} = R{sup 3} = C{sub 6}H{sub 5}; 5, X = Cl, R{sup 1} = R{sup 2} = C{sub 6}H{sub 5}, R{sup 3} = CH{sub 3}; 6, X = Br, R{sup 1} = R{sup 2} = C{sub 6}H{sub 5}, R{sup 3} = CH{sub 3}) with the expected ketenimine C{double bond}N bonding mode. Reduction of 1 with 1 equiv of Na/Hg gives the complex Nb({eta}{sup 5}-C{sub 5}H{sub 4}SiMe{sub 3}){sub 2}({eta}{sup 2}(C,N)-PhN{double bond}C{double bond}CPh{sub 2}) (9) as a paramagnetic compound. The reduction of 9 with 1 equiv of Na/Hg and the subsequent addition of a proton source (ethanol) leads to the iminoacyl compound Nb({eta}{sup 5}-C{sub 5}H{sub 4}SiMe{sub 3}){sub 2}(CRNR{sup 1}) (10, R = CH(Ph{sub 2}), R{sup 1} = Ph). The one- and two-electron reductions of 1 have been studied by cyclic voltammetry experiments. The structure of 1 was determined by single-crystal X-ray diffractometry: a = 24.4904 (14) {angstrom}, b = 11.0435 (04) {angstrom}, c = 26.6130 (15) {angstrom}, {beta} = 109.890 (5){degree}, monoclinic, space group C2/c, Z = 8, V = 6,768.4 (5) {angstrom}{sup 3}, {rho}{sub calcd} = 1.3194 g/mL, R = 0.048, R{sub w} = 0.060 based on 4,806 observed reflections. The structure contains a niobium atom bonded to two cyclopentadienyl rings in a {eta}{sup 5} fashion; the coordination of the metal is completed by a Cl atom and a {eta}{sup 2}(C,N)-bonded ketenimine ligand.

  2. [μ-1,1′-(Butane-1,4-diyldi-1H-benzimidazole-κ2N3:N3′]bis{[N,N′-bis(carboxymethylethylenediamine-N,N′-diacetato-κ5O,O′,O′′,N,N′]mercury(II} methanol disolvate

    Directory of Open Access Journals (Sweden)

    Gang-Sen Li

    2009-08-01

    Full Text Available The binuclear title complex, [Hg2(C10H14N2O82(C18H18N4]·2CH3OH, lies on an inversion center with the unique HgII ion coordinated in a disorted octahedral environment with one Hg—N bond significantly shorter than the other two. In the crystal structure, intermolecular O—H...O hydrogen bonds link complex and solvent molecules into a three-dimensional network.

  3. The synthesis and characterization of 1,2-dihydroxyimino-3,6-di-aza-8,9-O-iso-butylidene nonane and its complexes with Ni(II), Cu(II), Zn(II) and Cd(II)

    International Nuclear Information System (INIS)

    Canpolat, E.; Kaya, M.; Gorgulu, A.O.

    2002-01-01

    1,2-dihydroxyimino-3,6-di-aza-8,9-O-iso-butylidene nonane (H 2 L) was synthesized starting from 1,2-O-iso-butylidene-4-aza-6-amino hexane (RNH 2 ) and antichloroglyoxime. Ni(II) and Cu(II) complexes of H 2 L have a metal:ligand ratio 1:2 and the ligand coordinates through two N atoms, as do most of the vic-dioximes. However, Zn(II) and Cd(II) complexes of H 2 L have a metal: ligand ratio 1:1 and one chloride ion and one water molecule are also coordinated to the metal ion. Structures of the ligand and its transition-metal complexes are proposed, according to elemental analysis, IR, 13 C and 1 H NMR spectra, magnetic susceptibility measurements and thermogravimetric analyses (TGA). (author)

  4. cis-Tetrachloridobis(1H-imidazole-κN3platinum(IV

    Directory of Open Access Journals (Sweden)

    Vadim Yu. Kukushkin

    2012-05-01

    Full Text Available In the title complex, cis-[PtCl4(C3H4N22], the PtIV ion lies on a twofold rotation axis and is coordinated in a slightly distorted octahedral geometry. The dihedral angle between the imidazole rings is 69.9 (2°. In the crystal, molecules are linked by N—H...Cl hydrogen bonds, forming a three-dimensional network.

  5. Tricarbonyl[tris(1-methyl-1H-imidazol-2-yl-κN3methanol]manganese(I trifluoromethanesulfonate

    Directory of Open Access Journals (Sweden)

    Guido J. Reiss

    2012-09-01

    Full Text Available In the title compound, [Mn(C13H16N6O(CO3](CF3O3S, the MnI atom has a slightly distorted octahedral geometry. The three CO ligands have C—Mn—C angles in the range 89.44 (10–92.31 (9°, while the three N atoms of the tripodal ligand form significantly smaller N—Mn—N angles of 82.76 (2–85.51 (6°. The three N atoms of the tripodal ligand and the three carbonyl ligands coordinate facially. In the crystal, the trifluoromethanesulfonate counter anion is connected by a medium-strength O—H...O hydrogen bond to the hydroxyl group of the manganese complex.

  6. Relationship between C2H2 reduction, H2 evolution and 15N2 fixation in root nodules of pea (Pisum sativum)

    DEFF Research Database (Denmark)

    Skøt, Leif

    1983-01-01

    for N2 reduction, is often stated as the relative efficiency (1-H2/C2H2). This factor varied significantly (P 2 and N2, expressed as the H2/N2 ratio, was independent of plant age, however. This discrepancy and the observation......The quantitative relationship between C2H2 reduction, H2 evolution and 15N2 fixation was investigated in excised root nodules from pea plants (Pisum sativum L. cv. Bodil) grown under controlled conditions. The C2H2/N2 conversion factor varied from 3.31 to 5.12 between the 32nd and the 67th day...... after planting. After correction for H2 evolution in air, the factor (C2H2-H2)/N2 decreased to values near the theoretical value 3, or in one case to a value significantly (P 2 production but used...

  7. Crystal structure of an unknown solvate of bis(tetra-n-butylammonium [N,N′-(4-trifluoromethyl-1,2-phenylenebis(oxamato-κ4O,N,N′,O′]nickelate(II

    Directory of Open Access Journals (Sweden)

    François Eya'ane Meva

    2015-06-01

    Full Text Available In the title compound, [N(C4H94]2[Ni(C11H3F3N2O6] or [N(n-Bu4]2[Ni(topbo] [n-Bu = n-butyl and topbo = 4-trifluoromethyl-1,2-phenylenebis(oxamate], the Ni2+ cation is coordinated by two deprotonated amido N atoms and two carboxylate O atoms, setting up a slightly distorted square-planar coordination environment. The [Ni(topbo]2− anion lies on a twofold rotation axis. Due to an incompatibility with the point-group symmetry of the complete molecule, orientational disorder of the CF3 group is observed. The tetrahedral ammonium cations and the anion are linked by weak intermolecular C—H...O and C—H...F hydrogen-bonding interactions into a three-dimensional network. A region of electron density was treated with the SQUEEZE procedure in PLATON [Spek (2015. Acta Cryst. C71, 9–18] following unsuccessful attempts to model it as plausible solvent molecule(s. The given chemical formula and other crystal data do not take into account the unknown solvent molecule.

  8. Development of Li+ Selective Microelectrode Using PPy [3,3'-Co(1,2-C2B9H112] as a Solid Contact

    Directory of Open Access Journals (Sweden)

    Safae MERZOUK

    2014-05-01

    Full Text Available Planar all solid-contact ion-selective microelectrodes (ASC-µISEs with a conducting polymer (polypyrrole doped with cobaltabis(dicarbollide anion [3,3'-Co(1,2-C2B9H112] as a solid contact layer between the polymeric membrane sensitive to lithium (Li and the gold (Au substrate were prepared and investigated. The N,N-dicyclohexyl-N',N'-diisobutylyl-cis-cyclohexane-1,2- dicarboxamide (ETH 1810 was used as ionophore for Li recognition. The developed microelectrodes show a linear response for Li+ concentration between 6´10-5 M and 1´10-1 M with slope of 53±1 mV per decade and exhibits remarkably enhanced selectivity for Li over other cations. The calibration plots using artificial serum containing three different levels of sodium chloride (NaCl (135, 145 and 155 mM as a background electrolyte were shown a linear response with a slope of 50 mV per decade in the clinical range of interest (0.7-1.5´10-3 M Li+. The developed microelectrodes will be used to determine Li+ concentrations in serum samples of manic-depressive patients under Li treatment.

  9. 4-Aminobenzoic acid–1,2-bis(4-pyridylethane (2/1

    Directory of Open Access Journals (Sweden)

    Fwu Ming Shen

    2010-07-01

    Full Text Available In the title compound, C12H12N2·2C7H7NO2, the 4-aminobenzoic acid molecules are linked by O—H...N hydrogen bonds to 1,2-bis(4-pyridylethane, forming linear hydrogen bonded chains parallel to [2overline{1}1]. The structure exhibits a hydrogen-bonding network involving COOH...N(pyridyl and amine and carboxylic N—H... O interactions. In addition, π–π stacking interactions [centroid–centroid distance = 3.8622 (14 Å] are also present.

  10. Complete genome sequence of a novel H9N2 subtype influenza virus FJG9 strain in China reveals a natural reassortant event.

    Science.gov (United States)

    Xie, Qingmei; Yan, Zhuanqiang; Ji, Jun; Zhang, Huanmin; Liu, Jun; Sun, Yue; Li, Guangwei; Chen, Feng; Xue, Chunyi; Ma, Jingyun; Bee, Yingzuo

    2012-09-01

    A/chicken/FJ/G9/09 (FJ/G9) is an H9N2 subtype avian influenza virus (H9N2 AIV) strain causing high morbidity that was isolated from broilers in Fujian Province of China in 2009. FJ/G9 has been used as the vaccine strain against H9N2 AIV infection in Fujian Province of China. Here, we report the complete genome sequence of FJ/G9 with natural six-way reassortment, which is the most complex genotype strain in China and even in the world so far. The present findings will aid in understanding the complexity and diversity of H9N2 subtype avian influenza virus.

  11. Hydrazinium lanthanide oxalates: synthesis, structure and thermal reactivity of N_2H_5[Ln_2(C_2O_4)_4(N_2H_5)].4H_2O, Ln = Ce, Nd

    International Nuclear Information System (INIS)

    De Almeida, Lucie; Grandjean, Stephane; Abraham, Francis; Rivenet, Murielle; Patisson, Fabrice

    2014-01-01

    New hydrazinium lanthanide oxalates N_2H_5[Ln_2(C_2O_4)_4(N_2H_5)].4H_2O, Ln = Ce (Ce-H_yO_x) and Nd (Nd- H_yO_x), were synthesized by hydrothermal reaction at 150 C between lanthanide nitrate, oxalic acid and hydrazine solutions. The structure of the Nd compound was determined from single-crystal X-ray diffraction data, space group P2_1/c with a = 16.315(4), b = 12.127(3), c = 11.430(2) Angstroms, β = 116.638(4) degrees, V = 2021.4(7) Angstroems"3, Z = 4, and R1 = 0.0313 for 4231 independent reflections. Two distinct neodymium polyhedra are formed, NdO_9 and NdO_8N, an oxygen of one monodentate oxalate in the former being replaced by a nitrogen atom of a coordinated hydrazinium ion in the latter. The infrared absorption band at 1005 cm"-"1 confirms the coordination of N_2H_5"+ to the metal. These polyhedra are connected through μ"2 and μ"3 oxalate ions to form an anionic three-dimensional neodymium-oxalate arrangement. A non-coordinated charge-compensating hydrazinium ion occupies, with water molecules, the resulting tunnels. The N-N stretching frequencies of the infrared spectra demonstrate the existence of the two types of hydrazine ions. Thermal reactivity of these hydrazinium oxalates and of the mixed isotypic Ce/Nd (CeNd-H_yO_x) oxalate were studied by using thermogravimetric and differential thermal analyses coupled with gas analyzers, and high temperature X-ray diffraction. Under air, fine particles of CeO_2 and Ce_0_._5Nd_0_._5O_1_._7_5 are formed at low temperature from Ce-H_yO_x and CeNd-H_yO_x, respectively, thanks to a decomposition/oxidation process. Under argon flow, dioxy-mono-cyanamides Ln_2O_2CN_2 are formed. (authors)

  12. Bromidotetra?kis?(1H-2-ethyl-5-methyl?imidazole-?N 3)copper(II) bromide

    OpenAIRE

    Godlewska, Sylwia; Baranowska, Katarzyna; Socha, Joanna; Do??ga, Anna

    2011-01-01

    The CuII ion in the title compound, [CuBr(C6H10N2)4]Br, is coordinated in a square-based-pyramidal geometry by the N atoms of four imidazole ligands and a bromide anion in the apical site. Both the CuII and Br− atoms lie on a crystallographic fourfold axis. In the crystal, the [CuBr(C6H10N2)4]+ complex cations are linked to the uncoordinated Br− anions (site symmetry overline{4}) by N—H...Br hydrogen bonds, generating a three-dimensional network. The ethyl group ...

  13. Crystal structure of {2,2′-[N,N′-bis(pyridin-2-ylmethylcyclohexane-trans-1,2-diyldi(nitrilo]diacetato}cobalt(III hexafluoridophosphate

    Directory of Open Access Journals (Sweden)

    Craig C. McLauchlan

    2015-04-01

    Full Text Available The title compound [Co(C22H26N4O4]PF6, commonly known as [Co(bpcd]PF6, where bpcd2− is derived from the historical ligand name N,N′-bis(2-pyridylmethyl-trans-1,2-diaminocyclohexane-N,N′-diacetate, crystallized by slow evaporation of a saturated acetonitrile solution in air. The cation of the hexafluoridophosphate salt has the CoIII atom in a distorted octahedral coordination geometry provided by an N4O2 donor atom set. The acetate groups, which are oriented trans with respect to each other, exhibit monodentate coordination whereas the pyridyl N atoms are coordinating in a cis configuration. The geometry of the cation is compared to the geometries of other diamino diacetate complexes with CoIII.

  14. Electronic and electrochemical properties of platinum(II) and platinum-mercury-carboxylato complexes containing 2-Me2NCH2C6H4, 2,6-(Me2NCH2)2C6H3- and 2-Me2NC6H4CH2 - ligands

    NARCIS (Netherlands)

    Koten, G. van; Ploeg, A.F.M.J. van der; Schmitz, J.E.J.; Linden, J.G.M. van der

    1982-01-01

    The organoplatinum(II) compounds [{2, 6-(Me{2}NCH{2}){2}C{6}H{3}}PtBr] and cis-[(C-N){2}Pt] (C-N = 2-Me{2}NCH{2}C{6}H{4}, 2-Me{2}NC{6}H{4}CH{2}) can be chemically irreversibly oxidized in the potential range 1.00 to 1.35 V vs. an Ag/AgCl electrode, whereas the organoplatinum@?mercury complexes

  15. Synthesis of binuclear rhodacarboranes from dianions 1,4- and 1,3-C6H4(CH2-9-C2H2B9H9-7,8-nido)22- and (Ph3P)3RhCl

    International Nuclear Information System (INIS)

    Zakharkin, L.I.; Zhigareva, G.G.

    1996-01-01

    Dianions 1,4 and 1,3-C 6 H 4 (CH 2 -9-C 2 H 2 B 9 H 9 -7,8-nido) 2 2- obtained from nido 7,8-dicarbollide-ion and 1,4-bis(bromomethyl) and 1,3-bis(bromomethyl)benzenes react with (Ph 3 P) 3 RhCl to give binuclear rhodacarboranes, 1,4- and 1,3-[3,3-(Ph 3 P) 2 -3-H-3,1,2-RhC 2 B 9 H 10 -4-CH 2 ] 2 C 6 H 6 with chemical reaction yield 85% and 87% respectively. 7 refs., 1 fig., 1 tab

  16. [μ-1,2-Bis(diphenylphosphinoethane-κ2P:P′]bis{[1,2-bis(diphenylphosphinoethane-κ2P,P′]cyanidocopper(I} methanol disolvate

    Directory of Open Access Journals (Sweden)

    Rong Wang

    2010-08-01

    Full Text Available The title centrosymmetric complex, [Cu2(CN2(C26H24P23]·2CH3OH, consists of two five-membered [Cu(dppeCN] rings [dppe is 1,2-bis(diphenylphosphinoethane] bridged by one μ2-dppe ligand, and two methanol solvent molecules. The angles around the central metal atom indicate that each CuI atom is located in the center of a distorted tetrahedron. The coordination sphere of each CuI atom is formed by three P atoms from two dppe ligands, and one C atom from the cyanide ligand. The crystal structure is stabilized by O—H...N hydrogen bonds, which are formed by the O—H donor group from methanol and the N-atom acceptor from a cyanide ligand.

  17. Bis(1,10-phenanthroline-κ2N,N′(sulfato-Ocopper(II ethane-1,2-diol monosolvate

    Directory of Open Access Journals (Sweden)

    Kai-Long Zhong

    2011-09-01

    Full Text Available In the title compound, [Cu(SO4(C12H8N22]·C2H6O2, the CuII ion is five-coordinated in a distorted square-pyramidal manner by four N atoms from two chelating 1,10-phenanthroline (phen ligands and one O atom from a monodentate sulfate anion. The four N atoms comprise a square and the one O atom the apex of a square pyramid. The two chelating N2C2 groups are oriented at 71.1 (2°. In the crystal, the components are connected by intermolecular O—H...O hydrogen bonding. The presence of pseudosymmetry in the structure suggests the higher symmetry space group C2/c, but attempts to refine the structure in this space group resulted in an unsatisfactory model.

  18. 4,4′-Bipyridine–3-(thiophen-3-ylacrylic acid (1/2

    Directory of Open Access Journals (Sweden)

    Malaichamy Sathiyendiran

    2011-10-01

    Full Text Available In the title 1/2 adduct, C10H8N2·2C7H6O2S, the dihedral angle between the pyridine rings is 18.41 (11°. In the thiopheneacrylic acid molecules, the dihedral angles between the respective thiophene and acrylic acid units are 5.52 (17° and 23.92 (9°. In the crystal, the components are linked via O—H...N hydrogen-bonding interactions, forming units of two 3-thiopheneacrylic acid molecules and one 4,4′-bipyridine molecule.

  19. Bis(8-hy-droxy-1-methyl-quinolin-1-ium) bis-(1,2-dicyano-ethene-1,2-dithiol-ato)nickelate(II) dihydrate.

    Science.gov (United States)

    Guan, Zhi-Heng; Jiang, Zhang; Wang, Fang-Ming

    2011-12-01

    In the title ion-pair complex, (C(10)H(10)NO)(2)[Ni(C(4)N(2)S(2))(2)]·2H(2)O, the anion has crystallographically imposed centre of symmetry. The Ni(II) atom exhibits a slightly distorted square-planar coordination geometry. In the crystal, the water mol-ecule links anions and cations into a three-dimensional network via O-H⋯N, O-H⋯S and O-H⋯O hydrogen bonds. The structure is further stabilized by weak S⋯π contacts [S⋯centroid = 3.8047 (9) Å] and π-π stacking inter-actions [centriod-centroid distance = 3.8653 (7) Å].

  20. 2-{4-Methyl-N-[(2,3,4,9-tetrahydro-1H-carbazol-3-ylmethyl]benzenesulfonamido}ethyl 4-methylbenzenesulfonate

    Directory of Open Access Journals (Sweden)

    Nagihan Çaylak Delibaş

    2013-12-01

    Full Text Available In the title compound, C29H32N2O5S2, the indole ring system is nearly planar, with a maximum deviation of 0.013 (2 Å, and the cyclohexenone ring has an envelope conformation with the methine C atom as the flap. The two methylbenzene rings are approximately perpendicular to each other, making a dihedral angle of 89.09 (8°. In the crystal, N—H...O hydrogen bonds link the molecules into a chain running along the a-axis direction, and weak C—H...O hydrogen bonds and C—H...π interactions are observed between the chains.

  1. Synthesis, crystal structure, thermal analysis and dielectric properties of [(C{sub 4}H{sub 9}){sub 4}N]{sub 3}Bi{sub 2}Cl{sub 9} compound

    Energy Technology Data Exchange (ETDEWEB)

    Trigui, W., E-mail: walatrigui@yahoo.fr; Oueslati, A.; Chaabane, I.; Hlel, F.

    2015-07-15

    A new organic–inorganic tri-tetrabutylammonium nonachlorobibismuthate(III) compound was prepared. It was found to crystallize in the monoclinic system (P2{sub 1}/n space group) with the following lattice parameters: a=11.32(2) Å, b=22.30(3) Å, c=28.53(2) Å and β=96.52(0)°. The [Bi{sub 2}Cl{sub 9}]{sup 3−} anions are surrounded by six [(C{sub 4}H{sub 9})N]{sup +} cations, forming an octahedral configuration. These octahedra are sharing corners in order to provide the tri-dimensional network cohesion. The differential scanning calorimetry reveals four order-disorder reversible phase transitions located at 214, 238, 434 and 477 K. The Raman and infrared spectra confirm the presence of both cationic [(C{sub 4}H{sub 9})N]{sup +} and anionic [Bi{sub 2}Cl{sub 9}]{sup 3−} parts. The dielectric parameters, real and imaginary dielectric permittivity (ε′ and ε″), and dielectric loss tangent (tg δ), were measured in the frequency range of 209 kHz–5 MHz at different temperatures. The variations of dielectric dispersion (ε') and dielectric absorption (ε″) with frequency show a distribution of relaxation times, which is probably related to the change in the dynamical state of the [(C{sub 4}H{sub 9}){sub 4}N]{sup +} cations and the [Bi{sub 2}Cl{sub 9}]{sup 3−} anions. - Graphical abstract: Projection of the atomic arrangement of the [(C{sub 4}H{sub 9}){sub 4}N]{sub 3}Bi{sub 2}Cl{sub 9} compound along the b axis. - Highlights: • The structure of the (TBA){sub 3}Bi{sub 2}Cl{sub 9} compound was solved and reported. • The cristal belongs to the monoclinic system with P2{sub 1}/n space group. • DSC discloses four order–disorder reversible phases transitions. • The temperature-dependent permittivity ε' and ε″ has been investigated.

  2. Propane-1,2-diammonium bis(pyridine-2,6-dicarboxylato-κ3O,N,O′nickelate(II tetrahydrate

    Directory of Open Access Journals (Sweden)

    Mohammad Ghadermazi

    2008-07-01

    Full Text Available The reaction of nickel(II nitrate hexahydrate, propane-1,2-diamine and pyridine-2,6-dicarboxylic acid in a 1:2:2 molar ratio in aqueous solution resulted in the formation of the title compound, (C3H12N2[Ni(C7H3NO42]·4H2O or (p-1,2-daH2[Ni(pydc2]·4H2O (where p-1,2-da is propane-1,2-diamine and pydcH2 is pyridine-2,6-dicarboxylic acid. The geometry of the resulting NiN2O4 coordination can be described as distorted octahedral. Considerable C=O...π stacking interactions are observed between the carboxylate C=O groups and the pyridine rings of the (pydc2− fragments, with O...π distances of 3.1563 (12 and 3.2523 (12 Å and C=O...π angles of 95.14 (8 and 94.64 (8°. In the crystal structure, a wide range of non-covalent interactions, consisting of hydrogen bonding [O—H...O, N—H...O and C—H...O, with D...A distances ranging from 2.712 (2 to 3.484 (2 Å], ion pairing, π–π [centroid-to-centroid distance = 3.4825 (8 Å] and C=O...π stacking, connect the various components to form a supramolecular structure.

  3. catena-Poly[[[bis[aquanickel(II]bis(μ-pyridine-2,6-dicarboxylato N-oxide]-μ-1,2-di-4-pyridylethane] tetrahydrate

    Directory of Open Access Journals (Sweden)

    Ming-Hua Yang

    2008-11-01

    Full Text Available In the title compound, {[Ni2(C7H3NO52(C12H12N2(H2O2]·4H2O}n, two NiII ions, two tridentate pyridine-2,6-dicarboxylate N-oxide ligands and two coordinated water molecules form centrosymmetric dinuclear units, which are further bridged by centrosymmetric 1,2-di-4-pyridylethane ligands into polymeric chains along [210]. Each NiII ion has a distorted square-pyramidal environment, with the basal plane formed by three O [Ni—O = 1.9290 (16–1.9588 (10 Å] and one N [Ni—N = 1.9828 (18 Å] atoms and the apical position occupied by the water molecule [Ni—O = 2.2643 (11 Å]. The water molecules are involved in the formation of O—H...O hydrogen bonds.

  4. 13b,13c-Di-2-pyridyl-5,7,12,13b,13c,14-hexahydro-6H,13H-5a,6a,12a,13a-tetraazabenz[5,6]azuleno[2,1,8-ija]benz[f]azulene-6,13-dione methanol hemisolvate

    Directory of Open Access Journals (Sweden)

    Lin Li

    2008-01-01

    Full Text Available The title compound, C30H24N6O2·0.5CH3OH, a glycoluril derivative with two pyridine substituents on the convex face of the glycoluril system, is an important intermediate for the synthesis of more complex glycoluril derivatives. The compound crystallizes with two independent molecules in the asymmetric unit, one of which exhibits disorder of one benzene ring over two orientations with refined site occupancy factors 0.65 (4:0.35 (4. The crystal structure contains several short C—H...O contacts, and the methanol molecule forms an O—H...O hydrogen bond to one of the glycoluril molecules.

  5. (μ-3-Acetyl-5-carboxyl­ato-4-methyl­pyrazolido-1:2κ4 N 2,O 3:N 1,O 5)-μ-chlorido-tetra­pyridine-1κ2 N,2κ2 N-chlorido-1κCl-dicopper(II) propan-2-ol solvate

    Science.gov (United States)

    Malinkin, Sergey; Penkova, Larisa; Pavlenko, Vadim A.; Haukka, Matti; Fritsky, Igor O.

    2009-01-01

    The title compound, [Cu2(C7H6N2O3)Cl2(C5H5N)4]·C3H8O, is a binuclear pyrazolate complex, in which the two CuII atoms have different coordination numbers and are connected by a bridging Cl atom. One CuII atom has a distorted square-pyramidal coordination environment formed by two pyridine N atoms, one bridging Cl atom and an N,O-chelating pyrazolate ligand. The other CuII atom adopts an octa­hedral geometry defined by two pyridine N atoms at the axial positions, two Cl atoms and the coordinated pyrazolate ligand in the equatorial plane. An O—H⋯O hydrogen bond connects the complex mol­ecules and propan-2-ol solvent mol­ecules into pairs. These pairs form columns along the a axis. PMID:21577764

  6. (1R,2R-N,N′-Bis(ferrocenylmethyl-1,2-diphenylethane-1,2-diamine

    Directory of Open Access Journals (Sweden)

    Yi Guo

    2010-08-01

    Full Text Available The title compound, [Fe2(C5H52(C26H26N2], was synthesized from a chiral diamine and ferrocenecarboxaldehyde and subsequent reduction with NaBH4. It has two chiral centers which both exhibit an R configuration. Two ferrocene groups are present in the molecular structure, with their cyclopentadienyl ring planes showing an almost perpendicular arrangement [dihedral angle 88.6 (1°].

  7. (2,3,7,8,12,13,17,18-Octaethylporphyrinato-κ4Ncobalt(II–2-nitrobenzaldehyde (1/2

    Directory of Open Access Journals (Sweden)

    Anissa Mansour

    2012-09-01

    Full Text Available The asymmetric unit of the title compound, [Co(C36H44N4]·2C7H5NO3, is composed of one half of the complex, arranged about an inversion center, and a complete 2-nitrobenzaldehyde (NBA molecule. The structure consists of columns that contain interleaved molecules of NBA and [CoII(OEP] (OEP is 2,3,7,8,12,13,17,18-octaethylporphyrin, which are stacked along the a axis. The CoII atom is involved in a π interaction with the ring of the NBA molecule with a centroid–metal distance of 3.508 (6 Å. There is an intramolecular C—H...O hydrogen bond in the NBA molecule.

  8. A neodymium(III)-ammonium complex involving oxalate and carbonate ligands: (NH4)2[Nd2(C2O4)3(CO3)(H2O)].H2O.

    Science.gov (United States)

    Trombe, Jean-Christian; Galy, Jean; Enjalbert, Renée

    2002-10-01

    The title compound, diammonium aqua-mu-carbonato-tri-mu-oxalato-dineodymium(III) hydrate, (NH(4))(2)[Nd(2)(CO(3))(C(2)O(4))(3)(H(2)O)].H(2)O, involving the two ligands oxalate and carbonate, has been prepared hydrothermally as single crystals. The Nd atoms form a tetranuclear unit across the inversion centre at (1/2, 1/2, 1/2). Starting from this tetranuclear unit, the oxalate ligands serve to develop a three-dimensional network. The carbonate group acts as a bis-chelating ligand to two Nd atoms, and is monodentate to a third Nd atom. The oxalate groups are all bis-chelating. The two independent Nd atoms are ninefold coordinated and the coordination polyhedron of these atoms is a distorted monocapped antiprism.

  9. Synthesis and reactivity of bis(tetramethylcyclopentadienyl) yttrium metallocenes including the reduction of Me(3)SiN(3) to [(Me(3)Si)(2)N](-) with [(C(5)Me(4)H)(2)Y(THF)](2)(mu-eta(2):eta(2)-N(2)).

    Science.gov (United States)

    Lorenz, Sara E; Schmiege, Benjamin M; Lee, David S; Ziller, Joseph W; Evans, William J

    2010-07-19

    The metallocene precursors needed to provide the tetramethylcyclopentadienyl yttrium complexes (C(5)Me(4)H)(3)Y, [(C(5)Me(4)H)(2)Y(THF)](2)(mu-eta(2):eta(2)-N(2)), and [(C(5)Me(4)H)(2)Y(mu-H)](2) for reactivity studies have been synthesized and fully characterized, and their reaction chemistry has led to an unexpected conversion of an azide to an amide. (C(5)Me(4)H)(2)Y(mu-Cl)(2)K(THF)(x), 1, synthesized from YCl(3) and KC(5)Me(4)H reacts with allylmagnesium chloride to make (C(5)Me(4)H)(2)Y(eta(3)-C(3)H(5)), 2, which is converted to [(C(5)Me(4)H)(2)Y][(mu-Ph)(2)BPh(2)], 3, with [Et(3)NH][BPh(4)]. Complex 3 reacts with KC(5)Me(4)H to form (C(5)Me(4)H)(3)Y, 4. The reduced dinitrogen complex, [(C(5)Me(4)H)(2)Y(THF)](2)(mu-eta(2):eta(2)-N(2)), 5, can be synthesized from either [(C(5)Me(4)H)(2)Y](2)[(mu-Ph)(2)BPh(2)], 3, or (C(5)Me(4)H)(3)Y, 4, with potassium graphite under a dinitrogen atmosphere. The (15)N labeled analogue, [(C(5)Me(4)H)(2)Y(THF)](2)(mu-eta(2):eta(2)-(15)N(2)), 5-(15)N, has also been prepared, and the (15)N NMR data have been compared to previously characterized reduced dinitrogen complexes. Complex 2 reacts with H(2) to form the corresponding hydride, [(C(5)Me(4)H)(2)Y(mu-H)](2), 6. Complex 5 displays similar reactivity to that of the analogous [(C(5)Me(4)H)(2)Ln(THF)](2)(mu-eta(2):eta(2)-N(2)) complexes (Ln = La, Lu), with substrates such as phenazine, anthracene, and CO(2). In addition, 5 reduces Me(3)SiN(3) to form (C(5)Me(4)H)(2)Y[N(SiMe(3))(2)], 7.

  10. NADPH oxidase/ROS-dependent PYK2 activation is involved in TNF-α-induced matrix metalloproteinase-9 expression in rat heart-derived H9c2 cells

    International Nuclear Information System (INIS)

    Yang, Chuen-Mao; Lee, I-Ta; Hsu, Ru-Chun; Chi, Pei-Ling; Hsiao, Li-Der

    2013-01-01

    TNF-α plays a mediator role in the pathogenesis of chronic heart failure contributing to cardiac remodeling and peripheral vascular disturbances. The implication of TNF-α in inflammatory responses has been shown to be mediated through up-regulation of matrix metalloproteinase-9 (MMP-9). However, the detailed mechanisms of TNF-α-induced MMP-9 expression in rat embryonic-heart derived H9c2 cells are largely not defined. We demonstrated that in H9c2 cells, TNF-α induced MMP-9 mRNA and protein expression associated with an increase in the secretion of pro-MMP-9. TNF-α-mediated responses were attenuated by pretreatment with the inhibitor of ROS (N-acetyl-L-cysteine, NAC), NADPH oxidase [apocynin (APO) or diphenyleneiodonium chloride (DPI)], MEK1/2 (U0126), p38 MAPK (SB202190), JNK1/2 (SP600125), NF-κB (Bay11-7082), or PYK2 (PF-431396) and transfection with siRNA of TNFR1, p47 phox , p42, p38, JNK1, p65, or PYK2. Moreover, TNF-α markedly induced NADPH oxidase-derived ROS generation in these cells. TNF-α-enhanced p42/p44 MAPK, p38 MAPK, JNK1/2, and NF-κB (p65) phosphorylation and in vivo binding of p65 to the MMP-9 promoter were inhibited by U0126, SB202190, SP600125, NAC, DPI, or APO. In addition, TNF-α-mediated PYK2 phosphorylation was inhibited by NAC, DPI, or APO. PYK2 inhibition could reduce TNF-α-stimulated MAPKs and NF-κB activation. Thus, in H9c2 cells, we are the first to show that TNF-α-induced MMP-9 expression is mediated through a TNFR1/NADPH oxidase/ROS/PYK2/MAPKs/NF-κB cascade. We demonstrated that NADPH oxidase-derived ROS generation is involved in TNF-α-induced PYK2 activation in these cells. Understanding the regulation of MMP-9 expression and NADPH oxidase activation by TNF-α on H9c2 cells may provide potential therapeutic targets of chronic heart failure. - Highlights: • TNF-α induces MMP-9 secretion and expression via a TNFR1-dependent pathway. • TNF-α induces ROS/PYK2-dependent MMP-9 expression in H9c2 cells. • TNF-α induces

  11. (3′R-3′-Benzyl-2′,3′-dihydro-1H-spiro[indole-3,1′-naphtho[2,3-c]pyrrole]-2,4′,9′-trione

    Directory of Open Access Journals (Sweden)

    Garima Sharma

    2012-09-01

    Full Text Available In the title compound, C26H18N2O3, the maximum deviations from planarity for the tetrahydro-1H-naphtho[2,3-c]pyrrole and indoline rings systems are 0.091 (1 and 0.012 (2 Å, respectively. These ring systems make a dihedral angle of 89.95 (6° with each other and they make dihedral angles of 73.42 (8 and 71.28 (9°, respectively, with the benzene ring. In the crystal, inversion dimers linked by pairs of N—H...O hydrogen bonds generate R22(8 loops and C—H...O interactions connect the dimers into corrugated sheets lying parallel to the bc plane.

  12. N,N′-Bis[(E-(2-chloro-8-methylquinolin-3-ylmethylidene]ethane-1,2-diamine

    Directory of Open Access Journals (Sweden)

    Edward R. T. Tiekink

    2010-12-01

    Full Text Available The complete molecule of the title compound, C24H20Cl2N4, is generated by a crystallographic inversion centre. A kink in the molecule is evident [C—N—C—C torsion angle = −147.0 (3°] owing to the twist in the central ethylene bridge. Further, there is a small twist between the imine [N=C = 1.267 (3 Å] and quinoline residues [N—C—C—C = −12.4 (4°]. In the crystal, a combination of π–π [pyridine–benzene centroid–centroid distance = 3.5670 (14 Å] and C—H...N contacts leads to supramolecular chains propagating in [010].

  13. (Carbonato-κ(2)O,O')bis-(5,5'-dimethyl-2,2'-bipyridyl-κ(2)N,N')cobalt(III) bromide trihydrate.

    Science.gov (United States)

    Arun Kumar, Kannan; Meera, Parthsarathi; Amutha Selvi, Madhavan; Dayalan, Arunachalam

    2012-04-01

    In the title complex, [Co(CO(3))(C(12)H(12)N(2))(2)]Br·3H(2)O, the Co(III) cation has a distorted octa-hedral coordination environment. It is chelated by four N atoms of two different 5,5'-dimethyl-2,2'-bipyridyl (dmbpy) ligands in axial and equatorial positions, and by two O atoms of a carbonate anion completing the equatorial positions. Although the water mol-ecules are disordered and their H atoms were not located, there are typical O⋯O distances between 2.8 and 3.0 Å, indicating O-H⋯O hydrogen bonding. The crystal packing is consolidated by C-H⋯O and C-H⋯Br hydrogen bonds, as well as π-π stacking inter-actions between adjacent pyridine rings of the dmbpy ligands, with centroid-centroid distances of 3.694 (3) and 3.7053 (3) Å.

  14. Diaquabis[2-(2-hydroxyethylpyridine-κ2N,O]cobalt(II dichloride

    Directory of Open Access Journals (Sweden)

    Hocine Merazig

    2013-08-01

    Full Text Available In the title salt, [Co(C7H9NO2(H2O2]Cl2, the CoII cation, located on an inversion center, is N,O-chelated by two hydroxyethylpyridine ligands and coordinated by two water molecules in a distorted O4N2 octahedral geometry. In the crystal, the Cl− anions link with the complex cations via O—H...Cl hydrogen bonds, forming a three-dimensional supramolecular architecture. π–π stacking is observed between the pyridine rings of adjacent molecules [centroid–centroid distance = 3.5810 (11 Å].

  15. Structure and spectroscopic properties of N,S-coordinating 2-methylsulfanyl-N-[(1H-pyrrol-2-ylmethylidene]aniline methanol monosolvate

    Directory of Open Access Journals (Sweden)

    D. Douglas Richards

    2015-10-01

    Full Text Available The reaction of pyrrole-2-carboxaldehyde and 2-(methylsulfanylaniline in refluxing methanol gave an olive-green residue in which yellow crystals of the title compound, C12H12N2S·CH3OH, were grown from slow evaporation of methanol at 263 K. In the crystal, hydrogen-bonding interactions link the aniline molecule and a nearby methanol solvent molecule. These units are linked by a pair of weak C—H...Omethanol interactions, forming inversion dimers consisting of two main molecules and two solvent molecules.

  16. Influenza A(H9N2) Virus, Myanmar, 2014-2015.

    Science.gov (United States)

    Lin, Thant Nyi; Nonthabenjawan, Nutthawan; Chaiyawong, Supassama; Bunpapong, Napawan; Boonyapisitsopa, Supanat; Janetanakit, Taveesak; Mon, Pont Pont; Mon, Hla Hla; Oo, Kyaw Naing; Oo, Sandi Myint; Mar Win, Mar; Amonsin, Alongkorn

    2017-06-01

    Routine surveillance of influenza A virus was conducted in Myanmar during 2014-2015. Influenza A(H9N2) virus was isolated in Shan State, upper Myanmar. Whole-genome sequencing showed that H9N2 virus from Myanmar was closely related to H9N2 virus of clade 4.2.5 from China.

  17. (2,4-Dioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylato-κ2O4,O5(4-oxido-2-oxo-1,2-dihydropyrimidine-5-carboxylato-κ2O4,O5bis(1,10-phenanthroline-κ2N,N′yttrium(III dihydrate

    Directory of Open Access Journals (Sweden)

    Zilu Chen

    2008-09-01

    Full Text Available In the title compound, [Y(C5H2N2O4(C5H3N2O4(C12H8N22]·2H2O, the YIII ion lies on a twofold rotation axis and exhibits a distorted square-antiprismatic coordination geometry. It is chelated by two 1,10-phenanthroline ligands, a 2,4-dioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate monoanion and a 4-oxido-2-oxo-1,2-dihydropyrimidine-5-carboxylate dianion. The H atom involved in an N—H...N hydrogen bond between the 1,2-dihydropyrimidine units has half occupancy and is disordered around a twofold rotation axis.

  18. Stability and aromaticity of nH2@B12N12 (n=1–12 clusters

    Directory of Open Access Journals (Sweden)

    Pratim K. Chattaraj

    2011-04-01

    Full Text Available Standard ab initio and density functional calculations are carried out to determine the structure, stability, and reactivity of B12N12 clusters with hydrogen doping. To lend additional support, conceptual DFT-based reactivity descriptors and the associated electronic structure principles are also used. Related cage aromaticity of this B12N12 and nH2@B12N12 are analyzed through the nucleus independent chemical shift values.

  19. {4,5-Dimethoxy-2-[(2,3-η-2-prop-2-en-1-yl]phenyl-κC1}(8-hydroxyquinolinato-κN,Oplatinum(II

    Directory of Open Access Journals (Sweden)

    Thi Yen Hang Bui

    2016-01-01

    Full Text Available The crystal structure of the organoplatinum(II title complex, [Pt(C9H6NO(C11H13O2] or [Pt(methyleugenol(8-hydroxyquinolinato], has been determined in order to verify the coordination environment of the PtII cation, which was found to be square-planar with the N and O atoms of the quinolinate ligand cis and trans, respectively, with respect to the ethylenic double bond. The least-squares planes through the two aromatic ring systems make an angle of 39.87 (10°. In the crystal, chains are formed parallel to [100] sustained by C—H...O hydrogen bonds. Parallel chains further interact via C—H...O and C—H...π contacts. The complex shows interesting activity on four human cancer cell lines with IC50 values between 1.92 and 4.86 µM.

  20. N,N′-Bis(3-chloro-2-fluorobenzylideneethane-1,2-diamine

    Directory of Open Access Journals (Sweden)

    Reza Kia

    2008-10-01

    Full Text Available The molecule of the title centrosymmetric Schiff base compound, C16H12Cl2F2N2, adopts an E configuration with respect to the azomethine C=N bond. The imino groups are coplanar with the aromatic rings. Within the molecule, the planar units are parallel, but extend in opposite directions from the dimethylene bridge. An interesting feature of the crystal structure is the short intermolecular Cl...F [3.1747 (5 Å] interactions, which are shorter than the sum of the van der Waals radii of these atoms. These interactions link neighbouring molecules along the b axis. The crystal structure is further stabilized by π–π interactions, with a centroid–centroid distance of 3.5244 (4 Å.

  1. Crystal structures of dibromido{N-[(pyridin-2-yl-κNmethylidene]picolinohydrazide-κ2N′,O}cadmium methanol monosolvate and diiodido{N-[(pyridin-2-yl-κNmethylidene]picolinohydrazide-κ2N′,O}cadmium

    Directory of Open Access Journals (Sweden)

    Ali Akbar Khandar

    2017-05-01

    Full Text Available The title compounds, [CdBr2(C12H10N4O]·CH3OH, (I, and [CdI2(C12H10N4O], (II, are cadmium bromide and cadmium iodide complexes of the ligand (E-N′-(pyridin-2-ylmethylenepicolinohydrazide. Complex (I crystallizes as the methanol monosolvate. In both compounds, the Cd2+ cation is ligated by one O atom and two N atoms of the tridentate ligand, and by two bromide anions forming a Br2N2O pentacoordination sphere for (I, and by two iodide anions forming an I2N2O pentacoordination sphere for (II, both with a distorted square-pyramidal geometry. In the crystal of complex (I, molecules are linked by pairs of N—H...O and O—H...Br hydrogen bonds, involving the solvent molecule, forming dimeric units, which are linked by C—H...Br hydrogen bonds forming layers parallel to (101. In the crystal of complex (II, molecules are linked by N—H...I hydrogen bonds, forming chains propagating along [010]. In complex (II, measured at room temperature, the two iodide anions are each disordered over two sites; the refined occupancy ratio is 0.75 (2:0.25 (2.

  2. Photochemically activated antiviral halogenated 1,8-naphthalimides: synthesis of N,N'-bis-{2-[(5-bromo-2-[1-14C]hexyl-1H-benz[de]isoquinolin-1,3(2H)-dion-6-yl)amino]ethyl}hexanediamide

    International Nuclear Information System (INIS)

    Hayes, B.A.; Gupta, Surendra; Shaochieh Chang; Utecht, R.E.; Lewis, D.E.

    1996-01-01

    The synthesis of N,N'-bis-{2-[(5-bromo-2-[1- 14 C]hexyl-1H-benz[de]isoquinolin-1, 3(2H)-dion-6-yl)amino]ethyl}hexanediamide from 1-[1- 14 C]-hexylamine and 4-chloro-1,8-naphthalic anhydride is described. The anhydride is first converted to the 4-chloro-n-[1- 14 C]hexyl-1,8-naphthalimide by condensation with 1-[1- 14 C]-hexylamine, and the chlorine is then displaced with ethylenediamine to give the 4-(2-aminoethylamino-N-[1- 14 C]hexyl-1,8-naphthalimide. Coupling of this monomeric naphthalimide with adipoyl chloride affords the dimeric naphthalimide which is brominated regiospecifically with elemental bromine in carbon tetrachloride to afford the title compound. (author)

  3. Measurements of Ay(θ) for 12C(n,n)12C from En=2.2 to 8.5 MeV

    International Nuclear Information System (INIS)

    Roper, C.D.; Tornow, W.; Braun, R.T.; Chen, Q.; Crowell, A.; Trotter, D. Gonzalez; Howell, C.R.; Salinas, F.; Setze, R.; Walter, R.L.; Chen Zemin; Tang Hongqing; Zhou Zuying

    2005-01-01

    The analyzing power A y (θ) for neutron elastic scattering from 12 C has been measured for 33 neutron energies between E n =2.2 and 8.5 MeV in the angular range from 25 deg. to 145 deg. in the laboratory system. The primary motivation for these measurements is the need for an accurate knowledge of A y (θ) for 12 C(n,n) 12 C elastic scattering to enable corrections to high-precision neutron-proton and neutron-deuteron A y (θ) data in the neutron-energy range below E n =30 MeV. In their own right, 12 C(n,n) 12 C A y (θ) data are of crucial importance for improving both the parametrization of n- 12 C scattering and our knowledge of the level scheme of 13 C. The present A y (θ) data are compared with published data and previous phase-shift-analysis results

  4. Hydrazinium lanthanide oxalates: synthesis, structure and thermal reactivity of N2H5[Ln2(C2O4)4(N2H5)]·4H2O, Ln = Ce, Nd.

    Science.gov (United States)

    De Almeida, Lucie; Grandjean, Stéphane; Rivenet, Murielle; Patisson, Fabrice; Abraham, Francis

    2014-03-28

    New hydrazinium lanthanide oxalates N2H5[Ln2(C2O4)4(N2H5)]·4H2O, Ln = Ce (Ce-HyOx) and Nd (Nd-HyOx), were synthesized by hydrothermal reaction at 150 °C between lanthanide nitrate, oxalic acid and hydrazine solutions. The structure of the Nd compound was determined from single-crystal X-ray diffraction data, space group P2₁/c with a = 16.315(4), b = 12.127(3), c = 11.430(2) Å, β = 116.638(4)°, V = 2021.4(7) Å(3), Z = 4, and R1 = 0.0313 for 4231 independent reflections. Two distinct neodymium polyhedra are formed, NdO9 and NdO8N, an oxygen of one monodentate oxalate in the former being replaced by a nitrogen atom of a coordinated hydrazinium ion in the latter. The infrared absorption band at 1005 cm(-1) confirms the coordination of N2H5(+) to the metal. These polyhedra are connected through μ2 and μ3 oxalate ions to form an anionic three-dimensional neodymium-oxalate arrangement. A non-coordinated charge-compensating hydrazinium ion occupies, with water molecules, the resulting tunnels. The N-N stretching frequencies of the infrared spectra demonstrate the existence of the two types of hydrazine ions. Thermal reactivity of these hydrazinium oxalates and of the mixed isotypic Ce/Nd (CeNd-HyOx) oxalate were studied by using thermogravimetric and differential thermal analyses coupled with gas analyzers, and high temperature X-ray diffraction. Under air, fine particles of CeO2 and Ce(0.5)Nd(0.5)O(1.75) are formed at low temperature from Ce-HyOx and CeNd-HyOx, respectively, thanks to a decomposition/oxidation process. Under argon flow, dioxymonocyanamides Ln2O2CN2 are formed.

  5. Aquachloridobis[5-(2-pyridyl-1H-tetrazolato-κN1]iron(III

    Directory of Open Access Journals (Sweden)

    Bo Wang

    2009-08-01

    Full Text Available The title compound, [Fe(C6H4N52Cl(H2O], was synthesized by hydrothermal reaction of FeCl3 with 2-(1H-tetrazol-5-ylpyridine. The iron(III metal centre exhibits a distorted octahedral coordination geometry provided by four N atoms from two bidentate organic ligands, one water O atom and one chloride anion. The pyridine and tetrazole rings are nearly coplanar [dihedral angles = 4.32 (15 and 5.04 (14°]. In the crystal structure, intermolecular O—H...N hydrogen bonds link the complex molecules into a two-dimensional network parallel to (100.

  6. Interconversion of η3-H2SiRR' σ-complexes and 16-electron silylene complexes via reversible H-H or C-H elimination.

    Science.gov (United States)

    Lipke, Mark C; Neumeyer, Felix; Tilley, T Don

    2014-04-23

    Solid samples of η(3)-silane complexes [PhBP(Ph)3]RuH(η(3)-H2SiRR') (R,R' = Et2, 1a; PhMe, 1b; Ph2, 1c, MeMes, 1d) decompose when exposed to dynamic vacuum. Gas-phase H2/D2 exchange between isolated, solid samples of 1c-d3 and 1c indicate that a reversible elimination of H2 is the first step in the irreversible decomposition. An efficient solution-phase trap for hydrogen, the 16-electron ruthenium benzyl complex [PhBP(Ph)3]Ru[η(3)-CH2(3,5-Me2C6H3)] (3) reacts quantitatively with H2 in benzene via elimination of mesitylene to form the η(5)-cyclohexadienyl complex [PhBP(Ph)3]Ru(η(5)-C6H7) (4). This H2 trapping reaction was utilized to drive forward and quantify the elimination of H2 from 1b,d in solution, which resulted in the decomposition of 1b,d to form 4 and several organosilicon products that could not be identified. Reaction of {[PhBP(Ph)3]Ru(μ-Cl)}2 (2) with (THF)2Li(SiHMes2) forms a new η(3)-H2Si species [PhBP(Ph)3]Ru[CH2(2-(η(3)-H2SiMes)-3,5-Me2C6H2)] (5) which reacts with H2 to form the η(3)-H2SiMes2 complex [PhBP(Ph)3]RuH(η(3)-H2SiMes2) (1e). Complex 1e was identified by NMR spectroscopy prior to its decomposition by elimination of Mes2SiH2 to form 4. DFT calculations indicate that an isomer of 5, the 16-electron silylene complex [PhBP(Ph)3]Ru(μ-H)(═SiMes2), is only 2 kcal/mol higher in energy than 5. Treatment of 5 with XylNC (Xyl = 2,6-dimethylphenyl) resulted in trapping of [PhBP(Ph)3]Ru(μ-H)(═SiMes2) to form the 18-electron silylene complex [PhBP(Ph)3]Ru(CNXyl)(μ-H)(═SiMes2) (6). A closely related germylene complex [PhBP(Ph)3]Ru[CN(2,6-diphenyl-4-MeC6H2)](H)(═GeH(t)Bu) (8) was prepared from reaction of (t)BuGeH3 with the benzyl complex [PhBP(Ph)3]Ru[CN(2,6-diphenyl-4-MeC6H2)][η(1)-CH2(3,5-Me2C6H3)] (7). Single crystal XRD analysis indicated that unlike for 6, the hydride ligand in 8 is a terminal hydride that does not engage in 3c-2e Ru-H → Ge bonding. Complex 1b is an effective precatalyst for the catalytic Ge-H dehydrocoupling

  7. 9-Benzyl-6-benzylsulfanyl-9H-purin-2-amine

    Directory of Open Access Journals (Sweden)

    Maywan Hariono

    2014-03-01

    Full Text Available In the title compound, C19H17N5S, the dihedral angles between the purine ring system (r.m.s. deviation = 0.009 Å and the S-bound and methylene-bound phenyl rings are 74.67 (8 and 71.28 (7°, respectively. In the crystal, inversion dimers linked by pairs of N—H...N hydrogen bonds generate R22(8 loops. C—H...N interactions link the dimers into (100 sheets.

  8. Crystal structure of bis(azido-κNbis[2,5-bis(pyridin-2-yl-1,3,4-thiadiazole-κ2N2,N3]cobalt(II

    Directory of Open Access Journals (Sweden)

    Abdelhakim Laachir

    2015-05-01

    Full Text Available In the mononuclear title complex, [Co(N32(C12H8N4S2], the cobalt(II atom is located on an inversion centre and displays an axially weakly compressed octahedral coordination geometry. The equatorial positions are occupied by the N atoms of two 2,5-bis(pyridin-2-yl-1,3,4-thiadiazole ligands, whereas the axial positions are occupied by N atoms of the azide anions. The thiadiazole and pyridine rings linked to the metal are almost coplanar, with a maximum deviation from the mean plane of 0.0273 (16 Å. The cohesion of the crystal is ensured by weak C—H...N hydrogen bonds and by π–π interactions between pyridine rings [intercentroid distance = 3.6356 (11 Å], forming a layered arrangement parallel to (001. The structure of the title compound is isotypic with that of the analogous nickel(II complex [Laachir et al. (2013. Acta Cryst. E69, m351–m352].

  9. (E-N-[2-(9-Fluorenylidene-3a,5,7-trimethyl-3,3a-dihydro-2H-indol-3-ylidene]-2,4,6-trimethylaniline

    Directory of Open Access Journals (Sweden)

    Norihiro Tokitoh

    2008-02-01

    Full Text Available The title compound, C33H30N2, has an E configuration at the imine double bond. The angle between the least-squares planes of the imine C=N—C group and the benzene ring of the 2,4,6-trimethylphenyl substituent is 85.38 (11°. The crystal structure is sustained mainly by intermolecular π–π interactions (3.510 Å between the two fluorene rings and some C—H...π interactions.

  10. 3-Methyl-1-(prop-2-en-1-ylquinoxalin-2(1H-one

    Directory of Open Access Journals (Sweden)

    Youssef Ramli

    2010-07-01

    Full Text Available In the molecule of the title compound, C12H12N2O, the quinoxaline ring is planar with an r.m.s. deviation of 0.007 (15 Å. The dihedral angle between the quinoxaline and propenyl planes is 82.1 (2°. The crystal packing is stabilized by offset π–π stacking between the quinoxaline rings [centroid–centroid distance = 3.8832 (9 Å].

  11. (Bipyridine-κ2N,N′chlorido[N-(2-hydroxyethyl-N-isopropyldithiocarbamato-κ2S,S′]zinc(II

    Directory of Open Access Journals (Sweden)

    Fatin Allia Mohamad

    2012-07-01

    Full Text Available The ZnII atom in the title compound, [Zn(C6H12NOS2Cl(C10H8N2], is coordinated by a chelating N-2-hydroxyethyl-N-isopropyldithiocarbamate ligand, a 2,2′-bipyridine ligand and a Cl atom. The resulting ClN2S2 donor set defines a distorted square-pyramidal coordination geometry. Helical supramolecular chains sustained by O—H...S hydrogen bonds and propagating along the b axis feature in the crystal packing. A three-dimensional architecture is stabilized by C—H...O, C—H...S and C—H...Cl interactions.

  12. Theoretical study of [Li(H2O)n]+ and [K(H2O)n]+ (n = 1-4) complexes

    International Nuclear Information System (INIS)

    Wojcik, M.J.; Mains, G.J.; Devlin, J.P.

    1995-01-01

    The geometries, successive binding energies, vibrational frequencies, and infrared intensities are calculated for the [Li(H 2 O) n ] + and [K(H 2 O) n ] + (n = 1-4) complexes. The basis sets used are 6-31G * and LANL1DZ (Los Alamos ECP+DZ) at the SCF and MP2 levels. There is an agreement for calculated structures and frequencies between the MP2/6-31G * and MP2/LANL1DZ basis sets, which indicates that the latter can be used for calculations of water complexes with heavier ions. Our results are in a reasonable agreement with available experimental data and facilitate experimental study of these complexes. 19 refs., 4 figs., 6 tabs

  13. Diaqua{6,6′-dimethoxy-2,2′-[ethane-1,2-diylbis(nitrilomethylidyne]diphenolato-κ2O,N,N′,O′}manganese(III perchlorate 18-crown-6 hemisolvate monohydrate

    Directory of Open Access Journals (Sweden)

    Ming-Ming Yu

    2009-02-01

    Full Text Available In the cation of the title compound, [Mn(C18H18N2O4(H2O2]ClO4·0.5C12H24O6·H2O, the MnIII ion is coordinated by two water O atoms, and two O atoms and two N atoms from the tetradentate 6,6′-dimethoxy-2,2′-[ethane-1,2-diylbis(nitrilomethylidyne]diphenolate ligand, completing a distorted octahedral geometry. One O atom of the 18-crown-6-ether is disordered over two positions with occupancies of 0.70 (2 and 0.30 (2.

  14. Tetraethylammonium tris(thiocyanato-κN[tris(1H-pyrazol-1-yl-κN2methane]nickelate(II

    Directory of Open Access Journals (Sweden)

    Ganna Lyubartseva

    2012-07-01

    Full Text Available The title salt, (C8H20N[Ni(NCS3(C10H10N6], consists of a tetraethylammonium cation and an anion comprising an octahedral NiII atom surrounded by three N atoms from a tripodal tris(pyrazol-1-ylmethane ligand, and three thiocyanate ligands, each bound at the N-atom end. The ligand Ni—N distances range from 2.097 (2 to 2.127 (2 Å for the tripodal ligand and from 2.045 (2 to 2.075 (2 Å for the thiocyanate ligands. The dihedral angles between the three pyrazole rings are 59.03 (12, 53.09 (10 and 67.90 (10°.

  15. Base free N-alkylation of anilines with ArCH2OH and transfer hydrogenation of aldehydes/ketones catalyzed by the complexes of η5-Cp*Ir(iii) with chalcogenated Schiff bases of anthracene-9-carbaldehyde.

    Science.gov (United States)

    Dubey, Pooja; Gupta, Sonu; Singh, Ajai K

    2018-03-12

    The condensation of anthracene-9-carbaldehyde with 2-(phenylthio/seleno)ethylamine results in Schiff bases [PhS(CH 2 ) 2 C[double bond, length as m-dash]N-9-C 14 H 9 ](L1) and [PhSe(CH 2 ) 2 C[double bond, length as m-dash]N-9-C 14 H 9 ] (L2). On their reaction with [(η 5 -Cp*)IrCl(μ-Cl)] 2 and CH 3 COONa at 50 °C followed by treatment with NH 4 PF 6 , iridacycles, [(η 5 -Cp*)Ir(L-H)][PF 6 ] (1: L = L1; 2: L = L2), result. The same reaction in the absence of CH 3 COONa gives complexes [(η 5 -Cp*)Ir(L)Cl][PF 6 ] (3-4) in which L = L1(3)/L2(4) ligates in a bidentate mode. The ligands and complexes were authenticated with HR-MS and NMR spectra [ 1 H, 13 C{ 1 H} and 77 Se{ 1 H} (in the case of L2 and its complexes only)]. Single crystal structures of L2 and half sandwich complexes 1-4 were established with X-ray crystallography. Three coordination sites of Ir in each complex are covered with η 5 -Cp* and on the remaining three, donor atoms present are: N, S/Se and C - /Cl - , resulting in a piano-stool structure. The moisture and air insensitive 1-4 act as efficient catalysts under mild conditions for base free N-alkylation of amines with benzyl alcohols and transfer hydrogenation (TH) of aldehydes/ketones. The optimum loading of 1-4 as a catalyst is 0.1-0.5 mol% for both the activations. The best reaction temperature is 80 °C for transfer hydrogenation and 100 °C for N-alkylation. The mercury poisoning test supports a homogeneous pathway for both the reactions catalyzed by 1-4. The two catalytic processes are most efficient with 3 followed by 4 > 1 > 2. The mechanism proposed on the basis of HR-MS of the reaction mixtures of the two catalytic processes taken after 1-2 h involves the formation of an alkoxy and hydrido species. The real catalytic species proposed in the case of iridacycles results due to the loss of the Cp* ring.

  16. Dipropyl 3,6-diphenyl-1,2-dihydro-1,2,4,5-tetrazine-1,2-dicarboxylate.

    Science.gov (United States)

    Rao, Guo-Wu; Hu, Wei-Xiao

    2003-05-01

    The title compound, C(22)H(24)N(4)O(4), was prepared from propyl chloroformate and 3,6-diphenyl-1,2-dihydro-s-tetrazine. This reaction yields the title compound rather than dipropyl 3,6-diphenyl-1,4-dihydro-s-tetrazine-1,4-dicarboxylate. The 2,3-diazabutadiene group in the central six-membered ring is not planar; the C=N double-bond length is 1.285 (2) A, and the average N-N single-bond length is 1.401 (3) A, indicating a lack of conjugation. The ring has a twist conformation, in which adjacent N atoms lie +/- 0.3268 (17) A from the plane of the ring. The molecule has twofold crystallographic symmetry.

  17. Crystal structures of 5-amino-N-phenyl-3H-1,2,4-dithiazol-3-iminium chloride and 5-amino-N-(4-chlorophenyl-3H-1,2,4-dithiazol-3-iminium chloride monohydrate

    Directory of Open Access Journals (Sweden)

    Chien Ing Yeo

    2015-10-01

    Full Text Available The crystal and molecular structures of the title salt, C8H8N3S2+·Cl−, (I, and salt hydrate, C8H7ClN3S2+·Cl−·H2O, (II, are described. The heterocyclic ring in (I is statistically planar and forms a dihedral angle of 9.05 (12° with the pendant phenyl ring. The comparable angle in (II is 15.60 (12°, indicating a greater twist in this cation. An evaluation of the bond lengths in the H2N—C—N—C—N sequence of each cation indicates significant delocalization of π-electron density over these atoms. The common feature of the crystal packing in (I and (II is the formation of charge-assisted amino-N—H...Cl− hydrogen bonds, leading to helical chains in (I and zigzag chains in (II. In (I, these are linked by chains mediated by charge-assisted iminium-N+—H...Cl− hydrogen bonds into a three-dimensional architecture. In (II, the chains are linked into a layer by charge-assisted water-O—H...Cl− and water-O—H...O(water hydrogen bonds with charge-assisted iminium-N+—H...O(water hydrogen bonds providing the connections between the layers to generate the three-dimensional packing. In (II, the chloride anion and water molecules are resolved into two proximate sites with the major component being present with a site occupancy factor of 0.9327 (18.

  18. Diaqua-2κ2O-bis(μ-1-oxido-2-naphthoato-1:2κ3O1,O2:O2′;2:3κ3O2:O1,O2′-bis(1-oxido-2-naphthoato-1κ1O2,O2;3κ2O1,O2-hexapyridine-1κ2N,2κ2N,3κ2N-trimanganese(II/III pyridine disolvate dihydrate

    Directory of Open Access Journals (Sweden)

    Daqi Wang

    2008-12-01

    Full Text Available The title complex, [Mn3(C11H6O34(C5H5N6(H2O22H22C5H5N, is a trinuclear mixed oxidation state complex of overline1 symmetry. The three Mn atoms are six-coordinated in the shape of distorted octahedra, each coordinated with an O4N2 set of donor atoms, where the ligands exhibit mono- and bidentate modes. However, the coordination of the MnII ion located on the inversion centre involves water molecules at two coordination sites, whereas that of the two symmetry-related MnIII ions involves an O4N2 set of donor atoms orginating from the organic ligands. Intramolecular C—H...π interactions between neighbouring pyridine ligands stabilize this arrangement. A two-dimensional network parallel to (001 is formed by intermolecular O—H...O hydrogen bonds.

  19. μ(3)-Carbonato-κO:O':O''-tris-{(η-ben-zene)[(R)-1-(1-amino-ethyl)naphthyl-κC,N]ruthenium(II)} hexa-fluorido-phosphate dichloro-methane solvate.

    Science.gov (United States)

    Sortais, Jean-Baptiste; Brelot, Lydia; Pfeffer, Michel; Barloy, Laurent

    2008-02-15

    The title compound, [Ru(3)(C(12)H(12)N)(3)(CO(3))(C(6)H(6))(3)]PF(6)·CH(2)Cl(2), was obtained unintentionally as the product of an attempted deprotonation of the monomeric parent ruthenium complex [Ru(C(12)H(12)N)(C(6)H(6))(C(2)H(3)N)]PF(6). The carbonate ligand bridges three half-sandwich cyclo-ruthenated fragments, each of them exhibiting a pseudo-tetra-hedral geometry. The configuration of the Ru atoms is S. The naphthyl groups of the enanti-opure cyclo-ruthenated benzylic amine ligands point in the same direction, adopting a propeller shape.

  20. Bis(μ-2-carboxymethyl-2-hydroxybutanedioatobis[diaquamanganese(II]–1,2-bis(pyridin-4-ylethene–water (1/1/2

    Directory of Open Access Journals (Sweden)

    In Hong Hwang

    2012-12-01

    Full Text Available The asymmetric unit of the title compound, [Mn2(C6H6O72(H2O4]·C12H10N2·2H2O, contains half of the centrosymmetric Mn complex dimer, half of a 1,2-bis(pyridin-4-ylethene molecule, which lies across an inversion center, and one water molecule. Two citrate ligands bridge two MnII ions, and each MnII atom is coordinated by four O atoms from the citrate ligands (one from hydroxy and three from carboxylate groups and two water O atoms, forming a distorted octahedral environment. In the crystal, O—H...O and O—H...N hydrogen bonds link the centrosymmetric dimers and lattice water molecules into a three-dimensional structure which is further stabilized by intermolecular π–π interactions [centroid–centroid distance = 3.959 (2 Å]. Weak C—H...O hydrogen bonding interactions are also observed.

  1. Syntheses of DNA adducts of two heterocyclic amines, 2-amino-3-methyl-9H-pyrido[2,3-b]indole (MeA alpha C) and 2-amino-9H-pyrido[2,3-b]indole (A alpha C) and identification of DNA adducts in organs from rats dosed with MeA alpha C

    DEFF Research Database (Denmark)

    Frederiksen, Hanne; Frandsen, Henrik Lauritz; Pfau, W.

    2004-01-01

    2-Amino-3-methyl-9H-pyrido[2,3-b]indole (MeAalphaC) and 2-amino-3-methyl-9H-pyrido[2,3-b]indole (AalphaC) are mutagenic and carcinogenic heterocyclic amines formed during ordinary cooking. MeAalphaC and AalphaC are activated to mutagenic metabolites by cytochrome P450-mediated N-oxidation...... by reaction of the parent amines with acetylated guanine N3-oxide. N-2-OH-MeAalphaC and N-2-OH-AalphaC reacted with calf thymus DNA after addition of acetic anhydride. P-32-postlabelling analysis of modified DNA showed one major adduct co-migrating with N-2-(3',5'-diphospho-2'-deoxyguanosin-8-yl...

  2. 1,5-Dimethyl-2-phenyl-1H-pyrazol-3(2H-one–4,4′-(propane-2,2-diylbis[1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H-one] (1/1

    Directory of Open Access Journals (Sweden)

    Krzysztof Lyczko

    2013-01-01

    Full Text Available The asymmetric unit of the title compound, C11H12N2C25H28N4O2, contains two different molecules. The smaller is known as antipyrine [systematic name: 1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H-one] and the larger is built up from two antypirine molecules which are connected through a C atom of the pyrazolone ring to a central propanyl part [systematic name: 4,4′-(propane-2,2-diylbis[1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H-one]. Intramolecular C—H...O hydrogen bonds occur in the latter molecule. In the crystal, C—H...O hydrogen bonds link the molecules into a two-dimensional network parallel to (001.

  3. Crystal structure of fac-[2-(4-methyl-5-phenylpyridin-2-ylphenyl-κ2C1,N]bis[2-(pyridin-2-ylphenyl-κ2C1,N]iridium(III

    Directory of Open Access Journals (Sweden)

    Chi-Heon Lee

    2016-12-01

    Full Text Available In the title compound, [Ir(C11H8N2(C18H14N], the IrIII ion adopts a distorted octahedral coordination environment defined by three C,N-chelating ligands, one stemming from a 2-(4-phenyl-5-methylpyridin-2-ylphenyl ligand and two from 2-(pyridin-2-ylphenyl ligands, arranged in a facial manner. The IrIII ion lies almost in the equatorial plane [deviation = 0.0069 (15 Å]. In the crystal, intermolecular π–π stacking interactions, as well as intermolecular C—H...π interactions, are present, leading to a three-dimensional network.

  4. Crystal structures of three co-crystals of 1,2-bis-(pyridin-4-yl)ethane with 4-alk-oxy-benzoic acids: 4-eth-oxy-benzoic acid-1,2-bis-(pyridin-4-yl)ethane (2/1), 4-n-propoxybenzoic acid-1,2-bis(pyridin-4-yl)ethane (2/1) and 4-n-but-oxy-benzoic acid-1,2-bis-(pyridin-4-yl)ethane (2/1).

    Science.gov (United States)

    Tabuchi, Yohei; Gotoh, Kazuma; Ishida, Hiroyuki

    2015-11-01

    The crystal structures of three hydrogen-bonded co-crystals of 4-alk-oxy-benzoic acid-1,2-bis-(pyridin-4-yl)ethane (2/1), namely, 2C9H10O3·C12H12N2, (I), 2C10H12O3·C12H12N2, (II), and 2C11H14O3·C12H12N2, (III), have been determined at 93, 290 and 93 K, respectively. In (I), the asymmetric unit consists of one 4-eth-oxy-benzoic acid mol-ecule and one half-mol-ecule of 1,2-bis-(pyridin-4-yl)ethane, which lies on an inversion centre. In (II) and (III), the asymmetric units each comprise two crystallographically independent 4-alk-oxy-benzoic acid mol-ecules and one 1,2-bis-(pyridin-4-yl)ethane mol-ecule. In each crystal, the two components are linked by O-H⋯N hydrogen bonds, forming a linear hydrogen-bonded 2:1unit of the acid and the base. Similar to the structure of 2:1 unit of (I), the units of (II) and (III) adopt nearly pseudo-inversion symmetry. The 2:1 units of (I), (II) and (III) are linked via C-H⋯O hydrogen bonds, forming tape structures.

  5. Crystal structures of 5-amino-N-phenyl-3H-1,2,4-di-thia-zol-3-iminium chloride and 5-amino-N-(4-chloro-phen-yl)-3H-1,2,4-di-thia-zol-3-iminium chloride monohydrate.

    Science.gov (United States)

    Yeo, Chien Ing; Tan, Yee Seng; Tiekink, Edward R T

    2015-10-01

    The crystal and mol-ecular structures of the title salt, C8H8N3S2 (+)·Cl(-), (I), and salt hydrate, C8H7ClN3S2 (+)·Cl(-)·H2O, (II), are described. The heterocyclic ring in (I) is statistically planar and forms a dihedral angle of 9.05 (12)° with the pendant phenyl ring. The comparable angle in (II) is 15.60 (12)°, indicating a greater twist in this cation. An evaluation of the bond lengths in the H2N-C-N-C-N sequence of each cation indicates significant delocalization of π-electron density over these atoms. The common feature of the crystal packing in (I) and (II) is the formation of charge-assisted amino-N-H⋯Cl(-) hydrogen bonds, leading to helical chains in (I) and zigzag chains in (II). In (I), these are linked by chains mediated by charge-assisted iminium-N(+)-H⋯Cl(-) hydrogen bonds into a three-dimensional architecture. In (II), the chains are linked into a layer by charge-assisted water-O-H⋯Cl(-) and water-O-H⋯O(water) hydrogen bonds with charge-assisted iminium-N(+)-H⋯O(water) hydrogen bonds providing the connections between the layers to generate the three-dimensional packing. In (II), the chloride anion and water mol-ecules are resolved into two proximate sites with the major component being present with a site occupancy factor of 0.9327 (18).

  6. (3R,4R,4aS,7aR,12bS-3-Cyclopropylmethyl-4a,9-dihydroxy-3-methyl-7-oxo-2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-3-ium bromide

    Directory of Open Access Journals (Sweden)

    Xiangfeng Chen

    2012-02-01

    Full Text Available The title compound, C21H26NO4+·Br−, also known as R-methylnaltrexone (MNTX bromide, is a selective peripherally acting μ-opioid receptor antagonist with a oroxymorphone skeleton, synthesized by hydroxyl protection, N-methylation, deprotection and anion exchange of naltrexone. It comprises a five-ring system A/B/C/D/E. Rings C and E adopt distorted chair conformations, whereas ring D is in half-chair conformation. The C/E ring junctions are trans fused. The dihedral angle between rings D and E is 82.3 (1°, while the dihedral angles between the planes of rings C and A, and rings D and E are respectively 81.7 (1, 75.9 (1 and 12.2 (1°. In the crystal, molecules are linked by O—H...Br hydrogen bonds.

  7. Araloside C Prevents Hypoxia/Reoxygenation-Induced Endoplasmic Reticulum Stress via Increasing Heat Shock Protein 90 in H9c2 Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Yuyang Du

    2018-04-01

    Full Text Available Araloside C (AsC is a cardioprotective triterpenoid compound that is mainly isolated from Aralia elata. This study aims to determine the effects of AsC on hypoxia-reoxygenation (H/R-induced apoptosis in H9c2 cardiomyocytes and its underlying mechanisms. Results demonstrated that pretreatment with AsC (12.5 μM for 12 h significantly suppressed the H/R injury in H9c2 cardiomyocytes, including improving cell viability, attenuating the LDH leakage and preventing cardiomyocyte apoptosis. AsC also inhibited H/R-induced ER stress by reducing the activation of ER stress pathways (PERK/eIF2α and ATF6, and decreasing the expression of ER stress-related apoptotic proteins (CHOP and caspase-12. Moreover, AsC greatly improved the expression level of HSP90 compared with that in the H/R group. The use of HSP90 inhibitor 17-AAG and HSP90 siRNA blocked the above suppression effect of AsC on ER stress-related apoptosis caused by H/R. Taken together, AsC could reduce H/R-induced apoptosis possibly because it attenuates ER stress-dependent apoptotic pathways by increasing HSP90 expression.

  8. Disruption of dopamine D1/D2 receptor complex is involved in the function of haloperidol in cardiac H9c2 cells.

    Science.gov (United States)

    Lencesova, L; Szadvari, I; Babula, P; Kubickova, J; Chovancova, B; Lopusna, K; Rezuchova, I; Novakova, Z; Krizanova, O; Novakova, M

    2017-12-15

    Haloperidol is an antipsychotic agent and acts as dopamine D2 receptor (D2R) antagonist, as a prototypical ligand of sigma1 receptors (Sig1R) and it increases expression of type 1 IP 3 receptors (IP 3 R1). However, precise mechanism of haloperidol action on cardiomyocytes through dopaminergic signaling was not described yet. This study investigated a role of dopamine receptors in haloperidol-induced increase in IP 3 R1 and Sig1R, and compared physiological effect of melperone and haloperidol on basic heart parameters in rats. We used differentiated NG-108 cells and H9c2 cells. Gene expression, Western blot and immunofluorescence were used to evaluate haloperidol-induced differences; proximity ligation assay (PLA) and immunoprecipitation to determine interactions of D1/D2 receptors. To evaluate cardiac parameters, Wistar albino male rats were used. We have shown that antagonism of D2R with either haloperidol or melperone results in upregulation of both, IP 3 R1 and Sig1R, which is associated with increased D2R, but reduced D1R expression. Immunofluorescence, immunoprecipitation and PLA support formation of heteromeric D1/D2 complexes in H9c2 cells. Treatment with haloperidol (but not melperone) caused decrease in systolic and diastolic blood pressure and significant increase in heart rate. Because D1R/D2R complexes can engage Gq-like signaling in other experimental systems, these results are consistent with the possibility that disruption of D1R/D2R complex in H9c2 cells might cause a decrease in IP 3 R1 activity, which in turn may account for the increase expression of IP 3 R and Sig1R. D2R is probably not responsible for changes in cardiac parameters, since melperone did not have any effect. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. [Protective effect of taxifolin on H2O2-induced 
H9C2 cell pyroptosis].

    Science.gov (United States)

    Ye, Yanqiong; Wang, Xiaoli; Cai, Qian; Zhuang, Jian; Tan, Xiaohua; He, Wei; Zhao, Mingyi

    2017-12-28

    To explore the effect of taxifolin on H2O2-induced pyroptosis in H9C2 cells and the possible mechanisms.
 Methods: The H9C2 cells was divided into 3 groups: a control group, a hydrogen peroxide (H2O2)group and a taxifolin group. The morphology of H9C2 cells was observed by inverted phase contrast microscope. The mitochondrial membrane potential was measured by JC-1 staining and flow cytometry. The alteration of the level of reactive oxygen species (ROS) was detected by specific mitochondrial probe. The protein levels of cysteinyl aspartate specific proteinase-1 (caspase-1)was determined by Western blot. The mRNA levels of interleukin-18 (IL-18), interleukin-1a (IL-1a), interleukin-1b (IL-1b), absent in melanoma 2 (AIM2), apoptosis-associated apeck-like protein (ASC), nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3)and nucleotide-binding oligomerization domain-like receptor family caspase recruitment domain-containing protein 4 (NLRC4) were determined by reverse transcription-polymerase chain reaction (RT-PCR).
 Results: Compared with the control group, the morphology of H9C2 cells obviously changed in the H2O2-treated group, which was guadually improved in the presence of taxifolin. Compared with the control group, the mitochondrial membrane potential was markedly decreased in the H2O2-treated cells, accompanied by the increase ofROS (both PH2O2 group, the mitochondrial membrane potential changes in the taxifolin group was increased while the ROS was decreased, with significant difference (both PH2O2-treated group were significantly increased (all PH2O2-induced H9C2 cell pyroptosis through inhibition of AIM2, NLRP3 and NLRC4 in flammasome.

  10. Does dinitrogen hydrogenation follow different mechanisms for [(eta5-C5Me4H)2Zr]2(mu2,eta2,eta2-N2) and {[PhP(CH2SiMe2NSiMe2CH2)PPh]Zr}2(mu2,eta2,eta2-N2) complexes? A computational study.

    Science.gov (United States)

    Bobadova-Parvanova, Petia; Wang, Qingfang; Quinonero-Santiago, David; Morokuma, Keiji; Musaev, Djamaladdin G

    2006-09-06

    The mechanisms of dinitrogen hydrogenation by two different complexes--[(eta(5)-C(5)Me(4)H)(2)Zr](2)(mu(2),eta(2),eta(2)-N(2)), synthesized by Chirik and co-workers [Nature 2004, 427, 527], and {[P(2)N(2)]Zr}(2)(mu(2),eta(2),eta(2)-N(2)), where P(2)N(2) = PhP(CH(2)SiMe(2)NSiMe(2)CH(2))(2)PPh, synthesized by Fryzuk and co-workers [Science 1997, 275, 1445]--are compared with density functional theory calculations. The former complex is experimentally known to be capable of adding more than one H(2) molecule to the side-on coordinated N(2) molecule, while the latter does not add more than one H(2). We have shown that the observed difference in the reactivity of these dizirconium complexes is caused by the fact that the former ligand environment is more rigid than the latter. As a result, the addition of the first H(2) molecule leads to two different products: a non-H-bridged intermediate for the Chirik-type complex and a H-bridged intermediate for the Fryzuk-type complex. The non-H-bridged intermediate requires a smaller energy barrier for the second H(2) addition than the H-bridged intermediate. We have also examined the effect of different numbers of methyl substituents in [(eta(5)-C(5)Me(n)H(5)(-)(n))(2)Zr](2)(mu(2),eta(2),eta(2)-N(2)) for n = 0, 4, and 5 (n = 5 is hypothetical) and [(eta(5)-C(5)H(2)-1,2,4-Me(3))(eta(5)-C(5)Me(5))(2)Zr](2)(mu(2),eta(2),eta(2)-N(2)) and have shown that all complexes of this type would follow a similar H(2) addition mechanism. We have also performed an extensive analysis on the factors (side-on coordination of N(2) to two Zr centers, availability of the frontier orbitals with appropriate symmetry, and inflexibility of the catalyst ligand environment) that are required for successful hydrogenation of the coordinated dinitrogen.

  11. (S-2-Oxotetrahydrofuran-3-aminium bromideCAS 15295-77-9.

    Directory of Open Access Journals (Sweden)

    Jace D. Sandifer

    2012-08-01

    Full Text Available In the title HBr salt of (S-homoserine lactone, C4H8NO2+·Br−, the five-membered ring has an envelope conformation, with the –CH2C atom adjacent to the N-substituted C atom at the flap position. The four-atom mean plane (r.m.s. deviation = 0.005 Å of the envelope forms a dihedral angle of 32.12 (9° with the three-atom flap plane. The distorted square-pyramidal coordination about the anion involves five surrounding cations, with the square base defined by three N—H...Br hydrogen bonds [Br...N = 3.3046 (10, 3.3407 (12 and 3.3644 (13 Å] and near-contact with an H atom attached to C [Br...C = 3.739 (1 Å]. Another Br...C contact of 3.427 (1 Å defines the apex. There is also an N—H...O hydrogen bond present linking the cations.

  12. N,N′-(Ethane-1,2-diylbis(4-chlorobenzenesulfonamide

    Directory of Open Access Journals (Sweden)

    Mohammad T. M. Al-Dajani

    2011-09-01

    Full Text Available The title molecule, C14H14Cl2N2O4S2, lies on an inversion center. The molecule is twisted in the region of the sulfonamide group with a C—S—N—C torsion angle of −67.49 (16°. In the crystal, molecules are connected via intermolecular N—H...O and weak C—H...O hydrogen bonds, forming layers parallel to (100.

  13. Nonacarbonyl-1κ3C,2κ3C,3κ3C-μ-bis(diphenylarsinomethane-1:2κ2As:As'-[tris(2-chloroethyl phosphite-3κP]-triangulo-triruthenium(0

    Directory of Open Access Journals (Sweden)

    Omar bin Shawkataly

    2010-08-01

    Full Text Available In the title triangulo-triruthenium(0 compound, [Ru3(C25H22As2(C6H12Cl3O3P(CO9], the bis(diphenylarsinomethane ligand bridges an Ru—Ru bond and the monodentate phosphine ligand bonds to the third Ru atom. Both the arsine and phosphine ligands are equatorial with respect to the Ru3 triangle. In addition, each Ru atom carries one equatorial and two axial terminal carbonyl ligands. In the crystal packing, the molecules are linked by intermolecular C—H...O hydrogen bonds into a three-dimensional framework. Weak intermolecular C—H...π interactions further stabilize the crystal structure.

  14. Crystal structure of {(R-N2-[(benzo[h]quinolin-2-ylmethyl]-N2′-[(benzo[h]quinolin-2-ylmethylidene]-1,1′-binaphthyl-2,2′-diamine-κ4N,N′,N′′,N′′′}(trifluoromethanesulfonato-κOzinc(II} trifluoromethanesulfonate dichloromethane 1.5-solvate

    Directory of Open Access Journals (Sweden)

    Shayna R. Skokan

    2017-07-01

    Full Text Available The zinc(II atom in the title compound, [Zn(C48H31N4(CF3SO3](CF3SO3·1.5CH2Cl2, adopts a distorted five-coordinate square-pyramidal geometry. It is coordinated by one trifluoromethanesulfonate ligand and four N atoms of the N2-[(benzo[h]quinolin-2-ylmethyl]-N2′-[(benzo[h]quinolin-2-ylmethylidene]-1,1′-binaphthyl-2,2′-diamine ligand. The complex is present as a single-stranded P-helimer monohelical structure incorporating π–π and/or σ–π interactions. One of the imine bonds present in the original ligand framework is reduced, leading to variations in bond lengths and torsion angles for each side of the ligand motif. The imine-bond reduction also affects the bond lengths involving the metal atom with the N-donor atoms located on the imine bond. There are two molecules of the complex in the asymmetric unit. One of the molecules exhibits positional disorder within the coordinating trifluoromethanesulfonate ion making the molecules symmetrically non-equivalent.

  15. Channels with ordered water and bipyridine molecules in the porous coordination polymer {[Cu(SiF6(C10H8N22]·2C10N2H8·5H2O}n

    Directory of Open Access Journals (Sweden)

    Emmanuel Aubert

    2016-11-01

    Full Text Available The coordination polymer {[Cu(SiF6(C10H8N22]·2C10H8N2·5H2O}n, systematic name: poly[[bis(μ2-4,4′-bipyridine(μ2-hexafluoridosilicatocopper(II] 4,4′-bipyridine disolvate pentahydrate], contains pores which are filled with water and 4,4′-bipyridine molecules. As a result of the presence of these ordered species, the framework changes its symmetry from P4/mmm to P21/c. The 4,4′-bipyridine guest molecules form chains inside the 6.5 × 6.9 Å pores parallel to [100] in which the molecules interact through π–π stacking. Ordered water molecules form infinite hydrogen-bonded chains inside a second pore system (1.6 × 5.3 Å free aperture perpendicular to the 4,4′-bipyridine channels.

  16. Protective efficacy of an inactivated vaccine against H9N2 avian influenza virus in ducks.

    Science.gov (United States)

    Teng, Qiaoyang; Shen, Weixia; Liu, Qinfang; Rong, Guangyu; Chen, Lin; Li, Xuesong; Chen, Hongjun; Yang, Jianmei; Li, Zejun

    2015-09-17

    Wild ducks play an important role in the evolution of avian influenza viruses (AIVs). Domestic ducks in China are known to carry and spread H9N2 AIVs that are thought to have contributed internal genes for the recent outbreak of zoonotic H7N9 virus. In order to protect animal and public health, an effective vaccine is urgently needed to block and prevent the spread of H9N2 virus in ducks. We developed an inactivated H9N2 vaccine (with adjuvant Montanide ISA 70VG) based on an endemic H9N2 AIV and evaluated this vaccine in ducks. The results showed that the inactivated H9N2 vaccine was able to induce a strong and fast humoral immune response in vaccinated ducks. The hemagglutination inhibition titer in the sera increased fast, and reached its peak of 12.3 log2 at 5 weeks post-vaccination in immunized birds and remained at a high level for at least 37 weeks post-vaccination. Moreover, viral shedding was completely blocked in vaccinated ducks after challenge with a homologous H9N2 AIV at both 3 and 37 weeks post-vaccination. The results of this study indicate that the inactivated H9N2 vaccine induces high and prolonged immune response in vaccinated ducks and are efficacious in protecting ducks from H9N2 infection.

  17. cis-Tetra­chloridobis(1H-imidazole-κN 3)platinum(IV)

    Science.gov (United States)

    Bokach, Nadezhda A.; Kukushkin, Vadim Yu.; Izotova, Yulia A.; Usenko, Natalia I.; Haukka, Matti

    2012-01-01

    In the title complex, cis-[PtCl4(C3H4N2)2], the PtIV ion lies on a twofold rotation axis and is coordinated in a slightly distorted octa­hedral geometry. The dihedral angle between the imidazole rings is 69.9 (2)°. In the crystal, mol­ecules are linked by N—H⋯Cl hydrogen bonds, forming a three-dimensional network. PMID:22590070

  18. 12C(n , 2 n )11C cross section from threshold to 26.5 MeV

    Science.gov (United States)

    Yuly, M.; Eckert, T.; Hartshaw, G.; Padalino, S. J.; Polsin, D. N.; Russ, M.; Simone, A. T.; Brune, C. R.; Massey, T. N.; Parker, C. E.; Fitzgerald, R.; Sangster, T. C.; Regan, S. P.

    2018-02-01

    The 12C(n ,2 n )11C cross section was measured from just below threshold to 26.5 MeV using the Pelletron accelerator at Ohio University. Monoenergetic neutrons, produced via the 3H(d ,n )4He reaction, were allowed to strike targets of polyethylene and graphite. Activation of both targets was measured by counting positron annihilations resulting from the β+ decay of 11C. Annihilation gamma rays were detected, both in coincidence and singly, using back-to-back NaI detectors. The incident neutron flux was determined indirectly via 1H(n ,p ) protons elastically scattered from the polyethylene target. Previous measurements fall into upper and lower bands; the results of the present measurement are consistent with the upper band.

  19. Crystal structure of [2-({4-[2,6-bis(pyridin-2-ylpyridin-4-yl]phenyl}(methylaminoethanol-κ3N,N′,N′′]bis(thiocyanato-κNzinc N,N-dimethylformamide monosolvate

    Directory of Open Access Journals (Sweden)

    Shi-Chao Wang

    2014-10-01

    Full Text Available In the title compound, [Zn(NCS2(C24H22N4O]·C3H7NO, the ZnII cation is N,N′,N′′-chelated by one 2-({4-[2,6-bis(pyridin-2-ylpyridin-4-yl]phenyl}(methylaminoethanol ligand and coordinated by two thiocyanate anions in a distorted N5 trigonal–bipyramidal geometry. In the molecule, the three pyridine rings are approximately coplanar [maximum deviation = 0.026 (5 Å], and the mean plane of the three pyridine rings is twisted to the benzene ring with a small dihedral angle of 5.9 (2°. In the crystal, complex molecules are linked by weak C—H...O hydrogen bonds into supramolecular chains propagated along [110]; π–π stacking is observed between adjacent chains [centroid–centroid distance = 3.678 (4 Å]. The dimethylformamide solvent molecules are linked with the complex chains via weak C—H...O hydrogen bonds.

  20. Diaqua?bis?(1,10-phenanthroline-?2 N,N?)manganese(II) sulfate hexa?hydrate

    OpenAIRE

    Zhang, Chun; Zhu, Hong-lin

    2010-01-01

    In the title compound, [Mn(C12H8N2)2(H2O)2]SO4·6H2O, the complex cations assemble into positively charged sheets parallel to (010) via intermolecular π–π stacking interactions with a mean interplanar distance of 3.410 (6) along [100] and 3.465 (5) Å along [001]. The sulfate anions and uncoordinated water molecules are interconnected between these layers by hydrogen bonds, forming negatively charged layers which are li...

  1. 11-[Bis(trimethylsilylamino]-2,4-bis(trimethylsilyl-7,8,9,10-tetrahydro-6H-cyclohepta[1,2-b]quinoline

    Directory of Open Access Journals (Sweden)

    Ísmail Çelik

    2017-06-01

    Full Text Available In the title compound, C26H48N2Si4, the cycloheptane ring adopts a chair conformation, while the quinolinyl ring system is almost planar [maximum deviation = 0.040 (3 Å for one of the C atoms carrying a Me3Si group]. In the crystal, in the absence of classical hydrogen bonding, the packing is dominated by van der Waals forces. One of the N-bound trimethylsilyl groups is disordered by rotation about the C—SiMe3 bond, and was modelled over two sets of sites in the ratio 0.873 (8:0.127 (8.

  2. Iodide, azide, and cyanide complexes of (N,C), (N,N), and (N,O) metallacycles of tetra- and pentavalent uranium

    International Nuclear Information System (INIS)

    Benaud, Olivier; Berthet, Jean-Claude; Thuery, Pierre; Ephritikhine, Michel

    2011-01-01

    In contrast to the neutral macrocycle [UN* 2 (N,C)] (1) [N* = N(SiMe 3 ) 3 ; N,C = CH 2 SiMe 2 N-(SiMe 3 )] which was quite inert toward I 2 , the anionic bismetallacycle [NaUN*(N,C) 2 ] (2) was readily transformed into the enlarged monometallacycle [UN*(N,N)I] (4) [N,N = (Me 3 Si)NSiMe 2 CH 2 CH 2 SiMe 2 N(SiMe 3 )] resulting from C-C coupling of the two CH 2 groups, and [NaUN*(N,O) 2 ] (3) [N,O = OC(=CH 2 )SiMe 2 N(SiMe 3 )], which is devoid of any U-C bond, was oxidized into the UV bismetallacycle [Na{UN*(N,O) 2 }2(μ-I)] (5). Sodium amalgam reduction of 4 gave the U(III) compound [UN*(N,N)] (6). Addition of MN 3 or MCN to the (N,C), (N,N), and (N,O) metallacycles 1, 4, and 5 led to the formation of the anionic azide or cyanide derivatives M[UN* 2 (N,C)(N 3 )] [M = Na, 7a or Na(15-crown-5), 7b], M[UN* 2 (N,C)(CN)] [M = NEt 4 , 8a or Na(15-crown-5), 8b or K(18-crown-6), 8c], M[UN*(N,N)(N 3 ) 2 ] [M = Na, 9a or Na(THF)4, 9b], [NEt 4 ][UN*(N,N)(CN) 2 ] (10), M[UN*(N,O) 2 (N 3 )] [M = Na, 11a or Na(15-crown-5), 11b], M[UN*(N,O) 2 (CN)] [M = NEt 4 , 12a or Na(15-crown-5), 12b]. In the presence of excess iodine in THF, the cyanide 12a was converted back into the iodide 5, while the azide 11a was transformed into the neutral UV complex [U(N{SiMe 3 }-SiMe 2 C{CHI}O) 2 I(THF)] (13). The X-ray crystal structures of 4, 7b, 8a-c, 9b, 10, 12b, and 13 were determined. (authors)

  3. N,N′-(Ethane-1,2-diyldi-o-phenylenebis(pyridine-2-carboxamide

    Directory of Open Access Journals (Sweden)

    Shuranjan Sarkar

    2011-11-01

    Full Text Available The title molecule, C26H22N4O2, is centrosymmetric and adopts an anti conformation. Two intramolecular hydrogen bonds, viz. amide–pyridine N—H...N and phenyl–amide C—H...O, stabilize the trans conformation of the (pyridine-2-carboxamidophenyl group about the amide plane. In the crystal, the presence of weak intermolecular C—H...O hydrogen bonds results in the formation of a three-dimensional network.

  4. 10-{4-[(2-Hydroxybenzylideneamino]phenyl}-5,5-difluoro-1,3,7,9-tetramethyl-5H-dipyrrolo[1,2-c:2′,1′-f][1,3,2]diazaborinin-4-ium-5-uide

    Directory of Open Access Journals (Sweden)

    Zhensheng Li

    2013-07-01

    Full Text Available The title compound, C26H24BF2N3O, comprises a boron–dipyrromethene (BODIPY framework and a phenolic Schiff base substituent group. The BODIPY unit is close to planar [maximum deviation from the least-squares plane = 0.040 (3 Å], and forms a dihedral angle of 80.38 (13° with the meso-substituent phenyl ring and an angle of 56.57 (13° with the phenolic ring in the extended substituent chain. An intramolecular O—H...N hydrogen bond is formed between the phenolic hydroxyl group and the Schiff base N-atom. The crystal studied was a non-merohedral twin with a BASF factor of 0.447 (3 for the two components.

  5. Novel genotypes of H9N2 influenza A viruses isolated from poultry in Pakistan containing NS genes similar to highly pathogenic H7N3 and H5N1 viruses.

    Directory of Open Access Journals (Sweden)

    Munir Iqbal

    2009-06-01

    Full Text Available The impact of avian influenza caused by H9N2 viruses in Pakistan is now significantly more severe than in previous years. Since all gene segments contribute towards the virulence of avian influenza virus, it was imperative to investigate the molecular features and genetic relationships of H9N2 viruses prevalent in this region. Analysis of the gene sequences of all eight RNA segments from 12 viruses isolated between 2005 and 2008 was undertaken. The hemagglutinin (HA sequences of all isolates were closely related to H9N2 viruses isolated from Iran between 2004 and 2007 and contained leucine instead of glutamine at position 226 in the receptor binding pocket, a recognised marker for the recognition of sialic acids linked alpha2-6 to galactose. The neuraminidase (NA of two isolates contained a unique five residue deletion in the stalk (from residues 80 to 84, a possible indication of greater adaptation of these viruses to the chicken host. The HA, NA, nucleoprotein (NP, and matrix (M genes showed close identity with H9N2 viruses isolated during 1999 in Pakistan and clustered in the A/Quail/Hong Kong/G1/97 virus lineage. In contrast, the polymerase genes clustered with H9N2 viruses from India, Iran and Dubai. The NS gene segment showed greater genetic diversity and shared a high level of similarity with NS genes from either H5 or H7 subtypes rather than with established H9N2 Eurasian lineages. These results indicate that during recent years the H9N2 viruses have undergone extensive genetic reassortment which has led to the generation of H9N2 viruses of novel genotypes in the Indian sub-continent. The novel genotypes of H9N2 viruses may play a role in the increased problems observed by H9N2 to poultry and reinforce the continued need to monitor H9N2 infections for their zoonotic potential.

  6. (Acetonitrile-κNchloridobis[2-(pyridin-2-ylphenyl-κ2C1,N]iridium(III

    Directory of Open Access Journals (Sweden)

    Florian Blasberg

    2011-12-01

    Full Text Available The IrIII atom of the title compound, [Ir(C11H8N2Cl(CH3CN], displays a distorted octahedral coordination. The pyridyl groups are in trans positions [N—Ir—N = 173.07 (10°], while the phenyl groups are trans with respect to the acetonitrile and chloride groups [C—Ir—N = 178.13 (11 and C—Ir—Cl = 176.22 (9°]. The pyridylphenyl groups only show a small deviation from planarity, with the dihedral angle between the planes of the two six-membered rings in each pyridylphenyl group being 5.6 (2 and 5.8 (1°. The crystal packing shows intermolecular C—H...Cl, C—H...π(acetonitrile and C—H...π(pyridylphenyl contacts.

  7. Catena-poly[[bis(1H-benzotriazole-kappaN3)cobalt(II)]-di-mu-tricyanomethanido-kappa2N:N'] and catena-poly[[bis(3,5-dimethyl-1H-pyrazole-kappaN2)manganese(II)]-di-mu-tricyanomethanido-kappa2N:N'].

    Science.gov (United States)

    Shao, Ze-Huai; Luo, Jun; Cai, Rui-Fang; Zhou, Xi-Geng; Weng, Lin-Hong; Chen, Zhen-Xia

    2004-06-01

    Two new one-dimensional coordination polymers, viz. the title compounds, [Co[C(CN)(3)](2)(C(6)H(5)N(3))(2)](n), (I), and [Mn[C(CN)(3)](2)(C(5)H(8)N(2))(2)](n), (II), have been synthesized and characterized by X-ray diffraction. Both complexes consist of linear chains with double 1,5-tricyanomethanide bridges between neighbouring divalent metal ions. The Co and Mn atoms are located on centres of inversion. In (I), the coordination environment of the Co(II) atom is that of an elongated octahedron. The Co(II) atom is coordinated in the equatorial plane by four nitrile N atoms of four bridging tricyanomethanide ions, with Co-N distances of 2.106 (2) and 2.110 (2) A, and in the apical positions by two N atoms from the benzotriazole ligands, with a Co-N distance of 2.149 (2) A. The [Co[C(CN)(3)](2)(C(6)H(5)N(3))(2)] units form infinite chains extending along the a axis. These chains are crosslinked via a hydrogen bond between the uncoordinated nitrile N atom of a tricyanomethanide anion and the H atom on the uncoordinated N atom of a benzotriazole ligand from an adjacent chain, thus forming a three-dimensional network structure. In (II), the Mn(II) atom also adopts a slightly distorted octahedral geometry, with four nitrile N atoms of tricyanomethanide ligands [Mn-N = 2.226 (2) and 2.227 (2) A] in equatorial positions and two N atoms of the monodentate 3,5-dimethylpyrazole ligands [Mn-N = 2.231 (2) A] in the axial sites. In (II), one-dimensional polymeric chains extending along the b axis are formed, with tricyanomethanide anions acting as bidentate bridging ligands. A hydrogen bond between the uncoordinated nitrile N atom of the tricyanomethanide ligand and the H atom on the uncoordinated N atom of a 3,5-dimethylpyrazole group from a neighbouring chain links the molecule into a two-dimensional layered structure.

  8. Structure and spectroscopic properties of N,S-coordinating 2-methyl-sulfanyl-N-[(1H-pyrrol-2-yl)methyl-idene]aniline methanol monosolvate.

    Science.gov (United States)

    Richards, D Douglas; Ang, M Trisha C; McDonald, Robert; Bierenstiel, Matthias

    2015-10-01

    The reaction of pyrrole-2-carboxaldehyde and 2-(methyl-sulfan-yl)aniline in refluxing methanol gave an olive-green residue in which yellow crystals of the title compound, C12H12N2S·CH3OH, were grown from slow evaporation of methanol at 263 K. In the crystal, hydrogen-bonding inter-actions link the aniline mol-ecule and a nearby methanol solvent mol-ecule. These units are linked by a pair of weak C-H⋯Omethanol interactions, forming inversion dimers consisting of two main molecules and two solvent molecules.

  9. Determination of avian influenza A (H9N2) virions by inductively coupled plasma mass spectrometry based magnetic immunoassay with gold nanoparticles labeling

    Science.gov (United States)

    Xiao, Guangyang; Chen, Beibei; He, Man; Shi, Kaiwen; Zhang, Xing; Li, Xiaoting; Wu, Qiumei; Pang, Daiwen; Hu, Bin

    2017-12-01

    Avian influenza viruses are the pathogens of global poultry epidemics, and may even cause the human infections. Here, we proposed a novel inductively coupled plasma mass spectrometry (ICP-MS) based immunoassay with gold nanoparticles (Au NPs) labeling for the determination of H9N2 virions. Magnetic-beads modified with anti-influenza A H9N2 hemagglutinin mono-antibody (mAb-HA) were utilized for the capture of H9N2 virions in complex matrix; and Au NPs conjugated with mAb-HA were employed for the specific labeling of H9N2 virions for subsequent ICP-MS detection. With a sandwich immunoassay strategy, this method exhibited a high specificity for H9N2 among other influenza A virions such as H1N1 and H3N2. Under the optimized conditions, this method could detect as low as 0.63 ng mL- 1 H9N2 virions with the linear range of 2-400 ng mL- 1, the relative standard deviation for seven replicate detections of H9N2 virions was 7.2% (c = 10 ng mL- 1). The developed method was applied for the detection of H9N2 virions in real-world chicken dung samples, and the recovery for the spiking samples was 91.4-116.9%. This method is simple, rapid, sensitive, selective, reliable and has a good application potential for virions detection in real-world samples.

  10. Apoptotic effect of novel Schiff Based CdCl2(C14H21N3O2) complex is mediated via activation of the mitochondrial pathway in colon cancer cells

    Science.gov (United States)

    Hajrezaie, Maryam; Paydar, Mohammadjavad; Looi, Chung Yeng; Moghadamtousi, Soheil Zorofchian; Hassandarvish, Pouya; Salga, Muhammad Saleh; Karimian, Hamed; Shams, Keivan; Zahedifard, Maryam; Majid, Nazia Abdul; Ali, Hapipah Mohd; Abdulla, Mahmood Ameen

    2015-01-01

    The development of metal-based agents has had a tremendous role in the present progress in cancer chemotherapy. One well-known example of metal-based agents is Schiff based metal complexes, which hold great promise for cancer therapy. Based on the potential of Schiff based complexes for the induction of apoptosis, this study aimed to examine the cytotoxic and apoptotic activity of a CdCl2(C14H21N3O2) complex on HT-29 cells. The complex exerted a potent suppressive effect on HT-29 cells with an IC50 value of 2.57 ± 0.39 after 72 h of treatment. The collapse of the mitochondrial membrane potential and the elevated release of cytochrome c from the mitochondria to the cytosol indicate the involvement of the intrinsic pathway in the induction of apoptosis. The role of the mitochondria-dependent apoptotic pathway was further proved by the significant activation of the initiator caspase-9 and the executioner caspases-3 and -7. In addition, the activation of caspase-8, which is associated with the suppression of NF-κB translocation to the nucleus, also revealed the involvement of the extrinsic pathway in the induced apoptosis. The results suggest that the CdCl2(C14H21N3O2) complex is able to induce the apoptosis of colon cancer cells and is a potential candidate for future cancer studies. PMID:25764970

  11. [2-(Dimethylaminoethanol-κ2N,O][2-(dimethylaminoethanolato-κ2N,O]iodidocopper(II

    Directory of Open Access Journals (Sweden)

    Elena A. Buvaylo

    2012-04-01

    Full Text Available The title compound, [Cu(C4H10NOI(C4H11NO], was obtained unintentionally as the product of an attempted synthesis of a Cu/Zn mixed-metal complex using zerovalent copper, zinc(II oxide and ammonium iodide in pure 2-(dimethylaminoethanol, in air. The molecular complex has no crystallographically imposed symmetry. The coordination geometry around the metal atom is distorted square-pyramidal. The equatorial coordination around copper involves donor atoms of the bidentate chelating 2-(dimethylaminoethanol ligand and the 2-(dimethylaminoethanolate group, which are mutually trans to each other, with four approximately equal short Cu—O/N bond distances. The axial Cu—I bond is substantially elongated. Intermolecular hydrogen-bonding interactions involving the –OH group of the neutral 2-(dimethylaminoethanol ligand to the O atom of the monodeprotonated 2-(dimethylaminoethanolate group of the molecule related by the n-glide plane, as indicated by the O...O distance of 2.482 (12 Å, form chains of molecules propagating along [101].

  12. Bis[2-(2H-benzotriazol-2-yl-4-methylphenolato]palladium(II

    Directory of Open Access Journals (Sweden)

    Chen-Yen Tsai

    2009-06-01

    Full Text Available In the title complex, [Pd(C13H10N3O2], the PdII atom is tetracoordinated by two N atoms and two O atoms from two bidentate 2-(2H-benzotriazol-2-yl-4-methylphenolate ligands, forming a square-planar environment. The asymmetric unit contains one half molecule in which the Pd atom lies on a centre of symmetry.

  13. Structuring effects of [Ln6O(OH)8(NO3)6(H2O)12]2+ entities

    International Nuclear Information System (INIS)

    Guillou, O.; Daiguebonne, C.; Calvez, G.; Le Dret, F.; Car, P.-E.

    2008-01-01

    In order to obtain highly porous lanthanide-based coordination polymers we are currently investigating reactions between [Ln 6 O(OH) 8 (NO 3 ) 6 (H 2 O) 12 ] 2+ di-cationic hexanuclear entities and sodium salts of benzene-poly-carboxylic acids. Two new coordination polymers obtained during this study are reported here. In both cases, the hexanuclear entity has been destroyed during the reaction. However the resulting compounds are original thanks to a structuring effect of the poly-metallic complex. The first compound of chemical formula [Y 2 (C 8 H 4 O 4 ) 3 (DMF)(H 2 O)],2DMF crystallizes in the monoclinic system, space group P121/n (n o 14) with a = 16.0975(3) A, b = 14.4605(3) A, c = 17.7197(4) A, β = 92.8504(9) o and Z = 4. The second compound of chemical formula Y 2 (NO 3 ) 2 (C 10 H 2 O 8 )(DMF) 4 crystallizes in the triclinic system, space group P-1 (n o 2) with a = 7.5312(3) A, b = 9.0288(3) A, c = 13.1144(6) A, α = 92.6008(14) o , β = 94.9180(14) o , γ = 112.1824(16) o and Z = 2. Both crystal structures are 2D. Both crystal structures are described and the original structural features are highlighted and related to a potential structuring effect of the hexanuclear precursor

  14. 2-(6-Bromobenzo[d]thiazol-2-yl-5,5-dimethylthiazol-4(5H-one

    Directory of Open Access Journals (Sweden)

    Rainer Beckert

    2013-12-01

    Full Text Available The title compound, C12H9BrN2OS2, was obtained by reacting 6-bromobenzo[d]thiazole-2-carbonitrile in iso-propanol with ethyl 2-mercapto-2-methylpropanoate at reflux temperature for several hours. The resulting dimethyloxyluciferin derivative shows partial double-bond character of the carbon–carbon bond between the two heterocyclic moieties [C—C = 1.461 (3 Å]. This double bond restricts rotation around this C—C axis, therefore leading to an almost planar molecular structure [N—C—C—S torsion angle = 9.7 (3°]. The five-membered thiazoline ring is not completely planar as a result of the bulky S atom [C—S—C—C torsion angle = 5.17 (12°].

  15. Crystal structures of bis[2-(pyridin-2-ylphenyl-κ2N,C1]rhodium(III complexes containing an acetonitrile or monodentate thyminate(1− ligand

    Directory of Open Access Journals (Sweden)

    Mika Sakate

    2016-04-01

    Full Text Available The crystal structures of bis[2-(pyridin-2-ylphenyl]rhodium(III complexes with the metal in an octahedral coordination containing chloride and acetonitrile ligands, namely (OC-6-42-acetonitrilechloridobis[2-(pyridin-2-ylphenyl-κ2N,C1]rhodium(III, [RhCl(C11H8N2(CH3CN] (1, thyminate(1− and methanol, namely (OC-6-42-methanol(5-methyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-ido-κN1bis[2-(pyridin-2-ylphenyl-κ2N,C1]rhodium(III, [Rh(C11H8N2(C5H5N2O2(CH3OH]·CH3OH·0.5H2O (2, and thyminate(1− and ethanol, namely (OC-6-42-ethanol(5-methyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-ido-κN1bis[2-(pyridin-2-ylphenyl-κ2N,C1]rhodium(III, [Rh(C11H8N2(C5H5N2O2(C2H5OH]·C2H5OH (3, are reported. The acetonitrile complex, 1, is isostructural with the IrIII analog. In complexes 2 and 3, the monodeprotonated thyminate (Hthym− ligand coordinates to the RhIII atom through the N atom, and the resulting Rh—N(Hthym bond lengths are relatively long [2.261 (2 and 2.252 (2 Å for 2 and 3, respectively] as compared to the Rh—N bonds in the related thyminate complexes. In each of the crystals of 2 and 3, the complexes are linked via a pair of intermolecular N—H...O hydrogen bonds between neighbouring Hthym− ligands, forming an inversion dimer. A strong intramolecular O—H...O hydrogen bond between the thyminate(1− and alcohol ligands in mutually cis positions to each other is also observed.

  16. (2-Benzoyl-1-phenylethenolato-κ2O,O′bis[2-(1-phenyl-1H-benzimidazol-2-ylphenyl-κC1]iridium(III dichloromethane disolvate

    Directory of Open Access Journals (Sweden)

    Stanislav I. Bezzubov

    2016-12-01

    Full Text Available We present here synthesis and crystal structure of a neutral IrIII complex, [Ir(C19H13N22(C15H11O22CH2Cl2 or [Ir(C^N2O^O]·2CH2Cl2, where C^N is 1,2-diphenyl-1H-benzimidazole and O^O is 2-benzoyl-1-phenylethenolate. The coordination sphere of the IrIII atom, located on a twofold rotation axis, is that of a slighlty distorted C2N2O2 octahedron, with the N atoms in a trans configuration. In the crystal, complex molecules assemble through weak C—H...π interactions in the range 2.699 (3–2.892 (3 Å. The solvent CH2Cl2 molecules reside in channels aligned along the a axis and are connected to the complex molecules by C—H...O interactions.

  17. cis-[1,4-Bis(diphenylphosphanylbutane-κ2P,P′]dichlorido(cyclohexane-1,2-diamine-κ2N,N′ruthenium(II dichloromethane monosolvate

    Directory of Open Access Journals (Sweden)

    Ismail Warad

    2012-05-01

    Full Text Available In the title compound, [RuCl2(C6H14N2(C28H28P2]·CH2Cl2, the RuII ion is coordinated in a slightly distorted octahedral environment, formed by two cis-oriented chloride ligands, two cis P atoms of a 1,4-bis(diphenylphosphanylbutane ligand and two cis-chelating N atoms of a bidentate cyclohexane-1,2-diamine ligand. In the crystal, pairs of molecules form inversion dimers via N—H...Cl hydrogen bonds. In addition, intramolecular N—H...Cl and weak C—H...Cl, C—H...N, N—H...π and C—H...π hydrogen bonds are observed. One of the Cl atoms of the solvent molecule is disordered over two sites with refined occupancies of 0.62 (1 and 0.38 (1.

  18. Dichlorido{2-[(3,4-dimethylphenyliminomethyl]pyridine-κ2N,N′}copper(II

    Directory of Open Access Journals (Sweden)

    Mehdi Khalaj

    2011-11-01

    Full Text Available In the title complex, [CuCl2(C14H14N2], the CuII atom exhibits a very distorted tetrahedral coordination geometry involving two chloride ions and two N-atom donors from the Schiff base ligand. The range for the six bond angles about the Cu2+ cation is 81.49 (11–145.95 (9°. The chelate ring including the CuII atom is approximately planar, with a maximum deviation of 0.039 (4 Å for one of the C atoms; this plane forms a dihedral angle of 46.69 (9° with the CuCl2 plane.

  19. 2,2′-(Ethane-1,2-diylbis(1H-benzimidazole

    Directory of Open Access Journals (Sweden)

    Guo-Liang Zhao

    2012-05-01

    Full Text Available The complete molecule of the title compound, C16H14N4, is generated by crystallographic inversion symmetry. In the crystal, molecules are linked by N—H...N hydrogen bonds, generating (001 sheets. Weak aromatic π–π stacking interactions [centroid–centroid distances = 3.7383 (13 and 3.7935 (14 Å] are also observed.

  20. The physical properties of giant molecular cloud complexes in the outer Galaxy - Implications for the ratio of H2 column density to (C-12)O intensity

    Science.gov (United States)

    Sodroski, T. J.

    1991-01-01

    The physical properties of 35 giant molecular cloud complexes in the outer Galaxy were derived from the Goddard-Columbia surveys of the Galactic plane region (Dame et al., 1987). The spatial and radial velocity boundaries for the individual cloud complexes were estimated by analyzing the spatial and velocity structure of emission features in the (C-12)O surveys, and the distance to each cmplex was determined kinematically on the assumption of a flat rotation curve. The ratio of the H2 column density to the (C-12)O intensity for the outer Galaxy complexes was found to be about 6.0 x 10 to the 20th molecules/sq cm K per km/sec, which is by a factor of 2-3 greater than the value derived by other auhtors for the inner Galaxy complexes. This increase in the H2 column density/(C-12)O intensity with the distance from with the Galactic center is consistent with predictions of the optically thick cloudlet model of giant molecular cloud complexes.

  1. Protective effect of Dendrobium officinale polysaccharides on H2O2-induced injury in H9c2 cardiomyocytes.

    Science.gov (United States)

    Zhao, Xiaoyan; Dou, Mengmeng; Zhang, Zhihao; Zhang, Duoduo; Huang, Chengzhi

    2017-10-01

    The preliminary studies have shown that Dendrobium officinale possessed therapeutic effects on hypertension and atherosclerosis. Studies also reported that Dendrobium officinale polysaccharides showed antioxidant capabilities. However, little is known about its effects on myocardial cells under oxidative stress. The present study was designed to study the protective effect of Dendrobium officinale polysaccharides against H 2 O 2 -induced oxidative stress in H9c2 cells. MTT assay was carried out to determine the cell viability of H9c2 cells when pretreated with Dendrobium officinale polysaccharides. Fluorescent microscopy measurements were performed for evaluating the apoptosis in H9c2 cells. Furthermore, effects of Dendrobium officinale polysaccharides on the activities of antioxidative indicators (malondialdehyde, superoxide dismutase), reactive oxygen species (ROS) production and mitochondrial membrane potential (MMP) levels were analyzed. Dendrobium officinale polysaccharides attenuated H 2 O 2 -induced cell death, as determined by the MTT assay. Dendrobium officinale polysaccharides decreased malondialdehyde levels, increased superoxide dismutase activities, and inhibited the generation of intracellular ROS. Moreover, pretreatment with Dendrobium officinale polysaccharides also inhibited apoptosis and increased the MMP levels in H9c2 cells. These results suggested the protective effects of Dendrobium officinale polysaccharides against H 2 O 2 -induced injury in H9c2 cells. The results also indicated the anti-oxidative capability of Dendrobium officinale polysaccharides. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. 10,21-Dimethyl-2,7,13,18-tetraphenyl-3,6,14,17-tetraazatricyclo[17.3.1.18,12]tetracosa-1(23,2,6,8(24,9,11,13,17,19,21-decaene-23,24-diol cyclohexane 0.33-solvate

    Directory of Open Access Journals (Sweden)

    Sushil K. Gupta

    2011-10-01

    Full Text Available The title compound, C46H40N4O2·0.33C6H12, was obtained unintentionally as a product of an attempted synthesis of a cadmium(II complex of the [2,6-{PhSe(CH22N=CPh}2C6H2(4-Me(OH] ligand. The full tetraiminodiphenol macrocyclic ligand is generated by the application of an inversion centre. The macrocyclic ligand features strong intramolecular O—H...N hydrogen bonds. The dihedral angles formed between the phenyl ring incorporated within the macrocycle and the peripheral phenyl rings are 82.99 (8 and 88.20 (8°. The cyclohexane solvent molecule lies about a site of overline{3} symmetry. Other solvent within the lattice was disordered and was treated with the SQUEEZE routine [Spek (2009. Acta Cryst. D65, 148–155].

  3. Bis[μ-3-(1H-benzimidazol-2-ylbenzoato]dicopper(I

    Directory of Open Access Journals (Sweden)

    Zheng-Yu Su

    2010-12-01

    Full Text Available The dimeric title complex, [Cu2(C14H9N2O22], resides on a center of symmetry. In the crystal, the molecules are packed via π–π stacking interactions alternating between imidazole and benzene rings [mean interplanar distances = 3.754 (3 and 3.624 (3 Å]. An intermolecular N—H...O hydrogen bond links the dimers together. The two-coordinate CuI atom displays an O—Cu—N bond angle of 176.3 (2°. The Cu...Cu distance within the dimer is 5.100 (2 Å.

  4. Antiapoptotic effect of novel compound from Herba leonuri - leonurine (SCM-198): a mechanism through inhibition of mitochondria dysfunction in H9c2 cells.

    Science.gov (United States)

    Liu, Xin Hua; Pan, Li Long; Gong, Qi Hai; Zhu, Yi Zhun

    2010-12-01

    Apoptosis of cardiomyocytes induced by oxidative stress play a critical role in cardiac dysfunction associated with ventricular remodeling and heart failure. We recently reported that leonurine attenuated hypoxia-induced cardiomyocyte damage. In this study, we investigated the mechanism of leonurine (originally from Herba leonuri but we synthesized it chemically it as also called SCM-198) (H₂O₂)-induced rat embryonic heart-derived H9c2 cells from apoptosis. Exposing H9c2 cells to H₂O₂ significantly decreased cell viability, and this was attenuated by pretreatment with leonurine for 4 h in a concentration-dependent manner. Meanwhile, leonurine was found to reduce intracellular reactive oxygen species (ROS) generation in H₂O₂-stimulated cell. Moreover, H9c2 cells stimulated by H₂O₂ was accompanied with apparent apoptotic characteristics, including fragmentation of DNA, apoptotic body formation, release of cytochrome c, translocation of Bax to mitochondria, loss of mitochondrial membrane potential (ΔΨ(m)) and activation of caspase 3. Furthermore, H₂O₂ also induced rapid and significant phosphorylation of the c-Jun-N-terminal kinase 1/2 (JNK1/2), which was inhibited SP600125 (a JNK1/2 inhibitor). All of these events were attenuated by leonurine pretreatment. Taken together, these results demonstrated that leonurine could protect H9c2 cells from H₂O₂-induced apoptosis via modulation of mitochondrial dysfunction associated with blocking the activation of JNK1/2.

  5. Current situation of H9N2 subtype avian influenza in China.

    Science.gov (United States)

    Gu, Min; Xu, Lijun; Wang, Xiaoquan; Liu, Xiufan

    2017-09-15

    In China, H9N2 subtype avian influenza outbreak is firstly reported in Guangdong province in 1992. Subsequently, the disease spreads into vast majority regions nationwide and has currently become endemic there. Over vicennial genetic evolution, the viral pathogenicity and transmissibility have showed an increasing trend as year goes by, posing serious threat to poultry industry. In addition, H9N2 has demonstrated significance to public health as it could not only directly infect mankind, but also donate partial or even whole cassette of internal genes to generate novel human-lethal reassortants like H5N1, H7N9, H10N8 and H5N6 viruses. In this review, we mainly focused on the epidemiological dynamics, biological characteristics, molecular phylogeny and vaccine strategy of H9N2 subtype avian influenza virus in China to present an overview of the situation of H9N2 in China.

  6. N,N′-Bis(2,3-dimethoxybenzylideneethane-1,2-diamine

    Directory of Open Access Journals (Sweden)

    Hua Xue

    2011-09-01

    Full Text Available The title compound, C20H24N2O4, crystallizes with two half (centrosymmetric molecules in the asymmetric unit. There are only minor differences between the geometric parameters between these two molecules. The two aromatic rings in both molecules are mutually coplanar.

  7. Bis(2,2′-bipyridyl-κ2N,N′(sulfato-κ2O,O′cobalt(II ethane-1,2-diol monosolvate

    Directory of Open Access Journals (Sweden)

    Lin Chen

    2011-01-01

    Full Text Available The title compound, [Co(SO4(C10H8N22]·C2H6O2, has the Co2+ ion in a distorted octahedral CoN4O2 coordination geometry. A twofold rotation axis passes through the Co and S atoms, and through the mid-point of the C—C bond of the ethanediol molecule. In the crystal, the [CoSO4(C10H8N22] and C2H6O2 units are held together by a pair of O—H...O hydrogen bonds.

  8. The 12C(n, 2n)11C cross section from threshold to 26.5 MeV.

    Science.gov (United States)

    Yuly, M; Eckert, T; Hartshaw, G; Padalino, S J; Polsin, D N; Russ, M; Simone, A T; Brune, C R; Massey, T N; Parker, C E; Fitzgerald, R; Sangster, T C; Regan, S P

    2018-02-01

    The 12 C(n, 2n) 11 C cross section was measured from just below threshold to 26.5 MeV using the Pelletron accelerator at Ohio University. Monoenergetic neutrons, produced via the 3 H(d,n) 4 He reaction, were allowed to strike targets of polyethylene and graphite. Activation of both targets was measured by counting positron annihilations resulting from the β + decay of 11 C. Annihilation gamma rays were detected, both in coincidence and singly, using back-to-back NaI detectors. The incident neutron flux was determined indirectly via 1 H(n,p) protons elastically scattered from the polyethylene target. Previous measurements fall into upper and lower bands; the results of the present measurement are consistent with the upper band.

  9. Crystal structure of octakis(N,N-dimethylformamide-κOeuropium(III tetracosa-μ2-oxido-dodecaoxido-μ12-phosphato-dodecamolybdate(VI

    Directory of Open Access Journals (Sweden)

    Yassine Ghandour

    2016-04-01

    Full Text Available In the title salt, [Eu(C3H7NO8][PMo12O40], the asymmetric unit comprises one α-Keggin-type [PMo12O40]3− polyoxidometalate anion and one distorted dodecahedral [Eu(C3H7NO8]3+ complex cation. In the crystal, the isolated polyoxidometalate anions are packed into hexagonally arranged rows extending parallel to [001]. The complex cations are situated between the rows and are linked to the neighbouring anions through weak C—H...O hydrogen-bonding interactions, leading to the formation of a three-dimensional network structure.

  10. (E-1-(2-Aminophenyl-3-(4-chlorophenylprop-2-en-1-one

    Directory of Open Access Journals (Sweden)

    Rodrigo Abonia

    2016-10-01

    Full Text Available The title chalcone (E-1-(2-aminophenyl-3-(4-chlorophenylprop-2-en-1-one was prepared with an excellent yield from a Claisen–Schmidt condensation reaction between o-aminoacetophenone and p-chlorobenzaldehyde. This product will be used as a key precursor for the development of an alternative route for the total synthesis of dubamine and graveoline alkaloids. Single crystals of the title compound suitable for X-ray diffraction were grown via slow evaporation in ethanol at room temperature. A complete crystallographic study was performed in depth to unequivocally confirm its structure and determine some interesting supramolecular properties. The crystal structure of the title o-aminochalcone, C15H12ClNO, shows two molecules per asymmetric unit (Z′ = 2 and adopts an E configuration about the C=C double bond. In the title compound, the mean plane of the non-H atoms of the central chalcone fragment C—C(O—C—C—C is as follows: [r.m.s. deviation = 0.0130 Å for A-B and 0.0043 for C-D molecules]. In the crystal, molecules are linked by N—H...N and C—H...O, hydrogen bonds forming edge-fused R66(46 rings parallel to (100. Additionally, N—H...O hydrogen bonds generate a three-dimensional network.

  11. Upper limits to the reaction rate coefficients of C(n)(-) and C(n)H(-) (n = 2, 4, 6) with molecular hydrogen.

    Science.gov (United States)

    Endres, Eric S; Lakhmanskaya, Olga; Hauser, Daniel; Huber, Stefan E; Best, Thorsten; Kumar, Sunil S; Probst, Michael; Wester, Roland

    2014-08-21

    In the interstellar medium (ISM) ion–molecule reactions play a key role in forming complex molecules. Since 2006, after the radioastronomical discovery of the first of by now six interstellar anions, interest has grown in understanding the formation and destruction pathways of negative ions in the ISM. Experiments have focused on reactions and photodetachment of the identified negatively charged ions. Hints were found that the reactions of CnH(–) with H2 may proceed with a low (rate [Eichelberger, B.; et al. Astrophys. J. 2007, 667, 1283]. Because of the high abundance of molecular hydrogen in the ISM, a precise knowledge of the reaction rate is needed for a better understanding of the low-temperature chemistry in the ISM. A suitable tool to analyze rare reactions is the 22-pole radiofrequency ion trap. Here, we report on reaction rates for Cn(–) and CnH(–) (n = 2, 4, 6) with buffer gas temperatures of H2 at 12 and 300 K. Our experiments show the absence of these reactions with an upper limit to the rate coefficients between 4 × 10(–16) and 5 × 10(–15) cm(3) s(–1), except for the case of C2(–), which does react with a finite rate with H2 at low temperatures. For the cases of C2H(–) and C4H(–), the experimental results were confirmed with quantum chemical calculations. In addition, the possible influence of a residual reactivity on the abundance of C4H(–) and C6H(–) in the ISM were estimated on the basis of a gas-phase chemical model based on the KIDA database. We found that the simulated ion abundances are already unaffected if reaction rate coefficients with H2 were below 10(–14) cm(3) s(–1).

  12. C-H and C-C activation of n -butane with zirconium hydrides supported on SBA15 containing N-donor ligands: [(≡SiNH-)(≡SiX-)ZrH2], [(≡SiNH-)(≡SiX-)2ZrH], and[(≡SiN=)(≡SiX-)ZrH] (X = -NH-, -O-). A DFT study

    KAUST Repository

    Pasha, Farhan Ahmad

    2014-07-01

    Density functional theory (DFT) was used to elucidate the mechanism of n-butane hydrogenolysis (into propane, ethane, and methane) on well-defined zirconium hydrides supported on SBA15 coordinated to the surface via N-donor surface pincer ligands: [(≡SiNH-)(≡SiO-)ZrH2] (A), [(≡SiNH-)2ZrH2] (B), [(≡SiNH-)(≡SiO-) 2ZrH] (C), [(≡SiNH-)2(≡SiO-)ZrH] (D), [(≡SiN=)(≡Si-O-)ZrH] (E), and [(≡SiN=)(≡SiNH-)ZrH] (F). The roles of these hydrides have been investigated in C-H/C-C bond activation and cleavage. The dihydride A linked via a chelating [N,O] surface ligand was found to be more active than B, linked to the chelating [N,N] surface ligand. Moreover, the dihydride zirconium complexes are also more active than their corresponding monohydrides C-F. The C-C cleavage step occurs preferentially via β-alkyl transfer, which is the rate-limiting step in the alkane hydrogenolysis. The energetics of the comparative pathways over the potential energy surface diagram (PES) reveals the hydrogenolysis of n-butane into propane and ethane. © 2014 American Chemical Society.

  13. Pyridinium bis­(pyridine-κN)tetra­kis­(thio­cyanato-κN)ferrate(III)–pyrazine-2-carbo­nitrile–pyridine (1/4/1)

    Science.gov (United States)

    Shylin, Sergii I.; Gural’skiy, Il’ya A.; Haukka, Matti; Golenya, Irina A.

    2013-01-01

    In the title compound, (C5H6N)[Fe(NCS)4(C5H5N)2]·4C5H3NC5H5N, the FeIII ion is located on an inversion centre and is six-coordinated by four N atoms of the thio­cyanate ligands and two pyridine N atoms in a trans arrangement, forming a slightly distorted octa­hedral geometry. A half-occupied H atom attached to a pyridinium cation forms an N—H⋯N hydrogen bond with a centrosymmetrically-related pyridine unit. Four pyrazine-2-carbo­nitrile mol­ecules crystallize per complex anion. In the crystal, π–π stacking inter­actions are present [centroid–centroid distances = 3.6220 (9), 3.6930 (9), 3.5532 (9), 3.5803 (9) and 3.5458 (8) Å]. PMID:23723782

  14. cis-Aquabis(2,2'-bipyridine-κ2N,N')-fluoridochromium(III) bis(perchlorate) dihydrate

    DEFF Research Database (Denmark)

    Birk, Torben; Bendix, Jesper

    2010-01-01

    The title mixed aqua-fluoride complex, [CrF(C(10)H(8)N(2))(2)(H(2)O)](ClO(4))(22H(2)O, has been synthesized by aqua-tion of the corresponding difluoride complex using lanthan-ide(III) ions as F(-) acceptors. The complex crystallizes with a Cr(III) ion at the center of a distorted octa-hedral co......-hedral coordination polyhedron with a cis arrangement of ligands. The crystal packing shows a hydrogen-bonding pattern involving water mol-ecules, the coordinated F atom and the perchlorate anions....

  15. Molecular resonances in sub-Coulomb energy region (12C-12C, 12C-24Mg, 12C-9Be systems)

    International Nuclear Information System (INIS)

    Takimoto, Kiyohiko; Shimomura, Susumu; Tanaka, Makoto; Murakami, Tetsuya; Fukada, Mamoru; Sakaguchi, Atsushi

    1982-01-01

    Molecular resonance in sub-Coulomb energy region was studied on 12 C- 12 C, 12 C- 24 Mg and 12 C- 9 Be systems. The excitation functions and the angular distributions were measured on the reactions 12 C( 12 C, 8 Besub(g,s,)) 16 Osub(g,s,), 24 Mg( 12 C, α) 32 S and 9 Be ( 12 C, 8 Besub(g,s,)) 13 Csub(g,s,). Sub-Coulomb resonances were observed in all systems and the contribution of the 12 Csub(2nd)*(0 + , 7.65 MeV) state is proposed. (author)

  16. Crystal structure of bis(azido-κNbis[2,5-bis(pyridin-2-yl-1,3,4-thiadiazole-κ2N2,N3]nickel(II

    Directory of Open Access Journals (Sweden)

    Abdelhakim Laachir

    2015-02-01

    Full Text Available Reaction of 2,5-bis(pyridin-2-yl-1,3,4-thiadiazole and sodium azide with nickel(II triflate yielded the mononuclear title complex, [Ni(N32(C12H8N4S2]. The NiII ion is located on a centre of symmetry and is octahedrally coordinated by four N atoms of the two bidentate heterocyclic ligands in the equatorial plane. The axial positions are occupied by the N atoms of two almost linear azide ions [N—N—N = 178.8 (2°]. The thiadiazole and pyridine rings of the heterocyclic ligand are almost coplanar, with a maximum deviation from the mean plane of 0.0802 (9 Å. The cohesion of the crystal structure is ensured by π–π interactions between parallel pyridine rings of neighbouring molecules [centroid-to-centroid distance = 3.6413 (14 Å], leading to a layered arrangement of the molecules parallel to (001.

  17. The protective effect of lycopene on hypoxia/reoxygenation-induced endoplasmic reticulum stress in H9C2 cardiomyocytes.

    Science.gov (United States)

    Gao, Yang; Jia, Pengyu; Shu, WenQi; Jia, Dalin

    2016-03-05

    Nowadays, drugs protecting ischemia/reperfusion (I/R) myocardium become more suitable for clinic. It has been confirmed lycopene has various protections, but lacking the observation of its effect on endoplasmic reticulum stress (ERS)-mediated apoptosis caused by hypoxia/reoxygenation (H/R). This study aims to clarify the protective effect of lycopene on ERS induced by H/R in H9C2 cardiomyocytes. Detect the survival rate, lactic dehydrogenase (LDH) activity, apoptosis ratio, glucose-regulated proteins 78 (GRP78), C/EBP homologous protein (CHOP), c-Jun-N-terminal protein Kinase (JNK) and Caspase-12 mRNA and protein expression and phosphorylation of JNK (p-JNK) protein expression. LDH activity, apoptosis ratio and GRP78 protein expression increase in the H/R group, reduced by lycopene. The survival rate reduces in the H/R and thapsigargin (TG) groups; lycopene and 4-phenyl butyric acid (4-PBA) can improve it caused by H/R, lycopene also can improve it caused by TG. The apoptosis ratio, the expression of GRP78, CHOP and Caspase-12 mRNA and protein and p-JNK protein increase in the H/R and TG groups, weaken in the lycopene+H/R, 4-PBA+H/R and lycopene+TG groups. There is no obvious change in the expression of JNK mRNA or protein. Hence, our results provide the evidence that 10 μM lycopene plays an obviously protective effect on H/R H9C2 cardiomyocytes, realized through reducing ERS and apoptosis. The possible mechanism may be related to CHOP, p-JNK and Caspase-12 pathways. Copyright © 2016. Published by Elsevier B.V.

  18. Computational Study of Pincer Iridium Catalytic Systems: C-H, N-H, and C-C Bond Activation and C-C Coupling Reactions

    Science.gov (United States)

    Zhou, Tian

    Computational chemistry has achieved vast progress in the last decades in the field, which was considered to be only experimental before. DFT (density functional theory) calculations have been proven to be able to be applied to large systems, while maintaining high accuracy. One of the most important achievements of DFT calculations is in exploring the mechanism of bond activation reactions catalyzed by organometallic complexes. In this dissertation, we discuss DFT studies of several catalytic systems explored in the lab of Professor Alan S. Goldman. Headlines in the work are: (1) (R4PCP)Ir alkane dehydrogenation catalysts are highly selective and different from ( R4POCOP)Ir catalysts, predicting different rate-/selectivity-determining steps; (2) The study of the mechanism for double C-H addition/cyclometalation of phenanthrene or biphenyl by (tBu4PCP)Ir(I) and ( iPr4PCP)Ir illustrates that neutral Ir(III) C-H addition products can undergo a very facile second C-H addition, particularly in the case of sterically less-crowded Ir(I) complexes; (3) (iPr4PCP)Ir pure solid phase catalyst is highly effective in producing high yields of alpha-olefin products, since the activation enthalpy for dehydrogenation is higher than that for isomerization via an allyl pathway; higher temperatures favor the dehydrogenation/isomerization ratio; (4) (PCP)Ir(H)2(N2H4) complex follows a hydrogen transfer mechanism to undergo both dehydrogenation to form N 2 and H2, as well as hydrogen transfer followed by N-N bond cleavage to form NH3, N2, and H2; (5) The key for the catalytic effect of solvent molecule in CO insertion reaction for RMn(CO)5 is hydrogen bond assisted interaction. The basicity of the solvent determines the strength of the hydrogen bond interaction during the catalytic path and determines the catalytic power of the solvent; and (6) Dehydrogenative coupling of unactivated C-H bonds (intermolecular vinyl-vinyl, intramolecular vinyl-benzyl) is catalyzed by precursors of the

  19. Reação de bis-inserção de 1,2-difenilacetileno na ligação Pd-C de ciclometalados Bis insertion reaction of 1,2-diphenylacetilene into Pd-C bond of cyclometallated species

    Directory of Open Access Journals (Sweden)

    Sandra Regina Ananias

    2003-01-01

    Full Text Available The present paper deals with the bis-insertion reactions of 1,2-diphenylacetylene into Pd-C bond of the cyclopalladated complexes [Pd(dmba(µ-NCO]2 (1 and [Pd(dmba(MeCN2](NO3 (2 (dmba = N,N-dimethylbenzylamine, MeCN = acetonitrile. Two new complexes [Pd{PhC=CPh-CPh=CPhC6H4CH2N(CH 32}(NCO] (3 and [Pd{PhC=CPh-CPh=CPhC6H4CH2N(CH 32}(NO3 ] (4 were obtained and characterized by IR and NMR spectroscopy and elemental analysis.

  20. A1 adenosine receptor-induced phosphorylation and modulation of transglutaminase 2 activity in H9c2 cells: A role in cell survival.

    Science.gov (United States)

    Vyas, Falguni S; Hargreaves, Alan J; Bonner, Philip L R; Boocock, David J; Coveney, Clare; Dickenson, John M

    2016-05-01

    The regulation of tissue transglutaminase (TG2) activity by the GPCR family is poorly understood. In this study, we investigated the modulation of TG2 activity by the A1 adenosine receptor in cardiomyocyte-like H9c2 cells. H9c2 cells were lysed following stimulation with the A1 adenosine receptor agonist N(6)-cyclopentyladenosine (CPA). Transglutaminase activity was determined using an amine incorporating and a protein cross linking assay. TG2 phosphorylation was assessed via immunoprecipitation and Western blotting. The role of TG2 in A1 adenosine receptor-induced cytoprotection was investigated by monitoring hypoxia-induced cell death. CPA induced time and concentration-dependent increases in amine incorporating and protein crosslinking activity of TG2. CPA-induced increases in TG2 activity were attenuated by the TG2 inhibitors Z-DON and R283. Responses to CPA were blocked by PKC (Ro 31-8220), MEK1/2 (PD 98059), p38 MAPK (SB 203580) and JNK1/2 (SP 600125) inhibitors and by removal of extracellular Ca(2+). CPA triggered robust increases in the levels of TG2-associated phosphoserine and phosphothreonine, which were attenuated by PKC, MEK1/2 and JNK1/2 inhibitors. Fluorescence microscopy revealed TG2-mediated biotin-X-cadaverine incorporation into proteins and proteomic analysis identified known (Histone H4) and novel (Hexokinase 1) protein substrates for TG2. CPA pre-treatment reversed hypoxia-induced LDH release and decreases in MTT reduction. TG2 inhibitors R283 and Z-DON attenuated A1 adenosine receptor-induced cytoprotection. TG2 activity was stimulated by the A1 adenosine receptor in H9c2 cells via a multi protein kinase dependent pathway. These results suggest a role for TG2 in A1 adenosine receptor-induced cytoprotection. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Tetrakis[bis(pyridin-2-ylamine-κN2](nitrato-κOsilver(I

    Directory of Open Access Journals (Sweden)

    Yuliia Parashchenko

    2014-02-01

    Full Text Available In the title complex, [Ag(NO3(C10H9N34], the nitrate ligand is found to be disordered over two sets of positions, with occupancy factors of 0.473 (5 and 0.527 (5. The AgI ion is located in a square-pyramidal coordination environment formed by four N atoms from four bis(pyridin-2-ylamine ligands and one O atom from a nitrate ligand. Weak interactions between the AgI ions and the nitrate anions acting in a monodentate mode [Ag...O = 2.791 (13 and 2.816 (9 Å for the major component of the nitrate ligand, and 2.865 (8 and 2.837 (8 Å for the minor component] link the complex molecules into a chain along [001]. N—H...O hydrogen bonds are observed.

  2. Bis[1-(3-cyanobenzylpyridinium] bis(1,2-dicyanoethene-1,2-dithiolatonickelate(II

    Directory of Open Access Journals (Sweden)

    Hai-Bao Duan

    2011-01-01

    Full Text Available In the ionic title complex, (C13H11N22[Ni(C4N2S22], the NiII ion is located on an inversion centre so the asymmetric unit contains one-half [Ni(mnt2]2− dianion (mnt2− is maleonitriledithiolate and one 1-(3-cyanobenzylpyridinium cation ([CNBzPy]+. The NiII ion in the [Ni(mnt2]2− anion is coordinated by four S atoms of two mnt2− ligands, and exhibits square-planar coordination geometry. In the [CNBzPy]+ cation, the benzene and pyridine rings are twisted with respect to the C/C/N plane incorporating the methylene C atom that links them. The crystal structure is stabilized by Coulombic interactions.

  3. Mannose-binding lectin contributes to deleterious inflammatory response in pandemic H1N1 and avian H9N2 infection.

    Science.gov (United States)

    Ling, Man To; Tu, Wenwei; Han, Yan; Mao, Huawei; Chong, Wai Po; Guan, Jing; Liu, Ming; Lam, Kwok Tai; Law, Helen K W; Peiris, J S Malik; Takahashi, K; Lau, Yu Lung

    2012-01-01

    Mannose-binding lectin (MBL) is a pattern-recognition molecule, which functions as a first line of host defense. Pandemic H1N1 (pdmH1N1) influenza A virus caused massive infection in 2009 and currently circulates worldwide. Avian influenza A H9N2 (H9N2/G1) virus has infected humans and has the potential to be the next pandemic virus. Antiviral function and immunomodulatory role of MBL in pdmH1N1 and H9N2/G1 virus infection have not been investigated. In this study, MBL wild-type (WT) and MBL knockout (KO) murine models were used to examine the role of MBL in pdmH1N1 and H9N2/G1 virus infection. Our study demonstrated that in vitro, MBL binds to pdmH1N1 and H9N2/G1 viruses, likely via the carbohydrate recognition domain of MBL. Wild-type mice developed more severe disease, as evidenced by a greater weight loss than MBL KO mice during influenza virus infection. Furthermore, MBL WT mice had enhanced production of proinflammatory cytokines and chemokines compared with MBL KO mice, suggesting that MBL could upregulate inflammatory responses that may potentially worsen pdmH1N1 and H9N2/G1 virus infections. Our study provided the first in vivo evidence that MBL may be a risk factor during pdmH1N1 and H9N2/G1 infection by upregulating proinflammatory response.

  4. 6-Methoxy-1-(4-methoxyphenyl-1,2,3,4-tetrahydro-9H-β-carbolin-2-ium acetate

    Directory of Open Access Journals (Sweden)

    Mohd Mustaqim Rosli

    2012-05-01

    Full Text Available In the title compound, C19H21N2O2C2H3O2−, the 1H-indole ring system is essentially planar [maximum deviation = 0.0257 (14 Å] and forms a dihedral angle of 87.92 (7 Å with the benzene ring attached to the tetrahydropyridinium fragment. The tetrahydropyridinium ring adopts a half-chair conformation. In the crystal, cations and anions are linked by interionic N—H...O, C—H...O and C—H...N hydrogen bonds into chains along the a axis.

  5. mer-Hydridotris(trimethylphosphane-κP(d-valinato-κ2N,Oiridium hexafluoridophosphate dichloromethane 0.675-solvate

    Directory of Open Access Journals (Sweden)

    Joseph S. Merola

    2014-03-01

    Full Text Available The title compound, [Ir(C5H10NO2H(C3H9P3]PF6·0.675CH2Cl2, an iridium compound with a meridional arrangement of PMe3 groups, O,N-bidentate coordination of d-valine and with a hydride ligand trans to the N atom is compared with the l-valine complex reported previously. As expected, the complexes from the corresponding l and d isomers of valine crystallize in enantiomorphic space groups (P43 and P41, respectively. In the crystal, N—H...O and N—H...F hydrogen bonding is observed, the N—H to carbonyl oxygen hydrogen bond producing a helical motif that proceeds along the 41 screw of the c axis.

  6. Synthesis and characterization of iron(III), manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II) complexes of salicylidene-N-anilinoacetohydrazone (H2L1) and 2-hydroxy-1-naphthylidene-N-anilinoacetohydrazone (H2L2).

    Science.gov (United States)

    AbouEl-Enein, S A; El-Saied, F A; Kasher, T I; El-Wardany, A H

    2007-07-01

    Salicylidene-N-anilinoacetohydrazone (H(2)L(1)) and 2-hydroxy-1-naphthylidene-N-anilinoacetohydrazone (H(2)L(2)) and their iron(III), manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II) complexes have been synthesized and characterized by IR, electronic spectra, molar conductivities, magnetic susceptibilities and ESR. Mononuclear complexes are formed with molar ratios of 1:1, 1:2 and 1:3 (M:L). The IR studies reveal various modes of chelation. The electronic absorption spectra and magnetic susceptibility measurements show that the iron(III), nickel(II) and cobalt(II) complexes of H(2)L(1) have octahedral geometry. While the cobalt(II) complexes of H(2)L(2) were separated as tetrahedral structure. The copper(II) complexes have square planar stereochemistry. The ESR parameters of the copper(II) complexes at room temperature were calculated. The g values for copper(II) complexes proved that the Cu-O and Cu-N bonds are of high covalency.

  7. Bis(O-n-butyl dithio­carbonato-κ2 S,S′)bis­(pyridine-κN)manganese(II)

    Science.gov (United States)

    Alam, Naveed; Ehsan, Muhammad Ali; Zeller, Matthias; Mazhar, Muhammad; Arifin, Zainudin

    2011-01-01

    The structure of the title manganese complex, [Mn(C5H9OS2)2(C5H5N)2] or [Mn(S2CO-n-Bu)2(C5H5N)2], consists of discrete monomeric entities with Mn2+ ions located on centres of inversion. The metal atom is coordinated by a six-coordinate trans-N2S4 donor set with the pyridyl N atoms located in the apical positions. The observed slight deviations from octa­hedral geometry are caused by the bite angle of the bidentate κ2-S2CO-n-Bu ligands [69.48 (1)°]. The O(CH2)3(CH3) chains of the O-n-butyl dithio­carbonate units are disordered over two sets of sites with an occupancy ratio of 0.589 (2):0.411 (2). PMID:22090847

  8. Inorganic-organic hybrid structure: Synthesis, structure and magnetic properties of a cobalt phosphite-oxalate, [C4N2H12][Co4(HPO3)2(C2O4)3

    International Nuclear Information System (INIS)

    Mandal, Sukhendu; Natarajan, Srinivasan

    2005-01-01

    A hydrothermal reaction of a mixture of cobalt (II) oxalate, phosphorous acid, piperazine and water at 150 o C for 96h followed by heating at 180 o C for 24h gave rise to a new inorganic-organic hybrid solid, [C 4 N 2 H 12 ][Co 4 (HPO 3 ) 2 (C 2 O 4 ) 3 ], I. The structure consists of edge-shared CoO 6 octahedra forming a [Co 2 O 10 ] dimers that are connected by HPO 3 and C 2 O 4 units forming a three-dimensional structure with one-dimensional channels. The amine molecules are positioned within these channels. The oxalate units have a dual role of connecting within the plane of the layer as well as out of the plane. Magnetic susceptibility measurement shows the compound orders antiferromagnetically at low temperature (T N =22K). Crystal data: I, monoclinic, space group=P2 1 /c (No. 14). a=7.614(15), b=7.514(14), c=17.750(3)A, β=97.351(3) o , V=1007.30(3)A 3 , Z=2, ρ calc =2.466g/cm 3 , μ (MoKα) =3.496mm -1 , R 1 =0.0310 and wR 2 =0.0807 data [I>2σ(I)

  9. Crystal structure of tetraaqua(5,5′-dimethyl-2,2′-bipyridyl-κ2N,N′iron(II sulfate

    Directory of Open Access Journals (Sweden)

    Yamine Belamri

    2014-12-01

    Full Text Available In the title compound, [Fe(C12H12N2(H2O4]SO4, the central FeII ion is coordinated by two N atoms from the 5,5′-dimethyl-2,2′-bipyridine ligand and four water O atoms in a distorted octahedral geometry. The Fe—O coordination bond lengths vary from 2.080 (3 to 2.110 (3 Å, while the two Fe—N coordination bonds have practically identical lengths [2.175 (3 and 2.177 (3 Å]. The chelating N—Fe—N angle of 75.6 (1° shows the largest deviation from an ideal octahedral geometry; the other coordination angles deviate from ideal values by 0.1 (1 to 9.1 (1°. O—H...O hydrogen bonding between the four aqua ligands of the cationic complex and four O-atom acceptors of the anion leads to the formation of layers parallel to the ab plane. Neighbouring layers further interact by means of C—H...O and π–π interactions involving the laterally positioned bipyridine rings. The perpendicular distance between π–π interacting rings is 3.365 (2 Å, with a centroid–centroid distance of 3.702 (3 Å.

  10. Crystal structure of ethyl (2S-9-methoxy-2-methyl-4-oxo-3,4,5,6-tetrahydro-2H- 2,6-methanobenzo[g][1,3,5]oxadiazocine-11-carboxylate

    Directory of Open Access Journals (Sweden)

    A. Dhandapani

    2015-02-01

    Full Text Available In the title compound, C15H18N2O5, the methoxyphenyl ring makes a dihedral angle of 84.70 (12° with the mean plane of the tetrahydropyrimidin-2(1H-one ring. Both the pyran and tetrahydropyrimidin-2(1H-one rings have distorted envelope conformations with the carboxylate-substituted C atom as the flap. In the crystal, molecules are linked via pairs of N—H...O hydrogen bonds, forming zigzag chains propagating along [010], which enclose R22(8 ring motifs. The chains are linked by C—H...π interactions, forming a two-dimensional network parallel to (100.

  11. Synthesis and anti-HIV activity of novel 3-substituted phenyl-6,7-dimethoxy-3a,4-dihydro-3H-indeno[1,2-c]isoxazole analogues.

    Science.gov (United States)

    Ali, Mohamed A; Ismail, Rusli; Choon, Tan S; Yoon, Yeong K; Wei, Ang C; Pandian, Suresh; Samy, Jeyabalan G; De Clercq, Eric; Pannecouque, Christophe

    2011-01-01

    A series of novel 3-(substituted phenyl)-6,7-dimethoxy-3a,4-dihydro-3H-indeno[1,2-c]isoxazole analogues were synthesized by the reaction of 5,6-dimethoxy-2-[(E)-1-phenylmethylidene]-1-indanone with hydroxylamine hydrochloride. The title compounds were tested for their in vitro anti-HIV activity. Among the compounds, (4g) showed a promising anti-HIV activity in the in vitro testing against IIIB and ROD strains. The IC50 of both IIIB and ROD were found to be 9.05 microM and > 125 microM, respectively.

  12. Synthesis and crystal structure of Pb(Bipy)(DMFA)B12H12

    International Nuclear Information System (INIS)

    Lagun, V.L.; Solntsev, K.A.; Katser, S.B.; Orlova, A.M.; Kuznetsov, N.T.

    1994-01-01

    Lead complex with B 12 H 12 2- anion and neutral ligands -2,2' -bipyridine (Bipy) and dimethylformamide (DMFA) has been prepared by Pb(Bipy) B 12 H 12 recrystallization from mixed solvent DMFA - benzene (1:1). The complex prepared has been studied by the methods of IR spectroscopy, element and X-ray diffraction analyses. Parameters of monoclinic cell are as follows: 1 = 9.583(2), b = 16.958 (4), c = 18.685 (3) A; β = 105.65 (2), V = 2924 (1) A 3 , Z =4; sp.gr. P2 1 /c. The structure consists of dimer units. Pb-B distance is within 3.23-3.71 (3) A. 5 refs.; 2 figs.; 2 tabs

  13. Serological evidence for avian H9N2 influenza virus infections among Romanian agriculture workers.

    Science.gov (United States)

    Coman, Alexandru; Maftei, Daniel N; Krueger, Whitney S; Heil, Gary L; Friary, John A; Chereches, Razvan M; Sirlincan, Emanuela; Bria, Paul; Dragnea, Claudiu; Kasler, Iosif; Gray, Gregory C

    2013-12-01

    In recent years, wild birds have introduced multiple highly pathogenic avian influenza (HPAI) H5N1 virus infections in Romanian poultry. In 2005 HPAI infections were widespread among domestic poultry and anecdotal reports suggested domestic pigs may also have been exposed. We sought to examine evidence for zoonotic influenza infections among Romanian agriculture workers. Between 2009 and 2010, 363 adult participants were enrolled in a cross-sectional, seroepidemiological study. Confined animal feeding operation (CAFO) swine workers in Tulcea and small, traditional backyard farmers in Cluj-Napoca were enrolled, as well as a non-animal exposed control group from Cluj-Napoca. Enrollment sera were examined for serological evidence of previous infection with 9 avian and 3 human influenza virus strains. Serologic assays showed no evidence of previous infection with 7 low pathogenic avian influenza viruses or with HPAI H5N1. However, 33 participants (9.1%) had elevated microneutralization antibody titers against avian-like A/Hong Kong/1073/1999(H9N2), 5 with titers ≥ 1:80 whom all reported exposure to poultry. Moderate poultry exposure was significantly associated with elevated titers after controlling for the subjects' age (adjusted OR = 3.6; 95% CI, 1.1-12.1). There was no evidence that previous infection with human H3N2 or H2N2 viruses were confounding the H9N2 seroreactivity. These data suggest that H9N2 virus may have circulated in Romanian poultry and occasionally infected man. Copyright © 2013 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.

  14. 2,2-Dimethyl-2,3-dihydro-1H-perimidine

    Directory of Open Access Journals (Sweden)

    Sarah Maloney

    2013-02-01

    Full Text Available The title compound, C13H14N2, was obtained from reaction of diaminonaphthalene with acetone. In both independent molecules in the asymmetric unit, the tricyclic perimidine consists of a planar (r.m.s. deviations = 0.0125 and 0.0181 Å naphthalene ring system and an envelope conformation C4N2 ringwith the NCN group hinged with respect to the naphthalene backbone by 36.9 (2 and 41.3 (2° in the two independent molecules. The methyl substituents are arranged approximately axial and equatorial on the apical C atom. In the crystal, one of the N—H groups of one independent molecule is involved in classical N—H...N hydrogen bonding. Short intermolecular (C/N—H...π(arene interactions, near the short T-shaped limit, link molecules in the absence of strong acceptors.

  15. Bis{μ-4,4′-dimethoxy-2,2′-[propane-1,2-diylbis(nitrilomethylidyne]diphenolato}bis({4,4′-dimethoxy-2,2′-[propane-1,2-diylbis(nitrilomethylidyne]diphenol}manganese(III bis(hexafluoridophosphate

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Habibi

    2009-08-01

    Full Text Available In the title complex, [Mn2(C19H20N2O42(C19H22N2O42](PF62, the MnIII ion is coordinated by two O [Mn—O = 1.855 (2 and 1.887 (2 Å] and two N [Mn—N = 1.982 (3 and 1.977 (3 Å] atoms from the tetradentate Schiff base ligand and a coordinated axial ligand [Mn—O = 2.129 (2 Å]. The centrosymmetric dimer contains two Jahn–Teller-distorted MnIII ions, each in a nearly octahedral geometry, connected through two phenolate bridges from two ligands. There are two stereogenic centers. The methyl group and the H atom attached to the middle propane C atom are disordered over two positions with occupancy factors in the ratio 0.58:0.42. The crystal is therefore a mixture of two diasteroisomers, viz. RS/SR and RR/SS. In the axial ligand, the two benzene rings form a dihedral angle of 56.97 (5° and the dihedral angle between the two MnNC3O chelate rings is 2.98 (12°

  16. 4-((E-{2-[N-(1,5-Dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-ylcarboximidoyl]benzylidene}amino-1,5-dimethyl-2-phenyl-2,3-dihydro-1H-pyrazol-3-one

    Directory of Open Access Journals (Sweden)

    Richard Betz

    2011-10-01

    Full Text Available The title compound, C30H28N6O2, is a symmetric diimine derived from ortho-dibenzaldehyde. Both C=N bonds are (E-configured. The terminal N-bonded phenyl groups adopt staggered conformations relative to their respective parent heterocycles, the relevant least-squares planes intersect at angles of 32.35 (11 and 38.59 (10°. In the crystal, C—H...O contacts connect the molecules into chains along the b axis and give rise to a C11(14C11(14 and a R22(12 pattern on different levels of graph-set analysis. The shortest intercentroid distance between two centroids was found at 4.2074 (11 Å between the two five-membered heterocycles.

  17. Antigenic and Molecular Characterization of Avian Influenza A(H9N2) Viruses, Bangladesh

    Science.gov (United States)

    Shanmuganatham, Karthik; Feeroz, Mohammed M.; Jones-Engel, Lisa; Smith, Gavin J.D.; Fourment, Mathieu; Walker, David; McClenaghan, Laura; Alam, S.M. Rabiul; Hasan, M. Kamrul; Seiler, Patrick; Franks, John; Danner, Angie; Barman, Subrata; McKenzie, Pamela; Krauss, Scott; Webby, Richard J.

    2013-01-01

    Human infection with avian influenza A(H9N2) virus was identified in Bangladesh in 2011. Surveillance for influenza viruses in apparently healthy poultry in live-bird markets in Bangladesh during 2008–2011 showed that subtype H9N2 viruses are isolated year-round, whereas highly pathogenic subtype H5N1 viruses are co-isolated with subtype H9N2 primarily during the winter months. Phylogenetic analysis of the subtype H9N2 viruses showed that they are reassortants possessing 3 gene segments related to subtype H7N3; the remaining gene segments were from the subtype H9N2 G1 clade. We detected no reassortment with subtype H5N1 viruses. Serologic analyses of subtype H9N2 viruses from chickens revealed antigenic conservation, whereas analyses of viruses from quail showed antigenic drift. Molecular analysis showed that multiple mammalian-specific mutations have become fixed in the subtype H9N2 viruses, including changes in the hemagglutinin, matrix, and polymerase proteins. Our results indicate that these viruses could mutate to be transmissible from birds to mammals, including humans. PMID:23968540

  18. Tetraaquabis(1,10-phenanthroline-κ2N,N′strontium 5,5′-diazenediylditetrazolide

    Directory of Open Access Journals (Sweden)

    Bao-Juan Jiao

    2010-11-01

    Full Text Available The title complex, [Sr(C12H8N22(H2O4](C2N10, contains an [Sr(phen2(H2O4]2+ cation (phen is 1,10-phenanthroline and a 5,5′-diazenediylditetrazolide anion (site symmetry 2. The Sr2+ cation (site symmetry 2 is coordinated by four N atoms from two chelating phen and four water molecules. In the crystal structure, the water molecules and the N atoms in the tetrazolide rings form an extensive range of O—H...N hydrogen bonds which link the complex into a two-dimensional structure. An adjacent layer further yields a three-dimensional supramolecular network by offset face-to-face π–π stacking interactions of the phen ligands [with centroid–centroid distances of 3.915 (2 and 4.012 (2 Å]. The two bridging N atoms of the anion are equally disordered about the twofold rotation axis.

  19. N-{4-[4-(4-Fluorophenyl-1-(2-methoxyethyl-2-methylsulfanyl-1H-imidazol-5-yl]-2-pyridyl}-2-methyl-3-phenylpropionamide

    Directory of Open Access Journals (Sweden)

    Stefan Laufer

    2009-12-01

    Full Text Available In the crystal structure of the title compound, C28H29FN4O2S, the imidazole ring makes dihedral angles of 11.85 (7, 73.33 (7 and 22.83 (8° with the 4-fluorophenyl, pyridine and phenyl rings, respectively. The 4-fluorophenyl ring makes dihedral angles of 77.91 (7 and 26.93 (8° with the pyridine and phenyl rings, respectively. The phenyl and pyridine rings are nearly perpendicular, making a dihedral angle of 86.47 (9°. The crystal packing shows an intermolecular N—H...O hydrogen-bonding interaction between the N—H and carbonyl groups of the amide functions.

  20. Poly[bis(μ2-5-n-butyltetrazolato-κ2N1:N4zinc(II

    Directory of Open Access Journals (Sweden)

    Xiao-Lan Tong

    2008-01-01

    Full Text Available In the title complex, [Zn(C5H9N42]n, the ZnII center is coordinated by four N atoms of different tetrazolate ligands with a slightly distorted tetrahedral geometry [Zn—N distances and N—Zn—N angles are in the ranges 1.991 (22.007 (2 Å and 104.22 (8–116.13 (8°, respectively]. Each ligand links two ZnII atoms through its 1- and 4-position tetrazole N atoms, forming a single, fully connected three-dimensional framework with a diamond-like topology. In the crystal structure, the Zn...Zn separations across each tetrazole unit are 6.115 (2 and 6.134 (2 Å and the Zn...Zn...Zn angles are in the range 107.77 (8–116.83 (8°.

  1. Diaquabis[5-(2-pyridyltetrazolato-κ2N1,N5]iron(II

    Directory of Open Access Journals (Sweden)

    Min Hu

    2009-04-01

    Full Text Available The title complex, [Fe(C6H4N52(H2O2], was synthesized by the reaction of ferrous sulfate with 5-(2-pyridyl-2H-tetrazole (HL. The FeII atom, located on a crystallographic center of inversion, is coordinated by four N-atom donors from two planar trans-related deprotonated L ligands and two O atoms from two axial water molecules in a distorted octahedral geometry. The FeII mononuclear units are further connected by intermolecular O—H...N and C—H...O hydrogen-bonding interactions, forming a three-dimensional framework.

  2. Bipodal surface organometallic complexes with surface N-donor ligands and application to the catalytic cleavage of C-H and C-C bonds in n -Butane

    KAUST Repository

    Bendjeriou-Sedjerari, Anissa

    2013-11-27

    We present a new generation of "true vicinal" functions well-distributed on the inner surface of SBA15: [(Sî - Si-NH 2)(≡Si-OH)] (1) and [(≡Si-NH2)2] (2). From these amine-modified SBA15s, two new well-defined surface organometallic species [(≡Si-NH-)(≡Si-O-)]Zr(CH2tBu) 2 (3) and [(≡Si-NH-)2]Zr(CH2tBu) 2 (4) have been obtained by reaction with Zr(CH2tBu) 4. The surfaces were characterized with 2D multiple-quantum 1H-1H NMR and infrared spectroscopies. Energy-filtered transmission electron microscopy (EFTEM), mass balance, and elemental analysis unambiguously proved that Zr(CH2tBu)4 reacts with these vicinal amine-modified surfaces to give mainly bipodal bis(neopentyl)zirconium complexes (3) and (4), uniformly distributed in the channels of SBA15. (3) and (4) react with hydrogen to give the homologous hydrides (5) and (6). Hydrogenolysis of n-butane catalyzed by these hydrides was carried out at low temperature (100 C) and low pressure (1 atm). While (6) exhibits a bis(silylamido)zirconium bishydride, [(≡Si-NH-)2]Zr(H) 2 (6a) (60%), and a bis(silylamido)silyloxozirconium monohydride, [(≡Si-NH-)2(≡Si-O-)]ZrH (6b) (40%), (5) displays a new surface organometallic complex characterized by an 1H NMR signal at 14.46 ppm. The latter is assigned to a (silylimido)(silyloxo)zirconium monohydride, [(≡Si-Nî)(≡Si-O-)]ZrH (5b) (30%), coexistent with a (silylamido)(silyloxo)zirconium bishydride, [(≡Si-NH-)(≡Si-O-)] Zr(H)2 (5a) (45%), and a silylamidobis(silyloxo)zirconium monohydride, [(≡Si-NH-)(≡Si-O-)2]ZrH (5c) (25%). Surprisingly, nitrogen surface ligands possess catalytic properties already encountered with silicon oxide surfaces, but interestingly, catalyst (5) with chelating [N,O] shows better activity than (6) with chelating [N,N]. © 2013 American Chemical Society.

  3. Bipodal surface organometallic complexes with surface N-donor ligands and application to the catalytic cleavage of C-H and C-C bonds in n -Butane

    KAUST Repository

    Bendjeriou-Sedjerari, Anissa; Azzi, Joachim; Abou-Hamad, Edy; Anjum, Dalaver H.; Pasha, Fahran A.; Huang, Kuo-Wei; Emsley, Lyndon; Basset, Jean-Marie

    2013-01-01

    We present a new generation of "true vicinal" functions well-distributed on the inner surface of SBA15: [(Sî - Si-NH 2)(≡Si-OH)] (1) and [(≡Si-NH2)2] (2). From these amine-modified SBA15s, two new well-defined surface organometallic species [(≡Si-NH-)(≡Si-O-)]Zr(CH2tBu) 2 (3) and [(≡Si-NH-)2]Zr(CH2tBu) 2 (4) have been obtained by reaction with Zr(CH2tBu) 4. The surfaces were characterized with 2D multiple-quantum 1H-1H NMR and infrared spectroscopies. Energy-filtered transmission electron microscopy (EFTEM), mass balance, and elemental analysis unambiguously proved that Zr(CH2tBu)4 reacts with these vicinal amine-modified surfaces to give mainly bipodal bis(neopentyl)zirconium complexes (3) and (4), uniformly distributed in the channels of SBA15. (3) and (4) react with hydrogen to give the homologous hydrides (5) and (6). Hydrogenolysis of n-butane catalyzed by these hydrides was carried out at low temperature (100 C) and low pressure (1 atm). While (6) exhibits a bis(silylamido)zirconium bishydride, [(≡Si-NH-)2]Zr(H) 2 (6a) (60%), and a bis(silylamido)silyloxozirconium monohydride, [(≡Si-NH-)2(≡Si-O-)]ZrH (6b) (40%), (5) displays a new surface organometallic complex characterized by an 1H NMR signal at 14.46 ppm. The latter is assigned to a (silylimido)(silyloxo)zirconium monohydride, [(≡Si-Nî)(≡Si-O-)]ZrH (5b) (30%), coexistent with a (silylamido)(silyloxo)zirconium bishydride, [(≡Si-NH-)(≡Si-O-)] Zr(H)2 (5a) (45%), and a silylamidobis(silyloxo)zirconium monohydride, [(≡Si-NH-)(≡Si-O-)2]ZrH (5c) (25%). Surprisingly, nitrogen surface ligands possess catalytic properties already encountered with silicon oxide surfaces, but interestingly, catalyst (5) with chelating [N,O] shows better activity than (6) with chelating [N,N]. © 2013 American Chemical Society.

  4. Formation of closo-rhodacarboranes with the η2,η3-(CH2=CHC5H6) ligand in the reaction of μ-dichloro-bis[(η4-norbornadiene)rhodium] with nido-dicarbaundecaborates [K][nido-7-R1-8-R2-7,8-C2B9H10

    International Nuclear Information System (INIS)

    Safronov, A.V.; Sokolova, M.N.; Vorontsov, E.V.; Petrovskij, P.V.; Barakovskaya, I.G.; Chizhevskij, I.T.

    2004-01-01

    New closo-(η 2 ,η 3 -(4-vinylcyclopentene-3-yl)rhodacarboranes were prepared by reaction of the complex [(η 4 -C 7 H 8 )RhCl] 2 (C 7 H 8 -norbornadiene) with salts of substituted nido-dicarbaundecaborates [K][nido-7-R 1 -8-R 2 -7,8-C 2 B 9 H 10 ] (R 1 =R 2 =H (a); R = R 2 =Me (b); R 1 , R 2 =1',2'-(CH 2 ) 2 C 6 H 4 (c); R 1 =Me, R 2 =Ph (d) in CH 2 Cl 2 . The structure of the compounds prepared in solution was studied by the method of multinuclear NMR spectroscopy. A probable mechanism of the norbornadiene ligand regrouping was suggested [ru

  5. N,N-Dimethyl-1H-pyrazolo[3,4-d]pyrimidin-4-amine monohydrate

    Directory of Open Access Journals (Sweden)

    Mohamed El Hafi

    2018-02-01

    Full Text Available The asymmetric unit of the title compound, C7H9NH2O, consists of two formula units differing slightly in the orientation of the dimethylamino groups. In the crystal, a combination of O—H...N and N—H...O hydrogen bonds involving the water molecules of crystallization, as well as slipped π-stacking interactions between pyrazolopyrimidine units form layers parallel to the bc plane.

  6. Bis{2-hydroxy­imino-N′-[1-(2-pyrid­yl)ethyl­idene]propanohydrazidato}zinc(II) dihydrate

    Science.gov (United States)

    Moroz, Yurii S.; Znovjyak, Kateryna O; Golenya, Iryna O.; Pavlova, Svetlana V.; Haukka, Matti

    2010-01-01

    The title compound, [Zn(C10H11N4O2)22H2O, was prepared by the reaction between Zn(CH3COO)2·2H2O and 2-hydroxy­imino-N′-[1-(2-pyrid­yl)ethyl­idene]propano­hydrazide (Hpop). The central ZnII atom has a distorted tetra­gonal-bipyramidal coordination geometry formed by two amide O atoms and four N atoms of two azomethine and two pyridine groups. In the crystal, complex mol­ecules form layers parallel to the crystallographic b direction. The layers are connected by O—H⋯N and O—H⋯O hydrogen bonds involving the solvent water mol­ecules. PMID:21579695

  7. Molecular epidemiology of H9N2 influenza viruses in Northern Europe.

    Science.gov (United States)

    Lindh, Erika; Ek-Kommonen, Christine; Väänänen, Veli-Matti; Vaheri, Antti; Vapalahti, Olli; Huovilainen, Anita

    2014-08-27

    Low pathogenic avian influenza viruses are maintained in wild bird populations throughout the world. Avian influenza viruses are characterized by their efficient ability to reassort and adapt, which enables them to cross the species barrier and enhances their zoonotic potential. Influenza viruses of the H9N2 subtype appear endemic among poultry in Eurasia. They usually exist as low-pathogenic strains and circulate between wild bird populations, poultry and birds sold at live bird markets. Direct transmission of H9N2 viruses, with receptor specificities similar to human influenza strains, to pigs and humans has been reported on several occasions. H9N2 virus was first encountered in Finland in 2009, during routine screening of hunted wild waterfowl. The next year, H9N2 influenza viruses were isolated from wild birds on four occasions, including once from a farmed mallard. We have investigated the relationship between the reared and wild bird isolates by sequencing the hemagglutinin and the neuraminidase genes of the Finnish H9N2 viruses. Nucleotide sequence comparison and phylogenetic analyses indicate that H9N2 was transmitted from wild birds to reared birds in 2010, and that highly identical strains have been circulating in Europe during the last few years. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Crystal structures of 2-benzylamino-4-(4-bromophenyl-6,7,8,9-tetrahydro-5H-cyclohepta[b]pyridine-3-carbonitrile and 2-benzylamino-4-(4-chlorophenyl-6,7,8,9-tetrahydro-5H-cyclohepta[b]pyridine-3-carbonitrile

    Directory of Open Access Journals (Sweden)

    R. A. Nagalakshmi

    2015-01-01

    Full Text Available In the title compounds, C24H22BrN3, (I, and C24H22ClN3, (II, the 2-aminopyridine ring is fused with a cycloheptane ring, which adopts a half-chair conformation. The planes of the phenyl and benzene rings are inclined to that of the central pyridine ring [r.m.s. deviations = 0.0083 (1 and 0.0093 (1 Å for (I and (II, respectively] by 62.47 (17 and 72.51 (14°, respectively, in (I, and by 71.44 (9 and 54.90 (8°, respectively, in (II. The planes of the aromatic rings are inclined to one another by 53.82 (17° in (I and by 58.04 (9° in (II. In the crystals of both (I and (II, pairs of N—H...Nnitrile hydrogen bonds link the molecules, forming inversion dimers with R22(12 ring motifs. In (I, the resulting dimers are connected through C—H...Br hydrogen bonds, forming sheets parallel to (10-1, and π–π interactions [inter-centroid distance = 3.7821 (16 Å] involving inversion-related pyridine rings, forming a three-dimensional network. In (II, the resulting dimers are connected through π–π interactions [inter-centroid distance = 3.771 (2 Å] involving inversion-related pyridine rings, forming a two-dimensional network lying parallel to (001.

  9. Crystal structure of chlorido(2-{1-[2-(4-chlorophenylhydrazin-1-ylidene-κN]ethyl}pyridine-κN(η5-pentamethylcyclopentadienylrhodium(III chloride

    Directory of Open Access Journals (Sweden)

    Neelakandan Devika

    2015-03-01

    Full Text Available The cation of the title compound, [Rh(η5-C5Me5Cl(C13H12ClN3]Cl, adopts a typical piano-stool geometry. The complex is chiral at the metal and crystallizes as a racemate. Upon coordination, the hydrazinylidenepyridine ligand is non-planar, an angle of 54.42 (7° being observed between the pyridine ring and the aromatic ring of the [2-(4-chlorophenylhydrazin-1-ylidene]ethyl group. In the crystal, a weak interionic N—H...Cl hydrogen bond is observed.

  10. N-{2-[2-(5-Methyl-1H-pyrazol-3-ylacetamido]phenyl}benzamide monohydrate

    Directory of Open Access Journals (Sweden)

    Karim Chkirate

    2017-02-01

    Full Text Available The asymmetric unit of the title compound, C19H18N4O2·H2O, comprises the U-shaped pyrazole derivative and a solvent water molecule. The molecular conformation is partly determined by an intramolecular N—H...O hydrogen bond. The crystal packing is directed by an extensive network of O—H...O, N—H...O, N—H...N and C—H...O hydrogen bonds together with C—H...π(ring contacts that generate a three-dimensional network.

  11. (Carbonato-κO,O')bis-(di-2-pyridyl-amine-κN,N')cobalt(III) bromide.

    Science.gov (United States)

    Czapik, Agnieszka; Papadopoulos, Christos; Lalia-Kantouri, Maria; Gdaniec, Maria

    2011-04-01

    In the title compound, [Co(CO(3))(C(10)H(9)N(3))(2)]Br, a distorted octa-hedral coordination of the Co(III) atom is completed by four N atoms of the two chelating di-2-pyridyl-amine ligands and two O atoms of the chelating carbonate anion. The di-2-pyridyl-amine ligands are nonplanar and the dihedral angles between the 2-pyridyl groups are 29.11 (9) and 37.15 (12)°. The coordination cation, which has approximate C(2) symmetry, is connected to the bromide ion via an N-H⋯Br(-) hydrogen bond. The ionic pair thus formed is further assembled into a dimer via N-H⋯O inter-actions about an inversion centre. A set of weaker C-H⋯O and C-H⋯Br(-) inter-actions connect the dimers into a three-dimensional network.

  12. 5-(2,4-Dichlorophenoxy-3-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde

    Directory of Open Access Journals (Sweden)

    S. Madan Kumar

    2016-07-01

    Full Text Available In the crystal structure of the title compound, C17H12Cl2N2O2, the pyrazole ring makes dihedral angles of 65.0 (2 and 43.9 (2° with the dichlorophenyl and phenyl rings, respectively. The dihedral angle between the chlorophenyl and phenyl rings is 59.1 (2°. In the crystal, the molecules are linked by C—H...O hydrogen bonds and weak C—Cl...π and C—H...π interactions, generating a three-dimensional network.

  13. Trichloridotris{N-[phenyl(pyridin-2-ylmethylidene]hydroxylamine-κ2N,N′}samarium(III

    Directory of Open Access Journals (Sweden)

    Yahong Li

    2012-03-01

    Full Text Available The SmIII ion in the title compound, [SmCl3(C12H10N2O3], shows a coordination number of nine with a slightly distorted tricapped trigonal prismatic geometry based on a Cl3N6 donor set. The molecular structure is stabilized by three intramolecular O—H...Cl hydrogen bonds.

  14. Modelling of phase equilibria in CH4–C2H6–C3H8–nC4H10–NaCl–H2O systems

    International Nuclear Information System (INIS)

    Li, Jun; Zhang, Zhigang; Luo, Xiaorong; Li, Xiaochun

    2015-01-01

    Highlights: • A new model was established for the phase equilibria of C1–C2C3–nC4–brine systems. • The model can reproduce of hydrocarbon–brine equilibria to high T&P and salinity. • The model can well predict H 2 O solubility in light hydrocarbon rich phases. - Abstract: A thermodynamic model is presented for the mutual solubility of CH 4 –C 2 H 6 –C 3 H 8 –nC 4 H 10 –brine systems up to high temperature, pressure and salinity. The Peng–Robinson model is used for non-aqueous phase fugacity calculations, and the Pitzer model is used for aqueous phase activity calculations. The model can accurately reproduce the experimental solubilities of CH 4 , C 2 H 6 , C 3 H 8 and nC 4 H 10 in water or NaCl solutions and H 2 O solubility in the non-aqueous phase. The experimental data of mutual solubility for the CH 4 –brine subsystem are sufficient for temperatures exceeding 250 °C, pressures exceeding 1000 bar and NaCl molalities greater than 6 molal. Compared to the CH 4 –brine system, the mutual solubility data of C 2 H 6 –brine, C 3 H 8 –brine and nC 4 H 10 –brine are not sufficient. Based on the comparison with the experimental data of H 2 O solubility in C 2 H 6 -, C 3 H 8 - or nC 4 H 10 -rich phases, the model has an excellent capability for the prediction of H 2 O solubility in hydrocarbon-rich phases, as these experimental data were not used in the modelling. Predictions of hydrocarbon solubility (at temperatures up to 200 °C, pressures up to 1000 bar and NaCl molalities greater than 6 molal) were made for the C 2 H 6 –brine, C 3 H 8 –brine and nC 4 H 10 –brine systems. The predictions suggest that increasing pressure generally increases the hydrocarbon solubility in water or brine, especially in the lower-pressure region. Increasing temperature usually decreases the hydrocarbon solubility at lower temperatures but increases the hydrocarbon solubility at higher temperatures. Increasing water salinity dramatically decreases

  15. Deep extractive and oxidative desulfurization of dibenzothiophene with C5H9NO·SnCl2 coordinated ionic liquid.

    Science.gov (United States)

    Li, Fa-tang; Kou, Cheng-guang; Sun, Zhi-min; Hao, Ying-juan; Liu, Rui-hong; Zhao, Di-shun

    2012-02-29

    A new C5H9NO·SnCl2 coordinated ionic liquid (IL) was prepared by reacting N-methyl-pyrrolidone with anhydrous SnCl2. Desulfurization of dibenzothiophene (DBT) via extraction and oxidation with C5H9NO·SnCl2 IL as extractant, H2O2 and equal mol of CH3COOH as oxidants was investigated. The Nernst partition coefficients k(N) of C5H9NO·SnCl2 IL for the DBT in n-octane was above 5.0, showing its excellent extraction ability. During the oxidative desulfurization process, the optimal molar ratio of H2O2/DBT was six. Sulfur removal of DBT in n-octane was 94.8% in 30 min at 30 °C under the conditions of H2O2/DBT molar ratio of six and V (IL):V (oil)=1:3. Moreover, the sulfur removal increased with increasing temperature because of the high reaction rate constant, low viscosity, and high solubility of dibenzothiophene-sulfone in the IL. The kinetics of oxidative desulfurization of DBT was also investigated, and the apparent activation energy was found to be 32.5 kJ/mol. The IL could be recycled six times without a significant decrease in activity. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Molecular characterization of H9N2 influenza virus isolated from mink and its pathogenesis in mink.

    Science.gov (United States)

    Peng, Li; Chen, Chen; Kai-yi, Han; Feng-xia, Zhang; Yan-li, Zhu; Zong-shuai, Ling; Xing-xiao, Zhang; Shi-jin, Jiang; Zhi-jing, Xie

    2015-03-23

    In mid-August 2013, two H9N2 influenza viruses, named A/mink/Shandong/F6/2013 (Mk/SD/F6/13) and A/mink/Shandong/F10/2013 (Mk/SD/F10/13), were isolated from lung samples of 2 of 45 farmed mink exhibiting respiratory signs in mideastern Shandong province, China. The seroprevalence of antibodies to H9N2 in mink was 20% (53/265). Based on sequence analysis, the eight nucleotide sequences showed 99.7-100% identity between Mk/SD/F6/13 and Mk/SD/F10/13. The HA, NP and NS genes of Mk/SD/F6/13 and Mk/SD/F10/13 were close to A/chicken/Zhejiang/329/2011 (H9N2), the NA and PB1 genes to A/duck/Hunan/S4111/2011 (H9N2), the PA and M genes to A/chicken/Shanghai/C1/2012 (H9N2). However, the PB2 genes had a close relationship with A/Turkey/California/189/66 (H9N2). Based on Sialic acid (SA) receptor detection, a range tissues of the mink demonstrated staining for MAA and/or SNA, and mink could serve as an intermediate host for influenza viruses with pandemic potential for the other animals. Experimental infection of mink demonstrated that mink could be infected by H9N2 influenza viruses and presented mild clinical signs, virus shedding and seroconversion, but no animals died of the disease. It implied that mammalian host-adapted avian H9N2 strains infected mink. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. meso-[5,5,7,12,12,14-Hexamethyl-1,4,8,11-tetraazacyclotetradeca-1(14,7-diene]nickel(II dibromide dihydrate

    Directory of Open Access Journals (Sweden)

    Feifei Shi

    2010-06-01

    Full Text Available The asymmetric unit of the title complex, [Ni(C16H32N4]Br2·2H2O, contains two [Ni(C16H32N4]2+ cations, four Br− anions and four uncoordinated H2O molecules. The Ni atoms are in a slightly distorted square-planar coordination by the four macrocyclic N atoms, which are almost coplanar [N—N—N—N torsion angles of 2.97 (6 and 3.12 (7°]. In the crystal, a network of N—H...Br, O—H...Br and N—H...O hydrogen bonds leads to the formation of a chain structure.

  18. Sodium arsenite represses the expression of myogenin in C2C12 mouse myoblast cells through histone modifications and altered expression of Ezh2, Glp, and Igf-1

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Gia-Ming [Environmental Toxicology Graduate Program, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States); Present address: The University of Chicago, Section of Hematology/Oncology, 900 E. 57th Street, Room 7134, Chicago, IL 60637 (United States); Bain, Lisa J., E-mail: lbain@clemson.edu [Environmental Toxicology Graduate Program, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States); Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States)

    2012-05-01

    Arsenic is a toxicant commonly found in water systems and chronic exposure can result in adverse developmental effects including increased neonatal death, stillbirths, and miscarriages, low birth weight, and altered locomotor activity. Previous studies indicate that 20 nM sodium arsenite exposure to C2C12 mouse myocyte cells delayed myoblast differentiation due to reduced myogenin expression, the transcription factor that differentiates myoblasts into myotubes. In this study, several mechanisms by which arsenic could alter myogenin expression were examined. Exposing differentiating C2C12 cells to 20 nM arsenic increased H3K9 dimethylation (H3K9me2) and H3K9 trimethylation (H3K9me3) by 3-fold near the transcription start site of myogenin, which is indicative of increased repressive marks, and reduced H3K9 acetylation (H3K9Ac) by 0.5-fold, indicative of reduced permissive marks. Protein expression of Glp or Ehmt1, a H3-K9 methyltransferase, was also increased by 1.6-fold in arsenic-exposed cells. In addition to the altered histone remodeling status on the myogenin promoter, protein and mRNA levels of Igf-1, a myogenic growth factor, were significantly repressed by arsenic exposure. Moreover, a 2-fold induction of Ezh2 expression, and an increased recruitment of Ezh2 (3.3-fold) and Dnmt3a (∼ 2-fold) to the myogenin promoter at the transcription start site (− 40 to + 42), were detected in the arsenic-treated cells. Together, we conclude that the repressed myogenin expression in arsenic-exposed C2C12 cells was likely due to a combination of reduced expression of Igf-1, enhanced nuclear expression and promoter recruitment of Ezh2, and altered histone remodeling status on myogenin promoter (− 40 to + 42). -- Highlights: ► Igf-1 expression is decreased in C2C12 cells after 20 nM arsenite exposure. ► Arsenic exposure alters histone remodeling on the myogenin promoter. ► Glp expression, a H3–K9 methyltransferase, was increased in arsenic-exposed cells. ► Ezh2

  19. Crystal structures, DFT calculations, and Hirshfeld surface analyses of two new copper(II) and nickel(II) Schiff base complexes derived from meso-1,2-diphenyl-1,2-ethylenediamine

    Science.gov (United States)

    Seifikar Ghomi, Leila; Behzad, Mahdi; Tarahhomi, Atekeh; Arab, Ali

    2017-12-01

    Two new Ni(II) and Cu(II) complexes of a tetradentate Schiff base ligand (1 and 2, respectively), derived from the condensation of meso-1,2-diphenyl-1,2-ethylenediamine with 2-hydroxy-6-methoxy benzaldehyde, were synthesized and characterized by IR, UV-Vis, 1H NMR spectroscopy, and X-Ray crystallography. The central metal ions in both complexes are coordinated via the N2O2 coordination sphere of the ligand with square-planar geometry. DFT results revealed that the Msbnd N and Msbnd O interactions (M = Ni, Cu) are weaker than the typical covalent single bond indicating that ionic and electrostatic interactions are dominated in Msbnd N and Msbnd O bonds. Hirshfeld surface (HS) analyses of the studied structures 1 and 2 have been performed. The study using 3D HSs and 2D fingerprint plots (FPs) highlighted the dominant contacts H⋯H, C⋯H/H⋯C and O⋯H/H⋯O in both structures, and H⋯Cl in 2. The molecular assemblies held by C⋯O/O⋯C (in 1) and C⋯C (in 1 and 2) type dipole-dipole interactions are also found in the crystal packing contributing towards stability. The significant contributions arising from the mentioned interactions in crystal packing are also revealed from the Hirshfeld surface FPs showing a major contribution to total HS area for the H⋯H contacts for both structures.

  20. Unexpected formation and crystal structure of tetrakis(1H-pyrazole-κN2palladium(II dichloride

    Directory of Open Access Journals (Sweden)

    Thomas Wagner

    2014-12-01

    Full Text Available The title salt, [Pd(C3H4N24]Cl2, was obtained unexpectedly by the reaction of palladium(II dichloride with equimolar amounts of 1-chloro-1-nitro-2,2,2-tris(pyrazolylethane in methanol solution. The Pd2+ cation is located on an inversion centre and has a square-planar coordination sphere defined by four N atoms of four neutral pyrazole ligands. The average Pd—N distance is 2.000 (2 Å. The two chloride anions are not coordinating to Pd2+. They are connected to the complex cations through N—H...Cl hydrogen bonds. In addition, C—H...Cl hydrogen bonds are observed, leading to a three-dimensional linkage of cations and anions.

  1. 2-(2,4-Dichlorophenyl-N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-ylacetamide

    Directory of Open Access Journals (Sweden)

    B. Narayana

    2013-01-01

    Full Text Available In the crystal structure of the title compound, C19H17Cl2N3O2, the molecules form dimers of the R22(10 type through N—H...O hydrogen bonding. As a result of steric repulsion, the amide group is rotated with respect to both the dichlorophenyl and 2,3-dihydro-1H-pyrazol-4-yl rings, making dihedral angles of 80.70 (13 and 64.82 (12°, respectively. The dihedral angle between the dichlorophenyl and 2,3-dihydro-1H-pyrazol-4-yl rings is 48.45 (5° while that between the 2,3-dihydro-1H-pyrazol-4-yl and phenyl rings is 56.33 (6°.

  2. N-(2-Chlorophenyl-2-methylbenzamide

    Directory of Open Access Journals (Sweden)

    B. Thimme Gowda

    2008-08-01

    Full Text Available In the structure of the title compound (N2CP2MBA, C14H12ClNO, the conformations of the N—H and C=O bonds are trans to each other. Furthermore, the conformation of the N—H bond is syn to the ortho-chloro group in the aniline ring and the C=O bond is syn to the ortho-methyl substituent in the benzoyl ring, similar to what is observed in 2-chloro-N-(2-chlorophenylbenzamide and 2-methyl-N-phenylbenzamide. The amide group makes almost the same dihedral angles of 41.2 (14 and 42.2 (13° with the aniline and benzoyl rings, respectively, while the dihedral angle between the benzoyl and aniline rings is only 7.4 (3°. The molecules in N2CP2MBA are packed into chains through N—H...O hydrogen bonds.

  3. Morphometric studies with attached mouse C3H/10T 1/2 cells

    International Nuclear Information System (INIS)

    Geard, C.R.; Harding, T.

    1981-01-01

    Studies of in vitro transformation using the Syrian hamster embryo cell system and the mouse C3H/10T 1/2 cell system form an integral part of this laboratory's activities. As part of the studies with the mouse cell line we have monitored the behavior of these cells in culture in order to ascertain those variables which might influence the expression of transformation. The study of transformed cells versus normal cells could lead to insight into an earlier definition of transformation that the clonal morphological change currently in use. This present report details the changes in cellular morphology with time in culture of normal mouse C3H/10T 1/2 cells from early passages (9 to 13) and x-ray transformed cells which have been maintained in culture for three years

  4. 2-(3-Methylphenyl-1,2-benzoselenazol-3(2H-one

    Directory of Open Access Journals (Sweden)

    Liyun Wang

    2017-04-01

    Full Text Available In the title ebselen derivative, C14H11NOSe, the nine-membered benzisoselenazolyl ring system is approximately planar (r.m.s. deviation = 0.021 Å. The dihedral angle between its mean plane and that of the 3-methylphenyl ring is 5.37 (11°. The five-membered isoselenazolyl ring is severely strained at the Se atom: Se—N = 1.889 (2 Å, Se—Car = 1.882 (3 Å and N—Se—Car = 83.30 (10°. In the crystal, molecules are linked by C—H...O hydrogen bonds and short intermolecular Se...O contacts of 2.6917 (19 Å, forming chains along the c-axis direction. Neighbouring molecules are linked by offset π–π interactions [intercentroid distance = 3.535 (2 Å]. The chains are also linked by C—H...π interactions, forming a three-dimensional structure.

  5. Testing the Effect of Internal Genes Derived from a Wild-Bird-Origin H9N2 Influenza A Virus on the Pathogenicity of an A/H7N9 Virus

    Directory of Open Access Journals (Sweden)

    Wen Su

    2015-09-01

    Full Text Available Since 2013, avian influenza A(H7N9 viruses have diversified into multiple lineages by dynamically reassorting with other viruses, especially H9N2, in Chinese poultry. Despite concerns about the pandemic threat posed by H7N9 viruses, little is known about the biological properties of H7N9 viruses that may recruit internal genes from genetically distinct H9N2 viruses circulating among wild birds. Here, we generated 63 H7N9 reassortants derived from an avian H7N9 and a wild-bird-origin H9N2 virus. Compared with the wild-type parent, 25/63 reassortants had increased pathogenicity in mice. A reassortant containing PB1 of the H9N2 virus was highly lethal to mice and chickens but was not transmissible to guinea pigs by airborne routes; however, three substitutions associated with adaptation to mammals conferred airborne transmission to the virus. The emergence of the H7N9-pandemic reassortant virus highlights that continuous monitoring of H7N9 viruses is needed, especially at the domestic poultry/wild bird interface.

  6. N,N-Diethylanilinium 2,4-dioxo-5-(2,4,6-trinitrophenyl-1,2,3,4-tetrahydropyrimidin-6-olate

    Directory of Open Access Journals (Sweden)

    Manickam Buvaneswari

    2011-12-01

    Full Text Available In the crystal structure of the title molecular salt, C10H16N+·C10H4N5O9−, the components are linked through a N—H...O hydrogen bonds. R22(8 ring motifs are formed between inversion-related barbiturate residues. Two intramoleculer N—H...O hydrogen bonds are observed in the anion. The dihedral angle between 2,4,6-trinitrophenyl and barbiturate rings is 53.6 (2°. The N,N-diethylamine substituent is disordered and was modeled as two geometrically equivalent conformers with occupancies of 0.737 (2 and 0.273 (2.

  7. Gold(I) Complexes with N-Donor Ligands. 2.(1) Reactions of Ammonium Salts with [Au(acac-kappaC(2))(PR(3))] To Give [Au(NH(3))L](+), [(AuL)(2)(&mgr;(2)-NH(2))](+), [(AuL)(4)(&mgr;(4)-N)](+), or [(AuL)(3)(&mgr;(3)-O)](+). A New and Facile Synthesis of [Au(NH(3))(2)](+) Salts. Crystal Structure of [{AuP(C(6)H(4)OMe-4)(3)}(3)(&mgr;(3)-O)]CF(3)SO(3).

    Science.gov (United States)

    Vicente, José; Chicote, María-Teresa; Guerrero, Rita; Jones, Peter G.; Ramírez De Arellano, M. Carmen

    1997-09-24

    The complexes [Au(acac-kappaC(2))(PR(3))] (acac = acetylacetonate, R = Ph, C(6)H(4)OMe-4) react with (NH(4))ClO(4) to give amminegold(I), [Au(NH(3))(PR(3))]ClO(4), amidogold(I), [(AuPR(3))(2)(&mgr;(2)-NH(2))]ClO(4), or nitridogold(I), [(AuPR(3))(4)(&mgr;(4)-N)]ClO(4), complexes, depending on the reaction conditions. Similarly, [Au(acac-kappaC(2))(PPh(3))] reacts with (NH(3)R')OTf (OTf = CF(3)SO(3)) (1:1) or with [H(3)N(CH(2))(2)NH(2)]OTf (1:1) to give (amine)gold(I) complexes [Au(NH(2)R')(PPh(3))]OTf (R' = Me, C(6)H(4)NO(2)-4) or [(AuPPh(3))(2){&mgr;(2)-H(2)N(CH(2))(2)NH(2)}](OTf)(2), respectively. The ammonium salts (NH(2)R'(2))OTf (R' = Et, Ph) react with [Au(acac-kappaC(2))(PR(3))] (R = Ph, C(6)H(4)OMe-4) (1:2) to give, after hydrolysis, the oxonium salts [(AuPR(3))(3)(&mgr;(3)-O)]OTf (R = Ph, C(6)H(4)OMe-4). When NH(3) is bubbled through a solution of [AuCl(tht)] (tht = tetrahydrothiophene), the complex [Au(NH(3))(2)]Cl precipitates. Addition of [Au(NH(3))(2)]Cl to a solution of AgClO(4) or TlOTf leads to the isolation of [Au(NH(3))(2)]ClO(4) or [Au(NH(3))(2)]OTf, respectively. The crystal structure of [(AuPR(3))(3)(&mgr;(3)-O)]OTf.Me(2)CO (R = C(6)H(4)OMe-4) has been determined: triclinic, space group P&onemacr;, a = 14.884(3) Å, b = 15.828(3) Å, c = 16.061(3) Å, alpha = 83.39(3) degrees, beta = 86.28(3) degrees, gamma = 65.54(3) degrees, R1 (wR2) = 0.0370 (0.0788). The [(AuPR(3))(3)(&mgr;(3)-O)](+) cation shows an essentially trigonal pyramidal array of three gold atoms and one oxygen atom with O-Au-P bond angles of ca. 175 degrees and Au.Au contacts in the range 2.9585(7)-3.0505(14) Å. These cations are linked into centrosymmetric dimers through two short Au.Au [2.9585(7), 3.0919(9) Å] contacts. The gold atoms of the dimer form a six-membered ring with a chair conformation.

  8. Influence of halogen substitution in the ligand sphere on the antitumor and antibacterial activity of half-sandwich ruthenium(II) complexes [RuX(η{sup 6}-arene)(C{sub 5}H{sub 4}N-2-cH=N-Ar)]{sup +}

    Energy Technology Data Exchange (ETDEWEB)

    Gichumbi, Joel M.; Omondi, Bernard; Friedrich, Holger B. [School of Chemistry, University of KwaZulu-Natal, Durban (South Africa); Lazarus, Geraldine; Singh, Moganavelli; Shaikh, Nazia; Chenia, Hafizah Y. [School of Life Sciences, University of KwaZulu-Natal, Durban (South Africa)

    2017-06-01

    New complexes [(η{sup 6}-p-cymene)Ru(C{sub 5}H{sub 4}N-2-CH=N-Ar)X]PF{sub 6} [X = Br (1), I (2); Ar = 4-fluorophenyl (a), 4-chlorophenyl (b), 4-bromophenyl (c), 4-iodophenyl (d), 2,5-dichlorophenyl (e)] were prepared, as well as 3a-3e (X = Cl) and the new complexes [(η{sup 6}-arene)RuCl(N-N)]PF{sub 6} [arene = C{sub 6}H{sub 5}OCH{sub 2}CH{sub 2}OH, N-N = 2,2{sup '}-bipyridine (4), 2,6-(dimethylphenyl)-pyridin-2-yl-methylene amine (5), 2,6-(diisopropylphenyl)-pyridin-2-yl-methylene amine (6); arene = p-cymene, N-N = 4-(aminophenyl)-pyridin-2-yl-methylene amine (7)]. X-ray diffraction studies were performed for 1a, 1b, 1c, 1d, 2b, 5, and 7. Cytotoxicities of 1a-1d and 2 were established versus human cancer cells epithelial colorectal adenocarcinoma (Caco-2) (IC{sub 50}: 35.8-631.0 μM), breast adenocarcinoma (MCF7) (IC{sub 50}: 36.3-128.8.0 μM), and hepatocellular carcinoma (HepG2) (IC{sub 50}: 60.6-439.8 μM), 3a-3e were tested against HepG2 and Caco-2, and 4-7 were tested against Caco-2. 1-7 were tested against non-cancerous human epithelial kidney cells. 1 and 2 were more selective towards tumor cells than the anticancer drug 5-fluorouracil (5-FU), but 3a-3e (X = Cl) were not selective. 1 and 2 had good activity against MCF7, some with lower IC{sub 50} than 5-FU. Complexes with X = Br or I had moderate activity against Caco-2 and HepG2, but those with Cl were inactive. Antibacterial activities of 1a, 2b, 3a, and 7 were tested against antibacterial susceptible and resistant Gram-negative and -positive bacteria. 1a, 2b, and 3a showed activity against methicillin-resistant S. aureus (MIC = 31-2000 μg.mL{sup -1}). (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Crystal structure of ({(1R,2R-N,N′-bis[(quinolin-2-ylmethyl]cyclohexane-1,2-diamine}chloridoiron(III-μ-oxido-[trichloridoferrate(III] chloroform monosolvate

    Directory of Open Access Journals (Sweden)

    Hannah Swift

    2017-07-01

    Full Text Available The first FeIII atom in the solvated title compound, [Fe2Cl4O(C26H28N4]·CHCl3, adopts a distorted six-coordinate octahedral geometry. It is coordinated by one chloride ligand, four N atoms from the (1R,2R-N,N′-bis[(quinolin-2-ylmethyl]cyclohexane-1,2-diamine ligand, and a bridging oxido ligand attached to the second FeIII atom, which is also bonded to three chloride ions. A very weak intramolecular N—H...Cl hydrogen bond occurs. In the crystal, the coordination complexes stack in columns, and a grouping of six such columns create channels, which are populated by disordered chloroform solvent molecules. Although the Fe—Cl bond lengths for the two metal atoms are comparable to the mean Fe—Cl bond lengths as derived from the Cambridge Structural Database, the Fe—O bond lengths are notably shorter. The solvent chloroform molecule exhibits `flip' disorder of the C—H moiety in a 0.544 (3:0.456 (3 ratio. The only directional interaction noted is a weak C—H...Cl hydrogen bond.

  10. Bis{μ-2,2′-[1,1′-(ethane-1,2-diyldinitrilodiethylidyne]diphenolato-κ5O,N,N′,O′:O}bis[chloridomanganese(III

    Directory of Open Access Journals (Sweden)

    Robert D. Pike

    2008-02-01

    Full Text Available The title compound, [Mn2(C18H18N2O22Cl2], was synthesized by the reaction between manganese(II o-chlorobenzoate and the Schiff base generated in situ by the condensation of ethane-1,2-diamine and o-hydroxyacetophenone. The centrosymmetric dimer contains two Jahn–Teller-distorted manganese(III ions, each in an octahedral geometry, connected through two phenoxy bridges from two ligands.

  11. Novel C-2 epimerization of aldoses promoted by nickel(II) diamine complexes, involving a stereospecific pinacol-type 1,2-carbon shift

    International Nuclear Information System (INIS)

    Tanase, Tomoaki; Shimizu, Fumihiko; Kuse, Manabu; Yano, Shigenobu; Hidai, Masanobu; Yoshikawa, Sadao

    1988-01-01

    The newly discovered C-2 epimerization of aldoses promoted by nickel(II) diamine complexes has been investigated in detail by using 13 C-enriched D-glucose, 13 C NMR spectroscopy, and EXAFS (extended x-ray absorption fine structure) analysis. Aldoses treated with nickel(II) diamine complexes (diamine = N,N,N'-trimethylethylenediamine (N,N,N'-Me 3 en), N,N,N',N'-tetramethylethylenediamine (N,N,N',N'-Me 4 en), etc.) in methanolic solutions were rapidly (60 degree C, 3-5 min) epimerized at C-2 to give equilibrium mixtures where the ratio of C-2 epimers shifts to the side of the naturally rare mannose-type aldoses (having the cis arrangement of C-2 and C-3 hydroxyl groups) compared with those in the thermodynamic equilibrium states. The epimerization product of D-[1- 13 C]glucose was exclusively D-[2- 13 C]mannose, demonstrating that the reaction involves a stereospecific 1,2-shift of the carbon skeleton resulting in inversion of configuration at C-2. Furthermore, the absorption and circular dichroism spectra of the reaction solutions indicated the presence of an intermediate nickel(II) complex containing both diamine and sugar components, which was directly revealed by EXAFS analysis to be a mononuclear nickel(II) complex having octahedral coordination geometry. All these observations strongly suggest that the C-2 epimerization proceeds through an intermediate mononuclear nickel(II) complex, where the carbinolamine-like adduct of aldose with diamine in an open-chain form is epimerized at C-2 by a stereospecific rearrangement of the carbon skeleton or a pinacol-type rearrangement involving a cyclic transition state. 44 refs., 5 figs., 4 tabs

  12. Avian influenza H9N2 seroprevalence among poultry workers in Pune, India, 2010.

    Science.gov (United States)

    Pawar, Shailesh D; Tandale, Babasaheb V; Raut, Chandrashekhar G; Parkhi, Saurabh S; Barde, Tanaji D; Gurav, Yogesh K; Kode, Sadhana S; Mishra, Akhilesh C

    2012-01-01

    Avian influenza (AI) H9N2 has been reported from poultry in India. A seroepidemiological study was undertaken among poultry workers to understand the prevalence of antibodies against AI H9N2 in Pune, Maharashtra, India. A total of 338 poultry workers were sampled. Serum samples were tested for presence of antibodies against AI H9N2 virus by hemagglutination inhibition (HI) and microneutralization (MN) assays. A total of 249 baseline sera from general population from Pune were tested for antibodies against AI H9N2 and were negative by HI assay using ≥40 cut-off antibody titre. Overall 21 subjects (21/338 = 6.2%) were positive for antibodies against AI H9N2 by either HI or MN assays using ≥40 cut-off antibody titre. A total of 4.7% and 3.8% poultry workers were positive for antibodies against AI H9N2 by HI and MN assay respectively using 40 as cut-off antibody titre. This is the first report of seroprevalence of antibodies against AI H9N2 among poultry workers in India.

  13. 5-[(E-(2-Hydroxybenzylideneamino]-1H-1,3-benzimidazole-2(3H-thione

    Directory of Open Access Journals (Sweden)

    Hoong-Kun Fun

    2011-01-01

    Full Text Available There are two molecules in the asymmetric unit of the title compound, C14H11N3OS. In each, the benzimidazole ring system is essentially planar, with maximum deviations of 0.010 (2 and 0.006 (2 Å, and makes dihedral angles of 8.70 (9 and 13.75 (8°, respectively, with the hydroxy-substituted benzene rings. Each molecule adopts an E configuration about the central C=N double bond. In the crystal, the two independent molecules are connected via intermolecular N—H...S hydrogen bonds, forming dimers. Furthermore, the dimers are connected by N—H...O hydrogen bonds into molecular ribbons along the c axis. There is an intramolecular O—H...N hydrogen bond in each molecule, which generates an S(6 ring motif.

  14. Synthesis, characterization, electrochemical investigation and antioxidant activities of a new hybrid cyclohexaphosphate: Cu1.5Li(C2H10N2)P6O18·7H2O

    Science.gov (United States)

    Sleymi, Samira; Lahbib, Karima; Rahmouni, Nihed; Rzaigui, Mohamed; Besbes-Hentati, Salma; Abid, Sonia

    2017-09-01

    A new organic-inorganic hybrid transition metal phosphate, Cu1.5Li(C2H10N2)P6O18·7H2O, has been prepared and characterized by X-ray diffraction, spectroscopy (infrared, Raman, diffuse reflectance and UV-Vis) and thermal analysis (TG). In addition, its electrochemical behaviors, as well as its antioxidant and antibacterial activities, have been investigated. Its structure is built up by the alternate linkages between copper and phosphate polyhedra, forming puckered layers with intersecting 12-membered rings, in which the ethylenediammonium cations reside. This compound is the first framework structure constructed from cyclohexaphosphates and three distinct copper cations. Cyclic voltammetry study in an acetonitrile solution reveals the facile anodic oxidation of its organic part on a platinum disk and a progressive growing of a thin film, though the repetitive cycling of potential. The title compound was tested for its in vitro antioxidant activities by 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2‧-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), Ferrous chelating ability (FIC) and Ferric Reducing Power (FRP) methods. The antioxidant activity of Cu1.5Li(C2H10N2)P6O18·7H2O was analyzed simultaneously with its antibacterial capacity against Escherichia coli, Salmonella typhimurium, Staphylococus aureus, Enterococcus feacium, Streptococcus agalactiae and Candida albicans. The tested compound showed significant antioxidant activities with low antibacterial properties.

  15. Competition between weak OH···π and CH··O hydrogen bonds: THz spectroscopy of the C2H2H2O and C2H4H2O complexes

    DEFF Research Database (Denmark)

    Andersen, Jonas; Heimdal, Jimmy; Nelander, B.

    2017-01-01

    -bonded configuration with the H2O subunit acting as the hydrogen bond donor to the π-cloud of C2H4. A (semi)-empirical value for the change of vibrational zero-point energy of 4.0–4.1 kJ mol−1 is proposed and the combination with quantum chemical calculations at the CCSD(T)-F12b/aug-cc-pVQZ level provides a reliable....... The present findings demonstrate that the relative stability of the weak hydrogen bond motifs is not entirely rooted in differences of electronic energy but also to a large extent by differences in the vibrational zero-point energy contributions arising from the class of large-amplitude intermolecular modes....... estimate of 7.1 ± 0.3 kJ mol−1 for the dissociation energy D0 of the C2H4—H2O complex. In addition, tentative assignments for the two strongly infrared active OH librational modes of the ternary C2H4—HOH—C2H4 complex having H2O as a doubly OH⋯π hydrogen bond donor are proposed at 213.6 and 222.3 cm−1...

  16. 2-(4-Fluoroanilino-3-(2-hydroxyethylquinazolin-4(3H-one

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available The molecular and crystal structures of the title compound, C16H14FN3O2, are stabilized by intramolecular N—H...O and intermolecular O—H...O hydrogen bonds. The existence of non-classical intramolecular C—H...N hydrogen bonds provides a dihedral angle between the fluoro-substituted benzene and pyrimidinone rings of 7.9 (1°.

  17. (Acetato-κO(aqua-κO(2-{bis[(3,5-dimethyl-1H-pyrazol-1-yl-κN2methyl]amino-κN}ethanol-κOnickel(II perchlorate monohydrate

    Directory of Open Access Journals (Sweden)

    Jia Zhou

    2012-04-01

    Full Text Available In the structure of the title complex, [Ni(CH3CO2(C14H23N5O(H2O]ClO4·H2O, the NiII centre has a distorted octahedral environment defined by one O and three N atoms derived from the tetradentate ligand, and two O atoms, one from a water molecule and the other from an acetate anion. The molecules are connected into a three-dimensional architecture by O—H...O hydrogen bonds. The perchlorate anion is disordered over two positions; the major component has a site-occupancy factor of 0.525 (19.

  18. 4-{(E-[2-(4-Iodobutoxybenzylidene]amino}-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H-one

    Directory of Open Access Journals (Sweden)

    Hoong-Kun Fun

    2010-07-01

    Full Text Available The title Schiff base compound, C22H24IN3O2, adopts an E configuration about the central C=N bond. The pyrazolone ring makes a dihedral angle of 49.68 (10° with its attached phenyl ring. The phenolate plane makes dihedral angles of 16.78 (9 and 50.54 (9°, respectively, with the pyrazolone ring and the terminal phenyl ring. An intramolecular C—H...O hydrogen bond generates an S(6 ring motif. In the crystal structure, an intermolecular C—H...O hydrogen bond is also observed.

  19. Fluoride induces apoptosis in H9c2 cardiomyocytes via the mitochondrial pathway.

    Science.gov (United States)

    Yan, Xiaoyan; Wang, Lu; Yang, Xia; Qiu, Yulan; Tian, Xiaolin; Lv, Yi; Tian, Fengjie; Song, Guohua; Wang, Tong

    2017-09-01

    Numerous studies have shown that chronic excessive fluoride intake can adversely affect different organ systems. In particular, the cardiovascular system is susceptible to disruption by a high concentration of fluoride. The objectives of this study were to explore the mechanism of apoptosis by detecting the toxic effects of different concentrations of sodium fluoride (NaF) in H9c2 cells exposed for up to 96 h. NaF not only inhibited H9c2 cell proliferation but also induced apoptosis and morphological damage. With increasing NaF concentrations, early apoptosis of H9c2 cells was increased while the mitochondrial membrane potential was decreased. Compared with the control group, the mRNA levels of caspase-3, caspase-9, and cytochrome c all increased with increasing concentrations of NaF. In summary, these data suggest that apoptosis is involved in NaF-induced H9c2 cell toxicity and that activation of the mitochondrial pathway may occur. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Structural studies of lanthanide nitrate-N,N'-dimethyl-N,N'-diphenylpyridine-2,6-dicarboxyamide complexes

    International Nuclear Information System (INIS)

    Fujiwara, Asako; Nakano, Yoshiharu; Yaita, Tsuyoshi; Okuno, Kenji

    2008-01-01

    The tridentate ligand N,N'-dimethyl-N,N'-diphenylpyridine-2,6-dicarboxyamide (DMDPhPDA) and the corresponding lanthanum complex [La(NO 3 ) 3 (DMDPhPDA) 2 ] have been prepared and structurally characterised. The crystal structure of DMDPhPDA shows syn-anti conformation. In the lanthanum complex, two DMDPhPDA molecules coordinated to La(III) in a tridentate fashion and to three nitrate ions in a bidentate fashion make the lanthanum atom 12-coordinate. The crystal structure of [La(NO 3 ) 3 (DMDPhPDA) 2 ] has a C 2 symmetry. The stability constants determined by spectrophotometric titration suggest that [Ln(DMDPhPDA) 2 ] 3+ is the primary product in CH 3 CN solution and [Ln(DMDPhPDA) 3 ] 3+ is difficult to form. However, [Ln(DMDPhPDA) 2 ] 3+ could not be distinguished in 1 H NMR spectra. The 1 H NMR titration results imply that a fast ligand exchange process takes place

  1. Comparison of the reactivity of 2-Li-C{sub 6}H{sub 4}CH{sub 2}NMe{sub 2} with MCl{sub 4} (M=Th, U). Isolation of a thorium aryl complex or a uranium benzyne complex

    Energy Technology Data Exchange (ETDEWEB)

    Seaman, Lani A.; Pedrick, Elizabeth A.; Wu, Guang; Hayton, Trevor W. [California Univ., Santa Barbara, CA (United States). Dept. of Chemistry and Biochemistry; Tsuchiya, Takashi; Jakubikova, Elena [North Carolina State Univ., Raleigh, NC (United States). Dept. of Chemistry

    2013-09-27

    Individualism under actinoids: The reaction of 2-Li-C{sub 6}H{sub 4}CH{sub 2}NMe{sub 2} with [MCl{sub 4} (dme) {sub n}] (M=Th, n=2; M=U, n=0) gives the thorium aryl complex [Th(2-C{sub 6}H{sub 4}CH{sub 2}NMe{sub 2}){sub 4}] or the uranium benzene complex Li[U(2,3-C{sub 6}H{sub 3}CH{sub 2}NMe{sub 2})(2-C{sub 6}H{sub 4}CH{sub 2}NMe{sub 2}){sub 3}]. A DFT analysis suggests that the formation of a benzyne complex with uranium but not with thorium is a kinetic and not thermodynamic effect. [German] Individualismus unter Actinoiden: Die Reaktion von 2-Li-C{sub 6}H{sub 4}CH{sub 2}NMe{sub 2} mit [MCl{sub 4} (dme) {sub n}] (M=Th, n=2; M=U, n=0) ergibt den Thoriumarylkomplex [Th(2-C{sub 6}H{sub 4}CH{sub 2}NMe{sub 2}){sub 4}] bzw. den Uranbenz-inkomplex Li[U(2,3-C{sub 6}H{sub 3}CH{sub 2}NMe{sub 2})(2-C{sub 6}H{sub 4}CH{sub 2}NMe{sub 2}){sub 3}]. Einer dichtefunktionaltheoretischen Analyse zufolge ist es kinetisch und nicht thermodynamisch bedingt, dass der Benz-inkomplex im Fall von Uran entsteht, nicht aber im Fall von Thorium.

  2. The Metabolic Effects of Traditional Chinese Medication Qiliqiangxin on H9C2 Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Shenghui Lin

    2015-11-01

    Full Text Available Background/Aims: A traditional Chinese medicine, Qiliqiangxin (QLQX has been identified to perform protective effects on myocardium energy metabolism in mice with acute myocardial infarction, though the effects of QLQX on myocardial mitochondrial biogenesis under physiological condition is still largely elusive. Methods: H9C2 cells were treated with different concentrations of QLQX (0.25, 0.5, and 1.0 µg/mL from 6 to 48 hours. Oxidative metabolism and glycolysis were measured by oxygen consumption and extracellular acidification with XF96 analyzer (SeaHorse. Mitochondrial content and ultrastructure were assessed by Mitotracker staining, confocal microscopy, flow cytometry, and transmission electron microscopy. Mitochondrial biogenesis-related genes were measured by qRT-PCR and Western blot. Results: H9C2 cells treated with QLQX exhibited increased glycolysis at earlier time points (6, 12, and 24 hours, while QLQX could enhance oxidative metabolism and mitochondrial uncoupling in H9C2 cells with longer duration of treatment (48 hours. QLQX also increased mitochondrial content and mitochondrial biogenesis-related gene expression levels, including 16sRNA, SSBP1, TWINKLE, TOP1MT and PLOG, with an activation of peroxisome proliferator-activated receptor coactivator 1 alpha (PGC-1α and its downstream effectors. Silencing PGC-1α could abolish the increased mitochondrial content in H9C2 cells treated with QLQX. Conclusion: Our study is the first to document enhanced metabolism in cardiomyocytes treated with QLQX, which is linked to increased mitochondrial content and mitochondrial biogenesis via activation of PGC-1α.

  3. Poly[dimethanolbis[μ-5-(3-pyridyltetrazolato-κ2N2:N5]copper(II

    Directory of Open Access Journals (Sweden)

    Xiao-Hong Wei

    2010-05-01

    Full Text Available In the crystal structure of the title complex, [Cu(C6H4N52(CH3OH2]n, the CuII cation lies on an inversion center and is coordinated by four 5-(3-pyridyltetrazolate anions and two methanol molecules in an elongated distorted CuN4O2 octahedral geometry. Each 5-(3-pyridyltetrazolate anion bridges two CuII cations, forming a two-dimensional polymeric complex with (4,4 network topology. In the crystal structure, the two-dimensional layers are connected by intermolecular O—H...N hydrogen bonding, forming a three-dimensional supramolecular architecture.

  4. Dichloridobis(4-methyl-3,5-diphenyl-1H-pyrazole-κN2copper(II

    Directory of Open Access Journals (Sweden)

    Moayad Hossaini Sadr

    2011-12-01

    Full Text Available The asymmetric unit of the title compound, [CuCl2(C16H14N22], comprises half of the complex. The CuII atom lies on a crystallographic twofold rotation axis and shows a significantly distorted tetrahedral coordination geometry. The dihedral angle between the phenyl rings is 74.3 (2°. The crystal structure is stabilized by intermolecular π–π interactions [centroid–centroid distances = 3.635 (2–3.803 (3 Å].

  5. 2-Amino-1-(2-carboxylatoethylpyrimidin-1-ium monohydrate

    Directory of Open Access Journals (Sweden)

    Christopher R. Sparrow

    2010-12-01

    Full Text Available In the title structure, C7H9N3O2·H2O, there are two formula units in the asymmetric unit. The molecule is a zwitterion, containing a quaternary N atom and a deprotonated carboxyl group, with C—O distances in the range 1.256 (2–1.266 (3 Å. The two independent molecules form a hydrogen-bonded R22(16 dimer about an approximate inversion center via N—H...O hydrogen bonds, with N...O distances of 2.766 (2 and 2.888 (2 Å. O—H...O hydrogen bonds involving the water molecules and additional N—H...O hydrogen bonds link these dimers, forming double chains.

  6. Methyl (9aR*,10S*,11R*,13aS*,13bS*-9-oxo-6,7,9,9a,10,11-hexahydro-5H,13bH-11,13a-epoxypyrrolo[2′,1′:3,4][1,4]diazepino[2,1-a]isoindole-10-carboxylate

    Directory of Open Access Journals (Sweden)

    Flavien A. A. Toze

    2011-11-01

    Full Text Available The title compound, C17H18N2O4, is the methyl ester of the adduct of intramolecular Diels–Alder reaction between maleic anhydride and 1-(2-furyl-2,3,4,5-tetrahydro-1H-pyrrolo[1,2-a][1,4]diazepine. The molecule comprises a fused pentacyclic system containing four five-membered rings (viz. pyrrole, 2-pyrrolidinone, tetrahydrofuran and dihydrofuran and one seven-membered ring (1,4-diazepane. The pyrrole ring is approximately planar (r.m.s. deviation = 0.003 Å while the 2-pyrrolidinone, tetrahydrofuran and dihydrofuran five-membered rings have the usual envelope conformations. The central seven-membered diazepane ring adopts a boat conformation. In the crystal, molecules are bound by weak intermolecular C—H...O hydrogen-bonding interactions into zigzag chains propagating in [010]. In the crystal packing, the chains are stacked along the a axis.

  7. Isolation of H5N6, H7N9 and H9N2 avian influenza A viruses from air sampled at live poultry markets in China, 2014 and 2015.

    Science.gov (United States)

    Zhou, Jie; Wu, Jie; Zeng, Xianqiao; Huang, Guofeng; Zou, Lirong; Song, Yingchao; Gopinath, Divya; Zhang, Xin; Kang, Min; Lin, Jinyan; Cowling, Benjamin J; Lindsley, William G; Ke, Changwen; Peiris, Joseph Sriyal Malik; Yen, Hui-Ling

    2016-09-01

    Zoonotic infections by avian influenza viruses occur at the human-poultry interface, but the modes of transmission have not been fully investigated. We assessed the potential for airborne and fomite transmission at live poultry markets in Guangzhou city and in Hong Kong Special Administrative Region (SAR), China, during 2014 and 2015. Viral genome and infectious avian influenza A viruses of H5N6, H7N9, and H9N2 subtypes were detected predominantly from particles larger or equal to 1 μm in diameter in the air sampled with cyclone-based bioaerosol samplers at the live poultry markets in Guangzhou. Influenza A(H9N2) viruses were ubiquitously isolated every month during the study period from air and environmental swabs, and different lineages of H9N2 virus were isolated from markets where chickens and minor land-based poultry were sold. The use of de-feathering devices increased the quantity of virus-laden airborne particles while market closure reduced the amount of such particles. The results highlight the possibility of airborne transmission of avian influenza viruses among poultry or from poultry to humans within such settings. This may explain epidemiological observations in which some patients with H7N9 infection reported being in markets but no direct contact with live poultry or poultry stalls. This article is copyright of The Authors, 2016.

  8. (Dimethylformamide-κO(2-hydroxybenzoato-κ2O1,O1′[tris(1-methyl-1H-benzimidazol-2-ylmethyl-κN3amine-κN]manganese(II perchlorate dimethylformamide monosolvate

    Directory of Open Access Journals (Sweden)

    Baoliang Qi

    2010-10-01

    Full Text Available In the title complex, [Mn(C7H5O3(C27H27N7(C3H7NO]ClO4·C3H7NO, the MnII ion is coordinated in a slightly distorted monocapped trigonal-prismatic geometry. The tris(1-methyl-1H-benzimidazol-2-ylmethylamine (Mentb ligand coordinates in a tetradentate mode and the coordination is completed by a bis-chelating salicylate ligand and a dimethylformamide ligand. The hydroxy group and the ortho H atoms of the salicylate ligand were refined as disordered over two sites with occupancies of 0.581 (8 and 0.419 (8. Both disorder components of the hydroxy group form intramolecular O—H...O hydrogen bonds.

  9. Synthesis and X-ray structure of the dysprosium(III complex derived from the ligand 5-chloro-1,3-diformyl-2-hydroxybenzene-bis-(2-hydroxybenzoylhydrazone [Dy2(C22H16ClN4O53](SCN 3.(H2O.(CH3OH

    Directory of Open Access Journals (Sweden)

    Aliou H. Barry

    2003-12-01

    Full Text Available The title compound [Dy2(C22H16ClN4O53](SCN 3.(H2O.(CH3OH has been synthesized and its crystal structure determined by single X-ray diffraction at room temperature. The two nine coordinated Dy(III are bound to three macromolecules ligand through the phenolic oxygens of the p-chlorophenol moieties, the nitrogen atoms and the carbonyl functions of the hydrazonic moieties. The phenolic oxygen atoms of the 2-hydroxybenzoyl groups are not bonded to the metal ions. In the bases of the coordination polyhedra the six Dy-N bonds are in the range 2.563(13-2.656(13 Å and the twelve Dy-O bonds are in the range 2.281(10-2.406(10 Å.

  10. Cucurbit[6]uril p-xylylenediammonium diiodide decahydrate inclusion complex

    Directory of Open Access Journals (Sweden)

    Wei-Hao Huang

    2008-07-01

    Full Text Available The title inclusion complex, C36H36N24O12·C8H14N22+·2I−·10H2O, displays a large ellipsoidal deformation of the cucurbit[6]uril (CB[6] skeleton upon complex formation. The benzene ring of the cation is rotationally disordered between two orientations in a ratio of 3:1. The solvent H2O molecules form a hydrogen-bonded network by interaction with the carbonyl groups of CB[6] and the I− counterions. The crystal studied exhibited non-merohedral twinning. Both CB[6] and the cation are centrosymmetric.

  11. Novel decavanadate cluster complexes [H2V10O28][LH]4·nH2O (L = Imidazole, n = 2 or 2-methylimidazole, n = 0): Preparation, characterization and genotoxic studies

    Science.gov (United States)

    Siddiqi, Zafar A.; Anjuli; Sharma, Prashant K.; Shahid, M.; Khalid, Mohd.; Siddique, Armeen; Kumar, Sarvendra

    2012-12-01

    The title complexes were obtained from the reaction of VOSO4 with imidazole or 2-methyl imidazole in presence of adipic acid/iminodiacetic acid. X-ray crystallographic investigations on [H2V10O28](2-MeImzH)4 (2) revealed a strong interaction between decavanadate anion and the protonated ligand moieties as counter cations to stabilize the crystal motif resulting in a high symmetry 2D sheet network. The cyclic voltammetry of (2) suggested formation of a quasi-reversible redox (VV/IV) couple in the solution. The genotoxic studies employing single cell gel electrophoresis (comet assay) confirmed the non-toxic nature of the compounds.

  12. Impaired ALDH2 activity decreases the mitochondrial respiration in H9C2 cardiomyocytes.

    Science.gov (United States)

    Mali, Vishal R; Deshpande, Mandar; Pan, Guodong; Thandavarayan, Rajarajan A; Palaniyandi, Suresh S

    2016-02-01

    Reactive oxygen species (ROS)-mediated reactive aldehydes induce cellular stress. In cardiovascular diseases such as ischemia-reperfusion injury, lipid-peroxidation derived reactive aldehydes such as 4-hydroxy-2-nonenal (4HNE) are known to contribute to the pathogenesis. 4HNE is involved in ROS formation, abnormal calcium handling and more importantly defective mitochondrial respiration. Aldehyde dehydrogenase (ALDH) superfamily contains NAD(P)(+)-dependent isozymes which can detoxify endogenous and exogenous aldehydes into non-toxic carboxylic acids. Therefore we hypothesize that 4HNE afflicts mitochondrial respiration and leads to cell death by impairing ALDH2 activity in cultured H9C2 cardiomyocyte cell lines. H9C2 cardiomyocytes were treated with 25, 50 and 75 μM 4HNE and its vehicle, ethanol as well as 25, 50 and 75 μM disulfiram (DSF), an inhibitor of ALDH2 and its vehicle (DMSO) for 4 h. 4HNE significantly decreased ALDH2 activity, ALDH2 protein levels, mitochondrial respiration and mitochondrial respiratory reserve capacity, and increased 4HNE adduct formation and cell death in cultured H9C2 cardiomyocytes. ALDH2 inhibition by DSF and ALDH2 siRNA attenuated ALDH2 activity besides reducing ALDH2 levels, mitochondrial respiration and mitochondrial respiratory reserve capacity and increased cell death. Our results indicate that ALDH2 impairment can lead to poor mitochondrial respiration and increased cell death in cultured H9C2 cardiomyocytes. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. 3-Chloro-2-ethyl-6-nitro-2H-indazole

    Directory of Open Access Journals (Sweden)

    Mohamed Mokhtar Mohamed Abdelahi

    2017-05-01

    Full Text Available In the title compound, C9H8ClN3O2, the orientation of the ethyl substituent is partly determined by an intramolecular C—H...Cl hydrogen bond. The indazole moiety is slightly folded with an angle of 0.70 (8° between the five- and six-membered rings. In the crystal, molecules pack in layers parallel to [100] through C—H...π(ring and N...;O...π(ring interactions.

  14. Bis(2,6-dihydroxybenzoato-κ2O1,O1′(nitrato-κ2O,O′bis(1,10-phenanthroline-κ2N,N′cerium(III

    Directory of Open Access Journals (Sweden)

    Hongxiao Jin

    2011-01-01

    Full Text Available The mononuclear title complex, [Ce(C7H5O32(NO3(C12H8N22], is isostructural to other related lanthanide structures. The Ce atom is in a pseudo-bicapped square-antiprismatic geometry formed by four N atoms from two chelating 1,10-phenanthroline (phen ligands and by six O atoms, four from two 2,6-dihydroxybenzoate (DHB ligands and the other two from a nitrate anion. π–π stacking interactions between phen and DHB ligands [centroid–centroid distances = 3.513 (3 and 3.762 (2 Å] and phen and phen ligands [face-to-face separation = 3.423 (7 Å] of adjacent complexes stabilize the crystal structure. Intramolecular O—H...O hydrogen bonds are observed in the DHB ligands.

  15. Tris(2,2′-bipyridine-κ2N,N′cobalt(III bis[bis(pyridine-2,6-dicarboxylato-κ3O2,N,O6cobaltate(III] perchlorate dimethylformamide hemisolvate 1.3-hydrate

    Directory of Open Access Journals (Sweden)

    Irina A. Golenya

    2012-10-01

    Full Text Available In the title compound, [Co(C10H8N23][Co(C7H3NO42]2(ClO4·0.5C3H7NO·1.3H2O, the CoIII atom in the complex cation is pseudooctahedrally coordinated by six N atoms of three chelating bipyridine ligands. The CoIII atom in the complex anion is coordinated by two pyridine N atoms and four carboxylate O atoms of two doubly deprotonated pyridine-2,6-dicarboxylate ligands in a distorted octahedral geometry. One dimethylformamide solvent molecule and two water molecules are half-occupied and one water molecule is 0.3-occupied. O—H...O hydrogen bonds link the water molecules, the perchlorate anions and the complex anions. π–π interactions between the pyridine rings of the complex anions are also observed [centroid–centroid distance = 3.804 (3 Å].

  16. Versatile deprotonated NHC: C,N-bridged dinuclear iridium and rhodium complexes

    Directory of Open Access Journals (Sweden)

    Albert Poater

    2016-01-01

    Full Text Available Bearing the versatility of N-heterocyclic carbene (NHC ligands, here density functional theory (DFT calculations unravel the capacity of coordination of a deprotonated NHC ligand (pNHC to generate a doubly C2,N3-bridged dinuclear complex. Here, in particular the discussion is based on the combination of the deprotonated 1-arylimidazol (aryl = mesityl (Mes with [M(cod(μ-Cl] (M = Ir, Rh generated two geometrical isomers of complex [M(cod{µ-C3H2N2(Mes-κC2N3}]2. The latter two isomers display conformations head-to-head (H-H and head-to-tail (H-T of CS and C2 symmetry, respectively. The isomerization from the H-H to the H-T conformation is feasible, whereas next substitutions of the cod ligand by CO first, and PMe3 later confirm the H-T coordination as the thermodynamically preferred. It is envisaged the exchange of the metal, from iridium to rhodium, confirming here the innocence of the nature of the metal for such arrangements of the bridging ligands.

  17. N-(2,4-Dichlorophenyl-1,3-thiazol-2-amine

    Directory of Open Access Journals (Sweden)

    Ayesha Babar

    2012-09-01

    Full Text Available In the title molecule, C9H6Cl2N2S, the mean planes of the benzene and thiazole rings make a dihedral angle of 54.18 (8°. In the crystal, molecules are joined into dimers with an R22(8 ring motif by pairs of N—H...N hydrogen bonds. These dimers are linked by C—H...Cl interactions into layers parallel to (011. The thiazole rings form columns along the c-axis direction, with a centroid–centroid separation of 3.8581 (9 Å, indicating π–π interactions. An intramolecular C—H...S contact also occurs.

  18. Combined treatment of organic material in oilfield fracturing wastewater by coagulation and UV/H2O2/ferrioxalate complexes process.

    Science.gov (United States)

    Ge, Dan

    2018-02-01

    Organic material is considered to be a main component of oilfield fracturing wastewater (OFW). This work is intended to optimize the experimental conditions for the maximum oxidative degradation of organic material by coagulation and the UV/H 2 O 2 /ferrioxalate complexes process. Optimal reaction conditions are proposed based on the chemical oxygen demand (COD) removal efficiency. The overall removal efficiency of COD reached 83.8% when the dilution ratio of raw wastewater was 1:2, the pH was 4 and the FeCl 3 loading was 1,000 mg/L in the coagulation process; the dosage of H 2 O 2 (30%,v/v) was 0.6% (v/v) and added in three steps, the n(H 2 O 2 )/n(Fe 2+ ) was 2:1, n(Fe 2+ )/n(C 2 O 4 2- ) was 3:1 and the pH was 4 in the UV/H 2 O 2 /ferrioxalate complexes process; the pH was adjusted to 8.5-9 with NaOH and then 2 mg/L of cationic polyacrylamide (CPAM) was added in the neutralization and flocculation process. The decrease in COD during the coagulation process reduced the required H 2 O 2 dosage and improve efficiency in the subsequent UV/H 2 O 2 /ferrioxalate complexes process. Furthermore, there was a significant increase of 13.4% in the COD removal efficiency with the introduction of oxalate compared with UV/Fenton. Experimental results show that the coagulation and UV/H 2 O 2 /ferrioxalate complexes process could efficiently remove the organic material dissolved in OFW. An optimal combination of these parameters produced treated wastewater that met the GB8978-1996' Integrated Wastewater Discharge Standard' level III emission standard.

  19. 4,10-Diallyloxy-1,2,3,6b,7,8,9,12b-octahydroperylene

    Directory of Open Access Journals (Sweden)

    Terrill D. Smith

    2010-01-01

    Full Text Available In the title compound, C26H28O2, the central atoms are coplanar, with the –CH2—CH2– links of the cyclohexene groups lying to either side of the plane and with the diallyloxy residues twisted out of this plane [C—C—O—C torsion angles = 16.6 (3 and −13.9 (3°]. In the crystal structure, molecules are connected into chains propagating in [100] via C—H...π interactions.

  20. Crystal structure of triaqua(2,6-dimethylpyrazine-κN4bis(thiocyanato-κNmanganese(II 2,5-dimethylpyrazine disolvate

    Directory of Open Access Journals (Sweden)

    Stefan Suckert

    2015-12-01

    Full Text Available In the crystal structure of the title complex, [Mn(NCS2(C6H8N2(H2O3]·2C6H8N2, the MnII cation is coordinated by two terminally N-bonded thiocyanate anions, three water molecules and one 2,6-dimethylpyrazine ligand within a slightly distorted N3O3 octahedral geometry; the entire complex molecule is generated by the application of a twofold rotation axis. The asymmetric unit also contains an uncoordinating 2,5-dimethylpyrazine ligand in a general position. Obviously, the coordination to the 2,6-dimethylpyrazine ligand is preferred because coordination to the 2,5-dimethylpyrazine is hindered due to the bulky methyl group proximate to the N atom. The discrete complexes are linked by water-O—H...N(2,6-dimethylpyzazine/2,5-dimethylpyzazine hydrogen bonding, forming a three-dimensional network. In the crystal, molecules are arranged in a way that cavities are formed in which unspecified, disordered solvent molecules reside. These were modelled employing the SQUEEZE routine in PLATON [Spek (2015. Acta Cryst. C71, 9–18]. The composition of the unit cell does not take into account the presence of the unspecified solvent.

  1. Crystal structure of 2-cyano-N-(furan-2-ylmethylacetamide

    Directory of Open Access Journals (Sweden)

    Shivanna Subhadramma

    2015-07-01

    Full Text Available In the title compound, C8H8N2O2, the acetamide unit is inclined to the furan ring by 76.7 (1°. In the crystal, molecules are linked by N—H...O and C—H...O hydrogen bonds, generating C(4 chains along [100]. The carbonyl O atom is a bifurcated acceptor and an R12(6 ring is formed.

  2. Bis{2-[(pyridin-2-ylmethylideneamino]benzoato-κ3N,N′,O}chromium(III nitrate monohydrate

    Directory of Open Access Journals (Sweden)

    Elena A. Buvaylo

    2014-04-01

    Full Text Available The title complex salt hydrate, [Cr(C13H9N2O22]NO3·H2O, comprises discrete cations, nitrate anions and solvent water molecules. The CrIII atom is octahedrally coordinated by two anionic Schiff base ligands with the O atoms being cis. The two ligands differ significantly with dihedral angles between the pyridine and benzene rings of 4.8 (2 and 24.9 (2°. The nitrate anion and solvent water molecule were modelled as being disordered, with the major components having site-occupancy values of 0.856 (14 and 0.727 (16, respectively. The crystal is built of alternating layers of cations and of anions plus water molecules, stacked along the c axis.

  3. Um estudo teórico de propriedades moleculares em complexos de hidrogênio trimoleculares C2H4···2HF, C2H2···2HF e C3h6···2HF A theoretical study of molecular properties of C2H4···2HF, C2H2···2HF AND C3H6···2HF trimolecular hydrogen-bonded complexes

    Directory of Open Access Journals (Sweden)

    Boaz G. Oliveira

    2008-01-01

    Full Text Available We present a theoretical study of molecular properties in C2H4···2HF, C2H2···2HF and C3H6···2HF trimolecular hydrogen-bonded complexes. From B3LYP/6-311++G(d,p calculations, the most important structural deformations are related to the C=C (C2H4, C≡C (C2H2, C-C (C3H6 and HF bond lengths. According to the Bader's atoms in molecules and CHELPG calculations, it was identified a tertiary interaction between the fluorine atom of the second hydrofluoric acid molecule and hydrogen atoms of the ethylene and acetylene within the C2H4···2HF and C2H2···2HF complexes, respectively. Additionally, the evaluation of the infrared spectrum characterized the new vibrational modes and bathochromic effect of the HF molecules.

  4. Cyanide bridged hetero-metallic polymeric complexes: Syntheses, vibrational spectra, thermal analyses and crystal structures of complexes [M(1,2-dmi)2Ni(μ-CN)4]n (M = Zn(II) and Cd(II))

    Science.gov (United States)

    Kürkçüoğlu, Güneş Süheyla; Sayın, Elvan; Şahin, Onur

    2015-12-01

    Two cyanide bridged hetero-metallic complexes of general formula, [M(1,2-dmi)2Ni(μ-CN)4]n (1,2-dmi = 1,2-dimethylimidazole and M = Zn(II) or Cd(II)) have been synthesized and characterized by vibrational (FT-IR and Raman) spectroscopy, single crystal X-ray diffraction, thermal analyses and elemental analyses. The crystallographic analyses reveal that the complexes, [Zn(1,2-dmi)2Ni(μ-CN)4] (1) and [Cd(1,2-dmi)2Ni(μ-CN)4] (2), have polymeric 2D networks. In the complexes, four cyanide groups of [Ni(CN)4]2- coordinated to the adjacent M(II) ions and distorted octahedral geometries of complexes are completed by two nitrogen atoms of trans 1,2-dmi ligands. The structures of 1 and 2 are similar and linked via intermolecular hydrogen bonding, C-H⋯Ni interactions to give rise to 3D networks. Vibration assignments are given for all the observed bands and the spectral features also supported to the crystal structures of heteronuclear complexes. The FT-IR and Raman spectra of the complexes are very much consistent with the structural data presented.

  5. 3,3'-[(E-eten-1,2-diil]di(9-heksil-9H-karbazol bileşiğinin sentezi, X-ışını yapı tayini ve teorik yapı tahmini

    Directory of Open Access Journals (Sweden)

    Erol Asker

    2016-08-01

    Full Text Available 3,3'-[(E-eten-1,2-diil]di(9-heksil-9H-karbazol bileşiği 9H-karbazoldan çıkarak üç basamakta sentezlenmiş ve yapısı spektroskopik yöntemlerle aydınlatılmıştır. Kristal yapısı monoklinik uzay grubu P21/c'de çözülmüş ve geometrik özellikleri yarı-deneysel PM7 ve teorik DFT/B3LYP hesaplamalarla elde edilen verilerle karşılaştırılmıştır. DFT hesapsal sonuçlar ile X-ışını kırınımı deneysel sonuçlar arasında yüksek korelasyon belirlenmiştir. Kristal yapıdaki moleküller arası etkileşimler hesaplanan öncü orbitallerle açıklanmaya çalışılmıştır.

  6. Oxidative degradation of the organometallic iron(II) complex [Fe{bis[3-(pyridin-2-yl)-1H-imidazol-1-yl]methane}(MeCN)(PMe3)](PF6)2: structure of the ligand decomposition product trapped via coordination to iron(II).

    Science.gov (United States)

    Haslinger, Stefan; Pöthig, Alexander; Cokoja, Mirza; Kühn, Fritz E

    2015-12-01

    Iron is of interest as a catalyst because of its established use in the Haber-Bosch process and because of its high abundance and low toxicity. Nitrogen-heterocyclic carbenes (NHC) are important ligands in homogeneous catalysis and iron-NHC complexes have attracted increasing attention in recent years but still face problems in terms of stability under oxidative conditions. The structure of the iron(II) complex [1,1'-bis(pyridin-2-yl)-2,2-bi(1H-imidazole)-κN(3)][3,3'-bis(pyridin-2-yl-κN)-1,1'-methanediylbi(1H-imidazol-2-yl-κC(2))](trimethylphosphane-κP)iron(II) bis(hexafluoridophosphate), [Fe(C17H14N6)(C16H12N6)(C3H9P)](PF6)2, features coordination by an organic decomposition product of a tetradentate NHC ligand in an axial position. The decomposition product, a C-C-coupled biimidazole, is trapped by coordination to still-intact iron(II) complexes. Insights into the structural features of the organic decomposition products might help to improve the stability of oxidation catalysts under harsh conditions.

  7. Endocytosis‒Mediated Invasion and Pathogenicity of Streptococcus agalactiae in Rat Cardiomyocyte (H9C2).

    Science.gov (United States)

    Pooja, Sharma; Pushpanathan, Muthuirulan; Gunasekaran, Paramasamy; Rajendhran, Jeyaprakash

    2015-01-01

    Streptococcus agalactiae infection causes high mortality in cardiovascular disease (CVD) patients, especially in case of setting prosthetic valve during cardiac surgery. However, the pathogenesis mechanism of S. agalactiae associate with CVD has not been well studied. Here, we have demonstrated the pathogenicity of S. agalactiae in rat cardiomyocytes (H9C2). Interestingly, both live and dead cells of S. agalactiae were uptaken by H9C2 cells. To further dissect the process of S. agalactiae internalization, we chemically inhibited discrete parts of cellular uptake system in H9C2 cells using genistein, chlorpromazine, nocodazole and cytochalasin B. Chemical inhibition of microtubule and actin formation by nocodazole and cytochalasin B impaired S. agalactiae internalization into H9C2 cells. Consistently, reverse‒ transcription PCR (RT‒PCR) and quantitative real time‒PCR (RT-qPCR) analyses also detected higher levels of transcripts for cytoskeleton forming genes, Acta1 and Tubb5 in S. agalactiae‒infected H9C2 cells, suggesting the requirement of functional cytoskeleton in pathogenesis. Host survival assay demonstrated that S. agalactiae internalization induced cytotoxicity in H9C2 cells. S. agalactiae cells grown with benzyl penicillin reduced its ability to internalize and induce cytotoxicity in H9C2 cells, which could be attributed with the removal of surface lipoteichoic acid (LTA) from S. agalactiae. Further, the LTA extracted from S. agalactiae also exhibited dose‒dependent cytotoxicity in H9C2 cells. Taken together, our data suggest that S. agalactiae cells internalized H9C2 cells through energy‒dependent endocytic processes and the LTA of S. agalactiae play major role in host cell internalization and cytotoxicity induction.

  8. H9N2 low pathogenic avian influenza in Pakistan (2012-2015)

    Science.gov (United States)

    Significant economic losses from deaths and decreased egg production have resulted from H9N2 low pathogenic avian influenza virus (LPAIV) infections in poultry across North Africa, the Middle East and Asia. The H9N2 LPAIVs have been endemic in Pakistani poultry since 1996, but no new viruses have be...

  9. Cascade alkylarylation of substituted N-allylbenzamides for the construction of dihydroisoquinolin-1(2H-ones and isoquinoline-1,3(2H,4H-diones

    Directory of Open Access Journals (Sweden)

    Ping Qian

    2016-02-01

    Full Text Available An oxidative reaction for the synthesis of 4-alkyl-substituted dihydroisoquinolin-1(2H-ones with N-allylbenzamide derivatives as starting materials has been developed. The radical alkylarylation reaction proceeds through a sequence of alkylation and intramolecular cyclization. The substituent on the C–C double bond was found to play a key role for the progress of the reaction to give the expected products with good chemical yields. Additionally, N-methacryloylbenzamides were also suitable substrates for the current reaction and provided the alkyl-substituted isoquinoline-1,3(2H,4H-diones in good yield.

  10. Bis(1,10-phenanthroline-κ2N,N′(sulfato-κ2O,O′cobalt(II butane-2,3-diol monosolvate

    Directory of Open Access Journals (Sweden)

    Shi-Juan Wang

    2011-04-01

    Full Text Available In the title compound, [Co(SO4(C12H8N22]·C4H10O2, the Co2+ ion has a distorted octahedral coordination environment composed of four N atoms from two chelating 1,10-phenanthroline ligands and two O atoms from an O,O′-bidentate sulfate anion. The dihedral angle between the two chelating N2C2 groups is 83.48 (1°. The Co2+ ion, the S atom and the mid-point of the central C—C bond of the butane-2,3-diol solvent molecule are situated on twofold rotation axes. The molecules of the complex and the solvent molecules are held together by pairs of symmetry-related O—H...O hydrogen bonds with the uncoordinated O atoms of the sulfate ions as acceptors. The solvent molecule is disordered over two sets of sites with site occupancies of 0.40 and 0.60.

  11. (1,6,7,12-Tetraazaperylene-κ2N,N′bis(4,4′,5,5′-tetramethyl-2,2′-bipyridyl-κ2N,N′ruthenium(II bis(hexafluoridophosphate acetonitrile trisolvate

    Directory of Open Access Journals (Sweden)

    Thomas Brietzke

    2014-06-01

    Full Text Available In the title compound, rac-[Ru(C14H16N22(C16H8N4](PF62·3C2H3N, discrete dimers of complex cations, [Ru(tmbpy2tape]2+, of opposite chirality are formed (tmbpy = tetramethylbipyridine; tape = tetraazaperylene, held together by π–π stacking interactions between the tetraazaperylene moieties with centroid–centroid distances in the range 3.563 (3–3.837 (3 Å. These interactions exhibit a parallel displaced π–π stacking mode. Additional weak C—H...π-ring and C—H...N and C—H...F interactions are found, leading to a three-dimensional architecture. The RuII atom is coordinated in a distorted octahedral geometry. The counter-charge is provided by two hexafluoridophosphate anions and the asymmetric unit is completed by three acetonitrile solvent molecules of crystallization. Four F atoms of one PF6− anion are disordered over three sets of sites with occupancies of 0.517 (3:0.244 (3:0.239 (3. Two acetonitrile solvent molecules are highly disordered and their estimated scattering contribution was subtracted from the observed diffraction data using the SQUEEZE option in PLATON [Spek (2009. Acta Cryst. D65, 148–155].

  12. The {sup 12}C/{sup 13}C Ratio in Sgr B2(N): Constraints for Galactic Chemical Evolution and Isotopic Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Halfen, D. T.; Ziurys, L. M. [Department of Chemistry and Biochemistry, University of Arizona, 1305 E. 4th Street, Tucson, AZ 85719 (United States); Woolf, N. J., E-mail: halfend@email.arizona.edu [Department of Astronomy, Arizona Radio Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

    2017-08-20

    A study has been conducted of {sup 12}C/{sup 13}C ratios in five complex molecules in the Galactic center. H{sub 2}CS, CH{sub 3}CCH, NH{sub 2}CHO, CH{sub 2}CHCN, and CH{sub 3}CH{sub 2}CN and their {sup 13}C-substituted species have been observed in numerous transitions at 1, 2, and 3 mm, acquired in a spectral-line survey of Sgr B2(N), conducted with the telescopes of the Arizona Radio Observatory (ARO). Between 22 and 54 individual, unblended lines for the {sup 12}C species and 2–54 for {sup 13}C-substituted analogs were modeled in a global radiative transfer analysis. All five molecules were found to consistently exhibit two velocity components near V {sub LSR} ∼ 64 and 73 km s{sup −1}, with column densities ranging from N {sub tot} ∼ 3 × 10{sup 14} − 4 × 10{sup 17} cm{sup −2} and ∼2 × 10{sup 13} − 1 × 10{sup 17} cm{sup −2} for the {sup 12}C and {sup 13}C species, respectively. Based on 14 different isotopic combinations, ratios were obtained in the range {sup 12}C/{sup 13}C = 15 ± 5 to 33 ± 13, with an average value of 24 ± 7, based on comparison of column densities. These measurements better anchor the {sup 12}C/{sup 13}C ratio at the Galactic center, and suggest a slightly revised isotope gradient of {sup 12}C/{sup 13}C = 5.21(0.52) D {sub GC} + 22.6(3.3). As indicated by the column densities, no preferential {sup 13}C enrichment was found on the differing carbon sites of CH{sub 3}CCH, CH{sub 2}CHCN, and CH{sub 3}CH{sub 2}CN. Because of the elevated temperatures in Sgr B2(N), {sup 13}C isotopic substitution is effectively “scrambled,” diminishing chemical fractionation effects. The resulting ratios thus reflect stellar nucleosynthesis and Galactic chemical evolution, as is likely the case for most warm clouds.

  13. Matrix isolation and theoretical study of the photochemical reactions of C{sub 2}H{sub 3}Br and 1,2-C{sub 2}H{sub 2}Br{sub 2} with CrO{sub 2}Cl{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Lemon, Christine E. [Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221 (United States); Goldberg, Nicola [Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221 (United States); Klein-Riffle, Evan T. [Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221 (United States); Kronberg, Jon K. [Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221 (United States); Ault, Bruce S. [Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221 (United States)], E-mail: bruce.ault@uc.edu

    2006-08-01

    The matrix-isolation technique has been combined with infrared spectroscopy and theoretical calculations to characterize the products of the photochemical reactions of C{sub 2}H{sub 3}Br and 1,2-C{sub 2}H{sub 2}Br{sub 2} with CrO{sub 2}Cl{sub 2}. For these systems, oxygen-atom transfer occurred upon visible-near ultraviolet irradiation, yielding bromoacetaldehyde and CrOCl{sub 2} in the former case and bromoacetyl bromide and CrCl{sub 2}O in the latter. For each system, the products were formed in the same matrix cage and strongly interacted to form a distinct molecular complex. No evidence was obtained for the acetyl bromide derivative in the C{sub 2}H{sub 3}Br system, indicating the occurrence of oxygen-atom attack at the less substituted carbon of vinyl bromide, nor was any evidence obtained for the formation of a possible five-membered metallocycle. Two different modes of interaction were explored computationally: {eta}{sup 1} (end-on) to the oxygen atom and {eta}{sup 2} (side-on) to the C=O bond. Theoretical calculations indicated that the {eta}{sup 1} complex of CH{sub 2}BrCHO-CrCl{sub 2}O was 13 kcal mol{sup -1} more stable than the {eta}{sup 2} complex at the B3LYP/6-311++G(d,2p) level of theory. The binding energy of the {eta}{sup 1} complex was found to be 21 kcal mol{sup -1}, compared to 8 kcal mol{sup -1} for the {eta}{sup 2} complex at this level of theory.

  14. Crystal structure of tetraaquabis(1,3-dimethyl-2,6-dioxo-7H-purin-7-ido-κN7cobalt(II

    Directory of Open Access Journals (Sweden)

    Hicham El Hamdani

    2017-09-01

    Full Text Available The title complex, [Co(C7H7N4O22(H2O4], comprises mononuclear molecules consisting of a CoII ion, two deprotonated theophylline ligands (systematic name: 1,3-dimethyl-7H-purine-2,6-dione and four coordinating water molecules. The CoII atom lies on an inversion centre and has a slightly distorted octahedral coordination environment, with two N atoms of two trans-oriented theophylline ligands and the O atoms of four water molecules. An intramolecular hydrogen bond stabilizes this conformation. A three-dimensional supramolecular network structure is formed by intermolecular O—H...O and O—H...N hydrogen bonds.

  15. Crystal structure of bis(azido-κNbis(quinolin-8-amine-κ2N,N′iron(II

    Directory of Open Access Journals (Sweden)

    Fatima Setifi

    2016-10-01

    Full Text Available The search for new molecular materials with interesting magnetic properties using the pseudohalide azide ion and quinolin-8-amine (aqin, C9H8N2 as a chelating ligand, led to the synthesis and structure determination of the title complex, [Fe(N32(C9H8N22]. The complex shows an octahedral geometry, with the FeII atom surrounded by six N atoms; the two N3− anions coordinate in a cis configuration, while the remaining N atoms originate from the two quinolin-8-amine ligands with the quinoline N atoms lying on opposite sides of the Fe atom. The crystal packing is dominated by layers of hydrophilic and aromatic regions parallel to the ac plane, stabilized by a two-dimensional hydrogen-bonded network and π–π stacking.

  16. 2-Methyl-1H-benzimidazol-3-ium hydrogen phthalate

    Directory of Open Access Journals (Sweden)

    YuanQi Yu

    2011-10-01

    Full Text Available The asymmetric unit of the title compound, C8H9N2C8H5O4−, contains two independent ion pairs. In each 2-methyl-1H-benzimidazolium ion, an intramolecular O—H...O bond forms an S(7 graph-set motif. In the crystal, the components are linked by N—H...O hydrogen bonds, forming chains along [210]. Further stabilization is provided by weak C—H...O hydrogen bonds.

  17. NMR study of the molecular nanomagnet [Fe8(N3C6H15)6O2(OH)12]·[Br8·9H2O] in the high-spin magnetic ground state

    International Nuclear Information System (INIS)

    Furukawa, Y.; Kumagai, K.; Lascialfari, A.; Aldrovandi, S.; Borsa, F.; Sessoli, R.; Gatteschi, D.

    2001-01-01

    The magnetic molecular cluster [Fe 8 (N 3 C 6 H 15 ) 6 O 2 (OH) 12 ] 8+ [Br 8 ·9H 2 O] 8- , in short Fe8, has been investigated at low temperature by 1 H-NMR and relaxation measurements. Some measurements of 2 D-NMR in partially deuterated Fe8 clusters will also be reported. Upon decreasing temperature the NMR spectra display a very broad and structured signal which is the result of the internal local fields at the proton sites due to the local moments of the Fe(III) ions in the total S=10 magnetic ground state. The proton and deuteron NMR spectra have been analyzed and the different resonance peaks have been attributed to the different proton groups in the molecule. The simulation of the spectra by using a dipolar hyperfine field and the accepted model for the orientation of the Fe(III) local moments do not agree with the experiments even when the magnitude of the local Fe(III) moments is allowed to vary. It is concluded that a positive contact hyperfine interaction of the same order of magnitude as the dipolar interaction is present for all proton sites except the water molecules. The temperature and magnetic field dependence of the nuclear spin-lattice relaxation rate is ascribed to the fluctuations of the local Fe(III) moments, which follow rigidly the fluctuations of the total ground state magnetization of the nanomagnet. By using a simple model already utilized for the Mn12 cluster, we derive the value of the spin phonon coupling constant which determines the lifetime broadening of the different magnetic quantum number m substates of the S=10 ground state. It is shown that the lifetime broadening decreases rapidly on lowering the temperature. When the lifetime becomes longer than the reciprocal of the frequency shift of the proton lines a structure emerges in the NMR spectrum reflecting the ''frozen'' local moment configuration

  18. 3′,6′-Bis(diethylamino-3H-spiro[2-benzothiophene-1,9′-xanthene]-3-thione

    Directory of Open Access Journals (Sweden)

    Bing-Yuan Su

    2008-11-01

    Full Text Available The title compound, C28H30N2OS2, was obtained by thionation of 3′,6′-bis(diethylamino-3H-spiro[isobenzofuran-1,9′-xanthene]-3-one with 2,4-bis(p-methoxyphenyl-1,3-dithiadiphosphetane disulfide (Lawesson's reagent. The planes of the two benzene rings of the xanthene system are inclined at a dihedral angle of 17.4 (1°, and the plane of the dithiophthalide group and the planes through the two benzene rings of the xanthene system make dihedral angles of 80.2 (1 and 82.8 (1°, respectively.

  19. Ethane-1,2-diaminium 4,5-dichlorophthalate

    Directory of Open Access Journals (Sweden)

    Graham Smith

    2010-01-01

    Full Text Available In the structure of the title compound, C2H10N22+·C8H2Cl2O42−, the dications and dianions form hydrogen-bonded ribbon substructures which enclose conjoint cyclic R21(7, R12(7 and R42(8 associations and extend down the c-axis direction. These ribbons inter-associate down b, giving a two-dimensional sheet structure. In the dianions, one of the carboxylate groups is essentially coplanar with the benzene ring, while the other is normal to it [C—C—C—O torsion angles = 177.67 (12 and 81.94 (17°, respectively].

  20. Bis[2,6-bis(trimethylsilylaminopyridine-κN1]{[6-bis(trimethylsilylaminopyridin-2-yl-κN1](trimethylsilylazanido-κN}lithium

    Directory of Open Access Journals (Sweden)

    Justin A. Rave

    2016-03-01

    Full Text Available The title complex, [Li(C11H22N3Si2(C11H23N3Si22], contains a single lithium cation coordinated to three ligands. This is the first reported example of the ligand 2,6-bis(trimethylsilylaminopyridine supporting a monometallic complex. One ligand is mono-anionic and forms a four-membered chelate ring with the lithium cation via the pyridine and silylamido N atoms. The other two ligands are neutral and bind via the pyridine nitrogen. The lithium cation is coordinated in a tetrahedral environment. No intra- or intermolecular hydrogen bonding is observed in the crystal structure, likely indicating that weak electrostatic interactions are the dominant feature of the crystal packing.

  1. Simple formation of products of exo-nido→closo-regrouping during substitution of PPh3-ligands by bis(diphenyl phosphino)alkanes in three-bridging ruthena carborane 5,6,10-[RuCl(PPh3)2]-5,6,10-(μ-H)3-10-H-exo-nido-7,8-C2B9H8

    International Nuclear Information System (INIS)

    Cheredilin, D.N.; Balagurova, E.V.; Godovikov, I.A.; Solodovnikov, S.P.; Chizhevskij, I.T.

    2005-01-01

    It is established that the substitution of PPh 3 -ligands by diphosphines [Ph 2 P(CH 2 ) n PPh] (n=3, 4) in three-bridging exo-nido-ruthena carborane 5,6,10-[RuCl(PPh 3 ) 2 ]-5,6,10-(μ-H) 3 -10-H-exo-nido-7,8-C 2 B 9 H 8 (1) decreases temperature of exo-nido→closo-regrouping (22 Deg C). It is demonstrated that the exo-nido-ruthena carborane complex (1) is well suited and available as reagent for preparation of closo-ruthena carboranes with different chelate diphosphines. Formation of closo-products follows through the stage of exo-nido→closo-regrouping of diphosphine complexes with exo-nido-structure [ru

  2. Bis(2,2'-bipyridyl-κN,N')(carbonato-κO,O')cobalt(III) bromide trihydrate.

    Science.gov (United States)

    Ma, Peng-Tao; Wang, Yu-Xia; Zhang, Guo-Qian; Li, Ming-Xue

    2007-12-06

    The title complex, [Co(CO(3))(C(10)H(8)N(2))(2)]Br·3H(2)O, is isostructural with the chloride analogue. The six-coordinated octahedral [Co(2,2'-bipy)(2)CO(3)](+) cation (2,2'-bipy is 2,2'-bipyrid-yl), bromide ion and water mol-ecules are linked together via O-H⋯Br and O-H⋯O hydrogen bonds, generating a one-dimensional chain.

  3. Competition between weak OH···π and CH··O hydrogen bonds: THz spectroscopy of the C2H2H2O and C2H4—H2O complexes

    DEFF Research Database (Denmark)

    Andersen, Jonas; Heimdal, Jimmy; Nelander, B.

    2017-01-01

    an intermolecular CH⋯O hydrogen-bonded configuration of C2v symmetry with the H2O subunit acting as the hydrogen bond acceptor. The observation and assignment of two large-amplitude donor OH librational modes of the C2H4—H2O complex at 255.0 and 187.5 cm−1, respectively, confirms an intermolecular OH⋯π hydrogen...

  4. Protocatechuic acid, a novel active substance against avian influenza virus H9N2 infection.

    Directory of Open Access Journals (Sweden)

    Changbo Ou

    Full Text Available Influenza virus H9N2 subtype has triggered co-infection with other infectious agents, resulting in huge economical losses in the poultry industry. Our current study aims to evaluate the antiviral activity of protocatechuic acid (PCA against a virulent H9N2 strain in a mouse model. 120 BALB/c mice were divided into one control group, one untreated group, one 50 mg/kg amantadine hydrochloride-treated group and three PCA groups treated 12 hours post-inoculation with 40, 20 or 10 mg/kg PCA for 7 days. All the infected animals were inoculated intranasally with 0.2 ml of a A/Chicken/Hebei/4/2008(H9N2 inoculum. A significant body weight loss was found in the 20 mg/kg and 40 mg/kg PCA-treated and amantadine groups as compared to the control group. The 14 day survivals were 94.4%, 100% and 95% in the PCA-treated groups and 94.4% in the amantadine hydrochloride group, compared to less than 60% in the untreated group. Virus loads were less in the PCA-treated groups compared to the amantadine-treated or the untreated groups. Neutrophil cells in BALF were significantly decreased while IFN-γ, IL-2, TNF-α and IL-6 decreased significantly at days 7 in the PCA-treated groups compared to the untreated group. Furthermore, a significantly decreased CD4+/CD8+ ratio and an increased proportion of CD19 cells were observed in the PCA-treated groups and amantadine-treated group compared to the untreated group. Mice administered with PCA exhibited a higher survival rate and greater viral clearance associated with an inhibition of inflammatory cytokines and activation of CD8+ T cell subsets. PCA is a promising novel agent against bird flu infection in the poultry industry.

  5. (2R,3aR,4S,7R,7aS,9R,10aR,11S,14R,14aS-rel-3a,4,7,7a,10a,11,14,14a-Octahydro-4,14:7,11-diepoxy-2,9-propanonaphtho[1,2-f:5,6-f′]diisoindole-1,3,8,10-tetrone (9CI: a cyclophane derived from naphtho[1,2-c:5,6-c]difuran

    Directory of Open Access Journals (Sweden)

    Peter W. Dibble

    2008-09-01

    Full Text Available The title compound, C25H18N2O6, is a naphthalenophane styled in the manner of Warrener's alicyclic cyclophanes or molecular racks wherein a trimethylene tether is perfectly staggered between the two N atoms such that the central methylene H atoms point toward the naphthalene π-system. The dihedral angle between the mean planes of the two benzene rings is 7.61 (7°.

  6. Evaluation of two new STR loci 9q2h2 and wg3f12 in a Japanese population.

    Science.gov (United States)

    Mizutani, M; Huang, X L; Tamaki, K; Yoshimoto, T; Uchihi, R; Yamamoto, T; Katsumata, Y; Armour, J A

    1999-09-01

    Two short tandem repeat (STR) loci (9q2h2 and wg3f12) have been evaluated in a Japanese population. Ten and seven different alleles were observed in 9q2h2 and wg3f12 respectively. 9q2h2 displayed simple polymorphism in tetrameric repeat structure; by contrast, wg3f12 contained variable numbers of tetrameric repeats and a 30-bp deletion/insertion polymorphism. No "interalleles" were found. The expected heterozygosities of 9q2h2 and wg3fl2 were 0.749 and 0.574, respectively. No deviation from Hardy-Weinberg equilibrium was found.

  7. Rethinking Sensitized Luminescence in Lanthanide Coordination Polymers and MOFs: Band Sensitization and Water Enhanced Eu Luminescence in [Ln(C15H9O5)3(H2O)3]n (Ln = Eu, Tb).

    Science.gov (United States)

    Einkauf, Jeffrey D; Kelley, Tanya T; Chan, Benny C; de Lill, Daniel T

    2016-08-15

    A coordination polymer [Ln(C15H9O9)3(H2O)3]n (1-Ln = Eu(III), Tb(III)) assembled from benzophenonedicarboxylate was synthesized and characterized. The organic component is shown to sensitize lanthanide-based emission in both compounds, with quantum yields of 36% (Eu) and 6% (Tb). Luminescence of lanthanide coordination polymers is currently described from a molecular approach. This methodology fails to explain the luminescence of this system. It was found that the band structure of the organic component rather than the molecular triplet state was able to explain the observed luminescence. Deuterated (Ln(C15H9O9)3(D2O)3) and dehydrated (Ln(C15H9O9)3) analogues were also studied. When bound H2O was replaced by D2O, lifetime and emission increased as expected. Upon dehydration, lifetimes increased again, but emission of 1-Eu unexpectedly decreased. This reduction is reasoned through an unprecedented enhancement effect of the compound's luminescence by the OH/OD oscillators in the organic-to-Eu(III) energy transfer process.

  8. 5-(4-Methylphenylsulfonyl-1,3-dithiolo[4,5-c]pyrrole-2-thione

    Directory of Open Access Journals (Sweden)

    Ning-Juan Zheng

    2012-04-01

    Full Text Available The asymmetric unit of the title compound, C12H9NO2S4, contains one half-molecule with the N, two S amd four C atoms lying on a mirror plane. The molecule exhibits a V-shaped conformation, with a dihedral angle of 87.00 (7° between the benzene and dithiolopyrrole rings. The methyl group was treated as rotationally disordered between two orientations in a 1:1 ratio. In the crystal, weak C—H...O hydrogen bonds link the molecules into chains in [010].

  9. 5-Imino-3,4-diphenyl-1H-pyrrol-2-one

    Directory of Open Access Journals (Sweden)

    Evgeny Bulatov

    2014-02-01

    Full Text Available The title compound, C16H12N2O, exists in the crystalline state as the 5-imino-3,4-diphenyl-1H-pyrrol-2-one tautomer. The dihedral angles between the pyrrole and phenyl rings are 35.3 (2 and 55.3 (2°. In the crystal, inversion dimers linked by pairs of N—H...N hydrogen bonds generate a graph-set motif of R22(8 via N—H...N hydrogen bonds.

  10. Chalcogenidobis(ene-1,2-dithiolate)molybdenum(IV) complexes (chalcogenide E = O, S, Se): probing Mo≡E and ene-1,2-dithiolate substituent effects on geometric and electronic structure.

    Science.gov (United States)

    Sugimoto, Hideki; Tano, Hiroyuki; Suyama, Koichiro; Kobayashi, Tomoya; Miyake, Hiroyuki; Itoh, Shinobu; Mtei, Regina P; Kirk, Martin L

    2011-02-07

    New square-pyramidal bis(ene-1,2-dithiolate)MoSe complexes, [Mo(IV)Se(L)(2)](2-), have been synthesised along with their terminal sulfido analogues, [Mo(IV)S(L)(2)](2-), using alkyl (L(C(4)H(8))), phenyl (L(Ph)) and methyl carboxylate (L(COOMe)) substituted dithiolene ligands (L). These complexes now complete three sets of Mo(IV)O, Mo(IV)S and Mo(IV)Se species that are coordinated with identical ene-1,2-dithiolate ligands. The [alkyl substituted Mo(S/Se)(L(C(4)H(8)))(2)](2-) complexes were reported in prior investigations (H. Sugimoto, T. Sakurai, H. Miyake, K. Tanaka and H. Tsukube, Inorg. Chem. 2005, 44, 6927, H. Tano, R. Tajima, H. Miyake, S. Itoh and H. Sugimoto, Inorg. Chem. 2008, 47, 7465). The new series of complexes enable a systematic investigation of terminal chalcogenido and supporting ene-1,2-dithiolate ligand effects on geometric structure, electronic structure, and spectroscopic properties. X-ray crystallographic analysis of these (Et(4)N)(2)[MoEL(2)] (E = terminal chalocogenide) complexes reveals an isostructural Mo centre that adopts a distorted square pyramidal geometry. The M≡E bond distances observed in the crystal structures and the ν(M≡E) vibrational frequencies indicate that these bonds are weakened with an increase in L→Mo electron donation (L(COOMe) < L(Ph) < L(C(4)H(8))), and this order is confirmed by an electrochemical study of the complexes. The (77)Se NMR resonances in MoSeL complexes appear at lower magnetic fields as the selenido ion became less basic from MoSeL(C(4)H(8)), MoSeL(Ph) and MoSeL(COOMe). Electronic absorption and resonance Raman spectroscopies have been used to assign key ligand-field, MLCT, LMCT and intraligand CT bands in complexes that possess the L(COOMe) ligand. The presence of low-energy intraligand CT transition in these MoEL(COOMe) compounds directly probes the electron withdrawing nature of the -COOMe substituents, and this underscores the complex electronic structure of square pyramidal bis(ene-1,2

  11. Phylogenetic analysis of H9N2 avian influenza viruses in Afghanistan (2016-2017).

    Science.gov (United States)

    Hosseini, Hossein; Ghalyanchilangeroudi, Arash; Fallah Mehrabadi, Mohammad Hossein; Sediqian, Mohammad Saeed; Shayeganmehr, Arzhang; Ghafouri, Seyed Ali; Maghsoudloo, Hossein; Abdollahi, Hamed; Farahani, Reza Kh

    2017-10-01

    Avian influenza A virus (AIV) subtype H9N2 is the most prevalent subtype found in terrestrial poultry throughout Eurasia and has been isolated from poultry outbreaks worldwide. Tracheal tissue specimens from 100 commercial broiler flocks in Afghanistan were collected between 2016 and 2017. After real-time RT-PCR, AI-positive samples were further characterized. A part of the HA gene was amplified using RT-PCR and sequenced. The results of real-time RT-PCR showed that 40 percent of the flocks were AI positive. Phylogenetic studies showed that these H9N2 AIVs grouped within the Eurasian-lineage G1 AIVs and had a correlation with H9N2 AIV circulating in the poultry population of the neighboring countries over the past decade. Analysis of the amino acid sequence of HA revealed that the detected H9N2 viruses possessed molecular profiles suggestive of low pathogenicity and specificity for the avian-like SAα2,3 receptor, demonstrating their specificity for and adaptation to domestic poultry. The results of the current study provide great insights into H9N2 viruses circulating in Afghanistan's poultry industry and demonstrate the necessity of planning an applied policy aimed at controlling and managing H9N2 infection in Afghan poultry.

  12. 22-Cycloocta-1,5-diene[2-(diphenylphosphanylmethylpyridine-κ2N,P]rhodium(I tetrafluoridoborate 1,2-dichloroethane monosolvate

    Directory of Open Access Journals (Sweden)

    Siping Wei

    2016-08-01

    Full Text Available The title compound, [Rh(C8H12(C18H16NP]BF4 has been prepared as a precatalyst for applications in rhodium-catalysed additions of carbocyclic acids to terminal alkynes leading to anti-Markovnikov Z-enol esters. Here the triclinic pseudopolymorph of the title compound is presented. In contrast to the earlier reported pseudopolymorph (orthorhombic space group [Wei et al. (2013. Chem. Eur. J. 19, 12067–12076], the triclinic polymorph contains half a molecule of dichloromethane as solvent in the asymmetric unit. The rhodium(I atom exhibits a square-planar coordination. The estimated diffraction contribution of the disordered solvent (a half molecule of dichloroethane per asymmetric unit was subtracted from the observed diffraction data using the SQUEEZE [Spek (2015. Acta Cryst. C71, 9–16] routine in PLATON. The given chemical formula and other crystal data do not take the solvent into account.

  13. Bis(dicyanamido-κN[tris(3-aminopropylamine-κ4N]nickel(II

    Directory of Open Access Journals (Sweden)

    Jun Luo

    2013-07-01

    Full Text Available In the title complex, [Ni(C2N32(C9H24N4], the NiII atom is coordinated in a distorted octahedral geometry by one tris(3-aminopropylamine (trisapa ligand and two dicyanamide (dca ligands [one of them disordered in a 0.681 (19:0319 (19 ratio]. Intermolecular N—H...N hydrogen bonds involving the N atoms of the dca anions and the trisapa amine H atoms result in the formation of a three-dimensional network.

  14. Formation of Hg(II) Tetrathiolate Complexes with Cysteine at Neutral pH.

    Science.gov (United States)

    Warner, Thomas; Jalilehvand, Farideh

    2016-04-01

    Mercury(II) ions precipitate from aqueous cysteine (H 2 Cys) solutions containing H 2 Cys/Hg(II) mole ratio ≥ 2.0 as Hg( S -HCys) 2 . In absence of additional cysteine, the precipitate dissolves at pH ~12 with the [Hg( S,N -Cys) 2 ] 2- complex dominating. With excess cysteine (H 2 Cys/Hg(II) mole ratio ≥ 4.0), higher complexes form and the precipitate dissolves at lower pH values. Previously, we found that tetrathiolate [Hg( S -Cys) 4 ] 6- complexes form at pH = 11.0; in this work we extend the investigation to pH values of physiological interest. We examined two series of Hg(II)-cysteine solutions in which C Hg(II) varied between 8 - 9 mM and 80 - 100 mM, respectively, with H 2 Cys/Hg(II) mole ratios from 4 to ~20. The solutions were prepared in the pH range 7.1 - 8.8, at the pH at which the initial Hg( S -HCys) 2 precipitate dissolved. The variations in the Hg(II) speciation were followed by 199 Hg NMR, X-ray absorption and Raman spectroscopic techniques. Our results show that in the dilute solutions ( C Hg(II) = 8 - 9 mM), mixtures of di-, tri- (major) and tetrathiolate complexes exist at moderate cysteine excess ( C H2Cys ~ 0.16 M) at pH 7.1. In the more concentrated solutions ( C Hg(II) = 80 - 100 mM) with high cysteine excess ( C H2Cys > 0.9 M), tetrathiolate [Hg( S -cysteinate) 4 ] m -6 ( m = 0 - 4) complexes dominate in the pH range 7.3 - 7.8, with lower charge than for the [Hg( S -Cys) 4 ] 6- complex due to protonation of some ( m ) of the amino groups of the coordinated cysteine ligands. The results of this investigation could provide a key to the mechanism of biosorption and accumulation of Hg(II) ions in biological / environmental systems.

  15. Novel synthetic route to molybdenum hydrido-thiocarbamoyl and hydrosulfido-carbyne complexes by reactions of trans-Mo(N{sub 2}){sub 2}(R{sub 2}PC{sub 2}H{sub 4}PR{sub 2}){sub 2} with N,N-dimethylthioformamide

    Energy Technology Data Exchange (ETDEWEB)

    Luo, X.L.; Kubas, G.J.; Burns, C.J.; Butcher, R.J. [Los Alamos National Lab., NM (United States)

    1995-07-01

    The reactions of bis(dinitrogen)molybdenum complexes trans-Mo(N{sub 2}){sub 2}(R{sub 2}PC{sub 2}H{sub 4}PR{sub 2}){sub 2} (R = Ph, Et) with N,N-dimethylthioformamide (HC(S)NMe{sub 2}) in refluxing benzene under argon give the molybdenum hydrido-thiocarbamoyl complexes MoH({eta}{sup 2}-C(S)NMe{sub 2})(R{sub 2}PC{sub 2}H{sub 4}PR{sub 2}){sub 2} (R = Ph (1a), Et (1b)). On heating at 125{degree}C in toluene solutions, compounds 1a and 1b rearrange to form the molybdenum hydrosulfido-aminocarbyne complexes trans-Mo(SH)-(=CNMe{sub 2})(R{sub 2}PC{sub 2}H{sub 4}PR{sub 2}){sub 2} (R = Ph (2a), Et (2b)). A mechanism is proposed for this thermal rearrangement which involves migration of the hydride ligand from molybdenum to the sulfur atom of the thiocarbamoyl ligand to give the 16-electron Fischer carbene intermediate Mo-(=C(SH)NMe{sub 2})(R{sub 2}PC{sub 2}H{sub 4}PR{sub 2}){sub 2}, followed by migration of the hydrosulfido group from the carbene carbon to molybdenum. The molecular structures of compounds 1a and 2a have been determined by single-crystal X-ray diffraction studies. 30 refs., 4 figs., 4 tabs.

  16. Replication and transmission of H9N2 influenza viruses in ferrets: evaluation of pandemic potential.

    Directory of Open Access Journals (Sweden)

    Hongquan Wan

    2008-08-01

    Full Text Available H9N2 avian influenza A viruses are endemic in poultry of many Eurasian countries and have caused repeated human infections in Asia since 1998. To evaluate the potential threat of H9N2 viruses to humans, we investigated the replication and transmission efficiency of H9N2 viruses in the ferret model. Five wild-type (WT H9N2 viruses, isolated from different avian species from 1988 through 2003, were tested in vivo and found to replicate in ferrets. However these viruses achieved mild peak viral titers in nasal washes when compared to those observed with a human H3N2 virus. Two of these H9N2 viruses transmitted to direct contact ferrets, however no aerosol transmission was detected in the virus displaying the most efficient direct contact transmission. A leucine (Leu residue at amino acid position 226 in the hemagglutinin (HA receptor-binding site (RBS, responsible for human virus-like receptor specificity, was found to be important for the transmission of the H9N2 viruses in ferrets. In addition, an H9N2 avian-human reassortant virus, which contains the surface glycoprotein genes from an H9N2 virus and the six internal genes of a human H3N2 virus, showed enhanced replication and efficient transmission to direct contacts. Although no aerosol transmission was observed, the virus replicated in multiple respiratory tissues and induced clinical signs similar to those observed with the parental human H3N2 virus. Our results suggest that the establishment and prevalence of H9N2 viruses in poultry pose a significant threat for humans.

  17. Bis(1,10-phenanthroline-κ2N,N′(sulfato-κ2O,O′cobalt(II propane-1,3-diol solvate

    Directory of Open Access Journals (Sweden)

    Kai-Long Zhong

    2010-03-01

    Full Text Available The title compound, [Co(SO4(C12H8N22]·C3H8O2, was obtained unexpectedly as a by-product during an attempt to synthesize a mixed-ligand complex of CoII with 1,10-phenanthroline (phen and melamine via a solvothermal reaction. The CoII metal ions are in a distorted octahedral coordination environment formed by four N atoms from two chelating phen ligands and two O atoms from a bidentate sulfate ligand. The two chelating N2C2 groups are almost perpendicular to each other [dihedral angle = 80.06 (8°]. A twofold rotation axis passes through the Co and S atoms, and also through the central C atom of the propane-1,3-diol solvent molecule. Intermolecular O—H...O hydrogen bonds help to stabilize the structure.

  18. 2-Methylpropan-2-aminium 2-(methoxycarbonylbenzoate

    Directory of Open Access Journals (Sweden)

    Jian Li

    2011-10-01

    Full Text Available In the title compound, C4H12N+·C9H7O4−, two C atoms and the N atom of the cation lie on a mirror plane, while all the atoms of the anion are disordered about a mirror plane. In the crystal, N—H...O hydrogen bonds link the components into chains along [010]. In the anion, the mean planes of the methoxycarbonyl and carboxylate groups form dihedral angles of 83.0 (2 and 83.2 (2°, respectively, with the aromatic ring.

  19. Chlorido[N,N′-dibenzyl-N,N′-bis(pyridin-2-ylmethylethane-1,2-diamine]copper(II perchlorate methanol monosolvate

    Directory of Open Access Journals (Sweden)

    Zhi-Quan Pan

    2012-05-01

    Full Text Available In the title solvated molecular salt, [CuCl(C28H30N4]ClO4·CH3OH, the Cu2+ ion is coordinated by the N,N′,N′′,N′′′-tetradentate ligand and a chloride ion, generating a very distorted square-based pyramidal CuN4Cl coordination geometry with the Cl− ion in the basal position. In the crystal, the solvent molecules and anions are linked by weak O—H...O hydrogen bonding.

  20. Signal Immune Reactions of Macrophages Differentiated from THP-1 Monocytes to Infection with Pandemic H1N1PDM09 Virus and H5N2 and H9N2 Avian Influenza A Virus.

    Science.gov (United States)

    Sokolova, T M; Poloskov, V V; Shuvalov, A N; Rudneva, I A; Timofeeva, T A

    2018-03-01

    In culture of THP-1 cells differentiated into macrophages with PMA (THP-PMA macrophages) infected with influenza viruses of subtypes H1, H5 and H9, we measured the expression of TLR7 and RIG1 receptor genes, sensors of viral RNA and ribonucleoprotein, and the levels of production of inflammatory cytokines IL-1β, TNFα, IL-10, and IFNα. The sensitivity and inflammatory response of THP-PMA macrophages to pandemic influenza A virus H1N1pdm09 and avian influenza H5N2 and H9N2 viruses correlate with the intracellular level of their viral RNA and activation of the RIG1 gene. Abortive infection is accompanied by intensive macrophage secretion of TNFα, IL-1β, and toxic factors inducing cell death. Activity of endosomal TLR7 receptor gene changed insignificantly in 24 h after infection and significantly decreased in 48 and 72 h under the action of H5N2 and H9N2, which correlated with manifestation of the cytopathogenic effect of these viruses. H5N2 and H9N2 avian viruses in THP-PMA macrophages are strong activators of the expression of the gene of the cytoplasmic RIG1 receptor 24 and 48 h after infection, and the pandemic virus H1N1pdm09 is a weak stimulator of RIG1 gene. Avian influenza H5N2 and H9N2 viruses are released by rapid induction of the inflammatory response in macrophages. At the late stages of infection, we observed a minor increase in IL-10 secretion in macrophages and, probably, the polarization of a part of the population in type M2. The studied influenza A viruses are weak inductors of IFN in THP-PMA macrophages. In the culture medium of THP-PMA macrophages infected with H9N2 and H5N2 viruses, MTT test revealed high levels of toxic factors causing the death of Caco-2 cells. In contrast to avian viruses, pandemic virus H1N1pdm09 did not induce production of toxic factors.

  1. N,N′,N′′-Tris(2-nitrobenzyl-2,2′,2′′-nitrilotriethanaminium trichloride 1.41-hydrate

    Directory of Open Access Journals (Sweden)

    Perla Elizondo

    2009-07-01

    Full Text Available The title compound, C27H36N7O63+·3Cl−1.41H2O, is the hydrochloride of a tripodal amine, and was structurally characterized because the free base, used as a ligand in podate complexes, is an oily material. In the cation, the secondary amine groups are protonated, and, despite the induced Coulombic repulsions, a claw-like conformation is stabilized, with a cavity approximating C3 point symmetry. Such a topology, with the lone pair of the tertiary N atom placed inside the cavity, allows the encapsulation of guest species. Indeed, three chloride counter-ions balance the charges, one of which is located inside the cation cavity and is strongly bonded to the NH2+ groups. The asymmetric unit is completed by two water molecules with occupancies 0.793 (11 and 0.621 (9. The crystal structure is formed by a complex network of efficient N—H...Cl and O—H...Cl hydrogen bonds. One nitro group also forms weak contacts with a water molecule.

  2. Diazido{(S-1-phenyl-N,N-bis[(2-pyridylmethyl]ethanamine}copper(II

    Directory of Open Access Journals (Sweden)

    Sankara Rao Rowthu

    2011-07-01

    Full Text Available In the title compound, [Cu(N32(C20H21N3], the CuII ion is coordinated by the three N atoms of the (S-1-phenyl-N,N-bis[(2-pyridylmethyl]ethanamine ligand and two N atoms from two azide anions, resulting in a distorted square-pyramidal environment. A weak intermolecular C—H...N hydrogen-bonding interaction between one pyridine group of the ligand and an azide N atom of an adjacent complex unit gives a one-dimensional chain structure parallel to the c axis.

  3. Methyl 11-hydroxy-9-[1-(4-methoxyphenyl-4-oxo-3-phenoxyazetidin-2-yl]-18-oxo-10-oxa-2-azapentacyclo[9.7.0.01,8.02,6.012,17]octadeca-12(17,13,15-triene-8-carboxylate

    Directory of Open Access Journals (Sweden)

    S. Sundaramoorthy

    2012-07-01

    Full Text Available In the title compound, C34H32N2O8, one of the pyrrolidine rings in the pyrrolizidine ring system adopts a twist conformation, whereas the other ring adopts an envelope conformation (C atom as flap. The five-membered ring in the indene ring system and the fused furan ring also adopt envelope conformations (C and O atoms as flaps, respectively. The β-lactam ring makes dihedral angles of 23.41 (2 and 25.98 (2°, respectively, with the attached methoxyphenyl and phenoxy rings. The molecular conformation is stabilized by an intramolecular O—H...N hydrogen bond, generating an S(5 motif. In the crystal, molecules are linked into C(12 chains running along the a axis by C—H...O hydrogen bonds. The structure is further consolidated by weak intermolecular C—H...π and π–π interactions [centroid–centroid distance = 3.7987 (14 Å].

  4. catena-Poly[[bromidocopper(I)]-?-?2,?1-3-(2-allyl-2H-tetra?zol-5-yl)pyridine

    OpenAIRE

    Wang, Wei

    2008-01-01

    The title compound, [CuBr(C9H9N5)] n , has been prepared by the solvothermal treatment of CuBr with 3-(2-allyl-2H-tetra?zol-5-yl)pyridine. It is a new homometallic CuI olefin coord?ination polymer in which the CuI atoms are linked by the 3-(2-allyl-2H-tetra?zol-5-yl)pyridine ligands and bonded to one terminal Br atom each. The organic ligand acts as a bidentate ligand connecting two neighboring Cu centers through the N atom of the pyridine ring and the double bond of the allyl group. A three-...

  5. (Tris{2-[(5-hydroxypyridin-2-yl-κNmethylideneimino-κN]ethyl}aminezinc dinitrate

    Directory of Open Access Journals (Sweden)

    Maksym Seredyuk

    2011-12-01

    Full Text Available In the complex cation of the title compound, [Zn(C24H27N7O3](NO32, the tripodal tris{[2-(5-hydroxypyridin-2-ylmethylideneimino]ethyl}amine ligand is coordinated to the Zn atom through the three pyridine and three imino N atoms. The coordination sphere of the Zn atom is based on an octahedron with a significant distortion towards trigonal prismatic, the twist angle being 45.58 (9°. The crystal packing is formed by L and D antipodes arranged in layers disposed parallel to the b axis. Strong O—H...O hydrogen bonding exists between the hydroxy groups of the ligand and the nitrate anion.

  6. Bis{2-[(diisopropylphosphanylamino]pyridine-κ2N1,P}copper(I hexafluoridophosphate

    Directory of Open Access Journals (Sweden)

    Özgür Öztopcu

    2010-07-01

    Full Text Available The crystal structure of the title compound, [Cu(C11H19N2P2]PF6, is composed of discrete [Cu(PN-iPr2]+ cations [PN-iPr is 2-(diisopropylphosphanylaminopyridine] and PF6− anions. The Cu(I atom is bis-chelated by two independent PN-iPr ligands. It has a distorted tetrahedral coordination by two P atoms [Cu—P = 2.2277 (4 and 2.2257 (4 Å] and two pyridine N atoms [Cu—N = 2.0763 (11 and 2.0845 (12 Å]. Bond angles about Cu vary from 85.11 (3 (P—Cu—N to 130.37 (2° (P—Cu—P. In the crystal, N—H...F hydrogen bonds link the Cu complexes and the PF6− anions into continuous chains, which show a cross-bedded spatial arrangement. In addition, several weaker C—H...F interactions contribute to the coherence of the structure.

  7. Synthesis and description of complexes of Cu(I), Mn(II) and Zn(II) using the linking N,N'-bis(2-sulphide benzil)-3,3'-diamine N'-methyldipropylamine of sodium

    International Nuclear Information System (INIS)

    Amador Godoy, Ginnette

    2000-01-01

    This work optimized the synthesis's procedure of the linking called N,N ' -bis(2-sulphide benzil)-3,3 ' -diamino - N ' -methyldipropylamine of sodium. It described the synthesis's intermediate products of the linking by 1 H-NMR. It synthesized complexes utilizing the linking mentioned previously and the metal salts of cooper and manganese. The description of the complexes was realized by electrochemical, magnetic and spectroscopic methods. To the (I) cooper's complex, it was gotten an effective magnetic moment of 0.62 M.B. and the molecular formula proposed is: C 2 1H 2 9N 3 S 2 Cu.CH 3 OH. It determined that the oxide-reduction process is quasi reversible. The (II) manganese's complex has an effective magnetic moment of 5.2 M.B. that corresponds to a configuration d 5 of tall porcupine. It proposes the molecular formula C 2 1H 2 9N 3 S 2 Mn and the metal/nitrogen relation is 3/1. The oxide-reduction process is quasi reversible. It described the zinc's complex in dissolution by 1 H-NMR and 1 3C-NMR to different temperatures, it observed an increase of the separation and definition of the signals when the temperature increased until to get an spectro 1 H-NMR to 130 centigrade with the standard signals of the different shapes that can adopt the molecule, besides it got an spectro of 1 3C-NMR to 100 centigrade [es

  8. 2-(3,5-Dimethyl-1H-pyrazol-1-yl-2-hydroxyimino-N′-[1-(pyridin-2-ylethylidene]acetohydrazide

    Directory of Open Access Journals (Sweden)

    Maxym O. Plutenko

    2012-12-01

    Full Text Available In the title compound, C14H16N6O2, the dihedral angles formed by the mean plane of the acetohydrazide group [maximum deviation 0.0629 (12 Å] with the pyrazole and pyridine rings are 81.62 (6 and 38.38 (4° respectively. In the crystal, molecules are connected by N—H...O and O—H...N hydrogen bonds into supramolecular chains extending parallel to the c-axis direction.

  9. (N,N,N′,N′-Tetramethylethylenediamine-κNbis(2,4,6-trimethylphenolato-κOgermanium(II

    Directory of Open Access Journals (Sweden)

    Eduard Rusanov

    2012-03-01

    Full Text Available In the title compound, [Ge(C9H11O2(C6H16N2], the GeII atom is coordinated in a distorted trigonal–pyramidal geometry by two O atoms belonging to two 2,4,6-trimethylphenolate ligands and one N atom of a tetramethylethylenediamine ligand. Comparing the structure with published data of similar compounds shows that the Ge—O bonds are covalent and the Ge—N bond is coordinated.

  10. 2-Ethyl-6-(2-pyridyl-5,6,6a,11b-tetrahydro-7H-indeno[2,1-c]quinoline

    Directory of Open Access Journals (Sweden)

    Alexander Briceño

    2010-03-01

    Full Text Available The title compound, C23H22N2, was obtained using the three-component imino Diels–Alder reaction via a one-pot condensation between anilines, α-pyridinecarboxyaldehyde and indene using BF3·OEt2 as the catalyst. The molecular structure reveals the cis-form as the unique diastereoisomer. The crystal structure comprises one-dimensional zigzag ribbons connected via N—H...N hydrogen bonds. C—H...π interactions also occur.

  11. Crystal structure of 4-tert-butyl-2-{2-[N-(3,3-dimethyl-2-oxobutyl-N-isopropylcarbamoyl]phenyl}-1-isopropyl-1H-imidazol-3-ium perchlorate

    Directory of Open Access Journals (Sweden)

    Olga V. Hordiyenko

    2015-02-01

    Full Text Available In the title salt, C26H40N3O2+·ClO4−, the positive charge of the organic cation is delocalized between the two N atoms of the imidazole ring. The C...;N bond distances are 1.338 (2 and 1.327 (3 Å. The substituents on the benzene ring are rotated almost orthogonal with respect to this ring due to the presence of the bulky isopropyl substituents. The dihedral angle between the benzene and imidazole rings is 75.15 (12°. Three of the O atoms of the anion are disordered over two sets of sites due to rotation around one of the O—Cl bonds. The ratio of the refined occupancies is 0.591 (14:0.409 (14. In the crystal, the cation and perchlorate anion are bound by an N—H...O hydrogen bond. In addition, the cation–anion pairs are linked into layers parallel to (001 by multiple weak C—H...O hydrogen bonds.

  12. (S-2-(4-Chlorobenzoyl-1,2,3,4-tetrahydrobenzo[e]pyrazino[1,2-a][1,4]diazepine-6,12(11H,12aH-dione—Synthesis and Crystallographic Studies

    Directory of Open Access Journals (Sweden)

    Adam Mieczkowski

    2017-10-01

    Full Text Available (S-2-(4-Chlorobenzoyl-1,2,3,4-tetrahydrobenzo[e]pyrazino[1,2-a][1,4]diazepine-6,12(11H,12aH-dione was obtained in a three-step, one-pot synthesis, starting from optically pure (S-2-piperazine carboxylic acid dihydrochloride. Selective acylation of the β-nitrogen atom followed by condensation with isatoic anhydride and cyclization with HATU/DIPEA to a seven-member benzodiazepine ring, led to the tricyclic benzodiazepine derivative. Crystallographic studies and initial biological screening were performed for the title compound.

  13. Ab initio studies of O2-(H2O)n and O3-(H2O)n anionic molecular clusters, n≤12

    DEFF Research Database (Denmark)

    Bork, Nicolai Christian; Kurtén, T.; Enghoff, Martin Andreas Bødker

    2011-01-01

    that anionic O2−(H2O)n and O3−(H2O)n clusters are thermally stabilized at typical atmospheric conditions for at least n = 5. The first 4 water molecules are strongly bound to the anion due to delocalization of the excess charge while stabilization of more than 4 H2O is due to normal hydrogen bonding. Although...... clustering up to 12 H2O, we find that the O2 and O3 anions retain at least ca. 80 % of the charge and are located at the surface of the cluster. The O2− and O3− speicies are thus accessible for further reactions. Finally, the thermodynamics of a few relevant cluster reactions are considered....

  14. (E-6-Amino-1,3-dimethyl-5-[(pyridin-2-ylmethylideneamino]pyrimidine-2,4(1H,3H-dione

    Directory of Open Access Journals (Sweden)

    Irvin Booysen

    2011-09-01

    Full Text Available In the title compound, C12H13N5O2, a Schiff-base-derived chelate ligand, the non-aromatic heterocycle and its substituents essentially occupy one common plane (r.m.s. of fitted non-H atoms = 0.0503 Å. The N=C bond is E-configured. Intracyclic angles in the pyridine moiety cover the range 117.6 (2–124.1 (2°. Intra- and intermolecular N—H...N and N—H...O hydrogen bonds are observed in the crystal structure, as are intra- and intermolecular C—H...O contacts which, in total, connect the molecules into a three-dimensional network. The shortest ring-centroid-to-ring-centroid distance of 3.5831 (14 Å is between the two different types of six-membered rings.

  15. Formation of a dinuclear copper(II) complex through the cleavage of CN bond of 1-benzoyl-3-(pyridin-2-yl)-1H-pyrazole

    Energy Technology Data Exchange (ETDEWEB)

    Shardin, Rosidah; Pui, Law Kung; Yamin, Bohari M. [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM 43600 Bangi, Selangor (Malaysia); Kassim, Mohammad B. [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM 43600 Bangi, Selangor, Malaysia and Fuel Cell Institute, Universiti Kebangsaan Malaysia, UKM 43600 Bangi, Selangor (Malaysia)

    2014-09-03

    A simple mononuclear octahedral copper(II) complex was attempted from the reaction of three moles of 1-benzoyl-3-(pyridin-2-yl)-1H-pyrazole and one mole of copper(II) perchlorate hexahydrate in methanol. However, the product of the reaction was confirmed to be a dinuclear copper(II) complex with μ-(3-(pyridin-2-yl)-pyrazolato) and 3-(pyridin-2-yl)-1H-pyrazole ligands attached to each of the Cu(II) centre atom. The copper(II) ion assisted the cleavage of the C{sub benzoyl}N bond afforded a 3-(pyridin-2-yl)-1H-pyrazole molecule. Deprotonation of the 3-(pyridin-2-yl)-1H-pyrazole gave a 3-(pyridin-2-yl)-pyrazolato, which subsequently reacted with the Cu(II) ion to give the (3-(pyridin-2-yl)-pyrazolato)(3-(pyridin-2-yl)-1H-pyrazole)Cu(II) product moiety. The structure of the dinuclear complex was confirmed by x-ray crystallography. The complex crystallized in a monoclinic crystal system with P2(1)/n space group and cell dimensions of a = 12.2029(8) Å, b = 11.4010(7) Å, c = 14.4052(9) Å and β = 102.414(2)°. The compound was further characterized by mass spectrometry, CHN elemental analysis, infrared and UV-visible spectroscopy and the results concurred with the x-ray structure. The presence of d-d transition at 671 nm (ε = 116 dm{sup 3} mol{sup −1} cm{sup −1}) supports the presence of Cu(II) centres.

  16. 40 CFR 721.10083 - Copper, [29H, 31H-phthalocyaninato (2-)-N29, N30, N31, N32]-, 4-[(17-substituted-3,6,9,12,15...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Copper, [29H, 31H-phthalocyaninato (2... Significant New Uses for Specific Chemical Substances § 721.10083 Copper, [29H, 31H-phthalocyaninato (2-)-N29... substance identified generically as copper, [29H, 31H-phthalocyaninato (2-)-N29, N30, N31, N32]-, 4-[(17...

  17. 40 CFR 721.10175 - 1-Propanaminium, N-(3-aminopropyl)-2-hydroxy-N,N-dimethyl-3-sulfo-, N-(C12-18 and C18-unsatd...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false 1-Propanaminium, N-(3-aminopropyl)-2... 1-Propanaminium, N-(3-aminopropyl)-2-hydroxy-N,N-dimethyl-3-sulfo-, N-(C12-18 and C18-unsatd. acyl... chemical substance identified as 1-Propanaminium, N-(3-aminopropyl)-2-hydroxy-N,N-dimethyl-3-sulfo-, N-(C12...

  18. 4-Methyl-N-(1-methyl-1H-indazol-5-ylbenzenesulfonamide

    Directory of Open Access Journals (Sweden)

    Hakima Chicha

    2013-09-01

    Full Text Available In the title compound, C15H15N3O2S, the fused ring system is close to planar, the largest deviation from the mean plane being 0.030 (2 Å, and makes a dihedral angle of 48.84 (9° with the benzene ring belonging to the methylbenzenesulfonamide moiety. In the crystal, molecules are connected through N—H...N hydrogen bonds and weak C—H...O contacts, forming a two-dimensional network parallel to (001.

  19. Differential replication of avian influenza H9N2 viruses in human alveolar epithelial A549 cells

    Directory of Open Access Journals (Sweden)

    Peiris Malik

    2010-03-01

    Full Text Available Abstract Avian influenza virus H9N2 isolates cause a mild influenza-like illness in humans. However, the pathogenesis of the H9N2 subtypes in human remains to be investigated. Using a human alveolar epithelial cell line A549 as host, we found that A/Quail/Hong Kong/G1/97 (H9N2/G1, which shares 6 viral "internal genes" with the lethal A/Hong Kong/156/97 (H5N1/97 virus, replicates efficiently whereas other H9N2 viruses, A/Duck/Hong Kong/Y280/97 (H9N2/Y280 and A/Chicken/Hong Kong/G9/97 (H9N2/G9, replicate poorly. Interestingly, we found that there is a difference in the translation of viral protein but not in the infectivity or transcription of viral genes of these H9N2 viruses in the infected cells. This difference may possibly be explained by H9N2/G1 being more efficient on viral protein production in specific cell types. These findings suggest that the H9N2/G1 virus like its counterpart H5N1/97 may be better adapted to the human host and replicates efficiently in human alveolar epithelial cells.

  20. Fourier spectroscopy of the 12C2, 13C2, and 12C13C (0-0) swan bands

    International Nuclear Information System (INIS)

    Amiot, C.

    1983-01-01

    The (0-0) band of the C 2 Swan electronic system d 3 Pi/sub g/→a 3 Pi/sub u/ has been recorded by Fourier spectroscopy. The three isotopes species 12 C 2 , 13 C 2 , and 12 C 13 C were investigated. The observed wavenumbers were reduced to molecular parameters using a nonlinear least-square fitting procedure. Well-known perturbations at N' = 47 and N' = 51 again observed in the e 12 C 2 d 3 Pi/sub g/ (v = 0) level. Perturbations of the same kind are present in the 13 C 2 spectrum at N' = 34 and N' = 44,48,52. The 12 C 13 C spectrum exhibits in the observed spectral range a unique perturbation for N' = 41

  1. Combined treatment of hydroxypropyl guar gum in oilfield fracturing wastewater by coagulation and the UV/H2O2/ferrioxalate complexes process.

    Science.gov (United States)

    Zhang, Zhenchao

    2018-02-01

    Hydroxypropyl guar gum is considered to be a main component of oilfield fracturing wastewater (OFW). This work is intended to optimize the experimental conditions for the maximum oxidative degradation of hydroxypropyl guar gum by the coagulation and UV/H 2 O 2 /ferrioxalate complexes process. Optimal reaction conditions were proposed based on the chemical oxygen demand (COD) removal efficiency and UV _ vis spectra analysis. The overall removal efficiency of COD reached 83.8% for a dilution ratio of raw wastewater of 1:2, pH of 4 and FeCl 3 loading of 1,000 mg/L in the coagulation process; the dosage of H 2 O 2 (30%,v/v) was 0.6% (v/v) and added in three steps, the n(H 2 O 2 )/n(Fe 2+ ) was 2:1, n(Fe 2+ )/n(C 2 O 4 2- ) was 3:1 and pH was 4 in the UV/H 2 O 2 /ferrioxalate complexes process; pH was adjusted to 8.5-9 by NaOH and then cationic polyacrylamide (CPAM) of 2 mg/L was added in the neutralization and flocculation process. The decrease in COD during the coagulation process reduced the required H 2 O 2 dosage and improved efficiency in the subsequent UV/H 2 O 2 /ferrioxalate complexes process. Furthermore, COD removal efficiency significantly increased by more than 13.4% with the introduction of oxalate compared with UV/Fenton. The UV _ vis spectra analysis results indicated that the coagulation and UV/H 2 O 2 /ferrioxalate complexes process could efficiently remove the hydroxypropyl guar gum dissolved in OFW. An optimal combination of these parameters produced treated wastewater that met the GB8978-1996 Integrated Wastewater Discharge Standard level III emission standard.

  2. Carbonyl(N-nitroso-N-oxido-1-naphtylamine-κ2O,O′(triphenylphosphine-κPrhodium(I acetone solvate

    Directory of Open Access Journals (Sweden)

    T. J. Muller

    2009-12-01

    Full Text Available The title compound, [Rh(C10H7N2O2(C18H15P(CO]·(CH32CO, is the second structural report of a metal complex formed with the O,O′-C10H7N2O2 (neocupferrate ligand. In the crystal structure, the metal centre is surrounded by one carbonyl ligand, one triphenylphosphine ligand and the bidentate neocupferrate ligand, forming a distorted square-planar RhCO2P coordination set which is best illustrated by the small O—Rh—O bite angle of 77.74 (10°. There are no classical hydrogen-bond interactions observed for this complex.

  3. Synthesis, crystal and supramolecular structure of rac-N-acetyl-2- thiohydantoin-asparagine

    Directory of Open Access Journals (Sweden)

    Gerzon E. Delgado

    2014-05-01

    Full Text Available The title compound, C7H9N3O3S, also known as rac-N-acetyl-5-propionamide-2-thioxo-imidazolidin-4-one, crystallize in the monoclinic system with space group P21/n (Nº14, Z=4, and unit cell parameters a= 9.338 (7 Å, b= 7.545 (5 Å, c= 13.212 (10 Å, E= 97.10 (2°, V= 932.8 (12 Å3. The acetyl group and the mean plane of the ureido group form an angle of 81.0 (2°. In the supramolecular structure, the molecules are joined by N--H···O hydrogen bonds into cyclic structures with graph-set R2 2(14 and R2 2(16, forming a three-dimensional network.

  4. EPR study of gamma irradiated N-methyl taurine (C 3H 9NO 3S) and sodium hydrogen sulphate monohydrate (NaHSO 3·H 2O) single crystals

    Science.gov (United States)

    Yıldırım, İlkay; Karabulut, Bünyamin

    2011-03-01

    EPR study of gamma irradiated C 3H 9NO 3S and NaHSO 3.H 2O single crystals have been carried out at room temperature. There is one site for the radicals in C 3H 9NO 3S and two magnetically distinct sites for the radicals in NaHSO 3. The observed lines in the EPR spectra have been attributed to the species of SO3- and RH radicals for N-methyl taurine, and to the SO3- and OH radicals for sodium hydrogen sulfate monohydrate single crystals. The principal values of the g for SO3-, the hyperfine values of RH and OH proton splitting have been calculated and discussed.

  5. Triaqua(1,10-phenanthroline-2,9-dicarboxylatocobalt(II dihydrate

    Directory of Open Access Journals (Sweden)

    Zi-Fa Shi

    2010-04-01

    Full Text Available The title compound, [Co(C14H6N2O4(H2O3]·2H2O, has twofold crystallographic symmetry. The CoII atom is in a distorted pentagonal-bipyramidal coordination environment with two N atoms and two O atoms from a tetradentate 1,10-phenanthroline-2,9-dicarboxylate ligand and one O atom from a water molecule forming the pentagonal plane, and two O atoms from two water molecules occupying axial positions. In the crystal, adjacent molecules are linked by O—H...O hydrogen bonds, forming a three-dimensional network.

  6. cis-Aquabis(2,2′-bipyridine-κ2N,N′fluoridochromium(III bis(perchlorate dihydrate

    Directory of Open Access Journals (Sweden)

    Torben Birk

    2010-02-01

    Full Text Available The title mixed aqua–fluoride complex, [CrF(C10H8N22(H2O](ClO42·2H2O, has been synthesized by aquation of the corresponding difluoride complex using lanthanide(III ions as F− acceptors. The complex crystallizes with a CrIII ion at the center of a distorted octahedral coordination polyhedron with a cis arrangement of ligands. The crystal packing shows a hydrogen-bonding pattern involving water molecules, the coordinated F atom and the perchlorate anions

  7. Diaqua[N,N′-bis(2-pyridylmethylenepropane-1,3-diamine]manganese(II dibromide–aquabromido[N,N′-bis(2-pyridylmethylenepropane-1,3-diamine]manganese(II bromide–dibromido[N,N′-bis(2-pyridylmethylenepropane-1,3-diamine]manganese(II (1/2/1

    Directory of Open Access Journals (Sweden)

    In-Chul Hwang

    2009-01-01

    Full Text Available There are three different MnII complexes in the asymmetric unit of the title compound, [Mn(C15H16N4(H2O2]Br2·2{[MnBr(C15H16N4(H2O]Br}·[MnBr2(C15H16N4]. In the neutral complex, the Mn2+ ion is six-coordinated in a distorted octahedral environment by four N atoms of the tetradentate ligand N,N′-bis(2-pyridylmethylenepropane-1,3-diamine (bppd and two bromide ligands. In the two cationic complexes, the Mn2+ ions are also six-coordinated in similar environments, but one Mn ion is coordinated by four N atoms of bppd, one Br atom and one O atom of a coordinating water molecule, whereas the other Mn ion is coordinated by four N atoms of bppd and two O atoms of water ligands. The complexes with two coordinated Br atoms or two H2O ligands are disposed about a twofold axis through Mn and C atoms with the special positions ({script{1over 2}}, y, 0 and (0, y, {script{1over 2}}, respectively. The compound displays intermolecular O—H...Br hydrogen bonding. There are intermolecular π–π interactions between adjacent pyridine rings, with centroid–centroid distances of 3.822 and 3.833 Å, and a C—H...O interaction is also present.

  8. 4-(2,4-Dichlorophenyl-2-(1H-indol-3-yl-6-methoxypyridine-3,5-dicarbonitrile

    Directory of Open Access Journals (Sweden)

    M. N. Ponnuswamy

    2008-10-01

    Full Text Available In the title compound, C22H12Cl2N4O, the indole ring system and the benzene ring form dihedral angles of 21.18 (7° and 68.43 (8°, respectively, with the pyridine ring. The methoxy group is coplanar with the pyridine ring. In the crystal structure N—H...N intermolecular hydrogen bonds link the molecules into C(10 chains running along [011]. Intramolecular C—H...N hydrogen bonds are also observed.

  9. A coordination polymer of CdII with benzene-1,3-dicarboxylate and 1,4-bis[1-(2-pyridylmethylbenzimidazol-2-yl]butane

    Directory of Open Access Journals (Sweden)

    Wei-Ping Zhang

    2009-11-01

    Full Text Available The title CdII coordination polymer, catena-poly[[{1,4-bis[1-(2-pyridylmethylbenzimidazol-2-yl]butane}cadmium(II]-μ-benzene-1,3-dicarboxylato], [Cd(C8H4O4(C30H28N6]n, was obtained by reaction of CdCO3, benzene-1,3-dicarboxylic acid (H2btc and 1,4-bis[1-(2-pyridylmethylbenzimidazol-2-yl]butane (L. The CdII cation is six-coordinated by an N2O4-donor set. L acts as a bidentate ligand and btc anions link CdII centers into a chain propagating parallel to [010].

  10. The Ruthenostannylene Complex [Cp*(IXy)H2 Ru-Sn-Trip]: Providing Access to Unusual Ru-Sn Bonded Stanna-imine, Stannene, and Ketenylstannyl Complexes.

    Science.gov (United States)

    Liu, Hsueh-Ju; Ziegler, Micah S; Tilley, T Don

    2015-05-26

    Reactivity studies of the thermally stable ruthenostannylene complex [Cp*(IXy)(H)2 Ru-Sn-Trip] (1; IXy=1,3-bis(2,6-dimethylphenyl)imidazol-2-ylidene; Cp*=η(5) -C5 Me5 ; Trip=2,4,6-iPr3 C6 H2 ) with a variety of organic substrates are described. Complex 1 reacts with benzoin and an α,β-unsaturated ketone to undergo [1+4] cycloaddition reactions and afford [Cp*(IXy)(H)2 RuSn(κ(2) -O,O-OCPhCPhO)Trip] (2) and [Cp*(IXy)(H)2 RuSn(κ(2) -O,C-OCPhCHCHPh)Trip] (3), respectively. The reaction of 1 with ethyl diazoacetate resulted in a tin-substituted ketene complex [Cp*(IXy)(H)2 RuSn(OC2 H5 )(CHCO)Trip] (4), which is most likely a decomposition product from the putative ruthenium-substituted stannene complex. The isolation of a ruthenium-substituted stannene [Cp*(IXy)(H)2 RuSn(=Flu)Trip] (5) and stanna-imine [Cp*(IXy)(H)2 RuSn(κ(2) -N,O-NSO2 C6 H4 Me)Trip] (6) complexes was achieved by treatment of 1 with 9-diazofluorene and tosyl azide, respectively. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Crystal structure of 4,4′-(ethane-1,2-diylbis(2,6-dibromoaniline

    Directory of Open Access Journals (Sweden)

    Ines Hauptvogel

    2015-01-01

    Full Text Available In the title compound, C14H12Br4N2, the molecule lies across an inversion center and hence the benzene rings are strictly coplanar. In the crystal, molecules are linked by N—H...N and weak N—H...Br hydrogen bonds, forming a two-dimensional network parallel to (101. In addition, type II Br...Br interactions [3.625 (4 Å] complete a three-dimensional supramolecular network.

  12. Two complexes of Pt(IV) and Au(III) with 2,2'-dipyridylamine and 2,2'-dipyridylaminide ligands.

    Science.gov (United States)

    Chernyshev, Alexander N; Kukushkin, Vadim Yu; Haukka, Matti

    2014-12-01

    Two noble metal complexes involving ancillary chloride ligands and chelating 2,2'-bipyridylamine (Hdpa) or its deprotonated derivative (dpa), namely [bis(pyridin-2-yl-κN)amine]tetrachloridoplatinum(IV), [PtCl4(C10H9N3)], and [bis(pyridin-2-yl-κN)aminido]dichloridogold(III), [AuCl2(C10H8N3)], are presented and structurally characterized. The metal atom in the former has a slightly distorted octahedral coordination environment, formed by four chloride ligands and two pyridyl N atoms of Hdpa, while the metal atom in the latter has a slightly distorted square-planar coordination environment, formed by two chloride ligands and two pyridyl N atoms of dpa. The difference in conjugation between the pyridine rings in normal and deprotonated 2,2'-dipyridylamine is discussed on the basis of the structural features of these complexes. The influence of weak interactions on the supramolecular structures of the complexes, providing one-dimensional chains of [PtCl4(C10H9N3)] and dimers of [AuCl2(C10H8N3)], are discussed.

  13. Modulation of transglutaminase 2 activity in H9c2 cells by PKC and PKA signalling: a role for transglutaminase 2 in cytoprotection

    Science.gov (United States)

    Almami, Ibtesam; Dickenson, John M; Hargreaves, Alan J; Bonner, Philip L R

    2014-01-01

    BACKGROUND AND PURPOSE Tissue transglutaminase (TG2) has been shown to mediate cell survival in many cell types. In this study, we investigated whether the role of TG2 in cytoprotection was mediated by the activation of PKA and PKC in cardiomyocyte-like H9c2 cells. EXPERIMENTAL APPROACH H9c2 cells were extracted following stimulation with phorbol-12-myristate-13-acetate (PMA) and forskolin. Transglutaminase activity was determined using an amine incorporating and a protein crosslinking assay. The presence of TG isoforms (TG1, 2, 3) was determined using Western blot analysis. The role of TG2 in PMA- and forskolin-induced cytoprotection was investigated by monitoring H2O2-induced oxidative stress in H9c2 cells. KEY RESULTS Western blotting showed TG2 >> TG1 protein expression but no detectable TG3. The amine incorporating activity of TG2 in H9c2 cells increased in a time and concentration-dependent manner following stimulation with PMA and forskolin. PMA and forskolin-induced TG2 activity was blocked by PKC (Ro 31-8220) and PKA (KT 5720 and Rp-8-Cl-cAMPS) inhibitors respectively. The PMA- and forskolin-induced increases in TG2 activity were attenuated by the TG2 inhibitors Z-DON and R283. Immunocytochemistry revealed TG2-mediated biotin-X-cadaverine incorporation into proteins and proteomic analysis identified known (β-tubulin) and novel (α-actinin) protein substrates for TG2. Pretreatment with PMA and forskolin reversed H2O2-induced decrease in MTT reduction and release of LDH. TG2 inhibitors R283 and Z-DON blocked PMA- and forskolin-induced cytoprotection. CONCLUSIONS AND IMPLICATIONS TG2 activity was stimulated via PKA- and PKC-dependent signalling pathways in H9c2 cells These results suggest a role for TG2 in cytoprotection induced by these kinases. PMID:24821315

  14. Ethyl 2-(3,4-dimethyl-5,5-dioxo-1H,4H-benzo[e]pyrazolo[4,3-c][1,2]thiazin-1-ylacetate

    Directory of Open Access Journals (Sweden)

    Sana Aslam

    2012-10-01

    Full Text Available In the title molecule, C15H17N3O4S, the heterocyclic thiazine ring adopts a twist-boat conformation, which differs from that in related compounds, with adjacent S and C atoms displaced by 0.981 (4 and 0.413 (5 Å, respectively, on the same side of the mean plane formed by the remaining ring atoms. The mean plane of the benzene ring makes a dihedral angle of 23.43 (14° with the mean plane of the pyrazole ring. In the crystal, molecules are connected by weak C—H...O hydrogen bonds to form a three-dimensional network. The H atoms of the methyl group attached to the pyrazole ring were refined over six sites with equal occupancies.

  15. Bis(2,3,5,6-tetra-2-pyridylpyrazine-κ3N2,N1,N6iron(II bis(dicyanamidate 4.5-hydrate

    Directory of Open Access Journals (Sweden)

    R. Cortés

    2010-03-01

    Full Text Available In the title compound, [Fe(C24H16N62][N(CN2]2·4.5H2O, the central iron(II ion is hexacoordinated by six N atoms of two tridentate 2,3,5,6-tetra-2-pyridylpyrazine (tppz ligands. Two dicyanamide anions [dca or N(CN2−] act as counter-ions, and 4.5 water molecules act as solvation agents. The structure contains isolated cationic iron(II–tppz complexes and the final neutrality is obtained with the two dicyanamide anions. One of the dicyanamide anions and a water molecule are disordered with an occupancy ratio of 0.614 (8:0.386 (8. O—H...O, O—H...N and C—H...O hydrogen bonds involving dca, water and tppz molecules are observed.

  16. Bromidotetra?kis?(2-isopropyl-1H-imidazole-?N 3)copper(II) bromide

    OpenAIRE

    Godlewska, Sylwia; Socha, Joanna; Baranowska, Katarzyna; Do??ga, Anna

    2011-01-01

    The CuII atom in the title salt, [CuBr(C6H10N2)4]Br, is coordinated in a square-pyramidal geometry by four imidazole N atoms and one bromide anion that is located at the apex of the pyramid. The cations and the anions form a two-dimensional network parallel to (001) through N—H...Br hydrogen bonds.

  17. {N,N′-Bis[(E-3-phenylallylidene]ethane-1,2-diamine}dichloridozinc(II

    Directory of Open Access Journals (Sweden)

    Zhi-Dong Lin

    2008-12-01

    Full Text Available In the title compound, [ZnCl2(C20H20N2], the ZnII atom is four coordinated in a distorted tetrahedral geometry by two N atoms of the Schiff base ligand and by two Cl atoms. Edge-to-face C—H...π interactions exist between molecules, with a dihedral angle of 37.8 (1° between the benzene ring planes and a shortest H...centroid distance of 3.62 (5 Å.

  18. 2-(2-Pyridylpyridinium (2,2′-bipyridine-κ2N,N′tetrakis(nitrato-κ2O,O′bismuthate(III

    Directory of Open Access Journals (Sweden)

    Shu-Shen Zhang

    2011-10-01

    Full Text Available The structure of the title compound, (C10H9N2[Bi(NO34(C10H8N2], consists of 2-(2-pyridylpyridinium cations and anions [Bi(NO34(C10H8N2]−. The Bi3+ ion lies on the twofold axis. It is coordinated by two nitrogen atoms from one 2,2′-bipyridine ligand and eight oxygen atoms from four NO3− anions. The disordered cation is positioned at the inversion centre. The [Bi(NO34(C10H8N2]− anions and 2-(2-pyridylpyridinium cations are connected via N—H...O hydrogen bonds into chains. Moreover, these chains are further linked into a two-dimensional layered structure through π–π stacking interactions between bipyridine ligands along the c axis [centroid–centroid distance = 2.868 (4 Å].

  19. Crystal structure of 2-methylamino-4-(6-methyl-4-oxo-4H-chromen-3-yl-3-nitropyrano[3,2-c]chromen-5(4H-one with an unknown solvate

    Directory of Open Access Journals (Sweden)

    Rajamani Raja

    2015-09-01

    Full Text Available In the title compound, C23H16N2O7, the mean planes of the two chromene units (r.m.s. deviations = 0.031 and 0.064 Å are almost normal to one another with a dihedral angle of 85.59 (6°. The central six-membered pyran ring has a distorted envelope conformation, with the methine C atom at the flap. There is an intramolecular N—H...O hydrogen bond, which generates an S(6 ring motif. In the crystal, molecules are linked by pairs of N—H...O hydrogen bonds, forming inversion dimers with an R22(12 ring motif. The dimers are linked by pairs of C—H...O hydrogen bonds, enclosing R22(6 ring motifs, forming zigzag chains along [001]. The chains are linked by a second pair of C—H...O hydrogen bonds, forming slabs parallel to (110. Within the slabs there are C—H...π interactions present. A region of disordered electron density was treated with the SQUEEZE procedure in PLATON [Spek (2015. Acta Cryst. C71, 9–18] following unsuccessful attempts to model it as plausible solvent molecule(s. The given chemical formula and other crystal data do not take into account the unknown solvent molecule(s.

  20. Microsolvation effect and hydrogen-bonding pattern of taurine-water TA-(H2O)n (n = 1-3) complexes.

    Science.gov (United States)

    Dai, Yumei; Wang, Yuhua; Huang, Zhengguo; Wang, Hongke; Yu, Lei

    2012-01-01

    The microsolvation of taurine (TA) with one, two or three water molecules was investigated by a density functional theory (DFT) approach. Quantum theory of atoms in molecules (QTAIM) analyses were employed to elucidate the hydrogen bond (H-bond) interaction characteristics in TA-(H(2)O)(n) (n = 1-3) complexes. The results showed that the intramolecular H-bond formed between the hydroxyl and the N atom of TA are retained in most TA-(H(2)O)(n) (n = 1-3) complexes, and are strengthened via cooperative effects among multiple H-bonds from n = 1-3. A trend of proton transformation exists from the hydroxyl to the N atom, which finally results in the cleavage of the origin intramolecular H-bond and the formation of a new intramolecular H-bond between the amino and the O atom of TA. Therefore, the most stable TA-(H(2)O)(3) complex becomes a zwitterionic complex rather than a neutral type. A many-body interaction analysis showed that the major contributors to the binding energies for complexes are the two-body energies, while three-body energies and relaxation energies make significant contributions to the binding energies for some complexes, whereas the four-body energies are too small to be significant.

  1. Mesenchymal stromal cell treatment prevents H9N2 avian influenza virus-induced acute lung injury in mice

    Directory of Open Access Journals (Sweden)

    Yan Li

    2016-10-01

    Full Text Available Abstract Background The avian influenza virus (AIV can cross species barriers and expand its host range from birds to mammals, even humans. Avian influenza is characterized by pronounced activation of the proinflammatory cytokine cascade, which perpetuates the inflammatory response, leading to persistent systemic inflammatory response syndrome and pulmonary infection in animals and humans. There are currently no specific treatment strategies for avian influenza. Methods We hypothesized that mesenchymal stromal cells (MSCs would have beneficial effects in the treatment of H9N2 AIV-induced acute lung injury in mice. Six- to 8-week-old C57BL/6 mice were infected intranasally with 1 × 104 MID50 of A/HONG KONG/2108/2003 [H9N2 (HK] H9N2 virus to induce acute lung injury. After 30 min, syngeneic MSCs were delivered through the caudal vein. Three days after infection, we measured the survival rate, lung weight, arterial blood gas, and cytokines in both bronchoalveolar lavage fluid (BALF and serum, and assessed pathological changes to the lungs. Results MSC administration significantly palliated H9N2 AIV-induced pulmonary inflammation by reducing chemokines and proinflammatory cytokines levels, as well as reducing inflammatory cell recruit into the lungs. Thus, H9N2 AIV-induced lung injury was markedly alleviated in mice treated with MSCs. Lung histopathology and arterial blood gas analysis were improved in mice with H9N2 AIV-induced lung injury following MSC treatment. Conclusions MSC treatment significantly reduces H9N2 AIV-induced acute lung injury in mice and is associated with reduced pulmonary inflammation. These results indicate a potential role for MSC therapy in the treatment of clinical avian influenza.

  2. Triaquabis(1H-imidazolebis[μ2-2-(oxaloaminobenzoato(3−]dicopper(IIcalcium(II heptahydrate

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2008-02-01

    Full Text Available In the title heterotrinuclear coordination compound, [CaCu2(C9H4NO52(C3H4N22(H2O3]·7H2O, the Ca2+ cation is in a pentagonal–bipyramidal geometry and bridges two (1H-imidazole[2-(oxaloaminobenzoato(3−]copper(II units in its equatorial plane. Each CuII atom has a normal square-planar geometry. The molecule has approximate local (non-crystallographic mirror symmetry and 23 classical hydrogen bonds are found in the crystal structure.

  3. Continuing evolution of H9N2 avian influenza virus in South Korea

    Science.gov (United States)

    The H9N2 low pathogenic avian influenza (LPAI) has caused great economic losses in Korean poultry industry since the first outbreak in 1996. Although the hemagglutinin gene of early H9N2 viruses were closely related to Chinese Y439-like lineage virus, it evolved into a unique Korean lineage after ...

  4. Crystal structure of (2-formylphenolato-κ2O,O′oxido(2-{[(2-oxidoethylimino]methyl}phenolato-κ3O,N,O′vanadium(V

    Directory of Open Access Journals (Sweden)

    Sowmianarayanan Parimala

    2015-05-01

    Full Text Available In the unsymmetrical title vanadyl complex, [V(C9H9NO2(C7H5O2O], one of the ligands (2-formylphenol is disordered over two sets of sites, with an occupancy ratio of 0.55 (2:0.45 (2. The metal atom is hexacoordinated, with a distorted octahedral geometry. The vanadyl O atom (which subtends the shortest V—O bond occupies one of the apical positions and the remaining axial bond (the longest in the polyhedron is provided by the (disordered formyl O atoms. The basal plane is defined by the two phenoxide O atoms, the iminoalcoholic O and the imino N atom. The planes of the two benzene rings are almost perpendicular to each other, subtending an interplanar angle of 84.1 (2° between the major parts. The crystal structure features weak C—H...O and C—H...π interactions, forming a lateral arrangement of adjacent molecules.

  5. A three-dimensional coordination polymer based on 1,2,3-triazole-4,5-dicarboxylic acid (H{sub 3}tda): ([Cd{sub 12}(tda){sub 8}(H{sub 2}O){sub 11}] · (H{sub 2}O)6.25){sub n}

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xin-Hui, E-mail: iamxhzhou@njupt.edu.cn; Chen, Qiang [Nanjing University of Posts and Telecommunications, Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, National Jiangsu Syngerstic Innovation Center for Advanced Materials (SICAM) (China)

    2017-03-15

    The title coordination polymer ([Cd{sub 12}(tda){sub 8}(H{sub 2}O){sub 11}] · (H{sub 2}O){sub 6.25}){sub n} (H{sub 3}tda = 1,2,3-triazole-4,5-dicarboxylic acid), has been hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction. Complex crystallizes in orthorhombic sp. gr. Pmn2{sub 1} with Z = 4. The Cd{sub 2} unit doublebridged by one carboxylate oxygen atom and two neighboring nitrogen atoms from the tda{sup 3–} ligands are linked by the tda{sup 3–}ligands to lead to the 2D (4,4) network in the ac plane. The almost coplanar Cd{sub 2}(μ{sub 5}-tda){sub 2} unit comprised of two Cd ions double-bridged by two tda{sup 3–} ligands through the neighboring nitrogen atoms is connected with the other four Cd{sub 2}(μ{sub 5}-tda){sub 2} units form the undulating 2D network in the ac plane. The (4,4) networks and undulating 2D networks are alternatively connected along the b axis by the tda{sup 3–} ligands coordinating to the Cd ions to form the 3D framework.

  6. Complete fusion of the 12C+12O, 14N+12C and 15N+12C systems

    International Nuclear Information System (INIS)

    Conjeaud, M.; Gary, S.; Harar, S.; Wieleczko, J.P.

    1978-01-01

    Cross sections for evaporation residues following the complete fusion of the 12 C+ 12 C, 14 N+ 12 C and 15 N+ 12 C systems have been measured with a E-ΔE counter telescope in a wide range of incident energies. They are fairly well reproduced by evaporation calculations based on the statistical theory. The total fusion excitation function of the 12 C+ 12 C system shows strong structure, which is compared to the predictions of the reaction cross sections derived from coupled channel calculations and to the integrated inelastic cross sections. Critical angular momenta have been obtained from the fusion cross-section data and these values are discussed in the framework of compound nucleus and entrance channel effects. A striking difference is observed between the fusion cross sections of the 14 N+ 12 C and 15 N+ 12 C systems and shows the importance of the valence nucleons of colliding ions in the fusion process. A possible interpretation might be the influence of the yrast line of the compound nuclei. (Auth.)

  7. 1-Phenyl-5-{[2-(trimethylsilylethyl]sulfonyl}-1H-tetrazole

    Directory of Open Access Journals (Sweden)

    David Tymann

    2011-09-01

    Full Text Available The title compound, C12H18N4O2SSi, was synthesized to be employed in a Julia–Kocieński olefination. In the molecule, the dihedral angle between the phenyl ring and the tetrazole ring is 41.50 (5°. The significantly longer Si—C(methylene bond [1.8786 (13 Å] and the shortened adjacent C—C bond [1.5172 (18 Å], as well as the significant deviation of the corresponding Si—C—C angle [114.16 (9°] from the ideal tetrahedral angle, can be attributed to the β-effect of silicon. In the crystal, molecules are held together by van der Waals interactions.

  8. Poly[dibromidobis[μ-1-(pyridin-4-ylmethyl-1H-1,2,4-triazole-κ2N:N′]cadmium

    Directory of Open Access Journals (Sweden)

    Xiu-Zhi Xu

    2011-02-01

    Full Text Available The title coordination polymer, [CdBr2(C8H8N42]n, arose from a layer-separated diffusion synthesis at room temperature. The title compound is isotypic with the I and Cl analogues. The Cd atom, located on an inversion center, is coordinated by two bromide ions and four N atoms (two from triazole rings and two from pyridyl rings in a distorted trans-CdBr2N4 octahedral arrangement. The bridging 1-(4-pyridylmethyl-1H-1,2,4-triazole ligands are twisted [dihedral angle between the triazole and pyridine rings = 72.56 (13°], affording a two-dimensional 44 sheet structure in the crystal.

  9. An H5N1-based matrix protein 2 ectodomain tetrameric peptide vaccine provides cross-protection against lethal infection with H7N9 influenza virus.

    Science.gov (United States)

    Leung, Ho-Chuen; Chan, Chris Chung-Sing; Poon, Vincent Kwok-Man; Zhao, Han-Jun; Cheung, Chung-Yan; Ng, Fai; Huang, Jian-Dong; Zheng, Bo-Jian

    2015-04-01

    In March 2013, a patient infected with a novel avian influenza A H7N9 virus was reported in China. Since then, there have been 458 confirmed infection cases and 177 deaths. The virus contains several human-adapted markers, indicating that H7N9 has pandemic potential. The outbreak of this new influenza virus highlighted the need for the development of universal influenza vaccines. Previously, we demonstrated that a tetrameric peptide vaccine based on the matrix protein 2 ectodomain (M2e) of the H5N1 virus (H5N1-M2e) could protect mice from lethal infection with different clades of H5N1 and 2009 pandemic H1N1 influenza viruses. In this study, we investigated the cross-protection of H5N1-M2e against lethal infection with the new H7N9 virus. Although five amino acid differences existed at positions 13, 14, 18, 20, and 21 between M2e of H5N1 and H7N9, H5N1-M2e vaccination with either Freund's adjuvant or the Sigma adjuvant system (SAS) induced a high level of anti-M2e antibody, which cross-reacted with H7N9-M2e peptide. A mouse-adapted H7N9 strain, A/Anhui/01/2013m, was used for lethal challenge in animal experiments. H5N1-M2e vaccination provided potent cross-protection against lethal challenge of the H7N9 virus. Reduced viral replication and histopathological damage of mouse lungs were also observed in the vaccinated mice. Our results suggest that the tetrameric H5N1-M2e peptide vaccine could protect against different subtypes of influenza virus infections. Therefore, this vaccine may be an ideal candidate for developing a universal vaccine to prevent the reemergence of avian influenza A H7N9 virus and the emergence of potential novel reassortants of influenza virus.

  10. X-ray and NQR studies of bromoindate(III) complexes. [C2H5NH3]4InBr7, [C(NH2)3]3InBr6, and [H3NCH2C(CH3)2CH2NH3]InBr5

    International Nuclear Information System (INIS)

    Iwakiri, Takeharu; Ishihara, Hideta; Terao, Hiromitsu; Lork, Enno; Gesing, Thorsten M.

    2017-01-01

    The crystal structures of [C 2 H 5 NH 3 ] 4 InBr 7 (1), [C(NH 2 ) 3 ] 3 InBr 6 (2), and [H 3 NCH 2 C(CH 3 ) 2 CH 2 NH 3 ]InBr 5 (3) were determined at 100(2) K: monoclinic, P2 1 /n, a=1061.94(3), b=1186.40(4), c=2007.88(7) pm, β= 104.575(1) , Z=4 for 1; monoclinic, C2/c, a=3128.81(12), b=878.42(3), c=2816.50(10) pm, β=92.1320(10) , Z=16 for 2; orthorhombic, P2 1 2 1 2 1 , a=1250.33(5), b=1391.46(6), c=2503.22(9) pm, Z=4 for 3. The structure of 1 contains an isolated octahedral [InBr 6 ] 3- ion and a Br - ion. The structure of 2 contains three different isolated octahedral [InBr 6 ] 3- ions. The structure of 3 has a corner-shared double-octahedral [In 2 Br 11 ] 5- ion and an isolated tetrahedral [InBr 4 ] - ion. The 81 Br nuclear quadrupole resonance (NQR) lines of the terminal Br atoms of the compounds are widely spread in frequency, and some of them show unusual positive temperature dependence. These observations manifest the N-H..Br-In hydrogen bond networks developed between the cations and anions to stabilize the crystal structures. The 81 Br NQR and differential thermal analysis (DTA) measurements have revealed the occurrence of unique phase transitions in 1 and 3. When the bond angles were estimated from the electric field gradient (EFG) directions calculated by the molecular orbital (MO) methods, accurate values were obtained for [InBr 6 ] 3- of 1 and for [In 2 Br 11 ] 5- and [InBr 4 ] - of 3, except for several exceptions in those for the latter two ions. On the other hand, the calculations of 81 Br NQR frequencies have produced up to 1.4 times higher values than the observed ones.

  11. Tris(1,2-dimethoxyethane-κ2O,O′iodidocalcium iodide

    Directory of Open Access Journals (Sweden)

    Siou-Wei Ou

    2012-02-01

    Full Text Available In the title complex, [CaI(C4H10O23]I, the CaII atom is seven-coordinated by six O atoms from three 1,2-dimethoxyethane (DME ligands and one iodide anion in a distorted pentagonal–bipyramidal geometry. The I atom and one of the O atoms from a DME ligand lie in the axial positions while the other O atoms lie in the basal plane. The other iodide anion is outside the complex cation.

  12. Bis{4-methylbenzyl 2-[4-(propan-2-ylbenzylidene]hydrazinecarbodithioato-κ2N2,S}nickel(II: crystal structure and Hirshfeld surface analysis

    Directory of Open Access Journals (Sweden)

    Enis Nadia Md Yusof

    2017-03-01

    Full Text Available The complete molecule of the title hydrazine carbodithioate complex, [Ni(C19H21N2S22], is generated by the application of a centre of inversion. The NiII atom is N,S-chelated by two hydrazinecarbodithioate ligands, which provide a trans-N2S2 donor set that defines a distorted square-planar geometry. The conformation of the five-membered chelate ring is an envelope with the NiII atom being the flap atom. In the crystal, p-tolyl-C—H...π(benzene-iPr, iPr-C—H...π(p-tolyl and π–π interactions [between p-tolyl rings with inter-centroid distance = 3.8051 (12 Å] help to consolidate the three-dimensional architecture. The analysis of the Hirshfeld surface confirms the importance of H-atom contacts in establishing the packing.

  13. Molecular dynamic simulation of the self-assembly of DAP12-NKG2C activating immunoreceptor complex.

    Directory of Open Access Journals (Sweden)

    Peng Wei

    Full Text Available The DAP12-NKG2C activating immunoreceptor complex is one of the multisubunit transmembrane protein complexes in which ligand-binding receptor chains assemble with dimeric signal-transducing modules through non-covalent associations in their transmembrane (TM domains. In this work, both coarse grained and atomistic molecular dynamic simulation methods were applied to investigate the self-assembly dynamics of the transmembrane domains of the DAP12-NKG2C activating immunoreceptor complex. Through simulating the dynamics of DAP12-NKG2C TM heterotrimer and point mutations, we demonstrated that a five-polar-residue motif including: 2 Asps and 2 Thrs in DAP12 dimer, as well as 1 Lys in NKG2C TM plays an important role in the assembly structure of the DAP12-NKG2C TM heterotrimer. Furthermore, we provided clear evidences to exclude the possibility that another NKG2C could stably associate with the DAP12-NKG2C heterotrimer. Based on the simulation results, we proposed a revised model for the self-assembly of DAP12-NKG2C activating immunoreceptor complex, along with a plausible explanation for the association of only one NKG2C with a DAP12 dimer.

  14. A two-dimensional ZnII coordination polymer constructed from benzene-1,2,3-tricarboxylic acid and N,N'-bis[(pyridin-4-yl)methylidene]hydrazine.

    Science.gov (United States)

    Wang, Xiangfei; Yang, Fang; Tang, Meng; Yuan, Limin; Liu, Wenlong

    2015-07-01

    The hydrothermal synthesis of the novel complex poly[aqua(μ4-benzene-1,2,3-tricarboxylato)[μ2-4,4'-(hydrazine-1,2-diylidenedimethanylylidene)dipyridine](μ3-hydroxido)dizinc(II)], [Zn(C9H3O6)(OH)(C12H10N4)(H2O)]n, is described. The benzene-1,2,3-tricarboxylate ligand connects neighbouring Zn4(OH)2 secondary building units (SBUs) producing an infinite one-dimensional chain. Adjacent one-dimensional chains are connected by the N,N'-bis[(pyridin-4-yl)methylidene]hydrazine ligand, forming a two-dimensional layered structure. Adjacent layers are stacked to generate a three-dimensional supramolecular architecture via O-H...O hydrogen-bond interactions. The thermal stability of this complex is described and the complex also appears to have potential for application as a luminescent material.

  15. Structural and spectral analyses of N,N'-(2,2'-dithiodi-o-phenylene)bis-(furan-2-carboxamide)

    Science.gov (United States)

    Yıldırım, Sema Öztürk; Büyükmumcu, Zeki; Pekdur, Özlem Savaş; Butcher, Ray J.; Doǧan, Şengül Dilem

    2018-02-01

    In this study we report structure determination of N,N'-(2,2'-dithiodi-o-phenylene)bis-(furan-2-carboxamide). 2,2'-Dithiobis(benzamide) derivatives have been reported to possess important biological properties such as antibacterial, antifungal activities and inhibition of blood platelet aggregation and redeterrmined at 100(2)K from the data published by Raftery, Lallbeeharry, Bhowon, Laulloo & Joulea [Acta Cryst. 2009, E65, o16]. 2,2'-Dithiobis(N-butyl-benzamide) has been reported to be useful as an antiseptic for cosmetics. The structural properties of the compound have been characterized by using 1H NMR and the structure were determined by single-crystal X-ray diffraction. Molecular structure crystallizes in triclinic form, space group with a = 9.6396(7) Å, b = 9.9115(7) Å, c = 12.0026(8) Å, α = 109.743(6)°, β = 103.653(6)°, γ = 104.633(6)° and V = 977.15(13) Å3. In the solid state of the molecular structure N-H…S, N-H…O and C-H…O, type interactions provide for stabilization. The geometries of the title compound have been optimized using density functional theory (DFT) method. The calculated values were found to be in agreement with the experimental data.

  16. 5-Imino-3,4-diphenyl-1H-pyrrol-2-one

    Science.gov (United States)

    Bulatov, Evgeny; Chulkova, Tatiana; Haukka, Matti

    2014-01-01

    The title compound, C16H12N2O, exists in the crystalline state as the 5-imino-3,4-di­phenyl­-1H-pyrrol-2-one tautomer. The dihedral angles between the pyrrole and phenyl rings are 35.3 (2) and 55.3 (2)°. In the crystal, inversion dimers linked by pairs of N—H⋯N hydrogen bonds generate a graph-set motif of R 2 2(8) via N—H⋯N hydrogen bonds. PMID:24764881

  17. Crystal structure of bis[2,5-bis(pyridin-2-yl-1,3,4-thiadiazole-κ2N2,N3]bis(thiocyanato-κScopper(II

    Directory of Open Access Journals (Sweden)

    Abdelhakim Laachir

    2016-08-01

    Full Text Available The mononuclear title complex, [Cu(SCN2(C12H8N4S2], was obtained by the reaction of 2,5-bis(pyridin-2-yl-1,3,4-thiadiazole and potassium thiocyanate with copper(II chloride dihydrate. The copper cation lies on an inversion centre and displays an elongated octahedral coordination geometry. The equatorial positions are occupied by the N atoms of two 2,5-bis(pyridin-2-yl-1,3,4-thiadiazole ligands, whereas the axial positions are occupied by the S atoms of two thiocyanate anions. The thiadiazole and the pyridyl rings linked to the metal are approximately coplanar, with a maximum deviation from the mean plane of 0.190 (2 Å. The cohesion of the crystal structure is ensured by weak C—H...N hydrogen bonds and π–π interactions between parallel pyridyl rings of neighbouring molecules [centroid-to-centroid distance = 3.663 (2 Å], leading to a three-dimensional network.

  18. Crystal structure of [butane-2,3-dione bis(4-methylthiosemicarbazonato-κ4S,N1,N1′,S′](pyridine-κNzinc(II

    Directory of Open Access Journals (Sweden)

    Oliver C. Brown

    2015-11-01

    Full Text Available In the structure of the title complex, [Zn(C8H14N6S2(C5H5N], the ZnII ion has a pseudo-square-pyramidal coordination environment and is displaced by 0.490 Å from the plane of best fit defined by the bis(thiosemicarbazonate N2S2 donor atoms. Chains sustained by intermolecular N—H...N and N—H...S hydrogen-bonding interactions extend parallel to [10-1].

  19. Complexation of rhodium(II) tetracarboxylates with aliphatic diamines in solution: 1H and 13C NMR and DFT investigations.

    Science.gov (United States)

    Jaźwiński, Jarosław; Sadlej, Agnieszka

    2013-10-01

    The complexation of rhodium(II) tetraacetate, tetrakistrifluoroaceate and tetrakisoctanoate with a set of diamines (ethane-1,diamine, propane-1,3-diamine and nonane-1,9-diamine) and their N,N'-dimethyl and N,N,N',N'-tetramethyl derivatives in chloroform solution has been investigated by (1) H and (13) C NMR spectroscopy and density functional theory (DFT) modelling. A combination of two bifunctional reagents, diamines and rhodium(II) tetracarboxylates, yielded insoluble coordination polymers as main products of complexation and various adducts in the solution, being in equilibrium with insoluble material. All diamines initially formed the 2 : 1 (blue), (1 : 1)n oligomeric (red) and 1 : 2 (red) axial adducts in solution, depending on the reagents' molar ratio. Adducts of primary and secondary diamines decomposed in the presence of ligand excess, the former via unstable equatorial complexes. The complexation of secondary diamines slowed down the inversion at nitrogen atoms in NH(CH3 ) functional groups and resulted in the formation of nitrogenous stereogenic centres, detectable by NMR. Axial adducts of tertiary diamines appeared to be relatively stable. The presence of long aliphatic chains in molecules (adducts of nonane-1,9-diamines or rhodium(II) tetrakisoctanoate) increased adduct solubility. Hypothetical structures of the equatorial adduct of rhodium(II) tetraacetate with ethane-1,2-diamine and their NMR parameters were explored by means of DFT calculations. Copyright © 2013 John Wiley & Sons, Ltd.

  20. Structure of poly[diaqua[μ-1,2-bis(pyridin-4-ylethane-κ2N:N′]bis(μ3-cyclobutane-1,1-dicarboxylato-κ3O,O′:O′′:O′′′dimanganese(II

    Directory of Open Access Journals (Sweden)

    Do Nam Lee

    2015-08-01

    Full Text Available In the title compound, [Mn(C6H6O4(C12H12N2(H2O]n, the cyclobutane-1,1-dicarboxylate (cbdc ligands bridge three MnII ions, forming layers parallel to the ac plane. These layers are additionally connected by 1,2-bis(pyridin-4-ylethane ligands to form a three-dimensional polymeric framework. An inversion centre is located at the mid-point of the central C—C bond of the 1,2-bis(pyridin-4-ylethane ligand. The coordination geometry of the MnII ion is distorted octahedral and is built up by four carboxylate O atoms, one water O atom and a pyridyl N atom. The pyridine ligand and the coordinating water molecule are in a trans configuration. One carboxylate group of the cbdc ligand acts as a chelating ligand towards one MnII atom, whereas the second carboxylate group coordinates two different MnII atoms.

  1. Crystal structure of tetraaqua[2-(pyridin-2-yl-1H-imidazole-κ2N2,N3]iron(II sulfate

    Directory of Open Access Journals (Sweden)

    Zouaoui Setifi

    2015-04-01

    Full Text Available In the title compound, [Fe(C8H7N3(H2O4]SO4, the central FeII ion is octahedrally coordinated by two N atoms from the bidentate 2-(pyridin-2-yl-1H-imidazole ligand and by four O atoms of the aqua ligands. The largest deviation from the ideal octahedral geometry is reflected by the small N—Fe—N bite angle of 76.0 (1°. The Fe—N coordination bonds have markedly different lengths [2.1361 (17 and 2.243 (2 Å], with the shorter one to the pyrimidine N atom. The four Fe—O coordination bond lengths vary from 2.1191 (18 to 2.1340 (17 Å. In the crystal, the cations and anions are arranged by means of medium-strength O—H...O hydrogen bonds into layers parallel to the ab plane. Neighbouring layers further interconnect by N—H...O hydrogen bonds involving the imidazole fragment as donor group to one sulfate O atom as an acceptor. The resulting three-dimensional network is consolidated by C—H...O, C—H...π and π–π interactions.

  2. Reduced gas seepages in ophiolitic complexes: Evidences for multiple origins of the H2-CH4-N2 gas mixtures

    Science.gov (United States)

    Vacquand, Christèle; Deville, Eric; Beaumont, Valérie; Guyot, François; Sissmann, Olivier; Pillot, Daniel; Arcilla, Carlo; Prinzhofer, Alain

    2018-02-01

    This paper proposes a comparative study of reduced gas seepages occurring in ultrabasic to basic rocks outcropping in ophiolitic complexes based on the study of seepages from Oman, the Philippines, Turkey and New Caledonia. This study is based on analyses of the gas chemical composition, noble gases contents, stable isotopes of carbon, hydrogen and nitrogen. These seepages are mostly made of mixtures of three main components which are H2, CH4 and N2 in various proportions. The relative contents of the three main gas components show 4 distinct types of gas mixtures (H2-rich, N2-rich, N2-H2-CH4 and H2-CH4). These types are interpreted as reflecting different zones of gas generation within or below the ophiolitic complexes. In the H2-rich type, associated noble gases display signatures close to the value of air. In addition to the atmospheric component, mantle and crustal contributions are present in the N2-rich, N2-H2-CH4 and H2-CH4 types. H2-bearing gases are either associated with ultra-basic (pH 10-12) spring waters or they seep directly in fracture systems from the ophiolitic rocks. In ophiolitic contexts, ultrabasic rocks provide an adequate environment with available Fe2+ and alkaline conditions that favor H2 production. CH4 is produced either directly by reaction of dissolved CO2 with basic-ultrabasic rocks during the serpentinization process or in a second step by H2-CO2 interaction. H2 is present in the gas when no more carbon is available in the system to generate CH4. The N2-rich type is notably associated with relatively high contents of crustal 4He and in this gas type N2 is interpreted as issued mainly from sediments located below the ophiolitic units.

  3. Facile Synthesis and Superior Catalytic Activity of Nano-TiN@N-C for Hydrogen Storage in NaAlH4.

    Science.gov (United States)

    Zhang, Xin; Ren, Zhuanghe; Lu, Yunhao; Yao, Jianhua; Gao, Mingxia; Liu, Yongfeng; Pan, Hongge

    2018-05-09

    Herein, we synthesize successfully ultrafine TiN nanoparticles (hydrogen storage in NaAlH 4 . Adding 7 wt % nano-TiN@N-C induces more than 100 °C reduction in the onset dehydrogenation temperature of NaAlH 4 . Approximately 4.9 wt % H 2 is rapidly released from the 7 wt % nano-TiN@N-C-containing NaAlH 4 at 140 °C within 60 min, and the dehydrogenation product is completely hydrogenated at 100 °C within 15 min under 100 bar of hydrogen, exhibiting significantly improved desorption/absorption kinetics. No capacity loss is observed for the nano-TiN@N-C-containing sample within 25 de-/hydrogenation cycles because nano-TiN functions as an active catalyst instead of a precursor. A severe structural distortion with extended bond lengths and reduced bond strengths for Al-H bonding when the [AlH 4 ] - group adsorbs on the TiN cluster is demonstrated for the first time by density functional theory calculations, which well-explains the reduced de-/hydrogenation temperatures of the nano-TiN@N-C-containing NaAlH 4 . These findings provide new insights into designing and synthesizing high-performance catalysts for hydrogen storage in complex hydrides.

  4. Synthesis, characterization, crystal structure, and thermal analysis of 2-chloro-N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl) acetamide

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, R. [University of Jammu, X-ray Crystallography Laboratory, Post-Graduate Department of Physics & Electronics (India); Nayak, P. S.; Narayana, B. [Mangalore University, Mangalagangotri, Department of Studies in Chemistry (India); Kant, R., E-mail: rkvk.paper11@gmail.com [University of Jammu, X-ray Crystallography Laboratory, Post-Graduate Department of Physics & Electronics (India)

    2015-12-15

    The title compound, C{sub 13}H{sub 14}O{sub 2}N{sub 3}Cl, has been synthesized by the reaction of chloroacetyl chloride with 4-aminoantipyrine in basic media and characterized by FT-IR, CHN elemental analysis, UV-Vis, TGA, DTA, DSC and single crystal X-ray diffraction. crystals are monoclinic, sp. gr. P2{sub 1}/c, a = 6.9994(6), b = 12.4035(13), c = 15.836(2) Å, β = 100.367(9)°, Z = 4. The crystal structure is stabilized by N–H···O and C–H···O interactions, the former interactions result in the formation of dimers corresponding to R{sub 2}{sup 2} (10) graphset motif and the dimers are further connected by C–H···O hydrogen bonding forming chains. In addition, the thermal stability of the compound was determined by TGA, DTA, DSC analysis, and absorption at λ{sub max} = 298 nm was determined by UV-Vis spectrophotometer.

  5. Histone HIST1H1C/H1.2 regulates autophagy in the development of diabetic retinopathy.

    Science.gov (United States)

    Wang, Wenjun; Wang, Qing; Wan, Danyang; Sun, Yue; Wang, Lin; Chen, Hong; Liu, Chengyu; Petersen, Robert B; Li, Jianshuang; Xue, Weili; Zheng, Ling; Huang, Kun

    2017-05-04

    Autophagy plays critical and complex roles in many human diseases, including diabetes and its complications. However, the role of autophagy in the development of diabetic retinopathy remains uncertain. Core histone modifications have been reported involved in the development of diabetic retinopathy, but little is known about the histone variants. Here, we observed increased autophagy and histone HIST1H1C/H1.2, an important variant of the linker histone H1, in the retinas of type 1 diabetic rodents. Overexpression of histone HIST1H1C upregulates SIRT1 and HDAC1 to maintain the deacetylation status of H4K16, leads to upregulation of ATG proteins, then promotes autophagy in cultured retinal cell line. Histone HIST1H1C overexpression also promotes inflammation and cell toxicity in vitro. Knockdown of histone HIST1H1C reduces both the basal and stresses (including high glucose)-induced autophagy, and inhibits high glucose induced inflammation and cell toxicity. Importantly, AAV-mediated histone HIST1H1C overexpression in the retinas leads to increased autophagy, inflammation, glial activation and neuron loss, similar to the pathological changes identified in the early stage of diabetic retinopathy. Furthermore, knockdown of histone Hist1h1c by siRNA in the retinas of diabetic mice significantly attenuated the diabetes-induced autophagy, inflammation, glial activation and neuron loss. These results indicate that histone HIST1H1C may offer a novel therapeutic target for preventing diabetic retinopathy.

  6. Isopiestic determination of the osmotic coefficient and vapour pressure of N-R-4-(N,N-dimethylamino)pyridinium tetrafluoroborate (R = C4H9, C5H11, C6H13) in the ethanol solution at T = 298.15 K

    International Nuclear Information System (INIS)

    Sardroodi, Jaber Jahanbin; Atabay, Maryam; Azamat, Jafar

    2012-01-01

    Highlights: ► The osmotic coefficients of the solutions of ionic liquid in ethanol have been measured. ► Measured osmotic coefficients were correlated using Pitzer, e-NRTL and NRF models and polynomial equation. ► Vapour pressures were evaluated from the correlated osmotic coefficients. - Abstract: Osmotic coefficients of the solutions of room temperature ionic liquid N-R-4-(N,N-dimethylamino)pyridinium tetrafluoroborate (R = C 4 H 9 , C 5 H 11 , C 6 H 13 ) in ethanol have been measured at T = 298.15 K by the isopiestic method. The experimental osmotic coefficients have been correlated using the ion interaction model of Pitzer, electrolyte non-random two liquid (e-NRTL) model of Chen, non-random factor (NRF) and a fourth-order polynomial in terms of molality. The vapour pressures of the solutions studied have been evaluated from the osmotic coefficients.

  7. (4-Nitrophenylmethyl 2,3-dihydro-1H-pyrrole-1-carboxylate: crystal structure and Hirshfeld analysis

    Directory of Open Access Journals (Sweden)

    Julio Zukerman-Schpector

    2018-03-01

    Full Text Available In the title compound, C12H12N2O4, the dihydropyrrole ring is almost planar (r.m.s. deviation = 0.0049 Å and is nearly coplanar with the adjacent C2O2 residue [dihedral angle = 4.56 (9°], which links to the 4-nitrobenzene substituent [dihedral angle = 4.58 (8°]. The molecule is concave, with the outer rings lying to the same side of the central C2O2 residue and being inclined to each other [dihedral angle = 8.30 (7°]. In the crystal, supramolecular layers parallel to (10-5 are sustained by nitrobenzene-C—H...O(carbonyl and pyrrole-C—H...O(nitro interactions. The layers are connected into a three-dimensional architecture by π(pyrrole–π(nitrobenzene stacking [inter-centroid separation = 3.7414 (10 Å] and nitro-O...π(pyrrole interactions.

  8. Reassortant H9N2 influenza viruses containing H5N1-like PB1 genes isolated from black-billed magpies in Southern China.

    Directory of Open Access Journals (Sweden)

    Guoying Dong

    Full Text Available H9N2 influenza A viruses have become endemic in different types of terrestrial poultry and wild birds in Asia, and are occasionally transmitted to humans and pigs. To evaluate the role of black-billed magpies (Pica pica in the evolution of influenza A virus, we conducted two epidemic surveys on avian influenza viruses in wild black-billed magpies in Guangxi, China in 2005 and characterized three isolated black-billed magpie H9N2 viruses (BbM viruses. Phylogenetic analysis indicated that three BbM viruses were almost identical with 99.7 to 100% nucleotide homology in their whole genomes, and were reassortants containing BJ94-like (Ck/BJ/1/94 HA, NA, M, and NS genes, SH/F/98-like (Ck/SH/F/98 PB2, PA, and NP genes, and H5N1-like (Ck/YN/1252/03, clade 1 PB1 genes. Genetic analysis showed that BbM viruses were most likely the result of multiple reassortments between co-circulating H9N2-like and H5N1-like viruses, and were genetically different from other H9N2 viruses because of the existence of H5N1-like PB1 genes. Genotypical analysis revealed that BbM viruses evolved from diverse sources and belonged to a novel genotype (B46 discovered in our recent study. Molecular analysis suggested that BbM viruses were likely low pathogenic reassortants. However, results of our pathogenicity study demonstrated that BbM viruses replicated efficiently in chickens and a mammalian mouse model but were not lethal for infected chickens and mice. Antigenic analysis showed that BbM viruses were antigenic heterologous with the H9N2 vaccine strain. Our study is probably the first report to document and characterize H9N2 influenza viruses isolated from black-billed magpies in southern China. Our results suggest that black-billed magpies were susceptible to H9N2 influenza viruses, which raise concerns over possible transmissions of reassortant H9N2 viruses among poultry and wild birds.

  9. Multiple anion...π interactions in tris(1,10-phenanthroline-κ(2)N,N')iron(II) bis[1,1,3,3-tetracyano-2-(2-hydroxyethyl)propenide] monohydrate.

    Science.gov (United States)

    Setifi, Zouaoui; Domasevitch, Konstantin V; Setifi, Fatima; Mach, Pavel; Ng, Seik Weng; Petříček, Vaclav; Dušek, Michal

    2013-11-01

    In the ionic structure of the title compound, [Fe(C12H8N2)3](C9H5N4O2)2·H2O, the octahedral tris-chelate [Fe(phen)3](2+) dications [Fe-N = 1.9647 (14)-1.9769 (14) Å; phen is 1,10-phenathroline] afford one-dimensional chains by a series of slipped π-π stacking interactions [centroid-to-centroid distances = 3.792 (3) and 3.939 (3) Å]. The 1,1,3,3-tetracyano-2-(2-hydroxyethyl)propenide anions, denoted tcnoetOH(-), reveal an appreciable delocalization of π-electron density, involving the central propenide [C-C = 1.383 (3)-1.401 (2) Å] fragment and four nitrile groups, and this is also supported by density functional theory (DFT) calculations at the B97D/6-311+G(2d,2p) level. Primary noncovalent inter-moiety interactions comprise conventional O-H...O(N) and weak C-H...O(N) hydrogen bonding [O...O(N) = 2.833 (2)-3.289 (5) Å and C...O(N) = 3.132 (2)-3.439 (2) Å]. The double anion...π interaction involving a nitrile group of tcnoetOH(-) and two cis-positioned pyridine rings (`π-pocket') of [Fe(phen)3](2+) [N...centroid = 3.212 (2) and 3.418 (2) Å] suggest the relevance of anion...π stackings for charge-diffuse polycyanoanions and common M-chelate species.

  10. μ-4,4′-Bipyridine-κ2N:N′-bis[aqua(4,4′-bipyridine-κN(l-valinato-κ2N,Ocopper(II] dinitrate dihydrate

    Directory of Open Access Journals (Sweden)

    Mao-Chun Hong

    2008-02-01

    Full Text Available In the title dinuclear complex, [Cu2(C5H10NO22(C10H8N23(H2O2](NO32·2H2O, each of the two l-valinate anions chelates a CuII center through the amino N and carboxylate O atom, forming a five-membered ring. A 4,4′-bipyridine molecule bridges two water-coordinated Cu atoms, each of which is connected to another 4,4′-bipyridine, giving rise to a square-pyramidal coordination geometry for the CuII centers. The dinuclear dications, nitrate anions and uncoordinated water molecules are linked into a two-dimensional structure.

  11. Synthesis and characteristics of a novel 3-D organic amine oxalate: (enH2)1.5[Bi3(C2O4)6(CO2CONHCH2CH2NH3)].6.5H2O

    International Nuclear Information System (INIS)

    Yu Xiaohong; Zhang Hanhui; Cao Yanning; Chen Yiping; Wang Zhen

    2006-01-01

    A novel 3-D compound of (enH 2 ) 1.5 [Bi 3 (C 2 O 4 ) 6 (CO 2 CONHCH 2 CH 2 NH 3 )].6.5H 2 O has been hydrothermally synthesized and characterized by IR, ultraviolet-visible diffuse reflection integral spectrum (UV-Vis DRIS), fluorescence spectra, TGA and single crystal X-ray diffraction. It crystallizes in the monoclinic system, space group C2/c with a=31.110(8)A, b=11.544(3)A, c=22.583(6)A, β=112.419(3) o , V=7497(3)A 3 , Z=8, R 1 =0.0463 and wR 2 =0.1393 for unique 7686 reflections I>2σ(I). In the title compound, the Bi atoms have eight-fold and nine-fold coordination with respect to the oxygen atoms, with the Bi atoms in distorted dodecahedron and monocapped square antiprism, respectively. The 3-D framework of the title compound contains channels and is composed of linkages between Bi atoms and oxalate units, forming honeycomb-like layers with two kinds of 6+6 membered aperture, and pillared by oxalate ligands and monamide groups. The channels have N-ethylamine oxalate monamide group - CO 2 CONHCH 2 CH 2 NH 3 + , which is formed by the in situ reaction of en and oxalate acid. At room temperature, the complex exhibits intense blue luminescence with an emission peak at 445nm

  12. H9N2 avian influenza transmission and antigenicity

    Science.gov (United States)

    Low pathogenic H9N2 avian influenza has become endemic in parts of Asia, the Middle East and North Africa causing respiratory disease with occasional mortality. The use of vaccination has become common to try and control the clinical disease, but vaccination has not been shown to be an effective er...

  13. Calculation of the 13C NMR shieldings of the C0 2 complexes of aluminosilicates

    Science.gov (United States)

    Tossell, J. A.

    1995-04-01

    13C NMR shieldings have been calculated using the random-phase-approximation, localized-orbital local-origins version of ab initio coupled Hartree-Fuck perturbation theory for CO 2 and and for several complexes formed by the reaction of CO 2 with molecular models for aluminosilicate glasses, H 3TOT'H3 3-n, T,T' = Si,Al. Two isomeric forms of the CO 2-aluminosilicate complexes have been considered: (1) "CO 2-like" complexes, in which the CO 2 group is bound through carbon to a bridging oxygen and (2) "CO 3-like" complexes, in which two oxygens of a central CO 3 group form bridging bonds to the two TH 3 groups. The CO 2-like isomer of CO 2-H 3SiOSiH 3 is quite weakly bonded and its 13C isotropic NMR shielding is almost identical to that in free CO 2. As Si is progressively replaced by Al in the - H terminated aluminosilicate model, the CO 2-like isomers show increasing distortion from the free CO 2 geometry and their 13C NMR shieldings decrease uniformly. The calculated 13C shielding value for H 3AlO(CO 2)AlH 3-2 is only about 6 ppm larger than that calculated for point charge stabilized CO 3-2. However, for a geometry of H 3SiO(CO 2) AlH 3-1, in which the bridging oxygen to C bond length has been artificially increased to that found in the - OH terminated cluster (OH) 3SiO(CO 2)Al(OH) 3-1, the calculated 13C shielding is almost identical to that for free CO 2. The CO 3-like isomers of the CO 2-aluminosili-cate complexes show carbonate like geometries and 13C NMR shieldings about 4-9 ppm larger than those of carbonate for all T,T' pairs. For the Si,Si tetrahedral atom pair the CO 2-like isomer is more stable energetically, while for the Si,Al and Al,Al cases the CO 3-like isomer is more stable. Addition of Na + ions to the CO 3-2 or H 3AlO(CO 2)AlH 3-2 complexes reduces the 13C NMR shieldings by about 10 ppm. Complexation with either Na + or CO 2 also reduces the 29Si NMR shieldings of the aluminosilicate models, while the changes in 27Al shielding with Na + or CO 2

  14. Experimental study of the A(e,e'π+) reaction on 1H, 2H, 12C, 27Al, 63Cu, and 197Au

    International Nuclear Information System (INIS)

    Qian, X.; Gao, H.; Kramer, K.; Horn, T.; Clasie, B.; Seely, J.; Arrington, J.; El Fassi, L.; Zheng, X.; Asaturyan, R.; Mkrtchyan, H.; Navasardyan, T.; Tadevosyan, V.; Benmokhtar, F.; Boeglin, W.; Markowitz, P.; Bosted, P.; Bruell, A.; Chudakov, E.; Ent, R.

    2010-01-01

    Cross sections for the 1 H(e,e ' π + )n process on 1 H, 2 H, 12 C, 27 Al, 63 Cu, and 197 Au targets were measured at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) to extract nuclear transparencies. Data were taken from Q 2 =1.1-4.7 GeV 2 for a fixed center-of-mass energy of W=2.14 GeV. The ratio of σ L and σ T was extracted from the measured cross sections for 1 H, 2 H, 12 C, and 63 Cu targets at Q 2 =2.15 and 4.0 GeV 2 , allowing for additional studies of the reaction mechanism. In this article, we present the experimental setup and the analysis of the data in detail, including systematic uncertainty studies. Differential cross sections and nuclear transparencies as a function of the pion momentum at different values of Q 2 are presented. Our results are consistent with the predicted early onset of color transparency in mesons. Global features of the data are discussed and the data are compared with model calculations for the 1 H(e,e ' π + )n reaction from nuclear targets.

  15. H1N1, H3N2 et B à Abidjan, Côte d'Ivoire

    African Journals Online (AJOL)

    English Title: Comparative analysis of the epidemiological and clinical profiles of influenza infection due to 2009 pH1N1, H1N1, H3N2 and B viruses in Abidjan, Cote d'Ivoire. English Abstract. Influenza can have various epidemiological and clinical characteristics. This study compares the epidemio-clinical profiles of ...

  16. Synthesis, crystal structure and magnetic properties of (acetato-κ²O,O')bis(5,5'-dimethyl-2,2'-bipyridine-κ²N,N')nickel(II) perchlorate monohydrate.

    Science.gov (United States)

    Farkašová, Nela; Černák, Juraj; Falvello, Larry R; Orendáč, Martin; Boča, Roman

    2015-04-01

    The title hydrated ionic complex, [Ni(CH3COO)(C12H12N2)2]ClO4·H2O or [Ni(ac)(5,5'-dmbpy)2]ClO4·H2O (where 5,5'-dmbpy is 5,5'-dimethyl-2,2'-bipyridine and ac is acetate), (1), was isolated as violet crystals from the aqueous ethanolic nickel acetate-5,5'-dmbpy-KClO4 system. Within the complex cation, the Ni(II) atom is hexacoordinated by two chelating 5,5'-dmbpy ligands and one chelating ac ligand. The mean Ni-N and Ni-O bond lengths are 2.0628 (17) and 2.1341 (15) Å, respectively. The water solvent molecule is disordered over two partially occupied positions and links two complex cations and two perchlorate anions into hydrogen-bonded centrosymmetric dimers, which are further connected by π-π interactions. The magnetic properties of (1) at low temperatures are governed by the action of single-ion anisotropy, D, which arises from the reduced local symmetry of the cis-NiO2N4 chromophore. The fitting of the variable-temperature magnetic data (2-300 K) gives g(iso) = 2.134 and D/hc = 3.13 cm(-1).

  17. catena-Poly[[[dichloridozinc(II]-μ-1,4-bis(1H-benzimidazol-2-yl-κN3butane] 1,4-bis(1H-benzimidazol-2-ylbutane solvate

    Directory of Open Access Journals (Sweden)

    Yan-Ling Zhou

    2010-01-01

    Full Text Available In the crystal structure of the title coordination polymer/co-crystal, {[ZnCl2(C18H18N4]·C18H18N4}n, the tetrahedrally coordinated ZnII ions are linked by the N-heterocycle into a linear chain. Another N-heterocycle present is not coordinated to the metal atom but interacts with the chain through N—H...N and N—H...Cl hydrogen bonds. The butyl chain of the uncoordinated ligand is disordered over three positions in a 0.511 (4:0.289 (5:0.200 (5 ratio.

  18. Sodium Ferulate Prevents Daunorubicin - Induced Apoptosis in H9c2 Cells via Inhibition of the ERKs Pathway

    Directory of Open Access Journals (Sweden)

    Zhi-Juan Wu

    2015-07-01

    Full Text Available Background: Daunorubicin (DNR-induced cardiotoxicity, which is closely associated with cardiomyocyte apoptosis, limits the drug's clinical application. The activation of the extracellular regulated protein kinases (ERKs pathway is responsible for the pro-apoptosis effect of DNR Sodium ferulate (SF has recently been found to attenuate both DNR-induced cardiotoxicity and mitochondrial apoptosis in juvenile rats. Nonetheless, the precise mechanism underlying SF-induced cardio-protection remains unclear. Methods: The DNR-injured H9c2 cell model was prepared by incubating the cells in 1 µM DNR for 24 h. Amounts of 15.6, 31.3 or 62.5 µM SF were simultaneously added to the cells. The effect of SF on the cytotoxic and apoptotic parameters of the cells was studied by monitoring apoptosis regulation via the ERKs pathway. Results: SF attenuated DNR-induced cell death (particularly apoptotic death, cTnI and β-tubulin degradation, and cellular morphological changes. SF reduced mitochondrial membrane potential depolarization, cytochrome c leakage, and caspase-9 and caspase-3 activation. SF also decreased ERK1/2, phospho-ERK1/2, p53 and Bax expression and increased Bcl-2 expression. These effects were similar to the results observed when using the pharmacological ERKs phosphorylation inhibitor, AZD6244. Conclusion: We determined that SF protects H9c2 cells from DNR-induced apoptosis through a mechanism that involves the interruption of the ERKs signaling pathway.

  19. Octa-akis(4-amino-pyridine)-1κN,2κN-aqua-2κO-μ-carbonato-1:2κO,O':O''-dinickel(II) dichloride penta-hydrate.

    Science.gov (United States)

    Fun, Hoong-Kun; Sinthiya, A; Jebas, Samuel Robinson; Ravindran Durai Nayagam, B; Alfred Cecil Raj, S

    2008-10-18

    In the title compound, [Ni(2)(CO(3))(C(5)H(6)N(2))(8)(H(2)O)]Cl(2)·5H(2)O, one of the the Ni(II) ions is six-coordinated in a distorted octa-hedral geometry, with the equatorial plane defined by four pyridine N atoms from four amino-pyridine ligands, the axial positions being occupied by one water O and a carbonate O atom. The other Ni(II) ion is also six-coordinated, by four other pyridine N atoms from four other amino-pyridine ligands and two carbonate O atoms to complete a distorted octa-hedral geometry. In the crystal structure, mol-ecules are linked into an infinite three-dimensional network by O-H⋯O, N-H⋯Cl, N-H⋯O, O-H⋯N, C-H⋯O, C-H⋯N and C/N-H⋯π inter-actions involving the pyridine rings.

  20. Crystal structure of 4-(4b,8a-dihydro-9H-pyrido[3,4-b]indol-1-yl-7-methyl-2H-chromen-2-one

    Directory of Open Access Journals (Sweden)

    S. Samundeeswari

    2017-01-01

    Full Text Available The title compound, C21H14N2O2, was prepared by Pictet–Spengler cyclization of tryptamine and 4-formyl coumarin. In the molecule, the dihedral angle between the mean planes of the coumarin and β-carboline ring systems is 63.8 (2°. In the crystal, molecules are linked via N—H...N hydrogen bonds, forming chains along the b-axis direction. Within the chains, there are a number of offset π–π interactions present [shortest intercentroid distance = 3.457 (2 Å].

  1. (C2N2H10)[Fe xV1-x(HPO3)F3] (x = 0.44, 0.72): Two new organically templated phosphites

    International Nuclear Information System (INIS)

    Cisneros, Jose L.; Fernandez-Armas, Sergio; Mesa, Jose L.; Pizarro, Jose L.; Arriortua, Maria I.; Rojo, Teofilo

    2006-01-01

    (C 2 N 2 H 10 )[Fe x V 1-x (HPO 3 )F 3 ] (x = 0.44, 0.72) have been synthesized using mild solvothermal conditions under autogenous pressure and the ethylenediamine molecule as templating agent. The crystal structures have been determined from X-ray single-crystal diffraction data. The compounds crystallize in the orthorhombic P2 1 2 1 2 1 space group with Z = 4 and unit-cell parameters a = 12.8494(9), b = 9.5430(6), c = 6.4372(5) A, and a = 12.8578(1), b = 9.5342(1), c = 6.4370(7) A for (C 2 N 2 H 10 )[Fe 0.44 V 0.56 (HPO 3 )F 3 ] and (C 2 N 2 H 10 )[Fe 0.72 V 0.28 (HPO 3 )F 3 ] (1) and (2), respectively. These isostructural compounds exhibit a monodimensional crystal structure formed by pillared double anionic chains with the formula [M(HPO 3 )F 3 ] 2- , extended along the [0 0 1] direction. These doubled ionic chains are the result of the linking of two simple chains in which there are alternating octahedral [MO 3 F 3 ] and tetrahedral groups [HPO 3 ]. The ethylendiammonium cations are placed in the space delimited by three different chains. The metallic ions are interconnected by the pseudo-pyramidal (HPO 3 ) 2- phosphite oxoanions, adopting a slightly distorted octahedral geometry. The IR spectra show bands corresponding to the phosphite oxoanion and the ethylendiamonium cation at 2400 and 1600 cm -1 , respectively. The thermogravimetric analyses show that these phases are stable up to ca. 280 deg. C, at higher temperatures, the decomposition of the crystal structure begins by calcination of the organic cation and the elimination of the fluoride anions. The diffuse reflectance spectra show bands of the V 3+ ion (d 2 ) in octahedral symmetry. The values of the Dq (1540, 1540 cm -1 ), and Racah parameters, B (560, 535 cm -1 ) and C (3055, 3140 cm -1 ) for (1) and (2), respectively, correspond with those usually found for octahedrically coordinated V(III) compounds. Magnetic measurements, performed on a powered sample from 5.0 to 300 K at 1000 G, in the ZFC and

  2. (Benzyl isocyanide-κC1chlorido(2-chloro-3-dimethylamino-1-phenylprop-1-en-1-yl-κ2C1,Npalladium(II

    Directory of Open Access Journals (Sweden)

    Ana C. Mafud

    2013-01-01

    Full Text Available In the title compound, [Pd(C11H13ClNCl(C8H7N], which crystallized in the chiral space group P212121, the PdII atom is coordinated by two C atoms, a Csp2 atom of the 2-chloro-3-dimethylamino-1-phenylprop-1-en-1-yl ligand and a Csp atom from the benzyl isocyanide ligand, as well as an N atom of the ligand and a Cl atom, in a square-planar geometry. In the complex, there is a short C—H...Cl hydrogen bond and a C—H...π interaction. In the crystal, molecules are linked via C—H...Cl hydrogen bonds, forming chains along the a-axis direction.

  3. Isotypic crystal structures of 1-benzyl-4-(4-bromophenyl-2-imino-1,2,5,6,7,8,9,10-octahydrocycloocta[b]pyridine-3-carbonitrile and 1-benzyl-4-(4-fluorophenyl-2-imino-1,2,5,6,7,8,9,10-octahydrocycloocta[b]pyridine-3-carbonitrile

    Directory of Open Access Journals (Sweden)

    R. A. Nagalakshmi

    2014-11-01

    Full Text Available The molecules of the two isotypic title compounds, C25H24BrN3, (I, and C25H24FN3, (II, comprise a 2-iminopyridine ring fused with a cyclooctane ring. In (I, the cyclooctane ring adopts a twisted chair–chair conformation, while in (II, this ring adopts a twisted boat–chair conformation. The dihedral angles between the planes of the pyridine ring and the bromobenzene and phenyl rings are 80.14 (12 and 71.72 (13°, respectively, in (I. The equivalent angles in (II are 75.25 (8 and 68.34 (9°, respectively. In both crystals, inversion dimers linked by pairs of C—H...N interactions generate R22(14 loops, which are further connected by weak C—H...π interactions, generating (110 sheets.

  4. Phenyl N-(2-methylphenylcarbamate

    Directory of Open Access Journals (Sweden)

    Durre Shahwar

    2009-07-01

    Full Text Available In the title compound, C14H13NO2, the aromatic rings attached to the O and N atoms make dihedral angles of 62.65 (9 and 38.28 (11°, respectively, with the central carbamate group. The benzene rings are oriented at a dihedral angle of 39.22 (10°. In the crystal, a very weak C—H...π interaction occurs.

  5. Solvent-Dependent Delamination, Restacking, and Ferroelectric Behavior in a New Charge-Separated Layered Compound: [NH4 ][Ag3 (C9 H5 NO4 S)2 (C13 H14 N2 )2 ]⋅8 H2 O.

    Science.gov (United States)

    Sushrutha, Sringeri Ramesh; Mohana, Shivanna; Pal, Somnath; Natarajan, Srinivasan

    2017-01-03

    A new anionic coordination polymer, [NH 4 ][Ag 3 (C 9 H 5 NO 4 S) 2 (C 13 H 14 N 2 ) 2 ]⋅8 H 2 O, with a two-dimensional structure, has been synthesized by a reaction between silver nitrate, 8-hydroxyquinoline-5-sulfonic acid (HQS), and 4,4'-trimethylene dipyridine (TMDP). The compound stabilizes in a noncentrosymmetric space group, and the lattice water molecules and the charge-compensating [NH 4 ] + group occupy the inter-lamellar spaces. The lattice water molecules can be fully removed and reinserted, which is accompanied by a crystalline-amorphous-crystalline transformation. This transformation resembles the collapse/delamination and restacking of the layers. To the best of our knowledge, this is the first observation of delamination and restacking in an inorganic coordination polymer that contains silver. The presence of a natural dipole (the anionic framework and cationic ammonium ions) along with the noncentrosymmetric space group gives rise to the room-temperature ferroelectric behavior of the compound. The ferroelectric behavior is also water-dependent and exhibits a ferroelectric-paraelectric transformation. The temperature-dependent dielectric measurements indicate that the ferroelectric/ paraelectric transformation occurs at 320 K. This transformation has also been investigated by using in-situ IR spectroscopy and PXRD studies. The second-harmonic generation (SHG) study indicated values that are comparable to some of the known SHG solids, such as potassium dihydrogen phosphate (KDP) and urea. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Synthesis of 9,9′-[1,2-Ethanediylbis(oxymethylene]bis-2-amino-1,9-dihydro-6H-purin-6-one, an Impurity of Acyclovir

    Directory of Open Access Journals (Sweden)

    Juan José Vaquero

    2012-07-01

    Full Text Available The synthesis of 9,9'-[1,2-ethanediylbis(oxymethylene]bis-2-amino-1,9-dihydro-6H-purin-6-one, a minor impurity of acyclovir, is described. Starting with commercial N-(9-acetyl-6-oxo-1H-purin-2-ylacetamide, the process uses an acid catalysed phase transfer catalysis (PTC process to produce the selective alkylation at the 9 position of the guanine ring.

  7. 2-[3-(4-Methoxyphenyl-1-phenyl-1H-pyrazol-5-yl]phenol

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available The title compound, C22H18N2O2, was derived from 1-(2-hydroxyphenyl-3-(4-methoxyphenylpropane-1,3-dione. The central pyrazole ring forms dihedral angles of 16.83 (5, 48.97 (4 and 51.68 (4°, respectively, with the methoxyphenyl, phenyl and hydroxyphenyl rings. The crystal packing is stabilized by O—H...N hydrogen bonding.

  8. 4-[(5-Hydroxy-3-methyl-1-phenyl-1H-pyrazol-4-ylphenylmethyl]-5-methyl-2-phenyl-1H-pyrazol-3(2H-one ethanol hemisolvate

    Directory of Open Access Journals (Sweden)

    Hoong-Kun Fun

    2009-01-01

    Full Text Available The asymmetric unit of the title compound, C27H24N4O2·0.5C2H6O, comprises two crystallographically independent molecules (A and B with slightly different conformations, and one ethanol molecule of crystallization. Intramolecular C—H...O and O—H...O hydrogen bonds generate six- and eight-membered rings, producing S(6 and S(8 ring motifs, respectively. In molecule A, one of the benzene rings is disordered over two positions, with site-occupancy factors of 0.542 (11 and 0.458 (11. The dihedral angles between the central benzene ring and the two outer benzene rings are 73.88 (9 and 82.6 (2/88.9 (2° in molecule A, and 80.81 (8 and 79.38 (8° in molecule B. In the crystal structure, molecules form infinite one-dimensional chains in the (101 plane. The crystal structure is stabilized by intermolecular O—H...N, N—H...N, N—H...O and C—H...O hydrogen bonds, weak C—H...π and π–π [centroid–centroid = 3.5496 (1 Å] interactions.

  9. Decacarbonyl[μ4-(ethane-1,2-diyldinitrilotetrakis(methanethiolato]bis(triphenylphosphanetetrairon(2 Fe—Fe

    Directory of Open Access Journals (Sweden)

    Wei-Ming Gao

    2012-02-01

    Full Text Available In the title compound, [Fe4(C6H12N2S4(C18H15P2(CO10], the unit cell contains one molecule, which exhibits a crystallographically imposed center of symmetry. The independent Fe2S2 fragment [Fe—Fe = 2.527 (1 Å] is in a butterfly conformation, and each Fe atom displays a pseudo-square-pyramidal coordination geometry. The phosphane group occupies an apical position [Fe—P = 2.2670 (14 Å]. In the crystal, weak intermolecular C—H...O hydrogen bonds link the molecules into chains along [110].

  10. Bis[1,3-bis(2,4,6-trimethylphenyl-2,3-dihydro-1H-imidazol-2-ylidene]dinitrosyl(tetrahydroborato-κ2H,H′tungsten(0

    Directory of Open Access Journals (Sweden)

    Heinz Berke

    2011-01-01

    Full Text Available In the title paramagnetic 19-electron neutral complex, [W(BH4(C21H24N22(NO2], the W(0 atom is coordinated by two 1,3-bis(2,4,6-trimethylphenylimidazol-2-ylidene (IMes carbene ligands, two NO groups and two H atoms of an η2-tetrahydroborate ligand. Depending on the number of coordination sites (n assigned to the BH4− ligand, the coordination geometry of the W atom may either be described as approximately trigonal–bipyramidal (n = 1 or as very distorted octahedral with the bridging H atoms filling two coordination positions (n = 2. In the latter case, the coplanar NO groups and bridging H atoms (r.m.s. deviation = 0.032 Å form one octahedral plane, with mutually trans-oriented carbene ligands. In the crystal, molecules are connected via C—H...O interactions.

  11. Synthesis and structure of unprecedented samarium complex with bulky bis-iminopyrrolyl ligand via intramolecular C=N bond activation

    Energy Technology Data Exchange (ETDEWEB)

    Das, Suman; Anga, Srinivas; Harinath, Adimulam; Panda, Tarun K. [Department of Chemistry, Indian Institute of Technology, Hyderabad (India); Pada Nayek, Hari [Department of Applied Chemistry, Indian Institute of Technology, (ISM) Dhanbad, Jharkhand (India)

    2017-12-29

    An unprecedentate samarium complex of the molecular composition [{κ"3-{(Ph_2CH)N=CH}{sub 2}C{sub 4}H{sub 2}N}{κ"3-{(Ph_2CHN=CH)(Ph_2CHNCH)C_4H_2N}Sm}{sub 2}] (2), which was isolated by the reaction of a potassium salt of 2,5-bis{N-(diphenylmethyl)-iminomethyl}pyrrolyl ligand [K(THF){sub 2}{(Ph_2CH)N=CH}{sub 2}C{sub 4}H{sub 2}N] (1) with anhydrous samarium diiodide in THF at 60 C through the in situ reduction of imine bond is presented. The homoleptic samarium complex [[κ{sup 3}-{(Ph_2CH)-N=CH}{sub 2}C{sub 4}H{sub 2}N]{sub 3}Sm] (3) can also be obtained from the reaction of compound 1 with anhydrous samarium triiodide (SmI{sub 3}) in THF at 60 C. The molecular structures of complexes 2 and 3 were established by single-crystal X-ray diffraction analysis. The molecular structure of complex 2 reveals the formation of a C-C bond in the 2,5-bis{N-(diphenylmethyl)iminomethyl}pyrrole ligand moiety (Ph{sub 2}Py{sup -}). However, complex 3 is a homoleptic samarium complex of three bis-iminopyrrolyl ligands. In complex 2, the samarium ion adopts an octahedral arrangement, whereas in complex 3, a distorted three face-centered trigonal prismatic mode of nine coordination is observed around the metal ion. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Electronic excitation in collisions of H+ and H with N2

    International Nuclear Information System (INIS)

    Birely, J.H.

    1974-01-01

    The 200-500 nm radiation excited by collisions of a beam of 1.5-25 keV H + or H with N 2 has been studied under thin-target conditions with a viewing geometry chosen to minimize polarization effects. For both H + and H impact, the N 2 + (B 2 Σsub(u)sup(+)-X 2 Σsub(g)sup(+)) first negative bands are the most intense spectral features in this wavelength range. As expected from consideration of electron spin conservation, the probability of excitation of the N 2 (C 3 PIsub(u)-B 3 PIsub(g)) second positive bands by H impact greatly exceeds that for H + bombardment. Relative emission cross sections for the 0-0 bands of the first negative system at 391.5 nm and the second positive system at 337.1 nm were determined and made absolute via normalization to measurements reported at higher energies by previous workers. Cross sections for formation of N 2 + B 2 Σsub(u)sup(+) and N 2 C 3 PIsub(u) in the v'=0 vibrational level were derived from the measured emission cross sections and known transition probabilities. A maximum in the cross section for formation of N 2 + B 2 Σsub(u')sup(+), v'=0 of 9.7x10 -17 cm 2 at 10 keV was found for H + impact, while for H, the cross section for this process rises steadily with increasing collision energy until reaching a nearly constant value of 2.9x10 -17 cm 2 in the 15-25 keV range. The fraction of the total N 2 + yield that is formed in the B state is about 0.05 to 0.08 in the energy range studied. For formation of N 2 C 3 PIsub(u) with v'=0, the cross section has maximum value of 1.24x10 -17 cm 2 at 5 keV. At H atom energies below 7 keV, exchange excitation of N 2 to the C 3 PIsub(u) state is more probable than ionization to yield N 2 + in the B state while, at higher energies, ionization to yield the B state is the more probable process

  13. Prevalence and diversity of H9N2 avian influenza in chickens of Northern Vietnam, 2014.

    Science.gov (United States)

    Thuy, Duong Mai; Peacock, Thomas P; Bich, Vu Thi Ngoc; Fabrizio, Thomas; Hoang, Dang Nguyen; Tho, Nguyen Dang; Diep, Nguyen Thi; Nguyen, Minh; Hoa, Le Nguyen Minh; Trang, Hau Thi Thu; Choisy, Marc; Inui, Ken; Newman, Scott; Trung, Nguyen Vu; van Doorn, Rogier; To, Thanh Long; Iqbal, Munir; Bryant, Juliet E

    2016-10-01

    Despite their classification as low pathogenicity avian influenza viruses (LPAIV), A/H9N2 viruses cause significant losses in poultry in many countries throughout Asia, the Middle East and North Africa. To date, poultry surveillance in Vietnam has focused on detection of influenza H5 viruses, and there is limited understanding of influenza H9 epidemiology and transmission dynamics. We determined prevalence and diversity of influenza A viruses in chickens from live bird markets (LBM) of 7 northern Vietnamese provinces, using pooled oropharyngeal swabs collected from October to December 2014. Screening by real time RT-PCR revealed 1207/4900 (24.6%) of pooled swabs to be influenza A virus positive; overall prevalence estimates after accounting for pooling (5 swabs/pools) were 5.8% (CI 5.4-6.0). Subtyping was performed on 468 pooled swabs with M gene Ctinfluenza H7 was detected; 422 (90.1%) were H9 positive; and 22 (4.7%) were H5 positive. There was no evidence was of interaction between H9 and H5 virus detection rates. We sequenced 17 whole genomes of A/H9N2, 2 of A/H5N6, and 11 partial genomes. All H9N2 viruses had internal genes that clustered with genotype 57 and were closely related to Chinese human isolates of A/H7N9 and A/H10N8. Using a nucleotide divergence cutoff of 98%, we identified 9 distinct H9 genotypes. Phylogenetic analysis suggested multiple introductions of H9 viruses to northern Vietnam rather than in-situ transmission. Further investigations of H9 prevalence and diversity in other regions of Vietnam are warranted to assess H9 endemicity elsewhere in the country. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Novel genetic reassortants in H9N2 influenza A viruses and their diverse pathogenicity to mice

    Directory of Open Access Journals (Sweden)

    Bi Yuhai

    2011-11-01

    Full Text Available Abstract Background H9N2 influenza A viruses have undergone extensive reassortments in different host species, and could lead to the epidemics or pandemics with the potential emergence of novel viruses. Methods To understand the genetic and pathogenic features of early and current circulating H9N2 viruses, 15 representative H9N2 viruses isolated from diseased chickens in northern China between 1998 and 2010 were characterized and compared with all Chinese H9N2 viruses available in the NCBI database. Then, the representative viruses of different genotypes were selected to study the pathogenicity in mice with the aim to investigate the adaptation and the potential pathogenicity of the novel H9N2 reassortants to mammals. Results Our results demonstrated that most of the 15 isolates were reassortants and generated four novel genotypes (B62-B65, which incorporated the gene segments from Eurasian H9N2 lineage, North American H9N2 branch, and H5N1 viruses. It was noteworthy that the newly identified genotype B65 has been prevalent in China since 2007, and more importantly, different H9N2 influenza viruses displayed a diverse pathogenicity to mice. The isolates of the 2008-2010 epidemic (genotypes B55 and B65 were lowly infectious, while two representative viruses of genotypes B0 and G2 isolated from the late 1990s were highly pathogenic to mice. In addition, Ck/SD/LY-1/08 (genotype 63, containing H5N1-like NP and PA genes was able to replicate well in mouse lungs with high virus titers but caused mild clinical signs. Conclusion Several lines of evidence indicated that the H9N2 influenza viruses constantly change their genetics and pathogenicity. Thus, the genetic evolution of H9N2 viruses and their pathogenicity to mammals should be closely monitored to prevent the emergence of novel pandemic viruses.

  15. Crystal structure of triaqua(1,10-phenanthroline-κ2N,N′(2,4,5-trifluoro-3-methoxybenzoato-κO1cobalt(II 2,4,5-trifluoro-3-methoxybenzoate

    Directory of Open Access Journals (Sweden)

    Junshan Sun

    2014-11-01

    Full Text Available The title salt, [Co(C8H4F3O3(C12H8N2(H2O3](C8H4F3O3, was obtained under solvothermal conditions by the reaction of 2,4,5-trifluoro-3-methoxybenzoic acid with CoCl2 in the presence of 1,10-phenanthroline (phen. The CoII ion is octahedrally coordinated by two N atoms [Co—N = 2.165 (2 and 2.129 (2 Å] from the phen ligand, by one carboxylate O atom [Co—O = 2.107 (1 Å] and by three O atoms from water molecules [Co—O = 2.093 (1, 2.102 (1 and 2.114 (1 Å]. The equatorial positions of the slightly distorted octahedron are occupied by the N atoms, the carboxylate O and one water O atom. An intra- and intermolecular O—H...O hydrogen-bonding network between the water-containing complex cation and the organic anion leads to the formation of ribbons parallel to [010].

  16. Structure of Chloro bis(1,10-phenanthroline)Cobalt(II) Complex, [Co(phen)2(Cl)(H2O)]Cl · 2H2O

    International Nuclear Information System (INIS)

    Zhao, Pu Su; Lu, Lu De; Jian, Fang Fang

    2003-01-01

    The crystal structure of [Co(phen) 2 (Cl)(H 2 O)] Cl · 2H 2 O(phen=1,10-phenanthroline) has been determined by X-ray crystallography. It crystallizes in the triclinic system, space group P 1 , with lattice parameters a=9.662(2), b=11.445(1), c=13.037(2)A, α=64.02(1), β=86.364(9), γ=78.58(2) .deg., and Z=2. The coordinated cations contain a six-coordinated cobalt atom chelated by two phen ligands and one chloride anion and one water ligand in cis arrangement. In addition to the chloride coordinated to the cobalt, there are one chloride ion and four water molecules which complete the crystal structure. In the solid state, the title compound forms three dimensional network structure through hydrogen bonds, within which exists the strongest hydrogen bond (O(3)-O(4)=2.33A). The intermolecular hydrogen bonds connect the [Co(phen) 2 (Cl)(H 2 O)] 1+ , H 2 O moieties and chloride ion

  17. (Carbonato-κ2 O,O′)bis­(5,5′-dimethyl-2,2′-bipyridyl-κ2 N,N′)cobalt(III) bromide trihydrate

    Science.gov (United States)

    Arun Kumar, Kannan; Meera, Parthsarathi; Amutha Selvi, Madhavan; Dayalan, Arunachalam

    2012-01-01

    In the title complex, [Co(CO3)(C12H12N2)2]Br·3H2O, the CoIII cation has a distorted octa­hedral coordination environment. It is chelated by four N atoms of two different 5,5′-dimethyl-2,2′-bipyridyl (dmbpy) ligands in axial and equatorial positions, and by two O atoms of a carbonate anion completing the equatorial positions. Although the water mol­ecules are disordered and their H atoms were not located, there are typical O⋯O distances between 2.8 and 3.0 Å, indicating O—H⋯O hydrogen bonding. The crystal packing is consolidated by C—H⋯O and C—H⋯Br hydrogen bonds, as well as π–π stacking inter­actions between adjacent pyridine rings of the dmbpy ligands, with centroid–centroid distances of 3.694 (3) and 3.7053 (3) Å. PMID:22589773

  18. Low-temperature heat capacity and standard molar enthalpy of formation of 9-fluorenemethanol (C14H12O)

    International Nuclear Information System (INIS)

    Di, You-Ying; Tan, Zhi-Cheng.; Sun, Xiao-Hong; Wang, Mei-Han; Xu, Fen; Liu, Yuan-Fa; Sun, Li-Xian; Zhang, Hong-Tao

    2004-01-01

    Low-temperature heat capacities of the 9-fluorenemethanol (C 14 H 12 O) have been precisely measured with a small sample automatic adiabatic calorimeter over the temperature range between T=78 K and T=390 K. The solid-liquid phase transition of the compound has been observed to be T fus =(376.567±0.012) K from the heat-capacity measurements. The molar enthalpy and entropy of the melting of the substance were determined to be Δ fus H m =(26.273±0.013) kJ · mol -1 and Δ fus S m =(69.770±0.035) J · K -1 · mol -1 . The experimental values of molar heat capacities in solid and liquid regions have been fitted to two polynomial equations by the least squares method. The constant-volume energy and standard molar enthalpy of combustion of the compound have been determined, Δ c U(C 14 H 12 O, s)=-(7125.56 ± 4.62) kJ · mol -1 and Δ c H m compfn (C 14 H 12 O, s)=-(7131.76 ± 4.62) kJ · mol -1 , by means of a homemade precision oxygen-bomb combustion calorimeter at T=(298.15±0.001) K. The standard molar enthalpy of formation of the compound has been derived, Δ f H m compfn (C 14 H 12 O,s)=-(92.36 ± 0.97) kJ · mol -1 , from the standard molar enthalpy of combustion of the compound in combination with other auxiliary thermodynamic quantities through a Hess thermochemical cycle

  19. Supra-molecular architecture in a co-crystal of the N(7)-H tautomeric form of N (6)-benzoyl-adenine with adipic acid (1/0.5).

    Science.gov (United States)

    Swinton Darious, Robert; Thomas Muthiah, Packianathan; Perdih, Franc

    2016-06-01

    The asymmetric unit of the title co-crystal, C12H9N5O·0.5C6H10O4, consists of one mol-ecule of N (6)-benzoyl-adenine (BA) and one half-mol-ecule of adipic acid (AA), the other half being generated by inversion symmetry. The dihedral angle between the adenine and phenyl ring planes is 26.71 (7)°. The N (6)-benzoyl-adenine mol-ecule crystallizes in the N(7)-H tautomeric form with three non-protonated N atoms. This tautomeric form is stabilized by intra-molecular N-H⋯O hydrogen bonding between the carbonyl (C=O) group and the N(7)-H hydrogen atom on the Hoogsteen face of the purine ring, forming an S(7) ring motif. The two carboxyl groups of adipic acid inter-act with the Watson-Crick face of the BA mol-ecules through O-H⋯N and N-H⋯O hydrogen bonds, generating an R 2 (2)(8) ring motif. The latter units are linked by N-H⋯N hydrogen bonds, forming layers parallel to (10-5). A weak C-H⋯O hydrogen bond is also present, linking adipic acid mol-ecules in neighbouring layers, enclosing R (2) 2(10) ring motifs and forming a three-dimensional structure. C=O⋯π and C-H⋯π inter-actions are also present in the structure.

  20. Bis[μ-2-(aminosulfanylpyridine(1−]bis[(η5-pentamethylcyclopentadienyliridium(III] diiodide

    Directory of Open Access Journals (Sweden)

    Yusuke Sekioka

    2009-10-01

    Full Text Available In the title dinuclear iridium(III complex, [Ir2(C10H152(C5H5N2S2]I2, the iridium(III atoms are bridged by 2-(aminosulfanylpyridine(1− [(2-pySNH] ligands in a μ-(2-pySNH-κ2N(py,N(NH:κN(NH mode. The dinuclear complex cation lies on a crystallographic inversion center, resulting in a planar Ir2N2 ring with an Ir—N(py bond length of 2.085 (9 Å and bridging Ir—N(NH bonds of 2.110 (9 and 2.113 (9 Å. The two (2-pyS units have mutually anti configurations with respect to the Ir2N2 ring

  1. DFT study of small fullerene dimer complexes C_2_0-N_m@C_n (m = 1-6 and n = 24, 28, 32, 36 and 40)

    International Nuclear Information System (INIS)

    Kaur, Sandeep; Sharma, Amrish; Mudahar, Isha

    2016-01-01

    First principle calculations based on density functional theory were performed to calculate the structural and electronic properties of C_2_0-N_m@C_n dimer complexes. The calculated binding energies of the complexes formed are comparable to C_6_0 dimer which ensures their stability. The bond lengths of these dimer complexes were found to be nearly same as pure complexes C_2_0-C_n. Further, nitrogen (N) atoms were encapsulated inside the secondary cage (C_n) of dimer complexes and the number of N atoms depends on diameter of the cage. The HOMO-LUMO gaps of new proposed complexes indicate the increase in gap as compared to pure complexes. Mulliken charge analysis of these complexes has been studied which shows the significant charge transfer from the N atoms to the secondary cage of these complexes. The study propose the formation of the new dimer complexes which are stable and are able to encapsulate atoms which are otherwise reactive in free space.

  2. Neutron scattering studies of the H2a-H2b and (H3-H4)2 histone complexes

    International Nuclear Information System (INIS)

    Carlson, R.D.

    1982-01-01

    Neutron scattering experiments have shown that both the (H3-H4) 2 and H2a-H2b histone complexes are quite asymmetric in solution. The (H3-H4) 2 tetramer is an oblate or flattened structure, with a radius of gyration almost as large as that of the core octamer. If the tetramer is primarily globular, it must have an axial ratio of about 1:5. It is more likely, however, that this asymmetry results in part from N-terminal arms that extend outward approximately within the major plane of the particle. If this is the case, less asymmetric models for the globular part of the tetramer, including a dislocated disk, can be made consistent with the scattering data. The H2a-H2b dimer, on the other hand, is an elongated structure. 48 references, 12 figures, 1 table

  3. Late metal carbene complexes generated by multiple C-H activations: examining the continuum of M=C bond reactivity.

    Science.gov (United States)

    Whited, Matthew T; Grubbs, Robert H

    2009-10-20

    Unactivated C(sp(3))-H bonds are ubiquitous in organic chemicals and hydrocarbon feedstocks. However, these resources remain largely untapped, and the development of efficient homogeneous methods for hydrocarbon functionalization by C-H activation is an attractive and unresolved challenge for synthetic chemists. Transition-metal catalysis offers an attractive possible means for achieving selective, catalytic C-H functionalization given the thermodynamically favorable nature of many desirable partial oxidation schemes and the propensity of transition-metal complexes to cleave C-H bonds. Selective C-H activation, typically by a single cleavage event to produce M-C(sp(3)) products, is possible through myriad reported transition-metal species. In contrast, several recent reports have shown that late transition metals may react with certain substrates to perform multiple C-H activations, generating M=C(sp(2)) complexes for further elaboration. In light of the rich reactivity of metal-bound carbenes, such a route could open a new manifold of reactivity for catalytic C-H functionalization, and we have targeted this strategy in our studies. In this Account, we highlight several early examples of late transition-metal complexes that have been shown to generate metal-bound carbenes by multiple C-H activations and briefly examine factors leading to the selective generation of metal carbenes through this route. Using these reports as a backdrop, we focus on the double C-H activation of ethers and amines at iridium complexes supported by Ozerov's amidophosphine PNP ligand (PNP = [N(2-P(i)Pr(2)-4-Me-C(6)H(3))(2)](-)), allowing isolation of unusual square-planar iridium(I) carbenes. These species exhibit reactivity that is distinct from the archetypal Fischer and Schrock designations. We present experimental and theoretical studies showing that, like the classical square-planar iridium(I) organometallics, these complexes are best described as nucleophilic at iridium. We discuss

  4. (E)-6-Amino-1,3-dimethyl-5-[(pyridin-2-yl-methyl-idene)amino]-pyrimidine-2,4(1H,3H)-dione.

    Science.gov (United States)

    Booysen, Irvin; Hlela, Thulani; Ismail, Muhammed; Gerber, Thomas; Hosten, Eric; Betz, Richard

    2011-09-01

    In the title compound, C(12)H(13)N(5)O(2), a Schiff-base-derived chelate ligand, the non-aromatic heterocycle and its substituents essentially occupy one common plane (r.m.s. of fitted non-H atoms = 0.0503 Å). The N=C bond is E-configured. Intra-cyclic angles in the pyridine moiety cover the range 117.6 (2)-124.1 (2)°. Intra- and inter-molecular N-H⋯N and N-H⋯O hydrogen bonds are observed in the crystal structure, as are intra- and inter-molecular C-H⋯O contacts which, in total, connect the mol-ecules into a three-dimensional network. The shortest ring-centroid-to-ring-centroid distance of 3.5831 (14) Å is between the two different types of six-membered rings.

  5. Reduced gas seepages in serpentinized peridotite complexes: Evidences for multiple origins of the H2-CH4-N2 gas mixtures

    Science.gov (United States)

    Deville, E.; Vacquand, C.; Beaumont, V.; Francois, G.; Sissmann, O.; Pillot, D.; Arcilla, C. A.; Prinzhofer, A.

    2017-12-01

    A comparative study of reduced gas seepages associated to serpentinized ultrabasic rocks was conducted in the ophiolitic complexes of Oman, the Philippines, Turkey and New Caledonia. This study is based on analyzes of the gas chemical composition, noble gases contents, and stable isotopes of carbon, hydrogen and nitrogen. These gas seepages are mostly made of mixtures of three main components which are H2, CH4 and N2 in various proportions. The relative contents of the three main gas components show 4 distinct families of gas mixtures (H2-rich, N2-rich, N2-H2-CH4 and H2-CH4). These families are interpreted as reflecting different zones of gas generation within or below the ophiolitic complexes. In the H2-rich family associated noble gases display signatures close to the value of air. In addition to the atmospheric component, mantle and crustal contributions are present in the N2-rich, N2-H2-CH4 and H2-CH4 families. H2-bearing gases are either associated to ultra-basic (pH 10-12) spring waters or they seep directly in fracture systems from the ophiolitic rocks. In ophiolitic contexts, ultrabasic rocks provide an adequate environment with available Fe2+ and high pH conditions that favor H2 production. CH4 is produced either directly by reaction of dissolved CO2 with basic-ultrabasic rocks during the serpentinization process or in a second step by H2-CO2 interaction. H2 is present in the gas when no more carbon is available in the system to generate CH4 (conditions of strong carbon restriction). The N2-rich family is associated with relatively high contents of crustal 4He. In this family N2 is interpreted as issued mainly from sediments located below the ophiolitic units.

  6. Genetic and antigenic evolution of H9N2 subtype avian influenza virus in domestic chickens in southwestern China, 2013-2016.

    Directory of Open Access Journals (Sweden)

    Jing Xia

    Full Text Available H9N2 avian influenza virus (AIV has caused significant losses in chicken flocks throughout china in recent years. There is a limited understanding of the genetic and antigenic characteristics of the H9N2 virus isolated in chickens in southwestern China. In this study a total of 12 field strains were isolated from tissue samples from diseased chickens between 2013 and 2016. Phylogenetic analysis of the Hemagglutinin (HA and Neuraminidase (NA nucleotide sequences from the 12 field isolates and other reference strains showed that most of the isolates in the past four years could be clustered into a major branch (HA-branch A and NA-branch I in the Clade h9.4.2 lineages. These sequences are accompanied by nine and seven new amino acids mutations in the HA and NA proteins, respectively, when compared with those previous to 2013. In addition, four new isolates were grouped into a minor branch (HA-branch B in the Clade h9.4.2 lineages and two potential N-glycosylation sites were observed due to amino acid mutations in the HA protein. Three antigenic groups (1-3, which had low antigenic relatedness with two commonly used vaccines in China, were identified among the 12 isolates by antigenMap analysis. Immunoprotection testing showed that those two vaccines could efficiently prevent the shedding of branch A viruses but not branch B viruses. In conclusion, these results indicate the genotype of branch B may become epidemic in the next few years and that a new vaccine should be developed for the prevention of H9N2 AIV.

  7. Aqua(dicyanamido{μ-6,6′-dimethoxy-2,2′-[ethane-1,2-diylbis(nitrilomethylidyne]diphenolato}copper(IIsodium(I

    Directory of Open Access Journals (Sweden)

    Yong-Miao Shen

    2009-04-01

    Full Text Available The molecule of the title compound, [CuNa(C18H18N2O4(C2N3(H2O], is almost planar, the maximum deviation from the molecular plane being 0.48 (4 Å. The coordination environment of the Cu2+ ion is distorted square-planar and it is N2O2-chelated by the Schiff base ligand. The Na+ cation has a distorted octahedral environment defined by the four O atoms of the 6,6′-dimethoxy-2,2′-[ethane-1,2-diylbis(nitrilomethylidyne]diphenolate ligand, a water ligand and a dicyanamide anion.

  8. Predicting Avian Influenza Co-Infection with H5N1 and H9N2 in Northern Egypt

    Directory of Open Access Journals (Sweden)

    Sean G. Young

    2016-09-01

    Full Text Available Human outbreaks with avian influenza have been, so far, constrained by poor viral adaptation to non-avian hosts. This could be overcome via co-infection, whereby two strains share genetic material, allowing new hybrid strains to emerge. Identifying areas where co-infection is most likely can help target spaces for increased surveillance. Ecological niche modeling using remotely-sensed data can be used for this purpose. H5N1 and H9N2 influenza subtypes are endemic in Egyptian poultry. From 2006 to 2015, over 20,000 poultry and wild birds were tested at farms and live bird markets. Using ecological niche modeling we identified environmental, behavioral, and population characteristics of H5N1 and H9N2 niches within Egypt. Niches differed markedly by subtype. The subtype niches were combined to model co-infection potential with known occurrences used for validation. The distance to live bird markets was a strong predictor of co-infection. Using only single-subtype influenza outbreaks and publicly available ecological data, we identified areas of co-infection potential with high accuracy (area under the receiver operating characteristic (ROC curve (AUC 0.991.

  9. Live bird markets of Bangladesh: H9N2 viruses and the near absence of highly pathogenic H5N1 influenza.

    Directory of Open Access Journals (Sweden)

    Nicholas J Negovetich

    2011-04-01

    Full Text Available Avian influenza surveillance in Bangladesh has been passive, relying on poultry farmers to report suspected outbreaks of highly pathogenic H5N1 influenza. Here, the results of an active surveillance effort focusing on the live-bird markets are presented. Prevalence of influenza infection in the birds of the live bird markets is 23.0%, which is similar to that in poultry markets in other countries. Nearly all of the isolates (94% were of the non-pathogenic H9N2 subtype, but viruses of the H1N2, H1N3, H3N6, H4N2, H5N1, and H10N7 subtypes were also observed. The highly pathogenic H5N1-subtype virus was observed at extremely low prevalence in the surveillance samples (0.08%, and we suggest that the current risk of infection for humans in the retail poultry markets in Bangladesh is negligible. However, the high prevalence of the H9 subtype and its potential for interaction with the highly pathogenic H5N1-subtype, i.e., reassortment and attenuation of host morbidity, highlight the importance of active surveillance of the poultry markets.

  10. cis-Bis(2,2′-bipyridine-κ2N,N′bis(dimethyl sulfoxide-κOzinc bis(tetraphenylborate dimethyl sulfoxide monosolvate

    Directory of Open Access Journals (Sweden)

    Stefania Tomyn

    2011-12-01

    Full Text Available In the mononuclear title complex, [Zn(C10H8N22(C2H6OS2](C24H20B2·C2H6OS, the ZnII ion is coordinated by four N atoms of two bidentate 2,2′-bipyridine molecules and by the O atoms of two cis-disposed dimethyl sulfoxide molecules in a distorted octahedral geometry. The S atom and the methyl groups of one of the coordinated dimethyl sulfoxide molecules are disordered in a 0.509 (2:0.491 (2 ratio. The crystal packing is stabilized by C—H...O hydrogen bonds between the dimethyl sulfoxide solvent molecules and tetraphenylborate anions.

  11. A dinuclear copper complex: bis(μ-4-aminobenzoatobis[aqua(1,10-phenanthrolinecopper(II] dichloride bis(4-aminobenzoic acid dihydrate

    Directory of Open Access Journals (Sweden)

    Miao-Ling Huang

    2008-08-01

    Full Text Available The title complex, [Cu2(C7H6NO22(C12H8N22(H2O22C7H7NO2·2H2O, consists of a dinuclear [Cu2(C7H6NO22(C12H8N22(H2O2]2+ cation, two Cl− anions, two 4-aminobenzoic acid molecules and two disordered water molecules (site occupancy factors 0.5. The Cu(II ion adopts a distorted square-pyramidal geometry formed by two N atoms from the 1,10-phenanthroline ligand and two O atoms of the two 4-aminobenzoic acid ligands and one water O atom. The Cu...Cu separation is 3.109 (2 Å. A twofold axis passes through the mid-point of the Cu...Cu vector.

  12. 5-Fluoro-6′H,7′H,8′H-spiro[indoline-3,7′-pyrano[3,2-c:5,6-c′]di-1-benzopyran]-2,6′,8′-trione

    Directory of Open Access Journals (Sweden)

    J. Suresh

    2012-03-01

    Full Text Available In the title compound, C26H12FNO6, the central pyran ring and both benzopyran systems are nonplanar, having total puckering amplitudes of 0.139 (2, 0.050 (1 and 0.112 (2 Å, respectively. The central pyran ring adopts a boat conformation. The crystal structure is stabilized by C—H...O, N—H...O, N—H...F and C—H...π interactions.

  13. Electrical conductivity, differential scanning calorimetry, X-ray diffraction, and 7Li nuclear magnetic resonance studies of n-C x H(2 x+1)OSO3Li ( x = 12, 14, 16, 18, and 20)

    Science.gov (United States)

    Hirakawa, Satoru; Morimoto, Yoshiaki; Honda, Hisashi

    2015-04-01

    Electrical conductivity ( σ), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) measurements of n-C x H (2 x+1) OSO 3Li ( x= 12, 14, 16, 18, and 20) crystals were performed as a function of temperature. In addition, σ, DSC, and XRD observations of n-C x H (2 x+1) OSO 3Na and n-C x H (2 x+1) OSO 3K ( x= 12, 14, 16, 18, and 20) crystals were carried out for comparison. DSC results of the salts revealed several solid-solid phase transitions with large entropy changes (Δ S). For n-C 18 H 37 OSO 3Li and n-C 20 H 41 OSO 3Li salts, each melting point produced a small Δ S mp value compared with the total entropy change in the solid phases (Δ S tr1+Δ S tr2). Additionally, Li + ion diffusion was detected in the highest temperature solid phases. For K salts, larger σ values were detected for potassium alkylsulfates compared with those reported for alkyl carboxylate. 7Li NMR spectra of n-C 18 H 37 OSO 3Li crystals recorded in the low-temperature phase showed large asymmetry parameters, suggesting the Li + ions are localized at asymmetric sites in the crystals.

  14. Suspension culture process for H9N2 avian influenza virus (strain Re-2).

    Science.gov (United States)

    Wang, Honglin; Guo, Suying; Li, Zhenguang; Xu, Xiaoqin; Shao, Zexiang; Song, Guicai

    2017-10-01

    H9N2 avian influenza virus has caused huge economic loss for the Chinese poultry industry since it was first identified. Vaccination is frequently used as a control method for the disease. Meanwhile suspension culture has become an important tool for the development of influenza vaccines. To optimize the suspension culture conditions for the avian influenza H9N2 virus (Re-2 strain) in Madin-Darby Canine Kidney (MDCK) cells, we studied the culture conditions for cell growth and proliferation parameters for H9N2 virus replication. MDCK cells were successfully cultured in suspension, from a small scale to industrial levels of production, with passage time and initial cell density being optimized. The influence of pH on the culture process in the reactor has been discussed and the process parameters for industrial production were explored via amplification of the 650L reactor. Subsequently, we cultivated cells at high cell density and harvested high amounts of virus, reaching 10log2 (1:1024). Furthermore an animal experiment was conducted to detect antibody. Compared to the chicken embryo virus vaccine, virus cultured from MDCK suspension cells can produce a higher amount of antibodies. The suspension culture process is simple and cost efficient, thus providing a solid foundation for the realization of large-scale avian influenza vaccine production.

  15. Investigation into complexing in Re7-H3O+-SO42--H2O system

    International Nuclear Information System (INIS)

    Sinyakova, G.S.

    1979-01-01

    Using the methods of spectrophotometry and conductometry it is shown, that in the ReO 4 - -H 3 O + -SO 4 2- -H 2 O system interaction between rhenium (7) and sulfuric acid takes place in a wide concentration range. In low-acid solutions at pH 2.0-0.9 rhenium(7) complex with proton is formed at the ratio of 1:1 with lgK 1 =3.30+-0.02. In 1-10 mol. sulfuric acid observed is consecutive complexing at the rhenium(7) - sulfuric acid ratio in the complex of 1:1 and 1:2 respectively with lgK 2 =0.93+-0.13 and lgK 3 =0.34+-0.03. At the background of concentrated perchloric acid rhenium (7) and sodium sulfate form two complex compounds at rhenium (7) - sodium sulfate ratio of 1:1 and 1:2 with lgK 1 =1.86+-0.02 and lgK 2 =2.35+-0.03

  16. Structures, physicochemical and cytoprotective properties of new oxidovanadium(IV) complexes -[VO(mIDA)(dmbipy)]·1.5H2O and [VO(IDA)(dmbipy)]·2H2O

    Science.gov (United States)

    Drzeżdżon, Joanna; Jacewicz, Dagmara; Wyrzykowski, Dariusz; Inkielewicz-Stępniak, Iwona; Sikorski, Artur; Tesmar, Aleksandra; Chmurzyński, Lech

    2017-09-01

    New oxidovanadium(IV) complexes with a modification of the ligand in the VO2+ coordination sphere were synthesized. [VO(mIDA)(dmbipy)]•1.5H2O and [VO(IDA)(dmbipy)]•2H2O were obtained as dark green crystals and grey-green powder, respectively (mIDA = N-methyliminodiacetic anion, IDA = iminodiacetic anion, dmbipy = 4,4‧-dimethoxy-2,2‧-dipyridyl). The crystal structure of [VO(mIDA)(dmbipy)]·1.5H2O has been determined by the X-ray diffraction method. The studies of structure of [VO(mIDA)(dmbipy)]•1.5H2O have shown that this compound occurs in the crystal as two rotational conformers. Furthermore, the stability constants of [VO(mIDA)(dmbipy)]•1.5H2O and [VO(IDA)(dmbipy)]•2H2O complexes in aqueous solutions were studied by using the potentiometric titration method and, consequently, determined using the Hyperquad2008 program. Moreover, the title complexes were investigated as antioxidant substances. The impact of the structure modification in the VO2+ complexes on the radical scavenging activity has been studied. The ability to scavenge the superoxide radical by two complexes - [VO(mIDA)(dmbipy)]·1.5H2O and [VO(IDA)(dmbipy)]·2H2O was studied by cyclic voltammetry (CV) and nitrobluetetrazolium (NBT) methods. The title complexes were also examined by the spectrophotometric method as scavengers of neutral organic radical - 1,1-diphenyl-2-picrylhydrazyl (DPPH•) and radical cation - 2,2'-azinobis-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS•+). Furthermore, the biological properties of two oxidovanadium(IV) complexes were investigated in relation to its cytoprotective properties by the MTT and LDH tests based on the hippocampal HT22 neuronal cell line during the oxidative damage induced by hydrogen peroxide. Finally, the results presented in this paper have shown that the both new oxidovanadium(IV) complexes with the 4,4‧-dimethoxy-2,2‧-dipyridyl ligand can be treated as the cytoprotective substances.

  17. Incorporation of μ3-CO3 into an MnIII/MnIV Mn12 cluster: {[(cyclam)MnIV(μ-O)2MnIII(H2O)(μ-OH)]6(μ3-CO3)2}Cl8·24H2O

    Science.gov (United States)

    Levaton, Ben B.; Olmstead, Marilyn M.

    2010-01-01

    The centrosymmetric title cluster, hexa­aquadi-μ3-carbonato-hexa­cyclamhexa-μ2-hydroxido-dodeca-μ2-oxido-hexa­mang­an­ese(IV)hexa­manganese(III) octa­chloride tetra­cosa­hydrate, [Mn12(CO3)2O12(OH)6(C10H24N4)6(H2O)6]Cl8·24H2O, has two μ3-CO3 groups that not only bridge octahedrally coordinated MnIII ions but also act as acceptors to two different kinds of hydrogen bonds. The carbonate anion is planar within experimental error and has an average C—O distance of 1.294 (4) Å. The crystal packing is stabilized by O—H⋯Cl, O—H⋯O, N—H⋯Cl and N—H⋯O hydrogen bonds. Two of the four independent chloride ions are disordered over five positions, and eight of the 12 independent water mol­ecules are disordered over 21 positions. PMID:21587382

  18. 2-Aminopyridinium 2,4-dinitrophenolate

    Directory of Open Access Journals (Sweden)

    S. Reena Devi

    2016-09-01

    Full Text Available The asymmetric unit of the title organic salt, C5H7N2C6H3N2O5−, comprises two 2-aminopyridinium cations and two 2,4-dinitrophenolate anions. The cations are protonated at the pyridine N atoms, while the anions are deprotonated at hydroxyl O atoms. In the crystal, bifurcated N—H...O hydrogen bonds generate two R12(6, two R21(6, and one R21(4 ring motifs. Adjacent anions and cations are linked by N—H...O hydrogen bonds into infinite chains along [110]. Weak C—H...O contacts and π–π interactions further link the components, forming a complex three-dimensional supramolecular network.

  19. Reactions of a 16-electron Cp*Co half-sandwich complex containing a chelating 1,2-dicarba-closo-dodecaborane-1,2-dithiolate ligand with alkynones HC≡C-C(O)R (R=OMe,Me,Ph)

    Institute of Scientific and Technical Information of China (English)

    GUOYIQIBAYI; Gulnisa

    2010-01-01

    The reaction of the 16e half-sandwich complex Cp*Co(S2C2B10H10) (1) (Cp* = pentamethylcyclopentadienyl) with excess methyl acetylene monocarboxylate, HC≡C-CO2Me, affords the 18e complexes 2-6. Compound 2 bears a B-CH2 unit in which B-substitution occurs in the B(3)/B(6) position of the ortho-carborane cage. Complexes 3-6 are geometrical isomers, in which the alkyne is twofold inserted into one of the Co-S bonds in all the four possible ways. Treatment of 1 with excess 3-butyn-2-one or phenyl ethynyl ketone, HC≡C-C(O)R (R = Me, Ph), at ambient temperature leads to the 18e complexes 7-10, respectively, with two alkynes inserted into one of the Co-S bonds. All the new complexes were fully characterized by spectroscopic techniques and elemental analysis. The solid-state structures of 2, 3, 5, 7, 8, 9 and 10 were further characterized by X-ray structural analysis.

  20. 12,12′-[2,2′-Oxybis(ethane-2,1-diylbis(oxy]bis[(Rp-4-bromo[2.2]paracyclophane

    Directory of Open Access Journals (Sweden)

    Bing Hong

    2011-04-01

    Full Text Available The title compound, C36H36Br2O3, was synthesized from (Rp-4-bromo-12-hydroxy[2.2]paracyclophane and oxydiethane-2,1-diyl bis(4-methylbenzenesulfonate. The crystal packing exhibits a short O...Br interaction [Br...O = 3.185 (3 Å] and a weak intermolecular C—H...O contact.