WorldWideScience

Sample records for titanium oxide niobium

  1. Localized and collectivized behaviour of d-electrons in complicated titanium, vanadium and niobium oxides

    International Nuclear Information System (INIS)

    Bazuev, G.V.; Shvejkin, G.P.

    1980-01-01

    On the basis of investigation of electric and magnetic properties of oxide compounds of transition metals made are the conclusions on the degree of localization and delocalization of d-electrons in them. Generalized are the investigation results of complicated titanium, vanadium, niobium oxide compounds in low degrees of oxidation with rare earth and alkaline earth elements belonging to the two structural types: perovskite and pyrochlore. Presented are the results of investigations of perovskite-like solid solutions and of variable-content phases containing cations of transition metals in two different oxidation degrees: oxide niobium bronzes of two-valent europium and titanium bronzes of rare-earth elements, as well as Lnsub(1-x)Msub(x)Vsub(1-x)sup(3+)Vsub(x)sup(4+)Osub(3), where M is an alkaline earth element

  2. Formation and Thermal Stability of Large Precipitates and Oxides in Titanium and Niobium Microalloyed Steel

    Institute of Scientific and Technical Information of China (English)

    ZHUO Xiao-jun; WOO Dae-hee; WANG Xin-hua; LEE Hae-geon

    2008-01-01

    As-cast CC slabs of microalloyed steels are prone to surface and sub-surface cracking. Precipitation phenomena in-itiated during solidification reduce ductility at high temperature. The unidirectional solidification unit is employed to sim-ulate the solidification process during continuous casting. Precipitation behavior and thermal stability are systemati-cally investigated. Samples of adding titanium and niobium to steels have been examined using field emission scanning electron microscope (FE-SEM), electron probe X-ray microanalyzer (EPMA), and transmission electron microscope (TEM). It has been found that the addition of titanium and niobium to high-strength low-alloyed (HSLA) steel resuited in undesirable large precipitation in the steels, i. e. , precipitation of large precipitates with various morphologies. The composition of the large precipitates has been determined. The effect of cooling rate on (Ti, Nb)(C, N) precipitate formation is investigated. With increasing the cooling rate, titanium-rich (Ti,Nb)(C, N) precipitates are transformed to niobium-rich (Ti,Nb)(C,N) precipitates. The thermal stability of these large precipitates and oxides have been assessed by carrying out various heat treatments such as holding and quenching from temperature at 800 and 1 200 ℃. It has been found that titanium-rich (Ti,Nb)(C,N) precipitate is stable at about 1 200 ℃ and niobi-um-rich (Ti,Nb)(C,N) precipitate is stable at about 800 ℃. After reheating at 1 200 ℃ for 1 h, (Ca, Mn)S and TiN are precipitated from Ca-Al oxide. However, during reheating at 800 ℃ for 1 h, Ca-Al-Ti oxide in specimens was stable. The thermodynamic calculation of simulating the thermal process is employed. The calculation results are in good agreement with the experimental results.

  3. Spectrographic determination of impurities in high-purity tantalum oxide and niobium oxide

    International Nuclear Information System (INIS)

    Anderson, S.T.G.; Russell, G.M.

    1990-01-01

    The development of spectrographic methods by direct current arc excitation and carrier distillation for the determination of impurities in tantalum and niobium oxides are described. Iron, silicon, aluminium, titanium, calcium, silver, tin, magnesium, and manganese can be determined in tantalum oxide and niobium oxide in concentrations ranging from 3 to 300 p.p.m. Niobium can be determined in tantalum oxide in concentrations ranging from 10 to 300 p.p.m. Tantalum cannot be determined in niobium oxide, and tungsten cannot be determined in either matrix as a result of the absence of sensitive lines in the spectra of these elements. Relative standard deviations of analyte element concentrations are in the region of 0,18 for tantalum oxide samples, and 0,13 for niobium oxide samples. A detailed laboratory method is included. 4 figs., 4 tabs., 3 refs

  4. Nanoporous titanium niobium oxide and titanium tantalum oxide compositions and their use in anodes of lithium ion batteries

    Science.gov (United States)

    Dai, Sheng; Guo, Bingkun; Sun, Xiao-Guang; Qiao, Zhenan

    2017-10-31

    Nanoporous metal oxide framework compositions useful as anodic materials in a lithium ion battery, the composition comprising metal oxide nanocrystals interconnected in a nanoporous framework and having interconnected channels, wherein the metal in said metal oxide comprises titanium and at least one metal selected from niobium and tantalum, e.g., TiNb.sub.2-x Ta.sub.xO.sub.y (wherein x is a value from 0 to 2, and y is a value from 7 to 10) and Ti.sub.2Nb.sub.10-vTa.sub.vO.sub.w (wherein v is a value from 0 to 2, and w is a value from 27 to 29). A novel sol gel method is also described in which sol gel reactive precursors are combined with a templating agent under sol gel reaction conditions to produce a hybrid precursor, and the precursor calcined to form the anodic composition. The invention is also directed to lithium ion batteries in which the nanoporous framework material is incorporated in an anode of the battery.

  5. Titanium-Niobium Oxides as Non-Noble Metal Cathodes for Polymer Electrolyte Fuel Cells

    Directory of Open Access Journals (Sweden)

    Akimitsu Ishihara

    2015-07-01

    Full Text Available In order to develop noble-metal- and carbon-free cathodes, titanium-niobium oxides were prepared as active materials for oxide-based cathodes and the factors affecting the oxygen reduction reaction (ORR activity were evaluated. The high concentration sol-gel method was employed to prepare the precursor. Heat treatment in Ar containing 4% H2 at 700–900 °C was effective for conferring ORR activity to the oxide. Notably, the onset potential for the ORR of the catalyst prepared at 700 °C was approximately 1.0 V vs. RHE, resulting in high quality active sites for the ORR. X-ray (diffraction and photoelectron spectroscopic analyses and ionization potential measurements suggested that localized electronic energy levels were produced via heat treatment under reductive atmosphere. Adsorption of oxygen molecules on the oxide may be governed by the localized electronic energy levels produced by the valence changes induced by substitutional metal ions and/or oxygen vacancies.

  6. Electrodeposition of niobium and titanium in molten salts

    International Nuclear Information System (INIS)

    Sartori, A.F.; Chagas, H.C.

    1988-01-01

    The electrodeposition of niobium and titanium in molten fluorides from the additions of fluorine niobates and fluorine titanates of potassium is described in laboratory and pilot scale. The temperature influence, the current density and the time deposition over the current efficiency, the deposits structure and the deposits purity are studied. The conditions for niobium coating over copper and carbon steel and for titanium coating over carbon steel are also presented. (C.G.C.) [pt

  7. Compatibility of niobium, titanium, and vanadium metals with LMFBR cladding

    International Nuclear Information System (INIS)

    Wilson, C.N.

    1975-10-01

    A series of laboratory capsule annealing experiments were conducted to assess the compatibility of niobium, vanadium, and titanium with 316 stainless steel cladding in the temperature range of 700 to 800 0 C. Niobium, vanadium, and titanium are cantidate oxygen absorber materials for control of oxygen chemistry in LMFBR fuel pins. Capsule examination indicated good compatibility between niobium and 316 stainless steel at 800 0 C. Potential compatibility problems between cladding and vanadium or titanium were indicated at 800 0 C under reducing conditions. In the presence of Pu/sub 0.25/U/sub 0.75/O/sub 1.98/ fuel (Δanti G 02 congruent to -160 kcal/mole) no reaction was observed between vanadium or titanium and cladding at 800 0 C

  8. Different shape normal metal interlayers between niobium based SIS junctions and niobium titanium nitride leads and their influence on the electron temperature

    International Nuclear Information System (INIS)

    Selig, S; Westig, M P; Jacobs, K; Honingh, C E

    2014-01-01

    In this paper we demonstrate the reduction of heating in a niobium superconductor-insulator-superconductor (SIS) junction with aluminum-oxide tunnel barrier embedded in a niobium-titanium-nitride circuit. Nonequilibrium quasiparticles which are created due to the Andreev trap at the interface between the niobium and the niobium-titanium-nitride layers are relaxed by inserting a normal-metal conductor of gold between these two layers. In an earlier work we explained the observed relaxation of nonequilibrium quasiparticles due to the geometrically assisted cooling effect. In this paper we investigate this cooling effect in dependence of the normal-metal layer shape and size. We expect that an adapted normal-metal layer is necessary for implementation in practical terahertz SIS heterodyne mixer circuits. We observe in DC-measurements of a large number of devices a clear relation between the volume of the gold layer and the effective electron temperature in the device. Our central finding is that the shape of the gold layer does not influence the cooling provided that the volume is sufficient.

  9. Interaction of Human Osteoblast-Like Saos-2 and MG-63 Cells with Thermally Oxidized Surfaces of a Titanium-Niobium Alloy

    Czech Academy of Sciences Publication Activity Database

    Vandrovcová, Marta; Jirka, Ivan; Novotná, Katarína; Lisá, Věra; Frank, Otakar; Kolská, Z.; Starý, V.; Bačáková, Lucie

    2014-01-01

    Roč. 9, č. 6 (2014), e100475 E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GAP108/10/1858; GA ČR(CZ) GAP107/12/1025; GA MPO FR-TI3/088 Institutional support: RVO:67985823 ; RVO:61388955 Keywords : thermally oxidized surface * titanium-niobium * TiO2 * osteoblast * macrophage Subject RIV: EI - Biotechnology ; Bionics Impact factor: 3.234, year: 2014

  10. Investigating the structure and biocompatibility of niobium and titanium oxides as coatings for orthopedic metallic implants

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, D.; Wren, A.W.; Misture, S.T.; Mellott, N.P., E-mail: mellott@alfred.edu

    2016-01-01

    Applying sol gel based coatings to orthopedic metallic implant materials can significantly improve their properties and lifespan in vivo. For this work, niobium (Nb{sub 2}O{sub 5}) and titanium (TiO{sub 2}) oxides were prepared via solution processing in order to determine the effect of atomic arrangement (amorphous/crystalline) on bioactivity. Thermal evaluation on the synthesized materials identified an endotherm for Nb{sub 2}O{sub 5} at 75 °C with 40% weight loss below 400 °C, and minimal weight loss between 400 and 850 °C. Regarding TiO{sub 2} an endotherm was present at 92 °C with 25% weight loss below 400 °C, and 4% between 400 and 850 °C. Phase evolution was determined using High Temperature X-ray Diffraction (HT-XRD) where amorphous-Nb{sub 2}O{sub 5} (450 °C), hexagonal-Nb{sub 2}O{sub 5} (525 °C), orthorhombic-Nb{sub 2}O{sub 5} (650 °C), amorphous-TiO{sub 2} (275 °C) and tetragonal TiO{sub 2} (500 °C) structures were produced. Simulated body fluid (SBF) testing was conducted over 1, 7 and 30 days and resulted in positive chemical and morphological changes for crystalline Nb{sub 2}O{sub 5} (525 °C) and TiO{sub 2} (500 °C) after 30 days of incubation. Rod-like CaP deposits were observed on the surfaces using Scanning Electron Microscopy (FE-SEM) and Grazing Incidence-X-ray Diffraction (GI-XRD) shows that the deposits were X-ray amorphous. Cell viability was higher with the TiO{sub 2} (122%) samples when compared to the growing cell population while Nb{sub 2}O{sub 5} samples exhibited a range of viability (64–105%), partially dependent on materials atomic structure. - Highlights: • Niobium and titanium oxides were prepared to determine the effect of structure on bioactivity. • Simulated body fluid testing resulted in positive surface chemical and morphological changes. • Amorphous, rod-like CaP deposits were observed on the surfaces. • Niobium oxide exhibited a range of viability partially dependent on materials atomic structure.

  11. Electron heating by photon-assisted tunneling in niobium terahertz mixers with integrated niobium titanium nitride striplines

    NARCIS (Netherlands)

    Leone, B; Gao, [No Value; Klapwijk, TM; Jackson, BD; Laauwen, WM; de Lange, G

    2001-01-01

    We describe the gap voltage depression and current-voltage (I-V) characteristics in pumped niobium superconductor-insulator-superconductor junction with niobium titanium nitride tuning stripline by introducing an electron heating power contribution resulting from the photon-assisted tunneling

  12. Sputtered tin oxide and titanium oxide thin films as alternative transparent conductive oxides

    Energy Technology Data Exchange (ETDEWEB)

    Boltz, Janika

    2011-12-12

    Alternative transparent conductive oxides to tin doped indium oxide have been investigated. In this work, antimony doped tin oxide and niobium doped titanium oxide have been studied with the aim to prepare transparent and conductive films. Antimony doped tin oxide and niobium doped titanium oxide belong to different groups of oxides; tin oxide is a soft oxide, while titanium oxide is a hard oxide. Both oxides are isolating materials, in case the stoichiometry is SnO{sub 2} and TiO{sub 2}. In order to achieve transparent and conductive films free carriers have to be generated by oxygen vacancies, by metal ions at interstitial positions in the crystal lattice or by cation doping with Sb or Nb, respectively. Antimony doped tin oxide and niobium doped titanium oxide films have been prepared by reactive direct current magnetron sputtering (dc MS) from metallic targets. The process parameters and the doping concentration in the films have been varied. The films have been electrically, optically and structurally analysed in order to analyse the influence of the process parameters and the doping concentration on the film properties. Post-deposition treatments of the films have been performed in order to improve the film properties. For the deposition of transparent and conductive tin oxide, the dominant parameter during the deposition is the oxygen content in the sputtering gas. The Sb incorporation as doping atoms has a minor influence on the electrical, optical and structural properties. Within a narrow oxygen content in the sputtering gas highly transparent and conductive tin oxide films have been prepared. In this study, the lowest resistivity in the as deposited state is 2.9 m{omega} cm for undoped tin oxide without any postdeposition treatment. The minimum resistivity is related to a transition to crystalline films with the stoichiometry of SnO{sub 2}. At higher oxygen content the films turn out to have a higher resistivity due to an oxygen excess. After post

  13. Hydrogen in niobium-titanium alloys

    International Nuclear Information System (INIS)

    Silva, J.R.G. da; Cabral, F.A.O.; Florencio, O.

    1985-01-01

    High purity Nb-Ti polycrystalline alloys were doped with hydrogen in equilibrium with the gaseous atmosphere at a pressure of 80 torr. at different temperatures. The partial molar enthalpy and entropy of the hydrogen solution at high dilution, ΔH sup(-) 0 and ΔS sup(-) 0 , were calculated from the equilibrium solubility data. The ΔH sup(-) 0 values are compared with the electron screened proton model of metal-hydrogen solutions. The addition of titanium to niobium has the effect to increase the hydrogen solubility at a given equilibrium temperature. (Author) [pt

  14. Direct Flotation of Niobium Oxide Minerals from Carbonatite Niobium Ores

    Science.gov (United States)

    Ni, Xiao

    Currently the recovery of niobium oxide minerals from carbonatite niobium ores relies on the use of non-selective cationic collectors. This leads to complicated process flowsheets involving multiple desliming and multiple reverse flotation stages, and low niobium recovery. In this research, anionic collectors that are capable of strong chemisorption on the niobium minerals were studied with the objective of directly floating the niobium oxide minerals from the carbonatite ores. In the flotation of both high purity minerals and Niobec ores, it was shown that the combination of hydroxamic acid and sodium metaphosphate was an effective reagent scheme for the direct flotation of niobium oxide from its ores. Batch flotation on the Niobec Mill Feed showed that over 95% of niobium oxide was recovered into a rougher concentrate that was less than 47% of the original feed mass. Preliminary cleaning tests showed that the reagent scheme could also be used to upgrade the rougher concentrate, although the depression of iron oxide minerals required further study. X-ray photoelectron spectroscopic (XPS) measurement results confirm that OHA (octyl hydroxamic acid) could chemisorb on pyrochlore surface while only physically adsorb on calcite, judging by the chemical shifts of electron binding energies in the elements in both OHA and the mineral surfaces. When hydroxamic acid was adsorbed on calcite surface, the binding energies of the N 1s electrons, at 400.3 eV, did not shift. However, after adsorption on pyrochlore, the N 1s binding energy peak split into two peaks, one at a binding energy of around 399 eV, representing chemically adsorbed OHA, the other at between 400 and 401 eV. The experimental data suggested a strong chemisorption of the OHA on pyrochlore surface in the form of a vertical head-on orientation of the OHA molecules so that the pyrochlore was strongly hydrophobized even at low OHA concentrations, followed by possibly randomly oriented physisorbed OHA molecules

  15. Polarographic determination of the titanium and niobium content of zirconium alloys

    International Nuclear Information System (INIS)

    Levin, R; Gabra, J.

    1978-03-01

    A method is described for the polarographic determination of titanium and niobium in zirconium alloys in the concentration range of 0.1% to 4% of each of the determined metals. To assure the complete dissolution of the sample a mixture of nitric acid and hydrofluoric acid is used. After evaporating these acids in the presence of sulphuric acid, the contents are determined polarographically with a supporting electrolyte solution of 0.1M EDTA, 0.33M potassium sulfate and 0.4M sodium acetate, buffered to pH 4 with acetic acid. The half-wave potential (Esub(1/2)) of titanium is -0.35V and that of niobium is -0.67 V. (author)

  16. Process of forming niobium and boron containing titanium aluminide

    International Nuclear Information System (INIS)

    Huang, S.C.

    1992-01-01

    This patent describes a method of forming a composition of titanium, aluminum, niobium, and boron of higher ductility comprising casting the following approximate composition: Ti 34-50.5 Al 43-48 Nb 6-16 B 0.5-2.0 and thermomechanically working the cast composition

  17. Producing titanium-niobium alloy by high energy beam

    Energy Technology Data Exchange (ETDEWEB)

    Sharkeev, Yu. P., E-mail: sharkeev@ispms.tsc.ru [Institute of Strength Physics and Materials Science, SB RAS, 2/4 Akademicheski Prosp., Tomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, 30 Lenin Av., Tomsk, 634050 (Russian Federation); Golkovski, M. G., E-mail: golkoski@mail.ru [Budker Institute of Nuclear Physics, 11 Akademika Lavrentiev Prosp., Novosibirsk, 630090 (Russian Federation); Glukhov, I. A., E-mail: gia@ispms.tsc.ru; Eroshenko, A. Yu., E-mail: eroshenko@ispms.tsc.ru; Fortuna, S. V., E-mail: s-fortuna@mail.ru [Institute of Strength Physics and Materials Science, SB RAS, 2/4 Akademicheski Prosp., Tomsk, 634055 (Russian Federation); Bataev, V. A., E-mail: bataev@vadm.ustu.ru [Novosibirsk State Technical University, 20 K. Marx Prosp., Novosibirsk, 630073 (Russian Federation)

    2016-01-15

    The research is involved in producing a Ti-Nb alloy surface layer on titanium substrate by high energy beam method, as well as in examining their structures and mechanical properties. Applying electron-beam cladding it was possible to produce a Ti-Nb alloy surface layer of several millimeters, where the niobium concentration was up to 40% at. and the structure itself could be related to martensite quenching structure. At the same time, a significant microhardness increase of 3200-3400 MPa was observed, which, in its turn, is connected with the formation of martensite structure. Cladding material of Ti-Nb composition could be the source in producing alloys of homogeneous microhardness and desired concentration of alloying niobium element.

  18. Niobium Titanium and Copper wire samples

    CERN Multimedia

    2009-01-01

    Two wire samples, both for carrying 13'000Amperes. I sample is copper. The other is the Niobium Titanium wiring used in the LHC magnets. The high magnetic fields needed for guiding particles around the Large Hadron Collider (LHC) ring are created by passing 12’500 amps of current through coils of superconducting wiring. At very low temperatures, superconductors have no electrical resistance and therefore no power loss. The LHC is the largest superconducting installation ever built. The magnetic field must also be extremely uniform. This means the current flowing in the coils has to be very precisely controlled. Indeed, nowhere before has such precision been achieved at such high currents. Magnet coils are made of copper-clad niobium–titanium cables — each wire in the cable consists of 9’000 niobium–titanium filaments ten times finer than a hair. The cables carry up to 12’500 amps and must withstand enormous electromagnetic forces. At full field, the force on one metre of magnet is comparable ...

  19. Interaction of Cr-Ti-Si coating on VN-3 niobium alloy with air environment

    International Nuclear Information System (INIS)

    Lazarev, Eh.M.; Kozlov, A.T.; Monakhova, L.A.

    1985-01-01

    Investigation of heat-resistance, microstructure and phase composition of Cr-Ti-Si coating on VN-3 niobium alloy with air oxidation in the temperature interval of 1200-1600 deg C is conducted. Thermogravimetry, metallography, X-ray diffraction and microprobe analysis methods are used. It is ascertained that the coating is a dense niobium disilicide layer, luriched on the surface with chromium and titanium disilicides and separated and from the protected alloy by a narrow zone of the lowest niobium silicide Nb 5 Si 3 . The coating protective junctions are provided by a selective chromium and titanium disilicides oxidation as well as niobium disilicide oxidation at the temperature of 1600 deg C, and by the rates of niobium and silicon diffusion through Nb 5 SI 3 and NbSi 2 and oxygen diffusion through the amorphous SiO 2

  20. Kinetics and oxidation mechanisms of polycrystaline niobium

    International Nuclear Information System (INIS)

    Paschoal, J.O.A.

    1979-01-01

    The oxidation kinetics of annealed niobium was determined by thermogravimetric analysis between 450 and 800 0 C and for oxygen pressures varying from 20 to 700 mmHg. The oxidation kinetics of cold worked and/or irradiated niobium for temperatures between 500 and 700 0 C, with oxygen pressures varying from 100 to 300 mmHg. Was also determined. Using X-ray diffraction it was found that the oxide formed in the range of temperature and oxygen pressure considered in this research is γ-Nb 2 O 5 . Optical and scanning eletronic microscopy showed that for annealed niobium oxidized under 600 0 C there was formation of non-uniform oxide layers, containing cracks and pores, presenting very irregular metal/pentoxide interface. The presence of sub-oxide NbOsub(z) platelets was observed in this interface. This sub-oxide platelets where not observed in annealed oxidized niobium samples over 600 0 C; the oxide layers formed were compact. At 800 0 C and the beginning at 700 0 C the interfaces were quite regular. Through microhardness measurements for the metal near the metal/pentoxide interface, the formation of oxygen solid solution was found and the oxygen diffusion coefficient was calculated. The results showed that at 600 0 C the oxygen diffusion coefficient in cold worked niobium is three times larger than the value obtained for annealed niobium. The results suggest that the reaction between annealed niobium and oxygen undaer 600 0 C is controlled by reaction in interface where the oxide layers are not compacted, parcially due to Nb sub(z) platelets formation.(Author) [pt

  1. Low temperature oxidation of niobium alloy with silicon-aluminium coating

    International Nuclear Information System (INIS)

    Lazarev, Eh.M.; Sapozhnikova, L.V.; Shabanova, M.E.; Pod'yachev, V.N.; Kornilova, Z.I.

    1987-01-01

    Using the gravimetry methods heat resistance of niobium-titanium-aluminium alloy in the air and at 700 deg C in the initial state and when it is protected by silicide-aluminium coatings (with variable content of aluminium) is investigated. Using X-ray diffraction and micro X-ray diffraction analyses, mechanisms of the alloy oxidation and the coating protective effect are studied. The role of aluminium in the formation of coatings is analyzed and according to bend tests the plasticity of the coatings is evaluated

  2. Corrosion of alloys of the niobium--titanium--aluminium system

    International Nuclear Information System (INIS)

    Andreeva, V.V.; Alekseeva, E.L.; Dontsov, S.N.; Moiseeva, I.S.

    The mechanical properties and corrosion resistance of niobium--titanium--aluminum alloys in 20 percent HCl and 40--75 percent H 2 SO 4 at 40 and 100 0 C are considered. Current density vs potential and corrosion rate vs potential potentiostatic curves plotted in 75 percent H 2 SO 4 at 140 0 C for the alloys with different titanium contents at a constant content of aluminum and also for alloys with a constant titanium content at different contents of aluminum are given. It was shown that the corrosion resistance of the alloys in 75 percent H 2 SO 4 at 140 0 C is an exponential function of the atomic content of the alloying components (Ti, Al) in them; aluminum vitiates the corrosion resistance very strongly

  3. Alumina and Hafnia ALD Layers for a Niobium-Doped Titanium Oxide Photoanode

    Directory of Open Access Journals (Sweden)

    Naji Al Dahoudi

    2012-01-01

    Full Text Available Niobium-doped titanium dioxide (TiO2 nanoparticles were used as a photoanode in dye-sensitized solar cells (DSCs. They showed a high photocurrent density due to their higher conductivity; however, a low open-circuit voltage was exhibited due to the back-reaction of photogenerated electrons. Atomic layer deposition is a useful technique to form a conformal ultrathin layer of Al2O3 and HfO, which act as an energy barrier to suppress the back electrons from reaching the redox medium. This resulted in an increase of the open-circuit voltage and therefore led to higher performance. HfO showed an improvement of the light-to-current conversion efficiency by 74%, higher than the 21% enhancement obtained by utilizing Al2O3 layers.

  4. Effect of substitution of titanium by magnesium and niobium on ...

    Indian Academy of Sciences (India)

    Administrator

    Effect of substitution of titanium by magnesium and niobium on structure and piezoelectric properties in (Bi1/2. Na1/2. )TiO3 ceramics. ZHOU CHANG-RONG*, LIU XIN-YU, LI WEI-ZHOU. † and YUAN CHANG-LAI. Department of Information Material Science and Engineering, Guilin University of Electronic Technology,. Guilin ...

  5. Free energy of hydration of niobium oxide

    International Nuclear Information System (INIS)

    Plodinec, M.J.

    1996-01-01

    Some of the glasses being formulated by SRTC researchers contain niobium oxide. In this report, the free energy of hydration of the oxide is calculated from the free energies of formation of the oxide, the hydroxide, and water. This value can be used in calculations of the free energy of hydration of glasses containing niobium

  6. Crystallography and Morphology of MC Carbides in Niobium-Titanium Modified As-Cast HP Alloys

    Science.gov (United States)

    Buchanan, Karl G.; Kral, Milo V.; Bishop, Catherine M.

    2014-07-01

    The microstructures of two as-cast heats of HP alloy stainless steels modified with niobium and titanium were examined with particular attention paid to the interdendritic niobium-titanium-rich carbides formed during solidification of these alloys. Generally, these precipitates obtain a blocky morphology in the as-cast condition. However, the (NbTi)C precipitates may obtain a nodular morphology. To provide further insight to the origin of the two different morphologies obtained by the (NbTi)C precipitates in the HP-NbTi alloy, the microstructure and crystallography of each have been studied in detail using scanning electron microscopy, transmission electron microscopy, various electron diffraction methods (EBSD, SAD, and CBED), and energy-dispersive X-ray spectroscopy.

  7. Young's modulus of a copper-stabilized niobium-titanium superconductive wire

    International Nuclear Information System (INIS)

    Ledbetter, H.M.; Moulder, J.C.; Austin, M.W.

    1980-01-01

    Young's modulus was determined for a 0.6-mm-dia niobium-titanium superconductive wire. Two methods were used: continuous-wave-resonance and laser-pulse-excitation. Young's moduli were also determined for the components - copper and Nb-Ti - in both wire and bulk forms. Some mechanical-deformation effects on Young's modulus were also measured. From the component' elastic moduli, that of the composite was predicted accurately by a simple rule-of-mixtures relationship

  8. Study of physicochemical processes and parameters of regime of diffusion brazing of niobium with titanium, zirconium and vanadium

    International Nuclear Information System (INIS)

    Grishin, V.L.; Lashko, S.V.

    1986-01-01

    Physicochemical processes at diffusion brazing of niobium with titanium, zirconium and vanadium, producing continious series of solid solutions with niobium are studied. Diffusion coefficients, time of isothermal crystallization of soldered welds, as well as the duration of homogenized thermal treatment of soldered welds necessary to provide the given temperature of weld unsoldering

  9. Micro-length anodic porous niobium oxide for lithium-ion thin film battery applications

    International Nuclear Information System (INIS)

    Yoo, Jeong Eun; Park, Jiyoung; Cha, Gihoon; Choi, Jinsub

    2013-01-01

    The anodization of niobium in an aqueous mixture of H 3 PO 4 and HF in the potential range from 2.5 to 30 V for 2 h at 5 °C was performed, demonstrating that anodic porous niobium oxide film with a thickness of up to 2000 nm, including a surface dissolution layer, can be obtained by controlling the applied potential and composition of the electrolytes. Specifically, surface dissolution-free porous niobium oxide film with a thickness of 800 nm can be prepared in a low electrolyte concentration. The surface dissolution is observed when the concentration ratio of HF (wt.%):H 3 PO 4 (M) was more than 2:1. The discontinuous layers in the niobium oxide film were observed when the thickness was higher than 500 nm, which was ascribed to the large volume expansion of the niobium oxide grown from the niobium metal. The anodic porous niobium oxide film was used as the cathode for lithium-ion batteries in the potential range from 1.2 to 3.0 V at a current density of 7.28 × 10 − 6 A cm −2 . The first discharge capacity of ca. 53 μA h cm − 2 was obtained in 800 nm thick niobium oxide without a surface dissolution layer. - Highlights: ► Anodic porous niobium oxide film with a thickness of 2000 nm was obtained. ► Surface dissolution-free porous niobium oxide film was prepared. ► The niobium oxide film was used as the cathode for lithium-ion batteries

  10. A Study of the Batch Annealing of Cold-Rolled HSLA Steels Containing Niobium or Titanium

    Science.gov (United States)

    Fang, Chao; Garcia, C. Isaac; Choi, Shi-Hoon; DeArdo, Anthony J.

    2015-08-01

    The batch annealing behavior of two cold-rolled, microalloyed HSLA steels has been studied in this program. One steel was microalloyed with niobium while the other with titanium. A successfully batch annealed steel will exhibit minimum variation in properties along the length of the coil, even though the inner and outer wraps experience faster heating and cooling rates and lower soaking temperatures, i.e., the so-called "cold spot" areas, than the mid-length portion of the coil, i.e., the so-called "hot spot" areas. The variation in strength and ductility is caused by differences in the extent of annealing in the different areas. It has been known for 30 years that titanium-bearing HSLA steels show more variability after batch annealing than do the niobium-bearing steels. One of the goals of this study was to try to explain this observation. In this study, the annealing kinetics of the surface and center layers of the cold-rolled sheet were compared. The surface and center layers of the niobium steel and the surface layer of the titanium steel all showed similar annealing kinetics, while the center layer of the titanium steel exhibited much slower kinetics. Metallographic results indicate that the stored energy of the cold-rolled condition, as revealed by grain center sub-grain boundary density, appeared to strongly influence the annealing kinetics. The kinetics were followed by the Kernel Average Misorientation reconstruction of the microstructure at different stages on annealing. Possible pinning effects caused by microalloy precipitates were also considered. Methods of improving uniformity and increasing kinetics, involving optimizing both hot-rolled and cold-rolled microstructure, are suggested.

  11. Structural phase transitions in niobium oxide nanocrystals

    Science.gov (United States)

    Yuvakkumar, R.; Hong, Sun Ig

    2015-09-01

    Niobium oxide nanocrystals were successfully synthesized employing the green synthesis method. Phase formation, microstructure and compositional properties of 1, 4 and 7 days incubation treated samples after calcinations at 450 °C were examined using X-ray diffraction, Raman, photoluminescence (PL), infrared, X-ray photoelectron spectra and transmission electron microscopic characterizations. It was observed that phase formation of Nb2O5 nanocrystals was dependent upon the incubation period required to form stable metal oxides. The characteristic results clearly revealed that with increasing incubation and aging, the transformation of cubic, orthorhombic and monoclinic phases were observed. The uniform heating at room temperature (32 °C) and the ligation of niobium atoms due to higher phenolic constituents of utilized rambutan during aging processing plays a vital role in structural phase transitions in niobium oxide nanocrystals. The defects over a period of incubation and the intensities of the PL spectra changing over a period of aging were related to the amount of the defects induced by the phase transition.

  12. Electrical characterization of zirconia-niobium and zirconia-titanium composites

    International Nuclear Information System (INIS)

    Reis, S.T. dos.

    1993-01-01

    Zirconia-niobium and zirconia-titanium composites were made by powder mixing, cold pressing, and vacuum sintering at 1600 0 C. The metallic particles were added in the proportion of 0-50% by volume. Electrical resistivity measurements were performed by the two probes and the four probes d.c. method as a function of metallic particle concentration. Electrical resistivity of these composites decreased sharply in the region of 30-40 vol% Nb or Ti, in agreement with the percolation theory. Tests in an induction furnace were performed to check the self-heating response of these composites. (author). 33 refs, 40 figs, 11 tabs

  13. Method of removing niobium from uranium-niobium alloy

    International Nuclear Information System (INIS)

    Pollock, E.N.; Schlier, D.S.; Shinopulos, G.

    1992-01-01

    This patent describes a method of removing niobium from a uranium-niobium alloy. It comprises dissolving the uranium-niobium alloy metal pieces in a first aqueous solution containing an acid selected from the group consisting of hydrochloric acid and sulfuric acid and fluoboric acid as a catalyst to provide a second aqueous solution, which includes uranium (U +4 ), acid radical ions, the acids insolubles including uranium oxides and niobium oxides; adding nitric acid to the insolubles to oxidize the niobium oxides to yield niobic acid and to complete the solubilization of any residual uranium; and separating the niobic acid from the nitric acid and solubilized uranium

  14. Synthesis, characterization, and catalytic application of ordered mesoporous carbon–niobium oxide composites

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Juan-Li; Gao, Shuang; Liu, Chun-Ling; Liu, Zhao-Tie; Dong, Wen-Sheng, E-mail: wsdong@snnu.edu.cn

    2014-11-15

    Graphical abstract: The ordered mesoporous carbon–niobium oxide composites have been synthesized by a multi-component co-assembly method associated with a carbonization process. - Highlights: • Ordered mesoporous carbon–niobium oxide composites were synthesized. • The content of Nb{sub 2}O{sub 5} in the composites could be tuned from 38 to 75%. • Niobium species were highly dispersed in amorphous carbon framework walls. • The composites exhibited good catalytic performance in the dehydration of fructose. - Abstract: Ordered mesoporous carbon–niobium oxide composites have been synthesized by a multi-component co-assembly method associated with a carbonization process using phenolic resol as carbon source, niobium chloride as precursor and amphiphilic triblock copolymer Pluronic F127 as template. The resulting materials were characterized using a combination of techniques including differential scanning calorimetry–thermogravimetric analysis, N{sub 2} physical adsorption, X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. The results show that with increasing the content of Nb{sub 2}O{sub 5} from 38 to 75% the specific surface area decreases from 306.4 to 124.5 m{sup 2} g{sup −1}, while the ordered mesoporous structure is remained. Niobium species is well dispersed in the amorphous carbon framework. The mesoporous carbon–niobium oxide composites exhibit high catalytic activity in the dehydration of fructose to 5-hydroxymethylfurfural. A 100% conversion of fructose and a 76.5% selectivity of 5-hydroxymethylfurfural were obtained over the carbon–niobium oxide composite containing 75% Nb{sub 2}O{sub 5} under the investigated reaction conditions.

  15. Niobium oxide nanocolumns formed via anodic alumina with modulated pore diameters

    Science.gov (United States)

    Pligovka, A.; Zakhlebayeva, A.; Lazavenka, A.

    2018-03-01

    Niobium oxide nanocolumns with modulated diameters were formed for the first time. An Al/Nb bilayer specimen was prepared by successive sputter-deposition of 300 nm niobium layer and 1200 nm aluminum layer onto silicon wafer. Regular anodic alumina matrix with modulated pore diameters was formed by sequential anodization of initial specimen in tartaric acid at 180 V, and in oxalic acid at 37 V. Further potentiodynamic reanodization of the specimen up to 400 V causes the simultaneous growth of 440 nm continuous niobium oxide layer beneath the alumina film and two types of an array of oxide nanocolumns (thick – with 100 nm width and 630 nm high and thin – with 25 nm width and 170 nm high), which are the filling of the alumina pores. The morphology of the formed anodic niobium oxide nanocolumns with modulated diameters was determined by field emission scanning electron microscopy. The formed nanostructures can be used for perspective devices of nano- and optoelectronics such as photonic crystals.

  16. Surfactant-assisted growth of anodic nanoporous niobium oxide with a grained surface

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jeong Eun [Department of Chemical Engineering, Inha University, 253 Yonghyun Dong, Nam-Gu, Incheon 402-751 (Korea, Republic of); Choi, Jinsub, E-mail: jinsub@inha.ac.k [Department of Chemical Engineering, Inha University, 253 Yonghyun Dong, Nam-Gu, Incheon 402-751 (Korea, Republic of)

    2010-07-15

    Nanoporous niobium oxide film with a maximum thickness of 520 nm was prepared by anodizing niobium in a mixture of 1 wt% HF, 1 M H{sub 3}PO{sub 4}, and a small amount of Sodium Dodecyl Sulfate (SDS) surfactant. The porosity of the anodic niobium oxide prepared without SDS is irregular with the surface of the oxide suggesting a grained surface pattern rather than an ordered porous structure. A proper amount of SDS addition can prepare a pore arrangement with stripe patterns. The pore depth and surface pattern were strongly affected by the concentration of SDS and bath temperature. We found that the addition of SDS surfactant facilitated improvement in the chemical resistance of niobium oxide, leading to the formation of pores with a longer length compared to those prepared without a SDS surfactant. This can be in part ascribed to the protection of the surface by the physical adsorption of SDS on the surface due to a charge-charge interaction and be in part attributed to the formation of Nb=O bonding on the outermost oxide layer by SDS. When anodization was carried out for 4 h, the surface dissolution of niobium oxide was observed, which means that the maximum tolerance time against chemical dissolution was less than 4 h.

  17. Niobium, tantalum and titanium extraction from natural and technogenic raw materials of the Kola Peninsula by liquid-liquid extraction methods

    International Nuclear Information System (INIS)

    Kassikova, N.I.; Kassikov, A.G.; Balabanov, Yu.I.; Petrov, V.B.; Kalinnikov, V.T.

    2003-01-01

    Such rare metals as niobium and tantalum are important strategic materials underlying many of the modern advanced technologies. Since the extraction and processing of rare metal concentrates from own deposits has diminished abruptly in recent years, it is essential to look into the possibility of extracting these elements from various production wastes. This work discusses liquid-liquid extraction and purification of niobium, tantalum and titanium from process solutions of loparite, perovskite and sphene concentrate decomposition with sulphuric and hydrochloric acids; niobium from lithium niobate production wastes decomposed by hydrochloric acid; and tantalum from tantalum capacitor and heat-resistant alloy wastes. (Original)

  18. A comparative study of the cytotoxicity and corrosion resistance of nickel-titanium and titanium-niobium shape memory alloys.

    Science.gov (United States)

    McMahon, Rebecca E; Ma, Ji; Verkhoturov, Stanislav V; Munoz-Pinto, Dany; Karaman, Ibrahim; Rubitschek, Felix; Maier, Hans J; Hahn, Mariah S

    2012-07-01

    Nickel-titanium (NiTi) shape memory alloys (SMAs) are commonly used in a range of biomedical applications. However, concerns exist regarding their use in certain biomedical scenarios due to the known toxicity of Ni and conflicting reports of NiTi corrosion resistance, particularly under dynamic loading. Titanium-niobium (TiNb) SMAs have recently been proposed as an alternative to NiTi SMAs due to the biocompatibility of both constituents, the ability of both Ti and Nb to form protective surface oxides, and their superior workability. However, several properties critical to the use of TiNb SMAs in biomedical applications have not been systematically explored in comparison with NiTi SMAs. These properties include cytocompatibility, corrosion resistance, and alterations in alloy surface composition in response to prolonged exposure to physiological solutions. Therefore, the goal of the present work was to comparatively investigate these aspects of NiTi (49.2 at.% Ti) and TiNb (26 at.% Nb) SMAs. The results from the current studies indicate that TiNb SMAs are less cytotoxic than NiTi SMAs, at least under static culture conditions. This increased TiNb cytocompatibility was correlated with reduced ion release as well as with increased corrosion resistance according to potentio-dynamic tests. Measurements of the surface composition of samples exposed to cell culture medium further supported the reduced ion release observed from TiNb relative to NiTi SMAs. Alloy composition depth profiles also suggested the formation of calcium phosphate deposits within the surface oxide layers of medium-exposed NiTi but not of TiNb. Collectively, the present results indicate that TiNb SMAs may be promising alternatives to NiTi for certain biomedical applications. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Characterization and Catalytic Performance of Niobic Acid Dispersed over Titanium Silicalite

    Directory of Open Access Journals (Sweden)

    Didik Prasetyoko

    2008-01-01

    Full Text Available Niobic acid, Nb2O5⋅nH2O, has been supported on the titanium silicalite by impregnation method. The obtained materials were characterized by X-ray diffraction, infrared, and ultra-violet—visible diffuse reflectance spectroscopy, temperature programmed reduction, pyridine adsorption, and field emission scanning electron microscopy techniques. It was demonstrated that the tetrahedral titanium species still retained after impregnation of niobic acid. The results revealed that niobium species interacted with hydroxyl groups on the surface of TS-1. The niobium species in the catalysts are predominantly polymerized niobium oxides species or bulk niobium oxide with the octahedral structure. All catalysts showed both Brønsted and Lewis acid sites. The catalysts have been tested for epoxidation of 1-octene with aqueous hydrogen peroxide. It was found that the presence of niobic acid in the catalysts enhanced the rate of the formation of epoxide at the initial reaction time. Diol as a side product was also observed due to the acidic properties of the catalysts.

  20. Deposition of niobium plate on niobium-titanium from molten salts

    International Nuclear Information System (INIS)

    Matychenko, Eh.S.; Shevyrev, A.A.; Stolyarova, L.A.; Sukhorzhevskaya, S.L.

    1993-01-01

    A possibility of using Nb-Ti alloys (50 and 34 mas.% of Ti) as substrates for deposition of niobium coating of chloride-fluoride and fluoride molten salts is studied. Corrosion behaviour of alloys indicates in the electrolytic bath within 970-1070 K interval, coating structure and state of coating-substrate boundary are investigated. Chloride-fluoride molten salt usefullness for making products with niobium coatings is shown

  1. Sample of superconducting wiring (Niobium Titanium)

    CERN Multimedia

    About NbTi cable: The cable consists of 36 strands of superconducting wire, each strand has a diameter of 0.825 mm and houses 6300 superconducting filaments of niobium-titanium (Nb-Ti, a superconducting alloy). Each filament has a diameter of about 0.006 mm, i.e. 10 times smaller than a typical human hair. The filaments are embedded in a high-purity copper matrix. Copper is a normal conducting material. The filaments are in the superconductive state when the temperature is below about -263ºC (10.15 K). When the filaments leave the superconductive state, the copper acts as conductor transports the electrical current. Each strand of The NbTi cable (at superconducting state) has a current density of up to above 2000 A/mm2 at 9 T and -271ºC (2.15 K). A cable transport a current of about 13000 A at 10 T and -271ºC (2.15 K). About LHC superconducting wiring: The high magnetic fields needed for the LHC can only be reached using superconductors. At very low temperatures, superconductors have no electrical resistan...

  2. Sample of superconducting wiring (Niobium Titanium)

    CERN Multimedia

    About NbTi cable: The cable consists of 36 strands of superconducting wire, each strand has a diameter of 0.825 mm and houses 6300 superconducting filaments of niobium-titanium (Nb-Ti, a superconducting alloy). Each filament has a diameter of about 0.006 mm, i.e. 10 times smaller than a typical human hair. The filaments are embedded in a high-purity copper matrix. Copper is a normal conducting material. The filaments are in the superconductive state when the temperature is below about -263ºC (10.15 K). When the filaments leave the superconductive state, the copper acts as conductor transports the electrical current. Each strand of The NbTi cable (at superconducting state) has a current density of up to above 2000 A/mm2 at 9 T and -271ºC (2.15 K). A cable transport a current of about 13000 A at 10 T and -271ºC (2.15 K). About LHC superconducting wiring: The high magnetic fields needed for the LHC can only be reached using superconductors. At very low temperatures, superconductors have no electrical resista...

  3. Study on thermo-oxide layers of uranium-niobium alloy

    International Nuclear Information System (INIS)

    Luo Lizhu; Yang Jiangrong; Zhou Ping

    2010-01-01

    Surface oxides structure of uranium-niobium alloys which were annealed under different temperatures (room temperature, 100, 200, 300 degree C, respectively)in air were studied by X-ray photoelectron spectroscopy (XPS) analysis and depth profile. Thickness of thermo-oxide layers enhance with the increasing oxide temperature, and obvious changes to oxides structure are observed. Under different delt temperatures, Nb 2 O 5 are detected on the initial surface of U-Nb alloys, and a layer of NbO mixed with some NbO x (0 2 O 5 and Nb metal. Dealing samples in air from room temperature to 200 degree C, non-stoichiometric UO 2+x (UO 2 + interstitial oxygen, P-type semiconductor) are found on initial surface of U-Nb alloys, which has 0.7 eV shift to lower binding energy of U 4f 7/2 characteristics comparing to that of UO 2 . Under room temperature, UO 2 are commonly detected in the oxides layer, while under temperature of 100 and 200 degree C, some P-type UO 2+x are found in the oxide layers,which has a satellite at binding energy of 396.6 eV. When annealing at 300 degree C, higher valence oxides, such as U 3 O 8 or UO x (2 5/2 and U 4f 7/2 peaks are 392.2 and 381.8 eV, respectively. UO 2 mixed uranium metal are the main compositions in the oxide layers. From the results, influence of temperature to oxidation of uranium is more visible than to niobium in uranium-niobium alloys. (authors)

  4. The oxidative coupling of methane and the oxidative dehydrogenation of ethane over a niobium promoted lithium doped magnesium oxide catalyst

    NARCIS (Netherlands)

    Swaan, H.M.; Swaan, H.M.; Li, X.; Seshan, Kulathuiyer; van Ommen, J.G.; Ross, J.R.H.; Ross, J.R.H.

    1993-01-01

    The promoting effect of niobium in a Li/MgO catalyst for the oxidative coupling of methane (OCM) and for the oxidative dehydrogenation of ethane (ODHE) has been studied in some detail. It has been found that a Li/Nb/MgO catalyst with 16 wt % niobium showed the highest activity for the C2 production

  5. Formation and oxidation resistance of NbSi2 coatings on niobium by pack cementation

    International Nuclear Information System (INIS)

    Li Ming; Song Lixin; Le Jun; Zhang Xiaowei; Pei Baogen; Hu Xingfang

    2005-01-01

    NbSi 2 coatings were formed on niobium by halide-activated pack cementation process. The as-coated niobium samples were oxidized in air up to 1723 K by thermogravimetry method. The surface and cross-sectional morphology, phase composition and element distribution of the NbSi 2 coatings before and after oxidation were characterized by SEM, XRD and EPMA. The results show that the as-formed coatings consist of single phase of hexagonal NbSi 2 and the oxidation resistance of pure niobium can be greatly improved by pack siliconizing. (orig.)

  6. Niobium–niobium oxide multilayered coatings for corrosion protection of proton-irradiated liquid water targets for ["1"8F] production

    International Nuclear Information System (INIS)

    Skliarova, Hanna; Renzelli, Marco; Azzolini, Oscar; Felicis, Daniele de; Bemporad, Edoardo; Johnson, Richard R.; Palmieri, Vincenzo

    2015-01-01

    Chemically inert coatings on Havar"® entrance foils of the targets for ["1"8F] production via proton irradiation of enriched water at pressurized conditions are needed to decrease the amount of ionic contaminants released from Havar"®. During current investigation, magnetron sputtered niobium and niobium oxide were chosen as the candidates for protective coatings because of their superior chemical resistance. Aluminated quartz substrates allowed us to verify the protection efficiency of the desirable coatings as diffusion barriers. Two modeling corrosion tests based on the extreme susceptibility of aluminum to liquid gallium and acid corrosion were applied. As far as niobium coatings obtained by magnetron sputtering are columnar, the grain boundaries provide a fast diffusion path for active species of corrosive media to penetrate and to corrode the substrate. Amorphous niobium oxide films obtained by reactive magnetron sputtering showed superior barrier properties according to the corrosion tests performed. In order to prevent degrading of brittle niobium oxide at high pressures, multilayers combining high ductility of niobium with superior diffusion barrier efficiency of niobium oxide were proposed. The intercalation of niobium oxide interlayers was proved to interrupt the columnar grain growth of niobium during sputtering, resulting in improved diffusion barrier efficiency of obtained multilayers. The thin layer multilayer coating architecture with 70 nm bi-layer thickness was found preferential because of higher thermal stability. - Highlights: • Diffusion barrier efficiency of niobium, niobium oxide and their multilayers was studied. • The intercalation of niobium oxide layers interrupted the columnar grain growth of niobium. • The bilayer architectures influenced the stability of the multilayer coatings. • The thin layer multilayer coating with 70 nm double-layer was found superior.

  7. Niobium–niobium oxide multilayered coatings for corrosion protection of proton-irradiated liquid water targets for [{sup 18}F] production

    Energy Technology Data Exchange (ETDEWEB)

    Skliarova, Hanna, E-mail: Hanna.Skliarova@lnl.infn.it [National Institute of Nuclear Physics, Legnaro National Laboratories, Viale dell' Università, 2, 35020 Legnaro, Padua (Italy); University of Ferrara, Ferrara (Italy); Renzelli, Marco, E-mail: marco.renzelli@uniroma3.it [University of Rome “Roma TRE”, Via della Vasca Navale, 79, 00146 Rome (Italy); Azzolini, Oscar, E-mail: Oscar.Azzolini@lnl.infn.it [National Institute of Nuclear Physics, Legnaro National Laboratories, Viale dell' Università, 2, 35020 Legnaro, Padua (Italy); Felicis, Daniele de, E-mail: daniele.defelicis@uniroma3.it [University of Rome “Roma TRE”, Via della Vasca Navale, 79, 00146 Rome (Italy); Bemporad, Edoardo, E-mail: edoardo.bemporad@uniroma3.it [University of Rome “Roma TRE”, Via della Vasca Navale, 79, 00146 Rome (Italy); Johnson, Richard R., E-mail: richard.johnson@teambest.com [BEST Cyclotron Systems Inc., 8765 Ash Street Unit 7, Vancouver BC V6P 6T3 (Canada); Palmieri, Vincenzo, E-mail: Vincenzo.Palmieri@lnl.infn.it [National Institute of Nuclear Physics, Legnaro National Laboratories, Viale dell' Università, 2, 35020 Legnaro, Padua (Italy); University of Padua, Padua (Italy)

    2015-09-30

    Chemically inert coatings on Havar{sup ®} entrance foils of the targets for [{sup 18}F] production via proton irradiation of enriched water at pressurized conditions are needed to decrease the amount of ionic contaminants released from Havar{sup ®}. During current investigation, magnetron sputtered niobium and niobium oxide were chosen as the candidates for protective coatings because of their superior chemical resistance. Aluminated quartz substrates allowed us to verify the protection efficiency of the desirable coatings as diffusion barriers. Two modeling corrosion tests based on the extreme susceptibility of aluminum to liquid gallium and acid corrosion were applied. As far as niobium coatings obtained by magnetron sputtering are columnar, the grain boundaries provide a fast diffusion path for active species of corrosive media to penetrate and to corrode the substrate. Amorphous niobium oxide films obtained by reactive magnetron sputtering showed superior barrier properties according to the corrosion tests performed. In order to prevent degrading of brittle niobium oxide at high pressures, multilayers combining high ductility of niobium with superior diffusion barrier efficiency of niobium oxide were proposed. The intercalation of niobium oxide interlayers was proved to interrupt the columnar grain growth of niobium during sputtering, resulting in improved diffusion barrier efficiency of obtained multilayers. The thin layer multilayer coating architecture with 70 nm bi-layer thickness was found preferential because of higher thermal stability. - Highlights: • Diffusion barrier efficiency of niobium, niobium oxide and their multilayers was studied. • The intercalation of niobium oxide layers interrupted the columnar grain growth of niobium. • The bilayer architectures influenced the stability of the multilayer coatings. • The thin layer multilayer coating with 70 nm double-layer was found superior.

  8. Investigating the structure and biocompatibility of niobium and titanium oxides as coatings for orthopedic metallic implants.

    Science.gov (United States)

    Pradhan, D; Wren, A W; Misture, S T; Mellott, N P

    2016-01-01

    Applying sol gel based coatings to orthopedic metallic implant materials can significantly improve their properties and lifespan in vivo. For this work, niobium (Nb2O5) and titanium (TiO2) oxides were prepared via solution processing in order to determine the effect of atomic arrangement (amorphous/crystalline) on bioactivity. Thermal evaluation on the synthesized materials identified an endotherm for Nb2O5 at 75 °C with 40% weight loss below 400 °C, and minimal weight loss between 400 and 850 °C. Regarding TiO2 an endotherm was present at 92 °C with 25% weight loss below 400 °C, and 4% between 400 and 850 °C. Phase evolution was determined using High Temperature X-ray Diffraction (HT-XRD) where amorphous-Nb2O5 (450 °C), hexagonal-Nb2O5 (525 °C), orthorhombic-Nb2O5 (650 °C), amorphous-TiO2 (275 °C) and tetragonal TiO2 (500 °C) structures were produced. Simulated body fluid (SBF) testing was conducted over 1, 7 and 30 days and resulted in positive chemical and morphological changes for crystalline Nb2O5 (525 °C) and TiO2 (500 °C) after 30 days of incubation. Rod-like CaP deposits were observed on the surfaces using Scanning Electron Microscopy (FE-SEM) and Grazing Incidence-X-ray Diffraction (GI-XRD) shows that the deposits were X-ray amorphous. Cell viability was higher with the TiO2 (122%) samples when compared to the growing cell population while Nb2O5 samples exhibited a range of viability (64-105%), partially dependent on materials atomic structure. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Catalysts Promoted with Niobium Oxide for Air Pollution Abatement

    Directory of Open Access Journals (Sweden)

    Wendi Xiang

    2017-05-01

    Full Text Available Pt-containing catalysts are currently used commercially to catalyze the conversion of carbon monoxide (CO and hydrocarbon (HC pollutants from stationary chemical and petroleum plants. It is well known that Pt-containing catalysts are expensive and have limited availability. The goal of this research is to find alternative and less expensive catalysts to replace Pt for these applications. This study found that niobium oxide (Nb2O5, as a carrier or support for certain transition metal oxides, promotes oxidation activity while maintaining stability, making them candidates as alternatives to Pt. The present work reports that the orthorhombic structure of niobium oxide (formed at 800 °C in air promotes Co3O4 toward the oxidation of both CO and propane, which are common pollutants in volatile organic compound (VOC applications. This was a surprising result since this structure of Nb2O5 has a very low surface area (about 2 m2/g relative to the more traditional Al2O3 support, with a surface area of 150 m2/g. The results reported demonstrate that 1% Co3O4/Nb2O5 has comparable fresh and aged catalytic activity to 1% Pt/γ-Al2O3 and 1% Pt/Nb2O5. Furthermore, 6% Co3O4/Nb2O5 outperforms 1% Pt/Al2O3 in both catalytic activity and thermal stability. These results suggest a strong interaction between niobium oxide and the active component—cobalt oxide—likely by inducing an oxygen defect structure with oxygen vacancies leading to enhanced activity toward the oxidation of CO and propane.

  10. HIP bonding for the different material between Niobium and Stainless steel

    International Nuclear Information System (INIS)

    Inoue, H.; Saito, K.; Abe, K.; Fujino, T.; Hitomi, N.; Kobayashi, Y.

    2000-01-01

    In the future advanced cryomodule for superconducting RF cavities, a helium vessel made from titanium or stainless steel has to be welded directly to the niobium cavity wall in order to be simple structure. For that, we need a transformer from niobium to titanium or stainless steel. Stainless steel will have many benefits if the reliable bonding to the niobium is developed. We have tested the niobium/stainless steel bonding by HIP (Hot Isostatic Pressing) with the heat shock between 1023K and 2K. The bonding interface was also observed by SEM. These test results will be presented. (author)

  11. Dislocations and related defects in niobium oxide structures

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, J S; Hutchinson, J L; Lincoln, F J [Oxford Univ. (UK). Inorganic Chemistry Lab.

    1977-01-07

    Lattice images of the niobium oxides, structures based on the linkage of octahedral groups in continuous networks, occasionally contain features recognizable as dislocations. Since lattice imaging enables the microstructure to be resolved in greater detail, at the level of local structural organization, it is possible to determine the configuration, and also to infer the chemical composition, of dislocated areas. By treating the niobium oxide 'block' structures as superstructures of the ReO/sub 3/ (DO/sub 9/) type, the topology of dislocations can be expressed by relations between the insertion (or deletion) of one or more half-planes of cations, or of oxygen atoms only, changes in the number of crystallographic shear plane interfaces between blocks or columns, changes in (idealized) dimensions and any requisite distortion in the third dimension. Mapping the structure around a dislocation, from the lattice image, is directly equivalent to plotting the Burgers' circuit. In this way, the precise nature of a dislocating perturbation and its implications for the local chemical composition of the crystal can be directly identified. The method is exemplified by analysis of dislocations and of related extended defects of several types, associated with twinning phenomena, semicoherent intergrowth between different ReO/sub 3/-type superstructures and arrays building up a low angle boundary. The essential features of the analysis are not restricted to structures of the niobium oxide type, but can be extended to other types of polyhedron networks.

  12. Diffusion of titanium and niobium in b.c.c. Ti--Nb alloys

    International Nuclear Information System (INIS)

    Pontau, A.E.

    1978-01-01

    The diffusion coefficients for titanium and niobium radioactive tracers were simultaneously measured in Ti, Ti 94 6 Nb 5 4 , Ti 80 4 Nb 19 6 , and Ti 64 3 Nb 35 . 7 over the temperature range from 950 0 C to 1511 0 C using standard lathe sectioning techniques. The samples were initially heat treated by annealing above the α-β phase transition temperature and then either cooling slowly to room temperature or quenching. The room temperature crystal morphology was then examined using x-ray diffraction. Alloy concentrations were chosen both to suppress the β-α transition and to obtain the metastable ω-phase

  13. Influence of electropolishing and anodic oxidation on morphology, chemical composition and corrosion resistance of niobium

    Energy Technology Data Exchange (ETDEWEB)

    Sowa, Maciej; Greń, Katarzyna [Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice (Poland); Kukharenko, Andrey I. [Institute of Metal Physics, Russian Academy of Sciences-Ural Division, S. Kovalevskoi Street 18, 620990 Yekaterinburg (Russian Federation); Ural Federal University, Mira Street 19, 620002 Yekaterinburg, Mira str. 19 (Russian Federation); Korotin, Danila M. [Institute of Metal Physics, Russian Academy of Sciences-Ural Division, S. Kovalevskoi Street 18, 620990 Yekaterinburg (Russian Federation); Michalska, Joanna [Faculty of Materials Engineering and Metallurgy, Silesian University of Technology, Krasińskiego Street 8, 40-019 Katowice (Poland); Szyk-Warszyńska, Lilianna; Mosiałek, Michał [Jerzy Haber Institute of Catalysis and Surface Chemistry PAS, Niezapominajek Street 8, 30-239 Kraków (Poland); Żak, Jerzy [Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice (Poland); Pamuła, Elżbieta [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Mickiewicza Avenue 30, 30-059 Kraków (Poland); Kurmaev, Ernst Z. [Institute of Metal Physics, Russian Academy of Sciences-Ural Division, S. Kovalevskoi Street 18, 620990 Yekaterinburg (Russian Federation); Cholakh, Seif O. [Ural Federal University, Mira Street 19, 620002 Yekaterinburg, Mira str. 19 (Russian Federation); Simka, Wojciech, E-mail: wojciech.simka@polsl.pl [Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice (Poland)

    2014-09-01

    The work presents results of the studies performed on electropolishing of pure niobium in a bath that contained: sulphuric acid, hydrofluoric acid, ethylene glycol and acetanilide. After the electropolishing, the specimens were subjected to anodic passivation in a 1 mol dm{sup −3} phosphoric acid solution at various voltages. The surface morphology, thickness, roughness and chemical composition of the resulting oxide layers were analysed. Thusly prepared niobium samples were additionally investigated in terms of their corrosion resistance in Ringer's solution. The electropolished niobium surface was determined to be smooth and lustrous. The anodisation led to the growth of barrier-like oxide layers, which were enriched in phosphorus species. - Highlights: • Pure niobium was electropolished and subsequently anodised in a H{sub 3}PO{sub 4} solution. • Phosphorus was successfully introduced into the oxide layers after the treatment. • Corrosion resistance of niobium in Ringer's solution was improved after anodising.

  14. Conducting metal oxide and metal nitride nanoparticles

    Science.gov (United States)

    DiSalvo, Jr., Francis J.; Subban, Chinmayee V.

    2017-12-26

    Conducting metal oxide and nitride nanoparticles that can be used in fuel cell applications. The metal oxide nanoparticles are comprised of for example, titanium, niobium, tantalum, tungsten and combinations thereof. The metal nitride nanoparticles are comprised of, for example, titanium, niobium, tantalum, tungsten, zirconium, and combinations thereof. The nanoparticles can be sintered to provide conducting porous agglomerates of the nanoparticles which can be used as a catalyst support in fuel cell applications. Further, platinum nanoparticles, for example, can be deposited on the agglomerates to provide a material that can be used as both an anode and a cathode catalyst support in a fuel cell.

  15. Niobium, catalyst repair kit

    International Nuclear Information System (INIS)

    Tanabe, K.

    1991-01-01

    This paper reports that niobium oxides, when small amounts are added to known catalysts, enhance catalytic activity and selectivity and prolong catalyst life. Moreover, niobium oxides exhibit a pronounced effect as supports of metal or metal oxide catalysts. Recently we found that the surface acidity of hydrated niobium pentoxide, niobic acid (Nb 2 O 5 · nH 2 O), corresponds to the acidity of 70% sulfuric acid and exhibits high catalytic activity, selectivity, and stability for acid-catalyzed reactions in which water molecules participate. Although there are few differences in electronegativity and ionic radius between niobium and its neighbors in the periodic table, it is interesting that the promoter effect, support effect, and acidic nature of niobium compounds are quite different from those of compounds of the surrounding elements. Here we review what's known of niobium compounds from the viewpoint of their pronounced catalytic behavior

  16. Titanium oxide fever

    International Nuclear Information System (INIS)

    De Jonge, D.; Visser, J.

    2012-01-01

    One measure to improve air quality is to apply photo-catalytic substances that capture NOx onto the road surface or onto baffle boards alongside the roads. The effect of titanium oxide containing clinkers with coating was discussed in the report 'Demonstration project of air-purifying pavement in Hengelo, The Netherlands' that was published in May 2011. This article examines the way in which the effectiveness of this study was determined. Can titanium oxide containing clinkers and coatings indeed capture NOx?. [nl

  17. Growth of anodic oxide films on oxygen-containing niobium

    Energy Technology Data Exchange (ETDEWEB)

    Habazaki, H. [Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan)]. E-mail: habazaki@eng.hokudai.ac.jp; Ogasawara, T. [Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Konno, H. [Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Shimizu, K. [University Chemical Laboratory, Keio University, Yokohama 223-8522 (Japan); Asami, K. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Saito, K. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Nagata, S. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Skeldon, P. [Corrosion and Protection Centre, School of Materials, The University of Manchester, P.O. Box 88, Manchester M60 1QD (United Kingdom); Thompson, G.E. [Corrosion and Protection Centre, School of Materials, The University of Manchester, P.O. Box 88, Manchester M60 1QD (United Kingdom)

    2005-09-20

    The present study is directed at understanding of the influence of oxygen in the metal on anodic film growth on niobium, using sputter-deposited niobium containing from about 0-52 at.% oxygen, with anodizing carried out at high efficiency in phosphoric acid electrolyte. The findings reveal amorphous anodic niobia films, with no significant effect of oxygen on the field strength, transport numbers, mobility of impurity species and capacitance. However, since niobium is partially oxidized due to presence of oxygen in the substrate, less charge is required to form the films, hence reducing the time to reach a particular film thickness and anodizing voltage. Further, the relative thickness of film material formed at the metal/film interface is increased by the incorporation of oxygen species into the films from the substrate, with an associated altered depth of incorporation of phosphorus species into the films.

  18. Thermodynamic analysis of reduction reactions of niobium oxides

    International Nuclear Information System (INIS)

    Takano, C.

    1981-01-01

    Reduction processes of niobium oxides by hydrogen, carbon and aluminium are analysed thermodinamically. It is shown that reduction by hydrogen is not technically feasible. High purity of raw materials is required. In the carbothermic process impurities which react to form high stability carbides should be avoided. (Author) [pt

  19. Vitreous-enamel protective coatings for niobium and niobium alloys

    International Nuclear Information System (INIS)

    Kobyakov, V.P.; Sedmale, G.P.; Tsimdin', R.A.; Sedmalis, U.Ya.; Tsetskhladze, D.L.; Gosudarstvennyj Komitet po Ispol'zovaniyu Atomnoj Ehnergii SSSR, Sukhumi. Fiziko-Tekhnicheskij Inst.)

    1988-01-01

    Vitreous-enanel coatings to protect niobium and niobium alloys, used in oxidizing media at temperatures up to 1000degC, from embrittlement are developed on the basis of Al 2 O 3 -SiO 2 -P 2 O 5 -Ba vetrificating system. By means of microhardness measurement and IR-spectroscopy it is found, that at coating formation the intermediate ∼20 mkm width zone which prevents oxygen penetration in niobium is formed. Test of niobium pieces with ERS-1000 vitreous-enamel coating have shown, that coating provides niobium reliable protection in the air at 800degC and atmospheric pressure

  20. New porous titanium–niobium oxide for photocatalytic degradation of bromocresol green dye in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Chaleshtori, Maryam Zarei, E-mail: mzarei@utep.edu [Materials Research and Technology Institute (MRTI), University of Texas at El Paso, 500W. University Ave., El Paso, TX 79968 (United States); Hosseini, Mahsa; Edalatpour, Roya [Materials Research and Technology Institute (MRTI), University of Texas at El Paso, 500W. University Ave., El Paso, TX 79968 (United States); Masud, S.M. Sarif [Department of Chemistry, University of Texas at El Paso, 500W. University Ave., El Paso, TX 79968 (United States); Chianelli, Russell R., E-mail: chianell@utep.edu [Materials Research and Technology Institute (MRTI), University of Texas at El Paso, 500W. University Ave., El Paso, TX 79968 (United States)

    2013-10-15

    Graphical abstract: The photocatalytic activity of different porous titanium–niobium oxides was evaluated toward degradation of bromocresol green (BG) under UV light. A better catalytic activity was observed for all samples at lower pH. Catalysts have a stronger ability for degradation of BG in acid media than in alkaline media. - Highlights: • Different highly structured titanium–niobium oxides have been prepared using improved methods of synthesis. • Photo-degradation of bromocresol green dye (BG) with nanostructure titanium–niobium oxide catalysts was carried out under UV light. • The photo-catalytic activity of all catalysts was higher in lower pH. • Titanium–niobium oxide catalysts are considerably stable and reusable. - Abstract: In this study, high surface area semiconductors, non porous and porous titanium–niobium oxides derived from KTiNbO{sub 5} were synthesized, characterized and developed for their utility as photocatalysts for decontamination with sunlight. These materials were then used in the photocatalytic degradation of bromocresol green dye (BG) in aqueous solution using UV light and their catalytic activities were evaluated at various pHs. For all catalysts, the photocatalytic degradation of BG was most efficient in acidic solutions. Results show that the new porous oxides have large porous and high surface areas and high catalytic activity. A topotactic dehydration treatment greatly improves catalyst performance at various pHs. Stability and long term activity of porous materials (topo and non-topo) in photocatalysis reactions was also tested. These results suggest that the new materials can be used to efficiently purify contaminated water.

  1. Multi-component titanium–copper–cobalt- and niobium nanostructured oxides as catalysts for ethyl acetate oxidation

    Czech Academy of Sciences Publication Activity Database

    Tsoncheva, T.; Henych, Jiří; Ivanova, R.; Kovacheva, D.; Štengl, Václav

    2015-01-01

    Roč. 116, č. 2 (2015), s. 397-408 ISSN 1878-5190 Institutional support: RVO:61388980 Keywords : Copper and cobalt oxides * Effect of support * Ethyl acetate combustion * Multicomponent oxides * Titania doped with niobium Subject RIV: CA - Inorganic Chemistry Impact factor: 1.265, year: 2015

  2. Evaluation of niobium dimethylamino-ethoxide for chemical vapour deposition of niobium oxide thin films

    International Nuclear Information System (INIS)

    Dabirian, Ali; Kuzminykh, Yury; Wagner, Estelle; Benvenuti, Giacomo; Rushworth, Simon; Hoffmann, Patrik

    2014-01-01

    Chemical vapour deposition (CVD) processes depend on the availability of suitable precursors. Precursors that deliver a stable vapour pressure are favourable in classical CVD processes, as they ensure process reproducibility. In high vacuum CVD (HV-CVD) process vapour pressure stability of the precursor is of particular importance, since no carrier gas assisted transport can be used. The dimeric Nb 2 (OEt) 10 does not fulfil this requirement since it partially dissociates upon heating. Dimethylamino functionalization of an ethoxy ligand of Nb(OEt) 5 acts as an octahedral field completing entity and leads to Nb(OEt) 4 (dmae). We show that Nb(OEt) 4 (dmae) evaporates as monomeric molecule and ensures a stable vapour pressure and, consequently, stable flow. A set of HV-CVD experiments were conducted using this precursor by projecting a graded molecular beam of the precursor onto the substrate at deposition temperatures from 320 °C to 650 °C. Film growth rates ranging from 8 nm·h −1 to values larger than 400 nm·h −1 can be obtained in this system illustrating the high level of control available over the film growth process. Classical CVD limiting conditions along with the recently reported adsorption–reaction limited conditions are observed and the chemical composition, and microstructural and optical properties of the films are related to the corresponding growth regime. Nb(OEt) 4 (dmae) provides a large process window of deposition temperatures and precursor fluxes over which carbon-free and polycrystalline niobium oxide films with growth rates proportional to precursor flux are obtained. This feature makes Nb(OEt) 4 (dmae) an attractive precursor for combinatorial CVD of niobium containing complex oxide films that are finding an increasing interest in photonics and photoelectrochemical water splitting applications. The adsorption–reaction limited conditions provide extremely small growth rates comparable to an atomic layer deposition (ALD) process

  3. Niobium nitride Josephson tunnel junctions with magnesium oxide barriers

    International Nuclear Information System (INIS)

    Shoji, A.; Aoyagi, M.; Kosaka, S.; Shinoki, F.; Hayakawa, H.

    1985-01-01

    Niobium nitride-niobium nitride Josephson tunnel junctions have been fabricated using amorphous magnesium oxide (a-MgO) films as barriers. These junctions have excellent tunneling characteristics. For example, a large gap voltage (V/sub g/ = 5.1 mV), a large product of the maximum critical current and the normal tunneling resistance (I/sub c/R/sub n/ = 3.25 mV), and a small subgap leakage current (V/sub m/ = 45 mV, measured at 3 mV) have been obtained for a NbN/a-MgO/NbN junction. The critical current of this junction remains finite up to 14.5 K

  4. Additive manufacturing of a high niobium-containing titanium aluminide alloy by selective electron beam melting

    Energy Technology Data Exchange (ETDEWEB)

    Tang, H.P., E-mail: thpfys@126.com [State Key Laboratory of Porous Metal Materials, Northwest Institute for Nonferrous Metal Research, Xi' an 710016 (China); Yang, G.Y.; Jia, W.P.; He, W.W.; Lu, S.L. [State Key Laboratory of Porous Metal Materials, Northwest Institute for Nonferrous Metal Research, Xi' an 710016 (China); Qian, M., E-mail: ma.qian@rmit.edu.au [State Key Laboratory of Porous Metal Materials, Northwest Institute for Nonferrous Metal Research, Xi' an 710016 (China); RMIT University, School of Aerospace, Mechanical and Manufacturing Engineering, Centre for Additive Manufacturing, Melbourne, VIC 3001 (Australia)

    2015-06-11

    Additive manufacturing (AM) offers a radical net-shape manufacturing approach for titanium aluminide alloys but significant challenges still remain. A study has been made of the AM of a high niobium-containing titanium aluminide alloy (Ti–45Al–7Nb–0.3W, in at% throughout the paper) using selective electron beam melting (SEBM). The formation of various types of microstructural defects, including banded structures caused by the vaporization of aluminum, was investigated with respect to different processing parameters. To avoid both micro- and macro-cracks, the use of higher preheating temperatures and an intermediate reheating process (to reheat each solidified layer during SEBM) was assessed in detail. These measures enabled effective release of the thermal stress that developed during SEBM and therefore the avoidance of cracks. In addition, the processing conditions for the production of a fine full lamellar microstructure were identified. As a result, the Ti–45Al–7Nb–0.3W alloy fabricated showed outstanding properties (compression strength: 2750 MPa; strain-to-fracture: 37%). SEBM can be used to fabricate high performance titanium aluminide alloys with appropriate processing parameters and pathways.

  5. Additive manufacturing of a high niobium-containing titanium aluminide alloy by selective electron beam melting

    International Nuclear Information System (INIS)

    Tang, H.P.; Yang, G.Y.; Jia, W.P.; He, W.W.; Lu, S.L.; Qian, M.

    2015-01-01

    Additive manufacturing (AM) offers a radical net-shape manufacturing approach for titanium aluminide alloys but significant challenges still remain. A study has been made of the AM of a high niobium-containing titanium aluminide alloy (Ti–45Al–7Nb–0.3W, in at% throughout the paper) using selective electron beam melting (SEBM). The formation of various types of microstructural defects, including banded structures caused by the vaporization of aluminum, was investigated with respect to different processing parameters. To avoid both micro- and macro-cracks, the use of higher preheating temperatures and an intermediate reheating process (to reheat each solidified layer during SEBM) was assessed in detail. These measures enabled effective release of the thermal stress that developed during SEBM and therefore the avoidance of cracks. In addition, the processing conditions for the production of a fine full lamellar microstructure were identified. As a result, the Ti–45Al–7Nb–0.3W alloy fabricated showed outstanding properties (compression strength: 2750 MPa; strain-to-fracture: 37%). SEBM can be used to fabricate high performance titanium aluminide alloys with appropriate processing parameters and pathways

  6. A comparative evaluation of metallurgical properties of stainless steel and TMA archwires with timolium and titanium niobium archwires - An in vitro study

    Directory of Open Access Journals (Sweden)

    Vijayalakshmi R

    2009-01-01

    Full Text Available Objectives: This study aims to evaluate and compare the mechanical and metallurgical properties of stainless steel and titanium molybdenum alloy (TMA archwires, with recently introduced timolium and titanium niobium arch wires. Materials and Methods: Archwires were categorized into four groups (group I to IV with 10 samples in each group. They were evaluated for tensile strength, yield strength, modulus of elasticity, load deflection, frictional properties and weld characteristics. Results: The results were statistically analyzed using ANOVA test and it indicated that stainless steel has high strength, high stiffness and low friction compared to other arch wires, thereby proving that it is the best choice for both sliding as well as frictionless retraction mechanics. TMA with its high formability, low stiffness and low load deflection property is suited to apply consistent force in malaligned teeth but, high friction limits its use in retraction only with loop mechanics. Conclusion: Timolium possesses comparatively low stiffness, better strength and behaves as an intermediate between stainless steel and TMA and hence can be tried for almost all clinical situations. Low springback and high formability of titanium-niobium archwire allows creation of finishing bends and thus it can be used as finishing archwire.

  7. Spectroellipsometric detection of silicon substrate damage caused by radiofrequency sputtering of niobium oxide

    Science.gov (United States)

    Lohner, Tivadar; Serényi, Miklós; Szilágyi, Edit; Zolnai, Zsolt; Czigány, Zsolt; Khánh, Nguyen Quoc; Petrik, Péter; Fried, Miklós

    2017-11-01

    Substrate surface damage induced by deposition of metal atoms by radiofrequency (rf) sputtering or ion beam sputtering onto single-crystalline silicon (c-Si) surface has been characterized earlier by electrical measurements. The question arises whether it is possible to characterize surface damage using spectroscopic ellipsometry (SE). In our experiments niobium oxide layers were deposited by rf sputtering on c-Si substrates in gas mixture of oxygen and argon. Multiple angle of incidence spectroscopic ellipsometry measurements were performed, a four-layer optical model (surface roughness layer, niobium oxide layer, native silicon oxide layer and ion implantation-amorphized silicon [i-a-Si] layer on a c-Si substrate) was created in order to evaluate the spectra. The evaluations yielded thicknesses of several nm for the i-a-Si layer. Better agreement could be achieved between the measured and the generated spectra by inserting a mixed layer (with components of c-Si and i-a-Si applying the effective medium approximation) between the silicon oxide layer and the c-Si substrate. High depth resolution Rutherford backscattering (RBS) measurements were performed to investigate the interface disorder between the deposited niobium oxide layer and the c-Si substrate. Atomic resolution cross-sectional transmission electron microscopy investigation was applied to visualize the details of the damaged subsurface region of the substrate.

  8. Chemical transport of niobium(V) oxide and of lithium niobate with sulphur

    International Nuclear Information System (INIS)

    Schaefer, H.

    1988-01-01

    Niobium(V) oxide is transported by means of sulphur (calculated for 10 bar at 1223 K) from 1273 → 1173 K. The same applies for lithium niobate. Similar experiments of lithium oxide lead to turbidity of the quartz ampoule. (author)

  9. Synthesis and characterization of new oxides and oxynitrides of niobium; Synthese und Charakterisierung neuer Oxide und Oxidnitride des Niobs

    Energy Technology Data Exchange (ETDEWEB)

    Orthmann, Steven

    2017-11-02

    By different synthesis routes the first oxide nitrides in the series scandium-niobium-oxygen-nitrogen could be synthesized and characterized. ScNb{sub 4}O{sub 7}N{sub 3}, which crystallizes in the rutile-type structure, exhibit a band gap of 2.62 eV after a short oxidation. Furthermore anion-deficit NbSc{sub 2}(O,N,□){sub 6} with fluorite-type structure could be synthesized. UV-Vis measurements point to a band gap of 3.36 eV after a short oxidation of the product. In the series zirconium-niobium-oxygen-nitrogen new oxides and oxide nitrides could be synthesized. By replacing zirconium with hafnium isotopical compounds with comparable composition could be obtained. The crystal structure of these new compounds is discussed respecting magnetism and the results of electron microscopy and neutron diffraction. By partially substitution of niobium with magnesium or zinc three additional oxide nitrides with the compositions Mg{sub 2}Nb{sub 4}O{sub 2}N{sub 5}, Zn{sub 2}NbO{sub 0,3}N{sub 2,8}, and ZnNb{sub 3}O{sub 0,1}N{sub 4,5}, showing a tetragonal Nb{sub 4}N{sub 5}-type structure, could be synthesized.

  10. Study of niobium oxidation by photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Durand, C.

    1985-01-01

    The chemical composition of thin oxide layers, grown on clean niobium, in low oxygen pressure, was studied by a surface analysis method: X-ray Photoelectron Spectroscopy. The purpose of this study was to find the best conditions for the building of Nb/Nb oxide/Pb Josephson junctions, and particularly to minimise the interface thickness during the formation of the insulator film (Nb 2 O 5 ) on the metal (Nb). This interface is essentially formed by the monoxide (NbO) and dioxide (NbO 2 ). Nb 3d XPS core level peak positions and area ratios (obtained by the signal decomposition) of the components of the total peak, were used to determine the presence of the different oxidation states II, IV and V, their relative abundance, oxide thicknesses and their depth distribution. All this information was extracted by a special numerical procedure [fr

  11. Preparation of self-organized porous anodic niobium oxide microcones and their surface wettability

    International Nuclear Information System (INIS)

    Oikawa, Y.; Minami, T.; Mayama, H.; Tsujii, K.; Fushimi, K.; Aoki, Y.; Skeldon, P.; Thompson, G.E.; Habazaki, H.

    2009-01-01

    Porous anodic niobium oxide with a pore size of ∼10 nm was formed at 10 V in glycerol electrolyte containing 0.6 mol dm -3 K 2 HPO 4 and 0.2 mol dm -3 K 3 PO 4 at 433 K. After prolonged anodizing for 5.4 ks, niobium oxide microcones develop on the surface. X-ray diffraction patterns of the anodized specimens revealed that the initially formed anodic oxide is amorphous, but an amorphous-to-crystalline transition occurs during anodizing. As a consequence of the preferential chemical dissolution of the initially formed amorphous oxide, due to different solubility of the amorphous and crystalline oxides, crystalline oxide microcones appear on the film surface after prolonged anodizing. The surface is superhydrophilic. After coating with fluorinated alkylsilane, the surface becomes superhydrophobic with a contact angle of 158 o for water. The surface is also oil repellent, with a contact angle as high as 140 o for salad oil.

  12. Production of titanium alloys with uniform distribution of heat resisting metals

    International Nuclear Information System (INIS)

    Reznichenko, V.A.; Goncharenko, T.V.; Khalimov, F.B.; Vojtechova, E.A.

    1976-01-01

    Consideration is given to the process of the formation of a titanium sponge alloyed with niobium or tantalum, in the joint metallic reduction of titanium, niobium and tantanum chlorides. A percentage composition of the phases observed and the structure of the alloyed sponge have been studied. It is shown that after one remelting operation of the alloyed sponge the alloys of titanium with niobium and tantalum have a uniform component distribution. At the stage of chloride reduction there appear solid solutions based on titanium and an alloying component. The stage of vacuum separation of the reaction mass is associated with a mutual dissolution of the primary phases and the formation of the solid solutions of the alloyed titanium sponge, which, by their composition, are close to the desired alloy composition. The principal features of the formation of a titanium sponge alloyed with niobium and tantalum are in a perfect agreemet with those typical of Ti-Mo and Ti-W sponges, therefore it can be assumed that these features will be also common to the other cases of the metallic reduction of titanium and refractory metals chlorides

  13. Production of titanium alloys with uniform distribution of heat resisting metals

    Energy Technology Data Exchange (ETDEWEB)

    Reznichenko, V A; Goncharenko, T V; Khalimov, F B; Voitechova, E A

    1976-01-01

    Consideration is given to the process of the formation of a titanium sponge alloyed with niobium or tantalum, in the joint metallic reduction of titanium, niobium and tantanum chlorides. A percentage composition of the phases observed and the structure of the alloyed sponge have been studied. It is shown that after one remelting operation of the alloyed sponge the alloys of titanium with niobium and tantalum have a uniform component distribution. At the stage of chloride reduction there appear solid solutions based on titanium and an alloying component. The stage of vacuum separation of the reaction mass is associated with a mutual dissolution of the primary phases and the formation of the solid solutions of the alloyed titanium sponge, which, by their composition, are close to the desired alloy composition. The principal features of the formation of a titanium sponge alloyed with niobium and tantalum are in a perfect agreemet with those typical of Ti-Mo and Ti-W sponges, therefore it can be assumed that these features will be also common to the other cases of the metallic reduction of titanium and refractory metals chlorides.

  14. X-ray spectral determination of chemical state of phosphorus and sulfur in anodic oxide films on niobium

    International Nuclear Information System (INIS)

    Bokij, L.P.; Kostikov, Yu.P.

    1989-01-01

    Chemical forms of phosphorus and sulfur in niobium oxide anodic film, obtained by electrochemical technique using niobium in H 2 SO 4 and H 3 PO 4 aqueous solutions, are determined using data on chemical shifts of X-ray emission lines. Films represent Nb 2 O 5(1-γ) (SO 4 ) 5γ and Nb 2 O 5(1-γ) (PO 4 ) 10γ/3 (γ -share of oxygen substituted by acid anion) composition oxosalts. Electrolyte role in formation of niobium anodic oxide structure and effect of phosphorus and sulfur compounds on anodic film conductivity are determined

  15. Laser induced single spot oxidation of titanium

    Energy Technology Data Exchange (ETDEWEB)

    Jwad, Tahseen, E-mail: taj355@bham.ac.uk; Deng, Sunan; Butt, Haider; Dimov, S.

    2016-11-30

    Highlights: • A new high resolution laser induced oxidation (colouring) method is proposed (single spot oxidation). • The method is applied to control oxide films thicknesses and hence colours on titanium substrates in micro-scale. • The method enable imprinting high resolution coloured image on Ti substrate. • Optical and morphological periodic surface structures are also produced by an array of oxide spots using the proposed method. • Colour coding of two colours into one field is presented. - Abstract: Titanium oxides have a wide range of applications in industry, and they can be formed on pure titanium using different methods. Laser-induced oxidation is one of the most reliable methods due to its controllability and selectivity. Colour marking is one of the main applications of the oxidation process. However, the colourizing process based on laser scanning strategies is limited by the relative large processing area in comparison to the beam size. Single spot oxidation of titanium substrates is proposed in this research in order to increase the resolution of the processed area and also to address the requirements of potential new applications. The method is applied to produce oxide films with different thicknesses and hence colours on titanium substrates. High resolution colour image is imprinted on a sheet of pure titanium by converting its pixels’ colours into laser parameter settings. Optical and morphological periodic surface structures are also produced by an array of oxide spots and then analysed. Two colours have been coded into one field and the dependencies of the reflected colours on incident and azimuthal angles of the light are discussed. The findings are of interest to a range of application areas, as they can be used to imprint optical devices such as diffusers and Fresnel lenses on metallic surfaces as well as for colour marking.

  16. Laser induced single spot oxidation of titanium

    International Nuclear Information System (INIS)

    Jwad, Tahseen; Deng, Sunan; Butt, Haider; Dimov, S.

    2016-01-01

    Highlights: • A new high resolution laser induced oxidation (colouring) method is proposed (single spot oxidation). • The method is applied to control oxide films thicknesses and hence colours on titanium substrates in micro-scale. • The method enable imprinting high resolution coloured image on Ti substrate. • Optical and morphological periodic surface structures are also produced by an array of oxide spots using the proposed method. • Colour coding of two colours into one field is presented. - Abstract: Titanium oxides have a wide range of applications in industry, and they can be formed on pure titanium using different methods. Laser-induced oxidation is one of the most reliable methods due to its controllability and selectivity. Colour marking is one of the main applications of the oxidation process. However, the colourizing process based on laser scanning strategies is limited by the relative large processing area in comparison to the beam size. Single spot oxidation of titanium substrates is proposed in this research in order to increase the resolution of the processed area and also to address the requirements of potential new applications. The method is applied to produce oxide films with different thicknesses and hence colours on titanium substrates. High resolution colour image is imprinted on a sheet of pure titanium by converting its pixels’ colours into laser parameter settings. Optical and morphological periodic surface structures are also produced by an array of oxide spots and then analysed. Two colours have been coded into one field and the dependencies of the reflected colours on incident and azimuthal angles of the light are discussed. The findings are of interest to a range of application areas, as they can be used to imprint optical devices such as diffusers and Fresnel lenses on metallic surfaces as well as for colour marking.

  17. Methods for determination of zirconium in titanium alloys

    International Nuclear Information System (INIS)

    1985-01-01

    Two methods for determining zirconium content in titanium alloys are specified in this standard. One is the ion-exchange/mandelic acid gravimetry for Zr content below 20 % down to 1 % while the other is the mandelic acid gravimetry for Zr content below 20 % down to 0.5 %. In the former, a specimen is decomposed by hydrochloric acid and hydrofluoric acid. After substances such as titanium are oxidized by adding nitric acid, the liquid is adjusted into a 4N hydrochloric acid - gN hydrofluoric acid solution, which is them passed through an ion-exchange column. The niobium and tantalum contents are absorbed while the titanium and zirconium contents flow out. Perchloric acid and sulfuric acid are poured in the solution to remove hydrofluoric acid. Aqueous ammonia is added to produce hydroxide of titanium and zirconium, which is then filtered out. The hydroxyde is dissolved in hydrochloric acid, and mandelic acid is poured to precipitate the zirconium content. The precipitate is ignited and the weight of the oxide formed is measured. The coprecipitated titanium content is determined by the absorptiometric method using hydrogen peroxide. Finally, the weight of the oxide is corrected. In the latter determination method, on the other hand, only several steps of the above procedure are used, namely, decomposition by hydrochloric acid, precipitation of zirconium, ignition of precipitate, measurement of oxide weight and weight correction. (Nogami, K.)

  18. Niobium stainless steel for implants

    International Nuclear Information System (INIS)

    Rollo, J.M.D.A.

    1983-01-01

    The materials that have often been used, during the last two or three decades, to carry out materials for implants are made according to the specifications: a)A.S.T.M. (F.55-76, F.56-76, F.138-76, F.139-76) stainless steel b)A.S.T.M. (F.75-76), cobalt-chromium-molybdenum alloys. c)A.S.T.M. (F.90-76), cobalt-chromium-tungsten-nickel alloys. d)A.S.T.M. (F.67-77), unalloyed titanium. e)A.S.T.M. (F.136-70), titanium alloys. It was the purpose of retaking them, toverify the niobium influence as alloy element in ANSI/ASTM F.55-76 classification stainless steels, usually for these materials elaboration. The problem by substituting molybdenum total or partially for niobium, by comparing the mechanical and corrosion properties, and biocompatibility is presented, by pointing out the variables of these substitutions, when we employ this new material to perform materials for implants. (Author) [pt

  19. Mechanical properties of soldered joints of niobium base alloys

    International Nuclear Information System (INIS)

    Grishin, V.L.

    1980-01-01

    Mechanical properties of soldered joints of niobium alloys widely distributed in industry: VN3, VN4, VN5A, VN5AE, VN5AEP etc., 0.6-1.2 mm thick are investigated. It is found out that the usage of zirconium-vanadium, titanium-tantalum solders for welding niobium base alloys permits to obtain soldered joints with satisfactory mechanical properties at elevated temperatures

  20. Oxidation behavior of niobium aluminide intermetallics protected by aluminide and silicide diffusion coatings

    International Nuclear Information System (INIS)

    Li, Y.; Soboyejo, W.; Rapp, R.A.

    1999-01-01

    The isothermal and cyclic oxidation behavior of a new class of damage-tolerant niobium aluminide (Nb 3 Al-xTi-yCr) intermetallics is studied between 650 C and 850 C. Protective diffusion coatings were deposited by pack cementation to achieve the siliciding or aluminizing of substrates with or without intervening Mo or Ni layers, respectively. The compositions and microstructures of the resulting coatings and oxidized surfaces were characterized. The isothermal and cyclic oxidation kinetics indicate that uncoated Nb-40Ti-15Al-based intermetallics may be used up to ∼750 C. Alloying with Cr improves the isothermal oxidation resistance between 650 C and 850 C. The most significant improvement in oxidation resistance is achieved by the aluminization of electroplated Ni interlayers. The results suggest that the high-temperature limit of niobium aluminide-based alloys may be increased to 800 C to 850 C by aluminide-based diffusion coatings on ductile Ni interlayers. Indentation fracture experiments also indicate that the ductile nickel interlayers are resistant to crack propagation in multilayered aluminide-based coatings

  1. Effect of post annealing treatment on electrochromic properties of spray deposited niobium oxide thin films

    International Nuclear Information System (INIS)

    Mujawar, S.H.; Inamdar, A.I.; Betty, C.A.; Ganesan, V.; Patil, P.S.

    2007-01-01

    Niobium oxide thin films were deposited on the glass and fluorine doped tin oxide (FTO) coated glass substrates using simple and inexpensive spray pyrolysis technique. During deposition of the films various process parameters like nozzle to substrate distance, spray rate, concentration of sprayed solution were optimized to obtain well adherent and transparent films. The films prepared were further annealed and effect of post annealing on the structural, morphological, optical and electrochromic properties was studied. Structural and morphological characterizations of the films were carried out using scanning electron microscopy, atomic force microscopy and X-ray diffraction techniques. Electrochemical properties of the niobium oxide thin films were studied by using cyclic-voltammetry, chronoamperometry and chronocoulometry

  2. Surface Characterization of Impurities in Superconducting Niobium for Radio Frequency (RF) Cavities used in Particle Accelerators

    Science.gov (United States)

    Maheshwari, Prateek

    absorption/desorption of hydrogen and that hydrogen does not diffuse in the oxide. Subsequent ion implantation of hydrogen in an anodized niobium sample thus provided a quantification factor of hydrogen in niobium oxide, which was used to obtain an estimate of the hydrogen concentration in niobium. This estimate was found to be 40% atomic H in a non heat treated niobium sample. Such high levels of hydrogen observed in Nb before heat treatment ensures that is the main contributor to cavity degradation. TEM analysis was performed to study the effect of heat treatment on the surface oxide thickness of niobium. Results showed a continuous oxide layer with a sharp metal-oxide interface. No significant changes in the oxide thickness were seen after heat treatment. Time of Flight (TOF)-SIMS imaging was used to characterize the grain boundaries of large grain niobium bicrystals, since it was believed that impurity segregation at the grain boundaries of Nb might deteriorate cavity performance. Images showed segregation of carbon at the grain boundaries after 800°C heat treatment of the samples, while no segregation of hydrogen and oxygen were seen for both non heat treated and heat treated samples. An important aspect of this study was the record-performance improvement of the 1400°C heat treated cavity, which showed a 200% increase in the cavity efficiency. SIMS analysis of the surface of this sample showed high levels of titanium, down to 1im depth, and it is speculated that this Ti might be responsible for high performance of the cavity by affecting the distribution of impurities within the penetration depth.

  3. Advances in high-field superconducting composites by addition of artificial pinning centres to niobium-titanium

    International Nuclear Information System (INIS)

    Cooley, L.D.; Motowidlo, L.R.

    1999-01-01

    Artificial pinning-centre (APC) niobium-titanium composites attain critical current density J c values higher than 4000 A mm -2 at 5 T, 4.2 K, surpassing the barrier reached by the conventional Nb-Ti composite process. At 2 T APC composites achieve more than double the J c of conventional composites, making them particularly well suited for low-field applications. On the other hand, APC composites are inferior to conventional composites at 8 T, due to weak high-field pinning and reduced upper critical field. This review discusses fabrication techniques, microstructural development and superconducting and flux-pinning properties of APC composites. Key elements and underlying issues for achieving higher J c are identified and discussed in terms of the current state of the art. (author)

  4. Niobium-base grain refiner for aluminium

    International Nuclear Information System (INIS)

    Silva Pontes, P. da; Robert, M.H.; Cupini, N.L.

    1980-01-01

    A new chemical grain refiner for aluminium has been developed, using inoculation of a niobium-base compound. When a bath of molten aluminium is inoculated whith this refiner, an intermetallic aluminium-niobium compound is formed which acts as a powerful nucleant, producing extremely fine structure comparable to those obtained by means of the traditional grain refiner based on titanium and boron. It was found that the refinement of the structure depends upon the weight percentage of the new refiner inoculated as well as the time of holding the bath after inoculation and before pouring, but mainly on the inoculating temperature. (Author) [pt

  5. The oxidation kinetics for sublimates formed during niobium electron-beam remelting

    International Nuclear Information System (INIS)

    Chumarev, V.M.; Gulyaeva, R.I.; Mar'evich, V.P.; Upolovnikova, A.G.; Udoeva, L.Yu.

    2003-01-01

    The oxidation of sublimates of Nb-Al electron beam remelting is investigated under conditions of isothermal and continuous heating in the air. It is stated that basic oxidation products are niobium and aluminium oxides, as well as aluminium niobates of variable composition of Al 2 O 3 · mNb 2 O 5 . The more aluminium enriched sublimates possess an increased resistance to oxidation. Formed in sublimates NbAl 3 intermetallic compound features the highest heat resistance. Oxidation parameters are determined by the method of nonisothermic kinetics. It is noted that the running processes exhibit a multistage nature and are limited by internal diffusion [ru

  6. Characterization for rbs of Titanium Oxide thin films grown by Dip Coating in a coloidal suspension of nano structured Titanium Oxide

    International Nuclear Information System (INIS)

    Pedrero, E.; Vigil, E.; Zumeta, I.

    1999-01-01

    The depth of Titanium Oxide thin films grown by Dip Coating in a coloidal suspension of nano structured Titanium Oxide was characterized using Rutherford Backscattering Spectrometry. Film depths are compared in function of bath and suspension parameters

  7. Electrical characterization of zirconia-niobium and zirconia-titanium composites; Caracterizacao eletrica dos compositos zirconia-niobio e zirconia-titanio

    Energy Technology Data Exchange (ETDEWEB)

    Reis, S.T. dos

    1994-12-31

    Zirconia-niobium and zirconia-titanium composites were made by powder mixing, cold pressing, and vacuum sintering at 1600{sup 0} C. The metallic particles were added in the proportion of 0-50% by volume. Electrical resistivity measurements were performed by the two probes and the four probes d.c. method as a function of metallic particle concentration. Electrical resistivity of these composites decreased sharply in the region of 30-40 vol% Nb or Ti, in agreement with the percolation theory. Tests in an induction furnace were performed to check the self-heating response of these composites. (author). 33 refs, 40 figs, 11 tabs.

  8. Anodic luminescence, structural, photoluminescent, and photocatalytic properties of anodic oxide films grown on niobium in phosphoric acid

    Energy Technology Data Exchange (ETDEWEB)

    Stojadinović, Stevan, E-mail: sstevan@ff.bg.ac.rs [University of Belgrade, Faculty of Physics, Studentski trg 12-16, 11000 Belgrade (Serbia); Tadić, Nenad [University of Belgrade, Faculty of Physics, Studentski trg 12-16, 11000 Belgrade (Serbia); Radić, Nenad [University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Catalysis and Chemical Engineering, Njegoševa 12, 11000 Belgrade (Serbia); Stefanov, Plamen [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 11, 1113 Sofia (Bulgaria); Grbić, Boško [University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Catalysis and Chemical Engineering, Njegoševa 12, 11000 Belgrade (Serbia); Vasilić, Rastko [University of Belgrade, Faculty of Physics, Studentski trg 12-16, 11000 Belgrade (Serbia)

    2015-11-15

    Graphical abstract: - Highlights: • Anodic luminescence is correlated to the existence of morphological defects in the oxide. • Spectrum under spark discharging reveals only oxygen and hydrogen lines. • Oxide films formed under spark discharging are crystallized and composed of Nb{sub 2}O{sub 5}. • Photocatalytic activity and photoluminescence of Nb{sub 2}O{sub 5} films increase with time. - Abstract: This article reports on properties of oxide films obtained by anodization of niobium in phosphoric acid before and after the dielectric breakdown. Weak anodic luminescence of barrier oxide films formed during the anodization of niobium is correlated to the existence of morphological defects in the oxide layer. Small sized sparks generated by dielectric breakdown of formed oxide film cause rapid increase of luminescence intensity. The luminescence spectrum of obtained films on niobium under spark discharging is composed of continuum radiation and spectral lines caused by electronic spark discharging transitions in oxygen and hydrogen atoms. Oxide films formed before the breakdown are amorphous, while after the breakdown oxide films are partly crystalline and mainly composed of Nb{sub 2}O{sub 5} hexagonal phase. The photocatalytic activity of obtained oxide films after the breakdown was investigated by monitoring the degradation of methyl orange. Increase of the photocatalytic activity with time is related to an increase of oxygen vacancy defects in oxide films formed during the process. Also, higher concentration of oxygen vacancy defects in oxide films results in higher photoluminescence intensity.

  9. Green oxidations: Titanium dioxide induced tandem oxidation coupling reactions

    OpenAIRE

    Jeena, Vineet; Robinson, Ross S

    2009-01-01

    Summary The application of titanium dioxide as an oxidant in tandem oxidation type processes is described. Under microwave irradiation, quinoxalines have been synthesized in good yields from the corresponding ?-hydroxyketones.

  10. Mechanical properties of Fe3Al-based alloys with addition of carbon, niobium and titanium

    International Nuclear Information System (INIS)

    Zhang Zhengrong; Liu Wenxi

    2006-01-01

    Several Fe 3 Al-based iron aluminides with the addition of alloying elements carbon, niobium and titanium were produced by vacuum induction melting (VIM) and hot spinning forging. Analytic techniques including transmission electron microscopy (TEM), scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used in studying the microstructure and fracture manner of these alloys. The results show that due to the addition of alloying elements, the superlattice dislocations tend towards multiple slipping, leaving behind on their slip plane ribbons of square-shaped slip-induced antiphase boundaries. The elongation of Fe 3 Al in tension at room temperature increased to about 10% by the addition of suitable alloying elements, the usage of thermo-mechanical processing that has the function of refining grains and substructures, and subsequent annealing

  11. Evidence of preferential diffusion and segregation of impurities at grain boundaries in very pure niobium used for radiofrequency cavities

    International Nuclear Information System (INIS)

    Antoine, C.; Bonin, B.; Safa, H.; Berthier, B.; Tessier, E.; Trocelier, P.; Chevarier, A.; Chevarier, N.; Roux, B.

    1996-04-01

    In order to overcome dissipation due to impurity segregation at grain boundary, niobium cavities are submitted to a purification annealing (1300 deg C ± 200 deg C under vacuum) during which titanium is evaporated onto the Nb surface. The resulting titanium layer acts as a solid state getter reacting with light impurities (H, C, N, O), thereby removing these impurities from the bulk of the niobium. Evidence of preferential titanium diffusion and segregation at grain boundaries has been studied using PIXE analysis induced by proton microbeam. (author)

  12. Field determination of microgram quantities of niobium in rocks

    Science.gov (United States)

    Ward, F.N.; Marranzino, A.P.

    1955-01-01

    A rapid, simple, and moderately accurate method was needed for the determination of traces of niobium in rocks. The method developed is based on the reaction of niobium(V) with thiocyanate ion in a 4M hydrochloric acid and 0.5M tartaric acid medium, after which the complex is extracted with ethyl ether. The proposed procedure is applicable to rocks containing from 50 to 2000 p.p.m. of niobium, and, with modifications, can be used on rocks containing larger amounts. Five determinations on two rocks containing 100 p.p.m. or less of niobium agree within 5 p.p.m. of the mean, and the confidence limits at the 95% level are, respectively, ??6 and ??4 p.p.m. The addition of acetone to the ether extract of the niobium thiocyanate inhibits the polymerization of the thiocyanate ion and stabilizes the solution for at least 20 hours. The proposed procedure permits the determination of 20 ?? of niobium in the presence of 1000 ?? of iron, titanium, or uranium; 500 ?? of vanadium; or 100 ?? of tungsten or molybdenum or both.

  13. Formation of oxide layers on aluminum, niobium, and tantalum in molten alkali metal carbonates

    Science.gov (United States)

    Nikitina, E. V.; Kazakovtseva, N. A.

    2013-08-01

    The electrochemical synthesis of niobium, tantalum, and aluminum oxide nanolayers is studied in the melt of lithium, sodium, and potassium carbonates with various additives to a salt phase in an oxidizing atmosphere at a temperature of 773 and 873 K. A scheme is proposed for high-temperature anion local activation of the process.

  14. Spectrographic determination of niobium in uranium - niobium alloys

    International Nuclear Information System (INIS)

    Charbel, M.Y.; Lordello, A.R.

    1984-01-01

    A method for the spectrographic determination of niobium in uranium-niobium alloys in the concentration range 1-10% has been developed. The metallic sample is converted to oxide by calcination in a muffle furnace at 800 0 C for two hours. The standards are prepared synthetically by dry-mixing. One part of the sample or standard is added to nineteen parts of graphite powder and the mixture is excited in a DC arc. Hafnium has been used as internal standard. The precision of the method is + - 4.8%. (Author) [pt

  15. TiO2 effect on break-down of low-grade tantalum-niobium concentrates in the process of sulphatization

    International Nuclear Information System (INIS)

    Petrova, N.V.; Popov, A.D.; Mulenko, V.N.

    1982-01-01

    The effect of TiO 2 additive or materials containing it on tantalum-niobate decomposition in the process of sulphatization is investigated. It is shown that favourable effect of titanium dioxide in the process of sulphatization is especially noticeable in reprocessing of hard-brokening down tantalum-niobium concentrates with low Nb:Ta ratio etc. Chemical composition and type of tantalum-niobium mineralization of enrichment products used in the given investigation is presented. It is stated that the degree of concentrate break-down under similar sulphatization conditions (t=230 deg C; tau=2 h) essentially depends on the quantity of the introduced titanium dioxide. It is shown that sulphatization in the presence of titanium dioxide additive or materials containing it permits to exercise practically complete break-down of lean tantalum-niobium raw material, to avoid application of complexers in leaching of sulphatization products

  16. Control of morphology and surface wettability of anodic niobium oxide microcones formed in hot phosphate-glycerol electrolytes

    International Nuclear Information System (INIS)

    Yang, Shu; Habazaki, Hiroki; Fujii, Takashi; Aoki, Yoshitaka; Skeldon, Peter; Thompson, George E.

    2011-01-01

    Highlights: → Anodic niobium oxide microcones with nanofiber morphology are formed simply by anodizing. → The cone size and its tip angle are controlled by anodizing condition. → The surface shows extremely high contact angle for water after coating with a fluoroalkyl layer. - Abstract: We report the fabrication of superhydrophobic surfaces with a hierarchical morphology by self-organized anodizing process. Simply by anodizing of niobium metal in hot phosphate-glycerol electrolyte, niobium oxide microcones, consisting of highly branched oxide nanofibers, develop on the surface. The size of the microcones and their tip angles are controlled by changing the applied potential difference in anodizing and the water content in the electrolyte. Reduction of the water content increases the size of the microcones, with the nanofibers changing to nanoparticles. The size of microcones is also reduced by increasing the applied potential difference, without influencing the tip angle. The hierarchical oxide surfaces are superhydrophilic, with static contact angles close to 0 o . Coating of the anodic oxide films with a monolayer of fluoroalkyl phosphate makes the surfaces superhydrophobic with a contact angle for water as high as 175 o and a very small contact angle hysteresis of only 2 o . The present results indicate that the larger microcones with smaller tip angles show the higher contact angle for water.

  17. Some organoperoxo complexes of antimony, niobium and tantalum and their oxidation properties

    International Nuclear Information System (INIS)

    Tarafder, M.T.H.

    1999-05-01

    Several novel organoperoxo complexes of Nb(V), Ta(V) and Sb(V) have been synthesized and characterized. The complexes have the compositions [M(O 2 ) 2 L Cl] and [M(O 2 ) 2 L'] [L = monodentate and bidentate, neutral ligand; L' = bidentate, uninegative ligand]. These complexes are very reactive to both organic and inorganic substrates. Niobium and tantalum complexes were found to oxidize phosphines and arsines to their oxides. These also oxidize olefins to epoxides under stoichiometric conditions while under catalytic conditions, ring opening of the epoxides occur producing α-hydroxyketone when the substrate is trans-stilbene. The antimony complexes are decidedly inert towards oxidation. (author)

  18. Chemical interaction in resistors based on lead ruthenite with additions of niobium(5) oxide compounds

    International Nuclear Information System (INIS)

    Lozinskij, N.S.; Shevtsova, N.A.; Gruba, A.I.; Volkov, V.I.

    1986-01-01

    The method of X-ray phase analysis was used to study chemical interaction in isothermal cross-section of Pb 2 RU 2 O 6 -Nb 2 O 5 , Rbsub(2)Rusub(2)Osub(6)-NbWOsub(5.5) and Rb 2 Ru 2 O 6 -Pb 2 Nb 2 O 7 systems at 850 deg C as well as in models of real ruthenium resistors. Chemical interaction is stated to take place in systems with niobium (5) oxide and NbWOsub(5.5). Niobium (5) and tungsten (6) displace ruthenium (4) from its compounds with formation of their lead salts. Similar chemical interactions between current-carrying phase of the resistor and modifiers representing niobium-containing take place in models of components of the studied systems take place in models of resistors

  19. Study of Thermocurrents in ILC cavities via measurements of the Seebeck Effect in niobium, titanium, and stainless steel thermocouples

    Energy Technology Data Exchange (ETDEWEB)

    Cooley, Victoria [Univ. of Wisconsin, Madison, WI (United States)

    2014-01-01

    The goals of Fermilab’s Superconductivity and Radio Frequency Development Department are to engineer, fabricate, and improve superconducting radio frequency (SCRF) cavities in the interest of advancing accelerator technology. Improvement includes exploring possible limitations on cavity performance and mitigating such impediments. This report focuses on investigating and measuring the Seebeck Effect observed in cavity constituents titanium, niobium, and stainless steel arranged in thermocouples. These junctions exist between cavities, helium jackets, and bellows, and their connection can produce a loop of electrical current and magnetic flux spontaneously during cooling. The experimental procedure and results are described and analyzed. Implications relating the results to cavity performance are discussed.

  20. [Effect of niobium nitride on the bonding strength of titanium porcelain by magnetron sputtering].

    Science.gov (United States)

    Wang, Shu-shu; Zhang, La-bao; Guang, Han-bing; Zhou, Shu; Zhang, Fei-min

    2010-05-01

    To investigate the effect of magnetron sputtered niobium nitride (NbN) on the bonding strength of commercially pure cast titanium (Ti) and low-fusing porcelain (Ti/Vita titankeramik system). Sixty Ti specimens were randomly divided into four groups, group T1, T2, T3 and T4. All specimens of group T1 and T2 were first treated with 120 microm blasted Al2O3 particles, and then only specimens of group T2 were treated with magnetron sputtered NbN film. All specimens of group T3 and T4 were first treated with magnetron sputtered NbN film and then only specimens of group T4 were treated with 120 microm blasted Al2O3 particles. The composition of the deposits were analyzed by X-ray diffraction (XRD). A universal testing machine was used to perform the three-point bending test to evaluate the bonding strength of Ti and porcelain. The microstructure of NbN, the interface of Ti-porcelain and the fractured Ti surface were observed with scanning electron microscopy (SEM) and energy depressive spectrum (EDS), and the results were compared. The XRD results showed that the NbN deposits were cubic crystalline phases. The bonding strength of Ti and porcelain in T1 to T4 group were (27.2+/-0.8), (43.1+/-0.6), (31.4+/-1.0) and (44.9+/-0.6) MPa. These results were analyzed by one-way analysis of variance and differences between groups were compared using least significant difference test. Significant inter-group differences were found among all groups (Pporcelain, while samples treated with both Al2O3 and NbN had better bond. EDS of Ti-porcelain interface showed oxidation occurred in T1, T2 and T3, but was well controlled in T4. Magnetron sputtered NbN can prevent Ti from being oxidized, and can improve the bonding strength of Ti/Vita titankeramik system. Al2O3 blast can also improve the bonding strength of Ti/Vita titankeramik system.

  1. Coloration and bleaching mechanism of niobium oxide electrochromic thin films; Sanka niobu electromic usumaku no chakushoshoku mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimura, K; Miki, T; Tazawa, M; Jin, P; Igarashi, K; Tanemura, S [National Industrial Research Institute of Nagoya, Nagoya (Japan)

    1997-11-25

    In order to search for the coloration and bleaching mechanism of niobium oxide, considerations were given on optical properties and electron conditions in niobium oxide thin films (glass plates as substrates coated with ITO) prepared by using the reactive DC magnetron sputtering process. The films were so grown that their thickness will all be 100 nm to facilitate data comparison. Coloration and bleaching of the grown test films were conducted by cyclic voltammetry. Electron spectra were measured by using XPS, and electron energy was analyzed. Coloration of niobium oxide occurs as a result of change in valency electron state from an Nb {sup 5+} state to an Nb {sup 4+} state, while change in the XPS spectra also corresponds with the above change. However, the XPS spectra differ greatly between crystalline samples and amorphous samples. The coloration and bleaching mechanism of the crystallized Nb2O5 film can be explained by a reaction formula similar to that for WO3. However, with regard to the amorphous Nb2O5 film, an independent reaction involving water in the film seems to occur together with the same reaction as in the crystallized film. 9 refs., 5 figs.

  2. Mechanochemistry of titanium oxides

    Directory of Open Access Journals (Sweden)

    Veljković Ivana

    2009-01-01

    Full Text Available Mechanochemistry represents an alternative route in synthesis of nanomaterials. Mechanochemical routes are attractive because of their simplicity, flexibility, and ability to prepare materials by solid state reactions at room temperature. The aim of this work is the mechanochemical synthesis of nanostructured titanium oxides of different composition starting from mixtures of Ti and TiO2, TiO and TiO2 or Ti2O3 and TiO2. Emphasis is on the Magneli phases Ti4O7 and Ti5O9 because their mixture is commercially known as EBONEX material. The materials prepared were characterized by XRPD, TG/DTA analysis, SEM and optical microscopy. Titanium monoxide and several Magneli oxides, Ti4O7, Ti5O9 and Ti6O11, are successfully prepared. The results are very interesting because the EBONEX materials were prepared at lower than usual temperature, which would decrease the effective cost of production.

  3. The titanium oxide phi system

    Science.gov (United States)

    Galehouse, D. C.; Davis, S. P.

    1980-01-01

    The phy system of titanium oxide has been studied in emission in the near-infrared, with the Fourier transform spectrometer at a resolution of 8000,000. Approximately 3000 lines from 25 bands of this system have been identified, including all five 0-0 and 0-1 bands corresponding to the five natural titanium isotopes. Eleven vibrational levels have been observed, and all bands have been rotationally analyzed. Band intensities are agreement with known isotopic abundances and calculated Franck-Condon factors.

  4. Mechanism of formation and growth of sunflower-shaped imperfections in anodic oxide films on niobium

    Energy Technology Data Exchange (ETDEWEB)

    Nagahara, K. [Graduate School of Engineering, Hokkaido University, N13 W8 Kita-ku, Sapporo 060-8628 (Japan); Sakairi, M. [Graduate School of Engineering, Hokkaido University, N13 W8 Kita-ku, Sapporo 060-8628 (Japan); Takahashi, H. [Graduate School of Engineering, Hokkaido University, N13 W8 Kita-ku, Sapporo 060-8628 (Japan)]. E-mail: Takahasi@elechem1-mc.eng.hokudai.ac.jp; Matsumoto, K. [Cabot Supermetals K.K., Higashinagahara Works, 111 Nagayachi, Kawahigashi-machi, Kawanuma-gun, Fukushima-ken 969-3431 (Japan); Takayama, K. [Cabot Supermetals K.K., Higashinagahara Works, 111 Nagayachi, Kawahigashi-machi, Kawanuma-gun, Fukushima-ken 969-3431 (Japan); Oda, Y. [Cabot Supermetals K.K., Higashinagahara Works, 111 Nagayachi, Kawahigashi-machi, Kawanuma-gun, Fukushima-ken 969-3431 (Japan)

    2007-01-01

    Anodizing of niobium has been investigated to develop niobium solid electrolytic capacitors. Chemically polished niobium specimens were anodized in a diluted phosphoric acid solution, initially galvanostatically at i {sub a} = 4 A m{sup -2} up to E {sub a} = 100 V, and then potentiostatically at E {sub a} = 100 V for t {sub pa} = 43.2 ks. During the galvanostatic anodizing, the anode potential increased almost linearly with time, while, during potentiostatic anodizing, the anodic current decreased up to t {sub pa} = 3.6 ks, and then increased slowly before decreasing again after t {sub pa} = 30.0 ks. Images of FE-SEM and in situ AFM showed that nuclei of imperfections were formed at the ridge of cell structures before t {sub pa} = 3.6 ks. After formation, the imperfection nuclei grew, showing cracking and rolling-up of the anodic oxide film, and crystalline oxide was formed at the center of imperfections after t {sub pa} = 3.6 ks. The growth of imperfections caused increases in the anodic current between t {sub pa} = 3.6 and 30.0 ks. Long-term anodizing caused a coalescence of the imperfections, leading to decreases in the anodic current after t {sub pa} = 30.0 ks. As the imperfections grew, the dielectric dispersion of the anodic oxide films became serious, showing a bias voltage dependence of the parallel equivalent capacitance, C {sub p}, and a dielectric dissipation factor, tan {delta}. The mechanism of formation and growth of the imperfections, and the correlation between the structure and dielectric properties of anodic oxide films is discussed.

  5. Process for the production of a tantalum and niobium bearing concentrate from a tantalum and niobium bearing ferro-alloy

    International Nuclear Information System (INIS)

    Deweck, J.; Van, H.

    1980-01-01

    In a process for the production of a tantalum and niobium bearing concentrate from a tantalum and niobium bearing ferro-alloy containing tantalum and niobium as carbide, by treating the ferro-alloy in molten state with a controlled amount of an oxidizing agent in order to slag at least most of the tantalum and at least part of the niobium and by separting the so obtained slag phase from the metal phase, the improvement which comprises using air, oxygen enriched air or oxygen as oxidizing agent and adjusting the iron content to the ferro-alloy by adding at least 70% by weight of iron prior to the step of forming the slag so that at least most of the tantalum carbide is dissolved in the molten ferro-alloy

  6. Superficial oxidation in mono and polycrystalline niobium films for Josephson joints

    International Nuclear Information System (INIS)

    Celaschi, S.; Geballi, T.H.

    1984-01-01

    Niobium thin films (Nb) with multigranular and monocrystalline structure with 3000 A of thickness was put in different temperatures on sapphire monocrystalline substrate by high vaccum evaporation technique (10 -8 Torr). The evaporation process and some of structural properties of the films are described. The oxidation process is studied through the characteristics of the current curves x voltage measured in low temperature (4.2 K). (E.G.) [pt

  7. Process for making a titanium diboride-chromium diboride-yttrium titanium oxide ceramic composition

    Science.gov (United States)

    Holcombe, C.E.; Dykes, N.L.

    1992-04-28

    A ceramic composition is described. The ceramic composition consists essentially of from about 84 to 96 w/o titanium diboride, from about 1 to 9 w/o chromium diboride, and from about 3 to about 15 w/o yttrium-titanium-oxide. A method of making the ceramic composition is also described. The method of making the ceramic composition comprises the following steps: Step 1--A consolidated body containing stoichiometric quantities of titanium diboride and chromium diboride is provided. Step 2--The consolidated body is enclosed in and in contact with a thermally insulated package of yttria granules having a thickness of at least 0.5 inches. Step 3--The consolidated body enclosed in the thermally insulated package of yttria granules is heated in a microwave oven with microwave energy to a temperature equal to or greater than 1,900 degrees centigrade to sinter and uniformly disperse yttria particles having a size range from about 1 to about 12 microns throughout the consolidated body forming a densified body consisting essentially of titanium diboride, chromium diboride, and yttrium-titanium-oxide. The resulting densified body has enhanced fracture toughness and hardness. No Drawings

  8. Molecular geometries and relative stabilities of titanium oxide and gold-titanium oxide clusters

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, Rohan J.; Falcinella, Alexander; Metha, Gregory F., E-mail: greg.metha@adelaide.edu.au

    2016-09-30

    Titanium oxide and gold-titanium oxide clusters of stoichiometry M{sub x}O{sub y} (M{sub x} = Ti{sub 3}, Ti{sub 4} & AuTi{sub 3}; y = 0 − (2x + 2)) have been investigated using density functional theory. Geometries of determined global energy minimum structures are reported and other isomers predicted up to 0.5 eV higher in energy. The Ti{sub 3}O{sub n} geometries build upon a triangular Ti{sub 3} motif, while Ti{sub 4}O{sub n} stoichiometries template upon a pseudo-tetrahedral Ti{sub 4} structure. Addition of a gold atom to the Ti{sub 3}O{sub n} series does not significantly alter the cluster geometry, with the gold atom preferentially binding to titanium atoms over oxygen atoms. Adiabatic ionization energies, electron affinities and HOMO/LUMO energies increase in magnitude with increasing oxygenation. The HOMO-LUMO energy gaps reach the bulk anatase band gap energy at stoichiometry (Au)Ti{sub m}O{sub 2m−1}, and increase above this upon further oxygen addition. The most stable structural moieties are found to be a cage-like, C{sub 3v} symmetric Ti{sub 4}O{sub 6/7} geometry and a Ti{sub 3}O{sub 6} structure with an η{sup 3}-bound oxygen atom.

  9. Characterization polyethylene terephthalate nanocomposites mixing with nano-silica and titanium oxide

    Directory of Open Access Journals (Sweden)

    Rusu Mircea A.

    2017-01-01

    Full Text Available Polyethylene terephthalate (PET based nanocomposites containing nano-silica (Aerosil (Degusa and titanium oxide (TiO2 (Merk were prepared by melt compounding. Influence of nano-silica and titanium oxide on properties of the resulting nanocomposites was investigated by scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FTIR and atomic force microscopy (AFM. The possible interaction between nano-silica and titanium oxide particles with PET functional groups at bulk and surface was elucidated by transmission of FTIR-ATR spectroscopy. AFM studies of the resulting nanocomposites showed an increased surface roughness compared to pure PET. SEM images illustrated that nano-silica particles have tendency to migrate to the surface of the PET matrix much more than titanium oxide powder.

  10. Catalytic properties of niobium compounds

    International Nuclear Information System (INIS)

    Tanabe, K.; Iizuka, T.

    1983-04-01

    The catalytic activity and selectivity of niobium compounds including oxides, salts, organometallic compounds and others are outlined. The application of these compounds as catalysts to diversified reactions is reported. The nature and action of niobium catalysts are characteristic and sometimes anomalous, suggesting the necessity of basic research and the potential use as catalysts for important processes in the chemical industry. (Author) [pt

  11. Niobium based coatings for dental implants

    International Nuclear Information System (INIS)

    Ramirez, G.; Rodil, S.E.; Arzate, H.; Muhl, S.; Olaya, J.J.

    2011-01-01

    Niobium based thin films were deposited on stainless steel (SS) substrates to evaluate them as possible biocompatible surfaces that might improve the biocompatibility and extend the life time of stainless steel dental implants. Niobium nitride and niobium oxide thin films were deposited by reactive unbalanced magnetron sputtering under standard deposition conditions without substrate bias or heating. The biocompatibility of the surfaces was evaluated by testing the cellular adhesion and viability/proliferation of human cementoblasts during different culture times, up to 7 days. The response of the films was compared to the bare substrate and pieces of Ti6Al4V; the most commonly used implant material for orthopedics and osteo-synthesis applications. The physicochemical properties of the films were evaluated by different means; X-ray diffraction, Rutherford backscattering spectroscopy and contact angle measurements. The results suggested that the niobium oxide films were amorphous and of stoichiometric Nb 2 O 5 (a-Nb 2 O 5 ), while the niobium nitride films were crystalline in the FCC phase (c-NbN) and were also stoichiometric with an Nb to N ratio of one. The biological evaluation showed that the biocompatibility of the SS could be improved by any of the two films, but neither was better than the Ti6Al4V alloy. On the other hand, comparing the two films, the c-NbN seemed to be a better surface than the oxide in terms of the adhesion and proliferation of human cemetoblasts.

  12. Molecular beam epitaxy growth of niobium oxides by solid/liquid state oxygen source and lithium assisted metal-halide chemistry

    Science.gov (United States)

    Tellekamp, M. Brooks; Greenlee, Jordan D.; Shank, Joshua C.; Doolittle, W. Alan

    2015-09-01

    In order to consistently grow high quality niobium oxides and lithium niobium oxides, a novel solid/liquid state oxygen source, LiClO4, has been implemented in a molecular beam epitaxy (MBE) system. LiClO4 is shown to decompose into both molecular and atomic oxygen upon heating. This allows oxidation rates similar to that of molecular oxygen but at a reduced overall beam flux, quantified by in situ Auger analysis. LiClO4 operation is decomposition limited to less than 400 °C, and other material limitations are identified. The design of a custom near-ambient NbCl5 effusion cell is presented, which improves both short and long term stability. Films of Nb oxidation state +2, +3, and +5 are grown using these new tools, including the multi-functional sub-oxide LiNbO2.

  13. Thermochemically active iron titanium oxide materials

    Energy Technology Data Exchange (ETDEWEB)

    Coker, Eric Nicholas; Miller, James E.

    2018-01-16

    A thermal oxidation-reduction cycle is disclosed that uses iron titanium oxide as the reactive material. The cycle may be used for the thermal splitting of water and/or carbon dioxide to form hydrogen and/or carbon monoxide. The formed compounds may be used as syngas precursors to form fuels.

  14. Spectro-photometric determination of niobium in Nb-Ti alloy using in-situ separation of Ti by masking with H3PO4

    International Nuclear Information System (INIS)

    Ghosh, Prasun; Dutta, M.; Jat, J.R.; Reddy, G.B.; Balaji Rao, Y.; Subba Rao, Y.

    2016-01-01

    The present paper details a simple procedure for the determination of Nb content in Nb-Ti alloy. The method involves dissolution of alloy in mixture of HNO 3 and HF followed by fuming with H 2 SO 4 . Subsequently, solution is taken for UV-Vis Spectro-photometric measurement after addition of Conc. H 3 PO 4 and H 2 O 2 . Hydrogen peroxide is added as coloring agent. Hydrogen peroxide (H 2 O 2 ) is known to form yellow color peroxo complex with both Niobium and Titanium in sulfuric acid medium and thus Ti will interfere with Nb in absorbance measurement. In view of this practical difficulty, in-situ separation of Ti during measurement has been resorted by masking Ti using Conc. H 3 PO 4 . Standard synthetic sample solution of Nb-Ti was prepared having Niobium and titanium in the ratio of 60:40, 50:50 and 40:60. Quantitative measurement of Niobium was carried out by UV-Visible spectrophotometer at 365 nm. The interference of titanium is prominent from the obtained Niobium concentration. Different ratios of H 3 PO 4 and H 2 SO 4 tried to arrive at optimum ratio to eliminate titanium interference and results are as shown. Quantitative measurement of Niobium was carried out at 355 nm as absorption maxima shifted from 365 nm to 355 nm in presence of phosphoric acid. Results show a good agreement with synthetic standard at 80:20 sulfuric to phosphoric acid ratio

  15. Effects of titanium on a ferritic steel oxidation at 950 C

    Energy Technology Data Exchange (ETDEWEB)

    Issartel, C.; Buscail, H.; Caudron, E.; Cueff, R.; Riffard, F.; El Messki, S.; Karimi, N. [Lab. Vellave sur l' Elaboration et l' Etude des Materiaux (LVEEM), IUT de Clermont-Fd1 - Dept. de Chimie - Science des materiaux, Le Puy en Velay (France); Antoni, L. [CEA Grenoble, DTEN/SCSE/LHPAC (France)

    2004-07-01

    This work presents the titanium effect on the oxidation behaviour of chromia-forming alloys at 950 C. When the amount of titanium is high enough in the substrate, in situ XRD permit to show that this element reacts with oxygen to form Cr{sub 2}TiO{sub 5}. This oxide is quickly transformed into TiO{sub 2} during the first hours of oxidation. These oxides contribute to an increase of the mass gain registered. Titanium leads to a doping effect of the chromia layer inducing an increase of the cationic vacancies concentration and chromium diffusion. (orig.)

  16. Bloodcompatibility improvement of titanium oxide film modified by phosphorus ion implantation

    International Nuclear Information System (INIS)

    Yang, P.; Leng, Y.X.; Zhao, A.S.; Zhou, H.F.; Xu, L.X.; Hong, S.; Huang, N.

    2006-01-01

    Our recent investigation suggested that Ti-O thin film could be a newly developed antithrombotic material and its thromboresistance could be related to its physical properties of wide gap semiconductor. In this work, titanium oxide film was modified by phosphorus ion implantation and succeeding vacuum annealing. RBS were used to investigate phosphorus distribution profile. Contact angle test results show that phosphorus-doped titanium oxide film becomes more hydrophilic after higher temperature annealing, while its electric conductivity increases. Antithrombotic property of phosphorus-doped titanium oxide thin films was examined by clotting time and platelet adhesion tests. The results suggest that phosphorus doping is an effective way to improve the bloodcompatibility of titanium oxide film, and it is related to the changes of electron structure and surface properties caused by phosphorus doping

  17. Titanium oxide nanocoating on a titanium thin film deposited on a glass substrate

    Energy Technology Data Exchange (ETDEWEB)

    Kotsedi, L., E-mail: kotsedi@tlabs.ac.za [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS, National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape (South Africa); Nuru, Z.Y. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS, National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape (South Africa); Eaton, S.M. [Physics Department, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milano (Italy); Cummings, F.R. [University of the Western Cape, Electron Microscopy Unit, Physics Department, Bellville 7535, Cape Town (South Africa); Turco, S. Lo; Ntwaeaborwa, O.M. [Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Milano, Italy Via Giovanni Pascoli, 70/3, 20133 Milano (Italy); Ramponi, R. [Institute for Photonics and Nanotechnologies (IFN)-CNR, Piazza Leonardo Da Vinci, 32, 20133 Milano (Italy); Maaza, M. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS, National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape (South Africa)

    2016-03-31

    Thin films of titanium were deposited on a glass substrate using electron beam evaporator. Femtosecond laser pulses were focused on the surface of the films, and the samples were scanned while mounted on the motorized computer-controlled motion stage to produce an areal modification of the films. X-ray diffraction of the laser-patterned samples showed evidence of the formation of a γ-Ti{sub 3}O{sub 5} with a monoclinic phase. Rutherford backscattering spectrometry simulation showed that there is an increase in the oxygen concentration as the average laser fluence is increased. Time of flight secondary ions mass spectrometry analysis showed an even distribution of the titanium and oxygen ions on the sample and also ionized molecules of the oxides of titanium were observed. The formation of the oxide of titanium was further supported using the UV–Vis-NIR spectroscopy, which showed that for 0.1 J/cm{sup 2} fluence, the laser-exposed film showed the electron transfer band and the d–d transition peak of titanium was observed at lower wavelengths. - Highlights: • γ-Ti{sub 3}O{sub 5} formed using femtosecond laser. • Fluence and oxygen relation were studied. • Nanoflakes of γ-Ti{sub 3}O{sub 5} were observed under HRSEM.

  18. Narrow titanium oxide nanowires induced by femtosecond laser pulses on a titanium surface

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui; Li, Xian-Feng [Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006 (China); Zhang, Cheng-Yun [School of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006 (China); Tie, Shao-Long [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Lan, Sheng, E-mail: slan@scnu.edu.cn [Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006 (China)

    2017-02-28

    Highlights: • Titanium oxide nanowires with a feature width as narrow as ∼20 nm were induced on a titanium surface by using femtosecond laser pulses at 400 nm. • An evolution of the surface structure from a high spatial frequency laser-induced periodic structure parallel to the laser polarization to a low spatial frequency one perpendicular to the laser polarization was observed with increasing irradiation pulse number. • The formation of the titanium oxide nanowires was confirmed by the energy dispersive spectroscopy measurements and the evolution of the surface structure was successfully interpreted by using the efficacy factor theory. - Abstract: The evolution of the nanostructure induced on a titanium (Ti) surface with increasing irradiation pulse number by using a 400-nm femtosecond laser was examined by using scanning electron microscopy. High spatial frequency periodic structures of TiO{sub 2} parallel to the laser polarization were initially observed because of the laser-induced oxidation of the Ti surface and the larger efficacy factor of TiO{sub 2} in this direction. Periodically aligned TiO{sub 2} nanowires with featured width as small as 20 nm were obtained. With increasing pulse number, however, low spatial frequency periodic structures of Ti perpendicular to the laser polarization became dominant because Ti possesses a larger efficacy factor in this direction. The competition between the high- and low-spatial frequency periodic structures is in good agreement with the prediction of the efficacy factor theory and it should also be observed in the femtosecond laser ablation of other metals which are easily oxidized in air.

  19. Functionalization of niobium electrodes for the construction of impedimetric biosensors

    International Nuclear Information System (INIS)

    Helali, S.; Abdelghani, A.; Hafaiedh, I.; Martelet, C.; Prodromidis, M.I.; Albanis, T.; Jaffrezic-Renault, N.

    2008-01-01

    This paper describes the development of an impedimetric immunosensor, based on niobium/niobium oxide (Nb/NbOxHy) electrodes, for the detection of atrazine. Niobium oxide was anodically formed onto niobium electrodes at 25 V in 1 M H 2 SO 4 . Hydrous oxide layers were then silanized with APTES, and using glutaraldehyde as a cross linker, Fab fragment k47 antibody was covalently immobilized onto the surface of the electrodes. Electrochemical impedance spectroscopy (EIS) was used to characterize the building-up of the immunosensors as well as the binding of atrazine to its specific antibody. In presence of ferricyanide redox species and under a cathodic polarization voltage (- 1.2 V versus SCE), the relationship between the concentration of atrazine and the change of the electron transfer resistance value was studied

  20. Reaction kinetics of oxygen on single-phase alloys, oxidation of nickel and niobium alloys

    International Nuclear Information System (INIS)

    Lalauze, Rene

    1973-01-01

    This research thesis first addresses the reaction kinetics of oxygen on alloys. It presents some generalities on heterogeneous reactions (conventional theory, theory of jumps), discusses the core reaction (with the influence of pressure), discusses the influence of metal self-diffusion on metal oxidation kinetics (equilibrium conditions at the interface, hybrid diffusion regime), reports the application of the hybrid diffusion model to the study of selective oxidation of alloys (Wagner model, hybrid diffusion model) and the study of the oxidation kinetics of an alloy forming a solid solution of two oxides. The second part reports the investigation of the oxidation of single phase nickel and niobium alloys (phase α, β and γ)

  1. Low-temperature atmospheric oxidation of mixtures of titanium and carbon black or brown

    International Nuclear Information System (INIS)

    Elizarova, V.A.; Babaitsev, I.V.; Barzykin, V.V.; Gerusova, V.P.; Rozenband, V.I.

    1984-01-01

    This article reports on the thermogravimetric investigation of mixtures of titanium no. 2 and carbon black with various mass carbon contents. Adding carbon black (as opposed to boron) to titanium leads to an increase in the rate of heat release of the oxidation reaction. An attempt is made to clarify the low-temperature oxidation mechanism of titanium mixtures in air. An x-ray phase and chemical (for bound carbon) analysis of specimens of a stoichiometric Ti + C mixture after heating in air to a temperature of 650 0 C at the rate of 10 0 /min was conducted. The results indicate that the oxidation of the titanium-carbon mixture probably proceeds according to a more complex mechanism associated with the transport of the gaseous carbon oxidation products and their participation in the titanium oxidation

  2. Facile hydrothermal preparation of titanium dioxide decorated reduced graphene oxide nanocomposite

    Science.gov (United States)

    Chang, Betty Yea Sze; Huang, Nay Ming; An’amt, Mohd Nor; Marlinda, Abdul Rahman; Norazriena, Yusoff; Muhamad, Muhamad Rasat; Harrison, Ian; Lim, Hong Ngee; Chia, Chin Hua

    2012-01-01

    A simple single-stage approach, based on the hydrothermal technique, has been introduced to synthesize reduced graphene oxide/titanium dioxide nanocomposites. The titanium dioxide nanoparticles are formed at the same time as the graphene oxide is reduced to graphene. The triethanolamine used in the process has two roles. It acts as a reducing agent for the graphene oxide as well as a capping agent, allowing the formation of titanium dioxide nanoparticles with a narrow size distribution (~20 nm). Transmission electron micrographs show that the nanoparticles are uniformly distributed on the reduced graphene oxide nanosheet. Thermogravimetric analysis shows the nanocomposites have an enhanced thermal stability over the original components. The potential applications for this technology were demonstrated by the use of a reduced graphene oxide/titanium dioxide nanocomposite-modified glassy carbon electrode, which enhanced the electrochemical performance compared to a conventional glassy carbon electrode when interacting with mercury(II) ions in potassium chloride electrolyte. PMID:22848166

  3. Niobium based coatings for dental implants

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, G., E-mail: enggiova@hotmail.com [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Exterior s/n, CU, Mexico D.F. 04510 (Mexico); Facultad de Quimica, Departamento de Ingenieria Quimica, Universidad Nacional Autonoma de Mexico, Mexico D.F. 04510 (Mexico); Rodil, S.E. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Exterior s/n, CU, Mexico D.F. 04510 (Mexico); Arzate, H. [Laboratorio de Biologia Celular y Molecular, Facultad de Odontologia, Universidad Nacional Autonoma de Mexico, CU, Mexico D.F. 04510 (Mexico); Muhl, S. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Exterior s/n, CU, Mexico D.F. 04510 (Mexico); Olaya, J.J. [Unidad de Materiales, Departamento de Ingenieria Mecanica y Mecatronica, Universidad Nacional de Colombia, Cra. 30 45-03 Bogota (Colombia)

    2011-01-15

    Niobium based thin films were deposited on stainless steel (SS) substrates to evaluate them as possible biocompatible surfaces that might improve the biocompatibility and extend the life time of stainless steel dental implants. Niobium nitride and niobium oxide thin films were deposited by reactive unbalanced magnetron sputtering under standard deposition conditions without substrate bias or heating. The biocompatibility of the surfaces was evaluated by testing the cellular adhesion and viability/proliferation of human cementoblasts during different culture times, up to 7 days. The response of the films was compared to the bare substrate and pieces of Ti6Al4V; the most commonly used implant material for orthopedics and osteo-synthesis applications. The physicochemical properties of the films were evaluated by different means; X-ray diffraction, Rutherford backscattering spectroscopy and contact angle measurements. The results suggested that the niobium oxide films were amorphous and of stoichiometric Nb{sub 2}O{sub 5} (a-Nb{sub 2}O{sub 5}), while the niobium nitride films were crystalline in the FCC phase (c-NbN) and were also stoichiometric with an Nb to N ratio of one. The biological evaluation showed that the biocompatibility of the SS could be improved by any of the two films, but neither was better than the Ti6Al4V alloy. On the other hand, comparing the two films, the c-NbN seemed to be a better surface than the oxide in terms of the adhesion and proliferation of human cemetoblasts.

  4. Corrosion behaviour of nanometre sized cerium oxide and titanium oxide incorporated aluminium in NaCl solution

    International Nuclear Information System (INIS)

    Ashraf, P. Muhamed; Edwin, Leela

    2013-01-01

    Highlights: ► Corrosion resistant aluminium incorporated with nano oxides of cerium and titanium. ► 0.2% nano CeO 2 and 0.05% nano TiO 2 showed increased corrosion resistance. ► Nano TiO 2 concentration influenced the optimum performance of the material. ► Comparison of Micro and nano CeO 2 and TiO 2 aluminium showed the latter is best. - Abstract: The study highlights the development of an aluminium matrix composite by incorporating mixture of nanometre sized cerium oxide and titanium oxide in pure aluminium and its corrosion resistance in marine environment. The mixed nanometre sized oxides incorporated aluminium exhibited improved microstructure and excellent corrosion resistance. Corrosion resistance depends on the concentration of nanometre sized titanium oxide. Electrochemical characteristics improved several folds in nanometre sized mixed oxides incorporated aluminium than micrometre sized oxides incorporated aluminium.

  5. Polypyrrole/titanium oxide nanotube arrays composites as an active material for supercapacitors.

    Science.gov (United States)

    Kim, Min Seok; Park, Jong Hyeok

    2011-05-01

    The authors present the first reported use of vertically oriented titanium oxide nanotube/polypyrrole (PPy) nanocomposites to increase the specific capacitance of TiO2 based energy storage devices. To increase their electrical storage capacity, titanium oxide nanotubes were coated with PPy and their morphologies were characterized. The incorporation of PPy increased the specific capacitance of the titanium oxide nanotube based supercapacitor system, due to their increased surface area and additional pseudo-capacitance.

  6. Titanium oxide fever; De titaniumoxidekoorts

    Energy Technology Data Exchange (ETDEWEB)

    De Jonge, D.; Visser, J. [Afdeling Luchtkwaliteit, GGD Amsterdam, Amsterdam (Netherlands)

    2012-02-15

    One measure to improve air quality is to apply photo-catalytic substances that capture NOx onto the road surface or onto baffle boards alongside the roads. The effect of titanium oxide containing clinkers with coating was discussed in the report 'Demonstration project of air-purifying pavement in Hengelo, The Netherlands' that was published in May 2011. This article examines the way in which the effectiveness of this study was determined. Can titanium oxide containing clinkers and coatings indeed capture NOx?. [Dutch] Een van de maatregelen om de luchtkwaliteit te verbeteren is het aanbrengen van fotokatalytische stoffen waarmee NOx kan worden afgevangen op bijvoorbeeld wegdek of op geluidsschermen langs wegen. Over het effect van titaniumoxidehoudende straatklinkers en hierop aangebrachte coatings verscheen in mei 2011 het rapport 'Demonstration project of air-purifying pavement in Hengelo, The Netherlands'. Dit artikel gaat over de manier waarop de effectiviteit in het hiervoor genoemde onderzoek is bepaald. Kunnen titaniumoxidehoudende klinkers en coatings inderdaad NOx afvangen?.

  7. Oxidation behaviour of titanium in high temperature steam

    International Nuclear Information System (INIS)

    Moroishi, Taishi; Shida, Yoshiaki

    1978-01-01

    The oxidation of pure titanium was studied in superheated steam at 400 -- 550 0 C. The effects of prior cold working and several heat treatment conditions on the oxidation were examined and also the effects of the addition of small amounts of iron and oxygen were investigated. The oxidation mechanism of pure titanium is discussed in relation to the scale structure and the oxidation kinetics. Hydrogen absorption rate was also measured. As a result, the following conclusions were drawn: (1) The oxidation of pure titanium in steam was faster than in air and breakaway oxidation was observed above 500 0 C after the specimen had gained a certain weight. Prior cold working and heat treatment conditions scarcely affected the oxidation rate, whereas the specimen containing small amounts of iron and oxygen showed a little more rapid oxidation. (2) At 500 and 550 0 C a dark grey inner scale and a yellow-brown outer scale were formed. The outer scale was apt to exfoliate after the occurrence of breakaway oxidation. At 400 and 450 0 C only a dark grey scale was observed. All of these oxides were identified as the rutile type, TiO 2 . Furthermore, the presence of a thin and uniform oxygen rich layer beneath the external scale was confirmed at all test temperatures. (3) The measured weight gain approximately followed the cubic rate law; this would be expected for the following reason; one component of the weight gain is due to the dissolved oxygen, the amount of which remains constant after the early stages of oxidation. The second component is due to the parabolic growth of the external TiO 2 scale. When these contributions are added a pseudo-cubic weight gain curve results. (4) It was shown that 50 percent of the hydrogen generated during the oxidation was absorbed into the metal. (auth.)

  8. Cathodic arc sputtering of functional titanium oxide thin films, demonstrating resistive switching

    Energy Technology Data Exchange (ETDEWEB)

    Shvets, Petr, E-mail: pshvets@innopark.kantiana.ru; Maksimova, Ksenia; Demin, Maxim; Dikaya, Olga; Goikhman, Alexander

    2017-05-15

    The formation of thin films of the different stable and metastable titanium oxide phases is demonstrated by cathode arc sputtering of a titanium target in an oxygen atmosphere. We also show that sputtering of titanium in vacuum yields the formation of titanium silicides on the silicon substrate. The crystal structure of the produced samples was investigated using Raman spectroscopy and X-ray diffraction. We conclude that cathode arc sputtering is a flexible method suitable for producing the functional films for electronic applications. The functionality is verified by the memory effect demonstration, based on the resistive switching in the titanium oxide thin film structure.

  9. Possible influence of surface oxides on the optical response of high-purity niobium material used in the fabrication of superconducting radio frequency cavity

    Science.gov (United States)

    Singh, Nageshwar; Deo, M. N.; Roy, S. B.

    2016-09-01

    We have investigated the possible influence of surface oxides on the optical properties of a high-purity niobium (Nb) material for fabrication of superconducting radio frequency (SCRF) cavities. Various peaks in the infrared region were identified using Fourier transform infrared and Raman spectroscopy. Optical response functions such as complex refractive index, dielectric and conductivity of niobium were compared with the existing results on oxides free Nb and Cu. It was observed that the presence of a mixture of niobium-oxides, and probably near other surface impurities, appreciably influence the conducting properties of the material causing deviation from the typical metallic characteristics. In this way, the key result of this work is the observation, identification of vibrational modes of some of surface complexes and study of its influences on the optical responses of materials. This method of spectroscopic investigation will help in understanding the origin of degradation of performance of SCRF cavities.

  10. Possible influence of surface oxides on the optical response of high-purity niobium material used in the fabrication of superconducting radio frequency cavity

    International Nuclear Information System (INIS)

    Singh, Nageshwar; Deo, M.N.; Roy, S.B.

    2016-01-01

    We have investigated the possible influence of surface oxides on the optical properties of a high-purity niobium (Nb) material for fabrication of superconducting radio frequency (SCRF) cavities. Various peaks in the infrared region were identified using Fourier transform infrared and Raman spectroscopy. Optical response functions such as complex refractive index, dielectric and conductivity of niobium were compared with the existing results on oxides free Nb and Cu. It was observed that the presence of a mixture of niobium-oxides, and probably near other surface impurities, appreciably influence the conducting properties of the material causing deviation from the typical metallic characteristics. In this way, the key result of this work is the observation, identification of vibrational modes of some of surface complexes and study of its influences on the optical responses of materials. This method of spectroscopic investigation will help in understanding the origin of degradation of performance of SCRF cavities.

  11. Possible influence of surface oxides on the optical response of high-purity niobium material used in the fabrication of superconducting radio frequency cavity

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Nageshwar [Magnetic and Superconducting Materials Section, Raja Ramanna Centre for Advanced Technology, Indore 452013, M.P. (India); Deo, M.N. [High Pressure & Synchrotron Radiation Physics Division, BARC, Mumbai 400085 (India); Roy, S.B. [Magnetic and Superconducting Materials Section, Raja Ramanna Centre for Advanced Technology, Indore 452013, M.P. (India)

    2016-09-11

    We have investigated the possible influence of surface oxides on the optical properties of a high-purity niobium (Nb) material for fabrication of superconducting radio frequency (SCRF) cavities. Various peaks in the infrared region were identified using Fourier transform infrared and Raman spectroscopy. Optical response functions such as complex refractive index, dielectric and conductivity of niobium were compared with the existing results on oxides free Nb and Cu. It was observed that the presence of a mixture of niobium-oxides, and probably near other surface impurities, appreciably influence the conducting properties of the material causing deviation from the typical metallic characteristics. In this way, the key result of this work is the observation, identification of vibrational modes of some of surface complexes and study of its influences on the optical responses of materials. This method of spectroscopic investigation will help in understanding the origin of degradation of performance of SCRF cavities.

  12. Temperature effect on surface oxidation of titanium

    International Nuclear Information System (INIS)

    Vaquilla, I.; Barco, J.L. del; Ferron, J.

    1990-01-01

    The effect of temperature on the first stages of the superficial oxidation of polycrystalline titanium was studied using both Auger electron spectroscopy (AES) and emission shreshold (AEAPS). The number of compounds present on the surface was determined by application of the factor analysis technique. Reaction evolution was followed through the relative variation of Auger LMM and LMV transitions which are characteristic of titanium. Also the evolution of the chemical shift was determined by AEAPS. The amount of oxygen on the surface was quantified using transition KLL of oxygen. It was found that superficial oxidation depends on temperature. As much as three different compounds were determined according to substrate temperature and our exposure ranges. (Author). 7 refs., 5 figs

  13. Review of corrosion phenomena on zirconium alloys, niobium, titanium, inconel, stainless steel, and nickel plate under irradiation

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.

    1975-01-01

    The role of nuclear fluxes in corrosion processes was investigated in ATR, ETR, PRTR, and in Hanford production reactors. Major effort was directed to zirconium alloy corrosion parameter studies. Corrosion and hydriding results are reported as a function of oxygen concentration in the coolant, flux level, alloy composition, surface pretreatment, and metallurgical condition. Localized corrosion and hydriding at sites of bonding to dissimilar metals are described. Corrosion behavior on specimens transferred from oxygenated to low-oxygen coolants in ETR and ATR experiments is compared. Mechanism studies suggest that a depression in the corrosion of the Zr--2.5Nb alloy under irradiation is due to radiation-induced aging. The radiation-induced onset of transition on several alloys is in general a gradual process which nucleates locally, causing areas of oxide prosity which eventually encompass the surface. Examination of Zry-2 process tubes reveals that accelerated corrosion has occurred in low-oxygen coolants. Hydrogen contents are relatively low, but show some localized profiles. Gross hydriding has occurred on process tubes containing aluminum spacers, apparently by a galvanic charging mechanism. Titanium paralleled Zry-2 in corrosion behavior under irradiation. Niobium corrosion was variable, but did not appear to be strongly influenced by radiation. Corrosion rates on Inconel and stainless steel were only slightly higher in-flux than out-of-reactor. Corrosion rates on nickel-plated aluminum appeared to vary substantially with preexposure treatments, but the rates generally were accelerated compared to rates on unirradiated coupons. (59 references, 11 tables, 12 figs.)

  14. Ceramic material suitable for repair of a space vehicle component in a microgravity and vacuum environment, method of making same, and method of repairing a space vehicle component

    Science.gov (United States)

    Riedell, James A. (Inventor); Easler, Timothy E. (Inventor)

    2009-01-01

    A precursor of a ceramic adhesive suitable for use in a vacuum, thermal, and microgravity environment. The precursor of the ceramic adhesive includes a silicon-based, preceramic polymer and at least one ceramic powder selected from the group consisting of aluminum oxide, aluminum nitride, boron carbide, boron oxide, boron nitride, hafnium boride, hafnium carbide, hafnium oxide, lithium aluminate, molybdenum silicide, niobium carbide, niobium nitride, silicon boride, silicon carbide, silicon oxide, silicon nitride, tin oxide, tantalum boride, tantalum carbide, tantalum oxide, tantalum nitride, titanium boride, titanium carbide, titanium oxide, titanium nitride, yttrium oxide, zirconium diboride, zirconium carbide, zirconium oxide, and zirconium silicate. Methods of forming the ceramic adhesive and of repairing a substrate in a vacuum and microgravity environment are also disclosed, as is a substrate repaired with the ceramic adhesive.

  15. Generation of amorphous ceramic capacitor coatings on titanium using a continuous sol-gel process

    International Nuclear Information System (INIS)

    Dixon, B.G.; Walsh, M.A. III; Phillips, P.G.; Morris, R.S.

    1995-01-01

    Thin amorphous films of ceramic capacitor materials were successfully deposited using sol-gel chemistry onto titanium wire using a continuous, computer controlled process. By repeatedly depositing and calcining very thin layers of material, smooth and even coats can be produced. Surface analyses revealed the layered nature of these thin coats, as well as the amorphous nature of the ceramic. The electrical properties of the better coatings, all composed of niobium, bismuth, zinc oxides, were then evaluated. copyright 1995 Materials Research Society

  16. Niobium and tantalum

    Science.gov (United States)

    Schulz, Klaus J.; Piatak, Nadine M.; Papp, John F.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Niobium and tantalum are transition metals that are almost always found together in nature because they have very similar physical and chemical properties. Their properties of hardness, conductivity, and resistance to corrosion largely determine their primary uses today. The leading use of niobium (about 75 percent) is in the production of high-strength steel alloys used in pipelines, transportation infrastructure, and structural applications. Electronic capacitors are the leading use of tantalum for high-end applications, including cell phones, computer hard drives, and such implantable medical devices as pacemakers. Niobium and tantalum are considered critical and strategic metals based on the potential risks to their supply (because current production is restricted to only a few countries) and the significant effects that a restriction in supply would have on the defense, energy, high-tech industrial, and medical sectors.The average abundance of niobium and tantalum in bulk continental crust is relatively low—8.0 parts per million (ppm) niobium and 0.7 ppm tantalum. Their chemical characteristics, such as small ionic size and high electronic field strength, significantly reduce the potential for these elements to substitute for more common elements in rock-forming minerals and make niobium and tantalum essentially immobile in most aqueous solutions. Niobium and tantalum do not occur naturally as pure metals but are concentrated in a variety of relatively rare oxide and hydroxide minerals, as well as in a few rare silicate minerals. Niobium is primarily derived from the complex oxide minerals of the pyrochlore group ((Na,Ca,Ce)2(Nb,Ti,Ta)2(O,OH,F)7), which are found in some alkaline granite-syenite complexes (that is, igneous rocks containing sodium- or potassium-rich minerals and little or no quartz) and carbonatites (that is, igneous rocks that are more than 50 percent composed of primary carbonate minerals, by volume). Tantalum is derived mostly from the

  17. Titanium oxidation-reduction at low oxygen pressure under electron bombardment

    International Nuclear Information System (INIS)

    Brasca, R.; Passeggi, M.C.G.; Ferron, J.

    2006-01-01

    The effect of the electron bombardment on the first stages of the titanium oxidation process has been studied by means of Auger Electron Spectroscopy. Using Factor Analysis and the valence electron dependence behaviour of the titanium LMV Auger transition, we found that the process is strongly dependent on the oxygen pressure and electron current density. Depending on the irradiation conditions, films of different thickness and Ti oxidized states are obtained

  18. Study for preparation of nanoporous titania on titanium by anodic oxidation

    International Nuclear Information System (INIS)

    Passos, Alessandra Pires

    2014-01-01

    Currently titanium is the most common material used in dental, orthopedic implants and cardiovascular applications. In the mid 1960s, prof. Braenemark and coworkers developed the concept of osseointegration, meaning the direct structural and functional connection between living bone and the surface of artificial implant. Thus, studies on the modification of the implant surface are widely distributed among them are the acid attack, blasting with particles of titanium oxide or aluminum oxide, coating with bioactive materials such as hydroxyapatite, and the anodic oxidation. The focus of this work was to investigate the treatment of titanium surface by anodic oxidation. The aim was to develop a nanoporous titanium oxide overlay with controlled properties over titanium substrates. Recent results have shown that such surface treatment improves the biological interaction at the interface bone-implant besides protecting the titanium further oxidation and allow a faster osseointegration. The anodizing process was done in the potentiostatic mode, using an electrolyte composed of 1.0 mol/L H 3 PO 4 and HF 0.5% m/I. The investigated process parameters were the electrical potential (Va) and the process time (T). The electric potential was varied from 10 V to 30 V and the process time was defined as 1.0 h, 1.5 h or 2.0 h. The treated Ti samples were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive spectroscopy X-ray (EDS), and X-ray diffraction (XRD). The results showed the formation of nanoporous titanium oxide by anodizing with electric potential (Va) in the range of 20 V to 30 V and process time in the range of 1 to 2 hours. The average pore diameter was in the range 94-128 nm. Samples anodized in electric potential lower than 20 V did not show the formation of the nanoporous surface. In the case of Va above 30 V, it was observed the formation of agglomerates of TiO 2 . The results obtained in this study showed no

  19. Oxidation behaviour of titanium in high temperature steam

    Energy Technology Data Exchange (ETDEWEB)

    Moroishi, T; Shida, Y [Sumitomo Metal Industries Ltd., Amagasaki, Hyogo (Japan). Central Research Labs.

    1978-03-01

    The oxidation of pure titanium was studied in superheated steam at 400 -- 550/sup 0/C. The effects of prior cold working and several heat treatment conditions on the oxidation were examined and also the effects of the addition of small amounts of iron and oxygen were investigated. The oxidation mechanism of pure titanium is discussed in relation to the scale structure and the oxidation kinetics. Hydrogen absorption rate was also measured. As a result, the following conclusions were drawn: (1) The oxidation of pure titanium in steam was faster than in air and breakaway oxidation was observed above 500/sup 0/C after the specimen had gained a certain weight. Prior cold working and heat treatment conditions scarcely affected the oxidation rate, whereas the specimen containing small amounts of iron and oxygen showed a little more rapid oxidation. (2) At 500 and 550/sup 0/C a dark grey inner scale and a yellow-brown outer scale were formed. The outer scale was apt to exfoliate after the occurrence of breakaway oxidation. At 400 and 450/sup 0/C only a dark grey scale was observed. All of these oxides were identified as the rutile type, TiO/sub 2/. Furthermore, the presence of a thin and uniform oxygen rich layer beneath the external scale was confirmed at all test temperatures. (3) The measured weight gain approximately followed the cubic rate law; this would be expected for the following reason; one component of the weight gain is due to the dissolved oxygen, the amount of which remains constant after the early stages of oxidation. The second component is due to the parabolic growth of the external TiO/sub 2/ scale. When these contributions are added a pseudo-cubic weight gain curve results. (4) It was shown that 50 percent of the hydrogen generated during the oxidation was absorbed into the metal.

  20. Ultrahighly Dispersed Titanium Oxide on Silica : Effect of Precursors on the Structure and Photocatalysis

    OpenAIRE

    Yoshida , S.; Takenaka , S.; Tanaka , T.; Funabiki , T.

    1997-01-01

    The effect of precursor on the dispersion and catalytic performance of titanium oxide supported on silica has ben investigated. The catalysts were prepared by a simple impregnation method with three kinds of titanium complexes of different ligands (bis(isopropyato)-bis(pivaroylmethanato) : DPM, acetylacetonato : ACAC, tetrakis(isopropylato) : IPRO) with the aim of preparing ultrahighly dispersed titanium oxide on silica. The XAFS study revealed that titanium species in the catalyst prepared f...

  1. Characterization and sintering of niobium-ATR alumina

    International Nuclear Information System (INIS)

    Sibuya, N.H.; Iwasaki, H.; Suzuki, C.K.; Pinatti, D.G.

    1987-01-01

    In the niobium aluminothermy a slag is produced, composed mostly of alumina and other compounds such as niobium oxide and silica. The phase composition of this ATR alumina was characterized by X-ray powder diffractometry, and afterwards this alumina was subjected to leaching processes. It was noticed that the original content of 70% α-alumina in slag rose to 95% after the calcination. ATR alumina (leached and calcined, and without any treatment) was used to make pressed bodies which were fired in air at 1200 to 1400 0 C for 1 to 10,5 hours; and in vacuum at 1550 to 1800$0C for 2 hours. Characterization was done by density measurements, X-ray diffractometry and ultrasonic analysis. Ultrasonic analysis of some vacuum fired bodies showed londitudinal velocities close to the value found in literature. Correlation of several techniques measurements disclosed the niobium oxide interference in sintering. (Author) [pt

  2. Optoelectronic properties of valence-state-controlled amorphous niobium oxide

    Science.gov (United States)

    Onozato, Takaki; Katase, Takayoshi; Yamamoto, Akira; Katayama, Shota; Matsushima, Koichi; Itagaki, Naho; Yoshida, Hisao; Ohta, Hiromichi

    2016-06-01

    In order to understand the optoelectronic properties of amorphous niobium oxide (a-NbO x ), we have investigated the valence states, local structures, electrical resistivity, and optical absorption of a-NbO x thin films with various oxygen contents. It was found that the valence states of Nb ion in a-NbO x films can be controlled from 5+  to 4+  by reducing oxygen pressure during film deposition at room temperature, together with changing the oxide-ion arrangement around Nb ion from Nb2O5-like to NbO2-like local structure. As a result, a four orders of magnitude reduction in the electrical resistivity of a-NbO x films was observed with decreasing oxygen content, due to the carrier generation caused by the appearance and increase of an oxygen-vacancy-related subgap state working as an electron donor. The tunable optoelectronic properties of a-NbO x films by valence-state-control with oxygen-vacancy formation will be useful for potential flexible optoelectronic device applications.

  3. Antisolvent Precipitation for the Synthesis of Monodisperse Mesoporous Niobium Oxide Spheres as Highly Effective Solid Acid Catalysts

    KAUST Repository

    Li, Cheng Chao; Dou, Jian; Chen, Luwei; Lin, Jianyi; Zeng, Hua Chun

    2012-01-01

    We have developed a low-cost reaction protocol to synthesize mesoporous Nb 2O 5-based solid acid catalysts with external shape control. In the synthesis, monodisperse glycolated niobium oxide spheres (GNOS) were prepared by means of a simple antisolvent precipitation approach and subsequently converted to mesoporous niobium oxide spheres (MNOS) with a large surface area of 312m 2g -1 by means of the hydrothermal treatment. The antisolvent acetone used to obtain GNOS was recovered through distillation at high purity. The obtained mesoporous MNOS were functionalized further with sulfate anions at different temperatures or incorporated with tungstophosphoric acid to obtain recyclable solid acid catalysts. These MNOS-based catalysts showed excellent performance in a wide range of acid-catalyzed reactions, such as Friedel-Crafts alkylation, esterification, and hydrolysis of acetates. As they are monodisperse spheres with diameters in the submicrometer range, the catalysts can be easily separated and reused. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Antisolvent Precipitation for the Synthesis of Monodisperse Mesoporous Niobium Oxide Spheres as Highly Effective Solid Acid Catalysts

    KAUST Repository

    Li, Cheng Chao

    2012-03-20

    We have developed a low-cost reaction protocol to synthesize mesoporous Nb 2O 5-based solid acid catalysts with external shape control. In the synthesis, monodisperse glycolated niobium oxide spheres (GNOS) were prepared by means of a simple antisolvent precipitation approach and subsequently converted to mesoporous niobium oxide spheres (MNOS) with a large surface area of 312m 2g -1 by means of the hydrothermal treatment. The antisolvent acetone used to obtain GNOS was recovered through distillation at high purity. The obtained mesoporous MNOS were functionalized further with sulfate anions at different temperatures or incorporated with tungstophosphoric acid to obtain recyclable solid acid catalysts. These MNOS-based catalysts showed excellent performance in a wide range of acid-catalyzed reactions, such as Friedel-Crafts alkylation, esterification, and hydrolysis of acetates. As they are monodisperse spheres with diameters in the submicrometer range, the catalysts can be easily separated and reused. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Topotactic reduction yielding black titanium oxide nanostructures as metallic electronic conductors.

    Science.gov (United States)

    Tominaka, Satoshi

    2012-10-01

    Detailed analyses of reduced, single crystal, rutile-type TiO(2) via high-resolution transmission electron microscopy (TEM) are reported which reveal that the reduction proceeds topotactically via interstitial diffusion of Ti ions at low temperature, around 350 °C. This important finding encouraged the production of various nanostructured reduced titanium oxides from TiO(2) precursors with morphology retention, and in the process, the synthesis of black titanium oxide nanorods using TiO(2) nanorods was demonstrated. Interestingly, as opposed to the semiconductive behavior of Ti(2)O(3) synthesized at high temperature, topotactically synthesized Ti(2)O(3) exhibits metallic electrical resistance, and the value at room temperature is quite low (topotactically synthesized Ti(2)O(3). This work shows that topotactically reduced titanium oxides can have fascinating properties as well as nanostructures.

  6. Study of the microstructural and mechanical properties of titanium-niobium-zirconium based alloys processed with hydrogen and powder metallurgy for use in dental implants

    International Nuclear Information System (INIS)

    Duvaizem, Jose Helio

    2009-01-01

    Hydrogen has been used as pulverization agent in alloys based on rare earth and transition metals due to its extremely high diffusion rate even on low temperatures. Such materials are used on hydrogen storage dispositives, generation of electricity or magnetic fields, and are produced by a process which the first step is the transformation of the alloy in fine powder by miling. Besides those, hydrogenium is also being used to obtain alloys based on titanium - niobium - zirconium in the pulverization. Powder metallurgy is utilized on the production of these alloys, making it possible to obtain structures with porous surface as result, requirement for its application as biomaterials. Other advantages of powder metallurgy usage include better surface finish and better microstructural homogeneity. In this work samples were prepared in the Ti-13Nb-13Zr composition. The hydrogenation was performed at 700 degree C, 600 degree C, and 500 degree C for titanium, niobium and zirconium respectively. After hydrogenation, the milling stage was carried out on high energy planetary ball milling with 200rpm during 90 minutes, and also in conventional ball milling for 30 hours. Samples were pressed in uniaxial press, followed by isostatic cold press, and then sintered at 1150 degree C for 7-13 hours. Microstructural properties of the samples were characterized by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and x-ray diffraction. Mechanical and structural properties determined were density, microhardness and moduli of elasticity. The sample sintered at 1150 degree C for 7h, hydrogenated using 10.000 mbar and produced by milling on high energy planetary ball milling presented the best mechanical properties and microstructural homogeneity. (author)

  7. Thermal diffusivity of alumina-zirconia sintered with niobium additions

    International Nuclear Information System (INIS)

    Santos, W.N. dos; Paulin Filho, P.I.; Taylor, R.

    1994-01-01

    The effect of niobium oxide addition on the alumina-zirconia thermal diffusivity was investigated from 100 0 C to 1000 0 C by the laser flash method. It was observed that 4 to 6% addition of niobium oxide increases the thermal diffusivity when samples were sintered at 1450 0 C. This effect was due to elimination of porosity by formation of liquid please above 1420 0 C in the Al 2 O 3 - Nb 2 O 5 system. (author). 7 refs., 3 figs

  8. Corrosion of niobium and niobium alloys

    International Nuclear Information System (INIS)

    Yau, T.L.; Webster, R.T.

    1987-01-01

    Niobium and niobium alloys are used in several corrosion-resistant applications, principally rocket and jet engines, nuclear reactors, sodium vapor highway lighting, and chemical-processing equipment. Niobium has many of the same properties of tantalum, its sister metal, but has one half the density of tantalum (see the article ''Corrosion of Tantalum'' in this Volume). A common property of niobium and tantalum is the interaction with the reactive elements hydrogen, oxygen, nitrogen, and carbon at temperatures above 300 0 C (570 0 F). These reactions will cause severe embrittlement. Consequently, at elevated temperatures, the metal must be protectively coated or used in vacuum or inert atmospheres. Niobium resists a wide variety of corrosive environments, including concentrated mineral acids, organic acids, liquid metals (particularly sodium and lithium), metal vapors, and molten salts

  9. Microstructural variation in titanium oxide thin films deposited by DC magnetron sputtering

    International Nuclear Information System (INIS)

    Pandian, Ramanathaswamy; Natarajan, Gomathi; Kamruddin, M.; Tyagi, A.K.

    2013-01-01

    We report on the microstructural evolution of titanium oxide thin films deposited by reactive DC magnetron sputtering using titanium metal target. By varying the ratio of sputter-gas mixture containing argon, oxygen and nitrogen various phases of titanium oxide, almost pure rutile, rutile-rich and anatase-rich nano-crystalline, were deposited on Si substrates at room temperature. Using high-resolution scanning electron microscopy, X-ray diffraction and micro-Raman techniques the microstructure of the films were revealed. The relationship between the microstructure of the films and the oxygen partial pressure during sputtering is discussed

  10. Diffusion of oxygen in niobium during bake-out

    CERN Document Server

    Calatroni, Sergio; Ruzinov, V

    2001-01-01

    Bake-outs at temperatures between 100 C and 150 C for a duration up to two days have become customary for optimising the performance of bulk niobium cavities. This treatment results in the diffusion of oxygen, originating from the surface oxide, into the niobium. The theoretical oxygen profile has been simulated using the diffusion equations, and compared with some experimental results.

  11. Diffusion of oxygen in niobium during bake-out

    International Nuclear Information System (INIS)

    Benvenuti, C.; Calatroni, S.; Ruzinov, V.

    2003-01-01

    Bake-outs at temperatures between 100 degC and 150 degC for duration up to two days have become customary for optimising the performance of bulk niobium cavities. This treatment results in the diffusion of oxygen, originating from the surface oxide, into the niobium. The theoretical oxygen profile has been simulated using the diffusion equations, and compared with some experimental results. (author)

  12. Plasma electrolytic oxidation of Titanium Aluminides

    International Nuclear Information System (INIS)

    Morgenstern, R; Sieber, M; Lampke, T; Grund, T; Wielage, B

    2016-01-01

    Due to their outstanding specific mechanical and high-temperature properties, titanium aluminides exhibit a high potential for lightweight components exposed to high temperatures. However, their application is limited through their low wear resistance and the increasing high-temperature oxidation starting from about 750 °C. By the use of oxide ceramic coatings, these constraints can be set aside and the possible applications of titanium aluminides can be extended. The plasma electrolytic oxidation (PEO) represents a process for the generation of oxide ceramic conversion coatings with high thickness. The current work aims at the clarification of different electrolyte components’ influences on the oxide layer evolution on alloy TNM-B1 (Ti43.5Al4Nb1Mo0.1B) and the creation of compact and wear resistant coatings. Model experiments were applied using a ramp-wise increase of the anodic potential in order to show the influence of electrolyte components on the discharge initiation and the early stage of the oxide layer growth. The production of PEO layers with technically relevant thicknesses close to 100 μm was conducted in alkaline electrolytes with varying amounts of Na 2 SiO 3 ·5H 2 O and K 4 P 2 O 7 under symmetrically pulsed current conditions. Coating properties were evaluated with regard to morphology, chemical composition, hardness and wear resistance. The addition of phosphates and silicates leads to an increasing substrate passivation and the growth of compact oxide layers with higher thicknesses. Optimal electrolyte compositions for maximum coating hardness and thickness were identified by statistical analysis. Under these conditions, a homogeneous inner layer with low porosity can be achieved. The frictional wear behavior of the compact coating layer is superior to a hard anodized layer on aluminum. (paper)

  13. Electrochemical Energy Storage Applications of CVD Grown Niobium Oxide Thin Films.

    Science.gov (United States)

    Fiz, Raquel; Appel, Linus; Gutiérrez-Pardo, Antonio; Ramírez-Rico, Joaquín; Mathur, Sanjay

    2016-08-24

    We report here on the controlled synthesis, characterization, and electrochemical properties of different polymorphs of niobium pentoxide grown by CVD of new single-source precursors. Nb2O5 films deposited at different temperatures showed systematic phase evolution from low-temperature tetragonal (TT-Nb2O5, T-Nb2O5) to high temperature monoclinic modifications (H-Nb2O5). Optimization of the precursor flux and substrate temperature enabled phase-selective growth of Nb2O5 nanorods and films on conductive mesoporous biomorphic carbon matrices (BioC). Nb2O5 thin films deposited on monolithic BioC scaffolds produced composite materials integrating the high surface area and conductivity of the carbonaceous matrix with the intrinsically high capacitance of nanostructured niobium oxide. Heterojunctions in Nb2O5/BioC composites were found to be beneficial in electrochemical capacitance. Electrochemical characterization of Nb2O5/BioC composites showed that small amounts of Nb2O5 (as low as 5%) in conjunction with BioCarbon resulted in a 7-fold increase in the electrode capacitance, from 15 to 104 F g(-1), while imparting good cycling stability, making these materials ideally suited for electrochemical energy storage applications.

  14. Electrochemical Thinning for Anodic Aluminum Oxide and Anodic Titanium Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Lee, In Hae; Jo, Yun Kyoung; Kim, Yong Tae; Tak, Yong Sug; Choi, Jin Sub [Inha University, Incheon (Korea, Republic of)

    2012-05-15

    For given electrolytes, different behaviors of anodic aluminum oxide (AAO) and anodic titanium oxide (ATO) during electrochemical thinning are explained by ionic and electronic current modes. Branched structures are unavoidably created in AAO since the switch of ionic to electronic current is slow, whereas the barrier oxide in ATO is thinned without formation of the branched structures. In addition, pore opening can be possible in ATO if chemical etching is performed after the thinning process. The thinning was optimized for complete pore opening in ATO and potential-current behavior is interpreted in terms of ionic current-electronic current switching.

  15. Niobium technological alternatives

    International Nuclear Information System (INIS)

    Pinatti, D.G.; Dainesi, C.R.

    1981-01-01

    The process-product matrix of Niobium is presented, through which the technological alternatives for Niobium are identified. It is shown that the three axes of Niobium application, steels, superalloys and metallic Niobium have a tendency to be economical by equivalent. The critical points where technological development of Niobium is needed are analyzed and results are presented on the following products: Nb 2 O 5 by volatilization, metalic Niobium, Niobium powder, bars and sheets, NbTi alloy, corrosion resistent Niobium alloys and superconductor cable and wires. (Author) [pt

  16. Study of the phase composition of nanostructures produced by the local anodic oxidation of titanium films

    International Nuclear Information System (INIS)

    Avilov, V. I.; Ageev, O. A.; Konoplev, B. G.; Smirnov, V. A.; Solodovnik, M. S.; Tsukanova, O. G.

    2016-01-01

    The results of experimental studies of the phase composition of oxide nanostructures formed by the local anodic oxidation of a titanium thin film are reported. The data of the phase analysis of titanium-oxide nanostructures are obtained by X-ray photoelectron spectroscopy in the ion profiling mode of measurements. It is established that the surface of titanium-oxide nanostructures 4.5 ± 0.2 nm in height possesses a binding energy of core levels characteristic of TiO_2 (458.4 eV). By analyzing the titanium-oxide nanostructures in depth by X-ray photoelectron spectroscopy, the formation of phases with binding energies of core levels characteristic of Ti_2O_3 (456.6 eV) and TiO (454.8 eV) is established. The results can be used in developing the technological processes of the formation of a future electronic-component base for nanoelectronics on the basis of titanium-oxide nanostructures and probe nanotechnologies.

  17. Sealing glasses for titanium and titanium alloys

    Science.gov (United States)

    Brow, Richard K.; McCollister, Howard L.; Phifer, Carol C.; Day, Delbert E.

    1997-01-01

    Barium lanthanoborate sealing-glass compositions are provided comprising various combinations (in terms of mole-%) of boron oxide (B.sub.2 O.sub.3), barium oxide (BaO), lanthanum oxide (La.sub.2 O.sub.3), and at least one other oxide selected from the group consisting of aluminum oxide (Al.sub.2 O.sub.3), calcium oxide (CaO), lithium oxide (Li.sub.2 O), sodium oxide (Na.sub.2 O), silicon dioxide (SiO.sub.2), or titanium dioxide (TiO.sub.2). These sealing-glass compositions are useful for forming hermetic glass-to-metal seals with titanium and titanium alloys having an improved aqueous durability and favorable sealing characteristics. Examples of the sealing-glass compositions are provided having coefficients of thermal expansion about that of titanium or titanium alloys, and with sealing temperatures less than about 900.degree. C., and generally about 700.degree.-800.degree. C. The barium lanthanoborate sealing-glass compositions are useful for components and devices requiring prolonged exposure to moisture or water, and for implanted biomedical devices (e.g. batteries, pacemakers, defibrillators, pumps).

  18. Isotopic exchange rate of sodium ions between hydrous metal oxides and aqueous solutions

    International Nuclear Information System (INIS)

    Inoue, Yasushi; Yamazaki, Hiromichi

    1991-01-01

    To elucidate the kinetics of ion-exchange reaction on hydrous metal oxide, the isotopic exchange rates of sodium ions between hydrous metal oxides such as hydrous tin (IV), niobium (V), zirconium (IV) and titanium (IV) oxides, and aqueous solutions were measured radiochemically and compared with each other. The rate of reaction cannot be understood by an unified view since the rate controlling step differs with the kind of exchangers. The rate constants relevant to each exchanger such as diffusion constants and their activation energies were also determined. (author)

  19. Sol-gel/hydrothermal synthesis of mixed metal oxide of Titanium and ...

    African Journals Online (AJOL)

    Mixed metal oxides of titanium and zinc nanocomposites were prepared through sol-gel method under hydrothermal condition using titanium oxy-(1, 2 - pentadione) and zinc acetate without hazardous additives. The resulting composites were characterized by X-Ray Diffractometer (XRD), Scanning Electron Microscope ...

  20. Josephson tunnel junctions in niobium films

    International Nuclear Information System (INIS)

    Wiik, Tapio.

    1976-12-01

    A method of fabricating stable Josephson tunnel junctions with reproducible characteristics is described. The junctions have a sandwich structure consisting of a vacuum evaporated niobium film, a niobium oxide layer produced by the glow discharge method and a lead film deposited by vacuum evaporation. Difficulties in producing thin-film Josephson junctions are discussed. Experimental results suggest that the lower critical field of the niobium film is the most essential parameter when evaluating the quality of these junctions. The dependence of the lower critical field on the film thickness and on the Ginzburg-Landau parameter of the film is studied analytically. Comparison with the properties of the evaporated films and with the previous calculations for bulk specimens shows that the presented model is applicable for most of the prepared samples. (author)

  1. Oxidation behaviour of the near α-titanium alloy IMI 834

    Indian Academy of Sciences (India)

    Unknown

    Oxidation behaviour of the near α-titanium alloy IMI 834 was investigated over a range of tem- peratures, from ... perties and adequate resistance against environmental degradation. ... the change of weight of the specimen. The oxidation data.

  2. Titanium oxide nanoparticles as additives in engine oil

    Directory of Open Access Journals (Sweden)

    Meena Laad

    2018-04-01

    Full Text Available This research study investigates the tribological behaviour of titanium oxide (TiO2 nanoparticles as additives in mineral based multi-grade engine oil. All tests were performed under variable load and varying concentrations of nanoparticles in lubricating oil. The friction and wear experiments were performed using pin-on-disc tribotester. This study shows that mixing of TiO2 nanoparticles in engine oil significantly reduces the friction and wear rate and hence improves the lubricating properties of engine oil. The dispersion analysis of TiO2 nanoparticles in lubricating oil using UV spectrometer confirms that TiO2 nanoparticles possess good stability and solubility in the lubricant and improve the lubricating properties of the engine oil. Keywords: Titanium oxide, Nanoparticles, UV spectrometer, Tribotester, Engine oil

  3. Formation of titanium diboride coatings during the anodic polarization of titanium in a chloride melt with a low boron oxide content

    Science.gov (United States)

    Elshina, L. A.; Malkov, V. B.; Molchanova, N. G.

    2015-02-01

    The corrosion-electrochemical behavior of titanium in a molten eutectic mixture of cesium and sodium chlorides containing up to 1 wt % boron oxide is studied in the temperature range 810-870 K in an argon atmosphere. The potential, the current, and the rate of titanium corrosion are determined. The optimum conditions of forming a dense continuous titanium diboride coating on titanium with high adhesion to the metallic base are found for the anodic activation of titanium in the molten electrolyte under study.

  4. Characterization of Titanium Oxide Nanoparticles Obtained by Hydrolysis Reaction of Ethylene Glycol Solution of Alkoxide

    Directory of Open Access Journals (Sweden)

    Naofumi Uekawa

    2012-01-01

    Full Text Available Transparent and stable sols of titanium oxide nanoparticles were obtained by heating a mixture of ethylene glycol solution of titanium tetraisopropoxide (TIP and a NH3 aqueous solution at 368 K for 24 h. The concentration of NH3 aqueous solution affected the structure of the obtained titanium oxide nanoparticles. For NH3 aqueous solution concentrations higher than 0.2 mol/L, a mixture of anatase TiO2 nanoparticles and layered titanic acid nanoparticles was obtained. The obtained sol was very stable without formation of aggregated precipitates and gels. Coordination of ethylene glycol to Ti4+ ions inhibited the rapid hydrolysis reaction and aggregation of the obtained nanoparticles. The obtained titanium oxide nanoparticles had a large specific surface area: larger than 350 m2/g. The obtained titanium oxide nanoparticles showed an enhanced adsorption towards the cationic dye molecules. The selective adsorption corresponded to presence of layered titanic acid on the obtained anatase TiO2 nanoparticles.

  5. Characterization of Titanium Oxide Nanoparticles Obtained by Hydrolysis Reaction of Ethylene Glycol Solution of Alkoxide

    International Nuclear Information System (INIS)

    Uekawa, N.; Endo, N.; Ishii, K.; Kojima, T.; Kakegawa, K.

    2012-01-01

    Transparent and stable sols of titanium oxide nanoparticles were obtained by heating a mixture of ethylene glycol solution of titanium tetraisopropoxide (TIP) and a NH 3 aqueous solution at 368 K for 24 h. The concentration of NH 3 aqueous solution affected the structure of the obtained titanium oxide nanoparticles. For NH 3 aqueous solution concentrations higher than 0.2 mol/L, a mixture of anatase TiO 2 nanoparticles and layered titanic acid nanoparticles was obtained. The obtained sol was very stable without formation of aggregated precipitates and gels. Coordination of ethylene glycol to Ti4+ ions inhibited the rapid hydrolysis reaction and aggregation of the obtained nanoparticles. The obtained titanium oxide nanoparticles had a large specific surface area: larger than 350 m2/g. The obtained titanium oxide nanoparticles showed an enhanced adsorption towards the cationic dye molecules. The selective adsorption corresponded to presence of layered titanic acid on the obtained anatase TiO 2 nanoparticles.

  6. Effect of niobium addition in support catalysts applied in satellite propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Soares, M.S., E-mail: marciosteinmetz@hotmail.com.br [Space Research National Institute, Combustion & Propulsion Associated Laboratory (Brazil); University of São Paulo, Lorena Engineering School, Materials Engineering Dept. (Brazil); Barbosa, R.D. [Space Research National Institute, Combustion & Propulsion Associated Laboratory (Brazil); University of São Paulo, Lorena Engineering School, Chemical Engineering Dept. (Brazil); Cruz, G.M. da; Rodrigues, J.A.J. [Space Research National Institute, Combustion & Propulsion Associated Laboratory (Brazil); Ribeiro, S. [University of São Paulo, Lorena Engineering School, Materials Engineering Dept. (Brazil)

    2017-03-01

    Catalysts composed of iridium as the active phase dispersed in aluminum oxide (Ir/Al{sub 2}O{sub 3}) are used in propulsion systems that employ hydrazine as monopropellant in the control of satellite orbit and attitude. The aluminum oxide (Al{sub 2}O{sub 3}) utilized as support must present high values of specific surface area, pore volume, and crush strength. The niobium effect was evaluated in this work, in its oxide form (Nb{sub 2}O{sub 5}), by 3 different methods: with the employment of a NbCl{sub 5} precursor solution, by wet impregnation and dry impregnation of an alumina obtained from a mixture of gibbsite and boehmite and by physical mixing of gibbsite and hydrated niobium oxide, both autoclaved separately. Aluminum oxides were prepared in both cases containing Nb{sub 2}O{sub 5} contents of 10, 20, and 30% w/w. The acid impregnating NbCl{sub 5} solution in the wet impregnation method caused a strong attack to the Al{sub 2}O{sub 3} support, altering and compromising its initial structure and morphology. This process did not occur in the supports prepared by dry impregnation. However, results indicated that the use of this methodology with Nb{sub 2}O{sub 5} contents of 20% and 30%, caused an extensive coverage of the support by Nb{sub 2}O{sub 5}, modifying the nature and amount of alumina sites responsible for anchorage of the iridium precursor. In the case of supports prepared through physical mixture (Nb{sub 2}O{sub 5}-Al{sub 2}O{sub 3}) from aluminum hydroxide and niobium acid precursor compounds, with both being previously autoclaved separately, the 20% and 30% Nb{sub 2}O{sub 5} contents presented the most promising properties, since the binder effect caused by amorphous Nb{sub 2}O{sub 5} increased the crush strength of the support, without compromising the aluminum oxide morphology and texture. Despite of existence of stronger acid sites due to the addition of niobium oxide to aluminum oxide, no increase in the acidity of the materials was observed due

  7. Efficient polymer:fullerene bulk heterojunction solar cells with n-type doped titanium oxide as an electron transport layer

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Youna [Heeger Center for Advanced Material & Research Institute of Solar and Sustainable Energies, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Kim, Geunjin [School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Kim, Heejoo, E-mail: heejook@gist.ac.kr [Heeger Center for Advanced Material & Research Institute of Solar and Sustainable Energies, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Kim, Sun Hee [School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Lee, Kwanghee, E-mail: klee@gist.ac.kr [Heeger Center for Advanced Material & Research Institute of Solar and Sustainable Energies, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)

    2015-05-29

    We have reported a highly n-type doped solution-processed titanium metal oxide (TiO{sub x}) for use as an efficient electron-transport layer (ETL) in polymer:fullerene bulk heterojunction (BHJ) solar cells. When the metal ions (Ti) in TiO{sub x} are partially substituted by niobium (Nb), the charge carrier density increased, by an order of magnitude, because of the large electronegativity of Nb compared to that of Ti. Therefore, the work function (WF) of Nb-doped metal oxide (Nb-TiO{sub x}) decreases from 4.75 eV (TiO{sub x}) to 4.66 eV (Nb-TiO{sub x}), leading to an enhancement in the power conversion efficiency (PCE) of BHJ solar cells with a Nb-TiO{sub x} ETL (from 7.99% to 8.40%). - Highlights: • Solution processable Nb-doped TiO{sub x} was developed by simple sol-gel synthesis. • Charge carrier density in TiO{sub x} is significantly increased by introducing Nb element. • The work function value of Nb-doped TiO{sub x} is reduced by introducing Nb element. • A charge recombination inside of PSC with Nb-TiO{sub x} was effectively suppressed.

  8. Tantalum, Niobium and Titanium Coatings for Biocompatibility Improvement of Dental Implants

    Directory of Open Access Journals (Sweden)

    Vajihesadat Mortazavi

    2007-01-01

    Full Text Available Introduction: Metals have a wide range of applications in implant and prosthetic materials in dentistry.Corrosion resistance and biocompatibility of metals should be improved in order to utilizethem as biomaterials. The aim of this work was to prepare metallic coatings on 316L stainless steel dental implants, to evaluate the corrosion characteristics of the uncoated and metallic coated dentalimplants as an indication of biocompatibility and, to compare the effect of the type of the coatings on biocompatibility.Materials and Methods: In this in vitro evaluation, three types of metallic coatings including tantalum, niobium and titanium coatings were compared using a physical vapor deposition process on 316L stainless steel dental implants. Structural characterization techniques including X-ray diffraction, scanning electron microscopy and energy dispersive X-ray analysis were utilized to investigatethe microstructure and morphology of the coatings. Electrochemical potentiodynamic tests were performed in two types of physiological solutions at 37±1°C in order to determine and compare the corrosioncurrent density and corrosion potential characteristics. The mean values were statistically compared by ANOVA at a 95% level of confidence.Results: the findings showed that all of the three types of metallic coatings had a positive effect on improvement of the corrosion behavior. The coatings could increase the corrosion resistance of 316L stainless steel and this trend was independent of the type of physiological environment.Conclusion: The biocompatible metallic coatings could decrease the corrosion current density and is a distinct advantage for prevention of ion release. Decreasing ion release can improve the biocompatibility of the dental implant, and consequently can prevent tissue damage, tissue inflammation and irritation, and can also lead to obtaining a desirable histopathological response.

  9. Raman and photoelectron spectroscopic investigation of high-purity niobium materials: Oxides, hydrides, and hydrocarbons

    Science.gov (United States)

    Singh, Nageshwar; Deo, M. N.; Nand, Mangla; Jha, S. N.; Roy, S. B.

    2016-09-01

    We present investigations of the presence of oxides, hydrides, and hydrocarbons in high-purity (residual resistivity ratio, ˜300) niobium (Nb) materials used in fabrication of superconducting radio frequency (SRF) cavities for particle accelerators. Raman spectroscopy of Nb materials (as-received from the vendor as well as after surface chemical- and thermal processing) revealed numerous peaks, which evidently show the presence of oxides (550 cm-1), hydrides (1277 and 1385 cm-1: ˜80 K temperature), and groups of hydrocarbons (1096, 2330, 2710, 2830, 2868, and 3080 cm-1). The present work provides direct spectroscopic evidence of hydrides in the electropolished Nb materials typically used in SRF cavities. Raman spectroscopy thus can provide vital information about the near-surface chemical species in niobium materials and will help in identifying the cause for the performance degradation of SRF cavities. Furthermore, photoelectron spectroscopy was performed on the Nb samples to complement the Raman spectroscopy study. This study reveals the presence of C and O in the Nb samples. Core level spectra of Nb (doublet 3d5/2 and 3d3/2) show peaks near 206.6 and 209.4 eV, which can be attributed to the Nb5+ oxidation state. The core level spectra of C 1 s of the samples are dominated by graphitic carbon (binding energy, 284.6 eV), while the spectra of O 1 s are asymmetrically peaked near binding energy of ˜529 eV, and that indicates the presence of metal-oxide Nb2O5. The valence-band spectra of the Nb samples are dominated by a broad peak similar to O 2p states, but after sputtering (for 10 min) a peak appears at ˜1 eV, which is a feature of the elemental Nb atom.

  10. Comparison of changes in irregularity and transverse width with nickel-titanium and niobium-titanium-tantalum-zirconium archwires during initial orthodontic alignment in adolescents: A double-blind randomized clinical trial.

    Science.gov (United States)

    Nordstrom, Barrett; Shoji, Toshihiro; Anderson, W Cameron; Fields, Henry W; Beck, F Michael; Kim, Do-Gyoon; Takano-Yamamoto, Teruko; Deguchi, Toru

    2018-05-01

    The purpose of this prospective, double-blind, randomized clinical trial was to compare the clinical efficiency of nickel-titanium (NiTi) and niobium-titanium-tantalum-zirconium (TiNbTaZr) archwires during initial orthodontic alignment. All subjects (ages between 12 and 20 years) underwent nonextraction treatment using 0.022-inch brackets. All patients were randomized into two groups for initial alignment with 0.016-inch NiTi archwires (n = 14), or with 0.016-inch TiNbTaZr archwires (n = 14). Digital scans were taken during the course of treatment and were used to compare the improvement in Little's Irregularity Index and the changes in intercanine and intermolar widths. There was approximately a 27% reduction in crowding during the first month with the use of 0.016-inch TiNbTaZr (Gummetal) wire, and an additional 25% decrease in crowding was observed during the next month. There was no significant difference between the two treatment groups in the decrease in irregularity over time ( P = .29). There was no significant difference between the two groups in the changes in intercanine and intermolar width ( P = .80). It can be concluded that Gummetal wires and conventional NiTi wires possess a similar ability to align teeth, and Gummetal wires have additional advantages over conventional NiTi, such as formability and use in patients with nickel allergy.

  11. Proposal of a new biokinetic model for niobium

    International Nuclear Information System (INIS)

    Oliveira, Roges

    2006-01-01

    There are two niobium isotopes generated in nuclear power plants: 95 Nb and 94 Nb. Workers and members of the public are subjects to intake these radionuclides in accident situation. For dose calculation purpose, it is very important to develop a model that describes in a more realistic way the kinetics of niobium inside of the human body. Presently the model adopted by ICRP (ICRP, 1989) is based on animal studies and describes the behavior of niobium in human being in a simple manner. The new model proposal describes the kinetics of the niobium from the intake into the blood until the excretion, doing this in a more realistic form and considering not only data from animals but data from human beings as well. For this objective, a workers group of a niobium extraction and processing industry exposed to stable niobium (93 Nb) in oxide insoluble form with associated uranium, was monitored for uranium and niobium determination in urinary and fecal excretion, by mass spectrometry. Based in the ratios of the niobium concentration in urinary and faecal excretion of this workers and animal data study, a new biokinetic model for niobium was proposed, with the followings modifications relative to ICRP model: a new compartment that represents muscular tissue; the fractions which are deposited into the compartment are modified; a third component in the retention equation of the bone tissue; introduction of recirculation between organs and blood. The new model was applied for a case of accidental intake and described adequately the experimental data

  12. Once upon a time, there was a brittle but superconducting niobium-tin…

    CERN Multimedia

    Stefania Pandolfi

    2016-01-01

    The production of the new niobium-tin cables for the high-performance superconducting magnets of the HL-LHC is now in full swing at CERN.   The Rutherford cabling machine is operating in the superconducting laboratory, in Building 163. (Photo: Max Brice/CERN) Extraordinary research needs extraordinary machines: the upgrade project of the LHC, the High-Luminosity LHC (HL-LHC), has the goal of achieving instantaneous luminosities a factor of five larger than the LHC nominal value, and it relies on magnetic fields reaching the level of 12 Tesla. The superconducting niobium-titanium (Nb-Ti) used in the LHC magnets can only bear magnetic fields of up to 9-10 Tesla. Therefore, an alternative solution for the superconducting magnets materials was needed. The key innovative technology to develop superconducting magnets beyond 10 Tesla has been found in the niobium-tin (Nb3Sn)  compound. This compound was actually discovered in 1954, eight years before Nb-Ti, but when the LHC was built, ...

  13. Oxochloroalkoxide of the Cerium (IV and Titanium (IV as oxides precursor

    Directory of Open Access Journals (Sweden)

    Machado Luiz Carlos

    2002-01-01

    Full Text Available The Cerium (IV and Titanium (IV oxides mixture (CeO2-3TiO2 was prepared by thermal treatment of the oxochloroisopropoxide of Cerium (IV and Titanium (IV. The chemical route utilizing the Cerium (III chloride alcoholic complex and Titanium (IV isopropoxide is presented. The compound Ce5Ti15Cl16O30 (iOPr4(OH-Et15 was characterized by elemental analysis, FTIR and TG/DTG. The X-ray diffraction patterns of the oxides resulting from the thermal decomposition of the precursor at 1000 degreesC for 36 h indicated the formation of cubic cerianite (a = 5.417Å and tetragonal rutile (a = 4.592Å and (c = 2.962 Å, with apparent crystallite sizes around 38 and 55nm, respectively.

  14. Experimental and Theoretical Studies on Corrosion Inhibition of Niobium and Tantalum Surfaces by Carboxylated Graphene Oxide

    Directory of Open Access Journals (Sweden)

    Valbonë Mehmeti

    2018-05-01

    Full Text Available The corrosion of two different metals, niobium and tantalum, in aqueous sulfuric acid solution has been studied in the presence and absence of carboxylated graphene oxide. Potentiodynamic measurements indicate that this nanomaterial inhibits corrosion due to its adsorption on the metal surfaces. The adsorbed layer of carboxylated graphene hinders two electrochemical reactions: the oxidation of the metal and the transport of metal ions from the metal to the solution but also hydrogen evolution reaction by acting as a protective barrier. The adsorption behavior at the molecular level of the carboxylated graphene oxide with respect to Nb, NbO, Ta, and TaO (111 surfaces is also investigated using Molecular Dynamic and Monte Carlo calculations.

  15. Formation of pyridine N-oxides using mesoporous titanium silicalite-1

    DEFF Research Database (Denmark)

    Mielby, Jerrik Jørgen; Abildstrøm, Jacob Oskar; Perez-Ferreras, Susana

    2014-01-01

    Mesoporous titanium silicalite-1 (TS-1) prepared by carbon-templating is significantly more active than conventional TS-1 for the oxidation of pyridine derivatives using aqueous hydrogen peroxide as oxidant. The catalytic activity is increased by the system of mesopores that helps to overcome the...

  16. Tantalum(V) impurity extraction by octanol from niobium(V) fluoride solutions

    International Nuclear Information System (INIS)

    Majorov, V.G.; Nikolaev, A.I.; Kopkov, V.K.

    2002-01-01

    The conditions of the niobium and tantalum extraction separation by octanol in the fluoride solutions, depending on the metals and free hydrofluoric acid concentration as well as on the organic and water phases voluminous relation, are studied for the purpose of developing the technology of niobium deep purification from the tantalum impurities. The technological scheme of the niobium solutions(V) extraction purification from the tantalum impurities(V), which provides for obtaining the niobium oxide(V), containing less than 0.005 mass % Ta 2 O 5 , is proposed on the basis of the established optimal separation conditions. The possibility of using the developed technology by the pyrochlore reprocessing is indicated [ru

  17. Isolation and characterisation of barium sulphate and titanium oxides in monument crusts

    Energy Technology Data Exchange (ETDEWEB)

    Luis Perez-Rodriguez, Jose; Carmen Jimenez de Haro, Maria del; Maqueda, Celia

    2004-10-25

    Black crusts from historical ornamental materials contain Ba and Ti. These elements are in low proportion, making their determination difficult and especially the characterisation of the phases in which they are present. For this reason, works on the mineralogical composition of the two elements in black crusts is scarce. Thus the isolation, previous to their characterisation, is important for the study of the surface layer in altered monuments. An acid attack for the isolation of barium sulphate and titanium oxides in black crusts from polluted areas has been used. The acid employed is a mixture of HF, HNO{sub 3} and HClO{sub 4}. The residue isolated by acid attack was analysed by energy dispersive X-ray fluorescence and X-ray diffraction. It was characterised, and the percentages of barite (barium sulphate), anatase (titanium oxide), and rutile (titanium oxide) phases present in the surface layers were calculated.

  18. Guided self-assembly of nanostructured titanium oxide

    International Nuclear Information System (INIS)

    Wang Baoxiang; Rozynek, Zbigniew; Fossum, Jon Otto; Knudsen, Kenneth D; Yu Yingda

    2012-01-01

    A series of nanostructured titanium oxide particles were synthesized by a simple wet chemical method and characterized by means of small-angle x-ray scattering (SAXS)/wide-angle x-ray scattering (WAXS), atomic force microscope (AFM), scanning electron microscope (SEM), transmission electron microscope (TEM), thermal analysis, and rheometry. Tetrabutyl titanate (TBT) and ethylene glycol (EG) can be combined to form either TiO x nanowires or smooth nanorods, and the molar ratio of TBT:EG determines which of these is obtained. Therefore, TiO x nanorods with a highly rough surface can be obtained by hydrolysis of TBT with the addition of cetyl-trimethyl-ammonium bromide (CTAB) as surfactant in an EG solution. Furthermore, TiO x nanorods with two sharp ends can be obtained by hydrolysis of TBT with the addition of salt (LiCl) in an EG solution. The AFM results show that the TiO x nanorods with rough surfaces are formed by the self-assembly of TiO x nanospheres. The electrorheological (ER) effect was investigated using a suspension of titanium oxide nanowires or nanorods dispersed in silicone oil. Oil suspensions of titanium oxide nanowires or nanorods exhibit a dramatic reorganization when submitted to a strong DC electric field and the particles aggregate to form chain-like structures along the direction of applied electric field. Two-dimensional SAXS images from chains of anisotropically shaped particles exhibit a marked asymmetry in the SAXS patterns, reflecting the preferential self-assembly of the particles in the field. The suspension of rough TiO x nanorods shows stronger ER properties than that of the other nanostructured TiO x particles. We find that the particle surface roughness plays an important role in modification of the dielectric properties and in the enhancement of the ER effect. (paper)

  19. Guided self-assembly of nanostructured titanium oxide

    Science.gov (United States)

    Wang, Baoxiang; Rozynek, Zbigniew; Fossum, Jon Otto; Knudsen, Kenneth D.; Yu, Yingda

    2012-02-01

    A series of nanostructured titanium oxide particles were synthesized by a simple wet chemical method and characterized by means of small-angle x-ray scattering (SAXS)/wide-angle x-ray scattering (WAXS), atomic force microscope (AFM), scanning electron microscope (SEM), transmission electron microscope (TEM), thermal analysis, and rheometry. Tetrabutyl titanate (TBT) and ethylene glycol (EG) can be combined to form either TiOx nanowires or smooth nanorods, and the molar ratio of TBT:EG determines which of these is obtained. Therefore, TiOx nanorods with a highly rough surface can be obtained by hydrolysis of TBT with the addition of cetyl-trimethyl-ammonium bromide (CTAB) as surfactant in an EG solution. Furthermore, TiOx nanorods with two sharp ends can be obtained by hydrolysis of TBT with the addition of salt (LiCl) in an EG solution. The AFM results show that the TiOx nanorods with rough surfaces are formed by the self-assembly of TiOx nanospheres. The electrorheological (ER) effect was investigated using a suspension of titanium oxide nanowires or nanorods dispersed in silicone oil. Oil suspensions of titanium oxide nanowires or nanorods exhibit a dramatic reorganization when submitted to a strong DC electric field and the particles aggregate to form chain-like structures along the direction of applied electric field. Two-dimensional SAXS images from chains of anisotropically shaped particles exhibit a marked asymmetry in the SAXS patterns, reflecting the preferential self-assembly of the particles in the field. The suspension of rough TiOx nanorods shows stronger ER properties than that of the other nanostructured TiOx particles. We find that the particle surface roughness plays an important role in modification of the dielectric properties and in the enhancement of the ER effect.

  20. Highly n-Type Titanium Oxide as an Electronically Active Support for Platinum in the Catalytic Oxidation of Carbon Monoxide

    KAUST Repository

    Baker, L. Robert

    2011-08-18

    The role of the oxide-metal interface in determining the activity and selectivity of chemical reactions catalyzed by metal particles on an oxide support is an important topic in science and industry. A proposed mechanism for this strong metal-support interaction is electronic activation of surface adsorbates by charge carriers. Motivated by the goal of using electronic activation to drive nonthermal chemistry, we investigated the ability of the oxide support to mediate charge transfer. We report an approximately 2-fold increase in the turnover rate of catalytic carbon monoxide oxidation on platinum nanoparticles supported on stoichiometric titanium dioxide (TiO2) when the TiO2 is made highly n-type by fluorine (F) doping. However, for nonstoichiometric titanium oxide (TiOX<2) the effect of F on the turnover rate is negligible. Studies of the titanium oxide electronic structure show that the energy of free electrons in the oxide determines the rate of reaction. These results suggest that highly n-type TiO2 electronically activates adsorbed oxygen (O) by electron spillover to form an active O- intermediate. © 2011 American Chemical Society.

  1. Leakage Current Degradation Due to Ion Drift and Diffusion in Tantalum and Niobium Oxide Capacitors

    Directory of Open Access Journals (Sweden)

    Kuparowitz Martin

    2017-06-01

    Full Text Available High temperature and high electric field applications in tantalum and niobium capacitors are limited by the mechanism of ion migration and field crystallization in a tantalum or niobium pentoxide insulating layer. The study of leakage current (DCL variation in time as a result of increasing temperature and electric field might provide information about the physical mechanism of degradation. The experiments were performed on tantalum and niobium oxide capacitors at temperatures of about 125°C and applied voltages ranging up to rated voltages of 35 V and 16 V for tantalum and niobium oxide capacitors, respectively. Homogeneous distribution of oxygen vacancies acting as positive ions within the pentoxide layer was assumed before the experiments. DCL vs. time characteristics at a fixed temperature have several phases. At the beginning of ageing the DCL increases exponentially with time. In this period ions in the insulating layer are being moved in the electric field by drift only. Due to that the concentration of ions near the cathode increases producing a positively charged region near the cathode. The electric field near the cathode increases and the potential barrier between the cathode and insulating layer decreases which results in increasing DCL. However, redistribution of positive ions in the insulator layer leads to creation of a ion concentration gradient which results in a gradual increase of the ion diffusion current in the direction opposite to the ion drift current component. The equilibrium between the two for a given temperature and electric field results in saturation of the leakage current value. DCL vs. time characteristics are described by the exponential stretched law. We found that during the initial part of ageing an exponent n = 1 applies. That corresponds to the ion drift motion only. After long-time application of the electric field at a high temperature the DCL vs. time characteristics are described by the exponential

  2. Modification of titanium oxide membranes by Pt electrodeposition

    International Nuclear Information System (INIS)

    Avalle, L.; Santos, E.; Leiva, E.P.M.; Macagno, V.A.

    1990-01-01

    Electrochemistry techniques mainly voltamperometry and measures of impedance with titanium oxides changed by platinum atoms incorporation, were studied. This changes production some alteration in the physical chemical and electrocatalytic properties, as an example the improvement of corrosion resistance and the uses in nuclear industry. (author)

  3. Evidence of preferential diffusion and segregation of impurities at grain boundaries in very pure niobium used for radiofrequency cavities

    International Nuclear Information System (INIS)

    Antoine, C.; Bonin, B.; Safa, H.; Chevarier, A.; Chevarier, N.; Roux, B.

    1996-01-01

    Grain boundaries (GB) of titaniferous, heat treated and then etched niobium have been observed by nuclear microprobe analysis. The very small area of the probe allows to measure by PIXE quantities of titanium as low as one monolayer at the GB. Concentrations of titanium as high as some atomic percent were found on 6 μm etched samples, giving indication of a preferential diffusion and/or segregation at GB. Titanium was detectable also on 15 μm etched samples but was bellow the sensitivity of the microprobe for 35 μm etched samples. (author)

  4. Molecular and physiological responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis

    Science.gov (United States)

    - Changes in tissue transcriptomes and productivity of Arabidopsis thaliana were investigated during exposure of plants to two widely-used engineered metal oxide nanoparticles, titanium dioxide (nano-titanium) and cerium dioxide (nano-cerium). Microarray analyses confirmed that e...

  5. Fine-scale precipitation and mechanical properties of thin slab processed titanium-niobium bearing high strength steels

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Z. [Center for Structural and Functional Materials, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70503 (United States); Misra, R.D.K., E-mail: dmisra@louisiana.edu [Center for Structural and Functional Materials, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70503 (United States); O' Malley, R. [Nucor Steel Decatur, LLC, 4301 Iverson Blvd., Trinity, AL 35673 (United States); Jansto, S.J. [CBMM-Reference Metals Company, 1000 Old Pond Road, Bridgeville, PA 15017 (United States)

    2011-08-25

    Highlights: {yields} Precipitation and mechanical behavior of Ti-Nb and Ti-Nb-Mo-V steels were elucidated. {yields} Distribution of precipitates was analyzed with microscopy and diffraction pattern. {yields} During austenite-ferrite transformation, interface precipitation of NbC was observed. {yields} Epitaxial precipitation of NbC on TiC surface results in mixed precipitates Ti(Nb)C. - Abstract: We describe here the precipitation behavior and mechanical properties of 560 MPa Ti-Nb and 770 MPa Ti-Nb-Mo-V steels. The precipitation characteristics were analyzed in terms of chemistry and size distribution of precipitates, with particular focus on the crystallography of precipitates through an analysis of electron diffraction patterns. In addition to pure carbides (NbC, TiC, Mo{sub 2}C, and VC), Nb containing titanium-rich carbides were also observed. These precipitates were of a size range of 4-20 nm. The mechanism of formation of these Ti-rich niobium containing carbides is postulated to involve epitaxial nucleation of NbC on previously precipitated TiC. Interface precipitation of NbC was an interesting observation in compact strip processing which is characterized by an orientation relationship of [0 0 1]{sub NbC}//[0 0 1]{sub {alpha}-Fe}, implying that the precipitation of NbC occurred during austenite-ferrite transformation.

  6. Fine-scale precipitation and mechanical properties of thin slab processed titanium-niobium bearing high strength steels

    International Nuclear Information System (INIS)

    Jia, Z.; Misra, R.D.K.; O'Malley, R.; Jansto, S.J.

    2011-01-01

    Highlights: → Precipitation and mechanical behavior of Ti-Nb and Ti-Nb-Mo-V steels were elucidated. → Distribution of precipitates was analyzed with microscopy and diffraction pattern. → During austenite-ferrite transformation, interface precipitation of NbC was observed. → Epitaxial precipitation of NbC on TiC surface results in mixed precipitates Ti(Nb)C. - Abstract: We describe here the precipitation behavior and mechanical properties of 560 MPa Ti-Nb and 770 MPa Ti-Nb-Mo-V steels. The precipitation characteristics were analyzed in terms of chemistry and size distribution of precipitates, with particular focus on the crystallography of precipitates through an analysis of electron diffraction patterns. In addition to pure carbides (NbC, TiC, Mo 2 C, and VC), Nb containing titanium-rich carbides were also observed. These precipitates were of a size range of 4-20 nm. The mechanism of formation of these Ti-rich niobium containing carbides is postulated to involve epitaxial nucleation of NbC on previously precipitated TiC. Interface precipitation of NbC was an interesting observation in compact strip processing which is characterized by an orientation relationship of [0 0 1] NbC //[0 0 1] α-Fe , implying that the precipitation of NbC occurred during austenite-ferrite transformation.

  7. Self-cleaning glasses containing nanostructured titanium oxide

    International Nuclear Information System (INIS)

    Araujo, A.; Alves, A.K.; Berutti, F.A.; Bergmann, C.P.

    2010-01-01

    Using the electrospinning technique nanofibers of titanium oxide were synthesized. As precursor materials, titanium propoxide and a solution of polyvinylpyrrolidone were used. After the electrospinning process, the non-tissue material obtained was heat treated and characterized by X-ray diffraction to determine the phase crystallinity, and SEM to analyze the microstructure of the fibers. After ultrasound dispersion of this material in isopropyl alcohol, the glass coatings were made by dip-coating methodology. The removal velocity was kept constant, but the solution composition was varied to obtain a transparent and photo active film. The film was characterized by the contact angle of a water droplet in its surface (hydrophilicity), the transparency was evaluated using a spectrophotometer and the photocatalytic activity of the film was also evaluated. (author)

  8. Dehydration of xylose to furfural over MCM-41-supported niobium-oxide catalysts.

    Science.gov (United States)

    García-Sancho, Cristina; Sádaba, Irantzu; Moreno-Tost, Ramón; Mérida-Robles, Josefa; Santamaría-González, José; López-Granados, Manuel; Maireles-Torres, Pedro

    2013-04-01

    A series of silica-based MCM-41-supported niobium-oxide catalysts are prepared, characterized by using XRD, N2 adsorption-desorption, X-ray photoelectron spectroscopy, Raman spectroscopy, and pyridine adsorption coupled to FTIR spectroscopy, and tested for the dehydration of D-xylose to furfural. Under the operating conditions used all materials are active in the dehydration of xylose to furfural (excluding the MCM-41 silica support). The xylose conversion increases with increasing Nb2 O5 content. At a loading of 16 wt % Nb2 O5 , 74.5 % conversion and a furfural yield of 36.5 % is achieved at 170 °C, after 180 min reaction time. Moreover, xylose conversion and furfural yield increase with the reaction time and temperature, attaining 82.8 and 46.2 %, respectively, at 190 °C and after 100 min reaction time. Notably, the presence of NaCl in the reaction medium further increases the furfural yield (59.9 % at 170 °C after 180 min reaction time). Moreover, catalyst reutilization is demonstrated by performing at least three runs with no loss of catalytic activity and without the requirement for an intermediate regeneration step. No significant niobium leaching is observed, and a relationship between the structure of the catalyst and the activity is proposed. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Nano-thick calcium oxide armed titanium: boosts bone cells against methicillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    Cao, Huiliang; Qin, Hui; Zhao, Yaochao; Jin, Guodong; Lu, Tao; Meng, Fanhao; Zhang, Xianlong; Liu, Xuanyong

    2016-02-22

    Since the use of systemic antibiotics for preventing acute biomaterial-associated infections (BAIs) may build up bacterial resistance and result in huge medical costs and unpredictable mortality, new precaution strategies are required. Here, it demonstrated that titanium armed with a nano-thick calcium oxide layer was effective on averting methicillin-resistant Staphylococcus aureus (MRSA) infections in rabbits. The calcium oxide layer was constructed by, firstly, injecting of metallic calcium into titanium via a plasma immersion ion implantation process, and then transforming the outer most surface into oxide by exposing to the atmosphere. Although the calcium oxide armed titanium had a relative low reduction rate (~74%) in growth of MRSA in vitro, it could markedly promote the osteogenic differentiation of bone marrow stem cells (BMSCs), restore local bone integration against the challenge of MRSA, and decrease the incidence of MRSA infection with a rate of 100% (compared to the titanium control). This study demonstrated for the first time that calcium, as one of the major elements in a human body, could be engineered to avert MRSA infections, which is promising as a safe precaution of disinfection for implantable biomedical devices.

  10. Nano-thick calcium oxide armed titanium: boosts bone cells against methicillin-resistant Staphylococcus aureus

    Science.gov (United States)

    Cao, Huiliang; Qin, Hui; Zhao, Yaochao; Jin, Guodong; Lu, Tao; Meng, Fanhao; Zhang, Xianlong; Liu, Xuanyong

    2016-02-01

    Since the use of systemic antibiotics for preventing acute biomaterial-associated infections (BAIs) may build up bacterial resistance and result in huge medical costs and unpredictable mortality, new precaution strategies are required. Here, it demonstrated that titanium armed with a nano-thick calcium oxide layer was effective on averting methicillin-resistant Staphylococcus aureus (MRSA) infections in rabbits. The calcium oxide layer was constructed by, firstly, injecting of metallic calcium into titanium via a plasma immersion ion implantation process, and then transforming the outer most surface into oxide by exposing to the atmosphere. Although the calcium oxide armed titanium had a relative low reduction rate (~74%) in growth of MRSA in vitro, it could markedly promote the osteogenic differentiation of bone marrow stem cells (BMSCs), restore local bone integration against the challenge of MRSA, and decrease the incidence of MRSA infection with a rate of 100% (compared to the titanium control). This study demonstrated for the first time that calcium, as one of the major elements in a human body, could be engineered to avert MRSA infections, which is promising as a safe precaution of disinfection for implantable biomedical devices.

  11. A niobium and tantalum co-doped perovskite cathode for solid oxide fuel cells operating below 500 °C

    Science.gov (United States)

    Li, Mengran; Zhao, Mingwen; Li, Feng; Zhou, Wei; Peterson, Vanessa K.; Xu, Xiaoyong; Shao, Zongping; Gentle, Ian; Zhu, Zhonghua

    2017-01-01

    The slow activity of cathode materials is one of the most significant barriers to realizing the operation of solid oxide fuel cells below 500 °C. Here we report a niobium and tantalum co-substituted perovskite SrCo0.8Nb0.1Ta0.1O3−δ as a cathode, which exhibits high electroactivity. This cathode has an area-specific polarization resistance as low as ∼0.16 and ∼0.68 Ω cm2 in a symmetrical cell and peak power densities of 1.2 and 0.7 W cm−2 in a Gd0.1Ce0.9O1.95-based anode-supported fuel cell at 500 and 450 °C, respectively. The high performance is attributed to an optimal balance of oxygen vacancies, ionic mobility and surface electron transfer as promoted by the synergistic effects of the niobium and tantalum. This work also points to an effective strategy in the design of cathodes for low-temperature solid oxide fuel cells. PMID:28045088

  12. Characterization of Titanium Oxide Nanoparticles Obtained by Hydrolysis Reaction of Ethylene Glycol Solution of Alkoxide

    OpenAIRE

    Naofumi Uekawa; Naoya Endo; Keisuke Ishii; Takashi Kojima; Kazuyuki Kakegawa

    2012-01-01

    Transparent and stable sols of titanium oxide nanoparticles were obtained by heating a mixture of ethylene glycol solution of titanium tetraisopropoxide (TIP) and a NH3 aqueous solution at 368 K for 24 h. The concentration of NH3 aqueous solution affected the structure of the obtained titanium oxide nanoparticles. For NH3 aqueous solution concentrations higher than 0.2 mol/L, a mixture of anatase TiO2 nanoparticles and layered titanic acid nanoparticles was obtained. The obtained sol was very...

  13. Phases quantification in titanium oxides by means of X-ray diffraction

    International Nuclear Information System (INIS)

    Macias B, L.R.; Garcia C, R.M.; Ita T, A. de; Chavez R, A.

    2001-01-01

    In this work two phases of titanium oxides are quantified which belong to the same crystalline system and by means of a computer program named Quanto created by the first author, contains the information for calculating the absorption coefficients, it can be quantified phases having one of the pure phases and the problem samples. In order to perform this work different mixtures of different titanium oxides were prepared measuring by means of the X-ray diffraction technique in the Siemens X-ray diffractometer of ININ which were processed with the Peakfit package and also they were evaluated by means of the computer program with the necessary information finding acceptable results. (Author)

  14. Synthesis of self-detached nanoporous titanium-based metal oxide

    International Nuclear Information System (INIS)

    Hu, F.; Wen, Y.; Chan, K.C.; Yue, T.M.; Zhou, Y.Z.; Zhu, S.L.; Yang, X.J.

    2015-01-01

    In this study, self-detached nanoporous titanium-based metal oxide was synthesized for the first time by ultrafast anodization in a fluoride-free electrolyte containing 10% HNO 3 . The nanoporous oxide has through-holes with diameters ranging from 10 to 60 nm. The as-formed oxides are amorphous, and were transformed to crystalline structures by annealing. The performance of a dye sensitized solar cell using nanoporpous Ti–10Zr oxide (TZ10) was further studied. It was found that the TZ10 film could increase both the short-circuit current and the open-circuit photovoltage of the solar cell. The overall efficiency of the solar cell was 6.99%, an increase of 20.7% as compared to that using a pure TiO 2 (P25) film. - Graphical abstract: The nanoporous Ti–xZr(x=10, 30) oxide layers are fabricated by anodizing in a dilute nitric acid solvent. The power conversion efficiency of the DSSC by a covering of a Ti–10Zr thin film is increased by 20.7%, with an η of 7.69% , a short circuit current of 12.4 mA/cm 2 , a open circuit voltage of 0.833 V, and a fill factor of 0.679. - Highlights: • Self-detached nanoporous titanium-based metal (TiZr) oxide was synthesized. • The TiZr oxides have through-hole nanopores with diameters ranging from 10 to 60 nm. • The nanoporous Ti–10Zr oxide can improve the power conversion efficiency of a DSSC

  15. Synthesis of self-detached nanoporous titanium-based metal oxide

    Energy Technology Data Exchange (ETDEWEB)

    Hu, F. [Advanced Manufacturing Technology Research Center, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University (Hong Kong); Jiangxi Key Laboratory of Advanced Ceramic Materials, School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jiangxi 343001 (China); Wen, Y. [Jiangxi Key Laboratory of Advanced Ceramic Materials, School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jiangxi 343001 (China); Chan, K.C., E-mail: mfkcchan@inet.polyu.edu.hk [Advanced Manufacturing Technology Research Center, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University (Hong Kong); Yue, T.M. [Advanced Manufacturing Technology Research Center, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University (Hong Kong); Zhou, Y.Z. [Jiangxi Key Laboratory of Advanced Ceramic Materials, School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jiangxi 343001 (China); Zhu, S.L.; Yang, X.J. [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2015-09-15

    In this study, self-detached nanoporous titanium-based metal oxide was synthesized for the first time by ultrafast anodization in a fluoride-free electrolyte containing 10% HNO{sub 3}. The nanoporous oxide has through-holes with diameters ranging from 10 to 60 nm. The as-formed oxides are amorphous, and were transformed to crystalline structures by annealing. The performance of a dye sensitized solar cell using nanoporpous Ti–10Zr oxide (TZ10) was further studied. It was found that the TZ10 film could increase both the short-circuit current and the open-circuit photovoltage of the solar cell. The overall efficiency of the solar cell was 6.99%, an increase of 20.7% as compared to that using a pure TiO{sub 2} (P25) film. - Graphical abstract: The nanoporous Ti–xZr(x=10, 30) oxide layers are fabricated by anodizing in a dilute nitric acid solvent. The power conversion efficiency of the DSSC by a covering of a Ti–10Zr thin film is increased by 20.7%, with an η of 7.69% , a short circuit current of 12.4 mA/cm{sup 2}, a open circuit voltage of 0.833 V, and a fill factor of 0.679. - Highlights: • Self-detached nanoporous titanium-based metal (TiZr) oxide was synthesized. • The TiZr oxides have through-hole nanopores with diameters ranging from 10 to 60 nm. • The nanoporous Ti–10Zr oxide can improve the power conversion efficiency of a DSSC.

  16. Characterization of Niobium Platings Obtained from NaCl-KCl Melts

    DEFF Research Database (Denmark)

    Gillesberg, Bo; Barner, Jens H. Von; Bjerrum, Niels

    1998-01-01

    -uniform in thickness. At temperatures below 550°C no niobium metal could be identified in the product.When metallic nickel was used as substrate intermetallic compounds (e.g. NbNi3) were formed in the interface between the substrate and the deposit. This resulted in poor adherence of the deposit. In the case of AISI......316 stainless steel substrates no intermetallic phases were observed. Further an excellent adhesion of the deposited niobium layer was obtained.Deposits (on nickel substrates) from NaCl-KCl melts at 750°C with oxide added (molar ratio O/Nb greater than 0.5) were thin and consisted of niobium...

  17. Surface analyses of electropolished niobium samples for superconducting radio frequency cavity

    International Nuclear Information System (INIS)

    Tyagi, P. V.; Nishiwaki, M.; Saeki, T.; Sawabe, M.; Hayano, H.; Noguchi, T.; Kato, S.

    2010-01-01

    The performance of superconducting radio frequency niobium cavities is sometimes limited by contaminations present on the cavity surface. In the recent years extensive research has been done to enhance the cavity performance by applying improved surface treatments such as mechanical grinding, electropolishing (EP), chemical polishing, tumbling, etc., followed by various rinsing methods such as ultrasonic pure water rinse, alcoholic rinse, high pressure water rinse, hydrogen per oxide rinse, etc. Although good cavity performance has been obtained lately by various post-EP cleaning methods, the detailed nature about the surface contaminants is still not fully characterized. Further efforts in this area are desired. Prior x-ray photoelectron spectroscopy (XPS) analyses of EPed niobium samples treated with fresh EP acid, demonstrated that the surfaces were covered mainly with the niobium oxide (Nb 2 O 5 ) along with carbon, in addition a small quantity of sulfur and fluorine were also found in secondary ion mass spectroscopy (SIMS) analysis. In this article, the authors present the analyses of surface contaminations for a series of EPed niobium samples located at various positions of a single cell niobium cavity followed by ultrapure water rinsing as well as our endeavor to understand the aging effect of EP acid solution in terms of contaminations presence at the inner surface of the cavity with the help of surface analytical tools such as XPS, SIMS, and scanning electron microscope at KEK.

  18. Nonstoichiometric Titanium Oxides via Pulsed Laser Ablation in Water

    Directory of Open Access Journals (Sweden)

    Chen Shuei-Yuan

    2010-01-01

    Full Text Available Abstract Titanium oxide compounds TiO,Ti2O3, and TiO2 with a considerable extent of nonstoichiometry were fabricated by pulsed laser ablation in water and characterized by X-ray/electron diffraction, X-ray photoelectron spectroscopy and electron energy loss spectroscopy. The titanium oxides were found to occur as nanoparticle aggregates with a predominant 3+ charge and amorphous microtubes when fabricated under an average power density of ca. 1 × 108W/cm2 and 1011W/cm2, respectively followed by dwelling in water. The crystalline colloidal particles have a relatively high content of Ti2+ and hence a lower minimum band gap of 3.4 eV in comparison with 5.2 eV for the amorphous state. The protonation on both crystalline and amorphous phase caused defects, mainly titanium rather than oxygen vacancies and charge and/or volume-compensating defects. The hydrophilic nature and presumably varied extent of undercoordination at the free surface of the amorphous lamellae accounts for their rolling as tubes at water/air and water/glass interfaces. The nonstoichiometric titania thus fabricated have potential optoelectronic and catalytic applications in UV–visible range and shed light on the Ti charge and phase behavior of titania-water binary in natural shock occurrence.

  19. Effect of pH value and delayed-action time on catalytic activity of tartrate niobium(5) complexes

    International Nuclear Information System (INIS)

    Alekseeva, I.I.; Chernysheva, L.M.; Bobkova, M.V.; Solomonov, V.A.

    1987-01-01

    Results of thermokinetic study of catalytic activity of niobium (5) tartrate solutions in the oxidation of ascorbic acid with hydrogen peroxide are presented. Addition of tartrate-ions to a concentration of 1x10 -2 M and higher in niobium (5) diluted solution enhances the catalytic activity of Nb(5). Alkaline tartrate solutions of niobium (5) may be used as standard solutions in determination of niobium microquantities by kinetic method

  20. Application of cylinder symmetry to iron and titanium oxidation by oxygen or hydrogen-water vapour mixes

    International Nuclear Information System (INIS)

    Raynaud, Pierre

    1980-01-01

    This research thesis addresses the study of the oxidation reaction in the case of corrosion of iron by oxygen, hydrogen sulphide or hydrogen-water vapour mixes, and in the case of oxidation of titanium and of titanium nitride by hydrogen-water vapour mixes. It first addresses the corrosion of iron by oxygen with an experiment performed in cylinder symmetry: description of operational conditions, discussion of kinetic curves, development of a law of generation of multiple layers in cylinder symmetry, analytical exploitation of experimental results. The second part addresses the oxidation of iron by hydrogen-water vapour mixes: experimental conditions, influence of temperature on kinetics, micrographic study (oxide morphology, coating morphology, interpretation of differences with the case of plane symmetry), discussion of the influence of cylinder symmetry on oxidation kinetics. The third part addresses the oxidation of titanium by hydrogen-water vapour mixes: global kinetic evolution, reaction products and micrographic examination, morphology and texture studies, discussion of the oxidation mechanism and of cylinder symmetry [fr

  1. The Otto Aufranc Award: Enhanced Biocompatibility of Stainless Steel Implants by Titanium Coating and Microarc Oxidation

    Science.gov (United States)

    Lim, Young Wook; Kwon, Soon Yong; Sun, Doo Hoon

    2010-01-01

    Background Stainless steel is one of the most widely used biomaterials for internal fixation devices, but is not used in cementless arthroplasty implants because a stable oxide layer essential for biocompatibility cannot be formed on the surface. We applied a Ti electron beam coating, to form oxide layer on the stainless steel surface. To form a thicker oxide layer, we used a microarc oxidation process on the surface of Ti coated stainless steel. Modification of the surface using Ti electron beam coating and microarc oxidation could improve the ability of stainless steel implants to osseointegrate. Questions/purposes The ability of cells to adhere to grit-blasted, titanium-coated, microarc-oxidated stainless steel in vitro was compared with that of two different types of surface modifications, machined and titanium-coated, and microarc-oxidated. Methods We performed energy-dispersive x-ray spectroscopy and scanning electron microscopy investigations to assess the chemical composition and structure of the stainless steel surfaces and cell morphology. The biologic responses of an osteoblastlike cell line (SaOS-2) were examined by measuring proliferation (cell proliferation assay), differentiation (alkaline phosphatase activity), and attraction ability (cell migration assay). Results Cell proliferation, alkaline phosphatase activity, migration, and adhesion were increased in the grit-blasted, titanium-coated, microarc-oxidated group compared to the two other groups. Osteoblastlike cells on the grit-blasted, titanium-coated, microarc-oxidated surface were strongly adhered, and proliferated well compared to those on the other surfaces. Conclusions The surface modifications we used (grit blasting, titanium coating, microarc oxidation) enhanced the biocompatibility (proliferation and migration of osteoblastlike cells) of stainless steel. Clinical Relevance This process is not unique to stainless steel; it can be applied to many metals to improve their biocompatibility

  2. Precipitation behavior during thin slab thermomechanical processing and isothermal aging of copper-bearing niobium-microalloyed high strength structural steels: The effect on mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Misra, R.D.K., E-mail: dmisra@louisiana.edu [Center for Structural and Functional Materials, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70503 (United States); Jia, Z. [Center for Structural and Functional Materials, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70503 (United States); O' Malley, R. [Nucor Steel Decatur, LLC Sheet Mill, 4301, Iverson Blvd., Trinity, AL 35673 (United States); Jansto, S.J. [CBMM-Reference Metals Company, 1000 Old Pond Road, Bridgeville, PA 15017 (United States)

    2011-11-15

    Highlights: {yields} Copper does not significantly influence toughness. {yields} Copper precipitation during aging occurs at dislocations. {yields} Precipitation of copper and carbides is mutually exclusive. - Abstract: We describe here the precipitation behavior of copper and fine-scale carbides during thermo-mechanical processing and isothermal aging of copper-bearing niobium-microalloyed high strength steels. During thermo-mechanical processing, precipitation of {epsilon}-copper occurs in polygonal ferrite and at the austenite-ferrite interface. In contrast, during isothermal aging, nucleation of {epsilon}-copper precipitation occurs at dislocations. In the three different chemistries investigated, the increase in strength associated with copper during aging results only in a small decrease in impact toughness, implying that copper precipitates do not seriously impair toughness, and can be considered as a viable strengthening element in microalloyed steels. Precipitation of fine-scale niobium carbides occurs extensively at dislocations and within ferrite matrix together with vanadium carbides. In the presence of titanium, titanium carbides act as a nucleus for niobium carbide formation. Irrespective of the nature of carbides, copper precipitates and carbides are mutually exclusive.

  3. Precipitation behavior during thin slab thermomechanical processing and isothermal aging of copper-bearing niobium-microalloyed high strength structural steels: The effect on mechanical properties

    International Nuclear Information System (INIS)

    Misra, R.D.K.; Jia, Z.; O'Malley, R.; Jansto, S.J.

    2011-01-01

    Highlights: → Copper does not significantly influence toughness. → Copper precipitation during aging occurs at dislocations. → Precipitation of copper and carbides is mutually exclusive. - Abstract: We describe here the precipitation behavior of copper and fine-scale carbides during thermo-mechanical processing and isothermal aging of copper-bearing niobium-microalloyed high strength steels. During thermo-mechanical processing, precipitation of ε-copper occurs in polygonal ferrite and at the austenite-ferrite interface. In contrast, during isothermal aging, nucleation of ε-copper precipitation occurs at dislocations. In the three different chemistries investigated, the increase in strength associated with copper during aging results only in a small decrease in impact toughness, implying that copper precipitates do not seriously impair toughness, and can be considered as a viable strengthening element in microalloyed steels. Precipitation of fine-scale niobium carbides occurs extensively at dislocations and within ferrite matrix together with vanadium carbides. In the presence of titanium, titanium carbides act as a nucleus for niobium carbide formation. Irrespective of the nature of carbides, copper precipitates and carbides are mutually exclusive.

  4. Accurate X-ray diffraction studies of KTiOPO{sub 4} single crystals doped with niobium

    Energy Technology Data Exchange (ETDEWEB)

    Novikova, N. E., E-mail: natnov@ns.crys.ras.ru; Sorokina, N. I.; Alekseeva, O. A.; Verin, I. A. [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Crystallography and Photonics Federal Scientific Research Center (Russian Federation); Kharitonova, E. P.; Orlova, E. I.; Voronkova, V. I. [Moscow State University, Faculty of Physics (Russian Federation)

    2017-01-15

    Single crystals of potassium titanyl phosphate doped with 4% of niobium (КТР:4%Nb) and 6% of niobium (KTP:6%Nb) are studied by accurate X-ray diffraction at room temperature. The niobium atoms are localized near the Ti1 and Ti2 atomic positions, and their positions are for the first time refined independent of the titanium atomic positions. Maps of difference electron density in the vicinity of K1 and K2 atomic positions are analyzed. It is found that in the structure of crystal КТР:4%Nb, additional positions of K atoms are located farther from the main positions and from each other than in КТР and KTP:6%Nb crystals. The nonuniform distribution of electron density found in the channels of the КТР:4%Nb structure is responsible for ~20% increase in the signal of second harmonic generation.

  5. Transparent conducting oxide films of group V doped titania prepared by aqueous chemical solution deposition

    International Nuclear Information System (INIS)

    Elen, Ken; Capon, Boris; De Dobbelaere, Christopher; Dewulf, Daan; Peys, Nick; Detavernier, Christophe; Hardy, An; Van Bael, Marlies K.

    2014-01-01

    Transparent conducting oxide (TCO) films of titania doped with vanadium (V), niobium (Nb) and tantalum (Ta) are obtained by aqueous Chemical Solution Deposition (CSD). The effect of the dopant on the crystallization and microstructure of the resulting films is examined by means of X-ray diffraction and electron microscopy. During annealing of the thin films, in-situ characterization of the crystal structure and sheet resistance is carried out. Niobium doped anatase films, obtained after annealing in forming gas, show a resistivity of 0,28 Ohm cm, which is the lowest resistivity reported for a solution deposited anatase-based TCO so far. Here, we demonstrate that aqueous CSD may provide a strategy for scalable TCO production in the future. - Highlights: • Aqueous chemical solution deposition of doped titanium dioxide • Doping delays the phase transition from anatase to rutile • Lowest resistivity after doping with niobium and annealing in Forming Gas • Transparency higher than 80% in the visible range of optical spectrum

  6. Transparent conducting oxide films of group V doped titania prepared by aqueous chemical solution deposition

    Energy Technology Data Exchange (ETDEWEB)

    Elen, Ken [Inorganic and Physical Chemistry, Institute for Materials Research, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek (Belgium); IMEC vzw division IMOMEC, Agoralaan Building D, B-3590 Diepenbeek (Belgium); Strategisch Initiatief Materialen (SIM), SoPPoM Program (Belgium); Capon, Boris [Strategisch Initiatief Materialen (SIM), SoPPoM Programm (Belgium); Coating and Contacting of Nanostructures, Ghent University, Krijgslaan 281 S1, B-9000 Ghent (Belgium); De Dobbelaere, Christopher [Inorganic and Physical Chemistry, Institute for Materials Research, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek (Belgium); Dewulf, Daan [Inorganic and Physical Chemistry, Institute for Materials Research, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek (Belgium); IMEC vzw division IMOMEC, Agoralaan Building D, B-3590 Diepenbeek (Belgium); Peys, Nick [Inorganic and Physical Chemistry, Institute for Materials Research, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek (Belgium); IMEC vzw, Kapeldreef 75, B-3001 Heverlee (Belgium); Detavernier, Christophe [Coating and Contacting of Nanostructures, Ghent University, Krijgslaan 281 S1, B-9000 Ghent (Belgium); Hardy, An [Inorganic and Physical Chemistry, Institute for Materials Research, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek (Belgium); IMEC vzw division IMOMEC, Agoralaan Building D, B-3590 Diepenbeek (Belgium); Van Bael, Marlies K., E-mail: marlies.vanbael@uhasselt.be [Inorganic and Physical Chemistry, Institute for Materials Research, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek (Belgium); IMEC vzw division IMOMEC, Agoralaan Building D, B-3590 Diepenbeek (Belgium)

    2014-03-31

    Transparent conducting oxide (TCO) films of titania doped with vanadium (V), niobium (Nb) and tantalum (Ta) are obtained by aqueous Chemical Solution Deposition (CSD). The effect of the dopant on the crystallization and microstructure of the resulting films is examined by means of X-ray diffraction and electron microscopy. During annealing of the thin films, in-situ characterization of the crystal structure and sheet resistance is carried out. Niobium doped anatase films, obtained after annealing in forming gas, show a resistivity of 0,28 Ohm cm, which is the lowest resistivity reported for a solution deposited anatase-based TCO so far. Here, we demonstrate that aqueous CSD may provide a strategy for scalable TCO production in the future. - Highlights: • Aqueous chemical solution deposition of doped titanium dioxide • Doping delays the phase transition from anatase to rutile • Lowest resistivity after doping with niobium and annealing in Forming Gas • Transparency higher than 80% in the visible range of optical spectrum.

  7. Radiopacity and cytotoxicity of Portland cement associated with niobium oxide micro and nanoparticles.

    Science.gov (United States)

    Mestieri, Leticia Boldrin; Tanomaru-Filho, Mário; Gomes-Cornélio, Ana Livia; Salles, Loise Pedrosa; Bernardi, Maria Inês Basso; Guerreiro-Tanomaru, Juliane Maria

    2014-01-01

    Mineral Trioxide Aggregate (MTA) is composed of Portland Cement (PC) and bismuth oxide (BO). Replacing BO for niobium oxide (NbO) microparticles (Nbµ) or nanoparticles (Nbη) may improve radiopacity and bioactivity. The aim of this study was to evaluate the radiopacity and cytotoxicity of the materials: (1) PC; (2) White MTA; (3) PC+30% Nbµ; (4) PC+30% Nbη. For the radiopacity test, specimens of the different materials were radiographed along an aluminum step-wedge. For cell culture assays, Saos-2 osteoblastic-cells (ATCC HTB-85) were used. Cell viability was evaluated through MTT assay, and bioactivity was assessed by alkaline phosphatase activity assay. The results demonstrated higher radiopacity for MTA, followed by Nbµ and Nbη, which had similar values. Cell culture analysis showed that PC and PC+NbO associations promoted greater cell viability than MTA. It was concluded that the combination of PC+NbO is a potential alternative for composition of MTA.

  8. Synthesis and characterization of titanium oxide supported silica materials

    Science.gov (United States)

    Schrijnemakers, Koen

    2002-01-01

    Titania-silica materials are interesting materials for use in catalysis, both as a catalyst support as well as a catalyst itself. Titania-silica materials combine the excellent support and photocatalytic properties of titania with the high thermal and mechanical stability of silica. Moreover, the interaction of titania with silica leads to new active sites, such as acid and redox sites, that are not found on the single oxides. In this Ph.D. two recently developed deposition methods were studied and evaluated for their use to create titanium oxide supported silica materials, the Chemical Surface Coating (CSC) and the Molecular Designed Dispersion (MDD). These methods were applied to two structurally different silica supports, an amorphous silica gel and the highly ordered MCM-48. Both methods are based on the specific interaction between a titanium source and the functional groups on the silica surface. With the CSC method high amounts of titanium can be obtained. However, clustering of the titania phase is observed in most cases. The MDD method allows much lower titanium amounts to be deposited without the formation of crystallites. Only at the highest Ti loading very small crystallites are formed after calcination. MCM-48 and silica gel are both pure SiO2 materials and therefore chemically similar to each other. However, they possess a different morphology and are synthesized in a different way. As such, some authors have reported that the MCM-48 surface would be more reactive than the surface of silica gel. In our experiments however no differences could be observed that confirmed this hypothesis. In the CSC method, the same reactions were observed and similar amounts of Ti and Cl were deposited. In the case of the MDD method, no difference in the reaction mechanism was observed. However, due to the lower thermal and hydrothermal stability of the MCM-48 structure compared to silica gel, partial incorporation of Ti atoms in the pore walls of MCM-48 took place

  9. Surface analyses of electropolished niobium samples for superconducting radio frequency cavity

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, P. V.; Nishiwaki, M.; Saeki, T.; Sawabe, M.; Hayano, H.; Noguchi, T.; Kato, S. [GUAS, Tsukuba, Ibaraki 305-0801 (Japan); KEK, Tsukuba, Ibaraki 305-0801 (Japan); KAKEN Inc., Hokota, Ibaraki 311-1416 (Japan); GUAS, Tsukuba, Ibaraki 305-0801 (Japan) and KEK, Tsukuba, Ibaraki 305-0801 (Japan)

    2010-07-15

    The performance of superconducting radio frequency niobium cavities is sometimes limited by contaminations present on the cavity surface. In the recent years extensive research has been done to enhance the cavity performance by applying improved surface treatments such as mechanical grinding, electropolishing (EP), chemical polishing, tumbling, etc., followed by various rinsing methods such as ultrasonic pure water rinse, alcoholic rinse, high pressure water rinse, hydrogen per oxide rinse, etc. Although good cavity performance has been obtained lately by various post-EP cleaning methods, the detailed nature about the surface contaminants is still not fully characterized. Further efforts in this area are desired. Prior x-ray photoelectron spectroscopy (XPS) analyses of EPed niobium samples treated with fresh EP acid, demonstrated that the surfaces were covered mainly with the niobium oxide (Nb{sub 2}O{sub 5}) along with carbon, in addition a small quantity of sulfur and fluorine were also found in secondary ion mass spectroscopy (SIMS) analysis. In this article, the authors present the analyses of surface contaminations for a series of EPed niobium samples located at various positions of a single cell niobium cavity followed by ultrapure water rinsing as well as our endeavor to understand the aging effect of EP acid solution in terms of contaminations presence at the inner surface of the cavity with the help of surface analytical tools such as XPS, SIMS, and scanning electron microscope at KEK.

  10. Effect of hydrogen on stresses in anodic oxide film on titanium

    International Nuclear Information System (INIS)

    Kim, Joong-Do; Pyun, Su-Il; Seo, Masahiro

    2003-01-01

    Stresses in anodic oxide film on titanium thin film/glass electrode in pH 8.4 borate solution were investigated by a bending beam method. The increases in compressive stress observed with cathodic potential sweeps after formation of anodic oxide film were attributed to the volume expansion due to the compositional change of anodic oxide film from TiO 2 to TiO 2-x (OH) x . The instantaneous responses of changes in stress, Δσ, in the anodic oxide film to potential steps demonstrated the reversible characteristic of the TiO 2-x (OH) x formation reaction. In contrast, the transient feature of Δσ for the titanium without anodic oxide film represented the irreversible formation of TiH x at the metal/oxide interphase. The large difference in stress between with and without the oxide film, has suggested that most of stresses generated during the hydrogen absorption/desorption reside in the anodic oxide film. A linear relationship between changes in stress, Δ(Δσ) des , and electric charge, ΔQ des , during hydrogen desorption was found from the current and stress transients, manifesting that the stress changes were crucially determined by the amount of hydrogen desorbed from the oxide film. The increasing tendency of -Δ(Δσ) des with increasing number of potential steps and film formation potential were discussed in connection with the increase in desorption amount of hydrogen in the oxide film with increasing absorption/desorption cycles and oxide film thickness

  11. W-containing oxide layers obtained on aluminum and titanium by PEO as catalysts in thiophene oxidation

    Science.gov (United States)

    Rudnev, V. S.; Lukiyanchuk, I. V.; Vasilyeva, M. S.; Morozova, V. P.; Zelikman, V. M.; Tarkhanova, I. G.

    2017-11-01

    W-containing oxide layers fabricated on titanium and aluminum alloys by Plasma electrolytic oxidation (PEO) have been tested in the reaction of the peroxide oxidation of thiophene. Samples with two types of coatings have been investigated. Coatings I contained tungsten oxide in the matrix and on the surface of amorphous silica-titania or silica-alumina layers, while coatings II comprised crystalline WO3 and/or Al2(WO4)3. Aluminum-supported catalyst containing a smallest amount of transition metals in the form of tungsten oxides and manganese oxides in low oxidation levels showed high activity and stability.

  12. Micro-Arc Oxidation Enhances the Blood Compatibility of Ultrafine-Grained Pure Titanium

    Directory of Open Access Journals (Sweden)

    Lin Xu

    2017-12-01

    Full Text Available Ultrafine-grained pure titanium prepared by equal-channel angular pressing has favorable mechanical performance and does not contain alloy elements that are toxic to the human body. It has potential clinical value in applications such as cardiac valve prostheses, vascular stents, and hip prostheses. To overcome the material’s inherent thrombogenicity, surface-coating modification is a crucial pathway to enhancing blood compatibility. An electrolyte solution of sodium silicate + sodium polyphosphate + calcium acetate and the micro-arc oxidation (MAO technique were employed for in situ oxidation of an ultrafine-grained pure titanium surface. A porous coating with anatase- and rutile-phase TiO2 was generated and wettability and blood compatibility were examined. The results showed that, in comparison with ultrafine-grained pure titanium substrate, the MAO coating had a rougher surface, smaller contact angles for distilled water and higher surface energy. MAO modification effectively reduced the hemolysis rate; extended the dynamic coagulation time, prothrombin time (PT, and activated partial thromboplastin time (APTT; reduced the amount of platelet adhesion and the degree of deformation; and enhanced blood compatibility. In particular, the sample with an oxidation time of 9 min possessed the highest surface energy, largest PT and APTT values, smallest hemolysis rate, less platelet adhesion, a lesser degree of deformation, and more favorable blood compatibility. The MAO method can significantly enhance the blood compatibility of ultrafine-grained pure titanium, increasing its potential for practical applications.

  13. Voltage breakdown on niobium and copper surfaces

    International Nuclear Information System (INIS)

    Werner, G.R.; Padamsee, H.; Betzwieser, J.C.; Liu, Y.G.; Rubin, K.H.R.; Shipman, J.E.; Ying, L.T.

    2003-01-01

    Experiments have shown that voltage breakdown in superconducting niobium RF cavities is in many ways similar to voltage breakdown on niobium cathodes in DC voltage gaps; most striking are the distinctive starburst patterns and craters that mark the site of voltage breakdown in both superconducting cavities and DC vacuum gaps. Therefore, we can learn much about RF breakdown from simpler, faster DC experiments. We have direct evidence, in the form of before'' and ''after'' pictures, that breakdown events caused by high surface electric fields occur with high probability at contaminant particles on surfaces. Although the pre-breakdown behavior (field emission) seems to depend mostly on the contaminant particles present and little on the substrate, the breakdown event itself is greatly affected by the substrate-niobium, heavily oxidized niobium, electropolished copper, and diamond-machined copper cathodes lead to different kinds of breakdown events. By studying DC voltage breakdown we hope to learn more details about the processes involved in the transition from field emission to catastrophic arcing and the cratering of the surface; as well as learning how to prevent breakdown, we would like to learn how to cause breakdown, which could be important when ''processing'' cavities to reduce field emission. (author)

  14. Physicochemical and mechanical properties of zirconium oxide and niobium oxide modified Portland cement-based experimental endodontic sealers.

    Science.gov (United States)

    Viapiana, R; Flumignan, D L; Guerreiro-Tanomaru, J M; Camilleri, J; Tanomaru-Filho, M

    2014-05-01

    To evaluate the physicochemical and mechanical properties of Portland cement-based experimental sealers (ES) with different radiopacifying agents (zirconium oxide and niobium oxide micro- and nanoparticles) in comparison with the following conventional sealers: AH Plus, MTA Fillapex and Sealapex. The materials were tested for setting time, compressive strength, flow, film thickness, radiopacity, solubility, dimensional stability and formaldehyde release. Data were subjected to anova and Tukey tests (P 0.05) and lower solubility when compared with MTA Fillapex and Sealapex (P Portland cement-based experimental endodontic sealers presented physicochemical properties according to the specifications no 57 ANSI/ADA (ADA Professional Product Review, 2008) and ISO 6876 (Dentistry - Root Canal Sealing Materials, 2012, British Standards Institution, London, UK). The sealers had setting times and flow ability that was adequate for clinical use, satisfactory compressive strength and low solubility. Additional studies should be carried out with the purpose of decreasing the film thickness and to determine the ideal ratio of radiopacifying agents in Portland cement-based root canal sealers. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  15. Effect of electrolyte temperature on the formation of self-organized anodic niobium oxide microcones in hot phosphate-glycerol electrolyte

    Science.gov (United States)

    Yang, S.; Aoki, Y.; Habazaki, H.

    2011-07-01

    Nanoporous niobium oxide films with microcone-type surface morphology were formed by anodizing at 10 V in glycerol electrolyte containing 0.6 mol dm -3 K 2HPO 4 and 0.2 mol dm -3 K 3PO 4 in a temperature range of 428-453 K. The microcones appeared after prolonged anodizing, but the required time was largely reduced by increasing electrolyte temperature. The anodic oxide was initially amorphous at all temperatures, but crystalline oxide nucleated during anodizing. The anodic oxide microcones, which were crystalline, appeared on surface as a consequence of preferential chemical dissolution of initially formed amorphous oxide. The chemical dissolution of an initially formed amorphous layer was accelerated by increasing the electrolyte temperature, with negligible influence of the temperature on the morphology of microcones up to 448 K.

  16. Determination of hafnium, molybdenum, and vanadium in niobium and niobium-based alloys by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Ide, Kunikazu; Kobayashi, Takeshi; Sudo, Emiko.

    1985-01-01

    The analytical procedure is as follows: Weigh 1 g of a sample and put it into a 100 cm 3 PTFE beaker. Add 5 ml of distilled water and 5 ml of hydrofluoric acid, and then heat the solution on a hot plate, adding 3 ml of nitric acid dropwise. Dilute the solution to 100 cm 3 with distilled water. When hafnium is determined, add 2 g of diammonium titanium hexafluoride ((NH 4 ) 2 TiF 6 )) before dilution. Working standard solutions are prepared by adding the stock standard solutions of hafnium, molybdenum, and vanadium into niobium solutions. When hafnium is determined, add 2 g of (NH 4 ) 2 TiF 6 and the alloying elements in amounts corresponding to those in sample solutions into the working standard solutions. The tolerable amounts of hydrofluoric acid were 2.9 M, 2.1 M, and 3.1 M and those of nitric acid were 1.0 M, 1.6 M, and 1.6 M for hafnium, molybdenum, and vanadium, respectively. It was found that (NH 4 ) 2 TiF 6 greatly increased the sensitivity for hafnium determination. Niobium showed minus effect for hafnium and plus effect for molybdenum and vanadium. The atomic absorption of molybdenum and vanadium were not influenced by the presence of 20 % of each alloying element, while the atomic absorption of hafnium was given plus effect by 20 % of zirconium, iron, cobalt, nickel, manganese, chromium or vanadium and minus effect by 20 % tungsten. The analytical values of hafnium, molybdenum, and vanadium in niobium-based alloys by this method showed a good agreement with those by X-ray fluorescence analysis. The lower limits of determination (S/N=2) were 0.05, 0.001, and 0.002 % and the relative standard deviation were 3, 1, and 1.5 % for hafnium, molybdenum, and vanadium, respectively. (author)

  17. Cytotoxicity and Bioactivity of Calcium Silicate Cements Combined with Niobium Oxide in Different Cell Lines.

    Science.gov (United States)

    Mestieri, Leticia Boldrin; Gomes-Cornélio, Ana Lívia; Rodrigues, Elisandra Márcia; Faria, Gisele; Guerreiro-Tanomaru, Juliane Maria; Tanomaru-Filho, Mário

    2017-01-01

    The aim of this study was to evaluate the cytotoxicity and bioactivity of calcium silicate-based cements combined with niobium oxide (Nb2O5) micro and nanoparticles, comparing the response in different cell lines. This evaluation used four cell lines: two primary cultures (human dental pulp cells - hDPCs and human dental follicle cells - hDFCs) and two immortalized cultures (human osteoblast-like cells - Saos-2 and mouse periodontal ligament cells - mPDL). The tested materials were: White Portland Cement (PC), mineral trioxide aggregate (MTA), white Portland cement combined with microparticles (PC/Nb2O5µ) or nanoparticles (PC/Nb2O5n) of niobium oxide (Nb2O5). Cytotoxicity was evaluated by the methylthiazolyldiphenyl-tetrazolium bromide (MTT) and trypan blue exclusion assays and bioactivity by alkaline phosphatase (ALP) enzyme activity. Results were analyzed by ANOVA and Tukey test (a=0.05). PC/Nb2O5n presented similar or higher cell viability than PC/Nb2O5µ in all cell lines. Moreover, the materials presented similar or higher cell viability than MTA. Saos-2 exhibited high ALP activity, highlighting PC/Nb2O5µ material at 7 days of exposure. In conclusion, calcium silicate cements combined with micro and nanoparticles of Nb2O5 presented cytocompatibility and bioactivity, demonstrating the potential of Nb2O5 as an alternative radiopacifier agent for these cements. The different cell lines had similar response to cytotoxicity evaluation of calcium silicate cements. However, bioactivity was more accurately detected in human osteoblast-like cell line, Saos-2.

  18. Osseointegration is improved by coating titanium implants with a nanostructured thin film with titanium carbide and titanium oxides clustered around graphitic carbon

    International Nuclear Information System (INIS)

    Veronesi, Francesca; Giavaresi, Gianluca; Fini, Milena; Longo, Giovanni; Ioannidu, Caterina Alexandra; Scotto d'Abusco, Anna; Superti, Fabiana; Panzini, Gianluca; Misiano, Carlo; Palattella, Alberto; Selleri, Paolo; Di Girolamo, Nicola; Garbarino, Viola; Politi, Laura; Scandurra, Roberto

    2017-01-01

    Titanium implants coated with a 500 nm nanostructured layer, deposited by the Ion Plating Plasma Assisted (IPPA) technology, composed of 60% graphitic carbon, 25% titanium oxides and 15% titanium carbide were implanted into rabbit femurs whilst into the controlateral femurs uncoated titanium implants were inserted as control. At four time points the animals were injected with calcein green, xylenol orange, oxytetracycline and alizarin. After 2, 4 and 8 weeks femurs were removed and processed for histology and static and dynamic histomorphometry for undecalcified bone processing into methylmethacrylate, sectioned, thinned, polished and stained with Toluidine blue and Fast green. The overall bone-implant contacts rate (percentage of bone-implant contacts/weeks) of the TiC coated implant was 1.6 fold than that of the uncoated titanium implant. The histomorphometric analyses confirmed the histological evaluations. More precisely, higher Mineral Apposition Rate (MAR, μm/day) (p < 0.005) and Bone Formation Rate (BFR, μm 2 /μm/day) (p < 0.0005) as well as Bone Implant Contact (Bic) and Bone Ingrowth values (p < 0.0005) were observed for the TiC coated implants compared to uncoated implants. In conclusion the hard nanostructured TiC layer protects the bulk titanium implant against the harsh conditions of biological tissues and in the same time, stimulating adhesion, proliferation and activity of osteoblasts, induces a better bone-implant contacts of the implant compared to the uncoated titanium implant. - Highlights: • Ti implants were coated with a nanostructured film composed of C gr , TiC and TiO x . • The TiC layer stimulates adhesion, proliferation and activity of osteoblasts. • Uncoated and TiC coated titanium implants were implanted in rabbit femurs. • Bone-implant contacts of TiC coated implants were higher than that of uncoated. • Mineral Apposition Rate of TiC coated implants were higher than that of uncoated.

  19. The oxidation of titanium nitride- and silicon nitride-coated stainless steel in carbon dioxide environments

    International Nuclear Information System (INIS)

    Mitchell, D.R.G.; Stott, F.H.

    1992-01-01

    A study has been undertaken into the effects of thin titanium nitride and silicon nitride coatings, deposited by physical vapour deposition and chemical vapour deposition processes, on the oxidation resistance of 321 stainless steel in a simulated advanced gas-cooled reactor carbon dioxide environment for long periods at 550 o C and 700 o C under thermal-cycling conditions. The uncoated steel contains sufficient chromium to develop a slow-growing chromium-rich oxide layer at these temperatures, particularly if the surfaces have been machine-abraded. Failure of this layer in service allows formation of less protective iron oxide-rich scales. The presence of a thin (3-4 μm) titanium nitride coating is not very effective in increasing the oxidation resistance since the ensuing titanium oxide scale is not a good barrier to diffusion. Even at 550 o C, iron oxide-rich nodules are able to develop following relatively rapid oxidation and breakdown of the coating. At 700 o C, the coated specimens oxidize at relatively similar rates to the uncoated steel. A thin silicon nitride coating gives improved oxidation resistance, with both the coating and its slow-growing oxide being relatively electrically insulating. The particular silicon nitride coating studied here was susceptible to spallation on thermal cycling, due to an inherently weak coating/substrate interface. (Author)

  20. Reduction of Al2O3 in niobium--lithium systems at 10000C

    International Nuclear Information System (INIS)

    Selle, J.E.; DeVan, J.H.

    1977-07-01

    Various grades of aluminum oxide (Al 2 O 3 ) were sealed inside capsules of niobium and niobium-1% zirconium alloy which were then exposed to liquid lithium for 3000 hr at 1000 0 C. Similar unsealed capsules were exposed to a high vacuum. Reduction of the Al 2 O 3 occurred in the lithium-treated capsules, but no reaction occurred in the vacuum-treated capsules. Metallography and electron-microprobe analysis showed that reaction products in the form of compounds of niobium, aluminum, and zirconium were formed. Lithium acted as a sink for oxygen

  1. Corrosion behavior of Ti–39Nb alloy for dentistry

    Energy Technology Data Exchange (ETDEWEB)

    Fojt, Jaroslav, E-mail: fojtj@vscht.cz [Institute of Chemical Technology, Technicka 5, 166 28 Prague (Czech Republic); Joska, Ludek [Institute of Chemical Technology, Technicka 5, 166 28 Prague (Czech Republic); Malek, Jaroslav [UJP Praha, Nad Kamínkou 1345, 156 10 Prague-Zbraslav (Czech Republic); Sefl, Vaclav [Institute of Chemical Technology, Technicka 5, 166 28 Prague (Czech Republic)

    2015-11-01

    To increase an orthopedic implant's lifetime, researchers are now concerned on the development of new titanium alloys with suitable mechanical properties (low elastic modulus–high fatigue strength), corrosion resistance and good workability. Corrosion resistance of the newly developed titanium alloys should be comparable with that of pure titanium. The effect of medical preparations containing fluoride ions represents a specific problem related to the use of titanium based materials in dentistry. The aim of this study was to determine the corrosion behavior of β titanium alloy Ti–39Nb in physiological saline solution and in physiological solution containing fluoride ions. Corrosion behavior was studied using standard electrochemical techniques and X-ray photoelectron spectroscopy. It was found that corrosion properties of the studied alloy were comparable with the properties of titanium grade 2. The passive layer was based on the oxides of titanium and niobium in several oxidation states. Alloying with niobium, which was the important part of the alloy passive layer, resulted in no significant changes of corrosion behavior. In the presence of fluoride ions, the corrosion resistance was higher than the resistance of titanium. - Highlights: • Alloy Ti–39Nb shows excellent corrosion resistance in physiological solution. • Corrosion resistance of Ti–39Nb alloy is significantly higher than that of titanium in the presence of fluoride ions. • The electrochemical impedance spectroscopy indicates a porous passive layer. • Passive layer of the alloy is enriched by niobium.

  2. Corrosion behavior of Ti–39Nb alloy for dentistry

    International Nuclear Information System (INIS)

    Fojt, Jaroslav; Joska, Ludek; Malek, Jaroslav; Sefl, Vaclav

    2015-01-01

    To increase an orthopedic implant's lifetime, researchers are now concerned on the development of new titanium alloys with suitable mechanical properties (low elastic modulus–high fatigue strength), corrosion resistance and good workability. Corrosion resistance of the newly developed titanium alloys should be comparable with that of pure titanium. The effect of medical preparations containing fluoride ions represents a specific problem related to the use of titanium based materials in dentistry. The aim of this study was to determine the corrosion behavior of β titanium alloy Ti–39Nb in physiological saline solution and in physiological solution containing fluoride ions. Corrosion behavior was studied using standard electrochemical techniques and X-ray photoelectron spectroscopy. It was found that corrosion properties of the studied alloy were comparable with the properties of titanium grade 2. The passive layer was based on the oxides of titanium and niobium in several oxidation states. Alloying with niobium, which was the important part of the alloy passive layer, resulted in no significant changes of corrosion behavior. In the presence of fluoride ions, the corrosion resistance was higher than the resistance of titanium. - Highlights: • Alloy Ti–39Nb shows excellent corrosion resistance in physiological solution. • Corrosion resistance of Ti–39Nb alloy is significantly higher than that of titanium in the presence of fluoride ions. • The electrochemical impedance spectroscopy indicates a porous passive layer. • Passive layer of the alloy is enriched by niobium

  3. Corrosion resistance of the substrates for the cryogenic gyroscope and electrodeposition of the superconductive niobium coatings

    Science.gov (United States)

    Dubrovskiy, A. R.; Okunev, M. A.; Makarova, O. V.; Kuznetsov, S. A.

    2017-05-01

    The interaction of different materials with the niobium containing melt was investigated. As substrate materials the ceramics, beryllium and carbopyroceram were chosen. Several spherical ceramic and beryllium samples were coated with protective molybdenum and niobium films by magnetron sputtering and PVD, respectively. After the experiment (exposition time 10 min) the exfoliation of molybdenum film from ceramic samples was observed due to interaction of the substrate with the melt. The niobium protective coatings reacted with the melt with niobium oxide formation. The beryllium samples regardless of the shape and the presence of the protective films were dissolved in the niobium containing melt due to more negative electrode potential comparing with niobium one. The carbopyroceram samples were exposed in the melt during 3 and 12 h. It was found that the carbopyroceram not corrodes in the niobium containing melt. The optimal regimes for electrodeposition of smooth uniform niobium coatings with the thickness up to 50 μm on carbopyroceram spheres were found.

  4. Synthesis and characterization of nanocomposite powders of calcium phosphate/titanium oxide for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Delima, S.A.; Camargo, N.H.A.; Souza, J.C.P.; Gemelli, E., E-mail: sarahamindelima@hotmail.com, E-mail: dem2nhac@joinville.udesc.br, E-mail: souzajulio@joinville.udesc.br, E-mail: gemelli@joinville.udesc.br [Universidade do Estado de Santa Catarina (UDESC), Joinville, SC (Brazil). Centro de Ciencias Tecnologicas

    2009-07-01

    The nanostructured bioceramics of calcium phosphate are current themes of research and they are becoming important as bone matrix in regeneration of tissues in orthopedic and dental applications. Nanocomposite powders of calcium phosphate, reinforced with nanometric particles of titanium oxide, silica oxide and alumina oxid ealpha, are being widely studied because they offer new microstructures, nanostructures and interconnected microporosity with high superficial area of micropores that contribute to osteointegration and osteoinduction processes. This study is about the synthesis of nanocomposites powders of calcium phosphate reinforced with 1%, 2%, 3% and 5% in volume of titanium oxide and its characterization through the techniques of X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Differential Thermal Analysis (DTA), Thermogravimetry (TG) and Dilatometry. (author)

  5. Synthesis and characterization of nanocomposite powders of calcium phosphate/titanium oxide for biomedical applications

    International Nuclear Information System (INIS)

    Delima, S.A.; Camargo, N.H.A.; Souza, J.C.P.; Gemelli, E.

    2009-01-01

    The nanostructured bioceramics of calcium phosphate are current themes of research and they are becoming important as bone matrix in regeneration of tissues in orthopedic and dental applications. Nanocomposite powders of calcium phosphate, reinforced with nanometric particles of titanium oxide, silica oxide and alumina oxid ealpha, are being widely studied because they offer new microstructures, nanostructures and interconnected microporosity with high superficial area of micropores that contribute to osteointegration and osteoinduction processes. This study is about the synthesis of nanocomposites powders of calcium phosphate reinforced with 1%, 2%, 3% and 5% in volume of titanium oxide and its characterization through the techniques of X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Differential Thermal Analysis (DTA), Thermogravimetry (TG) and Dilatometry. (author)

  6. Swift heavy ion irradiation induced phase transformation in undoped and niobium doped titanium dioxide composite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Gautam, Subodh K., E-mail: subodhkgtm@gmail.com [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India); Chettah, Abdelhak [LGMM Laboratory, Université 20 Août 1955-Skikda, BP 26, 21000 Skikda (Algeria); Singh, R.G. [Department of Physics, Bhagini Nivedita College, Delhi University, Delhi 110043 (India); Ojha, Sunil; Singh, Fouran [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India)

    2016-07-15

    Study reports the effect of swift heavy ion (SHI) irradiation induced phase transformation in undoped and Niobium doped anatase TiO{sub 2} composite thin films. Investigations were carried out at different densities of electronic excitations (EEs) using 120 MeV Ag and 130 MeV Ni ions irradiations. Films were initially annealed at 900 °C and results revealed that undoped films were highly stable in anatase phase, while the Nb doped films showed the composite nature with the weak presence of Niobium penta-oxide (Nb{sub 2}O{sub 5}) phase. The effect at low density of EEs in undoped film show partial anatase to rutile phase transformation; however doped film shows only further growth of Nb{sub 2}O{sub 5} phase beside the anatase to rutile phase transformation. At higher density of EEs induced by Ag ions, registered continuous ion track of ∼3 nm in lattice which leads to nano-crystallization followed by decomposition/amorphization of rutile TiO{sub 2} and Nb{sub 2}O{sub 5} phases in undoped and doped films, respectively. However, Ni ions are only induced discontinuous sequence of ion tracks with creation of damage and disorder and do not show amorphization in the lattice. The in-elastic thermal spike calculations were carried out for anatase TiO{sub 2} phase to understand the effect of EEs on anatase to rutile phase transformation followed by amorphization in NTO films in terms of continuous and discontinuous track formation by SHI irradiation.

  7. Comparative proteomic analysis of the molecular responses of mouse macrophages to titanium dioxide and copper oxide nanoparticles unravels some toxic mechanisms for copper oxide nanoparticles in macrophages.

    Directory of Open Access Journals (Sweden)

    Sarah Triboulet

    Full Text Available Titanium dioxide and copper oxide nanoparticles are more and more widely used because of their catalytic properties, of their light absorbing properties (titanium dioxide or of their biocidal properties (copper oxide, increasing the risk of adverse health effects. In this frame, the responses of mouse macrophages were studied. Both proteomic and targeted analyses were performed to investigate several parameters, such as phagocytic capacity, cytokine release, copper release, and response at sub toxic doses. Besides titanium dioxide and copper oxide nanoparticles, copper ions were used as controls. We also showed that the overall copper release in the cell does not explain per se the toxicity observed with copper oxide nanoparticles. In addition, both copper ion and copper oxide nanoparticles, but not titanium oxide, induced DNA strands breaks in macrophages. As to functional responses, the phagocytic capacity was not hampered by any of the treatments at non-toxic doses, while copper ion decreased the lipopolysaccharide-induced cytokine and nitric oxide productions. The proteomic analyses highlighted very few changes induced by titanium dioxide nanoparticles, but an induction of heme oxygenase, an increase of glutathione synthesis and a decrease of tetrahydrobiopterin in response to copper oxide nanoparticles. Subsequent targeted analyses demonstrated that the increase in glutathione biosynthesis and the induction of heme oxygenase (e.g. by lovastatin/monacolin K are critical for macrophages to survive a copper challenge, and that the intermediates of the catecholamine pathway induce a strong cross toxicity with copper oxide nanoparticles and copper ions.

  8. Comparative proteomic analysis of the molecular responses of mouse macrophages to titanium dioxide and copper oxide nanoparticles unravels some toxic mechanisms for copper oxide nanoparticles in macrophages.

    Science.gov (United States)

    Triboulet, Sarah; Aude-Garcia, Catherine; Armand, Lucie; Collin-Faure, Véronique; Chevallet, Mireille; Diemer, Hélène; Gerdil, Adèle; Proamer, Fabienne; Strub, Jean-Marc; Habert, Aurélie; Herlin, Nathalie; Van Dorsselaer, Alain; Carrière, Marie; Rabilloud, Thierry

    2015-01-01

    Titanium dioxide and copper oxide nanoparticles are more and more widely used because of their catalytic properties, of their light absorbing properties (titanium dioxide) or of their biocidal properties (copper oxide), increasing the risk of adverse health effects. In this frame, the responses of mouse macrophages were studied. Both proteomic and targeted analyses were performed to investigate several parameters, such as phagocytic capacity, cytokine release, copper release, and response at sub toxic doses. Besides titanium dioxide and copper oxide nanoparticles, copper ions were used as controls. We also showed that the overall copper release in the cell does not explain per se the toxicity observed with copper oxide nanoparticles. In addition, both copper ion and copper oxide nanoparticles, but not titanium oxide, induced DNA strands breaks in macrophages. As to functional responses, the phagocytic capacity was not hampered by any of the treatments at non-toxic doses, while copper ion decreased the lipopolysaccharide-induced cytokine and nitric oxide productions. The proteomic analyses highlighted very few changes induced by titanium dioxide nanoparticles, but an induction of heme oxygenase, an increase of glutathione synthesis and a decrease of tetrahydrobiopterin in response to copper oxide nanoparticles. Subsequent targeted analyses demonstrated that the increase in glutathione biosynthesis and the induction of heme oxygenase (e.g. by lovastatin/monacolin K) are critical for macrophages to survive a copper challenge, and that the intermediates of the catecholamine pathway induce a strong cross toxicity with copper oxide nanoparticles and copper ions.

  9. Electrical properties of vacuum-annealed titanium-doped indium oxide films

    NARCIS (Netherlands)

    Yan, L.T.; Rath, J.K.; Schropp, R.E.I.

    2011-01-01

    Titanium-doped indium oxide (ITiO) films were deposited on Corning glass 2000 substrates at room temperature by radio frequency magnetron sputtering followed by vacuum post-annealing. With increasing deposition power, the as-deposited films showed an increasingly crystalline nature. As-deposited

  10. Self-cleaning glass coating containing titanium oxide and silicon

    International Nuclear Information System (INIS)

    Araujo, A.O. de; Alves, A.K.; Berutti, F.A.; Bergmann, C.P.

    2009-01-01

    Using the electro spinning technique nano fibers of titanium oxide doped with silicon were synthesized. As precursor materials, titanium propoxide, silicon tetra propoxide and a solution of polyvinylpyrrolidone were used. The non-tissue material obtained was characterized by X-ray diffraction to determine the phase and crystallite size, BET method to determine the surface and SEM to analyze the microstructure of the fibers. After ultrasound dispersion of this material in ethanol, the glass coatings were made by dip-coating methodology. The influence of the removal velocity, the solution composition and the glass surface preparation were evaluated. The film was characterized by the contact angle of a water droplet in its surface. (author)

  11. Titanium-dioxide nanotube p-n homojunction diode

    Science.gov (United States)

    Alivov, Yahya; Ding, Yuchen; Singh, Vivek; Nagpal, Prashant

    2014-12-01

    Application of semiconductors in functional optoelectronic devices requires precise control over their doping and formation of junction between p- and n-doped semiconductors. While doped thin films have led to several semiconductor devices, need for high-surface area nanostructured devices for photovoltaic, photoelectrochemical, and photocatalytic applications has been hindered by lack of desired doping in nanostructures. Here, we show titanium-dioxide (TiO2) nanotubes doped with nitrogen (N) and niobium (Nb) as acceptors and donors, respectively, and formation of TiO2 nanotubes p-n homojunction. This TiO2:N/TiO2:Nb homojunction showed distinct diode-like behaviour with rectification ratio of 1115 at ±5 V and exhibited good photoresponse for ultraviolet light (λ = 365 nm) with sensitivity of 0.19 A/W at reverse bias of -5 V. These results can have important implications for development of nanostructured metal-oxide solar-cells, photodiodes, LED's, photocatalysts, and photoelectrochemical devices.

  12. Titanium-dioxide nanotube p-n homojunction diode

    Energy Technology Data Exchange (ETDEWEB)

    Alivov, Yahya, E-mail: y.alivov@colorado.edu, E-mail: pnagpal@colorado.edu; Ding, Yuchen; Singh, Vivek [Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303 (United States); Nagpal, Prashant, E-mail: y.alivov@colorado.edu, E-mail: pnagpal@colorado.edu [Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303 (United States); Materials Science and Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303 (United States); Renewable and Sustainable Energy Institute, University of Colorado Boulder, 2445 Kittredge Loop, Boulder, Colorado 80309 (United States)

    2014-12-29

    Application of semiconductors in functional optoelectronic devices requires precise control over their doping and formation of junction between p- and n-doped semiconductors. While doped thin films have led to several semiconductor devices, need for high-surface area nanostructured devices for photovoltaic, photoelectrochemical, and photocatalytic applications has been hindered by lack of desired doping in nanostructures. Here, we show titanium-dioxide (TiO{sub 2}) nanotubes doped with nitrogen (N) and niobium (Nb) as acceptors and donors, respectively, and formation of TiO{sub 2} nanotubes p-n homojunction. This TiO{sub 2}:N/TiO{sub 2}:Nb homojunction showed distinct diode-like behaviour with rectification ratio of 1115 at ±5 V and exhibited good photoresponse for ultraviolet light (λ = 365 nm) with sensitivity of 0.19 A/W at reverse bias of −5 V. These results can have important implications for development of nanostructured metal-oxide solar-cells, photodiodes, LED's, photocatalysts, and photoelectrochemical devices.

  13. Effect of electrolyte temperature on the formation of self-organized anodic niobium oxide microcones in hot phosphate-glycerol electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Yang, S.; Aoki, Y. [Division of Materials Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Habazaki, H., E-mail: habazaki@eng.hokudai.ac.jp [Division of Materials Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628 (Japan)

    2011-07-15

    Nanoporous niobium oxide films with microcone-type surface morphology were formed by anodizing at 10 V in glycerol electrolyte containing 0.6 mol dm{sup -3} K{sub 2}HPO{sub 4} and 0.2 mol dm{sup -3} K{sub 3}PO{sub 4} in a temperature range of 428-453 K. The microcones appeared after prolonged anodizing, but the required time was largely reduced by increasing electrolyte temperature. The anodic oxide was initially amorphous at all temperatures, but crystalline oxide nucleated during anodizing. The anodic oxide microcones, which were crystalline, appeared on surface as a consequence of preferential chemical dissolution of initially formed amorphous oxide. The chemical dissolution of an initially formed amorphous layer was accelerated by increasing the electrolyte temperature, with negligible influence of the temperature on the morphology of microcones up to 448 K.

  14. High-temperature interaction of low niobium oxides with carbon and nitrogen

    International Nuclear Information System (INIS)

    Lyubimov, V.D.; Alyamovskij, S.I.; Askarova, L.Kh.

    1980-01-01

    Presented are the results of investigation on the process of high-temperature interaction (1200-1300 deg C) of NbO 2 and NbO with carbon (in the helium medium) and nitrogen. The reaction between NbO 2 and carbon is successfully realized at 1300 deg C and involves two stages, viz. reduction of oxide by the mechanism of direct reduction and subsequent insertion of metalloid into the oxygen vacancies formed. As a result, on the base of the initial oxide a cubic phase is formed, its final composition at 1300 deg C corresponding to the formula NbCsub(0.74)Osub(0.28). Neither NbO monoxide, nor metal is detected in the reaction products under these conditions. Interaction of NbO 2 with carbon and nitrogen proceeds in the similar way. In this case, the oxygen vacancies formed are occupied by the atoms of the two metalloids the end-product of the reaction at 1300 deg C being oxycarbonitride NbCsub(0.30)Nsub(0.66)Osub(0.66). Intermediate products of the reaction between NbO and metalloids involve oxycarbide, oxynitride, or oxycarbonitride and dioxide of niobium, while the end products contain only a cubic phase [ru

  15. Niobium in steels and alloys

    International Nuclear Information System (INIS)

    Lyakishev, N.P.; Tulin, N.A.; Pliner, Y.L.

    1984-01-01

    Data are presented on the reserves and processing of niobium raw materials followed by brief review of the current status and long-range trends in the commercial usage of niobium and its compounds. A survey is made of the physical properties of niobium and its chemical reactions with elements of direct concern in the manufacture of ferroalloys, quality steels and other products. Niobium minerals and ores, along with common ore processing practices are described briefly. Attention is paid to Brazilian niobium ores, and to the Araxa deposit specifically. Some emphasis has been given to methods of processing lean niobium ores not easily amenable to simple concentration. A systematic review is presented of the techniques used in the production of niobium ferroalloys. (E.G.) [pt

  16. Titanium oxidation by rf inductively coupled plasma

    International Nuclear Information System (INIS)

    Valencia-Alvarado, R; López-Callejas, R; Barocio, S R; Mercado-Cabrera, A; Peña-Eguiluz, R; Muñoz-Castro, A E; Rodríguez-Méndez, B G; De la Piedad-Beneitez, A; De la Rosa-Vázquez, J M

    2014-01-01

    The development of titanium dioxide (TiO 2 ) films in the rutile and anatase phases is reported. The films have been obtained from an implantation/diffusion and sputtering process of commercially pure titanium targets, carried out in up to 500 W plasmas. The experimental outcome is of particular interest, in the case of anatase, for atmospheric pollution degradation by photocatalysis and, as to the rutile phase, for the production of biomaterials required by prosthesis and implants. The reactor employed consists in a cylindrical pyrex-like glass vessel inductively coupled to a 13.56 MHz RF source. The process takes place at a 5×10 −2 mbar pressure with the target samples being biased from 0 to -3000 V DC. The anatase phase films were obtained from sputtering the titanium targets over glass and silicon electrically floated substrates placed 2 cm away from the target. The rutile phase was obtained by implantation/diffusion on targets at about 700 °C. The plasma was developed from a 4:1 argon/oxygen mixture for ∼5 hour processing periods. The target temperature was controlled by means of the bias voltage and the plasma source power. The obtained anatase phases did not require annealing after the plasma oxidation process. The characterization of the film samples was conducted by means of x-ray diffraction, scanning electron microscopy, x-ray photoelectron spectroscopy and Raman spectroscopy

  17. Osseointegration is improved by coating titanium implants with a nanostructured thin film with titanium carbide and titanium oxides clustered around graphitic carbon

    Energy Technology Data Exchange (ETDEWEB)

    Veronesi, Francesca [Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Via Di Barbiano 1/10, Bologna 40136 (Italy); Giavaresi, Gianluca; Fini, Milena [Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Via Di Barbiano 1/10, Bologna 40136 (Italy); Laboratory of Biocompatibility, Innovative Technologies and Advanced Therapies, Department Rizzoli RIT, Via Di Barbiano 1/10, Bologna 40136 (Italy); Longo, Giovanni [CNR Istituto di Struttura della Materia, CNR, Via del Fosso del Cavaliere 100, 00133 Roma (Italy); Ioannidu, Caterina Alexandra; Scotto d' Abusco, Anna [Dept. of Biochemical Sciences, Sapienza University of Roma, Ple A. Moro 5, 00185 Roma (Italy); Superti, Fabiana; Panzini, Gianluca [Dept. of Technologies and Health, Istituto Superiore di Sanità, Viale Regina Elena, 299 Roma (Italy); Misiano, Carlo [Romana Film Sottili, Anzio, Roma (Italy); Palattella, Alberto [Dept. of Clinical Sciences and Translational Medicine, Tor Vergata University, Via Montpellier 1, 00133 Roma (Italy); Selleri, Paolo; Di Girolamo, Nicola [Exotic Animals Clinic, Via S. Giovannini 53, 00137 Roma (Italy); Garbarino, Viola [Dept. of Radiology, S.M. Goretti Hospital, Via G. Reni 2, 04100 Latina (Italy); Politi, Laura [Dept. of Biochemical Sciences, Sapienza University of Roma, Ple A. Moro 5, 00185 Roma (Italy); Scandurra, Roberto, E-mail: roberto.scandurra@uniroma1.it [Dept. of Biochemical Sciences, Sapienza University of Roma, Ple A. Moro 5, 00185 Roma (Italy)

    2017-01-01

    Titanium implants coated with a 500 nm nanostructured layer, deposited by the Ion Plating Plasma Assisted (IPPA) technology, composed of 60% graphitic carbon, 25% titanium oxides and 15% titanium carbide were implanted into rabbit femurs whilst into the controlateral femurs uncoated titanium implants were inserted as control. At four time points the animals were injected with calcein green, xylenol orange, oxytetracycline and alizarin. After 2, 4 and 8 weeks femurs were removed and processed for histology and static and dynamic histomorphometry for undecalcified bone processing into methylmethacrylate, sectioned, thinned, polished and stained with Toluidine blue and Fast green. The overall bone-implant contacts rate (percentage of bone-implant contacts/weeks) of the TiC coated implant was 1.6 fold than that of the uncoated titanium implant. The histomorphometric analyses confirmed the histological evaluations. More precisely, higher Mineral Apposition Rate (MAR, μm/day) (p < 0.005) and Bone Formation Rate (BFR, μm{sup 2}/μm/day) (p < 0.0005) as well as Bone Implant Contact (Bic) and Bone Ingrowth values (p < 0.0005) were observed for the TiC coated implants compared to uncoated implants. In conclusion the hard nanostructured TiC layer protects the bulk titanium implant against the harsh conditions of biological tissues and in the same time, stimulating adhesion, proliferation and activity of osteoblasts, induces a better bone-implant contacts of the implant compared to the uncoated titanium implant. - Highlights: • Ti implants were coated with a nanostructured film composed of C{sub gr}, TiC and TiO{sub x}. • The TiC layer stimulates adhesion, proliferation and activity of osteoblasts. • Uncoated and TiC coated titanium implants were implanted in rabbit femurs. • Bone-implant contacts of TiC coated implants were higher than that of uncoated. • Mineral Apposition Rate of TiC coated implants were higher than that of uncoated.

  18. A sourcebook of titanium alloy superconductivity

    CERN Document Server

    Collings, E W

    1983-01-01

    In less than two decades the concept of supercon­ In every field of science there are one or two ductivity has been transformed from a laboratory individuals whose dedication, combined with an innate curiosity to usable large-scale applications. In the understanding, permits them to be able to grasp, late 1960's the concept of filamentary stabilization condense, and explain to the rest of us what that released the usefulness of zero resistance into the field is all about. For the field of titanium alloy marketplace, and the economic forces that drive tech­ superconductivity, such an individual is Ted Collings. nology soon focused on niobium-titanium alloys. They His background as a metallurgist has perhaps given him are ductile and thus fabricable into practical super­ a distinct advantage in understanding superconduc­ conducting wires that have the critical currents and tivity in titanium alloys because the optimization of fields necessary for large-scale devices. More than superconducting parameters in ...

  19. Niobium-base superalloys via powder metallurgy technology

    International Nuclear Information System (INIS)

    Loria, E.A.

    1987-01-01

    This paper provides some insight into an area that has been neglected, namely the possibility of developing high-strength, niobium-base alloys by improved oxidation resistance via the consolidation of rapidly solidified powders. Powder metallurgy (P/M) is an attractive processing technique because of its flexibility and versatility, and it may provide the alloys with properties and workability not obtainable via metal casting. A critical review of both U.S. and Russian literature is presented along with suggestions on the most promising compositions and processing techniques available to meet these competing goals. Previous work on many niobium alloys reveals that long term properties are retained well above those obtained on nickel-base superalloys. Cast and wrought alloys extend specific strength beyond 1200 0 C (2200 0 F), but lack oxidation resistance. Remarkable oxidation resistance is obtained, however, on miniature castings of certain ternary alloys which are too brittle for any processing. A better understanding of the oxidation mechanism is necessary before the proper P/M (RST) approach is taken on compositions which could provide compatibility between the two competing goals through grain refinement and a homogeneous distribution of the contributory phases. Finally, ways to up-scale production of Nb powder are discussed, including thermodynamic feasibility for the direct reduction of NbCl/sub 5/ in a 1.5 MW plasma reactor

  20. Catalytic applications of niobium compounds

    International Nuclear Information System (INIS)

    Wright, C.J.; England, W.A.

    1984-01-01

    This article examines the potential uses of niobium, and its compounds, as catalysts in chemical processing. The word potential is deliberately chosen because in 1978 none of the world's twenty-five major catalysts (1) contained niobium. On the other hand, catalysts containing molybdenum and vanadium, neighbors of niobium in the periodic table, realized over 80 x 10 6 of sales in that same year. At the same time many of the patents for niobium catalysts cover applications in which niobium improves the activity of, or substitutes for, molybdenum based compounds. With favorable cost differentials and improvements in understanding, niobium may be able to replace molybdenum in some its traditional uses

  1. Clean forming of stainless steel and titanium products by lubricious oxides

    DEFF Research Database (Denmark)

    Heikkilä, Irma; Wadman, Boel; Thoors, Håkan

    2012-01-01

    to industrial forming processes. Preliminary evaluations show a beneficial influence of two oxides types, on stainless steel and on titanium. More work is needed to test the lubricating effect in other forming operations and to analyse the sustainability aspects for products manufactured with this alternative......Big social benefits can be attained through increased use of stainless steel or titanium in new sheet metal applications. Unfortunately, forming of these materials is often a challenging and costly operation, that can lead to environmental and health problems when solving the technical limitations...

  2. Optical scattering characteristic of annealed niobium oxide films

    International Nuclear Information System (INIS)

    Lai Fachun; Li Ming; Wang Haiqian; Hu Hailong; Wang Xiaoping; Hou, J.G.; Song Yizhou; Jiang Yousong

    2005-01-01

    Niobium oxide (Nb 2 O 5 ) films with thicknesses ranging from 200 to 1600 nm were deposited on fused silica at room temperature by low frequency reactive magnetron sputtering system. In order to study the optical losses resulting from the microstructures, the films with 500 nm thickness were annealed at temperatures between 600 and 1100 deg. C, and films with thicknesses from 200 to 1600 nm were annealed at 800 deg. C. Scanning electron microscopy and atomic force microscopy images show that the root mean square of surface roughness, the grain size, voids, microcracks, and grain boundaries increase with increasing both the annealing temperature and the thickness. Correspondingly, the optical transmittance and reflectance decrease, and the optical loss increases. The mechanisms of the optical losses are discussed. The results suggest that defects in the volume and the surface roughness should be the major source for the optical losses of the annealed films by causing pronounced scattering. For samples with a determined thickness, there is a critical annealing temperature, above which the surface scattering contributes to the major optical losses. In the experimental scope, for the films annealed at temperatures below 900 deg. C, the major optical losses resulted from volume scattering. However, surface roughness was the major source for the optical losses when the 500-nm films were annealed at temperatures above 900 deg. C

  3. Niobium and hafnium grown on porous membranes

    International Nuclear Information System (INIS)

    Morant, C.; Marquez, F.; Campo, T.; Sanz, J.M.; Elizalde, E.

    2010-01-01

    In this work we report on a method for fabricating highly ordered nanostructures of niobium and hafnium metals by physical vapour deposition using two different templates: anodized aluminum oxide membranes (AAO) and zirconium onto AAO membranes (Zr/AAO). The growth mechanism of these metal nanostructures is clearly different depending on the material used as a template. A different morphology was obtained by using AAO or Zr/AAO templates: when the metal is deposited onto AAO membranes, nanospheres with ordered hexagonal regularity are obtained; however, when the metal is deposited onto a Zr/AAO template, highly ordered nanocones are formed. The experimental approach described in this work is simple and suitable for synthesizing nanospheres or nanoholes of niobium and hafnium metals in a highly ordered structure.

  4. Hydroxyapatite coatings produced on commercially pure titanium by micro-arc oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Huang Yong [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Wang Yingjun [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Ning Chengyun [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Nan Kaihui [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Han Yong [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China)

    2007-09-15

    A porous hydroxyapatite (HA) coating on commercially pure titanium was prepared by micro-arc oxidation (MAO) in electrolytic solution containing calcium acetate and {beta}-glycerol phosphate disodium salt pentahydrate ({beta}-GP). The thickness, phase, composition morphology and biocompatibility of the oxide coating were characterized by x-ray diffraction (XRD), electron probe microanalysis (EPMA), scanning electron microscopy (SEM) with an energy dispersive x-ray spectrometer (EDS) and cell culture. The thickness of the MAO film was about 20 {mu}m, and the coating was porous and uneven without any apparent interface to the titanium substrates. The result of XRD showed that the porous coating was made up of HA film. The favorable osteoblast cell affinity gives HA film good biocompatibility. HA coatings are expected to have significant uses for medical applications such as dental implants and artificial bone joints.

  5. Hydroxyapatite coatings produced on commercially pure titanium by micro-arc oxidation.

    Science.gov (United States)

    Huang, Yong; Wang, Yingjun; Ning, Chengyun; Nan, Kaihui; Han, Yong

    2007-09-01

    A porous hydroxyapatite (HA) coating on commercially pure titanium was prepared by micro-arc oxidation (MAO) in electrolytic solution containing calcium acetate and beta-glycerol phosphate disodium salt pentahydrate (beta-GP). The thickness, phase, composition morphology and biocompatibility of the oxide coating were characterized by x-ray diffraction (XRD), electron probe microanalysis (EPMA), scanning electron microscopy (SEM) with an energy dispersive x-ray spectrometer (EDS) and cell culture. The thickness of the MAO film was about 20 microm, and the coating was porous and uneven without any apparent interface to the titanium substrates. The result of XRD showed that the porous coating was made up of HA film. The favorable osteoblast cell affinity gives HA film good biocompatibility. HA coatings are expected to have significant uses for medical applications such as dental implants and artificial bone joints.

  6. Hydroxyapatite coatings produced on commercially pure titanium by micro-arc oxidation

    International Nuclear Information System (INIS)

    Huang Yong; Wang Yingjun; Ning Chengyun; Nan Kaihui; Han Yong

    2007-01-01

    A porous hydroxyapatite (HA) coating on commercially pure titanium was prepared by micro-arc oxidation (MAO) in electrolytic solution containing calcium acetate and β-glycerol phosphate disodium salt pentahydrate (β-GP). The thickness, phase, composition morphology and biocompatibility of the oxide coating were characterized by x-ray diffraction (XRD), electron probe microanalysis (EPMA), scanning electron microscopy (SEM) with an energy dispersive x-ray spectrometer (EDS) and cell culture. The thickness of the MAO film was about 20 μm, and the coating was porous and uneven without any apparent interface to the titanium substrates. The result of XRD showed that the porous coating was made up of HA film. The favorable osteoblast cell affinity gives HA film good biocompatibility. HA coatings are expected to have significant uses for medical applications such as dental implants and artificial bone joints

  7. Recent progress in large grain/single crystal high RRR niobium

    International Nuclear Information System (INIS)

    Ganapati Rao Myneni; Peter Kneisel; Tadeu Carneiro; S.R. Agnew; F. Stevie

    2005-01-01

    High RRR bulk niobium Superconducting Radio Frequency (SRF) cavity technology is chosen for the International Linear Collider (ILC). The SRF community was convinced until now that fine grain polycrystalline RRR niobium sheets obtained via forging and cross rolling are essential for forming the SRF Cavities. However, it was recently discovered under a joint Reference Metals Company, Inc., - JLAB CRADA that large grain/single crystal RRR niobium sliced directly from ingots is highly ductile reaching 100 percent elongation. This discovery led to the successful fabrication of several SRF single and/or multi cell structures, formed with sliced RRR discs from the ingots, operating at 2.3, 1.5 and 1.3 GHz. This new exciting development is expected to offer high performance accelerator structures not only at reduced costs but also with simpler fabrication and processing conditions. As a result there is a renewed interest in the evaluation and understanding of the large grain and single crystal niobium with respect to their mechanical and physical properties as well as the oxidation behavior and the influence of impurities such as hydrogen and Ta. In this paper the results of many collaborative studies on large grain and single crystal high RRR niobium between JLAB, Universities and Industry are presented

  8. Mesoporous Niobium Oxide Spheres as an Effective Catalyst for the Transamidation of Primary Amides with Amines

    KAUST Repository

    Ghosh, Subhash Chandra; Li, Cheng Chao; Zeng, Hua Chun; Ngiam, Joyce S Y; Seayad, Abdul M.; Chen, Anqi

    2014-01-01

    Mesoporous niobium oxide spheres (MNOS), conveniently prepared by a novel antisolvent precipitation approach, have been shown to be an effective catalyst for the transamidation of primary amides with amines. This novel transamidation can be efficiently carried out under solvent-free conditions and is applicable to a wide range of primary amides and amines to provide N-alkyl amides in good to excellent yields. The catalyst is highly stable and reusable. The application of this transamidation reaction has been demonstrated in the synthesis of antidepressant drug moclobemide and other druglike compounds. © 2014 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim.

  9. Mesoporous Niobium Oxide Spheres as an Effective Catalyst for the Transamidation of Primary Amides with Amines

    KAUST Repository

    Ghosh, Subhash Chandra

    2014-02-06

    Mesoporous niobium oxide spheres (MNOS), conveniently prepared by a novel antisolvent precipitation approach, have been shown to be an effective catalyst for the transamidation of primary amides with amines. This novel transamidation can be efficiently carried out under solvent-free conditions and is applicable to a wide range of primary amides and amines to provide N-alkyl amides in good to excellent yields. The catalyst is highly stable and reusable. The application of this transamidation reaction has been demonstrated in the synthesis of antidepressant drug moclobemide and other druglike compounds. © 2014 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim.

  10. Titanium Oxide/Platinum Catalysis: Charge Transfer from a Titanium Oxide Support Controls Activity and Selectivity in Methanol Oxidation on Platinum

    KAUST Repository

    Hervier, Antoine

    2011-11-24

    Platinum films of 1 nm thickness were deposited by electron beam evaporation onto 100 nm thick titanium oxide films (TiOx) with variable oxygen vacancy concentrations and fluorine (F) doping. Methanol oxidation on the platinum films produced formaldehyde, methyl formate, and carbon dioxide. F-doped samples demonstrated significantly higher activity for methanol oxidation when the TiOx was stoichiometric (TiO 2), but lower activity when it was nonstoichiometric (TiO 1.7 and TiO1.9). These results correlate with the chemical behavior of the same types of catalysts in CO oxidation. Fluorine doping of stoichiometric TiO2 also increased selectivity toward partial oxidation of methanol to formaldehyde and methyl formate, but had an opposite effect in the case of nonstoichiometric TiOx. Introduction of oxygen vacancies and fluorine doping both increased the conductivity of the TiO x film. For oxygen vacancies, this occurred by the formation of a conduction channel in the band gap, whereas in the case of fluorine doping, F acted as an n-type donor, forming a conduction channel at the bottom of the conduction band, about 0.5-1.0 eV higher in energy. The higher energy electrons in F-doped stoichiometric TiOx led to higher turnover rates and increased selectivity toward partial oxidation of methanol. This correlation between electronic structure and turnover rate and selectivity indicates that the ability of the support to transfer charges to surface species controls in part the activity and selectivity of the reaction. © 2011 American Chemical Society.

  11. Sol-gel prepared active ternary oxide coating on titanium in cathodic protection

    Directory of Open Access Journals (Sweden)

    VLADIMIR V. PANIC

    2007-12-01

    Full Text Available The characteristics of a ternary oxide coating, on titanium, which consisted of TiO2, RuO2 and IrO2 in the molar ratio 0.6:0.3:0.1, calculated on the metal atom, were investigated for potential application for cathodic protection in a seawater environment. The oxide coatings on titanium were prepared by the sol gel procedure from a mixture of inorganic oxide sols, which were obtained by forced hydrolysis of metal chlorides. The morphology of the coating was examined by scanning electron microscopy. The electrochemical properties of activated titanium anodes were investigated by cyclic voltammetry and polarization measurements in a H2SO4- and NaCl-containing electrolyte, as well as in seawater sampled on the Adriatic coast in Tivat, Montenegro. The anode stability during operation in seawater was investigated by the galvanostatic accelerated corrosion stability test. The morphology and electrochemical characteristics of the ternary coating are compared to that of a sol-gel-prepared binary Ti0.6Ru0.4O2 coating. The activity of the ternary coating was similar to that of the binary Ti0.6Ru0.4O2 coating in the investigated solutions. However, the corrosion stability in seawater is found to be considerably greater for the ternary coating.

  12. Conduction and stability of holmium titanium oxide thin films grown by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Castán, H., E-mail: helena@ele.uva.es [Department of Electronic, University of Valladolid, 47011 Valladolid (Spain); García, H.; Dueñas, S.; Bailón, L. [Department of Electronic, University of Valladolid, 47011 Valladolid (Spain); Miranda, E. [Departament d' Enginyería Electrònica, Universitat Autónoma de Barcelona, 08193 Bellaterra (Spain); Kukli, K. [Department of Chemistry, University of Helsinki, FI-00014 Helsinki (Finland); Institute of Physics, University of Tartu, EE-50411,Tartu (Estonia); Kemell, M.; Ritala, M.; Leskelä, M. [Department of Chemistry, University of Helsinki, FI-00014 Helsinki (Finland)

    2015-09-30

    Holmium titanium oxide (HoTiO{sub x}) thin films of variable chemical composition grown by atomic layer deposition are studied in order to assess their suitability as dielectric materials in metal–insulator–metal electronic devices. The correlation between thermal and electrical stabilities as well as the potential usefulness of HoTiO{sub x} as a resistive switching oxide are also explored. It is shown that the layer thickness and the relative holmium content play important roles in the switching behavior of the devices. Cycled current–voltage measurements showed that the resistive switching is bipolar with a resistance window of up to five orders of magnitude. In addition, it is demonstrated that the post-breakdown current–voltage characteristics in HoTiO{sub x} are well described by a power-law model in a wide voltage and current range which extends from the soft to the hard breakdown regimes. - Highlights: • Gate and memory suitabilities of atomic layer deposited holmium titanium oxide. • Holmium titanium oxide exhibits resistive switching. • Layer thickness and holmium content influence the resistive switching. • Low and high resistance regimes follow a power-law model. • The power-law model can be extended to the hard breakdown regime.

  13. Improvement of transistor characteristics and stability for solution-processed ultra-thin high-valence niobium doped zinc-tin oxide thin film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Jeng, Jiann-Shing, E-mail: jsjeng@mail.nutn.edu.tw

    2016-08-15

    Nb-doped Zinc tin oxide (NZTO) channel materials have been prepared by solution process in combination with the spin-coating method. All NZTO thin film transistors (TFTs) are n-type enhancement-mode devices, either without or with Nb additives. High-valence niobium ion (ionic charge = +5) has a larger ionic potential and similar ionic radius to Zn{sup 2+} and Sn{sup 4+} ions. As compared with the pure ZTO device, introducing Nb{sup 5+} ions into the ZTO channel layers can improve the electrical properties and bias stability of TFTs because of the reduction of the oxygen vacancies. This study discusses the connection among the material properties of the NZTO films and the electrical performance and bias stability of NZTO TFTs and how they are influenced by the Nb/(Nb + Sn) molar ratios of NZTO films. - Highlights: • Ultra-thin high-valence niobium doped zinc-tin oxide (NZTO) thin films are prepared using a solution process. • Nb dopants in ZTO films reduce the oxygen vacancy and subgap adsorption of the ZTO films. • The Nb-doping concentration of the NZTO channel layer has a strong influence on the TFT performance.

  14. Corrosion behavior of Ti-39Nb alloy for dentistry.

    Science.gov (United States)

    Fojt, Jaroslav; Joska, Ludek; Malek, Jaroslav; Sefl, Vaclav

    2015-11-01

    To increase an orthopedic implant's lifetime, researchers are now concerned on the development of new titanium alloys with suitable mechanical properties (low elastic modulus-high fatigue strength), corrosion resistance and good workability. Corrosion resistance of the newly developed titanium alloys should be comparable with that of pure titanium. The effect of medical preparations containing fluoride ions represents a specific problem related to the use of titanium based materials in dentistry. The aim of this study was to determine the corrosion behavior of β titanium alloy Ti-39Nb in physiological saline solution and in physiological solution containing fluoride ions. Corrosion behavior was studied using standard electrochemical techniques and X-ray photoelectron spectroscopy. It was found that corrosion properties of the studied alloy were comparable with the properties of titanium grade 2. The passive layer was based on the oxides of titanium and niobium in several oxidation states. Alloying with niobium, which was the important part of the alloy passive layer, resulted in no significant changes of corrosion behavior. In the presence of fluoride ions, the corrosion resistance was higher than the resistance of titanium. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Progress on a high current density low cost Niobium3Tin conductor scaleable to modern niobium titanium production

    Science.gov (United States)

    Zeitlin, Bruce A.; Pyon, Taeyoung; Gregory, Eric; Scanlan, R. M.

    2002-05-01

    A number of configurations of a mono element internal tin conductor (MEIT) were fabricated designed to explore the effect of local ratio, niobium content, and tin content on the overall current density. Critical current densities on four configurations were measured, two to 17T. Current density as a function of filament size was also measured with filaments sizes ranging from 1.8 to 7.1 microns. A Nb60wt%Ta barrier was also explored as a means to reduce the high cost of the Tantalum barrier. The effectiveness of radial copper channels in high Nb conductors is also evaluated. Results are used to suggest designs for more optimized conductors.

  16. Steady-state oxygen-solubility in niobium

    International Nuclear Information System (INIS)

    Schulze, K.; Jehn, H.

    1977-01-01

    During annealing of niobium in oxygen in certain temperature and pressure ranges steady states are established between the absorption of molecular oxygen and the evaporation of volatile oxides. The oxygen concentration in the niobium-oxygen α-solid solution is a function of oxygen pressure and temperature and has been redetermined in the ranges 10 -5 - 10 -2 Pa O 2 and 2,070 - 2,470 K. It follows differing from former results the equation csub(o) = 9.1 x 10 -6 x sub(po2) x exp (502000/RT) with csub(o) in at.-ppm, sub(po2) in Pa, T in K, R = 8.31 J x mol -1 x K -1 . The existence of steady states is limited to a temperature range from 1870 to 2470 K and to oxygen concentrations below the solubility limit given by solidus and solvus lines in the T-c diagram. In the experiments high-purity niobium wires with a specific electrical ratio rho (273 K)/rho(4.2 K) > 5,000 have been gassed under isothermal-isobaric conditions until the steady state has been reached. The oxygen concentration has been determined analytically by vacuum fusion extraction with platinum-flux technique as well as by electrical residual resistivity measurements at 4.2 K. (orig.) [de

  17. Amorphous titanium-oxide supercapacitors

    Science.gov (United States)

    Fukuhara, Mikio; Kuroda, Tomoyuki; Hasegawa, Fumihiko

    2016-10-01

    The electric capacitance of an amorphous TiO2-x surface increases proportionally to the negative sixth power of the convex diameter d. This occurs because of the van der Waals attraction on the amorphous surface of up to 7 mF/cm2, accompanied by extreme enhanced electron trapping resulting from both the quantum-size effect and an offset effect from positive charges at oxygen-vacancy sites. Here we show that a supercapacitor, constructed with a distributed constant-equipment circuit of large resistance and small capacitance on the amorphous TiO2-x surface, illuminated a red LED for 37 ms after it was charged with 1 mA at 10 V. The fabricated device showed no dielectric breakdown up to 1,100 V. Based on this approach, further advances in the development of amorphous titanium-dioxide supercapacitors might be attained by integrating oxide ribbons with a micro-electro mechanical system.

  18. Transmission electron microscopy of coatings formed by plasma electrolytic oxidation of titanium.

    Science.gov (United States)

    Matykina, E; Arrabal, R; Skeldon, P; Thompson, G E

    2009-05-01

    Transmission electron microscopy and supporting film analyses are used to investigate the changes in composition, morphology and structure of coatings formed on titanium during DC plasma electrolytic oxidation in a calcium- and phosphorus-containing electrolyte. The coatings are of potential interest as bioactive surfaces. The initial barrier film, of mixed amorphous and nanocrystalline structure, formed below the sparking voltage of 180 V, incorporates small amounts of phosphorus and calcium species, with phosphorus confined to the outer approximately 63% of the coating thickness. On commencement of sparking, calcium- and phosphorus-rich amorphous material forms at the coating surface, with local heating promoting crystallization in underlying and adjacent anodic titania. The amorphous material thickens with increased treatment time, comprising almost the whole of the approximately 5.7-microm-thick coating formed at 340 V. At this stage, the coating is approximately 4.4 times thicker than the oxidized titanium, with a near-surface composition of about 12 at.% Ti, 58 at.% O, 19 at.% P and 11 at.% Ca. Further, the amount of titanium consumed in forming the coating is similar to that calculated from the anodizing charge, although there may be non-Faradaic contributions to the coating growth.

  19. Hardening of niobium alloys at precrystallization annealing

    International Nuclear Information System (INIS)

    Vasil'eva, E.V.; Pustovalov, V.A.

    1989-01-01

    Niobium base alloys were investigated. It is shown that precrystallization annealing of niobium-molybdenum, niobium-vanadium and niobium-zirconium alloys elevates much more sufficiently their resistance to microplastic strains, than to macroplastic strains. Hardening effect differs sufficiently for different alloys. The maximal hardening is observed for niobium-vanadium alloys, the minimal one - for niobium-zirconium alloys

  20. Determination of Ti, Cr, Cu and Ta in niobium oxide by X-ray fluorescence method

    International Nuclear Information System (INIS)

    Dixit, R.M.; Deshpande, S.S.

    1986-01-01

    An x-ray fluorescence method for the determination of Ti, Cr, Cu and Ta in niobium oxide has been developed. Samples/standards in powder form are mixed with boric acid in the proportion of 1:1 (400 mg. each). Double layer pellets are prepared by pressing this mixture over a primary boric acid pellet. Philips PW-1220, a semiautomatic x-ray spectrometer with tungsten target x-ray tube for excitation and LiF (200) crystal for dispersion have been used. The determination range is from 0.005 to 0.1per cent for Ti and Cr, 0.01 to 0.1per cent for Cu and 0.05 to 1per cent for Ta. (author)

  1. Fabrication and oxidation resistance of titanium carbide-coated carbon fibres by reacting titanium hydride with carbon fibres in molten salts

    International Nuclear Information System (INIS)

    Dong, Z.J.; Li, X.K.; Yuan, G.M.; Cong, Y.; Li, N.; Jiang, Z.Y.; Hu, Z.J.

    2009-01-01

    Using carbon fibres and titanium hydride as a reactive carbon source and a metal source, respectively, a protective titanium carbide (TiC) coating was formed on carbon fibres in molten salts, composed of LiCl-KCl-KF, at 750-950 o C. The structure and morphology of the TiC coatings were characterised by X-ray diffraction and scanning electron microscopy, respectively. The oxidation resistance of the TiC-coated carbon fibres was measured by thermogravimetric analysis. The results reveal that control of the coating thickness is very important for improvement of the oxidation resistance of TiC-coated carbon fibres. The oxidative weight loss initiation temperature for the TiC-coated carbon fibres increases significantly when an appropriate coating thickness is used. However, thicker coatings lead to a decrease of the carbon fibres' weight loss initiation temperature due to the formation of cracks in the coating. The TiC coating thickness on carbon fibres can be controlled by adjusting the reaction temperature and time of the molten salt synthesis.

  2. Generation of an electromotive force by hydrogen-to-water oxidation with Pt-coated oxidized titanium foils

    Energy Technology Data Exchange (ETDEWEB)

    Schierbaum, Klaus; El Achhab, Mhamed [Department of Materials Science, Institute for Experimental Condensed Matter Physics, Heinrich-Heine University, 40225 Duesseldorf, Universitaetsstrasse 1 (Germany)

    2011-12-15

    We show that chemically induced current densities up to 20 mA cm{sup -2} and an electromotive force (EMF) up to 465 mV are generated during the hydrogen-to-water-oxidation over Pt/TiO{sub 2}/Ti devices. We prepare the samples by plasma electrolytic oxidation (PEO) of titanium foils and deposition of Pt contact paste. This process yields porous structures and, depending on the anodization voltage, Schottky diode-type current-voltage curves of various ideality parameters. Our experiments demonstrate that Pt coated anodized titanium can also be utilized as hydrogen sensor; the system offers a number of advantages such as a wide temperature range of operation from -40 to 80 C, quick response and decay times of signals, and good electrical stability. Idealized sketch of the Pt coated anodized Ti foil and application as hydrogen sensor and electric generator. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Anticoagulation and endothelial cell behaviors of heparin-loaded graphene oxide coating on titanium surface

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Chang-Jiang, E-mail: panchangjiang@hyit.edu.cn [Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai' an 223003 (China); Pang, Li-Qun [Department of General Surgery, Huai' an First People' s Hospital, Nanjing Medical University, Huai' an 223300 (China); Gao, Fei [Zhejiang Zylox Medical Devices Co., Ltd., Hangzhou 310000 (China); Wang, Ya-Nan; Liu, Tao; Ye, Wei; Hou, Yan-Hua [Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai' an 223003 (China)

    2016-06-01

    Owing to its unique physical and chemical properties, graphene oxide (GO) has attracted tremendous interest in many fields including biomaterials and biomedicine. The purpose of the present study is to investigate the endothelial cell behaviors and anticoagulation of heparin-loaded GO coating on the titanium surface. To this end, the titanium surface was firstly covered by the polydopamine coating followed by the deposition of the GO coating. Heparin was finally loaded on the GO coating to improve the blood compatibility. The results of attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) indicated that the heparin-loaded GO coating was successfully created on the titanium surface. The scanning electron microscopy (SEM) images indicated that a relative uniform GO coating consisting of multilayer GO sheets was formed on the substrate. The hydrophilicity of the titanium surface was enhanced after the deposition of GO and further improved significantly by the loading heparin. The GO coating can enhance the endothelial cell adhesion and proliferation as compared with polydopamine coating and the blank titanium. Loading heparin on the GO coating can significantly reduce the platelet adhesion and prolong the activated partial thromboplastin time (APTT) while not influence the endothelial cell adhesion and proliferation. Therefore, the heparin-loaded GO coating can simultaneously enhance the cytocompatibility to endothelial cells and blood compatibility of biomaterials. Because the polydopamine coating can be easily prepared on most of biomaterials including polymer, ceramics and metal, thus the approach of the present study may open up a new window of promising an effective and efficient way to promote endothelialization and improve the blood compatibility of blood-contact biomedical devices such as intravascular stents. - Highlights: • Heparin-loaded graphene oxide coating was

  4. Chemical changes of titanium and titanium dioxide under electron bombardment

    Directory of Open Access Journals (Sweden)

    Romins Brasca

    2007-09-01

    Full Text Available The electron induced effect on the first stages of the titanium (Ti0 oxidation and titanium dioxide (Ti4+ chemical reduction processes has been studied by means of Auger electron spectroscopy. Using factor analysis we found that both processes are characterized by the appearance of an intermediate Ti oxidation state, Ti2O3 (Ti3+.

  5. 10-fold enhancement in light-driven water splitting using niobium oxynitride microcone array films

    KAUST Repository

    Shaheen, Basamat

    2016-03-26

    We demonstrate, for the first time, the synthesis of highly ordered niobium oxynitride microcones as an attractive class of materials for visible-light-driven water splitting. As revealed by the ultraviolet photoelectron spectroscopy (UPS), photoelectrochemical and transient photocurrent measurements, the microcones showed enhanced performance (~1000% compared to mesoporous niobium oxide) as photoanodes for water splitting with remarkable stability and visible light activity. © 2016 Elsevier B.V. All rights reserved.

  6. Anomalous diffusion in niobium. Study of solute diffusion mechanism of iron in niobium

    International Nuclear Information System (INIS)

    Ablitzer, D.

    1977-01-01

    In order to explain anomalously high diffusion velocities observed for iron diffusion in niobium, the following parameters were measured: isotope effect, b factor (which expresses the effect of iron on niobium self-diffusion), self-diffusion coefficient of niobium, solute diffusion coefficient of iron in niobium. The results obtained show that neither pure vacancy models, nor diffusion in the lattice defects (dislocations, sub-boundaries, grain boundaries), nor pure interstitialy mechanisms, nor simple or cyclic exchange mechanisms agree with experiments. A mechanism is proposed which considers an equilibrium between substitution iron atoms and interstitial iron atoms. The diffusion of iron then occurs through interstitial vancancy pairs [fr

  7. Electrorheological properties of suspensions of hollow globular titanium oxide/polypyrrole particles

    Czech Academy of Sciences Publication Activity Database

    Sedlačík, M.; Mrlík, M.; Pavlínek, V.; Sáha, P.; Quadrat, Otakar

    2012-01-01

    Roč. 290, č. 1 (2012), s. 41-48 ISSN 0303-402X R&D Projects: GA ČR GA202/09/1626 Institutional research plan: CEZ:AV0Z40500505 Keywords : electrorheology * titanium oxide * hollow globular clusters Subject RIV: JI - Composite Materials Impact factor: 2.161, year: 2012

  8. Hydrous titanium oxide-supported catalysts

    International Nuclear Information System (INIS)

    Dosch, R.G.; Stohl, F.V.; Richardson, J.T.

    1990-01-01

    Catalysts were prepared on hydrous titanium oxide (HTO) supports by ion exchange of an active metal for Na + ions incorporated in the HTO support during preparation by reaction with the parent Ti alkoxide. Strong active metal-HTO interactions as a result of the ion exchange reaction can require significantly different conditions for activation as compared to catalysts prepared by more widely used incipient wetness methods. The latter catalysts typically involve conversion or while the HTO catalysts require the alteration of electrostatic bonds between the metal and support with subsequent alteration of the support itself. In this paper, the authors discuss the activation, via sulfidation or reduction, of catalysts consisting of Co, Mo, or Ni-Mo dispersed on HTO supports by ion exchange. Correlations between the activation process and the hydrogenation, hydrodeoxygenation, and hydrodesulfurization activities of the catalysts are presented

  9. Influence of different grained powders and pellets made of Niobium and Ti-42Nb on human cell viability

    Energy Technology Data Exchange (ETDEWEB)

    Markhoff, Jana, E-mail: markhoffj@gmail.com [University Medicine Rostock, Department of Orthopedics, Biomechanics and Implant Technology Laboratory, Doberaner Strasse 142, 18057 Rostock (Germany); Weinmann, Markus [H.C. Starck Tantalum and Niobium GmbH, Im Schleeke 78-91, 38642 Goslar (Germany); Schulze, Christian; Bader, Rainer [University Medicine Rostock, Department of Orthopedics, Biomechanics and Implant Technology Laboratory, Doberaner Strasse 142, 18057 Rostock (Germany)

    2017-04-01

    Nowadays, biomaterials can be used to maintain or replace several functions of the human body if necessary. Titanium and its alloys, i.e. Ti6Al4V are the most common materials (70 to 80%) used for structural orthopedic implants due to their unique combination of good mechanical properties, corrosion resistance and biocompatibility. Addition of β-stabilizers, e.g. niobium, can improve the mechanical properties of such titanium alloys further, simultaneously offering excellent biocompatibility. In this in vitro study, human osteoblasts and fibroblasts were cultured on different niobium specimens (Nb Amperit, Nb Ampertec), Nb sheets and Ti-42Nb (sintered and 3D-printed by selective laser melting, SLM) and compared with forged Ti6Al4V specimens. Furthermore, human osteoblasts were incubated with particulates of the Nb and Ti-42Nb specimens in three concentrations over four and seven days to imitate influence of wear debris. Thereby, the specimens with the roughest surfaces, i.e. Ti-42Nb and Nb Ampertec, revealed excellent and similar results for both cell types concerning cell viability and collagen synthesis superior to forged Ti6Al4V. Examinations with particulate debris disclosed a dose-dependent influence of all powders with Nb Ampertec showing the highest decrease of cell viability and collagen synthesis. Furthermore, interleukin synthesis was only slightly increased for all powders. In summary, Nb Ampertec (sintered Nb) and Ti-42Nb materials seem to be promising alternatives for medical applications compared to common materials like forged or melted Ti6Al4V. - Highlights: • Titanium and its alloys most common materials used for structural orthopedic implants • Addition of β-stabilizers to improve mechanical properties • Roughest surfaces, Nb ampertec and Ti-42Nb, with excellent results concerning cell viability and collagen synthesis • No cell-specific differences between human osteoblasts and fibroblasts • Niobium based powders with dose- and partly

  10. Study of the role of the interface between niobium films and copper RF resonators

    CERN Document Server

    Benvenuti, Cristoforo; Campisi, I E; Darriulat, Pierre; Peck, M A; Russo, R

    1997-01-01

    Niobium-coated copper resonators are usually produced with an oxide interface between the film and the substrate. This oxide has two sources: the passivation layer inevitably formed on the surface of the cavity after chemical preparation before coating, and the niobium oxide which builds up on the surface of the cathode when it is exposed to air, and is transferred to the cavity surface during coa ting. The oxide layer may influence both the purity and the structural properties of the film, and in turn its RF behaviour. To study its effect, some cavities have been coated with a special two-cath ode sputtering system, allowing for a complete removal of both oxide layers by sputter-etching. For comparison, a few cavities have also been produced with the same coating system without sputter-etch ing, or with a controlled oxidation of the copper surface of the cavity after sputter-etching. Two cavities have also been produced without oxide interface using Kr and Ne as sputter gas instead of Ar .

  11. Niobium 1 percent zirconium/potassium and titanium/potassium life-test heat pipe design and testing

    Science.gov (United States)

    Sena, J. Tom; Merrigan, Michael A.

    Experimental lifetime performance studies currently in progress use Niobium 1 percent Zirconium (Nb-1Zr) and Titanium (Ti) heat pipes with potassium (K) as the working fluid. A heat pipe life test matrix was developed for testing the heat pipes. Because the corrosion rates in alkali metal heat pipes are affected by temperature and working fluid evaporation flux, the variable parameters of the experimental matrix are established as steady operating temperature and input heat flux density. Total impurity inventory is a factor in corrosion rate so impurity levels are being evaluated in the heat pipe materials before and after testing. Eight Nb-1Zr/K heat pipes were designed, fabricated, and tested. Two of the heat pipes have completed testing whereas the other six are currently in test. These are gravity assist heat pipes operating in a reflux mode. The heat pipes are tested by sets, one set of two and two sets of three heat pipes. Three Ti/K heat pipes are also in life test. These heat pipes are tested as a set in a horizontal position in a capillary pumped annular flow mode. Each of the heat pipes is encapsulated in a quartz vacuum container with a water calorimeter over the vacuum container for power throughput measurements. Thermocouples are attached to the heat pipes for measuring temperature. Heat input to the heat pipes is via an RF coil. The heat pipes are operating at between 800 and 900 K, with heat input fluxes of 13.8 to 30 W/sq cm. Of the Nb-1Zr/K heat pipes, two of the heat pipes have been in operation for 14,000 hours, three over 10,000 hours, and three over 7,000 hours. The Ti/K heat pipes have been in operation for 1,266 hours.

  12. Biomimetic novel nanoporous niobium oxide coating for orthopaedic applications

    Science.gov (United States)

    Pauline, S. Anne; Rajendran, N.

    2014-01-01

    Niobium oxide was synthesized by sol-gel methodology and a crystalline, nanoporous and adherent coating of Nb2O5 was deposited on 316L SS using the spin coating technique and heat treatment. The synthesis conditions were optimized to obtain a nanoporous morphology. The coating was characterized using attenuated total reflectance-Infrared spectroscopy (ATR-IR), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX), atomic force microscopy (AFM) and transmission electron microscopy (TEM) and the formation of crystalline Nb2O5 coating with nanoporous morphology was confirmed. Mechanical studies confirmed that the coating has excellent adherence to the substrate and the hardness value of the coating was excellent. Contact angle analysis showed increased hydrophilicity for the coated substrate. In vitro bioactivity test confirmed that the Nb2O5 coating with nanoporous morphology facilitated the growth of hydroxyapatite (HAp). This was further confirmed by the solution analysis test where increased uptake of calcium and phosphorous ions from simulated body fluid (SBF) was observed. Electrochemical evaluation of the coating confirmed that the crystalline coating is insulative and protective in nature and offered excellent corrosion protection to 316L SS. Thus, this study confirmed that the nanoporous crystalline Nb2O5 coating conferred bioactivity and enhanced corrosion resistance on 316L SS.

  13. Biomimetic novel nanoporous niobium oxide coating for orthopaedic applications

    Energy Technology Data Exchange (ETDEWEB)

    Pauline, S. Anne; Rajendran, N., E-mail: nrajendran@annauniv.edu

    2014-01-30

    Niobium oxide was synthesized by sol–gel methodology and a crystalline, nanoporous and adherent coating of Nb{sub 2}O{sub 5} was deposited on 316L SS using the spin coating technique and heat treatment. The synthesis conditions were optimized to obtain a nanoporous morphology. The coating was characterized using attenuated total reflectance-Infrared spectroscopy (ATR-IR), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX), atomic force microscopy (AFM) and transmission electron microscopy (TEM) and the formation of crystalline Nb{sub 2}O{sub 5} coating with nanoporous morphology was confirmed. Mechanical studies confirmed that the coating has excellent adherence to the substrate and the hardness value of the coating was excellent. Contact angle analysis showed increased hydrophilicity for the coated substrate. In vitro bioactivity test confirmed that the Nb{sub 2}O{sub 5} coating with nanoporous morphology facilitated the growth of hydroxyapatite (HAp). This was further confirmed by the solution analysis test where increased uptake of calcium and phosphorous ions from simulated body fluid (SBF) was observed. Electrochemical evaluation of the coating confirmed that the crystalline coating is insulative and protective in nature and offered excellent corrosion protection to 316L SS. Thus, this study confirmed that the nanoporous crystalline Nb{sub 2}O{sub 5} coating conferred bioactivity and enhanced corrosion resistance on 316L SS.

  14. Assessment of antibacterial and cytotoxic effects of orthodontic stainless steel brackets coated with different phases of titanium oxide: An in-vitro study.

    Science.gov (United States)

    Baby, Roshen Daniel; Subramaniam, Siva; Arumugam, Ilakkiya; Padmanabhan, Sridevi

    2017-04-01

    Our objective was to assess the antibacterial and cytotoxic effects of orthodontic stainless steel brackets coated with different phases of photocatalytic titanium oxide. From a total sample of 115 brackets, 68 orthodontic stainless steel brackets were coated with titanium oxide using a radiofrequency magnetron sputtering machine. The coated brackets were then converted into 34 each of the anatase and rutile phases of titanium oxide. These brackets were subdivided into 4 groups for antibacterial study and 3 groups for cytotoxicity study. Brackets for the antibacterial study were assessed against the Streptococcus mutans species using microbiologic tests. Three groups for the cytotoxicity study were assessed using the thiazolyl tetrazolium bromide assay. The antibacterial study showed that both phases were effective, but the rutile phase of photocatalytic titanium oxide had a greater bactericidal effect than did the anatase phase. The cytotoxicity study showed that the rutile phase had a greater decrease in viability of cells compared with the anatase phase. It is recommended that orthodontic brackets be coated with the anatase phase of titanium oxide since they exhibited a significant antibacterial property and were only slightly cytotoxic. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  15. Understanding Quality Factor Degradation in Superconducting Niobium Cavities at Low Microwave Field Amplitudes

    Science.gov (United States)

    Romanenko, A.; Schuster, D. I.

    2017-12-01

    In niobium superconducting radio frequency (SRF) cavities for particle acceleration, a decrease of the quality factor at lower fields—a so-called low field Q slope or LFQS—has been a long-standing unexplained effect. By extending the high Q measurement techniques to ultralow fields, we discover two previously unknown features of the effect: (i) saturation at rf fields lower than Eacc˜0.1 MV /m ; (ii) strong degradation enhancement by growing thicker niobium pentoxide. Our findings suggest that the LFQS may be caused by the two level systems in the natural niobium oxide on the inner cavity surface, thereby identifying a new source of residual resistance and providing guidance for potential nonaccelerator low-field applications of SRF cavities.

  16. Measurement of the high-field Q-drop in a high-purity large-grain niobium cavity for different oxidation processes

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, Gianluigi; Kneisel, Peter; gurevich, alex

    2007-06-01

    The most challenging issue for understanding the performance of superconducting radio-frequency (rf) cavities made of high-purity (residual resistivity ratio > 200) niobium is due to a sharp degradation (“Q-drop”) of the cavity quality factor Q0(Bp) as the peak surface magnetic field (Bp) exceeds about 90 mT, in the absence of field emission. In addition, a low-temperature (100 – 140 C) “in-situ” baking of the cavity was found to be beneficial in reducing the Q-drop. In this contribution, we present the results from a series of rf tests at 1.7 K and 2.0 K on a single-cell cavity made of high-purity large (with area of the order of few cm2) grain niobium which underwent various oxidation processes, after initial buffered chemical polishing, such as anodization, baking in pure oxygen atmosphere and baking in air up to 180 °C, with the objective of clearly identifying the role of oxygen and the oxide layer on the Q-drop. During each rf test a temperature mapping system allows measuring the local temperature rise of the cavity outer surface due to rf losses, which gives information about the losses location, their field dependence and space distribution. The results confirmed that the depth affected by baking is about 20 – 30 nm from the surface and showed that the Q-drop did not re-appear in a previously baked cavity by further baking at 120 °C in pure oxygen atmosphere or in air up to 180 °C. These treatments increased the oxide thickness and oxygen concentration, measured on niobium samples which were processed with the cavity and were analyzed with Transmission Electron Microscope (TEM) and Secondary Ion Mass Spectroscopy (SIMS). Nevertheless, the performance of the cavity after air baking at 180 °C degraded significantly and the temperature maps showed high losses, uniformly distributed on the surface, which could be completely recovered only by a post-purification treatment at 1250 °C. A statistic of the position of the “hot-spots” on the

  17. Measurement of the high-field Q drop in a high-purity large-grain niobium cavity for different oxidation processes

    Directory of Open Access Journals (Sweden)

    G. Ciovati

    2007-06-01

    Full Text Available The most challenging issue for understanding the performance of superconducting radio-frequency (rf cavities made of high-purity (residual resistivity ratio >200 niobium is due to a sharp degradation (“Q-drop” of the cavity quality factor Q_{0}(B_{p} as the peak surface magnetic field (B_{p} exceeds about 90 mT, in the absence of field emission. In addition, a low-temperature (100–140°C in situ baking of the cavity was found to be beneficial in reducing the Q-drop. In this contribution, we present the results from a series of rf tests at 1.7 and 2.0 K on a single-cell cavity made of high-purity large (with area of the order of few cm^{2} grain niobium which underwent various oxidation processes, after initial buffered chemical polishing, such as anodization, baking in pure oxygen atmosphere, and baking in air up to 180°C, with the objective of clearly identifying the role of oxygen and the oxide layer on the Q-drop. During each rf test a temperature mapping system allows measuring the local temperature rise of the cavity outer surface due to rf losses, which gives information about the losses location, their field dependence, and space distribution. The results confirmed that the depth affected by baking is about 20–30 nm from the surface and showed that the Q-drop did not reappear in a previously baked cavity by further baking at 120°C in pure oxygen atmosphere or in air up to 180°C. These treatments increased the oxide thickness and oxygen concentration, measured on niobium samples which were processed with the cavity and were analyzed with transmission electron microscope and secondary ion mass spectroscopy. Nevertheless, the performance of the cavity after air baking at 180°C degraded significantly and the temperature maps showed high losses, uniformly distributed on the surface, which could be completely recovered only by a postpurification treatment at 1250°C. A statistic of the position of the “hot spots” on the

  18. A Classical Potential to Model the Adsorption of Biological Molecules on Oxidized Titanium Surfaces.

    Science.gov (United States)

    Schneider, Julian; Ciacchi, Lucio Colombi

    2011-02-08

    The behavior of titanium implants in physiological environments is governed by the thin oxide layer that forms spontaneously on the metal surface and mediates the interactions with adsorbate molecules. In order to study the adsorption of biomolecules on titanium in a realistic fashion, we first build up a model of an oxidized Ti surface in contact with liquid water by means of extensive first-principles molecular dynamics simulations. Taking the obtained structure as reference, we then develop a classical potential to model the Ti/TiOx/water interface. This is based on the mapping with Coulomb and Lennard-Jones potentials of the adsorption energy landscape of single water and ammonia molecules on the rutile TiO2(110) surface. The interactions with arbitrary organic molecules are obtained via standard combination rules to established biomolecular force fields. The transferability of our potential to the case of organic molecules adsorbing on the oxidized Ti surface is checked by comparing the classical potential energy surfaces of representative systems to quantum mechanical results at the level of density functional theory. Moreover, we calculate the heat of immersion of the TiO2 rutile surface and the detachment force of a single tyrosine residue from steered molecular dynamics simulations, finding good agreement with experimental reference data in both cases. As a first application, we study the adsorption behavior of the Arg-Gly-Asp (RGD) peptide on the oxidized titanium surface, focusing particularly on the calculation of the free energy of desorption.

  19. Electrical Transport Ability of Nanostructured Potassium-Doped Titanium Oxide Film

    Science.gov (United States)

    Lee, So-Yoon; Matsuno, Ryosuke; Ishihara, Kazuhiko; Takai, Madoka

    2011-02-01

    Potassium-doped nanostructured titanium oxide films were fabricated using a wet corrosion process with various KOH solutions. The doped condition of potassium in TiO2 was confirmed by Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Nanotubular were synthesized at a dopant concentration of 0.27%, these structures disappeared. To investigate the electrical properties of K-doped TiO2, pseudo metal-oxide-semiconductor field-effect transistor (MOSFET) samples were fabricated. The samples exhibited a distinct electrical behavior and p-type characteristics. The electrical behavior was governed by the volume of the dopant when the dopant concentration was 0.18%.

  20. Pyrolytic carbon coating for cytocompatibility of titanium oxide nanoparticles: a promising candidate for medical applications

    International Nuclear Information System (INIS)

    Behzadi, Shahed; Simchi, Abdolreza; Imani, Mohammad; Yousefi, Mohammad; Galinetto, Pietro; Amiri, Houshang; Stroeve, Pieter; Mahmoudi, Morteza

    2012-01-01

    Nanoparticles for biomedical use must be cytocompatible with the biological environment that they are exposed to. Current research has focused on the surface functionalization of nanoparticles by using proteins, polymers, thiols and other organic compounds. Here we show that inorganic nanoparticles such as titanium oxide can be coated by pyrolytic carbon (PyC) and that the coating has cytocompatible properties. Pyrolization and condensation of methane formed a thin layer of pyrolytic carbon on the titanium oxide core. The formation of the PyC shell retards coalescence and sintering of the ceramic phase. Our MTT assay shows that the PyC-coated particles are cytocompatible at employed doses. (paper)

  1. Oxidative dehydrogenation of isobutane over a titanium pyrophosphate catalyst

    Directory of Open Access Journals (Sweden)

    IOAN-CEZAR MARCU

    2005-06-01

    Full Text Available The catalytic properties of titanium pyrophosphate in the oxidative dehydrogenation of isobutane to isobutylene were investigated in the 400 – 550 ºC temperature range. Asignificant change of the product distribution and of the apparent activation energy of the reactionwas observed at about 490 ºC. This phenomenon, already observed in the oxidative dehydrogenation of n-butane, has been interpreted by the existence of two reaction mechanisms depending upon the reaction temperature. Comparison with the n-butane reaction allowed different activation pathways for the activation of alkanes to be proposed. The catalytic properties of TiP2O7 in the oxidative dehydrogenation of isobutane was also compared to those obtained previously with several other pyrophosphates and TiP2O7 was found to be less active and selective for this reaction.

  2. Sol-Gel Synthesis and Characterization of Cubic Bismuth Zinc Niobium Oxide Nanopowders

    Directory of Open Access Journals (Sweden)

    Ganchimeg Perenlei

    2014-01-01

    Full Text Available Bismuth zinc niobium oxide (BZN was successfully synthesized by a diol-based sol-gel reaction utilizing metal acetate and alkoxide precursors. Thermal analysis of a liquid suspension of precursors suggests that the majority of organic precursors decompose at temperatures up to 150°C, and organic free powders form above 350°C. The experimental results indicate that a homogeneous gel is obtained at about 200°C and then converts to a mixture of intermediate oxides at 350–400°C. Finally, single-phased BZN powders are obtained between 500 and 900°C. The degree of chemical homogeneity as determined by X-ray diffraction and EDS mapping is consistent throughout the samples. Elemental analysis indicates that the atomic ratio of metals closely matches a Bi1.5ZnNb1.5O7 composition. Crystallite sizes of the BZN powders calculated from the Scherrer equation are about 33–98 nm for the samples prepared at 500–700°C, respectively. The particle and crystallite sizes increase with increased sintering temperature. The estimated band gap of the BZN nanopowders from optical analysis is about 2.60–2.75 eV at 500-600°C. The observed phase formations and measured results in this study were compared with those of previous reports.

  3. Electrocontact material based on silver dispersion-strengthened by nickel, titanium, and zinc oxides

    Science.gov (United States)

    Zeer, G. M.; Zelenkova, E. G.; Belousov, O. V.; Beletskii, V. V.; Nikolaev, S. V.; Ledyaeva, O. N.

    2017-09-01

    Samples of a composite electrocontact material based on silver strengthened by the dispersed phases of zinc and titanium oxides have been investigated by the electron microscopy and energy dispersive X-ray spectroscopy. A uniform distribution of the oxide phases containing 2 wt % zinc oxide in the initial charge has been revealed. The increase in the amount of zinc oxide leads to an increase of the size of the oxide phases. It has been shown that at the zinc oxide content of 2 wt %, the minimum wear is observed in the process of electroerosion tests; at 3 wt %, an overheating and welding of the contacts are observed.

  4. Color change mechanism of niobium oxide thin film with incidental light angle and applied voltage

    Energy Technology Data Exchange (ETDEWEB)

    Komatsu, Isao [Course of Information Science and Technology, Graduate School of Science and Technology, Tokai University (Japan); Aoki, Hayata [Course of Electro Photo Optics, Graduate School of Engineering, Tokai University (Japan); Ebisawa, Mizue [Tokyo Metropolitan Industrial Technology Research Institute (Japan); Kuroda, Akihiro [Department of Optical and Imaging Science & Technology, Faculty of Engineering, Tokai University (Japan); Kuroda Consulting Incorporated (Japan); Kuroda, Koichi [Kuroda Consulting Incorporated (Japan); Maeda, Shuichi [Course of Information Science and Technology, Graduate School of Science and Technology, Tokai University (Japan); Course of Electro Photo Optics, Graduate School of Engineering, Tokai University (Japan); Department of Optical and Imaging Science & Technology, Faculty of Engineering, Tokai University (Japan)

    2016-03-31

    Niobium oxide thin layers made by the anodization process showed coloration owing to thin film interference. The reflection spectra depended on both the applied voltage and incident light angle. Large color differences were observed at incident light angles between 5° and 70°, when the applied voltage was over 60 V. In this study, we explored the cause of these results using ellipsometry and goniophotometry to understand the transition of optical constants and the reflection spectra with applied voltage. Finally, we concluded that the coloration of the reflection spectra, which included only a first-order interference peak, exhibits a smaller change because the first order interference peak has a wider half value width than higher order interference peaks. - Highlights: • We investigated color change of Nb{sub 2}O{sub 5} oxide thin layers with incidental light angle. • The reflection spectra shift to lower wavelength region with increasing incident light angle. • The reflection spectra shift to higher wavelength region with increasing applied voltage. • First-order interference has wider half value width, and exhibits small color change.

  5. Microstructure of titanium oxide films synthesized by ion beam dynamic mixing

    International Nuclear Information System (INIS)

    Makino, Y.; Setsuhara, Y.; Miyake, S.

    1994-01-01

    The microstructure of titanium oxide films synthesized by the ion beam dynamic mixing (IBDM) method is investigated by glancing angle X-ray diffraction and multi-reflectance FT-IR methods. Titanium oxide films are identified as rutile phases having different degrees of (110) orientation. The IBDM rutile phase with a standard crystalline state is produced by controlling the ratio of the intensities between the (110) and (101) peaks of the rutile, I(110)/I(101), so as to approach the ratio to the value (=2.0) of ASTM standard rutile. The crystallite size of the rutile phase increases with increasing ratio of intensities of the two XRD peaks, I(110)/I(101). The increase of the crystallite size is suggested to be attributed to the increase of oxygen ion energy per Ti atom. From the dependence of the IR absorption near 500 cm -1 upon I(110)/I(101), it is indicated that the Ti-O bond strength is delicately affected by the degree of (110) orientation of the IBDM rultile phase. ((orig.))

  6. Anodic oxidation of commercially pure titanium for purification of polluted water

    Science.gov (United States)

    Benkafada, Faouzia; Kerdoud, Djahida; Bouchoucha, Ali

    2018-05-01

    Anodisation of pure titanium has been carried out in sulphuric acid solution at potentials ranging from 40 V to 5 days. We studied the parameters influencing the anodic deposition such as acid concentration and anodic periods. Anodic oxides thin films were characterized by X-ray diffraction, cyclic polarization and electrochemical impedance spectroscopy. The I-V curves and electrochemical impedance measurements were carried out in 0.1 N NaOH solution. The results indicated that although the thin films obtained by anodic oxidation are nonstoichiometric, they have an electric behaviour like n-type semiconducting material.

  7. Interlaboratory niobium dosimetry comparison

    International Nuclear Information System (INIS)

    Wille, P.

    1980-01-01

    For an interlaboratory comparison of neutron dosimetry using niobium the 93 sup(m)Nb activities of irradiated niobium monitors were measured. This work was performed to compare the applied techniques of dosimetry with Nb in different laboratories. The niobium monitors were irradiated in the fast breeder EBRII, USA and the BR2, Belgium. The monitors were dissolved and several samples were prepared. Their niobium contents were determined by the 94 Nb-count rates. since the original specific count rate was known. The KX radiations of the 93 sup(m)Nb of the samples and of a calibrated Nb-foil were compared. This foil was measured by PTB, Braunschweig and CBNM, Geel, which we additionally compared with the KX radiation of 88 Sr produced by a thin 88 Y source from a 88 Y-standard solution (PTB). (orig.) [de

  8. Niobium ore OKA-1

    International Nuclear Information System (INIS)

    Steger, H.F.; Bowman, W.S.

    1981-01-01

    A 287-kg sample of a niobium ore, OKA-1, from Oka, Quebec, was prepared as a compositional reference material. OKA-1 was ground to minus 74 μm, blended in one lot, tested for homogeneity by X-ray fluorescence and chemical methods and bottled in 200-g units. In a 'free-choice' round-robin analytical program, 22 laboratories contributed results for niobium in each of two bottles of OKA-1. A statistical analysis of the data gave a recommended value of 0.37 +- 0.01% for niobium

  9. Template-assisted hydrothermally synthesized iron-titanium binary oxides and their application as catalysts for ethyl acetate oxidation

    Czech Academy of Sciences Publication Activity Database

    Tsoncheva, T.; Ivanova, R.; Dimitrov, M.; Paneva, D.; Kovacheva, D.; Henych, Jiří; Vomáčka, Petr; Kormunda, M.; Velinov, N.; Mitov, I.; Štengl, Václav

    2016-01-01

    Roč. 528, NOV (2016), s. 24-35 ISSN 0926-860X R&D Projects: GA MŠk(CZ) LM2015073 Institutional support: RVO:61388980 Keywords : Effect of Fe/Ti ratio and temperature of hydrothermal treatment * Hydrothermal synthesis * Iron-titanium binary oxides Subject RIV: CA - Inorganic Chemistry Impact factor: 4.339, year: 2016

  10. Microarc oxidized TiO2 based ceramic coatings combined with cefazolin sodium/chitosan composited drug film on porous titanium for biomedical applications.

    Science.gov (United States)

    Wei, Daqing; Zhou, Rui; cheng, Su; Feng, Wei; Li, Baoqiang; Wang, Yaming; Jia, Dechang; Zhou, Yu; Guo, Haifeng

    2013-10-01

    Porous titanium was prepared by pressureless sintering of titanium beads with diameters of 100, 200, 400 and 600 μm. The results indicated that the mechanical properties of porous titanium changed significantly with different bead diameters. Plastic deformations such as necking phenomenon and dimple structure were observed on the fracture surface of porous titanium sintered by beads with diameter of 100 μm. However, it was difficult to find this phenomenon on the porous titanium with a titanium bead diameter of 600 μm. The microarc oxidized coatings were deposited on its surface to improve the bioactivity of porous titanium. Furthermore, the cefazolin sodium/chitosan composited films were fabricated on the microarc oxidized coatings for overcoming the inflammation due to implantation, showing good slow-release ability by addition of chitosan. And the release kinetic process of cefazolin sodium in composited films could be possibly fitted by a polynomial model. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Large grain cavities from pure niobium ingot

    Science.gov (United States)

    Myneni, Ganapati Rao [Yorktown, VA; Kneisel, Peter [Williamsburg, VA; Cameiro, Tadeu [McMurray, PA

    2012-03-06

    Niobium cavities are fabricated by the drawing and ironing of as cast niobium ingot slices rather than from cold rolled niobium sheet. This method results in the production of niobium cavities having a minimum of grain boundaries at a significantly reduced cost as compared to the production of such structures from cold rolled sheet.

  12. Synthesis of niobium nitride by pyrolysis of niobium pentachloride ammines

    International Nuclear Information System (INIS)

    Grebtsova, O.M.; Shulga, Y.M.; Troitskii, V.N.

    1986-01-01

    This paper investigates the conditions for the preparation of niobium nitride in the thermal decomposition of niobium nitride in the thermal decomposition of niobium pentachloride ammines. The synthesis of the ammines was accomplished by the reaction of powdered NbC1 5 with dry ammonia at 210 K. Thermography and x-ray diffraction, spectral, and chemical analyses were used to identify the ammonolysis products. It was established that the products of ammonolysis of NbC1 5 are a mixture of the x-ray-amorphous complex Nb (NH 2 ) /SUB 5-x/ - (NG 3 ) 3 CL 3 (x≅) and 2 moles of NH 4 C1. The steps in the thermal decomposition of this mixture were studied. The phase transition that is observed in the case of further vacuum heat treatment at 1100-1300 K is presented

  13. Titanium disilicide formation by sputtering of titanium on heated silicon substrate

    Science.gov (United States)

    Tanielian, M.; Blackstone, S.

    1984-09-01

    We have sputter deposited titanium on bare silicon substrates at elevated temperatures. We find that at a substrate temperature of about 515 °C titanium silicide is formed due to the reaction of the titanium with the Si. The resistivity of the silicide is about 15 μΩ cm and it is not etchable in a selective titanium etch. This process can have applications in low-temperature, metal-oxide-semiconductor self-aligned silicide formation for very large scale integrated

  14. Mechanical strenght and niobium and niobium-base alloys substructures

    International Nuclear Information System (INIS)

    Monteiro, W.A.; Andrade, A.H.P. de

    1986-01-01

    Niobium and some of its alloys have been used in several fields of technological applications such as the aerospace, chemical and nuclear industries. This is due to its excelent mechanical stringth at high temperatures and reasonable ductility at low temperatures. In this work, we review the main features of the relationship mechanical strength - substructure in niobium and its alloys, taking into account the presence of impurities, the influence of initial thermal and thermo - mechanical treatments as well as the irradiation by energetic particles. (Author) [pt

  15. Tribological performance of titanium samples oxidized by fs-laser radiation, thermal heating, or electrochemical anodization

    Science.gov (United States)

    Kirner, S. V.; Slachciak, N.; Elert, A. M.; Griepentrog, M.; Fischer, D.; Hertwig, A.; Sahre, M.; Dörfel, I.; Sturm, H.; Pentzien, S.; Koter, R.; Spaltmann, D.; Krüger, J.; Bonse, J.

    2018-04-01

    Commercial grade-1 titanium samples (Ti, 99.6%) were treated using three alternative methods, (i) femtosecond laser processing, (ii) thermal heat treatment, and (iii) electrochemical anodization, respectively, resulting in the formation of differently conditioned superficial titanium oxide layers. The laser processing (i) was carried out by a Ti:sapphire laser (pulse duration 30 fs, central wavelength 790 nm, pulse repetition rate 1 kHz) in a regime of generating laser-induced periodic surface structures (LIPSS). The experimental conditions (laser fluence, spatial spot overlap) were optimized in a sample-scanning setup for the processing of several square-millimeters large surface areas covered homogeneously by these nanostructures. The differently oxidized titanium surfaces were characterized by optical microscopy, micro Raman spectroscopy, variable angle spectroscopic ellipsometry, and instrumented indentation testing. The tribological performance was characterized in the regime of mixed friction by reciprocating sliding tests against a sphere of hardened steel in fully formulated engine oil as lubricant. The specific tribological performance of the differently treated surfaces is discussed with respect to possible physical and chemical mechanisms.

  16. ELECTROKINETIC PROPERTIES, IN VITRO DISSOLUTION, AND PROSPECTIVE HEMOAND BIOCOMPATIBILITY OF TITANIUM OXIDE AND OXYNITRIDE FILMS FOR CARDIOVASCULAR STENTS

    Directory of Open Access Journals (Sweden)

    I. A. Khlusov

    2015-01-01

    Full Text Available A state of titanium oxide and oxynitride coatings on L316 steel has been studied before and after their contact with model biological fluids. Electrokinetic investigation in 1 mmol potassium chloride showed significant (more than 10 times fall of magnitude of electrostatic potential of thin (200–300 nm titanium films at pH changing in the range of 5–9 units during 2 h. Nevertheless, zeta-potential of all samples had negative charge under pH > 6.5. Long-term (5 weeks contact of samples with simulated body fluid (SBF promoted steel corrosion and titanium oxide and oxynitride films dissolution. On the other hand, sodium and chloride ions precipitation and sodium chloride crystals formation occurred on the samples. Of positive fact is an absence of calcification of tested artificial surfaces in conditions of long-term being in SBF solution. It is supposed decreasing hazard of fast thrombosis and loss of materials functional properties. According to in vitro experiment conducted, prospective biocompatibility of materials tested before and after their contact with SBF lines up following manner: Ti–O–N (1/3 > Ti–O–N (1/1, TiO2 > Steel. It may be explained by: 1 the corrosion-preventive properties of thin titanium oxide and oxynitride films;2 a store of surface negative charge for Ti–O–N (1/3 film; 3 minor augmentation of mass and thickness of titanium films connected with speed of mineralization processes on the interface of solution/solid body. At the same time, initial (before SBF contact differences of samples wettability became equal. Modifying effect of model biological fluids on physicochemical characteristics of materials tested (roughness enhancement, a reduction or reversion of surface negative potential, sharp augmentation of surface hydrofilicity should took into account under titanium oxide and oxynitride films formation and a forecast of their optimal biological properties as the materials for cardiovascular stents.

  17. Technology of niobium and molybdenum refining by electron beam

    International Nuclear Information System (INIS)

    Conti, R.A.; Pinatti, D.G.; Sandim, H.R.Z.

    1988-01-01

    The uses of metals and alloys in superconductors (Nb46%Ti), aerospatial industry (Ti6Al4V), electroeletronic industry (Nb, Mo, W) and in surgical implants (Ti, Nb) are increasing nowadays. A refining process of niobium and molybdenum by electron beam technique, since the oxides reduction till the obtention of a high purity ingot is presented. (C.G.C.) [pt

  18. Properties on niobium-based Josephson tunneling elements in junction microstructures

    International Nuclear Information System (INIS)

    Albrecht, G.; Richter, J.; Weber, P.

    1982-01-01

    We describe the fabrication and electrical characteristics of niobium oxide-barrier tunnel junctions with counterelectrodes of lead/lead alloy. Primary attention is directed to the experimental conditions necessary to obtain high-quality tunnel barriers as well as studies on characterizing the atomic structure of the barrier region. In order to study the tunnel barrier homogeneity in the tunneling region the magnetic field dependence of the critical Josephson current is investigated. The I--V characteristics and dependence of the critical Josephson current on temperature are analyzed quantitatively by using a proximity effect model. Finally, we discuss experimental results on the improvement of junction quality by including traces of carbon in the rf argon plasma during the sputter cleaning of niobium base electrodes

  19. Synthesis, characterization and photo catalytic activity of titanium oxide modified with nitrogen; Sintesis, caracterizacion y actividad fotocatalitica de oxido de titanio modificado con nitrogeno

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez Enriquez, J. M.; Garcia Alamilla, R.; Garcia Serrano, L. A.; Cueto Hernandez, A.

    2011-07-01

    Titanium oxides (TiO{sub 2}) were synthesized by precipitation of titanium tetrachloride (TiCl{sub 4}) using ammonium hydroxide (NH{sub 4}OH). The synthesized materials were characterized by means of nitrogen physisorption, X-ray diffraction, infrared spectroscopy, U.V.-visible diffuse reflectance spectroscopy and the photo catalytic activity of the samples were measured by the degradation of the methyl orange. By means of this synthesis method we have doped the titanium oxide structure with nitrogen (N-TiO{sub 2}), stabilizing the anatase phase and obtaining meso porous and nanocrystalline materials. The titanium oxide with higher specific surface area (132 m{sup 2}/g) degraded the azo-compound to 100% in 180 min of reaction. (Author) 33 refs.

  20. Transmission Electron Microscopy Studies of Electron-Selective Titanium Oxide Contacts in Silicon Solar Cells

    KAUST Repository

    Ali, Haider; Yang, Xinbo; Weber, Klaus; Schoenfeld, Winston V.; Davis, Kristopher O.

    2017-01-01

    In this study, the cross-section of electron-selective titanium oxide (TiO2) contacts for n-type crystalline silicon solar cells were investigated by transmission electron microscopy. It was revealed that the excellent cell efficiency of 21

  1. Surface electronic and structural properties of nanostructured titanium oxide grown by pulsed laser deposition

    NARCIS (Netherlands)

    Fusi, M.; Maccallini, E.; Caruso, T.; Casari, C. S.; Bassi, A. Li; Bottani, C. E.; Rudolf, P.; Prince, K. C.; Agostino, R. G.

    Titanium oxide nanostructured thin films synthesized by pulsed laser deposition (PLD) were here characterized with a multi-technique approach to investigate the relation between surface electronic, structural and morphological properties. Depending on the growth parameters, these films present

  2. Phase transformations in the titanium-niobium binary alloy system

    International Nuclear Information System (INIS)

    Moffat, D.L.

    1985-01-01

    A fundamental study of the phase transformations in the Ti-Nb binary alloy system was completed. Eight alloys in the range 20 to 70 at% Nb were investigated using transmission electron microscopy, light metallography, and x-ray diffraction. Measurements of electric resistivity and Vicker's microhardness also were performed. Emphasis was placed on the minimization of interstitial contamination in all steps of alloy fabrication and specimen preparation. In order to eliminate the effects of prior cold working, the alloys studied were recrystallized at 1000 0 C. Phase transformations were studied in alloys quenched to room temperature after recrystallization and then isothermally aged, and in those isothermally aged without a prior room temperature quench. It was found that the microstructures of the quenched 20 and 25% Nb alloys were extremely sensitive to quench rate - with a fast quench producing martensite, a slow quench, the omega phase. Microstructures of the higher niobium content alloys were much less sensitive to quench rate. The microstructures of the isothermally aged 20 and 25% Nb alloys were found to be sensitive to prior thermal history. Alloys quenched to room temperature and then aged at 400 0 C contained large omega precipitates, while those aged without an intermediate room temperature quench contained alpha precipitates

  3. Niobium interaction with chloride-carbonate melts

    International Nuclear Information System (INIS)

    Kuznetsov, S.A.; Kuznetsova, S.V.

    1996-01-01

    Niobium interaction with chloride-carbonate melt NaCl-KCl-K 2 CO 3 (5 mass %) in the temperature range of 973-1123 K has been studied. The products and niobium corrosion rate have been ascertained, depending on the temperature of melt and time of allowance. Potentials of niobium corrosion have been measured. Refs. 11, figs. 3, tabs. 2

  4. Proposal of a new biokinetic model for niobium; Proposta de um novo modelo biocinetico para o niobio

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Roges

    2006-07-01

    There are two niobium isotopes generated in nuclear power plants: 95 Nb and 94 Nb. Workers and members of the public are subjects to intake these radionuclides in accident situation. For dose calculation purpose, it is very important to develop a model that describes in a more realistic way the kinetics of niobium inside of the human body. Presently the model adopted by ICRP (ICRP, 1989) is based on animal studies and describes the behavior of niobium in human being in a simple manner. The new model proposal describes the kinetics of the niobium from the intake into the blood until the excretion, doing this in a more realistic form and considering not only data from animals but data from human beings as well. For this objective, a workers group of a niobium extraction and processing industry exposed to stable niobium (93 Nb) in oxide insoluble form with associated uranium, was monitored for uranium and niobium determination in urinary and fecal excretion, by mass spectrometry. Based in the ratios of the niobium concentration in urinary and faecal excretion of this workers and animal data study, a new biokinetic model for niobium was proposed, with the followings modifications relative to ICRP model: a new compartment that represents muscular tissue; the fractions which are deposited into the compartment are modified; a third component in the retention equation of the bone tissue; introduction of recirculation between organs and blood. The new model was applied for a case of accidental intake and described adequately the experimental data.

  5. On niobium nitrilohalogenides

    International Nuclear Information System (INIS)

    Sinitsyna, S.M.

    1977-01-01

    Niobium nitrilhalogenides of the general formula [MNH]sub(n) and [MNH 2 ]sub(n) have been synthesized and their properties investigated. The effect of the ligand nature on the properties, structure, and nature of the chemical bond in niobium nitrilhalogenides has been shown. With an increase of electron-donor properties of the ligands F 2 -800 cm -1 , NbNCl 2 -740 cm -1 , NbNBr 2 -720 cm -1 , NbNI-725 cm -1 )

  6. Niobium in gray cast iron

    International Nuclear Information System (INIS)

    Castello Branco, C.H.; Beckert, E.A.

    1984-03-01

    The potential for utilization of niobium in gray cast iron is appraised and reviewed. Experiments described in literature indicate that niobium provides structural refinement of the eutectic cells and also promotes pearlite formation. (Author) [pt

  7. Titanium

    Science.gov (United States)

    Woodruff, Laurel G.; Bedinger, George M.; Piatak, Nadine M.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Titanium is a mineral commodity that is essential to the smooth functioning of modern industrial economies. Most of the titanium produced is refined into titanium dioxide, which has a high refractive index and is thus able to impart a durable white color to paint, paper, plastic, rubber, and wallboard. Because of their high strength-to-weight ratio and corrosion resistance, titanium metal and titanium metal alloys are used in the aerospace industry as well as for welding rod coatings, biological implants, and consumer goods.Ilmenite and rutile are currently the principal titanium-bearing ore minerals, although other minerals, including anatase, perovskite, and titanomagnetite, could have economic importance in the future. Ilmenite is currently being mined from two large magmatic deposits hosted in rocks of Proterozoic-age anorthosite plutonic suites. Most rutile and nearly one-half of the ilmenite produced are from heavy-mineral alluvial, fluvial, and eolian deposits. Titanium-bearing minerals occur in diverse geologic settings, but many of the known deposits are currently subeconomic for titanium because of complications related to the mineralogy or because of the presence of trace contaminants that can compromise the pigment production process.Global production of titanium minerals is currently dominated by Australia, Canada, Norway, and South Africa; additional amounts are produced in Brazil, India, Madagascar, Mozambique, Sierra Leone, and Sri Lanka. The United States accounts for about 4 percent of the total world production of titanium minerals and is heavily dependent on imports of titanium mineral concentrates to meet its domestic needs.Titanium occurs only in silicate or oxide minerals and never in sulfide minerals. Environmental considerations for titanium mining are related to waste rock disposal and the impact of trace constituents on water quality. Because titanium is generally inert in the environment, human health risks from titanium and titanium

  8. A new process of electron beam refining of niobium

    International Nuclear Information System (INIS)

    Pinatti, D.G.

    1981-01-01

    A review of thermodynamic equilibrium, the kinetic theory and experimental results of the metal-gas interaction in refractory metals is presented. N 2 , H 2 and CO absorption and desorption take place by a reversible process while O 2 takes place by a irreversible process with atom absorption and metal oxide desorption. A new technology of electron beam refining of Niobium is proposed based on four points: 1) preparation of the aluminothermic reduced electrode, 2) zone refining in the first melt, 3) kinetic theory of refining in the following melts and 4) design of a compact furnace. Experimental results in a pilot plant of 300 KW have shown complete agreement with the proposed technology yielding a productivity 2.4 times larger than the value predicted by the conventional technology of electron beam refining of Niobium. (Author) [pt

  9. Kinetics and mechanisms of interactions of nitrogen and carbon monoxide with liquid niobium

    International Nuclear Information System (INIS)

    Park, H.G.

    1990-01-01

    The kinetics and mechanisms of interactions of N 2 and CO with liquid niobium were investigated in the temperature range of 2,700 to 3,000 K in samples levitated in N 2 /Ar and CO/Ar streams. The nitrogen absorption and desorption processes were found to be second-order with respect to nitrogen concentration, indicating that the rate controlling step is either the adsorption of nitrogen molecules on the liquid surface or dissociation of absorbed nitrogen molecules into adsorbed atoms. The carbon and oxygen dissolution in liquid niobium from CO gas is an exothermic process and the solubilities of carbon and oxygen (C Ce , C Oe in at%) are related to the temperature and the partial pressure of CO. The reaction CO → [C] + [O] along with the evaporation of niobium oxide takes place during C and O dissolution, whereas C and O desorption occurs via CO evolution only

  10. A New Vacuum Brazing Route for Niobium-316L Stainless Steel Transition Joints for Superconducting RF Cavities

    Science.gov (United States)

    Kumar, Abhay; Ganesh, P.; Kaul, R.; Bhatnagar, V. K.; Yedle, K.; Ram Sankar, P.; Sindal, B. K.; Kumar, K. V. A. N. P. S.; Singh, M. K.; Rai, S. K.; Bose, A.; Veerbhadraiah, T.; Ramteke, S.; Sridhar, R.; Mundra, G.; Joshi, S. C.; Kukreja, L. M.

    2015-02-01

    The paper describes a new approach for vacuum brazing of niobium-316L stainless steel transition joints for application in superconducting radiofrequency cavities. The study exploited good wettability of titanium-activated silver-base brazing alloy (CuSil-ABA®), along with nickel as a diffusion barrier, to suppress brittle Fe-Nb intermetallic formation, which is well reported during the established vacuum brazing practice using pure copper filler. The brazed specimens displayed no brittle intermetallic layers on any of its interfaces, but instead carried well-distributed intermetallic particles in the ductile matrix. The transition joints displayed room temperature tensile and shear strengths of 122-143 MPa and 80-113 MPa, respectively. The joints not only exhibited required hermeticity (helium leak rate high vacuum but also withstood twelve hour degassing heat treatment at 873 K (suppresses Q-disease in niobium cavities), without any noticeable degradation in the microstructure and the hermeticity. The joints retained their leak tightness even after undergoing ten thermal cycles between the room temperature and the liquid nitrogen temperature, thereby establishing their ability to withstand service-induced low cycle fatigue conditions. The study proposes a new lower temperature brazing route to form niobium-316L stainless steel transition joints, with improved microstructural characteristics and acceptable hermeticity and mechanical properties.

  11. HIP bonding between niobium/copper/stainless steel materials

    International Nuclear Information System (INIS)

    Inoue, Hitoshi; Fujino, Takeo; Hitomi, Nobuteru; Saito, Kenji; Yamada, Masahiro; Shibuya, Junichi; Ota, Tomoko

    2000-01-01

    We have used niobium flanges for the niobium bulk superconducting RF cavities, however, they are expensive. Stainless steel flanges instead of the niobium flanges will be used in the future large scale production of sc cavities like the KEK/JAERI joint project. For a future R and D of the vacuum sealing related to the clean horizontal assembly method or development of cavities welded a helium vessel in the KEK/JAERI joint project, a converter section of niobium material to stainless steel is required. From these requirements we need to develop the converter. We have tried a HIP bonding method between niobium materials and stainless steel or copper material. It was made clear that the technology could offer an enough bonding strength even higher than niobium tensile strength in the joined surface between niobium and stainless steel or copper. (author)

  12. High temperature niobium alloys

    International Nuclear Information System (INIS)

    Wojcik, C.C.

    1991-01-01

    Niobium alloys are currently being used in various high temperature applications such as rocket propulsion, turbine engines and lighting systems. This paper presents an overview of the various commercial niobium alloys, including basic manufacturing processes, properties and applications. Current activities for new applications include powder metallurgy, coating development and fabrication of advanced porous structures for lithium cooled heat pipes

  13. Behaviour of hydrogen in niobium

    International Nuclear Information System (INIS)

    Chuang, Y.C.; Tang, C.H.; Chuang, T.L.

    1982-01-01

    Polycrystalline niobium was charged electrolytically with hydrogen at room temperature. The behaviour of hydrogen in niobium has been investigated by optical microscopy, SEM, and ion microprobe analysis. It is shown that, when the hydrogen content in niobium is low, hydride tends to form at the grain boundary. As the hydrogen content is increased, precipitation of hydrides with domain structure takes place in the grain. The habit plane of the hydride formed in the vicinity of the grain boundary has been determined by Laue X-ray back reflection technique to be (130)c and (111)c. The structure of the hydride formed on the surface of niobium after 6 h hydrogen charging at room temperature (c.d. 0.2 A/cm 2 ) has been established to be identical to that of NbHsub(0.89). (orig.) [de

  14. Nb effect in the nickel oxide-catalyzed low-temperature oxidative dehydrogenation of ethane

    KAUST Repository

    Zhu, Haibo; Ould-Chikh, Samy; Anjum, Dalaver Hussain; Sun, Miao; Biausque, Gregory; Basset, Jean-Marie; Caps, Valerie

    2012-01-01

    evaporation method from nickel nitrate and ammonium niobium oxalate. These consist in NiO nanocrystallites (7-13 nm) associated, at Nb contents >3 at.%., with an amorphous thin layer (1-2 nm) of a niobium-rich mixed oxide with a structure similar

  15. Liquid-film assisted formation of alumina/niobium interfaces

    OpenAIRE

    Sugar, Joshua D.; McKeown, Joseph T.; Marks, Robert A.; Glaeser, Andreas M.

    2002-01-01

    Alumina has been joined at 1400 degrees C using niobium-based interlayers. Two different joining approaches were compared: solid-state diffusion bonding using a niobium foil as an interlayer, and liquid-film assisted bonding using a multilayer copper/niobium/copper interlayer. In both cases, a 127-(mu)m thick niobium foil was used; =1.4-(mu)m or =3-(mu)m thick copper films flanked the niobium. Room-temperature four-point bend tests showed that the introduction of a copper film had a significa...

  16. Oxidation of Catechol using Titanium Silicate (TS-1 Catalyst: Modeling and Optimization

    Directory of Open Access Journals (Sweden)

    Sonali Sengupta

    2013-12-01

    Full Text Available The oxidation of catechol was studied in an eco-friendly process with commercial titanium silicate-1 (TS-1 catalyst and hydrogen peroxide as oxidant in absence of all mass transfer effects. The process was opti-mized by Box-Behnken design in terms of three independent process variables such as reaction tempera-ture, moles of hydrogen peroxide per mole of catechol and catalyst amount whose optimum values of the process variables were found to be 60 °C, 13.2 and 1.24 g respectively for maximum conversion of 75.8 %. The effects of different process parameters such as mole ratio of hydrogen peroxide to catechol, catalyst par-ticle size, catalyst amount, temperature and reaction time were studied. A pseudo first order kinetic model was fitted with the experimental rate data. The apparent activation energy for the reaction was found to be 11.37 kJ/mole.  © 2013 BCREC UNDIP. All rights reservedReceived: 22nd April 2013; Revised: 25th October 2013; Accepted: 1st November 2013[How to Cite: Sengupta, S., Ghosal, D., Basu, J.K. (2013. Oxidation of Catechol using Titanium Silicate (TS-1 Catalyst: Modeling and Optimization. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (2: 167-177. (doi:10.9767/bcrec.8.2.4759.167-177][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.8.2.4759.167-177

  17. Laser-pulsed Plasma Chemistry: Laser-initiated Plasma Oxidation Of Niobium

    OpenAIRE

    Marks R.F.; Pollak R.A.; Avouris Ph.; Lin C.T.; Thefaine Y.J.

    1983-01-01

    We report the first observation of the chemical modification of a solid surface exposed to an ambient gas plasma initiated by the interaction of laser radiation with the same surface. A new technique, which we designate laser-pulsed plasma chemistry (LPPC), is proposed for activating heterogeneous chemical reactions at solid surfaces in a gaseous ambient by means of a plasma initiated by laser radiation. Results for niobium metal in one atmosphere oxygen demonstrate single-pulse, self-limitin...

  18. Determination of the thermodynamic properties of titanium sponge, rare earth oxides and carbonates

    International Nuclear Information System (INIS)

    Russo, V.L.; Ivanov, E.N.

    1977-01-01

    The procedure is described of determining heat physical properties of titanium sponge in media controlled at temperatures up to approximately 1100 deg C obtained in an industrial apparatus. The study has been conducted with a sample located into a glass made from stainless steel; the temperature has been measured in the center and near the surface of the sample. The relationships are given between the relative heat conductivity of the titanium sponge, argon pressure and temperature, as well as between a change in heat physical constants of the titanium sponge and temperature. An artificial reaction mass has been created, and the effect of magnesium and magnesium chloride on heat physical properties has been studied. It has been established that heat conductivity for the reaction mass with magnesium chloride is much lower than that of the sponge with magnesium. Heat physical constants of oxides and carbonates of rare-earth elements are given determined with the use of the method developed

  19. Determination of the thermodynamic properties of titanium sponge, rare earth oxides and carbonates

    Energy Technology Data Exchange (ETDEWEB)

    Russo, V L; Ivanov, E N

    1977-03-01

    The procedure is described of determining heat physical properties of titanium sponge in media controlled at temperatures up to approximately 1100/sup 0/C obtained in an industrial apparatus. The study has been conducted with a sample located into a glass made from stainless steel; the temperature has been measured in the center and near the surface of the sample. The relationships are given between the relative heat conductivity of the titanium sponge, argon pressure and temperature, as well as between a change in heat physical constants of the titanium sponge and temperature. An artificial reaction mass has been created, and the effect of magnesium and magnesium chloride on heat physical properties has been studied. It has been established that heat conductivity for the reaction mass with magnesium chloride is much lower than that of the sponge with magnesium. Heat physical constants of oxides and carbonates of rare-earth elements are given determined with the use of the method developed.

  20. Studies of niobium and development of niobium resonant RF cavities for accelerator driven system

    International Nuclear Information System (INIS)

    Mondal, Jayanta

    2013-01-01

    The present approach for the fabrication of superconducting radio frequency (SRF) cavities is to roll and deep draw sheets of polycrystalline high-purity niobium. Jefferson Laboratory pioneered the use of large-grain/single-crystal Nb directly sliced from an ingot for the fabrication of single-crystal high-purity Nb SRF cavities. The large grain/single crystal niobium has several potential advantages over the polycrystalline niobium and has become a viable alternative to the standard fine grain (ASTM grain size>6 μm), high purity (RRR ≥ 250 ) niobium for the fabrication of high-performance SRF cavities for particle accelerators. The present study includes the prototype single cell low beta cavity design, fabrication, EB welding and low temperature RF test at 2K. In this study also the medium field Q-Slope has been analyzed with the help of an added non linear term in Heabel's analytical model and a linear increase of surface resistance Rs with the magnetic field

  1. Study of the surface crystallization and resistance to dissolution of niobium phosphate glasses for nuclear waste immobilization

    International Nuclear Information System (INIS)

    Vieira, Heveline

    2008-01-01

    The surface crystallization and the dissolution rate of three phosphate glass compositions containing different amounts of niobium oxide were studied. The glasses were named Nb30, Nb37, and Nb44 according to the nominal content of niobium oxide in the glass composition. The three compositions were evaluated keeping the P 2 O 5 /K 2 O ratio constant and varying the amount of Nb 2 O 5 . These glasses were produced by melting appropriate chemical compounds at 1500 deg C for 0.5 hour. The crystalline phases which were nucleated on the glass surface after heat treatment were determined by X-ray diffraction. The crystalline structures depend on the amount of niobium oxide in the glass composition. The crystal morphologies were observed by using an optical microscope, and their characteristics are specific for each kind of crystalline phase. The crystal growth rate and the surface nuclei density were determined for each glass composition, and they depend on each crystalline phase nucleated on the surface. From the differential thermal analysis curves it was determined that the Nb44 glass containing 46.5 mol por cent of niobium oxide is the most thermally stable against crystallization when compared to the Nb30 and Nb37 glasses. According to the activation energies determined for crystal growth on the surface of each glass type, the Nb44 glass can also be considered the most resistant one against crystallization. The dissolution rate for the Nb44 glass after 14 days immersed in an aqueous solution with pH equals to 7 at 90 deg C is the lowest (9.0 x 10 -7 g. cm -2 . day -1 ) when compared to the other two glass compositions. The dissolution rates in acidic and neutral solutions of all studied glasses meet the international standards for materials which can be used in the immobilization of nuclear wastes. (author)

  2. Thermal transport properties of niobium and some niobium-based alloys from 80 to 1600 K

    Energy Technology Data Exchange (ETDEWEB)

    Moore, J P; Graves, R S; Williams, R K [Oak Ridge National Lab., TN (USA)

    1980-01-01

    The electric resistivity, rho, and Seebeck coefficient, S, of 99.8 at% niobium, and Nb-4.8 at% W, Nb-5 at% Mo, Nb-10 at% Mo, and Nb-2.4 at% Mo-2.4 at% Zr alloys were measured from 80 to 1600 K, and the thermal conductivity, lambda, of the niobium and the Nb-5 at% W alloy was measured from 80 to 1300 K. A technique is described for measuring rho and S of a specimen during radial-heat-flow measurements of lambda. The transport property results, which had uncertainties of +-0.4% for rho and +-1.4% for lambda, showed the influence of tungsten and molybdenum solutes on the transport properties of niobium and were used to obtain the electronic Lorenz function of pure niobium, which was found to approach the Sommerfeld value at high temperatures.

  3. Application of photo-excitation reaction on titanium oxide thin film for control of wettability; Sanka chitann hakumakujo no hikari reiki hanno no nuresei seigyo eno oyo

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T.; Nakajima, A.; Hashimoto, K. [The Univ. of Tokyo, Tokyo (Japan); Takada, Y. [Kyushu Univ., Fukuoka (Japan)

    2000-03-31

    It is clarified that the photo-excitation hydrophilic reaction increasing wettability remarkably is induced by changing surface structure of titanium oxide radiated light. There are already many examples being in practical use of coating products applied hydrophilic reaction of titanium oxide surface such as drip-proof side millers for automobiles, self-cleaning building materials, and the like. When surface of titanium oxide having high activities for oxidisation and decomposition is coated organic materials and radiated light, wettability of surface changes as organic materials are decomposed. If it is possible to change wettability shaping pattern drastically by radiating light, the possibility of application for printing materials will be developed. After increasing contact angle by coating water and oil repellent on the titanium oxide thin film, images can be shaped by radiating light into pattern for changing surface of titanium oxide to be ultra hydrophilicity as decomposition of repellent. At that time, contact angle is 150 degree in water, 80 degree in oil, for not radiated aria, and is 0 degree in water and oil for radiated aria. Application for control technology of wettability keeps possibility of broader development to itself, not staying ability of self-cleaning and drip-proof. (NEDO)

  4. Phenotypic and genomic responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis germinants

    Science.gov (United States)

    The effects of exposure to two nanoparticles (NPs) -titanium dioxide (nano-titania) and cerium oxide (nano-ceria) at 500 mg NPs L-1 on gene expression and growth in Arabidopsis thaliana germinants were studied using microarrays and phenotype studies. After 12 days post treatment,...

  5. Interaction at interface between superconducting yttrium ceramics and copper or niobium

    International Nuclear Information System (INIS)

    Karpov, M.I.; Korzhov, V.P.; Medved', N.V.; Myshlyaeva, M.M.

    1992-01-01

    Light metallography, scanning electron microscopy and local energy dispersion analysis have been used to study the interaction of Y-ceramics with copper and niobium. Samples in the form of wire of two types were employed, that is, consisting of ceramic core YBaCuO and Cu shell or a ceramic core YBaCuO and bimetallic Cu/Nb shell. The interaction of the ceramics with the shell metal began already at 500 deg with the formation at the interafaces Cu-YBaCuO of oxide layers containing ceramic elements, and in the ceramic core - nonsuperconducting phases. A thin Al-layer placed between the ceramics and the shell appreciably decreased the reactability of the ceramics with respect to copper and niobium

  6. Behaviour of solvent extraction of niobium in nitric acid

    International Nuclear Information System (INIS)

    Lin Cansheng; Huang Meixin; Zhang Xianzi; Zhang Chonghai

    1988-01-01

    The behaviour of solvent extraction of niobium is discussed. The expractants, includding TBP, HDBP, H 2 MBP, TBP irradiated, HDEHP, TTA and Aliquat-7402, are used. The special influence of molybdenum and zirconium on solvent extraction of niobium and the extraction behaviur of niobium with TBP irradiated are described. The effect of fluorine and uranium in aqueous phase on extraction of niobium is mentioned. It is observed that the interfacial crud has not relevance to D Nb , but niobium-95 can be absorbed on it. The species of extractable niobium, extraction mechanism, and the reason brought niobum into organic phase are discussed. Finally, the idea of increasing decontamination factor for niobium is suggested

  7. Polarography of niobium in hydrochloric acid

    International Nuclear Information System (INIS)

    Henrion, G.; Adler, F.; Andreas, B.

    1978-01-01

    Dependence between the limiting current and the concentration of niobium and hydrochloric acid has been investigated. With the decrease of niobium concentration the hydrolysis and condensation reactions proceed slower. The time dependence of condensation is shown using ethylene glycol which delays the condensation because of complexation of Nb(5). Hydroxylamine hydrochloride increases the limiting current by a kinetic effect by one order of magnitude which was observed clearly by cyclic voltammetry. Even small amounts of ethylene glycol suppress the kinetic effect. Polarographic determination of niobium in HCl as a supporting electrolyte is possible in concentration above 10 M only. Addition of ethylene glycol and hydroxylamine hydrochloride enables determination of small amounts of niobium in 4 M HCl. (author)

  8. Morphology study of niobium pentoxide

    International Nuclear Information System (INIS)

    Romero, R.P.P.; Panta, P.C.; Araujo, A.O. de; Bergmann, C.P.

    2016-01-01

    Currently, Niobium pentoxide (Nb 2 O 5 ) has been studied due to physical properties and their use in obtaining electronic ceramics, optical lenses, pH sensors, special filters for TV receivers, among other applications. This study investigated the morphology of the niobium pentoxide obtained by hydrothermal synthesis from the precursor pentachloride niobium (NbCl 5 ), where the synthesis was carried out at a temperature of 150 and 200 °C for 130 min and the product obtained was calcined at temperatures 600, 800 and 1000 °C for 60 min. The following characterizations were performed for analysis of the material, among them, X-ray diffraction (XRD) for analysis of the crystal structure, thermal gravimetric analysis (TGA) for detecting the existing functional groups and scanning electron microscopy (SEM) for morphology of material. As a result, different morphologies were obtained and consequently different niobium pentoxide properties studied. (author)

  9. Photocatalytic Oxidation of a Volatile Organic Component of Acetaldehyde Using Titanium Oxide Nanotubes

    Directory of Open Access Journals (Sweden)

    Yifeng Wang

    2007-01-01

    Full Text Available Titanium oxide nanotubes are prepared and treated with Au (Au/nanotube sample and Pt (Pt/nanotube sample, and the photoactivity of these catalysts compared to a standard Degussa P25 photocatalyst is investigated. The samples were analyzed using X-ray diffraction, field emission gun scanning transmission electron microscopy (STEM. Both high-resolution TEM images and high-angle annular dark-field (HAAD images were recorded for the specimens. Oxidation of acetaldehyde was used to test the efficiency of the catalysts. Nanotube samples showed better photoactivity than the standard P25, because the P25 titania deactivates quickly. Enhanced reactivity of the nanotube is related to surface charge polarity developed on outer and inner surfaces due to the difference in overlap of oxygen anions that resulted from curving of octahedral sheets. A tentative and qualitative surface polarity model is proposed for enhancing electron-hole pair separation. The inner surface benefits reduction; whereas, the outer surface benefits oxidation reactions. Both the metal identity and the size of the metal particles in the nanotubes affected the photocatalytic activity. Specifically, the addition of platinum increased the activity significantly, and increased the total yield. The addition of gold had lesser impact compared to the platinum. Formation of Pt large nanoparticles on the nanotube surfaces reduces the oxidation reactivity.

  10. Study for preparation of nanoporous titania on titanium by anodic oxidation; Estudo da preparacao de titania nanoporosa sobre titanio por oxidacao anodica

    Energy Technology Data Exchange (ETDEWEB)

    Passos, Alessandra Pires

    2014-07-01

    Currently titanium is the most common material used in dental, orthopedic implants and cardiovascular applications. In the mid 1960s, prof. Braenemark and coworkers developed the concept of osseointegration, meaning the direct structural and functional connection between living bone and the surface of artificial implant. Thus, studies on the modification of the implant surface are widely distributed among them are the acid attack, blasting with particles of titanium oxide or aluminum oxide, coating with bioactive materials such as hydroxyapatite, and the anodic oxidation. The focus of this work was to investigate the treatment of titanium surface by anodic oxidation. The aim was to develop a nanoporous titanium oxide overlay with controlled properties over titanium substrates. Recent results have shown that such surface treatment improves the biological interaction at the interface bone-implant besides protecting the titanium further oxidation and allow a faster osseointegration. The anodizing process was done in the potentiostatic mode, using an electrolyte composed of 1.0 mol/L H{sub 3}PO{sub 4} and HF 0.5% m/I. The investigated process parameters were the electrical potential (Va) and the process time (T). The electric potential was varied from 10 V to 30 V and the process time was defined as 1.0 h, 1.5 h or 2.0 h. The treated Ti samples were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive spectroscopy X-ray (EDS), and X-ray diffraction (XRD). The results showed the formation of nanoporous titanium oxide by anodizing with electric potential (Va) in the range of 20 V to 30 V and process time in the range of 1 to 2 hours. The average pore diameter was in the range 94-128 nm. Samples anodized in electric potential lower than 20 V did not show the formation of the nanoporous surface. In the case of Va above 30 V, it was observed the formation of agglomerates of TiO{sub 2}. The results obtained in this study

  11. Dye-sensitized solar cell architecture based on indium-tin oxide nanowires coated with titanium dioxide

    International Nuclear Information System (INIS)

    Joanni, Ednan; Savu, Raluca; Sousa Goes, Marcio de; Bueno, Paulo Roberto; Nei de Freitas, Jilian; Nogueira, Ana Flavia; Longo, Elson; Varela, Jose Arana

    2007-01-01

    A new architecture for dye-sensitized solar cells is employed, based on a nanostructured transparent conducting oxide protruding from the substrate, covered with a separate active oxide layer. The objective is to decrease electron-hole recombination. The concept was tested by growing branched indium-tin oxide nanowires on glass using pulsed laser deposition followed by deposition of a sputtered titanium dioxide layer covering the wires. The separation of charge generation and charge transport functions opens many possibilities for dye-sensitized solar cell optimization

  12. Cobalt Fischer-Tropsch catalysts: influence of cobalt dispersion and titanium oxides promotion

    Energy Technology Data Exchange (ETDEWEB)

    Azib, H

    1996-04-10

    The aim of this work is to study the effect of Sol-Gel preparation parameters which occur in silica supported cobalt catalysts synthesis. These catalysts are particularly used for the waxes production in natural gas processing. The solids have been characterized by several techniques: transmission electron microscopy (TEM), X-ray absorption near edge spectroscopy (XANES), programmed temperature reduction (TPR), infrared spectroscopy (IR), ultraviolet spectroscopy (UV), Magnetism, thermodesorption of H{sub 2} (TPD). The results indicate that the control of the cobalt dispersion and oxide phases nature is possible by modifying Sol-Gel parameters. The catalytic tests in Fischer-Tropsch synthesis were conducted on a pilot unit under pressure (20 atm) and suggested that turnover rates were independent of Co crystallite size, Co phases in the solids (Co deg., cobalt silicate) and titanium oxide promotion. On the other methane, the C{sub 3}{sup +} hydrocarbon selectivity is increased with increasing crystallite size. Inversely, the methane production is favoured by very small crystallites, cobalt silicate increase and titanium addition. However, the latter, used as a cobalt promoter, has a benefic effect on the active phase stability during the synthesis. (author). 149 refs., 102 figs., 71 tabs.

  13. In-situ synthesis and performance of titanium oxide/poly(methyl methacrylate) nanocomposites.

    Science.gov (United States)

    Bandugula, Uttam C; Clayton, L M; Harmon, J P; Kumar, Ashok

    2005-05-01

    Polymer nanocomposites have elicited extensive research efforts due to their potential to exhibit spectacular properties. They have immense potential and are befitting materials to serve as an ideal and futuristic alternative for varied applications. Poly(methyl methacrylate) (PMMA) and titanium oxide (TiO2) nanocomposites used in this study were fabricated by an in-situ free radical polymerization process. Three point bend tests were conducted with a modified universal microtribometer to evaluate fracture toughness. The results indicated that the stress intensity values increase as the concentration of titanium oxide increases up to 1 vol% and subsequently decrease at higher concentrations. Scanning electron microscopy (SEM) images of fracture surfaces afforded clues as to the possible deformation mechanism. Ultraviolet-visible spectroscopy (UV-vis) evaluated the degree of transparency of the nanocomposites. It was observed that samples became opaque as the concentration was increased beyond 0.01% volume fraction. X-ray diffraction characterized the TiO2 crystalline phase and Scherrer's equation was used to calculate the crystallite size. Among the concentrations considered the 3% volume fraction sample had the largest crystallite size. Finally, microhardness measurements further characterized the mechanical properties of the composites.

  14. Bacterial Stress and Osteoblast Responses on Graphene Oxide-Hydroxyapatite Electrodeposited on Titanium Dioxide Nanotube Arrays

    Directory of Open Access Journals (Sweden)

    Yardnapar Parcharoen

    2017-01-01

    Full Text Available To develop bone implant material with excellent antibacterial and biocompatible properties, nanotubular titanium surface was coated with hydroxyapatite (HA and graphene oxide (GO. Layer-by-layer deposition was achieved by coating HA on an anodic-grown titanium dioxide nanotube array (ATi with electrolytic deposition, followed by coating with GO using anodic-electrophoretic deposition. The antibacterial activity against both Gram-negative (Escherichia coli and Gram-positive (Staphylococcus aureus bacteria was determined based on the percentage of surviving bacteria and the amount of ribonucleic acid (RNA leakage and correlated with membrane disruption. The oxidative stress induced in both strains of bacteria by GO was determined by cyclic voltammetry and is discussed. Importantly, the antibacterial GO coatings on HA-ATi were not cytotoxic to preosteoblasts and promoted osteoblast proliferation after 5 days and calcium deposition after 21 days in standard cell culture conditions.

  15. Thermal transport properties of niobium and some niobium base alloys from 80 to 16000K

    International Nuclear Information System (INIS)

    Moore, J.P.; Graves, R.S.; Williams, R.K.

    1980-01-01

    The electrical resistivities and absolute Seebeck coefficients of 99.8 at. % niobium with a RRR of 36, Nb-4.8 at. % W, Nb-5 at. % Mo, Nb-10 at. % Mo, and Nb-2.4 at. % Mo-2.4 at. % Zr were measured from 80 to 1600 0 K, and the thermal conductivities of the niobium and Nb-5 at. % W were measured from 80 to 1300 0 K. A technique is described for measuring the electrical resistivity and Seebeck coefficient of a specimen during radial heat flow measurements of the thermal conductivity. The transport property results, which had uncertainties of +-0.4%for electrical resistivity and +-1.4% for thermal conductivity, showed the influence of tungsten and molybdenum solutes on the transport properties of niobium and were used to obtain the electronic Lorenz function of pure niobium, which was found to approach the Sommerfeld value at high temperatures

  16. Investigation of the niobium-oxygen system under low pressure and between 550 K and 2350 K: solid solution, surface overlay and reactivity

    International Nuclear Information System (INIS)

    Jupille, Jacques

    1974-09-01

    This research thesis addresses the behaviour of transition metals when interacting with oxygen, more particularly in the case of phase formation, but also adsorption and desorption which occur in the case of interaction with low pressure oxygen. It focuses on the case of niobium in solid solution. After a description of phases present in the niobium-oxygen system, and a discussion of reactivities of oxygen and water vapour, the author describes the experimental methods (apparatus and installations, samples, measured values), discusses the study of the surface-volume transfer constant of the niobium-oxygen solution, and the niobium-oxygen interaction mechanisms at high (superior to 1700 K) and low (inferior to 1000 K) temperatures: oxide desorption, oxygen reaction kinetics

  17. Mg-containing hydroxyapatite coatings produced by plasma electrolytic oxidation of titanium

    Energy Technology Data Exchange (ETDEWEB)

    Antonio, Cesar Augusto; Rangel, Elidiane Cipriano; Durrant, Steven Frederick; Cruz, Nilson Cristino da, E-mail: cesar.augustoa@hotmail.com [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Sorocaba, SP (Brazil). Lab. de Plasmas Tecnologicos; Delgado-Silva, Adriana de Oliveira [Universidade Federal de Sao Carlos (UFSCar), Sorocaba, SP (Brazil); Tabacniks, Manfredo H. [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Fisica

    2017-07-15

    Plasma Electrolytic Oxidation (PEO) is promising for the processing of biomaterials because it enables the production of surfaces with adjustable composition and structure. In this work, aimed at the improvement of the bioactivity of titanium, PEO has been used to grow calcium phosphide coatings on titanium substrates. The effects of the addition of magnesium acetate to the electrolytes on the composition of the coatings produced during 120 s on Ti disks using bipolar voltage pulses and solutions of calcium and magnesium acetates and sodium glycerophosphate as electrolytes have been studied. Scanning electron microscopy, X-ray energy dispersive spectroscopy, Rutherford backscattering spectroscopy, X-ray diffractometry with Rietveld refinement and profilometry were used to characterize the modified samples. Coatings composed of nearly 50 % of Mg-doped hydroxyapatite have been produced. In certain conditions up to 4% Mg can be incorporated into the coating without any observable significant structural modifications of the hydroxyapatite. (author)

  18. The influence of adding modified zirconium oxide-titanium dioxide nano-particles on mechanical properties of orthodontic adhesive: an in vitro study

    OpenAIRE

    Felemban, Nayef H.; Ebrahim, Mohamed I.

    2017-01-01

    Background The purpose of this in-vitro study was to examine the effect of incorporating different concentrations of Zirconium oxide-Titanium dioxide (ZrO2-TiO2) nanoparticles, which can have antibacterial properties, on the mechanical properties of an orthodontic adhesive. Methods ZrO2-TiO2 (Zirconium oxide, HWNANO, Hongwu International Group Ltd, China) -Titanium dioxide, Nanoshell, USA) nanopowder were incorporated into orthodontic adhesive (Transbond XT, 3?M Unitek, Monrovia, USA) with di...

  19. Titanium–35niobium alloy as a potential material for biomedical implants: In vitro study

    International Nuclear Information System (INIS)

    Perez de Andrade, Dennia; Marotta Reis de Vasconcellos, Luana; Chaves Silva Carvalho, Isabel; Ferraz de Brito Penna Forte, Lilibeth; Souza Santos, Evelyn Luzia de; Falchete do Prado, Renata; Santos, Dalcy Roberto dos; Alves Cairo, Carlos Alberto; Rodarte Carvalho, Yasmin

    2015-01-01

    Research on new titanium alloys and different surface topographies aims to improve osseointegration. The objective of this study is to analyze the behavior of osteogenic cells cultivated on porous and dense samples of titanium–niobium alloys, and to compare them with the behavior of such type of cells on commercial pure titanium. Samples prepared using powder metallurgy were characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and metallographic and profilometer analyses. Osteogenic cells from newborn rat calvaria were plated over different groups: dense or porous samples composed of Ti or Ti–35niobium (Nb). Cell adhesion, cell proliferation, MTT assay, cell morphology, protein total content, alkaline phosphatase activity, and mineralization nodules were assessed. Results from XRD and EDS analysis confirmed the presence of Ti and Nb in the test alloy. Metallographic analysis revealed interconnected pores, with pore size ranging from 138 to 150 μm. The profilometer analysis detected the greatest rugosity within the dense alloy samples. In vitro tests revealed similar biocompatibility between Ti–35Nb and Ti; furthermore, it was possible to verify that the association of porous surface topography and the Ti–35Nb alloy positively influenced mineralized matrix formation. We propose that the Ti–35Nb alloy with porous topography constitutes a biocompatible material with great potential for use in biomedical implants. - Highlights: • Powder metallurgy is effective in producing porous biomaterials. • Ti–35Nb alloy improved mineralized matrix formation. • Porous surface favored a multidirectional pattern of cell spreading. • Porous surface Ti–35Nb alloy appears to be more favorable to bone formation than existing alloys

  20. Titanium–35niobium alloy as a potential material for biomedical implants: In vitro study

    Energy Technology Data Exchange (ETDEWEB)

    Perez de Andrade, Dennia; Marotta Reis de Vasconcellos, Luana; Chaves Silva Carvalho, Isabel; Ferraz de Brito Penna Forte, Lilibeth; Souza Santos, Evelyn Luzia de [Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, UNESP — Univ Estadual Paulista, State University of São Paulo (UNESP), Av. Engenheiro Francisco José Longo, 777, São José dos Campos 12245-000, SP (Brazil); Falchete do Prado, Renata, E-mail: renatafalchete@hotmail.com [Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, UNESP — Univ Estadual Paulista, State University of São Paulo (UNESP), Av. Engenheiro Francisco José Longo, 777, São José dos Campos 12245-000, SP (Brazil); Santos, Dalcy Roberto dos; Alves Cairo, Carlos Alberto [Division of Materials, Air and Space Institute, CTA, Praça Mal. do Ar Eduardo Gomes, 14, São José dos Campos 12904-000, SP (Brazil); Rodarte Carvalho, Yasmin [Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, UNESP — Univ Estadual Paulista, State University of São Paulo (UNESP), Av. Engenheiro Francisco José Longo, 777, São José dos Campos 12245-000, SP (Brazil)

    2015-11-01

    Research on new titanium alloys and different surface topographies aims to improve osseointegration. The objective of this study is to analyze the behavior of osteogenic cells cultivated on porous and dense samples of titanium–niobium alloys, and to compare them with the behavior of such type of cells on commercial pure titanium. Samples prepared using powder metallurgy were characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and metallographic and profilometer analyses. Osteogenic cells from newborn rat calvaria were plated over different groups: dense or porous samples composed of Ti or Ti–35niobium (Nb). Cell adhesion, cell proliferation, MTT assay, cell morphology, protein total content, alkaline phosphatase activity, and mineralization nodules were assessed. Results from XRD and EDS analysis confirmed the presence of Ti and Nb in the test alloy. Metallographic analysis revealed interconnected pores, with pore size ranging from 138 to 150 μm. The profilometer analysis detected the greatest rugosity within the dense alloy samples. In vitro tests revealed similar biocompatibility between Ti–35Nb and Ti; furthermore, it was possible to verify that the association of porous surface topography and the Ti–35Nb alloy positively influenced mineralized matrix formation. We propose that the Ti–35Nb alloy with porous topography constitutes a biocompatible material with great potential for use in biomedical implants. - Highlights: • Powder metallurgy is effective in producing porous biomaterials. • Ti–35Nb alloy improved mineralized matrix formation. • Porous surface favored a multidirectional pattern of cell spreading. • Porous surface Ti–35Nb alloy appears to be more favorable to bone formation than existing alloys.

  1. Catalytic properties of a titanium-antimony oxide system in oxidative ammonolysis of propylene

    Energy Technology Data Exchange (ETDEWEB)

    Zenkovets, G.A.; Tarasova, D.V.; Andrushkevich, T.V.; Aleshina, G.I.; Nikoro, T.A.; Ravilov, R.G.

    1979-03-01

    The catalytic properties of titanium-antimony oxide system in oxidative ammonolysis of propylene at 450/sup 0/C depended both on the catalyst and the reactant compositions. Stable and high (75-80Vertical Bar3<) selectivities for acrylonitrile and high activities were observed over catalysts containing 5-60 mole Vertical Bar3< Sb/sub 2/O/sub 4/ with 2Vertical Bar3< propylene and 3Vertical Bar3< ammonia in air at Vertical Bar3; 70Vertical Bar3< conversions. The selectivities of the catalysts for acetonitrile and acrolein did not exceed 5 and 1Vertical Bar3<, respectively. At high ammonia and propylene contents in the reaction mixture and over individual TiO/sub 2/ or Sb/sub 2/O/sub 4/ catalysts, the reaction selectivity shifted toward deep oxidation products. These findings were attributed to the reducing effect of propylene and ammonia at high concentrations on the active components of the catalyst, a solid solution of Sb in TiO/sub 2/ containing 5-7 mole Vertical Bar3< of Sb/sub 2/O/sub 4/ and a chemical compound with TiSb/sub 2/O/sub 6/ composition.

  2. Thermodiffusion Mo-B-Si coating on VN-3 niobium alloy

    International Nuclear Information System (INIS)

    Kozlov, A.T.; Lazarev, Eh.M.; Monakhova, L.A.; Shestova, V.F.; Romanovich, I.V.

    1985-01-01

    Protective properties of complex Mo-B-Si-coating on niobium alloy VN-3 (4.7 mass.% Mo, 1.1 mass.% Zr, 0.1 mass.% C) have been studied. It is established, that the complex Mo-B-Si-coating ensures protection from oxidation of niobium alloys in the temperature range of 800-1200 degC for 1000-1500 hr, at 1600 degC - for 10 hr. High heat resistance of Mo-B-Si - coating at 800-1200 degC is determined by the presence of amorphous film of SiOΛ2 over the layer MoSiΛ2 and barrier boride layer on the boundary with the metal protected; decrease in the coating heat resistance at 1600 degC is related to the destruction of boride layer, decomposition of MoSiΛ2 for lower cilicides and loosening of SiOΛ2 film

  3. Titanium by design: TRIP titanium alloy

    Science.gov (United States)

    Tran, Jamie

    Motivated by the prospect of lower cost Ti production processes, new directions in Ti alloy design were explored for naval and automotive applications. Building on the experience of the Steel Research Group at Northwestern University, an analogous design process was taken with titanium. As a new project, essential kinetic databases and models were developed for the design process and used to create a prototype design. Diffusion kinetic models were developed to predict the change in phase compositions and microstructure during heat treatment. Combining a mobility database created in this research with a licensed thermodynamic database, ThermoCalc and DICTRA software was used to model kinetic compositional changes in titanium alloys. Experimental diffusion couples were created and compared to DICTRA simulations to refine mobility parameters in the titanium mobility database. The software and database were able to predict homogenization times and the beta→alpha plate thickening kinetics during cooling in the near-alpha Ti5111 alloy. The results of these models were compared to LEAP microanalysis and found to be in reasonable agreement. Powder metallurgy was explored using SPS at GM R&D to reduce the cost of titanium alloys. Fully dense Ti5111 alloys were produced and achieved similar microstructures to wrought Ti5111. High levels of oxygen in these alloys increased the strength while reducing the ductility. Preliminary Ti5111+Y alloys were created, where yttrium additions successfully gettered excess oxygen to create oxides. However, undesirable large oxides formed, indicating more research is needed into the homogeneous distribution of the yttrium powder to create finer oxides. Principles established in steels were used to optimize the beta phase transformation stability for martensite transformation toughening in titanium alloys. The Olson-Cohen kinetic model is calibrated to shear strains in titanium. A frictional work database is established for common alloying

  4. Application of titanium oxide nanotube films containing gold nanoparticles for the electroanalytical determination of ascorbic acid

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, Mir Ghasem, E-mail: mg-hosseini@tabrizu.ac.ir; Faraji, Masoud; Momeni, Mohamad Mohsen

    2011-03-31

    Au/TiO{sub 2}/Ti electrodes have been prepared by galvanic deposition of gold particles on TiO{sub 2} nanotube substrates. Titanium oxide nanotubes are fabricated by anodizing titanium foil in a Dimethyl Sulfoxide electrolyte containing fluoride. The scanning electron microscopy results indicated that gold particles are homogeneously deposited on the surface of TiO{sub 2} nanotubes. The TiO{sub 2} layers consist of individual tubes of about 40-80 nm diameters. The electro-catalytic behavior of Au/TiO{sub 2}/Ti and flat gold electrodes for the ascorbic acid electro-oxidation was studied by cyclic voltammetry. The results showed that the flat gold electrode is not suitable for the oxidation of ascorbic acid. However, the Au/TiO{sub 2}/Ti electrodes are shown to possess catalytic activity toward the oxidation reaction. Catalytic oxidation peak current showed a linear dependence on the ascorbic acid concentration and a linear calibration curve is obtained in the concentration range of 1-5 mM of ascorbic acid. Also, determination of ascorbic acid in real samples was evaluated. The obtained results were found to be satisfactory. Finally the effects of interference on the detection of ascorbic acid were investigated.

  5. Effect of current density on the anodic behaviour of zircaloy-4 and niobium: a comparative study

    International Nuclear Information System (INIS)

    Raghunath Reddy, G.; Lavanya, A.; Ch Anjaneyulu

    2004-01-01

    The kinetics of anodic oxidation of zircaloy-4 and niobium have been studied at current densities ranging from 2 to 14 mA.cm -2 at room temperature in order to investigate the dependence of ionic current density on the field across the oxide film. Thickness of the anodic films were estimated from capacitance data. The formation rate, current efficiency and differential field were found to increase with increase in the ionic current density for both zircaloy-4 and niobium. Plots of the logarithm of formation rate vs. logarithm of the current density are fairly linear. From linear plots of logarithm of ionic current density vs. differential field, and applying the Cabrera-Mott theory, the half-jump distance and the height of the energy barrier are deduced and compared. (author)

  6. Analog memory and spike-timing-dependent plasticity characteristics of a nanoscale titanium oxide bilayer resistive switching device

    International Nuclear Information System (INIS)

    Seo, Kyungah; Park, Sangsu; Lee, Kwanghee; Lee, Byounghun; Hwang, Hyunsang; Kim, Insung; Jung, Seungjae; Jo, Minseok; Park, Jubong; Shin, Jungho; Biju, Kuyyadi P; Kong, Jaemin

    2011-01-01

    We demonstrated analog memory, synaptic plasticity, and a spike-timing-dependent plasticity (STDP) function with a nanoscale titanium oxide bilayer resistive switching device with a simple fabrication process and good yield uniformity. We confirmed the multilevel conductance and analog memory characteristics as well as the uniformity and separated states for the accuracy of conductance change. Finally, STDP and a biological triple model were analyzed to demonstrate the potential of titanium oxide bilayer resistive switching device as synapses in neuromorphic devices. By developing a simple resistive switching device that can emulate a synaptic function, the unique characteristics of synapses in the brain, e.g. combined memory and computing in one synapse and adaptation to the outside environment, were successfully demonstrated in a solid state device.

  7. Fabrication of superhydrophobic niobium pentoxide thin films by anodization

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Bong-Yong [Future Convergence Ceramic Division, Korea Institute of Ceramic Engineering and Technology, Seoul 153-801 (Korea, Republic of); Jung, Eun-Hye [Future Convergence Ceramic Division, Korea Institute of Ceramic Engineering and Technology, Seoul 153-801 (Korea, Republic of); Department of Chemical Engineering, Inha University, Incheon 402-024 (Korea, Republic of); Kim, Jin-Ho, E-mail: jhkim@kicet.re.kr [Electronic and Optic Materials Division, Korea Institute of Ceramic Engineering and Technology, Seoul 153-801 (Korea, Republic of)

    2014-07-01

    We report a simple method to fabricate a niobium oxide film with a lotus-like micro–nano surface structure. Self-assembled niobium pentoxide (Nb{sub 2}O{sub 5}) films with superhydrophobic property were fabricated by an anodization and a hydrophobic treatment. This process has several advantages such as low cost, simplicity and easy coverage of a large area. The surface of fabricated Nb{sub 2}O{sub 5} film was changed from hydrophilic to superhydrophobic surface by a treatment using fluoroaldyltrimethoxysilane (FAS) solution. This value is considered to be the lowest surface free energy of any solid, based on the alignment of -CF{sub 3} groups on the surface. In particular, among FAS coated surfaces, the micro–nano complex cone structured Nb{sub 2}O{sub 5} film showed the highest water-repellent property with a static contact angle of ca. 162°. This study gives promising routes from biomimetic superhydrophobic surfaces.

  8. The Effect of Luting Cement and Titanium Base on the Final Color of Zirconium Oxide Core Material.

    Science.gov (United States)

    Capa, Nuray; Tuncel, Ilkin; Tak, Onjen; Usumez, Aslihan

    2017-02-01

    To evaluate the effects of different types of luting cements and different colors of zirconium cores on the final color of the restoration that simulates implant-supported fixed partial dentures (FPDs) by using a titanium base on the bottom. One hundred and twenty zirconium oxide core plates (Zr-Zahn; 10 mm in width, 5 mm in length, 0.5 mm in height) were prepared in different shades (n = 20; noncolored, A2, A3, B1, C2, D2). The specimens were subdivided into two subgroups for the two types of luting cements (n = 10). The initial color measurements were made on zirconium oxide core plates using a spectrometer. To create the cement thicknesses, stretch strips with holes in the middle (5 mm in diameter, 70 μm in height) were used. The second measurement was done on the zirconium oxide core plates after the application of the resin cement (U-200, A2 Shade) or polycarboxylate cement (Lumicon). The final measurement was done after placing the titanium discs (5 mm in diameter, 3 mm in height) in the bottom. The data were analyzed with two-way ANOVA and Tukey's honestly significant differences (HSD) tests (α = 0.05). The ∆E* ab value was higher in the resin cement-applied group than in the polycarboxylate cement-applied group (p zirconium oxide core-resin cement-titanium base, and the lowest was recorded for the polycarboxylate cement-zirconium oxide core (p zirconium are all important factors that determine the final shade of zirconia cores in implant-supported FPDs. © 2015 by the American College of Prosthodontists.

  9. Chlorination of niobium oxide in the presence of carbon monoxide

    International Nuclear Information System (INIS)

    Freitas, L.R. de

    1984-01-01

    The chlorination kinetics of niobium pentoxide in the presence of carbon monoxide between 500-800 0 C of temperature is studied. The following variable that influences on the reaction rate are analysed: gas flow, geometry and volume of the Nb 2 O 5 samples, reaction temperature and composition of the chlorinated mixture. At the same time, two other materials were studied: the CaO.Nb 2 O 5 (synthetized in laboratory) and pyrochlorine concentrates. The three materials are compared for the chlorination method used. (M.A.C.) [pt

  10. The determining impact of coiling temperature on the microstructure and mechanical properties of a titanium-niobium ultrahigh strength microalloyed steel: Competing effects of precipitation and bainite

    Energy Technology Data Exchange (ETDEWEB)

    Natarajan, V.V.; Challa, V.S.A. [Laboratory for Excellence in Advanced Steel Research, Materials Science and Engineering Program, Department of Metallurgical, Materials and Biomedical Engineering, 500 W. University Avenue, University of Texas at El Paso, El Paso, TX 79968 (United States); Misra, R.D.K., E-mail: dmisra2@utep.edu [Laboratory for Excellence in Advanced Steel Research, Materials Science and Engineering Program, Department of Metallurgical, Materials and Biomedical Engineering, 500 W. University Avenue, University of Texas at El Paso, El Paso, TX 79968 (United States); Sidorenko, D.M.; Mulholland, M.D.; Manohar, M.; Hartmann, J.E. [ArcelorMittal Global R& D Center, 3001 East Columbus Drive, East Chicago, IN 46312 (United States)

    2016-05-17

    We elucidate here the influence of coiling temperature on the microstructure and mechanical properties, in an ultrahigh strength titanium-niobium microalloyed steel. The objective was to underscore the impact of coiling temperature on the nature and distribution of microstructural constituents (including different phases, precipitates, and dislocation structure) that significantly contributed to differences in the yield and tensile strength of these steels. Depending on the coiling temperature, the microstructure consisted of either a combination of fine lath-type bainite and polygonal ferrite or polygonal ferrite together with the precipitation of microalloyed carbides of size ~2–10 nm in the matrix and at dislocations. The microstructure of steel coiled at lower temperature predominantly consisted of bainitic ferrite with lower yield strength compared to the steel coiled at higher temperature, and the yield to tensile strength ratio was 0.76. The steel coiled at higher temperature consisted of polygonal ferrite and extensive precipitation of carbides and was characterized by higher yield strength and with yield strength/tensile strength ratio of 0.936. The difference in the tensile strength was insignificant for the two coiling temperatures. The observed microstructure was consistent with the continuous cooling transformation diagram.

  11. Electrochemical and morphological analyses on the titanium surface modified by shot blasting and anodic oxidation processes

    Energy Technology Data Exchange (ETDEWEB)

    Szesz, Eduardo M., E-mail: eszesz@neoortho.com.br [Neoortho Research Institute, Rua Ângelo Domingos Durigan, 607-Cascatinha, CEP 82025-100 Curitiba, PR (Brazil); Pereira, Bruno L., E-mail: brnl7@hotmail.com [Physics Department, Universidade Federal do Paraná, 81531-980 Curitiba, PR (Brazil); Kuromoto, Neide K., E-mail: kuromoto@fisica.ufpr.br [Physics Department, Universidade Federal do Paraná, 81531-980 Curitiba, PR (Brazil); Marino, Claudia E.B., E-mail: claudiamarino@yahoo.com [Mechanical Engineering Department, Universidade Federal do Paraná, 81531-980 Curitiba, PR (Brazil); Souza, Gelson B. de, E-mail: gelsonbs@uepg.br [Physics Department, Universidade Estadual de Ponta Grossa, 84051-510 Ponta Grossa, PR (Brazil); Soares, Paulo, E-mail: pa.soares@pucpr.br [Mechanical Engineering Department, Pontifícia Universidade Católica do Paraná, 80215-901 Curitiba, PR (Brazil)

    2013-01-01

    In recent years, many surface modification processes have been developed in order to induce the osseointegration on titanium surface and thus to improve the implants' biocompatibility. In this work, Ti surface has been modified by shot blasting followed by anodic oxidation process in order to associate the good surface characteristics of both processes to obtain a rough and porous surface able to promote the titanium surface bioactivity. Commercially pure titanium (grade 2) plates were used on the surface treatments that were as follows: Shot blasting (SB) performed using alumina (Al{sub 2}O{sub 3}) particles, and anodic oxidation (AO) using NaOH electrolyte. The morphology, structural changes and the open-circuit potentials (OCP) of the surfaces were analyzed. It can be observed that an increase on the roughness of the blasted surface and a rough and porous surface happens after the AO process. The anodic film produced is thin and followed the blasted surface topography. It can be observed that there are small pores with regular shape covering the entire surface. X-ray diffraction results showed the presence of the anatase and rutile phases on the blasted and anodized surface after heat treatment at 600 °C/1 h. Concerning electrochemical measurements, when the different samples were submitted to open-circuit conditions in a physiological electrolyte, the protective effect increases with the oxidation process due to the oxide layer. When the surface was blasted, the OCP was more negative when compared with the Ti surface without surface treatments. - Highlights: ► A combination of shot blasting and anodic oxidation surface treatments is proposed. ► Both processes produced an increase in roughness compared to the polished surface. ► The combination of processes produced a rough and porous surface. ► Open circuit results show that the protective effect increases with oxidation process. ► The combination of processes presents the better results in this

  12. Surface polishing of niobium for superconducting radio frequency (SRF) cavity applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Liang [College of William and Mary, Williamsburg, VA (United States)

    2014-08-01

    overlapping laser tracks at proper ratio. Comparison of topography and PSD indicates that LP smooths the surface in a way similar to EP. The optimized LP parameters were applied to different types of niobium surfaces representing different stages in cavity fabrication. LP reduces the sharpness on rough surfaces effectively, while doing no harm to smooth surfaces. Secondary ion mass spectrometer (SIMS) analysis showed that LP reduces the oxide layer slightly and no contamination occurred from LP. EBSD showed no significant change on crystal structure after LP.

  13. A SRF niobium cylindrical cavity with a large silicon nitride niobium-coated membrane as one end-wall

    Science.gov (United States)

    Martinez, Luis; Castelli, Alessandro; Pate, Jacob; Thompson, Johnathon; Delmas, William; Sharping, Jay; Chiao, Raymond; Chiao Team; Sharping Team

    The development of large silicon nitride membranes and niobium film deposition techniques motivate new architectures in opto-mechanics and microwave devices that can exploit the extremely high Q's obtainable with superconducting radio frequency (SRF) niobium cavities. We present a X-band SRF cylindrical cavity-membrane system in which one end-wall of the cavity is replaced by a niobium coated centimeter-sized silicon nitride membrane. We report moderately high Q factors above 10 million. Experimental results characterizing the system and potential future applications for such schemes in microwave devices and optomechanics are discussed.

  14. Comparison of various methods of measuring thin oxide layers formed on molybdenum and titanium

    International Nuclear Information System (INIS)

    Lepage, F.; Bardolle, J.; Boulben, J.M.

    1975-01-01

    The problem of the growth of thin layers is very interesting from both the fundamental and technological viewpoints. This work deals with oxide films produced on two metals, molybdenum and titanium. The thicknesses obtained by various methods (microgravimetry, nuclear reactions and spectrophotometry) are compared and the advantages and disadvantages of each method are shown [fr

  15. Reduction of titanium dioxide and other metal oxides by electro-deoxidation

    International Nuclear Information System (INIS)

    Fray, Derek J.

    2003-01-01

    Titanium dioxide and other reactive metal compounds are reduced by more reactive metals to form pure metals. These, are expensive and time consuming processes which makes these metals very expensive. Many of these metals and alloys have excellent properties, high strength, low density and very good corrosion resistance, but their use is restricted by its high cost. Electro-deoxidation is a very simple technique where an oxide is made cathodic in a fused salt of an alkaline earth chloride. By applying a voltage, below the decomposition potential of the salt, it has been found that the cathodic reaction is the ionization of oxygen from the oxide to leave a pure metal, rather than the reduction of the ion alkaline earth ion element. Laboratory experiments have shown that this approach can be applied to the reduction of a large number of metal oxides. Another important observation is that when a mixture of oxides is used as the cathode, the product is an alloy of uniform composition. This is a considerable advantage for many alloys that are difficult to prepare using conventional technology. (Original)

  16. Tuning the Electronic Structure of Titanium Oxide Support to Enhance the Electrochemical Activity of Platinum Nanoparticles

    KAUST Repository

    Shi, Feifei; Baker, L. Robert; Hervier, Antoine; Somorjai, Gabor A.; Komvopoulos, Kyriakos

    2013-01-01

    on pristine TiO2 support were achieved by tuning the electronic structure of the titanium oxide support of Pt nanoparticle catalysts. This was accomplished by adding oxygen vacancies or doping with fluorine. Experimental trends are interpreted in the context

  17. ATOMIC LAYER DEPOSITION OF TITANIUM OXIDE THIN FILMS ONNANOPOROUS ALUMINA TEMPLATES FOR MEDICAL APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R.

    2009-05-05

    Nanostructured materials may play a significant role in controlled release of pharmacologic agents for treatment of cancer. Many nanoporous polymer materials are inadequate for use in drug delivery. Nanoporous alumina provides several advantages over other materials for use in controlled drug delivery and other medical applications. Atomic layer deposition was used to coat all the surfaces of the nanoporous alumina membrane in order to reduce the pore size in a controlled manner. Both the 20 nm and 100 nm titanium oxide-coated nanoporous alumina membranes did not exhibit statistically lower viability compared to the uncoated nanoporous alumina membrane control materials. In addition, 20 nm pore size titanium oxide-coated nanoporous alumina membranes exposed to ultraviolet light demonstrated activity against Escherichia coli and Staphylococcus aureus bacteria. Nanostructured materials prepared using atomic layer deposition may be useful for delivering a pharmacologic agent at a precise rate to a specific location in the body. These materials may serve as the basis for 'smart' drug delivery devices, orthopedic implants, or self-sterilizing medical devices.

  18. Nanoscale Phase Stability Reversal During the Nucleation and Growth of Titanium Oxide Minerals

    Science.gov (United States)

    Hummmer, D. R.; Heaney, P. J.; Kubicki, J. D.; Kent, P. R.; Post, J. E.

    2008-12-01

    Fine-grained titanium oxide minerals are important in soils, where they affect a variety of geochemical processes. They are also industrially important as catalysts, pigments, food additives, and dielectrics. Recent research has indicated an apparent reversal of thermodynamic stability between TiO2 phases at the nanoscale thought to be caused by an increased contribution of surface energy to the total free energy. Time-resolved X-ray diffraction (XRD) experiments in which titanium oxides crystallize from aqueous TiCl4 solutions confirm that anatase, a metastable phase, is always the first phase to nucleate under our range of initial conditions. Rutile peaks are observed only minutes after the first appearance of anatase, after which anatase abundance slowly decreases while rutile continues to form. Whole pattern refinement of diffraction data reveals that lattice constants of both phases increase throughout the crystallization process. In addition, transmission electron microscope (TEM) observations and kinetic modeling indicate that anatase does not undergo a solid-state transformation to the rutile structure as once thought. Instead, anatase appears to re-dissolve and then feed the growth of already nucleated rutile nanocrystals. Density functional theory (DFT) calculations were employed to model 1, 2, and 3 nm particles of both mineral phases. The total surface energies calculated from these models did yield lower values for anatase than for rutile by 8-13 kJ/mol depending on particle size, indicating that surface free energy is sufficient to account for stability reversal. However, these whole-particle surface energies were much higher than the sum of energies of each particle's constituent crystallographic surfaces. We attribute the excess energy to defects associated with the edges and corners of nanoparticles, which are not present on a 2-D periodic surface. This previously unreported edge and corner energy may play a dominant role in the stability reversal

  19. Improved oxidation resistance of group VB refractory metals by Al+ ion implantation

    International Nuclear Information System (INIS)

    Hampikian, J.M.

    1996-01-01

    Aluminum ion implantation of vanadium, niobium, and tantalum improved the metals' oxidation resistances at 500 C and 735 C. Implanted vanadium oxidized only to one-third the extent of unimplanted vanadium when exposed at 500 C to air. The oxidative weight gains of implanted niobium and tantalum proved negligible when measured at 500 C and for times sufficient to fully convert the untreated metals to their pentoxides. At 735 C, implantation of vanadium only slightly retarded its oxidation, while oxidative weight gains of niobium and tantalum were reduced by factors of 3 or more. Implanted niobium exhibited weight gain in direct proportion to oxidation time squared at 735 C. Microstructural examination of the metals implanted with selected fluences of the 180 kV aluminum ions showed the following. The solubility limit of aluminum is extended by implantation, the body centered cubic (bcc) phases being retained to ∼60 at. pct Al in all three metals. The highest fluence investigated, 2.4 x 10 22 ions/m 2 , produced an ∼400-nm layer of VAl 3 beneath the surface of vanadium, and ∼300-nm layers of an amorphous phase containing ∼70 at. pct Al beneath the niobium and tantalum surfaces. All three metals, implanted to this fluence and annealed at 600 C, contained tri-aluminides, intermetallic compounds known for their oxidation resistances. Specimens implanted to this fluence were thus selected for the oxidation measurements

  20. Niobium(v) chloride and imidazolium bromides as efficient dual catalyst systems for the cycloaddition of carbon dioxide and propylene oxide

    KAUST Repository

    Wilhelm, Michael E.; Anthofer, Michael H.; Reich, Robert M.; D'Elia, Valerio; Basset, Jean-Marie; Herrmann, Wolfgang A.; Cokoja, Mirza; Kü hn, Fritz

    2014-01-01

    The application of niobium(v) chloride and several imidazolium bromides as catalyst systems for the cycloaddition of propylene oxide (PO) with carbon dioxide to propylene carbonate (PC) is reported. A set of 31 different imidazolium bromides has been synthesized with varying substituents at all five imidazolium ring atoms, of which 17 have not been reported before. The impact of different substitution patterns (steric and electronic changes and solubility in PO) at the imidazolium ring on the catalytic activity was investigated. The optimisation of the catalyst structure allows for the valorisation of carbon dioxide under mild reaction conditions with high reaction rates in very good yield and selectivity for PC. This journal is © the Partner Organisations 2014.

  1. Niobium(v) chloride and imidazolium bromides as efficient dual catalyst systems for the cycloaddition of carbon dioxide and propylene oxide

    KAUST Repository

    Wilhelm, Michael E.

    2014-02-19

    The application of niobium(v) chloride and several imidazolium bromides as catalyst systems for the cycloaddition of propylene oxide (PO) with carbon dioxide to propylene carbonate (PC) is reported. A set of 31 different imidazolium bromides has been synthesized with varying substituents at all five imidazolium ring atoms, of which 17 have not been reported before. The impact of different substitution patterns (steric and electronic changes and solubility in PO) at the imidazolium ring on the catalytic activity was investigated. The optimisation of the catalyst structure allows for the valorisation of carbon dioxide under mild reaction conditions with high reaction rates in very good yield and selectivity for PC. This journal is © the Partner Organisations 2014.

  2. Oxidation Behavior of Titanium Carbonitride Coating Deposited by Atmospheric Plasma Spray Synthesis

    Science.gov (United States)

    Zhu, Lin; He, Jining; Yan, Dianran; Liao, Hanlin; Zhang, Nannan

    2017-10-01

    As a high-hardness and anti-frictional material, titanium carbonitride (TiCN) thick coatings or thin films are increasingly being used in many industrial fields. In the present study, TiCN coatings were obtained by atmospheric plasma spray synthesis or reactive plasma spray. In order to promote the reaction between the Ti particles and reactive gases, a home-made gas tunnel was mounted on a conventional plasma gun to perform the spray process. The oxidation behavior of the TiCN coatings under different temperatures in static air was carefully investigated. As a result, when the temperature was over 700 °C, the coatings suffered from serious oxidation, and finally they were entirely oxidized to the TiO2 phase at 1100 °C. The principal oxidation mechanism was clarified, indicating that the oxygen can permeate into the defects and react with TiCN at high temperatures. In addition, concerning the use of a TiCN coating in high-temperature conditions, the microhardness of the oxidized coatings at different treatment temperatures was also evaluated.

  3. Niobium sputter deposition on quarter wave resonators

    CERN Document Server

    Viswanadham, C; Jayaprakash, D; Mishra, R L

    2003-01-01

    Niobium sputter deposition on quarter wave copper R.F resonators, have been taken up in our laboratory, An ultra high vacuum system was made for this purpose. Niobium exhibits superconducting properties at liquid Helium temperature. A uniform coating of about 1.5 mu m of niobium on the internal surfaces of the copper resonant cavities is desired. Power dissipation in the resonators can be greatly reduced by making the internal surfaces of the R.F cavity super conducting. (author)

  4. Study of Nb-oxide Nb-Pb film structures by tunnel scanning microscope

    International Nuclear Information System (INIS)

    Golyamina, E.M.; Troyanovskij, A.M.

    1986-01-01

    The surface of niobium films, which were earlier used to create niobium-niobium oxide-lead film structures on their base, was investigated, using tunnel scanning microscope. The results obtained agree well with the observed properties of these structures, containing josephson and tunnel junctions

  5. RF Characterization of Niobium Films for Superconducting Cavities

    CERN Document Server

    Aull† , S; Doebert, S; Junginger, T; Ehiasarian, AP; Knobloch, J; Terenziani, G

    2013-01-01

    The surface resistance RS of superconductors shows a complex dependence on the external parameters such as temperature, frequency or radio-frequency (RF) field. The Quadrupole Resonator modes of 400, 800 and 1200 MHz allow measurements at actual operating frequencies of superconducting cavities. Niobium films on copper substrates have several advantages over bulk niobium cavities. HIPIMS (High-power impulse magnetron sputtering) is a promising technique to increase the quality and therefore the performance of niobium films. This contribution will introduce CERNs recently developed HIPIMS coating apparatus. Moreover, first results of niobium coated copper samples will be presented, revealing the dominant loss mechanisms.

  6. Study of niobium V compounds in nitric medium

    International Nuclear Information System (INIS)

    Gue, J.-P.; Kikindai, Tivadar; CEA Centre d'Etudes Nucleaires de Fontenay-aux-Roses, 92

    1976-01-01

    Nitric solutions of niobium V were studied in the range of concentrations of 5.10 -6 M to 0,5.10 -3 M in niobium and 0,4 to 10N in nitric acid. Methods used were light scattering, electron microscopy, electrophoresis and ultracentrifugation. It is shown that niobium was in a colloidal hydroxide form. Solvent extraction studies were performed with dibutyl phosphoric acid diluted in dodecane. It appears that floculation of the sol occurs for weak organic acid concentrations. But if the concentration increases, the precipitated niobium compound is redissolved in the organic phase [fr

  7. Adsorption of sulfur compound utilizing rice husk ash modified with niobium

    International Nuclear Information System (INIS)

    Cavalcanti, Rodrigo M.; Pessoa Júnior, Wanison A.G.; Braga, Valdeilson S.; Barros, Ivoneide de C.L.

    2015-01-01

    Graphical abstract: - Highlights: • Adsorbents based in RHA modified with niobium were prepared by impregnation. • The impregnation modified the particle size and topology of RHA particles. • The adsorbents were applied in sulfur removal in model liquid fuels. • The larger sulfur removal (>50%) was achieved using RHA with 5 wt.% niobium oxide. • The adsorbent show great selectivity in adsorption experiments. - Abstract: Adsorbents based in rice husk ash (RHA) modified with niobium pentoxide were prepared for impregnation methods and applied in sulfur removal in liquid fuels. The solids were characterized by X-ray diffraction, infrared spectroscopy, scanning electron microscopy, nitrogen physisorption and thermal analysis; they show that there was no qualitative change in the amorphous structure of the RHA; however, the method of impregnation could modify the particle size and topology of RHA particles. The larger sulfur removal (>50%) was achieved using RHA with 5 wt.% Nb 2 O 5 at a dosage of 10 g L −1 , after 4 h of contact with the model fuel. The kinetic study of adsorption of thiophene showed that the models of pseudo-second order and intra-particle diffusion best fit the experimental data. The adsorption experiments with the thiophenic derivatives compounds show a large selectivity of the adsorbent.

  8. Adsorption of sulfur compound utilizing rice husk ash modified with niobium

    Energy Technology Data Exchange (ETDEWEB)

    Cavalcanti, Rodrigo M.; Pessoa Júnior, Wanison A.G. [Laboratório de Catálise Química e Materiais (CATAMA), Instituto de Ciências Exatas, Universidade Federal do Amazonas (UFAM), Av. Gen. Rodrigo Otávio Jordão Ramos, 6200, 69077-000 Manaus, AM (Brazil); Braga, Valdeilson S. [Laboratório de Catálise, Centro das Ciências Exatas e das Tecnologias, Universidade Federal do Oeste da Bahia, Rua Professor José Seabra de Lemos, 316, Recanto dos Pássaros, 47808-021 Barreira, BA (Brazil); Barros, Ivoneide de C.L., E-mail: iclbarros@gmail.com [Laboratório de Catálise Química e Materiais (CATAMA), Instituto de Ciências Exatas, Universidade Federal do Amazonas (UFAM), Av. Gen. Rodrigo Otávio Jordão Ramos, 6200, 69077-000 Manaus, AM (Brazil)

    2015-11-15

    Graphical abstract: - Highlights: • Adsorbents based in RHA modified with niobium were prepared by impregnation. • The impregnation modified the particle size and topology of RHA particles. • The adsorbents were applied in sulfur removal in model liquid fuels. • The larger sulfur removal (>50%) was achieved using RHA with 5 wt.% niobium oxide. • The adsorbent show great selectivity in adsorption experiments. - Abstract: Adsorbents based in rice husk ash (RHA) modified with niobium pentoxide were prepared for impregnation methods and applied in sulfur removal in liquid fuels. The solids were characterized by X-ray diffraction, infrared spectroscopy, scanning electron microscopy, nitrogen physisorption and thermal analysis; they show that there was no qualitative change in the amorphous structure of the RHA; however, the method of impregnation could modify the particle size and topology of RHA particles. The larger sulfur removal (>50%) was achieved using RHA with 5 wt.% Nb{sub 2}O{sub 5} at a dosage of 10 g L{sup −1}, after 4 h of contact with the model fuel. The kinetic study of adsorption of thiophene showed that the models of pseudo-second order and intra-particle diffusion best fit the experimental data. The adsorption experiments with the thiophenic derivatives compounds show a large selectivity of the adsorbent.

  9. [Corrosion resistant properties of different anodized microtopographies on titanium surfaces].

    Science.gov (United States)

    Fangjun, Huo; Li, Xie; Xingye, Tong; Yueting, Wang; Weihua, Guo; Weidong, Tian

    2015-12-01

    To investigate the corrosion resistant properties of titanium samples prepared by anodic oxidation with different surface morphologies. Pure titanium substrates were treated by anodic oxidation to obtain porous titanium films in micron, submicron, and micron-submicron scales. The surface morphologies, coating cross-sectional morphologies, crystalline structures, and surface roughness of these samples were characterized. Electrochemical technique was used to measure the corrosion potential (Ecorr), current density of corrosion (Icorr), and polarization resistance (Rp) of these samples in a simulated body fluid. Pure titanium could be modified to exhibit different surface morphologies by the anodic oxidation technique. The Tafel curve results showed that the technique can improve the corrosion resistance of pure titanium. Furthermore, the corrosion resistance varied with different surface morphologies. The submicron porous surface sample demonstrated the best corrosion resistance, with maximal Ecorr and Rp and minimal Icorr. Anodic oxidation technology can improve the corrosion resistance of pure titanium in a simulated body fluid. The submicron porous surface sample exhibited the best corrosion resistance because of its small surface area and thick barrier layer.

  10. Anodization: a promising nano-modification technique of titanium implants for orthopedic applications.

    Science.gov (United States)

    Yao, Chang; Webster, Thomas J

    2006-01-01

    Anodization is a well-established surface modification technique that produces protective oxide layers on valve metals such as titanium. Many studies have used anodization to produce micro-porous titanium oxide films on implant surfaces for orthopedic applications. An additional hydrothermal treatment has also been used in conjunction with anodization to deposit hydroxyapatite on titanium surfaces; this is in contrast to using traditional plasma spray deposition techniques. Recently, the ability to create nanometer surface structures (e.g., nano-tubular) via anodization of titanium implants in fluorine solutions have intrigued investigators to fabricate nano-scale surface features that mimic the natural bone environment. This paper will present an overview of anodization techniques used to produce micro-porous titanium oxide structures and nano-tubular oxide structures, subsequent properties of these anodized titanium surfaces, and ultimately their in vitro as well as in vivo biological responses pertinent for orthopedic applications. Lastly, this review will emphasize why anodized titanium structures that have nanometer surface features enhance bone forming cell functions.

  11. Self-cleaning glasses containing nanostructured titanium oxide; Vidros autolimpantes contendo oxido de titanio nanoestruturado

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, A.; Alves, A.K.; Berutti, F.A.; Bergmann, C.P. [Universidade Federal do Rio Grande do Sul (DEMa/UFRGS), Porto Alegre, RS (Brazil). Dept. de Materiais

    2010-07-01

    Using the electrospinning technique nanofibers of titanium oxide were synthesized. As precursor materials, titanium propoxide and a solution of polyvinylpyrrolidone were used. After the electrospinning process, the non-tissue material obtained was heat treated and characterized by X-ray diffraction to determine the phase crystallinity, and SEM to analyze the microstructure of the fibers. After ultrasound dispersion of this material in isopropyl alcohol, the glass coatings were made by dip-coating methodology. The removal velocity was kept constant, but the solution composition was varied to obtain a transparent and photo active film. The film was characterized by the contact angle of a water droplet in its surface (hydrophilicity), the transparency was evaluated using a spectrophotometer and the photocatalytic activity of the film was also evaluated. (author)

  12. An improved oxygen diffusion model to explain the effect of low-temperature baking on high field losses in niobium superconducting cavities

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, Gianluigi

    2006-07-01

    Radio-frequency (RF) superconducting cavities made of high purity niobium are widely used to accelerate charged particle beams in particle accelerators. The major limitation to achieve RF field values approaching the theoretical limit for niobium is represented by ''anomalous'' losses which degrade the quality factor of the cavities starting at peak surface magnetic fields of about 100 mT, in absence of field emission. These high field losses are often referred to as ''Q-drop''. It has been observed that the Q-drop is drastically reduced by baking the cavities at 120 C for about 48 h under ultrahigh vacuum. An improved oxygen diffusion model for the niobium-oxide system is proposed to explain the benefit of the low-temperature baking on the Q-drop in niobium superconducting rf cavities. The model shows that baking at 120 C for 48 h allows oxygen to diffuse away from the surface, and therefore increasing the lower critical field towards the value for pure niobium.

  13. Zirconium oxide deposits (ZrO2) and titanium oxide (TiO2) on 304l stainless steel

    International Nuclear Information System (INIS)

    Davila N, M. L.

    2015-01-01

    This research project aims to carry out the surface and electrochemical characterization to obtain the optimum conditions of the hydrothermal deposits of zirconium oxide ZrO 2 (baddeleyite) and titanium oxide TiO 2 (anatase and rutile phases) on 304l stainless steel, simulating an inhibiting protective layer. 304l steel specimens were cut, pre-oxidized in water at a temperature of 288 degrees Celsius and 8 MPa, similar to those of a typical BWR conditions. From the titanium oxide anatase crystalline phase, the rutile phase was obtained by a heat treatment at 1000 degrees Celsius. The Sigma-Aldrich pre-oxidized powders and steel 304l were characterized using techniques of X-ray diffraction, scanning electron microscopy, X-ray dispersive energy, chemical mapping and Raman spectrometry. The pre-oxidized steel has two oxide layers, an inner layer with nano metric crystals and another outer of larger crystals to 1μm, with the formation of hematite and magnetite, this predominating. The surface that contacted the sample holder has larger crystals. Hydrothermal deposits were carry out from suspensions of 10, 100 and 1000 ppm, of the crystal phases of anatase, rutile and baddeleyite, on the pre-oxidized steel at a temperature of 150 degrees Celsius for 2 and 7 days, samples were analyzed by X-ray diffraction, scanning electron microscopy, X-ray dispersive energy, Raman spectrometry and Tafel polarization. The suspension to 1000 ppm for 7 days coated surface most; the baddeleyite deposit is noticed more homogeneous than anatase and rutile. The deposit is favored when hematite and magnetite crystals are larger. The chemical mapping on deposits show that even after being immersed in water to 288 degrees Celsius during 30 days, the deposits are still present although a loss is observed. A reference electrode was assembled to conduct electrochemical tests of Tafel able to withstand a temperature of 288 degrees Celsius and pressure of 8 MPa. The baddeleyite deposit presented

  14. Temperature induced complementary switching in titanium oxide resistive random access memory

    Energy Technology Data Exchange (ETDEWEB)

    Panda, D., E-mail: dpanda@nist.edu [Department of Electronics Engineering, National Institute of Science and Technology, Berhampur, Odisha 761008 (India); Department of Electronics Engineering and Institute of Electronics, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Simanjuntak, F. M.; Tseng, T.-Y. [Department of Electronics Engineering and Institute of Electronics, National Chiao Tung University, Hsinchu 30010, Taiwan (China)

    2016-07-15

    On the way towards high memory density and computer performance, a considerable development in energy efficiency represents the foremost aspiration in future information technology. Complementary resistive switch consists of two antiserial resistive switching memory (RRAM) elements and allows for the construction of large passive crossbar arrays by solving the sneak path problem in combination with a drastic reduction of the power consumption. Here we present a titanium oxide based complementary RRAM (CRRAM) device with Pt top and TiN bottom electrode. A subsequent post metal annealing at 400°C induces CRRAM. Forming voltage of 4.3 V is required for this device to initiate switching process. The same device also exhibiting bipolar switching at lower compliance current, Ic <50 μA. The CRRAM device have high reliabilities. Formation of intermediate titanium oxi-nitride layer is confirmed from the cross-sectional HRTEM analysis. The origin of complementary switching mechanism have been discussed with AES, HRTEM analysis and schematic diagram. This paper provides valuable data along with analysis on the origin of CRRAM for the application in nanoscale devices.

  15. Investigation of Titanium Sesquioxide Ti2O3: Synthesis and Physical Properties

    KAUST Repository

    Li, Yangyang

    2016-01-01

    Titanium is one of the earth-abundant elements, and its oxides including titanium dioxide (TiO2) and strontium titanium oxide (SrTiO3) are widely used in technologies of electronics, energy conversion, catalysis, sensing, and so on. Generally

  16. Titanium dioxide-coated fluorine-doped tin oxide thin films for improving overall photoelectric property

    International Nuclear Information System (INIS)

    Li, Bao-jia; Huang, Li-jing; Ren, Nai-fei; Zhou, Ming

    2014-01-01

    Titanium (Ti) layers were deposited by direct current (DC) magnetron sputtering on commercial fluorine-doped tin oxide (FTO) glasses, followed by simultaneous oxidation and annealing treatment in a tubular furnace to prepare titanium dioxide (TiO 2 )/FTO bilayer films. Large and densely arranged grains were observed on all TiO 2 /FTO bilayer films. The presence of TiO 2 tetragonal rutile phase in the TiO 2 /FTO bilayer films was confirmed by X-ray diffraction (XRD) analysis. The results of parameter optimization indicated that the TiO 2 /FTO bilayer film, which was formed by adopting a temperature of 400 °C and an oxygen flow rate of 15 sccm, had the optimal overall photoelectric property with a figure of merit of 2.30 × 10 −2 Ω −1 , higher than 1.78 × 10 −2 Ω −1 for the FTO single-layer film. After coating a 500 nm-thick AZO layer by DC magnetron sputtering on this TiO 2 /FTO bilayer film, the figure of merit of the trilayer film achieved to a higher figure of merit of 3.12 × 10 −2 Ω −1 , indicating further improvement of the overall photoelectric property. This work may provide a scientific basis and reference for improving overall photoelectric property of transparent conducting oxide (TCO) films.

  17. Degradation of ethyl alcohol on niobium hydraxide compounds

    International Nuclear Information System (INIS)

    Artem'eva, M.A.; Maslova, E.S.; Artem'ev, Yu.M.

    1992-01-01

    Samples of niobium hydroxide were prepared from niobium(5) chloride solutions in anhydrous ethanol. Niobium hydroxide groups were applied on the surface of dispersed silica-airsilogel. Pulse microcatalytic method was used to reveal, that synthesized hydroxide catalysed ethanol decomposition at 573 K only along the direction of dehydration with formation of ethylene. Ethylene was also the main product of alcohol degradation on applied samples, and procedure of dehydration reactions was noticeable. Spectra of temperature programmed surface reactions demonstrate the similarity of acidic surface properties of these two types of samples. Hydroxide compounds of niobium and bismuth were tested for correlation. They were active during ethyl alcohol dehydrogenation

  18. Impurity composition effect on work function in cylindrical specimens of niobium and low zirconium niobium base alloys

    International Nuclear Information System (INIS)

    Kobyakov, V.P.

    2000-01-01

    A study is made into poly- and single crystal cylindrical niobium specimens, prepared by various methods as well as into polycrystalline specimens of niobium base alloys doped with 1.2 and 1.6 % Zr. Thermionic work function is measured using a full current method. Several techniques are applied to determine the content of substitutional and interstitial impurities in specimens. The phase composition of polished section surface is also investigated. A work function increase is observed when a considerable amount of carbide phases occurs at the surface. This increase is comparable with the effect of going from a polycrystalline niobium specimen to a single crystal with (110) surface orientation [ru

  19. Titanium modified with layer-by-layer sol-gel tantalum oxide and an organodiphosphonic acid: a coating for hydroxyapatite growth.

    Science.gov (United States)

    Arnould, C; Volcke, C; Lamarque, C; Thiry, P A; Delhalle, J; Mekhalif, Z

    2009-08-15

    Titanium and its alloys are widely used in surgical implants due to their appropriate properties like corrosion resistance, biocompatibility, and load bearing. Unfortunately when metals are used for orthopedic and dental implants there is the possibility of loosening over a long period of time. Surface modification is a good way to counter this problem. A thin tantalum oxide layer obtained by layer-by-layer (LBL) sol-gel deposition on top of a titanium surface is expected to improve biocorrosion resistance in the body fluid, biocompatibility, and radio-opacity. This elaboration step is followed by a modification of the tantalum oxide surface with an organodiphosphonic acid self-assembled monolayer, capable of chemically binding to the oxide surface, and also improving hydroxyapatite growth. The different steps of this proposed process are characterized by surfaces techniques like contact angle, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM).

  20. Niobium LEP 2 accelerating cavities

    CERN Multimedia

    An accelerating cavity from LEP. This could be cut open to show the layer of niobium on the inside. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment. These challenging requirements pushed European industry to new achievements. 256 of these cavities were used in an upgrade of the LEP accelerator to double the energy of the particle beams.

  1. Plasma Electrolytic Oxidation of Titanium Implant Surfaces: Microgroove-Structures Improve Cellular Adhesion and Viability.

    Science.gov (United States)

    Hartjen, Philip; Hoffmann, Alexia; Henningsen, Anders; Barbeck, Mike; Kopp, Alexander; Kluwe, Lan; Precht, Clarissa; Quatela, Olivia; Gaudin, Robert; Heiland, Max; Friedrich, Reinhard E; Knipfer, Christian; Grubeanu, Daniel; Smeets, Ralf; Jung, Ole

    2018-01-01

    Plasma electrolytic oxidation (PEO) is an established electrochemical treatment technique that can be used for surface modifications of metal implants. In this study we to treated titanium implants with PEO, to examine the resulting microstructure and to characterize adhesion and viability of cells on the treated surfaces. Our aim was to identify an optimal surface-modification for titanium implants in order to improve soft-tissue integration. Three surface-variants were generated on titanium alloy Ti6Al4V by PEO-treatment. The elemental composition and the microstructures of the surfaces were characterized using energy dispersive X-ray spectroscopy, scanning electron microscopy and profilometry. In vitro cytocompatibility of the surfaces was assessed by seeding L929 fibroblasts onto them and measuring the adhesion, viability and cytotoxicity of cells by means of live/dead staining, XTT assay and LDH assay. Electron microscopy and profilometry revealed that the PEO-surface variants differed largely in microstructure/topography, porosity and roughness from the untreated control material as well as from one another. Roughness was generally increased after PEO-treatment. In vitro, PEO-treatment led to improved cellular adhesion and viability of cells accompanied by decreased cytotoxicity. PEO-treatment provides a promising strategy to improve the integration of titanium implants with surrounding tissues. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  2. New transition metal oxide fluorides with ReO{sub 3}-type structure

    Energy Technology Data Exchange (ETDEWEB)

    Nakhal, Suliman; Lerch, Martin [Technische Universitaet Berlin (Germany). Inst. fuer Chemie

    2016-08-01

    The new niobium oxide fluorides MNbO{sub 2}F{sub 4} [M = (Cr, Fe)], CrNb{sub 2}O{sub 4}F{sub 5}, and Fe{sub 2}Nb{sub 3}O{sub 6}F{sub 9} were prepared by treatment of chromium or iron nitrate with Nb-containing hydrofluoric acid solutions. Crystal structures were investigated by means of X-ray powder diffraction. All new compounds can be structurally refined in the cubic ReO{sub 3}-type. The iron niobium oxide fluorides are reddish orange, and chromium containing phases exhibit a light green color. The niobium atoms are in the highest formal oxidation state.

  3. Models for the adsorption of uranium on titanium dioxide

    International Nuclear Information System (INIS)

    Jaffrezic-Renault, N.; Poirier-Andrade, H.; Trang, D.H.

    1980-01-01

    A hydrated titanium oxide whose acid-base properties are well defined has been used to study the retention mechanism of uranium as UO 2 2+ (in acidic media) and as UO 2 (CO 3 ) 3 4- (in carbonate media). The influence of various parameters on the distribution coefficient of uranium (pH, [CO 3 2- ]) and of the adsorption of uranium on the electrophoretic mobilities of the titanium oxide have been investigated. It is shown that, in both media, coordinative TiO-UO 2 bonds are formed. These strong bonds explain the high affinity of the titanium oxide for uranium. (orig.)

  4. Electrical instability of InGaZnO thin-film transistors with and without titanium sub-oxide layer under light illumination

    Science.gov (United States)

    Chiu, Y. C.; Zheng, Z. W.; Cheng, C. H.; Chen, P. C.; Yen, S. S.; Fan, C. C.; Hsu, H. H.; Kao, H. L.; Chang, C. Y.

    2017-03-01

    The electrical instability behaviors of amorphous indium-gallium-zinc oxide thin-film transistors with and without titanium sub-oxide passivation layer were investigated under light illumination in this study. For the unpassivated IGZO TFT device, in contrast with the dark case, a noticeable increase of the sub-threshold swing was observed when under the illumination environment, which can be attributed to the generation of ionized oxygen vacancies within the α-IGZO active layer by high energy photons. For the passivated TFT device, the much smaller SS of 70 mV/dec and high device mobility of >100 cm2/Vs at a drive voltage of 3 V with negligible degradation under light illumination are achieved due to the passivation effect of n-type titanium sub-oxide semiconductor, which may create potential application for high-performance display.

  5. Study of the thermal oxidation of titanium and zirconium under argon ion irradiation in the low MeV range (E = 15 MeV)

    International Nuclear Information System (INIS)

    Do, N.-L.

    2012-01-01

    We have shown that argon ion irradiation between 1 and 15 MeV produces damage on both titanium and zirconium surfaces, taking the form of accelerated oxidation and/or craterization effects, varying as a function of the projectile energy and the annealing atmosphere (temperature and pressure) simulating the environmental conditions of the fuel/cladding interface of PWR fuel rods. Using AFM, we have shown that the titanium and zirconium surface is attacked under light argon ion bombardment at high temperature (up to 500 C) in weakly oxidizing medium (under rarefied dry air pressure ranging from 5,7 10 -5 Pa to 5 10 -3 Pa) for a fixed fluence of about 5 10 14 ions.cm -2 . We observed the formation of nano-metric craters over the whole titanium surface irradiated between 2 and 9 MeV and the whole zirconium surface irradiated at 4 MeV, the characteristics of which vary depending on the temperature and the pressure. In the case of the Ar/Ti couple, the superficial damage efficiency increases when the projectile energy decreases from 9 to 2 MeV. Moreover, whereas the titanium surface seems to be transparent under the 15-MeV ion beam, the zirconium surface exhibits numerous micrometric craters surrounded by a wide halo. The crater characteristics (size and superficial density) differ significantly from that observed both in the low energy range (keV) where the energy losses are controlled by ballistic collisions (Sn) and in the high energy range (MeV - GeV) where the energy losses are controlled by electronic excitations (Se), which was not completely unexpected in this intermediate energy range for which combined Sn - Se stopping power effects are possibly foreseen. Using XPS associated to ionic sputtering, we have shown that there is an irradiation effect on thermal oxidation of titanium, enhanced under the argon ion beam between 2 and 9 MeV, and that there is also an energy effect on the oxide thickness and stoichiometry. The study conducted using Spectroscopic

  6. Direct atomic absorption determination of silicon in metallic niobium

    International Nuclear Information System (INIS)

    Blinova, Eh.S.; Guzeev, I.D.; Nedler, V.V.; Khokhrin, V.M.

    1984-01-01

    Consideration is being given to realization of the basic advantage of non-flame atomizer-analysis of directly solid samples-for silicon determination in niobium for the content of the first one of less than 1x10 -3 mass %. Analysis technique is described. Diagrams of the dependences of atomic silicon absorption in graphite cells of usual type as well as lined by tungsten carbide and atomic silicon absorption on the value of niobium weighed amount are presented. It is shown that Si determination in metallic niobium according to aqueous reference solutions results in understatement of results 2.4 times. The optimal conditions for Si determination in niobium are the following: 2400 deg C temperature, absence of carbon and oxygen. Different niobium specimens with the known silicon content were used as reference samples

  7. Suppression of hydride precipitates in niobium superconducting radio-frequency cavities

    Science.gov (United States)

    Ford, Denise C.; Cooley, Lance D.; Seidman, David N.

    2013-10-01

    Niobium hydride is a suspected contributor to degraded niobium superconducting radio-frequency (SRF) cavity performance by Q slope and Q disease. The concentration and distribution of hydrogen atoms in niobium can be strongly affected by the cavity processing treatments. This study provides guidance for cavity processing based on density functional theory calculations of the properties of common processing impurity species—hydrogen, oxygen, nitrogen, and carbon—in the body-centered cubic (bcc) niobium lattice. We demonstrate that some fundamental properties are shared between the impurity atoms, such as anionic character in niobium. The strain field produced, however, by hydrogen atoms is both geometrically different and substantially weaker than the strain field produced by the other impurities. We focus on the interaction between oxygen and hydrogen atoms in the lattice, and demonstrate that the elastic interactions between these species and the bcc niobium lattice cause trapping of hydrogen and oxygen atoms by bcc niobium lattice vacancies. We also show that the attraction of oxygen to a lattice vacancy is substantially stronger than the attraction of hydrogen to the vacancy. Additionally, hydrogen dissolved in niobium tetrahedral interstitial sites can be trapped by oxygen, nitrogen and possibly carbon atoms dissolved in octahedral interstitial sites. These results indicate that the concentration of oxygen in the bcc lattice can have a strong impact on the ability of hydrogen to form detrimental phases. Based on our results and a literature survey, we propose a mechanism for the success of the low-temperature annealing step applied to niobium SRF cavities. We also recommend further examination of nitrogen and carbon in bcc niobium, and particularly the role that nitrogen can play in preventing detrimental hydride phase formation.

  8. Electrophoretic deposition of calcium silicate-reduced graphene oxide composites on titanium substrate

    DEFF Research Database (Denmark)

    Mehrali, Mehdi; Akhiani, Amir Reza; Talebian, Sepehr

    2016-01-01

    Calcium silicate (CS)/graphene coatings have been used to improve the biological and mechanical fixation of metallic prosthesis. Among the extraordinary features of graphene is its very high mechanical strength, which makes it an attractive nanoreinforcement material for composites. Calcium...... silicate-reduced graphene oxide (CS-rGO) composites were synthesized, using an in situ hydrothermal method. CS nanowires were uniformly decorated on the rGO, with an appropriate interfacial bonding. The CS-rGO composites behaved like hybrid composites when deposited on a titanium substrate by cathodic...

  9. Effects of concentration of Ag nanoparticles on surface structure and in vitro biological responses of oxide layer on pure titanium via plasma electrolytic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ki Ryong; Kim, Yeon Sung; Kim, Gye Won [Department of Materials Science and Engineering, Hanyang University, Ansan 425-791 (Korea, Republic of); Yang, Hae Woong [School of Materials Science and Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Ko, Young Gun, E-mail: younggun@ynu.ac.kr [School of Materials Science and Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Shin, Dong Hyuk, E-mail: dhshin@hanyang.ac.kr [Department of Materials Science and Engineering, Hanyang University, Ansan 425-791 (Korea, Republic of)

    2015-08-30

    Highlights: • Ag nanoparticles were embedded into the oxide surface without any compositional changes. • Oxide layer from the electrolyte with 0.1 g/l Ag nanoparticles could disinfect all bacteria. • With increasing Ag nanoparticles, bone-forming ability and cell proliferation rate decrease. - Abstract: This study was to investigate how Ag nanoparticles with various concentrations affect the surface structure and in vitro biological properties of oxide layers on the pure titanium produced by a plasma electrolytic oxidation (PEO) process. For this aim, PEO processes were carried out at an AC current density of 100 mA/cm{sup 2} for 300 s in potassium pyrophosphate (K{sub 4}P{sub 2}O{sub 7}) electrolytes containing 0, 0.1, 0.3 and 0.5 g/l Ag nanoparticles. Structural investigations using scanning electron microscopy evidenced that the oxide layers showed the successful incorporation of Ag nanoparticles, and the topographical deformation of the porous surface was found when the concentration of Ag nanoparticles was more than 0.1 g/l. Based on the anti-bacterial activity of all oxide layers, the Ag nanoparticles uniformly spread were of considerable importance in triggering the disinfection of E. coli bacteria. The bone forming abilities and cell (MC3T3-E1) proliferation rates of oxide layers produced in electrolytes containing 0 and 0.1 g/l Ag nanoparticles were higher than those containing 0.3 and 0.5 g/l Ag nanoparticles. Consequently, the oxide layer on pure titanium via PEO process in the electrolyte with 0.1 g/l Ag nanoparticles exhibited better the bioactivity accompanying the anti-bacterial activity.

  10. [Apatite-forming ability of pure titanium implant after micro-arc oxidation treatment].

    Science.gov (United States)

    Tian, Zhihui; Zhang, Yu; Wang, Lichao; Nan, Kaihui

    2013-10-01

    To investigate the apatite forming ability of pure titanium implant after micro-arc oxidation treatment in simulated body fluid (SBF) and obtain implants with calcium phosphate (Ca-P) layers. The implants were immersed in (SBF) after micro-arc oxidation treatment for different time lengths, and their apatite forming ability and the morphology and constituents of the Ca-P layers formed on the sample surface were analyzed using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and energy dispersive electron probe. After immersion in SBF, large quantities of Ca-P layers were induced on the surface of the samples. The Ca-P layers were composed of octacalcium phosphate and carbonated hydroxyapatite, and the crystals showed a plate-like morphology with an oriented growth. The implants with micro-arc oxidation treatment show good apatite forming ability on the surface with rich calcium and phosphorus elements. The formed layers are composed of bone-like apatite including octacalcium phosphate and carbonated hydroxyapatite.

  11. Sol–gel synthesis of tantalum oxide and phosphonic acid-modified carbon nanotubes composite coatings on titanium surfaces

    International Nuclear Information System (INIS)

    Maho, Anthony; Detriche, Simon; Delhalle, Joseph; Mekhalif, Zineb

    2013-01-01

    Carbon nanotubes used as fillers in composite materials are more and more appreciated for the outstanding range of accessible properties and functionalities they generate in numerous domains of nanotechnologies. In the framework of biological and medical sciences, and particularly for orthopedic applications and devices (prostheses, implants, surgical instruments, …), titanium substrates covered by tantalum oxide/carbon nanotube composite coatings have proved to constitute interesting and successful platforms for the conception of solid and biocompatible biomaterials inducing the osseous regeneration processes (hydroxyapatite growth, osteoblasts attachment). This paper describes an original strategy for the conception of resistant and homogeneous tantalum oxide/carbon nanotubes layers on titanium through the introduction of carbon nanotubes functionalized by phosphonic acid moieties (-P(=O)(OH) 2 ). Strong covalent C-P bonds are specifically inserted on their external sidewalls with a ratio of two phosphonic groups per anchoring point. Experimental results highlight the stronger “tantalum capture agent” effect of phosphonic-modified nanotubes during the sol–gel formation process of the deposits compared to nanotubes bearing oxidized functions (-OH, -C=O, -C(=O)OH). Particular attention is also paid to the relative impact of the rate of functionalization and the dispersion degree of the carbon nanotubes in the coatings, as well as their wrapping level by the tantalum oxide matrix material. The resulting effect on the in vitro growth of hydroxyapatite is also evaluated to confirm the primary osseous bioactivity of those materials. Chemical, structural and morphological features of the different composite deposits described herein are assessed by X-ray photoelectron spectroscopy (XPS), scanning (SEM) and transmission (TEM) electronic microscopies, energy dispersive X-rays analysis (EDX) and peeling tests. Highlights: ► Formation of tantalum/carbon nanotube

  12. Sol–gel synthesis of tantalum oxide and phosphonic acid-modified carbon nanotubes composite coatings on titanium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Maho, Anthony [Laboratory of Chemistry and Electrochemistry of Surfaces, University of Namur (FUNDP), Rue de Bruxelles 61, B-5000 Namur (Belgium); Fonds pour la Formation à la Recherche dans l' Industrie et dans l' Agriculture (FRIA), Rue d' Egmont 5, B-1000 Bruxelles (Belgium); Detriche, Simon; Delhalle, Joseph [Laboratory of Chemistry and Electrochemistry of Surfaces, University of Namur (FUNDP), Rue de Bruxelles 61, B-5000 Namur (Belgium); Mekhalif, Zineb, E-mail: zineb.mekhalif@fundp.ac.be [Laboratory of Chemistry and Electrochemistry of Surfaces, University of Namur (FUNDP), Rue de Bruxelles 61, B-5000 Namur (Belgium)

    2013-07-01

    Carbon nanotubes used as fillers in composite materials are more and more appreciated for the outstanding range of accessible properties and functionalities they generate in numerous domains of nanotechnologies. In the framework of biological and medical sciences, and particularly for orthopedic applications and devices (prostheses, implants, surgical instruments, …), titanium substrates covered by tantalum oxide/carbon nanotube composite coatings have proved to constitute interesting and successful platforms for the conception of solid and biocompatible biomaterials inducing the osseous regeneration processes (hydroxyapatite growth, osteoblasts attachment). This paper describes an original strategy for the conception of resistant and homogeneous tantalum oxide/carbon nanotubes layers on titanium through the introduction of carbon nanotubes functionalized by phosphonic acid moieties (-P(=O)(OH){sub 2}). Strong covalent C-P bonds are specifically inserted on their external sidewalls with a ratio of two phosphonic groups per anchoring point. Experimental results highlight the stronger “tantalum capture agent” effect of phosphonic-modified nanotubes during the sol–gel formation process of the deposits compared to nanotubes bearing oxidized functions (-OH, -C=O, -C(=O)OH). Particular attention is also paid to the relative impact of the rate of functionalization and the dispersion degree of the carbon nanotubes in the coatings, as well as their wrapping level by the tantalum oxide matrix material. The resulting effect on the in vitro growth of hydroxyapatite is also evaluated to confirm the primary osseous bioactivity of those materials. Chemical, structural and morphological features of the different composite deposits described herein are assessed by X-ray photoelectron spectroscopy (XPS), scanning (SEM) and transmission (TEM) electronic microscopies, energy dispersive X-rays analysis (EDX) and peeling tests. Highlights: ► Formation of tantalum

  13. Development of high purity niobium material for superconducting cavities

    International Nuclear Information System (INIS)

    Umezawa, Hiroaki; Takeuchi, Koichi; Sakita, Kohei; Suzuki, Takafusa; Saito, Kenji; Noguchi, Shuichi.

    1993-01-01

    For the superconducting niobium cavities, issues of thermal quench and field emission have to be solved to achieve a high field gradient (>25MV/m) for TESLA (TeV Energy Superconducting Linear Accelerator). In order to overcome the quench, upgrading of thermal conductivity of niobium material at the low temperature is very important. On the reduction of the field emission not only dust particles but also defect, impurity and inhomogeneity should be considered. Therefore development of high purity niobium material is very important to solve these issues. This paper describes the our latest R and D for high purity niobium material. (author)

  14. Titanium dioxide-coated fluorine-doped tin oxide thin films for improving overall photoelectric property

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bao-jia, E-mail: bjia_li@126.com [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang 212013 (China); Huang, Li-jing [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang 212013 (China); Ren, Nai-fei [Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang 212013 (China); School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); Zhou, Ming [The State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China)

    2014-01-30

    Titanium (Ti) layers were deposited by direct current (DC) magnetron sputtering on commercial fluorine-doped tin oxide (FTO) glasses, followed by simultaneous oxidation and annealing treatment in a tubular furnace to prepare titanium dioxide (TiO{sub 2})/FTO bilayer films. Large and densely arranged grains were observed on all TiO{sub 2}/FTO bilayer films. The presence of TiO{sub 2} tetragonal rutile phase in the TiO{sub 2}/FTO bilayer films was confirmed by X-ray diffraction (XRD) analysis. The results of parameter optimization indicated that the TiO{sub 2}/FTO bilayer film, which was formed by adopting a temperature of 400 °C and an oxygen flow rate of 15 sccm, had the optimal overall photoelectric property with a figure of merit of 2.30 × 10{sup −2} Ω{sup −1}, higher than 1.78 × 10{sup −2} Ω{sup −1} for the FTO single-layer film. After coating a 500 nm-thick AZO layer by DC magnetron sputtering on this TiO{sub 2}/FTO bilayer film, the figure of merit of the trilayer film achieved to a higher figure of merit of 3.12 × 10{sup −2} Ω{sup −1}, indicating further improvement of the overall photoelectric property. This work may provide a scientific basis and reference for improving overall photoelectric property of transparent conducting oxide (TCO) films.

  15. Electrochemical surface modification of titanium in dentistry.

    Science.gov (United States)

    Kim, Kyo-Han; Ramaswamy, Narayanan

    2009-01-01

    Titanium and its alloys have good biocompatibility with body cells and tissues and are widely used for implant applications. However, clinical procedures place more stringent and tough requirements on the titanium surface necessitating artificial surface treatments. Among the many methods of titanium surface modification, electrochemical techniques are simple and cheap. Anodic oxidation is the anodic electrochemical technique while electrophoretic and cathodic depositions are the cathodic electrochemical techniques. By anodic oxidation it is possible to obtain desired roughness, porosity and chemical composition of the oxide. Anodic oxidation at high voltages can improve the crystallinity of the oxide. The chief advantage of this technique is doping of the coating of the bath constituents and incorporation of these elements improves the properties of the oxide. Electrophoretic deposition uses hydroxyapatite (HA) powders dispersed in a suitable solvent at a particular pH. Under these operating conditions these particles acquire positive charge and coatings are obtained on the cathodic titanium by applying an external electric field. These coatings require a post-sintering treatment to improve the coating properties. Cathodic deposition is another type of electrochemical method where HA is formed in situ from an electrolyte containing calcium and phosphate ions. It is also possible to alter structure and/or chemistry of the obtained deposit. Nano-grained HA has higher surface energy and greater biological activity and therefore emphasis is being laid to produce these coatings by cathodic deposition.

  16. Production of titanium tetrachloride

    International Nuclear Information System (INIS)

    Perillo, P.M.; Botbol, O.

    1990-01-01

    This report presents a summary of results from theoperation of a laboratory scale for the production in batches of approximately 100 gs of titanium tetrachloride by chlorination with chloroform and carbon tetrachloride between 340 deg C and 540 deg C. Chlorination agent vapors were passed through a quartz column reacting with titanium oxide powder agglomerated in little spheres. Obtained titanium tetrachloride was condensed in a condenser, taken in a ballon and then purified by fractional distillation. Optimun temperature for chloroform was 400 deg C with 74 % yield and for carbon tetrachloride was 500 deg C with 69 % yield. (Author) [es

  17. Study of the microstructural and mechanical properties of titanium-niobium-zirconium based alloys processed with hydrogen and powder metallurgy for use in dental implants; Estudo das propriedades mecanicas e microestruturais de ligas a base de titanio-niobiozirconio processados com hidrogenio e metalurgia do po para utilizacao em implantes dentarios

    Energy Technology Data Exchange (ETDEWEB)

    Duvaizem, Jose Helio

    2009-07-01

    Hydrogen has been used as pulverization agent in alloys based on rare earth and transition metals due to its extremely high diffusion rate even on low temperatures. Such materials are used on hydrogen storage dispositives, generation of electricity or magnetic fields, and are produced by a process which the first step is the transformation of the alloy in fine powder by miling. Besides those, hydrogenium is also being used to obtain alloys based on titanium - niobium - zirconium in the pulverization. Powder metallurgy is utilized on the production of these alloys, making it possible to obtain structures with porous surface as result, requirement for its application as biomaterials. Other advantages of powder metallurgy usage include better surface finish and better microstructural homogeneity. In this work samples were prepared in the Ti-13Nb-13Zr composition. The hydrogenation was performed at 700 degree C, 600 degree C, and 500 degree C for titanium, niobium and zirconium respectively. After hydrogenation, the milling stage was carried out on high energy planetary ball milling with 200rpm during 90 minutes, and also in conventional ball milling for 30 hours. Samples were pressed in uniaxial press, followed by isostatic cold press, and then sintered at 1150 degree C for 7-13 hours. Microstructural properties of the samples were characterized by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and x-ray diffraction. Mechanical and structural properties determined were density, microhardness and moduli of elasticity. The sample sintered at 1150 degree C for 7h, hydrogenated using 10.000 mbar and produced by milling on high energy planetary ball milling presented the best mechanical properties and microstructural homogeneity. (author)

  18. A deposit model for magmatic iron-titanium-oxide deposits related to Proterozoic massif anorthosite plutonic suites: Chapter K in Mineral Deposit Models for Resource Assessment

    Science.gov (United States)

    Woodruff, Laurel G.; Nicholson, Suzanne W.; Fey, David L.

    2013-01-01

    This descriptive model for magmatic iron-titanium-oxide (Fe-Ti-oxide) deposits hosted by Proterozoic age massif-type anorthosite and related rock types presents their geological, mineralogical, geochemical, and geoenvironmental attributes. Although these Proterozoic rocks are found worldwide, the majority of known deposits are found within exposed rocks of the Grenville Province, stretching from southwestern United States through eastern Canada; its extension into Norway is termed the Rogaland Anorthosite Province. This type of Fe-Ti-oxide deposit dominated by ilmenite rarely contains more than 300 million tons of ore, with between 10- to 45-percent titanium dioxide (TiO2), 32- to 45-percent iron oxide (FeO), and less than 0.2-percent vanadium (V).

  19. Iodine-labelling of albumin and fibrinogen and application in selecting implantable material-titanium oxide

    International Nuclear Information System (INIS)

    Liu Fangyan; Zhou Meiying; Zhang Feng

    1998-01-01

    Human serum albumin and fibrinogen were successfully labelled with 125 I. The labelled proteins were further applied to carry out a background study on the selection of the blood-compatible materials. The protein adsorption of four kinds of titanium oxide film was determined and compared. It was found that Sample B can adsorb more albumin and less fibrinogen than other three samples and hold the adsorbed albumin most stably

  20. Flux pinning by voids in surface-oxidized superconducting niobium and vanadium

    International Nuclear Information System (INIS)

    Meij, G.P. van der.

    1984-03-01

    The volume pinning force in several niobium and vanadium samples with voids is determined at various temperatures. Reasonable agreement is found with the collective pinning theory of Larkin and Ovchinnikov above the field of maximum pinning, if the flux line lattice is assumed to be amorphous in this region and if the elementary pinning force is calculated from the quasi-classical theory of Thuneberg, Kurkijaervi, and Rainer. Also some history and relaxation effects are studied in an alternating field. A qualitative explanation is given in terms of flux line dislocations, which reduce the shear strength of the flux line lattice. (Auth.)

  1. Generation of the J/sub c/, H/sub c/, T/sub c/ surface for commercial superconductor using reduced-state parameters

    International Nuclear Information System (INIS)

    Green, M.A.

    1988-04-01

    This report presents a method for calculating the J/sub C/, H/sub C/, T/sub C/ surface for Type II Superconductors. The method requires that one knows T/sub C/ at zero current and field, H/sub c2/ at zero current and temperature, and J/sub c/ at at least one temperature and field. The theory presented in this report agrees with the measured data quite well over virtually the entire J/sub c/, H/sub c/, T/sub c/ surface given the value of J/sub c/ versus H at one or two temperatures. This report presents calculated and measured values of J/sub c/ versus T and B for niobium titanium, niobium zirconium, niobium tin, niobium titanium tin, niobium tantalum tin, vanadium zirconium hafnium, and vanadium gallium. Good agreement of theory with measured data was obtained for commercial niobium titanium and niobium tin. 76 refs., 26 figs., 6 tabs

  2. Inverted bulk-heterojunction organic solar cell using chemical bath deposited titanium oxide as electron collection layer

    OpenAIRE

    Kuwabara, Takayuki; Sugiyama, Hirokazu; Kuzuba, Mitsuhiro  ; Yamaguchi, Takahiro; Takahashi, Kohshin

    2010-01-01

    Chemical bath deposited titanium oxide (TiOx ) as an electron collection layer is introduced between the organic layer and the indium tin oxide (ITO) electrode for improving the performance of inverted bulk-heterojunction organic thin film solar cells with 1 cm2 active area, where regioregular poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) were mainly used as the photo-active layer. The uniform and thin TiOx film was easily prepared onto the ITO electrode ...

  3. Laser colouring on titanium alloys: characterisation and potential applications

    OpenAIRE

    Franceschini, Federica; Demir, Ali Gökhan; Dowding, Colin; Previtali, Barbara; Griffiths, Jonathan David

    2014-01-01

    Oxides of titanium exhibit vivid colours that can be generated naturally or manipulated through controlled oxidation processes. The application of a laser beam for colouring titanium permits flexible manipulation of the oxidized geometry with high spatial resolution. The laser-based procedure can be applied in an ambient atmosphere to generate long-lasting coloured marks. Today, these properties are largely exploited in artistic applications such as jewellery, eyewear frames, watch components...

  4. Mechanical and tribological property of single layer graphene oxide reinforced titanium matrix composite coating

    Science.gov (United States)

    Hu, Zengrong; Li, Yue; Fan, Xueliang; Chen, Feng; Xu, Jiale

    2018-04-01

    Single layer grapheme oxide Nano sheets and Nano titanium powder were dispersed in deionized water by ultrasonic dispersion. Then the mixed solution was pre-coating on AISI4140 substrate. Using laser sintering process to fabricated grapheme oxide and Ti composite coating. Microstructures and composition of the composite coating was studied by Scanning Electron Microscopy (SEM), x-ray diffract meter (XRD) and Raman spectroscopy. Raman spectrum, XRD pattern and SEM results proved that grapheme oxide sheets were dispersed in the composite coating. The composite coating had much higher average Vickers hardness values than that of pure Ti coating. The tribological performance of the composite coatings became better while the suitable GO content was selected. For the 2.5wt. % GO content coating, the friction coefficient was reduced to near 0.1.

  5. Radioactivity analysis in niobium activation foils

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, G.E.

    1995-06-01

    The motivation for this study was to measure and analyze the activity of six (6) niobium (Nb) foils (the x-rays from an internal transition in Nb-93m) and apply this information with previously obtained activation foil data. The niobium data was used to determine the epithermal to MeV range for the neutron spectrum and fluence. The foil activation data was re-evaluated in a spectrum analysis code (STAY`SL) to provide new estimates of the exposure at the Los Alamos Spallation Radiation Effect Facility (LASREF). The activity of the niobium foils was measured and analyzed at the University of Missouri-Columbia (UMC) under the direction of Professor William Miller. The spectrum analysis was performed at the University of Missouri-Rolla (UMR) by Professor Gary Mueller.

  6. Study of niobium corrosion in alkaline medium

    International Nuclear Information System (INIS)

    Almeida, S.H. de.

    1987-01-01

    A comparative study of niobium electrochemical behaviour in NaOH and KOH solution, with concentrations between 0,5 and 6,1M is presented. The studies were done through electrochemicals assays, consisting in the corrosion potential and anodic and cathodic polarization curves, complemented by loss of mass experiments. The niobium anodic behaviour in alkaline medium is characterized by passivation occurrence, with a stable film formation. The Na oH solution in alkaline medium are more corrosible to niobium than the KOH solution. The loss of mass assays showed that the corrosion velocit is more dependente of hydroxide concentration in KOH medium than the NaOH medium. (C.G.C.) [pt

  7. Cyclic thermochemical process for producing hydrogen using cerium-titanium compounds

    Science.gov (United States)

    Bamberger, C.E.

    A thermochemical cyclic process for producing hydrogen employs the reaction between ceric oxide and titanium dioxide to form cerium titanate and oxygen. The titanate is treated with an alkali metal hydroxide to give hydrogen, ceric oxide, an alkali metal titanate and water. Alkali metal titanate and water are boiled to give titanium dioxide which, along with ceric oxide, is recycled.

  8. Variable electron beam diameter achieved by a titanium oxide/carbon nanotube hetero-structure suitable for nanolithography

    International Nuclear Information System (INIS)

    Abdi, Yaser; Barati, Fatemeh

    2013-01-01

    We report the fabrication of a titanium oxide/carbon nanotube based field emission device suitable for nanolithography and fabrication of transistors. The growth of carbon nanotubes (CNTs) is performed on silicon substrates using a plasma-enhanced chemical vapor deposition method. The vertically grown CNTs are encapsulated by titanium oxide (TiO 2 ) using an atmospheric pressure chemical vapor deposition system. Field emission from the CNTs is realized by mechanical polishing of the prepared structure. Possible applications of such nanostructures as a lithography tool with variable electron beam diameter has been investigated. The obtained results show that a spot size of less than 30 nm can be obtained by applying the proper voltage on TiO 2 surrounding gate. Electrical measurements of the fabricated device confirm the capability of the structure for fabrication of field emission based field effect transistors. By a voltage applied between the gate and the cathode electrode, the emission current from CNTs shows a significant drop, indicating proper control of the gate on the emission current. (paper)

  9. Niobium-aluminum oxynitride prepared by ammonolysis of oxide precursor obtained through the citrate route

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Shinichi; Ohashi, Yoshio; Masubuchi, Yuji; Takeda, Takashi; Motohashi, Teruki [Graduate School of Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo 060-8628 (Japan); Kikkawa, Shinichi, E-mail: kikkawa@eng.hokudai.ac.j [Graduate School of Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo 060-8628 (Japan)

    2009-08-12

    Oxynitrides in the (Nb{sub 1-x}Al{sub x})(O,N) quaternary system were prepared by ammonolysis of oxide precursor obtained through the citrate route. The products at 1000 deg. C were a mixture of Nb(N,O) and NbN{sub 0.95} at the niobium end (x = 0) and amorphous Al(O,N) at the aluminum end (x = 1). A new cubic compound (A) appeared mixed with Nb(N,O) in the compositional range 0.1 <= x <= 0.4. Its almost pure product was obtained at x = 0.5. The X-ray diffraction pattern was rock salt type (Nb{sub 0.56}Al{sub 0.44})(O{sub 0.38}N{sub 0.37}square{sub 025}) in F{sub m-3m} with a = 0.43481(1) nm. The product showed superconductivity with T{sub c} = 15 K. Its crystallinity was much improved and its superconducting volume fraction increased to 32% after its thermal annealing at 1100 deg. C in evacuated sealed tube. A second cubic compound (B), rock salt type Nb[(O,N){sub 0.85}square{sub 0.15}] with a = 0.434 nm, was observed mixed with amorphous Al(O,N) in the as-prepared products of the range 0.6 <= x <= 0.9.

  10. Germination and early plant development of ten plant species exposed to titanium dioxide and cerium oxide nanoparticles

    Science.gov (United States)

    Ten agronomic plant species were exposed to different concentrations of nano titanium dioxide (nTiO2) or nano cerium oxide (nCeO2) (0, 250, 500 and 1000 mg/L) to examine potential effects on germination and early seedling development. We modified a standard test protocol develop...

  11. Morphological changes in bone tissue around titanium implants subjected to micro-arc oxidation in alkaline electrolytes with and without the use of «CollapAn-gel»

    Directory of Open Access Journals (Sweden)

    Kalmin O.V.

    2013-12-01

    Full Text Available The purpose of the article is to conduct comparative study of the features of reparative processes in the bone during installation of titanium implants with sandblasted exposed microarc subsequent oxidation in alkaline electrolyte using osteoinductive formulation without the use of this preparation. Material and Methods. Histologically examined tissue samples from 24 adult rabbits in the region of titanium implant with osteoinductive formulation and without after 7, 14, 28, 56 and 112 days postoperatively. Results. It has been revealed that the installation of titanium implants subjected to micro-arc oxidation in alkaline electrolytes without the use of osteoinductive preparation leads to a moderate inflammatory response and the processes of bone formation take more time. When using identical implants with osteoinductive preparation «CollapAn-gel» led to a less expressed inflammatory response and a more active process of bone formation. Conclusion. The use of titanium implants subjected to sandblasting followed microarc oxidation in alkaline electrolytes is optimally combined with osteoinductive agents as it provides the best clinical results and highlights shorter time of bone regeneration.

  12. Relative SHG measurements of metal thin films: Gold, silver, aluminum, cobalt, chromium, germanium, nickel, antimony, titanium, titanium nitride, tungsten, zinc, silicon and indium tin oxide

    Directory of Open Access Journals (Sweden)

    Franklin Che

    Full Text Available We have experimentally measured the surface second-harmonic generation (SHG of sputtered gold, silver, aluminum, zinc, tungsten, copper, titanium, cobalt, nickel, chromium, germanium, antimony, titanium nitride, silicon and indium tin oxide thin films. The second-harmonic response was measured in reflection using a 150 fs p-polarized laser pulse at 1561 nm. We present a clear comparison of the SHG intensity of these films relative to each other. Our measured relative intensities compare favorably with the relative intensities of metals with published data. We also report for the first time to our knowledge the surface SHG intensity of tungsten and antimony relative to that of well known metallic thin films such as gold and silver. Keywords: Surface second-harmonic generation, Nonlinear optics, Metal thin films

  13. Influence of titanium oxide films on copper nucleation during electrodeposition

    International Nuclear Information System (INIS)

    Chang, Hyun K.; Choe, Byung-Hak; Lee, Jong K.

    2005-01-01

    Copper electrodeposition has an important industrial role because of various interconnects used in electronic devices such as printed wire boards. With an increasing trend in device miniaturization, in demand are void-free, thin copper foils of 10 μm thick or less with a very low surface profile. In accordance, nucleation kinetics of copper was studied with titanium cathodes that were covered with thin, passive oxide films of 2-3 nm. Such an insulating oxide layer with a band gap of 3 eV is supposed to nearly block charge transfer from the cathode to the electrolyte. However, significant nucleation rates of copper were observed. Pipe tunneling mechanism along a dislocation core is reasoned to account for the high nucleation kinetics. A dislocation core is proposed to be a high electron tunneling path with a reduced energy barrier and a reduced barrier thickness. In supporting the pipe tunneling mechanism, both 'in situ' and 'ex situ' scratch tests were performed to introduce extra dislocations into the cathode surface, that is, more high charge paths via tunneling, before electrodeposition

  14. Mineral Resource of the Month: Niobium

    Science.gov (United States)

    Papp, John F.

    2014-01-01

    Niobium, also called columbium, is a transition metal with a very high melting point. It is in greatest demand in industrialized countries, like the United States, because of its defense-related uses in the aerospace, energy and transportation industries. Niobium is used mostly to make high-strength, low-alloy (HSLA) steel and stainless steel. HSLA steels are used in large-diameter pipes for oil and natural gas pipelines and automobile wheels.

  15. Improvement of biological properties of titanium by anodic oxidation and ultraviolet irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Baoe [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Li, Ying [Stomatological Hospital, Tianjin Medical University, Tianjin 300070 (China); Li, Jun [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Fu, Xiaolong; Li, Changyi [Stomatological Hospital, Tianjin Medical University, Tianjin 300070 (China); Wang, Hongshui [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Liu, Shimin [Business School, Tianjin University of Commerce, Tianjin 300134 (China); Guo, Litong [China University of Mining and Technology, Xuzhou 221116 (China); Xin, Shigang [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Liang, Chunyong, E-mail: liangchunyong@126.com [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Li, Haipeng, E-mail: lhpcx@163.com [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China)

    2014-07-01

    Anodic oxidation was applied to produce a homogeneous and uniform array of nanotubes of about 70 nm on the titanium (Ti) surface, and then, the nanotubes were irradiated by ultraviolet. The bioactivity of the Ti surface was evaluated by simulated body fluid soaking test. The biocompatibility was investigated by in vitro cell culture test. The results showed that bone-like apatite was formed on the anodic oxidized and UV irradiated Ti surface, but not on the as-polished Ti surface after immersion in simulated body fluid for two weeks. Cells cultured on the anodic oxidized Ti surface showed enhanced cell adhesion and proliferation, also presented an up-regulated gene expression of osteogenic markers OPG, compared to those cultured on the as-polished Ti surface. After UV irradiation, the cell behaviors were further improved, indicating better biocompatibility of Ti surface. Based on these results, it can be concluded that anodic oxidation improved the biological properties (bioactivity and biocompatibility) of Ti surface, while UV irradiation improved the biocompatibility to a better extent. The improved biological properties were attributed to the nanostructures as well as the enhanced hydrophilicity. Therefore, anodic oxidation combined with UV irradiation can be used to enhance the biological properties of Ti-based implants.

  16. Superior biocompatibility and osteogenic efficacy of micro-arc oxidation-treated titanium implants in the canine mandible

    International Nuclear Information System (INIS)

    Ran Wei; Guo Bing; Shu Dalong; Tian Zhihui; Nan Kaihui; Wang Yingjun

    2009-01-01

    The aim of this paper is to test implantation outcomes and osteogenic efficacy of plasma micro-arc oxidation (MAO)-treated titanium implants in dogs. Thirty-six pure titanium implants (18 MAO-treated, 18 untreated) were inserted into the mandibles of nine adult beagles and allowed to heal under non-weight-bearing conditions. Implant stability and interface characteristics were evaluated at 4, 8 and 12 weeks post-implantation. Methods included scanning electron microscopy, mechanical testing, histological analysis and computer-quantified tissue morphology. Osseointegration was achieved in both groups, but occurred earlier and more extensively in the MAO group. Areas of direct bone/implant contact were approximately nine times higher in the MAO group than in the control group at 12 weeks (65.85% versus 7.37%, respectively; p < 0.01). Bone-implant shear strength in the MAO group (71.4, 147.2 and 266.3 MPa at weeks 4, 8 and 12, respectively) was higher than in the control group (4.3, 7.1, and 11.8 MPa at weeks 4, 8 and 12, respectively), at all assessments (all, p < 0.01). MAO treatment of titanium implants promotes more rapid formation of new bone, and increases bone-implant shear strength compared to untreated titanium implants.

  17. On niobium sputter coated cavities

    International Nuclear Information System (INIS)

    Arnolds-Mayer, G.; Kaufmann, U.; Downar, H.

    1988-01-01

    To coat copper cavities with a thin film of niobium, facilities for electropolishing and sputter deposition have been installed at Dornier. Experiments have been performed on samples to optimize electropolishing and deposition parameters. In this paper, characteristics concerning surface properties, adhesion of the niobium film to the copper substrate, and film properties were studied on planar samples. A 1.5 GHz single cell cavity made from oxygen free high conductivity (OFHC) copper was sputter coated twice. First rf measurements were performed in the temperature range from 300 K to 2 K

  18. Microstructure and high temperature oxidation resistance of Ti-Ni gradient coating on TA2 titanium alloy fabricated by laser cladding

    Science.gov (United States)

    Liu, Fencheng; Mao, Yuqing; Lin, Xin; Zhou, Baosheng; Qian, Tao

    2016-09-01

    To improve the high temperature oxidation resistance of TA2 titanium alloy, a gradient Ni-Ti coating was laser cladded on the surface of the TA2 titanium alloy substrate, and the microstructure and oxidation behavior of the laser cladded coating were investigated experimentally. The gradient coating with a thickness of about 420-490 μm contains two different layers, e.g. a bright layer with coarse equiaxed grain and a dark layer with fine and columnar dendrites, and a transition layer with a thickness of about 10 μm exists between the substrate and the cladded coating. NiTi, NiTi2 and Ni3Ti intermetallic compounds are the main constructive phases of the laser cladded coating. The appearance of these phases enhances the microhardness, and the dense structure of the coating improves its oxidation resistance. The solidification procedure of the gradient coating is analyzed and different kinds of solidification processes occur due to the heat dissipation during the laser cladding process.

  19. Fast fluence measurement for JOYO irradiation field using niobium dosimeter

    International Nuclear Information System (INIS)

    Ito, Chikara

    2004-03-01

    Neutron fluence and spectrum are key parameters in various irradiation tests and material surveillance tests so they need to be evaluated accurately. The reactor dosimetry test has been conducted by the multiple foil activation method, and a niobium dosimeter has been developed for measurement of fast neutron fluence in the experimental fast reactor JOYO. The inelastic scattering reaction of 93 Nb has a low threshold energy, about 30 keV, and the energy distribution of reaction cross section is similar to the displacement cross section for iron. Therefore, a niobium dosimeter is suitable for evaluation of the fast neutron fluence and the displacement per atom for iron. Moreover, a niobium dosimeter is suited to measure neutron fluence in long-term irradiation test because 93 Nb, which is produced by the reaction, has a long half-life (16.4 years). This study established a high precision measurement technique using the niobium reaction rate. The effect of self-absorption was decreased by the solution and evaporation to dryness of niobium dosimeter. The dosimeter weight was precisely measured using the inductively coupled plasma mass spectrometer. This technique was applied to JOYO dosimetry. The fast neutron fluences (E > 0.1 MeV) found by measuring the reaction rate in the niobium dosimeter were compared with the values evaluated using the multiple foil activation method. The ratio of measured fast neutron fluences by means of niobium dosimeter and multiple foil activation method range from 0.97 to 1.03 and agree within the experimental uncertainty. The measurement errors of fast neutron fluence by niobium dosimeter range from 4.5% (fuel region) to 10.1% (in-vessel storage rack). As a result of this study, the high precision measurement of fast neutron fluence by niobium dosimeters was confirmed. The accuracy of fast reactor dosimetry will be improved by application of niobium dosimeters to the irradiation tests in the JOYO MK-III core. (author)

  20. Flux pinning by voids in surface-oxidized superconducting niobium and vanadium

    International Nuclear Information System (INIS)

    Meij, G.P. van der.

    1984-01-01

    This thesis describes a study of flux pinning by small voids (roughly 10 nm) in the type II superconductors niobium and vanadium. These voids were created in rectangular foils (with typical dimensions of 30x3x0.2 mm) during an irradiation with fast neutrons in the High Flux Reactor at Petten at temperatures between 400 and 1000 0 C. The pinning force per unit volume is determined from the magnetic properties of the superconducting samples. The experiments were carried out in a slowly ramped magnetic field, as well as in a combination of a static and a much smaller alternating field. (Auth.)

  1. High-Performance Supercapacitors from Niobium Nanowire Yarns.

    Science.gov (United States)

    Mirvakili, Seyed M; Mirvakili, Mehr Negar; Englezos, Peter; Madden, John D W; Hunter, Ian W

    2015-07-01

    The large-ion-accessible surface area of carbon nanotubes (CNTs) and graphene sheets formed as yarns, forests, and films enables miniature high-performance supercapacitors with power densities exceeding those of electrolytics while achieving energy densities equaling those of batteries. Capacitance and energy density can be enhanced by depositing highly pseudocapacitive materials such as conductive polymers on them. Yarns formed from carbon nanotubes are proposed for use in wearable supercapacitors. In this work, we show that high power, energy density, and capacitance in yarn form are not unique to carbon materials, and we introduce niobium nanowires as an alternative. These yarns show higher capacitance and energy per volume and are stronger and 100 times more conductive than similarly spun carbon multiwalled nanotube (MWNT) and graphene yarns. The long niobium nanowires, formed by repeated extrusion and drawing, achieve device volumetric peak power and energy densities of 55 MW·m(-3) (55 W·cm(-3)) and 25 MJ·m(-3) (7 mWh·cm(-3)), 2 and 5 times higher than that for state-of-the-art CNT yarns, respectively. The capacitance per volume of Nb nanowire yarn is lower than the 158 MF·m(-3) (158 F·cm(-3)) reported for carbon-based materials such as reduced graphene oxide (RGO) and CNT wet-spun yarns, but the peak power and energy densities are 200 and 2 times higher, respectively. Achieving high power in long yarns is made possible by the high conductivity of the metal, and achievement of high energy density is possible thanks to the high internal surface area. No additional metal backing is needed, unlike for CNT yarns and supercapacitors in general, saving substantial space. As the yarn is infiltrated with pseudocapacitive materials such as poly(3,4-ethylenedioxythiophene) (PEDOT), the energy density is further increased to 10 MJ·m(-3) (2.8 mWh·cm(-3)). Similar to CNT yarns, niobium nanowire yarns are highly flexible and show potential for weaving into textiles

  2. Fabrication of Intermetallic Titanium Alloy Based on Ti2AlNb by Rapid Quenching of Melt

    Science.gov (United States)

    Senkevich, K. S.; Serov, M. M.; Umarova, O. Z.

    2017-11-01

    The possibility of fabrication of rapidly quenched fibers from alloy Ti - 22Al - 27Nb by extracting a hanging melt drop is studied. The special features of the production of electrodes for spraying the fibers by sintering mechanically alloyed powdered components of the alloy, i.e., titanium hydride, niobium, and aluminum dust, are studied. The rapidly quenched fibers with homogeneous phase composition and fine-grained structure produced from alloy Ti - 22Al - 27Nb are suitable for manufacturing compact semiproducts by hot pressing.

  3. Carbochlorination kinetics of tantalum and niobium pentoxides

    International Nuclear Information System (INIS)

    Allain, E.; Gaballah, I.; Garcia, F.; Ferreira, S.; Ayala, J. N.; Hernandez, A.

    1999-01-01

    The carbochlorination kinetics of pure Nb 2 O 5 and Ta 2 O 5 by gas mixture (CL 2 +CO+N 2 ) between 380 and 1,000 degree centigree is studied. A calculation of the standard free energy of the carbochlorination reactions is made. A diagram of the phases stability is drawn. The influence of the gas flow, temperature and the partial pressure of Cl 2 and Co at temperatures below 650 degree centigree on the reaction rate is studied. The apparent activation energy is approximately 75 and 110 kJ/mol for Nb 2 O 5 and Ta 2 O 5 , respectively. At temperatures above 650 degree centigree the Arrhenius diagram presents and anomaly which may be attributed to the decomposition of the COCL 2 formed in situ. The apparent reaction order of the carbochlorination of these oxides against Cl 2 +CO is approximately 2. The carbochlorination rates of these oxides are much greater than those of chlorination by Cl 2 +N 2 . The carbochlorination kinetics of tin furnace slag leaching concentrates containing tantalum and niobium compounds are also studied and compared with the carbochlorination kinetics of the pure oxides. (Author) 14 refs

  4. Nanostructural features degrading the performance of superconducting radio frequency niobium cavities revealed by transmission electron microscopy and electron energy loss spectroscopy

    Science.gov (United States)

    Trenikhina, Y.; Romanenko, A.; Kwon, J.; Zuo, J.-M.; Zasadzinski, J. F.

    2015-04-01

    Nanoscale defect structure within the magnetic penetration depth of ˜100 nm is key to the performance limitations of niobium superconducting radio frequency cavities. Using a unique combination of advanced thermometry during cavity RF measurements, and TEM structural and compositional characterization of the samples extracted from cavity walls, we discover the existence of nanoscale hydrides in electropolished cavities limited by the high field Q slope, and show the decreased hydride formation in the electropolished cavity after 120 °C baking. Furthermore, we demonstrate that adding 800 °C hydrogen degassing followed by light buffered chemical polishing restores the hydride formation to the pre-120 °C bake level. We also show absence of niobium oxides along the grain boundaries and the modifications of the surface oxide upon 120 °C bake.

  5. Nanostructural features degrading the performance of superconducting radio frequency niobium cavities revealed by transmission electron microscopy and electron energy loss spectroscopy

    International Nuclear Information System (INIS)

    Trenikhina, Y.; Romanenko, A.; Kwon, J.; Zuo, J.-M.; Zasadzinski, J. F.

    2015-01-01

    Nanoscale defect structure within the magnetic penetration depth of ~100 nm is key to the performance limitations of niobium superconducting radio frequency cavities. Using a unique combination of advanced thermometry during cavity RF measurements, and TEM structural and compositional characterization of the samples extracted from cavity walls, we discover the existence of nanoscale hydrides in electropolished cavities limited by the high field Q slope, and show the decreased hydride formation in the electropolished cavity after 120°C baking. Furthermore, we demonstrate that adding 800°C hydrogen degassing followed by light buffered chemical polishing restores the hydride formation to the pre-120°C bake level. We also show absence of niobium oxides along the grain boundaries and the modifications of the surface oxide upon 120°C bake

  6. First-principles calculations of niobium hydride formation in superconducting radio-frequency cavities

    Science.gov (United States)

    Ford, Denise C.; Cooley, Lance D.; Seidman, David N.

    2013-09-01

    Niobium hydride is suspected to be a major contributor to degradation of the quality factor of niobium superconducting radio-frequency (SRF) cavities. In this study, we connect the fundamental properties of hydrogen in niobium to SRF cavity performance and processing. We modeled several of the niobium hydride phases relevant to SRF cavities and present their thermodynamic, electronic, and geometric properties determined from calculations based on density functional theory. We find that the absorption of hydrogen from the gas phase into niobium is exothermic and hydrogen becomes somewhat anionic. The absorption of hydrogen by niobium lattice vacancies is strongly preferred over absorption into interstitial sites. A single vacancy can accommodate six hydrogen atoms in the symmetrically equivalent lowest energy sites and additional hydrogen in the nearby interstitial sites affected by the strain field: this indicates that a vacancy can serve as a nucleation center for hydride phase formation. Small hydride precipitates may then occur near lattice vacancies upon cooling. Vacancy clusters and extended defects should also be enriched in hydrogen, potentially resulting in extended hydride phase regions upon cooling. We also assess the phase changes in the niobium-hydrogen system based on charge transfer between niobium and hydrogen, the strain field associated with interstitial hydrogen, and the geometry of the hydride phases. The results of this study stress the importance of not only the hydrogen content in niobium, but also the recovery state of niobium for the performance of SRF cavities.

  7. A deposit model for magmatic iron-titanium-oxide deposits related to Proterozoic massif anorthosite plutonic suites

    Science.gov (United States)

    Woodruff, Laurel G.; Nicholson, Suzanne W.; Fey, David L.

    2013-01-01

    This descriptive model for magmatic iron-titanium-oxide (Fe-Ti-oxide) deposits hosted by Proterozoic age massif-type anorthosite and related rock types presents their geological, mineralogical, geochemical, and geoenvironmental attributes. Although these Proterozoic rocks are found worldwide, the majority of known deposits are found within exposed rocks of the Grenville Province, stretching from southwestern United States through eastern Canada; its extension into Norway is termed the Rogaland Anorthosite Province. This type of Fe-Ti-oxide deposit dominated by ilmenite rarely contains more than 300 million tons of ore, with between 10- to 45-percent titanium dioxide (TiO2), 32- to 45-percent iron oxide (FeO), and less than 0.2-percent vanadium (V). The origin of these typically discordant ore deposits remains as enigmatic as the magmatic evolution of their host rocks. The deposits clearly have a magmatic origin, hosted by an age-constrained unique suite of rocks that likely are the consequence of a particular combination of tectonic circumstances, rather than any a priori temporal control. Principal ore minerals are ilmenite and hemo-ilmenite (ilmenite with extensive hematite exsolution lamellae); occurrences of titanomagnetite, magnetite, and apatite that are related to this deposit type are currently of less economic importance. Ore-mineral paragenesis is somewhat obscured by complicated solid solution and oxidation behavior within the Fe-Ti-oxide system. Anorthosite suites hosting these deposits require an extensive history of voluminous plagioclase crystallization to develop plagioclase-melt diapirs with entrained Fe-Ti-rich melt rising from the base of the lithosphere to mid- and upper-crustal levels. Timing and style of oxide mineralization are related to magmatic and dynamic evolution of these diapiric systems and to development and movement of oxide cumulates and related melts. Active mines have developed large open pits with extensive waste-rock piles, but

  8. Catalytic activity of metall-like carbides in carbon oxide oxidation reaction

    International Nuclear Information System (INIS)

    Kharlamov, A.I.; Kosolapova, T.Ya.; Rafal, A.N.; Kirillova, N.V.

    1980-01-01

    Kinetics of carbon oxide oxidation upon carbides of hafnium, niobium, tantalum, molybdenum, zirconium and chromium is studied. Probable mechanism of the catalysts action is suggested. The established character of the change of the carbide catalytic activity is explained by the change of d-electron contribution to the metal-metal interaction

  9. Preparation and characterization of hybrid materials of epoxy resin type bisphenol a with silicon and titanium oxides by sol-gel process

    International Nuclear Information System (INIS)

    Carrillo C, A.; Osuna A, J. G.

    2011-01-01

    Hybrid materials were synthesized from epoxy resins as a result bisphenol type A-silicon oxide and epoxy resin bisphenol type A-titanium oxide were obtained. The synthesis was done by sol-gel process using tetraethyl orthosilicate (Teos) and titanium isopropoxide (I Ti) as inorganic precursors. The molar ratio of bisphenol A to the inorganic precursors was the studied variable. The materials were characterized by thermal analysis, infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. The hybrid nature of the materials was demonstrated through thermal analysis and infrared spectroscopy. In both systems, as the amount of alkoxide increased, the bands described above were more defined. This behavior indicates the interactions between the resin and the alkoxides. Hybrids with Teos showed a smoother and homogeneous surface in its entirety, without irregularities. Hybrids with titanium isopropoxide had low roughness. Both Teos and I Ti hybrids showed a decrease on the atomic weight percentage of carbon due to a slight reduction of the organic part on the surface. (Author)

  10. Preparation and characterization of hybrid materials of epoxy resin type bisphenol a with silicon and titanium oxides by sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Carrillo C, A.; Osuna A, J. G., E-mail: acc.carrillo@gmail.com [Universidad Autonoma de Coahuila, Facultad de Ciencias Quimicas, Blvd. Venustiano Carranza y Jose Cardenas Valdes, 25000 Saltillo, Coahuila (Mexico)

    2011-07-01

    Hybrid materials were synthesized from epoxy resins as a result bisphenol type A-silicon oxide and epoxy resin bisphenol type A-titanium oxide were obtained. The synthesis was done by sol-gel process using tetraethyl orthosilicate (Teos) and titanium isopropoxide (I Ti) as inorganic precursors. The molar ratio of bisphenol A to the inorganic precursors was the studied variable. The materials were characterized by thermal analysis, infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. The hybrid nature of the materials was demonstrated through thermal analysis and infrared spectroscopy. In both systems, as the amount of alkoxide increased, the bands described above were more defined. This behavior indicates the interactions between the resin and the alkoxides. Hybrids with Teos showed a smoother and homogeneous surface in its entirety, without irregularities. Hybrids with titanium isopropoxide had low roughness. Both Teos and I Ti hybrids showed a decrease on the atomic weight percentage of carbon due to a slight reduction of the organic part on the surface. (Author)

  11. Colloidal Plasmonic Titanium Nitride Nanoparticles: Properties and Applications

    Directory of Open Access Journals (Sweden)

    Guler Urcan

    2015-01-01

    Full Text Available Optical properties of colloidal plasmonic titanium nitride nanoparticles are examined with an eye on their photothermal and photocatalytic applications via transmission electron microscopy and optical transmittance measurements. Single crystal titanium nitride cubic nanoparticles with an average size of 50 nm, which was found to be the optimum size for cellular uptake with gold nanoparticles [1], exhibit plasmon resonance in the biological transparency window and demonstrate a high absorption efficiency. A self-passivating native oxide at the surface of the nanoparticles provides an additional degree of freedom for surface functionalization. The titanium oxide shell surrounding the plasmonic core can create new opportunities for photocatalytic applications.

  12. Structural and dielectric characterization of sputtered Tantalum Titanium Oxide thin films for high temperature capacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Rouahi, A., E-mail: rouahi_ahlem@yahoo.fr [Univ. Grenoble Alpes, G2Elab, F-38000 (France); Laboratoire Matériaux Organisation et Propriétés (LMOP), Université de Tunis El Manar, 2092 Tunis (Tunisia); Challali, F. [Laboratoire des Sciences des Procédés et des Matériaux (LSPM)-CNRS-UPR3407, Université Paris13, 99 Avenue Jean-Baptiste Clément, 93430, Villetaneuse (France); Dakhlaoui, I. [Laboratoire Matériaux Organisation et Propriétés (LMOP), Université de Tunis El Manar, 2092 Tunis (Tunisia); Vallée, C. [CNRS, LTM, CEA-LETI, F-38000 Grenoble (France); Salimy, S. [Institut des Matériaux Jean Rouxel (IMN) UMR CNRS 6502, Université de Nantes, 2, rue de la Houssinière, B.P. 32229, 44322, Nantes, Cedex 3 (France); Jomni, F.; Yangui, B. [Laboratoire Matériaux Organisation et Propriétés (LMOP), Université de Tunis El Manar, 2092 Tunis (Tunisia); Besland, M.P.; Goullet, A. [Institut des Matériaux Jean Rouxel (IMN) UMR CNRS 6502, Université de Nantes, 2, rue de la Houssinière, B.P. 32229, 44322, Nantes, Cedex 3 (France); Sylvestre, A. [Univ. Grenoble Alpes, G2Elab, F-38000 (France)

    2016-05-01

    In this study, the dielectric properties of metal-oxide-metal capacitors based on Tantalum Titanium Oxide (TiTaO) thin films deposited by reactive magnetron sputtering on aluminum bottom electrode are investigated. The structure of the films was characterized by Atomic Force Microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The dielectric properties of TiTaO thin films were studied by complex impedance spectroscopy over a wide frequency range (10{sup -2} - to 10{sup 5} Hz) and temperatures in -50 °C to 325 °C range. The contributions of different phases, phases’ boundaries and conductivity effect were highlighted by Cole – Cole diagram (ε” versus ε’). Two relaxation processes have been identified in the electric modulus plot. A first relaxation process appears at low temperature with activation energy of 0.37 eV and it is related to the motion of Ti{sup 4+} (Skanavi’s model). A second relaxation process at high temperature is related to Maxwell-Wagner-Sillars relaxation with activation energy of 0.41 eV. - Highlights: • Titanium Tantalum Oxide thin films are grown on Aluminum substrate. • The existence of phases was confirmed by X-ray photoelectron spectroscopy. • Conductivity effect appears in Cole-Cole plot. • At low temperatures, a relaxation phenomenon obeys to Skanavi’s model. • Maxwell-Wagner-Sillars polarization is processed at high temperatures.

  13. Polypyrrole–titanium(IV) doped iron(III) oxide nanocomposites: Synthesis, characterization with tunable electrical and electrochemical properties

    International Nuclear Information System (INIS)

    Nandi, Debabrata; Ghosh, Arup Kumar; Gupta, Kaushik; De, Amitabha; Sen, Pintu; Duttachowdhury, Ankan; Ghosh, Uday Chand

    2012-01-01

    Highlights: ► Synthesis and characterization of polymer nanocomposite based on titanium doped iron(III) oxide. ► Electrical conductivity increased 100 times in composite with respect to polymer. ► Electrochemical capacitance of polymer composites increased with nanooxide content. ► Thermal stability of the polymer enhanced with nano oxide content. -- Abstract: Titanium(IV)-doped synthetic nanostructured iron(III) oxide (NITO) and polypyrrole (PPy) nanocomposites was fabricated by in situ polymerization using FeCl 3 as initiator. The polymer nanocomposites (PNCs) and pure NITO were characterized by X-ray diffraction, Föurier transform infrared spectroscopy, scanning electron microscopy, electron dispersive X-ray spectroscopy, transmission electron microscopy, etc. Thermo gravimetric and differential thermal analyses showed the enhancement of thermal stability of PNCs than the pure polymer. Electrical conductivity of the PNCs had increased significantly from 0.793 × 10 −2 S/cm to 0.450 S/cm with respect to the PPy, and that had been explained by 3-dimensional variable range hopping (VRH) conduction mechanisms. In addition, the specific capacitance of PNCs had increased from 147 F/g to 176 F/g with increasing NITO content than that of pure NITO (26 F/g), presumably due to the growing of mesoporous structure with increasing NITO content in PNCs which reduced the charge transfer resistance significantly.

  14. Classification of titanium dioxide

    International Nuclear Information System (INIS)

    Macias B, L.R.; Garcia C, R.M.; Maya M, M.E.; Ita T, A. De; Palacios G, J.

    2002-01-01

    In this work the X-ray diffraction (XRD), Scanning Electron Microscopy (Sem) and the X-ray Dispersive Energy Spectroscopy techniques are used with the purpose to achieve a complete identification of phases and mixture of phases of a crystalline material as titanium dioxide. The problem for solving consists of being able to distinguish a sample of titanium dioxide being different than a titanium dioxide pigment. A standard sample of titanium dioxide with NIST certificate is used, which indicates a purity of 99.74% for the TiO 2 . The following way is recommended to proceed: a)To make an analysis by means of X-ray diffraction technique to the sample of titanium dioxide pigment and on the standard of titanium dioxide waiting not find differences. b) To make a chemical analysis by the X-ray Dispersive Energy Spectroscopy via in a microscope, taking advantage of the high vacuum since it is oxygen which is analysed and if it is concluded that the aluminium oxide appears in a greater proportion to 1% it is established that is a titanium dioxide pigment, but if it is lesser then it will be only titanium dioxide. This type of analysis is an application of the nuclear techniques useful for the tariff classification of merchandise which is considered as of difficult recognition. (Author)

  15. Difference in surface reactions between titanium and zirconium in Hanks' solution to elucidate mechanism of calcium phosphate formation on titanium using XPS and cathodic polarization

    International Nuclear Information System (INIS)

    Tsutsumi, Y.; Nishimura, D.; Doi, H.; Nomura, N.; Hanawa, T.

    2009-01-01

    Titanium and zirconium were immersed in Hanks' solution with and without calcium and phosphate ions, and the surfaces were characterized with X-ray photoelectron spectroscopy (XPS) to determine the mechanism of calcium phosphate formation on titanium in simulated body fluids and in a living body. In addition, they were cathodically polarized in the above solutions. XPS characterization and cathodic polarization revealed differences in the surface properties in the ability of calcium phosphate formation between titanium and zirconium. The surface oxide film on titanium is not completely oxidized and is relatively reactive; that on zirconium is more passive and protective than that on titanium. Neither calcium nor phosphate stably exists alone on titanium, and calcium phosphate is naturally formed on it; calcium phosphate formed on titanium is stable and protective. On the other hand, calcium is never incorporated on zirconium, while zirconium phosphate, which is easily formed on zirconium, is highly stable and protective. Our study presents new information regarding the surface property of titanium and demonstrates that the characteristics of titanium and zirconium may be applied to various medical devices and new surface modification techniques.

  16. Effects of thermomechanical processing on titanium aluminide strip cast by the melt overflow process

    Energy Technology Data Exchange (ETDEWEB)

    Gaspar, T.A. (Ribbon Technology Corporation, PO Box 30758, Columbus, OH 43230 (United States)); Hackman, L.E. (Ribbon Technology Corporation, PO Box 30758, Columbus, OH 43230 (United States)); Batawi, E. (Sulzer-Innotec, Division 1511, PO Box 65, Winterthur 8404 (Switzerland)); Peters, J.A. (Sulzer-Innotec, Division 1511, PO Box 65, Winterthur 8404 (Switzerland))

    1994-05-01

    The objective of this research project was to investigate the feasibility of producing titanium aluminide foils from direct cast strip using ribbon technology''s plasma melt overflow process. Niobium-modified Ti[sub 3]Al alloys were melted in a cold copper crucible using a transferred plasma arc and then direct cast into strip on a rotating chill roll.Samples cut from the as-cast Ti[sub 3]Al-Nb ([alpha][sub 2]) titanium aluminide strip were encapsulated into a pack. The packs were heated to the rolling temperature and then hot rolled at low strain rates. Foils 70 [mu]m (0.003 in) thick, having a uniform [alpha][sub 2]-B2 microstructure with oxygen contents as low as 900 wt.ppm were obtained after pack rolling. The strips and foils were characterized in terms of microstructure and chemical composition in the as-received, heat-treated and pack-rolled conditions.The results indicated that it was technically feasible to produce foils from direct cast titanium aluminide strip using pack-rolling technology. The advantage of this technology lies in its cost-effectiveness, since the relatively low cost direct-cast titanium aluminide strip was thermomechanically processed into foil with the desired microstructure without any intermediate processing steps. ((orig.))

  17. Molding of L band niobium superconductor cavity

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Hitoshi; Funahashi, Yoshisato; Saito, Kenji; Noguchi, Shuichi; Koizumi, Susumu [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1995-07-01

    A cavity to produce high accelerating electron field was developed. The L-band (1.3 GHz) niobium superconductor unit cell cavity was ellipsoid with {phi}217.3 mm outer diameter and 2.5 mm thickness and consisted of two pieces of half cell, two beam pipes and flange. A deep drawing process was adapted. In spite of the first trial manufacture, each good cavity was obtained. Characteristic properties of niobium materials, molding method of cavity, extension of sheet after molding, production of beam pipe, accuracy and the cost were explained. Niobium materials. showed tensile strength 15.6 kg/mm{sup 2}, load-carrying capacity 4.1 kg/mm{sup 2}, density 8.57, extension 42.5% and RRR (resistance residual ratio){>=}200. (S.Y.)

  18. Technological challenges in extractive metallurgy and refining of niobium, tantalum and preparation of their alloys

    International Nuclear Information System (INIS)

    Mirji, K.V.; Sheela; Saibaba, N.

    2016-01-01

    Manufacturing of refractory and reactive metals, their alloys and fabricated products has been always difficult due to their high affinity with atmospheric gases, stringent specifications and exhaustive quality requirements. In the field of development of these materials, Nuclear Fuel Complex (NFC), Hyderabad has been at the fore front in accepting the challenges for the advancement of technological growth. Extensive developments have been carried out during the last few decades in the field of niobium, tantalum, zirconium etc in the form of pure metal, their compounds and alloys. Over the period of time, efforts have been made for developing sophisticated facilities along with trained man power for manufacturing of critical items for which technical knowhow is not available either with private industries or any other organizations in the country. In the field of reactive metals, though general theory is well established, production is intriguing and requires expert handling on the field. At NFC, efforts were put towards industrial adoptability of the useful knowledge gained from lab scale to reliable production scale. Comprehensive study was conducted to systematically study the effects of various process parameters starting from ore to the metals and their alloys, equipment were modified for ease of operation with stress on recycling/reusing of the waste and handling of effluents. However scale of operation and therefore cost of production has been matter of concern in the field of tantalum and niobium. Electron beam refining is used for production of highly pure reactive and refractory metals like tantalum, niobium, zirconium etc. and their alloys under high vacuum. Special Materials Plant (SMP) at Nuclear Fuel Complex, Hyderabad has developed processes for production of niobium oxide, tantalum oxide, tantalum metal powder, tantalum anodes/capacitors, potassium tantalum fluoride, Nb thermit, Nb metal granules, RRR grade niobium, Nb base alloys such as Zr

  19. Surface preparation of niobium

    International Nuclear Information System (INIS)

    Kneisel, P.

    1980-01-01

    Any discussion of surface preparation for superconducting rf-surfaces is certainly connected with the question what is the best recipe for achieving high Q-values and high break-down fields. Since the break-down in a cavity is not understood so far and because several mechanisms play a role, it also is not possible to give one recipe which always works. Nevertheless in the past certain preparation techniques for niobium surfaces have been developed and certain rules for preparation can be applied. In the following the to-days state of the art will be described and it is attempted to give a short description of the surface in conjunction with the methods of surface treatments, which generally can be applied to niobium cavities. (orig./WTR)

  20. Evidence of preferential diffusion and segregation of impurities at grain boundaries in very pure niobium used for radiofrequency cavities

    International Nuclear Information System (INIS)

    Antoine, C.; Bonin, B.; Safa, H.; Berthier, B.; Tessier, E.; Trocelier, P.; Chevarier, A.; Chevarier, N.; Roux, B.

    1996-01-01

    Complete text of publication follows. Grain boundaries (GB) of titanified, heat treated and then etched niobium have been observed by the mean of the nuclear microprobe from the Laboratoire Pierre Sue at Saclay. The very small area of the probe allows to measure by PIXE 1 quantities of titanium as low as one monolayer at the GB. Indeed concentrations of titanium as high as some atomic percent were found on 6 μm etched samples, giving indication of a preferential diffusion and/or segregation at GB. Titanium was detectable also on 15 μm etched samples but was bellow the sensitivity of the microprobe for 35 μm etched samples. Moreover it was shown that not all boundaries were polluted with titanium, and that their behaviour was correlated with orientation. A discussion of the literature shows that all these facts are consistent with the behaviour of very pure metals. Segregation at GB is also known to influence dramatically the GB resistivity in metals and superconductors. For the latter, it has been shown that the GB resistivity can be responsible of occurrence of granular superconductivity phenomena. The presence of Ti deep into the Nb GB explains why a strong etching is needed after a purification heat treatment. Moreover, it has been shown that a heat treatment at lower temperature, although much longer in time, allows less deep diffusion of Ti and then needs a lighter etch. (author)

  1. Diffusion of hydrogen, deuterium, and tritium in niobium

    International Nuclear Information System (INIS)

    Matusiewicz, G.R.

    1981-01-01

    The diffusion of hydrogen in niobium was investigated over the temperature range 148 to 500 degrees Kelvin, using measurements of the elastic after effect caused by long range diffusion (the Gorsky Effect). Relaxation curves for pure annealed niobium were generally not of the single exponential form expected from the Gorsky Effect theory, but were described well by a sum of two exponential curves with different amplitudes and relaxation times. The effects of oxygen and nitrogen interstitials on the diffusion were studied and were not in agreement with conventional trapping models. Deuterium and tritium diffusion in niobium were also studied, and a non-classical isotope effect was observed. Hydrogen diffusion coefficients in several Nb-Ta alloys were measured, and the diffusivity in all these alloys exhibited a non-Arrhenius temperature dependence. Experimental results were compared to several models for diffusion and trapping. A model is presented which can account for the form of the relaxation curves observed in pure, annealed niobium

  2. Degradation of superconducting Nb/NbN films by atmospheric oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Henry, Michael David; Wolfley, Steven L.; Young, Travis Ryan; Monson, Todd; Pearce, Charles Joseph; Lewis, Rupert M.; Clark, Blythe; Brunke, Lyle Brent; Missert, Nancy A.

    2017-03-01

    Niobium and niobium nitride thin films are transitioning from fundamental research toward wafer scale manufacturing with technology drivers that include superconducting circuits and electronics, optical single photon detectors, logic, and memory. Successful microfabrication requires precise control over the properties of sputtered superconducting films, including oxidation. Previous work has demonstrated the mechanism in oxidation of Nb and how film structure could have deleterious effects upon the superconducting properties. This study provides an examination of atmospheric oxidation of NbN films. By examination of the room temperature sheet resistance of NbN bulk oxidation was identified and confirmed by secondary ion mass spectrometry. As a result, Meissner magnetic measurements confirmed the bulk oxidation not observed with simple cryogenic resistivity measurements.

  3. Plasma electrolytic oxidation of titanium in a phosphate/silicate electrolyte and tribological performance of the coatings

    International Nuclear Information System (INIS)

    Aliasghari, S.; Skeldon, P.; Thompson, G.E.

    2014-01-01

    Highlights: • Plasma electrolytic oxidation performed of titanium in silicate/phosphate electrolyte. • Range of duty cycle, current density, positive-to-negative current ratio studied. • Coatings contain anatase, rutile, Ti 3 O 5 , and amorphous silica. • Ptfe incorporated into coatings by addition of ptfe emulsion to the electrolyte. • Fiction reduced but wear life relatively short due to porosity of coatings. - Abstract: Plasma electrolytic oxidation of titanium has been investigated using a phosphate/silicate electrolyte with a square waveform and a frequency of 50 Hz. A range of constant rms current densities, duty cycles and negative-to-positive current ratios was employed. The resultant coatings were examined by analytical scanning and transmission electron microscopies and X-ray diffraction. The coatings, which were limited in thickness to ∼40 to 50 μm, contained anatase, rutile, Ti 2 O 5 and silicon-rich, amorphous material. The tribological behaviour was investigated using a ball-on-disc test, revealing a coefficient of friction against steel of ∼0.8, which reduced to ∼0.4 by incorporation of ptfe particles from the electrolyte. However, due to the composition and morphology of the coatings, their wear life was relatively short

  4. Synthesis and characterization of mixtures of cobalt and titanium oxides by mechanical alloyed and Sol-Gel

    International Nuclear Information System (INIS)

    Basurto S, R.; Bonifacio M, J.; Fernandez V, S. M.

    2009-01-01

    The mechanical alloyed techniques continued by combustion and Sol-Gel method, were used for the synthesis of CoTiO 3 . With the first technique was used Co 3 O 4 obtained in a balls mill SPEX in argon atmosphere, using cobalt nitrate and urea, the combustion is realized at 400 and 500 C, the characterization by X-ray diffraction showed the obtaining of the valence oxide mixed of cobalt with crystallite size from 10 to 12.5 nm and the particle size of 60 to 75 nm was obtained by scanning electron microscopy. To prepare the CoTiO 3 , the obtained Co 3 O 4 was mixed with TiO 2 on a relationship in weight (1:1) and with a milling time of 2.5 h and the combustion at 800 C. the mixed oxide of titanium cobalt was also obtained by the Sol-Gel technique starting from cobalt chloride and titanium propoxide in acetic-water acid, the gel is burned to temperature of 300, 500, 700 and 900 C, finding that this last temperature it is that provides the compound with crystalline size from 50 to 75 nm. (Author)

  5. Macrophage proinflammatory response to the titanium alloy equipment in dental implantation.

    Science.gov (United States)

    Chen, X; Li, H S; Yin, Y; Feng, Y; Tan, X W

    2015-08-07

    Titanium alloy and stainless steel (SS) had been widely used as dental implant materials because of their affinity with epithelial tissue and connective tissue, and good physical, chemical, biological, mechanical properties and processability. We compared the effects of titanium alloy and SS on macrophage cytokine expression as well as their biocompatibility. Mouse macrophage RAW264.7 cells were cultured on titanium alloy and SS surfaces. Cells were counted by scanning electron microscopy. A nitride oxide kit was used to detect released nitric oxide by macrophages on the different materials. An enzyme linked immunosorbent assay was used to detect monocyte chemoattractant protein-1 levels. Scanning electron microscopy revealed fewer macrophages on the surface of titanium alloy (48.2 ± 6.4 x 10(3) cells/cm(2)) than on SS (135 ± 7.3 x 10(3) cells/cm(2)). The nitric oxide content stimulated by titanium alloy was 22.5 mM, which was lower than that stimulated by SS (26.8 mM), but the difference was not statistically significant (P = 0.07). The level of monocyte chemoattractant protein-1 released was significantly higher in the SS group (OD value = 0.128) than in the titanium alloy group (OD value = 0.081) (P = 0.024). The transforming growth factor-b1 mRNA expression levels in macrophages after stimulation by titanium alloy for 12 and 36 h were significantly higher than that after stimulation by SS (P = 0.31 and 0.25, respectively). Macrophages participate in the inflammatory response by regulating cytokines such as nitric oxide, monocyte chemoattractant protein-1, and transforming growth factor-b1. There were fewer macrophages and lower inflammation on the titanium alloy surface than on the SS surface. Titanium alloy materials exhibited better biological compatibility than did SS.

  6. Corrosion of titanium: Part 1: aggressive environments and main forms of degradation.

    Science.gov (United States)

    Prando, Davide; Brenna, Andrea; Diamanti, Maria Vittoria; Beretta, Silvia; Bolzoni, Fabio; Ormellese, Marco; Pedeferri, MariaPia

    2017-11-11

    Titanium has outstanding corrosion resistance due to the external natural oxide protective layer formed when it is exposed to an aerated environment. Despite this, titanium may suffer different forms of corrosion in severe environments: uniform corrosion, pitting and crevice corrosion, hydrogen embrittlement, stress-corrosion cracking, fretting corrosion and erosion. In this first review, forms of corrosion affecting titanium are analyzed based on a wide literature review. For each form of corrosion, the mechanism and most severe environment are reported according to the current understanding.In the second part, this review will address the possible surface treatments that can increase corrosion resistance on commercially pure titanium: Electrochemical anodizing, thermal oxidation, chemical oxidation and bulk treatments such as alloying will be considered, highlighting the advantages of each technique.

  7. Superconducting structure with layers of niobium nitride and aluminum nitride

    International Nuclear Information System (INIS)

    Murduck, J.M.; Lepetre, Y.J.; Schuller, I.K.; Ketterson, J.B.

    1989-01-01

    A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources. 8 figs

  8. First-principles calculations of niobium hydride formation in superconducting radio-frequency cavities

    International Nuclear Information System (INIS)

    Ford, Denise C; Cooley, Lance D; Seidman, David N

    2013-01-01

    Niobium hydride is suspected to be a major contributor to degradation of the quality factor of niobium superconducting radio-frequency (SRF) cavities. In this study, we connect the fundamental properties of hydrogen in niobium to SRF cavity performance and processing. We modeled several of the niobium hydride phases relevant to SRF cavities and present their thermodynamic, electronic, and geometric properties determined from calculations based on density functional theory. We find that the absorption of hydrogen from the gas phase into niobium is exothermic and hydrogen becomes somewhat anionic. The absorption of hydrogen by niobium lattice vacancies is strongly preferred over absorption into interstitial sites. A single vacancy can accommodate six hydrogen atoms in the symmetrically equivalent lowest energy sites and additional hydrogen in the nearby interstitial sites affected by the strain field: this indicates that a vacancy can serve as a nucleation center for hydride phase formation. Small hydride precipitates may then occur near lattice vacancies upon cooling. Vacancy clusters and extended defects should also be enriched in hydrogen, potentially resulting in extended hydride phase regions upon cooling. We also assess the phase changes in the niobium–hydrogen system based on charge transfer between niobium and hydrogen, the strain field associated with interstitial hydrogen, and the geometry of the hydride phases. The results of this study stress the importance of not only the hydrogen content in niobium, but also the recovery state of niobium for the performance of SRF cavities. (paper)

  9. Osteoblast growth behavior on porous-structure titanium surface

    Energy Technology Data Exchange (ETDEWEB)

    Tian Yuan; Ding Siyang; Peng Hui; Lu Shanming; Wang Guoping [Research Institute of Stomatology, Nanjing Medical University, Nanjing 210029 (China); Xia Lu, E-mail: shelueia@yahoo.com.cn [Research Institute of Stomatology, Nanjing Medical University, Nanjing 210029 (China); Wang Peizhi, E-mail: wangpzi@sina.com [Research Institute of Stomatology, Nanjing Medical University, Nanjing 210029 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Micro-arc oxidation technology formed a porous feature on titanium surface. Black-Right-Pointing-Pointer This porous surface accelerated adhesion, proliferation and differentiation compared with smooth surface. Black-Right-Pointing-Pointer Osteogenesis-related proteins and genes were up regulated by this porous surface. Black-Right-Pointing-Pointer It is anticipated that micro-arc oxidation surface could enhance osteoblastic activity and bone regeneration. - Abstract: A bioavailable surface generated by nano-technology could accelerate implant osteointegration, reduce healing time and enable implants to bear early loading. In this study, a nano-porous surface of titanium wafers was modified using micro-arc oxidation technique; surface of smooth titanium was used as control group. Surface characteristic was evaluated by investigating morphology, roughness and hydrophilicity of titanium wafers. In vitro studies, osteoblastic adhesion, proliferation and ALP activity, as well as gene and protein expressions relative to mineralization were assayed. Our results showed that a crater-liked nano-porous surface with greater roughness and better hydrophilicity were fabricated by micro-arc oxidation. It was further indicated that nano-porous surface could enhance adhesion, proliferation and ALP activity of osteoblasts compared with smooth surfaces. In addition, gene and protein expression of collagen-I, osteocalcin and osteopontin were also obviously increased. In summary, micro-arc oxidized techniques could form an irregular nano-porous morphology on implant surface which is favorable to improve osteoblastic function and prospected to be a potent modification of dental implant.

  10. Osteoblast growth behavior on porous-structure titanium surface

    International Nuclear Information System (INIS)

    Tian Yuan; Ding Siyang; Peng Hui; Lu Shanming; Wang Guoping; Xia Lu; Wang Peizhi

    2012-01-01

    Highlights: ► Micro-arc oxidation technology formed a porous feature on titanium surface. ► This porous surface accelerated adhesion, proliferation and differentiation compared with smooth surface. ► Osteogenesis-related proteins and genes were up regulated by this porous surface. ► It is anticipated that micro-arc oxidation surface could enhance osteoblastic activity and bone regeneration. - Abstract: A bioavailable surface generated by nano-technology could accelerate implant osteointegration, reduce healing time and enable implants to bear early loading. In this study, a nano-porous surface of titanium wafers was modified using micro-arc oxidation technique; surface of smooth titanium was used as control group. Surface characteristic was evaluated by investigating morphology, roughness and hydrophilicity of titanium wafers. In vitro studies, osteoblastic adhesion, proliferation and ALP activity, as well as gene and protein expressions relative to mineralization were assayed. Our results showed that a crater-liked nano-porous surface with greater roughness and better hydrophilicity were fabricated by micro-arc oxidation. It was further indicated that nano-porous surface could enhance adhesion, proliferation and ALP activity of osteoblasts compared with smooth surfaces. In addition, gene and protein expression of collagen-I, osteocalcin and osteopontin were also obviously increased. In summary, micro-arc oxidized techniques could form an irregular nano-porous morphology on implant surface which is favorable to improve osteoblastic function and prospected to be a potent modification of dental implant.

  11. Nanostructural features degrading the performance of superconducting radio frequency niobium cavities revealed by transmission electron microscopy and electron energy loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Trenikhina, Y., E-mail: yuliatr@fnal.gov [Physics Department, Illinois Institute of Technology, Chicago, Illinois 60616 (United States); Fermi National Accelerator Laboratory, Batavia, Illinois 60510 (United States); Romanenko, A., E-mail: aroman@fnal.gov [Fermi National Accelerator Laboratory, Batavia, Illinois 60510 (United States); Kwon, J.; Zuo, J.-M. [Materials Science and Engineering Department, University of Illinois, Urbana, Illinois 61801 (United States); Zasadzinski, J. F. [Physics Department, Illinois Institute of Technology, Chicago, Illinois 60616 (United States)

    2015-04-21

    Nanoscale defect structure within the magnetic penetration depth of ∼100 nm is key to the performance limitations of niobium superconducting radio frequency cavities. Using a unique combination of advanced thermometry during cavity RF measurements, and TEM structural and compositional characterization of the samples extracted from cavity walls, we discover the existence of nanoscale hydrides in electropolished cavities limited by the high field Q slope, and show the decreased hydride formation in the electropolished cavity after 120 °C baking. Furthermore, we demonstrate that adding 800 °C hydrogen degassing followed by light buffered chemical polishing restores the hydride formation to the pre-120 °C bake level. We also show absence of niobium oxides along the grain boundaries and the modifications of the surface oxide upon 120 °C bake.

  12. Surface processing for bulk niobium superconducting radio frequency cavities

    Science.gov (United States)

    Kelly, M. P.; Reid, T.

    2017-04-01

    The majority of niobium cavities for superconducting particle accelerators continue to be fabricated from thin-walled (2-4 mm) polycrystalline niobium sheet and, as a final step, require material removal from the radio frequency (RF) surface in order to achieve performance needed for use as practical accelerator devices. More recently bulk niobium in the form of, single- or large-grain slices cut from an ingot has become a viable alternative for some cavity types. In both cases the so-called damaged layer must be chemically etched or electrochemically polished away. The methods for doing this date back at least four decades, however, vigorous empirical studies on real cavities and more fundamental studies on niobium samples at laboratories worldwide have led to seemingly modest improvements that, when taken together, constitute a substantial advance in the reproducibility for surface processing techniques and overall cavity performance. This article reviews the development of niobium cavity surface processing, and summarizes results of recent studies. We place some emphasis on practical details for real cavity processing systems which are difficult to find in the literature but are, nonetheless, crucial for achieving the good and reproducible cavity performance. New approaches for bulk niobium surface treatment which aim to reduce cost or increase performance, including alternate chemical recipes, barrel polishing and ‘nitrogen doping’ of the RF surface, continue to be pursued and are closely linked to the requirements for surface processing.

  13. An investigation of tantalum and niobium contents by nuclear technique

    International Nuclear Information System (INIS)

    Patmasiriwat, N.

    1981-01-01

    The objective of this experimental study was to find suitable nuclear techniques to determine the quantities of niobium and tantalum in columbite. The study has been performed by using radioisotope X-ray fluorescent technique (X RF) and neutron activation analysis (NAA). The results showed a good agreement between these two techniques. Nevertheless, with NAA, if there is uranium in the sample, the spectrum of niobium will be interfered. So practically, on the basis of accuracy and speed of determination, X-ray fluorescence is more suitable than NAA to determine the quantity of niobium while tantalum is preferable to use NAA. The detection limit of niobium and tantalum using the above techniques are 0.661% and 0.1 mg respectively

  14. Plane strain forging of a niobium micro-alloyed steel

    International Nuclear Information System (INIS)

    Balancin, O.; Ferran L, G.; Rio de Janeiro Univ.

    1984-01-01

    Various termomechanical treatments were carried out on a niobium micro-alloyed steel and a low carbon steel as reference material, using an apparatus for hot phane strain forging. Control of processing variables and the presence of niobium strongly modify the austenite microstructure, which upon decomposition produces various phases such as polygonal and acicular ferrite and martensite, alone or together in variable proportions. Corresponding to this diversity of structures there is a wide variation in mechanical properties at room temperature: the initial yield point varies from 310 to 650 MPa and the reduction of area in uniaxial tension from 82 to 57% for the niobium steel. These results show that hot forging a niobium micro-alloyed steel may be a suitable manufacturing process for satisfying a wide range of specifications in a final product with low equivalent carbon. (Author) [pt

  15. Niobium electrodeposition from molten fluorides

    International Nuclear Information System (INIS)

    Sartori, A.F.

    1987-01-01

    Niobium electrodeposition from molten alkali fluorides has been studied aiming the application of this technic to the processes of electrorefining and galvanotechnic of this metal. The effects of current density, temperature, niobium concentration in the bath, electrolysis time, substrate nature, ratio between anodic and cathodic areas, electrodes separation and the purity of anodes were investigated in relation to the cathodic current efficiency, electrorefining, electroplating and properties of the deposit and the electrolytic solution. The work also gives the results of the conctruction and operation of a pilot plant for refractory metals electrodeposition and shows the electrorefining and electroplating compared to those obtained at the laboratory scale. (author) [pt

  16. The generalized lewis acid-base titration of palladium and niobium

    Science.gov (United States)

    Cima, M.; Brewer, L.

    1988-12-01

    The high thermodynamic stability of alloys composed of platinum group metals and group IVB and VB metals has been explained by an electronic interaction analogous to the Lewis acid-base concept for nontransition elements. The analogy is further demonstrated by the titration of palladium by addition of niobium. The activity of niobium in solid palladium was measured as a function of concentration by solid-state galvanic cells and study of the ternary oxide phase diagram. The galvanic cells were of the type Pt/NbO2,Nb2O4.8/YDTJNbOy,Nbpd/Pt where the solid electrolyte is yttria-doped thoria (YDT). Ternary phase diagrams for the Pd-Nb-0 and Rh-Nb-0 systems were obtained by characterizing samples equilibrated at 1000 °C. The phase relationships found in the ternary diagrams were also used to derive thermochemical data for the alloys. Thermochemical quantities for other acid-base stabilized alloys such as Nb-Rh, Ti-Pd, and Ti-Rh were also measured. The excess partial molar ΔGxs/R of niobium at infinite dilution was determined to be -31 kilo-Kelvin at 1000 °C, and the AG°JR of formation of a mole of NbPd3.55 is —21 kilo-Kelvin. These results and those for the other systems are used to assess the importance of valence electron configuration, nuclear charge, and crystal field effects in the context of generalized Lewis acid-base theory. It is concluded that both the nuclear charge of the atom and crystal field splitting of the valence orbitals significantly affect the basicity of the platinum group metals.

  17. Effect of plastic deformation on the niobium thermal expansion

    International Nuclear Information System (INIS)

    Savitskij, E.M.; Bychkova, M.I.; Kanikovskij, V.B.

    1978-01-01

    Using dilatometric method the effect of plastic deformation on change of thermal expansion coefficient (TEC) of niobium of different purity was studied. It was shown that deformation affected the TEC in different ways. At first the deformation degree rising causes linear decrease of the TEC and then linear increase. Carbon intensifies the TEC decrease of deformed niobium. The linear correlation was established between the TEC and the value of macroscopic stresses in plastic deformed niobium. The expression indicating the metal TEC change under loading was defined for case of strain hardening

  18. MEASUREMENT OF THE HIGH-FIELD Q-DROP IN A LARGE-GRAIN NIOBIUM CAVITY FOR DIFFERENT OXIDATION PROCESSES

    International Nuclear Information System (INIS)

    Gianluigi Ciovati; Peter Kneisel; Alex Gurevich

    2008-01-01

    In this contribution, we present the results from a series of RF tests at 1.7 K and 2.0 K on a single-cell cavity made of high-purity large (with area of the order of few cm2) grain niobium which underwent various oxidation processes. After initial buffered chemical polishing, anodization, baking in pure oxygen atmosphere and baking in air up to 180 C was applied with the objective of clearly identifying the role of oxygen and the oxide layer on the Q-drop. During each rf test a temperature mapping system was used allowing to measure the local temperature rise of the cavity outer surface due to RF losses, which gives information about the losses location, their field dependence and space distribution on the RF surface. The results confirmed that the depth affected by baking is about 20-30 nm from the surface and showed that the Q-drop did not re-appear in a previously baked cavity by further baking at 120 C in pure oxygen atmosphere or in air up to 180 C. A statistic of the position of the ''hot-spots'' on the cavity surface showed that grain-boundaries are not the preferred location. An interesting correlation was found between the Q-drop onset, the quench field and the low-field energy gap, which supports the hypothesis of thermomagnetic instability governing the Q-drop and the baking effect.

  19. MEASUREMENT OF THE HIGH-FIELD Q-DROP IN A LARGE-GRAIN NIOBIUM CAVITY FOR DIFFERENT OXIDATION PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    Gianluigi Ciovati; Peter Kneisel; Alex Gurevich

    2008-01-23

    In this contribution, we present the results from a series of RF tests at 1.7 K and 2.0 K on a single-cell cavity made of high-purity large (with area of the order of few cm2) grain niobium which underwent various oxidation processes. After initial buffered chemical polishing, anodization, baking in pure oxygen atmosphere and baking in air up to 180 °C was applied with the objective of clearly identifying the role of oxygen and the oxide layer on the Q-drop. During each rf test a temperature mapping system was used allowing to measure the local temperature rise of the cavity outer surface due to RF losses, which gives information about the losses location, their field dependence and space distribution on the RF surface. The results confirmed that the depth affected by baking is about 20 – 30 nm from the surface and showed that the Q-drop did not re-appear in a previously baked cavity by further baking at 120 °C in pure oxygen atmosphere or in air up to 180 °C. A statistic of the position of the “hot-spots” on the cavity surface showed that grain-boundaries are not the preferred location. An interesting correlation was found between the Q-drop onset, the quench field and the low-field energy gap, which supports the hypothesis of thermo-magnetic instability governing the Q-drop and the baking effect.

  20. Microstructure evaluation and mechanical behavior of high-niobium containing titanium aluminides

    Science.gov (United States)

    Bean, Glenn Estep, Jr.

    Ti-Al-Nb-based alloys with gamma(TiAl)+sigma(Nb2Al) microstructure have shown promise for potential high temperature applications due to their high specific strength. Recent research has been aimed towards increasing strength and operating temperatures through microstructural refinement and control. Alloys with 10 - 30% sigma-phase have been investigated, exploring relationships between chemistry, microstructure development, and flow behavior. Alloys with composition Ti-45Al-xNb-5Cr-1Mo (where x = 15, 20, 25 at%) have been produced, characterized, and tested at high temperature under compression. Processing, microstructure and mechanical property relationships are thoroughly investigated to reveal a significant connection between phase stability, morphology and their resultant effects on mechanical properties. Phase transformation temperatures and stability ranges were predicted using the ThermoCalc software program and a titanium aluminide database, investigated through thermal analysis, and alloys were heat treated to develop an ultrafine gamma+sigma microstructure. It has been demonstrated that microstructural development in these alloys is sensitive to composition and processing parameters, and heating and cooling rates are vital to the modification of gamma+sigma microstructure in these alloys. Towards the goal of designing a high-Nb titanium aluminide with ultrafine, disconnected gamma+sigma morphology, it has been established that microstructural control can be accomplished in alloys containing 15-25at% Nb through targeted chemistry and processing controls. The strength and flow softening characteristics show strain rate sensitivity that is also affected by temperature. From the standpoint of microstructure development and mechanical behavior at elevated temperature, the most favorable results are obtained with the 20 at% Nb alloy, which produces a combination of high strength and fine disconnected gamma+sigma microstructure. Microstructural analysis reveals

  1. Titanium and zirconium alloys

    International Nuclear Information System (INIS)

    Pinard Legry, G.

    1994-01-01

    Titanium and zirconium pure and base alloys are protected by an oxide film with anionic vacancies which gives a very good resistance to corrosion in oxidizing medium, in some ph ranges. Results of pitting and crevice corrosion are given for Cl - , Br - , I - ions concentration with temperature and ph dependence, also with oxygenated ions effect. (A.B.). 32 refs., 6 figs., 3 tabs

  2. Influence of a niobium coating on sulfidation resistance of FeCr and FeCrY alloys

    International Nuclear Information System (INIS)

    Geribola, Gulherme Altomari

    2014-01-01

    Niobium and niobium based alloys are currently used in many industrial applications because they offer excellent resistance to degradation in various corrosive environments. These media include gaseous atmospheres at high temperatures such as those found in existing coal gasifying plants in power plants for energy generation. These atmospheres are complex gas mixtures that contain sulfur and oxygen, among other compounds. Sulphides are thermodynamically less stable, have lower melting points and often have larger deviations from stoichiometry compared to the corresponding oxides. Although there are studies regarding the use of refractory metals in high temperature sulphidizing atmospheres, the use of niobium compounds has not been adequately evaluated and there is very little studies available in the literature about its use as a protective coating. The aim of this study was to evaluate the effect of a niobium film, deposited by magnetron sputtering on the isothermal sulphidation behavior of Fe-20Cr and Fe-20Cr-1Y alloys. The sulphidation tests were carried out at 500, 600 and 700 deg C for 2h in H 2 /2% H2S atmosphere. The sulphidation resistance was determined by mass gain per unit area. The sulphidation behavior of the coated and uncoated alloys was similar at 500 deg C, and none of the alloys scaled. At 700 deg C FeCr alloy scaled in the form of a fine powder, while the reaction product formed on the alloy FeCrY scaled in the form of plates. The effect of niobium became pronounced at 700 deg C. The reaction product layer formed on the coated alloy was thinner and more plastic than that formed on the uncoated alloy. The mass gain per unit area of the coated alloys decreased significantly and they did not scaled. (author)

  3. Determination of niobium in rocks by an isotope dilution spectrophotometric method

    Science.gov (United States)

    Greenland, L.P.; Campbell, E.Y.

    1970-01-01

    Rocks and minerals are fused with sodium peroxide in the presence of carrierfree 95Nb. The fusion cake is leached with water and the precipitate dissolved in hydrofluoric-sulfuric acid mixture. Niobium is extracted into methyl isobutyl ketone and further purified by ion exchange. The amount of niobium is determined spectrophotometrically with 4-(2-pyridylazo)-resorcinol, and the chemical yield of the separations determined by counting 95Nb. This procedure is faster and less sensitive to interferences than previously proposed methods for determining niobium in rocks.The high purity of the separated niobium makes the method applicable to nearly all matrices. ?? 1970.

  4. The investigation of the effect of niobium artificial doping with titanium on Nb3Sn superconductors properties

    International Nuclear Information System (INIS)

    Nikulin, A.; Shikov, A.; Beliakov, N.; Semin, M.

    1997-01-01

    The effect on titanium doping of Nb filaments, and thus on the properties of bronze processed multifilamentary Nb 3 Sn wires and wires with internal tin sources with copper volume fraction up to 65 %, has been analysed. Either titanium rods or rods of the Nb-50Ti alloy, inserted in the axial area of each filament, were used as a source of titanium. The influence of doping on the quantity, composition, structure and superconducting properties of intermetallic compound Nb 3 Sn after heat treatments at 570-750 degrees C with duration up to 350 h was investigated by means of electrical measurements, optical metallography and methods of microanalysis and X-ray analysis. It was shown that the non-copper critical current density of the doped wires attained 600 and 270 A/mm 2 in 12.5 and 16 T respectively for bronze processed wires and 800 and 300 A/mm 2 for wires with internal tin source. Upper critical field calculated in accordance with Kramer's extrapolation was equal to 29-32 T

  5. Effect of the niobium additions in the passive films potentiostatically grown in a sulphate medium

    International Nuclear Information System (INIS)

    Kuri, S.E.; Martins, M.; D'Alkaine, C.V.

    1984-01-01

    The stability of passive films potentiostatically grown on stainless steel electrodes was studied in a 2 N sulfuric acid. The effect of Niobium contents in the base metal was considered. The reactivation time was measured using the method of Potential Decay Measurements under Open-Circuit Conditions after electrochemical aging in the passivity region, and its influence on the surface oxidation states, was discussed. (Author) [pt

  6. Crystallography and Morphology of Niobium Carbide in As-Cast HP-Niobium Reformer Tubes

    Science.gov (United States)

    Buchanan, Karl G.; Kral, Milo V.

    2012-06-01

    The microstructures of two as-cast heats of niobium-modified HP stainless steels were characterized. Particular attention was paid to the interdendritic niobium-rich carbides formed during solidification of these alloys. At low magnifications, these precipitates are grouped in colonies of similar lamellae. Higher magnifications revealed that the lamellae actually obtain two distinct morphologies. The type I morphology exhibits broad planar interfaces with a smooth platelike shape. Type II lamellae have undulating interfaces and an overall reticulated shape. To provide further insight into the origin of these two different morphologies, the microstructure and crystallography of each have been studied in detail using high resolution scanning electron microscopy, transmission electron microscopy, various electron diffraction methods (electron backscatter diffraction (EBSD), selected area diffraction (SAD), and convergent beam electron diffraction (CBED)), and energy dispersive X-ray spectroscopy.

  7. Microstructural evaluation of alumina-niobium and alumina- niobium-zircon ceramics for ballistic application

    International Nuclear Information System (INIS)

    Mota, Juliana Machado da; Lopes, Cristina Moniz Araujo; Melo, Francisco Lourenco Cristovao de

    2009-01-01

    This study aimed to evaluate the microstructural of Alumina- Niobium and Alumina- Niobium-Zircon ceramics. Samples with 3.5 x 4.5 x 34 mm dimensions were prepared by uniaxial pressure (50 MPa) followed by isostatic pressure (300 MPa). The samples were sintered at 1500 ° C for 1 hour. The ceramics obtained were characterized by scanning electron microscopy (SEM) and X-ray diffraction, to evaluate the phases and microstructures. In order to analyze the microstructure, by SEM the samples were prepared using two techniques: heat treatment (1350 ° C for 5 minutes) and thermochemical treatment (500 ° C for 8 minutes in a solution of NaOH and KOH) on polished and fractured surfaces. The results showed that despite differences between the two etchings, both were effective to analyze the microstructure. (author)

  8. Electrodeposition of some metals and niobium superconducting alloys from molten fluorides

    International Nuclear Information System (INIS)

    Cohen, U.

    1978-01-01

    The major goal of this thesis was to study the feasibility of electrodeposition from molten fluorides of the pure elements niobium, aluminium, tin, germanium and silicon, and the niboium superconducting intermetallic compounds with these elements, and to prepare and study films of these materials in the form of coherent and uniform coatings. Decomposition potential measurements with a gold anode were carried out on the alkali fluoride solvent and the fluoride salt solutions of niobium, aluminum, tin, and germanium to provide important initial thermodynamic data. Attempts to codeposit niobium and aluminum invariably failed, niobium being the exclusive deposit in all cases. Codeposition of niobium--tin alloys was demonstrated. Of the four intermetallic compounds of the niobium--germanium system, three were obtained as single-phase coatings. The superconducting compound (A15 phase) was not successfully electrodeposited in a single-phase form. It was obtained, however, in phase-mixture coatings. Application of alternating square wave pulses produced substantial changes in the morphology of niobium deposits. Silicon electrocrystallization epitaxy (ECE) was demonstrated for the first time. Uniform, coherent, and well adherent coatings of polycrystalline Si with a grain diameter of up to 40 to 50 μm were plated onto nonalloying metal substrates, such as silver and tungsten.These processes offer some attractive features for both integrated circuit technology and silicon solar cell fabrication. Aluminum, tin, and germanium were also electrodeposited from molten fluorides

  9. Synthesis and characterization of titanium and yttrium precursors with unsaturated ligands: application to the doping of low-density micro-molecular materials oxides

    International Nuclear Information System (INIS)

    Gamet-Cauro, L.-C.

    2001-01-01

    The laser-matter interaction experiments for high-power pulsed lasers require doped micro-targets. The ablator is a Low-Density Microcellular Material,foam namely a styrene-divinylbenzene copolymer obtained by a HIPE process (High Internal Polymerisation Emulsion). The spectroscopic tracers selected for doping are titanium, yttrium and aluminium as oxides. For obtaining these hybrid organic-inorganic materials, precursors with polymerizable ligands were introduced during the emulsification step since the unsaturation of the ligands could participate in the copolymerization reaction. We report here in the synthesis and characterization of titanium and yttrium precursors with polymerizable ligands. The structures of [Ti(O i Pr) 3 (AMP)] 2 (HAMP allyl-methylphenol), [Ti(OEt) 3 (AAA)] 2 (HAAA allylacetoacetate), Y 8 O 2 (OH) 4 (OEt) 6 (AAA) 10 were established by X-ray diffraction. Ti 4 O 3 (OR) 8 (AAA) 2 (R Et, i Pr).[TiO(O i Pr)(oleate)] m , Y 4 (OH) 2 (AAA) 5 , Y 4 O(O i Pr) 5 (AAA) 5 , Y 4 (OH) 4 Cl 5 (AAA) 3 (THF) 3 have been prepared as well and characterized by FT-IR, 1 HNMR and elemental analysis. Micro-hydrolysis reactions of titanium derivatives were investigated. The rates of polymerisation and copolymerization with styrene were evaluated for the titanium precursors with polymerizable ligands. The parameters of the HIPE process were adapted to the fabrication of doped foams, only the dopant and initiator change. We discuss incorporation mechanisms of titanium oxide and yttrium oxo-hydroxides: precursor-surfactant interaction, copolymerization of precursors with unsaturated ligands and physical or chemical retention. The foams have been characterized by scanning electron microscopy (morphology), elemental analysis and fluorescence X cartography (amount, distribution of metal oxide), adsorption isotherms (BET, texture), compression tests (mechanical strength). Due to this systematic study, a good control of doping has become possible and allowed us to develop

  10. Sulfonation degree effect on ion-conducting SPEEK-titanium oxide membranes properties

    Energy Technology Data Exchange (ETDEWEB)

    Marrero, Jacqueline Costa; Gomes, Ailton de Souza; Dutra Filho, José Carlos, E-mail: jacquecosta@gmail.com [Universidade Federal do Rio de Janeiro (IMA/UFRJ), RJ (Brazil). Instituto de Macromoléculas Professora Eloisa Mano; Hui, Wang Shu [Universidade de São Paulo (USP), São Paulo, SP (Brazil). Departamento de Engenharia Metalúrgica e de Materiais; Oliveira, Vivianna Silva de [Escola Técnica Rezende Rammel (ETRR), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Polymeric membranes were developed using a SPEEK (sulfonated poly(ether ether ketone)) polymer matrix, containing titanium oxide (TiO{sub 2}) (incorporated by sol-gel method). SPEEK with different sulfonation degrees (SD): 63% and 50% were used. The influence of sulfonation degree on membrane properties was investigated. The thermal analysis (TGA and DTGA) and X-ray diffraction (XRD) were carried out to characterize the membranes and electrochemical impedance spectroscopy (EIS) was carried out to evaluate the proton conductivity of the membranes. The proton conductivities in water were of 3.25 to 37.08 mS.cm{sup -1}. Experimental data of impedance spectroscopy were analyzed with equivalent circuits using the Zview software, and the results showed that, the best fitted was at 80 °C. (author)

  11. Metabolic and environmental aspects of fusion reactor activation products: niobium

    Energy Technology Data Exchange (ETDEWEB)

    Easterly, C.E.; Shank, K.E.

    1977-11-01

    A summary of the metabolic and environmental aspects of niobium is presented. The toxicological symptoms from exposure to niobium are given, along with lethal concentration values for acute and chronic exposures. Existing human data are presented; animal uptake and retention data are analyzed for various routes of administration. Recommended metabolic values are also presented along with comments concerning their use and appropriateness. The natural distribution of niobium is given for freshwater, seawater, and the biosphere. Concentration factors and retention of /sup 95/Nb in the environment are discussed with reference to: plant retention via leaf absorption; plant retention via root uptake; uptake in terrestrial animals from plants; uptake in freshwater organisms; uptake in marine organisms; and movement in soil. Conclusions are drawn regarding needs for future work in these areas. This review was undertaken because niobium is expected to be a key metal in the development of commercial fusion reactors. It is recognized that niobium will likely not be used in the first generation reactors as a structural material but will appear as an alloy in such materials as superconducting wire.

  12. Metabolic and environmental aspects of fusion reactor activation products: niobium

    International Nuclear Information System (INIS)

    Easterly, C.E.; Shank, K.E.

    1977-11-01

    A summary of the metabolic and environmental aspects of niobium is presented. The toxicological symptoms from exposure to niobium are given, along with lethal concentration values for acute and chronic exposures. Existing human data are presented; animal uptake and retention data are analyzed for various routes of administration. Recommended metabolic values are also presented along with comments concerning their use and appropriateness. The natural distribution of niobium is given for freshwater, seawater, and the biosphere. Concentration factors and retention of 95 Nb in the environment are discussed with reference to: plant retention via leaf absorption; plant retention via root uptake; uptake in terrestrial animals from plants; uptake in freshwater organisms; uptake in marine organisms; and movement in soil. Conclusions are drawn regarding needs for future work in these areas. This review was undertaken because niobium is expected to be a key metal in the development of commercial fusion reactors. It is recognized that niobium will likely not be used in the first generation reactors as a structural material but will appear as an alloy in such materials as superconducting wire

  13. Doped titanium oxide photcatalysts: Preparation, structure and interaction with viruses

    Science.gov (United States)

    Li, Qi

    Since the discovery of photoelectrochemical splitting of water on n-titanium oxide (n-TiO2) electrodes by Fujishima and Honda in 1972, there has been much interest in semiconductor-based materials as photocatalysts for both solar energy conversion and environmental applications in the past several decades. Among various semiconductor-based photocatalysts, TiO2 is the only candidate suitable for industrial use because of its high chemical stability, good photoactivity, relatively low cost, and nontoxicity. However, the photocatalytic capability of TiO 2 is limited to only ultraviolet (UV) light (wavelength, lambda, strategy to use atomic force microscope (AFM) to conduct in-situ observation of viruses on semiconductor surfaces in aqueous environment was developed, which combines information from both height profile and phase profile and solves the difficulty of observing small nanosized biomolecules on substrates with similar feature sizes.

  14. Electrochemical deposition of carbon films on titanium in molten LiCl–KCl–K2CO3

    International Nuclear Information System (INIS)

    Song, Qiushi; Xu, Qian; Wang, Yang; Shang, Xujing; Li, Zaiyuan

    2012-01-01

    Electrodeposition of carbon films on the oxide-scale-coated titanium has been performed in a LiCl–KCl–K 2 CO 3 melt, which are characterized by scanning electron microscopy, Raman spectroscopy and X-ray diffraction analysis. The electrochemical process of carbon deposition is investigated by cyclic voltammetry on the graphite, titanium and oxide-scale-coated titanium electrodes. The particle-size-gradient carbon films over the oxide-scale-coated titanium can be achieved by electrodeposition under the controlled potentials for avoiding codeposition of lithium carbide. The deposited carbon films are comprised of micron-sized ‘quasi-spherical’ carbon particles with graphitized and amorphous phases. The cyclic voltammetry behavior on the graphite, titanium and oxide-scale-coated titanium electrodes shows that CO 3 2− ions are reduced most favorably on the graphite for the three electrodes. Lithium ions can discharge under the less negative potential on the electrode containing carbon compared with titanium electrode because of the formation of lithium carbide from the reaction between lithium and carbon. - Highlights: ► Carbon films are prepared on oxide-scale-coated titanium in a LiCl–KCl–K 2 CO 3 melt. ► The films comprise micron-size ‘quasi-spherical’ carbon particles. ► The films present particle-size-gradient. ► The particles contain graphitized and amorphous phases. ► The prepared carbon films are more electrochemically active than graphite.

  15. Preparation of titanium oxide and metal titanates as powders, thin films, and microspheres by complex sol-gel process

    International Nuclear Information System (INIS)

    Deptula, A.; Olczak, T.; Lada, W.; Chmielewski, A.G.; Jakubaszek, U.; Sartowska, B.; Goretta, K.C.; Alvani, C.; Casadio, S.; Contini, V.

    2006-01-01

    Titanium oxide, for many years an important pigment, has recently been applied widely as a photocatalyst or as supports for metallic catalysts, gas sensors, photovoltaic solar cells, and water and air purification devices. Titanium oxide (TiO 2 ) and titanates based on Ba, Sr and Ca were prepared from commercial solutions of TiCl 4 and HNO 3 . The main preparation steps for the sols consisted of elimination of Cl - by distillation with HNO 3 and addition of metal hydroxides for the titanates. Resulting sols were gelled and used to: (a) prepare irregularly shaped powders by evaporation; (b) produce by a dipping technique thin films on glass, Ag or Ti supports; (c) produce spherical powders (diameters <100 μm) by solvent extraction. Results of thermal and X-ray-diffraction analyses indicated that the temperatures required to form the various compounds were lower than those necessary to form the compounds by conventional solid-state reactions and comparable to those required with use of organometallic based sol-gel methods. Temperatures of formation could be further reduced by addition of ascorbic acid (ASC) to the sols

  16. Functional doped metal oxide films. Zinc oxide (ZnO) as transparent conducting oxide (TCO) titanium dioxide (TiO{sub 2}) as thermographic phosphor and protective coating

    Energy Technology Data Exchange (ETDEWEB)

    Nebatti Ech-Chergui, Abdelkader

    2011-07-29

    spectra indicate that the red characteristic emission of TiO{sub 2}: Eu{sup 3+} due to electric dipole {sup 5}D{sub 0} {yields}{sup 7} F{sub 2} transition occurring after ultraviolet excitation is the strongest. The decay time of the phosphorescence after UV excitation with a Nd:YAG laser (355 nm, f=10Hz) is temperature dependent in the range from 200 C up to 400 C. Finally, it has been found that the lifetime show a significant dependency on europium concentration. The development of rutile phase of titanium dioxide films on stainless steel substrates as protective coatings were investigated. Generally the rutile phases of TiO{sub 2} thin films do not adhere well on stainless steel substrates. In order to improve the adhesion, stainless steel substrates were first coated with titanium films using cathodic vacuum arc deposition. Then these titanium coatings were partially transformed to the rutile phase of titanium dioxide by thermal oxidation. The presence of the rutile phase of titanium dioxide and metallic titanium were confirmed by XRD. Cavitation erosion was used for the first time to investigate the adhesion properties of these coatings. Cavitation erosion tests confirmed that rutile films with a Ti inter layer are well adherent to stainless steel substrates and protect the substrate from erosion. The total mass loss of the thermally oxidized samples of Ti coated stainless steel was found around 3.5 times lower than of the uncoated samples. (orig.)

  17. Direct dynamic synthesis of nanodispersed phases of titanium oxides upon sputtering of electrodischarge titanium plasma into an air atmosphere

    Science.gov (United States)

    Sivkov, A. A.; Gerasimov, D. Yu.; Nikitin, D. S.

    2017-01-01

    Experimental investigations of the possibility of directly synthesizing nanodispersed crystalline phases of titanium dioxides with rutile and anatase structures in a hypervelocity jet of electroerosion plasma generated by a coaxial magnetoplasma accelerator with titanium electrodes are presented. A powder product containing nanosized polymorphic phases of titanium dioxide with a spherical shape of particles has been manufactured.

  18. Fatigue behavior of niobium--hydrogen alloys

    International Nuclear Information System (INIS)

    Chung, D.W.; Stoloff, N.S.

    1978-01-01

    The effects of hydrogen on room temperature fatigue behavior of niobium were investigated under both high frequency stress control and low frequency strain control conditions, in air. Hydrogen markedly improved the fatigue life in high frequency tests, while low frequency tests resulted in decreased fatigue life with increasing hydrogen content. Notches in hydrogen-charged alloys reduced high cycle life significantly but had little effect on low cycle tests. Fracture surfaces of annealed niobium mainly exhibited striations, with numerous cracks originating at troughs of striated bands in both stress and strain control tests. The fracture mode for alloys with hydrogen in solution was mixed, with striations interspersed with cleavage facets at high frequencies but generally cleavage steps at low frequencies. For the hydrided alloys, distinctive steps of mixed ductile-brittle appearance were revealed under high frequency conditions, but large cleavage facets only were observed for low frequency tests. The results are discussed in terms of the effects of hydrogen on the cyclic strain hardening rate, as well as on fatigue strength and ductility of niobium

  19. Metallorganic routes to nanoscale iron and titanium oxide particles encapsulated in mesoporous alumina: formation, physical properties, and chemical reactivity.

    Science.gov (United States)

    Schneider, J J; Czap, N; Hagen, J; Engstler, J; Ensling, J; Gütlich, P; Reinoehl, U; Bertagnolli, H; Luis, F; de Jongh, L J; Wark, M; Grubert, G; Hornyak, G L; Zanoni, R

    2000-12-01

    Iron and titanium oxide nanoparticles have been synthesized in parallel mesopores of alumina by a novel organometallic "chimie douce" approach that uses bis(toluene)iron(0) (1) and bis(toluene)titanium(0) (2) as precursors. These complexes are molecular sources of iron and titanium in a zerovalent atomic state. In the case of 1, core shell iron/iron oxide particles with a strong magnetic coupling between both components, as revealed by magnetic measurements, are formed. Mössbauer data reveal superparamagnetic particle behavior with a distinct particle size distribution that confirms the magnetic measurements. The dependence of the Mössbauer spectra on temperature and particle size is explained by the influence of superparamagnetic relaxation effects. The coexistence of a paramagnetic doublet and a magnetically split component in the spectra is further explained by a distribution in particle size. From Mössbauer parameters the oxide phase can be identified as low-crystallinity ferrihydrite oxide. In agreement with quantum size effects observed in UV-visible studies, TEM measurements determine the size of the particles in the range 5-8 nm. The particles are mainly arranged alongside the pore walls of the alumina template. TiO2 nanoparticles are formed by depositing 2 in mesoporous alumina template. This produces metallic Ti, which is subsequently oxidized to TiO2 (anatase) within the alumina pores. UV-visible studies show a strong quantum confinement effect for these particles. From UV-visible investigations the particle size is determined to be around 2 nm. XPS analysis of the iron- and titania- embedded nanoparticles reveal the presence of Fe2O3 and TiO2 according to experimental binding energies and the experimental line shapes. Ti4+ and Fe3+ are the only oxidation states of the particles which can be determined by this technique. Hydrogen reduction of the iron/iron-oxide nanoparticles at 500 degrees C under flowing H2/N2 produces a catalyst, which is active

  20. A feasibility study for high-temperature titanium reduction from TiCl4 using a magnesiothermic process

    Science.gov (United States)

    Ivanov, S. L.; Zablotsky, D.

    2018-05-01

    The current industrial practice for titanium extraction is a complex procedure, which produces a porous reaction mass of sintered titanium particulates fused to a steel retort wall with magnesium and MgCl2 trapped in the interstices. The reactor temperature is limited to approx. 900 °C due to the formation of fusible TiFe eutectic, which corrodes the retort and degrades the quality of titanium sponge. Here we examine the theoretical foundations and technological possibilities to design a shielded retort of niobium-zirconium alloy NbZr(1%), which is resistant to corrosion by titanium at high temperature. We consider the reactor at a temperature of approx. 1150 °C. Supplying stoichiometric quantities of reagents enables the reaction in the gas phase, whereas the exothermic process sustains the combustion of the reaction zone. When the pathway to the condenser is open, vacuum separation and evacuation of vaporized magnesium dichloride and excess magnesium into the water-cooled condenser take place. As both the reaction and the evacuation occur within seconds, the yield of the extraction is improved. We anticipate new possibilities for designing a device combining the retort function to conduct the reduction in the gas phase with fast vacuum separation of the reaction products and distillation of magnesium dichloride.

  1. Optical characteristics of particles produced using electroerosion dispersion of titanium in hydrogen peroxide

    Science.gov (United States)

    Pyachin, S. A.; Burkov, A. A.; Makarevich, K. S.; Zaitsev, A. V.; Karpovich, N. F.; Ermakov, M. A.

    2016-07-01

    Titanium oxide particles are produced using electric-discharge dispersion of titanium in aqueous solution of hydrogen peroxide. Electron vacuum microscopy, X-ray diffraction, and diffuse reflection spectroscopy are used to study the morphology, composition, and optical characteristics of the erosion particles. It has been demonstrated that the particles consist of titanium and titanium oxides with different valences. The edge of the optical absorption is located in the UV spectral range. The band gap is 3.35 eV for indirect transitions and 3.87 eV for direct allowed transitions. The band gap decreases due to the relatively long heating in air at a temperature of 480-550°C, so that powder oxide compositions can be obtained, the optical characteristics of which are similar to optical characteristics of anatase. The erosion products are completely oxidized to rutile after annealing in air at a temperature of 1000°C.

  2. Atomic layer deposition of titanium oxide films on As-synthesized magnetic Ni particles: Magnetic and safety properties

    International Nuclear Information System (INIS)

    Uudeküll, Peep; Kozlova, Jekaterina; Mändar, Hugo; Link, Joosep; Sihtmäe, Mariliis; Käosaar, Sandra; Blinova, Irina; Kasemets, Kaja; Kahru, Anne; Stern, Raivo; Tätte, Tanel; Kukli, Kaupo; Tamm, Aile

    2017-01-01

    Spherical nickel particles with size in the range of 100–400 nm were synthesized by non-aqueous liquid phase benzyl alcohol method. Being developed for magnetically guided biomedical applications, the particles were coated by conformal and antimicrobial thin titanium oxide films by atomic layer deposition. The particles retained their size and crystal structure after the deposition of oxide films. The sensitivity of the coated particles to external magnetic fields was increased compared to that of the uncoated powder. Preliminary toxicological investigations on microbial cells and small aquatic crustaceans revealed non-toxic nature of the synthesized particles.

  3. Atomic layer deposition of titanium oxide films on As-synthesized magnetic Ni particles: Magnetic and safety properties

    Energy Technology Data Exchange (ETDEWEB)

    Uudeküll, Peep, E-mail: peep.uudekull@ut.ee [Institute of Physics, University of Tartu, W. Ostwaldi Str.1, 50411 Tartu (Estonia); Kozlova, Jekaterina; Mändar, Hugo [Institute of Physics, University of Tartu, W. Ostwaldi Str.1, 50411 Tartu (Estonia); Link, Joosep [Laboratory of Chemical Physics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn (Estonia); Sihtmäe, Mariliis [Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn (Estonia); Käosaar, Sandra [Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn (Estonia); Faculty of Chemical and Materials Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia); Blinova, Irina; Kasemets, Kaja; Kahru, Anne [Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn (Estonia); Stern, Raivo [Laboratory of Chemical Physics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn (Estonia); Tätte, Tanel [Institute of Physics, University of Tartu, W. Ostwaldi Str.1, 50411 Tartu (Estonia); Kukli, Kaupo [Institute of Physics, University of Tartu, W. Ostwaldi Str.1, 50411 Tartu (Estonia); University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland); Tamm, Aile [Institute of Physics, University of Tartu, W. Ostwaldi Str.1, 50411 Tartu (Estonia)

    2017-05-01

    Spherical nickel particles with size in the range of 100–400 nm were synthesized by non-aqueous liquid phase benzyl alcohol method. Being developed for magnetically guided biomedical applications, the particles were coated by conformal and antimicrobial thin titanium oxide films by atomic layer deposition. The particles retained their size and crystal structure after the deposition of oxide films. The sensitivity of the coated particles to external magnetic fields was increased compared to that of the uncoated powder. Preliminary toxicological investigations on microbial cells and small aquatic crustaceans revealed non-toxic nature of the synthesized particles.

  4. Electrocatalytic Activity for CO, MeOH, and EtOH Oxidation on the Surface of Pt-Ru Nanoparticles Supported by Metal Oxide

    Directory of Open Access Journals (Sweden)

    Kwang-Sik Sim

    2011-01-01

    Full Text Available This paper describes the electrocatalytic activity for CO, MeOH, and EtOH oxidation on the surface of Pt-Ru nanoparticles supported by metal oxide (Nb-TiO2-H prepared for use in a fuel cell. To prepare Nb-TiO2-supported Pt-Ru nanoparticles, first, the Nb-TiO2 supports were prepared by sol-gel reaction of titanium tetraisopropoxide with a small amount of the niobium ethoxide in polystyrene (PS colloids. Second, Pt-Ru nanoparticles were then deposited by chemical reduction of the Pt4+ and Ru3+ ions onto Nb-TiO2 supports (Pt-Ru@Nb-TiO2-CS. Nb element was used to reduce electrical resistance to facilitate electron transport during the electrochemical reactions on a fuel cell electrode. Finally, the Pt-Ru@Nb-TiO2-H catalysts were formed by the removal of core-polystyrene ball from Pt-Ru@TiO2-CS at 500∘C. The successfully prepared Pt-Ru electrocatalysts were confirmed via TEM, XPS, and ICP analysis. The electrocatalytic efficiency of Pt-Ru nanoparticles was evaluated via CO, MeOH, and EtOH oxidation for use in a direct methanol fuel cell (DMFC. As a result, the Pt-Ru@Nb-TiO2-H electrodes showed high electrocatalytic activity for the electrooxidation of CO, MeOH, and EtOH.

  5. Mesostructured niobium-doped titanium oxide-carbon (Nb-TiO2-C) composite as an anode for high-performance lithium-ion batteries

    Science.gov (United States)

    Hwang, Keebum; Sohn, Hiesang; Yoon, Songhun

    2018-02-01

    Mesostructured niobium (Nb)-doped TiO2-carbon (Nb-TiO2-C) composites are synthesized by a hydrothermal process for application as anode materials in Li-ion batteries. The composites have a hierarchical porous structure with the Nb-TiO2 nanoparticles homogenously distributed throughout the porous carbon matrix. The Nb content is controlled (0-10 wt%) to investigate its effect on the physico-chemical properties and electrochemical performance of the composite. While the crystalline/surface structure varied with the addition of Nb (d-spacing of TiO2: 0.34-0.36 nm), the morphology of the composite remained unaffected. The electrochemical performance (cycle stability and rate capability) of the Nb-TiO2-C composite anode with 1 wt% Nb doping improved significantly. First, a full cut-off potential (0-2.5 V vs. Li/Li+) of Nb-doped composite anode (1 wt%) provides a higher energy utilization than that of the un-doped TiO2-C anode. Second, Nb-TiO2-C composite anode (1 wt%) exhibits an excellent long-term cycle stability (100% capacity retention, 297 mAh/g at 0.5 C after 100 cycles and 221 mAh/g at 2 C after 500 cycles) and improved rate-capability (192 mAh/g at 5 C), respectively (1 C: 150 mA/g). The superior electrochemical performance of Nb-TiO2-C (1 wt%) could be attributed to the synergistic effect of improved electronic conductivity induced by optimal Nb doping (1 wt%) and lithium-ion penetration (high diffusion kinetics) through unique pore structures.

  6. Plasma electrolytic oxidation of titanium in a phosphate/silicate electrolyte and tribological performance of the coatings

    Energy Technology Data Exchange (ETDEWEB)

    Aliasghari, S.; Skeldon, P., E-mail: p.skeldon@manchester.ac.uk; Thompson, G.E.

    2014-10-15

    Highlights: • Plasma electrolytic oxidation performed of titanium in silicate/phosphate electrolyte. • Range of duty cycle, current density, positive-to-negative current ratio studied. • Coatings contain anatase, rutile, Ti{sub 3}O{sub 5}, and amorphous silica. • Ptfe incorporated into coatings by addition of ptfe emulsion to the electrolyte. • Fiction reduced but wear life relatively short due to porosity of coatings. - Abstract: Plasma electrolytic oxidation of titanium has been investigated using a phosphate/silicate electrolyte with a square waveform and a frequency of 50 Hz. A range of constant rms current densities, duty cycles and negative-to-positive current ratios was employed. The resultant coatings were examined by analytical scanning and transmission electron microscopies and X-ray diffraction. The coatings, which were limited in thickness to ∼40 to 50 μm, contained anatase, rutile, Ti{sub 2}O{sub 5} and silicon-rich, amorphous material. The tribological behaviour was investigated using a ball-on-disc test, revealing a coefficient of friction against steel of ∼0.8, which reduced to ∼0.4 by incorporation of ptfe particles from the electrolyte. However, due to the composition and morphology of the coatings, their wear life was relatively short.

  7. Alloying element's substitution in titanium alloy with improved oxidation resistance and enhanced magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Ang-Yang, E-mail: ayyu@imr.ac.cn; Wei, Hua; Hu, Qing-Miao; Yang, Rui

    2017-01-15

    First-principles method is used to characterize segregation and magnetic properties of alloyed Ti/TiO{sub 2}interface. We calculate the segregation energy of the doped Ti/TiO{sub 2} interface to investigate alloying atom's distribution. The oxidation resistance of Ti/TiO{sub 2} interface is enhanced by elements Fe and Ni but reduced by element Co. Magnetism could be produced by alloying elements such as Co, Fe and Ni in the bulk of titanium and the surface of Ti at Ti/TiO{sub 2} interface. The presence of these alloying elements could transform the non-magnetic titanium alloys into magnetic systems. We have also calculated the temperature dependence of magnetic permeability for the doped and pure Ti/TiO{sub 2} interfaces. Alloying effects on the Curie temperature of the Ti/TiO{sub 2} interface have been elaborated. - Highlights: • We consider the segregation of alloying atoms on the Ti(101¯0)/TiO{sub 2}(100) interface. • Alloying the Ti//TiO{sub 2} interface with Fe and Ni has a great advantage of improving the oxidation resistance. • Fe, Co and Nican enhance the magnetic properties of the investigated system. • The variation of permeability with temperature has been presented.

  8. Stannic Oxide-Titanium Dioxide Coupled Semiconductor Photocatalyst Loaded with Polyaniline for Enhanced Photocatalytic Oxidation of 1-Octene

    Directory of Open Access Journals (Sweden)

    Hadi Nur

    2007-01-01

    Full Text Available Stannic oxide-titanium dioxide (SnO2–TiO2 coupled semiconductor photocatalyst loaded with polyaniline (PANI, a conducting polymer, possesses a high photocatalytic activity in oxidation of 1-octene to 1,2-epoxyoctane with aqueous hydrogen peroxide. The photocatalyst was prepared by impregnation of SnO2 and followed by attachment of PANI onto a TiO2 powder to give sample PANI-SnO2–TiO2. The electrical conductivity of the system becomes high in the presence of PANI. Enhanced photocatalytic activity was observed in the case of PANI-SnO2–TiO2 compared to PANI-TiO2, SnO2–TiO2, and TiO2. A higher photocatalytic activity in the oxidation of 1-octene on PANI-SnO2–TiO2 than SnO2–TiO2, PANI-TiO2, and TiO2 can be considered as an evidence of enhanced charge separation of PANI-SnO2–TiO2 photocatalyst as confirmed by photoluminescence spectroscopy. It suggests that photoinjected electrons are tunneled from TiO2 to SnO2 and then to PANI in order to allow wider separation of excited carriers.

  9. The effect of titanium nickel nitride decorated carbon nanotubes-reduced graphene oxide hybrid support for methanol oxidation

    Science.gov (United States)

    Liu, Gen; Pan, Zhanchang; Li, Wuyi; Yu, Ke; Xia, Guowei; Zhao, Qixiang; Shi, Shikun; Hu, Guanghui; Xiao, Chumin; Wei, Zhigang

    2017-07-01

    Titanium nickel nitride (TiNiN) decorated three-dimensional (3D) carbon nanotubes-reduced graphene oxide (CNT-rGO), a fancy 3D platinum (Pt)-based catalyst hybrid support, is prepared by a solvothermal process followed by a nitriding process, which is tested as anodic catalyst support for the methanol oxidation reaction (MOR). The structure, morphology and composition of the synthesized TiNiN/CNT-rGO exhibits a uniform particle dispersion with high purity and interpenetrating 3D network structure. Notably, Pt/TiNiN/CNT-rGO catalyst exhibits significantly improved catalytic activity and durability for methanol oxidation in comparison with Pt/CNT-rGO and conventional Pt/C (JM). The outstanding electrochemical performance was attributed to structure and properties. That is, the 3D CNT-rGO provided a fast transport network for charge-transfer and mass-transfer as well as TiNiN NPs with good synergistic effect and the strong electronic coupling between different domains in TiNiN/CNT-rGO, thus the catalytic activity of the novel catalyst is greatly improved. These results evidences 3D TiNiN/CNT-rGO as a promising catalyst support for a wide range of applications in fuel cells.

  10. Exposure to nano-size titanium dioxide causes oxidative damages in human mesothelial cells: The crystal form rather than size of particle contributes to cytotoxicity.

    Science.gov (United States)

    Hattori, Kenji; Nakadate, Kazuhiko; Morii, Akane; Noguchi, Takumi; Ogasawara, Yuki; Ishii, Kazuyuki

    2017-10-14

    Exposure to nanoparticles such as carbon nanotubes has been shown to cause pleural mesothelioma similar to that caused by asbestos, and has become an environmental health issue. Not only is the percutaneous absorption of nano-size titanium dioxide particles frequently considered problematic, but the possibility of absorption into the body through the pulmonary route is also a concern. Nevertheless, there are few reports of nano-size titanium dioxide particles on respiratory organ exposure and dynamics or on the mechanism of toxicity. In this study, we focused on the morphology as well as the size of titanium dioxide particles. In comparing the effects between nano-size anatase and rutile titanium dioxide on human-derived pleural mesothelial cells, the anatase form was shown to be actively absorbed into cells, producing reactive oxygen species and causing oxidative damage to DNA. In contrast, we showed for the first time that the rutile form is not easily absorbed by cells and, therefore, does not cause oxidative DNA damage and is significantly less damaging to cells. These results suggest that with respect to the toxicity of titanium dioxide particles on human-derived mesothelial cells, the crystal form rather than the particle size has a greater effect on cellular absorption. Also, it was indicated that the difference in absorption is the primary cause of the difference in the toxicity against mesothelial cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Radiation blistering of niobium in sequence irradiated by helium ions with different energy

    International Nuclear Information System (INIS)

    Das, S.K.; Kaminskij, M.S.; Guseva, M.I.; Gusev, V.M.; Krasulin, Yu.L.; Martynenko, Yu.V.; Rozina, I.A.

    1977-01-01

    The results of the investigation of the blistering of the surface of polycrystalline niobium foils subjected to successive irradiation by helium ions of energies of 3 to 50 keV are reported. The critical doses of irradiation, the types of blisters and the rate of erosion were determined. A comparative analysis of the formation of blisters on cold-rolled and annealed niobium has been made. On cold-rolled niobium the blistering is mainly due to ions with energies of 3 to 80 keV, on annealed niobium of 100 to 500 keV. The erosion of cold-rolled niobium takes place through blisters formed by the action of helium ions with energies of the order of 45 keV, and that of annealed niobium, through helium ions with energies of 100 to 500 keV. The observed differences in the formation of blisters on niobium irradiated with helium ions of a wide range of energies are explained by the change in the diffusion kinetics of implanted ions having a uniform distribution across the thickness of the target

  12. Process for treatment of pyrochlore concentrates

    International Nuclear Information System (INIS)

    Charlot, G.

    1976-01-01

    A continuous process is described for extraction of niobium, rare earths and thorium from niobium ore concentrates which includes digesting the ore with a hot solution containing 13 to 16 moles of sulphuric acid per liter, diluting the solution to a concentration of 10 to 13 moles of sulphuric acid per liter, separating the insolubles from the solution which includes alkaline earth sulphates and the sulphates of thorium and rare earths that are present, reducing titanium in solution to the trivalent state and diluting the solution to a concentration of 5 to 7 moles of sulphuric acid per liter, separating the precipitated niobium oxide and sulphates of thorium and rare earths, and then concentrating the resulting solution to the level desired for recycle to the digestion stage. 10 Claims, No Drawings

  13. Modified process for refining niobium by electron beam

    International Nuclear Information System (INIS)

    Pinatti, D.G.; Takano, C.

    1982-01-01

    The experimental results, thermodynamic equilibrium and kinetic theory of the metal/gas interaction in refractory metals are reviewed. The adsorption and desorption of nitrogen, hydrogen and CO are reversible, whereas those of oxygen are irreversible, with adsorption of an oxygen atom and volatilisation of the metal oxide. Based upon this fact, a new electron beam refining technology is proposed for niobium, consisting of four points: preparation of an electrode by aluminothermic reduction; zone refining in the first melt; kinetic refining in subsequent melts and compact design of the refining plant. Experimental results from a 300 kW pilot plant were in complete agreement with the technology proposed, giving 2.4 times the productivity predicted by the conventional technology. (Author) [pt

  14. Fatigue crack growth behavior in niobium-hydrogen alloys

    International Nuclear Information System (INIS)

    Lin, M.C.C.; Salama, K.

    1997-01-01

    Near-threshold fatigue crack growth behavior has been investigated in niobium-hydrogen alloys. Compact tension specimens (CTS) with three hydrogen conditions are used: hydrogen-free, hydrogen in solid solution, and hydride alloy. The specimens are fatigued at a temperature of 296 K and load ratios of 0.05, 0.4, and 0.75. The results at load ratios of 0.05 and 0.4 show that the threshold stress intensity range (ΔK th ) decreases as hydrogen is added to niobium. It reaches a minimum at the critical hydrogen concentration (C cr ), where maximum embrittlement occurs. The critical hydrogen concentration is approximately equal to the solubility limit of hydrogen in niobium. As the hydrogen concentration exceeds C cr , ΔK th increases slowly as more hydrogen is added to the specimen. At load ratio 0.75, ΔK th decreases continuously as the hydrogen concentration is increased. The results provide evidence that two mechanisms are responsible for fatigue crack growth behavior in niobium-hydrogen alloys. First, embrittlement is retarded by hydride transformation--induced and plasticity-induced crack closures. Second, embrittlement is enhanced by the presence of hydrogen and hydride

  15. Exposure to titanium dioxide and other metallic oxide nanoparticles induces cytotoxicity on human neural cells and fibroblasts

    Directory of Open Access Journals (Sweden)

    James C K Lai

    2008-12-01

    Full Text Available James C K Lai1, Maria B Lai1, Sirisha Jandhyam1, Vikas V Dukhande1, Alok Bhushan1, Christopher K Daniels1, Solomon W Leung21Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, and Biomedical Research Institute; 2Department of Civil and Environmental Engineering, College of Engineering and Biomedical Research Institute, Idaho State University, Pocatello, ID, USAAbstract: The use of titanium dioxide (TiO2 in various industrial applications (eg, production of paper, plastics, cosmetics, and paints has been expanding thereby increasing the occupational and other environmental exposure of these nanoparticles to humans and other species. However, the health effects of exposure to TiO2 nanoparticles have not been systematically assessed even though recent studies suggest that such exposure induces inflammatory responses in lung tissue and cells. Because the effects of such nanoparticles on human neural cells are unknown, we have determined the putative cytotoxic effects of these nanoparticles on human astrocytes-like astrocytoma U87 cells and compared their effects on normal human fibroblasts. We found that TiO2 micro- and nanoparticles induced cell death on both human cell types in a concentration-related manner. We further noted that zinc oxide (ZnO nanoparticles were the most effective, TiO2 nanoparticles the second most effective, and magnesium oxide (MgO nanoparticles the least effective in inducing cell death in U87 cells. The cell death mechanisms underlying the effects of TiO2 micro- and nanoparticles on U87 cells include apoptosis, necrosis, and possibly apoptosis-like and necrosis-like cell death types. Thus, our findings may have toxicological and other pathophysiological implications on exposure of humans and other mammalian species to metallic oxide nanoparticles.Keywords: cytotoxicity of titanium dioxide micro- and nanoparticles, cytotoxicity of zinc oxide and magnesium oxide nanoparticles, human neural cells

  16. Photo-oxidation of gaseous ethanol on photocatalyst prepared by acid leaching of titanium oxide/hydroxyapatite composite

    International Nuclear Information System (INIS)

    Ono, Y.; Rachi, T.; Yokouchi, M.; Kamimoto, Y.; Nakajima, A.; Okada, K.

    2013-01-01

    Highlights: ► Photocatalyst powder was prepared by acid leaching of TiO 2 /apatite composite. ► The photocatalytic activity was evaluated from in situ FT-IR study using ethanol. ► Apatite in the composite had positive effect for the photo-oxidation of ethanol. ► The enhanced oxidation rate was explained by the difference in deactivation rate. - Abstract: Highly active photocatalysts were synthesized by leaching of heat-treated titanium dioxide (TiO 2 )/hydroxyapatite (HAp) powder with hydrochloric acid at 0.25, 0.50, 0.75 mol/l, and their photocatalytic activities were evaluated from in situ Fourier transform infrared (FT-IR) study of photo-oxidation of gaseous ethanol. By changing the acid concentration, the TiO 2 /HAp composite had different atomic ratios of Ca/Ti (0.0–2.8) and P/Ti (0.3–2.1). It was found that phosphate group remained on the surface of TiO 2 particle even in the sample treated with concentrated acid (0.75 mol/l). These acid-treated samples showed higher rates for ethanol photo-oxidation than the commercial TiO 2 powder, Degussa P25. The highest rate was obtained in the TiO 2 /HAp composite treated with the dilute (0.25 mol/l) acid in spite of its low content of TiO 2 photocatalyst. This enhanced photocatalytic activity was attributed to the result that the deactivation with repeated injections of ethanol gas was suppressed in the TiO 2 /HAp composites compared with the TiO 2 powders

  17. Thermodynamic Calculation of Carbide Precipitate in Niobium Microalloyed Steels

    Institute of Scientific and Technical Information of China (English)

    XU Yun-bo; YU Yong-mei; LIU Xiang-hua; WANG Guo-dong

    2006-01-01

    On the basis of regular solution sublattice model, thermodynamic equilibrium of austenite/carbide in Fe-Nb-C ternary system was investigated. The equilibrium volume fraction, chemical driving force of carbide precipitates and molar fraction of niobium and carbon in solution at different temperatures were evaluated respectively. The volume fraction of precipitates increases, molar fraction of niobium dissolved in austenite decreases and molar fraction of carbon increases with decreasing the niobium content. The driving force increases with the decrease of temperature, and then comes to be stable at relatively low temperatures. The predicted ratio of carbon in precipitates is in good agreement with the measured one.

  18. Critical fields of niobium nitride films of various granularity

    International Nuclear Information System (INIS)

    Antonova, E.A.; Sukhov, V.A.

    1983-01-01

    The behaviour of lattice parameter, specific electrical resistivity, critical temperature, and temperature dependence of upper critical field near Tsub(cr) of sputtered niobium nitride films is investigated versus the substrate temperature and gas mixture composition in the process of reactive cathode sputtering. The relation between extrapolated value of the upper critical field and granularity of niobium nitride films, close as to composition to the stoichiometric one, has been found. Values of the kappa parameter of the Ginsburg-Landau theory and of the coherence length for niobium nitride films of various granularity are estimated in an approximation of uniform distribution of impurities in a sample

  19. Processing of Niobium-Lined M240 Machine Gun Barrels

    Science.gov (United States)

    2014-11-01

    Fig. 5 Finished niobium-lined M240 machine gun barrel with flash suppressor attached ..........11 Fig. 6 End of barrel 1 showing small amount of...the finished barrel is shown in Fig. 5. 11 Fig. 5 Finished niobium-lined M240 machine gun barrel with flash suppressor attached Firing tests

  20. Recent developments in high purity niobium metal production at CBMM

    International Nuclear Information System (INIS)

    Abdo, Gustavo Giovanni Ribeiro; Sousa, Clovis Antonio de Faria; Guimarães, Rogério Contato; Ribas, Rogério Marques; Vieira, Alaércio Salvador Martins; Menezes, Andréia Duarte; Fridman, Daniel Pallos; Cruz, Edmundo Burgos

    2015-01-01

    CBMM is a global supplier of high quality niobium products including pure niobium, the focus of this paper. CBMM’s position has been consolidated over three decades of producing high purity niobium metal ingots. The company supplies, among other products, commercial and reactor grade niobium ingots. One of the main uses of CBMM’s ingots is for the manufacture of particle accelerators (superconducting radio frequency – SRF – cavities), where the purity and homogeneity of niobium metal is essentially important for good performance. CBMM constantly strives to improve process controls and product quality, and is currently implementing innovations in production, research and development to further improve ingot quality. The main aim is to reduce the content of interstitial elements, such as nitrogen (N), oxygen (O), carbon (C), and hydrogen (H), starting with the raw materials through the final step of ingot production. CBMM held the first trial to produce the world’s largest-diameter niobium ingot (as cast 535 mm). The results of this initial trial presented very low levels of interstitial impurities (N, O, C, H), allowing the achievement of residual resistivity ratio (RRR) values very close to 300 in a six-melt process in an electron beam furnace. These values were reached with 850 ppm of tantalum. SRF cavities will be produced with this material in order to study the effect of low impurities and high RRR on the Q factor and accelerating gradient