WorldWideScience

Sample records for titanate pzt films

  1. Characterization of lead zirconate titanate (PZT)--indium tin oxide (ITO) thin film interface

    International Nuclear Information System (INIS)

    Sreenivas, K.; Sayer, M.; Laursen, T.; Whitton, J.L.; Pascual, R.; Johnson, D.J.; Amm, D.T.

    1990-01-01

    In this paper the interface between ultrathin sputtered lead zirconate titanate (PZT) films and a conductive electrode (indium tin oxide-ITO) is investigated. Structural and compositional changes at the PZT-ITO interface have been examined by surface analysis and depth profiling techniques of glancing angle x-ray diffraction, Rutherford backscattering (RBS), SIMS, Auger electron spectroscopy (AES), and elastic recoil detection analysis (ERDA). Studies indicate significant interdiffusion of lead into the underlying ITP layer and glass substrate with a large amount of residual stress at the interface. Influence of such compositional deviations at the interface is correlated to an observed thickness dependence in the dielectric properties of PZT films

  2. Mechanical and dielectric characterization of lead zirconate titanate(PZT)/polyurethane(PU) thin film composite for energy harvesting

    Science.gov (United States)

    Aboubakr, S.; Rguiti, M.; Hajjaji, A.; Eddiai, A.; Courtois, C.; d'Astorg, S.

    2014-04-01

    The Lead Zirconate titanate (PZT) ceramic is known by its piezoelectric feature, but also by its stiffness, the use of a composite based on a polyurethane (PU) matrix charged by a piezoelectric material, enable to generate a large deformation of the material, therefore harvesting more energy. This new material will provide a competitive alternative and low cost manufacturing technology of autonomous systems (smart clothes, car seat, boat sail, flag ...). A thin film of the PZT/PU composite was prepared using up to 80 vol. % of ceramic. Due to the dielectric nature of the PZT, inclusions of this one in a PU matrix raises the permittivity of the composite, on other hand this latter seems to decline at high frequencies.

  3. Influence of processing parameters on PZT thick films

    International Nuclear Information System (INIS)

    Huang, Oliver; Bandyopadhyay, Amit; Bose, Susmita

    2005-01-01

    We have studied influence of processing parameters on the microstructure and ferroelectric properties of lead zirconate titanate (PZT)-based thick films in the range of 5-25 μm. PZT and 2% La-doped PZT thick films were processed using a modified sol-gel process. In this process, PZT- and La-doped PZT powders were first prepared via sol-gel. These powders were calcined and then used with respective sols to form a slurry. Slurry composition was optimized to spin-coat thick films on platinized Si substrate (Si/SiO 2 /Ti/Pt). Spinning rate, acceleration and slurry deposition techniques were optimized to form thick films with uniform thickness and without any cracking. Increasing solids loading was found to enhance the surface smoothness of the film and decrease porosity. Films were tested for their electrical properties and ferroelectric fatigue response. The maximum polarization obtained was 40 μC/cm 2 at 250 kV/cm for PZT thick film and 30 μC/cm 2 at 450 kV/cm for La-doped PZT thick film. After 10 9 cycles of fatiguing at 35 kHz, La-doped PZT showed better resistance for ferroelectric fatigue compared with un-doped PZT films

  4. Pyroelectricity versus conductivity in soft lead zirconate titanate (PZT) ceramics

    NARCIS (Netherlands)

    Kamel, T.M.; With, de G.

    2007-01-01

    The electrical behavior of modified soft lead zirconate titanate (PZT) ceramics has been studied as a function of temperature at different direct current (dc) electric fields and grain sizes. As ferroelectrics, such as PZT, are highly polarizable materials, poling, depolarization, and electric

  5. Ferroelectric devices using lead zirconate titanate (PZT) nanoparticles.

    Science.gov (United States)

    Paik, Young Hun; Kojori, Hossein Shokri; Kim, Sung Jin

    2016-02-19

    We successfully demonstrate the synthesis of lead zirconate titanate nanoparticles (PZT NPs) and a ferroelectric device using the synthesized PZT NPs. The crystalline structure and the size of the nanocrystals are studied using x-ray diffraction and transmission electron microscopy, respectively. We observe PZT NPs and this result matches dynamic light scattering measurements. A solution-based low-temperature process is used to fabricate PZT NP-based devices on an indium tin oxide substrate. The fabricated ferroelectric devices are characterized using various optical and electrical measurements and we verify ferroelectric properties including ferroelectric hysteresis and the ferroelectric photovoltaic effect. Our approach enables low-temperature solution-based processes that could be used for various applications. To the best of our knowledge, this low-temperature solution processed ferroelectric device using PZT NPs is the first successful demonstration of its kind.

  6. Ionic and electronic conductivity in lead-zirconate-titanate (PZT)

    NARCIS (Netherlands)

    Boukamp, Bernard A.; Pham thi ngoc mai, P.T.N.M.; Blank, David H.A.; Bouwmeester, Henricus J.M.

    2004-01-01

    Accurate impedance measurements on differently sized samples of lead–zirconate–titanate (PbZr0.53Ti0.47O3, PZT) have been analyzed with a CNLS procedure, resulting in the separation of the ionic and electronic conductivities over a temperature range from f150 to 630 jC. At 603 jC the electronic

  7. PZT Thin Film Piezoelectric Traveling Wave Motor

    Science.gov (United States)

    Shen, Dexin; Zhang, Baoan; Yang, Genqing; Jiao, Jiwei; Lu, Jianguo; Wang, Weiyuan

    1995-01-01

    With the development of micro-electro-mechanical systems (MEMS), its various applications are attracting more and more attention. Among MEMS, micro motors, electrostatic and electromagnetic, are the typical and important ones. As an alternative approach, the piezoelectric traveling wave micro motor, based on thin film material and integrated circuit technologies, circumvents many of the drawbacks of the above mentioned two types of motors and displays distinct advantages. In this paper we report on a lead-zirconate-titanate (PZT) piezoelectric thin film traveling wave motor. The PZT film with a thickness of 150 micrometers and a diameter of 8 mm was first deposited onto a metal substrate as the stator material. Then, eight sections were patterned to form the stator electrodes. The rotor had an 8 kHz frequency power supply. The rotation speed of the motor is 100 rpm. The relationship of the friction between the stator and the rotor and the structure of the rotor on rotation were also studied.

  8. Investigation of Top/bottom Electrode and Diffusion Barrier Layer for PZT thick film MEMS Sensors

    DEFF Research Database (Denmark)

    Pedersen, Thomas; Hindrichsen, Christian Carstensen; Lou-Møller, R.

    2007-01-01

    In this work screen printed piezoelectric Ferroperm PZ26 lead zirconate titanate (PZT) thick film is used for two MEMS devices. A test structure is used to investigate several aspects regarding bottom and top electrodes. 450 nm ZrO2 thin film is found to be an insufficient diffusion barrier layer...... for thick film PZT sintered at 850degC. E-beam evaporated Al and Pt is patterned on PZT with a lift-off process with a line width down to 3 mum. The roughness of the PZT is found to have a strong influence on the conductance of the top electrode....

  9. Investigation of Top/Bottom electrode and Diffusion Barrier Layer for PZT Thick Film MEMS Sensors

    DEFF Research Database (Denmark)

    Hindrichsen, Christian Carstensen; Pedersen, Thomas; Thomsen, Erik Vilain

    2008-01-01

    Top and bottom electrodes for screen printed piezoelectric lead zirconate titanate, Pb(ZrxTi1 - x)O3 (PZT) thick film are investigated with respect to future MEMS devices. Down to 100 nm thick E-beam evaporated Al and Pt films are patterned as top electrodes on the PZT using a lift-off process...... with a line width down to 3 μ m. A 700 nm thick ZrO2 layer as insolating diffusion barrier layer is found to be insufficient as barrier layer for PZT on a silicon substrate sintered at 850°C. EDX shows diffusion of Si into the PZT layer....

  10. PVDF-PZT nanocomposite film based self-charging power cell.

    Science.gov (United States)

    Zhang, Yan; Zhang, Yujing; Xue, Xinyu; Cui, Chunxiao; He, Bin; Nie, Yuxin; Deng, Ping; Lin Wang, Zhong

    2014-03-14

    A novel PVDF-PZT nanocomposite film has been proposed and used as a piezoseparator in self-charging power cells (SCPCs). The structure, composed of poly(vinylidene fluoride) (PVDF) and lead zirconate titanate (PZT), provides a high piezoelectric output, because PZT in this nanocomposite film can improve the piezopotential compared to the pure PVDF film. The SCPC based on this nanocomposite film can be efficiently charged up by the mechanical deformation in the absence of an external power source. The charge capacity of the PVDF-PZT nanocomposite film based SCPC in 240 s is ∼0.010 μA h, higher than that of a pure PVDF film based SCPC (∼0.004 μA h). This is the first demonstration of using PVDF-PZT nanocomposite film as a piezoseparator for SCPC, and is an important step for the practical applications of SCPC for harvesting and storing mechanical energy.

  11. Comparison of the Thermal Degradation of Heavily Nb-Doped and Normal PZT Thin Films.

    Science.gov (United States)

    Yang, Jeong-Suong; Kang, YunSung; Kang, Inyoung; Lim, SeungMo; Shin, Seung-Joo; Lee, JungWon; Hur, Kang Heon

    2017-03-01

    The degradation of niobium-doped lead zirconate titanate (PZT) and two types of PZT thin films were investigated. Undoped PZT, two-step PZT, and heavily Nb-doped PZT (PNZT) around the morphotropic phase boundary were in situ deposited under optimum condition by RF-magnetron sputtering. All 2- [Formula: see text]-thick films had dense perovskite columnar grain structure and self-polarized (100) dominant orientation. PZT thin films were deposited on Pt/TiO x bottom electrode on Si wafer, and PNZT thin film was on Ir/TiW electrode with the help of orientation control. Sputtered PZT films formed on microelectromechanical system (MEMS) gyroscope and the degradation rates were compared at different temperatures. PNZT showed the best resistance to the thermal degradation, followed by two-step PZT. To clarify the effect of oxygen vacancies on the degradation of the film at high temperature, photoluminescence measurement was conducted, which confirmed that oxygen vacancy rate was the lowest in heavy PNZT. Nb-doping PZT thin films suppressed the oxygen deficit and made high imprint with self-polarization. This defect distribution and high internal field allowed PNZT thin film to make the piezoelectric sensors more stable and reliable at high temperature, such as reflow process of MEMS packaging.

  12. Electric and ferroelectric properties of PZT/BLT multilayer films prepared by photochemical metal-organic deposition

    Science.gov (United States)

    Park, Hyeong-Ho; Lee, Hong-Sub; Park, Hyung-Ho; Hill, Ross H.; Hwang, Yun Taek

    2009-01-01

    The electric and ferroelectric properties of lead zirconate titanate (PZT) and lanthanum-substituted bismuth titanate (BLT) multilayer films prepared using photosensitive precursors were characterized. The electric and ferroelectric properties were investigated by studying the effect of the stacking order of four ferroelectric layers of PZT or BLT in 4-PZT, PZT/2-BLT/PZT, BLT/2-PZT/BLT, and 4-BLT multilayer films. The remnant polarization values of the 4-BLT and BLT/2-PZT/BLT multilayer films were 12 and 17 μC/cm 2, respectively. Improved ferroelectric properties of the PZT/BLT multilayer films were obtained by using a PZT intermediate layer. The films which contained a BLT layer on the Pt substrate had improved leakage currents of approximately two orders of magnitude and enhanced fatigue resistances compared to the films with a PZT layer on the Pt substrate. These improvements are due to the reduced number of defects and space charges near the Pt electrodes. The PZT/BLT multilayer films prepared by photochemical metal-organic deposition (PMOD) possessed enhanced electric and ferroelectric properties, and allow direct patterning to fabricate micro-patterned systems without dry etching.

  13. Electric and ferroelectric properties of PZT/BLT multilayer films prepared by photochemical metal-organic deposition

    International Nuclear Information System (INIS)

    Park, Hyeong-Ho; Lee, Hong-Sub; Park, Hyung-Ho; Hill, Ross H.; Hwang, Yun Taek

    2009-01-01

    The electric and ferroelectric properties of lead zirconate titanate (PZT) and lanthanum-substituted bismuth titanate (BLT) multilayer films prepared using photosensitive precursors were characterized. The electric and ferroelectric properties were investigated by studying the effect of the stacking order of four ferroelectric layers of PZT or BLT in 4-PZT, PZT/2-BLT/PZT, BLT/2-PZT/BLT, and 4-BLT multilayer films. The remnant polarization values of the 4-BLT and BLT/2-PZT/BLT multilayer films were 12 and 17 μC/cm 2 , respectively. Improved ferroelectric properties of the PZT/BLT multilayer films were obtained by using a PZT intermediate layer. The films which contained a BLT layer on the Pt substrate had improved leakage currents of approximately two orders of magnitude and enhanced fatigue resistances compared to the films with a PZT layer on the Pt substrate. These improvements are due to the reduced number of defects and space charges near the Pt electrodes. The PZT/BLT multilayer films prepared by photochemical metal-organic deposition (PMOD) possessed enhanced electric and ferroelectric properties, and allow direct patterning to fabricate micro-patterned systems without dry etching.

  14. Ferroelectric and piezoelectric properties of epitaxial PZT films and devices on silicon

    NARCIS (Netherlands)

    Nguyen, Duc Minh

    2010-01-01

    In this thesis, the integration of lead zirconate titanate Pb(Zr,Ti)O3 (PZT) thin films into piezoelectric microelectromechanical systems (MEMS) based on silicon is studied. In these structures, all epitaxial oxide layers (thin film/electrode/buffer-layer(s)) were deposited by pulsed laser

  15. Local Fatigue Evaluation in PZT Thin Films with Nanoparticles by Piezoresponse Force Microscopy

    OpenAIRE

    B. S. Li

    2012-01-01

    Lead zirconate titanate (PZT) thin films with the morphotropic phase boundary composition (Zr/Ti = 52/48) have been prepared using a modified diol-based sol-gel route by introducing 1–5 mol% barium titanate (BT) nanoseeds into the precursor solution on platinized silicon substrates (Pt/Ti/SiO2/Si). Macroscopic electric properties of PZT film with nanoparticle showed a significant improvement of ferroelectric properties. This work aims at the systematic study of the local switching polarizatio...

  16. Screen printed PZT/PZT thick film bimorph MEMS cantilever device for vibration energy harvesting

    DEFF Research Database (Denmark)

    Xu, Ruichao; Lei, Anders; Dahl-Petersen, Christian

    2012-01-01

    We present a microelectromechanical system (MEMS) based PZT/PZT thick film bimorph vibration energy harvester with an integrated silicon proof mass. Most piezoelectric energy harvesting devices use a cantilever beam of a non piezoelectric material as support beneath or in-between the piezoelectric...... elements. We show experimental results from two types PZT/PZT harvesting devices, one where the Pb(ZrxTi1−x)O3 (PZT) thick films are high pressure treated during the fabrication and the other where the treatment is omitted. We find that with the high pressure treatment prior to PZT sintering, the films...

  17. Microscopic local fatigue in PZT thin films

    International Nuclear Information System (INIS)

    Li, B S; Wu, A; Vilarinho, P M

    2007-01-01

    The reduction in switchable polarization during fatigue largely limits the application of PZT thin films in ferroelectric nonvolatile memories. So, it is very important to understand the fatigue mechanism in PZT films, especially at a nanoscale level. In this paper, nanoscale fatigue properties in PZT thin films have been studied by piezoresponse force microscopy and local piezoloops. It has been found that a piezoloop obtained on a fatigued point exhibits a much more pinched shape and a local imprint phenomenon is observed after severe fatigue. Furthermore, the domain structure evolves from a simple single-peak profile to a complex fluctuant one. However, there is only some shift of the piezoloop when a unipolar field with the same amplitude is applied on the film. The available experimental data show that there exist obvious domain wall pinning and injection of electrons into the film during fatigue. Finally, a schematic illustration is suggested to explain the possible fatigue mechanism

  18. Characterization of PZT thin films on metal substrates; Charakterisierung von PZT-Duennschichten auf Metallsubstraten

    Energy Technology Data Exchange (ETDEWEB)

    Dutschke, A.

    2008-02-02

    Lead zirconate titanate (PbZr{sub x}Ti{sub 1-x}O{sub 3},PZT) is one of the most applied ceramic materials because of its distinctive piezo- and ferroelectric properties. Prepared as thin films on flexible, metallic substrates it can be used for various applications as strain gauges, key switches, vibration dampers, microactuators and ultrasonic transducers. The aim of this work is to analyze the microstructure and the phase-content of PZT-thin films deposited on temperature- und acid-resistant hastelloy-sheets, to correlate the results with the ferroelectric and dielectric properties. It is demonstrated, that the specific variation of the microstructure can be achieved by different thermal treatments and the selective addition of Neodymium as dopant. Nd-doping leads to a shift of the maximum nucleation rate towards reduced temperatures and a decrease in the rate of growth compared to undoped films. The PZT-films are prepared by a sol-gel-process in fourfold multilayers with a composition near the morphotropic phase boundary, where the tetragonal und rhombohedral perovskite-phases coexist. The crystallisation in Nd-doped and undoped films takes place heterogeneously, preferentially at the interfaces and on the surface of the multilayered films as well as on the inner surface of pores within the films. For the first time, the Zr:Ti fluctuation phenomena emerging in sol-gel derived PZT films is related to the microstructure and the local phase content on a nanometer scale. In this connection it is proved, that long-distance Zr:Ti gradients arise preferentially before and during the crystallisation of the pyrochlore phase. During the following crystallisation of the perovskite phase, the crystallites grow across these gradients without modifying them. It is pointed out that the fluctuation in the Zr:Ti ratio has only minor influence on the amount of the tetragonal or rhombohedral distortion of the crystallites after the transition from the para- to the ferroelectric

  19. Interaction between depolarization effects, interface layer, and fatigue behavior in PZT thin film capacitors

    Science.gov (United States)

    Böttger, U.; Waser, R.

    2017-07-01

    The existence of non-ferroelectric regions in ferroelectric thin films evokes depolarization effects leading to a tilt of the P(E) hysteresis loop. The analysis of measured hysteresis of lead zirconate titanate (PZT) thin films is used to determine a depolarization factor which contains quantitative information about interfacial layers as well as ferroelectrically passive zones in the bulk. The derived interfacial capacitance is smaller than that estimated from conventional extrapolation techniques. In addition, the concept of depolarization is used for the investigation of fatigue behavior of PZT thin films indicating that the mechanism of seed inhibition, which is responsible for the effect, occurs in the entire film.

  20. Temperature dependence of PZT film optical properties

    Czech Academy of Sciences Publication Activity Database

    Deineka, Alexander; Jastrabík, Lubomír; Suchaneck, G.; Gerlach, G.

    11-12, - (2001), s. 352-354 ISSN 0447-6441 R&D Projects: GA ČR GA202/00/1425; GA MŠk LN00A015 Institutional research plan: CEZ:AV0Z1010914 Keywords : refractive index profile * PZT film * temperature dependence of optical properties Subject RIV: BH - Optics, Masers, Lasers

  1. Characterization of PZT thin films on metal substrates

    International Nuclear Information System (INIS)

    Dutschke, A.

    2008-01-01

    Lead zirconate titanate (PbZr x Ti 1-x O 3 ,PZT) is one of the most applied ceramic materials because of its distinctive piezo- and ferroelectric properties. Prepared as thin films on flexible, metallic substrates it can be used for various applications as strain gauges, key switches, vibration dampers, microactuators and ultrasonic transducers. The aim of this work is to analyze the microstructure and the phase-content of PZT-thin films deposited on temperature- und acid-resistant hastelloy-sheets, to correlate the results with the ferroelectric and dielectric properties. It is demonstrated, that the specific variation of the microstructure can be achieved by different thermal treatments and the selective addition of Neodymium as dopant. Nd-doping leads to a shift of the maximum nucleation rate towards reduced temperatures and a decrease in the rate of growth compared to undoped films. The PZT-films are prepared by a sol-gel-process in fourfold multilayers with a composition near the morphotropic phase boundary, where the tetragonal und rhombohedral perovskite-phases coexist. The crystallisation in Nd-doped and undoped films takes place heterogeneously, preferentially at the interfaces and on the surface of the multilayered films as well as on the inner surface of pores within the films. For the first time, the Zr:Ti fluctuation phenomena emerging in sol-gel derived PZT films is related to the microstructure and the local phase content on a nanometer scale. In this connection it is proved, that long-distance Zr:Ti gradients arise preferentially before and during the crystallisation of the pyrochlore phase. During the following crystallisation of the perovskite phase, the crystallites grow across these gradients without modifying them. It is pointed out that the fluctuation in the Zr:Ti ratio has only minor influence on the amount of the tetragonal or rhombohedral distortion of the crystallites after the transition from the para- to the ferroelectric state due to

  2. New fabrication of high-frequency (100-MHz) ultrasound PZT film kerfless linear array.

    Science.gov (United States)

    Zhu, Benpeng; Chan, Ngai Yui; Dai, Jiyan; Shung, K Kirk; Takeuchi, Shinichi; Zhou, Qifa

    2013-04-01

    The paper describes the design, fabrication, and measurements of a high-frequency ultrasound kerfless linear array prepared from hydrothermal lead zirconate titanate (PZT) thick film. The 15-μm hydrothermal PZT thick film with an area of 1 × 1 cm, obtained through a self-separation process from Ti substrate, was used to fabricate a 32-element 100-MHz kerfless linear array with photolithography. The bandwidth at -6 dB without matching layer, insertion loss around center frequency, and crosstalk between adjacent elements were measured to be 39%, -30 dB, and -15 dB, respectively.

  3. Temperature dependent mechanical property of PZT film: an investigation by nanoindentation.

    Science.gov (United States)

    Li, Yingwei; Feng, Shangming; Wu, Wenping; Li, Faxin

    2015-01-01

    Load-depth curves of an unpoled Lead Zirconate Titanate (PZT) film composite as a function of temperature were measured by nanoindentation technique. Its reduce modulus and hardness were calculated by the typical Oliver-Pharr method. Then the true modulus and hardness of the PZT film were assessed by decoupling the influence of substrate using methods proposed by Zhou et al. and Korsunsky et al., respectively. Results show that the indentation depth and modulus increase, but the hardness decreases at elevated temperature. The increasing of indentation depth and the decreasing of hardness are thought to be caused by the decreasing of the critical stress needed to excite dislocation initiation at high temperature. The increasing of true modulus is attributed to the reducing of recoverable indentation depth induced by back-switched domains. The influence of residual stress on the indentation behavior of PZT film composite was also investigated by measuring its load-depth curves with pre-load strains.

  4. Structural Contribution to the Ferroelectric Fatigue in Lead Zirconate Titanate (PZT) Ceramics

    OpenAIRE

    Hinterstein , Manuel; Rouquette , Jerome; Haines , J; Papet , Ph; Glaum , Julia; Knapp , Michael; Eckert , J; Hoffman , M

    2014-01-01

    International audience; Many ferroelectric devices are based on doped lead zirconate titanate (PZT) ceramics with compositions near the morphotropic phase boundary (MPB), at which the relevant material's properties approach their maximum. Based on a synchrotron x-ray diffraction study of MPB PZT, bulk fatigue is unambiguously found to arise from a less effective field induced tetragonal-to-monoclinic transformation, at which the degradation of the polarization flipping is detected by a less i...

  5. Wafer scale lead zirconate titanate film preparation by sol-gel method using stress balance layer

    International Nuclear Information System (INIS)

    Lu Jian; Kobayashi, Takeshi; Yi Zhang; Maeda, Ryutaro; Mihara, Takashi

    2006-01-01

    In this paper, platinum/titanium (Pt/Ti) film was introduced as a residual stress balance layer into wafer scale thick lead zirconate titanate (PZT) film fabrication by sol-gel method. The stress developing in PZT film's bottom electrode as well as in PZT film itself during deposition were analyzed; the wafer curvatures, PZT crystallizations and PZT electric properties before and after using Pt/Ti stress balance layer were studied and compared. It was found that this layer is effective to balance the residual stress in PZT film's bottom electrode induced by thermal expansion coefficient mismatch and Ti diffusion, thus can notably reduce the curvature of 4-in. wafer from - 40.5 μm to - 12.9 μm after PZT film deposition. This stress balance layer was also found effective to avoid the PZT film cracking even when annealed by rapid thermal annealing with heating-rate up to 10.5 deg. C/s. According to X-ray diffraction analysis and electric properties characterization, crack-free uniform 1-μm-thick PZT film with preferred pervoskite (001) orientation, excellent dielectric constant, as high as 1310, and excellent remanent polarization, as high as 39.8 μC/cm 2 , can be obtained on 4-in. wafer

  6. PZT Thin-Film Micro Probe Device with Dual Top Electrodes

    Science.gov (United States)

    Luo, Chuan

    Lead zirconate titanate (PZT) thin-film actuators have been studied intensively for years because of their potential applications in many fields. In this dissertation, a PZT thin-film micro probe device is designed, fabricated, studied, and proven to be acceptable as an intracochlear acoustic actuator. The micro probe device takes the form of a cantilever with a PZT thin-film diaphragm at the tip of the probe. The tip portion of the probe will be implanted in cochlea later in animal tests to prove its feasibility in hearing rehabilitation. The contribution of the dissertation is three-fold. First, a dual top electrodes design, consisting of a center electrode and an outer electrode, is developed to improve actuation displacement of the PZT thin-film diaphragm. The improvement by the dual top electrodes design is studied via a finite element model. When the dimensions of the dual electrodes are optimized, the displacement of the PZT thin-film diaphragm increases about 30%. A PZT thin-film diaphragm with dual top electrodes is fabricated to prove the concept, and experimental results confirm the predictions from the finite element analyses. Moreover, the dual electrode design can accommodate presence of significant residual stresses in the PZT thin-film diaphragm by changing the phase difference between the two electrodes. Second, a PZT thin-film micro probe device is fabricated and tested. The fabrication process consists of PZT thin-film deposition and deep reactive ion etching (DRIE). The uniqueness of the fabrication process is an automatic dicing mechanism that allows a large number of probes to be released easily from the wafer. Moreover, the fabrication is very efficient, because the DRIE process will form the PZT thin-film diaphragm and the special dicing mechanism simultaneously. After the probes are fabricated, they are tested with various possible implantation depths (i.e., boundary conditions). Experimental results show that future implantation depths

  7. Mems-based pzt/pzt bimorph thick film vibration energy harvester

    DEFF Research Database (Denmark)

    Xu, Ruichao; Lei, Anders; Dahl-Petersen, Christian

    2011-01-01

    We describe fabrication and characterization of a significantly improved version of a MEMS-based PZT/PZT thick film bimorph vibration energy harvester with an integrated silicon proof mass. The main advantage of bimorph vibration energy harvesters is that strain energy is not lost in mechanical...... support materials since only PZT is strained, and thus it has a potential for significantly higher output power. An improved process scheme for the energy harvester resulted in a robust fabrication process with a record high fabrication yield of 98.6%. Moreover, the robust fabrication process allowed...... a high pressure treatment of the screen printed PZT thick films prior to sintering, improving the PZT thick film performance and harvester power output reaches 37.1 μW at 1 g....

  8. Fabrication and characterization of MEMS-based PZT/PZT bimorph thick film vibration energy harvesters

    DEFF Research Database (Denmark)

    Xu, Ruichao; Lei, Anders; Dahl-Petersen, Christian

    2012-01-01

    We describe the fabrication and characterization of a significantly improved version of a microelectromechanical system-based PZT/PZT thick film bimorph vibration energy harvester with an integrated silicon proof mass; the harvester is fabricated in a fully monolithic process. The main advantage...... yield of 98%. The robust fabrication process allowed a high pressure treatment of the screen printed PZT thick films prior to sintering. The high pressure treatment improved the PZT thick film performance and increased the harvester power output to 37.1 μW at 1 g root mean square acceleration. We also...... characterize the harvester performance when only one of the PZT layers is used while the other is left open or short circuit....

  9. Screen printed PZT/PZT thick film bimorph MEMS cantilever device for vibration energy harvesting

    DEFF Research Database (Denmark)

    Xu, R.; Lei, A.; Christiansen, T. L.

    2011-01-01

    We present a MEMS-based PZT/PZT thick film bimorph vibration energy harvester with an integrated silicon proof mass. The most common piezoelectric energy harvesting devices utilize a cantilever beam of a non piezoelectric material as support beneath or in-between the piezoelectric material...

  10. PZT piezoelectric films on glass for Gen-X imaging

    Science.gov (United States)

    Wilke, Rudeger H. T.; Trolier-McKinstry, Susan; Reid, Paul B.; Schwartz, Daniel A.

    2010-09-01

    The proposed adaptive optics system for the Gen-X telescope uses piezoelectric lead zirconate titanate (PZT) films deposited on flexible glass substrates. The low softening transition of the glass substrates imposes several processing challenges that require the development of new approaches to deposit high quality PZT thin films. Synthesis and optimization of chemical solution deposited 1 μm thick films of PbZr0.52Ti0.48O3 on small area (1 in2) and large area (16 in2) Pt/Ti/glass substrates has been performed. In order to avoid warping of the glass at temperatures typically used to crystallize PZT films ({700°C), a lower temperature, two-step crystallization process was employed. An {80 nm thick seed layer of PbZr0.30Ti0.70O3 was deposited to promote the growth of the perovskite phase. After the deposition of the seed layer, the films were annealed in a rapid thermal annealing (RTA) furnace at 550°C for 3 minutes to nucleate the perovskite phase. This was followed by isothermal annealing at 550°C for 1 hour to complete crystallization. For the subsequent PbZr0.52Ti0.48O3 layers, the same RTA protocol was performed, with the isothermal crystallization implemented following the deposition of three PbZr0.52Ti0.48O3 spin-coated layers. Over the frequency range of 1 kHz to 100 kHz, films exhibit relative permittivity values near 800 with loss tangents below 0.07. Hysteresis loops show low levels of imprint with coercive fields of 40-50 kV/cm in the forward direction and 50-70 kV/cm in the reverse direction. The remanent polarization varied from 25-35 μC/cm2 and e31,f values were approximately -5.0 C/m2. In scaling up the growth procedure to large area films, where warping becomes more pronounced due to the increased size of the substrate, the pyrolysis and crystallization conditions were performed in a box furnace to improve the temperature uniformity. By depositing films on both sides of the glass substrate, the tensile stresses are balanced, providing a

  11. Design, Modeling and Optimization of a Piezoelectric Pressure Sensor based on a Thin-Film PZT Membrane Containing Nanocrystalline Powders

    Directory of Open Access Journals (Sweden)

    Vahid MOHAMMADI

    2009-11-01

    Full Text Available In this paper fabrication of a 0-3 ceramic/ceramic composite lead zirconate titanate, Pb(Zr0.52Ti0.48O3 thin film has been presented and then a pressure sensor based on multilayer thin-film PZT diaphragm contain of Lead Zirconate Titanate nanocrystalline powders was designed, modeled and optimized. Dynamics characteristics of this multilayer diaphragm have been investigated by ANSYS® FE software. By this simulation the effective parameters of the multilayer PZT diaphragm for improving the performance of a pressure sensor in different ranges of pressure are optimized. The optimized thickness ratio of PZT layer to SiO2 was given in the paper to obtain the maximum deflection of the multilayer thin-film PZT diaphragm. A 0-3 ceramic/ceramic composite lead zirconate titanate, Pb(Zr0.52Ti0.48O3 film has been developed to fabricate the pressure sensor by a hybrid sol gel process. PZT nanopowders fabricated via conventional sol gel method and uniformly dispersed in PZT precursor solution by an attrition mill. XRD analysis shows that perovskite structure would be formed due to the presence of a significant amount of ceramic nanopowders. This texture has a good effect on piezoelectric properties of perovskite structure. The film forms a strongly bonded network and less shrinkage occurs, so the films do not crack during process. Also the aspect ratio through this process would be increased. SEM micrographs indicated that PZT films were uniform, crack free and have a composite microstructure and a piezoelectric coefficient d31 of -40 pC.N-1 and d33 ranged from 50pm.N-1 to 60pm.N-1.

  12. Advantages of PZT thick film for MEMS sensors

    DEFF Research Database (Denmark)

    Hindrichsen, Christian Carstensen; Lou-Moller, R.; Hansen, K.

    2010-01-01

    For all MEMS devices a high coupling between the mechanical and electrical domain is desired. Figures of merit describing the coupling are important for comparing different piezoelectric materials. The existing figures of merit are discussed and a new figure of merit is introduced for a fair comp....... Improved figure of merit is reached in the piezoelectric PZT thick film, TF2100CIP, by using cold isostatic pressure in the PZT preparation process. The porosity of TF2100 is decreased 38%, hence, allowing an increase of charge sensitivity for MEMS sensors of 59%....... thin film and PZT thick film. It is shown that MEMS sensors with the PZT thick film TF2100 from InSensor A/S have potential for significant higher voltage sensitivities compared to PZT thin film base MEMS sensors when the total thickness of the MEMS cantilever, beam, bridge or membrane is high...

  13. Stacking effect on the ferroelectric properties of PZT/PLZT multilayer thin films formed by photochemical metal-organic deposition

    International Nuclear Information System (INIS)

    Park, Hyeong-Ho; Park, Hyung-Ho; Hill, Ross H.

    2004-01-01

    The ferroelectric properties of lead zirconate titanate (PZT) and lanthanum-doped lead zirconate titanate (PLZT) multilayer films formed by photochemical metal-organic deposition (PMOD) using photosensitive precursors have been characterized. The substitution of La for Pb was reported to induce improved ferroelectric properties, especially fatigue resistance, through the reduction of oxygen vacancies. The relation between La-substitution and the ferroelectric properties was investigated by characterization of the effect of the order of stacking four ferroelectric layers of PZT or PLZT in the multilayer films 4-PZT, PZT/2-PLZT/PZT, PLZT/2-PZT/PLZT, and 4-PLZT. The films with the PLZT layer at the top and bottom showed an improvement in the fatigue resistance. It was revealed that defect dipole such as O vacancy was reduced at the ferroelectric/Pt interface by doping with La. Also, the bottom layer, just on Pt substrate had a significant influence on the surface microstructure and growth orientation of ferroelectric film

  14. Modified lead titanate thin films for pyroelectric infrared detectors on gold electrodes

    Science.gov (United States)

    Ahmed, Moinuddin; Butler, Donald P.

    2015-07-01

    Pyroelectric infrared detectors provide the advantage of both a wide spectral response and dynamic range, which also has enabled systems to be developed with reduced size, weight and power consumption. This paper demonstrates the deposition of lead zirconium titanate (PZT) and lead calcium titanate (PCT) thin films for uncooled pyroelectric detectors with the utilization of gold electrodes. The modified lead titanate thin films were deposited by pulsed laser deposition on gold electrodes. The PZT and PCT thins films deposited and annealed at temperatures of 650 °C and 550 °C respectively demonstrated the best pyroelectric performance in this work. The thin films displayed a pyroelectric effect that increased with temperature. Poling of the thin films was carried out for a fixed time periods and fixed dc bias voltages at elevated temperature in order to increase the pyroelectric coefficient by establishing a spontaneous polarization of the thin films. Poling caused the pyroelectric current to increase one order of magnitude.

  15. Improvement of the fatigue and the ferroelectric properties of PZT films through a LSCO seed layer

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Sofia A.S., E-mail: sofiarodrigues@fisica.uminho.pt; Silva, José P.B.; Khodorov, Anatoli; Martín-Sánchez, Javier; Pereira, M.; Gomes, M.J.M.

    2013-11-01

    Highlights: • Pulsed laser deposited PZT thin films. • Seed layer effect on the structural and ferroelectric properties of the PZT films. • The stability of P{sub r} was improved with the introduction of the LSCO layer. -- Abstract: The ability to optimizate the preparation of Lead Zirconate Titanate (PZT) films on platinized Si substrate by pulsed laser deposition was demonstrated. The effect of the modification of the interface film/electrode through the use of a (La,Sr)CoO{sub 3} (LSCO) seed layer on the remnant polarization, fatigue endurance and stress in PZT films was studied. An improvement on the ferroelectric properties was found with the using of the LSCO layer. A remnant polarization (P{sub r}) of 19.8 μC/cm{sup 2} and 4.4 μC/cm{sup 2} for films with and without the LSCO layer were found. In the same way the polarization fatigue decreases significantly after deposition of the LSCO layer between the film and substrate. Atomic force microscopy (AFM) images revealed a different growth process in the films. Current–voltage (I–V) measurements showed that the use of LSCO seed layer improves the leakage current and, on the other hand the conduction mechanisms in the film without LSCO, after the fatigue test, was found to be changed from Schottky to Poole–Frenkel. The trap activation energy (about 0.14 eV) determined from Poole–Frenkel mode agrees well with the energy level of oxygen vacancies. The films stresses were estimated by XRD in order to explain the improvement on the structure and consequentially ferroelectric properties of the films. The model proposed by Dawber and Scott was found to be in agreement with our experimental data, which seems to predict that the oxygen vacancies play an important role on fatigue.

  16. Dielectric and acoustical high frequency characterisation of PZT thin films

    International Nuclear Information System (INIS)

    Conde, Janine; Muralt, Paul

    2010-01-01

    Pb(Zr, Ti)O 3 (PZT) is an interesting material for bulk acoustic wave resonator applications due to its high electromechanical coupling constant, which would enable fabrication of large bandwidth frequency filters. The major challenge of the PZT solid solution system is to overcome mechanical losses generally observed in PZT ceramics. To increase the understanding of these losses in textured thin films, thin film bulk acoustic resonators (TFBAR's) based on PZT thin films with compositions either in the tetragonal region or at the morphotropic phase boundary and (111) or {100} textures were fabricated and studied up to 2 GHz. The dielectric and elastic materials coefficients were extracted from impedance measurements at the resonance frequency. The dispersion of the dielectric constant was obtained from impedance measurements up to 2 GHz. The films with varying compositions, textures and deposition methods (sol-gel or sputtering) were compared in terms of dielectric and acoustical properties.

  17. Dielectric and acoustical high frequency characterisation of PZT thin films

    Science.gov (United States)

    Conde, Janine; Muralt, Paul

    2010-02-01

    Pb(Zr, Ti)O3 (PZT) is an interesting material for bulk acoustic wave resonator applications due to its high electromechanical coupling constant, which would enable fabrication of large bandwidth frequency filters. The major challenge of the PZT solid solution system is to overcome mechanical losses generally observed in PZT ceramics. To increase the understanding of these losses in textured thin films, thin film bulk acoustic resonators (TFBAR's) based on PZT thin films with compositions either in the tetragonal region or at the morphotropic phase boundary and (111) or {100} textures were fabricated and studied up to 2 GHz. The dielectric and elastic materials coefficients were extracted from impedance measurements at the resonance frequency. The dispersion of the dielectric constant was obtained from impedance measurements up to 2 GHz. The films with varying compositions, textures and deposition methods (sol-gel or sputtering) were compared in terms of dielectric and acoustical properties.

  18. Electro-Caloric Properties of BT/PZT Multilayer Thin Films Prepared by Sol-Gel Method.

    Science.gov (United States)

    Kwon, Min-Su; Lee, Sung-Gap; Kim, Kyeong-Min

    2018-09-01

    In this study, Barium Titanate (BT)/Lead Zirconate Titanate (PZT) multilayer thin films were fabricated by the spin-coating method on Pt (200 nm)/Ti (10 nm) SiO2 (100 nm)/P-Si (100) substrates using BaTiO3 and Pb(Zr0.90Ti0.10)O3 metal alkoxide solutions. The coating and heating procedure was repeated several times to form the multilayer thin films. All of BT/PZT multilayer thin films show X-ray diffraction patterns typical to a polycrystalline perovskite structure and a uniform and void free grain microstructure. The thickness of the BT and PZT film by one-cycle of drying/sintering was approximately 50 nm and all of the films consisted of fine grains with a flat surface morphology. The electrocaloric properties of BT/PZT thin films were investigated by indirect estimation. The results showed that the temperature change ΔT can be calculated as a function of temperature using Maxwell's relation; the temperature change reaches a maximum value of ~1.85 °C at 135 °C under an applied electric field of 260 kV/cm.

  19. Ga+ implantation in a PZT film during focused ion beam micro-machining

    International Nuclear Information System (INIS)

    Wollschlaeger, Nicole; Oesterle, Werner; Haeusler, Ines; Stewart, Mark

    2015-01-01

    The objective of the present work was to study the impact of Focused Ion Beam (FIB) machining parameters on the thickness of the damaged layer within a thin film PZT. Therefore, different Ga + - ion doses and ion energies were applied to a standard PZT film (80/20 lead zirconium titanate) under two beam incidence angles (90 and 1 ). The thicknesses of the corresponding Ga + -implanted layers were then determined by cross-sectional TEM in combination with energy dispersive spectroscopic (EDS) line-scans and correlated with polarisation hysteresis loops. The results show a decrease of Ga + -implanted layer thickness with decreasing inclination angle, whereas ion energy and ion dose could be correlated with gallium concentration in the implanted layers. Under the most unfavorable conditions the depth of the affected zone was 26 nm, it was only 2 nm for the most favorable conditions. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Biotemplated Synthesis of PZT Nanowires

    Science.gov (United States)

    2013-11-25

    electromechanical coupling coefficient , Y is the Young’s modulus, and Ri is intrinsic resistance. The PZT nanowire- based film is taken to have negligible...robotic actuation, and bioMEMS. Lead zirconate titanate ( PZT ), in particular, has attracted significant attention, owing to its superior...electromechanical conversion performance. Yet, the ability to synthesize crystalline PZT nanowires with reproducible and well-controlled properties remains a

  1. Microstructure of lead zirconium titanate (PZT) by electron microscopy

    International Nuclear Information System (INIS)

    Bursill, L.A.; Peng JuLin

    1989-01-01

    Transmission and high-resolution electron microscopy reveal the microtexture of lead zirconium titanate ceramics. Fine scale (≤ 500 Aangstroem) ferroelastic and ferroelectric twin domains, as well as dislocations were found in a complex texture. Correlations between stoichiometry, microstructure and piezoelectric properties are discussed. 6 refs., 3 figs

  2. Study on optimizing ultrasonic irradiation period for thick polycrystalline PZT film by hydrothermal method.

    Science.gov (United States)

    Ohta, Kanako; Isobe, Gaku; Bornmann, Peter; Hemsel, Tobias; Morita, Takeshi

    2013-04-01

    The hydrothermal method utilizes a solution-based chemical reaction to synthesize piezoelectric thin films and powders. This method has a number of advantages, such as low-temperature synthesis, and high purity and high quality of the product. In order to promote hydrothermal reactions, we developed an ultrasonic assisted hydrothermal method and confirmed that it produces dense and thick lead-zirconate-titanate (PZT) films. In the hydrothermal method, a crystal growth process follows the nucleation process. In this study, we verified that ultrasonic irradiation is effective for the nucleation process, and there is an optimum irradiation period to obtain thicker PZT films. With this optimization, a 9.2-μm-thick PZT polycrystalline film was obtained in a single deposition process. For this film, ultrasonic irradiation was carried out from the beginning of the reaction for 18 h, followed by a 6 h deposition without ultrasonic irradiation. These results indicate that the ultrasonic irradiation mainly promotes the nucleation process. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Hydrothermally synthesized PZT film grown in highly concentrated KOH solution with large electromechanical coupling coefficient for resonator

    Science.gov (United States)

    Feng, Guo-Hua; Lee, Kuan-Yi

    2017-12-01

    This paper presents a study of lead zirconate titanate (PZT) films hydrothermally grown on a dome-shaped titanium diaphragm. Few articles in the literature address the implementation of hydrothermal PZT films on curved-diaphragm substrates for resonators. In this study, a 50-μm-thick titanium sheet is embossed using balls of designed dimensions to shape a dome-shaped cavity array. Through single-process hydrothermal synthesis, PZT films are grown on both sides of the processed titanium diaphragm with good adhesion and uniformity. The hydrothermal synthesis process involves a high concentration of potassium hydroxide solution and excess amounts of lead acetate and zirconium oxychloride octahydrate. Varied deposition times and temperatures of PZT films are investigated. The grown films are characterized by X-ray diffraction and scanning electron microscopy. The 10-μm-thick PZT dome-shaped resonators with 60- and 20-μm-thick supporting layers are implemented and further tested. Results for both resonators indicate that large electromechanical coupling coefficients and a series resonance of 95 MHz from 14 MHz can be attained. The device is connected to a complementary metal-oxide-semiconductor integrated circuit for analysis of oscillator applications. The oscillator reaches a Q value of 6300 in air. The resonator exhibits a better sensing stability when loaded with water when compared with air.

  4. Study of mechanical-magnetic and electromagnetic properties of PZT/Ni film systems by a novel bulge technique

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Q.; Zhou, W.; Ding, J.; Xiao, M. [School of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Key Laboratory of Film Materials and Devices of Science and Technology Department of Hunan Province, Xiangtan University, Hunan 411105 (China); Yu, Z.J.; Xu, H. [State Key Lab for Turbulence and Complex Systems, Peking University, Beijing 100871 (China); Mao, W.G., E-mail: ssamao@126.com [School of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Key Laboratory of Film Materials and Devices of Science and Technology Department of Hunan Province, Xiangtan University, Hunan 411105 (China); Pei, Y.M.; Li, F.X. [State Key Lab for Turbulence and Complex Systems, Peking University, Beijing 100871 (China); Feng, X. [AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China); Fang, D.N., E-mail: fangdn@pku.edu.cn [State Key Lab for Turbulence and Complex Systems, Peking University, Beijing 100871 (China); Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081 (China)

    2017-02-01

    A novel multiple functional bulge apparatus was designed to study the mechanical-electronic-magnetic characteristics of electromagnetic materials. The elastic modulus difference effect of Ni thin film was observed and it was about 22.16% in the demagnetized and magnetization saturated states. The mechanical-magnetic behaviors of Ni and lead-titanate zirconate (PZT)/Ni films were in-situ measured by using the new bulge systems, respectively. The evolutions of three key material properties in hysteresis loop including saturation magnetization, remanent magnetization and coercive field were discussed in detail, respectively. The mechanisms of mechanical-magnetic coupled behaviors of Ni and PZT/Ni films were analyzed with the aid of the competitive relationship of stress and magnetization. Similarly, the electronic-magnetic characteristics of PZT/Ni films were in-situ measured by using this experimental system. The evolution of saturated magnetization, remanent magnetization and coercive field Kerr signals were discussed with the magneto-elastic anisotropy energy point. In this paper, a suitable mechanical-electronic-magnetic bulge measurement system was established, which would provide a good choice for further understanding the multi field coupling characteristics of electromagnetic film materials. - Highlights: • A novel bulge apparatus was designed to study electromagnetic materials. • The mechanical-magnetic features of Ni film were studied by this new apparatus. • The ΔE effect of Ni film was observed and analyzed. • The mechanical electronic-magnetic characteristics of PZT/Ni film were discussed.

  5. MEMS-based thick film PZT vibrational energy harvester

    DEFF Research Database (Denmark)

    Lei, Anders; Xu, Ruichao; Thyssen, Anders

    2011-01-01

    We present a MEMS-based unimorph silicon/PZT thick film vibrational energy harvester with an integrated proof mass. We have developed a process that allows fabrication of high performance silicon based energy harvesters with a yield higher than 90%. The process comprises a KOH etch using a mechan......We present a MEMS-based unimorph silicon/PZT thick film vibrational energy harvester with an integrated proof mass. We have developed a process that allows fabrication of high performance silicon based energy harvesters with a yield higher than 90%. The process comprises a KOH etch using...... a mechanical front side protection of an SOI wafer with screen printed PZT thick film. The fabricated harvester device produces 14.0 μW with an optimal resistive load of 100 kΩ from 1g (g=9.81 m s-2) input acceleration at its resonant frequency of 235 Hz....

  6. Temperature dependent mechanical property of PZT film: an investigation by nanoindentation.

    Directory of Open Access Journals (Sweden)

    Yingwei Li

    Full Text Available Load-depth curves of an unpoled Lead Zirconate Titanate (PZT film composite as a function of temperature were measured by nanoindentation technique. Its reduce modulus and hardness were calculated by the typical Oliver-Pharr method. Then the true modulus and hardness of the PZT film were assessed by decoupling the influence of substrate using methods proposed by Zhou et al. and Korsunsky et al., respectively. Results show that the indentation depth and modulus increase, but the hardness decreases at elevated temperature. The increasing of indentation depth and the decreasing of hardness are thought to be caused by the decreasing of the critical stress needed to excite dislocation initiation at high temperature. The increasing of true modulus is attributed to the reducing of recoverable indentation depth induced by back-switched domains. The influence of residual stress on the indentation behavior of PZT film composite was also investigated by measuring its load-depth curves with pre-load strains.

  7. Flexible PZT Thin Film Tactile Sensor for Biomedical Monitoring

    Directory of Open Access Journals (Sweden)

    Wen-Jong Wu

    2013-04-01

    Full Text Available This paper presents the development of tactile sensors using the sol-gel process to deposit a PZT thin-film from 250 nm to 1 μm on a flexible stainless steel substrate. The PZT thin-film tactile sensor can be used to measure human pulses from several areas, including carotid, brachial, finger, ankle, radial artery, and the apical region. Flexible PZT tactile sensors can overcome the diverse topology of various human regions and sense the corresponding signals from human bodies. The measured arterial pulse waveform can be used to diagnose hypertension and cardiac failure in patients. The proposed sensors have several advantages, such as flexibility, reliability, high strain, low cost, simple fabrication, and low temperature processing. The PZT thin-film deposition process includes a pyrolysis process at 150 °C/500 °C for 10/5 min, followed by an annealing process at 650 °C for 10 min. Finally, the consistent pulse wave velocity (PWV was demonstrated based on human pulse measurements from apical to radial, brachial to radial, and radial to ankle. It is characterized that the sensitivity of our PZT-based tactile sensor was approximately 0.798 mV/g.

  8. Flexible PZT thin film tactile sensor for biomedical monitoring.

    Science.gov (United States)

    Tseng, Hong-Jie; Tian, Wei-Cheng; Wu, Wen-Jong

    2013-04-25

    This paper presents the development of tactile sensors using the sol-gel process to deposit a PZT thin-film from 250 nm to 1 μm on a flexible stainless steel substrate. The PZT thin-film tactile sensor can be used to measure human pulses from several areas, including carotid, brachial, finger, ankle, radial artery, and the apical region. Flexible PZT tactile sensors can overcome the diverse topology of various human regions and sense the corresponding signals from human bodies. The measured arterial pulse waveform can be used to diagnose hypertension and cardiac failure in patients. The proposed sensors have several advantages, such as flexibility, reliability, high strain, low cost, simple fabrication, and low temperature processing. The PZT thin-film deposition process includes a pyrolysis process at 150 °C/500 °C for 10/5 min, followed by an annealing process at 650 °C for 10 min. Finally, the consistent pulse wave velocity (PWV) was demonstrated based on human pulse measurements from apical to radial, brachial to radial, and radial to ankle. It is characterized that the sensitivity of our PZT-based tactile sensor was approximately 0.798 mV/g.

  9. Lanthanide-Assisted Deposition of Strongly Electro-optic PZT Thin Films on Silicon: Toward Integrated Active Nanophotonic Devices.

    Science.gov (United States)

    George, J P; Smet, P F; Botterman, J; Bliznuk, V; Woestenborghs, W; Van Thourhout, D; Neyts, K; Beeckman, J

    2015-06-24

    The electro-optical properties of lead zirconate titanate (PZT) thin films depend strongly on the quality and crystallographic orientation of the thin films. We demonstrate a novel method to grow highly textured PZT thin films on silicon using the chemical solution deposition (CSD) process. We report the use of ultrathin (5-15 nm) lanthanide (La, Pr, Nd, Sm) based intermediate layers for obtaining preferentially (100) oriented PZT thin films. X-ray diffraction measurements indicate preferentially oriented intermediate Ln2O2CO3 layers providing an excellent lattice match with the PZT thin films grown on top. The XRD and scanning electron microscopy measurements reveal that the annealed layers are dense, uniform, crack-free and highly oriented (>99.8%) without apparent defects or secondary phases. The EDX and HRTEM characterization confirm that the template layers act as an efficient diffusion barrier and form a sharp interface between the substrate and the PZT. The electrical measurements indicate a dielectric constant of ∼650, low dielectric loss of ∼0.02, coercive field of 70 kV/cm, remnant polarization of 25 μC/cm(2), and large breakdown electric field of 1000 kV/cm. Finally, the effective electro-optic coefficients of the films are estimated with a spectroscopic ellipsometer measurement, considering the electric field induced variations in the phase reflectance ratio. The electro-optic measurements reveal excellent linear effective pockels coefficients of 110 to 240 pm/V, which makes the CSD deposited PZT thin film an ideal candidate for Si-based active integrated nanophotonic devices.

  10. Nonlinear current-voltage behavior in PZT thin films

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Mi; Zhang, Weikang; Zhang, Zebin; Li, Shida; Zhang, Ping; Lan, Kuibo [Tianjin University, School of Electrical and Information Engineering, Tianjin (China)

    2017-05-15

    In this paper, Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} (PZT) thin films were prepared by sol-gel synthesis and characterized by X-ray diffraction, field emission scanning electron microscopy and current-voltage measurements. Here, we demonstrate that in addition to the outstanding ferroelectric and dielectric properties, the PZT films also have remarkably nonlinear current-voltage characteristics. Considering the contact of semi-conductive grains in the PZT films, a double Schottky barrier (DSB) model may be responsible for such phenomena. The test results show that with the decrease of annealing temperature and the increase of the film thickness, the threshold voltages (V{sub th}) increase obviously. The maximum V{sub th} value of 60.95 V and the minimum value of 6.9 V in our experiments were obtained from the five-layered samples annealed at 600 C and the two-layered samples annealed at 700 C, respectively. As a result, PZT thin film may lead to efficient switching and sensing devices. (orig.)

  11. Adhesion strength of lead zirconate titanate sol-gel thin films

    Energy Technology Data Exchange (ETDEWEB)

    Berfield, Thomas A., E-mail: tom.berfield@louisville.edu [Department of Mechanical Engineering, University of Louisville, Louisville, KY 40292 (United States); Kitey, Rajesh [Department of Aerospace Engineering, Indian Institute of Technology Kanpur, Kanpur (India); Kandula, Soma S. [Intel Corporation, Portland, OR (United States)

    2016-01-01

    The adhesion strength between a thin film and substrate is often the critical parameter that controls the initiation as well as the mode of film failure. In this work, a laser-based spallation method is used to determine the adhesion strength of “as deposited” lead zirconate titanate (PZT) sol-gel thin films on the two functionally different substrates. For the first case, PZT sol-gel film is deposited onto bare Si/SiO{sub 2} substrates via spin casting. The extremely high adhesion strength between the film and the substrate necessitated an additional platinum mass superlayer to be deposited on top of the PZT film in order to induce interfacial failure. For the superlayer film system, a hybrid experimental/numerical method is employed for determining the substrate/film interfacial strength, quantified to be in the range of 460–480 MPa. A second substrate variation with lower adhesion strength is also prepared by applying a self-assembled octadecyltrichlorosilane (ODS) monolayer to the Si/SiO{sub 2} substrate prior to the film deposition. For the monolayer-coated substrate case, the adhesion strength is observed to be significantly lower (54.7 MPa) when compared to the earlier case. - Highlights: • A non-contact laser spallation method is used to determine PZT film adhesion. • A mediated self-assembled monolayer is shown to greatly reduce interface strength. • Adhesion strength for even well-bonded thin films was found using a superlayer.

  12. The Effect of Acceptor and Donor Doping on Oxygen Vacancy Concentrations in Lead Zirconate Titanate (PZT).

    Science.gov (United States)

    Slouka, Christoph; Kainz, Theresa; Navickas, Edvinas; Walch, Gregor; Hutter, Herbert; Reichmann, Klaus; Fleig, Jürgen

    2016-11-22

    The different properties of acceptor-doped (hard) and donor-doped (soft) lead zirconate titanate (PZT) ceramics are often attributed to different amounts of oxygen vacancies introduced by the dopant. Acceptor doping is believed to cause high oxygen vacancy concentrations, while donors are expected to strongly suppress their amount. In this study, La 3+ donor-doped, Fe 3+ acceptor-doped and La 3+ /Fe 3+ -co-doped PZT samples were investigated by oxygen tracer exchange and electrochemical impedance spectroscopy in order to analyse the effect of doping on oxygen vacancy concentrations. Relative changes in the tracer diffusion coefficients for different doping and quantitative relations between defect concentrations allowed estimates of oxygen vacancy concentrations. Donor doping does not completely suppress the formation of oxygen vacancies; rather, it concentrates them in the grain boundary region. Acceptor doping enhances the amount of oxygen vacancies but estimates suggest that bulk concentrations are still in the ppm range, even for 1% acceptor doping. Trapped holes might thus considerably contribute to the charge balancing of the acceptor dopants. This could also be of relevance in understanding the properties of hard and soft PZT.

  13. The Effect of Acceptor and Donor Doping on Oxygen Vacancy Concentrations in Lead Zirconate Titanate (PZT

    Directory of Open Access Journals (Sweden)

    Christoph Slouka

    2016-11-01

    Full Text Available The different properties of acceptor-doped (hard and donor-doped (soft lead zirconate titanate (PZT ceramics are often attributed to different amounts of oxygen vacancies introduced by the dopant. Acceptor doping is believed to cause high oxygen vacancy concentrations, while donors are expected to strongly suppress their amount. In this study, La3+ donor-doped, Fe3+ acceptor-doped and La3+/Fe3+-co-doped PZT samples were investigated by oxygen tracer exchange and electrochemical impedance spectroscopy in order to analyse the effect of doping on oxygen vacancy concentrations. Relative changes in the tracer diffusion coefficients for different doping and quantitative relations between defect concentrations allowed estimates of oxygen vacancy concentrations. Donor doping does not completely suppress the formation of oxygen vacancies; rather, it concentrates them in the grain boundary region. Acceptor doping enhances the amount of oxygen vacancies but estimates suggest that bulk concentrations are still in the ppm range, even for 1% acceptor doping. Trapped holes might thus considerably contribute to the charge balancing of the acceptor dopants. This could also be of relevance in understanding the properties of hard and soft PZT.

  14. Triaxial MEMS accelerometer with screen printed PZT thick film

    DEFF Research Database (Denmark)

    Hindrichsen, Christian Carstensen; Almind, Ninia Sejersen; Brodersen, Simon Hedegaard

    2010-01-01

    . In this work integration of a screen printed piezoelectric PZT thick film with silicon MEMS technology is shown. A high bandwidth triaxial accelerometer has been designed, fabricated and characterized. The voltage sensitivity is 0.31 mV/g in the vertical direction, 0.062 mV/g in the horizontal direction...

  15. Presentation and characterization of novel thick-film PZT microactuators

    Energy Technology Data Exchange (ETDEWEB)

    Chalvet, Vincent; Habineza, Didace, E-mail: didace.habineza@femto-st.fr; Rakotondrabe, Micky; Clévy, Cédric

    2016-04-01

    We propose in this paper the characterization of a new generation of piezoelectric cantilevers called thick-films piezoelectric actuators. Based on the bonding and thinning process of a bulk PZT layer onto a silicon layer, these cantilevers can provide better static and dynamic performances compared to traditional piezocantilevers, additionally to the small dimensions.

  16. Dielectric and acoustical high frequency characterisation of PZT thin films

    Energy Technology Data Exchange (ETDEWEB)

    Conde, Janine; Muralt, Paul, E-mail: janine.conde@epfl.ch [Department of Materials Science, EPFL (Switzerland)

    2010-02-15

    Pb(Zr, Ti)O{sub 3} (PZT) is an interesting material for bulk acoustic wave resonator applications due to its high electromechanical coupling constant, which would enable fabrication of large bandwidth frequency filters. The major challenge of the PZT solid solution system is to overcome mechanical losses generally observed in PZT ceramics. To increase the understanding of these losses in textured thin films, thin film bulk acoustic resonators (TFBAR's) based on PZT thin films with compositions either in the tetragonal region or at the morphotropic phase boundary and (111) or {l_brace}100{r_brace} textures were fabricated and studied up to 2 GHz. The dielectric and elastic materials coefficients were extracted from impedance measurements at the resonance frequency. The dispersion of the dielectric constant was obtained from impedance measurements up to 2 GHz. The films with varying compositions, textures and deposition methods (sol-gel or sputtering) were compared in terms of dielectric and acoustical properties.

  17. Structural, dielectric and ferroelectric characterization of PZT thin films

    Directory of Open Access Journals (Sweden)

    Araújo E.B.

    1999-01-01

    Full Text Available In this work ferroelectric thin films of PZT were prepared by the oxide precursor method, deposited on Pt/Si substrate. Films of 0.5 mm average thickness were obtained. Electrical and ferroelectric characterization were carried out in these films. The measured value of the dielectric constant for films was 455. Ferroelectricity was confirmed by Capacitance-Voltage (C-V characteristics and P-E hysteresis loops. Remanent polarization for films presented value around 5.0 µC/cm2 and a coercive field of 88.8 kV/cm.

  18. Effect of polarization fatigue on the Rayleigh coefficients of ferroelectric lead zirconate titanate thin films: Experimental evidence and implications

    Science.gov (United States)

    Lou, X. J.; Zhang, H. J.; Luo, Z. D.; Zhang, F. P.; Liu, Y.; Liu, Q. D.; Fang, A. P.; Dkhil, B.; Zhang, M.; Ren, X. B.; He, H. L.

    2014-09-01

    The effect of polarization fatigue on the Rayleigh coefficients of ferroelectric lead zirconate titanate (PZT) thin film was systematically investigated. It was found that electrical fatigue strongly affects the Rayleigh behaviour of the PZT film. Both the reversible and irreversible Rayleigh coefficients decrease with increasing the number of switching cycles. This phenomenon is attributed to the growth of an interfacial degraded layer between the electrode and the film during electrical cycling. The methodology used in this work could serve as an alternative way for evaluating the fatigue endurance and degradation in dielectric properties of ferroelectric thin-film devices during applications.

  19. On the use of non-MPB lead zirconium titanate (PZT) granules for piezoelectric ceramic–polymer sensorial composites

    NARCIS (Netherlands)

    Shaji Karapuzha, A.; Kunnamkuzhakkal James, N.; van der Zwaag, S.; Groen, W.A.

    2016-01-01

    Modern flexible and sensitive sensors based on polymer–ceramic composites employ lead zirconate titanate (PZT) granulates having the morphotropic phase boundary (MPB) composition as the piezo active ingredient, as this composition gives the best properties in fully ceramic piezoelectric sensors.

  20. On the use of non-MPB lead zirconium titanate (PZT) granules for piezoelectric ceramic–polymer sensorial composites

    NARCIS (Netherlands)

    Shaji Karapuzha, A.; Zwaag, S. van der; Groen, W.A.

    2016-01-01

    Modern flexible and sensitive sensors based on polymer–ceramic composites employ lead zirconate titanate (PZT) granulates having the morphotropic phase boundary (MPB) composition as the piezo active ingredient, as this composition gives the best properties in fully ceramic piezoelectric sensors. In

  1. Deposition of highly (111)-oriented PZT thin films by using metal organic chemical deposition

    CERN Document Server

    Bu, K H; Choi, D K; Seong, W K; Kim, J D

    1999-01-01

    Lead zirconate titanate (PZT) thin films have been grown on Pt/Ta/SiNx/Si substrates by using metal organic chemical vapor deposition with Pb(C sub 2 H sub 5) sub 4 , Zr(O-t-C sub 4 H sub 9) sub 4 , and Ti(O-i-C sub 3 H sub 7) sub 4 as source materials and O sub 2 as an oxidizing gas. The Zr fraction in the thin films was controlled by varying the flow rate of the Zr source material. The crystal structure and the electrical properties were investigated as functions of the composition. X-ray diffraction analysis showed that at a certain range of Zr fraction, highly (111)-oriented PZT thin films with no pyrochlore phases were deposited. On the other hand, at low Zr fractions, there were peaks from Pb-oxide phases. At high Zr fractions, peaks from pyrochlore phase were seen. The films also showed good electrical properties, such as a high dielectric constant of more than 1200 and a low coercive voltage of 1.35 V.

  2. Comparison of chemical solution deposition systems for the fabrication of lead zirconate titanate thin films

    International Nuclear Information System (INIS)

    Lecarpentier, F.; Daglish, M.; Kemmitt, T.

    2001-01-01

    Ferroelectric thin films of lead zirconate titanate Pb(Zr x Ti 1-x )O 3 (PZT) were prepared from five chemical solution deposition (CSD) systems, namely methoxyethanol, citrate, diol, acetic acid and triethanolamine. Physical characteristics of the solutions, processing parameters and physical and electrical properties of the films were used to assess the relative advantages and disadvantages of the different chemical systems. All the CSD systems decomposed to produce single phase perovskite PZT at temperatures above 650 deg C. Thin film deposition was influenced by the specific characteristics of each system such as wetting on the substrate and viscosity. Distinct precursor effects on the thin film crystallinity and electrical performance were revealed. The diol route yielded films with the highest crystallite size, highest permittivity and lowest loss tangent. The relative permittivity exhibited by films made by the other routes were 25% to 35% lower at equivalent thicknesses. Copyright (2001) The Australian Ceramic Society

  3. Far infrared and Raman response in tetragonal PZT ceramic films

    Energy Technology Data Exchange (ETDEWEB)

    Buixaderas, E.; Kadlec, C.; Vanek, P.; Drnovsek, S.; Ursic, H.; Malic, B.

    2015-07-01

    PbZr{sub 0}.38Ti{sub 0}.62O{sub 3} and PbZr{sub 0}.36Ti{sub 0}.64{sub O}3 thick films deposited by screen printing on (0 0 0 1) single crystal sapphire substrates and prepared at two different sintering temperatures, were studied by Fourier-transform infrared reflectivity, time-domain TH{sub z} transmission spectroscopy and micro-Raman spectroscopy. The dielectric response is discussed using the Lichtenecker model to account for the porosity of the films and to obtain the dense bulk dielectric functions. Results are compared with bulk tetragonal PZT 42/58 ceramics. The dynamic response in the films is dominated by an overdamped lead-based vibration in the TH{sub z} range, as known in PZT, but its evaluated dielectric contribution is affected by the porosity and roughness of the surface. (Author)

  4. Measurement of effective piezoelectric coefficients of PZT thin films for energy harvesting application with interdigitated electrodes.

    Science.gov (United States)

    Chidambaram, Nachiappan; Mazzalai, Andrea; Muralt, Paul

    2012-08-01

    Interdigitated electrode (IDE) systems with lead zirconate titanate (PZT) thin films play an increasingly important role for two reasons: first, such a configuration generates higher voltages than parallel plate capacitor-type electrode (PPE) structures, and second, the application of an electric field leads to a compressive stress component in addition to the overall stress state, unlike a PPE structure, which results in tensile stress component. Because ceramics tend to crack at relatively moderate tensile stresses, this means that IDEs have a lower risk of cracking than PPEs. For these reasons, IDE systems are ideal for energy harvesting of vibration energy, and for actuators. Systematic investigations of PZT films with IDE systems have not yet been undertaken. In this work, we present results on the evaluation of the in-plane piezoelectric coefficients with IDE systems. Additionally, we also propose a simple and measurable figure of merit (FOM) to analyze and evaluate the relevant piezoelectric parameter for harvesting efficiency without the need to fabricate the energy harvesting device. Idealized effective coefficients e(IDE) and h(IDE) are derived, showing its composite nature with about one-third contribution of the transverse effect, and about two-thirds contribution of the longitudinal effect in the case of a PZT film deposited on a (100)-oriented silicon wafer with the in-plane electric field along one of the Si directions. Randomly oriented 1-μm-thick PZT 53/47 film deposited by a sol-gel technique, was evaluated and yielded an effective coefficient e(IDE) of 15 C·m(-2). Our FOM is the product between effective e and h coefficient representing twice the electrical energy density stored in the piezoelectric film per unit strain deformation (both for IDE and PPE systems). Assuming homogeneous fields between the fingers, and neglecting the contribution from below the electrode fingers, the FOM for IDE structures with larger electrode gap is derived to be

  5. Effect of the Crystal Structure on the Electrical Properties of Thin-Film PZT Structures

    Science.gov (United States)

    Delimova, L. A.; Gushchina, E. V.; Zaitseva, N. V.; Seregin, D. S.; Vorotilov, K. A.; Sigov, A. S.

    2018-03-01

    A new method of two-stage crystallization of lead zirconate-titanate (PZT) films using a seed sublayer with a low excess lead content has been proposed and realized. A seed layer with a strong texture of perovskite Pe(111) grains is formed from a solution with a lead excess of 0-5 wt %; the fast growth of the grains is provided by the deposition of the main film from a solution with high lead content. As a result, a strong Pe(111) texture with complete suppression of the Pe(100) orientation forms. An analysis of current-voltage dependences of the transient currents and the distributions of the local conductivity measured by the contact AFM method reveals two various mechanisms of current percolation that are determined by traps in the bulk and at the perovskite grain interfaces.

  6. Influence of crystal phases on electro-optic properties of epitaxially grown lanthanum-modified lead zirconate titanate films

    Science.gov (United States)

    Masuda, Shin; Seki, Atsushi; Masuda, Yoichiro

    2010-02-01

    We describe here how we have improved the crystal qualities and controlled the crystal phase of the lanthanum-modified lead zirconate titanate (PLZT) film without changing the composition ratio using an oxygen-pressure crystallization process. A PLZT film deposited on a SrTiO3 substrate with the largest electro-optic (EO) coefficient of 498 pm/V has been achieved by controlling the crystal phase of the film. Additionally, a fatigue-free lead zirconate titanate (PZT) capacitor with platinum electrodes has been realized by reducing the oxygen vacancies in the films.

  7. Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates.

    Science.gov (United States)

    Park, Kwi-Il; Son, Jung Hwan; Hwang, Geon-Tae; Jeong, Chang Kyu; Ryu, Jungho; Koo, Min; Choi, Insung; Lee, Seung Hyun; Byun, Myunghwan; Wang, Zhong Lin; Lee, Keon Jae

    2014-04-23

    A highly-efficient, flexible piezoelectric PZT thin film nanogenerator is demonstrated using a laser lift-off (LLO) process. The PZT thin film nanogenerator harvests the highest output performance of ∼200 V and ∼150 μA·cm(-2) from regular bending motions. Furthermore, power sources generated from a PZT thin film nanogenerator, driven by slight human finger bending motions, successfully operate over 100 LEDs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Sputtered highly oriented PZT thin films for MEMS applications

    Science.gov (United States)

    Kalpat, Sriram S.

    Recently there has been an explosion of interest in the field of micro-electro-mechanical systems (MEMS). MEMS device technology has become critical in the growth of various fields like medical, automotive, chemical, and space technology. Among the many applications of ferroelectric thin films in MEMS devices, microfluidics is a field that has drawn considerable amount of research from bio-technology industries as well as chemical and semiconductor manufacturing industries. PZT thin films have been identified as best suited materials for micro-actuators and micro-sensors used in MEMS devices. A promising application for piezoelectric thin film based MEMS devices is disposable drug delivery systems that are capable of sensing biological parameters, mixing and delivering minute and precise amounts of drugs using micro-pumps or micro mixers. These devices call for low driving voltages, so that they can be battery operated. Improving the performance of the actuator material is critical in achieving battery operated disposal drug delivery systems. The device geometry and power consumption in MEMS devices largely depends upon the piezoelectric constant of the films, since they are most commonly used to convert electrical energy into a mechanical response of a membrane or cantilever and vice versa. Phenomenological calculation on the crystal orientation dependence of piezoelectric coefficients for PZT single crystal have reported a significant enhancement of the piezoelectric d33 constant by more than 3 times along [001] in the rhombohedral phase as compared to the conventionally used orientation PZT(111) since [111] is the along the spontaneous polarization direction. This could mean considerable improvement in the MEMS device performance and help drive the operating voltages lower. The motivation of this study is to investigate the crystal orientation dependence of both dielectric and piezoelectric coefficients of PZT thin films in order to select the appropriate

  9. Fabrication and Characterization of PZT Thick Films for Sensing and Actuation

    Directory of Open Access Journals (Sweden)

    Kuo-Ching Kuo

    2007-04-01

    Full Text Available Lead Zirconate Titanate oxide (PZT thick films with thicknesses of up to 10 μmwere developed using a modified sol-gel technique. Usually, the film thickness is less than1 μm by conventional sol-gel processing, while the electrical charge accumulation whichreveals the direct effect of piezoelectricity is proportional to the film thickness and thereforerestricted. Two approaches were adopted to conventional sol-gel processing – precursorconcentration modulation and rapid thermal annealing. A 10 μm thick film was successfullyfabricated by coating 16 times via this technique. The thickness of each coating layer wasabout 0.6 μm and the morphology of the film was dense with a crack-free area as large as 16mm2. In addition, the structure, surface morphology and physical properties werecharacterized by X-ray diffraction (XRD, scanning electron microscopy (SEM and atomicforce microscopy (AFM and electrical performance. The dielectric constant and hysteresisloops were measured as electric characteristics. This study investigates the actuation andsensing performance of the vibrating structures with the piezoelectric thick film. Theactuation tests demonstrated that a 4 mm x 4 mm x 6.5 μm PZT film drove a 40 mm x 7 mmx 0.5 mm silicon beam as an actuator. Additionally, it generated an electrical signal of 60mVpp as a sensor, while vibration was input by a shaker. The frequencies of the first twomodes of the beam were compared with the theoretical values obtained by Euler-Bernoullibeam theory. The linearity of the actuation and sensing tests were also examined.

  10. Ga{sup +} implantation in a PZT film during focused ion beam micro-machining

    Energy Technology Data Exchange (ETDEWEB)

    Wollschlaeger, Nicole; Oesterle, Werner; Haeusler, Ines [Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin (Germany); Stewart, Mark [National Physical Laboratory, Hampton Road, Teddington Middlesex TW 11 0LW (United Kingdom)

    2015-03-01

    The objective of the present work was to study the impact of Focused Ion Beam (FIB) machining parameters on the thickness of the damaged layer within a thin film PZT. Therefore, different Ga{sup +}- ion doses and ion energies were applied to a standard PZT film (80/20 lead zirconium titanate) under two beam incidence angles (90 and 1 ). The thicknesses of the corresponding Ga{sup +}-implanted layers were then determined by cross-sectional TEM in combination with energy dispersive spectroscopic (EDS) line-scans and correlated with polarisation hysteresis loops. The results show a decrease of Ga{sup +}-implanted layer thickness with decreasing inclination angle, whereas ion energy and ion dose could be correlated with gallium concentration in the implanted layers. Under the most unfavorable conditions the depth of the affected zone was 26 nm, it was only 2 nm for the most favorable conditions. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Film-thickness and composition dependence of epitaxial thin-film PZT-based

    NARCIS (Netherlands)

    Nguyen, Duc Minh; Dekkers, Jan M.; Vu, Hung Ngoc; Rijnders, Augustinus J.H.M.

    2013-01-01

    The transverse piezoelectric coefficient e31,f and mass-sensitivity were measured on piezoelectric cantilevers based on epitaxial PZT thin-films with film-thicknesses ranging from 100 to 2000 nm. The highest values of e31,f and mass-sensitivity were observed at a film thickness of 500–750 nm, while

  12. High temperature phases in PZT ferroelectric films

    Czech Academy of Sciences Publication Activity Database

    Deineka, Alexander; Suchaneck, G.; Jastrabík, Lubomír; Gerlach, G.

    2003-01-01

    Roč. 293, - (2003), s. 111-118 ISSN 0015-0193 R&D Projects: GA ČR GP202/02/D078; GA MŠk LN00A015 Institutional research plan: CEZ:AV0Z1010914 Keywords : ferroelectric film * phase transition * film profile Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.406, year: 2003

  13. Design and fabrication of aspherical bimorph PZT optics

    CERN Document Server

    Tseng, T C; Yeh, Z C; Perng, S Y; Wang, D J; Kuan, C K; Chen, J R; Chen, C T

    2001-01-01

    Bimorph piezoelectric optics with a third-order-polynomial surface is designed and a prototype is fabricated as active optics. Two pairs of silicon (Si) and lead zirconate titanate (PZT) piezoelectric ceramic are bonded as Si-PZT-PZT-Si together with a multi-electrode or thin film resistor coating used as the control electrode between Si and PZT and metallic films as grounding between the interface of PZT ceramics. A linear voltage is applied to the bimorph PZT optics by probing the control electrodes from a two-channel controllable power supplier. In doing so, the optics surface can achieve a desired third-order-polynomial surface. Reducing hysteresis and creep in bimorph PZT X-ray optics is the only feasible way by inserting an appropriate capacitor in series with bimorph PZT optics to significantly reduce both effects.

  14. Infrared characterization of strontium titanate thin films

    International Nuclear Information System (INIS)

    Almeida, B.G.; Pietka, A.; Mendes, J.A.

    2004-01-01

    Strontium titanate thin films have been prepared at different oxygen pressures with various post-deposition annealing treatments. The films were deposited by pulsed laser ablation at room temperature on Si(0 0 1) substrates with a silica buffer layer. Infrared reflectance measurements were performed in order to determine relevant film parameters such as layer thicknesses and chemical composition. The infrared reflectance spectra were fitted by using adequate dielectric function forms for each layer. The fitting procedure provided the extraction of the dielectric functions of the strontium titanate film, the silica layer and the substrate. The as-deposited films are found to be amorphous, and their infrared spectra present peaks corresponding to modes with high damping constants. As the annealing time and temperature increases the strontium titanate layer becomes more ordered so that it can be described by its SrTiO 3 bulk mode parameters. Also, the silica layer grows along with the ordering of the strontium titanate film, due to oxidation during annealing

  15. Texture variations in sol-gel derived PZT films on substrates with platinum metallization

    NARCIS (Netherlands)

    Gardeniers, Johannes G.E.; Elwenspoek, Michael Curt; Cobianu, C.

    1994-01-01

    Metalorganic precursor solutions of composition Zr : Ti = 0.53 : 0.47 were used to spin-cast PZT layers on sputtered Pt films. After annealing at temperatures of 550 °C - 800 °C, the PZT films of tetragonal perovskite structure reproducibly showed different textures and surface morphologies,

  16. Reduction of etching damage in lead-zirconate-titanate thin films with inductively coupled plasma

    International Nuclear Information System (INIS)

    Lim, Kyu-Tae; Kim, Kyoung-Tae; Kim, Dong-Pyo; Kim, Chang-Il

    2003-01-01

    In this work, we etched lead-zirconate-titanate (PZT) films with various additive gases (O 2 and Ar) in Cl 2 /CF 4 plasmas, while mixing ratio was fixed at 8/2. After the etching, the plasma induced damages are characterized in terms of hysteresis curves, leakage current, retention properties, and switching polarization. When the electrical properties of PZT etched in O 2 or Ar added to Cl 2 /CF 4 were compared, the value of remanent polarization in O 2 added to Cl 2 /CF 4 plasma is higher than that in Ar added plasma. The maximum etch rate of the PZT thin films was 145 nm/min for 30% Ar added Cl 2 /CF 4 gas having mixing ratio of 8/2 and 110 nm/min for 10% O 2 added to that same gas mixture. In order to recover the ferroelectric properties of the PZT thin films after etching, we annealed the etched PZT thin films at 550 deg. C in an O 2 atmosphere for 10 min. From the hysteresis curves, leakage current, retention property, and switching polarization, the reduction of the etching damage and the recovery via the annealing turned out to be more effective when O 2 was added to Cl 2 /CF 4 than Ar. X-ray diffraction showed that the structural damage was lower when O 2 was added to Cl 2 /CF 4 and the improvement in the ferroelectric properties of the annealed samples was consistent with the increased intensities of the (100) and the (200) PZT peaks

  17. A concept for the development of piezoceramic materials based on lead zirconate titanate (PZT). Part 2; Ein Entwicklungskonzept piezokeramischer Werkstoffe auf der Basis von Bleizirkonattitanat (PZT). Teil 2

    Energy Technology Data Exchange (ETDEWEB)

    Helke, G. [CeramTec AG, Lauf a.d. Pegnitz (Germany)

    2002-07-01

    Piezoceramic ceramics based on Lead Zircontate Titanate (PZT) show - within a relatively close Zr/Ti ratio range (close to the ratio 0.5/0.5) - extreme values for remanent polarization P{sub r} and the dielectric coefficient {epsilon}{sub 33}{sup {tau}}/{epsilon}{sub 0} as well as their corresponding piezoelectric coefficients. Remanent polarization P{sub t} can be directly correlated to the structural parameter {delta} (spontaneous deformation) and the domain mobility {eta}. PZT modification results from the substitution of isovalent or heterovalent ions, thereby taking ion radii and valency at the A and B sites of the perovskite-type lattice under consideration. The substitution of specific ions is the process used to develop new piezoceramic materials which is mainly applied to determine the values of specific parameters corresponding to technical requirements. (orig.) [German] Piezoelektrische Keramiken auf der Basis von Bleizirkonattitanat (PZT) weisen in einem relativ engen Bereich des Zr/Ti-Verhaeltnisses (nahe dem Verhaeltnis 0,5/0,5). Extremwerte der remanenten Polarisation P{sub r} und der Dielektrizitaetskonstanten {epsilon}{sub 33}{sup {tau}}/{epsilon}{sub 0} sowie der von ihnen abhaengigen piezoelektrischen Kenngroessen auf. Die remanente Polarisation P{sub r} laesst sich unmittelbar dem Strukturparameter {delta} (spontane Deformation) und der Domaenenbeweglichkeit {eta} zuordnen. Die Modifikation von PZT erfolgt durch Substitution isovalenter oder heterovalenter Ionen unter Beruecksichtigung von Ionenradien und -wertigkeit auf A- und B-Plaetzen des Perowskigitters. Die Substitution bestimmter Ionen ist das Verfahren zur Schaffung neuer piezokeramischer Werkstoffe und wird insbesondere zur Einstellung der Werte einzelner Kenngroessen auf einem bestimmten Niveau entsprechend den technischen Anforderungen angewendet. (orig.)

  18. A concept for the development of piezoceramic materials based on lead zirconate titanate (PZT). Part 1; Ein Entwicklungskonzept piezokeramischer Werkstoffe auf der Basis von Gleizirkonattitanat (PZT). Teil 1

    Energy Technology Data Exchange (ETDEWEB)

    Helke, G. [CeramTec AG, Lauf a.d. Pegnitz (Germany)

    2002-07-01

    Piezoceramic ceramics based on Lead Zircontate Titanate (PZT) show - within a relatively close Zr/Ti ratio range (close to the ratio 0.5/0.5) - extreme values for remanent polarization P{sub r} and the dielectric coefficient {epsilon}{sub 33}{sup {tau}}/{epsilon}{sub 0} as well as their corresponding piezoelectric coefficients. Remanent polarization P{sub t} can be directly correlated to the structural parameter {delta} (spontaneous deformation) and the domain mobility {eta}. PZT modification results from the substitution of isovalent or heterovalent ions, thereby taking ion radii and valency at the A and B sites of the perovskite-type lattice under consideration. The substitution of specific ions is the process used to develop new piezoceramic materials which is mainly applied to determine the values of specific parameters corresponding to technical requirements. (orig.) [German] Piezoelektrische Keramiken auf der Basis von Bleizirkonattitanat (PZT) weisen in einem relativ engen Bereich des Zr/Ti-Verhaeltnisses (nahe dem Verhaeltnis 0,5/0,5). Extremwerte der remanenten Polarisation P{sub r} und der Dielektrizitaetskonstanten {epsilon}{sub 33}{sup {tau}}/{epsilon}{sub 0} sowie der von ihnen abhaengigen piezoelektrischen Kenngroessen auf. Die remanente Polarisation P{sub r} laesst sich unmittelbar dem Strukturparameter {delta} (spontane Deformation) und der Domaenenbeweglichkeit {eta} zuordnen. Die Modifikation von PZT erfolgt durch Substitution isovalenter oder heterovalenter Ionen unter Beruecksichtigung von Ionenradien und -wertigkeit auf A- und B-Plaetzen des Perowskigitters. Die Substitution bestimmter Ionen ist das Verfahren zur Schaffung neuer piezokeramischer Werkstoffe und wird insbesondere zur Einstellung der Werte einzelner Kenngroessen auf einem bestimmten Niveau entsprechend den technischen Anforderungen angewendet. (orig.)

  19. PZT thin film actuated elastic fin micromotor.

    Science.gov (United States)

    Dubois, M A; Muralt, P

    1998-01-01

    A piezoelectric elastic fin micromotor based on a PbZr(0.53 )Ti(0.47)O(3) thin film driving a micromachined silicon membrane was fabricated and studied. The stator was characterized by interferometry, and a laser set-up was used to measure the angular velocity and acceleration of the motor. The torque, the output power, and the efficiency of the device were extracted from these measurements. Values up to 1020 rpm and 0.94 microNm were observed for the velocity and the torque, respectively, which would be sufficient for a wristwatch application. The present version exhibited an efficiency of 0.17%, which could theoretically be increased to 4.8%

  20. Piezoelectric Lead Zirconate Titanate (PZT) Ring Shaped Contour-Mode MEMS Resonators

    Science.gov (United States)

    Kasambe, P. V.; Asgaonkar, V. V.; Bangera, A. D.; Lokre, A. S.; Rathod, S. S.; Bhoir, D. V.

    2018-02-01

    Flexibility in setting fundamental frequency of resonator independent of its motional resistance is one of the desired criteria in micro-electromechanical (MEMS) resonator design. It is observed that ring-shaped piezoelectric contour-mode MEMS resonators satisfy this design criterion than in case of rectangular plate MEMS resonators. Also ring-shaped contour-mode piezoelectric MEMS resonator has an advantage that its fundamental frequency is defined by in-plane dimensions, but they show variation of fundamental frequency with different Platinum (Pt) thickness referred as change in ratio of fNEW /fO . This paper presents the effects of variation in geometrical parameters and change in piezoelectric material on the resonant frequencies of Platinum piezoelectric-Aluminium ring-shaped contour-mode MEMS resonators and its electrical parameters. The proposed structure with Lead Zirconate Titanate (PZT) as the piezoelectric material was observed to be a piezoelectric material with minimal change in fundamental resonant frequency due to Platinum thickness variation. This structure was also found to exhibit extremely low motional resistance of 0.03 Ω as compared to the 31-35 Ω range obtained when using AlN as the piezoelectric material. CoventorWare 10 is used for the design, simulation and corresponding analysis of resonators which is Finite Element Method (FEM) analysis and design tool for MEMS devices.

  1. Metalorganic solution deposition of lead zirconate titanate films onto an additively manufactured Ni-based superalloy

    International Nuclear Information System (INIS)

    Patel, T.; Khassaf, H.; Vijayan, S.; Bassiri-Gharb, N.; Aindow, M.; Alpay, S.P.; Hebert, R.J.

    2017-01-01

    Recent advances in additive manufacturing of high-temperature alloys for structural aerospace applications has led to interest in integrating additional functionality into such parts. Lead zirconate titanate (PZT) is a prototypical ferroelectric ceramic used as the electro-active material in many piezoelectric sensors and actuators. In this study, 300 nm thick PbZr_0_._2Ti_0_._8O_3 (PZT 20/80) films were grown using metalorganic solution deposition onto additively manufactured substrates of Inconel 718. The microstructures of the films and the nature of the film/substrate interfaces were characterized using a combination of X-ray diffraction and electron microscopy techniques. Electrical measurements were performed to determine the ferroelectric, dielectric, and conductive responses of the PZT films. Our findings show that the PZT films exhibit robust ferroelectricity characterized by well-defined polarization-applied electric field (P-E) hysteresis loops. The samples display internal bias of up to ∼40 kV/cm. The room temperature remnant polarization and the small signal dielectric permittivity are ∼70 μC/cm"2 and 205, respectively. The dielectric loss (tan δ) and the leakage current at 1 kHz are 9% and 1 nA at 1 V, respectively. We attribute the internal bias observed in the hysteresis loops and the overall large dielectric losses to the presence of an intermediate oxide layer at the PZT/Inconel interface, which forms during the high temperature crystallization of the ferroelectric film. These results show that it is possible to grow functional oxides with promising electrical properties onto additively manufactured metallic substrates.

  2. Pulsed laser deposition of piezoelectric lead zirconate titanate thin films maintaining a post-CMOS compatible thermal budget

    Science.gov (United States)

    Schatz, A.; Pantel, D.; Hanemann, T.

    2017-09-01

    Integration of lead zirconate titanate (Pb[Zrx,Ti1-x]O3 - PZT) thin films on complementary metal-oxide semiconductor substrates (CMOS) is difficult due to the usually high crystallization temperature of the piezoelectric perovskite PZT phase, which harms the CMOS circuits. In this work, a wafer-scale pulsed laser deposition tool was used to grow 1 μm thick PZT thin films on 150 mm diameter silicon wafers. Three different routes towards a post-CMOS compatible deposition process were investigated, maintaining a post-CMOS compatible thermal budget limit of 445 °C for 1 h (or 420 °C for 6 h). By crystallizing the perovskite LaNiO3 seed layer at 445 °C, the PZT deposition temperature can be lowered to below 400 °C, yielding a transverse piezoelectric coefficient e31,f of -9.3 C/m2. With the same procedure, applying a slightly higher PZT deposition temperature of 420 °C, an e31,f of -10.3 C/m2 can be reached. The low leakage current density of below 3 × 10-6 A/cm2 at 200 kV/cm allows for application of the post-CMOS compatible PZT thin films in low power micro-electro-mechanical-systems actuators.

  3. Properties of RF-Sputtered PZT Thin Films with Ti/Pt Electrodes

    Directory of Open Access Journals (Sweden)

    Cui Yan

    2014-01-01

    Full Text Available Effect of annealing temperature and thin film thickness on properties of Pb(Zr0.53Ti0.47O3 (PZT thin film deposited via radiofrequency magnetron sputtering technique onto Pt/Ti/SiO2/Si substrate was investigated. Average grain sizes of the PZT thin film were measured by atomic force microscope; their preferred orientation was studied through X-ray diffraction analysis. Average residual stress in the thin film was estimated according to the optimized Stoney formula, and impedance spectroscopy characterization was performed via an intelligent LCR measuring instrument. Average grain sizes of PZT thin films were 60 nm~90 nm and their average roughness was less than 2 nm. According to X-ray diffraction analysis, 600°C is the optimal annealing temperature to obtain the PZT thin film with better crystallization. Average residual stress showed that thermal mismatch was the decisive factor of residual stress in Pt/Ti/SiO2/Si substrate; the residual stress in PZT thin film decreased as their thickness increased and increased with annealing temperature. The dielectric constant and loss angle tangent were extremely increased with the thickness of PZT thin films. The capacitance of the device can be adjusted according to the thickness of PZT thin films.

  4. Transverse piezoelectric coefficient measurement of flexible lead zirconate titanate thin films

    Energy Technology Data Exchange (ETDEWEB)

    Dufay, T.; Guiffard, B.; Seveno, R. [LUNAM Université, Université de Nantes, IETR (Institut d' Électronique et de Télécommunications de Rennes), UMR CNRS 6164, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3 (France); Thomas, J.-C. [LUNAM Université, Université de Nantes-École Centrale Nantes, GeM (Institut de Recherche en Génie Civil et Ingénierie Mécanique), UMR CNRS 6183, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3 (France)

    2015-05-28

    Highly flexible lead zirconate titanate, Pb(Zr,Ti)O{sub 3} (PZT), thin films have been realized by modified sol-gel process. The transverse piezoelectric coefficient d{sub 31} was determined from the tip displacement of bending-mode actuators made of PZT cantilever deposited onto bare or RuO{sub 2} coated aluminium substrate (16 μm thick). The influence of the thickness of ruthenium dioxide RuO{sub 2} and PZT layers was investigated for Pb(Zr{sub 0.57}Ti{sub 0.43})O{sub 3}. The modification of Zr/Ti ratio from 40/60 to 60/40 was done for 3 μm thick PZT thin films onto aluminium (Al) and Al/RuO{sub 2} substrates. A laser vibrometer was used to measure the beam displacement under controlled electric field. The experimental results were fitted in order to find the piezoelectric coefficient. Very large tip deflections of about 1 mm under low voltage (∼8 V) were measured for every cantilevers at the resonance frequency (∼180 Hz). For a given Zr/Ti ratio of 58/42, it was found that the addition of a 40 nm thick RuO{sub 2} interfacial layer between the aluminium substrate and the PZT layer induces a remarkable increase of the d{sub 31} coefficient by a factor of 2.7, thus corresponding to a maximal d{sub 31} value of 33 pC/N. These results make the recently developed PZT/Al thin films very attractive for both low frequency bending mode actuating applications and vibrating energy harvesting.

  5. Phase and Texture Evolution in Chemically Derived PZT Thin Films on Pt Substrates

    Science.gov (United States)

    2014-09-01

    function of heating rate. The FWHM of the Ill PZT texture components is sim 2978 Journal of the American Ceramic Society Mhin et al. Vol. 97, No. 9...Z39.18 ABSTRACT Phase and Texture Evolution in Chemically Derived PZT Thin Films on Pt Substrates Report Title The crystallization of lead zirconate...phase influencing texture evolution. The results suggest that PZT nucleates directly on Pt, which explains the observation of a more highly oriented

  6. Synthesis, Structural, Optical and Dielectric Properties of Nanostructured 0-3 PZT/PVDF Composite Films.

    Science.gov (United States)

    Revathi, S; Kennedy, L John; Basha, S K Khadheer; Padmanabhan, R

    2018-07-01

    Nanostructured PbZr0.52Ti0.48O3 (PZT) powder was synthesized at 500 °C-800 °C using sol-gel route. X-ray diffraction and Rietveld analysis confirmed the formation of perovskite structure. The sample heat treated at 800 °C alone showed the formation of morphotropic phase boundary with coexistence of tetragonal and rhombohedral phase. The PZT powder and PVDF were used in 0-3 connectivity to form the PZT/PVDF composite film using solvent casting method. The composite films containing 10%, 50%, 70% and 80% volume fraction of PZT in PVDF were fabricated. The XRD spectra validated that the PZT structure remains unaltered in the composites and was not affected by the presence of PVDF. The scanning electron microscopy images show good degree of dispersion of PZT in PVDF matrix and the formation of pores at higher PZT loading. The quantitative analysis of elements and their composition were confirmed from energy dispersive X-ray analysis. The optical band gap of the PVDF film is 3.3 eV and the band gap decreased with increase in volume fraction of PZT fillers. The FTIR spectra showed the bands corresponding to different phases of PVDF (α, β, γ) and perovskite phase of PZT. The thermogravimetric analysis showed that PZT/PVDF composite films showed better thermal stability than the pure PVDF film and hydrophobicity. The dielectric constant was measured at frequency ranging from 1 Hz to 6 MHz and for temperature ranging from room temperature to 150 °C. The composite with 50% PZT filler loading shows the maximum dielectric constant at the studied frequency and temperature range with flexibility.

  7. Improvement in fatigue property for a PZT ferroelectric film device with SRO electrode film prepared by chemical solution deposition

    International Nuclear Information System (INIS)

    Miyazaki, H.; Miwa, Y.; Suzuki, H.

    2007-01-01

    PZT films with (1 0 0) and (1 1 0) orientation were prepared by spin coating using the chemical solution deposition (CSD) method on an SRO/Si or a Pt/Ti/SiO 2 /Si substrate. The remnant polarization and the saturation polarization of the PZT/SRO/Si film were 21 and 35 μC/cm 2 , and those of the PZT/Pt/Ti/SiO 2 /Si film were 20 and 31 μC/cm 2 . The remnant polarization of the PZT/SRO/Si film maintained more than 10 8 switching cycles, and the fatigue property was observed for the PZT film fabricated on the Pt/Ti/SiO 2 /Si electrode

  8. Non-aqueous electrochemical deposition of lead zirconate titanate films for flexible sensor applications

    Science.gov (United States)

    Joseph, Sherin; Kumar, A. V. Ramesh; John, Reji

    2017-11-01

    Lead zirconate titanate (PZT) is one of the most important piezoelectric materials widely used for underwater sensors. However, PZTs are hard and non-compliant and hence there is an overwhelming attention devoted toward making it flexible by preparing films on flexible substrates by different routes. In this work, the electrochemical deposition of composition controlled PZT films over flexible stainless steel (SS) foil substrates using non-aqueous electrolyte dimethyl sulphoxide (DMSO) was carried out. Effects of various key parameters involved in electrochemical deposition process such as current density and time of deposition were studied. It was found that a current density of 25 mA/cm2 for 5 min gave a good film. The morphology and topography evaluation of the films was carried out by scanning electron microscopy (SEM) and atomic force microscopy (AFM), respectively, which showed a uniform morphology with a surface roughness of 2 nm. The PZT phase formation was studied using X-ray diffraction (XRD) and corroborated with Raman spectroscopic studies. The dielectric constant, dielectric loss, hysteresis and I-V characteristics of the film was evaluated.

  9. Clamping effect on the piezoelectric responses of screen-printed low temperature PZT/Polymer films on flexible substrates

    Science.gov (United States)

    Almusallam, A.; Yang, K.; Zhu, D.; Torah, R. N.; Komolafe, A.; Tudor, J.; Beeby, S. P.

    2015-11-01

    This paper introduces a new flexible lead zirconate titanate (PZT)/polymer composite material that can be screen-printed onto fabrics and flexible substrates, and investigates the clamping effect of these substrates on the characterization of the piezoelectric material. Experimental results showed that the optimum blend of PZT/polymer binder with a weight ratio of 12:1 provides a dielectric constant of 146. The measured value of the piezoelectric coefficient d33 was found to depend on the substrate used. Measured d33clp values of 70, 40, 36 pC N-1 were obtained from the optimum formulation printed on Polyester-cotton with an interface layer, Kapton and alumina substrates, respectively. The variation in the measured d33clp values occurs because of the effect of the mechanical boundary conditions of the substrate. The piezoelectric film is mechanically bonded to the surface of the substrate and this constrains the film in the plane of the substrate (the 1-direction). This constraint means that the perpendicular forces (applied in the 3-direction) used to measure d33 introduce a strain in the 1-direction that produces a charge of the opposite polarity to that induced by the d33 effect. This is due to the negative sign of the d31 coefficient and has the effect of reducing the measured d33 value. Theoretical and experimental investigations confirm a reduction of 13%, 50% and 55% in the estimated freestanding d33fs values (80 pC N-1) on Polyester-cotton, Kapton and alumina substrates, respectively. These results demonstrate the effect of the boundary conditions of the substrate/PZT interface on the piezoelectric response of the PZT/polymer film and in particular the reduced effect of fabric substrates due to their lowered stiffness.

  10. Experimental investigation into the effect of substrate clamping on the piezoelectric behaviour of thick-film PZT elements

    Energy Technology Data Exchange (ETDEWEB)

    Torah, R N; Beeby, S P; White, N M [Department of Electronics and Computer Science, University of Southampton, SO17 1BJ (United Kingdom)

    2004-04-07

    This paper details an experimental investigation of the clamping effect associated with thick-film piezoelectric elements printed on a substrate. The clamping effect reduces the measured piezoelectric coefficient, d{sub 33}, of the film. This reduction is due to the influence of the d{sub 31} component in the film when a deformation of the structure occurs, by either the direct or indirect piezoelectric effect. Theoretical analysis shows a reduction in the measured d{sub 33} of 62%, i.e. a standard bulk lead zirconate titanate (PZT)-5H sample with a manufacturer specified d{sub 33} of 593pC/N would fall to 227.8pC/N. To confirm this effect, the d{sub 33} coefficients of five thin bulk PZT-5H samples of 220 {mu}m thickness were measured before and after their attachment to a metallized 96% alumina substrate. The experimental results show a reduction in d{sub 33} of 74% from 529pC/N to 139pC/N. The theoretical analysis was then applied to existing University of Southampton thick-film devices. It is estimated that the measured d{sub 33} value of 131pC/N of the thick-film devices is the equivalent of an unconstrained d{sub 33} of 345pC/N.

  11. Effects of Thickness, Pulse Duration, and Size of Strip Electrode on Ferroelectric Electron Emission of Lead Zirconate Titanate Films

    Science.gov (United States)

    Yaseen, Muhammad; Ren, Wei; Chen, Xiaofeng; Feng, Yujun; Shi, Peng; Wu, Xiaoqing

    2018-02-01

    Sol-gel-derived lead zirconate titanate (PZT) thin-film emitters with thickness up to 9.8 μm have been prepared on Pt/TiO2/SiO2/Si wafer via chemical solution deposition with/without polyvinylpyrrolidone (PVP) modification, and the relationship between the film thickness and electron emission investigated. Notable electron emission was observed on application of a trigger voltage of 120 V for PZT film with thickness of 1.1 μm. Increasing the film thickness decreased the threshold field to initiate electron emission for non-PVP-modified films. In contrast, the electron emission behavior of PVP-modified films did not show significant dependence on film thickness, probably due to their porous structure. The emission current increased with decreasing strip width and space between strips. Furthermore, it was observed that increasing the duration of the applied pulse increased the magnitude of the emission current. The stray field on the PZT film thickness was also calculated and found to increase with increasing ferroelectric sample thickness. The PZT emitters were found to be fatigue free up to 105 emission cycles. Saturated emission current of around 25 mA to 30 mA was achieved for the electrode pattern used in this work.

  12. Characterization of Kerfless Linear Arrays Based on PZT Thick Film.

    Science.gov (United States)

    Zawada, Tomasz; Bierregaard, Louise Moller; Ringgaard, Erling; Xu, Ruichao; Guizzetti, Michele; Levassort, Franck; Certon, Dominique

    2017-09-01

    Multielement transducers enabling novel cost-effective fabrication of imaging arrays for medical applications have been presented earlier. Due to the favorable low lateral coupling of the screen-printed PZT, the elements can be defined by the top electrode pattern only, leading to a kerfless design with low crosstalk between the elements. The thick-film-based linear arrays have proved to be compatible with a commercial ultrasonic scanner and to support linear array beamforming as well as phased array beamforming. The main objective of the presented work is to investigate the performance of the devices at the transducer level by extensive measurements of the test structures. The arrays have been characterized by several different measurement techniques. First, electrical impedance measurements on several elements in air and liquid have been conducted in order to support material parameter identification using the Krimholtz-Leedom-Matthaei model. It has been found that electromechanical coupling is at the level of 35%. The arrays have also been characterized by a pulse-echo system. The measured sensitivity is around -60 dB, and the fractional bandwidth is close to 60%, while the center frequency is about 12 MHz over the whole array. Finally, laser interferometry measurements have been conducted indicating very good displacement level as well as pressure. The in-depth characterization of the array structure has given insight into the performance parameters for the array based on PZT thick film, and the obtained information will be used to optimize the key parameters for the next generation of cost-effective arrays based on piezoelectric thick film.

  13. Effect of oxygen partial pressure on texture development in lead zirconate titanate thin films processed from metalorganic precursors

    International Nuclear Information System (INIS)

    Norton, Jarrod L.; Liedl, Gerald L.; Slamovich, Elliott B.

    1999-01-01

    Metalorganic liquid precursors were used to examine the effects of processing atmosphere on texture development in oriented Pb(Zr 0.60 Ti 0.40 )O 3 thin films. After removal of organic ligands via pyrolysis, the films were heated at 25 degree sign C/min in a 5% H 2 /Ar atmosphere until a switching temperature, after which the atmosphere was switched to pure oxygen. The films were heated to a maximum temperature of 650 degree sign C with switching temperatures ranging from 450 to 600 degree sign C. The degree of (111) orientation in the lead zirconate titanate (PZT) films increased with increasing switching temperature, resulting in highly textured (111) PZT films. These results suggest that atmosphere control plays a significant role in texture development during rapid thermal processing. (c) 1999 Materials Research Society

  14. Piezoelectric PZT thin films on flexible copper-coated polymer films

    Czech Academy of Sciences Publication Activity Database

    Suchaneck, G.; Volkonskiy, O.; Gerlach, G.; Hubička, Zdeněk; Dejneka, Alexandr; Jastrabík, Lubomír; Kiselev, D.; Bdikin, I.; Kholkin, A.

    636/637, - (2010), s. 392-397 ISSN 0255-5476 R&D Projects: GA ČR GC202/09/J017; GA AV ČR KJB100100703 Institutional research plan: CEZ:AV0Z10100522 Keywords : plasma jet deposition * PZT * kapton® film substrate * piezoresponse force microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism

  15. Preparation of PZT thin films on YBCO electrodes by KrF excimer laser ablation technique

    International Nuclear Information System (INIS)

    Kurogi, H.; Yamagata, Y.; Ebihara, K.

    1998-01-01

    Pb(Zr X Ti 1-X )O 3 (PZT) films have excellent ferroelectric, optical, piezoelectric, and pyroelectric properties. We prepared PZT thin films by the excimer laser ablation technique. A pulsed KrF excimer laser (Lambda Physik LPX305icc, pulse duration of 25 ns, λ=248 nm, 850 mJ Max.) was used to ablate the bulk targets. We investigated the influence of bottom electrode materials on the characteristics of the PZT thin films prepared on Pt and YBCO underlayers. The X-ray diffraction (XRD) patterns showed that the PZT films prepared with a laser fluence of 2 Jcm -2 on YBCO/MgO(100) substrate at a wide temperature range of 550-680 C have a perovskite (001) structure. At the same laser fluence, the PZT films prepared on Pt/MgO(100) substrate have a perovskite (001) structure only at 650 C. The polarization-electric field (P-E) characteristics and fatigue properties of PZT thin films were measured by the Sawyer-Tower circuit. The remnant polarization and coercive field have been found to be P r =15 μC cm -2 , 30 μC cm -2 and E c =200 kV cm -1 , 100 kV cm -1 for Au/PZT/Pt/MgO and Au/PZT/YBCO/MgO correspondingly. The remnant polarization of Au/PZT/YBCO/MgO thin film was reduced to one-half after about 10 8 cycles of switching. (orig.)

  16. Preparation of PZT thin films on YBCO electrodes by KrF excimer laser ablation technique

    Energy Technology Data Exchange (ETDEWEB)

    Kurogi, H; Yamagata, Y; Ebihara, K [Kumamoto Univ. (Japan). Dept. of Electr. Eng. and Comput. Sci.; Inoue, N [Kyushu Electric Power Co., Inc., Suizenji, 1-6-36, Kumamoto 862 (Japan)

    1998-03-01

    Pb(Zr{sub X}Ti{sub 1-X})O{sub 3} (PZT) films have excellent ferroelectric, optical, piezoelectric, and pyroelectric properties. We prepared PZT thin films by the excimer laser ablation technique. A pulsed KrF excimer laser (Lambda Physik LPX305icc, pulse duration of 25 ns, {lambda}=248 nm, 850 mJ Max.) was used to ablate the bulk targets. We investigated the influence of bottom electrode materials on the characteristics of the PZT thin films prepared on Pt and YBCO underlayers. The X-ray diffraction (XRD) patterns showed that the PZT films prepared with a laser fluence of 2 Jcm{sup -2} on YBCO/MgO(100) substrate at a wide temperature range of 550-680 C have a perovskite (001) structure. At the same laser fluence, the PZT films prepared on Pt/MgO(100) substrate have a perovskite (001) structure only at 650 C. The polarization-electric field (P-E) characteristics and fatigue properties of PZT thin films were measured by the Sawyer-Tower circuit. The remnant polarization and coercive field have been found to be P{sub r}=15 {mu}C cm{sup -2}, 30 {mu}C cm{sup -2} and E{sub c}=200 kV cm{sup -1}, 100 kV cm{sup -1} for Au/PZT/Pt/MgO and Au/PZT/YBCO/MgO correspondingly. The remnant polarization of Au/PZT/YBCO/MgO thin film was reduced to one-half after about 10{sup 8} cycles of switching. (orig.) 7 refs.

  17. Effects of Mn doping on the ferroelectric properties of PZT thin films

    International Nuclear Information System (INIS)

    Zhang Qi

    2004-01-01

    The effects of Mn doping on the ferroelectric properties of Pb(Zr 0.3 Ti 0.7 )O 3 (PZT) thin films on Pt/Ti/SiO 2 /Si substrates have been investigated. The composition of the PZT and Mn doping level are Pb(Zr 0.3 Ti 0.7 ) 1-x Mn x O 3 (x = 0,0.2,0.5,1,2,4 mol%). The PZT thin films doped with a small amount of Mn 2+ (x ≤ 1) showed almost no hysteretic fatigue up to 10 10 switching bipolar pulse cycles, coupled with excellent retention properties. However, excessive additions of manganese made the fatigue behaviour worse. We propose that the addition of small amounts of Mn is able to reduce the oxygen vacancy concentration due to the combination of Mn 2+ and oxygen vacancies in PZT films, forming Mn 4+ ions. The interfacial layer between the Pt electrode and PZT films and Mn-doped PZT (x = 4) was detected by measuring the dielectric constant of thin films of different thickness. However, this interfacial layer was not detected in Mn-doped PZT (x = 1). These observations support the concept of the preferential electromigration of oxygen vacancies into sites in planes parallel to the electrodes, which is probably responsible for the hysteretic fatigue

  18. Fabrication and characterization of thick-film piezoelectric lead zirconate titanate ceramic resonators by tape-casting.

    Science.gov (United States)

    Qin, Lifeng; Sun, Yingying; Wang, Qing-Ming; Zhong, Youliang; Ou, Ming; Jiang, Zhishui; Tian, Wei

    2012-12-01

    In this paper, thick-film piezoelectric lead zirconate titanate (PZT) ceramic resonators with thicknesses down to tens of micrometers have been fabricated by tape-casting processing. PZT ceramic resonators with composition near the morphotropic phase boundary and with different dopants added were prepared for piezoelectric transducer applications. Material property characterization for these thick-film PZT resonators is essential for device design and applications. For the property characterization, a recently developed normalized electrical impedance spectrum method was used to determine the electromechanical coefficient and the complex piezoelectric, elastic, and dielectric coefficients from the electrical measurement of resonators using thick films. In this work, nine PZT thick-film resonators have been fabricated and characterized, and two different types of resonators, namely thickness longitudinal and transverse modes, were used for material property characterization. The results were compared with those determined by the IEEE standard method, and they agreed well. It was found that depending on the PZT formulation and dopants, the relative permittivities ε(T)(33)/ε(0) measured at 2 kHz for these thick-films are in the range of 1527 to 4829, piezoelectric stress constants (e(33) in the range of 15 to 26 C/m(2), piezoelectric strain constants (d(31)) in the range of -169 × 10(-12) C/N to -314 × 10(-12) C/N, electromechanical coupling coefficients (k(t)) in the range of 0.48 to 0.53, and k(31) in the range of 0.35 to 0.38. The characterization results shows tape-casting processing can be used to fabricate high-quality PZT thick-film resonators, and the extracted material constants can be used to for device design and application.

  19. Using the methods of radiospectroscopy (EPR, NMR) to study the nature of the defect structure of solid solutions based on lead zirconate titanate (PZT)

    Czech Academy of Sciences Publication Activity Database

    Bykov, I. P.; Zagorodniy, A.Y.; Yurchenko, L.P.; Korduban, A.M.; Nejezchleb, K.; Trachevsky, V.V.; Dimza, V.; Jastrabík, Lubomír; Dejneka, Alexandr

    2014-01-01

    Roč. 61, č. 8 (2014), 1379-1385 ISSN 0885-3010 R&D Projects: GA TA ČR TA01010517; GA ČR GAP108/12/1941 Institutional support: RVO:68378271 Keywords : lead zirconate titanate ( PZT ) * EPR * NMR * XPS spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.512, year: 2014

  20. Substrate clamping effects on irreversible domain wall dynamics in lead zirconate titanate thin films.

    Science.gov (United States)

    Griggio, F; Jesse, S; Kumar, A; Ovchinnikov, O; Kim, H; Jackson, T N; Damjanovic, D; Kalinin, S V; Trolier-McKinstry, S

    2012-04-13

    The role of long-range strain interactions on domain wall dynamics is explored through macroscopic and local measurements of nonlinear behavior in mechanically clamped and released polycrystalline lead zirconate-titanate (PZT) films. Released films show a dramatic change in the global dielectric nonlinearity and its frequency dependence as a function of mechanical clamping. Furthermore, we observe a transition from strong clustering of the nonlinear response for the clamped case to almost uniform nonlinearity for the released film. This behavior is ascribed to increased mobility of domain walls. These results suggest the dominant role of collective strain interactions mediated by the local and global mechanical boundary conditions on the domain wall dynamics. The work presented in this Letter demonstrates that measurements on clamped films may considerably underestimate the piezoelectric coefficients and coupling constants of released structures used in microelectromechanical systems, energy harvesting systems, and microrobots.

  1. Micro-machined high-frequency (80 MHz) PZT thick film linear arrays.

    Science.gov (United States)

    Zhou, Qifa; Wu, Dawei; Liu, Changgeng; Zhu, Benpeng; Djuth, Frank; Shung, K

    2010-10-01

    This paper presents the development of a micromachined high-frequency linear array using PZT piezoelectric thick films. The linear array has 32 elements with an element width of 24 μm and an element length of 4 mm. Array elements were fabricated by deep reactive ion etching of PZT thick films, which were prepared from spin-coating of PZT sol-gel composite. Detailed fabrication processes, especially PZT thick film etching conditions and a novel transferring-and-etching method, are presented and discussed. Array designs were evaluated by simulation. Experimental measurements show that the array had a center frequency of 80 MHz and a fractional bandwidth (-6 dB) of 60%. An insertion loss of -41 dB and adjacent element crosstalk of -21 dB were found at the center frequency.

  2. PZT Films Fabricated by Metal Organic Decomposition Method

    Science.gov (United States)

    Sobolev, Vladimir; Ishchuk, Valeriy

    2014-03-01

    High quality lead zirconate titanate films have been fabricated on different substrates by metal organic decomposition method and their ferroelectric properties have been investigated. Main attention was paid to studies of the influence of the buffer layer with conditional composition Pb1.3(Zr0.5Ti0.5) O3 on the properties of Pb(Zr0.5Ti0.5) O3 films fabricated on the polycrystalline titanium and platinum substrates. It is found that in the films on the Pt substrate (with or without the buffer layer) the dependencies of the remanent polarization and the coercivity field on the number of switching cycles do not manifest fatigue up to 109 cycles. The remanent polarization dependencies for films on the Ti substrate with the buffer layer containing an excess of PbO demonstrate an fundamentally new feature that consists of a remanent polarization increase after 108 switching cycles. The increase of remanent polarization is about 50% when the number of cycles approaches 1010, while the increase of the coercivity field is small. A monotonic increase of dielectric losses has been observed in all cases.

  3. Investigation of top electrode for PZT thick films based MEMS sensors

    DEFF Research Database (Denmark)

    Hindrichsen, Christian Carstensen; Pedersen, Thomas; Kristiansen, Paw T.

    2010-01-01

    In this work processing of screen printed piezoelectric PZT thick films on silicon substrates is investigated for use in future MEMS devices. E-beam evaporated Al and Pt are patterned on PZT as a top electrode using a lift-off process with a line width down to 3 mu m. Three test structures are used...... to investigate the optimal thickness of the top electrode, the degradation of the piezoelectric properties of the PZT film in absence of a diffusion barrier layer and finally how to fabricate electrical interconnects down the edge of the PZT thick film. The roughness of the PZT is found to have a strong...... influence on the conductance of the top electrode influencing the optimal top electrode thickness. A 100 nm thick top electrode on the PZT thick film with a surface roughness of 273 nm has a 4.5 times higher resistance compared to a similar wire on a planar SiO2 surface which has a surface roughness of less...

  4. Effect of La and W dopants on dielectric and ferroelectric properties of PZT thin films prepared by sol-gel process

    International Nuclear Information System (INIS)

    Xiao, Mi; Zhang, Zebin; Zhang, Weikang; Zhang, Ping

    2018-01-01

    La or W-doped lead zirconate titanate thin films (PLZT or PZTW) were prepared on platinized silicon substrates by sol-gel process. The effects of La or W dopant on the phase development, microstructure, dielectric and ferroelectric characteristics of films were studied. For PLZT films, the optimum doping concentration was found to be 2 mol%. While for PZTW films, the dielectric and ferroelectric properties were found to be improved as the doping concentration increased. The fatigue properties of PLZT and PZTW thin films were also investigated, the results showed that A- or B-site donor doping could improve the fatigue properties of PZT thin films. The theory of oxygen vacancy was used to explain the performance improvement caused by donor doping. (orig.)

  5. Effect of La and W dopants on dielectric and ferroelectric properties of PZT thin films prepared by sol-gel process

    Science.gov (United States)

    Xiao, Mi; Zhang, Zebin; Zhang, Weikang; Zhang, Ping

    2018-01-01

    La or W-doped lead zirconate titanate thin films (PLZT or PZTW) were prepared on platinized silicon substrates by sol-gel process. The effects of La or W dopant on the phase development, microstructure, dielectric and ferroelectric characteristics of films were studied. For PLZT films, the optimum doping concentration was found to be 2 mol%. While for PZTW films, the dielectric and ferroelectric properties were found to be improved as the doping concentration increased. The fatigue properties of PLZT and PZTW thin films were also investigated, the results showed that A- or B-site donor doping could improve the fatigue properties of PZT thin films. The theory of oxygen vacancy was used to explain the performance improvement caused by donor doping.

  6. Dielectric loss of strontium titanate thin films

    Science.gov (United States)

    Dalberth, Mark Joseph

    1999-12-01

    Interest in strontium titanate (STO) thin films for microwave device applications continues to grow, fueled by the telecommunications industry's interest in phase shifters and tunable filters. The optimization of these devices depends upon increasing the phase or frequency tuning and decreasing the losses in the films. Currently, the dielectric response of thin film STO is poorly understood through lack of data and a theory to describe it. We have studied the growth of STO using pulsed laser deposition and single crystal substrates like lanthanum aluminate and neodymium gallate. We have researched ways to use ring resonators to accurately measure the dielectric response as a function of temperature, electric field, and frequency from low radio frequencies to a few gigahertz. Our films grown on lanthanum aluminate show marked frequency dispersion in the real part of the dielectric constant and hints of thermally activated loss behavior. We also found that films grown with conditions that optimized the dielectric constant showed increased losses. In an attempt to simplify the system, we developed a technique called epitaxial lift off, which has allowed us to study films removed from their growth substrates. These free standing films have low losses and show obvious thermally activated behavior. The "amount of tuning," as measured by a figure of merit, KE, is greater in these films than in the films still attached to their growth substrates. We have developed a theory that describes the real and imaginary parts of the dielectric constant. The theory models the real part using a mean field description of the ionic motion in the crystal and includes the loss by incorporating the motion of charged defects in the films.

  7. Ferroelectric properties of PZT/BFO multilayer thin films prepared using the sol-gel method.

    Science.gov (United States)

    Jo, Seo-Hyeon; Lee, Sung-Gap; Lee, Young-Hie

    2012-01-05

    In this study, Pb(Zr0.52Ti0.48)O3/BiFeO3 [PZT/BFO] multilayer thin films were fabricated using the spin-coating method on a Pt(200 nm)/Ti(10 nm)/SiO2(100 nm)/p-Si(100) substrate alternately using BFO and PZT metal alkoxide solutions. The coating-and-heating procedure was repeated several times to form the multilayer thin films. All PZT/BFO multilayer thin films show a void-free, uniform grain structure without the presence of rosette structures. The relative dielectric constant and dielectric loss of the six-coated PZT/BFO [PZT/BFO-6] thin film were approximately 405 and 0.03%, respectively. As the number of coatings increased, the remanent polarization and coercive field increased. The values for the BFO-6 multilayer thin film were 41.3 C/cm2 and 15.1 MV/cm, respectively. The leakage current density of the BFO-6 multilayer thin film at 5 V was 2.52 × 10-7 A/cm2.

  8. Generation of electrical energy using lead zirconate titanate (PZT-5A) piezoelectric material: Analytical, numerical and experimental verifications

    Energy Technology Data Exchange (ETDEWEB)

    Butt, Zubair; Ahmad, Nasir [Dept. of Mechanical, Mechatronics and Manufacturing Engineering, UET Lahore, Faisalabad Campus, Lahore (Pakistan); Pasha, Riffat Asim; Qayyum, Faisal; Anjum, Zeeshan [Dept. of Mechanical Engineering, University of Engineering and Technology, Taxila (Pakistan); Elahi, Hassan [Northwestern Polytechnical University, Xian (China)

    2016-08-15

    Energy harvesting is the process of attaining energy from the external sources and transforming it into usable electrical energy. An analytical model of piezoelectric energy harvester has been developed to determine the output voltage across an electrical circuit when it is forced to undergo a base excitation. This model gives an easy approach to design and investigate the behavior of piezoelectric material. Numerical simulations have been carried out to determine the effect of frequency and loading on a Lead zirconate titanate (PZT-5A) piezoelectric material. It has been observed that the output voltage from the harvester increases when loading increases whereas its resonance frequency decreases. The analytical results were found to be in good agreement with the experimental and numerical simulation results.

  9. Improvement of fatigue resistance for multilayer lead zirconate titanate (PZT)-based ceramic actuators by external mechanical loads

    Science.gov (United States)

    Yang, Gang; Yue, Zhenxing; Ji, Ye; Chu, Xiangcheng; Li, Longtu

    2008-12-01

    The influence of external compressive loads, applied along a direction perpendicular to polarization, on fatigue behaviors of multilayer lead zirconate titanate (PZT)-based ceramic actuators was investigated. Under no external mechanical load, a normal fatigue behavior was observed, demonstrating that both switching polarization (Pswitching) and remnant polarization (Pr) progressively decreased with increasing switching cycles due to domain pinning by charge point defects. However, an anomalous enhancement in both switching and remnant polarizations was observed upon application of the external compressive loads. After 5×106 cycles of polarization switching, Pswitching and Pr increase by about 13% and 6% at 40 MPa, respectively, while Pswitching and Pr increase by about 11% and 21% at 60 MPa, respectively. The improvement of fatigue resistance can be attributed to non-180° domain switching and suppression of microcracking, triggered by external mechanical loads.

  10. Dielectric and Piezoelectric Properties of PZT Composite Thick Films with Variable Solution to Powder Ratios.

    Science.gov (United States)

    Wu, Dawei; Zhou, Qifa; Shung, Koping Kirk; Bharadwaja, Srowthi N; Zhang, Dongshe; Zheng, Haixing

    2009-05-08

    The use of PZT films in sliver-mode high-frequency ultrasonic transducers applications requires thick, dense, and crack-free films with excellent piezoelectric and dielectric properties. In this work, PZT composite solutions were used to deposit PZT films >10 μm in thickness. It was found that the functional properties depend strongly on the mass ratio of PZT sol-gel solution to PZT powder in the composite solution. Both the remanent polarization, P(r), and transverse piezoelectric coefficient, e(31,) (f), increase with increasing proportion of the sol-gel solution in the precursor. Films prepared using a solution-to-powder mass ratio of 0.5 have a remanent polarization of 8 μC/cm(2), a dielectric constant of 450 (at 1 kHz), and e(31,) (f) = -2.8 C/m(2). Increasing the solution-to-powder mass ratio to 6, the films were found to have remanent polarizations as large as 37 μC/cm(2), a dielectric constant of 1250 (at 1 kHz) and e(31,) (f) = -5.8 C/m(2).

  11. Microstructure and Properties of Plasma Sprayed Lead Zirconate Titanate (PZT) Ceramics

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Pala, Zdeněk; Boldyryeva, Hanna; Sedláček, J.; Kmetík, Viliam

    2012-01-01

    Roč. 2, č. 2 (2012), s. 64-75 ISSN 2079-6412 R&D Projects: GA TA ČR TA01010878 Institutional research plan: CEZ:AV0Z20430508 Keywords : plasma spraying * electroceramics * PZT * phase composition * permittivity Subject RIV: JK - Corrosion ; Surface Treatment of Materials http://www.mdpi.com/2079-6412/2/2/64

  12. PMN-PT-PZT composite films for high frequency ultrasonic transducer applications.

    Science.gov (United States)

    Hsu, Hsiu-Sheng; Benjauthrit, Vatcharee; Zheng, Fan; Chen, Rumin; Huang, Yuhong; Zhou, Qifa; Shung, K Kirk

    2012-06-01

    We have successfully fabricated x (0.65PMN-0.35PT)-(1 - x )PZT ( x PMN-PT-(1 - x )PZT), where x is 0.1, 0.3, 0.5, 0.7 and 0.9, thick films with a thickness of approximately 9 µm on platinized silicon substrate by employing a composite sol-gel technique. X-ray diffraction analysis and scanning electron microscopy revealed that these films are dense and creak-free with well-crystallized perovskite phase in the whole composition range. The dielectric constant can be controllably adjusted by using different compositions. Higher PZT content of x PMN-PT-(1 - x )PZT films show better ferroelectric properties. A representative 0.9PMN-PT-0.1PZT thick film transducer is built. It has 200 MHz center frequency with a -6 dB bandwidth of 38% (76 MHz). The measured two-way insertion loss is 65 dB.

  13. PMN-PT–PZT composite films for high frequency ultrasonic transducer applications

    Science.gov (United States)

    Hsu, Hsiu-Sheng; Benjauthrit, Vatcharee; Zheng, Fan; Chen, Rumin; Huang, Yuhong; Zhou, Qifa; Shung, K. Kirk

    2013-01-01

    We have successfully fabricated x(0.65PMN-0.35PT)–(1 − x)PZT (xPMN-PT–(1 − x)PZT), where x is 0.1, 0.3, 0.5, 0.7 and 0.9, thick films with a thickness of approximately 9 µm on platinized silicon substrate by employing a composite sol–gel technique. X-ray diffraction analysis and scanning electron microscopy revealed that these films are dense and creak-free with well-crystallized perovskite phase in the whole composition range. The dielectric constant can be controllably adjusted by using different compositions. Higher PZT content of xPMN-PT–(1 − x)PZT films show better ferroelectric properties. A representative 0.9PMN-PT–0.1PZT thick film transducer is built. It has 200 MHz center frequency with a −6 dB bandwidth of 38% (76 MHz). The measured two-way insertion loss is 65 dB. PMID:23750072

  14. Investigation of optical pump on dielectric tunability in PZT/PT thin film by THz spectroscopy.

    Science.gov (United States)

    Ji, Jie; Luo, Chunya; Rao, Yunkun; Ling, Furi; Yao, Jianquan

    2016-07-11

    The dielectric spectra of single-layer PbTiO3 (PT), single-layer PbZrxTi1-xO3 (PZT) and multilayer PZT/PT thin films under an external optical field were investigated at room temperature by time-domain terahertz (THz) spectroscopy. Results showed that the real part of permittivity increased upon application of an external optical field, which could be interpreted as hardening of the soft mode and increasing of the damping coefficient and oscillator strength. Furthermore, the central mode was observed in the three films. Among the dielectric property of the three thin films studied, the tunability of the PZT/PT superlattice was the largest.

  15. Performance of magnetoelectric PZT/Ni multiferroic system for energy harvesting application

    Science.gov (United States)

    Gupta, Reema; Tomar, Monika; Kumar, Ashok; Gupta, Vinay

    2017-03-01

    Magnetoelectric (ME) coefficient of Lead Zirconium Titanate (PZT) thin films has been probed for possible energy harvesting applications. Single phase PZT thin films have been deposited on nickel substrate (PZT/Ni) using pulsed laser deposition (PLD) technique. The effect of PLD process parameters on the ME coupling coefficient in the prepared systems has been investigated. The as grown PZT films on Ni substrate were found to be polycrystalline with improved ferroelectric and ferromagnetic properties. The electrical switching behavior of the PZT thin films were verified using capacitance voltage measurements, where well defined butterfly loops were obtained. The ME coupling coefficient was estimated to be in the range of 94.5 V cm-1 Oe-1-130.5 V cm-1 Oe-1 for PZT/Ni system, which is large enough for harnessing electromagnetic energy for subsequent applications.

  16. Multiscale numerical study on ferroelectric nonlinear response of PZT thin films (Conference Presentation)

    Science.gov (United States)

    Wakabayashi, Hiroki; Uetsuji, Yasutomo; Tsuchiya, Kazuyoshi

    2017-06-01

    PZT thin films have excellent performance in deformation precision and response speed, so it is used widely for actuators and sensors of Micro Electro Mechanical System (MEMS). Although PZT thin films outputs large piezoelectricity at morphotropic phase bounfary (MPB), it shows a complicated hysteresis behavior caused by domain switching and structural phase transition between tetragonal and rhombohedral. In general, PZT thin films have some characteristic crystal morphologies. Additionally mechanical strains occur by lattice mismatch with substrate. Therefore it is important for fabrication and performance improvement of PZT thin films to understand the relation between macroscopic hysteresis response and microstructural changes. In this study, a multiscale nonlinear finite element simulation was proposed for PZT thin films at morphotropic phase boundary (MPB) on the substrate. The homogenization theory was employed for scale-bridging between macrostructure and microstructure. Figure 1 shows the proposed multiscale nonlinear simulation [1-3] based on the homogenization theory. Macrostructure is a homogeneous structure to catch the whole behaviors of actuators and sensors. And microstructure is a periodic inhomogeneous structure consisting of domains and grains. Macrostructure and microstructure are connected perfectly by homogenization theory and are analyzed by finite element method. We utilized an incremental form of fundamental constitutive law in consideration with physical property change caused by domain switching and structural phase transition. The developed multiscale finite element method was applied to PZT thin films with lattice mismatch strain on the substrate, and the relation between the macroscopic hysteresis response and microscopic domain switching and structural phase transition were investigated. Especially, we discuss about the effect of crystal morphologies and lattice mismatch strain on hysteresis response.

  17. Effect of Pb content and solution concentration of Pb{sub x}TiO{sub 3} seed layer on (100)-texture and ferroelectric/dielectric behavior of PZT (52/48) thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Jian; Batra, Vaishali; Han, Hui; Kotru, Sushma, E-mail: skotru@eng.ua.edu [Department of Electrical and Computer Engineering, The University of Alabama, Tuscaloosa, Alabama 35487 (United States); Pandey, Raghvendar K. [Ingram School of Engineering, Texas State University, San Marcos, Texas 78666 (United States)

    2015-09-15

    The effect of Pb content and solution concentration of lead titanate (Pb{sub x}TiO{sub 3}) seed layer on the texture and electric properties of Pb{sub 1.1}(Zr{sub 0.52},Ti{sub 0.48})O{sub 3} (PZT) thin films was investigated. A variety of seed layers (y Pb{sub x}TiO{sub 3}) with varying solution concentration (y = 0.02, 0.05, 0.1, and 0.2 M) and Pb content (x = 1.0, 1.05, 1.1, and 1.2) was deposited on Pt/TiO{sub 2}/SiO{sub 2}/Si substrates using chemical-solution deposition method. PZT films were then deposited on these seed layers using the same process. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy investigations of the seed layers confirm change in crystal structure with variation in the solution properties. XRD studies of PZT films deposited on seed layers demonstrate that the seed layer helps in enhancing (100)-texture and suppressing (111)-texture. It was observed that PZT films prepared on seed layers with lower solution concentrations results in highly (100)-textured films, which further helps to improve the electric properties. The polarization and dielectric constant of the PZT films were seen to increase while the coercive field decreased with increase in (100)-texture. Irrespective of the seed layer solution concentration, higher Pb content in the seed layer deteriorates the PZT film properties. Ninety-five percent to ninety-six percent (100)-texture was obtained from thin PZT films deposited on seed layers of 0.02 M solution concentration with 1.05 and 1.10 Pb contents, which is higher than the values reported for thick PZT films. Optimization of both Pb content and solution concentration of the seed layer is a promising route to achieve highly (100)-textured PZT films with improved electric properties.

  18. Fabrication and properties of SmFe2-PZT magnetoelectric thin films

    KAUST Repository

    Giouroudi, Ioanna

    2013-05-17

    Magnetoelectric (ME) thin film composites are attracting a continually increasing interest due to their unique features and potential applications in multifunctional microdevices and integrated units such as sensors, actuators and energy harvesting modules. By combining piezoelectric and highly magnetostrictive thin films, the potentialities of these materials increase. In this paper we report the fabrication of SmFe2 and PZT thin films and the investigation of their properties. First of all, a ~ 400 nm thin SmFe film was deposited on top of Si/SiO2 substrate by magnetron sputter deposition. Afterwards, a 140 nm Pt bottom electrode was sputtered on top of the SmFe film forming a bottom electrode. Spin coating was employed for the deposition of the 150 nm thin PZT layer. A PZT solution with 10 %Pb excess was utilized for this fabrication step. Finally, circular Pt top electrodes were sputtered as top electrodes. This paper focuses on the microstructure of the individual films characterized by X-Ray diffractometer (XRD) and scanning electron microscopy (SEM). A piezoelectric evaluation system, aixPES, with TF2000E analyzer component was used for the electric hysteresis measurements of PZT thin films and a vibrating sample magnetometer (VSM) was employed for the magnetic characterization of the SmFe. The developed thin films and the fabricated double layer SmFe-PZT exhibit both good ferromagnetic and piezoelectric responses which predict a promising ME composite structure. The quantitative chemical composition of the samples was confirmed by energy dispersive spectroscopy (EDX). © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  19. Fabrication and properties of SmFe2-PZT magnetoelectric thin films

    KAUST Repository

    Giouroudi, Ioanna; Alnassar, Mohammed; Kosel, Jü rgen

    2013-01-01

    Magnetoelectric (ME) thin film composites are attracting a continually increasing interest due to their unique features and potential applications in multifunctional microdevices and integrated units such as sensors, actuators and energy harvesting modules. By combining piezoelectric and highly magnetostrictive thin films, the potentialities of these materials increase. In this paper we report the fabrication of SmFe2 and PZT thin films and the investigation of their properties. First of all, a ~ 400 nm thin SmFe film was deposited on top of Si/SiO2 substrate by magnetron sputter deposition. Afterwards, a 140 nm Pt bottom electrode was sputtered on top of the SmFe film forming a bottom electrode. Spin coating was employed for the deposition of the 150 nm thin PZT layer. A PZT solution with 10 %Pb excess was utilized for this fabrication step. Finally, circular Pt top electrodes were sputtered as top electrodes. This paper focuses on the microstructure of the individual films characterized by X-Ray diffractometer (XRD) and scanning electron microscopy (SEM). A piezoelectric evaluation system, aixPES, with TF2000E analyzer component was used for the electric hysteresis measurements of PZT thin films and a vibrating sample magnetometer (VSM) was employed for the magnetic characterization of the SmFe. The developed thin films and the fabricated double layer SmFe-PZT exhibit both good ferromagnetic and piezoelectric responses which predict a promising ME composite structure. The quantitative chemical composition of the samples was confirmed by energy dispersive spectroscopy (EDX). © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  20. Far infrared and Raman response in tetragonal PZT ceramic films

    Czech Academy of Sciences Publication Activity Database

    Buixaderas, Elena; Kadlec, Christelle; Vaněk, Přemysl; Drnovšek, S.; Uršič, H.; Malič, B.

    2015-01-01

    Roč. 54, č. 6 (2015), s. 219-224 ISSN 0366-3175 R&D Projects: GA ČR(CZ) GA14-25639S Institutional support: RVO:68378271 Keywords : dielectric response * phonons * FIR spectroscopy * time-domain THz spectroscopy * Raman spectroscopy * effective medium * PZT Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.280, year: 2015

  1. Ellipsometry non-destructive technique for PZT thin films investigations

    Czech Academy of Sciences Publication Activity Database

    Deineka, Alexander; Jastrabík, Lubomír; Soukup, Ladislav

    11-12, - (2000), s. 329-331 ISSN 0447-6441 R&D Projects: GA MŠk LN00A015 Institutional research plan: CEZ:AV0Z1010914 Keywords : PZT * J.A. Wollam spectral ellipsometer * refractive index depth profiels Subject RIV: BM - Solid Matter Physics ; Magnetism

  2. Comparison of lead zirconate titanate thin films on ruthenium oxide and platinum electrodes

    OpenAIRE

    Bursill, Les A.; Reaney, Ian M.; Vijay, Dilip P.; Desu, Seshu B.

    1994-01-01

    High-resolution and bright- and dark-field transmission electron microscopy are used to characterize and compare the interface structures and microstructure of PZT/RuO2/SiO2/Si and PZT/Pt/Ti/SiO2/Si ferroelectric thin films, with a view to understanding the improved fatigue characteristics of PZT thin films with RuO2 electrodes. The RuO2/PZT interface consists of a curved pseudoperiodic minimal surface. The interface is chemically sharp with virtually no intermixing of RuO2 and PZT, as eviden...

  3. Structure and properties of PZT thin films on strontium ruthenate and calcium ruthenate electrodes

    International Nuclear Information System (INIS)

    Wu, T.-J.; Tsai, D.-S.

    2004-01-01

    PZT thin films have been prepared via metalorganic CVD (MOCVD) on four substrates of conducting oxides of ruthenates, SrRuO 3 /Pt/Ti/SiO 2 /Si(1 0 0), SrRuO 3 /SiO 2 /Si(1 0 0), CaRuO 3 /Pt/Ti/SiO 2 /Si(1 0 0), CaRuO 3 /SiO 2 /Si(1 0 0). The conducting ruthenate layers were also grown using MOCVD. Ferroelectric properties of polarization fatigue and leakage current density are measured. The internal strain of PZT thin crystal which is mainly constrained by the bottom electrode seems to be the decisive factor in ferroelectric properties. The internal strain of PZT is represented by its tetragonality ratio. The PZT thin film in the capacitor Au/PZT/SrRuO 3 /Pt/Ti/SiO 2 /Si, with the largest tetragonality ratio 1.026, exhibits an optimum combination of large polarization, less fatigue, and low leakage current density. Both SrRuO 3 and CaRuO 3 are good diffusion barriers to prevent interdiffusion of cations between the ferroelectric and the electrode. The slightly higher intermixing at the CaRuO 3 -to-Pt/Ti interface is owing to the high annealing temperature needed in CaRuO 3 synthesis

  4. In situ X-ray diffraction studies on the piezoelectric response of PZT thin films

    Energy Technology Data Exchange (ETDEWEB)

    Davydok, A., E-mail: davydok@mpie.de [Aix Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334, 13397 Marseille (France); Max-Planck-Institut für Eisenforschung, Department Structure and Nano-/Micromechanics of Materials, D-40237 Düsseldorf (Germany); Cornelius, T.W. [Aix Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334, 13397 Marseille (France); Mocuta, C. [SOLEIL Synchrotron, DiffAbs beamline, L' Orme des Merisiers, Saint-Aubin - BP 48, 91192 Gif-sur-Yvette Cedex (France); Lima, E.C. [Universidade Federal do Tocantins, 77500-000 Porto Nacional, TO (Brazil); Araujo, E.B. [Departamento de Fisica e Quimica, Universidade Estadual Paulista, Av. Brasil, 56 Centro, 15385-000 Ilha Solteira, SP (Brazil); Thomas, O. [Aix Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334, 13397 Marseille (France)

    2016-03-31

    Piezoelectric properties of randomly oriented self-polarized PbZr{sub 0.50}Ti{sub 0.50}O{sub 3} (PZT) thin films were investigated using in situ synchrotron X-ray diffraction. Possibilities for investigating the piezoelectric effect using micro-sized hard X-ray beams are demonstrated and perspectives for future dynamical measurements on PZT samples with variety of compositions and thicknesses are given. Studies performed on the crystalline [100, 110] directions evidenced piezoelectric anisotropy. The piezoelectric coefficient d{sub 33} was calculated in terms of the lab reference frame (d{sub perp}) and found to be two times larger along the [100] direction than along the [110] direction. The absolute values for the d{sub perp} amount to 120 and 230 pm/V being in good agreement with experimental and theoretical values found in literature for bulk PZT ceramics. - Highlights: • We performed in situ synchrotron X-ray diffraction studies on (PZT) thin films. • We discuss anisotropy of piezo effect in different crystallographic directions. • Perpendicular component Piezo coefficient of thin PZT layer is defined.

  5. Lanthanoid titanate film structure deposited at different temperatures in vacuum

    International Nuclear Information System (INIS)

    Kushkov, V.D.; Zaslavskij, A.M.; Mel'nikov, A.V.; Zverlin, A.V.; Slivinskaya, A.Eh.

    1991-01-01

    Influence of deposition temperature on the structure of lanthanoid titanate films, prepared by the method of high-rate vacuum condensation. It is shown that formation of crystal structure, close to equilibrium samples, proceeds at 1100-1300 deg C deposition temperatures. Increase of temperature in this range promotes formation of films with higher degree of structural perfection. Amorphous films of lanthanoid titanates form at 200-1000 deg C. Deposition temperature shouldn't exceed 1400 deg C to prevent the formation of perovskite like phases in films

  6. Sputter deposition of PZT piezoelectric films on thin glass substrates for adjustable x-ray optics.

    Science.gov (United States)

    Wilke, Rudeger H T; Johnson-Wilke, Raegan L; Cotroneo, Vincenzo; Davis, William N; Reid, Paul B; Schwartz, Daniel A; Trolier-McKinstry, Susan

    2013-05-10

    Piezoelectric PbZr(0.52)Ti(0.48)O(3) (PZT) thin films deposited on thin glass substrates have been proposed for adjustable optics in future x-ray telescopes. The light weight of these x-ray optics enables large collecting areas, while the capability to correct mirror figure errors with the PZT thin film will allow much higher imaging resolution than possible with conventional lightweight optics. However, the low strain temperature and flexible nature of the thin glass complicate the use of chemical-solution deposition due to warping of the substrate at typical crystallization temperatures for the PZT. RF magnetron sputtering enabled preparation of PZT films with thicknesses up to 3 μm on Schott D263 glass substrates with much less deformation. X-ray diffraction analysis indicated that the films crystallized with the perovskite phase and showed no indication of secondary phases. Films with 1 cm(2) electrodes exhibited relative permittivity values near 1100 and loss tangents below 0.05. In addition, the remanent polarization was 26 μC/cm(2) with coercive fields of 33 kV/cm. The transverse piezoelectric coefficient was as high as -6.1±0.6 C/m(2). To assess influence functions for the x-ray optics application, the piezoelectrically induced deflection of individual cells was measured and compared with finite-element-analysis calculations. The good agreement between the results suggests that actuation of PZT thin films can control mirror figure errors to a precision of about 5 nm, allowing sub-arcsecond imaging.

  7. Determination of the Young's modulus of pulsed laser deposited epitaxial PZT thin films

    NARCIS (Netherlands)

    Nazeer, H.; Nguyen, Duc Minh; Woldering, L.A.; Abelmann, Leon; Rijnders, Augustinus J.H.M.; Elwenspoek, Michael Curt

    2011-01-01

    We determined the Young’s modulus of pulsed laser deposited epitaxially grown PbZr0.52Ti0.48O3 (PZT) thin films on microcantilevers by measuring the difference in cantilever resonance frequency before and after deposition. By carefully optimizing the accuracy of this technique, we were able to show

  8. Analytical Model of a PZT Thick-Film Triaxial Accelerometer for Optimum Design

    DEFF Research Database (Denmark)

    Hindrichsen, Christian Carstensen; Almind, Ninia Sejersen; Brodersen, S. H.

    2009-01-01

    We present a mechanical model of a triaxial micro accelerometer design using PZT thick-film as the sensing material. The model is based on the full anisotropic material tensors and Eulers' beam equation using simplifying assumptions where the smaller stress contributions are ignored. The model...

  9. Ellipsometric investigations of the refractive index depth profile in PZT thin films

    Czech Academy of Sciences Publication Activity Database

    Deineka, Alexander; Jastrabík, Lubomír; Suchaneck, G.; Gerlach, G.

    2001-01-01

    Roč. 188, č. 4 (2001), s. 1549-1552 ISSN 0031-8965 R&D Projects: GA MŠk LN00A015; GA ČR GA202/00/1425 Institutional research plan: CEZ:AV0Z1010914 Keywords : PZT films * optical investigations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.025, year: 2001

  10. Homogeneity Analysis of a MEMS-based PZT Thick Film Vibration Energy Harvester Manufacturing Process

    DEFF Research Database (Denmark)

    Lei, Anders; Xu, Ruichao; Borregaard, Louise M.

    2012-01-01

    This paper presents a homogeneity analysis of a high yield wafer scale fabrication of MEMS-based unimorph silicon/PZT thick film vibration energy harvesters aimed towards vibration sources with peak vibrations in the range of around 300Hz. A wafer with a yield of 91% (41/45 devices) has been...

  11. The influence of preferred orientation and poling temperature on the polarization switching current in PZT thin films

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Mi; Zhang, Weikang; Zhang, Zebin; Zhang, Ping [Tianjin University, School of Electrical and Information Engineering, Tianjin (China); Lan, Kuibo [Tianjin University, School of Microelectronics, Tianjin (China)

    2017-07-15

    In this paper, Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} (PZT) thin films with different preferred orientation were prepared on platinized silicon substrates by a modified sol-gel method. Our results indicate that the polarization switching current in PZT thin films is dependent on preferred orientation and poling temperature. In our measurements, (111)-oriented PZT has a larger polarization switching current than randomly oriented PZT, and with the increase of the degree of (111) preferred orientation and the poling temperature, the polarization switching current gradually increase. Considering the contact of PZT thin film with electrodes, the space-charged limited conduction (SCLC) combined with domain switching mechanism may be responsible for such phenomena. By analyzing the conduction data, we found the interface-limited Schottky emission (ES) and bulk-limited Poole-Frenkel hopping (PF) are not suitable for our samples. (orig.)

  12. Crystallization of sol-gel derived lead zirconate titanate thin films in argon and oxygen atmospheres

    International Nuclear Information System (INIS)

    Bursill, L.A.

    1994-01-01

    Electron diffraction and high-resolution electron microscopic techniques are applied to reveal the mechanisms of crystallization of 75 nm thin films of ferroelectric lead-zirconate-titanate (PZT). Sol-gel methods, followed by pyrolysis at 350 deg C, were used to provide a common starting point after which a variety of rapid-thermal annealing (RTA) experiments in the temperature range 400-700 deg C were made in argon, oxygen and nitrogen/hydrogen atmospheres. The results are interpreted in terms of the crystal chemical analysis, which points out that partial pressure of oxygen and heating rate are important experimental parameters which must be controlled if ferroelectric perovskite-type Pb 2 ZrTiO 6 , rather than pyrochlore-type Pb 2 ZrTiO 6+x , where O < X < 1 or -1 < X < O, is to be obtained after the RTA step. Thus significant improvements in the crystallization of perovskite-type PZT were clearly demonstrated by using argon atmospheres for the RTA step. The results have significance for the production of high-quality ferroelectric thin films, with improved switching and fatigue characteristics, since even small amounts of the pyrochlore phase prove detrimental for these properties. 18 refs., 1 tab., 10 figs

  13. Crystallization of sol-gel derived lead zirconate titanate thin films in argon and oxygen atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Bursill, L A [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Brooks, K G [Ecole Polytechnique Federale, Lausanne (Switzerland)

    1994-12-31

    Electron diffraction and high-resolution electron microscopic techniques are applied to reveal the mechanisms of crystallization of 75 nm thin films of ferroelectric lead-zirconate-titanate (PZT). Sol-gel methods, followed by pyrolysis at 350 deg C, were used to provide a common starting point after which a variety of rapid-thermal annealing (RTA) experiments in the temperature range 400-700 deg C were made in argon, oxygen and nitrogen/hydrogen atmospheres. The results are interpreted in terms of the crystal chemical analysis, which points out that partial pressure of oxygen and heating rate are important experimental parameters which must be controlled if ferroelectric perovskite-type Pb{sub 2}ZrTiO{sub 6}, rather than pyrochlore-type Pb{sub 2}ZrTiO{sub 6+x}, where O < X < 1 or -1 < X < O, is to be obtained after the RTA step. Thus significant improvements in the crystallization of perovskite-type PZT were clearly demonstrated by using argon atmospheres for the RTA step. The results have significance for the production of high-quality ferroelectric thin films, with improved switching and fatigue characteristics, since even small amounts of the pyrochlore phase prove detrimental for these properties. 18 refs., 1 tab., 10 figs.

  14. Polarizaton recovery in lead zirconate titanate thin films deposited on nanosheets-beffered Si (oo1)

    NARCIS (Netherlands)

    Chopra, A.; Bayraktar, Muharrem; Nijland, Maarten; ten Elshof, Johan E.; Bijkerk, Frederik; Rijnders, Augustinus J.H.M.

    2016-01-01

    Fatigue behavior of Pb(Zr,Ti)O3 (PZT) films is one of the deterrent factors that limits the use of these films in technological applications. Thus, understanding and minimization of the fatigue behavior is highly beneficial for fabricating reliable devices using PZT films. We have investigated the

  15. Electric field tuning of magnetism in heterostructure of yttrium iron garnet film/lead magnesium niobate-lead zirconate titanate ceramic

    Science.gov (United States)

    Lian, Jianyun; Ponchel, Freddy; Tiercelin, Nicolas; Chen, Ying; Rémiens, Denis; Lasri, Tuami; Wang, Genshui; Pernod, Philippe; Zhang, Wenbin; Dong, Xianlin

    2018-04-01

    In this paper, the converse magnetoelectric (CME) effect by electric field tuning of magnetization in an original heterostructure composed of a polycrystalline yttrium iron garnet (YIG) film and a lead magnesium niobate-lead zirconate titanate (PMN-PZT) ceramic is presented. The magnetic performances of the YIG films with different thicknesses under a DC electric field applied to the PMN-PZT ceramics and a bias magnetic field are investigated. All the magnetization-electric field curves are found to be in good agreement with the butterfly like strain curve of the PMN-PZT ceramic. Both the sharp deformation of about 2.5‰ of PMN-PZT and the easy magnetization switching of YIG are proposed to be the reasons for the strongest CME interaction in the composite at the small electric coercive field of PMN-PZT (4.1 kV/cm) and the small magnetic coercive field of YIG (20 Oe) where the magnetic susceptibility reaches its maximum value. A remarkable CME coefficient of 3.1 × 10-7 s/m is obtained in the system with a 600 nm-thick YIG film. This heterostructure combining multiferroics and partially magnetized ferrite concepts is able to operate under a small or even in the absence of an external bias magnetic field and is more compact and power efficient than the traditional magnetoelectric devices.

  16. Electrodynamic properties of porous PZT-Pt films at terahertz frequency range

    Energy Technology Data Exchange (ETDEWEB)

    Komandin, Gennady A.; Porodinkov, Oleg E.; Spektor, Igor E.; Volkov, Alexander A. [Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation); Vorotilov, Konstantin A.; Seregin, Dmitry S.; Sigov, Alexander S. [Moscow Technological University (MIREA), Moscow (Russian Federation)

    2017-01-15

    Electrodynamics of Si-SiO{sub 2}-TiO{sub 2}-Pt-PZT heterostructures is studied in the frequency range from 5 to 5000 cm{sup -1} by monochromatic BWO (backward wave oscillator) and infrared Fourier-transform spectroscopy techniques to derive the dielectric characteristics of the sol-gel porous ferroelectric PbZr{sub 0.48}Ti{sub 0.52}O{sub 3} films. Broad frequency band dielectric response of PZT films with different density is constructed using the oscillator dispersion models. The main contribution to the film permittivity is found to form at frequencies below 100 cm{sup -1} depending strongly and non-linearly on the film medium density. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. The converse magnetoelectric coupling in asymmetric granule/matrix composite film with Ni/PZT component

    Science.gov (United States)

    Chen, Bo; Su, Ning-Ning; Cui, Wen-Li; Yan, Shi-Nong

    2018-04-01

    In this work, a type of asymmetric granule/matrix composite film is designed, where the Ni granule is dispersed in PZT matrix, meanwhile the top and bottom electrode is constituted by Au and SRO respectively. Predicted through the electrostatic screening model and mean field approximation, considerable electrostatic charge is induced on Ni granule surface by ferroelectric PZT polarization. Predicted through the spin splitting model and spherical shell approximation, both the magnetization and magnetic anisotropy of Ni granule are modulated by ferroelectric PZT polarization. As the volume fraction of Ni granule is increased, the electric modulation of magnetization and magnetic anisotropy is reduced and enhanced respectively. As the dimension of granule/matrix composite is varied, such modulation is retained. Due to the large area-volume ratio of nano-granule, this work benefits to realize the converse magnetoelectric coupling in nanoscale.

  18. Optimization of the low-temperature MOCVD process for PZT thin films

    CERN Document Server

    Wang, C H; Choi, D J

    2000-01-01

    Pb(Zr sub X Ti sub 1 sub - sub X)O sub 3 (PZT) thin films of about 0.34 nm were successfully grown at a low temperature of 500 .deg. C by metalorganic chemical vapor deposition with a beta-diketonate complex of Pb(tmhd) sub 2 , zirconium t-butoxide, and titanium isopropoxide as source precursors. Ferroelectric capacitors of a Pt/PZT/Pt configuration were fabricated, and their structural and electrical properties were investigated as a function of the input Pb/(Zr+Ti) and Zr/(Zr+Ti) source ratios. The structure of the as-grown films at 500 .deg. C changed from tetragonal to pseudocubic with increasing the Zr/(Zr+Ti) ratio above an input Pb/(Zr+Ti) source ratio of 5.0 while a 2nd phase of ZrO sub 2 was only observed below Pb/(Zr+Ti) ratio of 5.0, regardless of the Zr/(Zr+Ti) ratio. The dielectric constant and loss of the PZT films were 150-1200 and 0.01-0.04 at 100 kHz, respectively, Leakage current densities decreased with increasing the Zr/(Zr+Ti) ratio. The process window for growing a single phase PZT is ve...

  19. Barium titanate thick films prepared by screen printing technique

    Directory of Open Access Journals (Sweden)

    Mirjana M. Vijatović

    2010-06-01

    Full Text Available The barium titanate (BaTiO3 thick films were prepared by screen printing technique using powders obtained by soft chemical route, modified Pechini process. Three different barium titanate powders were prepared: i pure, ii doped with lanthanum and iii doped with antimony. Pastes for screen printing were prepared using previously obtained powders. The thick films were deposited onto Al2O3 substrates and fired at 850°C together with electrode material (silver/palladium in the moving belt furnace in the air atmosphere. Measurements of thickness and roughness of barium titanate thick films were performed. The electrical properties of thick films such as dielectric constant, dielectric losses, Curie temperature, hysteresis loop were reported. The influence of different factors on electrical properties values was analyzed.

  20. Crystal structure of red lead titanate thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bursill, L.A.; Peng, J.L.; Jiang, B. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Li, X. [Jilin Univ., Changchun, JL (China). Dept of Chemistry

    1998-09-01

    Orange-red lead titanate thin films are examined by high-resolution transmission electron microscopy and diffraction. It is remarkable that the structure is based on that of tetragonal-tungsten-bronze (TTB) rather than perovskite-type. The chemical basis for this result is examined. It is deduced that the TTB structure is stabilized by inclusion of hydroxyl ions during synthesis by a sol-gel route involving hydrolysis of n-Butyl titanate 7 refs., 1 tab., 4 figs.

  1. Crystal structure of red lead titanate thin films

    International Nuclear Information System (INIS)

    Bursill, L.A.; Peng, J.L.; Jiang, B.; Li, X.

    1998-01-01

    Orange-red lead titanate thin films are examined by high-resolution transmission electron microscopy and diffraction. It is remarkable that the structure is based on that of tetragonal-tungsten-bronze (TTB) rather than perovskite-type. The chemical basis for this result is examined. It is deduced that the TTB structure is stabilized by inclusion of hydroxyl ions during synthesis by a sol-gel route involving hydrolysis of n-Butyl titanate

  2. Pb(Zr,TiO3 (PZT Thin Film Sensors for Fully-Integrated, Passive Telemetric Transponders

    Directory of Open Access Journals (Sweden)

    Richard X. FU

    2011-04-01

    Full Text Available The great potential of taking advantages of PZT in a single chip to achieve inexpensive, fully-integrated, passive telemetric transponders has been shown in this paper. The processes for the sputter deposition of Pb(Zr,TiO3 (PZT thin films from two different composite targets on both Si and c-plane sapphire substrates have been demonstrated. PZT thin films have been deposited by sputter technique. PZT films were deposited onto substrates (Si [(100 Cz wafer] and c-plane sapphire (0001//Ti//Pt followed by sputter-deposited Pt top electrodes. X-ray diffraction results showed that both sputtered PZT films were textured along the [110] direction. The degree of preference for the [110] direction was greater on sapphire substrate where the intensity of that peak is seen to be larger compared to the intensity one Si substrate. TEM data revealed that both sputtered PZT films were polycrystalline in nature. Selected area diffraction (SAD pattern showed that the degree of disorientation between the crystallites was smaller on sapphire substrate compared to on Si substrate, which confirmed the results from the XRD. The remnant polarization Pr on sapphire substrate was larger than on Si’s. The leakage current for the 11 % Pb target sputtered film was much less than 22 % Pb target sputtered film. The breakdown voltage on sapphire substrate was the best. However, for the 11 % Pb target sputtered film’s breakdown voltage was much higher than 22 % Pb target sputtered film.

  3. Using the methods of radiospectroscopy (EPR, NMR) to study the nature of the defect structure of solid solutions based on lead zirconate titanate (PZT).

    Science.gov (United States)

    Bykov, Igor; Zagorodniy, Yuriy; Yurchenko, Lesya; Korduban, Alexander; Nejezchleb, Karel; Trachevsky, Vladimir; Dimza, Vilnis; Jastrabik, Lubomir; Dejneka, Alexander

    2014-08-01

    The nature of intrinsic and impurity point defects in lead zirconate titanate (PZT) ceramics has been explored. Using electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), and X-ray photoelectron spectroscopy (XPS) methods, several impurity sites have been identified in the materials, including the Fe(3+)-oxygen vacancy (VO) complex and Pb ions. Both of these centers are incorporated into the PZT lattice. The Fe(3+) –VО paramagnetic complex serves as a sensitive probe of the local crystal field in the ceramic; the symmetry of this defect roughly correlates with PZT phase diagram as the composition is varied from PbTiO3 to PbZrO3. NMR spectra (207)Pb in PbTiO3, PbZrO3, and PZT with iron content from 0 to 0.4 wt% showed that increasing the iron concentration leads to a distortion of the crystal structure and to improvement of the electrophysical parameters of the piezoceramics. This is due to the formation of a phase which has a higher symmetry, but at high concentrations of iron (>0.4 wt%), it leads to sharp degradation of electrophysical parameters.

  4. A three-degree-of-freedom thin-film PZT-actuated microactuator with large out-of-plane displacement.

    Science.gov (United States)

    Choi, Jongsoo; Qiu, Zhen; Rhee, Choong-Ho; Wang, Thomas; Oldham, Kenn

    2014-07-01

    A novel three degree-of-freedom microactuator based on thin-film lead-zirconate-titanate (PZT) is described with its detailed structural model. Its central rectangular-shaped mirror platform, also referred to as the stage, is actuated by four symmetric PZT bending legs such that each leg provides vertical translation for one corner of the stage. It has been developed to support real-time in vivo vertical cross-sectional imaging with a dual axes confocal endomicroscope for early cancer detection, having large displacements in three axes (z, θ x , θ y ) and a relatively high bandwidth in the z-axis direction. Prototype microactuators closely meet the performance requirements for this application; in the out-of-plane (z-axis) direction, it has shown more than 177 μ m of displacement and about 84 Hz of structural natural frequency, when two diagonal legs are actuated at 14V. With all four legs, another prototype of the same design with lighter stage mass has achieved more than 430 μ m of out-of-plane displacement at 15V and about 200 Hz of bandwidth. The former design has shown approximately 6.4° and 2.9° of stage tilting about the x-axis and y-axis, respectively, at 14V. This paper also presents a modeling technique that uses experimental data to account for the effects of fabrication uncertainties in residual stress and structural dimensions. The presented model predicts the static motion of the stage within an average absolute error of 14.6 μ m, which approaches the desired imaging resolution, 5 μ m, and also reasonably anticipates the structural dynamic behavior of the stage. The refined model will support development of a future trajectory tracking controller for the system.

  5. Sound velocity variation as function of polarization state in Lead Zirconate Titanate (PZT) Ceramics

    International Nuclear Information System (INIS)

    Essolaani, W; Farhat, N

    2012-01-01

    There are several ultrasonic techniques to measure the sound velocity, for example, the pulse-echo method. In such method, the size of transducer used to measure the sound velocity must be in the same order of the sample size. If not, the incompatibility of sizes becomes an error source of the sound velocity measurement. In this work, the Laser Induced Pressure Pulse (LIPP) method is used as ultrasonic method. This method has been very useful for studying the spatial distribution of charges and polarization in dielectrics. We take advantage of the fact that the method allows the sound velocity measurement, to study its variation as function of polarization state in (PZT) ceramics. In a sample with a known thickness e, the sound velocity ν is deduced from the measurement of the transit time T. The sound velocity depends on the elastic constants which in turn they depend on poling conditions. Thus, the variation of the sound velocity is related to the direction and the amplitude of the polarization.

  6. Piezoelectric response of a PZT thin film to magnetic fields from permanent magnet and coil combination

    Science.gov (United States)

    Guiffard, B.; Seveno, R.

    2015-01-01

    In this study, we report the magnetically induced electric field E 3 in Pb(Zr0.57Ti0.43)O3 (PZT) thin films, when they are subjected to both dynamic magnetic induction (magnitude B ac at 45 kHz) and static magnetic induction ( B dc) generated by a coil and a single permanent magnet, respectively. It is found that highest sensitivity to B dc——is achieved for the thin film with largest effective electrode. This magnetoelectric (ME) effect is interpreted in terms of coupling between eddy current-induced Lorentz forces (stress) in the electrodes of PZT and piezoelectricity. Such coupling was evidenced by convenient modelling of experimental variations of electric field magnitude with both B ac and B dc induction magnitudes, providing imperfect open circuit condition was considered. Phase angle of E 3 versus B dc could also be modelled. At last, the results show that similar to multilayered piezoelectric-magnetostrictive composite film, a PZT thin film made with a simple manufacturing process can behave as a static or dynamic magnetic field sensor. In this latter case, a large ME voltage coefficient of under B dc = 0.3 T was found. All these results may provide promising low-cost magnetic energy harvesting applications with microsized systems.

  7. Thickness dependence of the poling and current-voltage characteristics of paint films made up of lead zirconate titanate ceramic powder and epoxy resin

    Science.gov (United States)

    Egusa, Shigenori; Iwasawa, Naozumi

    1995-11-01

    A specially prepared paint made up of lead zirconate titanate (PZT) ceramic powder and epoxy resin was coated on an aluminum plate and was cured at room temperature, thus forming the paint film of 25-300 μm thickness with a PZT volume fraction of 53%. The paint film was then poled at room temperature, and the poling behavior was determined by measuring the piezoelectric activity as a function of poling field. The poling behavior shows that the piezoelectric activity obtained at a given poling field increases with an increase in the film thickness from 25 to 300 μm. The current-voltage characteristic of the paint film, on the other hand, shows that the increase in the film thickness leads not only to an increase in the magnitude of the current density at a given electric field but also to an increase in the critical electric field at which the transition from the ohmic to space-charge-limited conduction takes place. This fact indicates that the amount of the space charge of electrons injected into the paint film decreases as the film thickness increases. Furthermore, comparison of the current-voltage characteristic of the paint film with that of a pure epoxy film reveals that the space charge is accumulated largely at the interface between the PZT and epoxy phases in the paint film. On the basis of this finding, a model is developed for the poling behavior of the paint film by taking into account a possible effect of the space-charge accumulation and a broad distribution of the electric field in the PZT phase. This model is shown to give an excellent fit to the experimental data of the piezoelectric activity obtained here as a function of poling field and film thickness.

  8. Defect enhanced optic and electro-optic properties of lead zirconate titanate thin films

    Directory of Open Access Journals (Sweden)

    M. M. Zhu

    2011-12-01

    Full Text Available Pb(Zr1-xTixO3 (PZT thin films near phase morphotropic phase boundary were deposited on (Pb0.86La0.14TiO3-coated glass by radio frequency sputtering. A retrieved analysis shows that the lattice parameters of the as-grown PZT thin films were similar to that of monoclinic PZT structure. Moreover, the PZT thin films possessed refractive index as high as 2.504 in TE model and 2.431 in TM model. The as-grown PZT thin film had one strong absorption peak at 632.6 nm, which attributed to lead deficiency by quantitative XPS analysis. From the attractive properties achieved, electro-optic and photovoltaic characteristic of the films were carried out.

  9. Polarization recovery in lead zirconate titanate thin films deposited on nanosheets-buffered Si (001)

    OpenAIRE

    Anuj Chopra; Muharrem Bayraktar; Maarten Nijland; Johan E. ten Elshof; Fred Bijkerk; Guus Rijnders

    2016-01-01

    Fatigue behavior of Pb(Zr,Ti)O3 (PZT) films is one of the deterrent factors that limits the use of these films in technological applications. Thus, understanding and minimization of the fatigue behavior is highly beneficial for fabricating reliable devices using PZT films. We have investigated the fatigue behavior of preferentially oriented PZT films deposited on nanosheets-buffered Si substrates using LaNiO3 bottom and top electrodes. The films show fatigue of up to 10% at 100 kHz, whereas n...

  10. Experimental Determination of Effect of Variable Resistance on Lead ZirconateTitanate (PZT-5A4Eunder various Thermal and Frequency Conditions

    Directory of Open Access Journals (Sweden)

    Hassan Elahi

    2014-12-01

    Full Text Available A specially designed apparatus and circuit working on the principle of inverse piezoelectricity due to the effect of polarization was used to find the relationship between resistance and peak to peak voltage of Lead Zirconate Titanate (PZT-5A4E by shocking it at variable frequencies and at variable resistances under various thermal conditions within Curie temperature limit using equivalent circuit method. It was found that by increasing temperature, peak to peak voltage increases and similarly by increasing frequency, peak to peak voltage decreases and with the increase in resistance peak to peak voltage decreases.

  11. Phase transition shift in lead-excess PZT films under UV illumination

    Czech Academy of Sciences Publication Activity Database

    Deyneka, Alexander; Suchaneck, G.; Jastrabík, Lubomír; Gerlach, G.

    2004-01-01

    Roč. 67, - (2004), s. 173-180 ISSN 1058-4587 R&D Projects: GA ČR(CZ) GP202/02/D078; GA AV ČR(CZ) KJB1010301 Institutional research plan: CEZ:AV0Z1010914 Keywords : PZT thin films * phase transition * ellipsometry Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.427, year: 2004

  12. Antibacterial Properties of Titanate Nano fiber Thin Films Formed on a Titanium Plate

    International Nuclear Information System (INIS)

    Yada, M.; Inoue, Y.; Morita, T.; Torikai, T.; Watari, T.; Noda, I.; Hotokebuchi, T.

    2013-01-01

    A sodium titanate nano fiber thin film and a silver nanoparticle/silver titanate nano fiber thin film formed on the surface of a titanium plate exhibited strong antibacterial activities against methicillin-resistant Staphylococcus aureus, which is one of the major bacteria causing in-hospital infections. Exposure of the sodium titanate nano fiber thin film to ultraviolet rays generated a high antibacterial activity due to photo catalysis and the sodium titanate nano fiber thin film immediately after its synthesis possessed a high antibacterial activity even without exposure to ultraviolet rays. Elution of silver from the silver nanoparticle/silver titanate nano fiber thin film caused by the silver ion exchange reaction was considered to contribute substantially to the strong antibacterial activity. The titanate nano fiber thin films adhered firmly to titanium. Therefore, these titanate nano fiber thin film/titanium composites will be extremely useful as implant materials that have excellent antibacterial activities.

  13. Ferroelectric and Piezoelectric properties of (111) oriented lanthanum modified lead zirconate titanate film

    International Nuclear Information System (INIS)

    Dutta, Soma; Antony Jeyaseelan, A.; Sruthi, S.

    2014-01-01

    Lanthanum modified lead zirconate titanate (PLZT) thick film with molecular formula of Pb 0.92 La 0.08 (Zr 0.52 Ti 0.48 ) 0.98 O 3 was grown preferentially along (111) direction on Pt/SiO 2 /Si (platinum/silicon oxide/silicon) substrate by spin coating of chemical solution. The directional growth of the film was facilitated by platinum (Pt) (111) template and rapid thermal annealing. X-ray diffraction pattern and atomic force microscopy revealed the preferential growth of the PLZT film. The film was characterized for ferroelectric and detailed piezoelectric properties in a parallel plate capacitor (metal–PLZT–metal) configuration. Ferroelectric characterization of the film showed saturated hysteresis loop with remanent polarization and coercive electric field values of 10.14 μC/cm 2 and 42 kV/cm, respectively, at an applied field of 300 kV/cm. Longitudinal piezoelectric coefficient (d 33,f ) was measured by employing converse piezoelectric effect where electrical charge response and displacement were measured with electrical voltage excitation on the sample electrodes. The effective transverse piezoelectric coefficient (e 31,f ) was derived from charge measurement with an applied mechanical excitation strain by using the four point bending method. d 33,f and e 31,f coefficients of PLZT films were found to be 380 pm/V and − 0.831 C/m 2 respectively. - Highlights: • PLZT (111) film is prepared by spin coating of chemical sol on Pt (111) template. • Piezoelectric d 33 value (380 pm/V) of PLZT film is found 20% higher than PZT. • Transverse piezocoefficient e 31,f of PLZT film is reported for the first time

  14. Ferroelectric and Piezoelectric properties of (111) oriented lanthanum modified lead zirconate titanate film

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Soma, E-mail: som@nal.res.in; Antony Jeyaseelan, A.; Sruthi, S.

    2014-07-01

    Lanthanum modified lead zirconate titanate (PLZT) thick film with molecular formula of Pb{sub 0.92}La{sub 0.08}(Zr{sub 0.52}Ti{sub 0.48}){sub 0.98}O{sub 3} was grown preferentially along (111) direction on Pt/SiO{sub 2}/Si (platinum/silicon oxide/silicon) substrate by spin coating of chemical solution. The directional growth of the film was facilitated by platinum (Pt) (111) template and rapid thermal annealing. X-ray diffraction pattern and atomic force microscopy revealed the preferential growth of the PLZT film. The film was characterized for ferroelectric and detailed piezoelectric properties in a parallel plate capacitor (metal–PLZT–metal) configuration. Ferroelectric characterization of the film showed saturated hysteresis loop with remanent polarization and coercive electric field values of 10.14 μC/cm{sup 2} and 42 kV/cm, respectively, at an applied field of 300 kV/cm. Longitudinal piezoelectric coefficient (d{sub 33,f}) was measured by employing converse piezoelectric effect where electrical charge response and displacement were measured with electrical voltage excitation on the sample electrodes. The effective transverse piezoelectric coefficient (e{sub 31,f}) was derived from charge measurement with an applied mechanical excitation strain by using the four point bending method. d{sub 33,f} and e{sub 31,f} coefficients of PLZT films were found to be 380 pm/V and − 0.831 C/m{sup 2} respectively. - Highlights: • PLZT (111) film is prepared by spin coating of chemical sol on Pt (111) template. • Piezoelectric d{sub 33} value (380 pm/V) of PLZT film is found 20% higher than PZT. • Transverse piezocoefficient e{sub 31,f} of PLZT film is reported for the first time.

  15. Optimized electrode coverage of membrane actuators based on epitaxial PZT thin films

    International Nuclear Information System (INIS)

    Nguyen, M D; Dekkers, M; Blank, D H A; Rijnders, G; Nazeer, H

    2013-01-01

    This research presents an optimization of piezoelectric membrane actuators by maximizing the actuator displacement. Membrane actuators based on epitaxial Pb(Zr,Ti)O 3 thin films grown on all-oxide electrodes and buffer layers using silicon technology were fabricated. Electrode coverage was found to be an important factor in the actuation displacement of the piezoelectric membranes. The optimum electrode coverage for maximum displacement was theoretically determined to be 39%, which is in good agreement with the experimental results. Dependences of membrane displacement and optimum electrode coverage on membrane diameter and PZT-film/Si-device-layer thickness ratio have also been investigated. (paper)

  16. Fabrication and properties of yttrium doped barium titanate film by RF sputtering

    International Nuclear Information System (INIS)

    Igarashi, H.; Yuasa, M.; Okazaki, K.

    1985-01-01

    Semiconductive barium titanate films were fabricated by RF sputtering on fused quartz, alumina and barium titanate ceramic substrates using barium titanate ceramic with a small amount of yttria as a target. The films on the barium titanate substrates turned blue color and showed a small PTC effect by heat-treating at 1000 0 C in the air after deposition at the substrate temperature of 600 0 C

  17. The effect of Nb doping on ferroelectric properties of PZT thin films prepared from polymeric precursors

    International Nuclear Information System (INIS)

    Souza, E.C.F.; Simoes, A.Z.; Cilense, M.; Longo, E.; Varela, J.A.

    2004-01-01

    Pure and Nb doped PbZr 0.4 Ti 0.6 O 3 thin films was prepared by the polymeric precursor method and deposited by spin coating on Pt/Ti/SiO 2 /Si (100) substrates and annealed at 700 deg. C. The films are oriented in (1 1 0) and (1 0 0) direction. The electric properties of PZT thin films show strong dependence of the crystallographic orientation. The P-E hysteresis loops for the thin film with composition PbZr 0.39 Ti 0.6 Nb 0.1 O 3 showed good saturation, with values for coercive field (E c ) equal to 60 KV cm -1 and for remanent polarization (P r ) equal to 20 μC cm -2 . The measured dielectric constant (ε) is 1084 for this film. These results show good potential for application in FERAM

  18. Optimum Operating Conditions for PZT Actuators for Vibrotactile Wearables

    Science.gov (United States)

    Logothetis, Irini; Matsouka, Dimitra; Vassiliadis, Savvas; Vossou, Clio; Siores, Elias

    2018-04-01

    Recently, vibrotactile wearables have received much attention in fields such as medicine, psychology, athletics and video gaming. The electrical components presently used to generate vibration are rigid; hence, the design and creation of ergonomical wearables are limited. Significant advances in piezoelectric components have led to the production of flexible actuators such as piezoceramic lead zirconate titanate (PZT) film. To verify the functionality of PZT actuators for use in vibrotactile wearables, the factors influencing the electromechanical conversion were analysed and tested. This was achieved through theoretical and experimental analyses of a monomorph clamped-free structure for the PZT actuator. The research performed for this article is a three-step process. First, a theoretical analysis presents the equations governing the actuator. In addition, the eigenfrequency of the film was analysed preceding the experimental section. For this stage, by applying an electric voltage and varying the stimulating electrical characteristics (i.e., voltage, electrical waveform and frequency), the optimum operating conditions for a PZT film were determined. The tip displacement was measured referring to the mechanical energy converted from electrical energy. From the results obtained, an equation for the mechanical behaviour of PZT films as actuators was deduced. It was observed that the square waveform generated larger tip displacements. In conjunction with large voltage inputs at the predetermined eigenfrequency, the optimum operating conditions for the actuator were achieved. To conclude, PZT films can be adapted to assist designers in creating comfortable vibrotactile wearables.

  19. Enhanced fatigue characteristics of sol-gel derived PZT thin films

    International Nuclear Information System (INIS)

    Shim, Donghyun; Pak, Jaemoon; Nam, Kuangwoo; Park, Gwangweo

    2008-01-01

    Pb(Zr,Ti)O 3 (PZT) thin films with Zr/Ti ratio of 52:48 were deposited on Pt/Ti/SiO 2 /Si substrates using the sol-gel method. Since the conditions of heat-treatment play a great role in film growth, post-annealing processes were conducted under different environments. After standard processing, films were annealed at 600 deg. C in three different atmosphere-air, O 2 and a two-step process conducted in air for 30 min and then in O 2 ambient, all done for 10 min. Through electron microscopy and X-ray diffraction, we found that all films were crack-free and highly (1 1 1) oriented. Hysteresis measurements showed a generally large polarization value. The fatigue properties differ drastically for all processes, showing an abnormal behaviour near the end of the measurement. The hysteresis loops before and after 1 x 10 10 switching cycles have been slightly changed in both shape and magnitude. Such abnormality and fatigue-free property is an unusual result for PZT films prepared on conventional Pt/Ti/SiO 2 /Si substrates

  20. Comparison of lead zirconate titanate thin films on ruthenium oxide and platinum electrodes

    International Nuclear Information System (INIS)

    Bursill, L.A.; Reaney, I.M.

    1994-01-01

    High-resolution and bright- and dark-field transmission electron microscopy are used to characterize and compare the interface structures and microstructure of PZT/RuO 2 /SiO 2 /Si and PZT/Pt/Ti/SiO 2 /Si ferroelectric thin films, with a view to understanding the improved fatigue characteristics of PZT thin films with RuO 2 electrodes. The RuO 2 /PZT interface consists of a curved pseudoperiodic minimal surface. The interface is chemically sharp with virtually no intermixing of RuO 2 and PZT, as evidenced by the atomic resolution images as well as energy dispersive X-ray analysis. A nanocrystalline pyrochlore phase Pb 2 ZrTiO 7-x (x ≠ 1) was found on the top surface of the PZT layer. The PZT/Pt/Ti/SiO 2 /Si thin film was well-crystallized and showed sharp interfaces throughout. Possible reasons for the improved fatigue characteristics of PZT/RuO 2 /SiO 2 /Si thin films are discussed. 13 refs; 7 figs

  1. Comparison of lead zirconate titanate thin films on ruthenium oxide and platinum electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Bursill, L A; Reaney, I M

    1994-12-31

    High-resolution and bright- and dark-field transmission electron microscopy are used to characterize and compare the interface structures and microstructure of PZT/RuO{sub 2}/SiO{sub 2}/Si and PZT/Pt/Ti/SiO{sub 2}/Si ferroelectric thin films, with a view to understanding the improved fatigue characteristics of PZT thin films with RuO{sub 2} electrodes. The RuO{sub 2}/PZT interface consists of a curved pseudoperiodic minimal surface. The interface is chemically sharp with virtually no intermixing of RuO{sub 2} and PZT, as evidenced by the atomic resolution images as well as energy dispersive X-ray analysis. A nanocrystalline pyrochlore phase Pb{sub 2}ZrTiO{sub 7-x} (x {ne} 1) was found on the top surface of the PZT layer. The PZT/Pt/Ti/SiO{sub 2}/Si thin film was well-crystallized and showed sharp interfaces throughout. Possible reasons for the improved fatigue characteristics of PZT/RuO{sub 2}/SiO{sub 2}/Si thin films are discussed. 13 refs; 7 figs.

  2. Effect of ultraviolet light on fatigue of lead zirconate titanate thin-film capacitors

    Science.gov (United States)

    Lee, J.; Esayan, S.; Safari, A.; Ramesh, R.

    1994-07-01

    Fatigue of Pb(Zr0.52Ti0.48)O3 (PZT) thin-film capacitors was studied under UV light (He-Cd laser, λ=325 nm). The remanent polarization of the PZT film capacitors increased upon light illumination. Fatigue resistance was also improved under UV light. During fatigue test, the change in polarization of PZT films upon UV light illumination increased gradually with cycling. These results were examined within the framework of the polarization screening model, which is suggested as an essential process for fatigue. This leads to a conclusion that more charged defects are involved in the fatigue process through internal screening of polarization.

  3. Piezoelectric response of a PZT thin film to magnetic fields from permanent magnet and coil combination

    Energy Technology Data Exchange (ETDEWEB)

    Guiffard, B.; Seveno, R. [Universite de Nantes, Lunam Universite, IETR UMR CNRS 6164, Nantes (France)

    2014-07-10

    In this study, we report the magnetically induced electric field E{sub 3} in Pb(Zr{sub 0.57}Ti{sub 0.43})O{sub 3} (PZT) thin films, when they are subjected to both dynamic magnetic induction (magnitude B{sub ac} at 45 kHz) and static magnetic induction (B{sub dc}) generated by a coil and a single permanent magnet, respectively. It is found that highest sensitivity to B{sub dc} - Δ vertical stroke E{sub 3} vertical stroke ΔB{sub dc} - is achieved for the thin film with largest effective electrode. This magnetoelectric (ME) effect is interpreted in terms of coupling between eddy current-induced Lorentz forces (stress) in the electrodes of PZT and piezoelectricity. Such coupling was evidenced by convenient modelling of experimental variations of electric field magnitude with both B{sub ac} and B{sub dc} induction magnitudes, providing imperfect open circuit condition was considered. Phase angle of E{sub 3} versus B{sub dc} could also be modelled. At last, the results show that similar to multilayered piezoelectric-magnetostrictive composite film, a PZT thin film made with a simple manufacturing process can behave as a static or dynamic magnetic field sensor. In this latter case, a large ME voltage coefficient of α = vertical stroke E{sub 3} vertical stroke /B{sub ac} = 3.55 V/cm Oe under B{sub dc} = 0.3 T was found. All these results may provide promising low-cost magnetic energy harvesting applications with microsized systems. (orig.)

  4. Ellipsometry investigation of perovskite/pyrochlore PZT thin film stacks

    Czech Academy of Sciences Publication Activity Database

    Deineka, Alexander; Glinchuk, M. D.; Jastrabík, Lubomír; Suchaneck, G.; Gerlach, G.

    2001-01-01

    Roč. 258, - (2001), s. 271-276 ISSN 0015-0193 R&D Projects: GA MŠk LN00A015; GA ČR GA202/00/1425 Institutional research plan: CEZ:AV0Z1010914 Keywords : ferroelectric film * depth profile * interface Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.471, year: 2001

  5. Optical properties of self-polarized PZT ferroelectric films

    Czech Academy of Sciences Publication Activity Database

    Deineka, Alexander; Jastrabík, Lubomír; Suchaneck, G.; Gerlach, G.

    2002-01-01

    Roč. 273, - (2002), s. 155-160 ISSN 0015-0193 R&D Projects: GA MŠk LN00A015; GA ČR GA202/00/1425 Institutional research plan: CEZ:AV0Z1010914 Keywords : ferroelectric film * phase transition * band gap Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.408, year: 2002

  6. Nondestructive investigatons of the depth profile of PZT ferroelectric films

    Czech Academy of Sciences Publication Activity Database

    Deineka, Alexander; Glinchuk, M. D.; Jastrabík, Lubomír; Suchaneck, G.; Gerlach, G.

    2001-01-01

    Roč. 264, - (2001), s. 151-156 ISSN 0015-0193 R&D Projects: GA MŠk LN00A015; GA ČR GA202/00/1425 Institutional research plan: CEZ:AV0Z1010914 Keywords : ferroelectric film * depth profile * interface Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.471, year: 2001

  7. Compositional dependence of the Young's modulus and piezoelectric coefficient of (110)-oriented pulsed laser deposited PZT thin films

    NARCIS (Netherlands)

    Nazeer, H.; Nguyen, Duc Minh; Rijnders, Augustinus J.H.M.; Sardan Sukas, Ö.; Abelmann, Leon; Elwenspoek, Michael Curt

    2014-01-01

    In this contribution, we report on the compositional dependence of the mechanical and piezoelectric properties of Pb(ZrₓTi₿₋ₓ)O₃ (PZT) thin films fabricated by pulsed laser deposition (PLD). These films grow epitaxially on silicon with a (110) preferred orientation and have excellent piezoelectric

  8. Enhanced off-resonance magnetoelectric response in laser annealed PZT thick film grown on magnetostrictive amorphous metal substrate

    Energy Technology Data Exchange (ETDEWEB)

    Palneedi, Haribabu [Materials Interface Laboratory, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701 (Korea, Republic of); Functional Ceramics Group, Korea Institute of Materials Science (KIMS), Changwon 641-831 (Korea, Republic of); Maurya, Deepam; Priya, Shashank [Bio-inspired Materials and Devices Laboratory (BMDL), Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061 (United States); Kim, Gi-Yeop; Choi, Si-Young, E-mail: youngchoi@kims.re.kr [Materials Modeling and Characterization Department, Korea Institute of Materials Science (KIMS), Changwon 641-831 (Korea, Republic of); Kang, Suk-Joong L. [Materials Interface Laboratory, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701 (Korea, Republic of); Kim, Kwang-Ho [School of Materials Science and Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Ryu, Jungho, E-mail: jhryu@kims.re.kr [Functional Ceramics Group, Korea Institute of Materials Science (KIMS), Changwon 641-831 (Korea, Republic of)

    2015-07-06

    A highly dense, 4 μm-thick Pb(Zr,Ti)O{sub 3} (PZT) film is deposited on amorphous magnetostrictive Metglas foil (FeBSi) by granule spray in vacuum process at room temperature, followed by its localized annealing with a continuous-wave 560 nm ytterbium fiber laser radiation. This longer-wavelength laser radiation is able to anneal the whole of thick PZT film layer without any deteriorative effects, such as chemical reaction and/or atomic diffusion, at the interface and crystallization of amorphous Metglas substrate. Greatly enhanced dielectric and ferroelectric properties of the annealed PZT are attributed to its better crystallinity and grain growth induced by laser irradiation. As a result, a colossal off-resonance magnetoelectric (ME) voltage coefficient that is two orders of magnitude larger than previously reported output from PZT/Metglas film-composites is achieved. The present work addresses the problems involved in the fabrication of PZT/Metglas film-composites and opens up emerging possibilities in employing piezoelectric materials with low thermal budget substrates (suitable for integrated electronics) and designing laminate composites for ME based devices.

  9. Determination of the Steady State Leakage Current in Structures with Ferroelectric Ceramic Films

    Science.gov (United States)

    Podgornyi, Yu. V.; Vorotilov, K. A.; Sigov, A. S.

    2018-03-01

    Steady state leakage currents have been investigated in capacitor structures with ferroelectric solgel films of lead zirconate titanate (PZT) formed on silicon substrates with a lower Pt electrode. It is established that Pt/PZT/Hg structures, regardless of the PZT film thickness, are characterized by the presence of a rectifying contact similar to p-n junction. The steady state leakage current in the forward direction increases with a decrease in the film thickness and is determined by the ferroelectric bulk conductivity.

  10. Phase and electrical properties of PZT thin films embedded with CuO nano-particles by a hybrid sol-gel route

    Science.gov (United States)

    Sreesattabud, Tharathip; Gibbons, Brady J.; Watcharapasorn, Anucha; Jiansirisomboon, Sukanda

    2013-07-01

    Pb(Zr0.52Ti0.48)O3 or PZT thin films embedded with CuO nano-particles were successfully prepared by a hybrid sol-gel process. In this process, CuO (0, 0.1, 0.2, 0.3, 0.4, 0.5 and 1 wt. %) nanopowder was suspended in an organometallic solution of PZT, and then coated on platinised silicon substrate using a spin-coating technique. The influence of CuO nano-particles' dispersion on the phase of PZT thin films was investigated. XRD results showed a perovskite phase in all films. At the CuO concentration of 0.4-1 wt. %, a second phase was observed. The addition of CuO nano-particles affected the orientation of PZT thin films. The addition was also found to reduce the ferroelectric properties of PZT thin films. However, at 0.2 wt. % CuO concentration, the film exhibited good ferroelectric properties similar to those of PZT films. In addition, the fatigue retention properties of the PZT/CuO system was observed, and it showed 14% fatigue at 108 switching bipolar pulse cycles while the fatigue in PZT thin films was found to be 17% at the same switching bipolar pulse cycles.

  11. Highly polarized single-c-domain single-crystal Pb(Mn,Nb)O(3)-PZT thin films.

    Science.gov (United States)

    Wasa, Kiyotaka; Adachi, Hideaki; Nishida, Ken; Yamamoto, Takashi; Matsushima, Tomoaki; Kanno, Isaku; Kotera, Hidetoshi

    2012-01-01

    In-plane unstrained single-c-domain/single-crystal thin films of PZT-based ternary ferroelectric perovskite, ξPb(Mn,Nb)O3-(1 - ξ)PZT, were grown on SrRuO(3)/Pt/MgO substrates using magnetron sputtering followed by quenching. The sputtered unstrained thin films exhibit unique ferroelectric properties: high coercive field, Ec > 180 kV/cm, large remanent polarization, P(r) = 100 μC/cm(2), small relative dielectric constants, ε* = 100 to 150, high Curie temperature, Tc = ~600 °C, and bulk-like large transverse piezoelectric constants, e31,f = -12.0 C/m(2) for PZT(48/52) at ξ = 0.06. The unstrained thin films are an ideal structure to extract the bulk ferroelectric properties. Their micro-structures and ferroelectric properties are discussed in relation to the potential applications for piezoelectric MEMS. © 2012 IEEE

  12. Process induced poling and plasma induced damage of thin films PZT

    NARCIS (Netherlands)

    Wang, J.; Houwman, Evert Pieter; Salm, Cora; Nguyen, Duc Minh; Vergeer, Kurt; Schmitz, Jurriaan

    2017-01-01

    This paper treats processing sequence induced changes on PZT. Two kinds of metal-PZT-metal capacitors are compared. The top surface and sidewall of PZT in one kind of capacitor is directly bombarded by energetic particles during ion milling process, whereas PZT in the other kind of capacitor is not.

  13. Temperature Dependent Electrical Properties of PZT Wafer

    Science.gov (United States)

    Basu, T.; Sen, S.; Seal, A.; Sen, A.

    2016-04-01

    The electrical and electromechanical properties of lead zirconate titanate (PZT) wafers were investigated and compared with PZT bulk. PZT wafers were prepared by tape casting technique. The transition temperature of both the PZT forms remained the same. The transition from an asymmetric to a symmetric shape was observed for PZT wafers at higher temperature. The piezoelectric coefficient (d 33) values obtained were 560 pc/N and 234 pc/N, and the electromechanical coupling coefficient (k p) values were 0.68 and 0.49 for bulk and wafer, respectively. The reduction in polarization after fatigue was only ~3% in case of PZT bulk and ~7% for PZT wafer.

  14. Control of crystallographic texture and surface morphology of Pt/Tio2 templates for enhanced PZT thin film texture.

    Science.gov (United States)

    Fox, Austin J; Drawl, Bill; Fox, Glen R; Gibbons, Brady J; Trolier-McKinstry, Susan

    2015-01-01

    Optimized processing conditions for Pt/TiO2/SiO2/Si templating electrodes were investigated. These electrodes are used to obtain [111] textured thin film lead zirconate titanate (Pb[ZrxTi1-x ]O3 0 ≤ x ≤ 1) (PZT). Titanium deposited by dc magnetron sputtering yields [0001] texture on a thermally oxidized Si wafer. It was found that by optimizing deposition time, pressure, power, and the chamber pre-conditioning, the Ti texture could be maximized while maintaining low surface roughness. When oxidized, titanium yields [100]-oriented rutile. This seed layer has as low as a 4.6% lattice mismatch with [111] Pt; thus, it is possible to achieve strongly oriented [111] Pt. The quality of the orientation and surface roughness of the TiO2 and the Ti directly affect the achievable Pt texture and surface morphology. A transition between optimal crystallographic texture and the smoothest templating surface occurs at approximately 30 nm of original Ti thickness (45 nm TiO2). This corresponds to 0.5 nm (2 nm for TiO2) rms roughness as determined by atomic force microscopy and a full-width at half-maximum (FWHM) of the rocking curve 0002 (200) peak of 5.5/spl degrees/ (3.1/spl degrees/ for TiO2). A Pb[Zr0.52Ti 0.48]O3 layer was deposited and shown to template from the textured Pt electrode, with a maximum [111] Lotgering factor of 87% and a minimum 111 FWHM of 2.4/spl degrees/ at approximately 30 nm of original Ti.

  15. Microstructure of pulsed-laser deposited PZT on polished and annealed MGO substrates

    NARCIS (Netherlands)

    King, S.L.; Coccia, L.G.; Gardeniers, Johannes G.E.; Boyd, I.W.

    1996-01-01

    Thin films of Lead-Zirconate-Titanate (PZT) have been grown by pulsed-laser-deposition (PLD) onto polished MgO substrates both with and without pre-annealing. The surface morphology of polished MgO substrates, which are widely used for deposition, is examined by AFM. Commercially available,

  16. Reliability of vibration energy harvesters of metal-based PZT thin films

    Science.gov (United States)

    Tsujiura, Y.; Suwa, E.; Kurokawa, F.; Hida, H.; Kanno, I.

    2014-11-01

    This paper describes the reliability of piezoelectric vibration energy harvesters (PVEHs) of Pb(Zr,Ti)O3 (PZT) thin films on metal foil cantilevers. The PZT thin films were directly deposited onto the Pt-coated stainless-steel (SS430) cantilevers by rf-magnetron sputtering, and we observed their aging behavior of power generation characteristics under the resonance vibration condition for three days. During the aging measurement, there was neither fatigue failure nor degradation of dielectric properties in our PVEHs (length: 13 mm, width: 5.0 mm, thickness: 104 μm) even under a large excitation acceleration of 25 m/s2. However, we observed clear degradation of the generated electric voltage depending on excitation acceleration. The decay rate of the output voltage was 5% from the start of the measurement at 25 m/s2. The transverse piezoelectric coefficient (e31,f) also degraded with almost the same decay rate as that of the output voltage; this indicates that the degradation of output voltage was mainly caused by that of piezoelectric properties. From the decay curves, the output powers are estimated to degrade 7% at 15 m/s2 and 36% at 25 m/s2 if we continue to excite the PVEHs for 30 years.

  17. Reliability of vibration energy harvesters of metal-based PZT thin films

    International Nuclear Information System (INIS)

    Tsujiura, Y; Suwa, E; Kurokawa, F; Hida, H; Kanno, I

    2014-01-01

    This paper describes the reliability of piezoelectric vibration energy harvesters (PVEHs) of Pb(Zr,Ti)O 3 (PZT) thin films on metal foil cantilevers. The PZT thin films were directly deposited onto the Pt-coated stainless-steel (SS430) cantilevers by rf-magnetron sputtering, and we observed their aging behavior of power generation characteristics under the resonance vibration condition for three days. During the aging measurement, there was neither fatigue failure nor degradation of dielectric properties in our PVEHs (length: 13 mm, width: 5.0 mm, thickness: 104 μm) even under a large excitation acceleration of 25 m/s 2 . However, we observed clear degradation of the generated electric voltage depending on excitation acceleration. The decay rate of the output voltage was 5% from the start of the measurement at 25 m/s 2 . The transverse piezoelectric coefficient (e 31,f ) also degraded with almost the same decay rate as that of the output voltage; this indicates that the degradation of output voltage was mainly caused by that of piezoelectric properties. From the decay curves, the output powers are estimated to degrade 7% at 15 m/s 2 and 36% at 25 m/s 2 if we continue to excite the PVEHs for 30 years

  18. An Optimal Image-Based Method for Identification of Acoustic Emission (AE) Sources in Plate-Like Structures Using a Lead Zirconium Titanate (PZT) Sensor Array

    Science.gov (United States)

    Zhou, Li

    2018-01-01

    This paper proposes an innovative method for identifying the locations of multiple simultaneous acoustic emission (AE) events in plate-like structures from the view of image processing. By using a linear lead zirconium titanate (PZT) sensor array to record the AE wave signals, a reverse-time frequency-wavenumber (f-k) migration is employed to produce images displaying the locations of AE sources by back-propagating the AE waves. Lamb wave theory is included in the f-k migration to consider the dispersive property of the AE waves. Since the exact occurrence time of the AE events is usually unknown when recording the AE wave signals, a heuristic artificial bee colony (ABC) algorithm combined with an optimal criterion using minimum Shannon entropy is used to find the image with the identified AE source locations and occurrence time that mostly approximate the actual ones. Experimental studies on an aluminum plate with AE events simulated by PZT actuators are performed to validate the applicability and effectiveness of the proposed optimal image-based AE source identification method. PMID:29466310

  19. An Optimal Image-Based Method for Identification of Acoustic Emission (AE) Sources in Plate-Like Structures Using a Lead Zirconium Titanate (PZT) Sensor Array.

    Science.gov (United States)

    Yan, Gang; Zhou, Li

    2018-02-21

    This paper proposes an innovative method for identifying the locations of multiple simultaneous acoustic emission (AE) events in plate-like structures from the view of image processing. By using a linear lead zirconium titanate (PZT) sensor array to record the AE wave signals, a reverse-time frequency-wavenumber (f-k) migration is employed to produce images displaying the locations of AE sources by back-propagating the AE waves. Lamb wave theory is included in the f-k migration to consider the dispersive property of the AE waves. Since the exact occurrence time of the AE events is usually unknown when recording the AE wave signals, a heuristic artificial bee colony (ABC) algorithm combined with an optimal criterion using minimum Shannon entropy is used to find the image with the identified AE source locations and occurrence time that mostly approximate the actual ones. Experimental studies on an aluminum plate with AE events simulated by PZT actuators are performed to validate the applicability and effectiveness of the proposed optimal image-based AE source identification method.

  20. Optical and electro-optic anisotropy of epitaxial PZT thin films

    Science.gov (United States)

    Zhu, Minmin; Du, Zehui; Jing, Lin; Yoong Tok, Alfred Iing; Tong Teo, Edwin Hang

    2015-07-01

    Strong optical and electro-optic (EO) anisotropy has been investigated in ferroelectric Pb(Zr0.48Ti0.52)O3 thin films epitaxially grown on Nb-SrTiO3 (001), (011), and (111) substrates using magnetron sputtering. The refractive index, electro-optic, and ferroelectric properties of the samples demonstrate the significant dependence on the growth orientation. The linear electro-optic coefficients of the (001), (011), and (111)-oriented PZT thin films were 270.8, 198.8, and 125.7 pm/V, respectively. Such remarkable anisotropic EO behaviors have been explained according to the structure correlation between the orientation dependent distribution, spontaneous polarization, epitaxial strain, and domain pattern.

  1. RF magnetron sputtered La3+-modified PZT thin films: Perovskite phase stabilization and properties

    International Nuclear Information System (INIS)

    Singh, Ravindra; Goel, T.C.; Chandra, Sudhir

    2008-01-01

    In this work, we report the preparation of lanthanum-modified lead zirconate titanate (PLZT) thin films in pure perovskite phase by RF magnetron sputtering. Various deposition parameters such as target-to-substrate spacing, sputtering gas composition, deposition temperature, post-deposition annealing temperature and time have been optimized to obtain PLZT films in pure perovskite phase. The films prepared in pure argon at 100 W RF power without external substrate heating exhibit pure perovskite phase after rapid thermal annealing (RTA) at 700 deg. C for 5 min. The film prepared at 225 deg. C substrate temperature also exhibits pure perovskite phase after RTA at 700 deg. C for 2 min. SIMS depth profile performed on one of the pure perovskite films (RTA at 700 deg. C for 5 min) shows very good stoichiometric uniformity of all elements of PLZT. The surface morphology of the films was examined using SEM and AFM. The dielectric, ferroelectric and electrical properties of the pure perovskite films were also investigated in detail. The remanent polarization for the films annealed at 700 deg. C for 5 and 2 min were found to be 15 and 13.5 μC cm -2 , respectively. Both the films have high DC resistivity of the order of 10 11 Ω cm at the electric field of ∼80 kV cm -1

  2. Residual stress and Young's modulus of pulsed laser deposited PZT thin films: Effect of thin film composition and crystal direction of Si cantilevers

    NARCIS (Netherlands)

    Nazeer, H.; Nguyen, Duc Minh; Rijnders, Augustinus J.H.M.; Abelmann, Leon; Sardan Sukas, Ö.

    2016-01-01

    We investigated the residual stress and Young's modulus of Pb(ZrxTi1 - x)O3 (PZT) thin films with a (110) preferred orientation and a composition x ranging from 0.2 to 0.8. The films are grown by pulsed laser deposition on silicon cantilevers aligned along the <110> and <100> silicon crystal

  3. Effect of La doping on crystalline orientation, microstructure and dielectric properties of PZT thin films

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wencai; Li, Qi; Wang, Xing [Dalian Univ. of Technology, Dalian (China). School of Mechanical Engineering; Yin, Zhifu [Jilin Univ., Changchun (China). Faculty of the School of Mechanical Science and Engineering; Zou, Helin [Dalian Univ. of Technology, Dalian (China). Key Lab. for Micro/Nano Systems and Technology

    2017-11-01

    Lanthanum (La)-modified lead zirconate titanate (PLZT) thin films with doping concentration from 0 to 5 at.-% have been fabricated by sol-gel methods to investigate the effects of La doping on crystalline orientation, microstructure and dielectric properties of the modified films. The characterization of PLZT thin films were performed by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and precision impedance analysis. XRD analysis showed that PLZT films with La doping concentration below 4 at.-% exhibited (100) preferred orientation. SEM results indicated that PLZT films presented dense and columnar microstructures when La doping concentration was less than 3 at.-%, while the others showed columnar microstructures only at the bottom of the cross section. The maximum dielectric constant (1502.59 at 100 Hz) was obtained in a 2 at.-% La-doped film, which increased by 53.9 % compared with undoped film. Without introducing a seed layer, (100) oriented PLZT thin films were prepared by using conventional heat treatment process and adjusting La doping concentration.

  4. Influence of plasma pressure on the growth characteristics and ferroelectric properties of sputter-deposited PZT thin films

    International Nuclear Information System (INIS)

    Bose, A.; Maity, T.; Bysakh, S.; Seal, A.; Sen, Suchitra

    2010-01-01

    PZT thin films of thickness (320-1040) nm were synthesized on Si/SiO 2 /Ti/Pt multilayered substrates by radio frequency magnetron sputtering. The influence of plasma pressure in the range of (0.24-4.9) Pa, during deposition, on the structural, electrical and ferroelectric properties of the PZT films was systematically studied. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and cross-sectional transmission electron microscopy (XTEM) were employed for structural study. Nano-probe Energy Dispersive (EDX) line scanning was employed to investigate the elemental distribution across the film-bottom electrode interface. I-V characteristics and polarization-electric field (P-E) hysteresis loop of the films were measured. The study reveals that the plasma pressure has a strong influence on the evolution and texture of the ferroelectric perovskite phase and microstructure of the films. At an optimum plasma pressure of 4.1 Pa, PZT films are grown with 93% perovskite phase with (1 1 1) preferred orientation and uniform granular microstructure. These films show a saturation polarization of 67 μC/cm 2 , remnant polarization of 30 μC/cm 2 and coercive field of 28 kV/cm which, according to the literature, seem to be suitable for device applications. Transmission electron microscopy (TEM) study shows that at a plasma pressure of 4.1 Pa, the PZT/bottom Pt interface is sharp and no amorphous interlayer is formed at the interface. At a higher plasma pressure of 4.9 Pa, poor I-V and P-E hysteresis loop are observed which are interpreted as due to an amorphous interlayer at the film-bottom electrode interface which is possibly enriched in Pb, Zr, O and Pt.

  5. Titan

    Science.gov (United States)

    Müller-Wodarg, Ingo; Griffith, Caitlin A.; Lellouch, Emmanuel; Cravens, Thomas E.

    2014-03-01

    Introduction I. C. F. Müller-Wodarg, C. A. Griffith, E. Lellouch and T. E. Cravens; Prologue 1: the genesis of Cassini-Huygens W.-H. Ip, T. Owen and D. Gautier; Prologue 2: building a space flight instrument: a P.I.'s perspective M. Tomasko; 1. The origin and evolution of Titan G. Tobie, J. I. Lunine, J. Monteux, O. Mousis and F. Nimmo; 2. Titan's surface geology O. Aharonson, A. G. Hayes, P. O. Hayne, R. M. Lopes, A. Lucas and J. T. Perron; 3. Thermal structure of Titan's troposphere and middle atmosphere F. M. Flasar, R. K. Achterberg and P. J. Schinder; 4. The general circulation of Titan's lower and middle atmosphere S. Lebonnois, F. M. Flasar, T. Tokano and C. E. Newman; 5. The composition of Titan's atmosphere B. Bézard, R. V. Yelle and C. A. Nixon; 6. Storms, clouds, and weather C. A. Griffith, S. Rafkin, P. Rannou and C. P. McKay; 7. Chemistry of Titan's atmosphere V. Vuitton, O. Dutuit, M. A. Smith and N. Balucani; 8. Titan's haze R. West, P. Lavvas, C. Anderson and H. Imanaka; 9. Titan's upper atmosphere: thermal structure, dynamics, and energetics R. V. Yelle and I. C. F. Müller-Wodarg; 10. Titan's upper atmosphere/exosphere, escape processes, and rates D. F. Strobel and J. Cui; 11. Titan's ionosphere M. Galand, A. J. Coates, T. E. Cravens and J.-E. Wahlund; 12. Titan's magnetospheric and plasma environment J.-E. Wahlund, R. Modolo, C. Bertucci and A. J. Coates.

  6. Optimization of Pb(Zr0.53,Ti0.47)O3 films for micropower generation using integrated cantilevers

    KAUST Repository

    Fuentes-Fernandez, E. M A; Baldenegro-Pé rez, Leonardo Aurelio; Quevedo-Ló pez, Manuel Angel Quevedo; Gnade, Bruce E.; Hande, Abhiman; Shah, Pradeep; Alshareef, Husam N.

    2011-01-01

    Lead zirconate titanate, Pb(Zr0.53,Ti0.47)O 3 or PZT, thin films and integrated cantilevers have been fabricated for energy harvesting applications. The PZT films were deposited on PECVD SiO2/Si substrates with a sol-gel derived ZrO2 buffer layer

  7. Influence of irradiation on the switching behavior in PZT thin films

    International Nuclear Information System (INIS)

    Baturin, I.; Menou, N.; Shur, V.; Muller, C.; Kuznetsov, D.; Hodeau, J.-L.; Sternberg, A.

    2005-01-01

    Spatially nonuniform imprint behavior induced by X-ray synchrotron, electron and neutron irradiation has been investigated in sol-gel Pb(Zr,Ti)O 3 thin films. The analysis of the switching current data reveals the strong influence of irradiation on the switching current shape. The obtained effects have been explained as a result of acceleration of the bulk screening process induced by irradiation. It was shown that the spatial distribution of the internal bias field is determined by the domain structure existing during irradiation. The changes in the structural characteristics during fatigue cycling have been reveled by high resolution synchrotron X-ray diffraction experiments on (1 1 1)-oriented PZT-based capacitors with a composition in the morphotropic region. From both ex situ and in situ measurements, microstructural changes with cyclic switching during fatigue have been evidenced and correlated with the evolution of the switching characteristics

  8. Micro-particle manipulation by single beam acoustic tweezers based on hydrothermal PZT thick film.

    Science.gov (United States)

    Zhu, Benpeng; Xu, Jiong; Li, Ying; Wang, Tian; Xiong, Ke; Lee, Changyang; Yang, Xiaofei; Shiiba, Michihisa; Takeuchi, Shinichi; Zhou, Qifa; Shung, K Kirk

    2016-03-01

    Single-beam acoustic tweezers (SBAT), used in laboratory-on-a-chip (LOC) device has promising implications for an individual micro-particle contactless manipulation. In this study, a freestanding hydrothermal PZT thick film with excellent piezoelectric property (d 33 = 270pC/N and k t = 0.51) was employed for SBAT applications and a press-focusing technology was introduced. The obtained SBAT, acting at an operational frequency of 50MHz, a low f-number (∼0.9), demonstrated the capability to trap and manipulate a micro-particle sized 10μm in the distilled water. These results suggest that such a device has great potential as a manipulator for a wide range of biomedical and chemical science applications.

  9. Micro-particle manipulation by single beam acoustic tweezers based on hydrothermal PZT thick film

    Directory of Open Access Journals (Sweden)

    Benpeng Zhu

    2016-03-01

    Full Text Available Single-beam acoustic tweezers (SBAT, used in laboratory-on-a-chip (LOC device has promising implications for an individual micro-particle contactless manipulation. In this study, a freestanding hydrothermal PZT thick film with excellent piezoelectric property (d33 = 270pC/N and kt = 0.51 was employed for SBAT applications and a press-focusing technology was introduced. The obtained SBAT, acting at an operational frequency of 50MHz, a low f-number (∼0.9, demonstrated the capability to trap and manipulate a micro-particle sized 10μm in the distilled water. These results suggest that such a device has great potential as a manipulator for a wide range of biomedical and chemical science applications.

  10. Micro-particle manipulation by single beam acoustic tweezers based on hydrothermal PZT thick film

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Benpeng, E-mail: benpengzhu@hust.edu.cn [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Xu, Jiong; Yang, Xiaofei [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Li, Ying; Lee, Changyang; Zhou, Qifa; Shung, K. Kirk [Department of Biomedical Engineering and NIH Transducer Resource Center, University of Southern California, Los Angeles, California 90089-1111 (United States); Wang, Tian; Xiong, Ke [Department of Physics and Key Laboratory of Acoustic and Photonic Materials and Devices of Ministry of Education, Wuhan University, Wuhan 430072 (China); Shiiba, Michihisa; Takeuchi, Shinichi [Medical Engineering Course, Graduate School of Engineering, Toin University of Yokohama, Yokohama 225-8501 (Japan)

    2016-03-15

    Single-beam acoustic tweezers (SBAT), used in laboratory-on-a-chip (LOC) device has promising implications for an individual micro-particle contactless manipulation. In this study, a freestanding hydrothermal PZT thick film with excellent piezoelectric property (d{sub 33} = 270 pC/N and k{sub t} = 0.51) was employed for SBAT applications and a press-focusing technology was introduced. The obtained SBAT, acting at an operational frequency of 50 MHz, a low f-number (∼0.9), demonstrated the capability to trap and manipulate a micro-particle sized 10μm in the distilled water. These results suggest that such a device has great potential as a manipulator for a wide range of biomedical and chemical science applications.

  11. Multi-photon vertical cross-sectional imaging with a dynamically-balanced thin-film PZT z-axis microactuator.

    Science.gov (United States)

    Choi, Jongsoo; Duan, Xiyu; Li, Haijun; Wang, Thomas D; Oldham, Kenn R

    2017-10-01

    Use of a thin-film piezoelectric microactuator for axial scanning during multi-photon vertical cross-sectional imaging is described. The actuator uses thin-film lead-zirconate-titanate (PZT) to generate upward displacement of a central mirror platform, micro-machined from a silicon-on-insulator (SOI) wafer to dimensions compatible with endoscopic imaging instruments. Device modeling in this paper focuses on existence of frequencies near device resonance producing vertical motion with minimal off-axis tilt even in the presence of multiple vibration modes and non-uniformity in fabrication outcomes. Operation near rear resonance permits large stroke lengths at low voltages relative to other vertical microactuators. Highly uniform vertical motion of the mirror platform is a key requirement for vertical cross-sectional imaging in the remote scan architecture being used for multi-photon instrument prototyping. The stage is installed in a benchtop testbed in combination with an electrostatic mirror that performs in-plane scanning. Vertical sectional images are acquired from 15 μm diameter beads and excised mouse colon tissue.

  12. Sputtered Modified Barium Titanate for Thin-Film Capacitor Applications

    Directory of Open Access Journals (Sweden)

    Robert Mamazza

    2012-04-01

    Full Text Available New apparatus and a new process for the sputter deposition of modified barium titanate thin-films were developed. Films were deposited at temperatures up to 900 °C from a Ba0.96Ca0.04Ti0.82Zr0.18O3 (BCZTO target directly onto Si, Ni and Pt surfaces and characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM and X-ray photoelectron spectroscopy (XPS. Film texture and crystallinity were found to depend on both deposition temperature and substrate: above 600 °C, the as-deposited films consisted of well-facetted crystallites with the cubic perovskite structure. A strongly textured Pt (111 underlayer enhanced the (001 orientation of BCZTO films deposited at 900 °C, 10 mtorr pressure and 10% oxygen in argon. Similar films deposited onto a Pt (111 textured film at 700 °C and directly onto (100 Si wafers showed relatively larger (011 and diminished intensity (00ℓ diffraction peaks. Sputter ambients containing oxygen caused the Ni underlayers to oxidize even at 700 °C: Raising the process temperature produced more diffraction peaks of NiO with increased intensities. Thin-film capacitors were fabricated using ~500 nm thick BCZTO dielectrics and both Pt and Ni top and bottom electrodes. Small signal capacitance measurements were carried out to determine capacitance and parallel resistance at low frequencies and from these data, the relative permittivity (er and resistivity (r of the dielectric films were calculated; values ranged from ~50 to >2,000, and from ~104 to ~1010 Ω∙cm, respectively.

  13. Characteristics of (Ti,Ta)N thin films prepared by using pulsed high energy density plasma

    Energy Technology Data Exchange (ETDEWEB)

    Feng Wenran [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Chen Guangliang [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Li Li [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Lv Guohua [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Zhang Xianhui [College of Science, Changchun University of Science and Technology, Changchun 130022, Jilin Province (China); Niu Erwu [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Liu Chizi [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Yang Size [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China)

    2007-07-21

    (Ti,Ta)N films were prepared by pulsed high energy density plasma (PHEDP) from a coaxial gun in N{sub 2} gas. The coaxial gun is composed of a tantalum inner electrode and a titanium outer one. Material characteristics of the (Ti,Ta)N film were investigated by x-ray photoelectron spectroscopy and x-ray diffraction. The microstructure of the film was observed by a scanning electron microscope. The elemental composition and the interface of the film/substrate were analysed using Auger electron spectrometry. Our results suggest that the binary metal nitride film (Ti,Ta)N, can be prepared by PHEDP. It also shows that dense nanocrystalline (Ti,Ta)N film can be achieved.

  14. Chemical Synthesis of Porous Barium Titanate Thin Film and Thermal Stabilization of Ferroelectric Phase by Porosity-Induced Strain.

    Science.gov (United States)

    Suzuki, Norihiro; Osada, Minoru; Billah, Motasim; Bando, Yoshio; Yamauchi, Yusuke; Hossain, Shahriar A

    2018-03-27

    Barium titanate (BaTiO3, hereafter BT) is an established ferroelectric material first discovered in the 1940s and still widely used because of its well-balanced ferroelectricity, piezoelectricity, and dielectric constant. In addition, BT does not contain any toxic elements. Therefore, it is considered to be an eco-friendly material, which has attracted considerable interest as a replacement for lead zirconate titanate (PZT). However, bulk BT loses its ferroelectricity at approximately 130 °C, thus, it cannot be used at high temperatures. Because of the growing demand for high-temperature ferroelectric materials, it is important to enhance the thermal stability of ferroelectricity in BT. In previous studies, strain originating from the lattice mismatch at hetero-interfaces has been used. However, the sample preparation in this approach requires complicated and expensive physical processes, which are undesirable for practical applications. In this study, we propose a chemical synthesis of a porous material as an alternative means of introducing strain. We synthesized a porous BT thin film using a surfactant-assisted sol-gel method, in which self-assembled amphipathic surfactant micelles were used as an organic template. Through a series of studies, we clarified that the introduction of pores had a similar effect on distorting the BT crystal lattice, to that of a hetero-interface, leading to the enhancement and stabilization of ferroelectricity. Owing to its simplicity and cost effectiveness, this fabrication process has considerable advantages over conventional methods.

  15. Titan!

    Science.gov (United States)

    Matson, Dennis L.

    2010-05-01

    Cassini-Huygens achieved Saturnian orbit on July 1, 2004. The first order of business was the safe delivery of the Huygens atmospheric probe to Titan that took place on January 14, 2005. Huygens descended under parachute obtaining observations all the way down to a safe landing. It revealed Titan for the first time. Stunning are the similarities between Titan and the Earth. Viewing the lakes and seas, the fluvial terrain, the sand dunes and other features through the hazy, nitrogen atmosphere, brings to mind the geological processes that created analogous features on the Earth. On Titan frozen water plays the geological role of rock; liquid methane takes the role of terrestrial water. The atmospheres of both Earth and Titan are predominately nitrogen gas. Titan's atmosphere contains 1.5% methane and no oxygen. The surface pressure on Titan is 1.5 times the Earth's. There are aerosol layers and clouds that come and go. Now, as Saturn proceeds along its solar orbit, the seasons are changing. The effects upon the transport of methane are starting to be seen. A large lake in the South Polar Region seems to be filling more as winter onsets. Will the size and number of the lakes in the South grow during winter? Will the northern lakes and seas diminish or dry up as northern summer progresses? How will the atmospheric circulation change? Much work remains not only for Cassini but also for future missions. Titan has many different environments to explore. These require more capable instruments and in situ probes. This work was conducted at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration.

  16. Homogeneity analysis of high yield manufacturing process of mems-based pzt thick film vibrational energy harvesters

    DEFF Research Database (Denmark)

    Lei, Anders; Xu, Ruichao; Pedersen, C.M.

    2011-01-01

    This work presents a high yield wafer scale fabrication of MEMS-based unimorph silicon/PZT thick film vibrational energy harvesters aimed towards vibration sources with peak frequencies in the range of a few hundred Hz. By combining KOH etching with mechanical front side protection, SOI wafer...... to accurately define the thickness of the silicon part of the harvester and a silicon compatible PZT thick film screen-printing technique, we are able to fabricate energy harvesters on wafer scale with a yield higher than 90%. The characterization of the fabricated harvesters is focused towards the full wafer....../mass-production aspect; hence the analysis of uniformity in harvested power and resonant frequency....

  17. Fabrication of Pb (Zr, Ti) O3 Thin Film for Non-Volatile Memory Device Application

    International Nuclear Information System (INIS)

    Mar Lar Win

    2011-12-01

    Ferroelectric lead zirconate titanate powder was composed of mainly the oxides of titanium, zirconium and lead. PZT powder was firstly prepared by thermal synthesis at different Zr/Ti ratios with various sintering temperatures. PZT thin film was fabricated on SiO2/Si substrate by using thermal evaporation method. Physical and elemental analysis were carried out by using SEM, EDX and XRD The ferroelectric properties and the switching behaviour of the PZT thin films were investigated. The ferroelectric properties and switching properties of the PZT thin film (near morphotropic phase boundary sintered at 800 C) could function as a nonvolatile memory.

  18. Fabrication and Evaluation of One-Axis Oriented Lead Zirconate Titanate Films Using Metal-Oxide Nanosheet Interface Layer

    Science.gov (United States)

    Minemura, Yoshiki; Nagasaka, Kohei; Kiguchi, Takanori; Konno, Toyohiko J.; Funakubo, Hiroshi; Uchida, Hiroshi

    2013-09-01

    Nanosheet Ca2Nb3O20 (ns-CN) layers with pseudo-perovskite-type crystal configuration were applied on the surface of polycrystalline metal substrates to achieve preferential crystal orientation of Pb(Zr,Ti)O3 (PZT) films for the purpose of enhanced ferroelectricity comparable to that of epitaxial thin films. PZT films with tetragonal symmetry (Zr/Ti=0.40:0.60) were fabricated by chemical solution deposition (CSD) on ns-CN-buffered Inconel 625 and SUS 316L substrates, while ns-CN was applied on the the substrates by dip-coating. The preferential crystal growth on the ns-CN layer can be achieved by favorable lattice matching between (001)/(100)PZT and (001)ns-CN planes. The degree of (001) orientation was increased for PZT films on ns-CN/Inconel 625 and ns-CN/SUS 316L substrates, whereas randomly-oriented PZT films with a lower degree of (001) orientation were grown on bare and Inconel 625 films. Enhanced remanent polarization of 60 µC/cm2 was confirmed for the PZT films on ns-CN/metal substrates, ascribed to the preferential alignment of the polar [001] axis normal to the substrate surface, although it also suffered from higher coercive field above 500 kV/cm caused by PZT/metal interfacial reaction.

  19. Polarization recovery in lead zirconate titanate thin films deposited on nanosheets-buffered Si (001

    Directory of Open Access Journals (Sweden)

    Anuj Chopra

    2016-12-01

    Full Text Available Fatigue behavior of Pb(Zr,TiO3 (PZT films is one of the deterrent factors that limits the use of these films in technological applications. Thus, understanding and minimization of the fatigue behavior is highly beneficial for fabricating reliable devices using PZT films. We have investigated the fatigue behavior of preferentially oriented PZT films deposited on nanosheets-buffered Si substrates using LaNiO3 bottom and top electrodes. The films show fatigue of up to 10% at 100 kHz, whereas no fatigue has been observed at 1 MHz. This frequency dependence of the fatigue behavior is found to be in accordance with Dawber–Scott fatigue model that explains the origin of the fatigue as migration of oxygen vacancies. Interestingly, a partial recovery of remnant polarization up to ∼97% of the maximum value is observed after 4×109 cycles which can be further extended to full recovery by increasing the applied electric field. This full recovery is qualitatively explained using kinetic approach as a manifestation of depinning of domains walls. The understanding of the fatigue behavior and polarization recovery that is explained in this paper can be highly useful in developing more reliable PZT devices.

  20. Polarization recovery in lead zirconate titanate thin films deposited on nanosheets-buffered Si (001)

    Science.gov (United States)

    Chopra, Anuj; Bayraktar, Muharrem; Nijland, Maarten; ten Elshof, Johan E.; Bijkerk, Fred; Rijnders, Guus

    2016-12-01

    Fatigue behavior of Pb(Zr,Ti)O3 (PZT) films is one of the deterrent factors that limits the use of these films in technological applications. Thus, understanding and minimization of the fatigue behavior is highly beneficial for fabricating reliable devices using PZT films. We have investigated the fatigue behavior of preferentially oriented PZT films deposited on nanosheets-buffered Si substrates using LaNiO3 bottom and top electrodes. The films show fatigue of up to 10% at 100 kHz, whereas no fatigue has been observed at 1 MHz. This frequency dependence of the fatigue behavior is found to be in accordance with Dawber-Scott fatigue model that explains the origin of the fatigue as migration of oxygen vacancies. Interestingly, a partial recovery of remnant polarization up to ˜97% of the maximum value is observed after 4×109 cycles which can be further extended to full recovery by increasing the applied electric field. This full recovery is qualitatively explained using kinetic approach as a manifestation of depinning of domains walls. The understanding of the fatigue behavior and polarization recovery that is explained in this paper can be highly useful in developing more reliable PZT devices.

  1. Improving yield of PZT piezoelectric devices on glass substrates

    Science.gov (United States)

    Johnson-Wilke, Raegan L.; Wilke, Rudeger H. T.; Cotroneo, Vincenzo; Davis, William N.; Reid, Paul B.; Schwartz, Daniel A.; Trolier-McKinstry, Susan

    2012-10-01

    The proposed SMART-X telescope includes adaptive optics systems that use piezoelectric lead zirconate titanate (PZT) films deposited on flexible glass substrates. Several processing constraints are imposed by current designs: the crystallization temperature must be kept below 550 °C, the total stress in the film must be minimized, and the yield on 1 cm2 actuator elements should be work, RF magnetron sputtering was used to deposit films since chemical solution deposition (CSD) led to warping of large area flexible glass substrates. A PZT 52/48 film that wasdeposited at 4 mTorr and annealed at 550 °C for 24 hours showed no detectable levels of either PbO or pyrochlore second phases. Large area electrodes (1cm x 1 cm) were deposited on 4" glass substrates. Initially, the yield of the devices was low, however, two methods were employed to increase the yield to near 100 %. The first method included a more rigorous cleaning to improve the continuity of the Pt bottom electrode. The second method was to apply 3 V DC across the capacitor structure to burn out regions of defective PZT. The result of this latter method essentially removed conducting filaments in the PZT but left the bulk of the material undamaged. By combining these two methods, the yield on the large area electrodes improved from < 10% to nearly 100%.

  2. Size effects on structural and dielectric properties of PZT thin films at compositions around the morpho tropic phase boundary

    International Nuclear Information System (INIS)

    Lima, Elton Carvalho; Araujo, Eudes Borges; Souza Filho, Antonio Gomes de; Bdikin, Igor

    2011-01-01

    Full text: The demand for portability in consumer electronics has motivated the understanding of size effects on ferroelectric thin films. The actual comprehension of these effects in ferroelectrics is unsatisfactory, since the polarization interacts more strongly than other order parameters such as strain and charge. As a result, extrinsic effects are produced if these variables are uncontrolled and problems such as ferroelectric paraelectric phase transition at nanometers scale remains an unsolved issue. In the present work, the effects of thickness and compositional fractions on the structural and dielectric properties of PbZr 1-x Ti x O 3 (PZT) thin films were studied at a composition around the morphotropic phase boundary (x = 0.50). For this purpose, thin films with different thicknesses and different PbO excess were deposited on Si(100) and Pt=T iO 2 =SiO 2 =Si substrates by a chemical method and crystallized in electric furnace at 700 deg C for 1 hour. The effects of substrate, pyrolysis temperature and excess lead addition in the films are reported. For films with 10 mol% PbO in excess, the pyrolysis in the regime of 300 deg C for 30 minutes was observed to yield PZT pyrochlore free thin films deposited on Pt=T iO 2 =SiO 2 =Si substrate. Out this condition, the transformation from amorphous to the pyrochlore metastable phase is kinetically more favorable that a transformation to the perovskite phase, which is thermodynamically stable. Rietveld refinements based on X-ray diffraction results showed that films present a purely tetragonal phase and that this phase does not change when the film thickness decreases. The dielectric permittivity measurements showed a monoclinic → tetragonal phase transition at 198K. Results showed that the dielectric permittivity (ε) increases continuously from 257 to 463, while the thickness of the PZT films increases from 200 to 710 nm. These results suggests that interface pinning centers can be the responsible mechanism by

  3. Preparation of PZT/YBCO/YAlO heterostructure thin films by KrF excimer laser ablation

    International Nuclear Information System (INIS)

    Ebihara, Kenji; Kurogi, Hiromitsu; Yamagata, Yukihiko; Ikegami, Tomoaki; Grishin, A.M.

    1998-01-01

    The perovskite oxide YBa 2 Cu 3 O 7-x (YBCO) and Pb(Zr x Ti 1-x )O 3 (PZT) thin films have been deposited for superconducting-ferroelectric devices. KrF excimer laser ablation technique was used at the deposition conditions of 200--600 mTorr O 2 , 2-3J/cm 2 and 5--10 Hz operation frequency. Heterostructures of PZT-YBCO-YAlO 3 :Nd show the zero resistivity critical temperature of 82 K and excellent ferroelectric properties of remnant polarization 32 microC/cm 2 , coercive force of 80 kV/cm and dielectric constant 800. Cycling fatigue characteristics and leakage current are also discussed

  4. Tuning electro-optic susceptibity via strain engineering in artificial PZT multilayer films for high-performance broadband modulator

    Science.gov (United States)

    Zhu, Minmin; Du, Zehui; Li, Hongling; Chen, Bensong; Jing, Lin; Tay, Roland Ying Jie; Lin, Jinjun; Tsang, Siu Hon; Teo, Edwin Hang Tong

    2017-12-01

    A series of Pb(Zr1-xTix)O3 multilayer films alternatively stacked by Pb(Zr0.52Ti0.48)O3 and Pb(Zr0.35Ti0.65)O3 layers have been deposited on corning glass by magnetron sputtering. The films demonstrate pure perovskite structure and good crystallinity. A large tetragonality (c/a) of ∼1.061 and a shift of ∼0.08 eV for optical bandgap were investigated at layer engineered films. In addition, these samples exhibited a wild tunable electro-optic behavior from tens to ∼250.2 pm/V, as well as fast switching time of down to a few microseconds. The giant EO coefficient was attribute the strain-polarization coupling effect and also comparable to that of epitaxial (001) single crystal PZT thin films. The combination of high transparency, large EO effect, fast switching time, and huge phase transition temperature in PZT-based thin films show the potential on electro-optics from laser to information telecommunication.

  5. Strongly Enhanced Piezoelectric Response in Lead Zirconate Titanate Films with Vertically Aligned Columnar Grains

    Science.gov (United States)

    2017-01-01

    Pb(Zr0.52Ti0.48)O3 (PZT) films with (001) orientation were deposited on Pt(111)/Ti/SiO2/Si(100) substrates using pulsed laser deposition. Variation of the laser pulse rate during the deposition of the PZT films was found to play a key role in the control of the microstructure and to change strongly the piezoelectric response of the thin film. The film deposited at low pulse rate has a denser columnar microstructure, which improves the transverse piezoelectric coefficient (d31f) and ferroelectric remanent polarization (Pr), whereas the less densely packed columnar grains in the film deposited at high pulse rates give rise to a significantly higher longitudinal piezoelectric coefficient (d33f) value. The effect of film thickness on the ferroelectric and piezoelectric properties of the PZT films was also investigated. With increasing film thickness, the grain column diameter gradually increases, and also the average Pr and d33f values become larger. The largest piezoelectric coefficient of d33f = 408 pm V–1 was found for a 4-μm film thickness. From a series of films in the thickness range 0.5–5 μm, the z-position dependence of the piezoelectric coefficient could be deduced. A local maximum value of 600 pm V–1 was deduced in the 3.5–4.5 μm section of the thickest films. The dependence of the film properties on film thickness is attributed to the decreasing effect of the clamping constraint imposed by the substrate and the increasing spatial separation between the grains with increasing film thickness. PMID:28247756

  6. Thickness dependence of electrical properties in (0 0 1) oriented lead zirconate titanate films by laser ablation

    International Nuclear Information System (INIS)

    Zhu, T.J.; Lu, L.; Lai, M.O.; Soh, A.K.

    2007-01-01

    Highly (0 0 1)-oriented Pb(Zr 0.52 Ti 0.48 )O 3 (PZT) thin films with LaNiO 3 (LNO) bottom electrodes have been fabricated on amorphous TiN buffered Si substrates by pulsed laser deposition. The polarization-electric field (P-E) hysteresis of the deposited PZT films with different thickness ranging from 25 to 850 nm was measured. Results showed that the coercive field increases with the film thickness scaling down. No P-E loops could be obtained for the film of thickness of 25 nm. The deterioration of ferroelectric property in the thinnest film was attributed to extrinsic effect other than intrinsic size effect. Current-voltage (I-V) characteristics measurement showed the increase in leakage current of the PZT films with the decrease in the thickness of the films under the same bias voltage. At a high field regime, the leakage current of the PZT films of 25 nm thickness remained unchanged with increasing applied voltage. A totally depleted back-to-back Shottky barrier model was used to explain the effect of electrode interfaces on leakage current in the PZT films. It is believed that ferroelectric/electrode interfaces play an important role in the electrical properties of ferroelectric thin films with thickness at nanometer level

  7. Damage-free patterning of ferroelectric lead zirconate titanate thin films for microelectromechanical systems via contact printing

    Science.gov (United States)

    Welsh, Aaron

    This thesis describes the utilization and optimization of the soft lithographic technique, microcontact printing, to additively pattern ferroelectric lead zirconate titanate (PZT) thin films for application in microelectromechanical systems (MEMS). For this purpose, the solution wetting, pattern transfer, printing dynamics, stamp/substrate configurations, and processing damages were optimized for incorporation of PZT thin films into a bio-mass sensor application. This patterning technique transfers liquid ceramic precursors onto a device stack in a desired configuration either through pattern definition in the stamp, substrate or both surfaces. It was determined that for ideal transfer of the pattern from the stamp to the substrate surface, wetting between the solution and the printing surface is paramount. To this end, polyurethane-based stamp surfaces were shown to be wet uniformly by polar solutions. Patterned stamp surfaces revealed that printing from raised features onto flat substrates could be accomplished with a minimum feature size of 5 mum. Films patterned by printing as a function of thickness (0.1 to 1 mum) showed analogous functional properties to continuous films that were not patterned. Specifically, 1 mum thick PZT printed features had a relative permittivity of 1050 +/- 10 and a loss tangent of 2.0 +/- 0.4 % at 10 kHz; remanent polarization was 30 +/- 0.4 muC/cm 2 and the coercive field was 45 +/- 1 kV/cm; and a piezoelectric coefficient e31,f of -7 +/- 0.4 C/m2. No pinching in the minor hysteresis loops or splitting of the first order reversal curve (FORC) distributions was observed. Non-uniform distribution of the solution over the printed area becomes more problematic as feature size is decreased. This resulted in solutions printed from 5 mum wide raised features exhibiting a parabolic shape with sidewall angles of ˜ 1 degree. As an alternative, printing solutions from recesses in the stamp surface resulted in more uniform solution thickness

  8. Structural and optical investigations of sol–gel derived lithium titanate thin films

    International Nuclear Information System (INIS)

    Łapiński, M.; Kościelska, B.; Sadowski, W.

    2012-01-01

    Highlights: ► Lithium titanate thin films were deposited on glass substrates by sol–gel method. ► After annealing at 550 °C samples had lithium titanate spinel structure. ► Above 80 h of annealing mixture of lithium titanate and titanium oxides was appeared. ► Optical transmittance decreased with increasing of annealing time. - Abstract: In this paper structural and optical studies of lithium titanate (LTO) thin films are presented. Nanocrystalline thin films with 800 nm thickness were prepared by sol–gel method. To examine the influence of the annealing time on as-prepared films crystallization, the coatings were heated at 550 °C for 10, 20 and 80 h. Structure of manufactured thin films was investigated using X-ray diffraction (XRD). The most visible lithium titanate phase was obtained after 20 h annealing. Increasing of annealing time over 20 h revealed appearance of titanium oxides phase. On the basis of transmission characteristic optical properties were calculated. It was found that transmission through the thin films was reduced and position of the fundamental absorption edge was shifted toward a longer wavelength with increasing of annealing time. The optical band gap was calculated for direct allowed and indirect allowed transitions from optical absorption spectra.

  9. Crystallinity and electrical properties of neodymium-substituted bismuth titanate thin films

    International Nuclear Information System (INIS)

    Chen, Y.-C.; Hsiung, C.-P.; Chen, C.-Y.; Gan, J.-Y.; Sun, Y.-M.; Lin, C.-P.

    2006-01-01

    We report on the properties of Nd-substituted bismuth titanate Bi 4-x Nd x Ti 3 O 12 (BNdT) thin films for ferroelectric non-volatile memory applications. The Nd-substituted bismuth titanate thin films fabricated by modified chemical solution deposition technique showed much improved properties compared to pure bismuth titanate. A pyrochlore free crystalline phase was obtained at a low annealing temperature of 640 deg. C and grain size was found to be considerably increased as the annealing temperature increased. The film properties were found to be strongly dependent on the Nd content and annealing temperatures. The measured dielectric constant of BNdT thin films was in the range 172-130 for Bi 4-x Nd x Ti 3 O 12 with x 0.0-0.75. Ferroelectric properties of Nd-substituted bismuth titanate thin films were significantly improved compared to pure bismuth titanate. For example, the observed 2P r and E c for Bi 3.25 Nd 0.75 Ti 3 O 12 , annealed at 680 deg. C, were 38 μC/cm 2 and 98 kV/cm, respectively. The improved microstructural and ferroelectric properties of BNdT thin films suggest their suitability for high density ferroelectric random access memory applications

  10. Optimizing Pt/TiO2 templates for textured PZT growth and MEMS devices

    Science.gov (United States)

    Potrepka, Daniel; Fox, Glenn; Sanchez, Luz; Polcawich, Ronald

    2013-03-01

    Crystallographic texture of lead zirconate titanate (PZT) thin films strongly influences piezoelectric properties used in MEMS applications. Textured growth can be achieved by relying on crystal growth habit and can also be initiated by the use of a seed-layer heteroepitaxial template. Template choice and the process used to form it determine structural quality, ultimately influencing performance and reliability of MEMS PZT devices such as switches, filters, and actuators. This study focuses on how 111-textured PZT is generated by a combination of crystal habit and templating mechanisms that occur in the PZT/bottom-electrode stack. The sequence begins with 0001-textured Ti deposited on thermally grown SiO2 on a Si wafer. The Ti is converted to 100-textured TiO2 (rutile) through thermal oxidation. Then 111-textured Pt can be grown to act as a template for 111-textured PZT. Ti and Pt are deposited by DC magnetron sputtering. TiO2 and Pt film textures and structure were optimized by variation of sputtering deposition times, temperatures and power levels, and post-deposition anneal conditions. The relationship between Ti, TiO2, and Pt texture and their impact on PZT growth will be presented. Also affiliated with U.S. Army Research Lab, Adelphi, MD 20783, USA

  11. A Piezoelectric MEMS Microphone Based on Lead Zirconate Titanate (PZT) Thim Films

    National Research Council Canada - National Science Library

    Polcawich, Ronald

    2004-01-01

    .... A piezoelectric-based microphone can provide a solution to these requirements, since it offers the ability to passively sense without the power requirements of condenser or piezoresistive microphone counterparts...

  12. Misfit strain-film thickness phase diagrams and related electromechanical properties of epitaxial ultra-thin lead zirconate titanate films

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Q.Y.; Mahjoub, R. [School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Alpay, S.P. [Materials Science and Engineering Program and Institute of Materials Science, University of Connecticut, Storrs, CT 06269 (United States); Nagarajan, V., E-mail: nagarajan@unsw.edu.au [School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia)

    2010-02-15

    The phase stability of ultra-thin (0 0 1) oriented ferroelectric PbZr{sub 1-x}Ti{sub x}O{sub 3} (PZT) epitaxial thin films as a function of the film composition, film thickness, and the misfit strain is analyzed using a non-linear Landau-Ginzburg-Devonshire thermodynamic model taking into account the electrical and mechanical boundary conditions. The theoretical formalism incorporates the role of the depolarization field as well as the possibility of the relaxation of in-plane strains via the formation of microstructural features such as misfit dislocations at the growth temperature and ferroelastic polydomain patterns below the paraelectric-ferroelectric phase transformation temperature. Film thickness-misfit strain phase diagrams are developed for PZT films with four different compositions (x = 1, 0.9, 0.8 and 0.7) as a function of the film thickness. The results show that the so-called rotational r-phase appears in a very narrow range of misfit strain and thickness of the film. Furthermore, the in-plane and out-of-plane dielectric permittivities {epsilon}{sub 11} and {epsilon}{sub 33}, as well as the out-of-plane piezoelectric coefficients d{sub 33} for the PZT thin films, are computed as a function of misfit strain, taking into account substrate-induced clamping. The model reveals that previously predicted ultrahigh piezoelectric coefficients due to misfit-strain-induced phase transitions are practically achievable only in an extremely narrow range of film thickness, composition and misfit strain parameter space. We also show that the dielectric and piezoelectric properties of epitaxial ferroelectric films can be tailored through strain engineering and microstructural optimization.

  13. A low-frequency MEMS piezoelectric energy harvester with a rectangular hole based on bulk PZT film

    Science.gov (United States)

    Tian, Yingwei; Li, Guimiao; Yi, Zhiran; Liu, Jingquan; Yang, Bin

    2018-06-01

    This paper presents a high performance piezoelectric energy harvester (PEH) with a rectangular hole to work at low-frequency. This PEH used thinned bulk PZT film on flexible phosphor bronze, and its structure included piezoelectric layer, supporting layer and proof mass to reduce the resonant frequency of the device. Here, thinned bulk PZT thick film was used as piezoelectric layer due to its high piezoelectric coefficient. A Phosphor bronze was deployed as supporting layer because it had better flexibility compared to silicon and could work under high acceleration ambient with good durability. The maximum open-circuit voltage of the PEH was 15.7 V at low resonant frequency of 34.3 Hz when the input vibration acceleration was 1.5 g (g = 9.81 m/s2). Moreover, the maximum output power, the output power density and the actually current at the same acceleration were 216.66 μW, 1713.58 μW/cm3 and 170 μA, respectively, when the optimal matched resistance of 60 kΩ was connected. The fabricated PEH scavenged the vibration energy of the vacuum compression pump and generated the maximum output voltage of 1.19 V.

  14. Patterning lead zirconate titanate nanostructures at sub-200-nm resolution by soft confocal imprint lithography and nanotransfer molding

    NARCIS (Netherlands)

    Khan, Sajid; Göbel, Ole; Blank, David H.A.; ten Elshof, Johan E.

    2009-01-01

    Patterned sol-gel-derived lead zirconate titanate (PZT) thin films with lateral resolutions down to 100 nm on silicon are reported. Both an imprint and a transfer-molding method were employed. The formed patterns after annealing were characterized with scanning electron microscopy, atomic force

  15. Strontium titanate thin film deposition - structural and electronical characterization

    Energy Technology Data Exchange (ETDEWEB)

    Hanzig, Florian; Hanzig, Juliane; Stoecker, Hartmut; Mehner, Erik; Abendroth, Barbara; Meyer, Dirk C. [TU Bergakademie Freiberg, Institut fuer Experimentelle Physik (Germany); Franke, Michael [TU Bergakademie Freiberg, Institut fuer Elektronik- und Sensormaterialien (Germany)

    2012-07-01

    Strontium titanate is on the one hand a widely-used model oxide for solids which crystallize in perovskite type of structure. On the other hand, with its large band-gap energy and its mixed ionic and electronic conductivity, SrTiO{sub 3} is a promising isolating material in metal-insulator-metal (MIM) structures for resistive switching memory cells. Here, we used physical vapour deposition methods (e. g. electron-beam and sputtering) to produce strontium titanate layers. Sample thicknesses were probed with X-ray reflectometry (XRR) and spectroscopic ellipsometry (SE). Additionally, layer densities and dielectric functions were quantified with XRR and SE, respectively. Using infrared spectroscopy free electron concentrations were obtained. Phase and element composition analysis was carried out with grazing incidence X-ray diffraction and X-ray photoelectron spectroscopy. Subsequent temperature treatment of samples lead to crystallization of the initially amorphous strontium titanate.

  16. Structural and electrical characterization of PZT on gold for micromachined piezoelectric membranes

    International Nuclear Information System (INIS)

    Robinson, M.C.; Morris, D.J.; Hayenga, P.D.; Cho, J.H.; Richards, C.D.; Richards, R.F.; Bahr, D.F.

    2006-01-01

    Piezoelectric membranes have been fabricated that incorporate a gold bottom electrode with an adhesion layer of titanium-tungsten (10:90 wt. %). For solution-deposited acetic acid based lead zirconate titanate (HoAc-PZT) with a Zr:Ti ratio of 40:60, the film's average piezoelectric coefficient, e 31 , is -5.31 C/m 2 , with a dielectric constant of 814 at 200 Hz, which is similar to values for platinum bottom electrodes. The PZT structure remains columnar on both types of bottom electrodes. Initial fabrication attempts resulted in cracking that initiated in the PZT layer of the structure. X-ray photoelectron spectroscopy was utilized to establish how processing affects diffusion throughout the composite membrane structure. Crack-free membranes were fabricated and tested. This paper discusses the performance properties and piezoelectric fatigue results for these membranes. (orig.)

  17. Characterization of RF-spittered self-polarized PZT thin films for sensors arrays

    Czech Academy of Sciences Publication Activity Database

    Suchaneck, G.; Lin, W. M.; Koehler, R.; Sandner, T.; Gerlach, G.; Krawietz, R.; Pompe, W.; Deineka, Alexander; Jastrabík, Lubomír

    2002-01-01

    Roč. 66, - (2002), s. 473-478 ISSN 0042-207X R&D Projects: GA MŠk LN00A015; GA ČR GA202/00/1425 Institutional research plan: CEZ:AV0Z1010914 Keywords : self-polarized PZT * polarization and refractive index profiles * IR sensor array Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.723, year: 2002

  18. Imprint behavior of piezoelectric PZT thin films deposited onto Cu-coated polymer substrates

    Czech Academy of Sciences Publication Activity Database

    Suchaneck, G.; Hubička, Zdeněk; Čada, Martin; Kiselev, D.A.; Bdikin, I.; Levin, A.A.; Jastrabík, Lubomír; Kholkin, A. L.; Gerlach, G.; Dejneka, Alexandr

    2011-01-01

    Roč. 419, č. 1 (2011), s. 103-108 ISSN 0015-0193 R&D Projects: GA ČR GC202/09/J017; GA AV ČR KAN301370701 Institutional research plan: CEZ:AV0Z10100522 Keywords : plasma deposition * PZT * imprint * piezoresponse force microscopy Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.391, year: 2011

  19. Mechanical and Microstructural Evaluation of Barium Strontium Titanate Thin Films for Improved Antenna Performance and Reliability

    National Research Council Canada - National Science Library

    Hubbard, C

    1999-01-01

    Ferroelectric barium strontium titanate (Ba(1-x)SrxTiO3 BSTO) films of 1-micron nominal thickness were deposited on single crystals of sapphire and electroded substrates at substrate temperatures varying from 30 deg C to 700 deg C...

  20. Ferroelectricity, Piezoelectricity, and Dielectricity of 0.06PMnN-0.94PZT(45/55 Thin Film on Silicon Substrate

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2015-01-01

    Full Text Available The high piezoelectricity and high quality factor ferroelectric thin films are important for electromechanical applications especially the micro electromechanical system (MEMS. The ternary compound ferroelectric thin films 0.06Pb(Mn1/3, Nb2/3O3 + 0.94Pb(Zr0.45, Ti0.55O3 (0.06PMnN-0.94PZT(45/55 were deposited on silicon(100 substrates by RF magnetron sputtering method considering that Mn and Nb doping will improve PZT properties in this research. For comparison, nondoped PZT(45/55 films were also deposited. The results show that both of thin films show polycrystal structures with the main (111 and (101 orientations. The transverse piezoelectric coefficients are e31,eff=−4.03 C/m2 and e31,eff=-3.5 C/m2, respectively. These thin films exhibit classical ferroelectricity, in which the coercive electric field intensities are 2Ec=147.31 kV/cm and 2Ec=135.44 kV/cm, and the saturation polarization Ps=30.86 μC/cm2 and Ps=17.74 μC/cm2, and the remnant polarization Pr=20.44 μC/cm2 and Pr=9.87 μC/cm2, respectively. Moreover, the dielectric constants and loss are εr=681 and D=5% and εr=537 and D=4.3%, respectively. In conclusion, 0.06PMnN-0.94PZT(45/55 thin films act better than nondoped films, even though their dielectric constants are higher. Their excellent ferroelectricity, piezoelectricity, and high power and energy storage property, especially the easy fabrication, integration realizable, and potentially high quality factor, make this kind of thin films available for the realistic applications.

  1. Development of a metrology method for composition and thickness of barium strontium titanate thin films

    International Nuclear Information System (INIS)

    Remmel, Thomas; Werho, Dennis; Liu, Ran; Chu, Peir

    1998-01-01

    Thin films of barium strontium titanate (BST) are being investigated as the charge storage dielectric in advanced memory devices, due to their promise for high dielectric constant. Since the capacitance of BST films is a function of both stoichiometry and thickness, implementation into manufacturing requires precise metrology methods to monitor both of these properties. This is no small challenge, considering the BST film thicknesses are 60 nm or less. A metrology method was developed based on X-ray Fluorescence and applied to the measurement of stoichiometry and thickness of BST thin films in a variety of applications

  2. Simulation and fabrication of 0-3 composite PZT films for ultrahigh frequency (100-300 MHz) ultrasonic transducers

    Science.gov (United States)

    Chen, Xiaoyang; Fei, Chunlong; Chen, Zeyu; Chen, Ruimin; Yu, Ping; Chen, Zhongping; Shung, K. Kirk; Zhou, Qifa

    2016-03-01

    This paper presents simulation, fabrication, and characterization of single-element ultrahigh frequency (100-300-MHz) needle ultrasonic transducers based on 0-3 composite Pb(Zr0.52Ti0.48)O3 (PZT) films prepared by using composite ceramic sol-gel film and sol-infiltration technique. The center frequency of the developed transducer at 300-MHz was the highest frequency of PbTiO3 ceramic-based ultrasonic transducers ever reported. Furthermore, a brief description of the composite model was followed by the development of a new expression for predicting the longitudinal velocity, the clamped dielectric constant, and the complex electromechanical coupling coefficient kt of these films, which is very important in ultrasonic transducer design. Moreover, these parameters are difficult to obtain by measuring the frequency dependence of impedance and phase angle because of the weak signal of the previous 0-3 composite films transducer (>100 MHz). The modeling results show that the Cubes model with a geometric factor n = 0.05 fits well with the measured data. This model will be helpful for developing the 0-3 composite systems for ultrahigh frequency ultrasonic transducer design.

  3. Biotemplated synthesis of PZT nanowires.

    Science.gov (United States)

    Cung, Kellye; Han, Booyeon J; Nguyen, Thanh D; Mao, Sheng; Yeh, Yao-Wen; Xu, Shiyou; Naik, Rajesh R; Poirier, Gerald; Yao, Nan; Purohit, Prashant K; McAlpine, Michael C

    2013-01-01

    Piezoelectric nanowires are an important class of smart materials for next-generation applications including energy harvesting, robotic actuation, and bioMEMS. Lead zirconate titanate (PZT), in particular, has attracted significant attention, owing to its superior electromechanical conversion performance. Yet, the ability to synthesize crystalline PZT nanowires with well-controlled properties remains a challenge. Applications of common nanosynthesis methods to PZT are hampered by issues such as slow kinetics, lack of suitable catalysts, and harsh reaction conditions. Here we report a versatile biomimetic method, in which biotemplates are used to define PZT nanostructures, allowing for rational control over composition and crystallinity. Specifically, stoichiometric PZT nanowires were synthesized using both polysaccharide (alginate) and bacteriophage templates. The wires possessed measured piezoelectric constants of up to 132 pm/V after poling, among the highest reported for PZT nanomaterials. Further, integrated devices can generate up to 0.820 μW/cm(2) of power. These results suggest that biotemplated piezoelectric nanowires are attractive candidates for stimuli-responsive nanosensors, adaptive nanoactuators, and nanoscale energy harvesters.

  4. Comparison of barium titanate thin films prepared by inkjet printing and spin coating

    Directory of Open Access Journals (Sweden)

    Jelena Vukmirović

    2015-09-01

    Full Text Available In this paper, barium titanate films were prepared by different deposition techniques (spin coating, office Epson inkjet printer and commercial Dimatix inkjet printer. As inkjet technique requires special rheological properties of inks the first part of the study deals with the preparation of inks, whereas the second part examines and compares structural characteristics of the deposited films. Inks were synthesized by sol-gel method and parameters such as viscosity, particle size and surface tension were measured. Deposited films were examined by optical and scanning electron microscopy, XRD analysis and Raman spectroscopy. The findings consider advantages and disadvantages of the particular deposition techniques.

  5. Impedance Based Characterization of a High-Coupled Screen Printed PZT Thick Film Unimorph Energy Harvester

    DEFF Research Database (Denmark)

    Lei, Anders; Xu, R.; Borregaard, L. M.

    2014-01-01

    The single degree of freedom mass-spring-damper system is the most common approach for deriving a full electromechanical model for the piezoelectric vibration energy harvester. In this paper, we revisit this standard electromechanical model by focusing on the impedance of the piezoelectric device...... parameters which, by means of the piezoelectric impedance expression, all can be determined accurately by electrical measurements. It is shown how four of five lumped parameters can be determined from a single impedance measurement scan, considerably reducing the characterization effort. The remaining...... parameter is determined from shaker measurements, and a highly accurate agreement is found between model and measurements on a unimorph MEMS-based screen printed PZT harvester. With a high coupling term K-2 Q similar or equal to 7, the harvester exhibits two optimum load points. The peak power performance...

  6. Piezoelectric and mechanical properties of structured PZT-epoxy composites

    NARCIS (Netherlands)

    James, N.K.; Ende, D.A. van den; Lafont, U.; Zwaag, S. van der; Groen, W.A.

    2013-01-01

    Structured lead zirconium titanate (PZT)-epoxy composites are prepared by dielectrophoresis. The piezoelectric and dielectric properties of the composites as a function of PZT volume fraction are investigated and compared with the corresponding unstructured composites. The effect of poling voltage

  7. Piezoelectric and mechanical properties of fatigue resistant, self-healing PZT-ionomer composites

    NARCIS (Netherlands)

    James, N.K.; Lafont, U.; Zwaag, S. van der; Groen, W.A.

    2014-01-01

    Piezoelectric ceramic-polymer composites with 0-3 connectivity were fabricated using lead zirconium titanate (PZT) powder dispersed in an ionomer (Zn ionomer) and its reference ethylene methacrylic acid copolymer (EMAA) polymer matrix. The PZT-Zn ionomer and PZT-EMAA composites were prepared by melt

  8. Influence of PZT Coating Thickness and Electrical Pole Alignment on Microresonator Properties.

    Science.gov (United States)

    Janusas, Giedrius; Ponelyte, Sigita; Brunius, Alfredas; Guobiene, Asta; Vilkauskas, Andrius; Palevicius, Arvydas

    2016-11-10

    With increasing technical requirements in the design of microresonators, the development of new techniques for lightweight, simple, and inexpensive components becomes relevant. Lead zirconate titanate (PZT) is a powerful tool in the formation of these components, allowing a self-actuation or self-sensing capability. Different fabrication methods lead to the variation of the properties of the device itself. This research paper covers the fabrication of a novel PZT film and the investigations of its chemical, surface, and dynamic properties when film thickness is varied. A screen-printing technique was used for the formation of smooth films of 60 µm, 68 µm, and 25 µm thickness. A custom-made poling technique was applied to enhance the piezoelectric properties of the designed films. However, poling did not change any compositional or surface characteristics of the films; changes were only seen in the electrical ones. The results showed that a thinner poled PZT film having a chemical composition with the highest amount of copper and zirconium led to better electrical characteristics (generated voltage of 3.5 mV).

  9. Study of thin films of carrier-doped strontium titanate with emphasis on their interfaces with organic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Naoki [Laboratory of Molecular Aggregation Analysis, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan)]. E-mail: naokis@e.kuicr.kyoto-u.ac.jp; Harada, Youichiro [Laboratory of Molecular Aggregation Analysis, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan); Terashima, Takahito [International Research Center of Elements Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan); Kanda, Ryoko [International Research Center of Elements Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan); Takano, Mikio [International Research Center of Elements Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan)

    2005-05-15

    Fifty nanometer-thick metal-doped strontium titanate (M:STO, M = La and V) films deposited epitaxially on single crystalline STO substrates were characterized in comparison with indium tin oxide (ITO) covered glasses, to check their applicability to optically transparent anode materials for organic optoelectronic devices. M:STO, in particular V:STO, films turned out to have distinct surface flatness, needfully low electric resistivities and notably large work functions. While their optical transmittances are lower than those of ITOs at this moment, we suggest that M:STO films have a potential to take the place of ITO films. Further, we have observed energy level alignments for copper phthalocyanine thin films at the interface of V:STO.

  10. Characterization of Phase Transitions in PZT Ferroelectric films with spectral Ellipsometry

    Czech Academy of Sciences Publication Activity Database

    Deineka, Alexander; Suchaneck, G.; Jastrabík, Lubomír; Gerlach, G.

    11-12, - (2002), s. 377-380 ISSN 0447-6441 R&D Projects: GA MŠk LN00A015; GA ČR GA202/00/1425 Institutional research plan: CEZ:AV0Z1010921 Keywords : ferroelectric film * phase transition * film profile Subject RIV: BH - Optics, Masers, Lasers

  11. Phase transition in lead titanate thin films: a Brillouin study

    International Nuclear Information System (INIS)

    Kuzel, P; Dugautier, C; Moch, P; Marrec, F Le; Karkut, M G

    2002-01-01

    The elastic properties of both polycrystalline and epitaxial PbTiO 3 (PTO) thin films are studied using Brillouin scattering spectroscopy. The epitaxial PTO films were prepared by pulsed laser ablation on (1) a [0 0 1] single crystal of SrTiO 3 (STO) doped with Nb and (2) a [0 0 1] STO buffered with a layer of YBa 2 Cu 3 O 7 . The polycrystalline PTO films were prepared by sol-gel on a Si substrate buffered with TiO 2 and Pt layers. The data analysis takes into account the ripple and the elasto-optic contributions. The latter significantly affects the measured spectra since it gives rise to a Love mode in the p-s scattering geometry. At room temperature, the spectra of the epitaxially grown samples are interpreted using previously published elastic constants of PTO single crystals. Sol-gel samples exhibit appreciable softening of the effective elastic properties compared to PTO single crystals: this result is explained by taking into account the random orientation of the microscopic PTO grains. For both the polycrystalline and the epitaxial films we have determined that the piezoelectric terms do not contribute to the spectra. The temperature dependence of the spectra shows strong anomalies of the elastic properties near the ferroelectric phase transition. Compared to the bulk, T C is higher in the sol-gel films, while in the epitaxial films the sign of the T C shift depends on the underlying material

  12. Wafer-scale growth of highly textured piezoelectric thin films by pulsed laser deposition for micro-scale sensors and actuators

    Science.gov (United States)

    Nguyen, M. D.; Tiggelaar, R.; Aukes, T.; Rijnders, G.; Roelof, G.

    2017-11-01

    Piezoelectric lead-zirconate-titanate (PZT) thin films were deposited on 4-inch (111)Pt/Ti/SiO2/Si(001) wafers using large-area pulsed laser deposition (PLD). This study was focused on the homogeneity in film thickness, microstructure, ferroelectric and piezoelectric properties of PZT thin films. The results indicated that the highly textured (001)-oriented PZT thin films with wafer-scale thickness homogeneity (990 nm ± 0.8%) were obtained. The films were fabricated into piezoelectric cantilevers through a MEMS microfabrication process. The measured longitudinal piezoelectric coefficient (d 33f = 210 pm/V ± 1.6%) and piezoelectric transverse coefficient (e 31f = -18.8 C/m2 ± 2.8%) were high and homogeneity across wafers. The high piezoelectric properties on Si wafers will extend industrial application of PZT thin films and further development of piezoMEMS.

  13. The thickness effect of Bi3.25La0.75Ti3O12 buffer layer in PbZr0.58Ti0.42O3/Bi3.25La0.75Ti3O12 (PZT/BLT) multilayered ferroelectric thin films

    International Nuclear Information System (INIS)

    Li Jianjun; Li Ping; Zhang Guojun; Yu Jun; Wu Yunyi; Wen Xinyi

    2011-01-01

    A series of PbZr 0.58 Ti 0.42 O 3 (PZT) thin films with various Bi 3.25 La 0.75 Ti 3 O 12 (BLT) buffer layer thicknesses were deposited on Pt/TiO 2 /SiO 2 /p-Si(100) substrates by RF magnetron sputtering. The X-ray diffraction measurements of PZT film and PZT/BLT multilayered films illustrate that the pure PZT film shows (111) preferential orientation, and the PZT/BLT films show (110) preferential orientation with increasing thickness of the BLT layer. There are no obvious diffraction peaks for the BLT buffer layer in the multilayered films, for interaction effect between the bottom BLT and top PZT films during annealing at the same time. From the surface images of field-emission scanning electron microscope, there are the maximum number of largest-size grains in PZT/BLT(30 nm) film among all the samples. The growth direction and grain size have significant effects on ferroelectric properties of the multilayered films. The fatigue characteristics of PZT and PZT/BLT films suggest that 30-nm-thick BLT is just an effective buffer layer enough to alleviate the accumulation of oxygen vacancies near the PZT/BLT interface. The comparison of these results with that of PZT/Pt/TiO 2 /SiO 2 /p-Si(100) basic structured film suggests that the buffer layer with an appropriate thickness can improve the ferroelectric properties of multilayered films greatly.

  14. Preparation of Pb(Zr, Ti)O3 Thin Films on Glass Substrates

    Science.gov (United States)

    Hioki, Tsuyoshi; Akiyama, Masahiko; Ueda, Tomomasa; Onozuka, Yutaka; Hara, Yujiro; Suzuki, Kouji

    2000-09-01

    Lead-zirconate-titanate (PZT) thin films were prepared on non-alkaline glass substrates widely used in liquid crystal display (LCD) devices, by plasma-assisted magnetron RF sputtering with an immersed coil. After preparation of the PZT thin film, the glass was available for use in LCD device processing. No mutual diffusion of the elements was recognized between the glass substrate and the bottom electrode. The PZT layer had a dense film structure with rectangular and columnar grains, and only its perovskite phase was crystalline. PZT thin films on a glass substrate had leakage current densities of about 10-8 A/cm2, acceptable hysteresis loop shapes with the remanent polarization (Pr) of 45 μC/cm2 and the coercive field (Ec) of 90 kV/cm. Ferroelectric properties on a glass substrate almost conform with those on a Si-based substrate.

  15. Ferroelectric properties of bilayer structured Pb(Zr0.52Ti0.48)O3/SrBi2Ta2O9 (PZT/SBT) thin films on Pt/TiO2/SiO2/Si substrates

    International Nuclear Information System (INIS)

    Zhang Wenqi; Li Aidong; Shao Qiyue; Xia Yidong; Wu Di; Liu Zhiguo; Ming Naiben

    2008-01-01

    Pb(Zr 0.52 Ti 0.48 )O 3 (PZT) thin films with large remanent polarization and SrBi 2 Ta 2 O 9 (SBT) thin films with excellent fatigue-resisting characteristic have been widely studied for non-volatile random access memories, respectively. To combine these two advantages , bilayered Pb(Zr 0.52 Ti 0.48 )O 3 /SrBi 2 Ta 2 O 9 (PZT/SBT) thin films were fabricated on Pt/TiO 2 /SiO 2 /Si substrates by chemical solution deposition method. X-ray diffraction patterns revealed that the diffraction peaks of PZT/SBT thin films were completely composed of PZT and SBT, and no other secondary phase was observed. The electrical properties of the bilayered structure PZT/SBT films have been investigated in comparison with pure PZT and SBT films. PZT/SBT bilayered thin films showed larger remanent polarization (2P r ) of 18.37 μC/cm 2 than pure SBT and less polarization fatigue up to 1 x 10 9 switching cycles than pure PZT. These results indicated that this bilayered structure of PZT/SBT is a promising material combination for ferroelectric memory applications

  16. Microwave Characterization of Ba-Substituted PZT and ZnO Thin Films.

    Science.gov (United States)

    Tierno, Davide; Dekkers, Matthijn; Wittendorp, Paul; Sun, Xiao; Bayer, Samuel C; King, Seth T; Van Elshocht, Sven; Heyns, Marc; Radu, Iuliana P; Adelmann, Christoph

    2018-05-01

    The microwave dielectric properties of (Ba 0.1 Pb 0.9 )(Zr 0.52 Ti 0.48 )O 3 (BPZT) and ZnO thin films with thicknesses below were investigated. No significant dielectric relaxation was observed for both BPZT and ZnO up to 30 GHz. The intrinsic dielectric constant of BPZT was as high as 980 at 30 GHz. The absence of strong dielectric dispersion and loss peaks in the studied frequency range can be linked to the small grain diameters in these ultrathin films.

  17. Ellipsometry of high temperature phase transition in PZT and (ZnLi)O films

    Czech Academy of Sciences Publication Activity Database

    Deyneka, Alexander; Suchanek, G.; Hubička, Zdeněk; Jastrabík, Lubomír; Gerlach, G.

    2004-01-01

    Roč. 298, - (2004), s. 55-60 ISSN 0015-0193 R&D Projects: GA AV ČR KJB1010301 Keywords : ferroelectric film * self-polarization * spectroscopic ellipsometry Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.517, year: 2004

  18. Self-polarized PZT thin films:deposition, characterization and application

    Czech Academy of Sciences Publication Activity Database

    Suchanek, G.; Sandner, T.; Deyneka, Alexander; Gerlach, G.; Jastrabík, Lubomír

    2004-01-01

    Roč. 298, - (2004), s. 309-316 ISSN 0015-0193 R&D Projects: GA ČR GP202/02/D078 Keywords : ferroelectric film * self-polarization * presence detector Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.517, year: 2004

  19. Ellipsometry and LIMM investigations of the interaction between PZT thin films and platinum electrodes and air

    Czech Academy of Sciences Publication Activity Database

    Deineka, Alexander; Glinchuk, M. D.; Jastrabík, Lubomír; Suchaneck, G.; Sandner, T.; Gerlach, G.

    2001-01-01

    Roč. 254, - (2001), s. 205-211 ISSN 0015-0193 R&D Projects: GA ČR GA202/00/1425 Institutional research plan: CEZ:AV0Z1010914 Keywords : ferroelecric film * depth profile * interface interaction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.471, year: 2001

  20. Hyperfine interaction measurements on ceramics: PZT revisited

    International Nuclear Information System (INIS)

    Guarany, Cristiano A.; Araujo, Eudes B.; Silva, Paulo R.J.; Saitovitch, Henrique

    2007-01-01

    The solid solution of PbZr 1- x Ti x O 3 , known as lead-zirconate titanate (PZT), was probably one of the most studied ferroelectric materials, especially due to its excellent dielectric, ferroelectric and piezoelectric properties. The highest piezoelectric coefficients of the PZT are found near the morphotropic phase boundary (MPB) (0.46≤x≤0.49), between the tetragonal and rhombohedral regions of the composition-temperature phase diagram. Recently, a new monoclinic phase near the MPB was observed, which can be considered as a 'bridge' between PZT's tetragonal and rhombohedral phases. This work is concerned with the study of the structural properties of the ferroelectric PZT (Zr/Ti=52/48, 53/47) by hyperfine interaction (HI) measurements obtained from experiments performed by using the nuclear spectroscopy time differential perturbed angular correlation (TDPAC) in a wide temperature range

  1. Fatigue-free PZT-based nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, H J; Sando, M [Nat. Ind. Res. Inst., Nagoya (Japan); Tajima, K [Synergy Ceramics Lab., Fine Ceramics Research Association, Nagoya (Japan); Niihara, K [ISIR, Osaka Univ., Mihogaoka, Ibaraki (Japan)

    1999-03-01

    The goal of this study is to fabricate fatigue-free piezoelectrics-based nanocomposites. Lead zirconate titanate (PZT) and metallic platinum (Pt) were selected as a matrix and secondary phase dispersoid. Fine Pt particles were homogeneously dispersed in the PZT matrix. Fatigue properties of the unpoled PZT-based nanocomposite under electrical cyclic loading were investigated. The electrical-field-induced crack growth was monitored by an optical microscope, and it depended on the number of cycles the sample was subjected to. Resistance to fatigue was significantly enhanced in the nanocomposite. The excellent fatigue behavior of the PZT/Pt nanocomposites may result from the grain boundary strenghtening due to the interaction between the matrix and Pt particles. (orig.) 8 refs.

  2. Hyperfine interaction measurements on ceramics: PZT revisited

    Energy Technology Data Exchange (ETDEWEB)

    Guarany, Cristiano A. [Universidade Estadual Paulista (Unesp), Departmento de Fisica Quimica, Caixa Postal 31, 15.385-000 Ilha Solteira, SP (Brazil); Araujo, Eudes B. [Universidade Estadual Paulista (Unesp), Departmento de Fisica Quimica, Caixa Postal 31, 15.385-000 Ilha Solteira, SP (Brazil); Silva, Paulo R.J. [Centro Brasileiro de Pesquisas Fisicas-Rua Dr. Xavier Sigaud, 150, 22290-180 Rio de Janeiro, RJ (Brazil); Saitovitch, Henrique [Centro Brasileiro de Pesquisas Fisicas-Rua Dr. Xavier Sigaud, 150, 22290-180 Rio de Janeiro, RJ (Brazil)]. E-mail: henrique@cbpf.br

    2007-02-01

    The solid solution of PbZr{sub 1-} {sub x} Ti {sub x} O{sub 3}, known as lead-zirconate titanate (PZT), was probably one of the most studied ferroelectric materials, especially due to its excellent dielectric, ferroelectric and piezoelectric properties. The highest piezoelectric coefficients of the PZT are found near the morphotropic phase boundary (MPB) (0.46{<=}x{<=}0.49), between the tetragonal and rhombohedral regions of the composition-temperature phase diagram. Recently, a new monoclinic phase near the MPB was observed, which can be considered as a 'bridge' between PZT's tetragonal and rhombohedral phases. This work is concerned with the study of the structural properties of the ferroelectric PZT (Zr/Ti=52/48, 53/47) by hyperfine interaction (HI) measurements obtained from experiments performed by using the nuclear spectroscopy time differential perturbed angular correlation (TDPAC) in a wide temperature range.

  3. Visible light carrier generation in co-doped epitaxial titanate films

    Energy Technology Data Exchange (ETDEWEB)

    Comes, Ryan B.; Smolin, Sergey Y.; Kaspar, Tiffany C.; Gao, Ran; Apgar, Brent A.; Martin, Lane W.; Bowden, Mark E.; Baxter, Jason; Chambers, Scott A.

    2015-03-02

    Perovskite titanates such as SrTiO3 (STO) exhibit a wide range of important functional properties, including high electron mobility, ferroelectricity—which may be valuable in photovoltaic applications—and excellent photocatalytic performance. The wide optical band gap of titanates limits their use in these applications, however, making them ill-suited for integration into solar energy harvesting technologies. Our recent work has shown that by doping STO with equal concentrations of La and Cr we can enhance visible light absorption in epitaxial thin films while avoiding any compensating defects. In this work, we explore the optical properties of photoexcited carriers in these films. Using spectroscopic ellipsometry, we show that the Cr3+ dopants, which produce electronic states immediately above the top of the O 2p valence band in STO reduce the direct band gap of the material from 3.75 eV to between 2.4 and 2.7 eV depending on doping levels. Transient reflectance measurements confirm that optically generated carriers have a recombination lifetime comparable to that of STO and are in agreement with the observations from ellipsometry. Finally, through photoelectrochemical yield measurements, we show that these co-doped films exhibit enhanced visible light photocatalysis when compared to pure STO.

  4. Visible light carrier generation in co-doped epitaxial titanate films

    Energy Technology Data Exchange (ETDEWEB)

    Comes, Ryan B., E-mail: ryan.comes@pnnl.gov; Kaspar, Tiffany C.; Chambers, Scott A. [Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354 (United States); Smolin, Sergey Y.; Baxter, Jason B. [Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104 (United States); Gao, Ran [Department of Materials Science and Engineering, University of California-Berkeley, Berkeley, California 94720 (United States); Apgar, Brent A. [Department of Materials Science and Engineering, University of California-Berkeley, Berkeley, California 94720 (United States); Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801 (United States); Martin, Lane W. [Department of Materials Science and Engineering, University of California-Berkeley, Berkeley, California 94720 (United States); Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Bowden, Mark E. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354 (United States)

    2015-03-02

    Perovskite titanates such as SrTiO{sub 3} (STO) exhibit a wide range of important functional properties, including ferroelectricity and excellent photocatalytic performance. The wide optical band gap of titanates limits their use in these applications; however, making them ill-suited for integration into solar energy harvesting technologies. Our recent work has shown that by doping STO with equal concentrations of La and Cr, we can enhance visible light absorption in epitaxial thin films while avoiding any compensating defects. In this work, we explore the optical properties of photoexcited carriers in these films. Using spectroscopic ellipsometry, we show that the Cr{sup 3+} dopants, which produce electronic states immediately above the top of the O 2p valence band in STO reduce the direct band gap of the material from 3.75 eV to 2.4–2.7 eV depending on doping levels. Transient reflectance spectroscopy measurements are in agreement with the observations from ellipsometry and confirm that optically generated carriers are present for longer than 2 ns. Finally, through photoelectrochemical methylene blue degradation measurements, we show that these co-doped films exhibit enhanced visible light photocatalysis when compared to pure STO.

  5. Comparative study of broadband electrodynamic properties of single-crystal and thin-film strontium titanate

    International Nuclear Information System (INIS)

    Findikoglu, A. T.; Jia, Q. X.; Kwon, C.; Reagor, D. W.; Kaduchak, G.; Rasmussen, K. Oe.; Bishop, A. R.

    1999-01-01

    We have used a coplanar waveguide structure to study broadband electrodynamic properties of single-crystal and thin-film strontium titanate. We have incorporated both time- and frequency-domain measurements to determine small-signal effective refractive index and loss tangent as functions of frequency (up to 4 GHz), dc bias (up to 10 6 V/m), and cryogenic temperature (17 and 60 K). The large-signal impulse response of the devices and the associated phenomenological nonlinear wave equation illustrate how dissipation and nonlinearity combine to produce the overall response in the large-signal regime. (c) 1999 American Institute of Physics

  6. Chemical solution deposited BaPbO3 buffer layers for lead zirconate titanate ferroelectric films

    International Nuclear Information System (INIS)

    Tseng, T.-K.; Wu, J.-M.

    2005-01-01

    Conductive perovskite BaPbO 3 (BPO) films have been prepared successfully by chemical solution deposition method through spin-coating on Pt/Ti/SiO 2 /Si substrates. The choice of baking temperature is a key factor on the development of conducting BPO perovskite phase. When the baking temperature is higher than 350 deg. C, the BPO films contain a high content of BaCO 3 phase after annealing at temperatures higher than 500 deg. C. If the baking temperature is chosen lower than 300 deg. C, such as 200 deg. C, the annealed BPO films consist mostly of perovskite with only traces of BaCO 3 . Choosing 200 deg. C as the baking temperature, the BPO films developed single perovskite phase at temperatures as low as 550 deg. C. The perovskite BPO phase is stable in the range of 550-650 deg. C and the measured sheet resistance of the BPO films is about 2-3 Ω/square. The perovskite BPO film as a buffer layer provides improvement in electric properties of lead zirconate titanate films

  7. Effect of crystal structure on strontium titanate thin films and their dielectric properties

    Science.gov (United States)

    Kampangkeaw, Satreerat

    Strontium titanate (SrTiO3 or STO) has application in radio and microwave-frequency tunable capacitor devices particularly at low temperatures due to its high dielectric constant, low loss and the electric field tunability of its dielectric constant. The main goal of improving the performance in these devices is to increase the tunability and decrease the dielectric loss at the same time, especially at microwave frequencies. Thin films of STO however, show dramatic differences compared to the bulk. The dielectric constant of bulk STO increases nonlinearly from 300 at room temperature to 30000 at 4 K and the loss range is 10-3--10 -4. On the other hand. STO thin films, while showing a dielectric constant close to 300 at room temperature, typically reach a maximum between 1000 and 10000 in the 30 K to 100 K range before decreasing, and the high-loss range is 10-2--10-3. We have grown strontium titanate thin films using a pulsed laser deposition technique on substrates selected to have a small lattice mismatch between the film and substrate. Neodymium gallate (NdGaO3 or NGO) and lanthanum aluminate (LaAlO3 or LAO) substrates were good candidates due to only 1--2% mismatching. Film capacitor devices were fabricated with 25 micron gap separation. 1.5 mm total gap length and an overall 1 x 2 mm dimension using standard lithography and gold metal evaporative techniques. Their nonlinear dielectric constant and loss tangent were measured at low frequencies and also at 2 GHz, and from room temperature down to 4 K. The resulting films show significant variations of dielectric properties with position on the substrates with respect to the deposition plume axis. In the presence of DC electric fields up to +/-4 V/mum, STO films show improved dielectric tunability and low loss in regions far from the plume axis. We found that the films grown on NCO have lower dielectric loss than those on LAO due to a closer match of the NCO lattice to that of STO. We investigated the possible

  8. Off Axis Growth of Strontium Titanate Films with High Dielectric Constant Tuning and Low Loss

    Science.gov (United States)

    Kampangkeaw, Satreerat

    2002-03-01

    Using off-axis pulsed laser deposition, we have grown strontium titanate (STO) films on neodymium gallate (NGO) and lanthanum aluminate (LAO) substrates. We measured the film dielectric constant and loss tangent as a function of temperature in the 10kHz to 1 MHz frequency range. We found that the loss is less than 0.01 We also obtained a figure of merit from the relative variation of the dielectric constant divided by the loss tangent. The obtained figured of merit at 35K and 1MHz is about 1000 comparable to bulk values. The dielectric constant of these films can be changed by a factor of 4-8 in the presence of a DC electric field up to 5V/μm. The films show significant variations of dielectric properties grown on different substrates at different locations respect to the axis of the plume. The STO films on LAO having high dielectric constant and dielectric tuning were grown in region near the center of the plume. On the other hand, STO on NGO shows this effect only on the films grown far from the plume axis.

  9. Frequency and Temperature Dependent Dielectric Properties of Free-standing Strontium Titanate Thin Films.

    Science.gov (United States)

    Dalberth, Mark J.; Stauber, Renaud E.; Anderson, Britt; Price, John C.; Rogers, Charles T.

    1998-03-01

    We will report on the frequency and temperature dependence of the complex dielectric function of free-standing strontium titanate (STO) films. STO is an incipient ferroelectric with electric-field tunable dielectric properties of utility in microwave electronics. The films are grown epitaxially via pulsed laser deposition on a variety of substrates, including lanthanum aluminate (LAO), neodymium gallate (NGO), and STO. An initial film of yttrium barium cuprate (YBCO) is grown on the substrate, followed by deposition of the STO layer. Following deposition, the sacrificial YBCO layer is chemically etched away in dilute nitric acid, leaving the substrate and a released, free-standing STO film. Coplanar capacitor structures fabricated on the released films allow us to measure the dielectric response. We observe a peak dielectric function in excess of 5000 at 35K, change in dielectric constant of over a factor of 8 for 10Volt/micron electric fields, and temperature dependence above 50K that is very similar to bulk material. The dielectric loss shows two peaks, each with a thermally activated behavior, apparently arising from two types of polar defects. We will discuss the correlation between dielectric properties, growth conditions, and strain in the free-standing STO films.

  10. Investigation of high- k yttrium copper titanate thin films as alternative gate dielectrics

    International Nuclear Information System (INIS)

    Monteduro, Anna Grazia; Ameer, Zoobia; Rizzato, Silvia; Martino, Maurizio; Caricato, Anna Paola; Maruccio, Giuseppe; Tasco, Vittorianna; Lekshmi, Indira Chaitanya; Hazarika, Abhijit; Choudhury, Debraj; Sarma, D D

    2016-01-01

    Nearly amorphous high- k yttrium copper titanate thin films deposited by laser ablation were investigated in both metal–oxide–semiconductor (MOS) and metal–insulator–metal (MIM) junctions in order to assess the potentialities of this material as a gate oxide. The trend of dielectric parameters with film deposition shows a wide tunability for the dielectric constant and AC conductivity, with a remarkably high dielectric constant value of up to 95 for the thick films and conductivity as low as 6  ×  10 −10 S cm −1 for the thin films deposited at high oxygen pressure. The AC conductivity analysis points out a decrease in the conductivity, indicating the formation of a blocking interface layer, probably due to partial oxidation of the thin films during cool-down in an oxygen atmosphere. Topography and surface potential characterizations highlight differences in the thin film microstructure as a function of the deposition conditions; these differences seem to affect their electrical properties. (paper)

  11. Low temperature fabrication of barium titanate hybrid films and their dielectric properties

    International Nuclear Information System (INIS)

    Kobayashi, Yoshio; Saito, Hirobumi; Kinoshita, Takafumi; Nagao, Daisuke; Konno, Mikio

    2011-01-01

    A method for incorporating BT nano-crystalline into barium titanate (BT) films is proposed for a low temperature fabrication of high dielectric constant films. BT nanoparticles were synthesized by hydrolysis of a BT complex alkoxide in 2-methoxyethanol (ME)/ethanol cosolvent. As the ME volume fraction in the cosolvent (ME fraction) increased from 0 to 100%, the particle and crystal sizes tended to increase from 13.4 to 30.2 nm and from 15.8 to 31.4 nm, respectively, and the particle dispersion in the solution became more improved. The BT particles were mixed with BT complex alkoxide dissolved in an ME/ethanol cosolvent for preparing a precursor solution that was then spin-coated on a Pt substrate and dried at 150 o C. The dielectric constant of the spin-coated BT hybrid film increased with an increase in the volume fraction of the BT particles in the film. The dissipation factor of the hybrid film tended to decrease with an increase in the ME fraction in the precursor solution. The hybrid film fabricated at a BT fraction of 30% and an ME fraction of 25% attained a dielectric constant as high as 94.5 with a surface roughness of 14.0 nm and a dissipation factor of 0.11.

  12. Substitution of Nb doping on the structural, microstructural and electrical properties in PZT films

    International Nuclear Information System (INIS)

    Haccart, T.; Remiens, D.; Cattan, E.

    2003-01-01

    Undoped and niobium (Nb) doped Pb 1-y (Zr 0.54 Ti 0.46 ) 1-y Nb y O 3 have been deposited by sputtering on Pt metallized silicon substrates. The niobium concentration, y, was varied from 1 to 7 at.% by 1 at.%. The Zr/Ti ratio was fixed to 54/46 corresponding to the Morphotropic Phase Boundary. Structural, microstructural, and electrical properties were evaluated depending on Nb content. The films (doped and undoped) present a (1 1 1)-preferred orientation. The Nb doping induces an increase of the grain size and as it was observed in bulk materials the dielectric constant (ε r ) and the piezoelectric coefficients (e 31 and d 33 ) reach their maximum for low Nb concentration (2 at.%). The remnant and the maximum polarizations increase as the coercive field decreased slightly with the Nb concentration. The internal electric field increases with Nb content; as a result, the 'self-polarization' of the films (polarization measured without poling treatment) is enhanced with niobium substitution. In term of fatigue behavior, it was found that switching endurance characteristics are maximum for low Nb doping level

  13. Substitution of Nb doping on the structural, microstructural and electrical properties in PZT films

    Energy Technology Data Exchange (ETDEWEB)

    Haccart, T.; Remiens, D.; Cattan, E

    2003-01-15

    Undoped and niobium (Nb) doped Pb{sub 1-y}(Zr{sub 0.54}Ti{sub 0.46}){sub 1-y}Nb{sub y}O{sub 3} have been deposited by sputtering on Pt metallized silicon substrates. The niobium concentration, y, was varied from 1 to 7 at.% by 1 at.%. The Zr/Ti ratio was fixed to 54/46 corresponding to the Morphotropic Phase Boundary. Structural, microstructural, and electrical properties were evaluated depending on Nb content. The films (doped and undoped) present a (1 1 1)-preferred orientation. The Nb doping induces an increase of the grain size and as it was observed in bulk materials the dielectric constant ({epsilon}{sub r}) and the piezoelectric coefficients (e{sub 31} and d{sub 33}) reach their maximum for low Nb concentration (2 at.%). The remnant and the maximum polarizations increase as the coercive field decreased slightly with the Nb concentration. The internal electric field increases with Nb content; as a result, the 'self-polarization' of the films (polarization measured without poling treatment) is enhanced with niobium substitution. In term of fatigue behavior, it was found that switching endurance characteristics are maximum for low Nb doping level.

  14. Effect of elastic compliances and higher order Landau coefficients on the phase diagram of single domain epitaxial Pb(Zr,TiO3 (PZT thin films

    Directory of Open Access Journals (Sweden)

    M. Mtebwa

    2014-12-01

    Full Text Available We report the qualitative study of the influence of both elastic compliances and higher order terms of Landau free energy potential on the phase diagram of Pb(Zr0.5Ti0.5O3 thin films by using a single domain Landau theory. Although the impact of elastic compliances and higher order terms of the Landau free energy potential on the phase diagram of ferroelectric thin films are known, the sensitivity of the phase diagram of PZT thin film on these parameters have not been reported. It is demonstrated that, while values of elastic compliances affect the positions of the phase boundaries including phase transition temperature of the cubic phase; higher order terms can potentially introduce an a1a2-phase previously predicted in PbTiO3 phase diagram.

  15. Electrophoretic growth of lead zirconate titanate nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Limmer, S.J.; Seraji, S.; Forbess, M.J.; Wu Yun; Chou, T.P.; Nguyen, C.; Cao Guozhong [Washington Univ., Seattle, WA (United States). Dept. of Materials Science and Engineering

    2001-08-16

    Nanorods of lead zirconate titanate (PZT)-a ferro- and piezoelectric material-up to 10 {mu}m in length and 70 to 150 nm in diameter are produced by sol-gel electrophoresis of PZT in a track-etched polycarbonate membrane, which is used as a template. (orig.)

  16. Multilayer bioactive glass/zirconium titanate thin films in bone tissue engineering and regenerative dentistry

    Science.gov (United States)

    Mozafari, Masoud; Salahinejad, Erfan; Shabafrooz, Vahid; Yazdimamaghani, Mostafa; Vashaee, Daryoosh; Tayebi, Lobat

    2013-01-01

    Surface modification, particularly coatings deposition, is beneficial to tissue-engineering applications. In this work, bioactive glass/zirconium titanate composite thin films were prepared by a sol-gel spin-coating method. The surface features of the coatings were studied by scanning electron microscopy, atomic force microscopy, and spectroscopic reflection analyses. The results show that uniform and sound multilayer thin films were successfully prepared through the optimization of the process variables and the application of carboxymethyl cellulose as a dispersing agent. Also, it was found that the thickness and roughness of the multilayer coatings increase nonlinearly with increasing the number of the layers. This new class of nanocomposite coatings, comprising the bioactive and inert components, is expected not only to enhance bioactivity and biocompatibility, but also to protect the surface of metallic implants against wear and corrosion. PMID:23641155

  17. Doping site dependent thermoelectric properties of epitaxial strontium titanate thin films

    KAUST Repository

    Abutaha, Anas I.; Sarath Kumar, S. R.; Mehdizadeh Dehkordi, Arash; Tritt, Terry M.; Alshareef, Husam N.

    2014-01-01

    We demonstrate that the thermoelectric properties of epitaxial strontium titanate (STO) thin films can be improved by additional B-site doping of A-site doped ABO3 type perovskite STO. The additional B-site doping of A-site doped STO results in increased electrical conductivity, but at the expense of Seebeck coefficient. However, doping on both sites of the STO lattice significantly reduces the lattice thermal conductivity of STO by adding more densely and strategically distributed phononic scattering centers that attack wider phonon spectra. The additional B-site doping limits the trade-off relationship between the electrical conductivity and total thermal conductivity of A-site doped STO, leading to an improvement in the room-temperature thermoelectric figure of merit, ZT. The 5% Pr3+ and 20% Nb5+ double-doped STO film exhibits the best ZT of 0.016 at room temperature. This journal is

  18. Characterization of barium strontium titanate thin films on sapphire substrate prepared via RF magnetron sputtering system

    Science.gov (United States)

    Jamaluddin, F. W.; Khalid, M. F. Abdul; Mamat, M. H.; Zoolfakar, A. S.; Zulkefle, M. A.; Rusop, M.; Awang, Z.

    2018-05-01

    Barium Strontium Titanate (Ba0.5Sr0.5TiO3) is known to have a high dielectric constant and low loss at microwave frequencies. These unique features are useful for many electronic applications. This paper focuses on material characterization of BST thin films deposited on sapphire substrate by RF magnetron sputtering system. The sample was then annealed at 900 °C for two hours. Several methods were used to characterize the structural properties of the material such as X-ray diffraction (XRD) and atomic force microscopy (AFM). Field emission scanning electron microscopy (FESEM) was used to analyze the surface morphology of the thin film. From the results obtained, it can be shown that the annealed sample had a rougher surface and better crystallinity as compared to as-deposited sample.

  19. MIS field effect transistor with barium titanate thin film as a gate insulator

    Energy Technology Data Exchange (ETDEWEB)

    Firek, P., E-mail: pfirek@elka.pw.edu.p [Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland); Werbowy, A.; Szmidt, J. [Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland)

    2009-11-25

    The properties of barium titanate (BaTiO{sub 3}, BT) like, e.g. high dielectric constant and resistivity, allow it to find numerous applications in field of microelectronics. In this work silicon metal insulator semiconductor field effect transistor (MISFET) structures with BaTiO{sub 3} (containing La{sub 2}O{sub 3} admixture) thin films in a role of gate insulator were investigated. The films were produced by means of radio frequency plasma sputtering (RF PS) of sintered BaTiO{sub 3} + La{sub 2}O{sub 3} (2 wt.%) target. In the paper transfer and output current-voltage (I-V), transconductance and output conductance characteristics of obtained transistors are presented and discussed. Basic parameters of these devices like, e.g. threshold voltage (V{sub TH}), are determined and discussed.

  20. Effect of solid content variations on PZT slip for tape casting

    Directory of Open Access Journals (Sweden)

    Gang Jian

    2012-12-01

    Full Text Available Lead zirconate titanate (PZT particles with pure tetragonal structure were synthesized by solid-state reaction method and used for preparation of slurries with different solid contents (34–80 wt.%. Then, PZT thick films were fabricated by the nonaqueous tape casting method. It was shown that the slurry prepared from ball-milled particles exhibited better rheology properties than slurry from particles which were not ball-milled. Measurement of sedimentation volumes and zeta potentials indicated particle aggregation, resulting in weak stability of the slurries with high solid contents. The microstructure, piezoelectric and ferroelectric properties of PZT sintered films were investigated in terms of solid contents. Ceramic films prepared from the slurry with solid contents of 73 wt.% had the optimal structure and properties. After poling at 200 °C with an applied field of 1.2 kV/cm, a d33 of 294 pC/N was achieved; typical ferroelectric properties were also observed with a Ps of 38 μC/cm2.

  1. Very high frequency (beyond 100 MHz) PZT kerfless linear arrays.

    Science.gov (United States)

    Wu, Da-Wei; Zhou, Qifa; Geng, Xuecang; Liu, Chang-Geng; Djuth, Frank; Shung, K Kirk

    2009-10-01

    This paper presents the design, fabrication, and measurements of very high frequency kerfless linear arrays prepared from PZT film and PZT bulk material. A 12-microm PZT thick film fabricated from PZT-5H powder/solution composite and a piece of 15-microm PZT-5H sheet were used to fabricate 32-element kerfless high-frequency linear arrays with photolithography. The PZT thick film was prepared by spin-coating of PZT sol-gel composite solution. The thin PZT-5H sheet sample was prepared by lapping a PZT-5H ceramic with a precision lapping machine. The measured results of the 2 arrays were compared. The PZT film array had a center frequency of 120 MHz, a bandwidth of 60% with a parylene matching layer, and an insertion loss of 41 dB. The PZT ceramic sheet array was found to have a center frequency of 128 MHz with a poorer bandwidth (40% with a parylene matching layer) but a better sensitivity (28 dB insertion loss).

  2. Combined effect of preferential orientation and Zr/Ti atomic ratio on electrical properties of Pb(ZrxTi1-x)O3 thin films

    International Nuclear Information System (INIS)

    Gong Wen; Li Jingfeng; Chu Xiangcheng; Gui Zhilun; Li Longtu

    2004-01-01

    Lead zirconate titanate [Pb(Zr x Ti 1-x )O 3 , PZT] thin films with various compositions, whose Zr/Ti ratio were varied as 40/60, 48/52, 47/53, and 60/40, were deposited on Pt(111)/Ti/SiO 2 /Si substrates by sol-gel method. A seeding layer was introduced between the PZT layer and the bottom electrode to control the texture of overlaid PZT thin films. A single perovskite PZT thin film with absolute (100) texture was obtained, when lead oxide was used as the seeding crystal, whereas titanium dioxide resulted in highly [111]-oriented PZT films. The dielectric and ferroelectric properties of PZT films with different preferential orientations were evaluated systemically as a function of composition. The maximums of relative dielectric constant were obtained in the morphotropic phase boundary region for both (100)- and (111)-textured PZT films. The ferroelectric properties also greatly depend on films' texture and composition. The intrinsic and extrinsic contributions to dielectric and ferroelectric properties were discussed

  3. Control of mechanical response of freestanding PbZr0.52Ti0.48O3 films through texture

    Science.gov (United States)

    Das, Debashish; Sanchez, Luz; Martin, Joel; Power, Brian; Isaacson, Steven; Polcawich, Ronald G.; Chasiotis, Ioannis

    2016-09-01

    The texture of piezoelectric lead zirconate titanate (PZT) thin films plays a key role in their mechanical response and linearity in the stress vs. strain behavior. The open circuit mechanical properties of PZT films with controlled texture varying from 100% (001) to 100% (111) were quantified with the aid of direct strain measurements from freestanding thin film specimens. The texture was tuned using a highly {111}-textured Pt substrate and excess-Pb in the PbTiO3 seed layer. The mechanical and ferroelastic properties of 500 nm thick PZT (52/48) films were found to be strongly dependent on grain orientation: the lowest elastic modulus of 90 ± 2 GPa corresponded to pure (001) texture, and its value increased linearly with the percentage of (111) texture reaching 122 ± 3 GPa for pure (111) texture. These elastic modulus values were between those computed for transversely isotropic textured PZT films by using the soft and hard bulk PZT compliance coefficients. Pure (001) texture exhibited maximum non-linearity and ferroelastic domain switching, contrary to pure (111) texture that exhibited more linearity and the least amount of switching. A micromechanics model was employed to calculate the strain due to domain switching. The model fitted well the non-linearities in the experimental stress-strain curves of (001) and (111) textured PZT films, predicting 17% and 10% of switched 90° domains that initially were favorably aligned with the applied stress in (001) and (111) textured PZT films, respectively.

  4. Towards in-situ tem analysis of PLD Pb(Zr,Ti)O3 thin film membranes

    NARCIS (Netherlands)

    Sardan Sukas, Ö.; Berenschot, Johan W.; de Boer, Meint J.; Nguyen, Duc Minh; van Zalk, M.; Abelmann, Leon

    2011-01-01

    In this paper, a novel technique for fabricating Transmission Electron Microscopy (TEM) chips for investigating structural and piezoelectric properties of Pulse Laser Deposited (PLD) Lead Zirconium Titanate (PZT) thin films is presented. The method involves silicon-on-insulator (SOI) wafer

  5. Multicomponent doped barium strontium titanate thin films for tunable microwave applications

    Science.gov (United States)

    Alema, Fikadu Legesse

    In recent years there has been enormous progress in the development of barium strontium titanate (BST) films for tunable microwave applications. However, the properties of BST films still remain inferior compared to bulk materials, limiting their use for microwave technology. Understanding the film/substrate mismatch, microstructure, and stoichiometry of BST films and finding the necessary remedies are vital. In this work, BST films were deposited via radio frequency magnetron sputtering method and characterized both analytically and electrically with the aim of optimizing their properties. The stoichiometry, crystal structure, and phase purity of the films were studied by varying the oxygen partial pressure (OPP) and total gas pressure (TGP) in the chamber. A better stoichiometric match between film and target was achieved when the TGP is high (> 30 mTorr). However, the O2/Ar ratio should be adjusted as exceeding a threshold of 2 mTorr in OPP facilitates the formation of secondary phases. The growth of crystalline film on platinized substrates was achieved only with a lower temperature grown buffer layer, which acts as a seed layer by crystallizing when the temperature increases. Concurrent Mg/Nb doping has significantly improved the properties of BST thin films. The doped film has shown an average tunability of 53%, which is only ˜8 % lower than the value for the undoped film. This drop is associated with the Mg ions whose detrimental effects are partially compensated by Nb ions. Conversely, the doping has reduced the dielectric loss by ˜40 % leading to a higher figure of merit. Moreover, the two dopants ensure a charge neutrality condition which resulted in significant leakage current reduction. The presence of large amounts of empty shallow traps related to Nb Ti localize the free carriers injected from the contacts; thus increase the device control voltage substantially (>10 V). A combinatorial thin film synthesis method based on co-sputtering of two BST

  6. Accounting for the various contributions to pyroelectricity in lead zirconate titanate thin films

    Science.gov (United States)

    Hanrahan, B.; Espinal, Y.; Neville, C.; Rudy, R.; Rivas, M.; Smith, A.; Kesim, M. T.; Alpay, S. P.

    2018-03-01

    An understanding of the pyroelectric coefficient and particularly its relationship with the applied electric field is critical to predicting the device performance for infrared imaging, energy harvesting, and solid-state cooling devices. In this work, we compare direct measurements of the pyroelectric effect under pulsed heating to the indirect extraction of the pyroelectric coefficient from adiabatic hysteresis loops and predictions from Landau-Devonshire theory for PbZr0.52Ti0.48O3 (PZT 52/48) on platinized silicon substrates. The differences between these measurements are explained through a series of careful measurements that quantify the magnitude and direction of the secondary and field-induced pyroelectric effects. The indirect measurement is shown to be up to 25% of the direct measurement at high fields, while the direct measurements and theoretical predictions converge at high fields as the film approaches a mono-domain state. These measurements highlight the importance of directly measuring the pyroelectric response in thin films, where non-intrinsic effects can be a significant proportion of the total observed pyroelectricity. Material and operating conditions are also discussed which could simultaneously maximize all contributions to pyroelectricity.

  7. Electrical Properties of Thin-Film Capacitors Fabricated Using High Temperature Sputtered Modified Barium Titanate

    Directory of Open Access Journals (Sweden)

    Robert Mamazza

    2012-04-01

    Full Text Available Simple thin-film capacitor stacks were fabricated from sputter-deposited doped barium titanate dielectric films with sputtered Pt and/or Ni electrodes and characterized electrically. Here, we report small signal, low frequency capacitance and parallel resistance data measured as a function of applied DC bias, polarization versus applied electric field strength and DC load/unload experiments. These capacitors exhibited significant leakage (in the range 8–210 μA/cm2 and dielectric loss. Measured breakdown strength for the sputtered doped barium titanate films was in the range 200 kV/cm −2 MV/cm. For all devices tested, we observed clear evidence for dielectric saturation at applied electric field strengths above 100 kV/cm: saturated polarization was in the range 8–15 μC/cm2. When cycled under DC conditions, the maximum energy density measured for any of the capacitors tested here was ~4.7 × 10−2 W-h/liter based on the volume of the dielectric material only. This corresponds to a specific energy of ~8 × 10−3 W-h/kg, again calculated on a dielectric-only basis. These results are compared to those reported by other authors and a simple theoretical treatment provided that quantifies the maximum energy that can be stored in these and similar devices as a function of dielectric strength and saturation polarization. Finally, a predictive model is developed to provide guidance on how to tailor the relative permittivities of high-k dielectrics in order to optimize their energy storage capacities.

  8. Enhanced photoelectrochemical properties of 100 MeV Si8+ ion irradiated barium titanate thin films

    International Nuclear Information System (INIS)

    Solanki, Anjana; Choudhary, Surbhi; Satsangi, Vibha R.; Shrivastav, Rohit; Dass, Sahab

    2013-01-01

    Highlights: ► Effect of 100 MeV Si 8+ ion irradiation on photoelectrochemical (PEC) properties of BaTiO 3 thin films was studied. ► Films were deposited on Indium doped Tin Oxide (ITO) coated glass by sol–gel spin coating technique. ► Optimal irradiation fluence for best PEC response was 5 × 10 11 ion cm −2 . ► Maximum photocurrent density was observed to be 0.7 mA cm −2 at 0.4 V/SCE. ► Enhanced photo-conversion efficiency was due to maximum negative flatband potential, donor density and lowest resistivity. -- Abstract: Effects of high electronic energy deposition on the structure, surface topography, optical property and photoelectrochemical behavior of barium titanate (BaTiO 3 ) thin films were investigated by irradiating films with 100 MeV Si 8+ ions at different ion fluences in the range of 1 × 10 11 –2 × 10 13 ions cm −2 . BaTiO 3 thin films were deposited on indium tin oxide coated glass substrate by sol gel spin coating method. Irradiation induced modifications in the films were analyzed using the results from XRD, SEM, cross sectional SEM, AFM and UV–Vis spectrometry. Maximum photocurrent density of 0.7 mA cm −2 at 0.4 V/SCE and applied bias hydrogen conversion efficiency (ABPE) of 0.73% was observed for BaTiO 3 film irradiated at 5 × 10 11 ions cm −2 , which can be attributed to maximum negative value of the flatband potential and donor density and lowest resistivity

  9. The Investigation of E-beam Deposited Titanium Dioxide and Calcium Titanate Thin Films

    Directory of Open Access Journals (Sweden)

    Kristina BOČKUTĖ

    2013-09-01

    Full Text Available Thin titanium dioxide and calcium titanate films were deposited using electron beam evaporation technique. The substrate temperature during the deposition was changed from room temperature to 600 °C to test its influence on TiO2 film formation and optical properties. The properties of CaTiO3 were investigated also. For the evaluation of the structural properties the formed thin ceramic films were studied by X-ray diffraction (XRD, energy dispersive spectrometry (EDS, scanning electron microscopy (SEM and atomic force microscopy (AFM. Optical properties of thin TiO2 ceramics were investigated using optical spectroscope and the experimental data were collected in the ultraviolet-visible and near-infrared ranges with a step width of 1 nm. Electrical properties were investigated by impedance spectroscopy.It was found that substrate temperature has influence on the formed thin films density. The density increased when the substrate temperature increased. Substrate temperature had influence on the crystallographic, structural and optical properties also. DOI: http://dx.doi.org/10.5755/j01.ms.19.3.1805

  10. Optimization of Pb(Zr0.53,Ti0.47)O3 films for micropower generation using integrated cantilevers

    KAUST Repository

    Fuentes-Fernandez, E. M A

    2011-09-01

    Lead zirconate titanate, Pb(Zr0.53,Ti0.47)O 3 or PZT, thin films and integrated cantilevers have been fabricated for energy harvesting applications. The PZT films were deposited on PECVD SiO2/Si substrates with a sol-gel derived ZrO2 buffer layer. It is found that lead content in the starting solution and ramp rate during film crystallization are critical to achieving large-grained films on the ZrO2 surface. The electrical properties of the PZT films were measured using metal-ferroelectric-metal and inter-digital electrode structures, and revealed substantial improvement in film properties by controlling the process conditions. Functional cantilevers are demonstrated using the optimized films with output of 1.4 V peak-to-peak at 1 kHz and 2.5 g. © 2011 Elsevier Ltd. All rights reserved.

  11. Study of grain boundary tunneling in barium-titanate ceramic films

    CERN Document Server

    Wong, H; Poon, M C

    1999-01-01

    The temperature and the electric-field dependences of the current-voltage characteristics and the low-frequency noise of barium-titanate ceramic films are studied. An abnormal field dependence is observed in the resistivity of BaTiO sub 3 materials with a small average grain size. In addition, experiments show that the low-frequency noise behaviors are governed by grain-boundary tunneling at room temperature and by trapping-detrapping of grain-boundary states at temperatures above the Curie point. Physical models for the new observations are developed. Results suggest that grain-boundary tunneling of carriers is as important as the double Schottky barrier in the current conduction in BaTiO sub 3 materials with small grain sizes.

  12. Multilayer bioactive glass/zirconium titanate thin films in bone tissue engineering and regenerative dentistry

    Directory of Open Access Journals (Sweden)

    Mozafari M

    2013-04-01

    Full Text Available Masoud Mozafari,1,2 Erfan Salahinejad,1,3 Vahid Shabafrooz,1 Mostafa Yazdimamaghani,1 Daryoosh Vashaee,4 Lobat Tayebi1,5 1Helmerich Advanced Technology Research Center, School of Materials Science and Engineering, Oklahoma State University, Tulsa, OK, USA; 2Biomaterials Group, Faculty of Biomedical Engineering (Center of Excellence, Amirkabir University of Technology, Tehran, Iran; 3Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz, Iran; 4Helmerich Advanced Technology Research Center, School of Electrical and Computer Engineering, Oklahoma State University, Tulsa, OK, USA; 5School of Chemical Engineering, Oklahoma State University, Tulsa, OK, USA Abstract: Surface modification, particularly coatings deposition, is beneficial to tissue-engineering applications. In this work, bioactive glass/zirconium titanate composite thin films were prepared by a sol-gel spin-coating method. The surface features of the coatings were studied by scanning electron microscopy, atomic force microscopy, and spectroscopic reflection analyses. The results show that uniform and sound multilayer thin films were successfully prepared through the optimization of the process variables and the application of carboxymethyl cellulose as a dispersing agent. Also, it was found that the thickness and roughness of the multilayer coatings increase nonlinearly with increasing the number of the layers. This new class of nanocomposite coatings, comprising the bioactive and inert components, is expected not only to enhance bioactivity and biocompatibility, but also to protect the surface of metallic implants against wear and corrosion. Keywords: bioactive glass, zirconium titanate, spin-coating, microstructural properties, bone/dental applications, tissue engineering

  13. Titanate nanotube thin films with enhanced thermal stability and high-transparency prepared from additive-free sols

    Energy Technology Data Exchange (ETDEWEB)

    Koroesi, Laszlo, E-mail: korosi@enviroinvest.hu [Supramolecular and Nanostructured Materials Research Group of the Hungarian Academy of Sciences, University of Szeged, Aradi vertanuk tere 1, H-6720 Szeged (Hungary); Department of Biotechnology, Nanophage Therapy Center, Enviroinvest Corporation, Kertvaros utca 2, H-7632 Pecs (Hungary); Papp, Szilvia [Supramolecular and Nanostructured Materials Research Group of the Hungarian Academy of Sciences, University of Szeged, Aradi vertanuk tere 1, H-6720 Szeged (Hungary); Department of Biotechnology, Nanophage Therapy Center, Enviroinvest Corporation, Kertvaros utca 2, H-7632 Pecs (Hungary); Hornok, Viktoria [Supramolecular and Nanostructured Materials Research Group of the Hungarian Academy of Sciences, University of Szeged, Aradi vertanuk tere 1, H-6720 Szeged (Hungary); Oszko, Albert [Department of Physical Chemistry and Materials Science, University of Szeged, Aradi vertanuk tere 1, H-6720 Szeged (Hungary); Petrik, Peter; Patko, Daniel; Horvath, Robert [Institute for Technical Physics and Materials Science MFA, Research Center for Natural Sciences, Konkoly-Thege ut 29-33, H-1121 Budapest (Hungary); Dekany, Imre [Supramolecular and Nanostructured Materials Research Group of the Hungarian Academy of Sciences, University of Szeged, Aradi vertanuk tere 1, H-6720 Szeged (Hungary)

    2012-08-15

    Titanate nanotubes were synthesized from TiO{sub 2} in alkaline medium by a conventional hydrothermal method (150 Degree-Sign C, 4.7 bar). To obtain hydrogen titanates, the as-prepared sodium titanates were treated with either HCl or H{sub 3}PO{sub 4} aqueous solutions. A simple synthesis procedure was devised for stable titanate nanotube sols without using any additives. These highly stable ethanolic sols can readily be used to prepare transparent titanate nanotube thin films of high quality. The resulting samples were studied by X-ray diffraction, N{sub 2}-sorption measurements, Raman spectroscopy, transmission and scanning electron microscopy, X-ray photoelectron spectroscopy and spectroscopic ellipsometry. The comparative results of using two kinds of acids shed light on the superior thermal stability of the H{sub 3}PO{sub 4}-treated titanate nanotubes (P-TNTs). X-ray photoelectron spectroscopy revealed that P-TNTs contains P in the near-surface region and the thermal stability was enhanced even at a low ({approx}0.5 at%) concentration of P. After calcination at 500 Degree-Sign C, the specific surface areas of the HCl- and H{sub 3}PO{sub 4}-treated samples were 153 and 244 m{sup 2} g{sup -1}, respectively. The effects of H{sub 3}PO{sub 4} treatment on the structure, morphology and porosity of titanate nanotubes are discussed. - Graphical Abstract: TEM picture (left) shows P-TNTs with diameters about 5-6 nm. Inset shows a stable titanate nanotube sol illuminated by a 532 nm laser beam. Due to the presence of the nanoparticles the way of the light is visible in the sol. Cross sectional SEM picture (right) as well as ellipsometry revealed the formation of optical quality P-TNT films with thicknesses below 50 nm. Highlights: Black-Right-Pointing-Pointer H{sub 3}PO{sub 4} treatment led to TNTs with high surface area even after calcination at 500 Degree-Sign C. Black-Right-Pointing-Pointer H{sub 3}PO{sub 4}-treated TNTs preserved their nanotube morphology up to 500

  14. Orientation of rapid thermally annealed lead zirconate titanate thin films on (111) Pt substrate

    International Nuclear Information System (INIS)

    Brooks, K.G.; Reaney, I.M.; Klissurska, R.; Huang, Y.; Bursill, L.A.; Setter, N.

    1994-01-01

    The nucleation, growth and orientation of lead zirconate titanate thin films prepared from organometallic precursor solutions by spin coating on (111) oriented platinum substrates and crystallized by rapid thermal annealing was investigated. The effects of pyrolysis temperature, post-pyrolysis thermal treatments, excess lead addition, and Nb dopant substitution are reported. The use of post pyrolysis oxygen anneals at temperatures in the regime of 350-450 deg C was found to strongly effect the kinetics of subsequent amorphous-pyrochlore perovskite crystallization by rapid thermal annealing. It has also allowed films of reproducible microstructure and textures (both (100) and (111)) to be prepared by rapid thermal annealing. It is suggested that such anneals and pyrolysis temperature affect the oxygen concentration/average Pb valence in the amorphous films prior to annealing. The changes in Pb valence state then affect the stability of the transient pyrochlore phase and thus the kinetics of perovskite crystallization. Nb dopant was also found to influence the crystallization kinetics. 28 refs., 18 figs

  15. Tailoring the light absorption of Ag-PZT thin films by controlling the growth of hexagonal- and cubic-phase Ag nanoparticles

    Science.gov (United States)

    Hu, Tao; Wang, Zongrong; Ma, Ning; Du, Piyi

    2017-12-01

    PbZr0.52Ti0.48O3 thin films containing hexagonal and cubic Ag nanoparticles (Ag NPs) of various sizes were prepared using the sol-gel technique. During the aging process, Ag ions were photo-reduced to form hexagonal Ag NPs. These NPs were uniform in size, and their uniformity was maintained in the thin films during the heat treatment process. Both the total volume and average size of the hexagonal Ag NPs increased with an increasing Ag ion concentration from 0.02 to 0.08 mol l-1. Meanwhile, the remaining Ag ions were reduced to form unstable Ag-Pb alloy particles with Pb ions during the early heating stage. During subsequent heat treatment, these alloys decomposed to form cubic Ag NPs in the thin films. The absorption range of the thin films, quantified as the full width at half maximum in the ultraviolet-visible absorption spectrum, expanded from 6.3 × 1013 Hz (390-425 nm) to 8.4 × 1013 Hz (383-429 nm) as the Ag NPs/PZT ratio increased from 0.2 to 0.8. This work provides an effective way to broaden the absorption range and enhance the optical properties of such films.

  16. Tailoring the light absorption of Ag-PZT thin films by controlling the growth of hexagonal- and cubic-phase Ag nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Tao; Wang, Zongrong; Ma, Ning; Du, Piyi [Zhejiang University, State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Hangzhou (China)

    2017-12-15

    PbZr{sub 0.52}Ti{sub 0.48}O{sub 3} thin films containing hexagonal and cubic Ag nanoparticles (Ag NPs) of various sizes were prepared using the sol-gel technique. During the aging process, Ag ions were photo-reduced to form hexagonal Ag NPs. These NPs were uniform in size, and their uniformity was maintained in the thin films during the heat treatment process. Both the total volume and average size of the hexagonal Ag NPs increased with an increasing Ag ion concentration from 0.02 to 0.08 mol l{sup -1}. Meanwhile, the remaining Ag ions were reduced to form unstable Ag-Pb alloy particles with Pb ions during the early heating stage. During subsequent heat treatment, these alloys decomposed to form cubic Ag NPs in the thin films. The absorption range of the thin films, quantified as the full width at half maximum in the ultraviolet-visible absorption spectrum, expanded from 6.3 x 10{sup 13} Hz (390-425 nm) to 8.4 x 10{sup 13} Hz (383-429 nm) as the Ag NPs/PZT ratio increased from 0.2 to 0.8. This work provides an effective way to broaden the absorption range and enhance the optical properties of such films. (orig.)

  17. Thin PZT-Based Ferroelectric Capacitors on Flexible Silicon for Nonvolatile Memory Applications

    KAUST Repository

    Ghoneim, Mohamed T.; Zidan, Mohammed A.; Al-Nassar, Mohammed Y.; Hanna, Amir; Kosel, Jü rgen; Salama, Khaled N.; Hussain, Muhammad Mustafa

    2015-01-01

    A flexible version of traditional thin lead zirconium titanate ((Pb1.1Zr0.48Ti0.52O3)-(PZT)) based ferroelectric random access memory (FeRAM) on silicon shows record performance in flexible arena. The thin PZT layer requires lower operational

  18. Thickness effect on the structure, grain size, and local piezoresponse of self-polarized lead lanthanum zirconate titanate thin films

    Energy Technology Data Exchange (ETDEWEB)

    Melo, M.; Araújo, E. B., E-mail: eudes@dfq.feis.unesp.br [Departamento de Física e Química, Faculdade de Engenharia de Ilha Solteira, UNESP—Univ. Estadual Paulista, 15385-000 Ilha Solteira, SP (Brazil); Shvartsman, V. V. [Institute for Materials Science, University Duisburg-Essen, 45141 Essen (Germany); Shur, V. Ya. [Institute of Natural Sciences, Ural Federal University, 620000 Ekaterinburg (Russian Federation); Kholkin, A. L. [Institute of Natural Sciences, Ural Federal University, 620000 Ekaterinburg (Russian Federation); Department of Physics and CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro (Portugal)

    2016-08-07

    Polycrystalline lanthanum lead zirconate titanate (PLZT) thin films were deposited on Pt/TiO{sub 2}/SiO{sub 2}/Si substrates to study the effects of the thickness and grain size on their structural and piezoresponse properties at nanoscale. Thinner PLZT films show a slight (100)-orientation tendency that tends to random orientation for the thicker film, while microstrain and crystallite size increases almost linearly with increasing thickness. Piezoresponse force microscopy and autocorrelation function technique were used to demonstrate the existence of local self-polarization effect and to study the thickness dependence of correlation length. The obtained results ruled out the bulk mechanisms and suggest that Schottky barriers near the film-substrate are likely responsible for a build-in electric field in the films. Larger correlation length evidence that this build-in field increases the number of coexisting polarization directions in larger grains leading to an alignment of macrodomains in thinner films.

  19. Dielectric relaxation of barium strontium titanate and application to thin films for DRAM capacitors

    Science.gov (United States)

    Baniecki, John David

    This thesis examines the issues associated with incorporating the high dielectric constant material Barium Strontium Titanate (BSTO) in to the storage capacitor of a dynamic random access memory (DRAM). The research is focused on two areas: characterizing and understanding the factors that control charge retention in BSTO thin films and modifying the electrical properties using ion implantation. The dielectric relaxation of BSTO thin films deposited by metal-organic chemical vapor deposition (MOCVD) is investigated in the time and frequency domains. It is shown that the frequency dispersion of the complex capacitance of BSTO thin films can be understood in terms of a power-law frequency dependence from 1mHz to 20GHz. From the correspondence between the time and frequency domain measurements, it is concluded that the power-law relaxation currents extend back to the nano second regime of DRAM operation. The temperature, field, and annealing dependence of the dielectric relaxation currents are also investigated and mechanisms for the observed power law relaxation are explored. An equivalent circuit model of a high dielectric constant thin film capacitor is developed based on the electrical measurements and implemented in PSPICE. Excellent agreement is found between the experimental and simulated electrical characteristics showing the utility of the equivalent circuit model in simulating the electrical properties of high dielectric constant thin films. Using the equivalent circuit model, it is shown that the greatest charge loss due to dielectric relaxation occurs during the first read after a refresh time following a write to the opposite logic state for a capacitor that has been written to the same logic state for a long time (opposite state write charge loss). A theoretical closed form expression that is a function of three material parameters is developed which estimates the opposite state write charge loss due to dielectric relaxation. Using the closed form

  20. Temperature behavior of electrical properties of high-k lead-magnesium-niobium titanate thin-films

    Energy Technology Data Exchange (ETDEWEB)

    Chen Wenbin, E-mail: cwb0201@163.com [Electromechanical Engineering College, Guilin University of Electronic Technology (China); McCarthy, Kevin G. [Department of Electrical and Electronic Engineering, University College Cork (Ireland); Copuroglu, Mehmet; O' Brien, Shane; Winfield, Richard; Mathewson, Alan [Tyndall National Institute, University College Cork (Ireland)

    2012-05-01

    This paper reports on the temperature dependence of the electrical properties of high-k lead-magnesium-niobium titanate thin films processed with different compositions (with and without nanoparticles) and with different annealing temperatures (450 Degree-Sign C and 750 Degree-Sign C). These characterization results support the ongoing investigation of the material's electrical properties which are necessary before the dielectric can be used in silicon-based IC applications.

  1. PZ, PT and PZT formation from metal citrates

    International Nuclear Information System (INIS)

    Bastos, C.M.R.; Zaghette, M.A.; Jafelicci Junior, M.; Varela, J.A.

    1990-01-01

    Lead zirconate, lead titanate and lead titanate-zirconate were obtained by mechanical mixing of lead, titanium and zirconium citrates in ether and by calcination. The process was analyzed by DTA, TGA, IR, pore size distribution and surface area measurements. The results indicate that the decomposition reaction and formation of PZ, PT occur simultaneaously without formation of intermediate compounds. PZT was formed from 500 0 C. (author) [pt

  2. Filmes finos de LaNiO3 e PZT preparados pelo métodos das soluções precursoras poliméricas e depositados em substratos de silício

    OpenAIRE

    Souza, Éder Carlos Ferreira de [UNESP

    2006-01-01

    Nesta tese estudou-se a preparação de filmes finos de PZT não dopados e dopados com Nióbio, depositados sobre substratos de Pt/Ti/SiO2/Si para aplicações em memórias não voláteis de acesso randômico (NVRAM) e memórias ferroelétricas de acesso randômico (FeRAM). A dopagem dos filmes de PZT com Nióbio foi realizada visando obter valores ótimos nas propriedades ferroelétricas para a aplicação destes filmes como memórias ferroelétricas. Todavia, problemas como imprint, corrente de fuga e fadiga n...

  3. Interfacial morphology and domain configurations in 0-3 PZT-Portland cement composites

    International Nuclear Information System (INIS)

    Jaitanong, N.; Zeng, H.R.; Li, G.R.; Yin, Q.R.; Vittayakorn, W.C.; Yimnirun, R.; Chaipanich, A.

    2010-01-01

    Cement-based piezoelectric composites have attracted great attention recently due to their promising applications as sensors in smart structures. Lead zirconate titanate (PZT) and Portland cement (PC) composite were fabricated using 60% of PZT by volume. Scanning Electron Microscope and piezoresponse force microscope were used to investigate the morphology and domain configurations at the interfacial zone of PZT-Portland cement composites. Angular PZT ceramic grains were found to bind well with the cement matrix. The submicro-scale domains were clearly observed by piezoresponse force microscope at the interfacial regions between the piezoelectric PZT phase and Portland cement phase, and are clearer than the images obtained for pure PZT. This is thought to be due to the applied internal stress of cement to the PZT ceramic particle which resulted to clearer images.

  4. Preparation and properties of porous PMN-PZT ceramics doped with strontium

    International Nuclear Information System (INIS)

    Zeng Tao; Dong Xianlin; Mao Chaoliang; Chen Shutao; Chen Heng

    2006-01-01

    The piezoelectric and dielectric properties of lead magnesium niobate-lead zirconate titanate (PMN-PZT) ceramics were investigated as a function of density for transducer applications. A decrease in density increased elastic compliance and improved acoustic impedance matching between PMN-PZT ceramics and ambient media. The reduced dielectric constant (ε 33 ) and enhanced hydrostatic figure of merit (d h g h ) of PMN-PZT were observed with decreased density. The results showed the d h g h of PMN-PZT ceramic with density of about 5.4 g/cm 3 reached 4000 x 10 -15 m 2 /N, and the ε 33 was very close to 2000, which demonstrates that porous PMN-PZT ceramic is a promising material for transducer applications. Moreover, the low density PMN-PZT ceramics exhibited lower dielectric loss than high density PMN-PZT ceramics during the temperature from 250 deg. C to 500 deg. C

  5. A theoretical investigation of the influence of the surface effect on the ferroelectric property of strained barium titanate film

    Science.gov (United States)

    Fang, Chao; Liu, Wei Hua

    2017-07-01

    The influence of the surface effect on the ferroelectric property of strained barium titanate film has been investigated. In this study, based on time-dependent Ginsburg-Landau-Devonshire thermodynamic theory, the surface effects have been simulated by introducing a surface constant, which leads to the strained BaTiO3 film consisting of inner tetragonal core and gradient lattice strain layer. Further, surface effects produce a depolarization field which has a dominant effect on the ferroelectric properties of the films. The spontaneous polarization, dielectric properties and ferroelectric hysteresis loop of BaTiO3 film are calculated under different boundary conditions. Theoretical and experimental results for strained BaTiO3 film are compared and discussed.

  6. Lattice strain induced multiferroicity in PZT-CFO particulate composite

    Science.gov (United States)

    Pradhan, Lagen Kumar; Pandey, Rabichandra; Kumar, Rajnish; Kar, Manoranjan

    2018-02-01

    Lead Zirconate Titanate [Pb(Zr0.52Ti0.48)O3/PZT] and Cobalt Ferrite [CoFe2O4/CFO] based multiferroic composites [(1-x)PZT-(x)CFO] with (x = 0.10-0.40) have been prepared to study its magnetoelectric (ME) and multiferroic properties. X-ray diffraction method along with the Rietveld refinement technique reveals that the crystal symmetries corresponding to PZT and CFO exist independently in the composites. The effect of interfacial strain on lattice distortion in PZT has been observed. It is well correlated with the magnetoelectric coupling of the composites. Dispersion behavior of dielectric constant with frequency can be explained by the modified Debye model. Different relaxation phenomena have been observed in PZT-CFO particulate composites. The ferroelectric properties of composites decrease with the increase in percentage of CFO in the composite. Both saturation (Ms) and remanent (Mr) magnetization increase with the increase in CFO content in the composite. The maximum ME coupling was found to be 1.339 pC/cm2 Oe for the composition (0.80) PZT-(0.20) CFO at the application of maximum magnetic field of 50 Oe. The multiferroic properties in CFO-PZT can be explained by the lattice strain at the CFO-PZT interfaces.

  7. Sol-gel reaction stability studied: Influence in the formation temperature and properties of ferroelectric thin films

    International Nuclear Information System (INIS)

    Perez, J.; Vilarinho, P.M.; Kholkin, A.L.; Almeida, A.

    2009-01-01

    Lead zirconium titanate (PZT) sol-gel solutions were prepared based on distilled lead acetate precursor solutions. A detailed analysis of the distillation effect on the lead precursor and the final PZT solution were carried out by Infrared and Raman techniques. It was found that the increase in the number of distillation steps experienced by the lead precursor solutions removes the constitutional water and increases the lead acetate-2-methoxyethanol interconnectivity; thus improving stability and avoiding the aging effect of the resulting PZT solutions. The thermal decomposition process of the PZT solutions was analyzed based on the thermogravimetric (TG) and differential thermogravimetric analysis (DTA) measurements. It was found that as the number of distillation steps in the lead precursor solutions increases, the decomposition rate increases and the formation temperature of pure perovskite PZT films decreases. X-ray diffraction (XRD) technique was used to study the film phase formation. A pure perovskite phase at 500 deg. C was found by the XRD analysis after the second distillation step. Scanning electron microscope technique was used to carry out the microstructural analysis. Dense microstructure was found in all analyzed films and an incipient columnar grain growth was revealed in PZT films prepared based on lead precursor solution with more than three distillation steps. The dependence of the dielectric, ferroelectric and piezoelectric properties on the number of distillation steps was revealed and a correlation between the distillation process, film microstructure properties and electrical performance was established

  8. Extrusion and properties of lead zirconate titanate piezoelectric ceramics

    DEFF Research Database (Denmark)

    Cai, S.; Millar, C.E.; Pedersen, L.

    1997-01-01

    The purpose of this work was to develop a procedure for fabricating electroceramic actuators with good piezoelectric properties. The preparation of lead zirconate titanate (PZT) piezoelectric ceramic rods and tubes by extrusion processing is described. The microstructure of extrudates was investi......The purpose of this work was to develop a procedure for fabricating electroceramic actuators with good piezoelectric properties. The preparation of lead zirconate titanate (PZT) piezoelectric ceramic rods and tubes by extrusion processing is described. The microstructure of extrudates...

  9. A fatigue test method for Pb(Zr,Ti)O3 thin films by using MEMS-based self-sensitive piezoelectric microcantilevers

    Science.gov (United States)

    Kobayashi, T.; Maeda, R.; Itoh, T.

    2008-11-01

    In the present study, we propose a new method for the fatigue test of lead zirconate titanate (PZT) thin films for MEMS devices by using self-sensitive piezoelectric microcantilevers developed in our previous study. We have deposited PZT thin films on SOI wafers and fabricated the microcantilevers through the MEMS microfabrication process. In the self-sensitive piezoelectric microcantilevers, the PZT thin films are separated in order to act as an actuator and a sensor. The fatigue characteristic of the PZT thin films can be evaluated by measuring the output voltage of the sensor as a function of time. When a sine wave of 20 Vpp and a dc bias of 10 V were applied to the PZT thin films for an actuator, the output voltage of the sensor fell down after 107 fatigue cycles. We have also investigated the influence of amplitude of the actuation sine wave and dc bias on the fatigue of the PZT thin films by using the proposed fatigue test method.

  10. A fatigue test method for Pb(Zr,Ti)O3 thin films by using MEMS-based self-sensitive piezoelectric microcantilevers

    International Nuclear Information System (INIS)

    Kobayashi, T; Maeda, R; Itoh, T

    2008-01-01

    In the present study, we propose a new method for the fatigue test of lead zirconate titanate (PZT) thin films for MEMS devices by using self-sensitive piezoelectric microcantilevers developed in our previous study. We have deposited PZT thin films on SOI wafers and fabricated the microcantilevers through the MEMS microfabrication process. In the self-sensitive piezoelectric microcantilevers, the PZT thin films are separated in order to act as an actuator and a sensor. The fatigue characteristic of the PZT thin films can be evaluated by measuring the output voltage of the sensor as a function of time. When a sine wave of 20 V pp and a dc bias of 10 V were applied to the PZT thin films for an actuator, the output voltage of the sensor fell down after 10 7 fatigue cycles. We have also investigated the influence of amplitude of the actuation sine wave and dc bias on the fatigue of the PZT thin films by using the proposed fatigue test method

  11. Impact of process parameters on the structural and electrical properties of metal/PZT/Al2O3/silicon gate stack for non-volatile memory applications

    Science.gov (United States)

    Singh, Prashant; Jha, Rajesh Kumar; Singh, Rajat Kumar; Singh, B. R.

    2018-02-01

    In this paper, we present the structural and electrical properties of the Al2O3 buffer layer on non-volatile memory behavior using Metal/PZT/Al2O3/Silicon structures. Metal/PZT/Silicon and Metal/Al2O3/Silicon structures were also fabricated and characterized to obtain capacitance and leakage current parameters. Lead zirconate titanate (PZT::35:65) and Al2O3 films were deposited by sputtering on the silicon substrate. Memory window, PUND, endurance, breakdown voltage, effective charges, flat-band voltage and leakage current density parameters were measured and the effects of process parameters on the structural and electrical characteristics were investigated. X-ray data show dominant (110) tetragonal phase of the PZT film, which crystallizes at 500 °C. The sputtered Al2O3 film annealed at different temperatures show dominant (312) orientation and amorphous nature at 425 °C. Multiple angle laser ellipsometric analysis reveals the temperature dependence of PZT film refractive index and extinction coefficient. Electrical characterization shows the maximum memory window of 3.9 V and breakdown voltage of 25 V for the Metal/Ferroelectric/Silicon (MFeS) structures annealed at 500 °C. With 10 nm Al2O3 layer in the Metal/Ferroelectric/Insulator/Silicon (MFeIS) structure, the memory window and breakdown voltage was improved to 7.21 and 35 V, respectively. Such structures show high endurance with no significant reduction polarization charge for upto 2.2 × 109 iteration cycles.

  12. Pre-stressed piezoelectric bimorph micro-actuators based on machined 40 µm PZT thick films: batch scale fabrication and integration with MEMS

    International Nuclear Information System (INIS)

    Wilson, S A; Jourdain, R P; Owens, S

    2010-01-01

    The projected force–displacement capability of piezoelectric ceramic films in the 20–50 µm thickness range suggests that they are well suited to many micro-fluidic and micro-pneumatic applications. Furthermore when they are configured as bending actuators and operated at ∼ 1 V µm −1 they do not necessarily conform to the high-voltage, very low-displacement piezoelectric stereotype. Even so they are rarely found today in commercial micro-electromechanical devices, such as micro-pumps and micro-valves, and the main barriers to making them much more widely available would appear to be processing incompatibilities rather than commercial desirability. In particular, the issues associated with integration of these devices into MEMS at the production level are highly significant and they have perhaps received less attention in the mainstream than they deserve. This paper describes a fabrication route based on ultra-precision ceramic machining and full-wafer bonding for cost-effective batch scale production of thick film PZT bimorph micro-actuators and their integration with MEMS. The resulting actuators are pre-stressed (ceramic in compression) which gives them added performance, they are true bimorphs with bi-directional capability and they exhibit full bulk piezoelectric ceramic properties. The devices are designed to integrate with ancillary systems components using transfer-bonding techniques. The work forms part of the European Framework 6 Project 'Q2M—Quality to Micro'

  13. Power harvesting using PZT ceramics embedded in orthopedic implants.

    Science.gov (United States)

    Chen, Hong; Liu, Ming; Jia, Chen; Wang, Zihua

    2009-09-01

    Battery lifetime has been the stumbling block for many power-critical or maintenance-free real-time embedded applications, such as wireless sensors and orthopedic implants. Thus a piezoelectric material that could convert human motion into electrical energy provides a very attractive solution for clinical implants. In this work, we analyze the power generation characteristics of stiff lead zirconate titanate (PZT) ceramics and the equivalent circuit through extensive experiments. Our experimental framework allows us to explore many important design considerations of such a PZT-based power generator. Overall we can achieve a PZT element volume of 0.5 x 0.5 x 1.8 cm, which is considerably smaller than the results reported so far. Finally, we outline the application of our PZT elements in a total knee replacement (TKR) implant.

  14. Study of pyroelectric activity of PZT/PVDF-HFP composite

    Directory of Open Access Journals (Sweden)

    Luiz Francisco Malmonge

    2003-12-01

    Full Text Available Flexible, free-standing piezo and pyroelectric composite with 0 to 3 connectivity was made up from Lead Zirconate Titanate (PZT powder and poly(vinylidene fluoride-hexafluoropropylene (PVDF-HFP copolymer. The pyroelectric and the piezoelectric longitudinal (d33 coefficients were measured. A 50/50 vol.% PZT/PVDF-HFP composite resulted in piezo and pyroelectric coefficients of d33 = 25.0 pC/N and p = 4.5 × 10-4 C/m²K at 70 °C, respectively. Analysis of the complex permittivity in a wide range of frequency was carried out indicating lower permittivity of the composite in comparison with a permittivity of the PZT ceramic. The low value of the permittivity gives a high pyroelectric figure of merit indicating that this material can be used to build a temperature sensor in spite of the lower pyroelectric coefficient compared with PZT.

  15. Experimental characterization of PZT fibers using IDE electrodes

    Science.gov (United States)

    Wyckoff, Nicholas; Ben Atitallah, Hassene; Ounaies, Zoubeida

    2016-04-01

    Lead zirconate titanate (PZT) fibers are mainly used in active fiber composites (AFC) where they are embedded in a polymer matrix. Interdigitated electrodes (IDE) along the direction of the fibers are used to achieve planar actuation, hereby exploiting the d33 coefficient of PZT. When embedded in the AFC, the PZT fibers are subjected to mechanical loading as well as non-uniform electric field as a result of the IDEs. Therefore, it is important to characterize the electrical and electromechanical behavior of these fibers ex-situ using the IDE electrodes to assess the impact of nonuniform electric field on the properties of the fibers. For that reason, this work aims at quantifying the impact of IDE electrodes on the electrical and electromechanical behavior of PZT fibers, which is necessary for their successful implementation in devices like AFC. The tested fibers were purchased from Advanced Cerametrics and they have an average diameter of 250 micrometers. The IDE electrodes were screen printed on an acrylic substrate. The PZT fibers were subjected to frequency sweeps at low voltages to determine permittivity for parallel and interdigitated electrodes. The piezoelectric e33 constant is determined from electromechanical testing of PZT fibers in parallel electrodes to compare the electromechanical behavior for PZT in bulk and fiber form. The dielectric constant and e33 were found to be lower for the IDE and parallel electrodes compared to bulk but comparable to results published in literature.

  16. All-thin-film PZT/FeGa Multiferroic Cantilevers and Their Applications in Switching Devices and Parametric Amplification

    Science.gov (United States)

    Wang, Yi; Onuta, Tiberiu-Dan; Long, Chris; Lofland, Samuel; Takeuchi, Ichiro

    2014-03-01

    We are investigating the characteristics of microfabricated PZT/FeGa multiferroic cantilevers. The cantilevers can be driven by AC or DC magnetic and electric field, and the device response can be read off as a piezo-induced voltage. We can use the multiple input parameters to operate the devices in a variety of manners for different applications. They include electromagnetic energy harvesting, pulse triggered nonlinear memory devices, and parametrically amplified ME sensors. Due to the competition of anisotropy and Zeeman energies, the mechanical resonant frequency of the cantilevers was found to follow a hysteresis behavior with DC bias magnetic field applied in the cantilever easy axis. We can also control and tune the occurrence of nonlinear bifurcation in the frequency spectrum. The resulting hysteresis in the frequency spectrum can be used to make switching devices, where the input can be DC electric and magnetic fields, as well as pulses of AC fields. We have also demonstrated parametric pumping of the response from an AC magnetic field using frequency-doubled AC electric field. The enhanced equivalent ME coefficient is as high as 10 million V/(cm*Oe), when the pumping voltage is very close to a threshold voltage. The quality factor also increases from 2000 to 80000 with pumping.

  17. Determination of young's modulus of PZT and CO80Ni20 thin films by means of micromachined cantilevers

    NARCIS (Netherlands)

    Nazeer, H.; Abelmann, Leon; Tas, Niels Roelof; van Honschoten, J.W.; Siekman, Martin Herman; Elwenspoek, Michael Curt

    2009-01-01

    This paper presents a technique to determine the Young’s modulus and residual stress of thin films using a simple micromachined silicon cantilever as the test structure. An analytical relation was developed based on the shift in resonance frequency caused by the addition of a thin film on the

  18. Processing/structure/property Relationships of Barium Strontium Titanate Thin Films for Dynamic Random Access Memory Application.

    Science.gov (United States)

    Peng, Cheng-Jien

    The purpose of this study is to see the application feasibility of barium strontium titanate (BST) thin films on ultra large scale integration (ULSI) dynamic random access memory (DRAM) capacitors through the understanding of the relationships among processing, structure and electrical properties. Thin films of BST were deposited by multi-ion -beam reactive sputtering (MIBERS) technique and metallo -organic decomposition (MOD) method. The processing parameters such as Ba/Sr ratio, substrate temperature, annealing temperature and time, film thickness and doping concentration were correlated with the structure and electric properties of the films. Some effects of secondary low-energy oxygen ion bombardment were also examined. Microstructures of BST thin films could be classified into two types: (a) Type I structures, with multi-grains through the film thickness, for amorphous as-grown films after high temperature annealing, and (b) columnar structure (Type II) which remained even after high temperature annealing, for well-crystallized films deposited at high substrate temperatures. Type I films showed Curie-von Schweidler response, while Type II films showed Debted type behavior. Type I behavior may be attributed to the presence of a high density of disordered grain boundaries. Two types of current -voltage characteristics could be seen in non-bombarded films depending on the chemistry of the films (doped or undoped) and substrate temperature during deposition. Only the MIBERS films doped with high donor concentration and deposited at high substrate temperature showed space-charge -limited conduction (SCLC) with discrete shallow traps embedded in trap-distributed background at high electric field. All other non-bombarded films, including MOD films, showed trap-distributed SCLC behavior with a slope of {~}7.5-10 due to the presence of grain boundaries through film thickness or traps induced by unavoidable acceptor impurities in the films. Donor-doping could

  19. Origin of thermally stable ferroelectricity in a porous barium titanate thin film synthesized through block copolymer templating

    Directory of Open Access Journals (Sweden)

    Norihiro Suzuki

    2017-07-01

    Full Text Available A porous barium titanate (BaTiO3 thin film was chemically synthesized using a surfactant-assisted sol-gel method in which micelles of amphipathic diblock copolymers served as structure-directing agents. In the Raman spectrum of the porous BaTiO3 thin film, a peak corresponding to the ferroelectric tetragonal phase was observed at around 710 cm−1, and it remained stable at much higher temperature than the Curie temperature of bulk single-crystal BaTiO3 (∼130 °C. Measurements revealed that the ferroelectricity of the BaTiO3 thin film has high thermal stability. By analyzing high-resolution transmission electron microscope images of the BaTiO3 thin film by the fast Fourier transform mapping method, the spatial distribution of stress in the BaTiO3 framework was clearly visualized. Careful analysis also indicated that the porosity in the BaTiO3 thin film introduced anisotropic compressive stress, which deformed the crystals. The resulting elongated unit cell caused further displacement of the Ti4+ cation from the center of the lattice. This displacement increased the electric dipole moment of the BaTiO3 thin film, effectively enhancing its ferro(piezoelectricity.

  20. Engineering Nanoscale Multiferroic Composites for Memory Applications with Atomic Layer Deposition of Pb(ZrxTi1-x)O3 Thin Films

    Science.gov (United States)

    Chien, Diana

    This work focuses on the development of atomic layer deposition (ALD) for lead zirconate titanate, Pb(ZrxTi1-x)O 3 (PZT). Leveraging the surface-reaction controlled process based on alternating self-limiting surface reactions, PZT can be synthesized not only with elemental precision to realize the desired composition (Zr/Ti = 52/48) but also with outstanding conformality. The latter enables the integration of PZT with a ferromagnetic phase to realize multiferroism (MF) and magnetoelectric (ME) effect. Since PZT is one of the best known ferroelectric and piezoelectric materials due the large displacements of the Pb ions at the morphotropic phase boundary, PZT based MF composites could lead to stronger ME coupling through strain coupling at the interface. Specifically, ALD PZT thin films were synthesized by using beta-diketonate metalorganic precursors Pb(TMHD)2, Zr(TMHD)4, and Ti(O.i-Pr) 2(TMHD)2 and H2O. The number of local cycles and global cycles were regulated to achieve the desired stoichiometry and thickness, respectively. ALD of PZT was studied to obtain (100) textured PZT on Pt (111) oriented platinized silicon substrates. In order to attain a highly oriented PZT thin film, a (100) textured PbTiO3 seed layer was required because PZT orientation is governed by nucleation. MF nanocomposites were engineered using ALD PZT thin films to achieve controlled complex nanoscale structures, enabling porosity to be studied as a new additional parameter for nanocomposite architectures to enhance ME effect. Specifically, 3--6 nm-thick ALD PZT thin films were deposited to uniformly coat the walls of mesoporous cobalt ferrite (CFO) template. The PZT/CFO nanocomposites were electrically poled ex-situ and the change in magnetic moment was measured. The inverse magnetoelectric coupling coefficient, a, was determined to be 85.6 Oe-cm/mV. The in-plane results show no significant change in magnetization (1--4%) as a function of electric field, which was expected due to the effect

  1. The nature of the photoluminescence in amorphized PZT

    International Nuclear Information System (INIS)

    Silva, M.S.; Cilense, M.; Orhan, E.; Goes, M.S.; Machado, M.A.C.; Santos, L.P.S.; Paiva-Santos, C.O.; Longo, E.; Varela, J.A.; Zaghete, M.A.; Pizani, P.S.

    2005-01-01

    The polymeric precursor method was used to synthesize lead zirconate titanate powder (PZT). The crystalline powder was then amorphized by a high-energy ball milling process during 120 h. A strong photoluminescence emission was observed at room temperature for the amorphized PZT powder. The powders were characterized by XRD and the percentage of amorphous phase was calculated through Rietveld refinement. The microstructure for both phases was investigated by TEM. The optical gap was calculated through the Wood and Tauc method using the UV-Vis. data. Quantum mechanical calculations were carried out to give an interpretation of the photoluminescence in terms of electronic structure

  2. A spherically-shaped PZT thin film ultrasonic transducer with an acoustic impedance gradient matching layer based on a micromachined periodically structured flexible substrate.

    Science.gov (United States)

    Feng, Guo-Hua; Liu, Wei-Fan

    2013-10-09

    This paper presents the microfabrication of an acoustic impedance gradient matching layer on a spherically-shaped piezoelectric ultrasonic transducer. The acoustic matching layer can be designed to achieve higher acoustic energy transmission and operating bandwidth. Also included in this paper are a theoretical analysis of the device design and a micromachining technique to produce the novel transducer. Based on a design of a lead titanium zirconium (PZT) micropillar array, the constructed gradient acoustic matching layer has much better acoustic transmission efficiency within a 20-50 MHz operation range compared to a matching layer with a conventional quarter-wavelength thickness Parylene deposition. To construct the transducer, periodic microcavities are built on a flexible copper sheet, and then the sheet forms a designed curvature with a ball shaping. After PZT slurry deposition, the constructed PZT micropillar array is released onto a curved thin PZT layer. Following Parylene conformal coating on the processed PZT micropillars, the PZT micropillars and the surrounding Parylene comprise a matching layer with gradient acoustic impedance. By using the proposed technique, the fabricated transducer achieves a center frequency of 26 MHz and a -6 dB bandwidth of approximately 65%.

  3. Growth of epitaxial Pb(Zr,Ti)O3 films by pulsed laser deposition

    Science.gov (United States)

    Lee, J.; Safari, A.; Pfeffer, R. L.

    1992-10-01

    Lead zirconate titanate (PZT) thin films with a composition near the morphotropic phase boundary have been grown on MgO (100) and Y1Ba2Cu3Ox (YBCO) coated MgO substrates. Substrate temperature and oxygen pressure were varied to achieve ferroelectric films with a perovskite structure. Films grown on MgO had the perovskite structure with an epitaxial relationship with the MgO substrate. On the other hand, films grown on the YBCO/MgO substrate had an oriented structure to the surface normal with a misorientation in the plane parallel to the surface. The measured dielectric constant and loss tangent at 1 kHz were 670 and 0.05, respectively. The remnant polarization and coercive field were 42 μC/cm2 and 53 kV/cm. A large internal bias field (12 kV/cm) was observed in the as-deposited state of the undoped PZT films.

  4. Deposition of PZT Thin Films on Polymer Substrate by Means of Low Pressure Plasma Jet Systém

    Czech Academy of Sciences Publication Activity Database

    Deyneka, Alexander; Hubička, Zdeněk; Jastrabík, Lubomír; Čada, Martin; Virostko, Petr; Olejníček, Jiří; Suchaneck, G.; Gerlach, G.

    2005-01-01

    Roč. 316, - (2005), s. 157-166 ISSN 0015-0193 R&D Projects: GA AV ČR(CZ) KJB1010301; GA ČR(CZ) GP202/02/D078; GA AV ČR(CZ) KJB1010302 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z10100521 Keywords : ferroelectric thin films * spectral ellipsometry * hollow cathode sputtering Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.459, year: 2005

  5. Effect of multi-layered bottom electrodes on the orientation of strontium-doped lead zirconate titanate thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bhaskaran, M. [Microelectronics and Materials Technology Centre, School of Electrical and Computer Engineering, RMIT University, GPO Box 2476V, Melbourne, Victoria 3001 (Australia)], E-mail: madhu.bhaskaran@gmail.com; Sriram, S. [Microelectronics and Materials Technology Centre, School of Electrical and Computer Engineering, RMIT University, GPO Box 2476V, Melbourne, Victoria 3001 (Australia); Mitchell, D.R.G.; Short, K.T. [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation (ANSTO), PMB 1, Menai, New South Wales 2234 (Australia); Holland, A.S. [Microelectronics and Materials Technology Centre, School of Electrical and Computer Engineering, RMIT University, GPO Box 2476V, Melbourne, Victoria 3001 (Australia)

    2008-09-30

    This article discusses the results from X-ray diffraction (XRD) analysis of piezoelectric strontium-doped lead zirconate titanate (PSZT) thin films deposited on multi-layer coatings on silicon. The films were deposited by RF magnetron sputtering on a metal coated substrate. The aim was to exploit the pronounced piezoelectric effect that is theoretically expected normal to the substrate. This work highlighted the influence that the bottom electrode architecture exerts on the final crystalline orientation of the deposited thin films. A number of bottom electrode architectures were used, with the uppermost metal layer on which PSZT was deposited being gold or platinum. The XRD analysis revealed that the unit cell of the PSZT thin films deposited on gold and on platinum were deformed, relative to expected unit cell dimensions. Experimental results have been used to estimate the unit cell parameters. The XRD results were then indexed based on these unit cell parameters. The choice and the thickness of the intermediate adhesion layers influenced the relative intensity, and in some cases, the presence of perovskite peaks. In some cases, undesirable reactions between the bottom electrode layers were observed, and layer architectures to overcome these reactions are also discussed.

  6. Fabrication and Characterization of High-Sensitivity Underwater Acoustic Multimedia Communication Devices with Thick Composite PZT Films

    Directory of Open Access Journals (Sweden)

    Jeng-Cheng Liu

    2017-01-01

    Full Text Available This paper presents a high-sensitivity hydrophone fabricated with a Microelectromechanical Systems (MEMS process using epitaxial thin films grown on silicon wafers. The evaluated resonant frequency was calculated through finite-element analysis (FEA. The hydrophone was designed, fabricated, and characterized by different measurements performed in a water tank, by using a pulsed sound technique with a sensitivity of −190 dB ± 2 dB for frequencies in the range 50–500 Hz. These results indicate the high-performance miniaturized acoustic devices, which can impact a variety of technological applications.

  7. Preparation of titanium oxide and metal titanates as powders, thin films, and microspheres by complex sol-gel process

    International Nuclear Information System (INIS)

    Deptula, A.; Olczak, T.; Lada, W.; Chmielewski, A.G.; Jakubaszek, U.; Sartowska, B.; Goretta, K.C.; Alvani, C.; Casadio, S.; Contini, V.

    2006-01-01

    Titanium oxide, for many years an important pigment, has recently been applied widely as a photocatalyst or as supports for metallic catalysts, gas sensors, photovoltaic solar cells, and water and air purification devices. Titanium oxide (TiO 2 ) and titanates based on Ba, Sr and Ca were prepared from commercial solutions of TiCl 4 and HNO 3 . The main preparation steps for the sols consisted of elimination of Cl - by distillation with HNO 3 and addition of metal hydroxides for the titanates. Resulting sols were gelled and used to: (a) prepare irregularly shaped powders by evaporation; (b) produce by a dipping technique thin films on glass, Ag or Ti supports; (c) produce spherical powders (diameters <100 μm) by solvent extraction. Results of thermal and X-ray-diffraction analyses indicated that the temperatures required to form the various compounds were lower than those necessary to form the compounds by conventional solid-state reactions and comparable to those required with use of organometallic based sol-gel methods. Temperatures of formation could be further reduced by addition of ascorbic acid (ASC) to the sols

  8. Effect on High-Intensity Fields of a Tough Hydrophone With Hydrothermal PZT Thick-Film Vibrator and Titanium Front Layer.

    Science.gov (United States)

    Okada, Nagaya; Takeuchi, Shinichi

    2017-07-01

    A novel tough hydrophone was fabricated by depositing hydrothermally synthesized lead zirconate titanate polycrystalline film on the back-side surface of a titanium plate. Our developed tough hydrophone resisted damage in a high-pressure field (15 MPa) at a focal point of a sinusoidal continuous wave driven by a concave high-intensity focused ultrasound (HIFU) transducer with up to 50 W of power input to the sound source. The hydrophone was suitable for the HIFU field, even though the hydrophone has a flat-shape tip of 3.5 mm diameter, which is slightly larger than the wavelength of a few megahertz. In this paper, experiments are performed to assess the effect on the HIFU field of changing the shape of the tough hydrophone, with the aim of developing a tough hydrophone. The spatial distribution of the acoustic bubbles around the focal point was visualized by using ultrasonic diagnostic equipment with the tough hydrophone located at the focal point of the HIFU transducer. From the visualization, the trapped acoustic bubbles were seen to arise from the standing wave, which implies that the acoustic pressure is reduced by this cloud of acoustic bubbles that appeared during hydrophone measurement. Although cavitation and acoustic bubbles may be unavoidable when using high-intensity ultrasound, the estimated result of evaluating acoustic fields without misunderstanding by acoustic bubbles can be obtained by the aid of visualizing bubbles around the tough hydrophone.

  9. The effects of sintering behavior on piezoelectric properties of porous PZT ceramics for hydrophone application

    International Nuclear Information System (INIS)

    Zeng Tao; Dong Xianlin; Chen Heng; Wang Yonglin

    2006-01-01

    Porous lead zirconate titanate (PZT) ceramics were fabricated by adding polymethyl methacrylate (PMMA) and the effects of sintering behavior on their microstructure and piezoelectric properties were investigated. The porosity of PZT ceramics decreased with an increase in the sintering temperature at a fixed PMMA addition. The dielectric constant (ε), longitudinal piezoelectric coefficient (d 33 ) and hydrostatic figures of merit (d h g h ) of 34% porous PZT ceramics increased with an increase in sintering temperature from 1050 to 1300 deg. C. When sintered at 1300 deg. C, longitudinal piezoelectric coefficient of 34% porous PZT ceramic was very close to that of 95% dense PZT ceramics, while the hydrostatic figures of merit of 34% porous PZT ceramics is about fifteen times more than that of 95% dense PZT ceramics. Compared with PZT-polymer composites, the dielectric constant of 34% porous PZT sintered at 1300 deg. C is much higher, which can be more efficient to resist the interference in receiving sensitivities caused by loading effect of the cable

  10. Real-Time Salmonella Detection Using Lead Zirconate Titanate-Titanium Microcantilevers

    National Research Council Canada - National Science Library

    McGovern, John-Paul; Shih, Wan Y; Shih, Wei-Heng; Sergi, Mauro; Chaiken, Irwin

    2005-01-01

    .... We have developed and investigated the use of a lead zirconate titanate - titanium (PZT-Ti) microcantilever for in situ detection of the common food- and water-born pathogen, Salmonella typhimurium...

  11. Fabrication and energy harvesting characteristics of unimorph piezoelectric cantilever generators with interdigitated electrode lead zirconate titanate laminates

    Science.gov (United States)

    Lee, Min-seon; Yun, Ji-sun; Park, Woon-ik; Hong, Youn-woo; Cho, Jeong-ho; Paik, Jong-hoo; Park, Yong Ho; Son, Chun-myung; Jeong, Young Hun

    2017-12-01

    Interdigitated electrode (IDE) unimorph piezoelectric cantilever generators (UPCGs) were fabricated and their energy harvesting characteristics were investigated. A hard lead zirconate titanate (PZT) material with a high mechanical quality factor (Q m) of 1280 was used for the active piezoelectric film of the IDE UPCGs. Two different laminated IDE UPCGs were prepared; one has Ag/Pd interdigitated electrode (IDE) formed only on the top and bottom PZT sheets (D-IDE), while the other has Ag/Pd IDE on all of the PZT sheets (M-IDE). Cofiring was conducted at 1050 °C for 2 h for PZT laminates with IDEs. The fabricated IDE UPCGs exhibited power densities of 50.4 µW/cm3 for the D-IDE and 820 µW/cm3 for the M-IDE. The UPCG with the M-IDE exhibited a higher performance than that with the D-IDE. Specifically, a significantly enhanced normalized power factor of 670 µW/(g2·cm3) was found at 118 Hz across 100 kΩ.

  12. Characterization of PZT Capacitor Structures with Various Electrode Materials Processed In-Situ Using AN Automated, Rotating Elemental Target, Ion Beam Deposition System

    Science.gov (United States)

    Gifford, Kenneth Douglas

    Ferroelectric thin film capacitor structures containing lead zirconate titanate (PZT) as the dielectric, with the chemical formula Pb(rm Zr_{x }Ti_{1-x})O_3, were synthesized in-situ with an automated ion beam sputter deposition system. Platinum (Pt), conductive ruthenium oxide (RuO_2), and two types of Pt-RuO_2 hybrid electrodes were used as the electrode materials. The capacitor structures are characterized in terms of microstructure and electrical characteristics. Reduction or elimination of non-ferroelectric phases, that nucleate during PZT processing on Pt/TiO _2/MgO and RuO_2/MgO substrates, is achieved by reducing the thickness of the individually deposited layers and by interposing a buffer layer (~100-200A) of PbTiO _3 (PT) between the bottom electrode and the PZT film. Capacitor structures containing a Pt electrode exhibit poor fatigue resistance, irregardless of the PZT microstructure or the use of a PT buffer layer. From these results, and results from similar capacitors synthesized with sol-gel and laser ablation, PZT-based capacitor structures containing Pt electrodes are considered to be unsuitable for use in memory devices. Using a PT buffer layer, in capacitor structures containing RuO_2 top and bottom electrodes and polycrystalline, highly (101) oriented PZT, reduces or eliminates the nucleation of zirconium-titanium oxide, non-ferroelectric species at the bottom electrode interface during processing. This results in good fatigue resistance up to ~2times10^ {10} switching cycles. DC leakage current density vs. time measurements follow the Curie-von Schweidler law, J(t) ~ t^ {rm -n}. Identification of the high electric field current conduction mechanism is inconclusive. The good fatigue resistance, low dc leakage current, and excellent retention, qualifies the use of these capacitor structures in non-volatile random access (NVRAM) and dynamic random access (DRAM) memory devices. Excellent fatigue resistance (10% loss in remanent polarization up to

  13. Fabrication of In(0.75)Zn(1.5)Sn(1.0) (IZTO) Thin-Film Transistors Using Solution-Processable Materials and PZT Inkjet-Printing.

    Science.gov (United States)

    Lee, Tai-Kuang; Liuand, Chao-Te; Lee, Wen-Hsi

    2017-01-01

    Recently, Thin Film Transistors (TFTs) have been studied widely because of potential applications in low cost, low-temperature process and flexible displays. They can be fabricated by easy processes based on solution methods. But the mobility of organic TFTs is lower and the threshold voltage is higher than amorphous Si TFTs. In order to enhance the channel mobility and satisfy with the requirement of low-cost fabrication, we prepare a low-cost, mask-free, reduced material wastage, deposited technology using transparent, directly printable, air-stable semiconductor slurries and dielectric solutions. In our investigations, we attempt to obtain a high performance and low-cost TFT via preparing materials, designing device structure, and using PZT inkjet-printing technology. A stable and non-precipitated metal oxide ink with appropriate doping was prepared for the fabrication of an InxZn1.5Sn1.0 (IZTO) by PZT inkjet-printing. The soluble direct-printing process is a powerful tool for material research and implies that the printable materials and the printing technology enable the use of all-printed low-cost flexible displays and other transparent electronic applications. Transparent materials including dielectric PVP, conductive carbon nanotube (CNT) and active IZTO were employed into the fabrication of our PZT inkjet-printing process. After annealed at 180 °C, The experimental all-printed TFT exhibit the carrier mobility of 0.194 cm2/Vs, sub-threshold slope of 20 V/decade, and the threshold voltage of 5 V, initially. All-inkjet-printed films have great transparency, potentially in transparent electronics and the transmittance pattern in visible part of the spectrum (400–700 nm) is over 80%.

  14. Ferroelectric capped magnetization in multiferroic PZT/LSMO tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ashok, E-mail: ashok553@nplindia.org; Shukla, A. K. [National Physical Laboratory (CSIR), Dr. K. S. Krishnan Road, New Delhi-110012 (India); Barrionuevo, D.; Ortega, N.; Katiyar, Ram S. [Department of Physics and Institute of Functional Nanomaterials, University of Puerto Rico, San Juan, Puerto Rico 00931-3343 (United States); Shannigrahi, Santiranjan [Institute of Materials Research and Engineering - IMRE, Agency for Science Technology and Research (A-STAR), 3 Research Link, Singapore 117602 (Singapore); Scott, J. F. [Department of Chemistry and Department of Physics, University of St. Andrews, St. Andrews KY16 ST (United Kingdom)

    2015-03-30

    Self-poled ultra-thin ferroelectric PbZr{sub 0.52}Ti{sub 0.48}O{sub 3} (PZT) (5 and 7 nm) films have been grown by pulsed laser deposition technique on ferromagnetic La{sub 0.67}Sr{sub 0.33}MnO{sub 3} (LSMO) (30 nm) to check the effect of polar capping on magnetization for ferroelectric tunnel junction devices. PZT/LSMO heterostructures with thick polar PZT (7 nm) capping show nearly 100% enhancement in magnetization compared with thin polar PZT (5 nm) films, probably due to excess hole transfer from the ferroelectric to the ferromagnetic layers. Core-level x-ray photoelectron spectroscopy studies revealed the presence of larger Mn 3s exchange splitting and higher Mn{sup 3+}/Mn{sup 4+} ion ratio in the LSMO with 7 nm polar capping.

  15. Integration and High-Temperature Characterization of Ferroelectric Vanadium-Doped Bismuth Titanate Thin Films on Silicon Carbide

    Science.gov (United States)

    Ekström, Mattias; Khartsev, Sergiy; Östling, Mikael; Zetterling, Carl-Mikael

    2017-07-01

    4H-SiC electronics can operate at high temperature (HT), e.g., 300°C to 500°C, for extended times. Systems using sensors and amplifiers that operate at HT would benefit from microcontrollers which can also operate at HT. Microcontrollers require nonvolatile memory (NVM) for computer programs. In this work, we demonstrate the possibility of integrating ferroelectric vanadium-doped bismuth titanate (BiTV) thin films on 4H-SiC for HT memory applications, with BiTV ferroelectric capacitors providing memory functionality. Film deposition was achieved by laser ablation on Pt (111)/TiO2/4H-SiC substrates, with magnetron-sputtered Pt used as bottom electrode and thermally evaporated Au as upper contacts. Film characterization by x-ray diffraction analysis revealed predominately (117) orientation. P- E hysteresis loops measured at room temperature showed maximum 2 P r of 48 μC/cm2, large enough for wide read margins. P- E loops were measurable up to 450°C, with losses limiting measurements above 450°C. The phase-transition temperature was determined to be about 660°C from the discontinuity in dielectric permittivity, close to what is achieved for ceramics. These BiTV ferroelectric capacitors demonstrate potential for use in HT NVM applications for SiC digital electronics.

  16. Barium titanate coated with magnesium titanate via fused salt method and its dielectric property

    International Nuclear Information System (INIS)

    Chen Renzheng; Cui Aili; Wang Xiaohui; Li Longtu

    2003-01-01

    Barium titanate fine particles were coated homogeneously with magnesium titanate via the fused salt method. The thickness of the magnesium titanate film is 20 nm, as verified by TEM and XRD. The mechanism of the coating is that: when magnesium chloride is liquated in 800 deg. C, magnesium will replace barium in barium titanate, and form magnesium titanate film on the surface of barium titanate particles. Ceramics sintered from the coated particles show improved high frequency ability. The dielectric constant is about 130 at the frequency from 1 to 800 MHz

  17. Flexible graphene–PZT ferroelectric nonvolatile memory

    International Nuclear Information System (INIS)

    Lee, Wonho; Ahn, Jong-Hyun; Kahya, Orhan; Toh, Chee Tat; Özyilmaz, Barbaros

    2013-01-01

    We report the fabrication of a flexible graphene-based nonvolatile memory device using Pb(Zr 0.35 ,Ti 0.65 )O 3 (PZT) as the ferroelectric material. The graphene and PZT ferroelectric layers were deposited using chemical vapor deposition and sol–gel methods, respectively. Such PZT films show a high remnant polarization (P r ) of 30 μC cm −2 and a coercive voltage (V c ) of 3.5 V under a voltage loop over ±11 V. The graphene–PZT ferroelectric nonvolatile memory on a plastic substrate displayed an on/off current ratio of 6.7, a memory window of 6 V and reliable operation. In addition, the device showed one order of magnitude lower operation voltage range than organic-based ferroelectric nonvolatile memory after removing the anti-ferroelectric behavior incorporating an electrolyte solution. The devices showed robust operation in bent states of bending radii up to 9 mm and in cycling tests of 200 times. The devices exhibited remarkable mechanical properties and were readily integrated with plastic substrates for the production of flexible circuits. (paper)

  18. Flexible graphene-PZT ferroelectric nonvolatile memory.

    Science.gov (United States)

    Lee, Wonho; Kahya, Orhan; Toh, Chee Tat; Ozyilmaz, Barbaros; Ahn, Jong-Hyun

    2013-11-29

    We report the fabrication of a flexible graphene-based nonvolatile memory device using Pb(Zr0.35,Ti0.65)O3 (PZT) as the ferroelectric material. The graphene and PZT ferroelectric layers were deposited using chemical vapor deposition and sol–gel methods, respectively. Such PZT films show a high remnant polarization (Pr) of 30 μC cm−2 and a coercive voltage (Vc) of 3.5 V under a voltage loop over ±11 V. The graphene–PZT ferroelectric nonvolatile memory on a plastic substrate displayed an on/off current ratio of 6.7, a memory window of 6 V and reliable operation. In addition, the device showed one order of magnitude lower operation voltage range than organic-based ferroelectric nonvolatile memory after removing the anti-ferroelectric behavior incorporating an electrolyte solution. The devices showed robust operation in bent states of bending radii up to 9 mm and in cycling tests of 200 times. The devices exhibited remarkable mechanical properties and were readily integrated with plastic substrates for the production of flexible circuits.

  19. Sensitivity of PZT Impedance Sensors for Damage Detection of Concrete Structures.

    Science.gov (United States)

    Yang, Yaowen; Hu, Yuhang; Lu, Yong

    2008-01-21

    Piezoelectric ceramic Lead Zirconate Titanate (PZT) based electro-mechanicalimpedance (EMI) technique for structural health monitoring (SHM) has been successfullyapplied to various engineering systems. However, fundamental research work on thesensitivity of the PZT impedance sensors for damage detection is still in need. In thetraditional EMI method, the PZT electro-mechanical (EM) admittance (inverse of theimpedance) is used as damage indicator, which is difficult to specify the effect of damage onstructural properties. This paper uses the structural mechanical impedance (SMI) extractedfrom the PZT EM admittance signature as the damage indicator. A comparison study on thesensitivity of the EM admittance and the structural mechanical impedance to the damages ina concrete structure is conducted. Results show that the SMI is more sensitive to the damagethan the EM admittance thus a better indicator for damage detection. Furthermore, this paperproposes a dynamic system consisting of a number of single-degree-of-freedom elementswith mass, spring and damper components to model the SMI. A genetic algorithm isemployed to search for the optimal value of the unknown parameters in the dynamic system.An experiment is carried out on a two-storey concrete frame subjected to base vibrations thatsimulate earthquake. A number of PZT sensors are regularly arrayed and bonded to the framestructure to acquire PZT EM admittance signatures. The relationship between the damageindex and the distance of the PZT sensor from the damage is studied. Consequently, thesensitivity of the PZT sensors is discussed and their sensing region in concrete is derived.

  20. Integration of epitaxial Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} films on GaN/AlGaN/GaN/Si(111) substrates using rutile TiO{sub 2} buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    Elibol, K. [MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede (Netherlands); Nguyen, M.D. [MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede (Netherlands); SolMateS B.V., Drienerlolaan 5, Building 6, 7522NB Enschede (Netherlands); International Training Institute for Materials Science, Hanoi University of Science and Technology, No.1 Dai Co Viet road, Hanoi 10000 (Viet Nam); Hueting, R.J.E. [MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede (Netherlands); Gravesteijn, D.J. [MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede (Netherlands); NXP Semiconductors Research, High Tech Campus 46, 5656AE Eindhoven (Netherlands); Koster, G., E-mail: g.koster@utwente.nl [MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede (Netherlands); Rijnders, G. [MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede (Netherlands)

    2015-09-30

    The integration of ferroelectric layers on gallium nitride (GaN) offers a great potential for various applications. Lead zirconate titanate (PZT), in particular Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3}, is an interesting candidate. For that a suitable buffer layer should be grown on GaN in order to prevent the reaction between PZT and GaN, and to obtain PZT with a preferred orientation and phase. Here, we study pulsed laser deposited (100) rutile titanium oxide (R-TiO{sub 2}) as a potential buffer layer candidate for ferroelectric PZT. For this purpose, the growth, morphology and the surface chemical composition of R-TiO{sub 2} films were analyzed by reflection high-energy electron diffraction, atomic force microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. We find optimally (100) oriented R-TiO{sub 2} growth on GaN (0002) using a 675 °C growth temperature and 2 Pa O{sub 2} deposition pressure as process conditions. More importantly, the R-TiO{sub 2} buffer layer grown on GaN/Si substrates prevents the unwanted formation of the PZT pyrochlore phase. Finally, the remnant polarization and coercive voltage of the PZT film on TiO{sub 2}/GaN/Si with an interdigitated-electrode structure were found to be 25.6 μC/cm{sup 2} and 8.1 V, respectively. - Highlights: • Epitaxial rutile TiO{sub 2} films were grown on GaN layer buffered Si substrate using pulsed laser deposition. • The rutile-TiO{sub 2} layer suppresses the formation of the pyrochlore phase in the epitaxial PZT film grown on GaN/Si. • An epitaxial PZT film on GaN/Si substrate with rutile TiO{sub 2} buffer layer exhibits good ferroelectric properties.

  1. Elution of lead from lead zirconate titanate ceramics to acid rain

    Science.gov (United States)

    Tsurumi, Takaaki; Takezawa, Shuhei; Hoshina, Takuya; Takeda, Hiroaki

    2017-10-01

    The amount of lead that eluted from lead zirconate titanate (PZT) ceramics to artificial acid rain was evaluated. Four kinds of PZT ceramics, namely, pure PZT at MPB composition, CuO-added PZT, PZT with 10 mol % substitution of Ba for Pb, and CuO-added PZT with 10 mol % substitution of Ba for Pb, were used as samples of the elution test. These PZT ceramics of 8 mm2 and 1.1-1.2 mm thickness were suspended in 300 ml of H2SO4 solution of pH 4.0. The concentration of lead eluted from PZT was in the range from 0.2 to 0.8 ppm. It was found that both liquid phase formation by the addition of CuO and the substitution of Ba for Pb were effective to reduce the amount of lead that eluted. By fitting the leaching out curve with a classical equation, a master curve assuming no sampling effect was obtained. The lead concentration evaluated from the amount of lead that eluted from a commercial PZT plate to H2SO4 solution of pH 5.3 was almost the same as the limit in city water. It is concluded that PZT is not harmful to health and the environment and the amount of lead that eluted from PZT can be controlled by modifying PZT composition.

  2. Deposition of PZT thin film onto copper-coated polymer films by mean of pulsed-DC and RF-reactive sputtering

    Czech Academy of Sciences Publication Activity Database

    Suchaneck, G.; Labitzke, R.; Adolphi, B.; Jastrabík, Lubomír; Adámek, Petr; Drahokoupil, Jan; Hubička, Zdeněk; Kiselev, D.A.; Kholkin, A. L.; Gerlach, G.; Dejneka, Alexandr

    2011-01-01

    Roč. 205, č. 2 (2011), S241-S244 ISSN 0257-8972 R&D Projects: GA ČR GC202/09/J017; GA AV ČR KAN301370701; GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100522 Keywords : pulsed DC reactive sputtering * RF reactive sputtering * complex oxide film deposition * polymer substrate Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.867, year: 2011

  3. Towards a digital sound reconstruction MEMS device: Characterization of a single PZT based piezoelectric actuator

    KAUST Repository

    Carreno, Armando Arpys Arevalo; Conchouso Gonzalez, David; Castro, David; Jaber, Nizar; Younis, Mohammad I.; Foulds, Ian G.

    2015-01-01

    of acoustic actuators. These actuators consist of a flexible membrane fabricated using polyimide, which is actuated using a Lead-Zirconate-Titanate (PZT) piezoelectric ceramic layer working in the d31 actuation mode. The dimensions of the membrane are of 1mm

  4. Elaboration of strontium ruthenium oxide thin films on metal substrates by chemical solution deposition

    Energy Technology Data Exchange (ETDEWEB)

    Seveno, R. [Universite de Nantes, Institut de Recherche en Electrotechnique et Electronique de Nantes Atlantique (IREENA), 2, rue de la Houssiniere, BP 92208, 44322 Nantes Cedex 3 (France)]. E-mail: raynald.seveno@univ-nantes.fr; Braud, A. [Universite de Nantes, Institut de Recherche en Electrotechnique et Electronique de Nantes Atlantique (IREENA), 2, rue de la Houssiniere, BP 92208, 44322 Nantes Cedex 3 (France); Gundel, H.W. [Universite de Nantes, Institut de Recherche en Electrotechnique et Electronique de Nantes Atlantique (IREENA), 2, rue de la Houssiniere, BP 92208, 44322 Nantes Cedex 3 (France)

    2005-12-22

    In order to improve the structural interface between a metal substrate and a lead zirconate titanate (Pb(ZrTi)O{sub 3}, PZT) ferroelectric thin film, the elaboration of strontium ruthenium oxide (SrRuO{sub 3}) by chemical solution deposition is studied. The SrRuO{sub 3} thin films were realized by multiple spin-coating technique and the temperature of the rapid thermal annealing process was optimized. The crystallization behavior was examined by X-ray diffraction; surface analyses using scanning electron microscope and atomic force microscope techniques showed the influence of the SrRuO{sub 3} layer at the interface PZT/metal on the morphology of the ferroelectric thin film. From the electrical measurements, a coercive electric field around 25 kV/cm and a remanent polarization of approximately 30 {mu}C/cm were found.

  5. Elaboration of strontium ruthenium oxide thin films on metal substrates by chemical solution deposition

    International Nuclear Information System (INIS)

    Seveno, R.; Braud, A.; Gundel, H.W.

    2005-01-01

    In order to improve the structural interface between a metal substrate and a lead zirconate titanate (Pb(ZrTi)O 3 , PZT) ferroelectric thin film, the elaboration of strontium ruthenium oxide (SrRuO 3 ) by chemical solution deposition is studied. The SrRuO 3 thin films were realized by multiple spin-coating technique and the temperature of the rapid thermal annealing process was optimized. The crystallization behavior was examined by X-ray diffraction; surface analyses using scanning electron microscope and atomic force microscope techniques showed the influence of the SrRuO 3 layer at the interface PZT/metal on the morphology of the ferroelectric thin film. From the electrical measurements, a coercive electric field around 25 kV/cm and a remanent polarization of approximately 30 μC/cm were found

  6. A 2-D MEMS scanning mirror based on dynamic mixed mode excitation of a piezoelectric PZT thin film S-shaped actuator.

    Science.gov (United States)

    Koh, Kah How; Kobayashi, Takeshi; Lee, Chengkuo

    2011-07-18

    A novel dynamic excitation of an S-shaped PZT piezoelectric actuator, which is conceptualized by having two superimposed AC voltages, is characterized in this paper through the evaluation of the 2-D scanning characteristics of an integrated silicon micromirror. The device is micromachined from a SOI wafer with a 5 μm thick Si device layer and multilayers of Pt/Ti/PZT//Pt/Ti deposited as electrode and actuation materials. A large mirror (1.65 mm x 2mm) and an S-shaped PZT actuator are formed after the backside release process. Three modes of operation are investigated: bending, torsional and mixed. The resonant frequencies obtained for bending and torsional modes are 27Hz and 70Hz respectively. The maximum measured optical deflection angles obtained at 3Vpp are ± 38.9° and ± 2.1° respectively for bending and torsional modes. Various 2-D Lissajous patterns are demonstrated by superimposing two ac sinusoidal electrical signals of different frequencies (27 Hz and 70 Hz) into one signal to be used to actuate the mirror.

  7. Reconstruction of the domain orientation distribution function of polycrystalline PZT ceramics using vector piezoresponse force microscopy.

    Science.gov (United States)

    Kratzer, Markus; Lasnik, Michael; Röhrig, Sören; Teichert, Christian; Deluca, Marco

    2018-01-11

    Lead zirconate titanate (PZT) is one of the prominent materials used in polycrystalline piezoelectric devices. Since the ferroelectric domain orientation is the most important parameter affecting the electromechanical performance, analyzing the domain orientation distribution is of great importance for the development and understanding of improved piezoceramic devices. Here, vector piezoresponse force microscopy (vector-PFM) has been applied in order to reconstruct the ferroelectric domain orientation distribution function of polished sections of device-ready polycrystalline lead zirconate titanate (PZT) material. A measurement procedure and a computer program based on the software Mathematica have been developed to automatically evaluate the vector-PFM data for reconstructing the domain orientation function. The method is tested on differently in-plane and out-of-plane poled PZT samples, and the results reveal the expected domain patterns and allow determination of the polarization orientation distribution function at high accuracy.

  8. Practical ultrasonic transducers for high-temperature applications using bismuth titanate and Ceramabind 830

    Science.gov (United States)

    Xu, Janet L.; Batista, Caio F. G.; Tittmann, Bernhard R.

    2018-04-01

    Structural health monitoring of large valve bodies in high-temperature environments such as power plants faces several limitations: commercial transducers are not rated for such high temperatures, gel couplants will evaporate, and measurements cannot be made in-situ. To solve this, we have furthered the work of Ledford in applying a practical transducer in liquid form which hardens and air dries directly onto the substrate. The transducer material is a piezoceramic film composed of bismuth titanate and a high-temperature binding agent, Ceramabind 830. The effects of several fabrication conditions were studied to optimize transducer performance and ensure repeatability. These fabrication conditions include humidity, binder ratio, water ratio, substrate roughness, and film thickness. The final product is stable for both reactive and non-reactive substrates, has a quick fabrication time, and has an operating temperature up to the Curie temperature of BIT, 650°C, well beyond the safe operating temperature of PZT (150°C).

  9. Characteristics of the surface layer of barium strontium titanate thin films deposited by laser ablation

    International Nuclear Information System (INIS)

    Craciun, V.; Singh, R. K.

    2000-01-01

    Ba 0.5 Sr 0.5 TiO 3 (BST) thin films grown on Si by an in situ ultraviolet-assisted pulsed laser deposition (UVPLD) technique exhibited significantly higher dielectric constant and refractive index values and lower leakage current densities than films grown by conventional PLD under similar conditions. X-ray photoelectron spectroscopy (XPS) investigations have shown that the surface layer of the grown films contained, besides the usual BST perovskite phase, an additional phase with Ba atoms in a different chemical state. PLD grown films always exhibited larger amounts of this phase, which was homogeneously mixed with the BST phase up to several nm depth, while UVPLD grown films exhibited a much thinner (∼1 nm) and continuous layer. The relative fraction of this phase was not correlated with the amount of C atoms present on the surface. Fourier transform infrared spectroscopy did not find any BaCO 3 contamination layer, which was believed to be related to this new phase. X-ray diffraction measurement showed that although PLD grown films contained less oxygen atoms, the lattice parameter was closer to the bulk value than that of UVPLD grown films. After 4 keV Ar ion sputtering for 6 min, XPS analysis revealed a small suboxide Ba peak for the PLD grown films. This finding indicates that the average Ba-O bonds are weaker in these films, likely due to the presence of oxygen vacancies. It is suggested here that this new Ba phase corresponds to a relaxed BST surface layer. (c) 2000 American Institute of Physics

  10. Characteristics of the surface layer of barium strontium titanate thin films deposited by laser ablation

    Science.gov (United States)

    Craciun, V.; Singh, R. K.

    2000-04-01

    Ba0.5Sr0.5TiO3 (BST) thin films grown on Si by an in situ ultraviolet-assisted pulsed laser deposition (UVPLD) technique exhibited significantly higher dielectric constant and refractive index values and lower leakage current densities than films grown by conventional PLD under similar conditions. X-ray photoelectron spectroscopy (XPS) investigations have shown that the surface layer of the grown films contained, besides the usual BST perovskite phase, an additional phase with Ba atoms in a different chemical state. PLD grown films always exhibited larger amounts of this phase, which was homogeneously mixed with the BST phase up to several nm depth, while UVPLD grown films exhibited a much thinner (˜1 nm) and continuous layer. The relative fraction of this phase was not correlated with the amount of C atoms present on the surface. Fourier transform infrared spectroscopy did not find any BaCO3 contamination layer, which was believed to be related to this new phase. X-ray diffraction measurement showed that although PLD grown films contained less oxygen atoms, the lattice parameter was closer to the bulk value than that of UVPLD grown films. After 4 keV Ar ion sputtering for 6 min, XPS analysis revealed a small suboxide Ba peak for the PLD grown films. This finding indicates that the average Ba-O bonds are weaker in these films, likely due to the presence of oxygen vacancies. It is suggested here that this new Ba phase corresponds to a relaxed BST surface layer.

  11. Real-time observations of interface formation for barium strontium titanate films on silicon

    International Nuclear Information System (INIS)

    Mueller, A.H.; Suvorova, N.A.; Irene, E.A.; Auciello, O.; Schultz, J.A.

    2002-01-01

    Ba .5 Sr .5 TiO 3 (BST) film growth by ion sputtering on bare and thermally oxidized silicon was observed in real time using in-situ spectroscopic ellipsometry and time of flight ion scattering and recoil spectrometry techniques. At the outset of BST film deposition on silicon, an approximately 30 Aa film with intermediate static dielectric constant (K∼12) and refractive index (n∼2.6 at photon energies of 1.5-3.25 eV) interface layer formed on bare silicon. The interface layer growth rate was greatly reduced on an oxidized silicon substrate. The results have profound implications on the static dielectric constant of BST

  12. Chemical composition and deformation-induced stresses in ferroelectric films of barium-strontium titanate

    International Nuclear Information System (INIS)

    Karmanenko, S.F.; Dedyk, A.I.; Isakov, N.N.; Sakharov, V.I.; Semenov, A.A.; Serenkov, I.T.; Ter-Martirosyan, L.T.

    1999-01-01

    Influence of the ratio of cationic components and inner deformation-induced stresses on critical temperature (T c ) and dielectric characteristics of ferroelectric films Ba x Sr 1-x TiO 3 grown on α-Al 2 O 3 [1012] and LaAlO 3 substrates was studied. Diagnosis by means of ion backscattering permitted ascertaining the deficiency of barium in the films near the surface layer, as well as differences in their structural quality [ru

  13. Effect of splat morphology on the microstructure and dielectric properties of plasma sprayed barium titanate films

    Energy Technology Data Exchange (ETDEWEB)

    Pakseresht, A.H., E-mail: amirh_pak@yahoo.com [Center of Ceramic Coatings, Department of Ceramics, Materials and Energy Research Center, PO Box 31787-316, Karaj (Iran, Islamic Republic of); Rahimipour, M.R. [Center of Ceramic Coatings, Department of Ceramics, Materials and Energy Research Center, PO Box 31787-316, Karaj (Iran, Islamic Republic of); Vaezi, M.R. [Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, PO Box 31787-316, Karaj (Iran, Islamic Republic of); Salehi, M. [Department of Materials Engineering, Isfahan University of Technology, PO Box 84156-83111, Isfahan (Iran, Islamic Republic of)

    2015-01-01

    Highlights: • BaTiO{sub 3} splats were collected on the mirror polished substrate for the first time. • There was no amorphous phase in the coating collected on the preheated substrate. • The dielectric coefficient was increased by a factor of 3 for the coatings sprayed on the preheated substrates. - Abstract: In the thermal spray process, the film is built up by impingement of molten droplets onto substrate. Splats are created by flattening and spreading of the impacting droplets. Splat morphology can determine the microstructure, physical and mechanical properties of the coating. In this study, BaTiO{sub 3} films were deposited onto a mirror polished stainless steel substrates kept at three different temperatures (25, 300 and 600 °C). At the elevated temperatures, the substrate surface topography and the desorbtion of adsorbates and condensate at the substrate surface are two important factors which change the morphology of the individual splats, from splash morphology to disk-like shape. Splat morphology can determine deposit microstructure and improve the coating properties. The morphology of individual splats and the films were studied using scanning electron microscopy. Phase formation of the films was analyzed by X-ray diffraction. The surface topography of the substrates with different temperatures was analyzed using atomic force microscopy. Furthermore, X-ray photoelectron spectroscopy was performed to determine the chemical compositions of the surface substrate. Results indicated that the porosity in the film produced at room temperature was higher than that in the film deposited on the heated substrates. Also, the dielectric coefficient of the films was increased by decreasing the common defects from 120 to 505 for film deposited on as-received and heated substrates, respectively.

  14. In-plane microwave dielectric properties of paraelectric barium strontium titanate thin films with anisotropic epitaxy

    Science.gov (United States)

    Simon, W. K.; Akdogan, E. K.; Safari, A.; Bellotti, J. A.

    2005-08-01

    In-plane dielectric properties of ⟨110⟩ oriented epitaxial (Ba0.60Sr0.40)TiO3 thin films in the thickness range from 25-1200nm have been investigated under the influence of anisotropic epitaxial strains from ⟨100⟩ NdGaO3 substrates. The measured dielectric properties show strong residual strain and in-plane directional dependence. Below 150nm film thickness, there appears to be a phase transition due to the anisotropic nature of the misfit strain relaxation. In-plane relative permittivity is found to vary from as much as 500-150 along [11¯0] and [001] respectively, in 600nm thick films, and from 75 to 500 overall. Tunability was found to vary from as much as 54% to 20% in all films and directions, and in a given film the best tunability is observed along the compressed axis in a mixed strain state, 54% along [11¯0] in the 600nm film for example.

  15. Investigation of resistive switching in barium strontium titanate thin films for memory applications

    International Nuclear Information System (INIS)

    Shen, Wan

    2010-01-01

    Resistive random access memory (RRAM) has attracted much attention due to its low power consumption, high speed operation, non-readout disturbance and high density integration potential and is regarded as one of the most promising candidates for the next generation non-volatile memory. The resistive switching behavior of Mn-doped BaSrTiO 3 (BST) thin films with different crystalline properties was investigated within this dissertation. The laser fluence dependence was checked in order to optimize the RRAM properties. Although the film epitaxial quality was improved by reducing the laser energy during deposition process, the yields fluctuated and only 3% RRAM devices with highest epitaxial quality of BST film shows resistive switching behavior instead of 67% for the samples with worse film quality. It gives a clue that the best thin film quality does not result in the best switching performance, and it is a clear evidence of the importance of the defects to obtain resistive switching phenomena. The bipolar resistive switching behavior was studied with epitaxial BST thin films on SRO/STO. Compared to Pt top electrode, the yield, endurance and reliability were strongly improved for the samples with W top electrode. Whereas the samples with Pt top electrode show a fast drop of the resistance for both high and low resistance states, the devices with W top electrode can be switched for 10 4 times without any obvious degradation. The resistance degradation for devices with Pt top electrode may result from the diffusion of oxygen along the Pt grain boundaries during cycling whereas for W top electrode the reversible oxidation and reduction of a WO x layer, present at the interface between W top electrode and BST film, attributes to the improved switching property. The transition from bipolar to unipolar resistive switching in polycrystalline BST thin films was observed. A forming process which induces a metallic low resistance state is prerequisite for the observation of

  16. Investigation of resistive switching in barium strontium titanate thin films for memory applications

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Wan

    2010-11-17

    Resistive random access memory (RRAM) has attracted much attention due to its low power consumption, high speed operation, non-readout disturbance and high density integration potential and is regarded as one of the most promising candidates for the next generation non-volatile memory. The resistive switching behavior of Mn-doped BaSrTiO{sub 3} (BST) thin films with different crystalline properties was investigated within this dissertation. The laser fluence dependence was checked in order to optimize the RRAM properties. Although the film epitaxial quality was improved by reducing the laser energy during deposition process, the yields fluctuated and only 3% RRAM devices with highest epitaxial quality of BST film shows resistive switching behavior instead of 67% for the samples with worse film quality. It gives a clue that the best thin film quality does not result in the best switching performance, and it is a clear evidence of the importance of the defects to obtain resistive switching phenomena. The bipolar resistive switching behavior was studied with epitaxial BST thin films on SRO/STO. Compared to Pt top electrode, the yield, endurance and reliability were strongly improved for the samples with W top electrode. Whereas the samples with Pt top electrode show a fast drop of the resistance for both high and low resistance states, the devices with W top electrode can be switched for 10{sup 4} times without any obvious degradation. The resistance degradation for devices with Pt top electrode may result from the diffusion of oxygen along the Pt grain boundaries during cycling whereas for W top electrode the reversible oxidation and reduction of a WO{sub x} layer, present at the interface between W top electrode and BST film, attributes to the improved switching property. The transition from bipolar to unipolar resistive switching in polycrystalline BST thin films was observed. A forming process which induces a metallic low resistance state is prerequisite for the

  17. Niobium effect on the Pzt ceramic properties

    International Nuclear Information System (INIS)

    Gimenes, R.; Zaguete, M.A.; Varela, J.A.; Cilense, M.; Paiva-Santos, C.O.; Las, W.C.

    1996-01-01

    Lead zirconate titanate, PZT, was prepared with Zr/Ti ratio of 50/50. The powder was prepared by the Pechini method with addition of 0,3; 0,5 e 0,7 mol % of Nb +5 ions. The precursors obtained were calcined at 700 deg C for 3 hs and milled with zirconia balls in a medium of isopropilic alcohol for 6 hs. The powders were characterized by XRD. For the sintering studies powders were isostatically pressed (230 MPa) into pellets and which were put inside a box furnace at 1200 deg C for 2 hs and 1100 deg C for 4 hs in a closed system containing 5 % of atmospheric powder (Pb Zr O 3 + 5% Pb O) relative to all pellets'mass. It was verified that the best densification rate was obtained for PZT with addition of 0,5 mol % of Nb +5 ions and sintered at 1100 deg C for 4 hs. Sintered samples at 1100 deg C for 4 hs were characterized as to dielectric (k, P r and E c ) and piezoelectric properties. (author)

  18. Raman analysis of ferroelectric switching in niobium-doped lead zirconate titanate thin films

    International Nuclear Information System (INIS)

    Ferrari, P.; Ramos-Moore, E.; Guitar, M.A.; Cabrera, A.L.

    2014-01-01

    Characteristic Raman vibration modes of niobium-doped lead zirconate titanate (PNZT) are studied as a function of ferroelectric domain switching. The microstructure of PNZT is characterized by scanning electron microscopy and X-ray diffraction. Ferroelectric switching is achieved by applying voltages between the top (Au) and bottom (Pt) electrodes, while acquiring the Raman spectra in situ. Vibrational active modes associated with paraelectric and ferroelectric phases are identified after measuring above and below the ferroelectric Curie temperature, respectively. Changes in the relative intensities of the Raman peaks are observed as a function of the switching voltage. The peak area associated with the ferroelectric modes is analyzed as a function of the applied voltage within one ferroelectric polarization loop, showing local maxima around the coercive voltage. This behavior can be understood in terms of the correlation between vibrational and structural properties, since ferroelectric switching modifies the interaction between the body-centered atom (Zr, Ti or Nb) and the Pb–O lattice. - Highlights: • Electric fields induce structural distortions on ferroelectric perovskites. • Ferroelectric capacitor was fabricated to perform hysteresis loops. • Raman analysis was performed in situ during ferroelectric switching. • Raman modes show hysteresis and inflections around the coercive voltages. • Data can be understood in terms of vibrational–structural correlations

  19. Modulation of magnetic coercivity in Ni thin films by reversible control of strain

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Wen-Chin, E-mail: wclin@ntnu.edu.tw [Department of Physics, National Taiwan Normal University, Taipei 116, Taiwan (China); Huang, Chia-Wei; Ting, Yi-Chieh; Lo, Fang-Yuh [Department of Physics, National Taiwan Normal University, Taipei 116, Taiwan (China); Chern, Ming-Yau [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China)

    2015-05-01

    In this study, we demonstrated the magnetoelectric control of magnetic thin films. (111)-textured Pd/Ni/Pd thin films were prepared on mica/lead zirconium titanate (PZT) substrates for the investigation. The reversible modulation of magnetic coercivity in Ni films was observed through the electric-voltage-controlled strain variation from the PZT substrate. For 14 nm Ni film, the applied electric field of ±350 V/m led to ±0.5% strain variation of PZT, which was transferred to ±0.4% strain variation of Pd/Ni/Pd thin films on mica, and resulted in ∓17 Oe (∓5% of the preliminary magnetic coercivity). The reversible modulation of magnetic coercivity is supposed to be caused by the voltage-controlled strain through the magneto-elastic effect. - Highlights: • The magnetoelectric control of the magnetic coercivity of Pd/Ni/Pd thin films was demonstrated. • The ±0.4% strain variation of 14 nm Ni thin films resulted in ±17 Oe change of H{sub c}. • The reversible modulation of H{sub c} is supposed to be caused by the magneto-elastic effect.

  20. Real-time observations of interface formation for barium strontium titanate films on silicon

    Science.gov (United States)

    Mueller, A. H.; Suvorova, N. A.; Irene, E. A.; Auciello, O.; Schultz, J. A.

    2002-05-01

    Ba.5Sr.5TiO3 (BST) film growth by ion sputtering on bare and thermally oxidized silicon was observed in real time using in-situ spectroscopic ellipsometry and time of flight ion scattering and recoil spectrometry techniques. At the outset of BST film deposition on silicon, an approximately 30 Å film with intermediate static dielectric constant (K˜12) and refractive index (n˜2.6 at photon energies of 1.5-3.25 eV) interface layer formed on bare silicon. The interface layer growth rate was greatly reduced on an oxidized silicon substrate. The results have profound implications on the static dielectric constant of BST.

  1. Ferroelectric properties of barium strontium titanate thin films grown by RF co-sputtering

    International Nuclear Information System (INIS)

    Zapata-Navarro, A.; Marquez-Herrera, A.; Cruz-Jauregui, M.P.; Calzada, M.L.

    2005-01-01

    In this work, we present the variation of the ferroelectric properties of Ba 1-x Sr x TiO 3 films deposited on Pt/TiO 2 /SiO 2 /Si substrates by RF co-sputtering with 0≤x≤1. The co-sputtering was done using a single magnetron with BaTiO 3 /SrTiO 3 targets in a pie mosaics configuration. Smooth and uniform films were obtained using the same conditions of growth and annealing temperature. The X-ray diffraction and EDS results show that the processes were managed to obtain crystalline materials with x from 0 to 1. The behaviour of P-E loops suggests that the ferroelectric properties of the films were tuned by changing the concentration of the cation. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Ferroelectric properties of barium strontium titanate thin films grown by RF co-sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Zapata-Navarro, A.; Marquez-Herrera, A. [CICATA-IPN, Km. 14.5 Carretera Tampico-Puerto Ind. Altamira, Altamira Tamaulipas 89600 (Mexico); Cruz-Jauregui, M.P. [CCMC-UNAM, Km. 107 Carretera Tijuana-Ensenada, Ensenada B.C. 22800 (Mexico); Calzada, M.L. [ICMM (CSIC) Madrid, Cantoblanco Madrid 28049 (Spain)

    2005-08-01

    In this work, we present the variation of the ferroelectric properties of Ba{sub 1-x}Sr{sub x}TiO{sub 3} films deposited on Pt/TiO{sub 2}/SiO{sub 2}/Si substrates by RF co-sputtering with 0{<=}x{<=}1. The co-sputtering was done using a single magnetron with BaTiO{sub 3}/SrTiO{sub 3} targets in a pie mosaics configuration. Smooth and uniform films were obtained using the same conditions of growth and annealing temperature. The X-ray diffraction and EDS results show that the processes were managed to obtain crystalline materials with x from 0 to 1. The behaviour of P-E loops suggests that the ferroelectric properties of the films were tuned by changing the concentration of the cation. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Comparison of lanthanum substituted bismuth titanate (BLT) thin films deposited by sputtering and pulsed laser deposition

    International Nuclear Information System (INIS)

    Besland, M.P.; Djani-ait Aissa, H.; Barroy, P.R.J.; Lafane, S.; Tessier, P.Y.; Angleraud, B.; Richard-Plouet, M.; Brohan, L.; Djouadi, M.A.

    2006-01-01

    Bi 4-x La x Ti 3 O 12 (BLT x ) (x = 0 to 1) thin films were grown on silicon (100) and platinized substrates Pt/TiO 2 /SiO 2 /Si using RF diode sputtering, magnetron sputtering and pulsed laser deposition (PLD). Stoichiometric home-synthesized targets were used. Reactive sputtering was investigated in argon/oxygen gas mixture, with a pressure ranging from 0.33 to 10 Pa without heating the substrate. PLD was investigated in pure oxygen, at a chamber pressure of 20 Pa for a substrate temperature of 400-440 deg. C. Comparative structural, chemical, optical and morphological characterizations of BLT thin films have been performed by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), X-Ray Photoelectron Spectroscopy (XPS), Spectro-ellipsometric measurements (SE) and Atomic Force Microscopy (AFM). Both sputtering techniques allow to obtain uniform films with thickness ranging from 200 to 1000 nm and chemical composition varying from (Bi,La) 2 Ti 3 O 12 to (Bi,La) 4.5 Ti 3 O 12 , depending on deposition pressure and RF power. In addition, BLT films deposited by magnetron sputtering, at a pressure deposition ranging from 1.1 to 5 Pa, were well-crystallized after a post-deposition annealing at 650 deg. C in oxygen. They exhibit a refractive index and optical band gap of 2.7 and 3.15 eV, respectively. Regarding PLD, single phase and well-crystallized, 100-200 nm thick BLT films with a stoichiometric (Bi,La) 4 Ti 3 O 12 chemical composition were obtained, exhibiting in addition a preferential orientation along (200). It is worth noting that BLT films deposited by magnetron sputtering are as well-crystallized than PLD ones

  4. Preparation of Lead Magnesium Niobate-Lead Zirconate Titanate Films and Their Crystallization Behaviors

    International Nuclear Information System (INIS)

    Tursiloadi, Silvester

    2002-01-01

    The thin films with composition near morpotropic phase boundary (MPB) of the system xPb(Mg 1 /3, Nb 2 /3) O 3 -yPbTiO 3 -zPbZrO 3 (x = 0-0.35, y = 0.47 and z = 0.53), were prepared by sol-gel method. The starting materials were consisted of Pb(iso-OC 3 H 7 ) 2 , Zr(n-OC 4 H 9 ) 4 , Ti(iso-OC 3 H 7 ) 4 , Mg(CH 3 COO) 2 4H 2 O and Nb(OC 2 H 5 ) 5 . The l-propanol was used as solvent. The concentration of PMN-PT-PZ in coating solution was 0.7 M, and the pH of the solution was 4.5. The thin films were prepared by dip coating and spin coating. The crystallization behaviors of the PMN-PT-PZ thin films showed that the formation of perovskite phase at low temperature becomes difficult with increasing the content of PMN. The amounts of pyrochlore and perovskite phase in PMN-PT-PZ films depended on the heating temperatures, and PMN contents. Single-phase perovskite was found for the coated films containing 0 and 12.5 mol% after calculating at 600 o C, 21 mol% after calculating at 700 o C, and 30 mol% after calculating at 750 o C. Single-phase perovskite of coated films will never be found when the content of PMN was 35 mol%

  5. Nano-embossing technology on ferroelectric thin film Pb(Zr0.3,Ti0.7O3 for multi-bit storage application

    Directory of Open Access Journals (Sweden)

    Lu Qian

    2011-01-01

    Full Text Available Abstract In this work, we apply nano-embossing technique to form a stagger structure in ferroelectric lead zirconate titanate [Pb(Zr0.3, Ti0.7O3 (PZT] films and investigate the ferroelectric and electrical characterizations of the embossed and un-embossed regions, respectively, of the same films by using piezoresponse force microscopy (PFM and Radiant Technologies Precision Material Analyzer. Attributed to the different layer thickness of the patterned ferroelectric thin film, two distinctive coercive voltages have been obtained, thereby, allowing for a single ferroelectric memory cell to contain more than one bit of data.

  6. Effect of External Vibration on PZT Impedance Signature

    Directory of Open Access Journals (Sweden)

    Yaowen Yang

    2008-11-01

    Full Text Available Piezoelectric ceramic Lead Zirconate Titanate (PZT transducers, working on the principle of electromechanical impedance (EMI, are increasingly applied for structural health monitoring (SHM in aerospace, civil and mechanical engineering. The PZT transducers are usually surface bonded to or embedded in a structure and subjected to actuation so as to interrogate the structure at the desired frequency range. The interrogation results in the electromechanical admittance (inverse of EMI signatures which can be used to estimate the structural health or integrity according to the changes of the signatures. In the existing EMI method, the monitored structure is only excited by the PZT transducers for the interrogating of EMI signature, while the vibration of the structure caused by the external excitations other than the PZT actuation is not considered. However, many structures work under vibrations in practice. To monitor such structures, issues related to the effects of vibration on the EMI signature need to be addressed because these effects may lead to misinterpretation of the structural health. This paper develops an EMI model for beam structures, which takes into account the effect of beam vibration caused by the external excitations. An experimental study is carried out to verify the theoretical model. A lab size specimen with different external excitations is tested and the effect of vibration on EMI signature is discussed.

  7. Effect of External Vibration on PZT Impedance Signature.

    Science.gov (United States)

    Yang, Yaowen; Miao, Aiwei

    2008-11-01

    Piezoelectric ceramic Lead Zirconate Titanate (PZT) transducers, working on the principle of electromechanical impedance (EMI), are increasingly applied for structural health monitoring (SHM) in aerospace, civil and mechanical engineering. The PZT transducers are usually surface bonded to or embedded in a structure and subjected to actuation so as to interrogate the structure at the desired frequency range. The interrogation results in the electromechanical admittance (inverse of EMI) signatures which can be used to estimate the structural health or integrity according to the changes of the signatures. In the existing EMI method, the monitored structure is only excited by the PZT transducers for the interrogating of EMI signature, while the vibration of the structure caused by the external excitations other than the PZT actuation is not considered. However, many structures work under vibrations in practice. To monitor such structures, issues related to the effects of vibration on the EMI signature need to be addressed because these effects may lead to misinterpretation of the structural health. This paper develops an EMI model for beam structures, which takes into account the effect of beam vibration caused by the external excitations. An experimental study is carried out to verify the theoretical model. A lab size specimen with different external excitations is tested and the effect of vibration on EMI signature is discussed.

  8. Development of Strontium Titanate Thin films on Technical Substrates for Superconducting Coated Conductors

    DEFF Research Database (Denmark)

    Pallewatta, Pallewatta G A P; Yue, Zhao; Grivel, Jean-Claude

    2012-01-01

    SrTiO3 is a widely studied perovskite material due to its advantages as a template for high temperature superconducting tapes. Heteroepitaxial SrTiO3 thin films were deposited on Ni/W tapes using dip-coating in a precursor solution followed by drying and annealing under reducing conditions. Nearl...

  9. Thin film barium strontium titanate capacitors for tunable RF front-end applications

    NARCIS (Netherlands)

    Tiggelman, M.P.J.

    2009-01-01

    In this thesis, the results of intensive electrical characterization, modeling and the design of hardware with thin film tunable capacitors, i.e., dielectric varactors, has been presented and discussed. Especially the quality factor Q and the tuning ratio of the tunable capacitors have been studied,

  10. Influence of Tm-doping on microstructure and luminescence behavior of barium strontium titanate thick films

    International Nuclear Information System (INIS)

    Wang Jingyang; Zhang Tianjin; Pan Ruikun; Ma Zhijun; Wang Jinzhao

    2012-01-01

    Tm-doped Ba 0.8 Sr 0.2 TiO 3 thick films were prepared by the screen-printing technique on the alumina substrate. The microstructure of the Tm-doped BST thick films was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Raman spectroscopy, respectively. All the samples showed a typical perovskite polycrystalline structure when sintered at 1260 °C. The substitution behavior of Tm 3+ ion in BST was found to change with increasing the Tm 3+ concentration. The observed Tm-related red emission reaches the maximum at 0.2 mol% Tm 3+ concentration. The effects of concentration quenching on the luminescence intensity were discussed.

  11. Optical Properties of Nitrogen-Substituted Strontium Titanate Thin Films Prepared by Pulsed Laser Deposition

    Directory of Open Access Journals (Sweden)

    Alexander Wokaun

    2009-09-01

    Full Text Available Perovskite-type N-substituted SrTiO3 thin films with a preferential (001 orientation were grown by pulsed laser deposition on (001-oriented MgO and LaAlO3 substrates. Application of N2 or ammonia using a synchronized reactive gas pulse produces SrTiO3-x:Nx films with a nitrogen content of up to 4.1 at.% if prepared with the NH3 gas pulse at a substrate temperature of 720 °C. Incorporating nitrogen in SrTiO3 results in an optical absorption at 370-460 nm associated with localized N(2p orbitals. The estimated energy of these levels is ≈2.7 eV below the conduction band. In addition, the optical absorption increases gradually with increasing nitrogen content.

  12. Titan Casts Revealing Shadow

    Science.gov (United States)

    2004-05-01

    diameter, which corresponds to the size of a dime as viewed from about two and a half miles. Illustration of Crab, Titan's Shadow and Chandra Illustration of Crab, Titan's Shadow and Chandra Unlike almost all of Chandra's images which are made by focusing X-ray emission from cosmic sources, Titan's X-ray shadow image was produced in a manner similar to a medical X-ray. That is, an X-ray source (the Crab Nebula) is used to make a shadow image (Titan and its atmosphere) that is recorded on film (Chandra's ACIS detector). Titan's atmosphere, which is about 95% nitrogen and 5% methane, has a pressure near the surface that is one and a half times the Earth's sea level pressure. Voyager I spacecraft measured the structure of Titan's atmosphere at heights below about 300 miles (500 kilometers), and above 600 miles (1000 kilometers). Until the Chandra observations, however, no measurements existed at heights in the range between 300 and 600 miles. Understanding the extent of Titan's atmosphere is important for the planners of the Cassini-Huygens mission. The Cassini-Huygens spacecraft will reach Saturn in July of this year to begin a four-year tour of Saturn, its rings and its moons. The tour will include close flybys of Titan that will take Cassini as close as 600 miles, and the launching of the Huygens probe that will land on Titan's surface. Chandra's X-ray Shadow of Titan Chandra's X-ray Shadow of Titan "If Titan's atmosphere has really expanded, the trajectory may have to be changed." said Tsunemi. The paper on these results has been accepted and is expected to appear in a June 2004 issue of The Astrophysical Journal. Other members of the research team were Haroyoski Katayama (Osaka University), David Burrows and Gordon Garmine (Penn State University), and Albert Metzger (JPL). Chandra observed Titan from 9:04 to 18:46 UT on January 5, 2003, using its Advanced CCD Imaging Spectrometer instrument. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra

  13. The field induced e31,f piezoelectric and Rayleigh response in barium strontium titanate thin films

    International Nuclear Information System (INIS)

    Garten, L. M.; Trolier-McKinstry, S.

    2014-01-01

    The electric field induced e 31,f piezoelectric response and tunability of Ba 0.7 Sr 0.3 TiO 3 (70:30) and Ba 0.6 Sr 0.4 TiO 3 (60:40) thin films on MgO and silicon was measured. The relative dielectric tunabilities for the 70:30 and 60:40 compositions on MgO were 83% and 70%, respectively, with a dielectric loss of less than 0.011 and 0.004 at 100 kHz. A linear increase in induced piezoelectricity to −3.0 C/m 2 and −1.5 C/m 2 at 110 kV/cm was observed in Ba 0.6 Sr 0.4 TiO 3 on MgO and Ba 0.7 Sr 0.3 TiO 3 on Si. Hysteresis in the piezoelectric and dielectric response of the 70:30 composition films was consistent with the positive irreversible dielectric Rayleigh coefficient. Both indicate a ferroelectric contribution to the piezoelectric and dielectric response over 40–80 °C above the global paraelectric transition temperature.

  14. High temperature thermoelectric properties of strontium titanate thin films with oxygen vacancy and niobium doping

    KAUST Repository

    Sarath Kumar, S. R.

    2013-08-14

    We report the evolution of high temperature thermoelectric properties of SrTiO3 thin films doped with Nb and oxygen vacancies. Structure-property relations in this important thermoelectric oxide are elucidated and the variation of transport properties with dopant concentrations is discussed. Oxygen vacancies are incorporated during growth or annealing in Ar/H2 above 800 K. An increase in lattice constant due to the inclusion of Nb and oxygen vacancies is found to result in an increase in carrier density and electrical conductivity with simultaneous decrease in carrier effective mass and Seebeck coefficient. The lattice thermal conductivity at 300 K is found to be 2.22 W m-1 K-1, and the estimated figure of merit is 0.29 at 1000 K. © 2013 American Chemical Society.

  15. High temperature thermoelectric properties of strontium titanate thin films with oxygen vacancy and niobium doping

    KAUST Repository

    Sarath Kumar, S. R.; Barasheed, Abeer Z.; Alshareef, Husam N.

    2013-01-01

    We report the evolution of high temperature thermoelectric properties of SrTiO3 thin films doped with Nb and oxygen vacancies. Structure-property relations in this important thermoelectric oxide are elucidated and the variation of transport properties with dopant concentrations is discussed. Oxygen vacancies are incorporated during growth or annealing in Ar/H2 above 800 K. An increase in lattice constant due to the inclusion of Nb and oxygen vacancies is found to result in an increase in carrier density and electrical conductivity with simultaneous decrease in carrier effective mass and Seebeck coefficient. The lattice thermal conductivity at 300 K is found to be 2.22 W m-1 K-1, and the estimated figure of merit is 0.29 at 1000 K. © 2013 American Chemical Society.

  16. Elasticity Imaging of Ferroelectric Domain Structure in PZT by Ultrasonic Atomic Force Microscopy

    International Nuclear Information System (INIS)

    Tsuji, T.; Ogiso, H.; Fukuda, K.; Yamanaka, K.

    2004-01-01

    UAFM was applied to the observation of the domain structure in lead zirconate titanate (PZT). It imaged the change of elasticity due to grain and domain boundary (DB). For the quantitative evaluation of the contact stiffness, the lateral contact stiffness was taken into account. The stiffness of DB was 10% lower than that within the domain and the width of the DB was about 30 nm. The implication of this work is the understanding of the fatigue mechanism in a PZT memory and the high resolution imaging for a high-density memory

  17. Effect of porosity on dielectric properties and microstructure of porous PZT ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, B. Praveen [PZT Centre, Armament Research and Development Establishment, Pune 411021 (India); Kumar, H.H. [PZT Centre, Armament Research and Development Establishment, Pune 411021 (India); Kharat, D.K. [PZT Centre, Armament Research and Development Establishment, Pune 411021 (India)]. E-mail: dkkharat@rediffmail.com

    2006-02-25

    Porous piezoelectric materials are of great interest because of their high hydrostatic figure of merit and low sound velocity, which results in to low acoustic impedance and efficient coupling with medium. Porous lead zirconate titanate (PZT) ceramics with varying porosity was developed using polymethyl methacrylate by burnable plastic spheres (BURPS) process. The porous PZT ceramics were characterized for dielectric constant ({epsilon}), dielectric loss factor (tan {delta}), hydrostatic charge (d {sub h}) and voltage (g {sub h}) coefficients and microstructure. The effect of the porous microstructure on the dielectric constant and loss factor at frequencies of 10-10{sup 5} Hz are discussed in this paper.

  18. Fabrication of Crack-Free Barium Titanate Thin Film with High Dielectric Constant Using Sub-Micrometric Scale Layer-by-Layer E-Jet Deposition

    Directory of Open Access Journals (Sweden)

    Junsheng Liang

    2016-01-01

    Full Text Available Dense and crack-free barium titanate (BaTiO3, BTO thin films with a thickness of less than 4 μm were prepared by using sub-micrometric scale, layer-by-layer electrohydrodynamic jet (E-jet deposition of the suspension ink which is composed of BTO nanopowder and BTO sol. Impacts of the jet height and line-to-line pitch of the deposition on the micro-structure of BTO thin films were investigated. Results show that crack-free BTO thin films can be prepared with 4 mm jet height and 300 μm line-to-line pitch in this work. Dielectric constant of the prepared BTO thin film was recorded as high as 2940 at 1 kHz at room temperature. Meanwhile, low dissipation factor of the BTO thin film of about 8.6% at 1 kHz was also obtained. The layer-by-layer E-jet deposition technique developed in this work has been proved to be a cost-effective, flexible and easy to control approach for the preparation of high-quality solid thin film.

  19. Improvement in crystallization and electrical properties of barium strontium titanate thin films by gold doping using metal-organic deposition method

    International Nuclear Information System (INIS)

    Wang, H.-W.; Nien, S.-W.; Lee, K.-C.; Wu, M.-C.

    2005-01-01

    The effect of gold (Au) on the crystallization, dielectric constant and leakage current density of barium strontium titanate (BST) thin films was investigated. BST thin films with various gold concentrations were prepared via a metal-organic deposition process. The X-ray diffraction shows enhanced crystallization as well as expanded lattice constants for the gold-doped BST films. Thermal analysis reveals that the gold dopant induces more complete decomposition of precursor for the doped films than those of undoped ones. The leakage current density of BST films is greatly reduced by the gold dopant over a range of biases (1-5 V). The distribution of gold was confirmed by electron energy loss spectroscopy and found to be inside the BST grains, not in the grain-boundaries. Gold acted as a catalyst, inducing the nucleation of crystallites and improving the crystallinity of the structure. Its addition is shown to be associated to the improvement of the electrical properties of BST films

  20. Niobium effect on the Pzt ceramic properties; Efeito do niobio sobre as propriedades da ceramica PZT

    Energy Technology Data Exchange (ETDEWEB)

    Gimenes, R.; Zaguete, M.A.; Varela, J.A.; Cilense, M.; Paiva-Santos, C.O.; Las, W.C. [UNESP, Araraquara, SP (Brazil). Inst. de Quimica

    1996-12-31

    Lead zirconate titanate, PZT, was prepared with Zr/Ti ratio of 50/50. The powder was prepared by the Pechini method with addition of 0,3; 0,5 e 0,7 mol % of Nb{sup +5} ions. The precursors obtained were calcined at 700 deg C for 3 hs and milled with zirconia balls in a medium of isopropilic alcohol for 6 hs. The powders were characterized by XRD. For the sintering studies powders were isostatically pressed (230 MPa) into pellets and which were put inside a box furnace at 1200 deg C for 2 hs and 1100 deg C for 4 hs in a closed system containing 5 % of atmospheric powder (Pb Zr O{sub 3} + 5% Pb O) relative to all pellets`mass. It was verified that the best densification rate was obtained for PZT with addition of 0,5 mol % of Nb{sup +5} ions and sintered at 1100 deg C for 4 hs. Sintered samples at 1100 deg C for 4 hs were characterized as to dielectric (k, P{sub r} and E{sub c}) and piezoelectric properties. (author) 5 refs., 2 figs., 3 tabs.

  1. Piezoelectric and mechanical properties of fatigue resistant, self-healing PZT-ionomer composites

    Science.gov (United States)

    James, N. K.; Lafont, U.; van der Zwaag, S.; Groen, W. A.

    2014-05-01

    Piezoelectric ceramic-polymer composites with 0-3 connectivity were fabricated using lead zirconium titanate (PZT) powder dispersed in an ionomer (Zn ionomer) and its reference ethylene methacrylic acid copolymer (EMAA) polymer matrix. The PZT-Zn ionomer and PZT-EMAA composites were prepared by melt extrusion followed by hot pressing. The effects of poling conditions such as temperature, time and electric field on the piezoelectric properties of the composites were investigated. The experimentally observed piezoelectric charge coefficient and dielectric constant of the composites were compared with theoretical models. The results show that PZT-Zn ionomer composites have better piezoelectric properties compared to PZT-EMAA composites. The static and fatigue properties of the composites were investigated. The PZT-Zn ionomer composites were found to have excellent fatigue resistance even at strain levels of 4%. Due to the self-healing capabilities of the ionomer matrix, the loss of piezoelectric properties after high strain tensile cyclic loading could be partially recovered by thermal healing.

  2. Experimental research on dynamic mechanical properties of PZT ceramic under hydrostatic pressure

    International Nuclear Information System (INIS)

    Wang, S.; Liu, K.X.

    2011-01-01

    Highlights: → We developed an experimental device to examine dynamic mechanical properties of PZT. → Ductile behavior of PZT was seen when hydrostatic pressure was involved. → Compressive strength was shown sensitive to hydrostatic pressure and strain-rate. → A failure criterion was suggested to explain the failure behavior of PZT. - Abstract: An experimental technique for initially applied hydrostatic pressure in specimens subjected to axial impact has been developed to study the dynamic mechanical properties of materials. The technique was employed for the purpose of examining the dynamic mechanical properties of lead zirconate titanate (PZT) at zero to 15 MPa hydrostatic pressures. Experimental results unambiguously exhibit the ductile behavior of PZT when hydrostatic pressure is involved. The compressive strength is demonstrated sensitive to the initial hydrostatic pressure and the strain-rate. The fracture modes are analyzed by means of scanning electron microscopy (SEM). Moreover, a failure criterion based on Mohr-Coulomb failure theory is suggested to explain the brittle and ductile failure of PZT.

  3. Photoelectrochemical Properties of FeO Supported on TiO2-Based Thin Films Converted from Self-Assembled Hydrogen Titanate Nanotube Powders

    Directory of Open Access Journals (Sweden)

    Kyung-Jong Noh

    2012-01-01

    Full Text Available A photoanode was fabricated using hematite (α-Fe2O3 nanoparticles which had been held in a thin film of hydrogen titanate nanotubes (H-TiNT, synthesized by repetitive self-assembling method on FTO (fluorine-doped tin oxide glass, which were incorporated via dipping process in aqueous Fe(NO33 solution. Current voltage (I-V electrochemical properties of the photoanode heat-treated at 500°C for 10 min in air were evaluated under ultraviolet-visible light irradiation. Microstructure and crystallinity changes were also investigated. The prepared Fe2O3/H-TiNT/FTO composite thin film exhibited about threefold as much photocurrent as the Fe2O3/FTO film. The improvement in photocurrent was considered to be caused by reduced recombination of electrons and holes, with an appropriate amount of Fe2O3 spherical nanoparticles supported on the H-TiNT/FTO film. Nanosized spherical Fe2O3 particles with about 65 wt% on the H-TiNT/FTO film showed best performance in our study.

  4. Study on oxidization of Ru and its application as electrode of PZT capacitor for FeRAM

    International Nuclear Information System (INIS)

    Jia Ze; Ren Tianling; Liu Tianzhi; Hu Hong; Zhang Zhigang; Xie Dan; Liu Litian

    2007-01-01

    Oxidization for Ru through anneal with plenteous oxygen atmosphere and its application as the top electrode of sol-gel PZT capacitor are investigated in this study. PZT capacitor with RuO 2 or oxygen-doped Ru as top electrode can be obtained from Ru/PZT/Pt capacitor through slow-rate anneal at 650 deg. C for 20 min in cannulation furnace. It has larger remanent polarization, better rectangle shape, better fatigue properties and lower leakage current than the other capacitors with PZT film prepared by the same process and different top electrodes in this study. Plenteous oxygen atmosphere and 650 deg. C in cannulation furnace are important conditions for the oxidation of Ru and renewed crystallization of PZT in this capacitor. Plenteous oxygen at interface can compensate the oxygen vacancies at PZT/electrode interface, which results in the above good characteristics

  5. Effect of Nb doping on sintering and dielectric properties of PZT ceramics

    Directory of Open Access Journals (Sweden)

    Ali Mirzaei

    2016-09-01

    Full Text Available The extensive use of piezoelectric ceramics such as lead zirconate titanate (PZT in different applications became possible with the development of donor or acceptor dopants. Therefore, studies on the effect of dopants on the properties of PZT ceramics are highly demanded. In this study undoped and 2.4 mol% Nb-doped PZT (PZTN powders were successfully obtained by a solid-state reaction and calcination at 850 °C for 2 h. Crystallinity and phase formation of the prepared powders were studied using X-ray diffraction (XRD. In order to study morphology of powders, scanning electron microscopy (SEM was performed. The crystalline PZT and Nb-doped PZT powders were pelleted into discs and sintered at 1100, 1150 and 1200 °C, with a heating rate of 10 °C/min, and holding time of 1–6 h to find the optimum combination of temperature and time to produce high density ceramics. Microstructural characterization was conducted on the fractured ceramic surfaces using SEM. Density measurements showed that maximal density of 95% of the theoretical density was achieved after sintering of PZT and PZTN ceramics at 1200 °C for 2 h and 4 h, respectively. However, the results of dielectric measurements showed that PZTN ceramics have higher relative permittivity (εr ∼17960 with lower Curie temperature (∼358 °C relative to PZT (εr = 16000 at ∼363 °C as a result of fine PZTN structure as well as presence of vacancies. In addition, dielectric loss (at 1 kHz of PZT and PZTN ceramics with 95% theoretical density was 0.0087 and 0.02, respectively. The higher dielectric loss in PZTN was due to easier domain wall motions in PZTN ceramics.

  6. Nanocomposites with increased energy density through high aspect ratio PZT nanowires.

    Science.gov (United States)

    Tang, Haixiong; Lin, Yirong; Andrews, Clark; Sodano, Henry A

    2011-01-07

    High energy storage plays an important role in the modern electric industry. Herein, we investigated the role of filler aspect ratio in nanocomposites for energy storage. Nanocomposites were synthesized using lead zirconate titanate (PZT) with two different aspect ratio (nanowires, nanorods) fillers at various volume fractions dispersed in a polyvinylidene fluoride (PVDF) matrix. The permittivity constants of composites containing nanowires (NWs) were higher than those with nanorods (NRs) at the same inclusion volume fraction. It was also indicated that the high frequency loss tangent of samples with PZT nanowires was smaller than for those with nanorods, demonstrating the high electrical energy storage efficiency of the PZT NW nanocomposite. The high aspect ratio PZT NWs showed a 77.8% increase in energy density over the lower aspect ratio PZT NRs, under an electric field of 15 kV mm(-1) and 50% volume fraction. The breakdown strength was found to decrease with the increasing volume fraction of PZT NWs, but to only change slightly from a volume fraction of around 20%-50%. The maximum calculated energy density of nanocomposites is as high as 1.158 J cm(-3) at 50% PZT NWs in PVDF. Since the breakdown strength is lower compared to a PVDF copolymer such as poly(vinylidene fluoride-tertrifluoroethylene-terchlorotrifluoroethylene) P(VDF-TreEE-CTFE) and poly(vinylidene fluoride-co-hexafluoropropylene) P(VDF-HFP), the energy density of the nanocomposite could be significantly increased through the use of PZT NWs and a polymer with greater breakdown strength. These results indicate that higher aspect ratio fillers show promising potential to improve the energy density of nanocomposites, leading to the development of advanced capacitors with high energy density.

  7. PZT/PLZT - elastomer composites with improved piezoelectric voltage coefficient

    Science.gov (United States)

    Harikrishnan, K.; Bavbande, D. V.; Mohan, Dhirendra; Manoharan, B.; Prasad, M. R. S.; Kalyanakrishnan, G.

    2018-02-01

    Lead Zirconate Titanate (PZT) and Lanthanum-modified Lead Zirconate Titanate (PLZT) ceramic sensor materials are widely used because of their excellent piezoelectric coefficients. These materials are brittle, high density and have low achievable piezoelectric voltage coefficients. The density of the sintered ceramics shall be reduced by burnable polymeric sponge method. The achievable porosity level in this case is nearly 60 - 90%. However, the porous ceramic structure with 3-3 connectivity produced by this method is very fragile in nature. The strength of the porous structure is improved with Sylgard®-184 (silicone elastomer) by vacuum impregnation method maintaining the dynamic vacuum level in the range of -650 mm Hg. The elastomer Sylgard®-184 is having low density, low dielectric constant and high compliance (as a resultant stiffness of the composites is increased). To obtain a net dipole moment, the impregnated ceramic composites were subjected to poling treatment with varying conditions of D.C. field and temperature. The properties of the poled PZT/PLZT - elastomer composites were characterized with LCR meter for measuring the dielectric constant values (k), d33 meter used for measuring piezo-electric charge coefficient values (d33) and piezo-electric voltage coefficient (g33) values which were derived from d33 values. The voltage coefficient (g33) values of these composites are increased by 10 fold as compared to the conventional solid ceramics demonstrates that it is possible to fabricate a conformable detector.

  8. Broadband Electromagnetic Emission from PZT Ferroelectric Ceramics after Shock Loading

    Directory of Open Access Journals (Sweden)

    Fiodoras ANISIMOVAS

    2013-12-01

    Full Text Available It was experimentally registered pulsed electromagnetic (EM radiation in frequency range higher than television one using wideband horns with coaxial and waveguide outputs. The EM radiation was received during shock loading of lead zirconate titanate (PZT ceramics cylinders in conventional piezoelectric ignition mechanisms. Digital oscilloscope allows registering whole series of EM pulses and each pulse from the series transmitted from horn antenna of (1 – 18 GHz operating band frequencies. There is (1 – 4 ms delay between the shock and the first pulse of the series. Duration of the series is about (3 – 4 ms. The PZT cylinders were cleaved along their axes and the surfaces formed in the process were investigated by scanning electron microscope. It was concluded that from electrical point of view PZT ceramics contain interacting subsystems. It was found that EM radiation spectrum of pulse detected by waveguide detector heads has harmonics reaching 80 GHz. Presence of harmonics higher than 20 GHz indicates on radiation due to deceleration of electrons emitted during the switching. The EM pulses in the series appear randomly and have different amplitudes which partly confirmed thesis on independent switching dynamics of small volumes governed by a local electric field.DOI: http://dx.doi.org/10.5755/j01.ms.19.4.3137

  9. 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers.

    Science.gov (United States)

    Chen, Xi; Xu, Shiyou; Yao, Nan; Shi, Yong

    2010-06-09

    Energy harvesting technologies that are engineered to miniature sizes, while still increasing the power delivered to wireless electronics, (1, 2) portable devices, stretchable electronics, (3) and implantable biosensors, (4, 5) are strongly desired. Piezoelectric nanowire- and nanofiber-based generators have potential uses for powering such devices through a conversion of mechanical energy into electrical energy. (6) However, the piezoelectric voltage constant of the semiconductor piezoelectric nanowires in the recently reported piezoelectric nanogenerators (7-12) is lower than that of lead zirconate titanate (PZT) nanomaterials. Here we report a piezoelectric nanogenerator based on PZT nanofibers. The PZT nanofibers, with a diameter and length of approximately 60 nm and 500 microm, were aligned on interdigitated electrodes of platinum fine wires and packaged using a soft polymer on a silicon substrate. The measured output voltage and power under periodic stress application to the soft polymer was 1.63 V and 0.03 microW, respectively.

  10. Enhanced ferroelectric and piezoelectric properties in La-modified PZT ceramics

    Science.gov (United States)

    Kour, P.; Pradhan, S. K.; Kumar, Pawan; Sinha, S. K.; Kar, Manoranjan

    2016-06-01

    The effect of lanthanum (La) doping on ferroelectric and piezoelectric properties of lead zirconate titanate (PZT) sample has been investigated. Pb1- x La x Zr0.52Ti0.48O3 ceramics with x = 0.00, 0.02, 0.04, 0.06 and 0.10 were prepared by the sol-gel technique. Raman and Fourier transforms infrared spectroscopy have been employed to understand the structural modification due to ionic size mismatch. Raman spectra show the existence of both rhombohedral and tetragonal crystal symmetries. It also shows the dielectric relaxation with increase in La concentration in the sample. The increase in lattice strain due to La doping increases the remnant polarization and coercive field. The linear piezoelectric coefficient increases with the increase in La concentration. It reveals that La-substituted PZT is a better candidate for piezoelectric sensor applications as compared to that of PZT.

  11. Fabrication of barium titanate nanoparticles/poly (methylmethacrylate composite films by a combination of deposition process and spin-coating technique

    Directory of Open Access Journals (Sweden)

    Yoshio Kobayashi

    2014-10-01

    Full Text Available The present work proposes a method for fabricating poly(methylmethacrylate (PMMA film containing barium titanate (BT nanoparticles (BT/PMMA film. BT particles with an average size of 77.6 ± 30.5 nm and a crystal size of 28.1 nm were synthesized by adding sodium hydroxide aqueous solution to titanium tetraisopropoxide/acetylacetone/i-propanol solution suspending barium hydroxide. A sodium glass plate, of which surface was modified with polyvinylpyrrolidone, was immersed into water suspending the BT particles, which resulted in deposition of the BT particles on the plate. A BT/PMMA film was fabricated by twice performance of a process composed of spin-coating of N-methyl-2-pyrrolidone (NMP dissolving PMMA on the plate, and then drying the coated plate in the atmosphere at room temperature. Spin-coating of a PMMA/NMP solution with a PMMA concentration of 150 g/L at a rotating speed of 5000 rpm provided fabrication of a BT/PMMA film with a BT volume fraction of 35.5%, a thickness of ca. 300 nm, and a transmittance of ca. 90% in the visible light region.

  12. Fatigue in artificially layered Pb(Zr,Ti)O3 ferroelectric films

    Science.gov (United States)

    Jiang, A. Q.; Scott, J. F.; Dawber, M.; Wang, C.

    2002-12-01

    We have performed fatigue tests on lead zirconate titanate (PZT) multilayers having stacks of Pb(Zr0.8Ti0.2)O3/Pb(Zr0.2Ti0.8)O3 with repeated distances of 12 formula groups. The results are compared with single-layer n-type (0.5 at. % Ta-doped) PZT films. We conclude that fatigue is dominated by space-charge layers in each case, but that in the multilayer such space charge accumulates at the layer interfaces, rather than at the electrode-dielectric interface. The model, which includes both drift and diffusion, is quantitative and yields a rate-limiting mobility of 6.9±0.9×10-12 cm2/V s, in excellent agreement with the oxygen vacancy mobility for perovskite oxides obtained from Zafar et al.

  13. Dielectric behaviors of lead zirconate titanate ceramics with coplanar electrodes

    International Nuclear Information System (INIS)

    Wang, Y.; Cheng, Y.L.; Zhang, Y.W.; Chan, H.L.W.; Choy, C.L.

    2003-01-01

    This paper reports on the dielectric behaviors of lead zirconate titanate (PZT) capacitors with coplanar electrodes. Usually a ferroelectric device has a metal-ferroelectric-metal configuration (parallel plate capacitor); when both the electrodes are on one side of a ceramic to form a coplanar capacitor, different dielectric behaviors will be anticipated because of the change in the distribution of the test field inside the dielectrics. This paper describes how the capacitance and dielectric loss of PZT-based coplanar capacitors change with electrode distance, area and test frequency

  14. Preparation of lead titanate zirconate from metal citrates

    International Nuclear Information System (INIS)

    Bastos, C.M.R.

    1994-01-01

    Lead titanate zirconate (PZT) preparation from its metal constituent citrates have been investigated. Metal citrates were obtained by forced precipitation using a dehydration alcohol mixture. Salt solutions of lead nitrate and octahydrated zirconyl chloride, and titanium tetrachloride were treated separately with citric acid and ammonium hydroxide. Zirconium, titanium and lead oxides resulted from thermal decomposition of corresponding citrates at 500 0 C, 450 0 C and 250 0 C, respectively. Lead titanate (PT) and lead zirconate (P Z) were obtained by calcining at 450 0 C and 500 0 C, respectively, after adequate heating of citrates mechanically mixed in ethyl ether. PZT samples were obtained with different starting stoichiometry. Rhombohedral PZT-1 53/47 sample was prepared from co precipitating zirconyl ammonium and ammonium lead citrates in presence of ethanolic titanium oxide dispersion, and calcinating at 800 0 C. Rhombohedral PZT-q 52/48 sample was obtained from heating at 500 0 C for 2 hours a mixture of metal citrates coprecipitated by dehydration mixture of acetone-ethanol-formic acid (2:1:0,06). Tetragonal PZT-m stoichiometry 53/47 sample were obtained by calcining at after 600 0 C for 2 hours after heating a mechanically mixed metal citrates. PT phase arose at 400 0 C. PZT-m powders obtained in a range of 400 0 C-800 0 C were isostatically pressed, and sintered at 1100 0 C and 1200 0 C in saturated Pb O atmosphere. Rhombohedral sintered PZT was obtained with 7,78 g.cm -3 at 1200 0 C. (author). 123 refs, 53 figs, 32 tabs

  15. Ceramics like PZT-PMN

    International Nuclear Information System (INIS)

    Droescher, R.E.; Sousa, V.C.; Bergman, C.P.

    2009-01-01

    The goal of this work was to achieve piezoelectric ceramics referring to the system PZT-PMN Pb(Mg 1 / 3 Nb 2 / 3 Zr 0 , 52 Ti 0 , 48 )O 3 . Have been analysed ceramics like 0,65PZT-0,35PMN ((Pb(Mg 0 , 1167 Nb 0 , 2300 Zr 0 , 3380 Ti 0 , 3120 )O 3 ), 0,75PZT-0,25PMN ((Pb(Mg 0 , 083 Nb 0 . 1675 Zr 0 , 3900 Ti 0 , 3600 )O3) and the 0,85PZT-0,15PMN ((Pb(Mg 0,0500 Nb 0 , 1000 Zr 0 , 4420 Ti 0 , 4080 )O 3 ). The influence of the calcination and concentration of PZT on the lattice phases, microstructure and density was evaluated. Then, the method used was the mixed-oxide method, the samples were taken under different temperatures of calcination before the final sinterizing. The DRX and SEM techniques were used to identify the phases formed and analyse the microstructure, respectively. The main result revealed that, the better way is to realize three burns before the final sinterizing at 1200 o C/4 h . Like that, on obtain for sure the average lattice phases, like: perovskite, pyrochlore and PbO and also tend to densify the samples. (author)

  16. A Reusable PZT Transducer for Monitoring Initial Hydration and Structural Health of Concrete

    Science.gov (United States)

    Yang, Yaowen; Divsholi, Bahador Sabet; Soh, Chee Kiong

    2010-01-01

    During the construction of a concrete structure, strength monitoring is important to ensure the safety of both personnel and the structure. Furthermore, to increase the efficiency of in situ casting or precast of concrete, determining the optimal time of demolding is important for concrete suppliers. Surface bonded lead zirconate titanate (PZT) transducers have been used for damage detection and parameter identification for various engineering structures over the last two decades. In this work, a reusable PZT transducer setup for monitoring initial hydration of concrete and structural health is developed, where a piece of PZT is bonded to an enclosure with two bolts tightened inside the holes drilled in the enclosure. An impedance analyzer is used to acquire the admittance signatures of the PZT. Root mean square deviation (RMSD) is employed to associate the change in concrete strength with changes in the PZT admittance signatures. The results show that the reusable setup is able to effectively monitor the initial hydration of concrete and the structural health. It can also be detached from the concrete for future re-use. PMID:22399929

  17. A Reusable PZT Transducer for Monitoring Initial Hydration and Structural Health of Concrete

    Directory of Open Access Journals (Sweden)

    Yaowen Yang

    2010-05-01

    Full Text Available During the construction of a concrete structure, strength monitoring is important to ensure the safety of both personnel and the structure. Furthermore, to increase the efficiency of in situ casting or precast of concrete, determining the optimal time of demolding is important for concrete suppliers. Surface bonded lead zirconate titanate (PZT transducers have been used for damage detection and parameter identification for various engineering structures over the last two decades. In this work, a reusable PZT transducer setup for monitoring initial hydration of concrete and structural health is developed, where a piece of PZT is bonded to an enclosure with two bolts tightened inside the holes drilled in the enclosure. An impedance analyzer is used to acquire the admittance signatures of the PZT. Root mean square deviation (RMSD is employed to associate the change in concrete strength with changes in the PZT admittance signatures. The results show that the reusable setup is able to effectively monitor the initial hydration of concrete and the structural health. It can also be detached from the concrete for future re-use.

  18. A reusable PZT transducer for monitoring initial hydration and structural health of concrete.

    Science.gov (United States)

    Yang, Yaowen; Divsholi, Bahador Sabet; Soh, Chee Kiong

    2010-01-01

    During the construction of a concrete structure, strength monitoring is important to ensure the safety of both personnel and the structure. Furthermore, to increase the efficiency of in situ casting or precast of concrete, determining the optimal time of demolding is important for concrete suppliers. Surface bonded lead zirconate titanate (PZT) transducers have been used for damage detection and parameter identification for various engineering structures over the last two decades. In this work, a reusable PZT transducer setup for monitoring initial hydration of concrete and structural health is developed, where a piece of PZT is bonded to an enclosure with two bolts tightened inside the holes drilled in the enclosure. An impedance analyzer is used to acquire the admittance signatures of the PZT. Root mean square deviation (RMSD) is employed to associate the change in concrete strength with changes in the PZT admittance signatures. The results show that the reusable setup is able to effectively monitor the initial hydration of concrete and the structural health. It can also be detached from the concrete for future re-use.

  19. Photoluminescence properties of PZT 52/48 synthesized by microwave hydrothermal method using PVA with template

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, G.F., E-mail: guilmina@hotmail.com [Instituto de Quimica, Universidade Estadual Paulista, Departamento de Bioquimica e Tecnologia Quimica, Rua Francisco Degni s/n, Quitandinha, 14800-900 Araraquara, SP (Brazil); Gasparotto, G. [Instituto de Quimica, Universidade Estadual Paulista, Departamento de Bioquimica e Tecnologia Quimica, Rua Francisco Degni s/n, Quitandinha, 14800-900 Araraquara, SP (Brazil); Paris, E.C. [Empresa Brasileira de Pesquisa Agropecuaria, Embrapa Instrumentacao, Rua XV de novembro, 1452, Centro, 13.569-970 Sao Carlos, SP (Brazil); Zaghete, M.A.; Longo, E.; Varela, J.A. [Instituto de Quimica, Universidade Estadual Paulista, Departamento de Bioquimica e Tecnologia Quimica, Rua Francisco Degni s/n, Quitandinha, 14800-900 Araraquara, SP (Brazil)

    2012-01-15

    Lead Titanate Zirconate (PZT) perovskite powders were synthesized by microwave hydrothermal method (M-H) at 180 {sup o}C for different time periods (2, 4, 8 and 12 h) with the presence of aqueous polyvinyl alcohol (PVA) solution 0.36 g L{sup -1}. The X-Ray diffraction (XRD), SE-FEG as well as the measurements of photoluminescence (PL) emission were used for monitoring the formation of a perovskite phase with random polycrystalline distortion in the structure. Emission spectra with fixed excitation wavelength of 350 nm showed higher value for the powder obtained after undergoing 8 h of treatment. A theoretical model derived from previous calculations allows us to discuss the origin of photoluminescence emission in the powders, which can be further related to the local disorder in the network of both ZrO{sub 6} and TiO{sub 6} octahedral, and dodecahedral PbO{sub 12}. The new morphology initially observed from the PZT perovskite crystal growth bearing the shape of fine plates is found to be directly related to photoluminescence emission with energy lower than that present in the PZT with cube-like morphology that emits in 560 nm. - Highlights: > This work details the efficiency of microwave hydrothermal synthesis in obtaining PZT powders. > PVA is used as a crystallization agent of PZT particles. > PZT particles presented photoluminescent (PL) behavior. > There aren't previous reports of photoluminescent PZT obtained by microwave hydrothermal synthesis. > Photoluminescence is one more interesting property for technological applications this material.

  20. Piezoelectric ceramic (PZT) modulates axonal guidance growth of rat cortical neurons via RhoA, Rac1, and Cdc42 pathways.

    Science.gov (United States)

    Wen, Jianqiang; Liu, Meili

    2014-03-01

    Electrical stimulation is critical for axonal connection, which can stimulate axonal migration and deformation to promote axonal growth in the nervous system. Netrin-1, an axonal guidance cue, can also promote axonal guidance growth, but the molecular mechanism of axonal guidance growth under indirect electric stimulation is still unknown. We investigated the molecular mechanism of axonal guidance growth under piezoelectric ceramic lead zirconate titanate (PZT) stimulation in the primary cultured cortical neurons. PZT induced marked axonal elongation. Moreover, PZT activated the excitatory postsynaptic currents (EPSCs) by increasing the frequency and amplitude of EPSCs of the cortical neurons in patch clamp assay. PZT downregulated the expression of Netrin-1 and its receptor Deleted in Colorectal Cancer (DCC). Rho GTPase signaling is involved in interactions of Netrin-1 and DCC. PZT activated RhoA. Dramatic decrease of Cdc42 and Rac1 was also observed after PZT treatment. RhoA inhibitor Clostridium botulinum C3 exoenzyme (C3-Exo) prevented the PZT-induced downregulation of Netrin-1 and DCC. We suggest that PZT can promote axonal guidance growth by downregulation of Netrin-1 and DCC to mediate axonal repulsive responses via the Rho GTPase signaling pathway. Obviously, piezoelectric materials may provide a new approach for axonal recovery and be beneficial for clinical therapy in the future.

  1. Integrated fast assembly of free-standing lithium titanate/carbon nanotube/cellulose nanofiber hybrid network film as flexible paper-electrode for lithium-ion batteries.

    Science.gov (United States)

    Cao, Shaomei; Feng, Xin; Song, Yuanyuan; Xue, Xin; Liu, Hongjiang; Miao, Miao; Fang, Jianhui; Shi, Liyi

    2015-05-27

    A free-standing lithium titanate (Li4Ti5O12)/carbon nanotube/cellulose nanofiber hybrid network film is successfully assembled by using a pressure-controlled aqueous extrusion process, which is highly efficient and easily to scale up from the perspective of disposable and recyclable device production. This hybrid network film used as a lithium-ion battery (LIB) electrode has a dual-layer structure consisting of Li4Ti5O12/carbon nanotube/cellulose nanofiber composites (hereinafter referred to as LTO/CNT/CNF), and carbon nanotube/cellulose nanofiber composites (hereinafter referred to as CNT/CNF). In the heterogeneous fibrous network of the hybrid film, CNF serves simultaneously as building skeleton and a biosourced binder, which substitutes traditional toxic solvents and synthetic polymer binders. Of importance here is that the CNT/CNF layer is used as a lightweight current collector to replace traditional heavy metal foils, which therefore reduces the total mass of the electrode while keeping the same areal loading of active materials. The free-standing network film with high flexibility is easy to handle, and has extremely good conductivity, up to 15.0 S cm(-1). The flexible paper-electrode for LIBs shows very good high rate cycling performance, and the specific charge/discharge capacity values are up to 142 mAh g(-1) even at a current rate of 10 C. On the basis of the mild condition and fast assembly process, a CNF template fulfills multiple functions in the fabrication of paper-electrode for LIBs, which would offer an ever increasing potential for high energy density, low cost, and environmentally friendly flexible electronics.

  2. Composition dependence of the ferroelectric properties of lanthanum-modified bismuth titanate thin films grown by using pulsed-laser deposition

    CERN Document Server

    Bu, S D; Park, B H; Noh, T W

    2000-01-01

    Lanthanum-modified bismuth titanate, Bi sub 4 sub - sub x La sub x Ti sub 3 O sub 1 sub 2 (BLT), thin films with a La concentration of 0.25<=x<=1.00 were grown on Pt/Ti/SiO sub 2 /Si substrates by using pulsed-laser deposition. The BLT films showed well-saturated polarization-electric field curves whose remnant polarizations were 16.1 mu C/cm sup 2 , 27.8 mu C/cm sup 2 , 19.6 mu C/cm sup 2 , and 2.7 mu C/cm sup 2 , respectively, for x=0.25, 0.05, 0.75, and 1.00. The fatigue characteristics became better with increasing x up to 0.75. The Au/BLT/Pt capacitor with a La concentration of 0.50 showed an interesting dependence of the remanent polarization on the number of repetitive read/write cycles. On the other hand, the capacitor with a La concentration of 0.75 showed fatigue-free characteristics.

  3. The effect of calcining temperature on the properties of 0-3 piezoelectric composites of PZT and a liquid crystalline thermosetting polymer

    NARCIS (Netherlands)

    Ende, D.A. van den; Groen, W.A.; Zwaag, S. van der

    2011-01-01

    We report on the optimisation of a recently developed high performance 0-3 piezoelectric composite comprising of the piezoelectric Lead Zirconate Titanate (PZT) powder and a liquid crystalline thermosetting matrix polymer (LCT). The matrix polymer is a liquid crystalline polymer comprising of an

  4. Characterization of Bi and Fe co-doped PZT capacitors for FeRAM.

    Science.gov (United States)

    Cross, Jeffrey S; Kim, Seung-Hyun; Wada, Satoshi; Chatterjee, Abhijit

    2010-08-01

    Ferroelectric random access memory (FeRAM) has been in mass production for over 15 years. Higher polarization ferroelectric materials are needed for future devices which can operate above about 100 °C. With this goal in mind, co-doping of thin Pb(Zr 40 ,Ti 60 )O 3 (PZT) films with 1 at.% Bi and 1 at.% Fe was examined in order to enhance the ferroelectric properties as well as characterize the doped material. The XRD patterns of PZT-5% BiFeO 3 (BF) and PZT 140-nm thick films showed (111) orientation on (111) platinized Si wafers and a 30 °C increase in the tetragonal to cubic phase transition temperature, often called the Curie temperature, from 350 to 380 °C with co-doping, indicating that Bi and Fe are substituting into the PZT lattice. Raman spectra revealed decreased band intensity with Bi and Fe co-doping of PZT compared to PZT. Polarization hysteresis loops show similar values of remanent polarization, but square-shaped voltage pulse-measured net polarization values of PZT-BF were higher and showed higher endurance to repeated cycling up to 10 10 cycles. It is proposed that Bi and Fe are both in the +3 oxidation state and substituting into the perovskite A and B sites, respectively. Substitution of Bi and Fe into the PZT lattice likely creates defect dipoles, which increase the net polarization when measured by the short voltage pulse positive-up-negative-down (PUND) method.

  5. Study of the microstructure and the hardness of PZT piezoelectric ceramics types I and III used in electro acoustic transducers; Estudo da microestrutura e da microdureza das ceramicas piezoeletricas tipos PZT I e III utilizadas em transdutores eletroacusticos

    Energy Technology Data Exchange (ETDEWEB)

    Cabral, Ricardo de Freitas; Itaboray, Lucas Mendes; Santos, Anna Paula de Oliveira [Centro Universitario de Volta Redonda (UNIFOA), Volta Redonda, RJ (Brazil)

    2015-12-15

    The field of electronic processing of the ceramic piezoelectric type imported powdered led to the production of ceramics with 97% of theoretical density, homogeneous microstructure with great potential for applications in piezoelectric devices such as electro acoustic transducers. However, the production of electronic ceramics National piezoelectric type is not yet able to have as raw material zirconate titanate Lead (PZT) 100% made in Brazil. Thus, this is used for supply of domestic production, the zirconium oxide. In this work, both post PZT types I and III, imported, were uniaxially pressed at 70 MPa and sintered at 1200 and 1250 deg C for 3 hours. Hardness measurements were performed by micro indentation, X-ray diffraction analysis and Scanning Electron Microscopy. The hardness of PZT I was 393 HV. (author)

  6. Determination of the piezoelectric properties of fine scale PZT fibres

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, L.J.; Bowen, C.R. [Bath Univ. (United Kingdom). Dept. of Engineering and Applied Science

    2002-07-01

    Finite element (FE) modelling is used to determine the effect of fibre volume fraction, aspect ratio and polymer matrix stiffness on the d{sub 33} coefficients of 1-3 connectivity piezoelectric fibre composites. The aim is to use these observations as a means of determining the d{sub 33} of fine scale lead zirconate titanate (PZT) fibres. Results from a 1-D analytical model fit well with FE predictions for low aspect ratios. Two commercially available PZT-5A fibres, produced via the viscous suspension spinning process (VSSP) and an extrusion process, were fabricated into 1-3 composites with varying fibre volume fractions. The composite d{sub 33} measurements are compared to the model predictions and used to determine the d{sub 33} coefficients of the fibers. The d{sub 33} of the VSSP fibres and extruded fibres is measured as 365 pCN{sup -1} and 235 pCN{sup -1} respectively using this method. The large difference in the piezoelectric coefficients is possibly linked to the grain size and porosity, which is examined using scanning electron microscopy. (orig.)

  7. Large displacement vertical translational actuator based on piezoelectric thin films.

    Science.gov (United States)

    Qiu, Zhen; Pulskamp, Jeffrey S; Lin, Xianke; Rhee, Choong-Ho; Wang, Thomas; Polcawich, Ronald G; Oldham, Kenn

    2010-07-01

    A novel vertical translational microactuator based on thin-film piezoelectric actuation is presented, using a set of four compound bend-up/bend-down unimorphs to produce translational motion of a moving platform or stage. The actuation material is a chemical-solution deposited lead-zirconate-titanate (PZT) thin film. Prototype designs have shown as much as 120 μ m of static displacement, with 80-90 μ m displacements being typical, using four 920 μ m long by 70 μ m legs. Analytical models are presented that accurately describe nonlinear behavior in both static and dynamic operation of prototype stages when the dependence of piezoelectric coefficients on voltage is known. Resonance of the system is observed at a frequency of 200 Hz. The large displacement and high bandwidth of the actuators at low-voltage and low-power levels should make them useful to a variety of optical applications, including endoscopic microscopy.

  8. Flexoelectricity in PZT Nanoribbons and Biomembranes

    Science.gov (United States)

    2015-01-09

    Flexoelectricity in PZT Nanoribbons and Biomembranes The objective of this grant was to study flexoelectric phenomena in solids and in biomembranes...Flexoelectricity in PZT Nanoribbons and Biomembranes Report Title The objective of this grant was to study flexoelectric phenomena in solids and...producing PZT nanoribbons for energy harvesters. (a) Papers published in peer-reviewed journals (N/A for none) Enter List of papers submitted or

  9. Fatigue-free lead zirconate titanate-based capacitors for nonvolatile memories

    International Nuclear Information System (INIS)

    Shannigrahi, S. R.; Jang, Hyun M.

    2001-01-01

    The development of lead zirconate titanate (PZT)-based capacitors has been a long time goal of ferroelectric random access memories (FRAM). However, PZT-based perovskites with common platinum (Pt) electrodes have suffered from a significant reduction of the remanent polarization (P r ) after a certain number of read/write cycles (electrical fatigue). We now report the development of fatigue-free lanthanum-modified PZT capacitors using common Pt electrodes. The capacitors fabricated at 580 o C by applying a PZT seed layer exhibited fatigue-free behavior up to 6.5 x 10 10 switching cycles, a quite stable charge retention profile with time, and comparatively high P r values, all of which assure their suitability for practical FRAM applications. Copyright 2001 American Institute of Physics

  10. Output characteristics of piezoelectric lead zirconate titanate detector using high-energy heavy-ion beam

    International Nuclear Information System (INIS)

    Takechi, Seiji; Sekiguchi, Masahiro; Miyachi, Takashi; Kobayashi, Masanori; Hattori, Maki; Okudaira, Osamu; Shibata, Hiromi; Fujii, Masayuki; Okada, Nagaya; Murakami, Takeshi; Uchihori, Yukio

    2014-01-01

    A radiation detector fabricated using piezoelectric lead zirconate titanate (PZT) has been studied by irradiating it with a 400 MeV/n xenon (Xe) beam. The beam diameter was controlled to change the irradiation conditions. It was found that the magnitude of the output observed from the PZT detector may be related to the number of Xe ions per unit area per unit time within the limits of the experimental conditions. -- Highlights: • The performance of PZT detector was studied by irradiation of a 400 MeV/n Xe beam. • The beam diameter was controlled to change the irradiation conditions. • By the control, the number of Xe ions per one pulse was changed from ∼500 to ∼1500. • The output of the PZT detector was not always larger with more intense beam. • The energy of Xe ions per unit area per unit time may determine the output

  11. P-doped strontium titanate grown using two target pulsed laser deposition for thin film solar cells

    Science.gov (United States)

    Man, Hamdi

    Thin-film solar cells made of Mg-doped SrTiO3 p-type absorbers are promising candidates for clean energy generation. This material shows p-type conductivity and also demonstrates reasonable absorption of light. In addition, p-type SrTiO3 can be deposited as thin films so that the cost can be lower than the competing methods. In this work, Mg-doped SrTiO3 (STO) thin-films were synthesized and analyzed in order to observe their potential to be employed as the base semiconductor in photovoltaic applications. Mg-doped STO thin-films were grown by using pulsed laser deposition (PLD) using a frequency quadrupled Yttrium Aluminum Garnet (YAG) laser and with a substrate that was heated by back surface absorption of infrared (IR) laser light. The samples were characterized using X-ray photoelectron spectroscopy (XPS) and it was observed that Mg atoms were doped successfully in the stoichiometry. Reflection high energy electron diffraction (RHEED) spectroscopy proved that the thin films were polycrystalline. Kelvin Probe work function measurements indicated that the work function of the films were 4.167 eV after annealing. UV/Vis Reflection spectroscopy showed that Mg-doped STO thin-films do not reflect significantly except in the ultraviolet region of the spectrum where the reflection percentage increased up to 80%. Self-doped STO thin-films, Indium Tin Oxide (ITO) thin films and stainless steel foil (SSF) were studied in order to observe their characteristics before employing them in Mg-doped STO based solar cells. Self-doped STO thin films were grown using PLD and the results showed that they are capable of serving as the n-type semiconductor in solar cell applications with oxygen vacancies in their structure and low reflectivity. Indium Tin Oxide thin-films grown by PLD system showed low 25-50 ?/square sheet resistance and very low reflection features. Finally, commercially available stainless steel foil substrates were excellent substrates for the inexpensive growth of

  12. Tunable dielectric properties of Barium Magnesium Niobate (BMN) doped Barium Strontium Titanate (BST) thin films by magnetron sputtering

    Science.gov (United States)

    Alema, Fikadu; Reinholz, Aaron; Pokhodnya, Konstantin

    2013-03-01

    We report on the tunable dielectric properties of Mg and Nb co-doped Ba0.45Sr0.55TiO3 (BST) thin film prepared by the magnetron sputtering using BST target (pure and doped with BaMg0.33Nb0.67O3 (BMN)) on Pt/TiO2/SiO2/Al2O3 4'' wafers at 700 °C under oxygen atmosphere. The electrical measurements are conducted on 2432 metal-ferroelectric-metal capacitors using Pt as the top and bottom electrode. The crystalline structure, microstructure, and surface morphology of the films are analyzed and correlated to the films dielectric properties. The BMN doped and undoped BST films have shown tunabilities of 48% and 52%; and leakage current densities of 2.2x10-6 A/cm2 and 3.7x10-5 A/cm2, respectively at 0.5 MV/cm bias field. The results indicate that the BMN doped film exhibits a lower leakage current with no significant decrease in tunability. Due to similar electronegativity and ionic radii, it was suggested that both Mg2+ (accepter-type) and Nb5+ (donor-type) dopants substitutTi4+ ion in BST. The improvement in the film dielectric losses and leakage current with insignificant loss of tunability is attributed to the adversary effects of Mg2+ and Nb5+ in BST.

  13. Finite Element Analysis of Single Cell Stiffness Measurements Using PZT-Integrated Buckling Nanoneedles.

    Science.gov (United States)

    Rad, Maryam Alsadat; Tijjani, Auwal Shehu; Ahmad, Mohd Ridzuan; Auwal, Shehu Muhammad

    2016-12-23

    This paper proposes a new technique for real-time single cell stiffness measurement using lead zirconate titanate (PZT)-integrated buckling nanoneedles. The PZT and the buckling part of the nanoneedle have been modelled and validated using the ABAQUS software. The two parts are integrated together to function as a single unit. After calibration, the stiffness, Young's modulus, Poisson's ratio and sensitivity of the PZT-integrated buckling nanoneedle have been determined to be 0.7100 N·m -1 , 123.4700 GPa, 0.3000 and 0.0693 V·m·N -1 , respectively. Three Saccharomyces cerevisiae cells have been modelled and validated based on compression tests. The average global stiffness and Young's modulus of the cells are determined to be 10.8867 ± 0.0094 N·m -1 and 110.7033 ± 0.0081 MPa, respectively. The nanoneedle and the cell have been assembled to measure the local stiffness of the single Saccharomyces cerevisiae cells The local stiffness, Young's modulus and PZT output voltage of the three different size Saccharomyces cerevisiae have been determined at different environmental conditions. We investigated that, at low temperature the stiffness value is low to adapt to the change in the environmental condition. As a result, Saccharomyces cerevisiae becomes vulnerable to viral and bacterial attacks. Therefore, the proposed technique will serve as a quick and accurate process to diagnose diseases at early stage in a cell for effective treatment.

  14. Y3Fe5O12/Na,Bi,Sr-doped PZT particulate magnetoelectric composites

    Science.gov (United States)

    Lisnevskaya, I. V.; Bobrova, I. A.; Lupeiko, T. G.; Agamirzoeva, M. R.; Myagkaya, K. V.

    2016-05-01

    Magnetoelectric (ME) composites of Na, Bi, Sr substituted lead zirconate titanate (PZT) and yttrium iron garnet having representative formula (100-x) wt% Na,Bi,Sr-doped PZT (PZTNB-1)+x wt% Y3Fe5O12 (YIG) with x=10-90 were manufactured using powdered components obtained through sol-gel processes. It is shown that the decrease in sintering temperature provided by the use of finely dispersed PZTNB-1 and YIG powders allows to significantly reduce content of fluorite-like foreign phase based on zirconium oxide, which forms due to the interfacial interaction during heat treatment and becomes stabilized by yttrium oxide. Connectivity has considerable effect on the value of ME coefficient of composite ceramics. With the same x value, ΔE/ΔH characteristic decreases when changing from 0-3-type structured composites (PZT grains embedded in ferrite matrix) to 3-3-(interpenetrating network of two phases) and especially 3-0-type samples (YIG grains embedded in PZT matrix); in the last case this can be attributed to the substrate clamping effect when ferrite grains are clamped with piezoelectric matrix. ΔE/ΔH value of 0-3 composites with x=40-60 wt% was found to be ∼1.6 mV/(cm Oe).

  15. Printed Barium Strontium Titanate capacitors on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Sette, Daniele [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Luxembourg Institute of Science and Technology LIST, Materials Research and Technology Department, L-4422 Belvaux (Luxembourg); Kovacova, Veronika [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Defay, Emmanuel, E-mail: emmanuel.defay@list.lu [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Luxembourg Institute of Science and Technology LIST, Materials Research and Technology Department, L-4422 Belvaux (Luxembourg)

    2015-08-31

    In this paper, we show that Barium Strontium Titanate (BST) films can be prepared by inkjet printing of sol–gel precursors on platinized silicon substrate. Moreover, a functional variable capacitor working in the GHz range has been made without any lithography or etching steps. Finally, this technology requires 40 times less precursors than the standard sol–gel spin-coating technique. - Highlights: • Inkjet printing of Barium Strontium Titanate films • Deposition on silicon substrate • Inkjet printed silver top electrode • First ever BST films thinner than 1 μm RF functional variable capacitor that has required no lithography.

  16. In situ 2D diffraction as a tool to characterize ferroelectric and piezoelectric thin films

    Science.gov (United States)

    Khamidy, N. I.; Kovacova, V.; Bernasconi, A.; Le Rhun, G.; Vaxelaire, N.

    2017-08-01

    In this paper the application of 2D x-ray diffraction (XRD2) as a technique to characterize in situ during electrical cycling the properties of a ferroelectric and piezoelectric thin film is discussed. XRD2 is one type of XRD on which a 2D detector is used instead of a point detector. This technique enables simultaneous recording of many sample information in a much shorter time compared to conventional XRD. The discussion is focused especially on the data processing technique of the huge data acquired. The methodology to calculate an effective piezoelectric coefficient, analyze the phase and texture, and estimate the domain size and shape is described in this paper. This methodology is then applied to a lead zirconate titanate (PZT) thin film at the morphotropic phase boundary (MPB) composition (i.e. Pb[Zr0.52Ti0.48]O3) with a preferred orientation of (1 0 0). The in situ XRD2 characterization was conducted in the European synchrotron radiation facility (ESRF) in Grenoble, France. Since a high-energy beam with vertical resolution as small as 100 nm was used, a cross-sectional scan of the sample was performed over the entire thickness of the film. From these experimental results, a better understanding on the piezoelectricity phenomena in PZT thin film at MPB composition were achieved, providing original feedback between the elaboration processes and functional properties of the film.

  17. Relationship between plasma parameters and film microstructure in radio frequency magnetron sputter deposition of barium strontium titanate

    Science.gov (United States)

    Panda, B.; Dhar, A.; Nigam, G. D.; Bhattacharya, D.; Ray, S. K.

    1998-01-01

    Radio frequency magnetron sputtered Ba0.8Sr0.2TiO3 thin films have been deposited on silicon and Si/SiO2/SiN/Pt substrates. The analysis of plasma discharge has been carried out using the Langmuir probe technique. Both the pressure and power have been found to influence the ion density and self-bias of the target. Introduction of oxygen into the discharge effectively decreases the ion density. The structural and electrical properties have been investigated using x-ray diffraction, atomic force microscopy of deposited films and capacitance-voltage, conductance-voltage, and current density-electric field characteristics of fabricated capacitors. The growth and orientation of the films have been found to depend upon the type of substrates and deposition temperatures. The texture in the film is promoted at a pressure 0.25 Torr with a moderately high value of ion density and low ion bombardment energy. Films deposited on Si/SiO2/SiN/Pt substrate have shown higher dielectric constant (191) and lower leakage current density (2.8×10-6 A/cm2 at 100 kV/cm) compared to that on silicon.

  18. Zirconium titanate thin film prepared by surface sol-gel process and effects of thickness on dielectric property

    CERN Document Server

    Kim, C H

    2002-01-01

    Single phase of multicomponent oxide ZrTiO sub 4 film could be prepared through surface sol-gel route simply by coating the mixture of 100mM zirconium butoxide and titanium butoxide on Pt/Ti/SiO sub 2 /Si(100) substrate, following pyrolysis at 450 .deg. C, and annealing it at 770 .deg. C. The dielectric constant of the film was reduced as the film thickness decreased due to of the interfacial effects caused by layer/electrode and a few voids inside the multilayer. However, the dielectric property was independent of applied dc bias sweeps voltage (-2 to +2 V). The dielectric constant of bulk film, 31.9, estimated using series-connected capacitor model was independent of film thickness and frequency in the measurement range, but theoretical interfacial thickness, t sub i , was dependent on the frequency. It reached a saturated t sub i value, 6.9 A, at high frequency by extraction of some capacitance component formed at low frequency range. The dielectric constant of bulk ZrTiO sub 4 pellet-shaped material was 3...

  19. Dielectric response of capacitor structures based on PZT annealed at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Kamenshchikov, Mikhail V., E-mail: Mikhailkamenshchikov@yandex.ru [Tver State University, 170002, Tver (Russian Federation); Solnyshkin, Alexander V. [Tver State University, 170002, Tver (Russian Federation); Pronin, Igor P. [Ioffe Institute, 194021, St. Petersburg (Russian Federation)

    2016-12-09

    Highlights: • Correlation of the microstructure of PZT films and dielectric response was found. • Difference of dielectric responses under low and high bias is caused by domains. • Internal fields is discussed on the basis of the space charges. • Dependences of PZT films characteristics on synthesis temperature are extremal. - Abstract: Dielectric response of thin-film capacitor structures of Pt/PZT/Pt deposited by the RF magnetron sputtering method and annealed at temperatures of 540–570 °C was investigated. It was found that dielectric properties of these structures depend on the synthesis temperature. Stability of a polarized state is considered on the basis of the analysis of hysteresis loops and capacitance–voltage (C–V) characteristics. The contribution of the domain mechanism in the dielectric response of the capacitor structure comprising a ferroelectric is discussed. Extreme dependences of electrophysical characteristics of PZT films on their synthesis temperature were observed. Correlation of dielectric properties with microstructure of these films is found out.

  20. Template-based electrophoretic deposition of perovskite PZT nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Nourmohammadi, A. [Solid Surfaces Analysis and Electron Microscopy Group, Institute of Physics, Chemnitz University of Technology, D-09126 Chemnitz (Germany); Semiconductors Department, Materials and Energy Research Center (MERC), 31779-83634 Karaj (Iran, Islamic Republic of); Bahrevar, M.A. [Semiconductors Department, Materials and Energy Research Center (MERC), 31779-83634 Karaj (Iran, Islamic Republic of)], E-mail: ma.bahrevar@yahoo.com; Hietschold, M. [Solid Surfaces Analysis and Electron Microscopy Group, Institute of Physics, Chemnitz University of Technology, D-09126 Chemnitz (Germany)

    2009-04-03

    Template-based electrophoretic deposition of perovskite lead zirconate titanate (PZT) nanotubes was achieved using anodic alumina (AA) membranes and sols, containing lead, zirconium and titanium precursors. The effect of various anodizing voltages on the size of the channels in the anodic alumina template was investigated. The prepared sol was driven into the channels under the influence of various electric fields and subsequently sintered at about 700 deg. C. The effects of the initial heating rates and the burn-out temperature on the phase evolution of the samples were studied and a modified firing process was employed. The effects of the electrophoretic voltage and the deposition time on the average wall thickness of the tubes were investigated. Scanning and transmission electron microscopy (SEM and TEM) revealed the efficiency of electrophoresis in the growth of lead zirconate titanate nanotubes in a close-packed array. The X-ray diffraction analyses indicated the presence of perovskite as the principal phase after a modified firing schedule.

  1. Microwave hydrothermal synthesis and characterization of PZT 52/48 powders

    International Nuclear Information System (INIS)

    Teixeira, G.F.; Gasparotto, G.; Santos, N.A.; Zaghete, M.A.; Varela, J.A.; Longo, E.

    2009-01-01

    Full text: Lead Zirconate Titanate (PZT) is a ceramic witch has great interest because of their ferroelectric, piezoelectric, and other electrical properties. In this work Pb(ZrxTi1-x)O3 powders were synthesized by microwave hydrothermal synthesis (M-H) at 180°C without excess lead content. This method allows obtaining particles whit nanometer size, good stoichiometric controls, high purity and crystalline degree at low temperatures and short times of synthesis. Powders were synthesized with molar concentration of 0.15 mol.L -1 during different times: 30 min, 2, 4, 6 and 8 h. After that the powders were characterized by X-ray diffraction (XRD), Field Emission Gun (FEG) and photoluminescence (PL). Through analysis it is observed that the crystalline phase of PZT is obtained from 2 hours of synthesis and this same time also presents more intense PL emission. (author)

  2. Analysis of signals propagating in a phononic crystal PZT layer deposited on a silicon substrate.

    Science.gov (United States)

    Hladky-Hennion, Anne-Christine; Vasseur, Jérôme; Dubus, Bertrand; Morvan, Bruno; Wilkie-Chancellier, Nicolas; Martinez, Loïc

    2013-12-01

    The design of a stop-band filter constituted by a periodically patterned lead zirconate titanate (PZT) layer, polarized along its thickness, deposited on a silicon substrate and sandwiched between interdigitated electrodes for emission/reception of guided elastic waves, is investigated. The filter characteristics are theoretically evaluated by using finite element simulations: dispersion curves of a patterned PZT layer with a specific pattern geometry deposited on a silicon substrate present an absolute stop band. The whole structure is modeled with realistic conditions, including appropriate interdigitated electrodes to propagate a guided mode in the piezoelectric layer. A robust method for signal analysis based on the Gabor transform is applied to treat transmitted signals; extract attenuation, group delays, and wave number variations versus frequency; and identify stop-band filter characteristics.

  3. Single ZnO nanowire-PZT optothermal field effect transistors.

    Science.gov (United States)

    Hsieh, Chun-Yi; Lu, Meng-Lin; Chen, Ju-Ying; Chen, Yung-Ting; Chen, Yang-Fang; Shih, Wan Y; Shih, Wei-Heng

    2012-09-07

    A new type of pyroelectric field effect transistor based on a composite consisting of single zinc oxide nanowire and lead zirconate titanate (ZnO NW-PZT) has been developed. Under infrared (IR) laser illumination, the transconductance of the ZnO NW can be modulated by optothermal gating. The drain current can be increased or decreased by IR illumination depending on the polarization orientation of the Pb(Zr(0.3)Ti(0.7))O(3) (PZT) substrate. Furthermore, by combining the photocurrent behavior in the UV range and the optothermal gating effect in the IR range, the wide spectrum of response of current by light offers a variety of opportunities for nanoscale optoelectronic devices.

  4. Dielectric characteristics of PZT 95/5 ferroelectric ceramics at high pressures

    International Nuclear Information System (INIS)

    Spears, R.K.

    1978-01-01

    The room temperature dielectric properties of a ferroelectric ceramic having a nominal composition of 95 atomic percent lead zirconate and 5 atomic percent lead titanate (designated as PZT 95/5) with a niobium dopant were examined at high hydrostatic pressures using a tetrahedral anvil apparatus. This ceramic has practical applications as a power source in which large quantities of charge are released by dynamic (shock wave) depolarization. Numerous mathematical models of this process have been proposed; however, the use of models has been limited because of the lack of high pressure electrical properties. This study attempted to provide these data on PZT 95/5 by determining the small signal and high electric field dielectric properties at pressures over 4 GPa

  5. Down-conversion luminescence and its temperature-sensing properties from Er3+-doped sodium bismuth titanate ferroelectric thin films

    Science.gov (United States)

    Wang, Shanshan; Zheng, Shanshan; Zhou, Hong; Pan, Anlian; Wu, Guangheng; Liu, Jun-ming

    2015-11-01

    Here, we demonstrate outstanding temperature-sensing properties from Na0.5Bi0.49Er0.01TiO3 (NBT:Er) thin films. The perovskite phase for them is stable in the temperature range from 80 to 440 K. Interestingly, the Er doping enhances the ferroelectric polarization and introduces local dipolar, which are positive for temperature sensing. Pumped by a 488-nm laser, the NBT:Er thin films show strong green luminescence with two bands around 525 and 548 nm. The intensity ratio I 525/ I 548 can be used for temperature sensing, and the maximum sensitivity is about 2.3 × 10-3 K-1, higher than that from Er-doped silicon oxide. These suggest NBT:Er thin film is a promising candidate for temperature sensor.

  6. Texture of poled tetragonal PZT detected by synchrotron X-ray diffraction and micromechanics analysis

    International Nuclear Information System (INIS)

    Hall, D.A.; Steuwer, A.; Cherdhirunkorn, B.; Withers, P.J.; Mori, T.

    2005-01-01

    The texture and lattice elastic strain due to electrical poling of tetragonal PZT (lead zirconate titanate) ceramics have been measured using high energy synchrotron X-ray diffraction. It is shown that XRD peak intensity ratios associated with crystal planes of the form {002}, {112} and {202} exhibit a linear dependence on cos-bar 2 Ψ, where Ψ represents the orientation angle between the plane normal and the macroscopic poling axis. The observed dependence of texture and lattice strain on the grain orientation can be understood on the basis that the macroscopic strain due to poling is the average of the poling strains of all the individual grains

  7. Thermal conductivity reduction in oxygen-deficient strontium titanates

    NARCIS (Netherlands)

    Yu, Choongho; Scullin, Matthew L.; Huijben, Mark; Ramesh, Ramamoorthy; Majumdar, Arun

    2008-01-01

    We report significant thermal conductivity reduction in oxygen-deficient lanthanum-doped strontium titanate (Sr1−xLaxTiO3−δ) films as compared to unreduced strontium titanates. Our experimental results suggest that the oxygen vacancies could have played an important role in the reduction. This could

  8. Thick Films acoustic sensors devoted to MTR environment measurements. Thick Films acoustic sensors devoted to Material Testing Reactor environment measurements

    Energy Technology Data Exchange (ETDEWEB)

    Very, F.; Rosenkrantz, E.; Combette, P.; Ferrandis, J.Y. [University Montpellier, IES, UMR 5214, F-34000, Montpellier (France); CNRS, IES, UMR 5214, F-34000, Montpellier (France); Fourmentel, D.; Destouches, C.; Villard, J.F. [CEA, DEN, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St Paul lez Durance (France)

    2015-07-01

    The development of advanced instrumentation for in-pile experiments in Material Testing Reactor constitutes a main goal for the improvement of the nuclear fuel behavior knowledge. An acoustic method for fission gas release detection was tested with success during a first experiment called REMORA 3 in 2010 and 2011, and the results were used to differentiate helium and fission gas release kinetics under transient operating conditions. This experiment was lead at OSIRIS reactor (CEA Saclay, France). The maximal temperature on the sensor during the irradiation was about 150 deg. C. In this paper we present a thick film transducer produce by screen printing process. The screen printing of piezoelectric offers a wide range of possible applications for the development of acoustic sensors and piezoelectric structure for measurements in high temperature environment. We firstly produced a Lead Zirconate Titanate (PZT) based paste composed of Pz27 powder from Ferroperm, CF7575 glass, and organic solvent ESL 400. Likewise a Bismuth Titanate based paste synthesized in our laboratory was produced. With these inks we produced thick film up to 130 μm by screen printing process. Material properties characterizations of these thick-film resonators are essential for device design and applications. The piezoelectric coefficients d33 and pyro-electric P(T) coefficient are investigated. The highest P(T) and d33 are respectively 80 μC.m{sup -2}.K{sup -1} and 130 μC.N{sup -1} for the PZT transducer -which validates the fabrication process-. In view of the development of this transducer oriented for high temperature and irradiation environment, we investigated the electrical properties of the transducers for different ranges of frequencies and temperature - from 20 Hz up to 40 MHz between 30 and 400 deg. C. We highlight the evolution of the impedance response and piezoelectric parameters of screen printed piezoelectric structures on alumina. Shortly an irradiation will be realized in

  9. Thick Films acoustic sensors devoted to MTR environment measurements. Thick Films acoustic sensors devoted to Material Testing Reactor environment measurements

    International Nuclear Information System (INIS)

    Very, F.; Rosenkrantz, E.; Combette, P.; Ferrandis, J.Y.; Fourmentel, D.; Destouches, C.; Villard, J.F.

    2015-01-01

    The development of advanced instrumentation for in-pile experiments in Material Testing Reactor constitutes a main goal for the improvement of the nuclear fuel behavior knowledge. An acoustic method for fission gas release detection was tested with success during a first experiment called REMORA 3 in 2010 and 2011, and the results were used to differentiate helium and fission gas release kinetics under transient operating conditions. This experiment was lead at OSIRIS reactor (CEA Saclay, France). The maximal temperature on the sensor during the irradiation was about 150 deg. C. In this paper we present a thick film transducer produce by screen printing process. The screen printing of piezoelectric offers a wide range of possible applications for the development of acoustic sensors and piezoelectric structure for measurements in high temperature environment. We firstly produced a Lead Zirconate Titanate (PZT) based paste composed of Pz27 powder from Ferroperm, CF7575 glass, and organic solvent ESL 400. Likewise a Bismuth Titanate based paste synthesized in our laboratory was produced. With these inks we produced thick film up to 130 μm by screen printing process. Material properties characterizations of these thick-film resonators are essential for device design and applications. The piezoelectric coefficients d33 and pyro-electric P(T) coefficient are investigated. The highest P(T) and d33 are respectively 80 μC.m -2 .K -1 and 130 μC.N -1 for the PZT transducer -which validates the fabrication process-. In view of the development of this transducer oriented for high temperature and irradiation environment, we investigated the electrical properties of the transducers for different ranges of frequencies and temperature - from 20 Hz up to 40 MHz between 30 and 400 deg. C. We highlight the evolution of the impedance response and piezoelectric parameters of screen printed piezoelectric structures on alumina. Shortly an irradiation will be realized in order to

  10. Low fatigue lead zirconate titanate-based capacitors modified by manganese for nonvolatile memories

    OpenAIRE

    Zhang, Qi; Whatmore, Roger W.

    2004-01-01

    We have investigated the effects of Mn doping on the ferroelectric properties of Pb(Zr0.3Ti0.7)O3 (PZT) thin films on substrates Pt/Ti/SiO2/Si. Small amount of Mn-doped (≤1 mol%) PZT (PMZT) showed almost no hysteretic fatigue up to 1010 switching bipolar pulse cycles, coupled with excellent retention properties. We present evidence that while a low permittivity interfacial layer forms between the Pt electrode and PZT films, this does not occur in PMZT. We propose that Mn dopants are able to r...

  11. Quantitative analysis method for niobium in lead zirconate titanate

    International Nuclear Information System (INIS)

    Hara, Hideo; Hashimoto, Toshio

    1986-01-01

    Lead zirconate titanate (PZT) is a strong dielectric ceramic having piezoelectric and pyroelectric properties, and is used most as a piezoelectric material. Also it is a main component of lead lanthanum zirconate titanate (PLZT), which is a typical electrical-optical conversion element. Since these have been developed, the various electronic parts utilizing the piezoelectric characteristics have been put in practical use. The characteristics can be set up by changing the composition of PZT and the kinds and amount of additives. Among the additives, niobium has the action to make metallic ion vacancy in crystals, and by the formation of this vacancy, to ease the movement of domain walls in crystal grains, and to increase resistivity. Accordingly, it is necessary to accurately determine the niobium content for the research and development, quality control and process control. The quantitative analysis methods for niobium used so far have respective demerits, therefore, the authors examined the quantitative analysis of niobium in PZT by using an inductively coupled plasma emission spectro-analysis apparatus which has remarkably developed recently. As the result, the method of dissolving a specimen with hydrochloric acid and hydrofluoric acid, and masking unstable lead with ethylene diamine tetraacetic acid 2 sodium and fluoride ions with boric acid was established. The apparatus, reagents, the experiment and the results are reported. (Kako, I.)

  12. Photolithographic patterning of nanocrystalline europium-titanate Eu2Ti2O7 thin films on silicon substrates

    Czech Academy of Sciences Publication Activity Database

    Mrázek, Jan; Boháček, Jan; Vytykáčová, Soňa; Buršík, Jiří; Puchý, V.; Robert, D.; Kašík, Ivan

    2017-01-01

    Roč. 209, December (2017), s. 216-219 ISSN 0167-577X Grant - others:AV ČR(CZ) SAV-16-17 Program:Bilaterální spolupráce Institutional support: RVO:67985882 ; RVO:68081723 Keywords : Magnetic materials * Rare earth compounds * Thin films * Photolithography Subject RIV: BM - Solid Matter Physics ; Magnetism; BM - Solid Matter Physics ; Magnetism (UFM-A) OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.); Condensed matter physics (including formerly solid state physics, supercond.) (UFM-A) Impact factor: 2.572, year: 2016

  13. Design and fabrication of a micro PZT cantilever array actuator for applications in fluidic systems

    DEFF Research Database (Denmark)

    Kim, H.; In, C.; Yoon, Gil Ho

    2005-01-01

    In this article, a micro cantilever array actuated by PZT films is designed and fabricated for micro fluidic systems. The design features for maximizing tip deflections and minimizing fluid leakage are described. The governing equation of the composite PZT cantilever is derived and the actuating......, dielectric constant, and dielectric loss. Tip deflections of 12 mu m at 5 V are measured, which agreed well with the predicted value. The 18 mu l/s leakage rate of air was observed at a pressure difference of 1000 Pa. Micro cooler is introduced, and its possible application to micro compressor is discussed....

  14. Anisotropy of domain switching in prepoled lead titanate zirconate ceramics under multiaxial electrical loading

    Science.gov (United States)

    Liu, Yuan-Ming; Li, Fa-Xin; Fang, Dai-Ning

    2007-01-01

    The authors report an observation of anisotropic domain switching process in prepoled lead titanate zirconate (PZT) ceramics under multiaxial electrical loading. Prepoled PZT blocks were obliquely cut to apply an electric field at discrete angles θ (0°-180°) to the initial poling direction. Both the coercive field and switchable polarization are found to decrease significantly when sinθ increases from zero to unity. The measured strain curves show that most domains that accomplished 180° domain switching actually experienced two successive 90° switching. The oriented domain texture after poling plus the induced nonuniform stress are used to explain the observed domain switching anisotropy.

  15. Structural contribution to the ferroelectric fatigue in lead zirconate titanate ceramics

    Science.gov (United States)

    Hinterstein, M.; Rouquette, J.; Haines, J.; Papet, Ph.; Glaum, J.; Knapp, M.; Eckert, J.; Hoffman, M.

    2014-09-01

    Many ferroelectric devices are based on doped lead zirconate titanate (PZT) ceramics with compositions near the morphotropic phase boundary (MPB), at which the relevant material's properties approach their maximum. Based on a synchrotron x-ray diffraction study of MPB PZT, bulk fatigue is unambiguously found to arise from a less effective field induced tetragonal-to-monoclinic transformation, at which the degradation of the polarization flipping is detected by a less intense and more diffuse anomaly in the atomic displacement parameter of lead. The time dependence of the ferroelectric response on a structural level down to 250 μs confirms this interpretation in the time scale of the piezolectric strain response.

  16. Investigation of the effect of temperature on aging behavior of Fe-doped lead zirconate titanate

    Science.gov (United States)

    Promsawat, Napatporn; Promsawat, Methee; Janphuang, Pattanaphong; Marungsri, Boonruang; Luo, Zhenhua; Pojprapai, Soodkhet

    The aging degradation behavior of Fe-doped Lead zirconate titanate (PZT) subjected to different heat-treated temperatures was investigated over 1000h. The aging degradation in the piezoelectric properties of PZT was indicated by the decrease in piezoelectric charge coefficient, electric field-induced strain and remanent polarization. It was found that the aging degradation became more pronounced at temperature above 50% of the PZT’s Curie temperature. A mathematical model based on the linear logarithmic stretched exponential function was applied to explain the aging behavior. A qualitative aging model based on polar macrodomain switchability was proposed.

  17. A flexible, high-performance magnetoelectric heterostructure of (001) oriented Pb(Zr0.52Ti0.48)O3 film grown on Ni foil

    Science.gov (United States)

    Palneedi, Haribabu; Yeo, Hong Goo; Hwang, Geon-Tae; Annapureddy, Venkateswarlu; Kim, Jong-Woo; Choi, Jong-Jin; Trolier-McKinstry, Susan; Ryu, Jungho

    2017-09-01

    In this study, a flexible magnetoelectric (ME) heterostructure of PZT/Ni was fabricated by depositing a (001) oriented Pb(Zr0.52Ti0.48)O3 (PZT) film on a thin, flexible Ni foil buffered with LaNiO3/HfO2. Excellent ferroelectric properties and large ME voltage coefficient of 3.2 V/cmṡOe were realized from the PZT/Ni heterostructure. The PZT/Ni composite's high performance was attributed to strong texturing of the PZT film, coupled with the compressive stress in the piezoelectric film. Besides, reduced substrate clamping in the PZT film due to the film on the foil structure and strong interfacial bonding in the PZT/LaNiO3/HfO2/Ni heterostructure could also have contributed to the high ME performance of PZT/Ni.

  18. Titan Aerial Daughtercraft

    Data.gov (United States)

    National Aeronautics and Space Administration — Saturn's giant moon Titan has become one of the most fascinating bodies in the Solar System. Titan is the richest laboratory in the solar system for studying...

  19. Titanic: A Statistical Exploration.

    Science.gov (United States)

    Takis, Sandra L.

    1999-01-01

    Uses the available data about the Titanic's passengers to interest students in exploring categorical data and the chi-square distribution. Describes activities incorporated into a statistics class and gives additional resources for collecting information about the Titanic. (ASK)

  20. Polarization characterization of PZT disks and of embedded PZT plates by thermal wave methods

    International Nuclear Information System (INIS)

    Eydam, Agnes; Suchaneck, Gunnar; Gerlach, Gerald; Esslinger, Sophia; Schönecker, Andreas; Neumeister, Peter

    2014-01-01

    In this work, the thermal wave method was applied to characterize PZT disks and embedded PZT plates with regard to the polarization magnitude and spatial homogeneity. The samples were exposed to periodic heating by means of a laser beam and the pyroelectric response was determined. Thermal relaxation times (single time constants or distributions of time constants) describe the heat losses of the PZT samples to the environment. The resulting pyroelectric current spectrum was fitted to the superposition of thermal relaxation processes. The pyroelectric coefficient gives insight in the polarization distribution. For PZT disks, the polarization distribution in the surface region showed a characteristic decrease towards the electrodes

  1. Low fatigue lead zirconate titanate-based capacitors modified by manganese for nonvolatile memories

    International Nuclear Information System (INIS)

    Zhang, Q.; Whatmore, R.W.

    2004-01-01

    We have investigated the effects of Mn doping on the ferroelectric properties of Pb(Zr 0.3 Ti 0.7 )O 3 (PZT) thin films on substrates Pt/Ti/SiO 2 /Si. Small amount of Mn-doped (≤1 mol%) PZT (PMZT) showed almost no hysteretic fatigue up to 10 10 switching bipolar pulse cycles, coupled with excellent retention properties. We present evidence that while a low permittivity interfacial layer forms between the Pt electrode and PZT films, this does not occur in PMZT. We propose that Mn dopants are able to reduce oxygen vacancy mobility in PZT films and Mn 2+ ions consume the oxygen vacancies generated during repeated switching, forming Mn 4+ ions. These mechanisms are probably responsible for their low observed fatigue characteristics

  2. Investigation of fatigue behavior of Pb(Zr0.45Ti0.55)O3 thin films under asymmetric polarization switching

    Science.gov (United States)

    Zhu, Hui; Chen, Yueyuan; Chu, Daping; Feng, Shiwei; Zhang, Yingqiao; Wang, Pengfei

    2016-09-01

    The fatigue of lead zirconate titanate (PZT) thin films was measured under repetitive switching using asymmetric square waves. The remnant polarization and coercive voltage were found to present regular changes in the initial 10 s, independent of the asymmetry or frequency of switching waves. We attributed the change to the relaxation of stress in the film and identified a coercive voltage V 0 of 0.6 V for the stress-free film. By comparing the coercive voltage and V 0, we found that a built-in electric field was induced by asymmetric switching, where the direction and magnitude were dependent on the degree of waveform asymmetry. Furthermore, the fatigue speed was suggested to be closely related to the generation rate of oxygen vacancies. It was confirmed by our result that a faster decay of remnant polarization can be obtained by applying square waves with a higher degree of asymmetry or symmetry of square waves with a lower frequency.

  3. Piezoelectric and dielectric characterization of corona and contact poled PZT-epoxy-MWCNT bulk composites

    Science.gov (United States)

    Banerjee, S.; Cook-Chennault, K. A.; Du, W.; Sundar, U.; Halim, H.; Tang, A.

    2016-11-01

    Three-phase lead zirconate titanate (PZT, PbZr0.52Ti0.48O3)-epoxy-multi-walled carbon nanotube (MWCNT) bulk composites were prepared, where the volume fraction of PZT was held constant at 30%, while the volume fraction of the MWCNTs was varied from 1.0%-10%. The samples were poled using either a parallel plate contact or contactless (corona) poling technique. The piezoelectric strain coefficient (d33), dielectric constant (ɛ), and dielectric loss tangent (tan δ) of the samples were measured at 110 Hz, and compared as a function of poling technique and volume fraction of MWCNTs. The highest values for dielectric constant and piezoelectric strain coefficients were 465.82 and 18.87 pC/N for MWCNT volume fractions of 10% and 6%, respectively. These values were obtained for samples that were poled using the corona contactless method. The impedance and dielectric spectra of the composites were recorded over a frequency range of 100 Hz-20 MHz. The impedance values observed for parallel-plate contact poled samples are higher than that of corona poled composites. The fractured surface morphology and distribution of the PZT particles and MWCNTs were observed with the aid of electron dispersion spectroscopy and a scanning electron microscope. The surface morphology of the MWCNTs was observed with the aid of a field emission transmission electron microscope.

  4. Thin PZT-Based Ferroelectric Capacitors on Flexible Silicon for Nonvolatile Memory Applications

    KAUST Repository

    Ghoneim, Mohamed T.

    2015-04-24

    A flexible version of traditional thin lead zirconium titanate ((Pb1.1Zr0.48Ti0.52O3)-(PZT)) based ferroelectric random access memory (FeRAM) on silicon shows record performance in flexible arena. The thin PZT layer requires lower operational voltages to achieve coercive electric fields, reduces the sol-gel coating cycles required (i.e., more cost-effective), and, fabrication wise, is more suitable for further scaling of lateral dimensions to the nano-scale due to the larger feature size-to-depth aspect ratio (critical for ultra-high density non-volatile memory applications). Utilizing the inverse proportionality between substrate\\'s thickness and its flexibility, traditional PZT based FeRAM on silicon is transformed through a transfer-less manufacturable process into a flexible form that matches organic electronics\\' flexibility while preserving the superior performance of silicon CMOS electronics. Each memory cell in a FeRAM array consists of two main elements; a select/access transistor, and a storage ferroelectric capacitor. Flexible transistors on silicon have already been reported. In this work, we focus on the storage ferroelectric capacitors, and report, for the first time, its performance after transformation into a flexible version, and assess its key memory parameters while bent at 0.5 cm minimum bending radius.

  5. Análise dos personagens no roteiro do Filme Titanic (1997 - paralelo do real com a ficção

    Directory of Open Access Journals (Sweden)

    Karina Pereira Ferreira

    2012-07-01

    Full Text Available The purpose of this paper is to analyze how the actions of real characters of the tragedy of the Titanic had changed their stories to fit the proposal of the screenplay director James Cameron, and how the fictional characters drove the plot completely and ideal for the success of screenplay. Cameron made changes in history that made the difference between the Titanic to be just another movie about the tragedy, to become the biggest movie of recent times, with a captivating story that holds people's attention today.

  6. Análise dos personagens no roteiro do Filme Titanic (1997) - paralelo do real com a ficção

    OpenAIRE

    Karina Pereira Ferreira

    2012-01-01

    The purpose of this paper is to analyze how the actions of real characters of the tragedy of the Titanic had changed their stories to fit the proposal of the screenplay director James Cameron, and how the fictional characters drove the plot completely and ideal for the success of screenplay. Cameron made changes in history that made the difference between the Titanic to be just another movie about the tragedy, to become the biggest movie of recent times, with a captivating story that holds pe...

  7. Effects of electrodes on the properties of sol-gel PZT based capacitors in FeRAM

    Science.gov (United States)

    Zhang, Ming-Ming; Jia, Ze; Ren, Tian-Ling

    2009-05-01

    The effects of electrodes on the properties of capacitors applied in ferroelectric random access memories (FeRAM) are investigated in this work. Pt and Ir are used as bottom and top electrodes (BE and TE), respectively, in sol-gel Pb(Zr xTi 1-x)O 3 (PZT) based capacitors. Bottom electrodes are found to play a dominant role in the properties of PZT films and capacitors. Capacitors using Pt as bottom electrode have larger remnant polarization (2Pr) than those using Ir which may result from the different orientations of PZT films. The higher Schottky barrier, more dense film and smaller roughness are believed to be the reasons for the better leakage performance of capacitors using Pt as bottom electrodes. Different vacancies types and interface conditions are believed to be the main reasons for the better fatigue (less than 10% initial 2Pr loss after 10 11 fatigue cycles) and better imprint properties of TE/PZT/Ir capacitors. Top electrodes are found to have smaller impact on the properties of capacitors compared with bottom electrodes. A decrease in 2Pr is found when Ir is used as top electrode instead of Pt for PZT/Pt, which is believed to be caused by the stress resulting from lattice mismatch. The different thermal processes that top and bottom electrodes suffered are believed to be the reason for the different impacts they have on capacitors.

  8. Effects of crystalline quality and electrode material on fatigue in Pb(Zr,Ti)O3 thin film capacitors

    Science.gov (United States)

    Lee, J.; Johnson, L.; Safari, A.; Ramesh, R.; Sands, T.; Gilchrist, H.; Keramidas, V. G.

    1993-07-01

    Pb(Zr(0.52)Ti(0.48))O3 (PZT)/Y1Ba2Cu3O(x) (YBCO) heterostructures were grown by pulsed laser deposition, in which PZT films were epitaxial, highly oriented, or polycrystalline. These PZT films were obtained by varying the deposition temperature from 550 to 760 C or by using various substrates such as SrTiO3 (100), MgO (100), and r-plane sapphire. PZT films with Pt top electrodes exhibited large fatigue with 35-50 percent loss of the remanent polarization after 10 exp 9 cycles, depending on the crystalline quality. Polycrystalline films showed better fatigue resistance than epitaxial or highly oriented films. However, PZT films with both top and bottom YBCO electrodes had significantly improved fatigue resistance for both epitaxial and polycrystalline films. Electrode material seems to be a more important parameter in fatigue than the crystalline quality of the PZT films.

  9. Chemistry of surface nanostructures in lead precursor-rich PbZr{sub 0.52}Ti{sub 0.48}O{sub 3} sol–gel films

    Energy Technology Data Exchange (ETDEWEB)

    Gueye, I.; Le Rhun, G.; Gergaud, P.; Renault, O. [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Defay, E. [Luxembourg Institute of Science and Technology, Materials Research and Technology Department, 41 Rue du Brill, L-4422 Belvaux (Luxembourg); Barrett, N., E-mail: nick.barrett@cea.fr [SPEC, CEA, CNRS, Université Paris Saclay, F-91191 Gif-sur-Yvette (France)

    2016-02-15

    Highlights: • We have studied the effect of lead excess on the surface of PZT sol–gel films. • For low lead excess (10%) nanostructured surface phase is observed. • X-ray photoelectron spectroscopy shows that the surface phase is Zr oxide. - Abstract: We present a study of the chemistry of the nanostructured phase at the surface of lead zirconium titanate PbZr{sub 0.52}Ti{sub 0.48}O{sub 3} (PZT) films synthesized by sol–gel method. In sol–gel synthesis, excess lead precursor is used to maintain the target stoichiometry. Surface nanostructures appear at 10% excess whereas 30% excess inhibits their formation. Using the surface-sensitive, quantitative X-ray photoelectron spectroscopy and glancing angle X-ray diffraction we have shown that the chemical composition of the nanostructures is ZrO{sub 1.82−1.89} rather than pyrochlore often described in the literature. The presence of a possibly discontinuous layer of wide band gap ZrO{sub 1.82−1.89} could be of importance in determining the electrical properties of PZT-based metal-insulator-metal heterostructures.

  10. Development of a stress sensor based on the piezoelectric lead zirconate titanate for impact stress measurement

    Science.gov (United States)

    Liu, Yiming; Xu, Bin; Li, Lifei; Li, Bing

    2012-04-01

    The measurement of stress of concrete structures under impact loading and other strong dynamic loadings is crucial for the monitoring of health and damage detection. Due to its main advantages including availability, extremely high rigidity, high natural frequency, wide measuring range, high stability, high reproducibility, high linearity and wide operating temperature range, piezoelectric (Lead Zirconate Titanate, PZT) ceramic materials has been a widely used smart material for both sensing and actuation for monitoring and control in engineering structures. In this paper, a kind of stress sensor based on piezoelectric ceramics for impact stress measuring of concrete structures is developed. Because the PZT is fragile, in order to employ it for the health monitoring of concrete structures, special handling and treatment should be taken to protect the PZT and to make it survive and work properly in concrete. The commercially available PZT patch with lead wires is first applied with an insulation coating to prevent water and moisture damage, and then is packaged by jacketing it by two small precasted cylinder concrete blocks with enough strength to form a smart aggregate (SA). The employed PZT patch has a dimension of 10mm x 10mm x 0.3mm. In order to calibrate the PZT based stress sensor for impact stress measuring, a dropping hammer was designed and calibration test on the sensitivity of the proposed transducer was carried out with an industry charge amplifier. The voltage output of the stress sensor and the impact force under different free falling heights and impact mass were recorded with a high sampling rate data acquisition system. Based on the test measurements, the sensibility of the PZT based stress sensor was determined. Results show that the output of the PZT based stress sensor is proportional to the stress level and the repeatability of the measurement is very good. The self-made piezoelectric stress sensor can be easily embedded in concrete and provide

  11. PZT-5A4/PA and PZT-5A4/PDMS piezoelectric composite bimorphs

    NARCIS (Netherlands)

    Babu, I.; Hendrix, M.M.R.M.; With, de G.

    2014-01-01

    Disc type reinforced piezoelectric composite bimorphs with series connection were designed and the performance was investigated. The composite bimorphs (PZT/PA and PZT/PDMS (40/60 vol%)) were successfully fabricated by a compression molding and solution casting technique. The charge developed at an

  12. Effect of structural in-depth heterogeneities on electrical properties of Pb(Zr0.52Ti0.48) O3 thin films as revealed by nano-beam X-ray diffraction

    Science.gov (United States)

    Vaxelaire, N.; Kovacova, V.; Bernasconi, A.; Le Rhun, G.; Alvarez-Murga, M.; Vaughan, G. B. M.; Defay, E.; Gergaud, P.

    2016-09-01

    A direct quantification of a structural in-depth composition in the lead zirconate titanate Pb(Zr,Ti)O3 thin films of morphotropic composition has been conducted using the newly available X-ray nano-pencil beam (i.e., beam size of 100 nm × 1 μm) diffraction approach. We tested two samples with different Zr/Ti chemical gradients. Here, we demonstrate the presence of a significant microstructural gradient between the rhombohedral and tetragonal phases through PbZrxTi1-xO3 (PZT) films with a 100 nm in-depth resolution. The phase gradient extends over around 350 nm, and it is repeated through the PZT film three times, which corresponds to the number of thermal annealings. Moreover, this microstructural gradient is in agreement with the Zr/Ti chemical gradient observed by the secondary ion mass spectroscopy (SIMS). Indeed, the quantity of tetragonal phases rises in the Ti-rich zones as revealed by SIMS, and the quantity of rhombohedral phases rises in the Zr-rich zones. We also demonstrated a huge difference in the in-depth phase variation between the two tested samples. The gradient free sample still contains 4.7% of phase variation through the film and the amplified gradient contains 9.6% of phase variation through the film. Knowing that the gradient free sample shows better electric and piezoelectric coefficients, one can draw a correlation between the chemical composition, crystallographic homogeneity, and electro-mechanical properties of the film. The more close the film is to the morphotropic composition and the more it is crystallographically homogeneous, the higher the piezoelectric coefficients of the PZT are. Finally, the adequate knowledge of phase variation and its relation to the fabrication technique are crucial for the enhancement of the PZT electro-mechanical properties. Our methodology and findings open up new perspectives in establishing a relevant quantitative feedback to reach an ultimate electro-mechanical coupling in the sol-gel PZT thin films.

  13. Fracture mechanisms in lead zirconate titanate ceramics

    International Nuclear Information System (INIS)

    Freiman, S.W.; Chuck, L.; Mecholsky, J.J.; Shelleman, D.L.

    1986-01-01

    Lead Zirconate Titanate (PZT) ceramics can be formed over a wide range of PbTiO 3 /PbZrO 3 ratios and exist in a number of crystal structures. This study involved the use of various fracture mechanics techniques to determine critical fracture toughness, K /SUB IC/ , as a function of composition, microstructure, temperature, and electrical and thermal history. The results of these experiments indicate that variations in K /SUB IC/ are related to phase transformations in the material as well as to other toughening mechanisms such as twinning and microcracking. In addition, the strength and fracture toughness of selected PZT ceramics were determined using specimens in which a crack was introduced by a Vicker's hardness indentor. The variation of K /SUB IC/ with composition and microstructure was related to the extent of twin-crack interaction. Comparison of the plot of strength as a function of indentation load with that predicted from indentation fracture models indicates the presence of internal stresses which contribute to failure. The magnitude of these internal stresses has been correlated with electrical properties of the ceramic. Fractographic analysis was used to determine the magnitude of internal stresses in specimens failing from ''natural flaws.''

  14. Fractal cluster modeling of the fatigue behavior of lead zirconate titanate

    OpenAIRE

    Priya, Shashank; Kim, Hyeoung Woo; Ryu, Jungho; Uchino, Kenji; Viehland, Dwight D.

    2002-01-01

    The fatigue behavior of lead zirconate titanate ceramics (PZT) has been studied under electrical and mechanical drives. Piezoelectric fatigue was studied using a mechanical method. Under ac mechanical drive, hard and soft PZTs showed an increase in the longitudinal piezoelectric constant at short times, reaching a maximum at intermediate times. Systematic investigations were performed to characterize the electrical fatigue behavior. A decrease in the magnitude of the remanent polarization was...

  15. Finite Element Analysis of Single Cell Stiffness Measurements Using PZT-Integrated Buckling Nanoneedles

    Directory of Open Access Journals (Sweden)

    Maryam Alsadat Rad

    2016-12-01

    Full Text Available This paper proposes a new technique for real-time single cell stiffness measurement using lead zirconate titanate (PZT-integrated buckling nanoneedles. The PZT and the buckling part of the nanoneedle have been modelled and validated using the ABAQUS software. The two parts are integrated together to function as a single unit. After calibration, the stiffness, Young’s modulus, Poisson’s ratio and sensitivity of the PZT-integrated buckling nanoneedle have been determined to be 0.7100 N·m−1, 123.4700 GPa, 0.3000 and 0.0693 V·m·N−1, respectively. Three Saccharomyces cerevisiae cells have been modelled and validated based on compression tests. The average global stiffness and Young’s modulus of the cells are determined to be 10.8867 ± 0.0094 N·m−1 and 110.7033 ± 0.0081 MPa, respectively. The nanoneedle and the cell have been assembled to measure the local stiffness of the single Saccharomyces cerevisiae cells The local stiffness, Young’s modulus and PZT output voltage of the three different size Saccharomyces cerevisiae have been determined at different environmental conditions. We investigated that, at low temperature the stiffness value is low to adapt to the change in the environmental condition. As a result, Saccharomyces cerevisiae becomes vulnerable to viral and bacterial attacks. Therefore, the proposed technique will serve as a quick and accurate process to diagnose diseases at early stage in a cell for effective treatment.

  16. Development of dual PZT transducers for reference-free crack detection in thin plate structures.

    Science.gov (United States)

    Sohn, Hoon; Kim, Seuno Bum

    2010-01-01

    A new Lamb-wave-based nondestructive testing (NDT) technique, which does not rely on previously stored baseline data, is developed for crack monitoring in plate structures. Commonly, the presence of damage is identified by comparing "current data" measured from a potentially damaged stage of a structure with "baseline data" previously obtained at the intact condition of the structure. In practice, structural defects typically take place long after collection of the baseline data, and the baseline data can be also affected by external loading, temperature variations, and changing boundary conditions. To eliminate the dependence on the baseline data comparison, the authors previously developed a reference-free NDT technique using 2 pairs of collocated lead zirconate titanate (PZT) transducers placed on both sides of a plate. This reference-free technique is further advanced in the present study by the necessity of attaching transducers only on a single surface of a structure for certain applications such as aircraft. To achieve this goal, a new design of PZT transducers called dual PZT transducers is proposed. Crack formation creates Lamb wave mode conversion due to a sudden thickness change of the structure. This crack appearance is instantly detected from the measured Lamb wave signals using the dual PZT transducers. This study also suggests a reference-free statistical approach that enables damage classification using only the currently measured data set. Numerical simulations and experiments were conducted using an aluminum plate with uniform thickness and fundamental Lamb waves modes to demonstrate the applicability of the proposed technique to reference-free crack detection.

  17. Photoluminescence of sol–gel synthesized PZT powders

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Aranda, M.C. [Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología-Universidad Autónoma de San Luis Potosí, Av. Sierra Leona No.550,Col. Lomas 2a. sección, C.P. 78210 San Luis Potosí, SLP, México (Mexico); Calderón-Piñar, F. [Centro de Investigación y de Estudios Avanzados del I.P.N. Unidad Querétaro, Libramiento Norponiente No. 2000, Fracc. Real de Juriquilla, C.P. 7623 Querétaro, Qro, México (Mexico); Facultad de Física/IMRE, San Lázaro y L, Universidad de la Habana, C.P. 10400 Habana (Cuba); Hernández-Landaverde, M.A. [Centro de Investigación y de Estudios Avanzados del I.P.N. Unidad Querétaro, Libramiento Norponiente No. 2000, Fracc. Real de Juriquilla, C.P. 7623 Querétaro, Qro, México (Mexico); and others

    2016-11-15

    A wide band of photoluminescence (PL) emission in structurally disordered lead zirconate titanate (PZT) powders, prepared by sol–gel route, was observed at room temperature excited with a laser line (488 nm). Powders with PbZr{sub 0.53}Ti{sub 0.47}O{sub 3} nominal composition annealed at different temperatures were studied by X-ray diffraction, Raman spectroscopy, Luminescence, Diffuse Reflectance and Electronic Paramagnetic Resonance Spectroscopy (EPR). Our results indicate that the PL response can be associated to order–disorder degree in the perovskite structure, with the exception of samples annealed at low temperature, where a mixture of oxides precursorsГ—Ві phases was observed. Furthermore, in quasi-crystalline ordered samples (95% of crystallinity) a small generation of PL remains. In these experiments, the band gap increases with the formation of crystalline structure. EPR experiments were conducted in order to follow the evolution of paramagnetic species with thermal treatment from the mixture of oxides precursors to the perovskite phase and paramagnetic point defects were identified (Pb{sup +3} and Ti{sup +3}). EPR data suggest the presence of order–disorder within the lattice network. Paramagnetic species are similar in samples treated at 700 and 800 °C, nevertheless the emission intensity decreases by a factor of 6, indicating that the defects associated with PL are not paramagnetic at both temperatures.

  18. Anion and cation diffusion in barium titanate and strontium titanate

    International Nuclear Information System (INIS)

    Kessel, Markus Franz

    2012-01-01

    data suggests that oxygen vacancies and electron holes play the key role in the formation of the equilibrium surface space-charge layers. The oxygen vacancy diffusivities and the oxygen vacancy migration enthalpy are compared to other experimentally and theoretically derived data for barium titanate and a global expression for the temperature dependence of the oxygen vacancy diffusivity is determined. The latter was used for a comparison of the oxygen vacancy diffusivity and the oxygen vacancy migration enthalpy for BaTiO 3 to other perovskite oxides. Furthermore, this work shows results from cation interdiffusion experiments between BaZrO 3 and SrTiO 3 . Thin films of barium zirconate were deposited on strontium titanate single crystals and the cation interdiffusion investigated as a function of temperature. All four cations show a main diffusion profile and an additional fast diffusion profile. Each main diffusion profile can be described independently by the thick-film solution of the diffusion equation suggesting the diffusion coefficients to be concentration independent. The fast diffusion profiles are attributed to fast diffusion of Ba and Zr along dislocations of the SrTiO 3 single crystals and fast diffusion of Sr and Ti along the grain boundaries of the polycrystalline thin-film BaZrO 3 . The migration enthalpies of the bulk profiles for all four cations are very similar. The results suggest a complex diffusion mechanism with coupled diffusion of the cation vacancies on the A and B sites of the perovskite lattice.

  19. Superior piezoelectric composite films: taking advantage of carbon nanomaterials.

    Science.gov (United States)

    Saber, Nasser; Araby, Sherif; Meng, Qingshi; Hsu, Hung-Yao; Yan, Cheng; Azari, Sara; Lee, Sang-Heon; Xu, Yanan; Ma, Jun; Yu, Sirong

    2014-01-31

    Piezoelectric composites comprising an active phase of ferroelectric ceramic and a polymer matrix have recently found numerous sensory applications. However, it remains a major challenge to further improve their electromechanical response for advanced applications such as precision control and monitoring systems. We here investigated the incorporation of graphene platelets (GnPs) and multi-walled carbon nanotubes (MWNTs), each with various weight fractions, into PZT (lead zirconate titanate)/epoxy composites to produce three-phase nanocomposites. The nanocomposite films show markedly improved piezoelectric coefficients and electromechanical responses (50%) besides an enhancement of ~200% in stiffness. The carbon nanomaterials strengthened the impact of electric field on the PZT particles by appropriately raising the electrical conductivity of the epoxy. GnPs have been proved to be far more promising in improving the poling behavior and dynamic response than MWNTs. The superior dynamic sensitivity of GnP-reinforced composite may be caused by the GnPs' high load transfer efficiency arising from their two-dimensional geometry and good compatibility with the matrix. The reduced acoustic impedance mismatch resulting from the improved thermal conductance may also contribute to the higher sensitivity of GnP-reinforced composite. This research pointed out the potential of employing GnPs to develop highly sensitive piezoelectric composites for sensing applications.

  20. Superior piezoelectric composite films: taking advantage of carbon nanomaterials

    International Nuclear Information System (INIS)

    Saber, Nasser; Araby, Sherif; Meng, Qingshi; Hsu, Hung-Yao; Lee, Sang-Heon; Ma, Jun; Yan, Cheng; Xu, Yanan; Azari, Sara; Yu, Sirong

    2014-01-01

    Piezoelectric composites comprising an active phase of ferroelectric ceramic and a polymer matrix have recently found numerous sensory applications. However, it remains a major challenge to further improve their electromechanical response for advanced applications such as precision control and monitoring systems. We here investigated the incorporation of graphene platelets (GnPs) and multi-walled carbon nanotubes (MWNTs), each with various weight fractions, into PZT (lead zirconate titanate)/epoxy composites to produce three-phase nanocomposites. The nanocomposite films show markedly improved piezoelectric coefficients and electromechanical responses (50%) besides an enhancement of ∼200% in stiffness. The carbon nanomaterials strengthened the impact of electric field on the PZT particles by appropriately raising the electrical conductivity of the epoxy. GnPs have been proved to be far more promising in improving the poling behavior and dynamic response than MWNTs. The superior dynamic sensitivity of GnP-reinforced composite may be caused by the GnPs’ high load transfer efficiency arising from their two-dimensional geometry and good compatibility with the matrix. The reduced acoustic impedance mismatch resulting from the improved thermal conductance may also contribute to the higher sensitivity of GnP-reinforced composite. This research pointed out the potential of employing GnPs to develop highly sensitive piezoelectric composites for sensing applications. (paper)

  1. Determination of temperature dependence of piezoelectric coefficients matrix of lead zirconate titanate ceramics by quasi-static and resonance method

    International Nuclear Information System (INIS)

    Li Fei; Xu Zhuo; Wei Xiaoyong; Yao Xi

    2009-01-01

    The piezoelectric coefficients (d 33 , -d 31 , d 15 , g 33 , -g 31 , g 15 ) of soft and hard lead zirconate titanate ceramics were measured by the quasi-static and resonance methods, at temperatures from 20 to 300 0 C. The results showed that the piezoelectric coefficients d 33 , -d 31 and d 15 obtained by these two methods increased with increasing temperature for both hard and soft PZT ceramics, while the piezoelectric coefficients g 33 , -g 31 and g 15 decreased with increasing temperature for both hard and soft PZT ceramics. In this paper, the observed results were also discussed in terms of intrinsic and extrinsic contributions to piezoelectric response.

  2. Acoustic response of piezoelectric lead-zirconate-titanate to a 400MeV/n xenon beam

    CERN Document Server

    Miyachi, T; Ito, H

    2003-01-01

    Characteristics of lead-zirconate-titanate (PZT) elements were studied by directly irradiating them with a 400 MeV/n Xe beam. The elements were sensitive to 10 sup 4 Xe ions and their output amplitudes were proportional to the beam intensity. An ensemble of those output amplitudes displayed a Bragg-curve-like response towards the range of 400 MeV/n Xe ion. We discuss the potential of PZT elements as a radiation detector and their application to high-intensity and high-energy detectors. (author)

  3. Performance of PZT stacks under high-field electric cycling at various temperatures in heavy-duty diesel engine fuel injectors

    Science.gov (United States)

    Wang, Hong; Lee, Sung-Min; Lin, Hua-Tay; Stafford, Randy

    2016-04-01

    Testing and characterization of large prototype lead zirconate titanate (PZT) stacks present substantial technical challenges to electronic systems. The work in this study shows that an alternative approach can be pursued by using subunits extracted from prototype stacks. Piezoelectric and dielectric integrity was maintained even though the PZT plate specimens experienced an additional loading process involved with the extraction after factory poling. Extracted 10-layer plate specimens were studied by an electric cycle test under an electric field of 3.0/0.0 kV/mm, 100 Hz to 108 cycles, both at room temperature (22°C) and at 50°C. The elevated temperature had a defined impact on the fatigue of PZT stacks. About 48 and 28% reductions were observed in the piezoelectric and dielectric coefficients, respectively, after 108 cycles at 50°C, compared with reductions of 25 and 15% in the respective coefficients at 22°C. At the same time, the loss tangent varied to a limited extent. The evolution of PZT-electrode interfacial layers or nearby dielectric layers should account for the difference in the fatigue rates of piezoelectric and dielectric coefficients. But the basic contribution to observed fatigue may result from the buildup of a bias field that finally suppressed the motion of the domain walls. Finally, monitoring of dielectric coefficients can be an effective tool for on-line lifetime prediction of PZT stacks in service if a failure criterion is defined properly.

  4. Influence of binding material of PZT coating on microresonator's electrical and mechanical properties

    Science.gov (United States)

    Janusas, Giedrius; Guobiene, Asta; Palevicius, Arvydas; Brunius, Alfredas; Cekas, Elingas; Baltrusaitis, Valentinas; Sakalys, Rokas

    2017-06-01

    Microresonators are fundamental components integrated in hosts of MEMS applications: covering the automotive sector, the telecommunication industry, electronic equipment for surface/material characterization and motion sensing, and etc. The aim of this paper is to investigate the mechanical and electrical properties of PZT film fabricated with three binding materials: polyvinyl butyral (PVB), polymethyl methacrylate (PMMA) and polystyrene (PS) and to evaluate applicability in control of microresonators Q factor. Micro particles of PZT powder were mixed with 20% solution of PVB, PMMA and PS in benzyl alcohol. For investigation of mechanical and electrical properties multilayer cantilevers were made. Obtained PZT and polymer paste was screen printed on copper (thickness 40 μm) using polyester monofilament screen meshes (layer thickness 50 μm) and dried for 30 min at 100°C. Electric dipoles of the PZT particles in composite material were aligned using high voltage generator (5 kV) and a custom-made holder. Electric field was held for 30 min. Surfaces of the applied films were investigated by Atomic Force Microscope NanoWizard(R)3 NanoScience. Dynamic and electrical characteristics of the multilayer were investigated using laser triangular displacement sensor LK-G3000. The measured vibration amplitude and generated electrical potential was collected with USB oscilloscope PicoScope 3424. As the results showed, these cantilevers were able to transform mechanical strain energy into electric potential and, v.v. However, roughness of PZT coatings with PMMA and PS were higher, what could be the reason of the worse quality of the top electrode. However, the main advantage of the created composite piezoelectric material is the possibility to apply it on any uniform or non-uniform vibrating surface and to transform low frequency vibrations into electricity.

  5. Preparation of lead titanate zirconate from metal citrates; Preparacao do titanato zirconato de chumbo a partir dos citratos metalicos

    Energy Technology Data Exchange (ETDEWEB)

    Bastos, C M.R.

    1994-12-31

    Lead titanate zirconate (PZT) preparation from its metal constituent citrates have been investigated. Metal citrates were obtained by forced precipitation using a dehydration alcohol mixture. Salt solutions of lead nitrate and octahydrated zirconyl chloride, and titanium tetrachloride were treated separately with citric acid and ammonium hydroxide. Zirconium, titanium and lead oxides resulted from thermal decomposition of corresponding citrates at 500{sup 0} C, 450{sup 0} C and 250{sup 0} C, respectively. Lead titanate (PT) and lead zirconate (P Z) were obtained by calcining at 450{sup 0} C and 500{sup 0} C, respectively, after adequate heating of citrates mechanically mixed in ethyl ether. PZT samples were obtained with different starting stoichiometry. Rhombohedral PZT-1 53/47 sample was prepared from co precipitating zirconyl ammonium and ammonium lead citrates in presence of ethanolic titanium oxide dispersion, and calcinating at 800{sup 0} C. Rhombohedral PZT-q 52/48 sample was obtained from heating at 500{sup 0} C for 2 hours a mixture of metal citrates coprecipitated by dehydration mixture of acetone-ethanol-formic acid (2:1:0,06). Tetragonal PZT-m stoichiometry 53/47 sample were obtained by calcining at after 600{sup 0} C for 2 hours after heating a mechanically mixed metal citrates. PT phase arose at 400{sup 0} C. PZT-m powders obtained in a range of 400{sup 0} C-800{sup 0} C were isostatically pressed, and sintered at 1100{sup 0} C and 1200{sup 0} C in saturated Pb O atmosphere. Rhombohedral sintered PZT was obtained with 7,78 g.cm{sup -3} at 1200{sup 0} C. (author). 123 refs, 53 figs, 32 tabs.

  6. Uncertainty quantification for PZT bimorph actuators

    Science.gov (United States)

    Bravo, Nikolas; Smith, Ralph C.; Crews, John

    2018-03-01

    In this paper, we discuss the development of a high fidelity model for a PZT bimorph actuator used for micro-air vehicles, which includes the Robobee. We developed a high-fidelity model for the actuator using the homogenized energy model (HEM) framework, which quantifies the nonlinear, hysteretic, and rate-dependent behavior inherent to PZT in dynamic operating regimes. We then discussed an inverse problem on the model. We included local and global sensitivity analysis of the parameters in the high-fidelity model. Finally, we will discuss the results of Bayesian inference and uncertainty quantification on the HEM.

  7. Analyzing the defect structure of CuO-doped PZT and KNN piezoelectrics from electron paramagnetic resonance.

    Science.gov (United States)

    Jakes, Peter; Kungl, Hans; Schierholz, Roland; Eichel, Rüdiger-A

    2014-09-01

    The defect structure for copper-doped sodium potassium niobate (KNN) ferroelectrics has been analyzed with respect to its defect structure. In particular, the interplay between the mutually compensating dimeric (Cu(Nb)'''-V(O)··) and trimeric (V(O)··-Cu(Nb)'''-V(O)··)· defect complexes with 180° and non-180° domain walls has been analyzed and compared to the effects from (Cu'' - V(O)··)(x)× dipoles in CuO-doped lead zirconate titanate (PZT). Attempts are made to relate the rearrangement of defect complexes to macroscopic electromechanical properties.

  8. Influence of silicon orientation and cantilever undercut on the determination of Young's modulus of pulsed laser deposited PZT

    NARCIS (Netherlands)

    Nazeer, H.; Woldering, L.A.; Abelmann, Leon; Nguyen, Duc Minh; Rijnders, Augustinus J.H.M.; Elwenspoek, Michael Curt

    In this work we show for the first time that the effective in-plane Young’s modulus of PbZr0.52Ti0.48O3 (PZT) thin films, deposited by pulsed laser deposition (PLD) on dedicated single crystal silicon cantilevers, is independent of the in-plane orientation of cantilevers.

  9. Fatigue of extracted lead zirconate titanate multilayer actuators under unipolar high field electric cycling

    International Nuclear Information System (INIS)

    Wang, Hong; Lee, Sung-Min; Wang, James L.; Lin, Hua-Tay

    2014-01-01

    Testing of large prototype lead zirconate titanate (PZT) stacks presents substantial technical challenges to electronic testing systems, so an alternative approach that uses subunits extracted from prototypes has been pursued. Extracted 10-layer and 20-layer plate specimens were subjected to an electric cycle test under an electric field of 3.0/0.0 kV/mm, 100 Hz to 10 8 cycles. The effects of measurement field level and stack size (number of PZT layers) on the fatigue responses of piezoelectric and dielectric coefficients were observed. On-line monitoring permitted examination of the fatigue response of the PZT stacks. The fatigue rate (based on on-line monitoring) and the fatigue index (based on the conductance spectrum from impedance measurement or small signal measurement) were developed to quantify the fatigue status of the PZT stacks. The controlling fatigue mechanism was analyzed against the fatigue observations. The data presented can serve as input to design optimization of PZT stacks and to operation optimization in critical applications, such as piezoelectric fuel injectors in heavy-duty diesel engines

  10. Fatigue of extracted lead zirconate titanate multilayer actuators under unipolar high field electric cycling

    Science.gov (United States)

    Wang, Hong; Lee, Sung-Min; Wang, James L.; Lin, Hua-Tay

    2014-12-01

    Testing of large prototype lead zirconate titanate (PZT) stacks presents substantial technical challenges to electronic testing systems, so an alternative approach that uses subunits extracted from prototypes has been pursued. Extracted 10-layer and 20-layer plate specimens were subjected to an electric cycle test under an electric field of 3.0/0.0 kV/mm, 100 Hz to 108 cycles. The effects of measurement field level and stack size (number of PZT layers) on the fatigue responses of piezoelectric and dielectric coefficients were observed. On-line monitoring permitted examination of the fatigue response of the PZT stacks. The fatigue rate (based on on-line monitoring) and the fatigue index (based on the conductance spectrum from impedance measurement or small signal measurement) were developed to quantify the fatigue status of the PZT stacks. The controlling fatigue mechanism was analyzed against the fatigue observations. The data presented can serve as input to design optimization of PZT stacks and to operation optimization in critical applications, such as piezoelectric fuel injectors in heavy-duty diesel engines.

  11. Fatigue of extracted lead zirconate titanate multilayer actuators under unipolar high field electric cycling

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong, E-mail: wangh@ornl.gov; Lee, Sung-Min; Wang, James L. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Lin, Hua-Tay [School of Mechanical and Electronic Engineering, Guangdong University of Technology, Guangzhou, 510006 (China)

    2014-12-21

    Testing of large prototype lead zirconate titanate (PZT) stacks presents substantial technical challenges to electronic testing systems, so an alternative approach that uses subunits extracted from prototypes has been pursued. Extracted 10-layer and 20-layer plate specimens were subjected to an electric cycle test under an electric field of 3.0/0.0 kV/mm, 100 Hz to 10{sup 8} cycles. The effects of measurement field level and stack size (number of PZT layers) on the fatigue responses of piezoelectric and dielectric coefficients were observed. On-line monitoring permitted examination of the fatigue response of the PZT stacks. The fatigue rate (based on on-line monitoring) and the fatigue index (based on the conductance spectrum from impedance measurement or small signal measurement) were developed to quantify the fatigue status of the PZT stacks. The controlling fatigue mechanism was analyzed against the fatigue observations. The data presented can serve as input to design optimization of PZT stacks and to operation optimization in critical applications, such as piezoelectric fuel injectors in heavy-duty diesel engines.

  12. Magnetoelectric coupling in layered LSMO/PZT nanostructures

    International Nuclear Information System (INIS)

    Leufke, Philipp M.

    2014-01-01

    Multiferroic thin film composites with electric field-effect driven magnetoelectric (ME) coupling offer the possibility to reversibly tune magnetic properties in materials intended for device applications. The structural and functional versatility of such artificial heterostructures makes them attractive not only for various data processing, storage and sensor applications but also for studying the fundamental ME coupling mechanisms. La 1-x Sr x MnO 3 (LSMO)/PbZr y Ti 1-y O 3 (PZT) is an ideal choice for such a composite, combining the unrivaled ferroelectric (FE) properties of PZT with the multiple electronic and magnetic phenomena exhibited by the mixed valency manganite LSMO. The main physical feature used in realization of the LSMO/PZT ME composites is a striking sensitivity of LSMO magnetism to the charge carrier density. Here, the low-doping region is of particular interest, where the competition between the fundamental magnetic coupling mechanisms, Double-Exchange (DE) versus Superexchange (SE), is most distinctive. In the present work an unconventional sputtering technique - the Large-Distance Magnetron Sputtering (LDMS) method - has been established, which allowed for epitaxial deposition of these heterostructures with highest crystallinity and markedly smooth interfaces, necessary for effective field-effect control of magnetism. The large target-substrate distance effectively suppressed the destructive oxygen ion bombardment, inherently connected with oxide sputtering, and yielded an outstanding lateral uniformity of the film stack. The latter was vital for the fabrication of large capacitor structures of several square millimeter area that were required for detecting the ME coupling in a Superconductive Quantum Interference Device (SQUID) magnetometer. The growth of LSMO on various single crystalline substrates was mastered by exploring a vast deposition parameter space, encompassing Radio Frequency (RF) and Direct Current (DC) sputtering. Commensurately

  13. Magnetoelectric coupling in layered LSMO/PZT nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Leufke, Philipp M.

    2014-01-29

    Multiferroic thin film composites with electric field-effect driven magnetoelectric (ME) coupling offer the possibility to reversibly tune magnetic properties in materials intended for device applications. The structural and functional versatility of such artificial heterostructures makes them attractive not only for various data processing, storage and sensor applications but also for studying the fundamental ME coupling mechanisms. La{sub 1-x}Sr{sub x}MnO{sub 3} (LSMO)/PbZr{sub y}Ti{sub 1-y}O{sub 3} (PZT) is an ideal choice for such a composite, combining the unrivaled ferroelectric (FE) properties of PZT with the multiple electronic and magnetic phenomena exhibited by the mixed valency manganite LSMO. The main physical feature used in realization of the LSMO/PZT ME composites is a striking sensitivity of LSMO magnetism to the charge carrier density. Here, the low-doping region is of particular interest, where the competition between the fundamental magnetic coupling mechanisms, Double-Exchange (DE) versus Superexchange (SE), is most distinctive. In the present work an unconventional sputtering technique - the Large-Distance Magnetron Sputtering (LDMS) method - has been established, which allowed for epitaxial deposition of these heterostructures with highest crystallinity and markedly smooth interfaces, necessary for effective field-effect control of magnetism. The large target-substrate distance effectively suppressed the destructive oxygen ion bombardment, inherently connected with oxide sputtering, and yielded an outstanding lateral uniformity of the film stack. The latter was vital for the fabrication of large capacitor structures of several square millimeter area that were required for detecting the ME coupling in a Superconductive Quantum Interference Device (SQUID) magnetometer. The growth of LSMO on various single crystalline substrates was mastered by exploring a vast deposition parameter space, encompassing Radio Frequency (RF) and Direct Current (DC

  14. Thermoelectric-pyroelectric hybrid energy generation from thermopower waves in core-shell structured carbon nanotube-PZT nanocomposites.

    Science.gov (United States)

    Yeo, Taehan; Hwang, Hayoung; Shin, Dongjoon; Seo, Byungseok; Choi, Wonjoon

    2017-02-10

    There is an urgent need to develop a suitable energy source owing to the rapid development of various innovative devices using micro-nanotechnology. The thermopower wave (TW), which produces a high specific power during the combustion of solid fuel inside micro-nanostructure materials, is a unique energy source for unusual platforms that cannot use conventional energy sources. Here, we report on the significant enhancement of hybrid energy generation of pyroelectrics and thermoelectrics from TWs in carbon nanotube (CNT)-PZT (lead zirconate titanate, P(Z 0.5 -T 0.5 )) composites for the first time. Conventional TWs use only charge carrier transport driven by the temperature gradient along the core materials to produce voltage. In this study, a core-shell structure of CNTs-PZTs was prepared to utilize both the temperature gradient along the core material (thermoelectrics) and the dynamic change in the temperature of the shell structure (pyroelectrics) induced by TWs. The dual mechanism of energy generation in CNT-PZT composites amplified the average peak and duration of the voltage up to 403 mV and 612 ms, respectively, by a factor of 2 and 60 times those for the composites without a PZT layer. Furthermore, dynamic voltage measurements and structural analysis in repetitive TWs confirmed that CNT-PZT composites maintain the original performance in multiple TWs, which improves the reusability of materials. The advanced TWs obtained by the application of a PZT layer as a pyroelectric material contributes to the extension of the usable energy portion as well as the development of TW-based operating devices.

  15. Aerosol chemistry in Titan's ionosphere: simultaneous growth and etching processes

    Science.gov (United States)

    Carrasco, Nathalie; Cernogora, Guy; Jomard, François; Etcheberry, Arnaud; Vigneron, Jackie

    2016-10-01

    Since the Cassini-CAPS measurements, organic aerosols are known to be present and formed at high altitudes in the diluted and partially ionized medium that is Titan's ionosphere [1]. This unexpected chemistry can be further investigated in the laboratory with plasma experiments simulating the complex ion-neutral chemistry starting from N2-CH4 [2]. Two sorts of solid organic samples can be produced in laboratory experiments simulating Titan's atmospheric reactivity: grains in the volume and thin films on the reactor walls. We expect that grains are more representative of Titan's atmospheric aerosols, but films are used to provide optical indices for radiative models of Titan's atmosphere.The aim of the present study is to address if these two sorts of analogues are chemically equivalent or not, when produced in the same N2-CH4 plasma discharge. The chemical compositions of both these materials are measured by using elemental analysis, XPS analysis and Secondary Ion Mass Spectrometry. We find that films are homogeneous but significantly less rich in nitrogen and hydrogen than grains produced in the same experimental conditions. This surprising difference in their chemical compositions is explained by the efficient etching occurring on the films, which stay in the discharge during the whole plasma duration, whereas the grains are ejected after a few minutes [3]. The impact for our understanding of Titan's aerosols chemical composition is important. Our study shows that chemical growth and etching process are simultaneously at stake in Titan's ionosphere. The more the aerosols stay in the ionosphere, the more graphitized they get through etching process. In order to infer Titan's aerosols composition, our work highlights a need for constraints on the residence time of aerosols in Titan's ionosphere. [1] Waite et al. (2009) Science , 316, p. 870[2] Szopa et al. (2006) PSS, 54, p. 394[3] Carrasco et al. (2016) PSS, 128, p. 52

  16. Pyroelectric Charge Release in Rhombohedral PZT

    NARCIS (Netherlands)

    Noheda, Beatriz; Duan, Ning; Cereceda, Noé; Gonzalo, Julio A.

    1998-01-01

    A new experimental set-up controlled by computer has been made to measure the pyroelectric charge of ferroelectric materials with a relatively high conductivity at slow rates of temperature variation. It allowed us to obtain the polarisation vs. temperature behaviour of PZT with various compositions

  17. Polymer-ceramic piezoelectric composites (PZT)

    International Nuclear Information System (INIS)

    Bassora, L.A.; Eiras, J.A.

    1992-01-01

    Polymer-ceramic piezoelectric transducers, with 1-3 of connectivity were prepared with different concentration of ceramic material. Piezoelectric composites, with equal electromechanical coupling factor and acoustic impedance of one third from that ceramic transducer, were obtained when the fractionary volume of PZT reach 30%. (C.G.C.)

  18. Bulk dielectric and magnetic properties of PFW-PZT ceramics: absence of magnetically switched-off polarization.

    Science.gov (United States)

    Kempa, M; Kamba, S; Savinov, M; Maryško, M; Frait, Z; Vaněk, P; Tomczyk, M; Vilarinho, P M

    2010-11-10

    We investigated ceramics samples of solid solutions of [PbFe(2/3)W(1/3)O(3)](x)-[PbZr(0.53)Ti(0.47)O(3)](1 - x) (PFW(x)-PZT(1 - x), x = 0.2 and 0.3) by means of broad-band dielectric spectroscopy, differential scanning calorimetry and SQUID magnetometry. We did not confirm the observations of Kumar et al (2009 J. Phys.: Condens. Matter 21 382204), who reported on reversible suppression of ferroelectric polarization in polycrystalline PFW(x)-PZT(1 - x) thin films for magnetic fields above 0.5 T. We did not observe any change of ferroelectric polarization with external magnetic fields up to 3.2 T. Pirc et al (2009 Phys. Rev. B 79 214114) developed a theory explaining the reported large magnetoelectric effect in PFW(x)-PZT(1 - x), taking into account relaxor magnetic and relaxor ferroelectric properties of the system. Our data revealed classical ferroelectric properties below 525 K and 485 K in samples with x = 0.2 and 0.3, respectively. Moreover, paramagnetic behavior was observed down to 4.5 K instead of previously reported relaxor magnetic behavior. It seems that the reported switching-off of ferroelectric polarization in PFW(x)-PZT(1 - x) thin films is not an intrinsic property, but probably an effect of electrodes, interlayers, grain boundaries or second phases presented in polycrystalline thin films.

  19. Enhanced voltage-controlled magnetic anisotropy in magnetic tunnel junctions with an MgO/PZT/MgO tunnel barrier

    Science.gov (United States)

    Chien, Diana; Li, Xiang; Wong, Kin; Zurbuchen, Mark A.; Robbennolt, Shauna; Yu, Guoqiang; Tolbert, Sarah; Kioussis, Nicholas; Khalili Amiri, Pedram; Wang, Kang L.; Chang, Jane P.

    2016-03-01

    Compared with current-controlled magnetization switching in a perpendicular magnetic tunnel junction (MTJ), electric field- or voltage-induced magnetization switching reduces the writing energy of the memory cell, which also results in increased memory density. In this work, an ultra-thin PZT film with high dielectric constant was integrated into the tunneling oxide layer to enhance the voltage-controlled magnetic anisotropy (VCMA) effect. The growth of MTJ stacks with an MgO/PZT/MgO tunnel barrier was performed using a combination of sputtering and atomic layer deposition techniques. The fabricated MTJs with the MgO/PZT/MgO barrier demonstrate a VCMA coefficient, which is ˜40% higher (19.8 ± 1.3 fJ/V m) than the control sample MTJs with an MgO barrier (14.3 ± 2.7 fJ/V m). The MTJs with the MgO/PZT/MgO barrier also possess a sizeable tunneling magnetoresistance (TMR) of more than 50% at room temperature, comparable to the control MTJs with an MgO barrier. The TMR and enhanced VCMA effect demonstrated simultaneously in this work make the MgO/PZT/MgO barrier-based MTJs potential candidates for future voltage-controlled, ultralow-power, and high-density magnetic random access memory devices.

  20. H and C NMR investigations of Pb(Zr,Ti)O3 thin-film precursor solutions

    International Nuclear Information System (INIS)

    Assink, R.A.; Schwartz, R.W.

    1993-01-01

    Solvent reactions, ligand substitutions, and the oligomer/polymer backbone structure are important factors in the solution preparation of ceramic films. In this study the authors have used H and C NMR spectroscopy to characterize solvent and ligand effects in precursor solutions used for the deposition of ferroelectric PZT (lead zirconate titanate) thin films. Solutions were prepared by a sequential precursor addition method from carboxylate and alkoxide precursors of the three cations, and the solvent, acetic acid, methanol, and water. The results indicate that acetic acid was a key component in the solution preparation process. As observed previously for single metallic component systems, its presence resulted in esterification reactions, leading in the present case to the formation of methyl, isopropyl, and n-butyl acetates. Second, acetic acid functioned as a chemical modifier, or chelating agent, replacing essentially all of the alkoxy ligands of the original precursors. Since alkoxy replacement appeared to be complete, we may describe the PZT species formed in solution as oxo acetate in nature. Finally, the solvent and ligand behavior of a solution prepared by an inverted mixing order was compared to the behavior of the solution prepared by a sequential precursor addition. The spectra for the two solutions were similar, and only differences in the relative intensities of the ester and alcoholic resonances were observed. 29 refs., 5 figs., 3 tabs

  1. Remember the Titans: A Theoretical Analysis

    Directory of Open Access Journals (Sweden)

    Rameca Leary

    2013-06-01

    Full Text Available This paper addresses a pivotal time in American history, when a 1971 Supreme Court mandate required southern school districts to end segregation (Daugherity, 2011. In Alexandria, Virginia, the merger of three rival high schools yielded a racially diverse football team and coaching staff. Beforehand, blacks and whites had their own schools. Many wondered how the new T.C. Williams Titans football team would fare. This paper takes an in-depth look at the film, Remember the Titans, which is based on this story. It analyzes the film using Gordon Allport’s (1954 Intergroup Contact Theory to assess how people from different backgrounds interact within group settings. It explores how communication barriers and the absence of knowledge can lead to ignorance. A 21st century legacy is also discussed, including ideas for further research. 

  2. Remember the Titans: A Theoretical Analysis

    Directory of Open Access Journals (Sweden)

    Rameca Leary

    2013-06-01

    Full Text Available This paper addresses a pivotal time in American history, when a 1971 Supreme Court mandate required southern school districts to end segregation (Daugherity, 2011. In Alexandria, Virginia, the merger of three rival high schools yielded a racially diverse football team and coaching staff. Beforehand, blacks and whites had their own schools. Many wondered how the new T.C. Williams Titans football team would fare. This paper takes an in-depth look at the film, Remember the Titans, which is based on this story. It analyzes the film using Gordon Allport’s (1954 Intergroup Contact Theory to assess how people from different backgrounds interact within group settings. It explores how communication barriers and the absence of knowledge can lead to ignorance. A 21st century legacy is also discussed, including ideas for further research.

  3. Titan's organic chemistry

    Science.gov (United States)

    Sagan, C.; Thompson, W. R.; Khare, B. N.

    1985-01-01

    Voyager discovered nine simple organic molecules in the atmosphere of Titan. Complex organic solids, called tholins, produced by irradiation of the simulated Titanian atmosphere, are consistent with measured properties of Titan from ultraviolet to microwave frequencies and are the likely main constituents of the observed red aerosols. The tholins contain many of the organic building blocks central to life on earth. At least 100-m, and possibly kms thicknesses of complex organics have been produced on Titan during the age of the solar system, and may exist today as submarine deposits beneath an extensive ocean of simple hydrocarbons.

  4. Towards a digital sound reconstruction MEMS device: Characterization of a single PZT based piezoelectric actuator

    KAUST Repository

    Carreno, Armando Arpys Arevalo

    2015-04-01

    In this paper we report the fabrication and characterization of a single piezoelectric actuator for digital sound reconstruction. This work is the first step towards the implementation of a true digital micro-loudspeaker by means of an array of acoustic actuators. These actuators consist of a flexible membrane fabricated using polyimide, which is actuated using a Lead-Zirconate-Titanate (PZT) piezoelectric ceramic layer working in the d31 actuation mode. The dimensions of the membrane are of 1mm diameter and 4μm in thickness, which is capable of being symmetrically actuated in both upward and downward directions, due to the back etch step releasing the membrane. Our electrical characterization shows an improvement in the polarization of the piezoelectric material after its final etch patterning step, and our mechanical characterization shows the natural modes of resonance of the stacked membrane. © 2015 IEEE.

  5. Structural and electrical properties of Sm{sup 3+} substituted PZT ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, S.K. [Solid State Physics Laboratory, Timarpur, Delhi 110 054 (India)], E-mail: 628@ssplnet.org; Thakur, O.P.; Bhattacharya, D.K. [Solid State Physics Laboratory, Timarpur, Delhi 110 054 (India); Prakash, Chandra [DRDO Bhawan, DHQ, New Delhi 110 011 (India); Chatterjee, Ratnamala [Department of Physics, Indian Institute of Technology, New Delhi 110 016 (India)

    2009-01-22

    Samarium modified lead zirconate titanate (PSZT: Pb{sub 1-x}Sm{sub x}(Zr{sub 0.65}Ti{sub 0.35})O{sub 3}: x = 0, 0.02, 0.04, 0.06) ceramics were synthesized by solid state ceramic route. XRD shows single-phase formation with rhombohedral structure up to x = 0.04. With Sm-substitution, the grain size first increases up to x = 0.02 and then decreases. A metal/ferroelectric/metal (MFM) structure was made by depositing gold electrode on the flat surfaces for electrical measurements. All samples show normal ferroelectric behaviour, however, a squareness of P-E loop (polarization vs. electric field) was observed to increase with Sm content. Higher electromechanical coupling coefficients (K{sub p} and K{sub t}) have been achieved for the PZT with 6 mol% Sm substitution and having fine grain size.

  6. Characterization And Operation Of PZT Ceramic Filters On Gamma-Radiation Environment

    International Nuclear Information System (INIS)

    Fawzy, Y.H.A.; Soliman, F.A.S.; Swidan, A.; Abdelmagid, A.

    2008-01-01

    The present paper deals with the gamma-ray effects on the electrical characteristics of ferroelectric materials used as an electronic frequency filters. After the recall of main observations, mechanisms are analyzed and proposed to take into account the effects in Lead- Zirconate-Titanate (PZT) based materials. In this concern, a wide frequency range samples, extends from 400 k Hz up to 6.5 MHz, were chosen for studying their frequency response and related terminologies, dynamic characteristics, and equivalent circuits. In general, for all samples, a shift on the frequency values was recorded, where the values of the center frequency, resonance frequency and anti-resonance frequency were shown to be shifted. The observed shift is mainly due to the noticed changes on the equivalent circuit elements of the devices, where a pronounced shift on the values of L,,,CP and R,, were recorded

  7. Micro-fabrication technology for piezoelectric film formation and its application to MEMS

    OpenAIRE

    一木, 正聡; 曹, 俊杰; 張, 麓〓; 王, 占杰; 前田, 龍太郎; Masaaki, ICHIKI; Jiunn Jye, TSAUR; Lulu, ZHANG; Zhang Jie, WANG; Ryutaro, MAEDA; 産業技術総合研究所; 産業技術総合研究所; 産業技術総合研究所; 東北大学; 産業技術総合研究所

    2005-01-01

    Technological problems for realization of Micro Electro-mechanical System (MEMS) are discussed and an introduction of smart materials (PZT) is encouraged. The film formation and micromaching technology are discussed in integration of PZT thin films into MEMS. Further developments are proposed on PZT micro sensors and actuators with special emphasis laid on exploration of new application fields of MEMS, such as scanning mirror. Internal stress is estimated and analyzed for the improvement of d...

  8. Micro-fabricated flexible PZT cantilever using d33 mode for energy harvesting

    Science.gov (United States)

    Cho, Hyunok; Park, Jongcheol; Park, Jae Yeong

    2017-12-01

    This paper presents a micro-fabricated flexible and curled PZT [Pb(Zr0.52Ti0.48)O3] cantilever using d33 piezoelectric mode for vibration based energy harvesting applications. The proposed cantilever based energy harvester consists of polyimide, PZT thin film, and inter-digitated IrOx electrodes. The flexible cantilever was formed using bulk-micromachining on a silicon wafer to integrate it with ICs. The d33 piezoelectric mode was applied to achieve a large output voltage by using inter-digitated electrodes, and the PZT thin film on polyimide layer has a remnant polarization and coercive filed of approximately 2 P r = 47.9 μC/cm2 and 2 E c = 78.8 kV/cm, respectively. The relative dielectric constant was 900. The fabricated micro-electromechanical systems energy harvester generated output voltages of 1.2 V and output power of 117 nW at its optimal resistive load of 6.6 MΩ from its resonant frequency of 97.8 Hz with an acceleration of 5 m/s2.

  9. Shear piezoelectric coefficients of PZT, LiNbO3 and PMN-PT at cryogenic temperatures

    International Nuclear Information System (INIS)

    Bukhari, Syed; Islam, Md; Haziot, Ariel; Beamish, John

    2014-01-01

    Piezoelectric transducers are used to detect stress and to generate nanometer scale displacements but their piezoelectric coefficients decrease with temperature, limiting their performance in cryogenic applications. We have developed a capacitive technique and directly measured the temperature dependence of the shear coefficient d 15 for ceramic lead zirconium titanate (PZT), 41° X-cut lithium niobate (LiNbO 3 ) and single crystal lead magnesium niobium-lead titanate (PMN-PT). In PZT, d 15 decreases nearly linearly with temperature, dropping by factor of about 4 by 1.3 K. LiNbO3 has the smallest room temperature d15, but its value decreased by only 6% at the lowest temperatures. PMN-PT had the largest value of d15 at room temperature (2.9 × 10 −9 m/V, about 45 times larger than for LiNbO 3 ) but it decreased rapidly below 75 K; at 1.3 K, d 15 was only about 8% of its room temperature value

  10. Microestructura y propiedades de materiales cerámicos PZT con control de crecimiento de grano

    Directory of Open Access Journals (Sweden)

    Celi, L. A.

    1999-10-01

    Full Text Available Lead zirconate titanate ceramic powders have been surface modified by using phosphor esther 0.3% in volume. The phosphorous modification gave higher densities at lower temperatures associated with a reduction of the weight losses during the densification process. From the relationships between ceramic processing and microstructure, it was established that the phosphorous surface modification allows the effective grain growth control as well a higher homogeneity in the grain size distribution.

    Se ha realizado un proceso de modificación superficial con ester fosfato al 0.3% en volumen, sobre polvo cerámico de titanato circonato de plomo, PZT. Se observa que el material modificado con fósforo presenta una mayor densificación aparente a una temperatura menor unida a una reducción de las pérdidas de peso durante el proceso de densificación. Se han establecido las relaciones entre el procesamiento y las microestructuras del material PZT sin modificar y el modificado. Se evidencia un control del crecimiento de grano y una mayor homogeneidad en la distribución de tamaños de grano en el material modificado.

  11. Fatigue response of a PZT multilayer actuator under high-field electric cycling with mechanical preload

    Science.gov (United States)

    Wang, Hong; Wereszczak, Andrew A.; Lin, Hua-Tay

    2009-01-01

    An electric fatigue test system was developed for evaluating the reliability of piezoelectric actuators with a mechanical loading capability. Fatigue responses of a lead zirconate titanate (PZT) multilayer actuator with a platethrough electrode configuration were studied under an electric field (1.7 times that of the coercive field of PZT material) and a concurrent mechanical preload (30.0 MPa). A total of 109 cycles was carried out. Variations in charge density and mechanical strain under the high electric field and constant mechanical loads were observed during the fatigue test. The dc and the first harmonic (at 10 Hz) dielectric and piezoelectric coefficients were subsequently characterized using fast Fourier transformation. Both the dielectric and the piezoelectric coefficients exhibited a monotonic decrease prior to 2.86×108 cycles under certain preloading conditions, and then fluctuated. Both the dielectric loss tangent and the piezoelectric loss tangent also fluctuated after a decrease. The results are interpreted and discussed with respect to domain wall activities, microdefects, and other anomalies.

  12. Impedance spectroscopy of PZT ceramics--measuring diffusion coefficients, mixed conduction, and Pb loss.

    Science.gov (United States)

    Donnelly, Niall J; Randall, Clive A

    2012-09-01

    Sintering of lead zirconate titanate (PZT) at high temperatures results in loss of Pb unless an ambient Pb activity is maintained. The tell-tale sign of Pb loss is an increased conductivity, usually manifested in unacceptably high values of tanδ. The conductivity is caused by oxygen vacancies and/or electron holes which are a byproduct of Pb evaporation. In the first part of this paper, it is shown how impedance spectroscopy can be used to separate ionic and electronic conductivity in a properly designed sample by selection of appropriate boundary conditions. Subsequently, impedance is used to probe defect concentrations in PZT during prolonged annealing at 700°C. It is found that oxygen vacancies are generated during annealing in air but the rate of generation actually decreases upon lowering the ambient pO(2). These results are explained by a model of Pb evaporation which, in this case, leads predominantly to oxygen vacancy generation. In principle, this effect could be used to generate a specific vacancy concentration in similar Pb-based oxides.

  13. Concrete Infill Monitoring in Concrete-Filled FRP Tubes Using a PZT-Based Ultrasonic Time-of-Flight Method.

    Science.gov (United States)

    Luo, Mingzhang; Li, Weijie; Hei, Chuang; Song, Gangbing

    2016-12-07

    Concrete-filled fiber-reinforced polymer tubes (CFFTs) have attracted interest for their structural applications in corrosive environments. However, a weak interfacial strength between the fiber-reinforced polymer (FRP) tube and the concrete infill may develop due to concrete shrinkage and inadequate concrete compaction during concrete casting, which will destroy the confinement effect and thereby reduce the load bearing capacity of a CFFT. In this paper, the lead zirconate titanate (PZT)-based ultrasonic time-of-flight (TOF) method was adopted to assess the concrete infill condition of CFFTs. The basic idea of this method is that the velocity of the ultrasonic wave propagation in the FRP material is about half of that in concrete material. Any voids or debonding created along the interface between the FRP tube and the concrete will delay the arrival time between the pairs of PZT transducers. A comparison of the arrival times of the PZT pairs between the intact and the defected CFFT was made to assess the severity of the voids or the debonding. The feasibility of the methodology was analyzed using a finite-difference time-domain-based numerical simulation. Experiments were setup to validate the numerical results, which showed good agreement with the numerical findings. The results showed that the ultrasonic time-of-flight method is able to detect the concrete infill condition of CFFTs.

  14. Concrete Infill Monitoring in Concrete-Filled FRP Tubes Using a PZT-Based Ultrasonic Time-of-Flight Method

    Science.gov (United States)

    Luo, Mingzhang; Li, Weijie; Hei, Chuang; Song, Gangbing

    2016-01-01

    Concrete-filled fiber-reinforced polymer tubes (CFFTs) have attracted interest for their structural applications in corrosive environments. However, a weak interfacial strength between the fiber-reinforced polymer (FRP) tube and the concrete infill may develop due to concrete shrinkage and inadequate concrete compaction during concrete casting, which will destroy the confinement effect and thereby reduce the load bearing capacity of a CFFT. In this paper, the lead zirconate titanate (PZT)-based ultrasonic time-of-flight (TOF) method was adopted to assess the concrete infill condition of CFFTs. The basic idea of this method is that the velocity of the ultrasonic wave propagation in the FRP material is about half of that in concrete material. Any voids or debonding created along the interface between the FRP tube and the concrete will delay the arrival time between the pairs of PZT transducers. A comparison of the arrival times of the PZT pairs between the intact and the defected CFFT was made to assess the severity of the voids or the debonding. The feasibility of the methodology was analyzed using a finite-difference time-domain-based numerical simulation. Experiments were setup to validate the numerical results, which showed good agreement with the numerical findings. The results showed that the ultrasonic time-of-flight method is able to detect the concrete infill condition of CFFTs. PMID:27941617

  15. Raising the Titanic.

    Science.gov (United States)

    Baker, Romona

    1990-01-01

    Described is an activity in which groups of students investigate engineering principles by writing a feasibility study to raise the luxury liner, Titanic. The problem statement and directions, and suggestions for problem solutions are included. (CW)

  16. Clash of the Titans

    Science.gov (United States)

    Subramaniam, Karthigeyan

    2010-01-01

    WebQuests and the 5E learning cycle are titans of the science classroom. These popular inquiry-based strategies are most often used as separate entities, but the author has discovered that using a combined WebQuest and 5E learning cycle format taps into the inherent power and potential of both strategies. In the lesson, "Clash of the Titans,"…

  17. Titan's Ammonia Feature

    Science.gov (United States)

    Smythe, W.; Nelson, R.; Boryta, M.; Choukroun, M.

    2011-01-01

    NH3 has long been considered an important component in the formation and evolution of the outer planet satellites. NH3 is particularly important for Titan, since it may serve as the reservoir for atmospheric nitrogen. A brightening seen on Titan starting in 2004 may arise from a transient low-lying fog or surface coating of ammonia. The spectral shape suggests the ammonia is anhydrous, a molecule that hydrates quickly in the presence of water.

  18. The TITAN reversed-field-pinch fusion reactor study

    International Nuclear Information System (INIS)

    1990-01-01

    This report discusses the following topics: overview of titan-2 design; titan-2 fusion-power-core engineering; titan-2 divertor engineering; titan-2 tritium systems; titan-2 safety design and radioactive-waste disposal; and titan-2 maintenance procedures

  19. The TITAN reversed-field-pinch fusion reactor study

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report discusses the following topics: overview of titan-2 design; titan-2 fusion-power-core engineering; titan-2 divertor engineering; titan-2 tritium systems; titan-2 safety design and radioactive-waste disposal; and titan-2 maintenance procedures.

  20. Development of PZT Actuated Valveless Micropump

    Directory of Open Access Journals (Sweden)

    Fathima Rehana Munas

    2018-04-01

    Full Text Available A piezoelectrically actuated valveless micropump has been designed and developed. The principle components of this system are piezoelectrically actuated (PZT metal diaphragms and a complete fluid flow system. The design of this pump mainly focuses on a cross junction, which is generated by a nozzle jet attached to a pump chamber and the intersection of two inlet channels and an outlet channel respectively. During each PZT diaphragm vibration cycle, the junction connecting the inlet and outlet channels with the nozzle jet permits consistencies in fluidic momentum and resistances in order to facilitate complete fluidic path throughout the system, in the absence of any physical valves. The entire micropump structure is fabricated as a plate-by-plate element of polymethyl methacrylate (PMMA sheets and sandwiched to get required fluidic network as well as the overall device. In order to identify the flow characteristics, and to validate the test results with numerical simulation data, FEM analysis using ANSYS was carried out and an eigenfrequency analysis was performed to the PZT diaphragm using COMSOL Multiphysics. In addition, the control system of the pump was designed and developed to change the applied frequency to the piezoelectric diaphragms. The experimental data revealed that the maximum flow rate is 31.15 mL/min at a frequency of 100 Hz. Our proposed design is not only for a specific application but also useful in a wide range of biomedical applications.

  1. Development of PZT Actuated Valveless Micropump.

    Science.gov (United States)

    Munas, Fathima Rehana; Melroy, Gehan; Abeynayake, Chamitha Bhagya; Chathuranga, Hiniduma Liyanage; Amarasinghe, Ranjith; Kumarage, Pubudu; Dau, Van Thanh; Dao, Dzung Viet

    2018-04-24

    A piezoelectrically actuated valveless micropump has been designed and developed. The principle components of this system are piezoelectrically actuated (PZT) metal diaphragms and a complete fluid flow system. The design of this pump mainly focuses on a cross junction, which is generated by a nozzle jet attached to a pump chamber and the intersection of two inlet channels and an outlet channel respectively. During each PZT diaphragm vibration cycle, the junction connecting the inlet and outlet channels with the nozzle jet permits consistencies in fluidic momentum and resistances in order to facilitate complete fluidic path throughout the system, in the absence of any physical valves. The entire micropump structure is fabricated as a plate-by-plate element of polymethyl methacrylate (PMMA) sheets and sandwiched to get required fluidic network as well as the overall device. In order to identify the flow characteristics, and to validate the test results with numerical simulation data, FEM analysis using ANSYS was carried out and an eigenfrequency analysis was performed to the PZT diaphragm using COMSOL Multiphysics. In addition, the control system of the pump was designed and developed to change the applied frequency to the piezoelectric diaphragms. The experimental data revealed that the maximum flow rate is 31.15 mL/min at a frequency of 100 Hz. Our proposed design is not only for a specific application but also useful in a wide range of biomedical applications.

  2. Adjustability of resonance frequency by external magnetic field and bias electric field of sandwich magnetoelectric PZT/NFO/PZT composites

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ling-Fang; Feng, Xing; Sun, Kang; Liang, Ze-Yu; Xu, Qian; Liang, Jia-Yu; Yang, Chang-Ping [Hubei University, Hubei Key Laboratory of Ferro and Piezoelectric Materials and Devices, Faculty of Physics and Electronic Science, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Wuhan (China)

    2017-07-15

    Sandwich magnetoelectric composites of PZT/NFO/PZT (PNP) have been prepared by laminating PZT5, NiFe{sub 2}O{sub 4}, and PZT5 ceramics in turn with polyvinyl alcohol (PVA) paste. A systematic study of structural, magnetic and ferroelectric properties is undertaken. Structural studies carried out by X-ray diffraction indicate formation of cubic perovskite phase of PZT5 ceramic and cubic spinel phase of NiFe{sub 2}O{sub 4} ceramic. As increasing the content of PZT5 phase, ferroelectric loops and magnetic loops of PNP composites showed increasing remnant electric polarizations and decreasing remnant magnetic moments separately. Both external magnetic fields and bias voltages could regulate the basal radial resonance frequency of the composites, which should be originated with the transformation and coupling of the stress between the piezoelectric phase and magnetostrictive phase. Such magnetoelectric composite provides great opportunities for electrostatically tunable devices. (orig.)

  3. Structure and functional properties of epitaxial PBZRxTI1-xO3 films

    NARCIS (Netherlands)

    Vergeer, Kurt

    2017-01-01

    The work described in this thesis is focused on the characterization and understanding of epitaxial, clamped, dense PbZrxTi1-xO3 (PZT) films. A thermodynamic model is developed, which is used to simulate properties of clamped PZT films throughout this work. The free energy equations for single- and

  4. Hydraulically amplified PZT mems actuator

    Science.gov (United States)

    Miles, Robin R.

    2004-11-02

    A hydraulically amplified microelectromechanical systems actuator. A piece of piezoelectric material or stacked piezo bimorph is bonded or deposited as a thin film. The piece is operatively connected to a primary membrane. A reservoir is operatively connected to the primary membrane. The reservoir contains a fluid. A membrane is operatively connected to the reservoir. In operation, energizing the piezoelectric material causing the piezoelectric material to bow. Bowing of the piezoelectric material causes movement of the primary membrane. Movement of the primary membrane results in a force in being transmitted to the liquid in the reservoir. The force in the liquid causes movement of the membrane. Movement of the membrane results in an operating actuator.

  5. Characterization of highly (110)- and (111)-oriented Pb(Zr,Ti)O3 films on BaPbO3 electrode using Ru conducting barrier

    International Nuclear Information System (INIS)

    Liang, C.-S.; Wu, J.-M.

    2005-01-01

    Highly non-(001)-oriented Pb(Zr,Ti)O 3 (PZT) films have been fabricated by rf-magnetron sputtering. The preferential (110)-oriented BaPbO 3 (BPO) deposited on Ru buffer layer induces the growth of (110)-oriented PZT film. With the aid of self-organized growth of PZT, the orientation of the film deposited on random-oriented BPO/Pt(111)/Ru(002) is (111)-preferred. The insertion of Pt layer between BPO and Ru changes the orientation of PZT from (110) to (111) and prevents the oxygen diffusion. These non-(001)-oriented PZT films possess more superior ferroelectric, fatigue, and retention properties than those of (001)-oriented PZT films

  6. Fatigue and failure responses of lead zirconate titanate multilayer actuator under unipolar high-field electric cycling

    Science.gov (United States)

    Zeng, Fan Wen; Wang, Hong; Lin, Hua-Tay

    2013-07-01

    Lead zirconate titanate (PZT) multilayer actuators with an interdigital electrode design were studied under high electric fields (3 and 6 kV/mm) in a unipolar cycling mode. A 100 Hz sine wave was used in cycling. Five specimens tested under 6 kV/mm failed from 3.8 × 105 to 7 × 105 cycles, whereas three other specimens tested under 3 kV/mm were found to be still functional after 108 cycles. Variations in piezoelectric and dielectric responses of the tested specimens were observed during the fatigue test, depending on the measuring and cycling conditions. Selected fatigued and damaged actuators were characterized using an impedance analyzer or small signal measurement. Furthermore, involved fatigue and failure mechanisms were investigated using scanning acoustic microscope and scanning electron microscope. The extensive cracks and porous regions were revealed across the PZT layers on the cross sections of a failed actuator. The results from this study have demonstrated that the high-field cycling can accelerate the fatigue of PZT stacks as long as the partial discharge is controlled. The small signal measurement can also be integrated into the large signal measurement to characterize the fatigue response of PZT stacks in a more comprehensive basis. The former can further serve as an experimental method to test and monitor the behavior of PZT stacks.

  7. Structural and electrical properties of Nd ion modified lead zirconate titanate nanopowders and ceramics

    International Nuclear Information System (INIS)

    Da-Wei, Wang; De-Qing, Zhang; Quan-Liang, Zhao; Hong-Mei, Liu; Zhi-Ying, Wang; Mao-Sheng, Cao; Jie, Yuan

    2009-01-01

    A modified sol-gel method is used for synthesizing Nd ion doped lead zirconate titanate nanopowders Pb 1–3x/2 Nd x Zr 0.52 Ti 0.48 O 3 (PNZT) in an ethylene glycol system with zirconium nitrate as zirconium source. The results show that it is critical to add lead acetate after the reaction of zirconium nitrate with tetrabutyl titanate in the ethylene glycol system for preparing PNZT with an exact fraction of titanium content. It has been observed that the dopant of excess Nd ions can effectively improve the sintered densification and activity of the PNZT ceramics. Piezoelectric, dielectric and ferroelectric properties of the PNZT ceramics are remarkably enhanced as compared with those of monolithic lead zirconate titanate (PZT). Especially, the supreme values of piezoelectric constant (d 33 ) and dielectric constant ( element of ) for the PNZT are both about two times that of the monolithic PZT and moreover, the remnant polarization (P r ) also increases by 30%. According to the analysis of the structures and properties, we attribute the improvement in electrical properties to the lead vacancies caused by the doping of Nd ions

  8. Titan Polar Landscape Evolution

    Science.gov (United States)

    Moore, Jeffrey M.

    2016-01-01

    With the ongoing Cassini-era observations and studies of Titan it is clear that the intensity and distribution of surface processes (particularly fluvial erosion by methane and Aeolian transport) has changed through time. Currently however, alternate hypotheses substantially differ among specific scenarios with respect to the effects of atmospheric evolution, seasonal changes, and endogenic processes. We have studied the evolution of Titan's polar region through a combination of analysis of imaging, elevation data, and geomorphic mapping, spatially explicit simulations of landform evolution, and quantitative comparison of the simulated landscapes with corresponding Titan morphology. We have quantitatively evaluated alternate scenarios for the landform evolution of Titan's polar terrain. The investigations have been guided by recent geomorphic mapping and topographic characterization of the polar regions that are used to frame hypotheses of process interactions, which have been evaluated using simulation modeling. Topographic information about Titan's polar region is be based on SAR-Topography and altimetry archived on PDS, SAR-based stereo radar-grammetry, radar-sounding lake depth measurements, and superposition relationships between geomorphologic map units, which we will use to create a generalized topographic map.

  9. Titan Orbiter Aerorover Mission

    Science.gov (United States)

    Sittler Jr., E. C.; Acuna, M.; Burchell, M. J.; Coates, A.; Farrell, W.; Flasar, M.; Goldstein, B. E.; Gorevan, S.; Hartle, R. E.; Johnson, W. T. K.

    2001-01-01

    We propose a combined Titan orbiter and Titan Aerorover mission with an emphasis on both in situ and remote sensing measurements of Titan's surface, atmosphere, ionosphere, and magnetospheric interaction. The biological aspect of the Titan environment will be emphasized by the mission (i.e., search for organic materials which may include simple organics to 'amono' analogues of amino acids and possibly more complex, lightening detection and infrared, ultraviolet, and charged particle interactions with Titan's surface and atmosphere). An international mission is assumed to control costs. NASA will provide the orbiter, launch vehicle, DSN coverage and operations, while international partners will provide the Aerorover and up to 30% of the cost for the scientific instruments through collaborative efforts. To further reduce costs we propose a single PI for orbiter science instruments and a single PI for Aerorover science instruments. This approach will provide single command/data and power interface between spacecraft and orbiter instruments that will have redundant central DPU and power converter for their instruments. A similar approach could be used for the Aerorover. The mission profile will be constructed to minimize conflicts between Aerorover science, orbiter radar science, orbiter radio science, orbiter imaging science, and orbiter fields and particles (FP) science. Additional information is contained in the original extended abstract.

  10. Comparison of effective transverse piezoelectric coefficients e31,f of Pb(Zr,Ti)O3 thin films between direct and converse piezoelectric effects

    Science.gov (United States)

    Tsujiura, Yuichi; Kawabe, Saneyuki; Kurokawa, Fumiya; Hida, Hirotaka; Kanno, Isaku

    2015-10-01

    We evaluated the effective transverse piezoelectric coefficients (e31,f) of Pb(Zr,Ti)O3 (PZT) thin films from both the direct and converse piezoelectric effects of unimorph cantilevers. (001) preferentially oriented polycrystalline PZT thin films and (001)/(100) epitaxial PZT thin films were deposited on (111)Pt/Ti/Si and (001)Pt/MgO substrates, respectively, by rf-magnetron sputtering, and their piezoelectric responses owing to intrinsic and extrinsic effects were examined. The direct and converse |e31,f| values of the polycrystalline PZT thin films were calculated as 6.4 and 11.5-15.0 C/m2, respectively, whereas those of the epitaxial PZT thin films were calculated as 3.4 and 4.6-4.8 C/m2, respectively. The large |e31,f| of the converse piezoelectric property of the polycrystalline PZT thin films is attributed to extrinsic piezoelectric effects. Furthermore, the polycrystalline PZT thin films show a clear nonlinear piezoelectric contribution, which is the same as the Rayleigh-like behavior reported in bulk PZT. In contrast, the epitaxial PZT thin films on the MgO substrate show a piezoelectric response owing to the intrinsic and linear extrinsic effects, and no nonlinear contribution was observed.

  11. PZT-5A4/PA and PZT-5A4/PDMS piezoelectric composite bimorphs

    International Nuclear Information System (INIS)

    Babu, I; Hendrix, M M R M; De With, G

    2014-01-01

    Disc type reinforced piezoelectric composite bimorphs with series connection were designed and the performance was investigated. The composite bimorphs (PZT/PA and PZT/PDMS (40/60 vol%)) were successfully fabricated by a compression molding and solution casting technique. The charge developed at an applied force of 150 N is 18150 pC (PZT/PA) and 2310 pC (PZT/PDMS), respectively. Electric force microscopy (EFM) is used to study the structural characterization and piezoelectric properties of the materials realized. A clear inverse piezoelectric effect was observed when the bimorphs were subjected to an electric field stepped up through 2, 6 and 10 V, indicating the net polarization direction of the different ferroelectric domains. The as-developed bimorphs have the basic structure of a sensor and actuator, and, since they do not use any bonding agent for bonding, they can provide a valuable alternative to the present bimorphs where bonding processes are required for their realization that can limit their application at high temperature. (paper)

  12. Fatigue responses of lead zirconate titanate stacks under semibipolar electric cycling with mechanical preload

    Science.gov (United States)

    Wang, Hong; Cooper, Thomas A.; Lin, Hua-Tay; Wereszczak, Andrew A.

    2010-10-01

    Lead zirconate titanate (PZT) stacks that had an interdigital internal electrode configuration were tested to more than 108 cycles. A 100 Hz semibipolar sine wave with a field range of +4.5/-0.9 kV/mm was used in cycling with a concurrently-applied 20 MPa preload. Significant reductions in piezoelectric and dielectric responses were observed during the cycling depending on the measuring condition. Extensive partial discharges were also observed. These surface events resulted in the erosion of external electrode and the exposure of internal electrodes. Sections prepared by sequential polishing technique revealed a variety of damage mechanisms including delaminations, pores, and etch grooves. The scale of damage was correlated with the degree of fatigue-induced reduction in piezoelectric and dielectric responses. The results from this study demonstrate the feasibility of using a semibipolar mode to drive a PZT stack under a mechanical preload and illustrate the potential fatigue and damages of the stack in service.

  13. Research on output signal of piezoelectric lead zirconate titanate detector using Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Takechi, Seiji, E-mail: takechi@elec.eng.osaka-cu.ac.jp [Graduate School of Engineering, Osaka City University, Osaka 558-8585 (Japan); Mitsuhashi, Tomoaki; Miura, Yoshinori [Graduate School of Engineering, Osaka City University, Osaka 558-8585 (Japan); Miyachi, Takashi; Kobayashi, Masanori; Okudaira, Osamu [Planetary Exploration Research Center, Chiba Institute of Technology, Narashino, Chiba 275-0016 (Japan); Shibata, Hiromi [The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Fujii, Masayuki [Famscience Co., Ltd., Tsukubamirai, Ibaraki 300-2435 (Japan); Okada, Nagaya [Honda Electronics Co., Ltd., Toyohashi, Aichi 441-3193 (Japan); Murakami, Takeshi; Uchihori, Yukio [National Institute of Radiological Sciences, Chiba 263-8555 (Japan)

    2017-06-21

    The response of a radiation detector fabricated from piezoelectric lead zirconate titanate (PZT) was studied. The response signal due to a single 400 MeV/n xenon (Xe) ion was assumed to have a simple form that was composed of two variables, the amplitude and time constant. These variables were estimated by comparing two output waveforms obtained from a computer simulation and an experiment on Xe beam irradiation. Their values appeared to be dependent on the beam intensity. - Highlights: • The performance of PZT detector was studied by irradiation of a 400 MeV/n Xe beam. • Monte Carlo simulation was used to examine the formation process of the output. • The response signal due to a single Xe ion was assumed to have a simple form. • The form was composed of two variables, the amplitude and time constant. • These variables appeared to be dependent on the beam intensity.

  14. Surface bond contraction and its effect on the nanometric sized lead zirconate titanate

    International Nuclear Information System (INIS)

    Haitao Huang; Sun, Chang Q.; Hing, Peter

    2000-01-01

    The grain size effect of lead zirconate titanate PbZr 1-x Ti x O 3 (PZT, x≥0.6) caused by surface bond contraction has been investigated by using the Landau-Ginsburg-Devonshire (LGD) phenomenological theory. It has been shown that, due to the surface bond contraction, both the Curie temperature and the spontaneous polarization of tetragonal PZT decrease with decreasing grain size. These effects become more significant when the grain size is in the nanometre range. A dielectric anomaly appears with decreasing grain size, which corresponds to a size dependent phase transformation. The ferroelectric critical size below which a loss of ferroelectricity will happen is estimated from the results obtained. (author). Letter-to-the-editor

  15. The tides of Titan.

    Science.gov (United States)

    Iess, Luciano; Jacobson, Robert A; Ducci, Marco; Stevenson, David J; Lunine, Jonathan I; Armstrong, John W; Asmar, Sami W; Racioppa, Paolo; Rappaport, Nicole J; Tortora, Paolo

    2012-07-27

    We have detected in Cassini spacecraft data the signature of the periodic tidal stresses within Titan, driven by the eccentricity (e = 0.028) of its 16-day orbit around Saturn. Precise measurements of the acceleration of Cassini during six close flybys between 2006 and 2011 have revealed that Titan responds to the variable tidal field exerted by Saturn with periodic changes of its quadrupole gravity, at about 4% of the static value. Two independent determinations of the corresponding degree-2 Love number yield k(2) = 0.589 ± 0.150 and k(2) = 0.637 ± 0.224 (2σ). Such a large response to the tidal field requires that Titan's interior be deformable over time scales of the orbital period, in a way that is consistent with a global ocean at depth.

  16. Diurnal variations of Titan

    Science.gov (United States)

    Cui, J.; Galand, M.; Yelle, R. V.; Vuitton, V.; Wahlund, J.-E.; Lavvas, P. P.; Mueller-Wodarg, I. C. F.; Kasprzak, W. T.; Waite, J. H.

    2009-04-01

    We present our analysis of the diurnal variations of Titan's ionosphere (between 1,000 and 1,400 km) based on a sample of Ion Neutral Mass Spectrometer (INMS) measurements in the Open Source Ion (OSI) mode obtained from 8 close encounters of the Cassini spacecraft with Titan. Though there is an overall ion depletion well beyond the terminator, the ion content on Titan's nightside is still appreciable, with a density plateau of ~700 cm-3 below ~1,300 km. Such a plateau is associated with the combination of distinct diurnal variations of light and heavy ions. Light ions (e.g. CH5+, HCNH+, C2H5+) show strong diurnal variation, with clear bite-outs in their nightside distributions. In contrast, heavy ions (e.g. c-C3H3+, C2H3CNH+, C6H7+) present modest diurnal variation, with significant densities observed on the nightside. We propose that the distinctions between light and heavy ions are associated with their different chemical loss pathways, with the former primarily through "fast" ion-neutral chemistry and the latter through "slow" electron dissociative recombination. The INMS data suggest day-to-night transport as an important source of ions on Titan's nightside, to be distinguished from the conventional scenario of auroral ionization by magnetospheric particles as the only ionizing source on the nightside. This is supported by the strong correlation between the observed night-to-day ion density ratios and the associated ion lifetimes. We construct a time-dependent ion chemistry model to investigate the effects of day-to-night transport on the ionospheric structures of Titan. The predicted diurnal variation has similar general characteristics to those observed, with some apparent discrepancies which could be reconciled by imposing fast horizontal thermal winds in Titan's upper atmosphere.

  17. Electrical and ferroelectric properties of RF sputtered PZT/SBN on silicon for non-volatile memory applications

    Science.gov (United States)

    Singh, Prashant; Jha, Rajesh Kumar; Singh, Rajat Kumar; Singh, B. R.

    2018-02-01

    We report the integration of multilayer ferroelectric film deposited by RF magnetron sputtering and explore the electrical characteristics for its application as the gate of ferroelectric field effect transistor for non-volatile memories. PZT (Pb[Zr0.35Ti0.65]O3) and SBN (SrBi2Nb2O9) ferroelectric materials were selected for the stack fabrication due to their large polarization and fatigue free properties respectively. Electrical characterization has been carried out to obtain memory window, leakage current density, PUND and endurance characteristics. Fabricated multilayer ferroelectric film capacitor structure shows large memory window of 17.73 V and leakage current density of the order 10-6 A cm-2 for the voltage sweep of -30 to +30 V. This multilayer gate stack of PZT/SBN shows promising endurance property with no degradation in the remnant polarization for the read/write iteration cycles upto 108.

  18. Electrical Impedance Measurements of PZT Nanofiber Sensors

    Directory of Open Access Journals (Sweden)

    Richard Galos

    2017-01-01

    Full Text Available Electrical impedance measurements of PZT nanofiber sensors were performed using a variety of methods over a frequency spectrum ranging from DC to 1.8 GHz. The nanofibers formed by electrospinning with diameters ranging from 10 to 150 nm were collected and integrated into sensors using microfabrication techniques. Special matching circuits with ultrahigh input impedance were fabricated to produce low noise, measurable sensor outputs. Material properties including resistivity and dielectric constant are derived from the impedance measurements. The resulting material properties are also compared with those of individual nanofibers being tested using conductive AFM and Scanning Conductive Microscopy.

  19. Optimization of Strontium Titanate (SrTiO3) Thin Films Fabricated by Metal Organic Chemical Vapor Deposition (MOCVD) for Microwave-Tunable Devices

    Science.gov (United States)

    2015-12-01

    characteristics . Our work demonstrated a significant increase in the quality of the optimized STO thin films with respect to STO films grown prior to the MOCVD...deposition, the reactor and precursor supply lines were baked at 250 °C for at least 4 h with a total Ar carrier gas flow of 5,000 sccm to remove...S. Thermal leakage characteristics of Pt/SrTiO3/Pt structures. Journal of Vacuum Science & Technology A. 2008;26:555–557. 31. Ryen L, Olsson E

  20. Pulsed laser deposited Pb(Zr,Ti)O3 thin films with excellent piezoelectric and mechanical properties

    NARCIS (Netherlands)

    Nazeer, H.; Nguyen, Duc Minh; Rijnders, Augustinus J.H.M.; Woldering, L.A.; Abelmann, Leon; Elwenspoek, Michael Curt

    We present for the first time the combined measured piezoelectric and mechanical properties of epitaxial, (110) oriented Pb(ZrxTi1-x) (PZT) thin films grown on microfabricated silicon cantilevers using pulsed laser deposition (PLD, x=0.4, 0.52, 0.6 and 0.8). The grown PZT thin films develop a strong