WorldWideScience

Sample records for tissue-specific target analysis

  1. Large-Scale Cognitive GWAS Meta-Analysis Reveals Tissue-Specific Neural Expression and Potential Nootropic Drug Targets

    Directory of Open Access Journals (Sweden)

    Max Lam

    2017-11-01

    Full Text Available Here, we present a large (n = 107,207 genome-wide association study (GWAS of general cognitive ability (“g”, further enhanced by combining results with a large-scale GWAS of educational attainment. We identified 70 independent genomic loci associated with general cognitive ability. Results showed significant enrichment for genes causing Mendelian disorders with an intellectual disability phenotype. Competitive pathway analysis implicated the biological processes of neurogenesis and synaptic regulation, as well as the gene targets of two pharmacologic agents: cinnarizine, a T-type calcium channel blocker, and LY97241, a potassium channel inhibitor. Transcriptome-wide and epigenome-wide analysis revealed that the implicated loci were enriched for genes expressed across all brain regions (most strongly in the cerebellum. Enrichment was exclusive to genes expressed in neurons but not oligodendrocytes or astrocytes. Finally, we report genetic correlations between cognitive ability and disparate phenotypes including psychiatric disorders, several autoimmune disorders, longevity, and maternal age at first birth.

  2. Large-Scale Cognitive GWAS Meta-Analysis Reveals Tissue-Specific Neural Expression and Potential Nootropic Drug Targets

    OpenAIRE

    Lam, Max; Trampush, Joey W; Yu, Jin; Knowles, Emma; Davies, Gail; Liewald, David C; Starr, John M; Djurovic, Srdjan; Melle, Ingrid; Sundet, Kjetil; Christoforou, Andrea; Reinvang, Ivar; DeRosse, Pamela; Lundervold, Astri J; Steen, Vidar M

    2017-01-01

    Here, we present a large (n = 107,207) genome-wide association study (GWAS) of general cognitive ability ("g"), further enhanced by combining results with a large-scale GWAS of educational attainment. We identified 70 independent genomic loci associated with general cognitive ability. Results showed significant enrichment for genes causing Mendelian disorders with an intellectual disability phenotype. Competitive pathway analysis implicated the biological processes of neurogenesis and synapti...

  3. The reconstruction and analysis of tissue specific human metabolic networks.

    Science.gov (United States)

    Hao, Tong; Ma, Hong-Wu; Zhao, Xue-Ming; Goryanin, Igor

    2012-02-01

    Human tissues have distinct biological functions. Many proteins/enzymes are known to be expressed only in specific tissues and therefore the metabolic networks in various tissues are different. Though high quality global human metabolic networks and metabolic networks for certain tissues such as liver have already been studied, a systematic study of tissue specific metabolic networks for all main tissues is still missing. In this work, we reconstruct the tissue specific metabolic networks for 15 main tissues in human based on the previously reconstructed Edinburgh Human Metabolic Network (EHMN). The tissue information is firstly obtained for enzymes from Human Protein Reference Database (HPRD) and UniprotKB databases and transfers to reactions through the enzyme-reaction relationships in EHMN. As our knowledge of tissue distribution of proteins is still very limited, we replenish the tissue information of the metabolic network based on network connectivity analysis and thorough examination of the literature. Finally, about 80% of proteins and reactions in EHMN are determined to be in at least one of the 15 tissues. To validate the quality of the tissue specific network, the brain specific metabolic network is taken as an example for functional module analysis and the results reveal that the function of the brain metabolic network is closely related with its function as the centre of the human nervous system. The tissue specific human metabolic networks are available at .

  4. Tissue-Specific Posttranslational Modification Allows Functional Targeting of Thyrotropin

    Directory of Open Access Journals (Sweden)

    Keisuke Ikegami

    2014-11-01

    Full Text Available Thyroid-stimulating hormone (TSH; thyrotropin is a glycoprotein secreted from the pituitary gland. Pars distalis-derived TSH (PD-TSH stimulates the thyroid gland to produce thyroid hormones (THs, whereas pars tuberalis-derived TSH (PT-TSH acts on the hypothalamus to regulate seasonal physiology and behavior. However, it had not been clear how these two TSHs avoid functional crosstalk. Here, we show that this regulation is mediated by tissue-specific glycosylation. Although PT-TSH is released into the circulation, it does not stimulate the thyroid gland. PD-TSH is known to have sulfated biantennary N-glycans, and sulfated TSH is rapidly metabolized in the liver. In contrast, PT-TSH has sialylated multibranched N-glycans; in the circulation, it forms the macro-TSH complex with immunoglobulin or albumin, resulting in the loss of its bioactivity. Glycosylation is fundamental to a wide range of biological processes. This report demonstrates its involvement in preventing functional crosstalk of signaling molecules in the body.

  5. A comprehensive functional analysis of tissue specificity of human gene expression

    Directory of Open Access Journals (Sweden)

    Guryanov Alexey

    2008-11-01

    Full Text Available Abstract Background In recent years, the maturation of microarray technology has allowed the genome-wide analysis of gene expression patterns to identify tissue-specific and ubiquitously expressed ('housekeeping' genes. We have performed a functional and topological analysis of housekeeping and tissue-specific networks to identify universally necessary biological processes, and those unique to or characteristic of particular tissues. Results We measured whole genome expression in 31 human tissues, identifying 2374 housekeeping genes expressed in all tissues, and genes uniquely expressed in each tissue. Comprehensive functional analysis showed that the housekeeping set is substantially larger than previously thought, and is enriched with vital processes such as oxidative phosphorylation, ubiquitin-dependent proteolysis, translation and energy metabolism. Network topology of the housekeeping network was characterized by higher connectivity and shorter paths between the proteins than the global network. Ontology enrichment scoring and network topology of tissue-specific genes were consistent with each tissue's function and expression patterns clustered together in accordance with tissue origin. Tissue-specific genes were twice as likely as housekeeping genes to be drug targets, allowing the identification of tissue 'signature networks' that will facilitate the discovery of new therapeutic targets and biomarkers of tissue-targeted diseases. Conclusion A comprehensive functional analysis of housekeeping and tissue-specific genes showed that the biological function of housekeeping and tissue-specific genes was consistent with tissue origin. Network analysis revealed that tissue-specific networks have distinct network properties related to each tissue's function. Tissue 'signature networks' promise to be a rich source of targets and biomarkers for disease treatment and diagnosis.

  6. Targeting tissue-specific metabolic signaling pathways in aging: the promise and limitations.

    Science.gov (United States)

    Hu, Fang; Liu, Feng

    2014-01-01

    It has been well established that most of the age-related diseases such as insulin resistance, type 2 diabetes, hypertension, cardiovascular disease, osteoporosis, and atherosclerosis are all closely related to metabolic dysfunction. On the other hand, interventions on metabolism such as calorie restriction or genetic manipulations of key metabolic signaling pathways such as the insulin and mTOR signaling pathways slow down the aging process and improve healthy aging. These findings raise an important question as to whether improving energy homeostasis by targeting certain metabolic signaling pathways in specific tissues could be an effective anti-aging strategy. With a more comprehensive understanding of the tissue-specific roles of distinct metabolic signaling pathways controlling energy homeostasis and the cross-talks between these pathways during aging may lead to the development of more effective therapeutic interventions not only for metabolic dysfunction but also for aging.

  7. Tissue-Specific Transcriptome Analysis Reveals Multiple Responses to Salt Stress in Populus euphratica Seedlings

    Directory of Open Access Journals (Sweden)

    Le Yu

    2017-12-01

    Full Text Available Salt stress is one of the most crucial factors impacting plant growth, development and reproduction. However, information regarding differences in tissue-specific gene expression patterns, which may improve a plant’s tolerance to salt stress, is limited. Here, we investigated the gene expression patterns in tissues of Populus euphratica Oliv. seedlings using RNA sequencing (RNA-Seq technology. A total of 109.3 million, 125bp paired-end clean reads were generated, and 6428, 4797, 2335 and 3358 differentially expressed genes (DEGs were identified in leaf, phloem, xylem and root tissues, respectively. While the tissue-specific DEGs under salt stress had diverse functions, “membrane transporter activity” was the most significant leaf function, whereas “oxidation–reduction process” was the most significant function in root tissue. Further analysis of the tissue-specific DEGs showed that the expression patterns or functions of gene families, such as SOS, NHX, GolS, GPX, APX, RBOHF and CBL, were diverse, suggesting that calcium signaling, reactive oxygen species (ROS and salt overly sensitive (SOS pathways are all involved in ionic homeostasis in tissues from P. euphratica seedlings. The DEGs, for example the up-regulated antioxidant genes, contribute to ROS-scavenging induced by salt stress but result in decreased Na+ concentrations in root vasculature cells and in xylem sap, while the down-regulated rbohF leads to the reverse results. These results suggest that the divergence of DEGs expression patterns contribute to maintenance of ionic and ROS homeostasis in tissues and improve plant salinity tolerance. We comprehensively analyzed the response of P. euphratica seedlings to salt stress and provide helpful genetic resources for studying plant-abiotic stress interactions.

  8. Liver-targeting of interferon-alpha with tissue-specific domain antibodies.

    Directory of Open Access Journals (Sweden)

    Edward Coulstock

    Full Text Available Interferon alpha (IFNα is used for the treatment of hepatitis C infection and whilst efficacious it is associated with multiple adverse events including reduced leukocyte, erythrocyte, and platelet counts, fatigue, and depression. These events are most likely caused by systemic exposure to interferon. We therefore hypothesise that targeting the therapeutic directly to the intended site of action in the liver would reduce exposure in blood and peripheral tissue and hence improve the safety and tolerability of IFNα therapy. We genetically fused IFN to a domain antibody (dAb specific to a hepatocyte restricted antigen, asialoglycoprotein receptor (ASGPR. Our results show that the murine IFNα2 homolog (mIFNα2 fused to an ASGPR specific dAb, termed DOM26h-196-61, could be expressed in mammalian tissue culture systems and retains the desirable biophysical properties and activity of both fusion partners when measured in vitro. Furthermore a clear increase in in vivo targeting of the liver by mIFNα2-ASGPR dAb fusion protein, compared to that observed with either unfused mIFNα2 or mIFNα2 fused to an isotype control dAb VHD2 (which does not bind ASGPR was demonstrated using microSPECT imaging. We suggest that these findings may be applicable in the development of a liver-targeted human IFN molecule with improved safety and patient compliance in comparison to the current standard of care, which could ultimately be used as a treatment for human hepatitis virus infections.

  9. De novo assembly and analysis of tissue-specific transcriptomes revealed the tissue-specific genes and profile of immunity from Strongylocentrotus intermedius.

    Science.gov (United States)

    Chen, Yadong; Chang, Yaqing; Wang, Xiuli; Qiu, Xuemei; Liu, Yang

    2015-10-01

    Strongylocentrotus intermedius is an important marine species in north China and Japan. Recent years, diseases are threating the sea urchin aquaculture industry seriously. To provide a genetic resource for S. intermedius as well as overview the immune-related genes of S. intermedius, we performed transcriptome sequencing of three cDNA libraries representing three tissues, coelomocytes, gut and peristomial membrane respectively. In total 138,421 contigs were assembled from all sequencing data. 96,764 contigs were annotated according to bioinformatics databases, including NT, nr, Swiss-Prot, KEGG, COG. 49,336 Contigs were annotated as CDS. In this study, we obtained 24,778 gene families from S. intermedius transcriptome. The gene expression analysis revealed that more genes were expressed in gut, more high expression level genes in coelomocytes when compared with other tissues. Specific expressed contigs in coelomocytes, gut, and peristomial membrane were 546, 1136, and 1012 respectively. Pathway analysis suggested 25, 17 and 36 potential specifically pathways may specific progressed in peristomial membrane, gut and coelomocytes respectively. Similarities and differences between S. intermedius and other echinoderms were analyzed. S. intermedius was more homology to Strongylocentrotus purpuratus than others sea urchin. Of 24,778 genes, 1074 genes are immune-related, immune genes were expressed with a higher level in coelomocytes than other tissues. Complement system may be the most important immune system in sea urchin. We also identified 2438 SSRs and 16,236 SNPs for S. intermedius. These results provide a transcriptome resource and foundation to study molecular mechanisms of sea urchin immune system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. α-Fetoprotein promoter-driven Cre/LoxP-switched RNA interference for hepatocellular carcinoma tissue-specific target therapy.

    Directory of Open Access Journals (Sweden)

    Yuan-Fei Peng

    Full Text Available RNA interference (RNAi has recently emerged as a potential treatment modality for hepatocellular carcinoma (HCC therapy, but the lack of cellular targets and sustained efficacy limits its application. The purpose of this study is to develop an HCC tissue-specific RNAi system and investigate its possibility for HCC treatment.Two different HCC-specific RNAi systems in which therapeutic miRNA or shRNA against target gene (Beclin 1 was directly or indirectly driven by alpha-fetoprotein promoter (AFP-miRNA and AFP-Cre/LoxP-shRNA were constructed. Human HCC cell lines (HepG2, Hep3B and HCCLM3 and non-HCC cell lines (L-02, Hela and SW1116 were infected with the systems. The effectiveness and tissue-specificity of the systems were examined by Q-PCR and western blot analysis. The efficacy of the systems was further tested in mouse model of HCC by intravenous or intratumoral administration. The feasibility of the system for HCC treatment was evaluated by applying the system as adjuvant therapy to enhance sorafenib treatment. An AFP-Cre/LoxP-shRNA system targeting Atg5 gene (AFP-Cre/LoxP-shRNA-Atg5 was constructed and its efficacy in sensitizing HCC cells (MHCC97L/PLC to sorafenib treatment was examined by apoptosis assay in vitro and tumorigenesis assay in vivo.The AFP-miRNA system could silence target gene (Beclin 1 but required a high titer which was lethal to target cells. The AFP-Cre/LoxP-shRNA system could efficiently knockdown target gene while maintain high HCC specificity. Intratumoral injection of the AFP-Cre/LoxP-shRNA system could efficiently silence target gene (Beclin 1 in vivo while intravenous administration could not. The AFP-Cre/LoxP-shRNA system target Atg5 gene could significantly sensitize MHCC97L/PLC cells to sorafenib-induced apoptosis in vitro and tumor growth suppression in vivo.An efficient HCC tissue-specific RNAi system (AFP-Cre/LoxP-shRNA was successfully established. The system provides a usable tool for HCC-specific RNAi

  11. Gene Electrotransfer of Plasmid with Tissue Specific Promoter Encoding shRNA against Endoglin Exerts Antitumor Efficacy against Murine TS/A Tumors by Vascular Targeted Effects.

    Directory of Open Access Journals (Sweden)

    Monika Stimac

    Full Text Available Vascular targeted therapies, targeting specific endothelial cell markers, are promising approaches for the treatment of cancer. One of the targets is endoglin, transforming growth factor-β (TGF-β co-receptor, which mediates proliferation, differentiation and migration of endothelial cells forming neovasculature. However, its specific, safe and long-lasting targeting remains the challenge. Therefore, in our study we evaluated the transfection efficacy, vascular targeted effects and therapeutic potential of the plasmid silencing endoglin with the tissue specific promoter, specific for endothelial cells marker endothelin-1 (ET (TS plasmid, in comparison to the plasmid with constitutive promoter (CON plasmid, in vitro and in vivo. Tissue specificity of TS plasmid was demonstrated in vitro on several cell lines, and its antiangiogenic efficacy was demonstrated by reducing tube formation of 2H11 endothelial cells. In vivo, on a murine mammary TS/A tumor model, we demonstrated good antitumor effect of gene electrotransfer (GET of either of both plasmids in treatment of smaller tumors still in avascular phase of growth, as well as on bigger tumors, already well vascularized. In support to the observations on predominantly vascular targeted effects of endoglin, histological analysis has demonstrated an increase in necrosis and a decrease in the number of blood vessels in therapeutic groups. A significant antitumor effect was observed in tumors in avascular and vascular phase of growth, possibly due to both, the antiangiogenic and the vascular disrupting effect. Furthermore, the study indicates on the potential use of TS plasmid in cancer gene therapy since the same efficacy as of CON plasmid was determined.

  12. New Therapeutic and Diagnostic Opportunities for Injured Tissue-Specific Targeting of Complement Inhibitors and Imaging Modalities

    Science.gov (United States)

    Holers, V. Michael; Tomlinson, Stephen; Kulik, Liudmila; Atkinson, Carl; Rohrer, Bärbel; Banda, Nirmal; Thurman, Joshua M.

    2016-01-01

    Despite substantial opportunity and commercial interest in developing drugs that modulate the complement system in a broad range of non-orphan indications, several obstacles remain to be overcome. Among these issues is the biophysical nature of complement proteins, whose circulating levels are typically very high and whose turnover rates are relatively rapid, especially in the setting of chronic inflammatory conditions. This situation necessitates the use of very high levels of therapeutic compounds in order to achieve both multi-pathway and multiple effector mechanism inhibition. In addition, one must avoid infectious complications or the systemic impairment of the other important physiological functions of complement. Herein we focus on the development of a novel therapeutic strategy based on injured tissue-specific targeting of complement inhibitors using the antigen-combining domains of a small subset of natural IgM antibodies, which as endogenous antibodies specifically recognize sites of local damage across a broad range of tissues and locally activate complement C3, resulting in C3 fragment covalent fixation. Because the use of such recombinant tissue-targeting inhibitors precludes the utility of measuring systemic levels of complement biomarkers or function, since a goal of this targeting strategy is to leave those processes intact and unimpeded, we also briefly describe a new method designed to quantitatively measure using imaging modalities the inhibition of generation of fixed C3 fragments at sites of inflammation/injury. In addition to the ability to determine whether complement activation is locally constrained with the use of inhibitors, there is also a broader application of this imaging approach to inflammatory and autoimmune diseases characterized by local complement activation. PMID:27282113

  13. A tissue-specific approach to the analysis of metabolic changes in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Jürgen Hench

    Full Text Available The majority of metabolic principles are evolutionarily conserved from nematodes to humans. Caenorhabditis elegans has widely accelerated the discovery of new genes important to maintain organismic metabolic homeostasis. Various methods exist to assess the metabolic state in worms, yet they often require large animal numbers and tend to be performed as bulk analyses of whole worm homogenates, thereby largely precluding a detailed studies of metabolic changes in specific worm tissues. Here, we have adapted well-established histochemical methods for the use on C. elegans fresh frozen sections and demonstrate their validity for analyses of morphological and metabolic changes on tissue level in wild type and various mutant strains. We show how the worm presents on hematoxylin and eosin (H&E stained sections and demonstrate their usefulness in monitoring and the identification of morphological abnormalities. In addition, we demonstrate how Oil-Red-O staining on frozen worm cross-sections permits quantification of lipid storage, avoiding the artifact-prone fixation and permeabilization procedures of traditional whole-mount protocols. We also adjusted standard enzymatic stains for respiratory chain subunits (NADH, SDH, and COX to monitor metabolic states of various C. elegans tissues. In summary, the protocols presented here provide technical guidance to obtain robust, reproducible and quantifiable tissue-specific data on worm morphology as well as carbohydrate, lipid and mitochondrial energy metabolism that cannot be obtained through traditional biochemical bulk analyses of worm homogenates. Furthermore, analysis of worm cross-sections overcomes the common problem with quantification in three-dimensional whole-mount specimens.

  14. Identification and evolutionary analysis of tissue-specific isoforms of mitochondrial complex I subunit NDUFV3.

    Science.gov (United States)

    Guerrero-Castillo, Sergio; Cabrera-Orefice, Alfredo; Huynen, Martijn A; Arnold, Susanne

    2017-03-01

    Mitochondrial complex I is the largest respiratory chain complex. Despite the enormous progress made studying its structure and function in recent years, potential regulatory roles of its accessory subunits remained largely unresolved. Complex I gene NDUFV3, which occurs in metazoa, contains an extra exon that is only present in vertebrates and thereby evolutionary even younger than the rest of the gene. Alternative splicing of this extra exon gives rise to a short NDUFV3-S and a long NDUFV3-L protein isoform. Complexome profiling revealed that the two NDUFV3 isoforms are constituents of the multi-subunit complex I. Further mass spectrometric analyses of complex I from different murine and bovine tissues showed a tissue-specific expression pattern of NDUFV3-S and NDUFV3-L. Hence, NDUFV3-S was identified as the only isoform in heart and skeletal muscle, whereas in liver, brain, and lung NDUFV3-L was expressed as the dominant isoform, together with NDUFV3-S present in all tissues analyzed. Thus, we identified NDUFV3 as the first out of 30 accessory subunits of complex I present in vertebrate- and tissue-specific isoforms. Interestingly, the tissue-specific expression pattern of NDUFV3-S and NDUFV3-L isoforms was paralleled by changes in kinetic parameters, especially the substrate affinity of complex I. This may indicate a regulatory role of the NDUFV3 isoforms in different vertebrate tissues. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics.

    Science.gov (United States)

    Fagerberg, Linn; Hallström, Björn M; Oksvold, Per; Kampf, Caroline; Djureinovic, Dijana; Odeberg, Jacob; Habuka, Masato; Tahmasebpoor, Simin; Danielsson, Angelika; Edlund, Karolina; Asplund, Anna; Sjöstedt, Evelina; Lundberg, Emma; Szigyarto, Cristina Al-Khalili; Skogs, Marie; Takanen, Jenny Ottosson; Berling, Holger; Tegel, Hanna; Mulder, Jan; Nilsson, Peter; Schwenk, Jochen M; Lindskog, Cecilia; Danielsson, Frida; Mardinoglu, Adil; Sivertsson, Asa; von Feilitzen, Kalle; Forsberg, Mattias; Zwahlen, Martin; Olsson, IngMarie; Navani, Sanjay; Huss, Mikael; Nielsen, Jens; Ponten, Fredrik; Uhlén, Mathias

    2014-02-01

    Global classification of the human proteins with regards to spatial expression patterns across organs and tissues is important for studies of human biology and disease. Here, we used a quantitative transcriptomics analysis (RNA-Seq) to classify the tissue-specific expression of genes across a representative set of all major human organs and tissues and combined this analysis with antibody-based profiling of the same tissues. To present the data, we launch a new version of the Human Protein Atlas that integrates RNA and protein expression data corresponding to ∼80% of the human protein-coding genes with access to the primary data for both the RNA and the protein analysis on an individual gene level. We present a classification of all human protein-coding genes with regards to tissue-specificity and spatial expression pattern. The integrative human expression map can be used as a starting point to explore the molecular constituents of the human body.

  16. A study of diffusion tensor imaging by tissue-specific, smoothing-compensated voxel-based analysis.

    Science.gov (United States)

    Lee, Jee Eun; Chung, Moo K; Lazar, Mariana; DuBray, Molly B; Kim, Jinsuh; Bigler, Erin D; Lainhart, Janet E; Alexander, Andrew L

    2009-02-01

    Voxel-based analysis (VBA) is commonly used for statistical analysis of image data, including the detection of significant signal differences between groups. Typically, images are co-registered and then smoothed with an isotropic Gaussian kernel to compensate for image misregistration, to improve the signal-to-noise ratio (SNR), to reduce the number of multiple comparisons, and to apply random field theory. Problems with typical implementations of VBA include poor tissue specificity from image misregistration and smoothing. In this study, we developed a new tissue-specific, smoothing-compensated (T-SPOON) method for the VBA of diffusion tensor imaging (DTI) data with improved tissue specificity and compensation for image misregistration and smoothing. When compared with conventional VBA methods, the T-SPOON method introduced substantially less errors in the normalized and smoothed DTI maps. Another confound of the conventional DTI-VBA is that it is difficult to differentiate between differences in morphometry and DTI measures that describe tissue microstructure. T-SPOON VBA decreased the effects of differential morphometry in the DTI VBA studies. T-SPOON and conventional VBA were applied to a DTI study of white matter in autism. T-SPOON VBA results were found to be more consistent with region of interest (ROI) measurements in the corpus callosum and temporal lobe regions. The T-SPOON method may be also applicable to other quantitative imaging maps such as T1 or T2 relaxometry, magnetization transfer, or PET tracer maps.

  17. Expression analysis of five tobacco EIN3 family members in relation to tissue-specific ethylene responses.

    Science.gov (United States)

    Rieu, I; Mariani, C; Weterings, K

    2003-10-01

    Ethylene induces different sets of genes in different tissues and at different stages of development. To investigate whether these differential responses are caused by differential expression of members of the EIN3 family transcription factors, five tobacco family members were isolated. They can be divided into three subgroups, which is probably due to the amphidiploid nature of tobacco. In phylogenetic analysis, each of the subgroups clustered with one of the three tomato EIL proteins and all NtEILs proved to be most homologous to Arabidopsis EIN3 and EIL1. Although organ-specific ethylene responses have been observed before, northern blot analysis showed that all NtEILs were expressed in all organs. To study differential NtEIL expression at the cellular level, in situ hybridization was used on the tobacco ovary. It was found that different ovary tissues displayed variable ethylene-induced expression of two ethylene-responsive marker genes. By contrast, no differences were found in expression level or tissue-specificity for any of the NtEILs in the ovary, before or after ethylene treatment. This indicates that the organ and tissue-specific ethylene responses are not caused by differential expression of NtEIL family members. These results support a model in which the developmental signals that regulate the tissue-specific responses are integrated with the ethylene signal downstream of a common primary ethylene-signalling pathway.

  18. Tissue-specific analysis of glycogen synthase kinase-3α (GSK-3α in glucose metabolism: effect of strain variation.

    Directory of Open Access Journals (Sweden)

    Satish Patel

    Full Text Available BACKGROUND: Over-activity and elevated expression of glycogen synthase kinase-3 (GSK-3 has been implicated in the etiology of insulin resistance and Type 2 diabetes. Administration of specific GSK-3 inhibitors to diabetic or obese rodent models improves glycaemic control and insulin sensitivity. However, due to the indiscriminatory nature of these inhibitors, the relative contribution of the two isoforms of GSK-3 (GSK-3α and GSK-3β is not known. Recently, we demonstrated that an out-bred strain of mice (ICR lacking expression of GSK-3α in all tissues displayed improved insulin sensitivity and enhanced hepatic glucose metabolism. We also found that muscle (but not liver inactivation of GSK-3β conferred insulin and glucose sensitization in an in-bred strain of mice (C57BL/6. METHODOLOGY/PRINCIPAL FINDINGS: Here, we have employed tissue-specific deletion of GSK-3α, to examine the relative contribution of two insulin-sensitive tissues, muscle and liver, towards the insulin sensitization phenotype originally observed in the global GSK-3α KO animals. We found that mice in which GSK-3α has been inactivated in either skeletal-muscle or liver displayed no differences in glucose tolerance or insulin sensitivity compared to wild type littermates. Given the strain differences in our original analyses, we examined the insulin and glucose sensitivity of global GSK-3α KO animals bred onto a C57BL/6 background. These animals also revealed no significant differences in glucose metabolism/insulin sensitivity compared to their wild type littermates. Furthermore, deletion of hepatic GSK-3α on the out-bred, ICR background failed to reproduce the insulin sensitivity manifested by the global deletion of this isoform. CONCLUSIONS/SIGNIFICANCE: From these data we conclude that the improved insulin sensitivity and hepatic glucose homeostasis phenotype observed upon global inactivation of GSK-3α is strain-specific. We surmise that the insulin

  19. Large Scale Gene Expression Meta-Analysis Reveals Tissue-Specific, Sex-Biased Gene Expression in Humans

    Science.gov (United States)

    Mayne, Benjamin T.; Bianco-Miotto, Tina; Buckberry, Sam; Breen, James; Clifton, Vicki; Shoubridge, Cheryl; Roberts, Claire T.

    2016-01-01

    The severity and prevalence of many diseases are known to differ between the sexes. Organ specific sex-biased gene expression may underpin these and other sexually dimorphic traits. To further our understanding of sex differences in transcriptional regulation, we performed meta-analyses of sex biased gene expression in multiple human tissues. We analyzed 22 publicly available human gene expression microarray data sets including over 2500 samples from 15 different tissues and 9 different organs. Briefly, by using an inverse-variance method we determined the effect size difference of gene expression between males and females. We found the greatest sex differences in gene expression in the brain, specifically in the anterior cingulate cortex, (1818 genes), followed by the heart (375 genes), kidney (224 genes), colon (218 genes), and thyroid (163 genes). More interestingly, we found different parts of the brain with varying numbers and identity of sex-biased genes, indicating that specific cortical regions may influence sexually dimorphic traits. The majority of sex-biased genes in other tissues such as the bladder, liver, lungs, and pancreas were on the sex chromosomes or involved in sex hormone production. On average in each tissue, 32% of autosomal genes that were expressed in a sex-biased fashion contained androgen or estrogen hormone response elements. Interestingly, across all tissues, we found approximately two-thirds of autosomal genes that were sex-biased were not under direct influence of sex hormones. To our knowledge this is the largest analysis of sex-biased gene expression in human tissues to date. We identified many sex-biased genes that were not under the direct influence of sex chromosome genes or sex hormones. These may provide targets for future development of sex-specific treatments for diseases. PMID:27790248

  20. Large scale gene expression meta-analysis reveals tissue-specific, sex-biased gene expression in humans

    Directory of Open Access Journals (Sweden)

    Benjamin Mayne

    2016-10-01

    Full Text Available The severity and prevalence of many diseases are known to differ between the sexes. Organ specific sex-biased gene expression may underpin these and other sexually dimorphic traits. To further our understanding of sex differences in transcriptional regulation, we performed meta-analyses of sex biased gene expression in multiple human tissues. We analysed 22 publicly available human gene expression microarray data sets including over 2500 samples from 15 different tissues and 9 different organs. Briefly, by using an inverse-variance method we determined the effect size difference of gene expression between males and females. We found the greatest sex differences in gene expression in the brain, specifically in the anterior cingulate cortex, (1818 genes, followed by the heart (375 genes, kidney (224 genes, colon (218 genes and thyroid (163 genes. More interestingly, we found different parts of the brain with varying numbers and identity of sex-biased genes, indicating that specific cortical regions may influence sexually dimorphic traits. The majority of sex-biased genes in other tissues such as the bladder, liver, lungs and pancreas were on the sex chromosomes or involved in sex hormone production. On average in each tissue, 32% of autosomal genes that were expressed in a sex-biased fashion contained androgen or estrogen hormone response elements. Interestingly, across all tissues, we found approximately two-thirds of autosomal genes that were sex-biased were not under direct influence of sex hormones. To our knowledge this is the largest analysis of sex-biased gene expression in human tissues to date. We identified many sex-biased genes that were not under the direct influence of sex chromosome genes or sex hormones. These may provide targets for future development of sex-specific treatments for diseases.

  1. Tissue-specific transcriptome assemblies of the marine medaka Oryzias melastigma and comparative analysis with the freshwater medaka Oryzias latipes.

    Science.gov (United States)

    Lai, Keng Po; Li, Jing-Woei; Wang, Simon Yuan; Chiu, Jill Man-Ying; Tse, Anna; Lau, Karen; Lok, Si; Au, Doris Wai-Ting; Tse, William Ka-Fai; Wong, Chris Kong-Chu; Chan, Ting-Fung; Kong, Richard Yuen-Chong; Wu, Rudolf Shiu-Sun

    2015-02-27

    The marine medaka Oryzias melastigma has been demonstrated as a novel model for marine ecotoxicological studies. However, the lack of genome and transcriptome reference has largely restricted the use of O. melastigma in the assessment of in vivo molecular responses to environmental stresses and the analysis of biological toxicity in the marine environment. Although O. melastigma is believed to be phylogenetically closely related to Oryzias latipes, the divergence between these two species is still largely unknown. Using Illumina high-throughput RNA sequencing followed by de novo assembly and comprehensive gene annotation, we provided transcriptomic resources for the brain, liver, ovary and testis of O. melastigma. We also investigated the possible extent of divergence between O. melastigma and O. latipes at the transcriptome level. More than 14,000 transcripts across brain, liver, ovary and testis in marine medaka were annotated, of which 5880 transcripts were orthologous between O. melastigma and O. latipes. Tissue-enriched genes were identified in O. melastigma, and Gene Ontology analysis demonstrated the functional specificity of the annotated genes in respective tissue. Lastly, the identification of marine medaka-enriched transcripts suggested the necessity of generating transcriptome dataset of O. melastigma. Orthologous transcripts between O. melastigma and O. latipes, tissue-enriched genes and O. melastigma-enriched transcripts were identified. Genome-wide expression studies of marine medaka require an assembled transcriptome, and this sequencing effort has generated a valuable resource of coding DNA for a non-model species. This transcriptome resource will aid future studies assessing in vivo molecular responses to environmental stresses and those analyzing biological toxicity in the marine environment.

  2. Non-coplanar polychlorinated biphenyls (PCBs) are direct agonists for the human pregnane-X receptor and constitutive androstane receptor, and activate target gene expression in a tissue-specific manner

    Energy Technology Data Exchange (ETDEWEB)

    Al-Salman, Fadheela; Plant, Nick, E-mail: N.Plant@Surrey.ac.uk

    2012-08-15

    The polychlorinated biphenyl group possesses high environmental persistence, leading to bioaccumulation and a number of adverse effects in mammals. Whilst coplanar PCBs elicit their toxic effects through agonism of the aryl hydrocarbon receptor; however, non-coplanar PCBs are not ligands for AhR, but may be ligands for members of the nuclear receptor family of proteins. To better understand the biological actions of non-coplanar PCBs, we have undertaken a systematic analysis of their ability to activate PXR and CAR-mediated effects. Cells were exposed to a range of non-coplanar PCBs (99, 138, 153, 180 and 194), or the coplanar PCB77: Direct activation of PXR and CAR was measured using a mammalian receptor activation assay in human liver cells, with rifampicin and CITCO used as positive controls ligands for PXR and CAR, respectively; activation of target gene expression was examined using reporter gene plasmids for CYP3A4 and MDR1 transfected into liver, intestine and lung cell lines. Several of the non-coplanar PCBs directly activated PXR and CAR, whilst the coplanar PCB77 did not. Non-coplanar PCBs were also able to activate PXR/CAR target gene expression in a substitution- and tissue-specific manner. Non-coplanar PCBs act as direct activators for the nuclear receptors PXR and CAR, and are able to elicit transcriptional activation of target genes in a substitution- and tissue-dependent manner. Chronic activation of PXR/CAR is linked to adverse effects and must be included in any risk assessment of PCBs. -- Highlights: ► Several Non-coplanar PCBs are able to directly activate both PXR and CAR in vitro. ► PCB153 is the most potent direct activator of PXR and CAR nuclear receptors. ► Non-coplanar PCB activation of CYP3A4/MDR1 reporter genes is structure-dependent. ► Non-coplanar PCB activate CYP3A4/MDR1 reporter genes in a tissue-dependent. ► PCB153 is the most potent activator of PXR/CAR target gene in all tissues.

  3. Genome-wide identification and tissue-specific expression analysis of nucleotide binding site-leucine rich repeat gene family in Cicer arietinum (kabuli chickpea).

    Science.gov (United States)

    Sharma, Ranu; Rawat, Vimal; Suresh, C G

    2017-12-01

    The nucleotide binding site-leucine rich repeat (NBS-LRR) proteins play an important role in the defense mechanisms against pathogens. Using bioinformatics approach, we identified and annotated 104 NBS-LRR genes in chickpea. Phylogenetic analysis points to their diversification into two families namely TIR-NBS-LRR and non-TIR-NBS-LRR. Gene architecture revealed intron gain/loss events in this resistance gene family during their independent evolution into two families. Comparative genomics analysis elucidated its evolutionary relationship with other fabaceae species. Around 50% NBS-LRRs reside in macro-syntenic blocks underlining positional conservation along with sequence conservation of NBS-LRR genes in chickpea. Transcriptome sequencing data provided evidence for their transcription and tissue-specific expression. Four cis -regulatory elements namely WBOX, DRE, CBF, and GCC boxes, that commonly occur in resistance genes, were present in the promoter regions of these genes. Further, the findings will provide a strong background to use candidate disease resistance NBS-encoding genes and identify their specific roles in chickpea.

  4. Cinnamon intake reduces serum T3 level and modulates tissue-specific expression of thyroid hormone receptor and target genes in rats.

    Science.gov (United States)

    Gaique, Thaiane G; Lopes, Bruna P; Souza, Luana L; Paula, Gabriela S M; Pazos-Moura, Carmen C; Oliveira, Karen J

    2016-06-01

    Cinnamon has several effects on energy metabolism. However, no data exist on the impact of cinnamon intake on thyroid hormone serum concentrations and action, since thyroid hormones (THs) play a major role in metabolism. Male rats were treated with cinnamon water extract (400 mg kg(-1) body weight, 25 days). Cinnamon supplementation resulted in a lower serum total T3 level accompanied by normal serum T4 and TSH levels. The cinnamon-treated rats did not exhibit significant differences in TSHβ subunit, TRβ or deiodinase type 2 mRNA expression in the pituitary. In the liver, cinnamon did not change the TRβ protein expression or the deiodinase type 1 mRNA expression, suggesting that there were no changes in T3 signaling or metabolism in this organ. However, mitochondrial GPDH, a target gene for T3 in the liver, exhibited no changes in mRNA expression, although its activity level was reduced by cinnamon. In the cardiac ventricle, T3 action was markedly reduced by cinnamon, as demonstrated by the lower TRα mRNA and protein levels, reduced SERCA2a and RyR2 and increased phospholamban mRNA expression. This study has revealed that TH action is a novel target of cinnamon, demonstrating impairment of T3 signaling in the cardiac ventricles. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  5. Targeted gene expression without a tissue-specific promoter: creating mosaic embryos using laser-induced single-cell heat shock

    Science.gov (United States)

    Halfon, M. S.; Kose, H.; Chiba, A.; Keshishian, H.

    1997-01-01

    We have developed a method to target gene expression in the Drosophila embryo to a specific cell without having a promoter that directs expression in that particular cell. Using a digitally enhanced imaging system to identify single cells within the living embryo, we apply a heat shock to each cell individually by using a laser microbeam. A 1- to 2-min laser treatment is sufficient to induce a heat-shock response but is not lethal to the heat-shocked cells. Induction of heat shock was measured in a variety of cell types, including neurons and somatic muscles, by the expression of beta-galactosidase from an hsp26-lacZ reporter construct or by expression of a UAS target gene after induction of hsGAL4. We discuss the applicability of this technique to ectopic gene expression studies, lineage tracing, gene inactivation studies, and studies of cells in vitro. Laser heat shock is a versatile technique that can be adapted for use in a variety of research organisms and is useful for any studies in which it is desirable to express a given gene in only a distinct cell or clone of cells, either transiently or constitutively, at a time point of choice.

  6. Analysis of 13 cell types reveals evidence for the expression of numerous novel primate- and tissue-specific microRNAs.

    Science.gov (United States)

    Londin, Eric; Loher, Phillipe; Telonis, Aristeidis G; Quann, Kevin; Clark, Peter; Jing, Yi; Hatzimichael, Eleftheria; Kirino, Yohei; Honda, Shozo; Lally, Michelle; Ramratnam, Bharat; Comstock, Clay E S; Knudsen, Karen E; Gomella, Leonard; Spaeth, George L; Hark, Lisa; Katz, L Jay; Witkiewicz, Agnieszka; Rostami, Abdolmohamad; Jimenez, Sergio A; Hollingsworth, Michael A; Yeh, Jen Jen; Shaw, Chad A; McKenzie, Steven E; Bray, Paul; Nelson, Peter T; Zupo, Simona; Van Roosbroeck, Katrien; Keating, Michael J; Calin, George A; Yeo, Charles; Jimbo, Masaya; Cozzitorto, Joseph; Brody, Jonathan R; Delgrosso, Kathleen; Mattick, John S; Fortina, Paolo; Rigoutsos, Isidore

    2015-03-10

    Two decades after the discovery of the first animal microRNA (miRNA), the number of miRNAs in animal genomes remains a vexing question. Here, we report findings from analyzing 1,323 short RNA sequencing samples (RNA-seq) from 13 different human tissue types. Using stringent thresholding criteria, we identified 3,707 statistically significant novel mature miRNAs at a false discovery rate of ≤ 0.05 arising from 3,494 novel precursors; 91.5% of these novel miRNAs were identified independently in 10 or more of the processed samples. Analysis of these novel miRNAs revealed tissue-specific dependencies and a commensurate low Jaccard similarity index in intertissue comparisons. Of these novel miRNAs, 1,657 (45%) were identified in 43 datasets that were generated by cross-linking followed by Argonaute immunoprecipitation and sequencing (Ago CLIP-seq) and represented 3 of the 13 tissues, indicating that these miRNAs are active in the RNA interference pathway. Moreover, experimental investigation through stem-loop PCR of a random collection of newly discovered miRNAs in 12 cell lines representing 5 tissues confirmed their presence and tissue dependence. Among the newly identified miRNAs are many novel miRNA clusters, new members of known miRNA clusters, previously unreported products from uncharacterized arms of miRNA precursors, and previously unrecognized paralogues of functionally important miRNA families (e.g., miR-15/107). Examination of the sequence conservation across vertebrate and invertebrate organisms showed 56.7% of the newly discovered miRNAs to be human-specific whereas the majority (94.4%) are primate lineage-specific. Our findings suggest that the repertoire of human miRNAs is far more extensive than currently represented by public repositories and that there is a significant number of lineage- and/or tissue-specific miRNAs that are uncharacterized.

  7. Genome-wide analysis of the CCCH zinc finger family identifies tissue specific and stress responsive candidates in chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Pradhan, Seema; Kant, Chandra; Verma, Subodh; Bhatia, Sabhyata

    2017-01-01

    The CCCH zinc finger is a group of proteins characterised by a typical motif consisting of three cysteine residues and one histidine residue. These proteins have been reported to play important roles in regulation of plant growth, developmental processes and environmental responses. In the present study, genome wide analysis of the CCCH zinc finger gene family was carried out in the available chickpea genome. Various bioinformatics tools were employed to predict 58 CCCH zinc finger genes in chickpea (designated CarC3H1-58), which were analysed for their physio-chemical properties. Phylogenetic analysis classified the proteins into 12 groups in which members of a particular group had similar structural organization. Further, the numbers as well as the types of CCCH motifs present in the CarC3H proteins were compared with those from Arabidopsis and Medicago truncatula. Synteny analysis revealed valuable information regarding the evolution of this gene family. Tandem and segmental duplication events were identified and their Ka/Ks values revealed that the CarC3H gene family in chickpea had undergone purifying selection. Digital, as well as real time qRT-PCR expression analysis was performed which helped in identification of several CarC3H members that expressed preferentially in specific chickpea tissues as well as during abiotic stresses (desiccation, cold, salinity). Moreover, molecular characterization of an important member CarC3H45 was carried out. This study provides comprehensive genomic information about the important CCCH zinc finger gene family in chickpea. The identified tissue specific and abiotic stress specific CCCH genes could be potential candidates for further characterization to delineate their functional roles in development and stress.

  8. Comparative network analysis reveals that tissue specificity and gene function are important factors influencing the mode of expression evolution in Arabidopsis and rice.

    Science.gov (United States)

    Movahedi, Sara; Van de Peer, Yves; Vandepoele, Klaas

    2011-07-01

    Microarray experiments have yielded massive amounts of expression information measured under various conditions for the model species Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa). Expression compendia grouping multiple experiments make it possible to define correlated gene expression patterns within one species and to study how expression has evolved between species. We developed a robust framework to measure expression context conservation (ECC) and found, by analyzing 4,630 pairs of orthologous Arabidopsis and rice genes, that 77% showed conserved coexpression. Examples of nonconserved ECC categories suggested a link between regulatory evolution and environmental adaptations and included genes involved in signal transduction, response to different abiotic stresses, and hormone stimuli. To identify genomic features that influence expression evolution, we analyzed the relationship between ECC, tissue specificity, and protein evolution. Tissue-specific genes showed higher expression conservation compared with broadly expressed genes but were fast evolving at the protein level. No significant correlation was found between protein and expression evolution, implying that both modes of gene evolution are not strongly coupled in plants. By integration of cis-regulatory elements, many ECC conserved genes were significantly enriched for shared DNA motifs, hinting at the conservation of ancestral regulatory interactions in both model species. Surprisingly, for several tissue-specific genes, patterns of concerted network evolution were observed, unveiling conserved coexpression in the absence of conservation of tissue specificity. These findings demonstrate that orthologs inferred through sequence similarity in many cases do not share similar biological functions and highlight the importance of incorporating expression information when comparing genes across species.

  9. A comparative tissue-specific metabolite analysis and determination of protodioscin content in Asparagus species used in traditional Chinese medicine and Ayurveda by use of laser microdissection, UHPLC-QTOF/MS and LC-MS/MS.

    Science.gov (United States)

    Jaiswal, Yogini; Liang, Zhitao; Ho, Alan; Chen, Hubiao; Zhao, Zhongzhen

    2014-01-01

    Asparagus is esteemed in Traditional Chinese Medicine and Ayurveda, and it is commercially one of the most important drugs in the global herbal market. Comparative metabolite profiling of different species would help in determining the similarities and ascertain their validity for being used as substitutes for each other. Laser microdissection (LMD) facilitates identification of metabolites in specific tissues, and thus it can aid in exploration of metabolic pathways in target tissues. To compare tissue-specific metabolites and protodioscin content of Asparagus cochinchinensis (Lour.) Merr. and Asparagus racemosus Willd. used in China and India. Metabolite analysis of laser-dissected tissues was carried out using UHPLC-QTOF/MS and LC-MS/MS. The protodioscin contents were determined and the method was validated as per the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use guidelines. Metabolite analysis reveals that the velamen tissue, among other tissues such as cortex, vascular bundles and pith, contained maximum components, specifically those belonging to the steroidal saponin class. Although the metabolite profiles were similar, the content of protodioscin was found to be higher in Chinese than Indian species. The study provided a suitable methodology for metabolite profiling and protodioscin content determination of Asparagus by use of LMD, UHPLC-QTOF/MS and LC-MS/MS. The similarities in metabolite profiles indicate that Asparagus species from India and China can serve as substitute for each other in various therapeutic and pharmaceutical applications. Copyright © 2014 John Wiley & Sons, Ltd.

  10. Genome-Wide Comprehensive Analysis the Molecular Phylogenetic Evaluation and Tissue-Specific Expression of SABATH Gene Family in Salvia miltiorrhiza

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2017-12-01

    Full Text Available The plant SABATH gene family is a group of O-methyltransferases (O-MTs, which belongs to the S-adenosyl-l-methionine-dependent methyltransferases (SAM-MTs. The resulting reaction products of SABATH genes play an important role in various processes of plant development. In this study, a total of 30 SABATH genes were detected in Salvia miltiorrhiza, which is an important medicinal plant, widely used to treat cardiovascular disease. Multiple sequence alignment and phylogenetic analyses showed that SmSABATH genes could be classified into three groups. The ratios of non-synonymous (Ka and synonymous (Ks substitution rates of 11 pairs paralogous of SmSABATH genes revealed that the SmSABATH genes had gone through purifying selection. Positive selection analyses using site models and branch-site models indicated that SmSABATH genes had undergone selective pressure for adaptive evolution. Functional divergence analyses suggested that the SmSABATH subgroup genes were divergent in terms of functions and positive selection sites that contributed to a functional divergence among the subgroups that were detected. Tissue-specific expression showed that the SABATH gene family in S. miltiorrhiza was primarily expressed in stems and leaves.

  11. Analysis of transcriptional regulation and tissue-specific expression of Avicennia marina Plasma Membrane Protein 3 suggests it contributes to Na(+) transport and homoeostasis in A. marina.

    Science.gov (United States)

    Chidambaram, Rajalakshmi; Venkataraman, Gayatri; Parida, Ajay

    2015-07-01

    Plasma membrane proteins (PMP3) play a role in cation homoeostasis. The 5' flanking sequence of stress inducible, Avicennia marina PMP3 (AmPMP3prom) was transcriptionally fused to (a) GUS or (b) GFP-AmPMP3 and analyzed in transgenic tobacco. Tissue-histochemical GUS and GFP:AmPMP3 localization are co-incident under basal and stress conditions. AmPMP3prom directed GUS activity is highest in roots. Basal transcription is conferred by a 388bp segment upstream of the translation start site. A 463bp distal enhancer in the AmPMP3prom confers enhanced expression under salinity in all tissues and also responds to increases in salinity. The effect of a central, stem-specific negative regulatory region is suppressed by the distal enhancer. The A. marina rhizosphere encounters dynamic changes in salinity at the inter-tidal interface. The complex, tissue-specific transcriptional responsiveness of AmPMP3 to salinity appears to have evolved in response to these changes. Under salinity, guard cell and phloem-specific expression of GFP:AmPMP3 is highly enhanced. Mesophyll, trichomes, bundle sheath, parenchymatous cortex and xylem parenchyma also show GFP:AmPMP3 expression. Cis-elements conferring stress, root and vascular-specific expression are enriched in the AmPMP3 promoter. Pronounced vascular-specific AmPMP3 expression suggests a role in salinity induced Na(+) transport, storage, and secretion in A. marina. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Metabolic Reconstruction of Setaria italica: A Systems Biology Approach for Integrating Tissue-Specific Omics and Pathway Analysis of Bioenergy Grasses.

    Science.gov (United States)

    de Oliveira Dal'Molin, Cristiana G; Orellana, Camila; Gebbie, Leigh; Steen, Jennifer; Hodson, Mark P; Chrysanthopoulos, Panagiotis; Plan, Manuel R; McQualter, Richard; Palfreyman, Robin W; Nielsen, Lars K

    2016-01-01

    The urgent need for major gains in industrial crops productivity and in biofuel production from bioenergy grasses have reinforced attention on understanding C4 photosynthesis. Systems biology studies of C4 model plants may reveal important features of C4 metabolism. Here we chose foxtail millet (Setaria italica), as a C4 model plant and developed protocols to perform systems biology studies. As part of the systems approach, we have developed and used a genome-scale metabolic reconstruction in combination with the use of multi-omics technologies to gain more insights into the metabolism of S. italica. mRNA, protein, and metabolite abundances, were measured in mature and immature stem/leaf phytomers, and the multi-omics data were integrated into the metabolic reconstruction framework to capture key metabolic features in different developmental stages of the plant. RNA-Seq reads were mapped to the S. italica resulting for 83% coverage of the protein coding genes of S. italica. Besides revealing similarities and differences in central metabolism of mature and immature tissues, transcriptome analysis indicates significant gene expression of two malic enzyme isoforms (NADP- ME and NAD-ME). Although much greater expression levels of NADP-ME genes are observed and confirmed by the correspondent protein abundances in the samples, the expression of multiple genes combined to the significant abundance of metabolites that participates in C4 metabolism of NAD-ME and NADP-ME subtypes suggest that S. italica may use mixed decarboxylation modes of C4 photosynthetic pathways under different plant developmental stages. The overall analysis also indicates different levels of regulation in mature and immature tissues in carbon fixation, glycolysis, TCA cycle, amino acids, fatty acids, lignin, and cellulose syntheses. Altogether, the multi-omics analysis reveals different biological entities and their interrelation and regulation over plant development. With this study, we demonstrated

  13. Metabolic reconstruction of Setaria italica: a systems biology approach for integrating tissue-specific omics and pathway analysis of bioenergy grasses

    Directory of Open Access Journals (Sweden)

    Cristiana Gomes De Oliveira Dal'molin

    2016-08-01

    Full Text Available The urgent need for major gains in industrial crops productivity and in biofuel production from bioenergy grasses have reinforced attention on understanding C4 photosynthesis. Systems biology studies of C4 model plants may reveal important features of C4 metabolism. Here we chose foxtail millet (Setaria italica, as a C4 model plant and developed protocols to perform systems biology studies. As part of the systems approach, we have developed and used a genome-scale metabolic reconstruction in combination with the use of multi-omics technologies to gain more insights into the metabolism of S.italica. mRNA, protein and metabolite abundances, were measured in mature and immature stem/leaf phytomers and the multi-omics data were integrated into the metabolic reconstruction framework to capture key metabolic features in different developmental stages of the plant. RNA-Seq reads were mapped to the S. italica resulting for 83% coverage of the protein coding genes of S. italica. Besides revealing similarities and differences in central metabolism of mature and immature tissues, transcriptome analysis indicates significant gene expression of two malic enzyme isoforms (NADP- ME and NAD-ME. Although much greater expression levels of NADP-ME genes are observed and confirmed by the correspondent protein abundances in the samples, the expression of multiple genes combined to the significant abundance of metabolites that participates in C4 metabolism of NAD-ME and NADP-ME subtypes suggest that S. italica may use mixed decarboxylation modes of C4 photosynthetic pathways under different plant developmental stages. The overall analysis also indicates different levels of regulation in mature and immature tissues in carbon fixation, glycolysis, TCA cycle, amino acids, fatty acids, lignin and cellulose syntheses. Altogether, the multi-omics analysis reveals different biological entities and their interrelation and regulation over plant development. With this study

  14. Tissue-specific tagging of endogenous loci in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Kate Koles

    2016-01-01

    Full Text Available Fluorescent protein tags have revolutionized cell and developmental biology, and in combination with binary expression systems they enable diverse tissue-specific studies of protein function. However these binary expression systems often do not recapitulate endogenous protein expression levels, localization, binding partners and/or developmental windows of gene expression. To address these limitations, we have developed a method called T-STEP (tissue-specific tagging of endogenous proteins that allows endogenous loci to be tagged in a tissue specific manner. T-STEP uses a combination of efficient CRISPR/Cas9-enhanced gene targeting and tissue-specific recombinase-mediated tag swapping to temporally and spatially label endogenous proteins. We have employed this method to GFP tag OCRL (a phosphoinositide-5-phosphatase in the endocytic pathway and Vps35 (a Parkinson's disease-implicated component of the endosomal retromer complex in diverse Drosophila tissues including neurons, glia, muscles and hemocytes. Selective tagging of endogenous proteins allows, for the first time, cell type-specific live imaging and proteomics in complex tissues.

  15. Tissue-Specific Floral Transcriptome Analysis of the Sexually Deceptive Orchid Chiloglottis trapeziformis Provides Insights into the Biosynthesis and Regulation of Its Unique UV-B Dependent Floral Volatile, Chiloglottone 1

    Directory of Open Access Journals (Sweden)

    Darren C. J. Wong

    2017-07-01

    Full Text Available The Australian sexually deceptive orchid, Chiloglottis trapeziformis, employs a unique UV-B-dependent floral volatile, chiloglottone 1, for specific male wasp pollinator attraction. Chiloglottone 1 and related variants (2,5-dialkylcyclohexane-1,3-diones, represent a unique class of specialized metabolites presumed to be the product of cyclization between two fatty acid (FA precursors. However, the genes involved in the biosynthesis of precursors, intermediates, and transcriptional regulation remains to be discovered. Chiloglottone 1 production occurs in the aggregation of calli (callus on the labellum under continuous UV-B light. Therefore, deep sequencing, transcriptome assembly, and differential expression (DE analysis were performed across different tissue types and UV-B treatments. Transcripts expressed in the callus and labellum (∼23,000 transcripts were highly specialized and enriched for a diversity of known and novel metabolic pathways. DE analysis between chiloglottone-emitting callus versus the remainder of the labellum showed strong coordinated induction of entire FA biosynthesis and β-oxidation pathways including genes encoding Ketoacyl-ACP Synthase, Acyl-CoA Oxidase, and Multifunctional Protein. Phylogenetic analysis revealed potential gene duplicates with tissue-specific differential regulation including two Acyl-ACP Thioesterase B and a Ketoacyl-ACP Synthase genes. UV-B treatment induced the activation of UVR8-mediated signaling and large-scale transcriptome changes in both tissues, however, neither FA biosynthesis/β-oxidation nor other lipid metabolic pathways showed clear indications of concerted DE. Gene co-expression network analysis identified three callus-specific modules enriched with various lipid metabolism categories. These networks also highlight promising candidates involved in the cyclization of chiloglottone 1 intermediates (e.g., Bet v I and dimeric α,β barrel proteins and orchestrating regulation of precursor

  16. Targeted Expression of Stromelysin-1 in Mammary Gland Provides Evidence for a Role of Proteinases in Branching Morphogenesis and the Requirement for an Intact Basement Membrane for Tissue-specific Gene Expression

    Energy Technology Data Exchange (ETDEWEB)

    Sympson, Carolyn J; Talhouk, Rabih S; Alexander, Caroline M; Chin, Jennie R; Cliff, Shirley M; Bissell, Mina J; Werb, Zena

    1994-05-01

    The extracellular matrix (ECM) is an important regulator of the differentiated phenotype of mammary epithelial cells in culture. Despite the fact that ECM-degrading enzymes have been implicated in morphogenesis and tissue remodeling, there is little evidence for a direct role for such regulation in vivo. We generated transgenic mice that express autoactivated isoforms of the matrix metalloproteinase stromelysin-1, under the control of the whey acidic protein gene promoter, to examine the effect of inappropriate expression of this enzyme. Stromelysin-1 is implicated as the primary player in the loss of basement membrane and loss of function in the mammary gland during involution. The transgene was expressed at low levels in mammary glands of virgin female mice, leading to an unexpected phenotype: The primary ducts had supernumerary branches and showed precocious development of alveoli that expressed beta-casein at levels similar to that of an early- to mid-pregnant gland. Lactating glands showed high levels of transgene expression, with accumulation at the basement membrane, and a decrease in laminin and collagen IV, resulting in a loss of basement membrane integrity; this was accompanied by a dramatic alteration of alveolar morphology, with decreased size and shrunken lumina containing little beta-casein. During pregnancy, expression of endogenous whey acidic protein and beta-casein was reduced in transgenic glands, confirming the observed dependence of milk protein transcription of ECM in mammary epithelial cells in culture. These data provide direct evidence that stromelysin-1 activity can be morphogenic for mammary epithelial cells, inducing hyperproliferation and differentiation in virgin animals, and that its lytic activity can, indeed, disrupt membrane integrity and reduce mammary-specific function. We conclude that the balance of ECM-degrading enzymes with their inhibitors, and the associated regulation of ECM structure, is crucial for tissue-specific gene

  17. Selective estrogen receptor modulators: tissue specificity and clinical utility

    Directory of Open Access Journals (Sweden)

    Martinkovich S

    2014-08-01

    Full Text Available Stephen Martinkovich,* Darshan Shah,* Sonia Lobo Planey, John A ArnottDepartment of Basic Sciences, The Commonwealth Medical College, Scranton, PA, USA*These authors contributed equally to this workAbstract: Selective estrogen receptor modulators (SERMs are a diverse group of ­nonsteroidal compounds that function as agonists or antagonists for estrogen receptors (ERs in a target gene-specific and tissue-specific fashion. SERM specificity involves tissue-specific expression of ER subtypes, differential expression of co-regulatory proteins in various tissues, and varying ER conformational changes induced by ligand binding. To date, the major clinical applications of SERMs are their use in the prevention and treatment of breast cancer, the prevention of osteoporosis, and the maintenance of beneficial serum lipid profiles in postmenopausal women. However, SERMs have also been found to promote adverse effects, including thromboembolic events and, in some cases, carcinogenesis, that have proven to be obstacles in their clinical utility. In this review, we discuss the mechanisms of SERM tissue specificity and highlight the therapeutic application of well-known and emergent SERMs.Keywords: selective estrogen receptor modulators, SERMs, estrogen receptors

  18. Tissue-specific transcriptomics in the field cricket Teleogryllus oceanicus.

    Science.gov (United States)

    Bailey, Nathan W; Veltsos, Paris; Tan, Yew-Foon; Millar, A Harvey; Ritchie, Michael G; Simmons, Leigh W

    2013-02-01

    Field crickets (family Gryllidae) frequently are used in studies of behavioral genetics, sexual selection, and sexual conflict, but there have been no studies of transcriptomic differences among different tissue types. We evaluated transcriptome variation among testis, accessory gland, and the remaining whole-body preparations from males of the field cricket, Teleogryllus oceanicus. Non-normalized cDNA libraries from each tissue were sequenced on the Roche 454 platform, and a master assembly was constructed using testis, accessory gland, and whole-body preparations. A total of 940,200 reads were assembled into 41,962 contigs, to which 36,856 singletons (reads not assembled into a contig) were added to provide a total of 78,818 sequences used in annotation analysis. A total of 59,072 sequences (75%) were unique to one of the three tissues. Testis tissue had the greatest proportion of tissue-specific sequences (62.6%), followed by general body (56.43%) and accessory gland tissue (44.16%). We tested the hypothesis that tissues expressing gene products expected to evolve rapidly as a result of sexual selection--testis and accessory gland--would yield a smaller proportion of BLASTx matches to homologous genes in the model organism Drosophila melanogaster compared with whole-body tissue. Uniquely expressed sequences in both testis and accessory gland showed a significantly lower rate of matching to annotated D. melanogaster genes compared with those from general body tissue. These results correspond with empirical evidence that genes expressed in testis and accessory gland tissue are rapidly evolving targets of selection.

  19. Tissue-Specificity of Gene Expression Diverges Slowly between Orthologs, and Rapidly between Paralogs.

    Directory of Open Access Journals (Sweden)

    Nadezda Kryuchkova-Mostacci

    2016-12-01

    Full Text Available The ortholog conjecture implies that functional similarity between orthologous genes is higher than between paralogs. It has been supported using levels of expression and Gene Ontology term analysis, although the evidence was rather weak and there were also conflicting reports. In this study on 12 species we provide strong evidence of high conservation in tissue-specificity between orthologs, in contrast to low conservation between within-species paralogs. This allows us to shed a new light on the evolution of gene expression patterns. While there have been several studies of the correlation of expression between species, little is known about the evolution of tissue-specificity itself. Ortholog tissue-specificity is strongly conserved between all tetrapod species, with the lowest Pearson correlation between mouse and frog at r = 0.66. Tissue-specificity correlation decreases strongly with divergence time. Paralogs in human show much lower conservation, even for recent Primate-specific paralogs. When both paralogs from ancient whole genome duplication tissue-specific paralogs are tissue-specific, it is often to different tissues, while other tissue-specific paralogs are mostly specific to the same tissue. The same patterns are observed using human or mouse as focal species, and are robust to choices of datasets and of thresholds. Our results support the following model of evolution: in the absence of duplication, tissue-specificity evolves slowly, and tissue-specific genes do not change their main tissue of expression; after small-scale duplication the less expressed paralog loses the ancestral specificity, leading to an immediate difference between paralogs; over time, both paralogs become more broadly expressed, but remain poorly correlated. Finally, there is a small number of paralog pairs which stay tissue-specific with the same main tissue of expression, for at least 300 million years.

  20. Functional Enhancers As Master Regulators of Tissue-Specific Gene Regulation and Cancer Development

    Science.gov (United States)

    Ko, Je Yeong; Oh, Sumin; Yoo, Kyung Hyun

    2017-01-01

    Tissue-specific transcription is critical for normal development, and abnormalities causing undesirable gene expression may lead to diseases such as cancer. Such highly organized transcription is controlled by enhancers with specific DNA sequences recognized by transcription factors. Enhancers are associated with chromatin modifications that are distinct epigenetic features in a tissue-specific manner. Recently, super-enhancers comprising enhancer clusters co-occupied by lineage-specific factors have been identified in diverse cell types such as adipocytes, hair follicle stem cells, and mammary epithelial cells. In addition, noncoding RNAs, named eRNAs, are synthesized at super-enhancer regions before their target genes are transcribed. Many functional studies revealed that super-enhancers and eRNAs are essential for the regulation of tissue-specific gene expression. In this review, we summarize recent findings concerning enhancer function in tissue-specific gene regulation and cancer development. PMID:28359147

  1. Characterization of regulatory features of housekeeping and tissue-specific regulators within tissue regulatory networks.

    Science.gov (United States)

    Li, Pengping; Hua, Xu; Zhang, Zhen; Li, Jie; Wang, Jin

    2013-10-31

    Transcription factors (TFs) and miRNAs are essential for the regulation of gene expression; however, the global view of human gene regulatory networks remains poorly understood. For example, how is the expression of so many genes regulated by limited cohorts of regulators and how are genes differentially expressed in different tissues despite the genetic code being the same in all tissues? We analyzed the network properties of housekeeping and tissue-specific genes in gene regulatory networks from seven human tissues. Our results show that different classes of genes behave quite differently in these networks. Tissue-specific miRNAs show a higher average target number compared with non-tissue specific miRNAs, which indicates that tissue-specific miRNAs tend to regulate different sets of targets. Tissue-specific TFs exhibit higher in-degree, out-degree, cluster coefficient and betweenness values, indicating that they occupy central positions in the regulatory network and that they transfer genetic information from upstream genes to downstream genes more quickly than other TFs. Housekeeping TFs tend to have higher cluster coefficients compared with other genes that are neither housekeeping nor tissue specific, indicating that housekeeping TFs tend to regulate their targets synergistically. Several topological properties of disease-associated miRNAs and genes were found to be significantly different from those of non-disease-associated miRNAs and genes. Tissue-specific miRNAs, TFs and disease genes have particular topological properties within the transcriptional regulatory networks of the seven human tissues examined. The tendency of tissue-specific miRNAs to regulate different sets of genes shows that a particular tissue-specific miRNA and its target gene set may form a regulatory module to execute particular functions in the process of tissue differentiation. The regulatory patterns of tissue-specific TFs reflect their vital role in regulatory networks and their

  2. Tissue-specificity of proteoglycans expression in different cancers

    Directory of Open Access Journals (Sweden)

    A. V. Suhovskih

    2016-01-01

    Full Text Available Background. Proteoglycans (PGs are complex glycosylated molecules playing an important role in cell-cell and cell-matrix interactions and signaling. Expression of PGs and their expression pattern change considerably during malignant transformation of mammalian cells and tissues.Objective. The aim of our work was to investigate tissue-specificity of main PGs expression (glypican-1, perlecan, syndecan-1, aggrecan, versican, CSPG4/NG2, brevican, decorin, lumican in normal cells (fibroblasts and normal epithelial prostate cells PNT2 and in different human cancer cell lines (prostate, breast, lung, brain, kidney. Expression patterns of main PGs were determined in these cells using reverse transcription polymerase chain reaction analysis and immunocytochemical staining.Results. It was shown that fibroblasts actively expressed PGs, and PNT2 cells had lower (5–6-fold expression levels of a limited set of PG. In different cancer cell lines, overall transcriptional activities of PGs varied up to 10-fold, although their expression patterns had tissue-specific properties (for example, expression of syndecan-1 is more specific for prostate cancer cells, while perlecan is typical for lung cancer cell lines.Conclusions. Along with this, variability of the PG expression patterns in cell lines of the same tissue of origin was shown, suggesting a possible contribution of the variable PGs expression to intratumoural heterogeneity of cancer cells and their potential as perspective biomarker (s for personalised cancer diagnostics.

  3. Positional bias of general and tissue-specific regulatory motifs in mouse gene promoters

    Directory of Open Access Journals (Sweden)

    Farré Domènec

    2007-12-01

    Full Text Available Abstract Background The arrangement of regulatory motifs in gene promoters, or promoter architecture, is the result of mutation and selection processes that have operated over many millions of years. In mammals, tissue-specific transcriptional regulation is related to the presence of specific protein-interacting DNA motifs in gene promoters. However, little is known about the relative location and spacing of these motifs. To fill this gap, we have performed a systematic search for motifs that show significant bias at specific promoter locations in a large collection of housekeeping and tissue-specific genes. Results We observe that promoters driving housekeeping gene expression are enriched in particular motifs with strong positional bias, such as YY1, which are of little relevance in promoters driving tissue-specific expression. We also identify a large number of motifs that show positional bias in genes expressed in a highly tissue-specific manner. They include well-known tissue-specific motifs, such as HNF1 and HNF4 motifs in liver, kidney and small intestine, or RFX motifs in testis, as well as many potentially novel regulatory motifs. Based on this analysis, we provide predictions for 559 tissue-specific motifs in mouse gene promoters. Conclusion The study shows that motif positional bias is an important feature of mammalian proximal promoters and that it affects both general and tissue-specific motifs. Motif positional constraints define very distinct promoter architectures depending on breadth of expression and type of tissue.

  4. Tissue specific metal characterization of selected fish species in Pakistan.

    Science.gov (United States)

    Ahmed, Mukhtiar; Ahmad, Taufiq; Liaquat, Muhammad; Abbasi, Kashif Sarfraz; Farid, Ibrahim Bayoumi Abdel; Jahangir, Muhammad

    2016-04-01

    Concentration of various metals, i.e., zinc (Zn), copper (Cu), lead (Pb), nickel (Ni), iron (Fe), manganese (Mn), chromium (Cr), and silver (Ag), was evaluated in five indigenous fish species (namely, silver carp, common carp, mahseer, thela fish, and rainbow trout), by using atomic absorption spectrophotometer. It is proved from this study that, overall, mahseer and rainbow trout had high amount of zinc, whereas thela fish and silver carp had high concentration of copper, chromium, silver, nickel, and lead, while common carp had highest amount of iron contents. Furthermore, a tissue-specific discrimination among various fish species was observed, where higher metal concentrations were noticed in fish liver, with decreasing concentration in other organs like skin, gills, and finally the least contents in fish muscle. Multivariate data analysis showed not only a variation in heavy metals among the tissues but also discrimination among the selected fish species.

  5. Tissue specificity of endothelin binding sites

    Energy Technology Data Exchange (ETDEWEB)

    Bolger, G.T.; Liard, F.; Krogsrud, R.; Thibeault, D.; Jaramillo, J. (BioMega, Inc., Laval, Quebec (Canada))

    1990-09-01

    A measurement was made of the binding of 125I-labeled endothelin (125I-ET) to crude membrane fractions prepared from rat aorta, atrium, ventricle, portal vein, trachea, lung parenchyma, vas deferens, ileum, bladder, and guinea-pig taenia coli and lung parenchyma. Scatchard analysis of 125I-ET binding in all tissues indicated binding to a single class of saturable sites. The affinity and density of 125I-ET binding sites varied between tissues. The Kd of 125I-ET binding was approximately 0.5 nM for rat aorta, trachea, lung parenchyma, ventricle, bladder, and vas deferens, and guinea-pig taenia coli and lung parenchyma, 1.8 nM for rat portal vein and atrium, and 3.3 nM for ileum. The Bmax of 125I-ET binding had the following rank order of density in rat tissues: trachea greater than lung parenchyma = vas deferens much greater than aorta = portal vein = atrium greater than bladder greater than ventricle = ileum. The properties of 125I-ET endothelin binding were characterized in rat ventricular membranes. 125I-ET binding was time dependent, reaching a maximum within 45-60 min at 25 degrees C. The calculated microassociation constant was 9.67 x 10(5) s-1 M-1. Only 15-20% of 125I-ET dissociated from its binding site even when dissociation was studied as long as 3 h. Preincubation of ventricular membranes with ET prevented binding of 125I-ET. 125I-ET binding was destroyed by boiling of ventricular membranes and was temperature, pH, and cation (Ca2+, Mg2+, and Na+) dependent.

  6. TiGER: a database for tissue-specific gene expression and regulation.

    Science.gov (United States)

    Liu, Xiong; Yu, Xueping; Zack, Donald J; Zhu, Heng; Qian, Jiang

    2008-06-09

    Understanding how genes are expressed and regulated in different tissues is a fundamental and challenging question. However, most of currently available biological databases do not focus on tissue-specific gene regulation. The recent development of computational methods for tissue-specific combinational gene regulation, based on transcription factor binding sites, enables us to perform a large-scale analysis of tissue-specific gene regulation in human tissues. The results are stored in a web database called TiGER (Tissue-specific Gene Expression and Regulation). The database contains three types of data including tissue-specific gene expression profiles, combinatorial gene regulations, and cis-regulatory module (CRM) detections. At present the database contains expression profiles for 19,526 UniGene genes, combinatorial regulations for 7,341 transcription factor pairs and 6,232 putative CRMs for 2,130 RefSeq genes. We have developed and made publicly available a database, TiGER, which summarizes and provides large scale data sets for tissue-specific gene expression and regulation in a variety of human tissues. This resource is available at 1.

  7. TiGER: A database for tissue-specific gene expression and regulation

    Directory of Open Access Journals (Sweden)

    Zack Donald J

    2008-06-01

    Full Text Available Abstract Background Understanding how genes are expressed and regulated in different tissues is a fundamental and challenging question. However, most of currently available biological databases do not focus on tissue-specific gene regulation. Results The recent development of computational methods for tissue-specific combinational gene regulation, based on transcription factor binding sites, enables us to perform a large-scale analysis of tissue-specific gene regulation in human tissues. The results are stored in a web database called TiGER (Tissue-specific Gene Expression and Regulation. The database contains three types of data including tissue-specific gene expression profiles, combinatorial gene regulations, and cis-regulatory module (CRM detections. At present the database contains expression profiles for 19,526 UniGene genes, combinatorial regulations for 7,341 transcription factor pairs and 6,232 putative CRMs for 2,130 RefSeq genes. Conclusion We have developed and made publicly available a database, TiGER, which summarizes and provides large scale data sets for tissue-specific gene expression and regulation in a variety of human tissues. This resource is available at 1.

  8. Prediction of tissue-specific cis-regulatory modules using Bayesian networks and regression trees

    Directory of Open Access Journals (Sweden)

    Chen Xiaoyu

    2007-12-01

    Full Text Available Abstract Background In vertebrates, a large part of gene transcriptional regulation is operated by cis-regulatory modules. These modules are believed to be regulating much of the tissue-specificity of gene expression. Results We develop a Bayesian network approach for identifying cis-regulatory modules likely to regulate tissue-specific expression. The network integrates predicted transcription factor binding site information, transcription factor expression data, and target gene expression data. At its core is a regression tree modeling the effect of combinations of transcription factors bound to a module. A new unsupervised EM-like algorithm is developed to learn the parameters of the network, including the regression tree structure. Conclusion Our approach is shown to accurately identify known human liver and erythroid-specific modules. When applied to the prediction of tissue-specific modules in 10 different tissues, the network predicts a number of important transcription factor combinations whose concerted binding is associated to specific expression.

  9. In vivo genome-wide profiling reveals a tissue-specific role for 5-formylcytosine.

    Science.gov (United States)

    Iurlaro, Mario; McInroy, Gordon R; Burgess, Heather E; Dean, Wendy; Raiber, Eun-Ang; Bachman, Martin; Beraldi, Dario; Balasubramanian, Shankar; Reik, Wolf

    2016-06-29

    Genome-wide methylation of cytosine can be modulated in the presence of TET and thymine DNA glycosylase (TDG) enzymes. TET is able to oxidise 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). TDG can excise the oxidative products 5fC and 5caC, initiating base excision repair. These modified bases are stable and detectable in the genome, suggesting that they could have epigenetic functions in their own right. However, functional investigation of the genome-wide distribution of 5fC has been restricted to cell culture-based systems, while its in vivo profile remains unknown. Here, we describe the first analysis of the in vivo genome-wide profile of 5fC across a range of tissues from both wild-type and Tdg-deficient E11.5 mouse embryos. Changes in the formylation profile of cytosine upon depletion of TDG suggest TET/TDG-mediated active demethylation occurs preferentially at intron-exon boundaries and reveals a major role for TDG in shaping 5fC distribution at CpG islands. Moreover, we find that active enhancer regions specifically exhibit high levels of 5fC, resulting in characteristic tissue-diagnostic patterns, which suggest a role in embryonic development. The tissue-specific distribution of 5fC can be regulated by the collective contribution of TET-mediated oxidation and excision by TDG. The in vivo profile of 5fC during embryonic development resembles that of embryonic stem cells, sharing key features including enrichment of 5fC in enhancer and intragenic regions. Additionally, by investigating mouse embryo 5fC profiles in a tissue-specific manner, we identify targeted enrichment at active enhancers involved in tissue development.

  10. Non-Targeted Analysis Challenge (Non-targeted screening workshop)

    Science.gov (United States)

    This brief presentation is intended to motivate discussion of the "Non-Targeted Analysis Challenge" at the Advancing Non-Targeted Analyses of Xenobiotics in Environmental and Biological Media workshop held at the EPA RTP campus.

  11. Strengths and weaknesses of EST-based prediction of tissue-specific alternative splicing

    Directory of Open Access Journals (Sweden)

    Vingron Martin

    2004-09-01

    Full Text Available Abstract Background Alternative splicing contributes significantly to the complexity of the human transcriptome and proteome. Computational prediction of alternative splice isoforms are usually based on EST sequences that also allow to approximate the expression pattern of the related transcripts. However, the limited number of tissues represented in the EST data as well as the different cDNA construction protocols may influence the predictive capacity of ESTs to unravel tissue-specifically expressed transcripts. Methods We predict tissue and tumor specific splice isoforms based on the genomic mapping (SpliceNest of the EST consensus sequences and library annotation provided in the GeneNest database. We further ascertain the potentially rare tissue specific transcripts as the ones represented only by ESTs derived from normalized libraries. A subset of the predicted tissue and tumor specific isoforms are then validated via RT-PCR experiments over a spectrum of 40 tissue types. Results Our strategy revealed 427 genes with at least one tissue specific transcript as well as 1120 genes showing tumor specific isoforms. While our experimental evaluation of computationally predicted tissue-specific isoforms revealed a high success rate in confirming the expression of these isoforms in the respective tissue, the strategy frequently failed to detect the expected restricted expression pattern. The analysis of putative lowly expressed transcripts using normalized cDNA libraries suggests that our ability to detect tissue-specific isoforms strongly depends on the expression level of the respective transcript as well as on the sensitivity of the experimental methods. Especially splice isoforms predicted to be disease-specific tend to represent transcripts that are expressed in a set of healthy tissues rather than novel isoforms. Conclusions We propose to combine the computational prediction of alternative splice isoforms with experimental validation for

  12. Description of electrophoretic loci and tissue specific gene ...

    African Journals Online (AJOL)

    Protein electrophoresis was used to study the distributions and tissue specificity of gene expression of enzymes encoded by 42 loci in Rhinolophus clivosus and R. landeri, the genetically most divergent of the ten species of southern African horseshoe bats. No differences in gene expression were found between R.

  13. Description of electrophoretic loci and tissue specific gene ...

    African Journals Online (AJOL)

    Description of electrophoretic loci and tissue specific gene expression in the horseshoe bat genus Rhinolophus (Rhinolophidae). Sarita Maree* and W.S. Grant. Department of Genetics, University of the Witwatersrand, Johannesburg, 2050 Repubfic of South Africa. Received 9 February 1994; accepted 19 Ouober 1995.

  14. Tissue-specific DNA methylation is conserved across human, mouse, and rat, and driven by primary sequence conservation.

    Science.gov (United States)

    Zhou, Jia; Sears, Renee L; Xing, Xiaoyun; Zhang, Bo; Li, Daofeng; Rockweiler, Nicole B; Jang, Hyo Sik; Choudhary, Mayank N K; Lee, Hyung Joo; Lowdon, Rebecca F; Arand, Jason; Tabers, Brianne; Gu, C Charles; Cicero, Theodore J; Wang, Ting

    2017-09-12

    Uncovering mechanisms of epigenome evolution is an essential step towards understanding the evolution of different cellular phenotypes. While studies have confirmed DNA methylation as a conserved epigenetic mechanism in mammalian development, little is known about the conservation of tissue-specific genome-wide DNA methylation patterns. Using a comparative epigenomics approach, we identified and compared the tissue-specific DNA methylation patterns of rat against those of mouse and human across three shared tissue types. We confirmed that tissue-specific differentially methylated regions are strongly associated with tissue-specific regulatory elements. Comparisons between species revealed that at a minimum 11-37% of tissue-specific DNA methylation patterns are conserved, a phenomenon that we define as epigenetic conservation. Conserved DNA methylation is accompanied by conservation of other epigenetic marks including histone modifications. Although a significant amount of locus-specific methylation is epigenetically conserved, the majority of tissue-specific DNA methylation is not conserved across the species and tissue types that we investigated. Examination of the genetic underpinning of epigenetic conservation suggests that primary sequence conservation is a driving force behind epigenetic conservation. In contrast, evolutionary dynamics of tissue-specific DNA methylation are best explained by the maintenance or turnover of binding sites for important transcription factors. Our study extends the limited literature of comparative epigenomics and suggests a new paradigm for epigenetic conservation without genetic conservation through analysis of transcription factor binding sites.

  15. Predicting Tissue-Specific Enhancers in the Human Genome

    Energy Technology Data Exchange (ETDEWEB)

    Pennacchio, Len A.; Loots, Gabriela G.; Nobrega, Marcelo A.; Ovcharenko, Ivan

    2006-07-01

    Determining how transcriptional regulatory signals areencoded in vertebrate genomes is essential for understanding the originsof multi-cellular complexity; yet the genetic code of vertebrate generegulation remains poorly understood. In an attempt to elucidate thiscode, we synergistically combined genome-wide gene expression profiling,vertebrate genome comparisons, and transcription factor binding siteanalysis to define sequence signatures characteristic of candidatetissue-specific enhancers in the human genome. We applied this strategyto microarray-based gene expression profiles from 79 human tissues andidentified 7,187 candidate enhancers that defined their flanking geneexpression, the majority of which were located outside of knownpromoters. We cross-validated this method for its ability to de novopredict tissue-specific gene expression and confirmed its reliability in57 of the 79 available human tissues, with an average precision inenhancer recognition ranging from 32 percent to 63 percent, and asensitivity of 47 percent. We used the sequence signatures identified bythis approach to assign tissue-specific predictions to ~;328,000human-mouse conserved noncoding elements in the human genome. Byoverlapping these genome-wide predictions with a large in vivo dataset ofenhancers validated in transgenic mice, we confirmed our results with a28 percent sensitivity and 50 percent precision. These results indicatethe power of combining complementary genomic datasets as an initialcomputational foray into the global view of tissue-specific generegulation in vertebrates.

  16. Tissue-specific distribution of serine/threonine protein phosphatase 1 of Toxocara canis.

    Science.gov (United States)

    Ma, Guang Xu; Zhou, Rong Qiong; Huang, Han Cheng; Hu, Shi Jun; Lin, Jie

    2014-10-15

    Serine/threonine protein phosphatase 1 (PP1) is expressed in developing and reproductively active male Toxocara canis. To investigate the tissue-specific expression of PP1 in T. canis, the PP1 protein was expressed in Escherichia coli, and the recombinant protein was used to generate a rabbit polyclonal antiserum. Indirect fluorescence immunohistochemical analysis of adult male T. canis showed that PP1 was expressed in the germ line tissues, primarily in the testis, seminal vesicle, vas deferens, and sperm cells, indicating the potential roles of PP1 in spermatogenesis. What's more, structural predictions of PP1 in T. canis were performed. The predictions of the structure indicated that PP1 may be a potential target for antihelmintic drugs. This is the first report of the tissue distributions and structural prediction of PP1 in T. canis, which might lead to the development of novel, innovative strategies for controlling T. canis infestations. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Zooming-in on cancer metabolic rewiring with tissue specific constraint-based models.

    Science.gov (United States)

    Di Filippo, Marzia; Colombo, Riccardo; Damiani, Chiara; Pescini, Dario; Gaglio, Daniela; Vanoni, Marco; Alberghina, Lilia; Mauri, Giancarlo

    2016-06-01

    The metabolic rearrangements occurring in cancer cells can be effectively investigated with a Systems Biology approach supported by metabolic network modeling. We here present tissue-specific constraint-based core models for three different types of tumors (liver, breast and lung) that serve this purpose. The core models were extracted and manually curated from the corresponding genome-scale metabolic models in the Human Metabolic Atlas database with a focus on the pathways that are known to play a key role in cancer growth and proliferation. Along similar lines, we also reconstructed a core model from the original general human metabolic network to be used as a reference model. A comparative Flux Balance Analysis between the reference and the cancer models highlighted both a clear distinction between the two conditions and a heterogeneity within the three different cancer types in terms of metabolic flux distribution. These results emphasize the need for modeling approaches able to keep up with this tumoral heterogeneity in order to identify more suitable drug targets and develop effective treatments. According to this perspective, we identified key points able to reverse the tumoral phenotype toward the reference one or vice-versa. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Tantalus, a novel ASX-interacting protein with tissue-specific functions.

    Science.gov (United States)

    Dietrich, B H; Moore, J; Kyba, M; dosSantos, G; McCloskey, F; Milne, T A; Brock, H W; Krause, H M

    2001-06-15

    The Drosophila trithorax- and Polycomb-group (trxG and PcG) proteins maintain activated and repressed transcriptional states at specific target gene loci. The Additional sex combs (Asx) gene is of particular interest as it appears to function in both protein complexes and yet its effects on target genes are more restricted. A novel protein, Tantalus (TAN), was identified in a yeast two-hybrid screen for ASX-interacting proteins that might confer tissue-specific ASX functions. TAN contains consensus nuclear localization sites and binds DNA in vitro. However, its subcellular localization varies in a tissue-specific fashion. In salivary glands, TAN is predominantly nuclear and associates with 66 euchromatic sites on polytene chromosomes, more than half of which overlap with ASX. These loci do not include the homeotic genes of the ANT and BX complexes bound by other PcG and trxG proteins. Rather, tan mutant defects are restricted to sensory organs. We show that one of these defects, shared by Asx, is genetically enhanced by Asx. Taken together, the data suggest that TAN is a tissue-specific cofactor for ASX, and that its activity may be partially controlled by subcellular trafficking. Copyright 2001 Academic Press.

  19. p63 regulates Satb1 to control tissue-specific chromatin remodeling during development of the epidermis

    Science.gov (United States)

    Fessing, Michael Y.; Mardaryev, Andrei N.; Gdula, Michal R.; Sharov, Andrey A.; Sharova, Tatyana Y.; Rapisarda, Valentina; Gordon, Konstantin B.; Smorodchenko, Anna D.; Poterlowicz, Krzysztof; Ferone, Giustina; Kohwi, Yoshinori; Missero, Caterina

    2011-01-01

    During development, multipotent progenitor cells establish tissue-specific programs of gene expression. In this paper, we show that p63 transcription factor, a master regulator of epidermal morphogenesis, executes its function in part by directly regulating expression of the genome organizer Satb1 in progenitor cells. p63 binds to a proximal regulatory region of the Satb1 gene, and p63 ablation results in marked reduction in the Satb1 expression levels in the epidermis. Satb1−/− mice show impaired epidermal morphology. In Satb1-null epidermis, chromatin architecture of the epidermal differentiation complex locus containing genes associated with epidermal differentiation is altered primarily at its central domain, where Satb1 binding was confirmed by chromatin immunoprecipitation–on-chip analysis. Furthermore, genes within this domain fail to be properly activated upon terminal differentiation. Satb1 expression in p63+/− skin explants treated with p63 small interfering ribonucleic acid partially restored the epidermal phenotype of p63-deficient mice. These data provide a novel mechanism by which Satb1, a direct downstream target of p63, contributes in epidermal morphogenesis via establishing tissue-specific chromatin organization and gene expression in epidermal progenitor cells. PMID:21930775

  20. Transgenic zebrafish reveal tissue-specific differences in estrogen signaling in response to environmental water samples

    Science.gov (United States)

    Gorelick, Daniel A.; Iwanowicz, Luke R.; Hung, Alice L.; Blazer, Vicki; Halpern, Marnie E.

    2014-01-01

    Background: Environmental endocrine disruptors (EED) are exogenous chemicals that mimic endogenous hormones, such as estrogens. Previous studies using a zebrafish transgenic reporter demonstrated that the EEDs bisphenol A and genistein preferentially activate estrogen receptors (ER) in the larval heart compared to the liver. However, it was not known whether the transgenic zebrafish reporter was sensitive enough to detect estrogens from environmental samples, whether environmental estrogens would exhibit similar tissue-specific effects as BPA and genistein or why some compounds preferentially target receptors in the heart. Methods: We tested surface water samples using a transgenic zebrafish reporter with tandem estrogen response elements driving green fluorescent protein expression (5xERE:GFP). Reporter activation was colocalized with tissue-specific expression of estrogen receptor genes by RNA in situ hybridization. Results: Selective patterns of ER activation were observed in transgenic fish exposed to river water samples from the Mid-Atlantic United States, with several samples preferentially activating receptors in embryonic and larval heart valves. We discovered that tissue-specificity in ER activation is due to differences in the expression of estrogen receptor subtypes. ERα is expressed in developing heart valves but not in the liver, whereas ERβ2 has the opposite profile. Accordingly, subtype-specific ER agonists activate the reporter in either the heart valves or the liver. Conclusion: The use of 5xERE:GFP transgenic zebrafish has revealed an unexpected tissue-specific difference in the response to environmentally relevant estrogenic compounds. Exposure to estrogenic EEDs in utero is associated with adverse health effects, with the potentially unanticipated consequence of targeting developing heart valves.

  1. Predicting tissue-specific expressions based on sequence characteristics

    KAUST Repository

    Paik, Hyojung

    2011-04-30

    In multicellular organisms, including humans, understanding expression specificity at the tissue level is essential for interpreting protein function, such as tissue differentiation. We developed a prediction approach via generated sequence features from overrepresented patterns in housekeeping (HK) and tissue-specific (TS) genes to classify TS expression in humans. Using TS domains and transcriptional factor binding sites (TFBSs), sequence characteristics were used as indices of expressed tissues in a Random Forest algorithm by scoring exclusive patterns considering the biological intuition; TFBSs regulate gene expression, and the domains reflect the functional specificity of a TS gene. Our proposed approach displayed better performance than previous attempts and was validated using computational and experimental methods.

  2. Laminin Mediates Tissue-specific Gene Expression in Mammary Epithelia

    Energy Technology Data Exchange (ETDEWEB)

    Streuli, Charles H; Schmidhauser, Christian; Bailey, Nina; Yurchenco, Peter; Skubitz, Amy P. N.; Roskelley, Calvin; Bissell, Mina J

    1995-04-01

    Tissue-specific gene expression in mammary epithelium is dependent on the extracellular matrix as well as hormones. There is good evidence that the basement membrane provides signals for regulating beta-casein expression, and that integrins are involved in this process. Here, we demonstrate that in the presence of lactogenic hormones, laminin can direct expression of the beta-casein gene. Mouse mammary epithelial cells plated on gels of native laminin or laminin-entactin undergo functional differentiation. On tissue culture plastic, mammary cells respond to soluble basement membrane or purified laminin, but not other extracellular matrix components, by synthesizing beta-casein. In mammary cells transfected with chloramphenicol acetyl transferase reporter constructs, laminin activates transcription from the beta-casein promoter through a specific enhancer element. The inductive effect of laminin on casein expression was specifically blocked by the E3 fragment of the carboxy terminal region of the alpha 1 chain of laminin, by antisera raised against the E3 fragment, and by a peptide corresponding to a sequence within this region. Our results demonstrate that laminin can direct tissue-specific gene expression in epithelial cells through its globular domain.

  3. Tissue-specific sparse deconvolution for brain CT perfusion.

    Science.gov (United States)

    Fang, Ruogu; Jiang, Haodi; Huang, Junzhou

    2015-12-01

    Enhancing perfusion maps in low-dose computed tomography perfusion (CTP) for cerebrovascular disease diagnosis is a challenging task, especially for low-contrast tissue categories where infarct core and ischemic penumbra usually occur. Sparse perfusion deconvolution has been recently proposed to effectively improve the image quality and diagnostic accuracy of low-dose perfusion CT by extracting the complementary information from the high-dose perfusion maps to restore the low-dose using a joint spatio-temporal model. However the low-contrast tissue classes where infarct core and ischemic penumbra are likely to occur in cerebral perfusion CT tend to be over-smoothed, leading to loss of essential biomarkers. In this paper, we propose a tissue-specific sparse deconvolution approach to preserve the subtle perfusion information in the low-contrast tissue classes. We first build tissue-specific dictionaries from segmentations of high-dose perfusion maps using online dictionary learning, and then perform deconvolution-based hemodynamic parameters estimation for block-wise tissue segments on the low-dose CTP data. Extensive validation on clinical datasets of patients with cerebrovascular disease demonstrates the superior performance of our proposed method compared to state-of-art, and potentially improve diagnostic accuracy by increasing the differentiation between normal and ischemic tissues in the brain. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Detection of neuronal tissue in meat using tissue specific DNA modifications

    Directory of Open Access Journals (Sweden)

    Harris N.

    2004-01-01

    Full Text Available A method has been developed to differentiate between non-muscle tissues such as liver, kidney and heart and that of muscle in meat samples using tissue specific DNA detection. Only muscle tissue is considered meat from the point of view of labelling (Food Labelling [Amendment] (England Regulations 2003 and Quantitative Ingredient Declaration (QUID, and also certain parts of the carcass are prohibited to be used in raw meat products (Meat Products [England] Regulations 2003. Included in the prohibited offal are brain and spinal cord. The described methodology has therefore been developed primarily to enforce labelling rules but also to contribute to the enforcement of BSE legislation on the detection of Central Nervous System (CNS tissue. The latter requires the removal of Specified Risk Material (SRM, such as bovine and ovine brain and spinal cord, from the food chain. Current methodologies for detection of CNS tissue include histological examination, analysis of cholesterol content and immunodetection. These can potentially be time consuming, less applicable to processed samples and may not be readily adapted to high throughput sample analysis. The objective of this work was therefore to develop a DNAbased detection assay that exploits the sensitivity and specificity of PCR and is potentially applicable to more highly processed food samples. For neuronal tissue, the DNA target selected was the promoter for Glial Fibrillary Acidic Protein (GFAP, a gene whose expression is restricted to astroglial cells within CNS tissue. The promoter fragments from both cattle and sheep have been isolated and key differences in the methylation patterns of certain CpG dinucleotides in the sequences from bovine and sheep brain and spinal cord and the corresponding skeletal muscle identified. These have been used to design a PCR assay exploiting Methylation Specific PCR (MSP to specifically amplify the neuronal tissue derived sequence and therefore identify the

  5. Tissue-specific transcriptome analyses provide new insights into GPCR signalling in adult Schistosoma mansoni.

    Science.gov (United States)

    Hahnel, Steffen; Wheeler, Nic; Lu, Zhigang; Wangwiwatsin, Arporn; McVeigh, Paul; Maule, Aaron; Berriman, Matthew; Day, Timothy; Ribeiro, Paula; Grevelding, Christoph G

    2018-01-01

    Schistosomes are blood-dwelling trematodes with global impact on human and animal health. Because medical treatment is currently based on a single drug, praziquantel, there is urgent need for the development of alternative control strategies. The Schistosoma mansoni genome project provides a platform to study and connect the genetic repertoire of schistosomes to specific biological functions essential for successful parasitism. G protein-coupled receptors (GPCRs) form the largest superfamily of transmembrane receptors throughout the Eumetazoan phyla, including platyhelminths. Due to their involvement in diverse biological processes, their pharmacological importance, and proven druggability, GPCRs are promising targets for new anthelmintics. However, to identify candidate receptors, a more detailed understanding of the roles of GPCR signalling in schistosome biology is essential. An updated phylogenetic analysis of the S. mansoni GPCR genome (GPCRome) is presented, facilitated by updated genome data that allowed a more precise annotation of GPCRs. Additionally, we review the current knowledge on GPCR signalling in this parasite and provide new insights into the potential roles of GPCRs in schistosome reproduction based on the findings of a recent tissue-specific transcriptomic study in paired and unpaired S. mansoni. According to the current analysis, GPCRs contribute to gonad-specific functions but also to nongonad, pairing-dependent processes. The latter may regulate gonad-unrelated functions during the multifaceted male-female interaction. Finally, we compare the schistosome GPCRome to that of another parasitic trematode, Fasciola, and discuss the importance of GPCRs to basic and applied research. Phylogenetic analyses display GPCR diversity in free-living and parasitic platyhelminths and suggest diverse functions in schistosomes. Although their roles need to be substantiated by functional studies in the future, the data support the selection of GPCR candidates

  6. Repressor-mediated tissue-specific gene expression in plants

    Science.gov (United States)

    Meagher, Richard B [Athens, GA; Balish, Rebecca S [Oxford, OH; Tehryung, Kim [Athens, GA; McKinney, Elizabeth C [Athens, GA

    2009-02-17

    Plant tissue specific gene expression by way of repressor-operator complexes, has enabled outcomes including, without limitation, male sterility and engineered plants having root-specific gene expression of relevant proteins to clean environmental pollutants from soil and water. A mercury hyperaccumulation strategy requires that mercuric ion reductase coding sequence is strongly expressed. The actin promoter vector, A2pot, engineered to contain bacterial lac operator sequences, directed strong expression in all plant vegetative organs and tissues. In contrast, the expression from the A2pot construct was restricted primarily to root tissues when a modified bacterial repressor (LacIn) was coexpressed from the light-regulated rubisco small subunit promoter in above-ground tissues. Also provided are analogous repressor operator complexes for selective expression in other plant tissues, for example, to produce male sterile plants.

  7. Tissue specific regulation of lipogenesis by thyroid hormone

    Energy Technology Data Exchange (ETDEWEB)

    Blennemann, B.; Freake, H. (Univ. of Connecticut, Storrs (United States))

    1990-02-26

    Thyroid hormone stimulates long chain fatty acid synthesis in rat liver by increasing the amounts of key lipogenic enzymes. Sparse and conflicting data exist concerning its action on this pathway in other tissues. The authors recently showed that, in contrast to liver, hypothyroidism stimulates lipogenesis in brown adipose tissue and have now systematically examined the effects of thyroid state on fatty acid synthesis in other rat tissues. Lipogenesis was assessed by tritiated water incorporation. Euthyroid hepatic fatty acid synthesis (16.6um H/g/h) was reduced to 30% in hypothyroid rats and increased 3 fold in hyperthyroidism. Lipogenesis was detected in euthyroid kidney and heart and these levels were also stimulated by thyroid hormone treatment. Brown adipose tissue was unique in showing increased lipogenesis in the hypothyroid state. Hyperthyroid levels were not different from euthyroid. Effects in white adipose tissue were small and inconsistent. Brain, skin and lung were all lipogenically active, but did not respond to changes in thyroid state. Low but detectable levels of fatty acid synthesis were measured in muscle, which also were non-responsive. A wide spectrum of responses to thyroid hormone are seen in different rat tissues and thus the pathway of long chain fatty acid synthesis would appear to be an excellent model for examining the tissue specific regulation of gene expression by thyroid hormone.

  8. Tissue-specific expression of type IX collagen

    International Nuclear Information System (INIS)

    Nishimura, I.; Muragaki, Y.; Ninomiya, Y.; Olsen, B.R.; Hayashi, M.

    1990-01-01

    This paper reports on the tissue-specific expression of type IX collagen, a major component of cartilage fibrils. It contains molecules with three genetically distinct subunits. The subunits form three triple-helical (CO) domains separated by non-triple-helical (NC) sequences. One of the subunits in cartilage, α1(IX), contains a large amino-terminal globular domain, NC4, while a second subunit, α2(IX), contains a covalently attached chondroitin sulfate chain. The site of attachment for this chain is located within the non-triple-helical sequence NC3, which separates the amino-terminal and central triple-helical domains of the type IX molecules. The NC3 region is 5 amino acid residues longer in the α2(IX) chain than in the α1(IX) and α3(IX) chains. This may explain why type IX molecules tend to show a sharp angle in the NC3 region, and why monoclonal antibody molecules that are specific for the stub left after chondroitinase ABC digestion of the chondroitin sulfate side chain always are located on the outside of the angle

  9. Conditional Tissue-Specific Foxa2 Ablation in Mouse Pancreas Causes Hyperinsulinemic Hypoglycemia: RETRACTED.

    Science.gov (United States)

    Wu, Zengbin; Fei, Aihua; Liu, Yingbin; Pan, Shuming

    The forkhead/winged helix transcription factor Foxa2 is a major upstream regulator of Pdx1, a transcription factor necessary for pancreatic development. In the present study, we conditionally knocked out Foxa2 in Pdx1-expressing domain and further analyzed the contribution of Foxa2 to α- and β-cell development and the effect of Foxa2 deletion on plasma insulin, glucagon, and glucose levels. Homozygous pdx1 Foxa2 mice and heterozygous pdx1 Foxa2 mice were generated by homologous recombination using a Foxa2 gene-targeting vector. α- and β-cell mass was examined by immunofluorescence microscopy. Plasma glucose, insulin, and plasma were measured at postnatal day 10. For pdx1 lineage tracing studies, heterozygous pdx1 Foxa2 EYFP and homozygous pdx1 Foxa2 EYFP mice were used. Our immunofluorescence analysis revealed that in the pancreas sections of the homozygous mutant mice, Foxa2 was virtually absent from non-β cells and its expression almost exclusively coincided with remnant β cells. The density of both α and β cells apparently decreased in the pancreas of the heterozygous mutant mice and in the pancreas of the homozygous mutant mice, α cells lost its predominance and β cells increased proportionally. Direct Pdx1 cell lineage tracing revealed that, on embryonic day 18.5, in the homozygous mutant mice, Pdx1 expression coincided almost exclusively with that of insulin-secreting β cells. Chemiluminescence assays revealed that heterozygous pdx1 Foxa2 mice had significantly lower insulin levels than control mice (P Foxa2 mice and control mice (P > 0.05). Chemiluminescence assays also showed that Foxa2 deletion significantly depressed plasma glucagon levels in both homozygous pdx1 Foxa2 mice and heterozygous pdx1 Foxa2 mice (P Foxa2 mice compared with control mice (P Foxa2 ablation leads to an imbalance in β/α ratio, profound hypoglucagonemia, inappropriate hyperinsulinemia, and hypoglycemia in mice. Our conditional tissue-specific Foxa2 ablation mouse model

  10. Conditional Tissue-Specific Foxa2 Ablation in Mouse Pancreas Causes Hyperinsulinemic Hypoglycemia.

    Science.gov (United States)

    Wu, Zengbin; Fei, Aihua; Liu, Yingbin; Pan, Shuming

    The forkhead/winged helix transcription factor Foxa2 is a major upstream regulator of Pdx1, a transcription factor necessary for pancreatic development. In the present study, we conditionally knocked out Foxa2 in Pdx1-expressing domain and further analyzed the contribution of Foxa2 to α- and β-cell development and the effect of Foxa2 deletion on plasma insulin, glucagon, and glucose levels. Homozygous pdx1 Foxa2 mice and heterozygous pdx1 Foxa2 mice were generated by homologous recombination using a Foxa2 gene-targeting vector. α- and β-cell mass was examined by immunofluorescence microscopy. Plasma glucose, insulin, and plasma were measured at postnatal day 10. For pdx1 lineage tracing studies, heterozygous pdx1 Foxa2 EYFP and homozygous pdx1 Foxa2 EYFP mice were used. Our immunofluorescence analysis revealed that in the pancreas sections of the homozygous mutant mice, Foxa2 was virtually absent from non-β cells and its expression almost exclusively coincided with remnant β cells. The density of both α and β cells apparently decreased in the pancreas of the heterozygous mutant mice and in the pancreas of the homozygous mutant mice, α cells lost its predominance and β cells increased proportionally. Direct Pdx1 cell lineage tracing revealed that, on embryonic day 18.5, in the homozygous mutant mice, Pdx1 expression coincided almost exclusively with that of insulin-secreting β cells. Chemiluminescence assays revealed that heterozygous pdx1 Foxa2 mice had significantly lower insulin levels than control mice (P Foxa2 mice and control mice (P > 0.05). Chemiluminescence assays also showed that Foxa2 deletion significantly depressed plasma glucagon levels in both homozygous pdx1 Foxa2 mice and heterozygous pdx1 Foxa2 mice (P Foxa2 mice compared with control mice (P Foxa2 ablation leads to an imbalance in β/α ratio, profound hypoglucagonemia, inappropriate hyperinsulinemia, and hypoglycemia in mice. Our conditional tissue-specific Foxa2 ablation mouse model

  11. Glucocorticoid Signaling in Health and Disease: Insights From Tissue-Specific GR Knockout Mice.

    Science.gov (United States)

    Whirledge, Shannon; DeFranco, Donald B

    2018-01-01

    Glucocorticoids are adrenally produced hormones critically involved in development, general physiology, and control of inflammation. Since their discovery, glucocorticoids have been widely used to treat a variety of inflammatory conditions. However, high doses or prolonged use leads to a number of side effects throughout the body, which preclude their clinical utility. The primary actions of glucocorticoids are mediated by the glucocorticoid receptor (GR), a transcription factor that regulates many complex signaling pathways. Although GR is nearly ubiquitous throughout the body, glucocorticoids exhibit cell- and tissue-specific effects. For example, glucocorticoids stimulate glucose production in the liver, reduce glucose uptake in the skeletal muscle, and decrease insulin secretion from the pancreatic β-cells. Mouse models represent an important approach to understanding the dynamic functions of GR signaling in normal physiology, disease, and resistance. In the absence of a viable GR null model, gene-targeting techniques utilizing promoter-driven recombination have provided an opportunity to characterize the tissue-specific actions of GR. The aim of the present review is to describe the organ systems in which GR has been conditionally deleted and summarize the functions ascribed to glucocorticoid action in those tissues. Copyright © 2018 Endocrine Society.

  12. VISTA Enhancer Browser--A Database of Tissue-Specific HumanEnhancers

    Energy Technology Data Exchange (ETDEWEB)

    Visel, Axel; Minovitsky, Simon; Dubchak, Inna; Pennacchio, Len A.

    2006-08-01

    Despite the known existence of distant-acting cis-regulatoryelements in the human genome, only a small fraction of these elements hasbeen identified and experimentally characterized in vivo. This paucity ofenhancer collections with defined activities has thus hinderedcomputational approaches for the genome-wide prediction of enhancers andtheir functions. To fill this void, we utilize comparative genomeanalysis to identify candidate enhancer elements in the human genomecoupled with the experimental determination of their in vivo enhanceractivity in transgenic mice (1). These data are available through theVISTA Enhancer Browser (http://enhancer.lbl.gov). This growing databasecurrently contains over 250 experimentally tested DNA fragments, of whichmore than 100 have been validated as tissue-specific enhancers. For eachpositive enhancer, we provide digital images of whole-mount embryostaining at embryonic day 11.5 and an anatomical description of thereporter gene expression pattern. Users can retrieve elements near singlegenes of interest, search for enhancers that target reporter geneexpression to a particular tissue, or download entire collections ofenhancers with a defined tissue specificity or conservation depth. Theseexperimentally validated training sets are expected to provide a basisfor a wide range of downstream computational and functional studies ofenhancer function.

  13. Target Tracking Based Scene Analysis

    Science.gov (United States)

    1984-08-01

    NATO Advanced Study PG Institute, Braunlage/ Harz , FRG, June 21 July 2, 1I82 Springer, Berlin, 1983, pp. 493-501. 141 B. Bhanu."Recognition of...Braunlage/ Harz . FRG, June 21 - July 2, 1082 Springer, Berlin, 1083. pp 10.1-124. [81 R.B. Cate, T.*1B. Dennis, J.T. Mallin, K.S. Nedelman, NEIL Trenchard, and...34Image, Sequence Processing and Dynamic Scene Analysis", Proceedings of NATO,. Advanced Study Institute, Braunlage/ Harz , FRG, June 21 - July 2, 1982

  14. Obesity-induces Organ and Tissue Specific Tight Junction Restructuring and Barrier Deregulation by Claudin Switching.

    Science.gov (United States)

    Ahmad, Rizwan; Rah, Bilal; Bastola, Dhundy; Dhawan, Punita; Singh, Amar B

    2017-07-11

    Obesity increases susceptibility to multiple organ disorders, however, underlying mechanisms remain unclear. The subclinical inflammation assisted by obesity-induced gut permeability may underlie obesity-associated co-morbidities. Despite eminent clinical significance of the obesity led gut barrier abnormalities, its precise molecular regulation remains unclear. It is also unknown whether barrier deregulations, similar to the gut, characterize other vital organs in obese individuals. The claudin family of proteins is integral to the tight junction (TJ), the apical cell-cell adhesion and a key regulator of the epithelial barrier. Using comprehensive physiological and biochemical analysis of intestinal and renal tissues from high-fat diet fed mice, critical for maintaining metabolic homeostasis, this study demonstrates that profound TJ-restructuring by organ and tissue-specific claudin switching characterize obese organs. Protein expression and cellular distribution were examined. In-silico analysis further highlighted potential association of select claudins, modulated by the obesity, with signaling and metabolic pathways of pathological significance. In vitro studies using Leptin or DCA-treatment suggested causal significance of obesity-induced changes in tissue microenvironment in regulating barrier deregulations in tissue-specific manner. Overall, current findings advances our understanding of the molecular undertakings of obesity associated changes that help predispose to specific diseases and also identifies novel windows of preventive and/or therapeutic interventions.

  15. Tissue Specific Effects of Loss of Estrogen During Menopause and Aging

    Directory of Open Access Journals (Sweden)

    Korinna eWend

    2012-02-01

    Full Text Available The roles of estrogens have been best studied in the breast, breast cancers and in the female reproductive tract. However, estrogens have important functions in almost every tissue in the body. Recent clinical trials such as the Women’s Health Initiative have highlighted both the importance of estrogens and how little we know about the molecular mechanism of estrogens in these other tissues. In this review, we illustrate the diverse functions of estrogens in the bone, adipose tissue, skin, hair, brain, skeletal muscle and cardiovascular system, and how the loss of estrogens during aging affects these tissues. Early transcriptional targets of estrogen are reviewed in each tissue. We also describe the tissue-specific effects of selective estrogen receptor modulators (SERMs used for the treatment of breast cancers and post-menopausal symptoms.

  16. Tissue specific responses to cadmium-based quantum dots in the marine mussel Mytilus galloprovincialis

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Thiago Lopes [CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Gomes, Tânia [CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo (Norway); Mestre, Nélia C.; Cardoso, Cátia [CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Bebianno, Maria João, E-mail: mbebian@ualg.pt [CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro (Portugal)

    2015-12-15

    Highlights: • Mussel gills are the main target for oxidative stress induced by Cd-based QDs. • Antioxidants responses induced by Cd-based QDs and dissolved Cd are mediated by different mechanisms. • CdTe QDs are more pro-oxidant Cd form when compared to dissolved Cd. • Differential tissue response indicated nano-specific effects. - Abstract: In recent years, Cd-based quantum dots (QDs) have generated interest from the life sciences community due to their potential applications in nanomedicine, biology and electronics. However, these engineered nanomaterials can be released into the marine environment, where their environmental health hazards remain unclear. This study investigated the tissue-specific responses related to alterations in the antioxidant defense system induced by CdTe QDs, in comparison with its dissolved counterpart, using the marine mussel Mytilus galloprovincialis. Mussels were exposed to CdTe QDs and dissolved Cd for 14 days at 10 μgCd L{sup −1} and biomarkers of oxidative stress [superoxide dismutase (SOD), catalase (CAT), glutathione peroxidases (total, Se-independent and Se-dependent GPx) and glutathione-S-transferase (GST) activities] were analyzed along with Cd accumulation in the gills and digestive gland of mussels. Results show that both Cd forms changed mussels’ antioxidant responses with distinct modes of action (MoA). There were tissue- and time-dependent differences in the biochemical responses to each Cd form, wherein QDs are more pro-oxidant when compared to dissolved Cd. The gills are the main tissue affected by QDs, with effects related to the increase of SOD, GST and GPx activities, while those of dissolved Cd was associated to the increase of CAT activity, Cd accumulation and exposure time. Digestive gland is a main tissue for accumulation of both Cd forms, but changes in antioxidant enzyme activities are smaller than in gills. A multivariate analysis revealed that the antioxidant patterns are tissue dependent

  17. Acquisition and evolution of plant pathogenesis-associated gene clusters and candidate determinants of tissue-specificity in xanthomonas.

    Directory of Open Access Journals (Sweden)

    Hong Lu

    Full Text Available Xanthomonas is a large genus of plant-associated and plant-pathogenic bacteria. Collectively, members cause diseases on over 392 plant species. Individually, they exhibit marked host- and tissue-specificity. The determinants of this specificity are unknown.To assess potential contributions to host- and tissue-specificity, pathogenesis-associated gene clusters were compared across genomes of eight Xanthomonas strains representing vascular or non-vascular pathogens of rice, brassicas, pepper and tomato, and citrus. The gum cluster for extracellular polysaccharide is conserved except for gumN and sequences downstream. The xcs and xps clusters for type II secretion are conserved, except in the rice pathogens, in which xcs is missing. In the otherwise conserved hrp cluster, sequences flanking the core genes for type III secretion vary with respect to insertion sequence element and putative effector gene content. Variation at the rpf (regulation of pathogenicity factors cluster is more pronounced, though genes with established functional relevance are conserved. A cluster for synthesis of lipopolysaccharide varies highly, suggesting multiple horizontal gene transfers and reassortments, but this variation does not correlate with host- or tissue-specificity. Phylogenetic trees based on amino acid alignments of gum, xps, xcs, hrp, and rpf cluster products generally reflect strain phylogeny. However, amino acid residues at four positions correlate with tissue specificity, revealing hpaA and xpsD as candidate determinants. Examination of genome sequences of xanthomonads Xylella fastidiosa and Stenotrophomonas maltophilia revealed that the hrp, gum, and xcs clusters are recent acquisitions in the Xanthomonas lineage.Our results provide insight into the ancestral Xanthomonas genome and indicate that differentiation with respect to host- and tissue-specificity involved not major modifications or wholesale exchange of clusters, but subtle changes in a small

  18. Tissue-specific splicing of a ubiquitously expressed transcription factor is essential for muscle differentiation.

    Science.gov (United States)

    Sebastian, Soji; Faralli, Hervé; Yao, Zizhen; Rakopoulos, Patricia; Palii, Carmen; Cao, Yi; Singh, Kulwant; Liu, Qi-Cai; Chu, Alphonse; Aziz, Arif; Brand, Marjorie; Tapscott, Stephen J; Dilworth, F Jeffrey

    2013-06-01

    Alternate splicing contributes extensively to cellular complexity by generating protein isoforms with divergent functions. However, the role of alternate isoforms in development remains poorly understood. Mef2 transcription factors are essential transducers of cell signaling that modulate differentiation of many cell types. Among Mef2 family members, Mef2D is unique, as it undergoes tissue-specific splicing to generate a muscle-specific isoform. Since the ubiquitously expressed (Mef2Dα1) and muscle-specific (Mef2Dα2) isoforms of Mef2D are both expressed in muscle, we examined the relative contribution of each Mef2D isoform to differentiation. Using both in vitro and in vivo models, we demonstrate that Mef2D isoforms act antagonistically to modulate differentiation. While chromatin immunoprecipitation (ChIP) sequencing analysis shows that the Mef2D isoforms bind an overlapping set of genes, only Mef2Dα2 activates late muscle transcription. Mechanistically, the differential ability of Mef2D isoforms to activate transcription depends on their susceptibility to phosphorylation by protein kinase A (PKA). Phosphorylation of Mef2Dα1 by PKA provokes its association with corepressors. Conversely, exon switching allows Mef2Dα2 to escape this inhibitory phosphorylation, permitting recruitment of Ash2L for transactivation of muscle genes. Thus, our results reveal a novel mechanism in which a tissue-specific alternate splicing event has evolved that permits a ubiquitously expressed transcription factor to escape inhibitory signaling for temporal regulation of gene expression.

  19. Tissue-specific metabolic reprogramming drives nutrient flux in diabetic complications

    Science.gov (United States)

    Sas, Kelli M.; Kayampilly, Pradeep; Byun, Jaeman; Nair, Viji; Hinder, Lucy M.; Zhang, Hongyu; Lin, Chengmao; Qi, Nathan R.; Michailidis, George; Groop, Per-Henrik; Nelson, Robert G.; Darshi, Manjula; Sharma, Kumar; Schelling, Jeffrey R.; Sedor, John R.; Pop-Busui, Rodica; Weinberg, Joel M.; Soleimanpour, Scott A.; Abcouwer, Steven F.; Gardner, Thomas W.; Burant, Charles F.; Feldman, Eva L.; Kretzler, Matthias; Brosius, Frank C.

    2016-01-01

    Diabetes is associated with altered cellular metabolism, but how altered metabolism contributes to the development of diabetic complications is unknown. We used the BKS db/db diabetic mouse model to investigate changes in carbohydrate and lipid metabolism in kidney cortex, peripheral nerve, and retina. A systems approach using transcriptomics, metabolomics, and metabolic flux analysis identified tissue-specific differences, with increased glucose and fatty acid metabolism in the kidney, a moderate increase in the retina, and a decrease in the nerve. In the kidney, increased metabolism was associated with enhanced protein acetylation and mitochondrial dysfunction. To confirm these findings in human disease, we analyzed diabetic kidney transcriptomic data and urinary metabolites from a cohort of Southwestern American Indians. The urinary findings were replicated in 2 independent patient cohorts, the Finnish Diabetic Nephropathy and the Family Investigation of Nephropathy and Diabetes studies. Increased concentrations of TCA cycle metabolites in urine, but not in plasma, predicted progression of diabetic kidney disease, and there was an enrichment of pathways involved in glycolysis and fatty acid and amino acid metabolism. Our findings highlight tissue-specific changes in metabolism in complication-prone tissues in diabetes and suggest that urinary TCA cycle intermediates are potential prognostic biomarkers of diabetic kidney disease progression. PMID:27699244

  20. Understanding multicellular function and disease with human tissue-specific networks

    Science.gov (United States)

    Greene, Casey S.; Krishnan, Arjun; Wong, Aaron K.; Ricciotti, Emanuela; Zelaya, Rene A.; Himmelstein, Daniel S.; Zhang, Ran; Hartmann, Boris M.; Zaslavsky, Elena; Sealfon, Stuart C.; Chasman, Daniel I.; FitzGerald, Garret A.; Dolinski, Kara; Grosser, Tilo; Troyanskaya, Olga G.

    2016-01-01

    Tissue and cell-type identity lie at the core of human physiology and disease. Understanding the genetic underpinnings of complex tissues and individual cell lineages is crucial for developing improved diagnostics and therapeutics. We present genome-wide functional interaction networks for 144 human tissues and cell types developed using a data-driven Bayesian methodology that integrates thousands of diverse experiments spanning tissue and disease states. Tissue-specific networks predict lineage-specific responses to perturbation, reveal genes’ changing functional roles across tissues, and illuminate disease-disease relationships. We introduce NetWAS, which combines genes with nominally significant GWAS p-values and tissue-specific networks to identify disease-gene associations more accurately than GWAS alone. Our webserver, GIANT, provides an interface to human tissue networks through multi-gene queries, network visualization, analysis tools including NetWAS, and downloadable networks. GIANT enables systematic exploration of the landscape of interacting genes that shape specialized cellular functions across more than one hundred human tissues and cell types. PMID:25915600

  1. Illuminating a plant's tissue-specific metabolic diversity using computational metabolomics and information theory.

    Science.gov (United States)

    Li, Dapeng; Heiling, Sven; Baldwin, Ian T; Gaquerel, Emmanuel

    2016-11-22

    Secondary metabolite diversity is considered an important fitness determinant for plants' biotic and abiotic interactions in nature. This diversity can be examined in two dimensions. The first one considers metabolite diversity across plant species. A second way of looking at this diversity is by considering the tissue-specific localization of pathways underlying secondary metabolism within a plant. Although these cross-tissue metabolite variations are increasingly regarded as important readouts of tissue-level gene function and regulatory processes, they have rarely been comprehensively explored by nontargeted metabolomics. As such, important questions have remained superficially addressed. For instance, which tissues exhibit prevalent signatures of metabolic specialization? Reciprocally, which metabolites contribute most to this tissue specialization in contrast to those metabolites exhibiting housekeeping characteristics? Here, we explore tissue-level metabolic specialization in Nicotiana attenuata, an ecological model with rich secondary metabolism, by combining tissue-wide nontargeted mass spectral data acquisition, information theory analysis, and tandem MS (MS/MS) molecular networks. This analysis was conducted for two different methanolic extracts of 14 tissues and deconvoluted 895 nonredundant MS/MS spectra. Using information theory analysis, anthers were found to harbor the most specialized metabolome, and most unique metabolites of anthers and other tissues were annotated through MS/MS molecular networks. Tissue-metabolite association maps were used to predict tissue-specific gene functions. Predictions for the function of two UDP-glycosyltransferases in flavonoid metabolism were confirmed by virus-induced gene silencing. The present workflow allows biologists to amortize the vast amount of data produced by modern MS instrumentation in their quest to understand gene function.

  2. Lung Cancer Signature Biomarkers: tissue specific semantic similarity based clustering of Digital Differential Display (DDD data

    Directory of Open Access Journals (Sweden)

    Srivastava Mousami

    2012-11-01

    Full Text Available Abstract Background The tissue-specific Unigene Sets derived from more than one million expressed sequence tags (ESTs in the NCBI, GenBank database offers a platform for identifying significantly and differentially expressed tissue-specific genes by in-silico methods. Digital differential display (DDD rapidly creates transcription profiles based on EST comparisons and numerically calculates, as a fraction of the pool of ESTs, the relative sequence abundance of known and novel genes. However, the process of identifying the most likely tissue for a specific disease in which to search for candidate genes from the pool of differentially expressed genes remains difficult. Therefore, we have used ‘Gene Ontology semantic similarity score’ to measure the GO similarity between gene products of lung tissue-specific candidate genes from control (normal and disease (cancer sets. This semantic similarity score matrix based on hierarchical clustering represents in the form of a dendrogram. The dendrogram cluster stability was assessed by multiple bootstrapping. Multiple bootstrapping also computes a p-value for each cluster and corrects the bias of the bootstrap probability. Results Subsequent hierarchical clustering by the multiple bootstrapping method (α = 0.95 identified seven clusters. The comparative, as well as subtractive, approach revealed a set of 38 biomarkers comprising four distinct lung cancer signature biomarker clusters (panel 1–4. Further gene enrichment analysis of the four panels revealed that each panel represents a set of lung cancer linked metastasis diagnostic biomarkers (panel 1, chemotherapy/drug resistance biomarkers (panel 2, hypoxia regulated biomarkers (panel 3 and lung extra cellular matrix biomarkers (panel 4. Conclusions Expression analysis reveals that hypoxia induced lung cancer related biomarkers (panel 3, HIF and its modulating proteins (TGM2, CSNK1A1, CTNNA1, NAMPT/Visfatin, TNFRSF1A, ETS1, SRC-1, FN1, APLP2, DMBT1

  3. Lung cancer signature biomarkers: tissue specific semantic similarity based clustering of digital differential display (DDD) data.

    Science.gov (United States)

    Srivastava, Mousami; Khurana, Pankaj; Sugadev, Ragumani

    2012-11-02

    The tissue-specific Unigene Sets derived from more than one million expressed sequence tags (ESTs) in the NCBI, GenBank database offers a platform for identifying significantly and differentially expressed tissue-specific genes by in-silico methods. Digital differential display (DDD) rapidly creates transcription profiles based on EST comparisons and numerically calculates, as a fraction of the pool of ESTs, the relative sequence abundance of known and novel genes. However, the process of identifying the most likely tissue for a specific disease in which to search for candidate genes from the pool of differentially expressed genes remains difficult. Therefore, we have used 'Gene Ontology semantic similarity score' to measure the GO similarity between gene products of lung tissue-specific candidate genes from control (normal) and disease (cancer) sets. This semantic similarity score matrix based on hierarchical clustering represents in the form of a dendrogram. The dendrogram cluster stability was assessed by multiple bootstrapping. Multiple bootstrapping also computes a p-value for each cluster and corrects the bias of the bootstrap probability. Subsequent hierarchical clustering by the multiple bootstrapping method (α = 0.95) identified seven clusters. The comparative, as well as subtractive, approach revealed a set of 38 biomarkers comprising four distinct lung cancer signature biomarker clusters (panel 1-4). Further gene enrichment analysis of the four panels revealed that each panel represents a set of lung cancer linked metastasis diagnostic biomarkers (panel 1), chemotherapy/drug resistance biomarkers (panel 2), hypoxia regulated biomarkers (panel 3) and lung extra cellular matrix biomarkers (panel 4). Expression analysis reveals that hypoxia induced lung cancer related biomarkers (panel 3), HIF and its modulating proteins (TGM2, CSNK1A1, CTNNA1, NAMPT/Visfatin, TNFRSF1A, ETS1, SRC-1, FN1, APLP2, DMBT1/SAG, AIB1 and AZIN1) are significantly down regulated

  4. Tissue specific heterogeneity in effector immune cell response

    Directory of Open Access Journals (Sweden)

    Saba eTufail

    2013-08-01

    Full Text Available Post pathogen invasion, migration of effector T-cell subsets to specific tissue locations is of prime importance for generation of robust immune response. Effector T cells are imprinted with distinct ‘homing codes’ (adhesion molecules and chemokine receptors during activation which regulate their targeted trafficking to specific tissues. Internal cues in the lymph node microenvironment along with external stimuli from food (vitamin A and sunlight (vitamin D3 prime dendritic cells, imprinting them to play centrestage in the induction of tissue tropism in effector T cells. B cells as well, in a manner similar to effector T cells, exhibit tissue tropic migration. In this review, we have focused on the factors regulating the generation and migration of effector T cells to various tissues alongwith giving an overview of tissue tropism in B cells.

  5. CFD analysis of the HYPER spallation target

    International Nuclear Information System (INIS)

    Cho, Chungho; Tak, Nam-il; Choi, Jae-Hyuk; Lee, Yong-Bum

    2008-01-01

    KAERI (Korea Atomic Energy Research Institute) is developing an accelerator driven system (ADS) named HYPER (HYbrid Power Extraction Reactor) for a transmutation of long-lived nuclear wastes. One of the challenging tasks for the HYPER system is to design a large spallation target with a beam power of 15-25 MW. The paper focuses on a thermal-hydraulic analysis of the active part of the HYPER target. Computational fluid dynamics (CFD) analysis was performed by using a commercial code CFX 5.7.1. Several advanced turbulence models with different grid structures were applied. The CFX results reveal a significant impact of the turbulence model on the window temperature. Particularly, the k-ε model predicts the lowest window temperature among the five investigated turbulence models

  6. Housekeeping and tissue-specific genes differ in simple sequence repeats in the 5'-UTR region.

    Science.gov (United States)

    Lawson, Mark J; Zhang, Liqing

    2008-01-15

    SSRs (simple sequence repeats) have been shown to have a variety of effects on an organism. In this study, we compared SSRs in housekeeping and tissue-specific genes in human and mouse, in terms of SSR types and distributions in different regions including 5'-UTRs, introns, coding exons, 3'-UTRs, and upstream regions. Among all these regions, SSRs in the 5'-UTR show the most distinction between housekeeping genes and tissue-specific genes in both densities and repeat types. Specifically, SSR densities in 5'-UTRs in housekeeping genes are about 1.7 times higher than those in tissue-specific genes, in contrast to the 0.8-1.2 times differences between the two classes of genes in other regions. Tri-SSRs in 5'-UTRs of housekeeping genes are more GC rich than those of tissue-specific genes and CGG, the dominant type of tri-SSR in 5'-UTR, accounts for 74-79% of the tri-SSRs in housekeeping genes, as compared to 42-57% in tissue-specific genes. 75% of the tri-SSRs in the 5'-UTR of housekeeping genes have 4-5 repeat units, versus the 86-90% in tissue-specific genes. Taken together, our results suggest that SSRs may have an effect on gene expression and may play an important role in contributing to the different expression profiles between housekeeping and tissue-specific genes.

  7. Tissue-specific RNA expression marks distant-acting developmental enhancers.

    Directory of Open Access Journals (Sweden)

    Han Wu

    2014-09-01

    Full Text Available Short non-coding transcripts can be transcribed from distant-acting transcriptional enhancer loci, but the prevalence of such enhancer RNAs (eRNAs within the transcriptome, and the association of eRNA expression with tissue-specific enhancer activity in vivo remain poorly understood. Here, we investigated the expression dynamics of tissue-specific non-coding RNAs in embryonic mouse tissues via deep RNA sequencing. Overall, approximately 80% of validated in vivo enhancers show tissue-specific RNA expression that correlates with tissue-specific enhancer activity. Globally, we identified thousands of tissue-specifically transcribed non-coding regions (TSTRs displaying various genomic hallmarks of bona fide enhancers. In transgenic mouse reporter assays, over half of tested TSTRs functioned as enhancers with reproducible activity in the predicted tissue. Together, our results demonstrate that tissue-specific eRNA expression is a common feature of in vivo enhancers, as well as a major source of extragenic transcription, and that eRNA expression signatures can be used to predict tissue-specific enhancers independent of known epigenomic enhancer marks.

  8. Epigenomic footprints across 111 reference epigenomes reveal tissue-specific epigenetic regulation of lincRNAs

    Science.gov (United States)

    Amin, Viren; Harris, R. Alan; Onuchic, Vitor; Jackson, Andrew R.; Charnecki, Tim; Paithankar, Sameer; Lakshmi Subramanian, Sai; Riehle, Kevin; Coarfa, Cristian; Milosavljevic, Aleksandar

    2015-01-01

    Tissue-specific expression of lincRNAs suggests developmental and cell-type-specific functions, yet tissue specificity was established for only a small fraction of lincRNAs. Here, by analysing 111 reference epigenomes from the NIH Roadmap Epigenomics project, we determine tissue-specific epigenetic regulation for 3,753 (69% examined) lincRNAs, with 54% active in one of the 14 cell/tissue clusters and an additional 15% in two or three clusters. A larger fraction of lincRNA TSSs is marked in a tissue-specific manner by H3K4me1 than by H3K4me3. The tissue-specific lincRNAs are strongly linked to tissue-specific pathways and undergo distinct chromatin state transitions during cellular differentiation. Polycomb-regulated lincRNAs reside in the bivalent state in embryonic stem cells and many of them undergo H3K27me3-mediated silencing at early stages of differentiation. The exquisitely tissue-specific epigenetic regulation of lincRNAs and the assignment of a majority of them to specific tissue types will inform future studies of this newly discovered class of genes. PMID:25691256

  9. EPS: an empirical Bayes approach to integrating pleiotropy and tissue-specific information for prioritizing risk genes.

    Science.gov (United States)

    Liu, Jin; Wan, Xiang; Ma, Shuangge; Yang, Can

    2016-06-15

    Researchers worldwide have generated a huge volume of genomic data, including thousands of genome-wide association studies (GWAS) and massive amounts of gene expression data from different tissues. How to perform a joint analysis of these data to gain new biological insights has become a critical step in understanding the etiology of complex diseases. Due to the polygenic architecture of complex diseases, the identification of risk genes remains challenging. Motivated by the shared risk genes found in complex diseases and tissue-specific gene expression patterns, we propose as an Empirical Bayes approach to integrating Pleiotropy and Tissue-Specific information (EPS) for prioritizing risk genes. As demonstrated by extensive simulation studies, EPS greatly improves the power of identification for disease-risk genes. EPS enables rigorous hypothesis testing of pleiotropy and tissue-specific risk gene expression patterns. All of the model parameters can be adaptively estimated from the developed expectation-maximization (EM) algorithm. We applied EPS to the bipolar disorder and schizophrenia GWAS from the Psychiatric Genomics Consortium, along with the gene expression data for multiple tissues from the Genotype-Tissue Expression project. The results of the real data analysis demonstrate many advantages of EPS. The EPS software is available on https://sites.google.com/site/liujin810822 CONTACT: eeyang@hkbu.edu.hk Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. HOXA5 plays tissue-specific roles in the developing respiratory system.

    Science.gov (United States)

    Landry-Truchon, Kim; Houde, Nicolas; Boucherat, Olivier; Joncas, France-Hélène; Dasen, Jeremy S; Philippidou, Polyxeni; Mansfield, Jennifer H; Jeannotte, Lucie

    2017-10-01

    Hoxa5 is essential for development of several organs and tissues. In the respiratory system, loss of Hoxa5 function causes neonatal death due to respiratory distress. Expression of HOXA5 protein in mesenchyme of the respiratory tract and in phrenic motor neurons of the central nervous system led us to address the individual contribution of these Hoxa5 expression domains using a conditional gene targeting approach. Hoxa5 does not play a cell-autonomous role in lung epithelium, consistent with lack of HOXA5 expression in this cell layer. In contrast, ablation of Hoxa5 in mesenchyme perturbed trachea development, lung epithelial cell differentiation and lung growth. Further, deletion of Hoxa5 in motor neurons resulted in abnormal diaphragm innervation and musculature, and lung hypoplasia. It also reproduced the neonatal lethality observed in null mutants, indicating that the defective diaphragm is the main cause of impaired survival at birth. Thus, Hoxa5 possesses tissue-specific functions that differentially contribute to the morphogenesis of the respiratory tract. © 2017. Published by The Company of Biologists Ltd.

  11. Tissue-specific mitotic bookmarking by hematopoietic transcription factor GATA1.

    Science.gov (United States)

    Kadauke, Stephan; Udugama, Maheshi I; Pawlicki, Jan M; Achtman, Jordan C; Jain, Deepti P; Cheng, Yong; Hardison, Ross C; Blobel, Gerd A

    2012-08-17

    Tissue-specific transcription patterns are preserved throughout cell divisions to maintain lineage fidelity. We investigated whether transcription factor GATA1 plays a role in transmitting hematopoietic gene expression programs through mitosis when transcription is transiently silenced. Live-cell imaging revealed that a fraction of GATA1 is retained focally within mitotic chromatin. ChIP-seq of highly purified mitotic cells uncovered that key hematopoietic regulatory genes are occupied by GATA1 in mitosis. The GATA1 coregulators FOG1 and TAL1 dissociate from mitotic chromatin, suggesting that GATA1 functions as platform for their postmitotic recruitment. Mitotic GATA1 target genes tend to reactivate more rapidly upon entry into G1 than genes from which GATA1 dissociates. Mitosis-specific destruction of GATA1 delays reactivation selectively of genes that retain GATA1 during mitosis. These studies suggest a requirement of mitotic "bookmarking" by GATA1 for the faithful propagation of cell-type-specific transcription programs through cell division. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Whole-organ isolation approach as a basis for tissue-specific analyses in Schistosoma mansoni.

    Directory of Open Access Journals (Sweden)

    Steffen Hahnel

    Full Text Available BACKGROUND: Schistosomiasis is one of the most important parasitic diseases worldwide, second only to malaria. Schistosomes exhibit an exceptional reproductive biology since the sexual maturation of the female, which includes the differentiation of the reproductive organs, is controlled by pairing. Pathogenicity originates from eggs, which cause severe inflammation in their hosts. Elucidation of processes contributing to female maturation is not only of interest to basic science but also considering novel concepts combating schistosomiasis. METHODOLOGY/PRINCIPAL FINDINGS: To get direct access to the reproductive organs, we established a novel protocol using a combined detergent/protease-treatment removing the tegument and the musculature of adult Schistosoma mansoni. All steps were monitored by scanning electron microscopy (SEM and bright-field microscopy (BF. We focused on the gonads of adult schistosomes and demonstrated that isolated and purified testes and ovaries can be used for morphological and structural studies as well as sources for RNA and protein of sufficient amounts for subsequent analyses such as RT-PCR and immunoblotting. To this end, first exemplary evidence was obtained for tissue-specific transcription within the gonads (axonemal dynein intermediate chain gene SmAxDynIC; aquaporin gene SmAQP as well as for post-transcriptional regulation (SmAQP. CONCLUSIONS/SIGNIFICANCE: The presented method provides a new way of getting access to tissue-specific material of S. mansoni. With regard to many still unanswered questions of schistosome biology, such as elucidating the molecular processes involved in schistosome reproduction, this protocol provides opportunities for, e.g., sub-transcriptomics and sub-proteomics at the organ level. This will promote the characterisation of gene-expression profiles, or more specifically to complete knowledge of signalling pathways contributing to differentiation processes, so discovering involved

  13. Snakes exhibit tissue-specific variation in cardiotonic steroid sensitivity of Na+/K+-ATPase.

    Science.gov (United States)

    Mohammadi, Shabnam; Petschenka, Georg; French, Susannah S; Mori, Akira; Savitzky, Alan H

    2018-03-01

    Toads are among several groups of organisms chemically defended with lethal concentrations of cardiotonic steroids. As a result, most predators that prey on amphibians avoid toads. However, several species of snakes have gained resistance-conferring mutations of Na + /K + -ATPase, the molecular target of cardiotonic steroids, and can feed on toads readily. Despite recent advances in our understanding of this adaptation at the genetic level, we have lacked functional evidence for how mutations of Na + /K + -ATPase account for cardiotonic steroid resistance in snake tissues. To address this issue, it is necessary to determine how the Na + /K + -ATPases of snakes react to the toxins. Some tissues might have Na + /K + -ATPases that are more susceptible than others and can thus provide clues about how the toxins influence organismal function. Here we provide a mechanistic link between observed Na + /K + -ATPase substitutions and observed resistance using actual snake Na + /K + -ATPases. We used an in vitro approach to determine the tissue-specific levels of sensitivity to cardiotonic steroids in select resistant and non-resistant snakes. We compared the sensitivities of select tissues within and between species. Our results suggest that resistant snakes contain highly resistant Na + /K + -ATPases in their heart and kidney, both of which rely heavily on the enzymes to function, whereas tissues that do not rely as heavily on Na + /K + -ATPases or might be protected from cardiotonic steroids by other means (liver, gut, and brain) contain non-resistant forms of the enzyme. This study reveals functional evidence that tissue-level target-site insensitivity to cardiotonic steroids varies not only among species but also across tissues within resistant taxa. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. De novo assembly and characterization of tissue specific transcriptomes in the emerald notothen, Trematomus bernacchii.

    Science.gov (United States)

    Huth, Troy J; Place, Sean P

    2013-11-20

    The notothenioids comprise a diverse group of fishes that rapidly radiated after isolation by the Antarctic Circumpolar Current approximately 14-25 million years ago. Given that evolutionary adaptation has led to finely tuned traits with narrow physiological limits in these organisms, this system provides a unique opportunity to examine physiological trade-offs and limits of adaptive responses to environmental perturbation. As such, notothenioids have a rich history with respect to studies attempting to understand the vulnerability of polar ecosystems to the negative impacts associated with global climate change. Unfortunately, despite being a model system for understanding physiological adaptations to extreme environments, we still lack fundamental molecular tools for much of the Nototheniidae family. Specimens of the emerald notothen, Trematomus bernacchii, were acclimated for 28 days in flow-through seawater tanks maintained near ambient seawater temperatures (-1.5°C) or at +4°C. Following acclimation, tissue specific cDNA libraries for liver, gill and brain were created by pooling RNA from n = 5 individuals per temperature treatment. The tissue specific libraries were bar-coded and used for 454 pyrosequencing, which yielded over 700 thousand sequencing reads. A de novo assembly and annotation of these reads produced a functional transcriptome library of T. bernacchii containing 30,107 unigenes, 13,003 of which possessed significant homology to a known protein product. Digital gene expression analysis of these extremely cold adapted fish reinforced the loss of an inducible heat shock response and allowed the preliminary exploration into other elements of the cellular stress response. Preliminary exploration of the transcriptome of T. bernacchii under elevated temperatures enabled a semi-quantitative comparison to prior studies aimed at characterizing the thermal response of this endemic fish whose size, abundance and distribution has established it as a

  15. Nuclear Security: Target Analysis-rev

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Surinder Paul [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gibbs, Philip W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bultz, Garl A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-03-01

    The objectives of this presentation are to understand target identification, including roll-up and protracted theft; evaluate target identification in the SNRI; recognize the target characteristics and consequence levels; and understand graded safeguards.

  16. Endometrial natural killer (NK) cells reveal a tissue-specific receptor repertoire.

    Science.gov (United States)

    Feyaerts, D; Kuret, T; van Cranenbroek, B; van der Zeeuw-Hingrez, S; van der Heijden, O W H; van der Meer, A; Joosten, I; van der Molen, R G

    2018-02-13

    Is the natural killer (NK) cell receptor repertoire of endometrial NK (eNK) cells tissue-specific? The NK cell receptor (NKR) expression profile in pre-pregnancy endometrium appears to have a unique tissue-specific phenotype, different from that found in NK cells in peripheral blood, suggesting that these cells are finely tuned towards the reception of an allogeneic fetus. NK cells are important for successful pregnancy. After implantation, NK cells encounter extravillous trophoblast cells and regulate trophoblast invasion. NK cell activity is amongst others regulated by C-type lectin heterodimer (CD94/NKG2) and killer cell immunoglobulin-like (KIR) receptors. KIR expression on decidual NK cells is affected by the presence of maternal HLA-C and biased towards KIR2D expression. However, little is known about NKR expression on eNK cells prior to pregnancy. In this study, matched peripheral and menstrual blood (a source of endometrial cells) was obtained from 25 healthy females with regular menstrual cycles. Menstrual blood was collected during the first 36 h of menstruation using a menstrual cup, a non-invasive technique to obtain endometrial cells. KIR and NKG2 receptor expression on eNK cells was characterized by 10-color flow cytometry, and compared to matched pbNK cells of the same female. KIR and HLA-C genotypes were determined by PCR-SSOP techniques. Anti-CMV IgG antibodies in plasma were measured by chemiluminescence immunoassay. KIR expression patterns of eNK cells collected from the same female do not differ over consecutive menstrual cycles. The percentage of NK cells expressing KIR2DL2/L3/S2, KIR2DL3, KIR2DL1, LILRB1 and/or NKG2A was significantly higher in eNK cells compared to pbNK cells, while no significant difference was observed for NKG2C, KIR2DL1/S1, and KIR3DL1. The NKR repertoire of eNK cells was clearly different from pbNK cells, with eNK cells co-expressing more than three NKR simultaneously. In addition, outlier analysis revealed 8 and 15 NKR

  17. Intramyocardial Injection of siRNAs Can Efficiently Establish Myocardial Tissue-Specific Renalase Knockdown Mouse Model.

    Science.gov (United States)

    Huang, Kun; Liu, Ju; Zhang, Hui; Wang, Jiliang; Li, Huili

    2016-01-01

    Ischaemia/reperfusion (I/R) injury will cause additional death of cardiomyocytes in ischaemic heart disease. Recent studies revealed that renalase was involved in the I/R injury. So, the myocardial tissue-specific knockdown mouse models were needed for the investigations of renalase. To establish the mouse models, intramyocardial injection of siRNAs targeting renalase was performed in mice. The wild distribution and high transfection efficiency of the siRNAs were approved. And the renalase expression was efficiently suppressed in myocardial tissue. Compared with the high cost, time consumption, and genetic compensation risk of the Cre/loxP technology, RNA interference (RNAi) technology is much cheaper and less time-consuming. Among the RNAi technologies, injection of siRNAs is safer than virus. And considering the properties of the I/R injury mouse models, the efficiency and durability of injection with siRNAs are acceptable for the studies. Altogether, intramyocardial injection of siRNAs targeting renalase is an economical, safe, and efficient method to establish myocardial tissue-specific renalase knockdown mouse models.

  18. A comprehensive genome-wide study on tissue-specific and abiotic stress-specific miRNAs in Triticum aestivum.

    Directory of Open Access Journals (Sweden)

    Ritu Pandey

    Full Text Available Productivity of wheat crop is largely dependent on its growth and development that, in turn, is mainly regulated by environmental conditions, including abiotic stress factors. miRNAs are key regulators of gene expression networks involved in diverse aspects of development and stress responses in plants. Using high-throughput sequencing of eight small RNA libraries prepared from diverse abiotic stresses and tissues, we identified 47 known miRNAs belonging to 20 families, 49 true novel and 1030 candidate novel miRNAs. Digital gene expression analysis revealed that 257 miRNAs exhibited tissue-specific expression and 74 were associated with abiotic stresses. Putative target genes were predicted for miRNAs identified in this study and their grouping into functional categories indicated that the putative targets were involved in diverse biological processes. RLM-RACE of predicted targets of three known miRNAs (miR156, miR160 and miR164 confirmed their mRNA cleavage, thus indicating their regulation at post-transcriptional level by the corresponding miRNAs. Mapping of the sequenced data onto the wheat progenitors and closely related monocots revealed a large number of evolutionary conserved miRNAs. Additional expression profiling of some of these miRNAs in other abiotic stresses underline their involvement in multiple stresses. Our findings provide valuable resource for an improved understanding of the role of miRNAs in stress tolerance as well as plant development.

  19. A novel CpG island set identifies tissue-specific methylation at developmental gene loci.

    Directory of Open Access Journals (Sweden)

    Robert Illingworth

    2008-01-01

    Full Text Available CpG islands (CGIs are dense clusters of CpG sequences that punctuate the CpG-deficient human genome and associate with many gene promoters. As CGIs also differ from bulk chromosomal DNA by their frequent lack of cytosine methylation, we devised a CGI enrichment method based on nonmethylated CpG affinity chromatography. The resulting library was sequenced to define a novel human blood CGI set that includes many that are not detected by current algorithms. Approximately half of CGIs were associated with annotated gene transcription start sites, the remainder being intra- or intergenic. Using an array representing over 17,000 CGIs, we established that 6%-8% of CGIs are methylated in genomic DNA of human blood, brain, muscle, and spleen. Inter- and intragenic CGIs are preferentially susceptible to methylation. CGIs showing tissue-specific methylation were overrepresented at numerous genetic loci that are essential for development, including HOX and PAX family members. The findings enable a comprehensive analysis of the roles played by CGI methylation in normal and diseased human tissues.

  20. Tissue-Specific Ablation of Prkar1a Causes Schwannomas by Suppressing Neurofibromatosis Protein Production

    Directory of Open Access Journals (Sweden)

    Georgette N. Jones

    2008-11-01

    Full Text Available Signaling events leading to Schwann cell tumor initiation have been extensively characterized in the context of neurofibromatosis (NF. Similar tumors are also observed in patients with the endocrine neoplasia syndrome Carney complex, which results from inactivating mutations in PRKAR1A. Loss of PRKAR1A causes enhanced protein kinase A activity, although the pathways leading to tumorigenesis are not well characterized. Tissue-specific ablation of Prkar1a in neural crest precursor cells (TEC3KO mice causes schwannomas with nearly 80% penetrance by 10 months. These heterogeneous neoplasms were clinically characterized as genetically engineered mouse schwannomas, grades II and III. At the molecular level, analysis of the tumors revealed almost complete loss of both NF proteins, despite the fact that transcript levels were increased, implying posttranscriptional regulation. Although Erk and Akt signaling are typically enhanced in NF-associated tumors, we observed no activation of either of these pathways in TEC3KO tumors. Furthermore, the small G proteins Ras, Rac1, and RhoA are all known to be involved with NF signaling. In TEC3KO tumors, all three molecules showed modest increases in total protein, but only Rac1 showed significant activation. These data suggest that dysregulated protein kinase A activation causes tumorigenesis through pathways that overlap but are distinct from those described in NF tumorigenesis.

  1. Lesions by tissue specific imaging characterize multiple sclerosis patients with more advanced disease.

    Science.gov (United States)

    Bagnato, Francesca; Ikonomidou, Vasiliki N; van Gelderen, Peter; Auh, Sungyoung; Hanafy, Jailan; Cantor, Fredric K; Ohayon, Joan; Richert, Nancy; Duyn, Jeff

    2011-12-01

    Cerebrospinal fluid tissue specific imaging (CSF-TSI), a newly implemented magnetic resonance imaging (MRI) technique, allows visualization of a subset of chronic black holes (cBHs) with MRI characteristics suggestive of the presence of CSF-like fluid, and representing lesions with extensive tissue destruction. To investigate the relationship between lesions in CSF-TSI and disease measures in patients with multiple sclerosis (MS). Twenty-six patients with MS were imaged at 3.0 T, obtaining T(1)-weighted (T(1)-w) and T(2)-w spin echo (SE), T(1) volumetric images and CSF-TSI images. We measured: (i) lesion volume (LV) in T(1)-w (cBH-LV) and T(2)-w SE images, and in CSF-TSI; (ii) brain parenchyma fraction (BPF). Differences between patients with and without CSF-TSI lesions were analyzed and association between clinical and MRI metrics were investigated. cBHs were seen in 92% of the patients while lesions in CSF-TSI were seen in 40%. Patients with CSF-TSI lesions were older, with longer disease duration, higher disability scores, larger cBH-LV and T(2)-LV, and lower BPF than patients without CSF-TSI lesions (≤0.047). Partial correlation analysis correcting for T(2)-LV, cBH-LV and BPF showed an association (p TSI LV and disability score. CSF-TSI lesions characterize patients with more advanced disease and probably contribute to the progress of disability.

  2. Identification of a novel, tissue-specific ABCG2 promoter expressed in pediatric acute megakaryoblastic leukemia.

    Science.gov (United States)

    Campbell, Patrick K; Zong, Yang; Yang, Shengping; Zhou, Sheng; Rubnitz, Jeffrey E; Sorrentino, Brian P

    2011-10-01

    ABCG2 encodes a transporter protein that is associated with multidrug-resistant phenotypes in many cancers, including acute myeloid leukemia (AML); high levels of expression are generally associated with a poor prognosis. To better understand how expression of ABCG2 is controlled in pediatric AML, we performed a detailed analysis of the ABCG2 transcript isoforms from a variety of tissue sources, including 85 pediatric AML samples. These studies revealed a complex 5' untranslated region (UTR) with 6 novel exons and multiple splice variants. Samples from children with acute megakaryoblastic leukemia (AML FAB-M7) not associated with Down syndrome showed uniformly higher levels of ABCG2 transcripts than samples from children with other AML subtypes. A novel 5' UTR identified 90kb upstream of the exon 2 translation initiation site was expressed only in M7 AML subtypes. An associated upstream promoter fragment was shown to be selectively expressed in megakaryoblastic leukemia cells but not in human epithelial cell lines. These findings identify a new tissue-specific ABCG2 promoter that is selectively expressed in pediatric M7 AML. We also show a relatively high incidence of ABCG2 mRNA expression in non-Down associated M7 AML, which may contribute to the relatively poor prognosis of the M7 AML subtype. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Reconstruction of Arabidopsis metabolic network models accounting for subcellular compartmentalization and tissue-specificity.

    Science.gov (United States)

    Mintz-Oron, Shira; Meir, Sagit; Malitsky, Sergey; Ruppin, Eytan; Aharoni, Asaph; Shlomi, Tomer

    2012-01-03

    Plant metabolic engineering is commonly used in the production of functional foods and quality trait improvement. However, to date, computational model-based approaches have only been scarcely used in this important endeavor, in marked contrast to their prominent success in microbial metabolic engineering. In this study we present a computational pipeline for the reconstruction of fully compartmentalized tissue-specific models of Arabidopsis thaliana on a genome scale. This reconstruction involves automatic extraction of known biochemical reactions in Arabidopsis for both primary and secondary metabolism, automatic gap-filling, and the implementation of methods for determining subcellular localization and tissue assignment of enzymes. The reconstructed tissue models are amenable for constraint-based modeling analysis, and significantly extend upon previous model reconstructions. A set of computational validations (i.e., cross-validation tests, simulations of known metabolic functionalities) and experimental validations (comparison with experimental metabolomics datasets under various compartments and tissues) strongly testify to the predictive ability of the models. The utility of the derived models was demonstrated in the prediction of measured fluxes in metabolically engineered seed strains and the design of genetic manipulations that are expected to increase vitamin E content, a significant nutrient for human health. Overall, the reconstructed tissue models are expected to lay down the foundations for computational-based rational design of plant metabolic engineering. The reconstructed compartmentalized Arabidopsis tissue models are MIRIAM-compliant and are available upon request.

  4. An analysis of possible off target effects following CAS9/CRISPR targeted deletions of neuropeptide gene enhancers from the mouse genome.

    Science.gov (United States)

    Hay, Elizabeth Anne; Khalaf, Abdulla Razak; Marini, Pietro; Brown, Andrew; Heath, Karyn; Sheppard, Darrin; MacKenzie, Alasdair

    2017-08-01

    We have successfully used comparative genomics to identify putative regulatory elements within the human genome that contribute to the tissue specific expression of neuropeptides such as galanin and receptors such as CB1. However, a previous inability to rapidly delete these elements from the mouse genome has prevented optimal assessment of their function in-vivo. This has been solved using CAS9/CRISPR genome editing technology which uses a bacterial endonuclease called CAS9 that, in combination with specifically designed guide RNA (gRNA) molecules, cuts specific regions of the mouse genome. However, reports of "off target" effects, whereby the CAS9 endonuclease is able to cut sites other than those targeted, limits the appeal of this technology. We used cytoplasmic microinjection of gRNA and CAS9 mRNA into 1-cell mouse embryos to rapidly generate enhancer knockout mouse lines. The current study describes our analysis of the genomes of these enhancer knockout lines to detect possible off-target effects. Bioinformatic analysis was used to identify the most likely putative off-target sites and to design PCR primers that would amplify these sequences from genomic DNA of founder enhancer deletion mouse lines. Amplified DNA was then sequenced and blasted against the mouse genome sequence to detect off-target effects. Using this approach we were unable to detect any evidence of off-target effects in the genomes of three founder lines using any of the four gRNAs used in the analysis. This study suggests that the problem of off-target effects in transgenic mice have been exaggerated and that CAS9/CRISPR represents a highly effective and accurate method of deleting putative neuropeptide gene enhancer sequences from the mouse genome. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Gambogic Acid Is a Tissue-Specific Proteasome Inhibitor In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Xiaofen Li

    2013-01-01

    Full Text Available Gambogic acid (GA is a natural compound derived from Chinese herbs that has been approved by the Chinese Food and Drug Administration for clinical trials in cancer patients; however, its molecular targets have not been thoroughly studied. Here, we report that GA inhibits tumor proteasome activity, with potency comparable to bortezomib but much less toxicity. First, GA acts as a prodrug and only gains proteasome-inhibitory function after being metabolized by intracellular CYP2E1. Second, GA-induced proteasome inhibition is a prerequisite for its cytotoxicity and anticancer effect without off-targets. Finally, because expression of the CYP2E1 gene is very high in tumor tissues but low in many normal tissues, GA could therefore produce tissue-specific proteasome inhibition and tumor-specific toxicity, with clinical significance for designing novel strategies for cancer treatment.

  6. Tissue Discrimination by Uncorrected Autofluorescence Spectra: A Proof-of-Principle Study for Tissue-Specific Laser Surgery

    Directory of Open Access Journals (Sweden)

    Katja Tangermann-Gerk

    2013-10-01

    Full Text Available Laser surgery provides a number of advantages over conventional surgery. However, it implies large risks for sensitive tissue structures due to its characteristic non-tissue-specific ablation. The present study investigates the discrimination of nine different ex vivo tissue types by using uncorrected (raw autofluorescence spectra for the development of a remote feedback control system for tissue-selective laser surgery. Autofluorescence spectra (excitation wavelength 377 ± 50 nm were measured from nine different ex vivo tissue types, obtained from 15 domestic pig cadavers. For data analysis, a wavelength range between 450 nm and 650 nm was investigated. Principal Component Analysis (PCA and Quadratic Discriminant Analysis (QDA were used to discriminate the tissue types. ROC analysis showed that PCA, followed by QDA, could differentiate all investigated tissue types with AUC results between 1.00 and 0.97. Sensitivity reached values between 93% and 100% and specificity values between 94% and 100%. This ex vivo study shows a high differentiation potential for physiological tissue types when performing autofluorescence spectroscopy followed by PCA and QDA. The uncorrected autofluorescence spectra are suitable for reliable tissue discrimination and have a high potential to meet the challenges necessary for an optical feedback system for tissue-specific laser surgery.

  7. Tissue-specific congener composition of organohalogen and metabolite contaminants in East Greenland polar bears (Ursus maritimus)

    Energy Technology Data Exchange (ETDEWEB)

    Gebbink, Wouter A. [National Wildlife Research Centre, Science and Technology Branch, Environment Canada, Carleton University, Ottawa, Ontario K1S 5B6 (Canada); Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6 (Canada); Sonne, Christian; Dietz, Rune; Kirkegaard, Maja; Riget, Frank F. [Department of Arctic Environment, National Environmental Research Institute, University of Aarhus, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Born, Erik W. [Greenland Institute of Natural Resources, P.O. Box 570, DK-3900 Nuuk, Greenland (Denmark); Muir, Derek C.G. [Water Science and Technology Directorate, Environment Canada, Burlington, Ontario L7R 4A6 (Canada); Letcher, Robert J. [National Wildlife Research Centre, Science and Technology Branch, Environment Canada, Carleton University, Ottawa, Ontario K1S 5B6 (Canada); Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6 (Canada)], E-mail: robert.letcher@ec.gc.ca

    2008-04-15

    Congener patterns of the major organohalogen contaminant classes of PCBs, PBDEs and their metabolites and/or by-products (OH-PCBs, MeSO{sub 2}-PCBs, OH-PBDEs and MeO-PBDEs) were examined in adipose tissue, liver, brain and blood of East Greenland polar bears (Ursus maritimus). PCB, OH-PCB, MeSO{sub 2}-PCB and PBDE congener patterns showed significant differences (p {<=} 0.05) mainly in the liver and the brain relative to the adipose tissue and the blood. OH-PBDEs and MeO-PBDEs were not detected in the brain and liver, but had different patterns in blood versus the adipose tissue. Novel OH-polybrominated biphenyls (OH-PBBs), one tri- and two tetra-brominated OH-PBBs were detected in all tissues and blood. Congener pattern differences among tissues and blood are likely due to a combination of factors, e.g., biotransformation and retention in the liver, retention in the blood and blood-brain barrier transport. Our findings suggest that different congener pattern exposures to these classes of contaminants should be considered with respect to potential target tissue-specific effects in East Greenland polar bears. - Tissues-specific (adipose tissue, liver, brain and blood) differences exist for the congener patterns of PCBs, PBDEs and their metabolites/degradation products in East Greenland polar bears.

  8. Tissue-specific congener composition of organohalogen and metabolite contaminants in East Greenland polar bears (Ursus maritimus)

    International Nuclear Information System (INIS)

    Gebbink, Wouter A.; Sonne, Christian; Dietz, Rune; Kirkegaard, Maja; Riget, Frank F.; Born, Erik W.; Muir, Derek C.G.; Letcher, Robert J.

    2008-01-01

    Congener patterns of the major organohalogen contaminant classes of PCBs, PBDEs and their metabolites and/or by-products (OH-PCBs, MeSO 2 -PCBs, OH-PBDEs and MeO-PBDEs) were examined in adipose tissue, liver, brain and blood of East Greenland polar bears (Ursus maritimus). PCB, OH-PCB, MeSO 2 -PCB and PBDE congener patterns showed significant differences (p ≤ 0.05) mainly in the liver and the brain relative to the adipose tissue and the blood. OH-PBDEs and MeO-PBDEs were not detected in the brain and liver, but had different patterns in blood versus the adipose tissue. Novel OH-polybrominated biphenyls (OH-PBBs), one tri- and two tetra-brominated OH-PBBs were detected in all tissues and blood. Congener pattern differences among tissues and blood are likely due to a combination of factors, e.g., biotransformation and retention in the liver, retention in the blood and blood-brain barrier transport. Our findings suggest that different congener pattern exposures to these classes of contaminants should be considered with respect to potential target tissue-specific effects in East Greenland polar bears. - Tissues-specific (adipose tissue, liver, brain and blood) differences exist for the congener patterns of PCBs, PBDEs and their metabolites/degradation products in East Greenland polar bears

  9. Tissue-specific responses to the LRPPRC founder mutation in French Canadian Leigh Syndrome.

    Science.gov (United States)

    Sasarman, Florin; Nishimura, Tamiko; Antonicka, Hana; Weraarpachai, Woranontee; Shoubridge, Eric A

    2015-01-15

    French Canadian Leigh Syndrome (LSFC) is an early-onset, progressive neurodegenerative disorder with a distinct pattern of tissue involvement. Most cases are caused by a founder missense mutation in LRPPRC. LRPPRC forms a ribonucleoprotein complex with SLIRP, another RNA-binding protein, and this stabilizes polyadenylated mitochondrial mRNAs. LSFC fibroblasts have reduced levels of LRPPRC and a specific complex IV assembly defect; however, further depletion of mutant LRPPRC results in a complete failure to assemble a functional oxidative phosphorylation system, suggesting that LRPPRC levels determine the nature of the biochemical phenotype. We tested this hypothesis in cultured muscle cells and tissues from LSFC patients. LRPPRC levels were reduced in LSFC muscle cells, resulting in combined complex I and IV deficiencies. A similar combined deficiency was observed in skeletal muscle. Complex IV was only moderately reduced in LSFC heart, but was almost undetectable in liver. Both of these tissues showed elevated levels of complexes I and III. Despite the marked biochemical differences, the steady-state levels of LRPPRC and mitochondrial mRNAs were extremely low, LRPPRC was largely detergent-insoluble, and SLIRP was undetectable in all LSFC tissues. The level of the LRPPRC/SLIRP complex appeared much reduced in control tissues by the first dimension blue-native polyacrylamide gel electrophoresis (BN-PAGE) analysis compared with fibroblasts, and even by second dimension analysis it was virtually undetectable in control heart. These results point to tissue-specific pathways for the post-transcriptional handling of mitochondrial mRNAs and suggest that the biochemical defects in LSFC reflect the differential ability of tissues to adapt to the mutation. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Global expression differences and tissue specific expression differences in rice evolution result in two contrasting types of differentially expressed genes

    KAUST Repository

    Horiuchi, Youko

    2015-12-23

    Background Since the development of transcriptome analysis systems, many expression evolution studies characterized evolutionary forces acting on gene expression, without explicit discrimination between global expression differences and tissue specific expression differences. However, different types of gene expression alteration should have different effects on an organism, the evolutionary forces that act on them might be different, and different types of genes might show different types of differential expression between species. To confirm this, we studied differentially expressed (DE) genes among closely related groups that have extensive gene expression atlases, and clarified characteristics of different types of DE genes including the identification of regulating loci for differential expression using expression quantitative loci (eQTL) analysis data. Results We detected differentially expressed (DE) genes between rice subspecies in five homologous tissues that were verified using japonica and indica transcriptome atlases in public databases. Using the transcriptome atlases, we classified DE genes into two types, global DE genes and changed-tissues DE genes. Global type DE genes were not expressed in any tissues in the atlas of one subspecies, however changed-tissues type DE genes were expressed in both subspecies with different tissue specificity. For the five tissues in the two japonica-indica combinations, 4.6 ± 0.8 and 5.9 ± 1.5 % of highly expressed genes were global and changed-tissues DE genes, respectively. Changed-tissues DE genes varied in number between tissues, increasing linearly with the abundance of tissue specifically expressed genes in the tissue. Molecular evolution of global DE genes was rapid, unlike that of changed-tissues DE genes. Based on gene ontology, global and changed-tissues DE genes were different, having no common GO terms. Expression differences of most global DE genes were regulated by cis-eQTLs. Expression

  11. Annotation of loci from genome-wide association studies using tissue-specific quantitative interaction proteomics

    DEFF Research Database (Denmark)

    Lundby, Alicia; Rossin, Elizabeth J.; Steffensen, Annette B.

    2014-01-01

    Genome-wide association studies (GWAS) have identified thousands of loci associated with complex traits, but it is challenging to pinpoint causal genes in these loci and to exploit subtle association signals. We used tissue-specific quantitative interaction proteomics to map a network of five gen...

  12. Tissue-specific alterations in thyroid hormone homeostasis in combined Mct10 and Mct8 deficiency

    NARCIS (Netherlands)

    J. Müller (Julia); S. Mayerl (Steffen); T.J. Visser (Theo); V.M. Darras (Veerle); A. Boelen (Anita); L. Frappart (Lucien); L. Mariotta (Luca); F. Verrey; H. Heuer (Heike)

    2014-01-01

    textabstractThe monocarboxylate transporter Mct10 (Slc16a10; T-type amino acid transporter) facilitates the cellular transport of thyroid hormone (TH) and shows an overlapping expression with the wellestablished TH transporter Mct8. Because Mct8 deficiency is associated with distinct tissue-specific

  13. Tissue-specific alterations in thyroid hormone homeostasis in combined Mct10 and Mct8 deficiency

    NARCIS (Netherlands)

    Müller, Julia; Mayerl, Steffen; Visser, Theo J.; Darras, Veerle M.; Boelen, Anita; Frappart, Lucien; Mariotta, Luca; Verrey, Francois; Heuer, Heike

    2014-01-01

    The monocarboxylate transporter Mct10 (Slc16a10; T-type amino acid transporter) facilitates the cellular transport of thyroid hormone (TH) and shows an overlapping expression with the well-established TH transporter Mct8. Because Mct8 deficiency is associated with distinct tissue-specific

  14. Tissue Specific Roles of Dynein Light Chain 1 in Regulating Germ Cell Apoptosis in Ceanorhabditis elegans

    DEFF Research Database (Denmark)

    Morthorst, Tine Hørning

    2015-01-01

    in the etiology of many diseases, including cancer, neurodegenerative, cardiovascular and autoimmune diseases. Several of the first genes found to regulate apoptosis were discovered in the nematode Caenorhabditis elegans. In this project, two different and tissue specific roles of C. elegans dynein light chain 1...

  15. Scaffolding in tissue engineering: general approaches and tissue-specific considerations.

    Science.gov (United States)

    Chan, B P; Leong, K W

    2008-12-01

    Scaffolds represent important components for tissue engineering. However, researchers often encounter an enormous variety of choices when selecting scaffolds for tissue engineering. This paper aims to review the functions of scaffolds and the major scaffolding approaches as important guidelines for selecting scaffolds and discuss the tissue-specific considerations for scaffolding, using intervertebral disc as an example.

  16. Tissue-specific and substrate-specific mitochondrial bioenergetics in feline cardiac and skeletal muscles

    DEFF Research Database (Denmark)

    Christiansen, Liselotte Bruun; Dela, Flemming; Koch, Jørgen

    2015-01-01

    No studies have investigated the mitochondrial function in permeabilized muscle fiber from cats. The aim of this study was to investigate tissue-specific and substrate-specific characteristics of mitochondrial oxidative phosphorylation (OXPHOS) capacity in feline permeabilized oxidative muscle fi...

  17. Annotation of loci from genome-wide association studies using tissue-specific quantitative interaction proteomics

    NARCIS (Netherlands)

    Lundby, Alicia; Rossin, Elizabeth J.; Steffensen, Annette B.; Acha, Moshe Ray; Newton-Cheh, Christopher; Pfeufer, Arne; Lyneh, Stacey N.; Olesen, Soren-Peter; Brunak, Soren; Ellinor, Patrick T.; Jukema, J. Wouter; Trompet, Stella; Ford, Ian; Macfarlane, Peter W.; Krijthe, Bouwe P.; Hofman, Albert; Uitterlinden, Andre G.; Stricker, Bruno H.; Nathoe, Hendrik M.; Spiering, Wilko; Daly, Mark J.; Asselbergs, Ikea W.; van der Harst, Pim; Milan, David J.; de Bakker, Paul I. W.; Lage, Kasper; Olsen, Jesper V.

    Genome-wide association studies (GWAS) have identified thousands of loci associated with complex traits, but it is challenging to pinpoint causal genes in these loci and to exploit subtle association signals. We used tissue-specific quantitative interaction proteomics to map a network of five genes

  18. Tissue-specific expression of monocarboxylate transporters during fasting in mice.

    Directory of Open Access Journals (Sweden)

    Alexandra Schutkowski

    Full Text Available Monocarboxylates such as pyruvate, lactate and ketone bodies are crucial for energy supply of all tissues, especially during energy restriction. The transport of monocarboxylates across the plasma membrane of cells is mediated by monocarboxylate transporters (MCTs. Out of 14 known mammalian MCTs, six isoforms have been functionally characterized to transport monocarboxylates and short chain fatty acids (MCT1-4, thyroid hormones (MCT8, -10 and aromatic amino acids (MCT10. Knowledge on the regulation of the different MCT isoforms is rare. In an attempt to get more insights in regulation of MCT expression upon energy deprivation, we carried out a comprehensive analysis of tissue specific expression of five MCT isoforms upon 48 h of fasting in mice. Due to the crucial role of peroxisome proliferator-activated receptor (PPAR-α as a central regulator of energy metabolism and as known regulator of MCT1 expression, we included both wildtype (WT and PPARα knockout (KO mice in our study. Liver, kidney, heart, small intestine, hypothalamus, pituitary gland and thyroid gland of the mice were analyzed. Here we show that the expression of all examined MCT isoforms was markedly altered by fasting compared to feeding. Expression of MCT1, MCT2 and MCT10 was either increased or decreased by fasting dependent on the analyzed tissue. MCT4 and MCT8 were down-regulated by fasting in all examined tissues. However, PPARα appeared to have a minor impact on MCT isoform regulation. Due to the fundamental role of MCTs in transport of energy providing metabolites and hormones involved in the regulation of energy homeostasis, we assumed that the observed fasting-induced adaptations of MCT expression seem to ensure an adequate energy supply of tissues during the fasting state. Since, MCT isoforms 1-4 are also necessary for the cellular uptake of drugs, the fasting-induced modifications of MCT expression have to be considered in future clinical care algorithms.

  19. Tissue-Specific Expression of Monocarboxylate Transporters during Fasting in Mice

    Science.gov (United States)

    Schutkowski, Alexandra; Wege, Nicole; Stangl, Gabriele I.; König, Bettina

    2014-01-01

    Monocarboxylates such as pyruvate, lactate and ketone bodies are crucial for energy supply of all tissues, especially during energy restriction. The transport of monocarboxylates across the plasma membrane of cells is mediated by monocarboxylate transporters (MCTs). Out of 14 known mammalian MCTs, six isoforms have been functionally characterized to transport monocarboxylates and short chain fatty acids (MCT1-4), thyroid hormones (MCT8, -10) and aromatic amino acids (MCT10). Knowledge on the regulation of the different MCT isoforms is rare. In an attempt to get more insights in regulation of MCT expression upon energy deprivation, we carried out a comprehensive analysis of tissue specific expression of five MCT isoforms upon 48 h of fasting in mice. Due to the crucial role of peroxisome proliferator-activated receptor (PPAR)-α as a central regulator of energy metabolism and as known regulator of MCT1 expression, we included both wildtype (WT) and PPARα knockout (KO) mice in our study. Liver, kidney, heart, small intestine, hypothalamus, pituitary gland and thyroid gland of the mice were analyzed. Here we show that the expression of all examined MCT isoforms was markedly altered by fasting compared to feeding. Expression of MCT1, MCT2 and MCT10 was either increased or decreased by fasting dependent on the analyzed tissue. MCT4 and MCT8 were down-regulated by fasting in all examined tissues. However, PPARα appeared to have a minor impact on MCT isoform regulation. Due to the fundamental role of MCTs in transport of energy providing metabolites and hormones involved in the regulation of energy homeostasis, we assumed that the observed fasting-induced adaptations of MCT expression seem to ensure an adequate energy supply of tissues during the fasting state. Since, MCT isoforms 1–4 are also necessary for the cellular uptake of drugs, the fasting-induced modifications of MCT expression have to be considered in future clinical care algorithms. PMID:25390336

  20. Reprimo tissue-specific expression pattern is conserved between zebrafish and human.

    Directory of Open Access Journals (Sweden)

    Ricardo J Figueroa

    Full Text Available Reprimo (RPRM, a member of the RPRM gene family, is a tumor-suppressor gene involved in the regulation of the p53-mediated cell cycle arrest at G2/M. RPRM has been associated with malignant tumor progression and proposed as a potential biomarker for early cancer detection. However, the expression and role of RPRM, as well as its family, are poorly understood and their physiology is as yet unstudied. In this scenario, a model system like the zebrafish could serve to dissect the role of the RPRM family members in vivo. Phylogenetic analysis reveals that RPRM and RPRML have been differentially retained by most species throughout vertebrate evolution, yet RPRM3 has been retained only in a small group of distantly related species, including zebrafish. Herein, we characterized the spatiotemporal expression of RPRM (present in zebrafish as an infraclass duplication rprma/rprmb, RPRML and RPRM3 in the zebrafish. By whole-mount in situ hybridization (WISH and fluorescent in situ hybridization (FISH, we demonstrate that rprm (rprma/rprmb and rprml show a similar spatiotemporal expression profile during zebrafish development. At early developmental stages rprmb is expressed in somites. After one day post-fertilization, rprm (rprma/rprmb and rprml are expressed in the notochord, brain, blood vessels and digestive tube. On the other hand, rprm3 shows the most unique expression profile, being expressed only in the central nervous system (CNS. We assessed the expression patterns of RPRM gene transcripts in adult zebrafish and human RPRM protein product in tissue samples by RT-qPCR and immunohistochemistry (IHC staining, respectively. Strikingly, tissue-specific expression patterns of the RPRM transcripts and protein are conserved between zebrafish and humans. We propose the zebrafish as a powerful tool to elucidate the both physiological and pathological roles of the RPRM gene family.

  1. Exercise and type 2 diabetes mellitus: changes in tissue-specific fat distribution and cardiac function.

    Science.gov (United States)

    Jonker, Jacqueline T; de Mol, Pieter; de Vries, Suzanna T; Widya, Ralph L; Hammer, Sebastiaan; van Schinkel, Linda D; van der Meer, Rutger W; Gans, Rijk O B; Webb, Andrew G; Kan, Hermien E; de Koning, Eelco J P; Bilo, Henk J G; Lamb, Hildo J

    2013-11-01

    To prospectively assess the effects of an exercise intervention on organ-specific fat accumulation and cardiac function in type 2 diabetes mellitus. Written informed consent was obtained from all participants, and the study protocol was approved by the medical ethics committee. The study followed 12 patients with type 2 diabetes mellitus (seven men; mean age, 46 years ± 2 [standard error]) before and after 6 months of moderate-intensity exercise, followed by a high-altitude trekking expedition with exercise of long duration. Abdominal, epicardial, and paracardial fat volume were measured by using magnetic resonance (MR) imaging. Cardiac function was quantified with cardiac MR, and images were analyzed by a researcher who was supervised by a senior researcher (4 and 21 years of respective experience in cardiac MR). Hepatic, myocardial, and intramyocellular triglyceride (TG) content relative to water were measured with proton MR spectroscopy at 1.5 and 7 T. Two-tailed paired t tests were used for statistical analysis. Exercise reduced visceral abdominal fat volume from 348 mL ± 57 to 219 mL ± 33 (P Exercise decreased hepatic TG content from 6.8% ± 2.3 to 4.6% ± 1.6 (P Exercise did not change epicardial fat volume (P = .9), myocardial TG content (P = .9), intramyocellular lipid content (P = .3), or cardiac function (P = .5). A 6-month exercise intervention in type 2 diabetes mellitus decreased hepatic TG content and visceral abdominal and paracardial fat volume, which are associated with increased cardiovascular risk, but cardiac function was unaffected. Tissue-specific exercise-induced changes in body fat distribution in type 2 diabetes mellitus were demonstrated in this study. RSNA, 2013

  2. A computational network analysis based on targets of antipsychotic agents.

    Science.gov (United States)

    Gao, Lei; Feng, Shuo; Liu, Zhao-Yuan; Wang, Jiu-Qiang; Qi, Ke-Ke; Wang, Kai

    2018-03-01

    Currently, numerous antipsychotic agents have been developed in the area of pharmacological treatment of schizophrenia. However, the molecular mechanism underlying multi targets of antipsychotics were yet to be explored. In this study we performed a computational network analysis based on targets of antipsychotic agents. We retrieved a total of 96 targets from 56 antipsychotic agents. By expression enrichment analysis, we identified that the expressions of antipsychotic target genes were significantly enriched in liver, brain, blood and corpus striatum. By protein-protein interaction (PPI) network analysis, a PPI network with 77 significantly interconnected target genes was generated. By historeceptomics analysis, significant brain region specific target-drug interactions were identified in targets of dopamine receptors (DRD1-Olanzapine in caudate nucleus and pons (P-valueantipsychotic targets and insights for molecular mechanism of antipsychotic agents. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Neutron performance analysis for ESS target proposal

    International Nuclear Information System (INIS)

    Magán, M.; Terrón, S.; Thomsen, K.; Sordo, F.; Perlado, J.M.; Bermejo, F.J.

    2012-01-01

    In the course of discussing different target types for their suitability in the European Spallation Source (ESS) one main focus was on neutronics' performance. Diverse concepts have been assessed baselining some preliminary engineering and geometrical details and including some optimization. With the restrictions and resulting uncertainty imposed by the lack of detailed designs optimizations at the time of compiling this paper, the conclusion drawn is basically that there is a little difference in the neutronic yield of the investigated targets. Other criteria like safety, environmental compatibility, reliability and cost will thus dominate the choice of an ESS target.

  4. Molecular Composition Analysis of Distant Targets

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a system capable of probing the molecular composition of cold solar system targets such as asteroids, comets, planets and moons from a distant vantage....

  5. Andrographis paniculata transcriptome provides molecular insights into tissue-specific accumulation of medicinal diterpenes.

    Science.gov (United States)

    Garg, Anchal; Agrawal, Lalit; Misra, Rajesh Chandra; Sharma, Shubha; Ghosh, Sumit

    2015-09-02

    Kalmegh (Andrographis paniculata) has been widely exploited in traditional medicine for the treatment of infectious diseases and health disorders. Ent-labdane-related diterpene (ent-LRD) specialized (i.e., secondary) metabolites of kalmegh such as andrographolide, neoandrographolide and 14-deoxy-11,12-didehydroandrographolide, are known for variety of pharmacological activities. However, due to the lack of genomic and transcriptomic information, underlying molecular basis of ent-LRDs biosynthesis has remained largely unknown. To identify candidate genes of the ent-LRD biosynthetic pathway, we performed comparative transcriptome analysis using leaf and root tissues that differentially accumulate ent-LRDs. De novo assembly of Illumina HiSeq2000 platform-generated paired-end sequencing reads resulted into 69,011 leaf and 64,244 root transcripts which were assembled into a total of 84,628 unique transcripts. Annotation of these transcripts to the Uniprot, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Carbohydrate-Active Enzymes (CAZy) databases identified candidate transcripts of the ent-LRD biosynthetic pathway. These included transcripts that encode enzymes of the plastidial 2C-methyl-D-erythritol-4-phosphate pathway which provides C5 isoprenoid precursors for the ent-LRDs biosynthesis, geranylgeranyl diphosphate synthase, class II diterpene synthase (diTPS), cytochrome P450 monooxygenase and glycosyltransferase. Three class II diTPSs (ApCPS1, ApCPS2 and ApCPS3) that showed distinct tissue-specific expression profiles and are phylogenetically related to the dicotyledon ent-copalyl diphosphate synthases, are identified. ApCPS1, ApCPS2 and ApCPS3 encode for 832-, 817- and 797- amino acids proteins of 55-63 % identity, respectively. Spatio-temporal patterns of transcripts and ent-LRDs accumulation are consistent with the involvement of ApCPS1 in general (i.e., primary) metabolism for the biosynthesis of phytohormone gibberellin, ApCPS2 in leaf specialized ent

  6. Tissue-Specific Peroxisome Proliferator Activated Receptor Gamma Expression and Metabolic Effects of Telmisartan

    Czech Academy of Sciences Publication Activity Database

    Zídek, Václav; Mlejnek, Petr; Šimáková, Miroslava; Šilhavý, Jan; Landa, Vladimír; Kazdová, L.; Pravenec, Michal; Kurtz, T. W.

    2013-01-01

    Roč. 26, č. 6 (2013), s. 829-835 ISSN 0895-7061 R&D Projects: GA ČR(CZ) GAP303/10/0505; GA MŠk(CZ) LH11049; GA MŠk(CZ) LL1204; GA MŠk(CZ) 7E10067 Institutional support: RVO:67985823 Keywords : telmisartan * metabolic effects * tissue-specific Pparg knockout mice Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 3.402, year: 2013

  7. Pyrosequencing data reveals tissue-specific expression of lineage-specific transcripts in chickpea

    OpenAIRE

    Garg, Rohini; Jain, Mukesh

    2011-01-01

    Chickpea is a very important crop legume plant, which provides a protein-rich supplement to cereal-based diets and has the ability to fix atmospheric nitrogen. Despite its economic importance, the functional genomic resources for chickpea are very limited. Recently, we reported the complete transcriptome of chickpea using next generation sequencing technologies. We analyzed the tissue-specific expression of chickpea transcripts based on RNA-seq data. In addition, we identified two sets of lin...

  8. Simple and high yielding method for preparing tissue specific extracellular matrix coatings for cell culture.

    Science.gov (United States)

    DeQuach, Jessica A; Mezzano, Valeria; Miglani, Amar; Lange, Stephan; Keller, Gordon M; Sheikh, Farah; Christman, Karen L

    2010-09-27

    The native extracellular matrix (ECM) consists of a highly complex, tissue-specific network of proteins and polysaccharides, which help regulate many cellular functions. Despite the complex nature of the ECM, in vitro cell-based studies traditionally assess cell behavior on single ECM component substrates, which do not adequately mimic the in vivo extracellular milieu. We present a simple approach for developing naturally derived ECM coatings for cell culture that provide important tissue-specific cues unlike traditional cell culture coatings, thereby enabling the maturation of committed C2C12 skeletal myoblast progenitors and human embryonic stem cells differentiated into cardiomyocytes. Here we show that natural muscle-specific coatings can (i) be derived from decellularized, solubilized adult porcine muscle, (ii) contain a complex mixture of ECM components including polysaccharides, (iii) adsorb onto tissue culture plastic and (iv) promote cell maturation of committed muscle progenitor and stem cells. This versatile method can create tissue-specific ECM coatings, which offer a promising platform for cell culture to more closely mimic the mature in vivo ECM microenvironment.

  9. DNA entropy reveals a significant difference in complexity between housekeeping and tissue specific gene promoters.

    Science.gov (United States)

    Thomas, David; Finan, Chris; Newport, Melanie J; Jones, Susan

    2015-10-01

    The complexity of DNA can be quantified using estimates of entropy. Variation in DNA complexity is expected between the promoters of genes with different transcriptional mechanisms; namely housekeeping (HK) and tissue specific (TS). The former are transcribed constitutively to maintain general cellular functions, and the latter are transcribed in restricted tissue and cells types for specific molecular events. It is known that promoter features in the human genome are related to tissue specificity, but this has been difficult to quantify on a genomic scale. If entropy effectively quantifies DNA complexity, calculating the entropies of HK and TS gene promoters as profiles may reveal significant differences. Entropy profiles were calculated for a total dataset of 12,003 human gene promoters and for 501 housekeeping (HK) and 587 tissue specific (TS) human gene promoters. The mean profiles show the TS promoters have a significantly lower entropy (pentropy distributions for the 3 datasets show that promoter entropies could be used to identify novel HK genes. Functional features comprise DNA sequence patterns that are non-random and hence they have lower entropies. The lower entropy of TS gene promoters can be explained by a higher density of positive and negative regulatory elements, required for genes with complex spatial and temporary expression. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. The role of the endocrine system in feeding-induced tissue-specific circadian entrainment.

    Science.gov (United States)

    Sato, Miho; Murakami, Mariko; Node, Koichi; Matsumura, Ritsuko; Akashi, Makoto

    2014-07-24

    The circadian clock is entrained to environmental cycles by external cue-mediated phase adjustment. Although the light input pathway has been well defined, the mechanism of feeding-induced phase resetting remains unclear. The tissue-specific sensitivity of peripheral entrainment to feeding suggests the involvement of multiple pathways, including humoral and neuronal signals. Previous in vitro studies with cultured cells indicate that endocrine factors may function as entrainment cues for peripheral clocks. However, blood-borne factors that are well characterized in actual feeding-induced resetting have yet to be identified. Here, we report that insulin may be involved in feeding-induced tissue-type-dependent entrainment in vivo. In ex vivo culture experiments, insulin-induced phase shift in peripheral clocks was dependent on tissue type, which was consistent with tissue-specific insulin sensitivity, and peripheral entrainment in insulin-sensitive tissues involved PI3K- and MAPK-mediated signaling pathways. These results suggest that insulin may be an immediate early factor in feeding-mediated tissue-specific entrainment. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Tissue-specific and ubiquitous expression patterns from alternative promoters of human genes.

    Directory of Open Access Journals (Sweden)

    Edwin Jacox

    2010-08-01

    Full Text Available Transcriptome diversity provides the key to cellular identity. One important contribution to expression diversity is the use of alternative promoters, which creates mRNA isoforms by expanding the choice of transcription initiation sites of a gene. The proximity of the basal promoter to the transcription initiation site enables prediction of a promoter's location based on the gene annotations. We show that annotation of alternative promoters regulating expression of transcripts with distinct first exons enables a novel methodology to quantify expression levels and tissue specificity of mRNA isoforms.The use of distinct alternative first exons in 3,296 genes was examined using exon-microarray data from 11 human tissues. Comparing two transcripts from each gene we found that the activity of alternative promoters (i.e., P1 and P2 was not correlated through tissue specificity or level of expression. Furthermore neither P1 nor P2 conferred any bias for tissue-specific or ubiquitous expression. Genes associated with specific diseases produced transcripts whose limited expression patterns were consistent with the tissue affected in disease. Notably, genes that were historically designated as tissue-specific or housekeeping had alternative isoforms that showed differential expression. Furthermore, only a small number of alternative promoters showed expression exclusive to a single tissue indicating that "tissue preference" provides a better description of promoter activity than tissue specificity. When compared to gene expression data in public databases, as few as 22% of the genes had detailed information for more than one isoform, whereas the remainder collapsed the expression patterns from individual transcripts into one profile.We describe a computational pipeline that uses microarray data to assess the level of expression and breadth of tissue profiles for transcripts with distinct first exons regulated by alternative promoters. We conclude that

  12. Diffuse reflectance spectroscopy for optical soft tissue differentiation as remote feedback control for tissue-specific laser surgery.

    Science.gov (United States)

    Stelzle, Florian; Tangermann-Gerk, Katja; Adler, Werner; Zam, Azhar; Schmidt, Michael; Douplik, Alexandre; Nkenke, Emeka

    2010-04-01

    Laser surgery does not provide haptic feedback for operating layer-by-layer and thereby preserving vulnerable anatomical structures like nerve tissue or blood vessels. Diffuse reflectance spectra can facilitate remote optical tissue differentiation. It is the aim of the study to use this technique on soft tissue samples, to set a technological basis for a remote optical feedback system for tissue-specific laser surgery. Diffuse reflectance spectra (wavelength range: 350-650 nm) of ex vivo types of soft tissue (a total of 10,800 spectra) of the midfacial region of domestic pigs were remotely measured under reduced environmental light conditions and analyzed in order to differentiate between skin, mucosa, muscle, subcutaneous fat, and nerve tissue. We performed a principal components (PC) analysis (PCA) to reduce the number of variables. Linear discriminant analysis (LDA) was utilized for classification. For the tissue differentiation, we calculated the specificity and sensitivity by receiver operating characteristic (ROC) analysis and the area under curve (AUC). Six PCs were found to be adequate for tissue differentiation with diffuse reflectance spectra using LDA. All of the types of soft tissue could be differentiated with high specificity and sensitivity. Only the tissue pairs nervous tissue/fatty tissue and nervous tissue/mucosa showed a decline of differentiation due to bio-structural similarity. However, both of these tissue pairs could still be differentiated with a specificity and sensitivity of more than 90%. Analyzing diffuse reflectance spectroscopy with PCA and LDA allows for remote differentiation of biological tissue. Considering the limitations of the ex vivo conditions, the obtained results are promising and set a basis for the further development of a feedback system for tissue-specific laser surgery. (c) 2010 Wiley-Liss, Inc.

  13. Genome-wide tissue-specific gene expression, co-expression and regulation of co-expressed genes in adult nematode Ascaris suum.

    Science.gov (United States)

    Rosa, Bruce A; Jasmer, Douglas P; Mitreva, Makedonka

    2014-02-01

    Caenorhabditis elegans has traditionally been used as a model for studying nematode biology, but its small size limits the ability for researchers to perform some experiments such as high-throughput tissue-specific gene expression studies. However, the dissection of individual tissues is possible in the parasitic nematode Ascaris suum due to its relatively large size. Here, we take advantage of the recent genome sequencing of Ascaris suum and the ability to physically dissect its separate tissues to produce a wide-scale tissue-specific nematode RNA-seq datasets, including data on three non-reproductive tissues (head, pharynx, and intestine) in both male and female worms, as well as four reproductive tissues (testis, seminal vesicle, ovary, and uterus). We obtained fundamental information about the biology of diverse cell types and potential interactions among tissues within this multicellular organism. Overexpression and functional enrichment analyses identified many putative biological functions enriched in each tissue studied, including functions which have not been previously studied in detail in nematodes. Putative tissue-specific transcriptional factors and corresponding binding motifs that regulate expression in each tissue were identified, including the intestine-enriched ELT-2 motif/transcription factor previously described in nematode intestines. Constitutively expressed and novel genes were also characterized, with the largest number of novel genes found to be overexpressed in the testis. Finally, a putative acetylcholine-mediated transcriptional network connecting biological activity in the head to the male reproductive system is described using co-expression networks, along with a similar ecdysone-mediated system in the female. The expression profiles, co-expression networks and co-expression regulation of the 10 tissues studied and the tissue-specific analysis presented here are a valuable resource for studying tissue-specific biological functions in

  14. Identification of estrogen target genes during zebrafish embryonic development through transcriptomic analysis.

    Directory of Open Access Journals (Sweden)

    Ruixin Hao

    Full Text Available Estrogen signaling is important for vertebrate embryonic development. Here we have used zebrafish (Danio rerio as a vertebrate model to analyze estrogen signaling during development. Zebrafish embryos were exposed to 1 µM 17β-estradiol (E2 or vehicle from 3 hours to 4 days post fertilization (dpf, harvested at 1, 2, 3 and 4 dpf, and subjected to RNA extraction for transcriptome analysis using microarrays. Differentially expressed genes by E2-treatment were analyzed with hierarchical clustering followed by biological process and tissue enrichment analysis. Markedly distinct sets of genes were up and down-regulated by E2 at the four different time points. Among these genes, only the well-known estrogenic marker vtg1 was co-regulated at all time points. Despite this, the biological functional categories targeted by E2 were relatively similar throughout zebrafish development. According to knowledge-based tissue enrichment, estrogen responsive genes were clustered mainly in the liver, pancreas and brain. This was in line with the developmental dynamics of estrogen-target tissues that were visualized using transgenic zebrafish containing estrogen responsive elements driving the expression of GFP (Tg(5xERE:GFP. Finally, the identified embryonic estrogen-responsive genes were compared to already published estrogen-responsive genes identified in male adult zebrafish (Gene Expression Omnibus database. The expressions of a few genes were co-regulated by E2 in both embryonic and adult zebrafish. These could potentially be used as estrogenic biomarkers for exposure to estrogens or estrogenic endocrine disruptors in zebrafish. In conclusion, our data suggests that estrogen effects on early embryonic zebrafish development are stage- and tissue- specific.

  15. Differential selective constraints shaping codon usage pattern of housekeeping and tissue-specific homologous genes of rice and arabidopsis.

    Science.gov (United States)

    Mukhopadhyay, Pamela; Basak, Surajit; Ghosh, Tapash Chandra

    2008-12-01

    Intra-genomic variation between housekeeping and tissue-specific genes has always been a study of interest in higher eukaryotes. To-date, however, no such investigation has been done in plants. Availability of whole genome expression data for both rice and Arabidopsis has made it possible to examine the evolutionary forces in shaping codon usage pattern in both housekeeping and tissue-specific genes in plants. In the present work, we have taken 4065 rice-Arabidopsis homologous gene pairs to study evolutionary forces responsible for codon usage divergence between housekeeping and tissue-specific genes. In both rice and Arabidopsis, it is mutational bias that regulates error minimization in highly expressed genes of both housekeeping and tissue-specific genes. Our results show that, in comparison to tissue-specific genes, housekeeping genes are under strong selective constraint in plants. However, in tissue-specific genes, lowly expressed genes are under stronger selective constraint compared with highly expressed genes. We demonstrated that constraint acting on mRNA secondary structure is responsible for modulating codon usage variations in rice tissue-specific genes. Thus, different evolutionary forces must underline the evolution of synonymous codon usage of highly expressed genes of housekeeping and tissue-specific genes in rice and Arabidopsis.

  16. Involvement of an ent-copalyl diphosphate synthase in tissue-specific accumulation of specialized diterpenes in Andrographis paniculata.

    Science.gov (United States)

    Misra, Rajesh Chandra; Garg, Anchal; Roy, Sudeep; Chanotiya, Chandan Singh; Vasudev, Prema G; Ghosh, Sumit

    2015-11-01

    Ent-labdane-related diterpene (ent-LRD) specialized (i.e. secondary) metabolites of the medicinal plant kalmegh (Andrographis paniculata) have long been known for several pharmacological activities. However, our understanding of the ent-LRD biosynthetic pathway has remained largely incomplete. Since ent-LRDs accumulate in leaves, we carried out a comparative transcriptional analysis using leaf and root tissues, and identified 389 differentially expressed transcripts, including 223 transcripts that were preferentially expressed in leaf tissue. Analysis of the transcripts revealed various specialized metabolic pathways, including transcripts of the ent-LRD biosynthetic pathway. Two class II diterpene synthases (ApCPS1 and ApCPS2) along with one (ApCPS1') and two (ApCPS2' and ApCPS2″) transcriptional variants that were the outcomes of alternative splicing of the precursor mRNA and alternative transcriptional termination, respectively, were identified. ApCPS1 and ApCPS2 encode for 832- and 817-amino acids proteins, respectively, and are phylogenetically related to the dicotyledons ent-copalyl diphosphate synthases (ent-CPSs). The spatio-temporal patterns of ent-LRD metabolites accumulation and gene expression suggested a likely role for ApCPS1 in general (i.e. primary) metabolism, perhaps by providing precursor for the biosynthesis of phytohormone gibberellin (GA). However, ApCPS2 is potentially involved in tissue-specific accumulation of ent-LRD specialized metabolites. Bacterially expressed recombinant ApCPS2 catalyzed the conversion of (E,E,E)-geranylgeranyl diphosphate (GGPP), the general precursor of diterpenes to ent-copalyl diphosphate (ent-CPP), the precursor of ent-LRDs. Taken together, these results advance our understanding of the tissue-specific accumulation of specialized ent-LRDs of medicinal importance. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Identification of tissue-specific cell death using methylation patterns of circulating DNA.

    Science.gov (United States)

    Lehmann-Werman, Roni; Neiman, Daniel; Zemmour, Hai; Moss, Joshua; Magenheim, Judith; Vaknin-Dembinsky, Adi; Rubertsson, Sten; Nellgård, Bengt; Blennow, Kaj; Zetterberg, Henrik; Spalding, Kirsty; Haller, Michael J; Wasserfall, Clive H; Schatz, Desmond A; Greenbaum, Carla J; Dorrell, Craig; Grompe, Markus; Zick, Aviad; Hubert, Ayala; Maoz, Myriam; Fendrich, Volker; Bartsch, Detlef K; Golan, Talia; Ben Sasson, Shmuel A; Zamir, Gideon; Razin, Aharon; Cedar, Howard; Shapiro, A M James; Glaser, Benjamin; Shemer, Ruth; Dor, Yuval

    2016-03-29

    Minimally invasive detection of cell death could prove an invaluable resource in many physiologic and pathologic situations. Cell-free circulating DNA (cfDNA) released from dying cells is emerging as a diagnostic tool for monitoring cancer dynamics and graft failure. However, existing methods rely on differences in DNA sequences in source tissues, so that cell death cannot be identified in tissues with a normal genome. We developed a method of detecting tissue-specific cell death in humans based on tissue-specific methylation patterns in cfDNA. We interrogated tissue-specific methylome databases to identify cell type-specific DNA methylation signatures and developed a method to detect these signatures in mixed DNA samples. We isolated cfDNA from plasma or serum of donors, treated the cfDNA with bisulfite, PCR-amplified the cfDNA, and sequenced it to quantify cfDNA carrying the methylation markers of the cell type of interest. Pancreatic β-cell DNA was identified in the circulation of patients with recently diagnosed type-1 diabetes and islet-graft recipients; oligodendrocyte DNA was identified in patients with relapsing multiple sclerosis; neuronal/glial DNA was identified in patients after traumatic brain injury or cardiac arrest; and exocrine pancreas DNA was identified in patients with pancreatic cancer or pancreatitis. This proof-of-concept study demonstrates that the tissue origins of cfDNA and thus the rate of death of specific cell types can be determined in humans. The approach can be adapted to identify cfDNA derived from any cell type in the body, offering a minimally invasive window for diagnosing and monitoring a broad spectrum of human pathologies as well as providing a better understanding of normal tissue dynamics.

  18. Novel strong tissue specific promoter for gene expression in human germ cells

    Directory of Open Access Journals (Sweden)

    Kuzmin Denis

    2010-08-01

    Full Text Available Abstract Background Tissue specific promoters may be utilized for a variety of applications, including programmed gene expression in cell types, tissues and organs of interest, for developing different cell culture models or for use in gene therapy. We report a novel, tissue-specific promoter that was identified and engineered from the native upstream regulatory region of the human gene NDUFV1 containing an endogenous retroviral sequence. Results Among seven established human cell lines and five primary cultures, this modified NDUFV1 upstream sequence (mNUS was active only in human undifferentiated germ-derived cells (lines Tera-1 and EP2102, where it demonstrated high promoter activity (~twice greater than that of the SV40 early promoter, and comparable to the routinely used cytomegaloviral promoter. To investigate the potential applicability of the mNUS promoter for biotechnological needs, a construct carrying a recombinant cytosine deaminase (RCD suicide gene under the control of mNUS was tested in cell lines of different tissue origin. High cytotoxic effect of RCD with a cell-death rate ~60% was observed only in germ-derived cells (Tera-1, whereas no effect was seen in a somatic, kidney-derived control cell line (HEK293. In further experiments, we tested mNUS-driven expression of a hyperactive Sleeping Beauty transposase (SB100X. The mNUS-SB100X construct mediated stable transgene insertions exclusively in germ-derived cells, thereby providing further evidence of tissue-specificity of the mNUS promoter. Conclusions We conclude that mNUS may be used as an efficient promoter for tissue-specific gene expression in human germ-derived cells in many applications. Our data also suggest that the 91 bp-long sequence located exactly upstream NDUFV1 transcriptional start site plays a crucial role in the activity of this gene promoter in vitro in the majority of tested cell types (10/12, and an important role - in the rest two cell lines.

  19. HdhQ111 Mice Exhibit Tissue Specific Metabolite Profiles that Include Striatal Lipid Accumulation.

    Directory of Open Access Journals (Sweden)

    Jeffrey B Carroll

    Full Text Available The HTT CAG expansion mutation causes Huntington's Disease and is associated with a wide range of cellular consequences, including altered metabolism. The mutant allele is expressed widely, in all tissues, but the striatum and cortex are especially vulnerable to its effects. To more fully understand this tissue-specificity, early in the disease process, we asked whether the metabolic impact of the mutant CAG expanded allele in heterozygous B6.HdhQ111/+ mice would be common across tissues, or whether tissues would have tissue-specific responses and whether such changes may be affected by diet. Specifically, we cross-sectionally examined steady state metabolite concentrations from a range of tissues (plasma, brown adipose tissue, cerebellum, striatum, liver, white adipose tissue, using an established liquid chromatography-mass spectrometry pipeline, from cohorts of 8 month old mutant and wild-type littermate mice that were fed one of two different high-fat diets. The differential response to diet highlighted a proportion of metabolites in all tissues, ranging from 3% (7/219 in the striatum to 12% (25/212 in white adipose tissue. By contrast, the mutant CAG-expanded allele primarily affected brain metabolites, with 14% (30/219 of metabolites significantly altered, compared to wild-type, in striatum and 11% (25/224 in the cerebellum. In general, diet and the CAG-expanded allele both elicited metabolite changes that were predominantly tissue-specific and non-overlapping, with evidence for mutation-by-diet interaction in peripheral tissues most affected by diet. Machine-learning approaches highlighted the accumulation of diverse lipid species as the most genotype-predictive metabolite changes in the striatum. Validation experiments in cell culture demonstrated that lipid accumulation was also a defining feature of mutant HdhQ111 striatal progenitor cells. Thus, metabolite-level responses to the CAG expansion mutation in vivo were tissue specific and

  20. Tissue specific phosphorylation of mitochondrial proteins isolated from rat liver, heart muscle, and skeletal muscle

    DEFF Research Database (Denmark)

    Bak, Steffen; León, Ileana R; Jensen, Ole Nørregaard

    2013-01-01

    of TiO2 phosphopeptide-enrichment, HILIC fractionation, and LC-MS/MS on isolated mitochondria to investigate the tissue-specific mitochondrial phosphoproteomes of rat liver, heart, and skeletal muscle. In total, we identified 899 phosphorylation sites in 354 different mitochondrial proteins including......Phosphorylation of mitochondrial proteins in a variety of biological processes is increasingly being recognized and may contribute to the differences in function and energy demands observed in mitochondria from different tissues such as liver, heart, and skeletal muscle. Here, we used a combination...

  1. Thermal Hydraulic and Structural Analysis of Liquid Metal Target System

    International Nuclear Information System (INIS)

    Lee, Yong Suk; Chung, Chang Hyun

    2002-01-01

    A subcritical transmutation reactor research is in progress for treatment of spent fuel. The subcritical transmutation reactor needs target system to produce high-energy neutrons. In target system, beam window is subject to high thermal field, because it interacts with high energy proton beam. In this study, target was designed based on thermal-hydraulic analysis, and thermal-structural analysis of window was performed. Preliminary design and mechanical analysis of liquid Pb-Bi target and 9Cr-2WVTa window were performed. Target was designed in a way to decrease window temperature. Installation of diffuse plate which has higher porosity in central zone was considered. Temperature and stress of window were analyzed varying minimum window thickness, beam power, and coolant flow rate. Thermal-bending stress was generated in window because of temperature gradient along the thickness of window. Coolant flow rate had insignificant effect on window stresses. It can be concluded that the target and window can be used in transmutation reactor operating condition (1 GeV, 6.78 mA). In this study, only static analysis has been made. But, accelerator beam trip can frequently occur in accelerator operation, so window and target container dynamic stress analysis will be needed. Furthermore, study about corrosion or irradiation characteristics of window will be needed in designing target and window. (authors)

  2. Tissue specific expression of potent insecticidal, Allium sativum leaf agglutinin (ASAL) in important pulse crop, chickpea (Cicer arietinum L.) to resist the phloem feeding Aphis craccivora.

    Science.gov (United States)

    Chakraborti, Dipankar; Sarkar, Anindya; Mondal, Hossain Ali; Das, Sampa

    2009-08-01

    The phloem sap-sucking hemipteran insect, Aphis craccivora, commonly known as cowpea aphid, cause major yield loss of important food legume crop chickpea. Among different plant lectins Allium sativum leaf agglutinin (ASAL), a mannose binding lectin was found to be potent antifeedant for sap sucking insect A. craccivora. Present study describes expression of ASAL in chickpea through Agrobacterium-mediated transformation of "single cotyledon with half embryo" explant. ASAL was expressed under the control of CaMV35S promoter for constitutive expression and phloem specific rolC promoter for specifically targeting the toxin at feeding site, using pCAMBIA2301 vector containing plant selection marker nptII. Southern blot analysis demonstrated the integration and copy number of chimeric ASAL gene in chickpea and its inheritance in T(1) and T(2) progeny plants. Expression of ASAL in T(0) and T(1) plants was confirmed through northern and western blot analysis. The segregation pattern of ASAL transgene was observed in T(1) progenies, which followed the 3:1 Mendelian ratio. Enzyme linked immunosorbant assay (ELISA) determined the level of ASAL expression in different transgenic lines in the range of 0.08-0.38% of total soluble protein. The phloem tissue specific expression of ASAL gene driven by rolC promoter has been monitored by immunolocalization analysis of mature stem sections. Survival and fecundity of A. craccivora decreased to 11-26% and 22-42%, respectively when in planta bioassay conducted on T(1) plants compared to untransformed control plant which showed 85% survival. Thus, through unique approach of phloem specific expression of novel insecticidal lectin (ASAL), aphid resistance has been successfully achieved in chickpea.

  3. psRNATarget: a plant small RNA target analysis server.

    Science.gov (United States)

    Dai, Xinbin; Zhao, Patrick Xuechun

    2011-07-01

    Plant endogenous non-coding short small RNAs (20-24 nt), including microRNAs (miRNAs) and a subset of small interfering RNAs (ta-siRNAs), play important role in gene expression regulatory networks (GRNs). For example, many transcription factors and development-related genes have been reported as targets of these regulatory small RNAs. Although a number of miRNA target prediction algorithms and programs have been developed, most of them were designed for animal miRNAs which are significantly different from plant miRNAs in the target recognition process. These differences demand the development of separate plant miRNA (and ta-siRNA) target analysis tool(s). We present psRNATarget, a plant small RNA target analysis server, which features two important analysis functions: (i) reverse complementary matching between small RNA and target transcript using a proven scoring schema, and (ii) target-site accessibility evaluation by calculating unpaired energy (UPE) required to 'open' secondary structure around small RNA's target site on mRNA. The psRNATarget incorporates recent discoveries in plant miRNA target recognition, e.g. it distinguishes translational and post-transcriptional inhibition, and it reports the number of small RNA/target site pairs that may affect small RNA binding activity to target transcript. The psRNATarget server is designed for high-throughput analysis of next-generation data with an efficient distributed computing back-end pipeline that runs on a Linux cluster. The server front-end integrates three simplified user-friendly interfaces to accept user-submitted or preloaded small RNAs and transcript sequences; and outputs a comprehensive list of small RNA/target pairs along with the online tools for batch downloading, key word searching and results sorting. The psRNATarget server is freely available at http://plantgrn.noble.org/psRNATarget/.

  4. The Prolactin Gene: A Paradigm of Tissue-Specific Gene Regulation with Complex Temporal Transcription Dynamics

    Science.gov (United States)

    Featherstone, K; White, M R H; Davis, J R E

    2012-01-01

    Transcription of numerous mammalian genes is highly pulsatile, with bursts of expression occurring with variable duration and frequency. The presence of this stochastic or ‘noisy’ expression pattern has been relatively unexplored in tissue systems. The prolactin gene provides a model of tissue-specific gene regulation resulting in pulsatile transcription dynamics in both cell lines and endocrine tissues. In most cell culture models, prolactin transcription appears to be highly variable between cells, with differences in transcription pulse duration and frequency. This apparently stochastic transcription is constrained by a transcriptional refractory period, which may be related to cycles of chromatin remodelling. We propose that prolactin transcription dynamics result from the summation of oscillatory cellular inputs and by regulation through chromatin remodelling cycles. Observations of transcription dynamics in cells within pituitary tissue show reduced transcriptional heterogeneity and can be grouped into a small number of distinct patterns. Thus, it appears that the tissue environment is able to reduce transcriptional noise to enable coordinated tissue responses to environmental change. We review the current knowledge on the complex tissue-specific regulation of the prolactin gene in pituitary and extra-pituitary sites, highlighting differences between humans and rodent experimental animal models. Within this context, we describe the transcription dynamics of prolactin gene expression and how this may relate to specific processes occurring within the cell. PMID:22420298

  5. Model of Tryptophan Metabolism, Readily Scalable Using Tissue-specific Gene Expression Data*

    Science.gov (United States)

    Stavrum, Anne-Kristin; Heiland, Ines; Schuster, Stefan; Puntervoll, Pål; Ziegler, Mathias

    2013-01-01

    Tryptophan is utilized in various metabolic routes including protein synthesis, serotonin, and melatonin synthesis and the kynurenine pathway. Perturbations in these pathways have been associated with neurodegenerative diseases and cancer. Here we present a comprehensive kinetic model of the complex network of human tryptophan metabolism based upon existing kinetic data for all enzymatic conversions and transporters. By integrating tissue-specific expression data, modeling tryptophan metabolism in liver and brain returned intermediate metabolite concentrations in the physiological range. Sensitivity and metabolic control analyses identified expected key enzymes to govern fluxes in the branches of the network. Combining tissue-specific models revealed a considerable impact of the kynurenine pathway in liver on the concentrations of neuroactive derivatives in the brain. Moreover, using expression data from a cancer study predicted metabolite changes that resembled the experimental observations. We conclude that the combination of the kinetic model with expression data represents a powerful diagnostic tool to predict alterations in tryptophan metabolism. The model is readily scalable to include more tissues, thereby enabling assessment of organismal tryptophan metabolism in health and disease. PMID:24129579

  6. Rice tissue-specific promoters and condition-dependent promoters for effective translational application.

    Science.gov (United States)

    Jeong, Hee-Jeong; Jung, Ki-Hong

    2015-11-01

    Rice (Oryza sativa) is one of the most important staple food crops for more than half of the world's population. The demand is increasing for food security because of population growth and environmental challenges triggered by climate changes. This scenario has led to more interest in developing crops with greater productivity and sustainability. The process of genetic transformation, a major tool for crop improvement, utilizes promoters as one of its key elements. Those promoters are generally divided into three types: constitutive, spatiotemporal, and condition-dependent. Transcriptional control of a constitutive promoter often leads to reduced plant growth, due to a negative effect of accumulated molecules during cellular functions or energy consumption. To maximize the effect of a transgene on transgenic plants, it is better to use condition-dependent or tissue-specific promoters. However, until now, those types have not been as widely applied in crop biotechnology. In this review, we introduce and discuss four groups of tissue-specific promoters (50 promoters in total) and six groups of condition-dependent promoters (27 promoters). These promoters can be utilized to fine-tune desirable agronomic traits and develop crops with tolerance to various stresses, enhanced nutritional value, and advanced productivity. © 2015 Institute of Botany, Chinese Academy of Sciences.

  7. Genome-wide sequencing of small RNAs reveals a tissue-specific loss of conserved microRNA families in Echinococcus granulosus.

    Science.gov (United States)

    Bai, Yun; Zhang, Zhuangzhi; Jin, Lei; Kang, Hui; Zhu, Yongqiang; Zhang, Lu; Li, Xia; Ma, Fengshou; Zhao, Li; Shi, Baoxin; Li, Jun; McManus, Donald P; Zhang, Wenbao; Wang, Shengyue

    2014-08-29

    MicroRNAs (miRNAs) are important post-transcriptional regulators which control growth and development in eukaryotes. The cestode Echinococcus granulosus has a complex life-cycle involving different development stages but the mechanisms underpinning this development, including the involvement of miRNAs, remain unknown. Using Illumina next generation sequencing technology, we sequenced at the genome-wide level three small RNA populations from the adult, protoscolex and cyst membrane of E. granulosus. A total of 94 pre-miRNA candidates (coding 91 mature miRNAs and 39 miRNA stars) were in silico predicted. Through comparison of expression profiles, we found 42 mature miRNAs and 23 miRNA stars expressed with different patterns in the three life stages examined. Furthermore, considering both the previously reported and newly predicted miRNAs, 25 conserved miRNAs families were identified in the E. granulosus genome. Comparing the presence or absence of these miRNA families with the free-living Schmidtea mediterranea, we found 13 conserved miRNAs are lost in E. granulosus, most of which are tissue-specific and involved in the development of ciliated cells, the gut and sensory organs. Finally, GO enrichment analysis of the differentially expressed miRNAs and their potential targets indicated that they may be involved in bi-directional development, nutrient metabolism and nervous system development in E. granulosus. This study has, for the first time, provided a comprehensive description of the different expression patterns of miRNAs in three distinct life cycle stages of E. granulosus. The analysis supports earlier suggestions that the loss of miRNAs in the Platyhelminths might be related to morphological simplification. These results may help in the exploration of the mechanism of interaction between this parasitic worm and its definitive and intermediate hosts, providing information that can be used to develop new interventions and therapeutics for the control of cystic

  8. Tissue-specific congener composition of organohalogen and metabolite contaminants in East Greenland polar bears (Ursus maritimus).

    Science.gov (United States)

    Gebbink, Wouter A; Sonne, Christian; Dietz, Rune; Kirkegaard, Maja; Riget, Frank F; Born, Erik W; Muir, Derek C G; Letcher, Robert J

    2008-04-01

    Congener patterns of the major organohalogen contaminant classes of PCBs, PBDEs and their metabolites and/or by-products (OH-PCBs, MeSO2-PCBs, OH-PBDEs and MeO-PBDEs) were examined in adipose tissue, liver, brain and blood of East Greenland polar bears (Ursus maritimus). PCB, OH-PCB, MeSO2-PCB and PBDE congener patterns showed significant differences (ptarget tissue-specific effects in East Greenland polar bears.

  9. Variable expression of Cre recombinase transgenes precludes reliable prediction of tissue-specific gene disruption by tail-biopsy genotyping.

    Directory of Open Access Journals (Sweden)

    Tim J Schulz

    Full Text Available The Cre/loxP-system has become the system of choice for the generation of conditional so-called knockout mouse strains, i.e. the tissue-specific disruption of expression of a certain target gene. We here report the loss of expression of Cre recombinase in a transgenic mouse strain with increasing number of generations. This eventually led to the complete abrogation of gene expression of the inserted Cre cDNA while still being detectable at the genomic level. Conversely, loss of Cre expression caused an incomplete or even complete lack of disruption for the protein under investigation. As Cre expression in the tissue of interest in most cases cannot be addressed in vivo during the course of a study, our findings implicate the possibility that individual tail-biopsy genotypes may not necessarily indicate the presence or absence of gene disruption. This indicates that sustained post hoc analyses in regards to efficacy of disruption for every single study group member may be required.

  10. Adipocyte dysfunction in a mouse model of polycystic ovary syndrome (PCOS: evidence of adipocyte hypertrophy and tissue-specific inflammation.

    Directory of Open Access Journals (Sweden)

    Joseph S Marino

    Full Text Available Clinical research shows an association between polycystic ovary syndrome (PCOS and chronic inflammation, a pathological state thought to contribute to insulin resistance. The underlying pathways, however, have not been defined. The purpose of this study was to characterize the inflammatory state of a novel mouse model of PCOS. Female mice lacking leptin and insulin receptors in pro-opiomelanocortin neurons (IR/LepR(POMC mice and littermate controls were evaluated for estrous cyclicity, ovarian and adipose tissue morphology, and body composition by QMR and CT scan. Tissue-specific macrophage infiltration and cytokine mRNA expression were measured, as well as circulating cytokine levels. Finally, glucose regulation during pregnancy was evaluated as a measure of risk for diabetes development. Forty-five percent of IR/LepR(POMC mice showed reduced or absent ovulation. IR/LepR(POMC mice also had increased fat mass and adipocyte hypertrophy. These traits accompanied elevations in macrophage accumulation and inflammatory cytokine production in perigonadal adipose tissue, liver, and ovary. These mice also exhibited gestational hyperglycemia as predicted. This report is the first to show the presence of inflammation in IR/LepR(POMC mice, which develop a PCOS-like phenotype. Thus, IR/LepR(POMC mice may serve as a new mouse model to clarify the involvement of adipose and liver tissue in the pathogenesis and etiology of PCOS, allowing more targeted research on the development of PCOS and potential therapeutic interventions.

  11. Rbfox proteins regulate tissue-specific alternative splicing of Mef2D required for muscle differentiation.

    Science.gov (United States)

    Runfola, Valeria; Sebastian, Soji; Dilworth, F Jeffrey; Gabellini, Davide

    2015-02-15

    Among the Mef2 family of transcription factors, Mef2D is unique in that it undergoes tissue-specific splicing to generate an isoform that is essential for muscle differentiation. However, the mechanisms mediating this muscle-specific processing of Mef2D remain unknown. Using bioinformatics, we identified Rbfox proteins as putative modulators of Mef2D muscle-specific splicing. Accordingly, we found direct and specific Rbfox1 and Rbfox2 binding to Mef2D pre-mRNA in vivo. Gain- and loss-of-function experiments demonstrated that Rbfox1 and Rbfox2 cooperate in promoting Mef2D splicing and subsequent myogenesis. Thus, our findings reveal a new role for Rbfox proteins in regulating myogenesis through activation of essential muscle-specific splicing events. © 2015. Published by The Company of Biologists Ltd.

  12. The Mitochondrial Permeability Transition Pore Regulator Cyclophilin D Exhibits Tissue-Specific Control of Metabolic Homeostasis.

    Directory of Open Access Journals (Sweden)

    Rhianna C Laker

    Full Text Available The mitochondrial permeability transition pore (mPTP is a key regulator of mitochondrial function that has been implicated in the pathogenesis of metabolic disease. Cyclophilin D (CypD is a critical regulator that directly binds to mPTP constituents to facilitate the pore opening. We previously found that global CypD knockout mice (KO are protected from diet-induced glucose intolerance; however, the tissue-specific function of CypD and mPTP, particularly in the control of glucose homeostasis, has not been ascertained. To this end, we performed calcium retention capacity (CRC assay to compare the importance of CypD in the liver versus skeletal muscle. We found that liver mitochondria are more dependent on CypD for mPTP opening than skeletal muscle mitochondria. To ascertain the tissue-specific role of CypD in metabolic homeostasis, we generated liver-specific and muscle-specific CypD knockout mice (LKO and MKO, respectively and fed them either a chow diet or 45% high-fat diet (HFD for 14 weeks. MKO mice displayed similar body weight gain and glucose intolerance compared with wild type littermates (WT, whereas LKO mice developed greater visceral obesity, glucose intolerance and pyruvate intolerance compared with WT mice. These findings demonstrate that loss of muscle CypD is not sufficient to alter whole body glucose metabolism, while the loss of liver CypD exacerbates obesity and whole-body metabolic dysfunction in mice fed HFD.

  13. Linking salinity stress tolerance with tissue-specific Na+ sequestration in wheat roots

    Directory of Open Access Journals (Sweden)

    Honghong eWu

    2015-02-01

    Full Text Available Salinity stress tolerance is a physiologically complex trait that is conferred by the large array of interacting mechanisms. Among these, vacuolar Na+ sequestration has always been considered as one of the key components differentiating between sensitive and tolerant species and genotypes. However, vacuolar Na+ sequestration has been rarely considered in the context of the tissue-specific expression and regulation of appropriate transporters contributing to Na+ removal from the cytosol. In this work, six bread wheat varieties contrasting in their salinity tolerance (three tolerant and three sensitive were used to understand the essentiality of vacuolar Na+ sequestration between functionally different root tissues, and link it with the overall salinity stress tolerance in this species. Roots of 4-d old wheat seedlings were treated with 100 mM NaCl for 3 days, and then Na+ distribution between cytosol and vacuole was quantified by CoroNa Green fluorescent dye imaging. Our major observations were as follows: 1 salinity stress tolerance correlated positively with vacuolar Na+ sequestration ability in the mature root zone but not in the root apex; 2 Contrary to expectations, cytosolic Na+ levels in root meristem were significantly higher in salt tolerant than sensitive group, while vacuolar Na+ levels showed an opposite trend. These results are interpreted as meristem cells playing a role of the salt sensor; 3 No significant difference in the vacuolar Na+ sequestration ability was found between sensitive and tolerant group in either transition or elongation zones; 4 The overall Na+ accumulation was highest in the elongation zone, suggesting its role in osmotic adjustment and turgor maintenance required to drive root expansion growth. Overall, the reported results suggest high tissue-specificity of Na+ uptake, signalling, and sequestration in wheat root. The implications of these findings for plant breeding for salinity stress tolerance are discussed.

  14. Molecular Characterization and Tissue-specific Expression of a Novel FKBP38 Gene in the Cashmere Goat (Capra hircus).

    Science.gov (United States)

    Zheng, X; Hao, X Y; Chen, Y H; Zhang, X; Yang, J F; Wang, Z G; Liu, D J

    2012-06-01

    As a member of a subclass of immunophilins, it is controversial that FKBP38 acts an upstream regulator of mTOR signaling pathway, which control the process of cell-growth, proliferation and differentiation. In order to explore the relationship between FKBP38 and mTOR in the Cashmere goat (Capra hircus) cells, a full-length cDNA was cloned (GenBank accession number JF714970) and expression pattern was analyzed. The cloned FKBP38 gene is 1,248 bp in length, containing an open reading frame (ORF) from nucleotide 13 to 1,248 which encodes 411 amino acids, and 12 nucleotides in front of the initiation codon. The full cDNA sequence shares 98% identity with cattle, 94% with horse and 90% with human. The putative amino acid sequence shows the higher homology which is 98%, 97% and 94%, correspondingly. The bioinformatics analysis showed that FKBP38 contained a FKBP_C domain, two TPR domains and a TM domain. Psite analysis suggested that the ORF encoding protein contained a leucine-zipper pattern and a Prenyl group binding site (CAAX box). Tissue-specific expression analysis was performed by semi-quantitative RT-PCR and showed that the FKBP38 expression was detected in all the tested tissues and the highest level of mRNA accumulation was detected in testis, suggesting that FKBP38 plays an important role in goat cells.

  15. Molecular Characterization and Tissue-specific Expression of a Novel FKBP38 Gene in the Cashmere Goat (

    Directory of Open Access Journals (Sweden)

    X. Zheng

    2012-06-01

    Full Text Available As a member of a subclass of immunophilins, it is controversial that FKBP38 acts an upstream regulator of mTOR signaling pathway, which control the process of cell-growth, proliferation and differentiation. In order to explore the relationship between FKBP38 and mTOR in the Cashmere goat (Capra hircus cells, a full-length cDNA was cloned (GenBank accession number JF714970 and expression pattern was analyzed. The cloned FKBP38 gene is 1,248 bp in length, containing an open reading frame (ORF from nucleotide 13 to 1,248 which encodes 411 amino acids, and 12 nucleotides in front of the initiation codon. The full cDNA sequence shares 98% identity with cattle, 94% with horse and 90% with human. The putative amino acid sequence shows the higher homology which is 98%, 97% and 94%, correspondingly. The bioinformatics analysis showed that FKBP38 contained a FKBP_C domain, two TPR domains and a TM domain. Psite analysis suggested that the ORF encoding protein contained a leucine-zipper pattern and a Prenyl group binding site (CAAX box. Tissue-specific expression analysis was performed by semi-quantitative RT-PCR and showed that the FKBP38 expression was detected in all the tested tissues and the highest level of mRNA accumulation was detected in testis, suggesting that FKBP38 plays an important role in goat cells.

  16. Effects of adeno-associated virus serotype and tissue-specific expression on circulating biomarkers of propionic acidemia.

    Science.gov (United States)

    Guenzel, Adam J; Hillestad, Matthew L; Matern, Dietrich; Barry, Michael A

    2014-09-01

    Propionic acidemia (PA) is an autosomal recessive inborn error of metabolism caused by deficiency of propionyl-CoA carboxylase (PCC). This enzyme is composed of six PCCA and six PCCB subunits and mediates a critical step in catabolism of odd chain fatty acids and certain amino acids. Current treatment options for PA are limited to stringent dietary restriction of protein consumption and some patients undergo elective liver transplantation. We previously generated a hypomorphic model of PA, designated Pcca(-/-)(A138T), with 2% of wild-type enzyme activity that mimics many aspects of the human disease. In this study, we used the differing tissue tropisms of adeno-associated virus (AAV) to probe the ability of liver or muscle-directed gene therapy to treat systemic aspects of this disease that affects many cell types. Systemic therapy with muscle-biased AAV1, liver-biased AAV8, and broadly tropic AAVrh10 mediated significant biochemical corrections in circulating propionylcarnitine (C3) and methyl citrate by all vectors. The innate tissue bias of AAV1 and AAV8 gene expression was made more specific by the use of muscle-specific muscle creatine kinase (specifically MCK6) and hepatocyte-specific transthyretin (TTR) promoters, respectively. Under these targeted conditions, both vectors mediated significant long-term correction of circulating metabolites, demonstrating that correction of muscle and likely other tissue types in addition to liver is necessary to fully correct pathology caused by PA. Liver-specific AAV8-TTR-PCCA mediated better correction than AAV1-MCK-PCCA. These data suggest that targeted gene therapy may be a viable alternative to liver transplantation for PA. They also demonstrate the effects of tissue-specific and broad gene therapy on a cell autonomous systemic genetic disease.

  17. Structural evolution and tissue-specific expression of tetrapod-specific second isoform of secretory pathway Ca2+-ATPase

    International Nuclear Information System (INIS)

    Pestov, Nikolay B.; Dmitriev, Ruslan I.; Kostina, Maria B.; Korneenko, Tatyana V.; Shakhparonov, Mikhail I.; Modyanov, Nikolai N.

    2012-01-01

    Highlights: ► Full-length secretory pathway Ca-ATPase (SPCA2) cloned from rat duodenum. ► ATP2C2 gene (encoding SPCA2) exists only in genomes of Tetrapoda. ► Rat and pig SPCA2 are expressed in intestines, lung and some secretory glands. ► Subcellular localization of SPCA2 may depend on tissue type. ► In rat duodenum, SPCA2 is localized in plasma membrane-associated compartments. -- Abstract: Secretory pathway Ca-ATPases are less characterized mammalian calcium pumps than plasma membrane Ca-ATPases and sarco-endoplasmic reticulum Ca-ATPases. Here we report analysis of molecular evolution, alternative splicing, tissue-specific expression and subcellular localization of the second isoform of the secretory pathway Ca-ATPase (SPCA2), the product of the ATP2C2 gene. The primary structure of SPCA2 from rat duodenum deduced from full-length transcript contains 944 amino acid residues, and exhibits 65% sequence identity with known SPCA1. The rat SPCA2 sequence is also highly homologous to putative human protein KIAA0703, however, the latter seems to have an aberrant N-terminus originating from intron 2. The tissue-specificity of SPCA2 expression is different from ubiquitous SPCA1. Rat SPCA2 transcripts were detected predominantly in gastrointestinal tract, lung, trachea, lactating mammary gland, skin and preputial gland. In the newborn pig, the expression profile is very similar with one remarkable exception: porcine bulbourethral gland gave the strongest signal. Upon overexpression in cultured cells, SPCA2 shows an intracellular distribution with remarkable enrichment in Golgi. However, in vivo SPCA2 may be localized in compartments that differ among various tissues: it is intracellular in epidermis, but enriched in plasma membranes of the intestinal epithelium. Analysis of SPCA2 sequences from various vertebrate species argue that ATP2C2 gene radiated from ATP2C1 (encoding SPCA1) during adaptation of tetrapod ancestors to terrestrial habitats.

  18. [Segment analysis of the target market of physiotherapeutic services].

    Science.gov (United States)

    Babaskin, D V

    2010-01-01

    The objective of the present study was to demonstrate the possibilities to analyse selected segments of the target market of physiotherapeutic services provided by medical and preventive-facilities of two major types. The main features of a target segment, such as provision of therapeutic massage, are illustrated in terms of two characteristics, namely attractiveness to the users and the ability of a given medical facility to satisfy their requirements. Based on the analysis of portfolio of the available target segments the most promising ones (winner segments) were selected for further marketing studies. This choice does not exclude the possibility of involvement of other segments of medical services in marketing activities.

  19. Life-long Maternal Cafeteria Diet Promotes Tissue-Specific Morphological Changes in Male Offspring Adult Rats

    Directory of Open Access Journals (Sweden)

    CAROLYNE D.S. SANTOS

    Full Text Available ABSTRACT Here, we evaluated whether the exposure of rats to a cafeteria diet pre- and/or post-weaning, alters histological characteristics in the White Adipose Tissue (WAT, Brown Adipose Tissue (BAT, and liver of adult male offspring. Female Wistar rats were divided into Control (CTL; fed on standard rodent chow and Cafeteria (CAF; fed with the cafeteria diet throughout life, including pregnancy and lactation. After birth, only male offspring (F1 were maintained and received the CTL or CAF diets; originating four experimental groups: CTL-CTLF1; CTL-CAFF1; CAF-CTLF1; CAF-CAFF1. Data of biometrics, metabolic parameters, liver, BAT and WAT histology were assessed and integrated using the Principal Component Analysis (PCA. According to PCA analysis worse metabolic and biometric characteristics in adulthood are associated with the post-weaning CAF diet compared to pre and post weaning CAF diet. Thus, the CTL-CAFF1 group showed obesity, higher deposition of fat in the liver and BAT and high fasting plasma levels of glucose, triglycerides and cholesterol. Interestingly, the association between pre and post-weaning CAF diet attenuated the obesity and improved the plasma levels of glucose and triglycerides compared to CTL-CAFF1 without avoiding the higher lipid accumulation in BAT and in liver, suggesting that the impact of maternal CAF diet is tissue-specific.

  20. Thermal-hydraulic analysis of PDS-XADS spallation target

    International Nuclear Information System (INIS)

    Ai Nisai; Yu Jiyang; Yang Yongwei

    2012-01-01

    This paper is a study of the thermal-hydraulic analysis of PDS-XADS spallation target for the large (80 MW) core concept. PDS-XADS is a small scale experimental accelerator driven sub-critical system (ADS). The analysis presented in this paper is based on lead bismuth eutectic (LBE) cooled XADS type experimental reactors, which are the de signs of the European experimental (PDS-XADS) project. The spallation target is a very important component of accelerator driven sub-critical system (ADS) because it is responsible to keep the reactor power at the required level by spallation reactions. A high rate of neutron production by spallation reaction creates the problem of decay heat cooling. LBE flow is properly cooled, but the window is not properly cooled because of the stagnation point in the pole of the window. It would be very difficult to keep the window temperature below the design limit, which is an important design limit challenge. Thermal-hydraulic analysis of LBE spallation target has been carried out by using ANSYS CFX 11.0. The detailed CFD analysis, which reveals thermal and hydraulic conditions in the window and spallation region, is carried out for different spallation target designs. Finally, the spallation target design limit is used to choose the best design. (authors)

  1. Analysis of target implosion irradiated by proton beam, (1)

    International Nuclear Information System (INIS)

    Tamba, Moritake; Nagata, Norimasa; Kawata, Shigeo; Niu, Keishiro.

    1982-10-01

    Numerical simulation and analysis were performed for the implosion of a hollow shell target driven by proton beam. The target consists of three layers of Pb, Al and DT. As the Al layer is heated by proton beam, the layer expands and pushes the DT layer toward the target center. To obtain the optimal velocity of DT implosion, the optimal target size and optimal layer thickness were determined. The target size is determined by, for example, the instability of the implosion or beam focusing on the target surface. The Rayleigh-Taylor instability and the unstable implosion due to the inhomogeneity were investigated. Dissipation, nonlinear effects and density gradient at the boundary were expected to reduce the growth rate of the Rayleigh-Taylor instability during the implosion. In order that the deviation of the boundary surface during the implosion is less than the thickness of fuel, the inhomogeneity of the temperature and the density of the target should be less than ten percent. The amplitude of the boundary surface roughness is required to be less than 4 micrometer. (Kato, T.)

  2. Development of a tissue-specific ribosome profiling approach in Drosophila enables genome-wide evaluation of translational adaptations.

    Science.gov (United States)

    Chen, Xun; Dickman, Dion

    2017-12-01

    Recent advances in next-generation sequencing approaches have revolutionized our understanding of transcriptional expression in diverse systems. However, measurements of transcription do not necessarily reflect gene translation, the process of ultimate importance in understanding cellular function. To circumvent this limitation, biochemical tagging of ribosome subunits to isolate ribosome-associated mRNA has been developed. However, this approach, called TRAP, lacks quantitative resolution compared to a superior technology, ribosome profiling. Here, we report the development of an optimized ribosome profiling approach in Drosophila. We first demonstrate successful ribosome profiling from a specific tissue, larval muscle, with enhanced resolution compared to conventional TRAP approaches. We next validate the ability of this technology to define genome-wide translational regulation. This technology is leveraged to test the relative contributions of transcriptional and translational mechanisms in the postsynaptic muscle that orchestrate the retrograde control of presynaptic function at the neuromuscular junction. Surprisingly, we find no evidence that significant changes in the transcription or translation of specific genes are necessary to enable retrograde homeostatic signaling, implying that post-translational mechanisms ultimately gate instructive retrograde communication. Finally, we show that a global increase in translation induces adaptive responses in both transcription and translation of protein chaperones and degradation factors to promote cellular proteostasis. Together, this development and validation of tissue-specific ribosome profiling enables sensitive and specific analysis of translation in Drosophila.

  3. Transposon-mediated transgenesis, transgenic rescue, and tissue-specific gene expression in rodents and rabbits.

    Science.gov (United States)

    Katter, Katharina; Geurts, Aron M; Hoffmann, Orsolya; Mátés, Lajos; Landa, Vladimir; Hiripi, László; Moreno, Carol; Lazar, Jozef; Bashir, Sanum; Zidek, Vaclav; Popova, Elena; Jerchow, Boris; Becker, Katja; Devaraj, Anantharam; Walter, Ingrid; Grzybowksi, Michael; Corbett, Molly; Filho, Artur Rangel; Hodges, Matthew R; Bader, Michael; Ivics, Zoltán; Jacob, Howard J; Pravenec, Michal; Bosze, Zsuzsanna; Rülicke, Thomas; Izsvák, Zsuzsanna

    2013-03-01

    Germline transgenesis is an important procedure for functional investigation of biological pathways, as well as for animal biotechnology. We have established a simple, nonviral protocol in three important biomedical model organisms frequently used in physiological studies. The protocol is based on the hyperactive Sleeping Beauty transposon system, SB100X, which reproducibly promoted generation of transgenic founders at frequencies of 50-64, 14-72, and 15% in mice, rats, and rabbits, respectively. The SB100X-mediated transgene integrations are less prone to genetic mosaicism and gene silencing as compared to either the classical pronuclear injection or to lentivirus-mediated transgenesis. The method was successfully applied to a variety of transgenes and animal models, and can be used to generate founders with single-copy integrations. The transposon vector also allows the generation of transgenic lines with tissue-specific expression patterns specified by promoter elements of choice, exemplified by a rat reporter strain useful for tracking serotonergic neurons. As a proof of principle, we rescued an inborn genetic defect in the fawn-hooded hypertensive rat by SB100X transgenesis. A side-by-side comparison of the SB100X- and piggyBac-based protocols revealed that the two systems are complementary, offering new opportunities in genome manipulation.

  4. Tissue Specificity of a Response of the Pro- and Antioxidative System After Resuscitation

    Directory of Open Access Journals (Sweden)

    A. G. Zhukova

    2005-01-01

    Full Text Available This investigation was undertaken to study the resistance of membrane structures and the level of the intracellular defense systems of the heart, brain, and liver in animals with active versus passive behavior in different periods (days 7 and 30 after resuscitation made 10 minutes following systemic circulatory arrest. All the animals in which systemic circulation had been stopped were survivors with the cession of neurological deficit. The activity of antioxidative defense enzymes, such as cata-lase and superoxide dismutase, in cardiac, cerebral, and hepatic tissues was assayed by spectrophotometry using the conventional methods. The level of stress-induced protein HSP70 was measured in the tissue cytosolic fraction by the Western blotting assay. The activity of Ca2+ transport in the myocardial sarcoplasmic reticulum was determined on an Orion EA 940 ionomer («Orion Research», USA having a Ca2+-selective electrode. The findings show a significant tissue specificity in different postresuscitative periods (days 7 and 30 and varying (protective to damaging cardiac, cerebral, and hepatic responses in active and passive animals to hypoxia.

  5. Regulating expressin of cell and tissue-specific genes by modifying transcription

    Energy Technology Data Exchange (ETDEWEB)

    Beachy, Roger N. [Donald Danforth Plant Science Center, St. Louis, MO (United States); Dai, Shunhong [Donald Danforth Plant Science Center, St. Louis, MO (United States)

    2009-12-15

    Transcriptional regulation is the primary step to control gene expression, therefore function. Such regulation is achieved primarily via a combination of the activities of the promoter cis regulatory DNA elements and trans regulatory proteins that function through binding to these DNA elements. Our research supported by this program has led to the identification of rice bZIP transcription factors RF2a, RF2b and RLP1 that play key roles in regulating the activity of a vascular tissue specific promoter isolated from Rice Tungro Bacilliform Virus (RTBV) through their interactions with the Box II essential cis element located in the promoter. RF2a, RF2b and RLP1 possess multiple regulatory domains. Functional characterization reveals that those domains can activate or repress the activity of the RTBV promoter. Studies of transcriptional regulation of the RTBV promoter by this group of bZIP proteins not only provide insights about gene expression in the vascular tissue, but also insights about general mechanisms of transcription activation and repression. The knowledge gained from this research will also enable us to develop a well-described set of tools that can be used to control expression of multiple genes in transgenic plants and to improve biofuel feedstock.

  6. Regulating expression of cell and tissue-specific genes by modifying transcription

    Energy Technology Data Exchange (ETDEWEB)

    Beachy, Roger N; Dai, Shunhong

    2010-06-14

    Transcriptional regulation is the primary step to control gene expression, therefore function. Such regulation is achieved primarily via a combination of the activities of the promoter cis regulatory DNA elements and trans regulatory proteins that function through binding to these DNA elements. Rice bZIP transcription factors RF2a, RF2b and RLP1 play key roles in regulating the activity of a vascular tissue specific promoter isolated from Rice Tungro Bacilliform Virus (RTBV), through their interactions with the Box II essential cis element located in the promoter (Dai et al., 2006., Dai et al., 2004., Yin et al., 1997). RF2a, RF2b and RLP1 possess multiple regulatory domains. Functional characterization reveals that those domains can activate or repress the activity of the RTBV promoter. It is equally as important to recognize that these proteins control plant development by regulating differentiation and/or function of the vascular tissues. Studies of transcriptional regulation of the RTBV promoter by this group of bZIP proteins will not only provide insights about gene expression in the vascular tissue, but also insights about general mechanisms of transcription activation and repression. The knowledge gained from this research will also enable us to develop a well-described set of tools that can be used to control expression of multiple genes in transgenic plants. We have proposed characterize the function domains of RF2a, RF2b and RLP1 and explore the biological function of the transcription repressor RLP1.

  7. Intermittent fasting results in tissue-specific changes in bioenergetics and redox state.

    Science.gov (United States)

    Chausse, Bruno; Vieira-Lara, Marcel A; Sanchez, Angélica B; Medeiros, Marisa H G; Kowaltowski, Alicia J

    2015-01-01

    Intermittent fasting (IF) is a dietary intervention often used as an alternative to caloric restriction (CR) and characterized by 24 hour cycles alternating ad libitum feeding and fasting. Although the consequences of CR are well studied, the effects of IF on redox status are not. Here, we address the effects of IF on redox state markers in different tissues in order to uncover how changes in feeding frequency alter redox balance in rats. IF rats displayed lower body mass due to decreased energy conversion efficiency. Livers in IF rats presented increased mitochondrial respiratory capacity and enhanced levels of protein carbonyls. Surprisingly, IF animals also presented an increase in oxidative damage in the brain that was not related to changes in mitochondrial bioenergetics. Conversely, IF promoted a substantial protection against oxidative damage in the heart. No difference in mitochondrial bioenergetics or redox homeostasis was observed in skeletal muscles of IF animals. Overall, IF affects redox balance in a tissue-specific manner, leading to redox imbalance in the liver and brain and protection against oxidative damage in the heart.

  8. Intermittent fasting results in tissue-specific changes in bioenergetics and redox state.

    Directory of Open Access Journals (Sweden)

    Bruno Chausse

    Full Text Available Intermittent fasting (IF is a dietary intervention often used as an alternative to caloric restriction (CR and characterized by 24 hour cycles alternating ad libitum feeding and fasting. Although the consequences of CR are well studied, the effects of IF on redox status are not. Here, we address the effects of IF on redox state markers in different tissues in order to uncover how changes in feeding frequency alter redox balance in rats. IF rats displayed lower body mass due to decreased energy conversion efficiency. Livers in IF rats presented increased mitochondrial respiratory capacity and enhanced levels of protein carbonyls. Surprisingly, IF animals also presented an increase in oxidative damage in the brain that was not related to changes in mitochondrial bioenergetics. Conversely, IF promoted a substantial protection against oxidative damage in the heart. No difference in mitochondrial bioenergetics or redox homeostasis was observed in skeletal muscles of IF animals. Overall, IF affects redox balance in a tissue-specific manner, leading to redox imbalance in the liver and brain and protection against oxidative damage in the heart.

  9. An immunohistochemical study on the tissue-specific localization of metallothionein in dogs.

    Science.gov (United States)

    Shimada, A; Yanagida, M; Umemura, T

    1997-01-01

    To study the tissue specificity of metallothionein (MT) expression, tissues of dogs ranging in age from 1 day to 18 years were examined immunohistochemically. Of the organs examined, liver and kidney showed the strongest immunoreactivity; a comparable intensity of MT immunolabelling was noted in the two organs in adult animals. In the central nervous system, astrocytes and ependymal cells showed MT immunoreactivity. MT labelling was shown in the sustentacular cells of the olfactory epithelium, but immunoreactivity was slight in the epithelium of the respiratory tract. Slight MT immunoreactivity was demonstrated in the epithelium of a variety of glands (sweat, uterine, mammary, olfactory, perianal and thyroid) and in parietal cells of the fundic glands of the stomach. Sporadic MT immunolabelling was demonstrated in the columnar and goblet cells of the small and large intestines, surface mucosal cells of the stomach and epithelial cells of the hair follicles. These findings may help in understanding important features of MT, such as its dynamic induction mechanism, its systemic degradation pathway and the possible biological functions.

  10. Extensive tissue-specific transcriptomic plasticity in maize primary roots upon water deficit.

    Science.gov (United States)

    Opitz, Nina; Marcon, Caroline; Paschold, Anja; Malik, Waqas Ahmed; Lithio, Andrew; Brandt, Ronny; Piepho, Hans-Peter; Nettleton, Dan; Hochholdinger, Frank

    2016-02-01

    Water deficit is the most important environmental constraint severely limiting global crop growth and productivity. This study investigated early transcriptome changes in maize (Zea mays L.) primary root tissues in response to moderate water deficit conditions by RNA-Sequencing. Differential gene expression analyses revealed a high degree of plasticity of the water deficit response. The activity status of genes (active/inactive) was determined by a Bayesian hierarchical model. In total, 70% of expressed genes were constitutively active in all tissues. In contrast, water deficit-responsive genes (1915) were consistently regulated in all tissues, while >75% (1501 genes) were specifically regulated in a single root tissue. Water deficit-responsive genes were most numerous in the cortex of the mature root zone and in the elongation zone. The most prominent functional categories among differentially expressed genes in all tissues were 'transcriptional regulation' and 'hormone metabolism', indicating global reprogramming of cellular metabolism as an adaptation to water deficit. Additionally, the most significant transcriptomic changes in the root tip were associated with cell wall reorganization, leading to continued root growth despite water deficit conditions. This study provides insight into tissue-specific water deficit responses and will be a resource for future genetic analyses and breeding strategies to develop more drought-tolerant maize cultivars. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  11. Tissue-specific concentrations and patterns of perfluoroalkyl carboxylates and sulfonates in East Greenland polar bears.

    Science.gov (United States)

    Greaves, Alana K; Letcher, Robert J; Sonne, Christian; Dietz, Rune; Born, Erik W

    2012-11-06

    Several perfluoroalkyl carboxylates (PFCAs) and perfluoroalkyl sulfonates (PFSAs) of varying chain length are bioaccumulative in biota. However, wildlife reports have focused on liver and with very little examination of other tissues, and thus there is a limited understanding of their distribution and potential effects in the mammalian body. In the present study, the comparative accumulation of C(6) to C(15) PFCAs, C(4), C(6), C(8) and C(10) PFSAs, and select precursors were examined in the liver, blood, muscle, adipose, and brain of 20 polar bears (Ursus maritimus) from Scoresby Sound, Central East Greenland. Overall, PFSA and PFCA concentrations were highest in liver followed by blood > brain > muscle ≈ adipose. Liver and blood samples contained proportionally more of the shorter/medium chain length (C(6) to C(11)) PFCAs, whereas adipose and brain samples were dominated by longer chain (C(13) to C(15)) PFCAs. PFCAs with lower lipophilicities accumulated more in the liver, whereas the brain accumulated PFCAs with higher lipophilicities. The concentration ratios (±SE) between perfluorooctane sulfonate and its precursor perfluorooctane sulfonamide varied among tissues from 9 (±1):1 (muscle) to 36 (±7):1 (liver). PFCA and PFSA patterns in polar bears indicate that the pharmacokinetics of these compounds are to some extent tissue-specific, and are the result of several factors that may include differing protein interactions throughout the body.

  12. MURC/Cavin-4 and cavin family members form tissue-specific caveolar complexes.

    Science.gov (United States)

    Bastiani, Michele; Liu, Libin; Hill, Michelle M; Jedrychowski, Mark P; Nixon, Susan J; Lo, Harriet P; Abankwa, Daniel; Luetterforst, Robert; Fernandez-Rojo, Manuel; Breen, Michael R; Gygi, Steven P; Vinten, Jorgen; Walser, Piers J; North, Kathryn N; Hancock, John F; Pilch, Paul F; Parton, Robert G

    2009-06-29

    Polymerase I and transcript release factor (PTRF)/Cavin is a cytoplasmic protein whose expression is obligatory for caveola formation. Using biochemistry and fluorescence resonance energy transfer-based approaches, we now show that a family of related proteins, PTRF/Cavin-1, serum deprivation response (SDR)/Cavin-2, SDR-related gene product that binds to C kinase (SRBC)/Cavin-3, and muscle-restricted coiled-coil protein (MURC)/Cavin-4, forms a multiprotein complex that associates with caveolae. This complex can constitutively assemble in the cytosol and associate with caveolin at plasma membrane caveolae. Cavin-1, but not other cavins, can induce caveola formation in a heterologous system and is required for the recruitment of the cavin complex to caveolae. The tissue-restricted expression of cavins suggests that caveolae may perform tissue-specific functions regulated by the composition of the cavin complex. Cavin-4 is expressed predominantly in muscle, and its distribution is perturbed in human muscle disease associated with Caveolin-3 dysfunction, identifying Cavin-4 as a novel muscle disease candidate caveolar protein.

  13. A tissue-specific atlas of mouse protein phosphorylation and expression.

    Science.gov (United States)

    Huttlin, Edward L; Jedrychowski, Mark P; Elias, Joshua E; Goswami, Tapasree; Rad, Ramin; Beausoleil, Sean A; Villén, Judit; Haas, Wilhelm; Sowa, Mathew E; Gygi, Steven P

    2010-12-23

    Although most tissues in an organism are genetically identical, the biochemistry of each is optimized to fulfill its unique physiological roles, with important consequences for human health and disease. Each tissue's unique physiology requires tightly regulated gene and protein expression coordinated by specialized, phosphorylation-dependent intracellular signaling. To better understand the role of phosphorylation in maintenance of physiological differences among tissues, we performed proteomic and phosphoproteomic characterizations of nine mouse tissues. We identified 12,039 proteins, including 6296 phosphoproteins harboring nearly 36,000 phosphorylation sites. Comparing protein abundances and phosphorylation levels revealed specialized, interconnected phosphorylation networks within each tissue while suggesting that many proteins are regulated by phosphorylation independently of their expression. Our data suggest that the "typical" phosphoprotein is widely expressed yet displays variable, often tissue-specific phosphorylation that tunes protein activity to the specific needs of each tissue. We offer this dataset as an online resource for the biological research community. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Tissue-specific fatty acids response to different diets in common carp (Cyprinus carpio L.).

    Science.gov (United States)

    Böhm, Markus; Schultz, Sebastian; Koussoroplis, Apostolos-Manuel; Kainz, Martin J

    2014-01-01

    Fish depend on dietary fatty acids (FA) to support their physiological condition and health. Exploring the FA distribution in common carp (Cyprinus carpio), one of the world's most consumed freshwater fish, is important to understand how and where FA of different sources are allocated. We investigated diet effects on the composition of polar and neutral lipid fatty acids (PLFA and NLFA, respectively) in eight different tissues (dorsal and ventral muscle, heart, kidney, intestine, eyes, liver and adipose tissue) of common carp. Two-year old carp were exposed to three diet sources (i.e., zooplankton, zooplankton plus supplementary feeds containing vegetable, VO, or fish oil, FO) with different FA composition. The PLFA and NLFA response was clearly tissue-specific after 210 days of feeding on different diets. PLFA were generally rich in omega-3 polyunsaturated FA and only marginally influenced by dietary FA, whereas the NLFA composition strongly reflected dietary FA profiles. However, the NLFA composition in carp tissues varied considerably at low NLFA mass ratios, suggesting that carp is able to regulate the NLFA composition and thus FA quality in its tissues when NLFA contents are low. Finally, this study shows that FO were 3X more retained than VO as NLFA particularly in muscle tissues, indicating that higher nutritional quality feeds are selectively allocated into tissues and thus available for human consumption.

  15. Tissue-specific fatty acids response to different diets in common carp (Cyprinus carpio L..

    Directory of Open Access Journals (Sweden)

    Markus Böhm

    Full Text Available Fish depend on dietary fatty acids (FA to support their physiological condition and health. Exploring the FA distribution in common carp (Cyprinus carpio, one of the world's most consumed freshwater fish, is important to understand how and where FA of different sources are allocated. We investigated diet effects on the composition of polar and neutral lipid fatty acids (PLFA and NLFA, respectively in eight different tissues (dorsal and ventral muscle, heart, kidney, intestine, eyes, liver and adipose tissue of common carp. Two-year old carp were exposed to three diet sources (i.e., zooplankton, zooplankton plus supplementary feeds containing vegetable, VO, or fish oil, FO with different FA composition. The PLFA and NLFA response was clearly tissue-specific after 210 days of feeding on different diets. PLFA were generally rich in omega-3 polyunsaturated FA and only marginally influenced by dietary FA, whereas the NLFA composition strongly reflected dietary FA profiles. However, the NLFA composition in carp tissues varied considerably at low NLFA mass ratios, suggesting that carp is able to regulate the NLFA composition and thus FA quality in its tissues when NLFA contents are low. Finally, this study shows that FO were 3X more retained than VO as NLFA particularly in muscle tissues, indicating that higher nutritional quality feeds are selectively allocated into tissues and thus available for human consumption.

  16. Human glucagon gene promoter sequences regulating tissue-specific versus nutrient-regulated gene expression.

    Science.gov (United States)

    Nian, Min; Gu, Jun; Irwin, David M; Drucker, Daniel J

    2002-01-01

    The glucagon-like peptides (GLPs) are synthesized and secreted in a nutrient-dependent manner in rodents; however, the factors regulating human GLP-1 and GLP-2 biosynthesis remain unclear. To understand how nutrients regulate human proglucagon gene expression, we studied the expression of a human proglucagon promoter-growth hormone (GH) transgene in 1.6 human glucagon-GH transgenic mice. Fasting-refeeding significantly decreased and increased the levels of circulating mouse insulin and transgene-derived hGH (P fasting vs. refeeding) and decreased and upregulated, respectively, the levels of endogenous mouse proglucagon RNA in the ileum but not in the jejunum or colon. High-fiber feeding significantly increased the levels of glucose-stimulated circulating hGH and upregulated levels of mouse intestinal proglucagon gene expression in the jejunum, ileum, and colon (P fasting-refeeding nor a high-fiber diet upregulated the expression of the human proglucagon promoter-hGH transgene. These findings demonstrate that human proglucagon gene regulatory sequences specifying tissue-specific expression in gut endocrine cells are not sufficient for recognition of energy-derived signals regulating murine glucagon gene expression in enteroendocrine cells in vivo.

  17. ChIP-seq Accurately Predicts Tissue-Specific Activity of Enhancers

    Energy Technology Data Exchange (ETDEWEB)

    Visel, Axel; Blow, Matthew J.; Li, Zirong; Zhang, Tao; Akiyama, Jennifer A.; Holt, Amy; Plajzer-Frick, Ingrid; Shoukry, Malak; Wright, Crystal; Chen, Feng; Afzal, Veena; Ren, Bing; Rubin, Edward M.; Pennacchio, Len A.

    2009-02-01

    A major yet unresolved quest in decoding the human genome is the identification of the regulatory sequences that control the spatial and temporal expression of genes. Distant-acting transcriptional enhancers are particularly challenging to uncover since they are scattered amongst the vast non-coding portion of the genome. Evolutionary sequence constraint can facilitate the discovery of enhancers, but fails to predict when and where they are active in vivo. Here, we performed chromatin immunoprecipitation with the enhancer-associated protein p300, followed by massively-parallel sequencing, to map several thousand in vivo binding sites of p300 in mouse embryonic forebrain, midbrain, and limb tissue. We tested 86 of these sequences in a transgenic mouse assay, which in nearly all cases revealed reproducible enhancer activity in those tissues predicted by p300 binding. Our results indicate that in vivo mapping of p300 binding is a highly accurate means for identifying enhancers and their associated activities and suggest that such datasets will be useful to study the role of tissue-specific enhancers in human biology and disease on a genome-wide scale.

  18. CXCR6, a newly defined biomarker of tissue-specific stem cell asymmetric self-renewal, identifies more aggressive human melanoma cancer stem cells.

    Directory of Open Access Journals (Sweden)

    Rouzbeh Taghizadeh

    2010-12-01

    Full Text Available A fundamental problem in cancer research is identifying the cell type that is capable of sustaining neoplastic growth and its origin from normal tissue cells. Recent investigations of a variety of tumor types have shown that phenotypically identifiable and isolable subfractions of cells possess the tumor-forming ability. In the present paper, using two lineage-related human melanoma cell lines, primary melanoma line IGR39 and its metastatic derivative line IGR37, two main observations are reported. The first one is the first phenotypic evidence to support the origin of melanoma cancer stem cells (CSCs from mutated tissue-specific stem cells; and the second one is the identification of a more aggressive subpopulation of CSCs in melanoma that are CXCR6+.We defined CXCR6 as a new biomarker for tissue-specific stem cell asymmetric self-renewal. Thus, the relationship between melanoma formation and ABCG2 and CXCR6 expression was investigated. Consistent with their non-metastatic character, unsorted IGR39 cells formed significantly smaller tumors than unsorted IGR37 cells. In addition, ABCG2+ cells produced tumors that had a 2-fold greater mass than tumors produced by unsorted cells or ABCG2- cells. CXCR6+ cells produced more aggressive tumors. CXCR6 identifies a more discrete subpopulation of cultured human melanoma cells with a more aggressive MCSC phenotype than cells selected on the basis of the ABCG2+ phenotype alone.The association of a more aggressive tumor phenotype with asymmetric self-renewal phenotype reveals a previously unrecognized aspect of tumor cell physiology. Namely, the retention of some tissue-specific stem cell attributes, like the ability to asymmetrically self-renew, impacts the natural history of human tumor development. Knowledge of this new aspect of tumor development and progression may provide new targets for cancer prevention and treatment.

  19. Müllerian inhibiting substance type II receptor (MISIIR): a novel, tissue-specific target expressed by gynecologic cancers.

    Science.gov (United States)

    Bakkum-Gamez, Jamie N; Aletti, Giovanni; Lewis, Kriste A; Keeney, Gary L; Thomas, Bijoy M; Navarro-Teulon, Isabelle; Cliby, William A

    2008-01-01

    Müllerian inhibiting substance type II receptor (MISIIR) is expressed by ovarian, breast, and prostate cancers [Masiakos PT, et al. Human ovarian cancer, cell lines, and primary ascites cells express the human Mullerian inhibiting substance (MIS) Type II Receptor, bind, and are responsive to MIS. Clin Cancer Res 1999;5:3488-99; Hoshiya Y, et al. Mullerian inhibiting substance promotes interferon {gamma}-induced gene expression and apoptosis in breast cancer cells. J Biol Chem 2003;278:51703-12; Hoshiya Y, et al. Mullerian inhibiting substance induces NFkB signaling in breast and prostate cancer cells. Mol. Cell. Endocrinol. 2003;211:43-9. [1-3

  20. A mathematical analysis of multiple-target SELEX.

    Science.gov (United States)

    Seo, Yeon-Jung; Chen, Shiliang; Nilsen-Hamilton, Marit; Levine, Howard A

    2010-10-01

    SELEX (Systematic Evolution of Ligands by Exponential Enrichment) is a procedure by which a mixture of nucleic acids can be fractionated with the goal of identifying those with specific biochemical activities. One combines the mixture with a specific target molecule and then separates the target-NA complex from the resulting reactions. The target-NA complex is separated from the unbound NA by mechanical means (such as by filtration), the NA is eluted from the complex, amplified by PCR (polymerase chain reaction), and the process repeated. After several rounds, one should be left with the nucleic acids that best bind to the target. The problem was first formulated mathematically in Irvine et al. (J. Mol. Biol. 222:739-761, 1991). In Levine and Nilsen-Hamilton (Comput. Biol. Chem. 31:11-25, 2007), a mathematical analysis of the process was given. In Vant-Hull et al. (J. Mol. Biol. 278:579-597, 1998), multiple target SELEX was considered. It was assumed that each target has a single nucleic acid binding site that permits occupation by no more than one nucleic acid. Here, we revisit Vant-Hull et al. (J. Mol. Biol. 278:579-597, 1998) using the same assumptions. The iteration scheme is shown to be convergent and a simplified algorithm is given. Our interest here is in the behavior of the multiple target SELEX process as a discrete "time" dynamical system. Our goal is to characterize the limiting states and their dependence on the initial distribution of nucleic acid and target fraction components. (In multiple target SELEX, we vary the target component fractions, but not their concentrations, as fixed and the initial pool of nucleic acids as a variable starting condition). Given N nucleic acids and a target consisting of M subtarget component species, there is an M × N matrix of affinities, the (i,j) entry corresponding to the affinity of the jth nucleic acid for the ith subtarget. We give a structure condition on this matrix that is equivalent to the following

  1. Simultaneous inference of phenotype-associated genes and relevant tissues from GWAS data via Bayesian integration of multiple tissue-specific gene networks.

    Science.gov (United States)

    Wu, Mengmeng; Lin, Zhixiang; Ma, Shining; Chen, Ting; Jiang, Rui; Wong, Wing Hung

    2017-12-01

    Although genome-wide association studies (GWAS) have successfully identified thousands of genomic loci associated with hundreds of complex traits in the past decade, the debate about such problems as missing heritability and weak interpretability has been appealing for effective computational methods to facilitate the advanced analysis of the vast volume of existing and anticipated genetic data. Towards this goal, gene-level integrative GWAS analysis with the assumption that genes associated with a phenotype tend to be enriched in biological gene sets or gene networks has recently attracted much attention, due to such advantages as straightforward interpretation, less multiple testing burdens, and robustness across studies. However, existing methods in this category usually exploit non-tissue-specific gene networks and thus lack the ability to utilize informative tissue-specific characteristics. To overcome this limitation, we proposed a Bayesian approach called SIGNET (Simultaneously Inference of GeNEs and Tissues) to integrate GWAS data and multiple tissue-specific gene networks for the simultaneous inference of phenotype-associated genes and relevant tissues. Through extensive simulation studies, we showed the effectiveness of our method in finding both associated genes and relevant tissues for a phenotype. In applications to real GWAS data of 14 complex phenotypes, we demonstrated the power of our method in both deciphering genetic basis and discovering biological insights of a phenotype. With this understanding, we expect to see SIGNET as a valuable tool for integrative GWAS analysis, thereby boosting the prevention, diagnosis, and treatment of human inherited diseases and eventually facilitating precision medicine.

  2. Real Time Intelligent Target Detection and Analysis with Machine Vision

    Science.gov (United States)

    Howard, Ayanna; Padgett, Curtis; Brown, Kenneth

    2000-01-01

    We present an algorithm for detecting a specified set of targets for an Automatic Target Recognition (ATR) application. ATR involves processing images for detecting, classifying, and tracking targets embedded in a background scene. We address the problem of discriminating between targets and nontarget objects in a scene by evaluating 40x40 image blocks belonging to an image. Each image block is first projected onto a set of templates specifically designed to separate images of targets embedded in a typical background scene from those background images without targets. These filters are found using directed principal component analysis which maximally separates the two groups. The projected images are then clustered into one of n classes based on a minimum distance to a set of n cluster prototypes. These cluster prototypes have previously been identified using a modified clustering algorithm based on prior sensed data. Each projected image pattern is then fed into the associated cluster's trained neural network for classification. A detailed description of our algorithm will be given in this paper. We outline our methodology for designing the templates, describe our modified clustering algorithm, and provide details on the neural network classifiers. Evaluation of the overall algorithm demonstrates that our detection rates approach 96% with a false positive rate of less than 0.03%.

  3. Penetration analysis of projectile with inclined concrete target

    Directory of Open Access Journals (Sweden)

    Kim S.B.

    2015-01-01

    Full Text Available This paper presents numerical analysis result of projectile penetration with concrete target. We applied dynamic material properties of 4340 steels, aluminium and explosive for projectile body. Dynamic material properties were measured with static tensile testing machine and Hopkinson pressure bar tests. Moreover, we used three concrete damage models included in LS-DYNA 3D, such as SOIL_CONCRETE, CSCM (cap model with smooth interaction and CONCRETE_DAMAGE (K&C concrete models. Strain rate effect for concrete material is important to predict the fracture deformation and shape of concrete, and penetration depth for projectiles. CONCRETE_DAMAGE model with strain rate effect also applied to penetration analysis. Analysis result with CSCM model shows good agreement with penetration experimental data. The projectile trace and fracture shapes of concrete target were compared with experimental data.

  4. Penetration analysis of projectile with inclined concrete target

    Science.gov (United States)

    Kim, S. B.; Kim, H. W.; Yoo, Y. H.

    2015-09-01

    This paper presents numerical analysis result of projectile penetration with concrete target. We applied dynamic material properties of 4340 steels, aluminium and explosive for projectile body. Dynamic material properties were measured with static tensile testing machine and Hopkinson pressure bar tests. Moreover, we used three concrete damage models included in LS-DYNA 3D, such as SOIL_CONCRETE, CSCM (cap model with smooth interaction) and CONCRETE_DAMAGE (K&C concrete) models. Strain rate effect for concrete material is important to predict the fracture deformation and shape of concrete, and penetration depth for projectiles. CONCRETE_DAMAGE model with strain rate effect also applied to penetration analysis. Analysis result with CSCM model shows good agreement with penetration experimental data. The projectile trace and fracture shapes of concrete target were compared with experimental data.

  5. Identification of potential tissue-specific cancer biomarkers and development of cancer versus normal genomic classifiers.

    Science.gov (United States)

    Mohammed, Akram; Biegert, Greyson; Adamec, Jiri; Helikar, Tomáš

    2017-10-17

    Machine learning techniques for cancer prediction and biomarker discovery can hasten cancer detection and significantly improve prognosis. Recent "OMICS" studies which include a variety of cancer and normal tissue samples along with machine learning approaches have the potential to further accelerate such discovery. To demonstrate this potential, 2,175 gene expression samples from nine tissue types were obtained to identify gene sets whose expression is characteristic of each cancer class. Using random forests classification and ten-fold cross-validation, we developed nine single-tissue classifiers, two multi-tissue cancer-versus-normal classifiers, and one multi-tissue normal classifier. Given a sample of a specified tissue type, the single-tissue models classified samples as cancer or normal with a testing accuracy between 85.29% and 100%. Given a sample of non-specific tissue type, the multi-tissue bi-class model classified the sample as cancer versus normal with a testing accuracy of 97.89%. Given a sample of non-specific tissue type, the multi-tissue multi-class model classified the sample as cancer versus normal and as a specific tissue type with a testing accuracy of 97.43%. Given a normal sample of any of the nine tissue types, the multi-tissue normal model classified the sample as a particular tissue type with a testing accuracy of 97.35%. The machine learning classifiers developed in this study identify potential cancer biomarkers with sensitivity and specificity that exceed those of existing biomarkers and pointed to pathways that are critical to tissue-specific tumor development. This study demonstrates the feasibility of predicting the tissue origin of carcinoma in the context of multiple cancer classes.

  6. Tissue-specific metabolic activation and mutagenicity of 3-nitrobenzanthrone in MutaMouse.

    Science.gov (United States)

    Chen, Guosheng; Gingerich, John; Soper, Lynda; Douglas, George R; White, Paul A

    2008-10-01

    3-Nitrobenzanthrone (3-NBA) is a mutagen and suspected human carcinogen detected in diesel exhaust, airborne particulate matter, and urban soil. We investigated the tissue specific mutagenicity of 3-NBA at the lacZ locus of transgenic MutaMouse following acute single dose or 28-day repeated-dose oral administration. In the acute high dose (50 mg/kg) exposure, increased lacZ mutant frequency was observed in bone marrow and colonic epithelium, but not in liver and bladder. In the repeated-dose study, a dose-dependent increase in lacZ mutant frequency was observed in bone marrow and liver (2- and 4-fold increase above control), but not in lung or intestinal epithelium. In addition, a concentration-dependent increase in mutant frequency (8.5-fold above control) was observed for MutaMouse FE1 lung epithelial cells exposed in vitro. 1-Nitropyrene reductase, 3-NBA reductase, and acetyltransferase activities were measured in a variety of MutaMouse specimens in an effort to link metabolic activation and mutagenicity. High 3-NBA nitroreductase activities were observed in lung, liver, colon and bladder, and detectable N-acetyltransferase activities were found in all tissues except bone marrow. The relatively high 3-NBA nitroreductase activity in MutaMouse tissues, as compared with those in Salmonella TA98 and TA100, suggests that 3-NBA is readily reduced and activated in vivo. High 3-NBA nitroreductase levels in liver and colon are consistent with the elevated lacZ mutant frequency values, and previously noted inductions of hepatic DNA adducts. Despite an absence of induced lacZ mutations, the highest 3-NBA reductase activity was detected in lung. Further studies are warranted, especially following inhalation or intratracheal exposures. Published 2008 Wiley-Liss, Inc.

  7. Tissue-Specific Transcriptomics of the Exotic Invasive Insect Pest Emerald Ash Borer (Agrilus planipennis)

    Science.gov (United States)

    Mittapalli, Omprakash; Bai, Xiaodong; Bonello, Pierluigi; Herms, Daniel A.

    2010-01-01

    Background The insect midgut and fat body represent major tissue interfaces that deal with several important physiological functions including digestion, detoxification and immune response. The emerald ash borer (Agrilus planipennis), is an exotic invasive insect pest that has killed millions of ash trees (Fraxinus spp.) primarily in the Midwestern United States and Ontario, Canada. However, despite its high impact status little knowledge exists for A. planipennis at the molecular level. Methodology and Principal Findings Newer-generation Roche-454 pyrosequencing was used to obtain 126,185 reads for the midgut and 240,848 reads for the fat body, which were assembled into 25,173 and 37,661 high quality expressed sequence tags (ESTs) for the midgut and the fat body of A. planipennis larvae, respectively. Among these ESTs, 36% of the midgut and 38% of the fat body sequences showed similarity to proteins in the GenBank nr database. A high number of the midgut sequences contained chitin-binding peritrophin (248)and trypsin (98) domains; while the fat body sequences showed high occurrence of cytochrome P450s (85) and protein kinase (123) domains. Further, the midgut transcriptome of A. planipennis revealed putative microbial transcripts encoding for cell-wall degrading enzymes such as polygalacturonases and endoglucanases. A significant number of SNPs (137 in midgut and 347 in fat body) and microsatellite loci (317 in midgut and 571 in fat body) were predicted in the A. planipennis transcripts. An initial assessment of cytochrome P450s belonging to various CYP clades revealed distinct expression patterns at the tissue level. Conclusions and Significance To our knowledge this study is one of the first to illuminate tissue-specific gene expression in an invasive insect of high ecological and economic consequence. These findings will lay the foundation for future gene expression and functional studies in A. planipennis. PMID:21060843

  8. Tissue-specific gene expression in maize seeds during colonization by Aspergillus flavus and Fusarium verticillioides.

    Science.gov (United States)

    Shu, Xiaomei; Livingston, David P; Franks, Robert G; Boston, Rebecca S; Woloshuk, Charles P; Payne, Gary A

    2015-09-01

    Aspergillus flavus and Fusarium verticillioides are fungal pathogens that colonize maize kernels and produce the harmful mycotoxins aflatoxin and fumonisin, respectively. Management practice based on potential host resistance to reduce contamination by these mycotoxins has proven difficult, resulting in the need for a better understanding of the infection process by these fungi and the response of maize seeds to infection. In this study, we followed the colonization of seeds by histological methods and the transcriptional changes of two maize defence-related genes in specific seed tissues by RNA in situ hybridization. Maize kernels were inoculated with either A. flavus or F. verticillioides 21-22 days after pollination, and harvested at 4, 12, 24, 48, 72, 96 and 120 h post-inoculation. The fungi colonized all tissues of maize seed, but differed in their interactions with aleurone and germ tissues. RNA in situ hybridization showed the induction of the maize pathogenesis-related protein, maize seed (PRms) gene in the aleurone and scutellum on infection by either fungus. Transcripts of the maize sucrose synthase-encoding gene, shrunken-1 (Sh1), were observed in the embryo of non-infected kernels, but were induced on infection by each fungus in the aleurone and scutellum. By comparing histological and RNA in situ hybridization results from adjacent serial sections, we found that the transcripts of these two genes accumulated in tissue prior to the arrival of the advancing pathogens in the seeds. A knowledge of the patterns of colonization and tissue-specific gene expression in response to these fungi will be helpful in the development of resistance. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  9. Tissue-Specific Gain of RTK Signalling Uncovers Selective Cell Vulnerability during Embryogenesis.

    Directory of Open Access Journals (Sweden)

    Yannan Fan

    Full Text Available The successive events that cells experience throughout development shape their intrinsic capacity to respond and integrate RTK inputs. Cellular responses to RTKs rely on different mechanisms of regulation that establish proper levels of RTK activation, define duration of RTK action, and exert quantitative/qualitative signalling outcomes. The extent to which cells are competent to deal with fluctuations in RTK signalling is incompletely understood. Here, we employ a genetic system to enhance RTK signalling in a tissue-specific manner. The chosen RTK is the hepatocyte growth factor (HGF receptor Met, an appropriate model due to its pleiotropic requirement in distinct developmental events. Ubiquitously enhanced Met in Cre/loxP-based Rosa26(stopMet knock-in context (Del-R26(Met reveals that most tissues are capable of buffering enhanced Met-RTK signalling thus avoiding perturbation of developmental programs. Nevertheless, this ubiquitous increase of Met does compromise selected programs such as myoblast migration. Using cell-type specific Cre drivers, we genetically showed that altered myoblast migration results from ectopic Met expression in limb mesenchyme rather than in migrating myoblasts themselves. qRT-PCR analyses show that ectopic Met in limbs causes molecular changes such as downregulation in the expression levels of Notum and Syndecan4, two known regulators of morphogen gradients. Molecular and functional studies revealed that ectopic Met expression in limb mesenchyme does not alter HGF expression patterns and levels, but impairs HGF bioavailability. Together, our findings show that myoblasts, in which Met is endogenously expressed, are capable of buffering increased RTK levels, and identify mesenchymal cells as a cell type vulnerable to ectopic Met-RTK signalling. These results illustrate that embryonic cells are sensitive to alterations in the spatial distribution of RTK action, yet resilient to fluctuations in signalling levels of an

  10. The importance of tissue specificity for RNA-seq: highlighting the errors of composite structure extractions.

    Science.gov (United States)

    Johnson, Brian R; Atallah, Joel; Plachetzki, David C

    2013-08-28

    A composite biological structure, such as an insect head or abdomen, contains many internal structures with distinct functions. Composite structures are often used in RNA-seq studies, though it is unclear how expression of the same gene in different tissues and structures within the same structure affects the measurement (or even utility) of the resulting patterns of gene expression. Here we determine how complex composite tissue structure affects measures of gene expression using RNA-seq. We focus on two structures in the honey bee (the sting gland and digestive tract) both contained within one larger structure, the whole abdomen. For each of the three structures, we used RNA-seq to identify differentially expressed genes between two developmental stages, nurse bees and foragers. Based on RNA-seq for each structure-specific extraction, we found that RNA-seq with composite structures leads to many false negatives (genes strongly differentially expressed in particular structures which are not found to be differentially expressed within the composite structure). We also found a significant number of genes with one pattern of differential expression in the tissue-specific extraction, and the opposite in the composite extraction, suggesting multiple signals from such genes within the composite structure. We found these patterns for different classes of genes including transcription factors. Many RNA-seq studies currently use composite extractions, and even whole insect extractions, when tissue and structure specific extractions are possible. This is due to the logistical difficultly of micro-dissection and unawareness of the potential errors associated with composite extractions. The present study suggests that RNA-seq studies of composite structures are prone to false negatives and difficult to interpret positive signals for genes with variable patterns of local expression. In general, our results suggest that RNA-seq on large composite structures should be avoided

  11. hSAGEing: an improved SAGE-based software for identification of human tissue-specific or common tumor markers and suppressors.

    Directory of Open Access Journals (Sweden)

    Cheng-Hong Yang

    Full Text Available BACKGROUND: SAGE (serial analysis of gene expression is a powerful method of analyzing gene expression for the entire transcriptome. There are currently many well-developed SAGE tools. However, the cross-comparison of different tissues is seldom addressed, thus limiting the identification of common- and tissue-specific tumor markers. METHODOLOGY/PRINCIPAL FINDINGS: To improve the SAGE mining methods, we propose a novel function for cross-tissue comparison of SAGE data by combining the mathematical set theory and logic with a unique "multi-pool method" that analyzes multiple pools of pair-wise case controls individually. When all the settings are in "inclusion", the common SAGE tag sequences are mined. When one tissue type is in "inclusion" and the other types of tissues are not in "inclusion", the selected tissue-specific SAGE tag sequences are generated. They are displayed in tags-per-million (TPM and fold values, as well as visually displayed in four kinds of scales in a color gradient pattern. In the fold visualization display, the top scores of the SAGE tag sequences are provided, along with cluster plots. A user-defined matrix file is designed for cross-tissue comparison by selecting libraries from publically available databases or user-defined libraries. CONCLUSIONS/SIGNIFICANCE: The hSAGEing tool provides a combination of friendly cross-tissue analysis and an interface for comparing SAGE libraries for the first time. Some up- or down-regulated genes with tissue-specific or common tumor markers and suppressors are identified computationally. The tool is useful and convenient for in silico cancer transcriptomic studies and is freely available at http://bio.kuas.edu.tw/hSAGEing.

  12. hSAGEing: an improved SAGE-based software for identification of human tissue-specific or common tumor markers and suppressors.

    Science.gov (United States)

    Yang, Cheng-Hong; Chuang, Li-Yeh; Shih, Tsung-Mu; Chang, Hsueh-Wei

    2010-12-17

    SAGE (serial analysis of gene expression) is a powerful method of analyzing gene expression for the entire transcriptome. There are currently many well-developed SAGE tools. However, the cross-comparison of different tissues is seldom addressed, thus limiting the identification of common- and tissue-specific tumor markers. To improve the SAGE mining methods, we propose a novel function for cross-tissue comparison of SAGE data by combining the mathematical set theory and logic with a unique "multi-pool method" that analyzes multiple pools of pair-wise case controls individually. When all the settings are in "inclusion", the common SAGE tag sequences are mined. When one tissue type is in "inclusion" and the other types of tissues are not in "inclusion", the selected tissue-specific SAGE tag sequences are generated. They are displayed in tags-per-million (TPM) and fold values, as well as visually displayed in four kinds of scales in a color gradient pattern. In the fold visualization display, the top scores of the SAGE tag sequences are provided, along with cluster plots. A user-defined matrix file is designed for cross-tissue comparison by selecting libraries from publically available databases or user-defined libraries. The hSAGEing tool provides a combination of friendly cross-tissue analysis and an interface for comparing SAGE libraries for the first time. Some up- or down-regulated genes with tissue-specific or common tumor markers and suppressors are identified computationally. The tool is useful and convenient for in silico cancer transcriptomic studies and is freely available at http://bio.kuas.edu.tw/hSAGEing.

  13. Early- and late-onset preeclampsia and the tissue-specific epigenome of the placenta and newborn.

    Science.gov (United States)

    Herzog, Emilie M; Eggink, Alex J; Willemsen, Sten P; Slieker, Roderick C; Wijnands, Kim P J; Felix, Janine F; Chen, Jun; Stubbs, Andrew; van der Spek, Peter J; van Meurs, Joyce B; Steegers-Theunissen, Régine P M

    2017-10-01

    Preeclampsia (PE) carries increased risks of cardiovascular- and metabolic diseases in mothers and offspring during the life course. While the severe early-onset PE (EOPE) phenotype originates from impaired placentation in early pregnancy, late-onset PE (LOPE) is in particular associated with pre-existing maternal cardiovascular- and metabolic risk factors. We hypothesize that PE is associated with altered epigenetic programming of placental and fetal tissues and that these epigenetic changes might elucidate the increased cardiovascular- and metabolic disease susceptibility in PE offspring. A nested case-control study was conducted in The Rotterdam Periconceptional Cohort comprising 13 EOPE, 16 LOPE, and three control groups of 36 uncomplicated pregnancies, 27 normotensive fetal growth restricted and 20 normotensive preterm birth (PTB) complicated pregnancies. Placental tissue, newborn umbilical cord white blood cells (UC-WBC) and umbilical vein endothelial cells were collected and DNA methylation of cytosine-guanine dinucleotides was measured by the Illumina HumanMethylation450K BeadChip. An epigenome-wide analysis was performed by using multiple linear regression models. Epigenome-wide tissue-specific analysis between EOPE and PTB controls revealed 5001 mostly hypermethylated differentially methylated positions (DMPs) in UC-WBC and 869 mostly hypomethylated DMPs in placental tissue, situated in or close to genes associated with cardiovascular-metabolic developmental pathways. This study shows differential methylation in UC-WBC and placental tissue in EOPE as compared to PTB, identifying DMPs that are associated with cardiovascular system pathways. Future studies should examine these loci and pathways in more detail to elucidate the associations between prenatal PE exposure and the cardiovascular disease risk in offspring. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Sex- and Tissue-Specific Expression Profiles of Odorant Binding Protein and Chemosensory Protein Genes in Bradysia odoriphaga (Diptera: Sciaridae

    Directory of Open Access Journals (Sweden)

    Yunhe Zhao

    2018-04-01

    Full Text Available Bradysia odoriphaga is an agricultural pest insect affecting the production of Chinese chive and other liliaceous vegetables in China, and it is significantly attracted by sex pheromones and the volatiles derived from host plants. Despite verification of this chemosensory behavior, however, it is still unknown how B. odoriphaga recognizes these volatile compounds on the molecular level. Many of odorant binding proteins (OBPs and chemosensory proteins (CSPs play crucial roles in olfactory perception. Here, we identified 49 OBP and 5 CSP genes from the antennae and body transcriptomes of female and male adults of B. odoriphaga, respectively. Sequence alignment and phylogenetic analysis among Dipteran OBPs and CSPs were analyzed. The sex- and tissue-specific expression profiles of 54 putative chemosensory genes among different tissues were investigated by quantitative real-time PCR (qRT-PCR. qRT-PCR analysis results suggested that 22 OBP and 3 CSP genes were enriched in the antennae, indicating they might be essential for detection of general odorants and pheromones. Among these antennae-enriched genes, nine OBPs (BodoOBP2/4/6/8/12/13/20/28/33 were enriched in the male antennae and may play crucial roles in the detection of sex pheromones. Moreover, some OBP and CSP genes were enriched in non-antennae tissues, such as in the legs (BodoOBP3/9/19/21/34/35/38/39/45 and BodoCSP1, wings (BodoOBP17/30/32/37/44, abdomens and thoraxes (BodoOBP29/36, and heads (BodoOBP14/23/31 and BodoCSP2, suggesting that these genes might be involved in olfactory, gustatory, or other physiological processes. Our findings provide a starting point to facilitate functional research of these chemosensory genes in B. odoriphaga at the molecular level.

  15. Transcription elongation rate has a tissue-specific impact on alternative cleavage and polyadenylation in Drosophila melanogaster.

    Science.gov (United States)

    Liu, Xiaochuan; Freitas, Jaime; Zheng, Dinghai; Oliveira, Marta S; Hoque, Mainul; Martins, Torcato; Henriques, Telmo; Tian, Bin; Moreira, Alexandra

    2017-12-01

    Alternative polyadenylation (APA) is a mechanism that generates multiple mRNA isoforms with different 3'UTRs and/or coding sequences from a single gene. Here, using 3' region extraction and deep sequencing (3'READS), we have systematically mapped cleavage and polyadenylation sites (PASs) in Drosophila melanogaster , expanding the total repertoire of PASs previously identified for the species, especially those located in A-rich genomic sequences. Cis -element analysis revealed distinct sequence motifs around fly PASs when compared to mammalian ones, including the greater enrichment of upstream UAUA elements and the less prominent presence of downstream UGUG elements. We found that over 75% of mRNA genes in Drosophila melanogaster undergo APA. The head tissue tends to use distal PASs when compared to the body, leading to preferential expression of APA isoforms with long 3'UTRs as well as with distal terminal exons. The distance between the APA sites and intron location of PAS are important parameters for APA difference between body and head, suggesting distinct PAS selection contexts. APA analysis of the RpII215 C4 mutant strain, which harbors a mutant RNA polymerase II (RNAPII) with a slower elongation rate, revealed that a 50% decrease in transcriptional elongation rate leads to a mild trend of more usage of proximal, weaker PASs, both in 3'UTRs and in introns, consistent with the "first come, first served" model of APA regulation. However, this trend was not observed in the head, suggesting a different regulatory context in neuronal cells. Together, our data expand the PAS collection for Drosophila melanogaster and reveal a tissue-specific effect of APA regulation by RNAPII elongation rate. © 2017 Liu et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  16. Tissue Specific Expression of Cre in Rat Tyrosine Hydroxylase and Dopamine Active Transporter-Positive Neurons.

    Science.gov (United States)

    Liu, Zhenyi; Brown, Andrew; Fisher, Dan; Wu, Yumei; Warren, Joe; Cui, Xiaoxia

    2016-01-01

    The rat is a preferred model system over the mouse for neurological studies, and cell type-specific Cre expression in the rat enables precise ablation of gene function in neurons of interest, which is especially valuable for neurodegenerative disease modeling and optogenetics. Yet, few such Cre rats are available. Here we report the characterization of two Cre rats, tyrosine hydroxylase (TH)-Cre and dopamine active transporter (DAT or Slc6a3)-Cre, by using a combination of immunohistochemistry (IHC) and mRNA fluorescence in situ hybridization (FISH) as well as a fluorescent reporter for Cre activity. We detected Cre expression in expected neurons in both Cre lines. Interestingly, we also found that in Th-Cre rats, but not DAT-Cre rats, Cre is expressed in female germ cells, allowing germline excision of the floxed allele and hence the generation of whole-body knockout rats. In summary, our data demonstrate that targeted integration of Cre cassette lead to faithful recapitulation of expression pattern of the endogenous promoter, and mRNA FISH, in addition to IHC, is an effective method for the analysis of the spatiotemporal gene expression patterns in the rat brain, alleviating the dependence on high quality antibodies that are often not available against rat proteins. The Th-Cre and the DAT-Cre rat lines express Cre in selective subsets of dopaminergic neurons and should be particularly useful for researches on Parkinson's disease.

  17. Integrative analysis to select cancer candidate biomarkers to targeted validation

    Science.gov (United States)

    Heberle, Henry; Domingues, Romênia R.; Granato, Daniela C.; Yokoo, Sami; Canevarolo, Rafael R.; Winck, Flavia V.; Ribeiro, Ana Carolina P.; Brandão, Thaís Bianca; Filgueiras, Paulo R.; Cruz, Karen S. P.; Barbuto, José Alexandre; Poppi, Ronei J.; Minghim, Rosane; Telles, Guilherme P.; Fonseca, Felipe Paiva; Fox, Jay W.; Santos-Silva, Alan R.; Coletta, Ricardo D.; Sherman, Nicholas E.; Paes Leme, Adriana F.

    2015-01-01

    Targeted proteomics has flourished as the method of choice for prospecting for and validating potential candidate biomarkers in many diseases. However, challenges still remain due to the lack of standardized routines that can prioritize a limited number of proteins to be further validated in human samples. To help researchers identify candidate biomarkers that best characterize their samples under study, a well-designed integrative analysis pipeline, comprising MS-based discovery, feature selection methods, clustering techniques, bioinformatic analyses and targeted approaches was performed using discovery-based proteomic data from the secretomes of three classes of human cell lines (carcinoma, melanoma and non-cancerous). Three feature selection algorithms, namely, Beta-binomial, Nearest Shrunken Centroids (NSC), and Support Vector Machine-Recursive Features Elimination (SVM-RFE), indicated a panel of 137 candidate biomarkers for carcinoma and 271 for melanoma, which were differentially abundant between the tumor classes. We further tested the strength of the pipeline in selecting candidate biomarkers by immunoblotting, human tissue microarrays, label-free targeted MS and functional experiments. In conclusion, the proposed integrative analysis was able to pre-qualify and prioritize candidate biomarkers from discovery-based proteomics to targeted MS. PMID:26540631

  18. Supplementary Material for: Global expression differences and tissue specific expression differences in rice evolution result in two contrasting types of differentially expressed genes

    KAUST Repository

    Horiuchi, Youko

    2015-01-01

    Abstract Background Since the development of transcriptome analysis systems, many expression evolution studies characterized evolutionary forces acting on gene expression, without explicit discrimination between global expression differences and tissue specific expression differences. However, different types of gene expression alteration should have different effects on an organism, the evolutionary forces that act on them might be different, and different types of genes might show different types of differential expression between species. To confirm this, we studied differentially expressed (DE) genes among closely related groups that have extensive gene expression atlases, and clarified characteristics of different types of DE genes including the identification of regulating loci for differential expression using expression quantitative loci (eQTL) analysis data. Results We detected differentially expressed (DE) genes between rice subspecies in five homologous tissues that were verified using japonica and indica transcriptome atlases in public databases. Using the transcriptome atlases, we classified DE genes into two types, global DE genes and changed-tissues DE genes. Global type DE genes were not expressed in any tissues in the atlas of one subspecies, however changed-tissues type DE genes were expressed in both subspecies with different tissue specificity. For the five tissues in the two japonica-indica combinations, 4.6 ± 0.8 and 5.9 ± 1.5 % of highly expressed genes were global and changed-tissues DE genes, respectively. Changed-tissues DE genes varied in number between tissues, increasing linearly with the abundance of tissue specifically expressed genes in the tissue. Molecular evolution of global DE genes was rapid, unlike that of changed-tissues DE genes. Based on gene ontology, global and changed-tissues DE genes were different, having no common GO terms. Expression differences of most global DE genes were regulated by cis

  19. TARGET - TASK ANALYSIS REPORT GENERATION TOOL, VERSION 1.0

    Science.gov (United States)

    Ortiz, C. J.

    1994-01-01

    The Task Analysis Report Generation Tool, TARGET, is a graphical interface tool used to capture procedural knowledge and translate that knowledge into a hierarchical report. TARGET is based on VISTA, a knowledge acquisition tool developed by the Naval Systems Training Center. TARGET assists a programmer and/or task expert organize and understand the steps involved in accomplishing a task. The user can label individual steps in the task through a dialogue-box and get immediate graphical feedback for analysis. TARGET users can decompose tasks into basic action kernels or minimal steps to provide a clear picture of all basic actions needed to accomplish a job. This method allows the user to go back and critically examine the overall flow and makeup of the process. The user can switch between graphics (box flow diagrams) and text (task hierarchy) versions to more easily study the process being documented. As the practice of decomposition continues, tasks and their subtasks can be continually modified to more accurately reflect the user's procedures and rationale. This program is designed to help a programmer document an expert's task thus allowing the programmer to build an expert system which can help others perform the task. Flexibility is a key element of the system design and of the knowledge acquisition session. If the expert is not able to find time to work on the knowledge acquisition process with the program developer, the developer and subject matter expert may work in iterative sessions. TARGET is easy to use and is tailored to accommodate users ranging from the novice to the experienced expert systems builder. TARGET is written in C-language for IBM PC series and compatible computers running MS-DOS and Microsoft Windows version 3.0 or 3.1. No source code is supplied. The executable also requires 2Mb of RAM, a Microsoft compatible mouse, a VGA display and an 80286, 386 or 486 processor machine. The standard distribution medium for TARGET is one 5.25 inch 360K

  20. Novel human ZAKI-4 isoforms: hormonal and tissue-specific regulation and function as calcineurin inhibitors.

    Science.gov (United States)

    Cao, Xia; Kambe, Fukushi; Miyazaki, Takashi; Sarkar, Devanand; Ohmori, Sachiko; Seo, Hisao

    2002-01-01

    We identified a thyroid hormone [3,5,3'-tri-iodothyronine (T(3))]-responsive gene, ZAKI-4, in cultured human skin fibroblasts. It belongs to a family of genes that encode proteins containing a conserved motif. The motif binds to calcineurin and inhibits its phosphatase activity. In the present study, we have demonstrated three different ZAKI-4 transcripts, alpha, beta1 and beta2, in human brain by 5'- and 3'-RACE (rapid amplification of cDNA ends). The alpha transcript was identical with the one that we originally cloned from human fibroblasts and the other two are novel. The three transcripts are generated by alternative initiation and splicing from a single gene on the short arm of chromosome 6. It is predicted that beta1 and beta2 encode an identical protein product, beta, which differs from alpha in its N-terminus. Since alpha and beta contain an identical C-terminal region harbouring the conserved motif, both isoforms are suggested to inhibit calcineurin activity. Indeed, each isoform associates with calcineurin A and inhibits its activity in a similar manner, suggesting that the difference in N-terminus of each isoform does not affect the inhibitory function on calcineurin. An examination of the expression profile of the three transcripts in 12 human tissues revealed that the alpha transcript is expressed exclusively in the brain, whereas beta transcripts are expressed ubiquitously, most abundantly in brain, heart, skeletal muscle and kidney. It was also demonstrated that human skin fibroblasts express both alpha and beta transcripts, raising the question of which transcript is up-regulated by T(3). It was revealed that T(3) markedly induced the expression of alpha isoform but not of beta. This T(3)-mediated increase in the alpha isoform was associated with a significant decrease in endogenous calcineurin activity. These results suggest that the expression of ZAKI-4 isoforms is subjected to distinct hormonal as well as tissue-specific regulation, constituting

  1. Diet-induced weight loss has chronic tissue-specific effects on glucocorticoid metabolism in overweight postmenopausal women.

    Science.gov (United States)

    Stomby, A; Simonyte, K; Mellberg, C; Ryberg, M; Stimson, R H; Larsson, C; Lindahl, B; Andrew, R; Walker, B R; Olsson, T

    2015-05-01

    Tissue-specific glucocorticoid metabolism is altered in obesity, and may increase cardiovascular risk. This dysregulation is normalized by short-term calorie restriction and weight loss, an effect that varies with dietary macronutrient composition. However, tissue-specific glucocorticoid metabolism has not been studied during long-term (>6 months) dietary interventions. Therefore our aim was to test whether long-term dietary interventions, either a paleolithic-type diet (PD) or a diet according to Nordic nutrition recommendations (NNR) could normalize tissue-specific glucocorticoid metabolism in overweight and obese women. Forty-nine overweight/obese postmenopausal women were randomized to a paleolithic diet or a diet according to NNR for 24 months. At baseline, 6 and 24 months anthropometric measurements, insulin sensitivity, excretion of urinary glucocorticoid metabolites in 24-hour collections, conversion of orally administered cortisone to plasma cortisol and transcript levels of 11β hydroxysteroid dehydrogenase type 1 (11βHSD1) in subcutaneous adipose tissue were studied. Both diet groups achieved significant and sustained weight loss. Weight loss with the PD was greater than on NNR diet after 6 months (Pweight loss in postmenopausal women has tissue-specific and time-dependent effects on glucocorticoid metabolism. This may alter local-tissue cortisol exposure contributing to improved metabolic function during weight loss.

  2. Timing of Tissue-specific Cell Division Requires a Differential Onset of Zygotic Transcription during Metazoan Embryogenesis*

    Science.gov (United States)

    Wong, Ming-Kin; Guan, Daogang; Ng, Kaoru Hon Chun; Ho, Vincy Wing Sze; An, Xiaomeng; Li, Runsheng; Ren, Xiaoliang

    2016-01-01

    Metazoan development demands not only precise cell fate differentiation but also accurate timing of cell division to ensure proper development. How cell divisions are temporally coordinated during development is poorly understood. Caenorhabditis elegans embryogenesis provides an excellent opportunity to study this coordination due to its invariant development and widespread division asynchronies. One of the most pronounced asynchronies is a significant delay of cell division in two endoderm progenitor cells, Ea and Ep, hereafter referred to as E2, relative to its cousins that mainly develop into mesoderm organs and tissues. To unravel the genetic control over the endoderm-specific E2 division timing, a total of 822 essential and conserved genes were knocked down using RNAi followed by quantification of cell cycle lengths using in toto imaging of C. elegans embryogenesis and automated lineage. Intriguingly, knockdown of numerous genes encoding the components of general transcription pathway or its regulatory factors leads to a significant reduction in the E2 cell cycle length but an increase in cell cycle length of the remaining cells, indicating a differential requirement of transcription for division timing between the two. Analysis of lineage-specific RNA-seq data demonstrates an earlier onset of transcription in endoderm than in other germ layers, the timing of which coincides with the birth of E2, supporting the notion that the endoderm-specific delay in E2 division timing demands robust zygotic transcription. The reduction in E2 cell cycle length is frequently associated with cell migration defect and gastrulation failure. The results suggest that a tissue-specific transcriptional activation is required to coordinate fate differentiation, division timing, and cell migration to ensure proper development. PMID:27056332

  3. Tissue-specific and neural activity-regulated expression of human BDNF gene in BAC transgenic mice

    Directory of Open Access Journals (Sweden)

    Palm Kaia

    2009-06-01

    Full Text Available Abstract Background Brain-derived neurotrophic factor (BDNF is a small secreted protein that has important roles in the developing and adult nervous system. Altered expression or changes in the regulation of the BDNF gene have been implicated in a variety of human nervous system disorders. Although regulation of the rodent BDNF gene has been extensively investigated, in vivo studies regarding the human BDNF gene are largely limited to postmortem analysis. Bacterial artificial chromosome (BAC transgenic mice harboring the human BDNF gene and its regulatory flanking sequences constitute a useful tool for studying human BDNF gene regulation and for identification of therapeutic compounds modulating BDNF expression. Results In this study we have generated and analyzed BAC transgenic mice carrying 168 kb of the human BDNF locus modified such that BDNF coding sequence was replaced with the sequence of a fusion protein consisting of N-terminal BDNF and the enhanced green fluorescent protein (EGFP. The human BDNF-BAC construct containing all BDNF 5' exons preceded by different promoters recapitulated the expression of endogenous BDNF mRNA in the brain and several non-neural tissues of transgenic mice. All different 5' exon-specific BDNF-EGFP alternative transcripts were expressed from the transgenic human BDNF-BAC construct, resembling the expression of endogenous BDNF. Furthermore, BDNF-EGFP mRNA was induced upon treatment with kainic acid in a promotor-specific manner, similarly to that of the endogenous mouse BDNF mRNA. Conclusion Genomic region covering 67 kb of human BDNF gene, 84 kb of upstream and 17 kb of downstream sequences is sufficient to drive tissue-specific and kainic acid-induced expression of the reporter gene in transgenic mice. The pattern of expression of the transgene is highly similar to BDNF gene expression in mouse and human. This is the first study to show that human BDNF gene is regulated by neural activity.

  4. Combinatorial binding leads to diverse regulatory responses: Lmd is a tissue-specific modulator of Mef2 activity.

    Directory of Open Access Journals (Sweden)

    Paulo M F Cunha

    2010-07-01

    Full Text Available Understanding how complex patterns of temporal and spatial expression are regulated is central to deciphering genetic programs that drive development. Gene expression is initiated through the action of transcription factors and their cofactors converging on enhancer elements leading to a defined activity. Specific constellations of combinatorial occupancy are therefore often conceptualized as rigid binding codes that give rise to a common output of spatio-temporal expression. Here, we assessed this assumption using the regulatory input of two essential transcription factors within the Drosophila myogenic network. Mutations in either Myocyte enhancing factor 2 (Mef2 or the zinc-finger transcription factor lame duck (lmd lead to very similar defects in myoblast fusion, yet the underlying molecular mechanism for this shared phenotype is not understood. Using a combination of ChIP-on-chip analysis and expression profiling of loss-of-function mutants, we obtained a global view of the regulatory input of both factors during development. The majority of Lmd-bound enhancers are co-bound by Mef2, representing a subset of Mef2's transcriptional input during these stages of development. Systematic analyses of the regulatory contribution of both factors demonstrate diverse regulatory roles, despite their co-occupancy of shared enhancer elements. These results indicate that Lmd is a tissue-specific modulator of Mef2 activity, acting as both a transcriptional activator and repressor, which has important implications for myogenesis. More generally, this study demonstrates considerable flexibility in the regulatory output of two factors, leading to additive, cooperative, and repressive modes of co-regulation.

  5. Prediction of disease-related genes based on weighted tissue-specific networks by using DNA methylation.

    Science.gov (United States)

    Li, Min; Zhang, Jiayi; Liu, Qing; Wang, Jianxin; Wu, Fang-Xiang

    2014-01-01

    Predicting disease-related genes is one of the most important tasks in bioinformatics and systems biology. With the advances in high-throughput techniques, a large number of protein-protein interactions are available, which make it possible to identify disease-related genes at the network level. However, network-based identification of disease-related genes is still a challenge as the considerable false-positives are still existed in the current available protein interaction networks (PIN). Considering the fact that the majority of genetic disorders tend to manifest only in a single or a few tissues, we constructed tissue-specific networks (TSN) by integrating PIN and tissue-specific data. We further weighed the constructed tissue-specific network (WTSN) by using DNA methylation as it plays an irreplaceable role in the development of complex diseases. A PageRank-based method was developed to identify disease-related genes from the constructed networks. To validate the effectiveness of the proposed method, we constructed PIN, weighted PIN (WPIN), TSN, WTSN for colon cancer and leukemia, respectively. The experimental results on colon cancer and leukemia show that the combination of tissue-specific data and DNA methylation can help to identify disease-related genes more accurately. Moreover, the PageRank-based method was effective to predict disease-related genes on the case studies of colon cancer and leukemia. Tissue-specific data and DNA methylation are two important factors to the study of human diseases. The same method implemented on the WTSN can achieve better results compared to those being implemented on original PIN, WPIN, or TSN. The PageRank-based method outperforms degree centrality-based method for identifying disease-related genes from WTSN.

  6. Bioinformatics analysis of Brucella vaccines and vaccine targets using VIOLIN.

    Science.gov (United States)

    He, Yongqun; Xiang, Zuoshuang

    2010-09-27

    Brucella spp. are Gram-negative, facultative intracellular bacteria that cause brucellosis, one of the commonest zoonotic diseases found worldwide in humans and a variety of animal species. While several animal vaccines are available, there is no effective and safe vaccine for prevention of brucellosis in humans. VIOLIN (http://www.violinet.org) is a web-based vaccine database and analysis system that curates, stores, and analyzes published data of commercialized vaccines, and vaccines in clinical trials or in research. VIOLIN contains information for 454 vaccines or vaccine candidates for 73 pathogens. VIOLIN also contains many bioinformatics tools for vaccine data analysis, data integration, and vaccine target prediction. To demonstrate the applicability of VIOLIN for vaccine research, VIOLIN was used for bioinformatics analysis of existing Brucella vaccines and prediction of new Brucella vaccine targets. VIOLIN contains many literature mining programs (e.g., Vaxmesh) that provide in-depth analysis of Brucella vaccine literature. As a result of manual literature curation, VIOLIN contains information for 38 Brucella vaccines or vaccine candidates, 14 protective Brucella antigens, and 68 host response studies to Brucella vaccines from 97 peer-reviewed articles. These Brucella vaccines are classified in the Vaccine Ontology (VO) system and used for different ontological applications. The web-based VIOLIN vaccine target prediction program Vaxign was used to predict new Brucella vaccine targets. Vaxign identified 14 outer membrane proteins that are conserved in six virulent strains from B. abortus, B. melitensis, and B. suis that are pathogenic in humans. Of the 14 membrane proteins, two proteins (Omp2b and Omp31-1) are not present in B. ovis, a Brucella species that is not pathogenic in humans. Brucella vaccine data stored in VIOLIN were compared and analyzed using the VIOLIN query system. Bioinformatics curation and ontological representation of Brucella vaccines

  7. Bioinformatics analysis of Brucella vaccines and vaccine targets using VIOLIN

    Science.gov (United States)

    2010-01-01

    Background Brucella spp. are Gram-negative, facultative intracellular bacteria that cause brucellosis, one of the commonest zoonotic diseases found worldwide in humans and a variety of animal species. While several animal vaccines are available, there is no effective and safe vaccine for prevention of brucellosis in humans. VIOLIN (http://www.violinet.org) is a web-based vaccine database and analysis system that curates, stores, and analyzes published data of commercialized vaccines, and vaccines in clinical trials or in research. VIOLIN contains information for 454 vaccines or vaccine candidates for 73 pathogens. VIOLIN also contains many bioinformatics tools for vaccine data analysis, data integration, and vaccine target prediction. To demonstrate the applicability of VIOLIN for vaccine research, VIOLIN was used for bioinformatics analysis of existing Brucella vaccines and prediction of new Brucella vaccine targets. Results VIOLIN contains many literature mining programs (e.g., Vaxmesh) that provide in-depth analysis of Brucella vaccine literature. As a result of manual literature curation, VIOLIN contains information for 38 Brucella vaccines or vaccine candidates, 14 protective Brucella antigens, and 68 host response studies to Brucella vaccines from 97 peer-reviewed articles. These Brucella vaccines are classified in the Vaccine Ontology (VO) system and used for different ontological applications. The web-based VIOLIN vaccine target prediction program Vaxign was used to predict new Brucella vaccine targets. Vaxign identified 14 outer membrane proteins that are conserved in six virulent strains from B. abortus, B. melitensis, and B. suis that are pathogenic in humans. Of the 14 membrane proteins, two proteins (Omp2b and Omp31-1) are not present in B. ovis, a Brucella species that is not pathogenic in humans. Brucella vaccine data stored in VIOLIN were compared and analyzed using the VIOLIN query system. Conclusions Bioinformatics curation and ontological

  8. Applications of time-frequency signature analysis to target identification

    Science.gov (United States)

    Gaunaurd, Guillermo C.; Strifors, Hans C.

    1999-03-01

    The overlapping subjects of target identification, inverse scattering and active classification have many applications that differ depending on specific sensors. Many useful techniques for these relevant subjects have been developed in the frequency and the time domains. A more recent approach views the target signatures in the combined or coupled time-frequency domain. For either ultra-wideband (UWB) projectors, or UWB processing these joint time- frequency techniques are particularly advantageous. Such analysis requires the use of some of the scores of non- linear distributions that have been proposed and studied over the years. Basic ones, such as the Wigner distribution and its many relatives, have been shown to belong to the well-studied `Cohen Class.' We will select half-a-dozen of these distributions to study applications that we have addressed and solved in several areas such as: (1) active sonar, (2) underwater mine classification using pulses from explosive sources, (3) identification of submerged shells having different fillers using dolphin bio-sonar `clicks,' and (4) broadband radar pulses to identify aircraft, other targets covered with dielectric absorbing layers, and also (land) mine-like objects buried underground, using a ground penetrating radar. These examples illustrate how the informative identifying features required for accurate target identification are extracted and displayed in this general time-frequency domain.

  9. E2a-Pbx1 induces aberrant expression of tissue-specific and developmentally regulated genes when expressed in NIH 3T3 fibroblasts.

    Science.gov (United States)

    Fu, X; Kamps, M P

    1997-03-01

    The E2a-Pbx1 oncoprotein contains the transactivation domain of E2a joined to the DNA-binding homeodomain (HD) of Pbx1. In mice, E2a-Pbx1 transforms T lymphoblasts and fibroblasts and blocks myeloblast differentiation. Pbx1 and E2a-Pbx1 bind DNA as heterodimers with other HD proteins whose expression is tissue specific. While the transactivation domain of E2a is required for all forms of transformation, DNA binding by the Pbx1 HD is essential for blocking myeloblast differentiation but dispensable for fibroblast or T-lymphoblast transformation. These properties suggest (i) that E2a-Pbx1 causes cellular transformation by activating gene transcription, (ii) that transcription of E2a-Pbx1 target genes is normally regulated by ubiquitous Pbx proteins and tissue-specific partners, and (iii) that DNA-binding mutants of E2a-Pbx1 activate a subset of all gene targets. To test these predictions, genes induced in NIH 3T3 fibroblasts by E2a-Pbx1 were identified and examined for tissue- and stage-specific expression and their differential abilities to be upregulated by E2a-Pbx1 in NIH 3T3 fibroblasts and myeloblasts and by a DNA-binding mutant of E2a-Pbx1 in NIH 3T3 cells. Of 12 RNAs induced by E2a-Pbx1, 4 encoded known proteins (a J-C region of the immunoglobulin kappa light chain, natriuretic peptide receptor C, mitochondrial fumarase, and the 3',5'-cyclic nucleotide phosphodiesterase, PDE1A) and 5 encoded new proteins related to angiogenin, ion channels, villin, epidermal growth factor repeat proteins, and the human 2.19 gene product. Expression of many of these genes was tissue specific or developmentally regulated, and most were not expressed in fibroblasts, indicating that E2a-Pbx1 can induce ectopic expression of genes associated with lineage-specific differentiation.

  10. Bioinformatic identification and expression analysis of banana microRNAs and their targets.

    Science.gov (United States)

    Chai, Juan; Feng, Renjun; Shi, Hourui; Ren, Mengyun; Zhang, Yindong; Wang, Jingyi

    2015-01-01

    MicroRNAs (miRNAs) represent a class of endogenous non-coding small RNAs that play important roles in multiple biological processes by degrading targeted mRNAs or repressing mRNA translation. Thousands of miRNAs have been identified in many plant species, whereas only a limited number of miRNAs have been predicted in M. acuminata (A genome) and M. balbisiana (B genome). Here, previously known plant miRNAs were BLASTed against the Expressed Sequence Tag (EST) and Genomic Survey Sequence (GSS), a database of banana genes. A total of 32 potential miRNAs belonging to 13 miRNAs families were detected using a range of filtering criteria. 244 miRNA:target pairs were subsequently predicted, most of which encode transcription factors or enzymes that participate in the regulation of development, growth, metabolism, and other physiological processes. In order to validate the predicted miRNAs and the mutual relationship between miRNAs and their target genes, qRT-PCR was applied to detect the tissue-specific expression levels of 12 putative miRNAs and 6 target genes in roots, leaves, flowers, and fruits. This study provides some important information about banana pre-miRNAs, mature miRNAs, and miRNA target genes and these findings can be applied to future research of miRNA functions.

  11. Bioinformatic identification and expression analysis of banana microRNAs and their targets.

    Directory of Open Access Journals (Sweden)

    Juan Chai

    Full Text Available MicroRNAs (miRNAs represent a class of endogenous non-coding small RNAs that play important roles in multiple biological processes by degrading targeted mRNAs or repressing mRNA translation. Thousands of miRNAs have been identified in many plant species, whereas only a limited number of miRNAs have been predicted in M. acuminata (A genome and M. balbisiana (B genome. Here, previously known plant miRNAs were BLASTed against the Expressed Sequence Tag (EST and Genomic Survey Sequence (GSS, a database of banana genes. A total of 32 potential miRNAs belonging to 13 miRNAs families were detected using a range of filtering criteria. 244 miRNA:target pairs were subsequently predicted, most of which encode transcription factors or enzymes that participate in the regulation of development, growth, metabolism, and other physiological processes. In order to validate the predicted miRNAs and the mutual relationship between miRNAs and their target genes, qRT-PCR was applied to detect the tissue-specific expression levels of 12 putative miRNAs and 6 target genes in roots, leaves, flowers, and fruits. This study provides some important information about banana pre-miRNAs, mature miRNAs, and miRNA target genes and these findings can be applied to future research of miRNA functions.

  12. Identifying radiotherapy target volumes in brain cancer by image analysis.

    Science.gov (United States)

    Cheng, Kun; Montgomery, Dean; Feng, Yang; Steel, Robin; Liao, Hanqing; McLaren, Duncan B; Erridge, Sara C; McLaughlin, Stephen; Nailon, William H

    2015-10-01

    To establish the optimal radiotherapy fields for treating brain cancer patients, the tumour volume is often outlined on magnetic resonance (MR) images, where the tumour is clearly visible, and mapped onto computerised tomography images used for radiotherapy planning. This process requires considerable clinical experience and is time consuming, which will continue to increase as more complex image sequences are used in this process. Here, the potential of image analysis techniques for automatically identifying the radiation target volume on MR images, and thereby assisting clinicians with this difficult task, was investigated. A gradient-based level set approach was applied on the MR images of five patients with grades II, III and IV malignant cerebral glioma. The relationship between the target volumes produced by image analysis and those produced by a radiation oncologist was also investigated. The contours produced by image analysis were compared with the contours produced by an oncologist and used for treatment. In 93% of cases, the Dice similarity coefficient was found to be between 60 and 80%. This feasibility study demonstrates that image analysis has the potential for automatic outlining in the management of brain cancer patients, however, more testing and validation on a much larger patient cohort is required.

  13. SPATIAL ANALYSIS TO SUPPORT GEOGRAPHIC TARGETING OF GENOTYPES TO ENVIRONMENTS

    Directory of Open Access Journals (Sweden)

    Glenn eHyman

    2013-03-01

    Full Text Available Crop improvement efforts have benefited greatly from advances in available data, computing technology and methods for targeting genotypes to environments. These advances support the analysis of genotype by environment interactions to understand how well a genotype adapts to environmental conditions. This paper reviews the use of spatial analysis to support crop improvement research aimed at matching genotypes to their most appropriate environmental niches. Better data sets are now available on soils, weather and climate, elevation, vegetation, crop distribution and local conditions where genotypes are tested in experimental trial sites. The improved data are now combined with spatial analysis methods to compare environmental conditions across sites, create agro-ecological region maps and assess environment change. Climate, elevation and vegetation data sets are now widely available, supporting analyses that were much more difficult even five or ten years ago. While detailed soil data for many parts of the world remains difficult to acquire for crop improvement studies, new advances in digital soil mapping are likely to improve our capacity. Site analysis and matching and regional targeting methods have advanced in parallel to data and technology improvements. All these developments have increased our capacity to link genotype to phenotype and point to a vast potential to improve crop adaptation efforts.

  14. Tissue specific promoters improve the localization of radiation-inducible gene expression

    International Nuclear Information System (INIS)

    Hallahan, Dennis; Kataoka, Yasushi; Kuchibhotla, Jaya; Virudachalam, Subbu; Weichselbaum, Ralph

    1996-01-01

    expression was quantified in vascular endothelial cells from large vessel (HUVEC) and small vessels (HMEC). We found cell-type specificity of radiation-induction. The promoter region from the ELAM gene gave no expression in cells that were not of endothelial cell origin and x-ray-induction of ELAM in the endothelium required the NFkB binding cis-acting element. ELAM induction was achieved at doses as low as 1 Gy, whereas induction of other radiation inducible genes required 5 to 10 Gy. Cells transfected with the minimal promoter (plasmid pTK-CAT) demonstrated no radiation induction. Expression of the CMV-LacZ genetic construct that was used as a negative control in each transfection was not altered by x-irradiation. Moreover, intravenous administration of liposomes containing a reporter gene linked to the ELAM promoter and a transcriptional amplification system were induced specifically at sites of x-irradiation in an animal model. Conclusions: Activation of transcription of the ELAM-1 promoter by ionizing radiation is a means of activating gene therapy within the vascular endothelium and demonstrates the feasibility of treating vascular lesions with noninvasive procedures. Tissue specific promoters (e. g., ELAM-1) combined with radiation inducible gene therapy improves the localization of gene therapy expression. These results have applications in intravascular brachytherapy for the prevention of blood vessel restenosis

  15. Cells determine cell density using a small protein bound to a unique tissue-specific phospholipid

    Directory of Open Access Journals (Sweden)

    Christopher J. Petzold

    2013-10-01

    bone cofactor was identified as a lipid containing a ceramide phosphate, a single chained glycerol lipid and a linker. Tendon uses a different cofactor made up of two fatty acid chains linked directly to the phosphate yielding a molecule about half the size. Moreover, adding the tendon factor/cofactor to osteosarcoma cells causes them to stop growing, which is opposite to its role with tendon cells. Thus, the cofactor is cell type specific both in composition and in the triggered response. Further support of its proposed role came from frozen sections from 5 week old mice where an antibody to the factor stained strongly at the growing ends of the tendon as predicted. In conclusion, the molecule needed for cell density signaling is a small protein bound to a unique, tissue-specific phospholipid yielding a membrane associated but diffusible molecule. Signal transduction is postulated to occur by an increased ordering of the plasma membrane as the concentration of this protein/lipid increases with cell density.

  16. Epigenetic events determine tissue-specific toxicity of inhalational exposure to the genotoxic chemical 1,3-butadiene in male C57BL/6J mice.

    Science.gov (United States)

    Chappell, Grace; Kobets, Tetyana; O'Brien, Bridget; Tretyakova, Natalia; Sangaraju, Dewakar; Kosyk, Oksana; Sexton, Kenneth G; Bodnar, Wanda; Pogribny, Igor P; Rusyn, Ivan

    2014-12-01

    1,3-Butadiene (BD), a widely used industrial chemical and a ubiquitous environmental pollutant, is a known human carcinogen. Although genotoxicity is an established mechanism of the tumorigenicity of BD, epigenetic effects have also been observed in livers of mice exposed to the chemical. To better characterize the diverse molecular mechanisms of BD tumorigenicity, we evaluated genotoxic and epigenotoxic effects of BD exposure in mouse tissues that are target (lung and liver) and non-target (kidney) for BD-induced tumors. We hypothesized that epigenetic alterations may explain, at least in part, the tissue-specific differences in BD tumorigenicity in mice. We evaluated the level of N-7-(2,3,4-trihydroxybut-1-yl)guanine adducts and 1,4-bis-(guan-7-yl)-2,3-butanediol crosslinks, DNA methylation, and histone modifications in male C57BL/6 mice exposed to filtered air or 425 ppm of BD by inhalation (6 h/day, 5 days/week) for 2 weeks. Although DNA damage was observed in all three tissues of BD-exposed mice, variation in epigenetic effects clearly existed between the kidneys, liver, and lungs. Epigenetic alterations indicative of genomic instability, including demethylation of repetitive DNA sequences and alterations in histone-lysine acetylation, were evident in the liver and lung tissues of BD-exposed mice. Changes in DNA methylation were insignificant in the kidneys of treated mice, whereas marks of condensed heterochromatin and transcriptional silencing (histone-lysine trimethylation) were increased. These modifications may represent a potential mechanistic explanation for the lack of tumorigenesis in the kidney. Our results indicate that differential tissue susceptibility to chemical-induced tumorigenesis may be attributed to tissue-specific epigenetic alterations. Published by Oxford University Press on behalf of the Society of Toxicology 2014. This work is written by US Government employees and is in the public domain in the US.

  17. Differential domain evolution and complex RNA processing in a family of paralogous EPB41 (protein 4.1) genes facilitates expression of diverse tissue-specific isoforms

    Energy Technology Data Exchange (ETDEWEB)

    Parra, Marilyn; Gee, Sherry; Chan, Nadine; Ryaboy, Dmitriy; Dubchak, Inna; Narla, Mohandas; Gascard, Philippe D.; Conboy, John G.

    2004-07-15

    The EPB41 (protein 4.1) genes epitomize the resourcefulness of the mammalian genome to encode a complex proteome from a small number of genes. By utilizing alternative transcriptional promoters and tissue-specific alternative pre-mRNA splicing, EPB41, EPB41L2, EPB41L3, and EPB41L1 encode a diverse array of structural adapter proteins. Comparative genomic and transcript analysis of these 140kb-240kb genes indicates several unusual features: differential evolution of highly conserved exons encoding known functional domains, interspersed with unique exons whose size and sequence variations contribute substantially to intergenic diversity: alternative first exons, most of which map far upstream of the coding regions; and complex tissue-specific alternative pre-mRNA splicing that facilitates synthesis of functionally different complements of 4.1 proteins in various cells. Understanding the splicing regulatory networks that control protein 4.1 expression will be critical to a full appreciation of the many roles of 4.1 proteins in normal cell biology and their proposed roles in human cancer.

  18. Phylogenic diversity and tissue specificity of fungal endophytes associated with the pharmaceutical plant, Stellera chamaejasme L. revealed by a cultivation-independent approach.

    Science.gov (United States)

    Jin, Hui; Yang, Xiaoyan; Lu, Dengxue; Li, Chunjie; Yan, Zhiqiang; Li, Xiuzhuang; Zeng, Liming; Qin, Bo

    2015-10-01

    The fungal endophytes associated with medicinal plants have been demonstrated as a reservoir with novel natural products useful in medicine and agriculture. It is desirable to explore the species composition, diversity and tissue specificity of endophytic fungi that inhabit in different tissues of medicinal plants. In this study, a culture-independent survey of fungal diversity in the rhizosphere, leaves, stems and roots of a toxic medicinal plant, Stellera chamaejasme L., was conducted by sequence analysis of clone libraries of the partial internal transcribed spacer region. Altogether, 145 fungal OTUs (operational taxonomic units), represented by 464 sequences, were found in four samples, of these 109 OTUs (75.2 %) belonging to Ascomycota, 20 (13.8 %) to Basidiomycota, 14 (9.7 %) to Zygomycota, 1 (0.7 %) to Chytridiomycota, and 1 (0.7 %) to Glomeromycota. The richness and diversity of fungal communities were strongly influenced by plant tissue environments, and the roots are associated with a surprisingly rich endophyte community. The endophyte assemblages associated with S. chamaejasme were strongly shaped by plant tissue environments, and exhibited a certain degree of tissue specificity. Our results suggested that a wide variety of fungal assemblages inhabit in S. chamaejasme, and plant tissue environments conspicuously influence endophyte community structure.

  19. Stakeholder analysis and mapping as targeted communication strategy.

    Science.gov (United States)

    Shirey, Maria R

    2012-09-01

    This department highlights change management strategies that may be successful in strategically planning and executing organizational change initiatives. With the goal of presenting practical approaches helpful to nurse leaders advancing organizational change, content includes evidence-based projects, tools, and resources that mobilize and sustain organizational change initiatives. In this article, the author highlights the importance of stakeholder theory and discusses how to apply the theory to conduct a stakeholder analysis. This article also provides an explanation of how to use related stakeholder mapping techniques with targeted communication strategies.

  20. [A new calibration transfer method based on target factor analysis].

    Science.gov (United States)

    Wang, Yan-bin; Yuan, Hong-fu; Lu, Wan-zhen

    2005-03-01

    A new calibration transfer method based on target factor analysis is proposed.The performance of the new method compared with the piecewise direct standardization method. This method was applied to two data sets, of which one is a simulation data set, and the other is an NIR data set composed of benzene, toluene, xylene and isooctane. The results obtained with this new method are at least as well as those obtained by PDS with the biggest improvement occurring when the spectra have some non-linear responses.

  1. Ideal MHD stability analysis of KSTAR target AT mode

    International Nuclear Information System (INIS)

    Yi, S.M.; Kim, J.H.; You, K.I.; Kim, J.Y.

    2009-01-01

    Full text: A main research objective of KSTAR (Korea Superconducting Tokamak Advanced Research) device is to demonstrate the steady-state operation capability of high-performance AT (Advanced Tokamak) mode. To meet this goal, it is critical for KSTAR to have a good MHD stability boundary, particularly against the high-beta ideal instabilities such as the external kink and the ballooning modes. To support this MHD stability KSTAR has been designed to have a strong plasma shape and a close interval between plasma and passive- plate wall. During the conceptual design phase of KSTAR, a preliminary study was performed to estimate the high beta MHD stability limit of KSTAR target AT mode using PEST and VACUUM codes and it was shown that the target AT mode can be stable up to β N ∼ 5 with a well-defined plasma pressure and current profiles. Recently, a new calculation has been performed to estimate the ideal stability limit in various KSTAR operating conditions using DCON code, and it has been observed that there is some difference between the new and old calculation results, particularly in the dependence of the maximum β N value on the toroidal mode number. Here, we thus present a more detailed analysis of the ideal MHD stability limit of KSTAR target AT mode using various codes, which include GATO as well as PEST and DCON, in the comparison of calculation results among the three codes. (author)

  2. SMRT has tissue-specific isoform profiles that include a form containing one CoRNR box

    International Nuclear Information System (INIS)

    Short, Stephen; Malartre, Marianne; Sharpe, Colin

    2005-01-01

    SMRT acts as a corepressor for a range of transcription factors. The amino-terminal part of the protein includes domains that mainly mediate transcriptional repression whilst the carboxy-terminal part includes domains that interact with nuclear receptors using up to three motifs called CoRNR boxes. The region of the SMRT primary transcript encoding the interaction domains is subject to alternative splicing that varies the inclusion of the third CoRNR box. The profile in mice includes an abundant, novel SMRT isoform that possesses just one CoRNR box. Mouse tissues therefore express SMRT isoforms containing one, two or three CoRNR boxes. In frogs, the SMRT isoform profile is tissue-specific. The mouse also shows distinct profiles generated by differential expression levels of the SMRT transcript isoforms. The formation of multiple SMRT isoforms and their tissue-specific regulation indicates a mechanism, whereby cells can define the repertoire of transcription factors regulated by SMRT

  3. Adaptive detection method of infrared small target based on target-background separation via robust principal component analysis

    Science.gov (United States)

    Wang, Chuanyun; Qin, Shiyin

    2015-03-01

    Motivated by the robust principal component analysis, infrared small target image is regarded as low-rank background matrix corrupted by sparse target and noise matrices, thus a new target-background separation model is designed, subsequently, an adaptive detection method of infrared small target is presented. Firstly, multi-scale transform and patch transform are used to generate an image patch set for infrared small target detection; secondly, target-background separation of each patch is achieved by recovering the low-rank and sparse matrices using adaptive weighting parameter; thirdly, the image reconstruction and fusion are carried out to obtain the entire separated background and target images; finally, the infrared small target detection is realized by threshold segmentation of template matching similarity measurement. In order to validate the performance of the proposed method, three experiments: target-background separation, background clutter suppression and infrared small target detection, are performed over different clutter background with real infrared small targets in single-frame or sequence images. A series of experiment results demonstrate that the proposed method can not only suppress background clutter effectively even if with strong noise interference but also detect targets accurately with low false alarm rate.

  4. Responsiveness of genes to manipulation of transcription factors in ES cells is associated with histone modifications and tissue specificity

    Directory of Open Access Journals (Sweden)

    Thomas Marshall

    2011-02-01

    Full Text Available Abstract Background In addition to determining static states of gene expression (high vs. low, it is important to characterize their dynamic status. For example, genes with H3K27me3 chromatin marks are not only suppressed but also poised for activation. However, the responsiveness of genes to perturbations has never been studied systematically. To distinguish gene responses to specific factors from responsiveness in general, it is necessary to analyze gene expression profiles of cells responding to a large variety of disturbances, and such databases did not exist before. Results We estimated the responsiveness of all genes in mouse ES cells using our recently published database on expression change after controlled induction of 53 transcription factors (TFs and other genes. Responsive genes (N = 4746, which were readily upregulated or downregulated depending on the kind of perturbation, mostly have regulatory functions and a propensity to become tissue-specific upon differentiation. Tissue-specific expression was evaluated on the basis of published (GNF and our new data for 15 organs and tissues. Non-responsive genes (N = 9562, which did not change their expression much following any perturbation, were enriched in housekeeping functions. We found that TF-responsiveness in ES cells is the best predictor known for tissue-specificity in gene expression. Among genes with CpG islands, high responsiveness is associated with H3K27me3 chromatin marks, and low responsiveness is associated with H3K36me3 chromatin, stronger tri-methylation of H3K4, binding of E2F1, and GABP binding motifs in promoters. Conclusions We thus propose the responsiveness of expression to perturbations as a new way to define the dynamic status of genes, which brings new insights into mechanisms of regulation of gene expression and tissue specificity.

  5. Global analysis of small molecule binding to related protein targets.

    Directory of Open Access Journals (Sweden)

    Felix A Kruger

    2012-01-01

    Full Text Available We report on the integration of pharmacological data and homology information for a large scale analysis of small molecule binding to related targets. Differences in small molecule binding have been assessed for curated pairs of human to rat orthologs and also for recently diverged human paralogs. Our analysis shows that in general, small molecule binding is conserved for pairs of human to rat orthologs. Using statistical tests, we identified a small number of cases where small molecule binding is different between human and rat, some of which had previously been reported in the literature. Knowledge of species specific pharmacology can be advantageous for drug discovery, where rats are frequently used as a model system. For human paralogs, we demonstrate a global correlation between sequence identity and the binding of small molecules with equivalent affinity. Our findings provide an initial general model relating small molecule binding and sequence divergence, containing the foundations for a general model to anticipate and predict within-target-family selectivity.

  6. Potential Vaccine Targets against Rabbit Coccidiosis by Immunoproteomic Analysis.

    Science.gov (United States)

    Song, Hongyan; Dong, Ronglian; Qiu, Baofeng; Jing, Jin; Zhu, Shunxing; Liu, Chun; Jiang, Yingmei; Wu, Liucheng; Wang, Shengcun; Miao, Jin; Shao, Yixiang

    2017-02-01

    The aim of this study was to identify antigens for a vaccine or drug target to control rabbit coccidiosis. A combination of 2-dimensional electrophoresis, immunoblotting, and mass spectrometric analysis were used to identify novel antigens from the sporozoites of Eimeria stiedae . Protein spots were recognized by the sera of New Zealand rabbits infected artificially with E. stiedae . The proteins were characterized by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF/TOF-MS) analysis in combination with bioinformatics. Approximately 868 protein spots were detected by silver-staining, and a total of 41 immunoreactive protein spots were recognized by anti- E. stiedae sera. Finally, 23 protein spots were successfully identified. The proteins such as heat shock protein 70 and aspartyl protease may have potential as immunodiagnostic or vaccine antigens. The immunoreactive proteins were found to possess a wide range of biological functions. This study is the first to report the proteins recognized by sera of infected rabbits with E. stiedae , which might be helpful in identifying potential targets for vaccine development to control rabbit coccidiosis.

  7. A four-step model for the IL-6 amplifier, a regulator of chronic inflammations in tissue-specific MHC class II-associated autoimmune diseases.

    Science.gov (United States)

    Murakami, Masaaki; Hirano, Toshio

    2011-01-01

    short (Ogura et al., 2008; Hirano, 2010; Murakami et al., 2011). Thus, certain class II MHC-associated, tissue-specific autoimmune diseases, including some RA subtypes, may be induced by local events that cause an antigen-independent accumulation of effector CD4+ T cells followed by the induction of the IL-6 amplifier in the affected tissue. In other words, in certain cases, the target tissue itself may determine the specificity of the autoimmune disease via activation of the IL-6 amplifier. To explain this hypothesis, we have proposed a four-step model for MHC class II-associated autoimmune diseases (Murakami et al., 2011): (1) T cell activation regardless of antigen specificity; (2) local events inducing a tissue-specific accumulation of activated T cells; (3) transient activation of the IL-6 amplifier; and (4) enhanced sensitivity to cytokines in the target tissue. The interaction of these events results in chronic activation of the IL-6 amplifier and subsequent manifestation of autoimmune diseases. Thus, the IL-6 amplifier, which is chronically activated by these four events, is a critical regulator of chronic inflammations in tissue-specific MHC class II-associated autoimmune diseases.

  8. Metabolite profiling of red and blue potatoes revealed cultivar and tissue specific patterns for anthocyanins and other polyphenols.

    Science.gov (United States)

    Oertel, Anne; Matros, Andrea; Hartmann, Anja; Arapitsas, Panagiotis; Dehmer, Klaus J; Martens, Stefan; Mock, Hans-Peter

    2017-08-01

    Metabolite profiling of tuber flesh and peel for selected colored potato varieties revealed cultivar and tissue specific profiles of anthocyanins and other polyphenols with variations in composition and concentration. Starchy tubers of Solanum tuberosum are a staple crop and food in many countries. Among cultivated potato varieties a huge biodiversity exists, including an increasing number of red and purple colored cultivars. This coloration relates to the accumulation of anthocyanins and is supposed to offer nutritional benefits possibly associated with the antioxidative capacity of anthocyanins. However, the anthocyanin composition and its relation to the overall polyphenol constitution in colored potato tubers have not been investigated closely. This study focuses on the phytochemical characterization of the phenolic composition of a variety of colored potato tubers, both for peel and flesh tissues. First, liquid chromatography (LC) separation coupled to UV and mass spectrometry (MS) detection of polyphenolic compounds of potato tubers from 57 cultivars was used to assign groups of potato cultivars differing in their anthocyanin and polyphenol profiles. Tissues from 19 selected cultivars were then analyzed by LC separation coupled to multiple reaction monitoring (MRM) to detect quantitative differences in anthocyanin and polyphenol composition. The measured intensities of 21 anthocyanins present in the analyzed potato cultivars and tissues could be correlated with the specific tuber coloration. Besides secondary metabolites well-known for potato tubers, the metabolic profiling led to the detection of two anthocyanins not described for potato tuber previously, which we tentatively annotated as pelargonidin feruloyl-xylosyl-glucosyl-galactoside and cyanidin 3-p-coumaroylrutinoside-5-glucoside. We detected significant correlations between some of the measured metabolites, as for example the negative correlation between the main anthocyanins of red and blue potato

  9. Characterization of intravitreally delivered capsid mutant AAV2-Cre vector to induce tissue-specific mutations in murine retinal ganglion cells.

    Science.gov (United States)

    Langouet-Astrie, Christophe J; Yang, Zhiyong; Polisetti, Sraavya M; Welsbie, Derek S; Hauswirth, William W; Zack, Donald J; Merbs, Shannath L; Enke, Raymond A

    2016-10-01

    Targeted expression of Cre recombinase in murine retinal ganglion cells (RGCs) by viral vector is an effective strategy for creating tissue-specific gene knockouts for investigation of genetic contribution to RGC degeneration associated with optic neuropathies. Here we characterize dosage, efficacy and toxicity for sufficient intravitreal delivery of a capsid mutant Adeno-associated virus 2 (AAV2) vector encoding Cre recombinase. Wild type and Rosa26 (R26) LacZ mice were intravitreally injected with capsid mutant AAV2 viral vectors. Murine eyes were harvested at intervals ranging from 2 weeks to 15 weeks post-injection and were assayed for viral transduction, transgene expression and RGC survival. 10(9) vector genomes (vg) were sufficient for effective in vivo targeting of murine ganglion cell layer (GCL) retinal neurons. Transgene expression was observed as early as 2 weeks post-injection of viral vectors and persisted to 11 weeks. Early expression of Cre had no significant effect on RGC survival, while significant RGC loss was detected beginning 5 weeks post-injection. Early expression of viral Cre recombinase was robust, well-tolerated and predominantly found in GCL neurons suggesting this strategy can be effective in short-term RGC-specific mutation studies in experimental glaucoma models such as optic nerve crush and transection experiments. RGC degeneration with Cre expression for more than 4 weeks suggests that Cre toxicity is a limiting factor for targeted mutation strategies in RGCs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Predicting tissue specific cis-regulatory modules in the human genome using pairs of co-occurring motifs

    Directory of Open Access Journals (Sweden)

    Girgis Hani Z

    2012-02-01

    Full Text Available Abstract Background Researchers seeking to unlock the genetic basis of human physiology and diseases have been studying gene transcription regulation. The temporal and spatial patterns of gene expression are controlled by mainly non-coding elements known as cis-regulatory modules (CRMs and epigenetic factors. CRMs modulating related genes share the regulatory signature which consists of transcription factor (TF binding sites (TFBSs. Identifying such CRMs is a challenging problem due to the prohibitive number of sequence sets that need to be analyzed. Results We formulated the challenge as a supervised classification problem even though experimentally validated CRMs were not required. Our efforts resulted in a software system named CrmMiner. The system mines for CRMs in the vicinity of related genes. CrmMiner requires two sets of sequences: a mixed set and a control set. Sequences in the vicinity of the related genes comprise the mixed set, whereas the control set includes random genomic sequences. CrmMiner assumes that a large percentage of the mixed set is made of background sequences that do not include CRMs. The system identifies pairs of closely located motifs representing vertebrate TFBSs that are enriched in the training mixed set consisting of 50% of the gene loci. In addition, CrmMiner selects a group of the enriched pairs to represent the tissue-specific regulatory signature. The mixed and the control sets are searched for candidate sequences that include any of the selected pairs. Next, an optimal Bayesian classifier is used to distinguish candidates found in the mixed set from their control counterparts. Our study proposes 62 tissue-specific regulatory signatures and putative CRMs for different human tissues and cell types. These signatures consist of assortments of ubiquitously expressed TFs and tissue-specific TFs. Under controlled settings, CrmMiner identified known CRMs in noisy sets up to 1:25 signal-to-noise ratio. CrmMiner was

  11. Predicting tissue specific cis-regulatory modules in the human genome using pairs of co-occurring motifs.

    Science.gov (United States)

    Girgis, Hani Z; Ovcharenko, Ivan

    2012-02-07

    Researchers seeking to unlock the genetic basis of human physiology and diseases have been studying gene transcription regulation. The temporal and spatial patterns of gene expression are controlled by mainly non-coding elements known as cis-regulatory modules (CRMs) and epigenetic factors. CRMs modulating related genes share the regulatory signature which consists of transcription factor (TF) binding sites (TFBSs). Identifying such CRMs is a challenging problem due to the prohibitive number of sequence sets that need to be analyzed. We formulated the challenge as a supervised classification problem even though experimentally validated CRMs were not required. Our efforts resulted in a software system named CrmMiner. The system mines for CRMs in the vicinity of related genes. CrmMiner requires two sets of sequences: a mixed set and a control set. Sequences in the vicinity of the related genes comprise the mixed set, whereas the control set includes random genomic sequences. CrmMiner assumes that a large percentage of the mixed set is made of background sequences that do not include CRMs. The system identifies pairs of closely located motifs representing vertebrate TFBSs that are enriched in the training mixed set consisting of 50% of the gene loci. In addition, CrmMiner selects a group of the enriched pairs to represent the tissue-specific regulatory signature. The mixed and the control sets are searched for candidate sequences that include any of the selected pairs. Next, an optimal Bayesian classifier is used to distinguish candidates found in the mixed set from their control counterparts. Our study proposes 62 tissue-specific regulatory signatures and putative CRMs for different human tissues and cell types. These signatures consist of assortments of ubiquitously expressed TFs and tissue-specific TFs. Under controlled settings, CrmMiner identified known CRMs in noisy sets up to 1:25 signal-to-noise ratio. CrmMiner was 21-75% more precise than a related CRM

  12. Targeted DNA methylation analysis by next-generation sequencing.

    Science.gov (United States)

    Masser, Dustin R; Stanford, David R; Freeman, Willard M

    2015-02-24

    The role of epigenetic processes in the control of gene expression has been known for a number of years. DNA methylation at cytosine residues is of particular interest for epigenetic studies as it has been demonstrated to be both a long lasting and a dynamic regulator of gene expression. Efforts to examine epigenetic changes in health and disease have been hindered by the lack of high-throughput, quantitatively accurate methods. With the advent and popularization of next-generation sequencing (NGS) technologies, these tools are now being applied to epigenomics in addition to existing genomic and transcriptomic methodologies. For epigenetic investigations of cytosine methylation where regions of interest, such as specific gene promoters or CpG islands, have been identified and there is a need to examine significant numbers of samples with high quantitative accuracy, we have developed a method called Bisulfite Amplicon Sequencing (BSAS). This method combines bisulfite conversion with targeted amplification of regions of interest, transposome-mediated library construction and benchtop NGS. BSAS offers a rapid and efficient method for analysis of up to 10 kb of targeted regions in up to 96 samples at a time that can be performed by most research groups with basic molecular biology skills. The results provide absolute quantitation of cytosine methylation with base specificity. BSAS can be applied to any genomic region from any DNA source. This method is useful for hypothesis testing studies of target regions of interest as well as confirmation of regions identified in genome-wide methylation analyses such as whole genome bisulfite sequencing, reduced representation bisulfite sequencing, and methylated DNA immunoprecipitation sequencing.

  13. Challenges in thermal and hydraulic analysis of ADS target systems

    International Nuclear Information System (INIS)

    Groetzbach, G.; Batta, A.; Lefhalm, C.-H.; Otic, I.

    2004-01-01

    The liquid metal cooled spallation targets of Accelerator Driven nuclear reactor Systems obey high thermal loads; in addition some flow and cooling conditions are of a prototypical character; in contrast the operating conditions for the engaged materials are narrow; thus, the target development requires a very careful analysis by experimental and numerical means. Especially the cooling of the steel window, which is heated by the proton beam, needs special care. Some of the main goals of the experimental and numerical analyses of the thermal dynamics of those systems are discusses. The prediction of locally detached flows and of flows with larger recirculation areas suffers from insufficient turbulence modeling; this has to be compensated by using prototypical model experiments, e.g. with water, to select the adequate models and numerical schemes. The well known problems with the Reynolds analogy in predicting the heat transfer in liquid metals requires always prototypic liquid metal experiments to select and adapt the turbulent heat flux models. The uncertainties in liquid metal experiments cannot be neglected; so it is necessary to perform CFD calculations and experiments always hand in hand and to develop improve turbulent heat flux models. One contribution to an improved 3 or 4-equation model is deduced from recent Direct Numerical Simulation (DNS) data. (author)

  14. Activation analysis utilizing byproduct neutrons of cyclotron internal target runs

    International Nuclear Information System (INIS)

    Koh, K.; Finn, R.; Smith, P.; Tavano, E.; Dwyer, J.; Sheh, H.

    1985-01-01

    The neutron flux generated by the CS-30 cyclotron at Mt Sinai Medical Center during routine internal target runs was characterized by employing various elements as neutron monitors. The characteristic (p,xn) nuclear reactions from internal targets bombarded by 26.5 Mev protons and the cyclotron inner wall bombarded by stray protons produce a neutron flux of approximately 2 x 10 9 cm -2 s -1 at energies up to 22 MeV at a point immediately outside the cyclotron vacuum chamber. Samples exposed to neutron fluences up to 5 x 10 14 cm -2 were analyzed with a Ge(Li) detector. Although the detection limits are relatively high (i.e., Au-0.2 μg; In-1 μg; Na-50 μg), this mode of neutron activation analysis is ancillary to other irradiations and allows a large number of samples to be monitored. This approach may provide an alternative to a neutron generator for research activation applications. (orig.)

  15. SeedVicious: Analysis of microRNA target and near-target sites.

    Science.gov (United States)

    Marco, Antonio

    2018-01-01

    Here I describe seedVicious, a versatile microRNA target site prediction software that can be easily fitted into annotation pipelines and run over custom datasets. SeedVicious finds microRNA canonical sites plus other, less efficient, target sites. Among other novel features, seedVicious can compute evolutionary gains/losses of target sites using maximum parsimony, and also detect near-target sites, which have one nucleotide different from a canonical site. Near-target sites are important to study population variation in microRNA regulation. Some analyses suggest that near-target sites may also be functional sites, although there is no conclusive evidence for that, and they may actually be target alleles segregating in a population. SeedVicious does not aim to outperform but to complement existing microRNA prediction tools. For instance, the precision of TargetScan is almost doubled (from 11% to ~20%) when we filter predictions by the distance between target sites using this program. Interestingly, two adjacent canonical target sites are more likely to be present in bona fide target transcripts than pairs of target sites at slightly longer distances. The software is written in Perl and runs on 64-bit Unix computers (Linux and MacOS X). Users with no computing experience can also run the program in a dedicated web-server by uploading custom data, or browse pre-computed predictions. SeedVicious and its associated web-server and database (SeedBank) are distributed under the GPL/GNU license.

  16. ANALYSIS OF PULSE OPTICAL TARGET SEEKER STATIC CHARACTERISTICS AT TARGET AIRCRAFTS EXPOSURE

    Directory of Open Access Journals (Sweden)

    K. V. Trifonov,

    2016-01-01

    Full Text Available Subject of Research.The paper deals with operating principles of optical pulse target seekers based on quadrant photodiode when targets are located in short-range field region. Method. Target image shape and light intensity distribution can affect static characteristics and cause appearance of image energy maximums when targets are located in short-range field region. Physical modeling of static characteristics plotting process was carried out. The main idea of the proposed method lies in counting sums of image pixels intensities in every virtual area of the sensor while virtual frame of the whole photodetector is moving over the target image. Main Results. Most probable target illumination directions were analyzed. Critical distances when the first extra image energy maximum appears were calculated for every target illumination directions. Time of missile uncontrollable flight at a near miss distance was also estimated. Practical Relevance. Research results point out that using of control loop proper logic is required to provide reliable target shot down for active and semi-active laser homing systems. Also disabling of such systems should be carried out when targets are located in short-range field region.

  17. A tissue-specific, Gata6-driven transcriptional program instructs remodeling of the mature arterial tree.

    Science.gov (United States)

    Losa, Marta; Latorre, Victor; Andrabi, Munazah; Ladam, Franck; Sagerström, Charles; Novoa, Ana; Zarrineh, Peyman; Bridoux, Laure; Hanley, Neil A; Mallo, Moises; Bobola, Nicoletta

    2017-09-27

    Connection of the heart to the systemic circulation is a critical developmental event that requires selective preservation of embryonic vessels (aortic arches). However, why some aortic arches regress while others are incorporated into the mature aortic tree remains unclear. By microdissection and deep sequencing in mouse, we find that neural crest (NC) only differentiates into vascular smooth muscle cells (SMCs) around those aortic arches destined for survival and reorganization, and identify the transcription factor Gata6 as a crucial regulator of this process. Gata6 is expressed in SMCs and its target genes activation control SMC differentiation. Furthermore, Gata6 is sufficient to promote SMCs differentiation in vivo, and drive preservation of aortic arches that ought to regress. These findings identify Gata6-directed differentiation of NC to SMCs as an essential mechanism that specifies the aortic tree, and provide a new framework for how mutations in GATA6 lead to congenital heart disorders in humans.

  18. Targeting Villages for Rural Development Using Satellite Image Analysis.

    Science.gov (United States)

    Varshney, Kush R; Chen, George H; Abelson, Brian; Nowocin, Kendall; Sakhrani, Vivek; Xu, Ling; Spatocco, Brian L

    2015-03-01

    Satellite imagery is a form of big data that can be harnessed for many social good applications, especially those focusing on rural areas. In this article, we describe the common problem of selecting sites for and planning rural development activities as informed by remote sensing and satellite image analysis. Effective planning in poor rural areas benefits from information that is not available and is difficult to obtain at any appreciable scale by any means other than algorithms for estimation and inference from remotely sensed images. We discuss two cases in depth: the targeting of unconditional cash transfers to extremely poor villages in sub-Saharan Africa and the siting and planning of solar-powered microgrids in remote villages in India. From these cases, we draw out some common lessons broadly applicable to informed rural development.

  19. Mouse tetranectin: cDNA sequence, tissue-specific expression, and chromosomal mapping

    DEFF Research Database (Denmark)

    Ibaraki, K; Kozak, C A; Wewer, U M

    1995-01-01

    regulation, mouse tetranectin cDNA was cloned from a 16-day-old mouse embryo library. Sequence analysis revealed a 992-bp cDNA with an open reading frame of 606 bp, which is identical in length to the human tetranectin cDNA. The deduced amino acid sequence showed high homology to the human cDNA with 76......(s) of tetranectin. The sequence analysis revealed a difference in both sequence and size of the noncoding regions between mouse and human cDNAs. Northern analysis of the various tissues from mouse, rat, and cow showed the major transcript(s) to be approximately 1 kb, which is similar in size to that observed...

  20. cis-Decoder discovers constellations of conserved DNA sequences shared among tissue-specific enhancers.

    Science.gov (United States)

    Brody, Thomas; Rasband, Wayne; Baler, Kevin; Kuzin, Alexander; Kundu, Mukta; Odenwald, Ward F

    2007-01-01

    A systematic approach is described for analysis of evolutionarily conserved cis-regulatory DNA using cis-Decoder, a tool for discovery of conserved sequence elements that are shared between similarly regulated enhancers. Analysis of 2,086 conserved sequence blocks (CSBs), identified from 135 characterized enhancers, reveals most CSBs consist of shorter overlapping/adjacent elements that are either enhancer type-specific or common to enhancers with divergent regulatory behaviors. Our findings suggest that enhancers employ overlapping repertoires of highly conserved core elements.

  1. Evaluating the Application of Tissue-Specific Dose Kernels Instead of Water Dose Kernels in Internal Dosimetry : A Monte Carlo Study

    NARCIS (Netherlands)

    Moghadam, Maryam Khazaee; Asl, Alireza Kamali; Geramifar, Parham; Zaidi, Habib

    2016-01-01

    Purpose: The aim of this work is to evaluate the application of tissue-specific dose kernels instead of water dose kernels to improve the accuracy of patient-specific dosimetry by taking tissue heterogeneities into consideration. Materials and Methods: Tissue-specific dose point kernels (DPKs) and

  2. The impact of laser ablation on optical soft tissue differentiation for tissue specific laser surgery-an experimental ex vivo study

    Directory of Open Access Journals (Sweden)

    Stelzle Florian

    2012-06-01

    Full Text Available Abstract Background Optical diffuse reflectance can remotely differentiate various bio tissues. To implement this technique in an optical feedback system to guide laser surgery in a tissue-specific way, the alteration of optical tissue properties by laser ablation has to be taken into account. It was the aim of this study to evaluate the general feasibility of optical soft tissue differentiation by diffuse reflectance spectroscopy under the influence of laser ablation, comparing the tissue differentiation results before and after laser intervention. Methods A total of 70 ex vivo tissue samples (5 tissue types were taken from 14 bisected pig heads. Diffuse reflectance spectra were recorded before and after Er:YAG-laser ablation. The spectra were analyzed and differentiated using principal component analysis (PCA, followed by linear discriminant analysis (LDA. To assess the potential of tissue differentiation, area under the curve (AUC, sensitivity and specificity was computed for each pair of tissue types before and after laser ablation, and compared to each other. Results Optical tissue differentiation showed good results before laser exposure (total classification error 13.51%. However, the tissue pair nerve and fat yielded lower AUC results of only 0.75. After laser ablation slightly reduced differentiation results were found with a total classification error of 16.83%. The tissue pair nerve and fat showed enhanced differentiation (AUC: 0.85. Laser ablation reduced the sensitivity in 50% and specificity in 80% of the cases of tissue pair comparison. The sensitivity of nerve–fat differentiation was enhanced by 35%. Conclusions The observed results show the general feasibility of tissue differentiation by diffuse reflectance spectroscopy even under conditions of tissue alteration by laser ablation. The contrast enhancement for the differentiation between nerve and fat tissue after ablation is assumed to be due to laser removal of the

  3. Creating and validating cis-regulatory maps of tissue-specific gene expression regulation

    Science.gov (United States)

    O'Connor, Timothy R.; Bailey, Timothy L.

    2014-01-01

    Predicting which genomic regions control the transcription of a given gene is a challenge. We present a novel computational approach for creating and validating maps that associate genomic regions (cis-regulatory modules–CRMs) with genes. The method infers regulatory relationships that explain gene expression observed in a test tissue using widely available genomic data for ‘other’ tissues. To predict the regulatory targets of a CRM, we use cross-tissue correlation between histone modifications present at the CRM and expression at genes within 1 Mbp of it. To validate cis-regulatory maps, we show that they yield more accurate models of gene expression than carefully constructed control maps. These gene expression models predict observed gene expression from transcription factor binding in the CRMs linked to that gene. We show that our maps are able to identify long-range regulatory interactions and improve substantially over maps linking genes and CRMs based on either the control maps or a ‘nearest neighbor’ heuristic. Our results also show that it is essential to include CRMs predicted in multiple tissues during map-building, that H3K27ac is the most informative histone modification, and that CAGE is the most informative measure of gene expression for creating cis-regulatory maps. PMID:25200088

  4. Engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypol.

    Science.gov (United States)

    Sunilkumar, Ganesan; Campbell, LeAnne M; Puckhaber, Lorraine; Stipanovic, Robert D; Rathore, Keerti S

    2006-11-28

    Global cottonseed production can potentially provide the protein requirements for half a billion people per year; however, it is woefully underutilized because of the presence of toxic gossypol within seed glands. Therefore, elimination of gossypol from cottonseed has been a long-standing goal of geneticists. Attempts were made to meet this objective by developing so-called "glandless cotton" in the 1950s by conventional breeding techniques; however, the glandless varieties were commercially unviable because of the increased susceptibility of the plant to insect pests due to the systemic absence of glands that contain gossypol and other protective terpenoids. Thus, the promise of cottonseed in contributing to the food requirements of the burgeoning world population remained unfulfilled. We have successfully used RNAi to disrupt gossypol biosynthesis in cottonseed tissue by interfering with the expression of the delta-cadinene synthase gene during seed development. We demonstrate that it is possible to significantly reduce cottonseed-gossypol levels in a stable and heritable manner. Results from enzyme activity and molecular analyses on developing transgenic embryos were consistent with the observed phenotype in the mature seeds. Most relevant, the levels of gossypol and related terpenoids in the foliage and floral parts were not diminished, and thus their potential function in plant defense against insects and diseases remained untouched. These results illustrate that a targeted genetic modification, applied to an underutilized agricultural byproduct, provides a mechanism to open up a new source of nutrition for hundreds of millions of people.

  5. Audible sonar images generated with proprioception for target analysis.

    Science.gov (United States)

    Kuc, Roman B

    2017-05-01

    Some blind humans have demonstrated the ability to detect and classify objects with echolocation using palatal clicks. An audible-sonar robot mimics human click emissions, binaural hearing, and head movements to extract interaural time and level differences from target echoes. Targets of various complexity are examined by transverse displacements of the sonar and by target pose rotations that model movements performed by the blind. Controlled sonar movements executed by the robot provide data that model proprioception information available to blind humans for examining targets from various aspects. The audible sonar uses this sonar location and orientation information to form two-dimensional target images that are similar to medical diagnostic ultrasound tomograms. Simple targets, such as single round and square posts, produce distinguishable and recognizable images. More complex targets configured with several simple objects generate diffraction effects and multiple reflections that produce image artifacts. The presentation illustrates the capabilities and limitations of target classification from audible sonar images.

  6. A minimal set of tissue-specific hypomethylated CpGs constitute epigenetic signatures of developmental programming.

    Directory of Open Access Journals (Sweden)

    Alejandro Colaneri

    Full Text Available Cell specific states of the chromatin are programmed during mammalian development. Dynamic DNA methylation across the developing embryo guides a program of repression, switching off genes in most cell types. Thus, the majority of the tissue specific differentially methylated sites (TS-DMS must be un-methylated CpGs.Comparison of expanded Methyl Sensitive Cut Counting data (eMSCC among four tissues (liver, testes, brain and kidney from three C57BL/6J mice, identified 138,052 differentially methylated sites of which 23,270 contain CpGs un-methylated in only one tissue (TS-DMS. Most of these CpGs were located in intergenic regions, outside of promoters, CpG islands or their shores, and up to 20% of them overlapped reported active enhancers. Indeed, tissue-specific enhancers were up to 30 fold enriched in TS-DMS. Testis showed the highest number of TS-DMS, but paradoxically their associated genes do not appear to be specific to the germ cell functions, but rather are involved in organism development. In the other tissues the differentially methylated genes are associated with tissue-specific physiological or anatomical functions. The identified sets of TS-DMS quantify epigenetic distances between tissues, generated during development. We applied this concept to measure the extent of reprogramming in the liver of mice exposed to in utero or early postnatal nutritional stress. Different protocols of food restriction reprogrammed the liver methylome in different but reproducible ways.Thus, each identified set of differentially methylated sites constituted an epigenetic signature that traced the developmental programing or the early nutritional reprogramming of each exposed mouse. We propose that our approach has the potential to outline a number of disease-associated epigenetic states. The composition of differentially methylated CpGs may vary with each situation, behaving as a composite variable, which can be used as a pre-symptomatic marker for

  7. Mouse tetranectin: cDNA sequence, tissue-specific expression, and chromosomal mapping

    DEFF Research Database (Denmark)

    Ibaraki, K; Kozak, C A; Wewer, U M

    1995-01-01

    regulation, mouse tetranectin cDNA was cloned from a 16-day-old mouse embryo library. Sequence analysis revealed a 992-bp cDNA with an open reading frame of 606 bp, which is identical in length to the human tetranectin cDNA. The deduced amino acid sequence showed high homology to the human cDNA with 76...... in human. Although additional minor bands of 1.5 and 3.3 kb were found in Northern blots, RT-PCR (reverse transcription polymerase chain reaction) analysis failed to provide evidence that these minor bands are products of the tetranectin gene. Finally, the genetic map location for this gene, Tna...

  8. Tissue-specific regulation of porcine prolactin receptor expression by estrogen, progesterone, and prolactin.

    Science.gov (United States)

    Trott, Josephine F; Horigan, Katherine C; Gloviczki, Julia M; Costa, Kristen M; Freking, Bradley A; Farmer, Chantal; Hayashi, Kanako; Spencer, Thomas; Morabito, Joseph E; Hovey, Russell C

    2009-07-01

    Prolactin (PRL) acts through its receptor (PRLR) via both endocrine and local paracrine/autocrine pathways to regulate biological processes including reproduction and lactation. We analyzed the tissue- and stage of gestation-specific regulation of PRL and PRLR expression in various tissues of pigs. Abundance of pPRLR-long form (LF) mRNA increased in the mammary gland and endometrium during gestation while in other tissues it remained constant. There was a parallel increase in the abundance of the pPRLR-LF protein in the mammary gland and endometrium during gestation. We determined the hormonal regulation of pPRLR-LF mRNA expression in various tissues from ovariectomized, hypoprolactinemic gilts given combinations of the replacement hormones estrogen (E(2)), progestin (P), and/or haloperidol-induced PRL. Abundance of pPRLR-LF mRNA in kidney and liver was unaffected by hormone treatments. Expression of uterine pPRLR-LF mRNA was induced by E(2) whereas the effect of E(2) was abolished by co-administering P. The expression of pPRLR-LF mRNA in the mammary gland stroma was induced by PRL, whereas E(2) induced its expression in the epithelium. In contrast to these changes in pPRLR expression, pPRL expression was relatively constant and low during gestation in all tissues except the pituitary. Taken together, these data reveal that specific combinations of E(2), P, and PRL differentially regulate pPRLR-LF expression in the endometrium and mammary glands, and that the action of PRL on its target tissues is dependent upon pPRLR-LF abundance more so than the local PRL expression.

  9. Fourier domain target transformation analysis in the thermal infrared

    Science.gov (United States)

    Anderson, D. L.

    1993-01-01

    Remote sensing uses of principal component analysis (PCA) of multispectral images include band selection and optimal color selection for display of information content. PCA has also been used for quantitative determination of mineral types and abundances given end member spectra. The preliminary results of the investigation of target transformation PCA (TTPCA) in the fourier domain to both identify end member spectra in an unknown spectrum, and to then calculate the relative concentrations of these selected end members are presented. Identification of endmember spectra in an unknown sample has previously been performed through bandmatching, expert systems, and binary classifiers. Both bandmatching and expert system techniques require the analyst to select bands or combinations of bands unique to each endmember. Thermal infrared mineral spectra have broad spectral features which vary subtly with composition. This makes identification of unique features difficult. Alternatively, whole spectra can be used in the classification process, in which case there is not need for an expert to identify unique spectra. Use of binary classifiers on whole spectra to identify endmember components has met with some success. These techniques can be used, along with a least squares fit approach on the endmembers identified, to derive compositional information. An alternative to the approach outlined above usese target transformation in conjunction with PCA to both identify and quantify the composition of unknown spectra. Preprocessing of the library and unknown spectra into the fourier domain, and using only a specific number of the components, allows for significant data volume reduction while maintaining a linear relationship in a Beer's Law sense. The approach taken here is to iteratively calculate concentrations, reducing the number of endmember components until only non-negative concentrations remain.

  10. Error Analysis of Fast Moving Target Geo-location in Wide Area Surveillance Ground Moving Target Indication Mode

    Directory of Open Access Journals (Sweden)

    Zheng Shi-chao

    2013-12-01

    Full Text Available As an important mode in airborne radar systems, Wide Area Surveillance Ground Moving Target Indication (WAS-GMTI mode has the ability of monitoring a large area in a short time, and then the detected moving targets can be located quickly. However, in real environment, many factors introduce considerable errors into the location of moving targets. In this paper, a fast location method based on the characteristics of the moving targets in WAS-GMTI mode is utilized. And in order to improve the location performance, those factors that introduce location errors are analyzed and moving targets are relocated. Finally, the analysis of those factors is proved to be reasonable by simulation and real data experiments.

  11. Novel insights into structure-function mechanism and tissue-specific expression profiling of full-length dxr gene from Cymbopogon winterianus.

    Science.gov (United States)

    Devi, Kamalakshi; Dehury, Budheswar; Phukon, Munmi; Modi, Mahendra Kumar; Sen, Priyabrata

    2015-01-01

    The 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR; EC1.1.1.267), an NADPH-dependent reductase, plays a pivotal role in the methylerythritol 4-phosphate pathway (MEP), in the conversion of 1-deoxy-d-xylulose-5-phosphate (DXP) into MEP. The sheath and leaf of citronella (Cymbopogon winterianus) accumulates large amount of terpenes and sesquiterpenes with proven medicinal value and economic uses. Thus, sequencing of full length dxr gene and its characterization seems to be a valuable resource in metabolic engineering to alter the flux of isoprenoid active ingredients in plants. In this study, full length DXR from citronella was characterized through in silico and tissue-specific expression studies to explain its structure-function mechanism, mode of cofactor recognition and differential expression. The modelled DXR has a three-domain architecture and its active site comprised of a cofactor (NADPH) binding pocket and the substrate-binding pocket. Molecular dynamics simulation studies indicated that DXR model retained most of its secondary structure during 10 ns simulation in aqueous solution. The modelled DXR superimposes well with its closest structural homolog but subtle variations in the charge distribution over the cofactor recognition site were noticed. Molecular docking study revealed critical residues aiding tight anchoring NADPH within the active pocket of DXR. Tissue-specific differential expression analysis using semi-quantitative RT-PCR and qRT-PCR in various tissues of citronella plant revealed distinct differential expression of DXR. To our knowledge, this is the first ever report on DXR from the important medicinal plant citronella and further characterization of this gene will open up better avenues for metabolic engineering of secondary metabolite pathway genes from medicinal plants in the near future.

  12. Novel insights into structure–function mechanism and tissue-specific expression profiling of full-length dxr gene from Cymbopogon winterianus

    Science.gov (United States)

    Devi, Kamalakshi; Dehury, Budheswar; Phukon, Munmi; Modi, Mahendra Kumar; Sen, Priyabrata

    2015-01-01

    The 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR; EC1.1.1.267), an NADPH-dependent reductase, plays a pivotal role in the methylerythritol 4-phosphate pathway (MEP), in the conversion of 1-deoxy-d-xylulose-5-phosphate (DXP) into MEP. The sheath and leaf of citronella (Cymbopogon winterianus) accumulates large amount of terpenes and sesquiterpenes with proven medicinal value and economic uses. Thus, sequencing of full length dxr gene and its characterization seems to be a valuable resource in metabolic engineering to alter the flux of isoprenoid active ingredients in plants. In this study, full length DXR from citronella was characterized through in silico and tissue-specific expression studies to explain its structure–function mechanism, mode of cofactor recognition and differential expression. The modelled DXR has a three-domain architecture and its active site comprised of a cofactor (NADPH) binding pocket and the substrate-binding pocket. Molecular dynamics simulation studies indicated that DXR model retained most of its secondary structure during 10 ns simulation in aqueous solution. The modelled DXR superimposes well with its closest structural homolog but subtle variations in the charge distribution over the cofactor recognition site were noticed. Molecular docking study revealed critical residues aiding tight anchoring NADPH within the active pocket of DXR. Tissue-specific differential expression analysis using semi-quantitative RT-PCR and qRT-PCR in various tissues of citronella plant revealed distinct differential expression of DXR. To our knowledge, this is the first ever report on DXR from the important medicinal plant citronella and further characterization of this gene will open up better avenues for metabolic engineering of secondary metabolite pathway genes from medicinal plants in the near future. PMID:25941629

  13. Identification of CTLA2A, DEFB29, WFDC15B, SERPINA1F and MUP19 as Novel Tissue-Specific Secretory Factors in Mouse.

    Directory of Open Access Journals (Sweden)

    Jibin Zhang

    Full Text Available Secretory factors in animals play an important role in communication between different cells, tissues and organs. Especially, the secretory factors with specific expression in one tissue may reflect important functions and unique status of that tissue in an organism. In this study, we identified potential tissue-specific secretory factors in the fat, muscle, heart, lung, kidney and liver in the mouse by analyzing microarray data from NCBI's Gene Expression Omnibus (GEO public repository and searching and predicting their subcellular location in GeneCards and WoLF PSORT, and then confirmed tissue-specific expression of the genes using semi-quantitative PCR reactions. With this approach, we confirmed 11 lung, 7 liver, 2 heart, 1 heart and muscle, 7 kidney and 2 adipose and liver-specific secretory factors. Among these genes, 1 lung-specific gene--CTLA2A (cytotoxic T lymphocyte-associated protein 2 alpha, 3 kidney-specific genes--SERPINA1F (serpin peptidase inhibitor, Clade A, member 1F, WFDC15B (WAP four-disulfide core domain 15B and DEFB29 (defensin beta 29 and 1 liver-specific gene--MUP19 (major urinary protein 19 have not been reported as secretory factors. These genes were tagged with hemagglutinin at the 3'end and then transiently transfected to HEK293 cells. Through protein detection in cell lysate and media using Western blotting, we verified secretion of the 5 genes and predicted the potential pathways in which they may participate in the specific tissue through data analysis of GEO profiles. In addition, alternative splicing was detected in transcripts of CTLA2A and SERPINA1F and the corresponding proteins were found not to be secreted in cell culture media. Identification of novel secretory factors through the current study provides a new platform to explore novel secretory factors and a general direction for further study of these genes in the future.

  14. A zebrafish larval model reveals early tissue-specific innate immune responses to Mucor circinelloides.

    Science.gov (United States)

    Voelz, Kerstin; Gratacap, Remi L; Wheeler, Robert T

    2015-11-01

    Mucormycosis is an emerging fungal infection that is clinically difficult to manage, with increasing incidence and extremely high mortality rates. Individuals with diabetes, suppressed immunity or traumatic injury are at increased risk of developing disease. These individuals often present with defects in phagocytic effector cell function. Research using mammalian models and phagocytic effector cell lines has attempted to decipher the importance of the innate immune system in host defence against mucormycosis. However, these model systems have not been satisfactory for direct analysis of the interaction between innate immune effector cells and infectious sporangiospores in vivo. Here, we report the first real-time in vivo analysis of the early innate immune response to mucormycete infection using a whole-animal zebrafish larval model system. We identified differential host susceptibility, dependent on the site of infection (hindbrain ventricle and swim bladder), as well as differential functions of the two major phagocyte effector cell types in response to viable and non-viable spores. Larval susceptibility to mucormycete spore infection was increased upon immunosuppressant treatment. We showed for the first time that macrophages and neutrophils were readily recruited in vivo to the site of infection in an intact host and that spore phagocytosis can be observed in real-time in vivo. While exploring innate immune effector recruitment dynamics, we discovered the formation of phagocyte clusters in response to fungal spores that potentially play a role in fungal spore dissemination. Spores failed to activate pro-inflammatory gene expression by 6 h post-infection in both infection models. After 24 h, induction of a pro-inflammatory response was observed only in hindbrain ventricle infections. Only a weak pro-inflammatory response was initiated after spore injection into the swim bladder during the same time frame. In the future, the zebrafish larva as a live whole

  15. Tissue-specific extracellular matrix coatings for the promotion of cell proliferation and maintenance of cell phenotype.

    Science.gov (United States)

    Zhang, Yuanyuan; He, Yujiang; Bharadwaj, Shantaram; Hammam, Nevin; Carnagey, Kristen; Myers, Regina; Atala, Anthony; Van Dyke, Mark

    2009-08-01

    Recent studies have shown that extracellular matrix (ECM) substitutes can have a dramatic impact on cell growth, differentiation and function. However, these ECMs are often applied generically and have yet to be developed for specific cell types. In this study, we developed tissue-specific ECM-based coating substrates for skin, skeletal muscle and liver cell cultures. Cellular components were removed from adult skin, skeletal muscle, and liver tissues, and the resulting acellular matrices were homogenized and dissolved. The ECM solutions were used to coat culture dishes. Tissue matched and non-tissue matched cell types were grown on these coatings to assess adhesion, proliferation, maintenance of phenotype and cell function at several time points. Each cell type showed better proliferation and differentiation in cultures containing ECM from their tissue of origin. Although subtle compositional differences in the three ECM types were not investigated in this study, these results suggest that tissue-specific ECMs provide a culture microenvironment that is similar to the in vivo environment when used as coating substrates, and this new culture technique has the potential for use in drug development and the development of cell-based therapies.

  16. A robust approach to identifying tissue-specific gene expression regulatory variants using personalized human induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Je-Hyuk Lee

    2009-11-01

    Full Text Available Normal variation in gene expression due to regulatory polymorphisms is often masked by biological and experimental noise. In addition, some regulatory polymorphisms may become apparent only in specific tissues. We derived human induced pluripotent stem (iPS cells from adult skin primary fibroblasts and attempted to detect tissue-specific cis-regulatory variants using in vitro cell differentiation. We used padlock probes and high-throughput sequencing for digital RNA allelotyping and measured allele-specific gene expression in primary fibroblasts, lymphoblastoid cells, iPS cells, and their differentiated derivatives. We show that allele-specific expression is both cell type and genotype-dependent, but the majority of detectable allele-specific expression loci remains consistent despite large changes in the cell type or the experimental condition following iPS reprogramming, except on the X-chromosome. We show that our approach to mapping cis-regulatory variants reduces in vitro experimental noise and reveals additional tissue-specific variants using skin-derived human iPS cells.

  17. A robust approach to identifying tissue-specific gene expression regulatory variants using personalized human induced pluripotent stem cells.

    Science.gov (United States)

    Lee, Je-Hyuk; Park, In-Hyun; Gao, Yuan; Li, Jin Billy; Li, Zhe; Daley, George Q; Zhang, Kun; Church, George M

    2009-11-01

    Normal variation in gene expression due to regulatory polymorphisms is often masked by biological and experimental noise. In addition, some regulatory polymorphisms may become apparent only in specific tissues. We derived human induced pluripotent stem (iPS) cells from adult skin primary fibroblasts and attempted to detect tissue-specific cis-regulatory variants using in vitro cell differentiation. We used padlock probes and high-throughput sequencing for digital RNA allelotyping and measured allele-specific gene expression in primary fibroblasts, lymphoblastoid cells, iPS cells, and their differentiated derivatives. We show that allele-specific expression is both cell type and genotype-dependent, but the majority of detectable allele-specific expression loci remains consistent despite large changes in the cell type or the experimental condition following iPS reprogramming, except on the X-chromosome. We show that our approach to mapping cis-regulatory variants reduces in vitro experimental noise and reveals additional tissue-specific variants using skin-derived human iPS cells.

  18. Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1.

    Science.gov (United States)

    Zhang, Huiming; Kim, Mi-Seong; Sun, Yan; Dowd, Scot E; Shi, Huazhong; Paré, Paul W

    2008-06-01

    Elevated sodium (Na(+)) decreases plant growth and, thereby, agricultural productivity. The ion transporter high-affinity K(+) transporter (HKT)1 controls Na(+) import in roots, yet dysfunction or overexpression of HKT1 fails to increase salt tolerance, raising questions as to HKT1's role in regulating Na(+) homeostasis. Here, we report that tissue-specific regulation of HKT1 by the soil bacterium Bacillus subtilis GB03 confers salt tolerance in Arabidopsis thaliana. Under salt stress (100 mM NaCl), GB03 concurrently down- and upregulates HKT1 expression in roots and shoots, respectively, resulting in lower Na(+) accumulation throughout the plant compared with controls. Consistent with HKT1 participation in GB03-induced salt tolerance, GB03 fails to rescue salt-stressed athkt1 mutants from stunted foliar growth and elevated total Na(+) whereas salt-stressed Na(+) export mutants sos3 show GB03-induced salt tolerance with enhanced shoot and root growth as well as reduced total Na(+). These results demonstrate that tissue-specific regulation of HKT1 is critical for managing Na(+) homeostasis in salt-stressed plants, as well as underscore the breadth and sophistication of plant-microbe interactions.

  19. Tissue-Specific Contributions of Paternally Expressed Gene 3 in Lactation and Maternal Care of Mus musculus.

    Directory of Open Access Journals (Sweden)

    Wesley D Frey

    Full Text Available Paternally Expressed Gene 3 (Peg3 is an imprinted gene that controls milk letdown and maternal-caring behaviors. In this study, a conditional knockout allele has been developed in Mus musculus to further characterize these known functions of Peg3 in a tissue-specific manner. The mutant line was first crossed with a germline Cre. The progeny of this cross displayed growth retardation phenotypes. This is consistent with those seen in the previous mutant lines of Peg3, confirming the usefulness of the new mutant allele. The mutant line was subsequently crossed individually with MMTV- and Nkx2.1-Cre lines to test Peg3's roles in the mammary gland and hypothalamus, respectively. According to the results, the milk letdown process was impaired in the nursing females with the Peg3 mutation in the mammary gland, but not in the hypothalamus. This suggests that Peg3's roles in the milk letdown process are more critical in the mammary gland than in the hypothalamus. In contrast, one of the maternal-caring behaviors, nest-building, was interrupted in the females with the mutation in both MMTV- and Nkx2.1-driven lines. Overall, this is the first study to introduce a conditional knockout allele of Peg3 and to further dissect its contribution to mammalian reproduction in a tissue-specific manner.

  20. Aire deficient mice do not develop the same profile of tissue-specific autoantibodies as APECED patients.

    Science.gov (United States)

    Pöntynen, Nora; Miettinen, Aaro; Arstila, T Petteri; Kämpe, Olle; Alimohammadi, Mohammad; Vaarala, Outi; Peltonen, Leena; Ulmanen, Ismo

    2006-09-01

    Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED, or APS1), is a monogenic autoimmune disease caused by mutations in the autoimmune regulator (AIRE) gene. The three main components of APECED are chronic mucocuteaneous candidiasis, hypoparathyroidism and adrenocortical insufficiency. However, several additional endocrine or other autoimmune disease components, or ectodermal dystrophies form the individually variable clinical picture of APECED. An important feature of APECED is a spectrum of well-characterized circulating autoantibodies, reacting against tissue-specific autoantigens. Aire deficient mice develop some characteristics of APECED phenotype. In order to investigate whether the Aire deficient mice produce autoantibodies similar to human APECED, we studied the reactivity of Aire mouse sera against mouse homologues of 11 human APECED antigens. None of the APECED antigens indicated elevated reactivity in the Aire knock-out mouse sera, implying the absence of APECED associated autoantibodies in Aire deficient mice. These findings were supported by the failure of the autoantigens to activate mouse T-cells. Furthermore, Aire knock-out mice did not express increased levels of anti-nuclear antibodies compared to wt mice. This study indicates that spontaneous induction of tissue-specific autoantibodies similar to APECED does not occur in the rodent model suggesting differences in the immunopathogenic mechanisms between mice and men. Copyright 2006 Elsevier Ltd.

  1. Yki/YAP, Sd/TEAD and Hth/MEIS control tissue specification in the Drosophila eye disc epithelium.

    Science.gov (United States)

    Zhang, Tianyi; Zhou, Qingxiang; Pignoni, Francesca

    2011-01-01

    During animal development, accurate control of tissue specification and growth are critical to generate organisms of reproducible shape and size. The eye-antennal disc epithelium of Drosophila is a powerful model system to identify the signaling pathway and transcription factors that mediate and coordinate these processes. We show here that the Yorkie (Yki) pathway plays a major role in tissue specification within the developing fly eye disc epithelium at a time when organ primordia and regional identity domains are specified. RNAi-mediated inactivation of Yki, or its partner Scalloped (Sd), or increased activity of the upstream negative regulators of Yki cause a dramatic reorganization of the eye disc fate map leading to specification of the entire disc epithelium into retina. On the contrary, constitutive expression of Yki suppresses eye formation in a Sd-dependent fashion. We also show that knockdown of the transcription factor Homothorax (Hth), known to partner Yki in some developmental contexts, also induces an ectopic retina domain, that Yki and Scalloped regulate Hth expression, and that the gain-of-function activity of Yki is partially dependent on Hth. Our results support a critical role for Yki- and its partners Sd and Hth--in shaping the fate map of the eye epithelium independently of its universal role as a regulator of proliferation and survival.

  2. Yki/YAP, Sd/TEAD and Hth/MEIS control tissue specification in the Drosophila eye disc epithelium.

    Directory of Open Access Journals (Sweden)

    Tianyi Zhang

    Full Text Available During animal development, accurate control of tissue specification and growth are critical to generate organisms of reproducible shape and size. The eye-antennal disc epithelium of Drosophila is a powerful model system to identify the signaling pathway and transcription factors that mediate and coordinate these processes. We show here that the Yorkie (Yki pathway plays a major role in tissue specification within the developing fly eye disc epithelium at a time when organ primordia and regional identity domains are specified. RNAi-mediated inactivation of Yki, or its partner Scalloped (Sd, or increased activity of the upstream negative regulators of Yki cause a dramatic reorganization of the eye disc fate map leading to specification of the entire disc epithelium into retina. On the contrary, constitutive expression of Yki suppresses eye formation in a Sd-dependent fashion. We also show that knockdown of the transcription factor Homothorax (Hth, known to partner Yki in some developmental contexts, also induces an ectopic retina domain, that Yki and Scalloped regulate Hth expression, and that the gain-of-function activity of Yki is partially dependent on Hth. Our results support a critical role for Yki- and its partners Sd and Hth--in shaping the fate map of the eye epithelium independently of its universal role as a regulator of proliferation and survival.

  3. Stage and tissue-specific prognostic impact of miR-182 in NSCLC

    International Nuclear Information System (INIS)

    Stenvold, Helge; Donnem, Tom; Andersen, Sigve; Al-Saad, Samer; Busund, Lill-Tove; Bremnes, Roy M

    2014-01-01

    MicroRNA (miR)-182 is frequently upregulated in cancers, has generally been viewed as an oncogene and is possibly connected to angiogenesis. We aimed to explore what impact miR-182 has in non-small cell lung cancer (NSCLC), and more explicitly its correlation with angiogenic markers. From 335 unselected stage I to IIIA NSCLC carcinomas, duplicate tumor and tumor-associated stromal cores were collected in tissue microarray blocks (TMAs). In situ hybridization (ISH) was used to detect the expression of miR-182 in tumor cells, and immunohistochemistry (IHC) was used to detect the expression of angiogenesis related protein markers. In univariate analyses, high tumor cell expression of miR-182 was a positive prognostic factor for patients with squamous cell carcinoma (SCC, P = 0.042) and stage II patients (P = 0.003). Also in the multivariate analysis, high tumor cell miR-182 expression was associated with a good prognosis in the same groups (SCC: HR 0.57, CI 95% 0.33-0.99, P = 0.048; stage II: HR 0.50, CI 95% 0.28-0.90, P = 0.020). We found significant correlations between miR-182 and the angiogenesis related markers FGF2, HIF2α and MMP-7. In patients with SCC and in stage II patients, high tumor cell miR-182 expression is an independent positive prognostic factor

  4. Mapping an atlas of tissue-specific Drosophila melanogaster metabolomes by high resolution mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Venkateswara R Chintapalli

    Full Text Available Metabolomics can provide exciting insights into organismal function, but most work on simple models has focussed on the whole organism metabolome, so missing the contributions of individual tissues. Comprehensive metabolite profiles for ten tissues from adult Drosophila melanogaster were obtained here by two chromatographic methods, a hydrophilic interaction (HILIC method for polar metabolites and a lipid profiling method also based on HILIC, in combination with an Orbitrap Exactive instrument. Two hundred and forty two polar metabolites were putatively identified in the various tissues, and 251 lipids were observed in positive ion mode and 61 in negative ion mode. Although many metabolites were detected in all tissues, every tissue showed characteristically abundant metabolites which could be rationalised against specific tissue functions. For example, the cuticle contained high levels of glutathione, reflecting a role in oxidative defence; the alimentary canal (like vertebrate gut had high levels of acylcarnitines for fatty acid metabolism, and the head contained high levels of ether lipids. The male accessory gland uniquely contained decarboxylated S-adenosylmethionine. These data thus both provide valuable insights into tissue function, and a reference baseline, compatible with the FlyAtlas.org transcriptomic resource, for further metabolomic analysis of this important model organism, for example in the modelling of human inborn errors of metabolism, aging or metabolic imbalances such as diabetes.

  5. Radiological error: analysis, standard setting, targeted instruction and teamworking

    International Nuclear Information System (INIS)

    FitzGerald, Richard

    2005-01-01

    Diagnostic radiology does not have objective benchmarks for acceptable levels of missed diagnoses [1]. Until now, data collection of radiological discrepancies has been very time consuming. The culture within the specialty did not encourage it. However, public concern about patient safety is increasing. There have been recent innovations in compiling radiological interpretive discrepancy rates which may facilitate radiological standard setting. However standard setting alone will not optimise radiologists' performance or patient safety. We must use these new techniques in radiological discrepancy detection to stimulate greater knowledge sharing, targeted instruction and teamworking among radiologists. Not all radiological discrepancies are errors. Radiological discrepancy programmes must not be abused as an instrument for discrediting individual radiologists. Discrepancy rates must not be distorted as a weapon in turf battles. Radiological errors may be due to many causes and are often multifactorial. A systems approach to radiological error is required. Meaningful analysis of radiological discrepancies and errors is challenging. Valid standard setting will take time. Meanwhile, we need to develop top-up training, mentoring and rehabilitation programmes. (orig.)

  6. Spontaneous Pancreatitis Caused by Tissue-Specific Gene Ablation of Hhex in MiceSummary

    Directory of Open Access Journals (Sweden)

    Mark J. Ferreira

    2015-09-01

    Full Text Available Background & Aims: Perturbations in pancreatic ductal bicarbonate secretion cause chronic pancreatitis. The physiologic mechanism of ductal secretion is known, but its transcriptional control is not. We determine the role of the transcription factor hematopoietically expressed homeobox protein (Hhex in ductal secretion and pancreatitis. Methods: We derived mice with pancreas-specific, Cre-mediated Hhex gene ablation to determine the requirement of Hhex in the pancreatic duct in early life and in adult stages. Histologic and immunostaining analyses were used to detect the presence of pathology. Pancreatic primary ductal cells were isolated to discover differentially expressed transcripts upon acute Hhex ablation on a cell autonomous level. Results: Hhex protein was detected throughout the embryonic and adult ductal trees. Ablation of Hhex in pancreatic progenitors resulted in postnatal ductal ectasia associated with acinar-to-ductal metaplasia, a progressive phenotype that ultimately resulted in chronic pancreatitis. Hhex ablation in adult mice, however, did not cause any detectable pathology. Ductal ectasia in young mice did not result from perturbation of expression of Hnf6, Hnf1β, or the primary cilia genes. RNA-seq analysis of Hhex-ablated pancreatic primary ductal cells showed mRNA levels of the G-protein coupled receptor natriuretic peptide receptor 3 (Npr3, implicated in paracrine signaling, up-regulated by 4.70-fold. Conclusions: Although Hhex is dispensable for ductal cell function in the adult, ablation of Hhex in pancreatic progenitors results in pancreatitis. Our data highlight the critical role of Hhex in maintaining ductal homeostasis in early life and support ductal hypersecretion as a novel etiology of pediatric chronic pancreatitis. Keywords: Npr3, Pancreatic Ducts, Primary Cilia

  7. Tissue-specific mercury concentrations in two catfish species from the Brazilian coast

    Directory of Open Access Journals (Sweden)

    Juliana de Souza Azevedo

    2012-06-01

    Full Text Available Some regions of Brazil have particularly high levels of mercury (Hg emissions due to industrial activities, and their fish species may therefore suffer high levels of contamination through bioaccumulation. In this paper we assess Hg contamination in the muscle, liver, gills and blood of two different species of catfish collected from the Cananéia and Santos-São Vicente estuaries, São Paulo State, Brazil. Fish from the most polluted site (Santos-São Vicente showed higher median Hg concentrations in both species (Cathorops spixii - liver: 1530 µg Kg-1, muscle: 327 µg Kg-1 and gill: 101 µg Kg-1; Genidens genidens - liver: 2617 µg Kg-1, muscle: 393 µg Kg-1 and gill: 118 µg Kg-1. Multivariate analysis revealed the importance and influence of key biological variables (size, condition, etc. in determining the overall level of Hg and its distribution within different tissues.Algumas regiões do Brasil apresentam, altos níveis de emissões de mercúrio (Hg devido às atividades industriais, e suas espécies de peixes podem, portanto, estar expostos a elevados níveis de contaminação por meio da bioacumulação. Neste trabalho avaliamos a contaminação por Hg no músculo, fígado, brânquias e sangue de duas espécies de bagres coletados nos estuários de Cananéia e Santos-São Vicente, São Paulo, Brasil. Peixes amostrados no local mais poluído (Santos-São Vicente mostraram maiores concentrações de Hg em ambas as espécies (Cathorops spixii - fígado: 1530 µg Kg-1, músculo: 327 µg Kg-1 e brânquias: 101 µg Kg-1; Genidens genidens - fígado: 2617 µg Kg-1, músculo: 393 µg Kg-1 e brânquias: 118 µg Kg-1. Análises multivariadas revelaram a importância e influência das principais variáveis biológicas (tamanho, condição, etc. no teor geral de Hg e sua distribuição nos diferentes tecidos.

  8. Analysis of Features for Synthetic Aperture Radar Target Classification

    Science.gov (United States)

    2015-03-26

    Definition AFRL Air Force Research Laboratory ATR automatic target recognition CFAR constant false alarm rate CV civilian vehicles HOG histograms of oriented...percent bright constant false alarm rate ( CFAR ), and fractal dimension of the target in the image have been used and compared to training data to

  9. CRISPRTarget: bioinformatic prediction and analysis of crRNA targets

    NARCIS (Netherlands)

    Biswas, A.; Gagnon, J.N.; Brouns, S.J.J.; Fineran, P.C.; Brown, C.M.

    2013-01-01

    The bacterial and archaeal CRISPR/Cas adaptive immune system targets specific protospacer nucleotide sequences in invading organisms. This requires base pairing between processed CRISPR RNA and the target protospacer. For type I and II CRISPR/Cas systems, protospacer adjacent motifs (PAM) are

  10. Tissue-restricted expression of Nrf2 and its target genes in zebrafish with gene-specific variations in the induction profiles.

    Directory of Open Access Journals (Sweden)

    Hitomi Nakajima

    Full Text Available The Keap1-Nrf2 system serves as a defense mechanism against oxidative stress and electrophilic toxicants by inducing more than one hundred cytoprotective proteins, including antioxidants and phase 2 detoxifying enzymes. Since induction profiles of Nrf2 target genes have been studied exclusively in cultured cells, and not in animal models, their tissue-specificity has not been well characterized. In this paper, we examined and compared the tissue-specific expression of several Nrf2 target genes in zebrafish larvae by whole-mount in situ hybridization (WISH. Seven zebrafish genes (gstp1, mgst3b, prdx1, frrs1c, fthl, gclc and hmox1a suitable for WISH analysis were selected from candidates for Nrf2 targets identified by microarray analysis. Tissue-restricted induction was observed in the nose, gill, and/or liver for all seven genes in response to Nrf2-activating compounds, diethylmaleate (DEM and sulforaphane. The Nrf2 gene itself was dominantly expressed in these three tissues, implying that tissue-restricted induction of Nrf2 target genes is defined by tissue-specific expression of Nrf2. Interestingly, the induction of frrs1c and gclc in liver and nose, respectively, was quite low and that of hmox1a was restricted in the liver. These results indicate the existence of gene-specific variations in the tissue specificity, which can be controlled by factors other than Nrf2.

  11. Targeting gender: A content analysis of alcohol advertising in magazines.

    Science.gov (United States)

    Jung, A-Reum; Hovland, Roxanne

    2016-01-01

    Creating target specific advertising is fundamental to maximizing advertising effectiveness. When crafting an advertisement, message and creative strategies are considered important because they affect target audiences' attitudes toward advertised products. This study endeavored to find advertising strategies that are likely to have special appeal for men or women by examining alcohol advertising in magazines. The results show that the substance of the messages is the same for men and women, but they only differ in terms of presentation. However, regardless of gender group, the most commonly used strategies in alcohol advertising are appeals to the target audience's emotions.

  12. Performance Analysis on ISAR Imaging of Space Targets

    Directory of Open Access Journals (Sweden)

    Zhou Yejian

    2017-02-01

    Full Text Available Usually, in traditional Inverse Synthetic Aperture Radar (ISAR systems design and mode selection for space satellite targets, coherent integration gain in azimuth direction hardly can be analyzed, which depends on target’s motion. In this study, we combine the target orbit parameters to determine its motion relative to radar and deduce coherent integration equation in ISAR imaging to realize the selection of imaging intervals based on coherent integration, which can ensure the resolution in azimuth direction. Meanwhile, we analyze the influence of target orbit altitude to echo power and imaging Signal-to-Noise Ratio (SNR that provides a new indicator for space observation ISAR systems design. The result of simulation experiment illustrates that with target orbit altitude increasing, coherent integration gain in azimuth direction of large-angular observation offsets the decreasing of imaging SNR in a degree, which provides a brand-new perspective for space observation ISAR systems and signal processing design.

  13. Monetary targeting and financial system characteristics : An empirical analysis

    NARCIS (Netherlands)

    Samarina, A..

    2012-01-01

    This paper investigates how reforms and characteristics of the financial system affect the likelihood of countries to abandon their strategy of monetary targeting. Apart from financial system characteristics, we include macroeconomic, fiscal, and institutional factors potentially associated with

  14. Integrated targeted and non-targeted analysis of water sample extracts with micro-scale UHPLC–MS

    Directory of Open Access Journals (Sweden)

    Dominik Deyerling

    2015-01-01

    • The filtering of database hits for two criteria (exact mass and partition coefficient significantly reduced the list of suspects and at the same time rendered it possible to perform non-target analysis with lower mass accuracy (no lock-spray in the range of 20–500 ppm.

  15. Tissue specific diurnal rhythms of metabolites and their regulation during herbivore attack in a native tobacco, Nicotiana attenuata.

    Directory of Open Access Journals (Sweden)

    Sang-Gyu Kim

    Full Text Available Ecological performance is all about timing and the endogenous clock that allows the entrainment of rhythms and anticipation of fitness-determining events is being rapidly characterized. How plants anticipate daily abiotic stresses, such as cold in early mornings and drought at noon, as well as biotic stresses, such as the timing of pathogen infections, is being explored, but little is known about the clock's role in regulating responses to insect herbivores and mutualists, whose behaviors are known to be strongly diurnally regulated and whose attack is known to reconfigure plant metabolomes. We developed a liquid chromatography-mass spectrometry procedure and analyzed its output with model-based peak picking algorithms to identify metabolites with diurnal accumulation patterns in sink/source leaves and roots in an unbiased manner. The response of metabolites with strong diurnal patterns to simulated attack from the specialist herbivore, Manduca sexta larvae was analyzed and annotated with in-house and public databases. Roots and leaves had largely different rhythms and only 10 ions of 182 oscillating ions in leaves and 179 oscillating ions in roots were rhythmic in both tissues: root metabolites mainly peaked at dusk or night, while leaf metabolites peaked during the day. Many oscillating metabolites showed tissue-specific regulation by simulated herbivory of which systemic responses in unattacked tissues were particularly pronounced. Diurnal and herbivory-elicited accumulation patterns of disaccharide, phenylalanine, tyrosine, lyciumoside I, coumaroyl tyramine, 12-oxophytodienoic acid and jasmonic acid and those of their related biosynthetic transcripts were examined in detail. We conclude that oscillating metabolites of N. attenuata accumulate in a highly tissue-specific manner and the patterns reveal pronounced diurnal rhythms in the generalized and specialized metabolism that mediates the plant's responses to herbivores and mutualists. We

  16. Mouse thymic epithelial cell lines expressing "Aire" and peripheral tissue-specific antigens reproduce in vitro negative selection of T cells.

    Science.gov (United States)

    Yamaguchi, Yoshitaka; Takayanagi, Atsushi; Chen, Jiabing; Sakai, Kosuke; Kudoh, Jun; Shimizu, Nobuyoshi

    2011-08-15

    In the human thymus, AIRE (autoimmune regulator) gene is expressed in a very limited type of medullary thymic epithelial cells (mTECs) and no cognate cell lines are available, hence the molecular analysis of AIRE gene function has been difficult. To improve this situation, we attempted to isolate Aire-expressing cells and established three cell lines (Aire⁺TEC1, Aire⁺TEC2, Aire⁺DC) from the abnormally enlarged thymus, which was developed in the transgenic mice expressing SV40 T-antigen driven by the mouse Aire gene promoter. When these Aire⁺ cell lines were co-cultured with fresh thymocytes, they adhered to the majority of thymocytes and induced apoptosis as if negative selection of T-cells in the thymus is occurring in vitro. Further analysis revealed that these Aire⁺ cell lines are derived from mTECs and exhibit characteristic natures of "antigen presenting cells" including several distinct abilities: to express a variety of peripheral tissue-specific antigens, to produce immunoproteasome and immunological synapse, and to express some of TNFSFs (tumor necrosis factor super families). Thus, the newly established Aire⁺ cell lines will be invaluable for the further detailed analysis of AIRE gene function in the central tolerance of immunity and autoimmune disease. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Genome-wide analysis of Polycomb targets in Drosophila

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Yuri B.; Kahn, Tatyana G.; Nix, David A.; Li,Xiao-Yong; Bourgon, Richard; Biggin, Mark; Pirrotta, Vincenzo

    2006-04-01

    Polycomb Group (PcG) complexes are multiprotein assemblages that bind to chromatin and establish chromatin states leading to epigenetic silencing. PcG proteins regulate homeotic genes in flies and vertebrates but little is known about other PcG targets and the role of the PcG in development, differentiation and disease. We have determined the distribution of the PcG proteins PC, E(Z) and PSC and of histone H3K27 trimethylation in the Drosophila genome. At more than 200 PcG target genes, binding sites for the three PcG proteins colocalize to presumptive Polycomb Response Elements (PREs). In contrast, H3 me3K27 forms broad domains including the entire transcription unit and regulatory regions. PcG targets are highly enriched in genes encoding transcription factors but receptors, signaling proteins, morphogens and regulators representing all major developmental pathways are also included.

  18. Targets for bulk hydrogen analysis using thermal neutrons

    CERN Document Server

    Csikai, J; Buczko, C M

    2002-01-01

    The reflection property of substances can be characterized by the reflection cross-section of thermal neutrons, sigma subbeta. A combination of the targets with thin polyethylene foils allowed an estimation of the flux depression of thermal neutrons caused by a bulk sample containing highly absorbing elements or compounds. Some new and more accurate sigma subbeta values were determined by using the combined target arrangement. For the ratio, R of the reflection and the elastic scattering cross-sections of thermal neutrons, R=sigma subbeta/sigma sub E sub L a value of 0.60+-0.02 was found on the basis of the data obtained for a number of elements from H to Pb. Using this correlation factor, and the sigma sub E sub L values, the unknown sigma subbeta data can be deduced. The equivalent thicknesses, to polyethylene or hydrogen, of the different target materials were determined from the sigma subbeta values.

  19. Structural evolution and tissue-specific expression of tetrapod-specific second isoform of secretory pathway Ca{sup 2+}-ATPase

    Energy Technology Data Exchange (ETDEWEB)

    Pestov, Nikolay B., E-mail: korn@mail.ibch.ru [Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117871 (Russian Federation); Dmitriev, Ruslan I.; Kostina, Maria B. [Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117871 (Russian Federation); Korneenko, Tatyana V. [Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117871 (Russian Federation); Department of Physiology and Pharmacology, University of Toledo College of Medicine, 3000 Arlington Ave., Toledo, OH 43614 (United States); Shakhparonov, Mikhail I. [Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117871 (Russian Federation); Modyanov, Nikolai N., E-mail: nikolai.modyanov@utoledo.edu [Department of Physiology and Pharmacology, University of Toledo College of Medicine, 3000 Arlington Ave., Toledo, OH 43614 (United States)

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer Full-length secretory pathway Ca-ATPase (SPCA2) cloned from rat duodenum. Black-Right-Pointing-Pointer ATP2C2 gene (encoding SPCA2) exists only in genomes of Tetrapoda. Black-Right-Pointing-Pointer Rat and pig SPCA2 are expressed in intestines, lung and some secretory glands. Black-Right-Pointing-Pointer Subcellular localization of SPCA2 may depend on tissue type. Black-Right-Pointing-Pointer In rat duodenum, SPCA2 is localized in plasma membrane-associated compartments. -- Abstract: Secretory pathway Ca-ATPases are less characterized mammalian calcium pumps than plasma membrane Ca-ATPases and sarco-endoplasmic reticulum Ca-ATPases. Here we report analysis of molecular evolution, alternative splicing, tissue-specific expression and subcellular localization of the second isoform of the secretory pathway Ca-ATPase (SPCA2), the product of the ATP2C2 gene. The primary structure of SPCA2 from rat duodenum deduced from full-length transcript contains 944 amino acid residues, and exhibits 65% sequence identity with known SPCA1. The rat SPCA2 sequence is also highly homologous to putative human protein KIAA0703, however, the latter seems to have an aberrant N-terminus originating from intron 2. The tissue-specificity of SPCA2 expression is different from ubiquitous SPCA1. Rat SPCA2 transcripts were detected predominantly in gastrointestinal tract, lung, trachea, lactating mammary gland, skin and preputial gland. In the newborn pig, the expression profile is very similar with one remarkable exception: porcine bulbourethral gland gave the strongest signal. Upon overexpression in cultured cells, SPCA2 shows an intracellular distribution with remarkable enrichment in Golgi. However, in vivo SPCA2 may be localized in compartments that differ among various tissues: it is intracellular in epidermis, but enriched in plasma membranes of the intestinal epithelium. Analysis of SPCA2 sequences from various vertebrate species argue that ATP2C2

  20. COREnet: The Fusion of Social Network Analysis and Target Audience Analysis

    Science.gov (United States)

    2014-12-01

    be integrated into a HTML5 web-based Target Audience Analysis Worksheet TAAW? D. SCOPE AND METHODOLOGY This is a three-phase capstone project. The...Harrison & S. Huntington (Eds.), Culture matters: How values shape human progress (pp. 98–111). New York: Basic Books Gauchat, J. D., (2012). HTML5 for...networks to inform tactical engagement strategies that will influence the human domain. Small Wars Journal. MacDonald, M. (2012). HTML5 : The

  1. Persistent Foot-and-Mouth Disease Virus Infection in the Nasopharynx of Cattle; Tissue-Specific Distribution and Local Cytokine Expression.

    Directory of Open Access Journals (Sweden)

    Juan M Pacheco

    Full Text Available Tissues obtained post-mortem from cattle persistently infected with foot-and-mouth disease virus (FMDV were analyzed to characterize the tissue-specific localization of FMDV and partial transcriptome profiles for selected immunoregulatory cytokines. Analysis of 28 distinct anatomic sites from 21 steers infected with FMDV serotype A, O or SAT2, had the highest prevalence of overall viral detection in the dorsal nasopharynx (80.95% and dorsal soft palate (71.43%. FMDV was less frequently detected in laryngeal mucosal tissues, oropharyngeal mucosal sites, and lymph nodes draining the pharynx. Immunomicroscopy indicated that within persistently infected mucosal tissues, FMDV antigens were rarely detectable within few epithelial cells in regions of mucosa-associated lymphoid tissue (MALT. Transcriptome analysis of persistently infected pharyngeal tissues by qRT-PCR for 14 cytokine genes indicated a general trend of decreased mRNA levels compared to uninfected control animals. Although, statistically significant differences were not observed, greatest suppression of relative expression (RE was identified for IP-10 (RE = 0.198, IFN-β (RE = 0.269, IL-12 (RE = 0.275, and IL-2 (RE = 0.312. Increased relative expression was detected for IL-6 (RE = 2.065. Overall, this data demonstrates that during the FMDV carrier state in cattle, viral persistence is associated with epithelial cells of the nasopharynx in the upper respiratory tract and decreased levels of mRNA for several immunoregulatory cytokines in the infected tissues.

  2. Inflation targeting and inflation performance : a comparative analysis

    NARCIS (Netherlands)

    Samarina, Anna; De Haan, Jakob; Terpstra, M.

    2014-01-01

    This article examines how the impact of inflation targeting on inflation performance depends on the choice of country samples, adoption dates, time periods and methodological approaches. We apply two different estimation methods - difference-in-differences and propensity score matching - for our

  3. Analysis of Myc-induced histone modifications on target chromatin.

    Directory of Open Access Journals (Sweden)

    Francesca Martinato

    Full Text Available The c-myc proto-oncogene is induced by mitogens and is a central regulator of cell growth and differentiation. The c-myc product, Myc, is a transcription factor that binds a multitude of genomic sites, estimated to be over 10-15% of all promoter regions. Target promoters generally pre-exist in an active or poised chromatin state that is further modified by Myc, contributing to fine transcriptional regulation (activation or repression of the afferent gene. Among other mechanisms, Myc recruits histone acetyl-transferases to target chromatin and locally promotes hyper-acetylation of multiple lysines on histones H3 and H4, although the identity and combination of the modified lysines is unknown. Whether Myc dynamically regulates other histone modifications (or marks at its binding sites also remains to be addressed. Here, we used quantitative chromatin immunoprecipitation (qChIP to profile a total of 24 lysine-acetylation and -methylation marks modulated by Myc at target promoters in a human B-cell line with a regulatable c-myc transgene. Myc binding promoted acetylation of multiple lysines, primarily of H3K9, H3K14, H3K18, H4K5 and H4K12, but significantly also of H4K8, H4K91 and H2AK5. Dimethylation of H3K79 was also selectively induced at target promoters. A majority of target promoters showed co-induction of multiple marks - in various combinations - correlating with recruitment of the two HATs tested (Tip60 and HBO1, incorporation of the histone variant H2A.Z and transcriptional activation. Based on this and previous findings, we surmise that Myc recruits the Tip60/p400 complex to achieve a coordinated histone acetylation/exchange reaction at activated promoters. Our data are also consistent with the additive and redundant role of multiple acetylation events in transcriptional activation.

  4. Identification and target prediction of miRNAs specifically expressed in rat neural tissue

    Directory of Open Access Journals (Sweden)

    Tu Kang

    2009-05-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are a large group of RNAs that play important roles in regulating gene expression and protein translation. Several studies have indicated that some miRNAs are specifically expressed in human, mouse and zebrafish tissues. For example, miR-1 and miR-133 are specifically expressed in muscles. Tissue-specific miRNAs may have particular functions. Although previous studies have reported the presence of human, mouse and zebrafish tissue-specific miRNAs, there have been no detailed reports of rat tissue-specific miRNAs. In this study, Home-made rat miRNA microarrays which established in our previous study were used to investigate rat neural tissue-specific miRNAs, and mapped their target genes in rat tissues. This study will provide information for the functional analysis of these miRNAs. Results In order to obtain as complete a picture of specific miRNA expression in rat neural tissues as possible, customized miRNA microarrays with 152 selected miRNAs from miRBase were used to detect miRNA expression in 14 rat tissues. After a general clustering analysis, 14 rat tissues could be clearly classified into neural and non-neural tissues based on the obtained expression profiles with p values Conclusion Our work provides a global view of rat neural tissue-specific miRNA profiles and a target map of miRNAs, which is expected to contribute to future investigations of miRNA regulatory mechanisms in neural systems.

  5. Genome-wide tissue-specific occupancy of the Hox protein Ultrabithorax and Hox cofactor Homothorax in Drosophila.

    Directory of Open Access Journals (Sweden)

    Matthew Slattery

    2011-04-01

    Full Text Available The Hox genes are responsible for generating morphological diversity along the anterior-posterior axis during animal development. The Drosophila Hox gene Ultrabithorax (Ubx, for example, is required for specifying the identity of the third thoracic (T3 segment of the adult, which includes the dorsal haltere, an appendage required for flight, and the ventral T3 leg. Ubx mutants show homeotic transformations of the T3 leg towards the identity of the T2 leg and the haltere towards the wing. All Hox genes, including Ubx, encode homeodomain containing transcription factors, raising the question of what target genes Ubx regulates to generate these adult structures. To address this question, we carried out whole genome ChIP-chip studies to identify all of the Ubx bound regions in the haltere and T3 leg imaginal discs, which are the precursors to these adult structures. In addition, we used ChIP-chip to identify the sites bound by the Hox cofactor, Homothorax (Hth. In contrast to previous ChIP-chip studies carried out in Drosophila embryos, these binding studies reveal that there is a remarkable amount of tissue- and transcription factor-specific binding. Analyses of the putative target genes bound and regulated by these factors suggest that Ubx regulates many downstream transcription factors and developmental pathways in the haltere and T3 leg. Finally, we discovered additional DNA sequence motifs that in some cases are specific for individual data sets, arguing that Ubx and/or Hth work together with many regionally expressed transcription factors to execute their functions. Together, these data provide the first whole-genome analysis of the binding sites and target genes regulated by Ubx to specify the morphologies of the adult T3 segment of the fly.

  6. Molecular cloning and tissue-specific expression analysis of mouse spinesin, a type II transmembrane serine protease 5

    International Nuclear Information System (INIS)

    Watanabe, Yoshihisa; Okui, Akira; Mitsui, Shinichi; Kawarabuki, Kentaro; Yamaguchi, Tatsuyuki; Uemura, Hidetoshi; Yamaguchi, Nozomi

    2004-01-01

    We have previously reported novel serine proteases isolated from cDNA libraries of the human and mouse central nervous system (CNS) by PCR using degenerate oligodeoxyribonucleotide primers designed on the basis of the serine protease motifs, AAHC and DSGGP. Here we report a newly isolated serine protease from the mouse CNS. This protease is homologous (77.9% identical) to human spinesin type II transmembrane serine protease 5. Mouse spinesin (m-spinesin) is also composed of (from the N-terminus) a short cytoplasmic domain, a transmembrane domain, a stem region containing a scavenger-receptor-like domain, and a serine protease domain, as is h-spinesin. We also isolated type 1, type 2, and type 3 variant cDNAs of m-spinesin. Full-length spinesin (type 4) and type 3 contain all the domains, whereas type 1 and type 2 variants lack the cytoplasmic, transmembrane, and scavenger-receptor-like domains. Subcellular localization of the variant forms was analyzed using enhanced green fluorescent protein (EGFP) fusion proteins. EGFP-type 4 fusion protein was predominantly localized to the ER, Golgi apparatus, and plasma membrane, whereas EGFP-type 1 was localized to the cytoplasm, reflecting differential classification of m-spinesin variants into transmembrane and cytoplasmic types. We analyzed the distribution of m-spinesin variants in mouse tissues, using RT-PCR with variant-specific primer sets. Interestingly, transmembrane-type spinesin, types 3 and 4, was specifically expressed in the spinal cord, whereas cytoplasmic type, type 1, was expressed in multiple tissues, including the cerebrum and cerebellum. Therefore, m-spinesin variants may have distinct biological functions arising from organ-specific variant expression

  7. A large-scale analysis of tissue-specific pathology and gene expression of human disease genes and complexes

    DEFF Research Database (Denmark)

    Hansen, Kasper Lage; Hansen, Niclas Tue; Karlberg, Erik, Olof, Linnart

    2008-01-01

    to be overexpressed in the normal tissues where defects cause pathology. In contrast, cancer genes and complexes were not overexpressed in the tissues from which the tumors emanate. We specifically identified a complex involved in XY sex reversal that is testis-specific and down-regulated in ovaries. We also...

  8. Transcriptome analysis in prenatal IGF1-deficient mice identifies molecular pathways and target genes involved in distal lung differentiation.

    Directory of Open Access Journals (Sweden)

    Rosete Sofía Pais

    Full Text Available BACKGROUND: Insulin-like Growth Factor 1 (IGF1 is a multifunctional regulator of somatic growth and development throughout evolution. IGF1 signaling through IGF type 1 receptor (IGF1R controls cell proliferation, survival and differentiation in multiple cell types. IGF1 deficiency in mice disrupts lung morphogenesis, causing altered prenatal pulmonary alveologenesis. Nevertheless, little is known about the cellular and molecular basis of IGF1 activity during lung development. METHODS/PRINCIPAL FINDINGS: Prenatal Igf1(-/- mutant mice with a C57Bl/6J genetic background displayed severe disproportional lung hypoplasia, leading to lethal neonatal respiratory distress. Immuno-histological analysis of their lungs showed a thickened mesenchyme, alterations in extracellular matrix deposition, thinner smooth muscles and dilated blood vessels, which indicated immature and delayed distal pulmonary organogenesis. Transcriptomic analysis of Igf1(-/- E18.5 lungs using RNA microarrays identified deregulated genes related to vascularization, morphogenesis and cellular growth, and to MAP-kinase, Wnt and cell-adhesion pathways. Up-regulation of immunity-related genes was verified by an increase in inflammatory markers. Increased expression of Nfib and reduced expression of Klf2, Egr1 and Ctgf regulatory proteins as well as activation of ERK2 MAP-kinase were corroborated by Western blot. Among IGF-system genes only IGFBP2 revealed a reduction in mRNA expression in mutant lungs. Immuno-staining patterns for IGF1R and IGF2, similar in both genotypes, correlated to alterations found in specific cell compartments of Igf1(-/- lungs. IGF1 addition to Igf1(-/- embryonic lungs cultured ex vivo increased airway septa remodeling and distal epithelium maturation, processes accompanied by up-regulation of Nfib and Klf2 transcription factors and Cyr61 matricellular protein. CONCLUSIONS/SIGNIFICANCE: We demonstrated the functional tissue specific implication of IGF1 on fetal

  9. Thermal shock analysis of liquid-mercury spallation target

    CERN Document Server

    Ishikura, S; Futakawa, M; Hino, R; Date, H

    2002-01-01

    The developments of the neutron scattering facilities are carried out under the high-intensity proton accelerator project promoted by JAERI and KEK. To estimate the structural integrity of the heavy liquid-metal (Hg) target used as a spallation neutron source in a MW-class neutron scattering facility, dynamic stress behavior due to the incident of a 1 MW-pulsed proton beam was analyzed by using FEM code. Two-type target containers with semi-cylindrical type and flat-plate type window were used as models for analyses. As a result, it is confirmed that the stress (pressure wave) generated by dynamic thermal shock becomes the largest at the center of window, and the flat-plate type window is more advantageous from the structural viewpoint than the semi-cylindrical type window. It has been understood that the stress generated in the window by the pressure wave can be treated as the secondary stress. (author)

  10. Analysis of Mo99 production irradiating 20% U targets

    International Nuclear Information System (INIS)

    Calabrese, C. Ruben; Grant, Carlos R.; Marajofsky, Andres; Parkansky, David G.

    1999-01-01

    At present time, the National Atomic Energy Commission is producing about 800 Ci of Mo99 per week irradiating 90% enriched uranium-aluminum alloy plate targets in the RA-3 reactor, a 5 MW. Mtr type one. In order to change to 20% enriched uranium, and to increase the production to about 3000 Ci per week some configurations were studied with rod and plate geometry with uranium (20% enriched) -aluminum targets. The first case was the irradiation of a plate target element in the normal reactor configuration. Results showed a good efficiency, but both reactivity value and power density were too high. An element with rods was also analyzed, but results showed a poor efficiency, too much aluminum involved in the process, although a low reactivity and an acceptable rod power density. Finally, a solution consisting of plate elements with a Zircaloy cladding was adopted, which has shown not only a good efficiency, but it is also acceptable from the viewpoint of safety, heat transference criteria and feasibility

  11. Evolutionary rate heterogeneity between multi- and single-interface hubs across human housekeeping and tissue-specific protein interaction network: Insights from proteins' and its partners' properties.

    Science.gov (United States)

    Biswas, Kakali; Acharya, Debarun; Podder, Soumita; Ghosh, Tapash Chandra

    2017-12-02

    Integrating gene expression into protein-protein interaction network (PPIN) leads to the construction of tissue-specific (TS) and housekeeping (HK) sub-networks, with distinctive TS- and HK-hubs. All such hub proteins are divided into multi-interface (MI) hubs and single-interface (SI) hubs, where MI hubs evolve slower than SI hubs. Here we explored the evolutionary rate difference between MI and SI proteins within TS- and HK-PPIN and observed that this difference is present only in TS, but not in HK-class. Next, we explored whether proteins' own properties or its partners' properties are more influential in such evolutionary discrepancy. Statistical analyses revealed that this evolutionary rate correlates negatively with protein's own properties like expression level, miRNA count, conformational diversity and functional properties and with its partners' properties like protein disorder and tissue expression similarity. Moreover, partial correlation and regression analysis revealed that both proteins' and its partners' properties have independent effects on protein evolutionary rate. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Differential accumulation of β-carotene and tissue specific expression of phytoene synthase (MaPsy) gene in banana (Musa sp) cultivars.

    Science.gov (United States)

    Dhandapani, R; Singh, V P; Arora, A; Bhattacharya, R C; Rajendran, Ambika

    2017-12-01

    An experiment was conducted with twelve major Indian banana cultivars to investigate the molecular relationship between the differential accumulation of β-carotene in peel and pulp of the banana fruit and carotenoid biosynthetic pathway genes. The high performance liquid chromatography showed that all banana cultivars accumulated two-three fold more β-carotene in non-edible portion of the banana fruit. However, Nendran , a famous orange fleshed cultivar of South India, had high β-carotene content (1362 µg/100 g) in edible pulp. The gene encoding Musa accuminata phytoene synthase ( MaPsy ) was successfully amplified using a pair of degenerate primers designed from Oncidium orchid. The deduced amino acid sequences shared a high level of identity to phytoene synthase gene from other plants. Gene expression analysis confirmed the presence of two isoforms ( MaPsy1 and MaPsy2 ) of MaPsy gene in banana fruits. Presence of two isoforms of MaPsy gene in peel and one in pulp confirmed the differential accumulation of β-carotene in banana fruits. However, Nendran accumulated more β-carotene in edible pulp due to presence of both the isoforms of MaPsy gene. Thus, carotenoid accumulation is a tissue specific process strongly dependent on differential expression pattern of two isoforms of MaPsy gene in banana.

  13. Variation in Metabolic Rate among Individuals Is Related to Tissue-Specific Differences in Mitochondrial Leak Respiration.

    Science.gov (United States)

    Salin, Karine; Auer, Sonya K; Rudolf, Agata M; Anderson, Graeme J; Selman, Colin; Metcalfe, Neil B

    Standard metabolic rate (SMR) and maximum metabolic rate (MMR) typically vary two- or threefold among conspecifics, with both traits assumed to significantly impact fitness. However, the underlying mechanisms that determine such intraspecific variation are not well understood. We examined the influence of mitochondrial properties on intraspecific variation in SMR and MMR and hypothesized that if SMR supports the cost of maintaining the metabolic machinery required for MMR, then the mitochondrial properties underlying these traits should be shared. Mitochondrial respiratory capacity (leak and phosphorylating respiration) and mitochondrial content (cytochrome c oxidase activity) were determined in the liver and white muscle of brown trout Salmo trutta of similar age and maintenance conditions. SMR and MMR were uncorrelated across individuals and were not associated with the same mitochondrial properties, suggesting that they are under the control of separate physiological processes. Moreover, tissue-specific relationships between mitochondrial properties and whole-organism metabolic traits were observed. Specifically, SMR was positively associated with leak respiration in liver mitochondria, while MMR was positively associated with muscle mitochondrial leak respiration and mitochondrial content. These results suggest that a high SMR or MMR, rather than signaling a higher ability for respiration-driven ATP synthesis, may actually reflect greater dissipation of energy, driven by proton leak across the mitochondrial inner membrane. Knowledge of these links should aid interpretation of the potential fitness consequences of such variation in metabolism, given the importance of mitochondria in the utilization of resources and their allocation to performance.

  14. Tissue-specific expression of transfected human insulin genes in pluripotent clonal rat insulinoma lines induced during passage in vivo

    International Nuclear Information System (INIS)

    Madsen, O.D.; Andersen, L.C.; Michelsen, B.; Owerbach, D.; Larsson, L.I.; Lernmark, A.; Steiner, D.F.

    1988-01-01

    The pluripotent rat islet tumor cell line MSL-G2 expresses primarily glucagon or cholecystokinin and not insulin in vitro but changes phenotype completely after prolonged in vivo cultivation to yield small-sized hypoglycemic tumors composed almost entirely of insulin-producing beta cells. When a genomic DNA fragment containing the coding and upstream regulatory regions of the human insulin gene was stably transfected into MSL-G2 cells no measurable amounts of insulin or insulin mRNA were detected in vitro. However, successive transplantation of two transfected clones resulted in hypoglycemic tumors that efficiently coexpressed human and rat insulin as determined by human C-peptide-specific immunoreagents. These results demonstrate that cis-acting tissue-specific insulin gene enhancer elements are conserved between rat and human insulin genes. The authors propose that the in vivo differentiation of MSL-G2 cells and transfected subclones into insulin-producing cells reflects processes of natural beta-cell ontogeny leading to insulin gene expression

  15. Tissue-specific expression of insulin-like growth factor II mRNAs with distinct 5' untranslated regions

    International Nuclear Information System (INIS)

    Irminger, J.C.; Rosen, K.M.; Humble, R.E.; Villa-Komaroff, L.

    1987-01-01

    The authors have used RNA from human hypothalamus as template for the production of cDNAs encoding insulin-like growth factor II (IGF-II). The prohormone coding sequence of brain IGF-II RNA is identical to that found in liver; however, the 5' untranslated sequence of the brain cDNA has no homology to the 5' untranslated sequence of the previously reported liver cDNAs. By using hybridization to specific probes as well as a method based on the properties of RNase H, they found that the human IGF-II gene has at least three exons that encode alternative 5' untranslated regions and that are expressed in a tissue-specific manner. A probe specific to the brain cDNA 5' untranslated region hybridizes to a 6.0-kilobase transcript present in placenta, hypothalamus, adrenal gland, kidney, Wilms tumor, and a pheochromocytoma. The 5' untranslated sequence of the brain cDNA does not hybridize to a 5.3-kilobase transcript found in liver or to a 5.0-kb transcript found in pheochromocytoma. By using RNase H to specifically fragment the IGF-II transcripts into 3' and 5' fragments, they found that the RNAs vary in size due to differences in the 5' end but not the 3' end

  16. Multi-species, multi-transcription factor binding highlights conserved control of tissue-specific biological pathways

    Science.gov (United States)

    Ballester, Benoit; Medina-Rivera, Alejandra; Schmidt, Dominic; Gonzàlez-Porta, Mar; Carlucci, Matthew; Chen, Xiaoting; Chessman, Kyle; Faure, Andre J; Funnell, Alister PW; Goncalves, Angela; Kutter, Claudia; Lukk, Margus; Menon, Suraj; McLaren, William M; Stefflova, Klara; Watt, Stephen; Weirauch, Matthew T; Crossley, Merlin; Marioni, John C; Odom, Duncan T; Flicek, Paul; Wilson, Michael D

    2014-01-01

    As exome sequencing gives way to genome sequencing, the need to interpret the function of regulatory DNA becomes increasingly important. To test whether evolutionary conservation of cis-regulatory modules (CRMs) gives insight into human gene regulation, we determined transcription factor (TF) binding locations of four liver-essential TFs in liver tissue from human, macaque, mouse, rat, and dog. Approximately, two thirds of the TF-bound regions fell into CRMs. Less than half of the human CRMs were found as a CRM in the orthologous region of a second species. Shared CRMs were associated with liver pathways and disease loci identified by genome-wide association studies. Recurrent rare human disease causing mutations at the promoters of several blood coagulation and lipid metabolism genes were also identified within CRMs shared in multiple species. This suggests that multi-species analyses of experimentally determined combinatorial TF binding will help identify genomic regions critical for tissue-specific gene control. DOI: http://dx.doi.org/10.7554/eLife.02626.001 PMID:25279814

  17. Assembled genomic and tissue-specific transcriptomic data resources for two genetically distinct lines of Cowpea ( Vigna unguiculata (L.) Walp).

    Science.gov (United States)

    Spriggs, Andrew; Henderson, Steven T; Hand, Melanie L; Johnson, Susan D; Taylor, Jennifer M; Koltunow, Anna

    2018-02-09

    Cowpea ( Vigna unguiculata (L.) Walp) is an important legume crop for food security in areas of low-input and smallholder farming throughout Africa and Asia. Genetic improvements are required to increase yield and resilience to biotic and abiotic stress and to enhance cowpea crop performance. An integrated cowpea genomic and gene expression data resource has the potential to greatly accelerate breeding and the delivery of novel genetic traits for cowpea. Extensive genomic resources for cowpea have been absent from the public domain; however, a recent early release reference genome for IT97K-499-35 ( Vigna unguiculata  v1.0, NSF, UCR, USAID, DOE-JGI, http://phytozome.jgi.doe.gov/) has now been established in a collaboration between the Joint Genome Institute (JGI) and University California (UC) Riverside. Here we release supporting genomic and transcriptomic data for IT97K-499-35 and a second transformable cowpea variety, IT86D-1010. The transcriptome resource includes six tissue-specific datasets for each variety, with particular emphasis on reproductive tissues that extend and support the V. unguiculata v1.0 reference. Annotations have been included in our resource to allow direct mapping to the v1.0 cowpea reference. Access to this resource provided here is supported by raw and assembled data downloads.

  18. Salt-Induced Tissue-Specific Cytosine Methylation Downregulates Expression of HKT Genes in Contrasting Wheat (Triticum aestivum L.) Genotypes.

    Science.gov (United States)

    Kumar, Suresh; Beena, Ananda Sankara; Awana, Monika; Singh, Archana

    2017-04-01

    Plants have evolved several strategies, including regulation of genes through epigenetic modifications, to cope with environmental stresses. DNA methylation is dynamically regulated through the methylation and demethylation of cytosine in response to environmental perturbations. High-affinity potassium transporters (HKTs) have accounted for the homeostasis of sodium and potassium ions in plants under salt stress. Wheat (Triticum aestivum L.) is sensitive to soil salinity, which impedes its growth and development, resulting in decreased productivity. The differential expression of HKTs has been reported to confer tolerance to salt stress in plants. In this study, we investigated variations in cytosine methylation and their effects on the expression of HKT genes in contrasting wheat genotypes under salt stress. We observed a genotype- and tissue-specific increase in cytosine methylation induced by NaCl stress that downregulated the expression of TaHKT2;1 and TaHKT2;3 in the shoot and root tissues of Kharchia-65, thereby contributing to its improved salt-tolerance ability. Although TaHKT1;4 was expressed only in roots and was downregulated under the stress in salt-tolerant genotypes, it was not regulated through variations in cytosine methylation. Thus, understanding epigenetic regulation and the function of HKTs would enable an improvement in salt tolerance and the development of salt-tolerant crops.

  19. A High-Dimensional Atlas of Human T Cell Diversity Reveals Tissue-Specific Trafficking and Cytokine Signatures.

    Science.gov (United States)

    Wong, Michael Thomas; Ong, David Eng Hui; Lim, Frances Sheau Huei; Teng, Karen Wei Weng; McGovern, Naomi; Narayanan, Sriram; Ho, Wen Qi; Cerny, Daniela; Tan, Henry Kun Kiaang; Anicete, Rosslyn; Tan, Bien Keem; Lim, Tony Kiat Hon; Chan, Chung Yip; Cheow, Peng Chung; Lee, Ser Yee; Takano, Angela; Tan, Eng-Huat; Tam, John Kit Chung; Tan, Ern Yu; Chan, Jerry Kok Yen; Fink, Katja; Bertoletti, Antonio; Ginhoux, Florent; Curotto de Lafaille, Maria Alicia; Newell, Evan William

    2016-08-16

    Depending on the tissue microenvironment, T cells can differentiate into highly diverse subsets expressing unique trafficking receptors and cytokines. Studies of human lymphocytes have primarily focused on a limited number of parameters in blood, representing an incomplete view of the human immune system. Here, we have utilized mass cytometry to simultaneously analyze T cell trafficking and functional markers across eight different human tissues, including blood, lymphoid, and non-lymphoid tissues. These data have revealed that combinatorial expression of trafficking receptors and cytokines better defines tissue specificity. Notably, we identified numerous T helper cell subsets with overlapping cytokine expression, but only specific cytokine combinations are secreted regardless of tissue type. This indicates that T cell lineages defined in mouse models cannot be clearly distinguished in humans. Overall, our data uncover a plethora of tissue immune signatures and provide a systemic map of how T cell phenotypes are altered throughout the human body. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Tissue specificity of 8-prenylnaringenin: protection from ovariectomy induced bone loss with minimal trophic effects on the uterus.

    Science.gov (United States)

    Hümpel, Michael; Isaksson, Päivi; Schaefer, Olaf; Kaufmann, Ulrike; Ciana, Paolo; Maggi, Adriana; Schleuning, Wolf-Dieter

    2005-11-01

    Plant secondary metabolites with estrogenic activity (phyto-estrogens) have been studied in the past as a potential alternative to classical hormone-replacement therapy (HRT) in menopausal women. No final verdict on the efficacy of soy or red clover based pharmaceutical preparations has been reached despite numerous clinical studies. We have studied the novel and most potent phyto-estrogen 8-prenylnaringenin (8-PN) in adult ovariectomized rats, an established animal model to mimic hormone dependent osteoporosis in menopausal women. Our results demonstrate that 8-PN can completely protect from ovariectomy induced bone-loss while exhibiting minimal, (dose independent) trophic effects on uterus and endometrium. It is estimated that at equivalent bone protective doses of 17beta-estradiol and 8-PN, the phyto-estrogen has a 10-fold lower stimulatory effect on uterus and endometrium. The bone tissue specific effect of 8-PN was confirmed in a transgenic reporter mouse model (ERE-Luc mice). Here we also found pronounced estrogenic activity in prostate. Present results add important aspects to the pharmacological profile of 8-PN and position this compound as an interesting alternative new candidate for treatment of peri- and postmenopausal symptoms.

  1. Compact polarimetric SAR product and calibration considerations for target analysis

    Science.gov (United States)

    Sabry, Ramin

    2016-10-01

    Compact polarimetric (CP) data exploitation is currently of growing interest considering the new generation of such Synthetic Aperture Radar (SAR) systems. These systems offer target detection and classification capabilities comparable to those of polarimetric SARs (PolSAR) with less stringent requirements. A good example is the RADARSAT Constellation Mission (RCM). In this paper, some characteristic CP products are described and effects of CP mode deviation from ideal circular polarization transmit on classifications are modeled. The latter is important for operation of typical CP modes (e.g., RCM). The developed model can be used to estimate the ellipticity variation from CP measured data, and hence, calibrate the classification products.

  2. Analysis of the ball-plate laser fusion target experiments

    International Nuclear Information System (INIS)

    Pan, Y.L.

    1975-01-01

    Two dimensional computer simulation results of the two exploding pusher ball-plate targets are in approximate agreement with the experimental space and time integrated x-ray spectra, x-ray microscope data, neutron yields, and laser energy absorptions. Three parameters were used to characterize the laser absorption due to plasma instabilities. Two dumpall parameters were used to model the energy absorption and a single variable was used to define the electron temperature. The values, as well as the selection procedure for these parameters are discussed

  3. Tissue-specific direct microtransfer of nanomaterials into Drosophila embryos as a versatile in vivo test bed for nanomaterial toxicity assessment

    Directory of Open Access Journals (Sweden)

    Vega-Alvarez S

    2014-04-01

    Full Text Available Sasha Vega-Alvarez,1 Adriana Herrera,2 Carlos Rinaldi,2–4 Franklin A Carrero-Martínez1,5 1Department of Biology, 2Department of Chemical Engineering, University of Puerto Rico-Mayagüez, Mayagüez, Puerto Rico; 3J Crayton Pruitt Family Department of Biomedical Engineering, 4Department of Chemical Engineering, University of Florida, Gainesville, FL, USA; 5Department of Anatomy and Neuroscience, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico Abstract: Nanomaterials are the subject of intense research, focused on their synthesis, modification, and biomedical applications. Increased nanomaterial production and their wide range of applications imply a higher risk of human and environmental exposure. Unfortunately, neither environmental effects nor toxicity of nanomaterials to organisms are fully understood. Cost-effective, rapid toxicity assays requiring minimal amounts of materials are needed to establish both their biomedical potential and environmental safety standards. Drosophila exemplifies an efficient and cost-effective model organism with a vast repertoire of in vivo tools and techniques, all with high-throughput scalability and screening feasibility throughout its life cycle. Here we report tissue specific nanomaterial assessment through direct microtransfer into target tissues. We tested several nanomaterials with potential biomedical applications such as single-wall carbon nanotubes, multiwall carbon nanotubes, silver, gold, titanium dioxide, and iron oxide nanoparticles. Assessment of nanomaterial toxicity was conducted by evaluating progression through developmental morphological milestones in Drosophila. This cost-effective assessment method is amenable to high-throughput screening. Keywords: nanotoxicity, Drosophila, microtransfer, nanoparticle, iron oxide, silver, gold, titanium dioxide, carbon nanotube

  4. Sustainable Process Design under uncertainty analysis: targeting environmental indicators

    DEFF Research Database (Denmark)

    L. Gargalo, Carina; Gani, Rafiqul

    2015-01-01

    This study focuses on uncertainty analysis of environmental indicators used to support sustainable process design efforts. To this end, the Life Cycle Assessment methodology is extended with a comprehensive uncertainty analysis to propagate the uncertainties in input LCA data to the environmental...

  5. Thermal analysis of titanium drive-in target for D-D neutron generation.

    Science.gov (United States)

    Jung, N S; Kim, I J; Kim, S J; Choi, H D

    2010-01-01

    Thermal analysis was performed for a titanium drive-in target of a D-D neutron generator. Computational fluid dynamics code CFX-5 was used in this study. To define the heat flux term for the thermal analysis, beam current profile was measured. Temperature of the target was calculated at some of the operating conditions. The cooling performance of the target was evaluated by means of the comparison of the calculated maximum target temperature and the critical temperature of titanium. Copyright 2009 Elsevier Ltd. All rights reserved.

  6. Comparative Analysis of CDPK Family in Maize, Arabidopsis, Rice, and Sorghum Revealed Potential Targets for Drought Tolerance Improvement

    Directory of Open Access Journals (Sweden)

    Shikha Mittal

    2017-12-01

    Full Text Available Calcium dependent protein kinases (CDPKs play significant role in regulation of plant growth and development in response to various stresses including drought. A set of 32 CDPK genes identified in maize were further used for searching of orthologs in the model plant Arabidopsis (72 and major food crops such as rice (78 and sorghum (91. We comprehensively studied the phylogenetic relationship, annotations, gene duplications, gene structure, divergence time, 3-D protein structures and tissue-specific drought induced expression of CDPK genes in all four species. Variation in intron frequency in the studied species was one of the reasons for the functional diversity of CDPK genes to various stress responses. Protein kinase and protein kinase C phosphorylation site domains were the most conserved motifs identified in all species. Four groups were identified from the sequence-based phylogenetic analysis, in which maize CDPKs were clustered in group III. Expression data showed that the CDPK genes were highly expressed in leaf of maize, rice, and sorghum whereas in Arabidopsis the maximum expression was observed in root. The expression assay showed 5, 6, 11, and 9 were the commonly and differentially expressed drought-related orthologous genes in maize, Arabidopsis, rice, and sorghum, respectively. 3-D protein structure were predicted for the nine genes (Arabidopsis: 2, maize: 2, rice: 3, and sorghum: 2 showing differential expression in at least three species. The predicted 3-D structures were further evaluated and validated by Ramachandran plot, ANOLEA, ProSA, and Verify-3D. The superimposed 3-D structure of drought-related orthologous proteins retained similar folding pattern owing to their conserved nature. Functional annotation revealed the involvement of CDPK genes in various pathways such as osmotic homeostasis, cell protection, and root growth. The interactions of CDPK genes in various pathways play crucial role in imparting drought tolerance

  7. Micro-Doppler Analysis of Rotating Target in SAR

    National Research Council Canada - National Science Library

    Thayaparan, T; Abrol, S; Qian, S

    2005-01-01

    .... The phase modulation may be seen as a time-dependent micro-Doppler (m-D) frequency. Due to their superior resolution potential, it is useful to analyze such signals with time-frequency analysis methods...

  8. Simultaneous Determination of Aspirin, Salicylamide, and Caffeine in Pain Relievers by Target Factor Analysis

    Science.gov (United States)

    Msimanga, Huggins Z.; Charles, Melissa J.; Martin, Nea W.

    1997-09-01

    A factor analysis-based experiment for the undergraduate instrumental analysis labs is reported. Target factor analysis (TFA) is investigated as an option to the use of high-performance liquid chromatography (HPLC) in the analysis of a pain reliever sample containing aspirin, caffeine, and salicylamide.

  9. Tissue Restricted Splice Junctions Originate Not Only from Tissue-Specific Gene Loci, but Gene Loci with a Broad Pattern of Expression.

    Directory of Open Access Journals (Sweden)

    Matthew S Hestand

    Full Text Available Cellular mechanisms that achieve protein diversity in eukaryotes are multifaceted, including transcriptional components such as RNA splicing. Through alternative splicing, a single protein-coding gene can generate multiple mRNA transcripts and protein isoforms, some of which are tissue-specific. We have conducted qualitative and quantitative analyses of the Bodymap 2.0 messenger RNA-sequencing data from 16 human tissue samples and identified 209,363 splice junctions. Of these, 22,231 (10.6% were not previously annotated and 21,650 (10.3% were expressed in a tissue-restricted pattern. Tissue-restricted alternative splicing was found to be widespread, with approximately 65% of expressed multi-exon genes containing at least one tissue-specific splice junction. Interestingly, we observed many tissue-specific splice junctions not only in genes expressed in one or a few tissues, but also from gene loci with a broad pattern of expression.

  10. LMNA E82K mutation activates FAS and mitochondrial pathways of apoptosis in heart tissue specific transgenic mice.

    Directory of Open Access Journals (Sweden)

    Dan Lu

    Full Text Available The lamin A/C (LMNA, nuclear intermediate filament proteins, is a basic component of the nuclear lamina. Mutations in LMNA are associated with a broad range of laminopathies, congenital diseases affecting tissue regeneration and homeostasis. Heart tissue specific transgenic mice of human LMNA E82K, a mutation causing dilated cardiomyopathy, were generated. Lmna(E82K transgenic mouse lines exhibited thin-walled, dilated left and right ventricles, a progressive decrease of contractile function assessed by echocardiography. Abnormalities of the conduction system, myocytes disarray, collagen accumulation and increased levels of B-type natriuretic peptide (BNP, procollagen type III α1 (Col3α1 and skeletal muscle actin α1 (Actα1 were detected in the hearts of Lmna(E82K transgenic mice. The LMNA E82K mutation caused mislocation of LMNA in the nucleus and swollen mitochondria with loss of critae, together with the loss of nuclear envelope integrity. Most interestingly, we found that the level of apoptosis was 8.5-fold higher in the Lmna(E82K transgenic mice than that of non-transgenic (NTG mice. In the presence of the LMNA E82K, both of FAS and mitochondrial pathways of apoptosis were activated consistent with the increase of FAS expression, the release of cytochrome c from mitochondria to cytosol and activation of caspase-8, -9 and -3. Our results suggested that the apoptosis, at least for the LMNA E82K or the mutations in the rod region of Lamin A/C, might be an important mechanism causing continuous loss of myocytes and lead to myocardial dysfunction. It could be a potential therapeutic means to suppress and/or prevent inappropriate cardiac cell death in patients carrying LMNA mutation.

  11. Methylation of the promoter region may be involved in tissue-specific expression of the mouse terminal deoxynucleotidyl transferase gene.

    Science.gov (United States)

    Nourrit, F; Coquilleau, I; D'Andon, M F; Rougeon, F; Doyen, N

    1999-09-17

    The terminal deoxynucleotidyl transferase gene (TdT) is expressed in mice only in early B and T lymphoid precursors a few days after birth. Transactivating factors have been shown to contribute to the lymphoid specific expression of TdT, but they do not account entirely for the restriction of its expression to early precursors. Since tissue-specific expression can be modulated by other mechanisms such as DNA methylation and DNA accessibility, we evaluated the methylation pattern of the TdT gene in various expressing and non-expressing tissues and cell lines. Lymphoid and non-lymphoid organs differed significantly in their methylation profiles. In the thymus nearly complete demethylation of a Hha I site in the promoter was associated with high levels of TdT transcription. There was similar, but weaker demethylation of the TdT promoter in bone marrow, possibly due to the presence of a few TdT expressing B cell precursors. The same methylation status was also associated with TdT expression in different B and T cell lines. Kinetic studies of TdT gene demethylation and TdT transcription during thymus development showed that changes in methylation status were also involved in the differential expression of TdT in fetal and adult life. Footprinting experiments revealed the existence of three regions specifically protected by nuclear extracts from TdT -expressing cells. Together, these results suggest that promoter demethylation is involved in the control of TdT expression and implicate new promoter regions in this regulation. Copyright 1999 Academic Press.

  12. Plasma 25-Hydroxyvitamin D Is Related to Protein Signaling Involved in Glucose Homeostasis in a Tissue-Specific Manner

    Directory of Open Access Journals (Sweden)

    Lewan Parker

    2016-10-01

    Full Text Available Vitamin D has been suggested to play a role in glucose metabolism. However, previous findings are contradictory and mechanistic pathways remain unclear. We examined the relationship between plasma 25-hydroxyvitamin D (25(OHD, insulin sensitivity, and insulin signaling in skeletal muscle and adipose tissue. Seventeen healthy adults (Body mass index: 26 ± 4; Age: 30 ± 12 years underwent a hyperinsulinemic-euglycemic clamp, and resting skeletal muscle and adipose tissue biopsies. In this cohort, the plasma 25(OHD concentration was not associated with insulin sensitivity (r = 0.19, p = 0.56. However, higher plasma 25(OHD concentrations correlated with lower phosphorylation of glycogen synthase kinase-3 (GSK-3 αSer21 and βSer9 in skeletal muscle (r = −0.66, p = 0.015 and r = −0.53, p = 0.06, respectively and higher GSK-3 αSer21 and βSer9 phosphorylation in adipose tissue (r = 0.82, p < 0.01 and r = 0.62, p = 0.042, respectively. Furthermore, higher plasma 25(OHD concentrations were associated with greater phosphorylation of both protein kinase-B (AktSer473 (r = 0.78, p < 0.001 and insulin receptor substrate-1 (IRS-1Ser312 (r = 0.71, p = 0.01 in adipose tissue. No associations were found between plasma 25(OHD concentration and IRS-1Tyr612 phosphorylation in skeletal muscle and adipose tissue. The divergent findings between muscle and adipose tissue with regard to the association between 25(OHD and insulin signaling proteins may suggest a tissue-specific interaction with varying effects on glucose homeostasis. Further research is required to elucidate the physiological relevance of 25(OHD in each tissue.

  13. A new method to determine tissue specific tissue factor thrombomodulin activities: endotoxin and particulate air pollution induced disbalance

    Directory of Open Access Journals (Sweden)

    Gerlofs-Nijland Miriam E

    2008-10-01

    Full Text Available Abstract Background Increase in tissue factor (TF and loss in thrombomodulin (TM antigen levels has been described in various inflammatory disorders. The functional consequences of such changes in antigen concentrations in the coagulation balance are, however, not known. This study was designed to assess the consequences of inflammation-driven organ specific functional properties of the procoagulant response. Methods Tissue specific procoagulant activity was assessed by adding tissue homogenate to normal human pool plasma and recording of the thrombin generation curve. The new technique was subsequently applied on two inflammation driven animal models: 1 mouse lipopolysaccharide (LPS induced endotoxemia and 2 spontaneously hypertensive rats exposed to environmental air pollution (particulate matter (PM. Results Addition of lung tissue from untreated animals to human plasma suppressed the endogenous thrombin potential (ETP (175 ± 61 vs. 1437 ± 112 nM.min for control. This inhibitory effect was due to TM, because a it was absent in protein C deficient plasma and b lungs from TMpro/pro mice allowed full thrombin generation (ETP: 1686 ± 209 nM.min. The inhibitory effect of TM was lost after LPS administration to mice, which induced TF activity in lungs of C57Bl/6 mice as well as increased the ETP (941 ± 523 vs. 194 ± 159 nM.min for control. Another pro-inflammatory stimulus, PM dose-dependently increased TF in the lungs of spontaneously hypertensive rats at 4 and 48 hours after PM exposure. The ETP increased up to 48 hours at the highest concentration of PM (1441 ± 289 nM.min vs. saline: 164 ± 64 nM.min, p Conclusion Inflammation associated procoagulant effects in tissues are dependent on variations in activity of the TF-TM balance. The application of these novel organ specific functional assays is a useful tool to monitor inflammation-driven shifts in the coagulation balance within animal or human tissues.

  14. Tissue-Specific Transcript Profiling for ABC Transporters in the Sequestering Larvae of the Phytophagous Leaf Beetle Chrysomela populi

    Science.gov (United States)

    Gretscher, René R.; Groth, Marco; Boland, Wilhelm; Burse, Antje

    2014-01-01

    Background Insects evolved ingenious adaptations to use extraordinary food sources. Particularly, the diet of herbivores enriched with noxious plant secondary metabolites requires detoxification mechanisms. Sequestration, which involves the uptake, transfer, and concentration of occasionally modified phytochemicals into specialized tissues or hemolymph, is one of the most successful detoxification strategies found in most insect orders. Due to the ability of ATP-binding cassette (ABC) carriers to transport a wide range of molecules including phytochemicals and xenobiotics, it is highly likely that they play a role in this sequestration process. To shed light on the role of ABC proteins in sequestration, we describe an inventory of putative ABC transporters in various tissues in the sequestering juvenile poplar leaf beetle, Chrysomela populi. Results In the transcriptome of C. populi, we predicted 65 ABC transporters. To link the proteins with a possible function, we performed comparative phylogenetic analyses with ABC transporters of other insects and of humans. While tissue-specific profiling of each ABC transporter subfamily suggests that ABCB, C and G influence the plant metabolite absorption in the gut, ABCC with 14 members is the preferred subfamily responsible for the excretion of these metabolites via Malpighian tubules. Moreover, salicin, which is sequestered from poplar plants, is translocated into the defensive glands for further deterrent production. In these glands and among all identified ABC transporters, an exceptionally high transcript level was observed only for Cpabc35 (Cpmrp). RNAi revealed the deficiency of other ABC pumps to compensate the function of CpABC35, demonstrating its key role during sequestration. Conclusion We provide the first comprehensive phylogenetic study of the ABC family in a phytophagous beetle species. RNA-seq data from different larval tissues propose the importance of ABC pumps to achieve a homeostasis of plant

  15. Tissue-specific transcript profiling for ABC transporters in the sequestering larvae of the phytophagous leaf beetle Chrysomela populi.

    Directory of Open Access Journals (Sweden)

    Anja S Strauss

    Full Text Available Insects evolved ingenious adaptations to use extraordinary food sources. Particularly, the diet of herbivores enriched with noxious plant secondary metabolites requires detoxification mechanisms. Sequestration, which involves the uptake, transfer, and concentration of occasionally modified phytochemicals into specialized tissues or hemolymph, is one of the most successful detoxification strategies found in most insect orders. Due to the ability of ATP-binding cassette (ABC carriers to transport a wide range of molecules including phytochemicals and xenobiotics, it is highly likely that they play a role in this sequestration process. To shed light on the role of ABC proteins in sequestration, we describe an inventory of putative ABC transporters in various tissues in the sequestering juvenile poplar leaf beetle, Chrysomela populi.In the transcriptome of C. populi, we predicted 65 ABC transporters. To link the proteins with a possible function, we performed comparative phylogenetic analyses with ABC transporters of other insects and of humans. While tissue-specific profiling of each ABC transporter subfamily suggests that ABCB, C and G influence the plant metabolite absorption in the gut, ABCC with 14 members is the preferred subfamily responsible for the excretion of these metabolites via Malpighian tubules. Moreover, salicin, which is sequestered from poplar plants, is translocated into the defensive glands for further deterrent production. In these glands and among all identified ABC transporters, an exceptionally high transcript level was observed only for Cpabc35 (Cpmrp. RNAi revealed the deficiency of other ABC pumps to compensate the function of CpABC35, demonstrating its key role during sequestration.We provide the first comprehensive phylogenetic study of the ABC family in a phytophagous beetle species. RNA-seq data from different larval tissues propose the importance of ABC pumps to achieve a homeostasis of plant-derived compounds and

  16. Tissue-specific transcript profiling for ABC transporters in the sequestering larvae of the phytophagous leaf beetle Chrysomela populi.

    Science.gov (United States)

    Strauss, Anja S; Wang, Ding; Stock, Magdalena; Gretscher, René R; Groth, Marco; Boland, Wilhelm; Burse, Antje

    2014-01-01

    Insects evolved ingenious adaptations to use extraordinary food sources. Particularly, the diet of herbivores enriched with noxious plant secondary metabolites requires detoxification mechanisms. Sequestration, which involves the uptake, transfer, and concentration of occasionally modified phytochemicals into specialized tissues or hemolymph, is one of the most successful detoxification strategies found in most insect orders. Due to the ability of ATP-binding cassette (ABC) carriers to transport a wide range of molecules including phytochemicals and xenobiotics, it is highly likely that they play a role in this sequestration process. To shed light on the role of ABC proteins in sequestration, we describe an inventory of putative ABC transporters in various tissues in the sequestering juvenile poplar leaf beetle, Chrysomela populi. In the transcriptome of C. populi, we predicted 65 ABC transporters. To link the proteins with a possible function, we performed comparative phylogenetic analyses with ABC transporters of other insects and of humans. While tissue-specific profiling of each ABC transporter subfamily suggests that ABCB, C and G influence the plant metabolite absorption in the gut, ABCC with 14 members is the preferred subfamily responsible for the excretion of these metabolites via Malpighian tubules. Moreover, salicin, which is sequestered from poplar plants, is translocated into the defensive glands for further deterrent production. In these glands and among all identified ABC transporters, an exceptionally high transcript level was observed only for Cpabc35 (Cpmrp). RNAi revealed the deficiency of other ABC pumps to compensate the function of CpABC35, demonstrating its key role during sequestration. We provide the first comprehensive phylogenetic study of the ABC family in a phytophagous beetle species. RNA-seq data from different larval tissues propose the importance of ABC pumps to achieve a homeostasis of plant-derived compounds and offer a basis for

  17. Tissue-specific regulation of CXCL9/10/11 chemokines in keratinocytes: Implications for oral inflammatory disease.

    Directory of Open Access Journals (Sweden)

    Alison Marshall

    Full Text Available The IFN-γ-inducible chemokines CXCL9, CXCL10, and CXCL11 play a key role in many inflammatory conditions, particularly those mediated by T cells. Therefore, the production of these chemokines in peripheral tissues could be instrumental in the pathophysiology of tissue-specific immunological diseases such as oral lichen planus (OLP. In the present study, we assessed the production of keratinocyte-derived CXCL9/10/11 under basal and inflammatory conditions and investigated whether these chemokines were involved in the pathogenesis of OLP. We used semi-quantitative PCR, ELISA, chemotaxis assays, and fluorescence-activated cell sorting (FACS to assess the expression and functional role of CXCL9/10/11 in oral keratinocytes (three strains of normal human oral keratinocytes (NHOK, and the H357 oral cancer cell line in the presence or absence of IFN-γ. CXCL9/10/11 were also assessed in tissues from normal patients and those with oral lichen planus (OLP. The time course study in oral keratinocytes treated with IFN-γ showed that expression of CXCL9/10/11 chemokines was significantly enhanced by IFN-γ in a time-dependent manner. In particular, CXCL10, a prominent chemokine that was overexpressed by IFN-γ-stimulated NHOK, was able to effectively recruit CD4 lymphocytes, mainly CD4+CD45RA- cells. Significantly higher levels of CXCL9/10/11 were found in tissues from patients with OLP compared to normal oral mucosa. Taken together, the results demonstrate that normal oral keratinocytes produce chemotactic molecules that mediate T cell recruitment. This study furthers understanding of chemokine production in oral keratinocytes and their role in the pathophysiology of oral mucosa, with particular relevance to OLP.

  18. Endogenous collagen peptide activation of CD1d-restricted NKT cells ameliorates tissue-specific inflammation in mice.

    Science.gov (United States)

    Liu, Yawei; Teige, Anna; Mondoc, Emma; Ibrahim, Saleh; Holmdahl, Rikard; Issazadeh-Navikas, Shohreh

    2011-01-01

    NKT cells in the mouse recognize antigen in the context of the MHC class I-like molecule CD1d and play an important role in peripheral tolerance and protection against autoimmune and other diseases. NKT cells are usually activated by CD1d-presented lipid antigens. However, peptide recognition in the context of CD1 has also been documented, although no self-peptide ligands have been reported to date. Here, we have identified an endogenous peptide that is presented by CD1d to activate mouse NKT cells. This peptide, the immunodominant epitope from mouse collagen type II (mCII707-721), was not associated with either MHC class I or II. Activation of CD1d-restricted mCII707-721-specific NKT cells was induced via TCR signaling and classical costimulation. In addition, mCII707-721-specific NKT cells induced T cell death through Fas/FasL, in an IL-17A-independent fashion. Moreover, mCII707-721-specific NKT cells suppressed a range of in vivo inflammatory conditions, including delayed-type hypersensitivity, antigen-induced airway inflammation, collagen-induced arthritis, and EAE, which were all ameliorated by mCII707-721 vaccination. The findings presented here offer new insight into the intrinsic roles of NKT cells in health and disease. Given the results, endogenous collagen peptide activators of NKT cells may offer promise as novel therapeutics in tissue-specific autoimmune and inflammatory diseases.

  19. Tissue-specific increases in 11beta-hydroxysteroid dehydrogenase type 1 in normal weight postmenopausal women.

    Directory of Open Access Journals (Sweden)

    Therése Andersson

    Full Text Available With age and menopause there is a shift in adipose distribution from gluteo-femoral to abdominal depots in women. Associated with this redistribution of fat are increased risks of type 2 diabetes and cardiovascular disease. Glucocorticoids influence body composition, and 11beta-hydroxysteroid dehydrogenase type 1 (11betaHSD1 which converts inert cortisone to active cortisol is a putative key mediator of metabolic complications in obesity. Increased 11betaHSD1 in adipose tissue may contribute to postmenopausal central obesity. We hypothesized that tissue-specific 11betaHSD1 gene expression and activity are up-regulated in the older, postmenopausal women compared to young, premenopausal women. Twenty-three pre- and 23 postmenopausal, healthy, normal weight women were recruited. The participants underwent a urine collection, a subcutaneous adipose tissue biopsy and the hepatic 11betaHSD1 activity was estimated by the serum cortisol response after an oral dose of cortisone. Urinary (5alpha-tetrahydrocortisol+5beta-tetrahydrocortisol/tetrahydrocortisone ratios were higher in postmenopausal women versus premenopausal women in luteal phase (P<0.05, indicating an increased whole-body 11betaHSD1 activity. Postmenopausal women had higher 11betaHSD1 gene expression in subcutaneous fat (P<0.05. Hepatic first pass conversion of oral cortisone to cortisol was also increased in postmenopausal women versus premenopausal women in follicular phase of the menstrual cycle (P<0.01, at 30 min post cortisone ingestion, suggesting higher hepatic 11betaHSD1 activity. In conclusion, our results indicate that postmenopausal normal weight women have increased 11betaHSD1 activity in adipose tissue and liver. This may contribute to metabolic dysfunctions with menopause and ageing in women.

  20. Kinetic analysis of the effects of target structure on siRNA efficiency

    Science.gov (United States)

    Chen, Jiawen; Zhang, Wenbing

    2012-12-01

    RNAi efficiency for target cleavage and protein expression is related to the target structure. Considering the RNA-induced silencing complex (RISC) as a multiple turnover enzyme, we investigated the effect of target mRNA structure on siRNA efficiency with kinetic analysis. The 4-step model was used to study the target cleavage kinetic process: hybridization nucleation at an accessible target site, RISC-mRNA hybrid elongation along with mRNA target structure melting, target cleavage, and enzyme reactivation. At this model, the terms accounting for the target accessibility, stability, and the seed and the nucleation site effects are all included. The results are in good agreement with that of experiments which show different arguments about the structure effects on siRNA efficiency. It shows that the siRNA efficiency is influenced by the integrated factors of target's accessibility, stability, and the seed effects. To study the off-target effects, a simple model of one siRNA binding to two mRNA targets was designed. By using this model, the possibility for diminishing the off-target effects by the concentration of siRNA was discussed.

  1. Bioinformatic analysis to discover putative drug targets against ...

    African Journals Online (AJOL)

    /

    2012-01-26

    Jan 26, 2012 ... JVIRTUAL GEL. GELBANK was available from the NCBI FTP server. This website incorporates only completed genomes and information pertinent to 2-DE. Link is available at www.gelbank.anl.gov. JVirGel is a software for the simulation and analysis of proteomics data (http://www.jvirgel.de/). The Java TM.

  2. Meta-analysis of targeted small-group reading interventions.

    Science.gov (United States)

    Hall, Matthew S; Burns, Matthew K

    2018-02-01

    Small-group reading interventions are commonly used in schools but the components that make them effective are still debated or unknown. The current study meta-analyzed 26 small-group reading intervention studies that resulted in 27 effect sizes. Findings suggested a moderate overall effect for small-group reading interventions (weighted g=0.54). Interventions were more effective if they were targeted to a specific skill (g=0.65), then as part of a comprehensive intervention program that addressed multiple skills (g=0.35). There was a small correlation between intervention effects and group size (r=0.21) and duration (r=0.11). Small-group interventions led to a larger median effect size (g=0.64) for elementary-aged students than for those in middle or high school (g=0.20), but the two confidence intervals overlapped. Implications for research and practice are discussed. Copyright © 2017 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.

  3. Integrative Analysis of CRISPR/Cas9 Target Sites in the Human HBB Gene

    Directory of Open Access Journals (Sweden)

    Yumei Luo

    2015-01-01

    Full Text Available Recently, the clustered regularly interspaced short palindromic repeats (CRISPR system has emerged as a powerful customizable artificial nuclease to facilitate precise genetic correction for tissue regeneration and isogenic disease modeling. However, previous studies reported substantial off-target activities of CRISPR system in human cells, and the enormous putative off-target sites are labor-intensive to be validated experimentally, thus motivating bioinformatics methods for rational design of CRISPR system and prediction of its potential off-target effects. Here, we describe an integrative analytical process to identify specific CRISPR target sites in the human β-globin gene (HBB and predict their off-target effects. Our method includes off-target analysis in both coding and noncoding regions, which was neglected by previous studies. It was found that the CRISPR target sites in the introns have fewer off-target sites in the coding regions than those in the exons. Remarkably, target sites containing certain transcriptional factor motif have enriched binding sites of relevant transcriptional factor in their off-target sets. We also found that the intron sites have fewer SNPs, which leads to less variation of CRISPR efficiency in different individuals during clinical applications. Our studies provide a standard analytical procedure to select specific CRISPR targets for genetic correction.

  4. An Intergenic Region Shared by At4g35985 and At4g35987 in Arabidopsis thaliana Is a Tissue Specific and Stress Inducible Bidirectional Promoter Analyzed in Transgenic Arabidopsis and Tobacco Plants

    Science.gov (United States)

    Banerjee, Joydeep; Sahoo, Dipak Kumar; Dey, Nrisingha; Houtz, Robert L.; Maiti, Indu Bhushan

    2013-01-01

    On chromosome 4 in the Arabidopsis genome, two neighboring genes (calmodulin methyl transferase At4g35987 and senescence associated gene At4g35985) are located in a head-to-head divergent orientation sharing a putative bidirectional promoter. This 1258 bp intergenic region contains a number of environmental stress responsive and tissue specific cis-regulatory elements. Transcript analysis of At4g35985 and At4g35987 genes by quantitative real time PCR showed tissue specific and stress inducible expression profiles. We tested the bidirectional promoter-function of the intergenic region shared by the divergent genes At4g35985 and At4g35987 using two reporter genes (GFP and GUS) in both orientations in transient tobacco protoplast and Agro-infiltration assays, as well as in stably transformed transgenic Arabidopsis and tobacco plants. In transient assays with GFP and GUS reporter genes the At4g35985 promoter (P85) showed stronger expression (about 3.5 fold) compared to the At4g35987 promoter (P87). The tissue specific as well as stress responsive functional nature of the bidirectional promoter was evaluated in independent transgenic Arabidopsis and tobacco lines. Expression of P85 activity was detected in the midrib of leaves, leaf trichomes, apical meristemic regions, throughout the root, lateral roots and flowers. The expression of P87 was observed in leaf-tip, hydathodes, apical meristem, root tips, emerging lateral root tips, root stele region and in floral tissues. The bidirectional promoter in both orientations shows differential up-regulation (2.5 to 3 fold) under salt stress. Use of such regulatory elements of bidirectional promoters showing spatial and stress inducible promoter-functions in heterologous system might be an important tool for plant biotechnology and gene stacking applications. PMID:24260266

  5. Tissue-Specific Transcriptome and Hormonal Regulation of Pollinated and Parthenocarpic Fig (Ficus carica L. Fruit Suggest that Fruit Ripening is Coordinated by the Reproductive Part of the Syconium

    Directory of Open Access Journals (Sweden)

    Yogev Rosianski

    2016-11-01

    Full Text Available In the unconventional climacteric fig (Ficus carica fruit, pollinated and parthenocarpic fruit of the same genotype exhibit different ripening characteristics. Integrative comparative analyses of tissue-specific transcript and of hormone levels during fruit repining from pollinated vs. parthenocarpic fig fruit were employed to unravel the similarities and differences in their regulatory processes during fruit repining. Assembling tissue-specific transcripts into 147,000 transcripts with 53,000 annotated genes provided new insights into the spatial distribution of many classes of regulatory and structural genes, including those related to color, taste and aroma, storage, protein degradation, seeds and embryos, chlorophyll, and hormones. Comparison of the pollinated and parthenocarpic tissues during fruit ripening showed differential gene expression, especially in the fruit inflorescence. The distinct physiological green phase II and ripening phase III differed significantly in their gene-transcript patterns in both pulp and inflorescence tissues. Gas chromatographic analysis of whole fruits enabled the first determination of ripening-related hormone levels from pollinated and non-pollinated figs. Ethylene and auxin both increased during fruit ripening, irrespective of pollination, whereas no production of active gibberellins or cytokinins was found in parthenocarpic or pollinated ripening fruit. Tissue-specific transcriptome revealed apparent different metabolic gene patterns for ethylene, auxin and ABA in pollinated vs. parthenocarpic fruit, mostly in the fruit inflorescence. Our results demonstrate that the production of abscisic acid (ABA, non-active ABA–GE conjugate and non-active indoleacetic acid (IAA–Asp conjugate in pollinated fruits is much higher than in parthenocarpic fruits. We suggest that fruit ripening is coordinated by the reproductive part of the syconium and the differences in ABA production between pollinated and

  6. Tissue-Specific Transcriptome and Hormonal Regulation of Pollinated and Parthenocarpic Fig (Ficus caricaL.) Fruit Suggest that Fruit Ripening Is Coordinated by the Reproductive Part of the Syconium.

    Science.gov (United States)

    Rosianski, Yogev; Doron-Faigenboim, Adi; Freiman, Zohar E; Lama, Kumar; Milo-Cochavi, Shira; Dahan, Yardena; Kerem, Zohar; Flaishman, Moshe A

    2016-01-01

    In the unconventional climacteric fig ( Ficus carica ) fruit, pollinated and parthenocarpic fruit of the same genotype exhibit different ripening characteristics. Integrative comparative analyses of tissue-specific transcript and of hormone levels during fruit repining from pollinated vs. parthenocarpic fig fruit were employed to unravel the similarities and differences in their regulatory processes during fruit repining. Assembling tissue-specific transcripts into 147,000 transcripts with 53,000 annotated genes provided new insights into the spatial distribution of many classes of regulatory and structural genes, including those related to color, taste and aroma, storage, protein degradation, seeds and embryos, chlorophyll, and hormones. Comparison of the pollinated and parthenocarpic tissues during fruit ripening showed differential gene expression, especially in the fruit inflorescence. The distinct physiological green phase II and ripening phase III differed significantly in their gene-transcript patterns in both pulp and inflorescence tissues. Gas chromatographic analysis of whole fruits enabled the first determination of ripening-related hormone levels from pollinated and non-pollinated figs. Ethylene and auxin both increased during fruit ripening, irrespective of pollination, whereas no production of active gibberellins or cytokinins was found in parthenocarpic or pollinated ripening fruit. Tissue-specific transcriptome revealed apparent different metabolic gene patterns for ethylene, auxin and ABA in pollinated vs. parthenocarpic fruit, mostly in the fruit inflorescence. Our results demonstrate that the production of abscisic acid (ABA), non-active ABA-GE conjugate and non-active indoleacetic acid (IAA)-Asp conjugate in pollinated fruits is much higher than in parthenocarpic fruits. We suggest that fruit ripening is coordinated by the reproductive part of the syconium and the differences in ABA production between pollinated and parthenocarpic fig fruit

  7. Tissue-Specific Transcriptome and Hormonal Regulation of Pollinated and Parthenocarpic Fig (Ficus carica L.) Fruit Suggest that Fruit Ripening Is Coordinated by the Reproductive Part of the Syconium

    Science.gov (United States)

    Rosianski, Yogev; Doron-Faigenboim, Adi; Freiman, Zohar E.; Lama, Kumar; Milo-Cochavi, Shira; Dahan, Yardena; Kerem, Zohar; Flaishman, Moshe A.

    2016-01-01

    In the unconventional climacteric fig (Ficus carica) fruit, pollinated and parthenocarpic fruit of the same genotype exhibit different ripening characteristics. Integrative comparative analyses of tissue-specific transcript and of hormone levels during fruit repining from pollinated vs. parthenocarpic fig fruit were employed to unravel the similarities and differences in their regulatory processes during fruit repining. Assembling tissue-specific transcripts into 147,000 transcripts with 53,000 annotated genes provided new insights into the spatial distribution of many classes of regulatory and structural genes, including those related to color, taste and aroma, storage, protein degradation, seeds and embryos, chlorophyll, and hormones. Comparison of the pollinated and parthenocarpic tissues during fruit ripening showed differential gene expression, especially in the fruit inflorescence. The distinct physiological green phase II and ripening phase III differed significantly in their gene-transcript patterns in both pulp and inflorescence tissues. Gas chromatographic analysis of whole fruits enabled the first determination of ripening-related hormone levels from pollinated and non-pollinated figs. Ethylene and auxin both increased during fruit ripening, irrespective of pollination, whereas no production of active gibberellins or cytokinins was found in parthenocarpic or pollinated ripening fruit. Tissue-specific transcriptome revealed apparent different metabolic gene patterns for ethylene, auxin and ABA in pollinated vs. parthenocarpic fruit, mostly in the fruit inflorescence. Our results demonstrate that the production of abscisic acid (ABA), non-active ABA–GE conjugate and non-active indoleacetic acid (IAA)–Asp conjugate in pollinated fruits is much higher than in parthenocarpic fruits. We suggest that fruit ripening is coordinated by the reproductive part of the syconium and the differences in ABA production between pollinated and parthenocarpic fig fruit

  8. An intergenic region shared by At4g35985 and At4g35987 in Arabidopsis thaliana is a tissue specific and stress inducible bidirectional promoter analyzed in transgenic arabidopsis and tobacco plants.

    Directory of Open Access Journals (Sweden)

    Joydeep Banerjee

    Full Text Available On chromosome 4 in the Arabidopsis genome, two neighboring genes (calmodulin methyl transferase At4g35987 and senescence associated gene At4g35985 are located in a head-to-head divergent orientation sharing a putative bidirectional promoter. This 1258 bp intergenic region contains a number of environmental stress responsive and tissue specific cis-regulatory elements. Transcript analysis of At4g35985 and At4g35987 genes by quantitative real time PCR showed tissue specific and stress inducible expression profiles. We tested the bidirectional promoter-function of the intergenic region shared by the divergent genes At4g35985 and At4g35987 using two reporter genes (GFP and GUS in both orientations in transient tobacco protoplast and Agro-infiltration assays, as well as in stably transformed transgenic Arabidopsis and tobacco plants. In transient assays with GFP and GUS reporter genes the At4g35985 promoter (P85 showed stronger expression (about 3.5 fold compared to the At4g35987 promoter (P87. The tissue specific as well as stress responsive functional nature of the bidirectional promoter was evaluated in independent transgenic Arabidopsis and tobacco lines. Expression of P85 activity was detected in the midrib of leaves, leaf trichomes, apical meristemic regions, throughout the root, lateral roots and flowers. The expression of P87 was observed in leaf-tip, hydathodes, apical meristem, root tips, emerging lateral root tips, root stele region and in floral tissues. The bidirectional promoter in both orientations shows differential up-regulation (2.5 to 3 fold under salt stress. Use of such regulatory elements of bidirectional promoters showing spatial and stress inducible promoter-functions in heterologous system might be an important tool for plant biotechnology and gene stacking applications.

  9. Comparative analysis reveals dynamic changes in miRNAs and their targets and expression during somatic embryogenesis in longan (Dimocarpus longan Lour..

    Directory of Open Access Journals (Sweden)

    Yuling Lin

    Full Text Available Somatic embryogenesis (SE, which resembles zygotic embryogenesis, is an essential component of the process of plant cell differentiation and embryo development. Although microRNAs (miRNAs are important regulators of many plant develop- mental processes, their roles in SE have not been thoroughly investigated. In this study, we used deep-sequencing, computational, and qPCR methods to identify, profile, and describe conserved and novel miRNAs involved in longan (Dimocarpus longan SE. A total of 643 conserved and 29 novel miRNAs (including star strands from more than 169 miRNA families were identified in longan embryogenic tissue using Solexa sequencing. By combining computational and degradome sequencing approaches, we were able to predict 2063 targets of 272 miRNAs and verify 862 targets of 181 miRNAs. Target annotation revealed that the putative targets were involved in a broad variety of biological processes, including plant metabolism, signal transduction, and stimulus response. Analysis of stage- and tissue-specific expressions of 20 conserved and 4 novel miRNAs indicated their possible roles in longan SE. These miRNAs were dlo-miR156 family members and dlo-miR166c* associated with early embryonic culture developmental stages; dlo-miR26, dlo-miR160a, and families dlo-miR159, dlo-miR390, and dlo-miR398b related to heart-shaped and torpedo- shaped embryo formation; dlo-miR4a, dlo-miR24, dlo-miR167a, dlo-miR168a*, dlo-miR397a, dlo-miR398b.1, dlo-miR398b.2, dlo-miR808 and dlo-miR5077 involved in cotyledonary embryonic development; and dlo-miR17 and dlo-miR2089*-1 that have regulatory roles during longan SE. In addition, dlo-miR167a, dlo-miR808, and dlo-miR5077 may be required for mature embryo formation. This study is the first reported investigation of longan SE involving large-scale cloning, characterization, and expression profiling of miRNAs and their targets. The reported results contribute to our knowledge of somatic embryo miRNAs and

  10. MTO1 mediates tissue specificity of OXPHOS defects via tRNA modification and translation optimization, which can be bypassed by dietary intervention

    Science.gov (United States)

    Tischner, Christin; Hofer, Annette; Wulff, Veronika; Stepek, Joanna; Dumitru, Iulia; Becker, Lore; Haack, Tobias; Kremer, Laura; Datta, Alexandre N.; Sperl, Wolfgang; Floss, Thomas; Wurst, Wolfgang; Chrzanowska-Lightowlers, Zofia; De Angelis, Martin Hrabe; Klopstock, Thomas; Prokisch, Holger; Wenz, Tina

    2015-01-01

    Mitochondrial diseases often exhibit tissue-specific pathologies, but this phenomenon is poorly understood. Here we present regulation of mitochondrial translation by the Mitochondrial Translation Optimization Factor 1, MTO1, as a novel player in this scenario. We demonstrate that MTO1 mediates tRNA modification and controls mitochondrial translation rate in a highly tissue-specific manner associated with tissue-specific OXPHOS defects. Activation of mitochondrial proteases, aberrant translation products, as well as defects in OXPHOS complex assembly observed in MTO1 deficient mice further imply that MTO1 impacts translation fidelity. In our mouse model, MTO1-related OXPHOS deficiency can be bypassed by feeding a ketogenic diet. This therapeutic intervention is independent of the MTO1-mediated tRNA modification and involves balancing of mitochondrial and cellular secondary stress responses. Our results thereby establish mammalian MTO1 as a novel factor in the tissue-specific regulation of OXPHOS and fine tuning of mitochondrial translation accuracy. PMID:25552653

  11. Bipartite recognition of DNA by TCF/Pangolin is remarkably flexible and contributes to transcriptional responsiveness and tissue specificity of wingless signaling.

    Directory of Open Access Journals (Sweden)

    Hilary C Archbold

    2014-09-01

    Full Text Available The T-cell factor (TCF family of transcription factors are major mediators of Wnt/β-catenin signaling in metazoans. All TCFs contain a High Mobility Group (HMG domain that possesses specific DNA binding activity. In addition, many TCFs contain a second DNA binding domain, the C-clamp, which binds to DNA motifs referred to as Helper sites. While HMG and Helper sites are both important for the activation of several Wnt dependent cis-regulatory modules (W-CRMs, the rules of what constitutes a functional HMG-Helper site pair are unknown. In this report, we employed a combination of in vitro binding, reporter gene analysis and bioinformatics to address this question, using the Drosophila family member TCF/Pangolin (TCF/Pan as a model. We found that while there were constraints for the orientation and spacing of HMG-Helper pairs, the presence of a Helper site near a HMG site in any orientation increased binding and transcriptional response, with some orientations displaying tissue-specific patterns. We found that altering an HMG-Helper site pair from a sub-optimal to optimal orientation/spacing dramatically increased the responsiveness of a W-CRM in several fly tissues. In addition, we used the knowledge gained to bioinformatically identify two novel W-CRMs, one that was activated by Wnt/β-catenin signaling in the prothoracic gland, a tissue not previously connected to this pathway. In sum, this work extends the importance of Helper sites in fly W-CRMs and suggests that the type of HMG-Helper pair is a major factor in setting the threshold for Wnt activation and tissue-responsiveness.

  12. Post-mortem stability of RNA in skeletal muscle and adipose tissue and the tissue-specific expression of myostatin, perilipin and associated factors in the horse.

    Directory of Open Access Journals (Sweden)

    Philippa K Morrison

    Full Text Available Obesity, a major concern for equine welfare, is highly prevalent in the leisure horse population. Skeletal-muscle and adipose tissues are important determinants of maintenance energy requirements. The myostatin and perilipin pathways play key roles in the regulation of muscle mass and lipolysis respectively and have both been associated with obesity predisposition in other mammalian species. High quality samples, suitable for molecular biology, are an essential prerequisite for detailed investigations of gene and protein expression. Hence, this study has evaluated a the post-mortem stability of RNA extracted from skeletal-muscle and adipose-tissues collected under commercial conditions and b the tissue-specific presence of myostatin, the moystatin receptor (activin receptor IIB, ActRIIB, follistatin and perilipin, genes and proteins across a range of equine tissues. Objectives were addressed using tissues from 7 Thoroughbred horses presented for slaughter at a commercial abattoir; a samples were collected at 7 time-points from Masseter muscle and perirenal adipose from 5 minutes to 6 hours post-mortem. Extracted RN was appraised by Optical Density analysis and agarose-gel electrophoresis. b Quantitative real time PCR and Western Blotting were used to evaluate gene and protein expression in anatomically-defined samples collected from 17 tissues (6 organs, 4 skeletal muscles and 7 discrete adipose depots. The results indicate that, under the present collection conditions, intact, good quality RNA could be extracted from skeletal-muscle for up to 2 hours post-mortem. However, RNA from adipose tissue may be more susceptible to degradation/contamination and samples should be collected no later than 30 minutes post-mortem. The data also show that myostatin and ActRIIB genes and proteins were almost exclusively expressed in skeletal muscle. The follistatin gene showed a more diverse gene expression profile, with expression evident in several organs

  13. Tissue-specific expression of aryl hydrocarbon receptor and putative developmental regulatory modules in Baltic salmon yolk-sac fry

    International Nuclear Information System (INIS)

    Vuori, Kristiina A.; Nordlund, Eija; Kallio, Jenny; Salakoski, Tapio; Nikinmaa, Mikko

    2008-01-01

    The aryl hydrocarbon receptor (AhR) is an ancient protein that is conserved in vertebrates and invertebrates, indicating its important function throughout evolution. AhR has been studied largely because of its role in toxicology-gene expression via AhR is induced by many aromatic hydrocarbons in mammals. Recently, however, it has become clear that AhR is involved in various aspects of development such as cell proliferation and differentiation, and cell motility and migration. The mechanisms by which AhR regulates these various functions remain poorly understood. Across-species comparative studies of AhR in invertebrates, non-mammalian vertebrates and mammals may help to reveal the multiple functions of AhR. Here, we have studied AhR during larval development of Baltic salmon (Salmon salar). Our results indicate that AhR protein is expressed in nervous system, liver and muscle tissues. We also present putative regulatory modules and module-matching genes, produced by chromatin immunoprecipitation (ChIP) cloning and in silico analysis, which may be associated with evolutionarily conserved functions of AhR during development. For example, the module NFKB-AHRR-CREB found from salmon ChIP sequences is present in human ULK3 (regulating formation of granule cell axons in mouse and axon outgrowth in Caernohabditis elegans) and SRGAP1 (GTPase-activating protein involved in the Slit/Robo pathway) promoters. We suggest that AhR may have an evolutionarily conserved role in neuronal development and nerve cell targeting, and in Wnt signaling pathway

  14. Tissue-specific expression of aryl hydrocarbon receptor and putative developmental regulatory modules in Baltic salmon yolk-sac fry

    Energy Technology Data Exchange (ETDEWEB)

    Vuori, Kristiina A. [Centre of Excellence in Evolutionary Genetics and Physiology, Department of Biology, University of Turku, FI-20014 Turku (Finland)], E-mail: kristiina.vuori@utu.fi; Nordlund, Eija [Department of Information Technology, University of Turku, and Turku Centre for Computer Science (TUCS), FI-20014 Turku (Finland); Kallio, Jenny [Centre of Excellence in Evolutionary Genetics and Physiology, Department of Biology, University of Turku, FI-20014 Turku (Finland); Salakoski, Tapio [Department of Information Technology, University of Turku, and Turku Centre for Computer Science (TUCS), FI-20014 Turku (Finland); Nikinmaa, Mikko [Centre of Excellence in Evolutionary Genetics and Physiology, Department of Biology, University of Turku, FI-20014 Turku (Finland)

    2008-04-08

    The aryl hydrocarbon receptor (AhR) is an ancient protein that is conserved in vertebrates and invertebrates, indicating its important function throughout evolution. AhR has been studied largely because of its role in toxicology-gene expression via AhR is induced by many aromatic hydrocarbons in mammals. Recently, however, it has become clear that AhR is involved in various aspects of development such as cell proliferation and differentiation, and cell motility and migration. The mechanisms by which AhR regulates these various functions remain poorly understood. Across-species comparative studies of AhR in invertebrates, non-mammalian vertebrates and mammals may help to reveal the multiple functions of AhR. Here, we have studied AhR during larval development of Baltic salmon (Salmon salar). Our results indicate that AhR protein is expressed in nervous system, liver and muscle tissues. We also present putative regulatory modules and module-matching genes, produced by chromatin immunoprecipitation (ChIP) cloning and in silico analysis, which may be associated with evolutionarily conserved functions of AhR during development. For example, the module NFKB-AHRR-CREB found from salmon ChIP sequences is present in human ULK3 (regulating formation of granule cell axons in mouse and axon outgrowth in Caernohabditis elegans) and SRGAP1 (GTPase-activating protein involved in the Slit/Robo pathway) promoters. We suggest that AhR may have an evolutionarily conserved role in neuronal development and nerve cell targeting, and in Wnt signaling pathway.

  15. Mining tissue specificity, gene connectivity and disease association to reveal a set of genes that modify the action of disease causing genes

    Directory of Open Access Journals (Sweden)

    Reverter Antonio

    2008-09-01

    Full Text Available Abstract Background The tissue specificity of gene expression has been linked to a number of significant outcomes including level of expression, and differential rates of polymorphism, evolution and disease association. Recent studies have also shown the importance of exploring differential gene connectivity and sequence conservation in the identification of disease-associated genes. However, no study relates gene interactions with tissue specificity and disease association. Methods We adopted an a priori approach making as few assumptions as possible to analyse the interplay among gene-gene interactions with tissue specificity and its subsequent likelihood of association with disease. We mined three large datasets comprising expression data drawn from massively parallel signature sequencing across 32 tissues, describing a set of 55,606 true positive interactions for 7,197 genes, and microarray expression results generated during the profiling of systemic inflammation, from which 126,543 interactions among 7,090 genes were reported. Results Amongst the myriad of complex relationships identified between expression, disease, connectivity and tissue specificity, some interesting patterns emerged. These include elevated rates of expression and network connectivity in housekeeping and disease-associated tissue-specific genes. We found that disease-associated genes are more likely to show tissue specific expression and most frequently interact with other disease genes. Using the thresholds defined in these observations, we develop a guilt-by-association algorithm and discover a group of 112 non-disease annotated genes that predominantly interact with disease-associated genes, impacting on disease outcomes. Conclusion We conclude that parameters such as tissue specificity and network connectivity can be used in combination to identify a group of genes, not previously confirmed as disease causing, that are involved in interactions with disease causing

  16. Target detection in SAR images via radiometric multi-resolution analysis

    Science.gov (United States)

    Hu, Jingwen; Xia, Gui-Song; Sun, Hong

    2013-10-01

    This paper presents a target detection method in synthetic aperture radar (SAR) images with radiometric multiresolution analysis (RMA). The idea is that target saliency can be efficiently computed by comparing the statistics of targets and those of the local background around them. In order to compute reliable statistics of targets, which usually involve a small number of pixels, RMA is adopted. The RMA preprocessing method performs well in stabilizing the statistical characteristics of SAR images. It can effectively restrain the speckle noise while keep the statistical characteristics of the original image. Based on the computed target saliency, adaptive decision thresholds are got by using the constant false alarm rate (CFAR) target detection framework. Our experiments on real SAR images show that the proposed method can achieve better performance compared with the traditional cell average-constant false alarm rate (CA-CFAR) method.

  17. Beyond typing and grading: target analysis in individualized therapy as a new challenge for tumour pathology.

    Science.gov (United States)

    Kreipe, Hans H; von Wasielewski, Reinhard

    2007-01-01

    In order to bring about its beneficial effects in oncology, targeted therapy depends on accurate target analysis. Whether cells of a tumour will be sensitive to a specific treatment is predicted by the detection of appropriate targets in cancer tissue by immunohistochemistry or molecular methods. In most instances this is performed by histopathologists. Reliability and reproducibility of tissue-based target analysis in histopathology require novel measures of quality assurance by internal and external controls. As a model for external quality assurance in targeted therapy an annual inter-laboratory trial has been set up in Germany applying tissue arrays with up to 60 mammary cancer samples which are tested by participants for expression of HER2/neu and steroid hormone receptors.

  18. Analysis of drug adversiting targeted to health professionals

    Directory of Open Access Journals (Sweden)

    Marcela Campos Esqueff Abdalla

    2017-08-01

    Full Text Available The advertising of medicines is the dissemination of the product by the pharmaceutical industry, with emphasis on brand, aiming to promote their prescription and/or purchase. This practice must comply with the legal provisions in effect determined by Brazilian National Surveillance Agency. The present work aimed to analyze advertisements of medicines offered by the industry to health professionals. The capture of advertisements covered physician offices of various specialties, public and private hospitals and magazines directed at health professionals. The analysis of the collected parts involved the verification of legibility and viewing of information required, as well as the compliance with the health legislation that regulates the promotion and advertising of medicines in Brazil – agency’s resolution n. 96/2008. The results showed that no piece meets the health legislation in full. Most industries employs strategies that hinder access to restricted information of use of the medicine, as contra-indications, for example, constituting an obstacle to rational use. It was also observed the presence of indications other than those approved by the agency and use indication for different age groups in the specified product registration. It is obvious the need for a new model controller and more rigid regulator that prioritize above all particular interests, a major importance, that is the society. This must be protected from false advertising and abusive, promoting the rational use of medicines.

  19. Drug target mining and analysis of the Chinese tree shrew for pharmacological testing.

    Directory of Open Access Journals (Sweden)

    Feng Zhao

    Full Text Available The discovery of new drugs requires the development of improved animal models for drug testing. The Chinese tree shrew is considered to be a realistic candidate model. To assess the potential of the Chinese tree shrew for pharmacological testing, we performed drug target prediction and analysis on genomic and transcriptomic scales. Using our pipeline, 3,482 proteins were predicted to be drug targets. Of these predicted targets, 446 and 1,049 proteins with the highest rank and total scores, respectively, included homologs of targets for cancer chemotherapy, depression, age-related decline and cardiovascular disease. Based on comparative analyses, more than half of drug target proteins identified from the tree shrew genome were shown to be higher similarity to human targets than in the mouse. Target validation also demonstrated that the constitutive expression of the proteinase-activated receptors of tree shrew platelets is similar to that of human platelets but differs from that of mouse platelets. We developed an effective pipeline and search strategy for drug target prediction and the evaluation of model-based target identification for drug testing. This work provides useful information for future studies of the Chinese tree shrew as a source of novel targets for drug discovery research.

  20. Sub-chronic inhalation of lead oxide nanoparticles revealed their broad distribution and tissue-specific subcellular localization in target organs

    Czech Academy of Sciences Publication Activity Database

    Dumková, J.; Smutná, Tereza; Vrlíková, Lucie; Le Coustumer, P.; Večeřa, Zbyněk; Dočekal, Bohumil; Mikuška, Pavel; Čapka, Lukáš; Fictum, P.; Hampl, A.; Buchtová, Marcela

    2017-01-01

    Roč. 14, č. 1 (2017), č. článku 55. ISSN 1743-8977 R&D Projects: GA ČR(CZ) GAP503/11/2315; GA ČR(CZ) GBP503/12/G147 Institutional support: RVO:67985904 ; RVO:68081715 Keywords : nanoparticles * lead oxide * electron microscopy * toxicity * inhalation Subject RIV: FP - Other Medical Disciplines; CB - Analytical Chemistry, Separation (UIACH-O) OBOR OECD: Toxicology; Analytical chemistry (UIACH-O) Impact factor: 8.577, year: 2016

  1. Whole-Genome Thermodynamic Analysis Reduces siRNA Off-Target Effects

    Science.gov (United States)

    Chen, Xi; Liu, Peng; Chou, Hui-Hsien

    2013-01-01

    Small interfering RNAs (siRNAs) are important tools for knocking down targeted genes, and have been widely applied to biological and biomedical research. To design siRNAs, two important aspects must be considered: the potency in knocking down target genes and the off-target effect on any nontarget genes. Although many studies have produced useful tools to design potent siRNAs, off-target prevention has mostly been delegated to sequence-level alignment tools such as BLAST. We hypothesize that whole-genome thermodynamic analysis can identify potential off-targets with higher precision and help us avoid siRNAs that may have strong off-target effects. To validate this hypothesis, two siRNA sets were designed to target three human genes IDH1, ITPR2 and TRIM28. They were selected from the output of two popular siRNA design tools, siDirect and siDesign. Both siRNA design tools have incorporated sequence-level screening to avoid off-targets, thus their output is believed to be optimal. However, one of the sets we tested has off-target genes predicted by Picky, a whole-genome thermodynamic analysis tool. Picky can identify off-target genes that may hybridize to a siRNA within a user-specified melting temperature range. Our experiments validated that some off-target genes predicted by Picky can indeed be inhibited by siRNAs. Similar experiments were performed using commercially available siRNAs and a few off-target genes were also found to be inhibited as predicted by Picky. In summary, we demonstrate that whole-genome thermodynamic analysis can identify off-target genes that are missed in sequence-level screening. Because Picky prediction is deterministic according to thermodynamics, if a siRNA candidate has no Picky predicted off-targets, it is unlikely to cause off-target effects. Therefore, we recommend including Picky as an additional screening step in siRNA design. PMID:23484018

  2. Impact of tissue specific parameters on the predition of the biological effectiveness for treatment planning in ion beam therapy

    Energy Technology Data Exchange (ETDEWEB)

    Gruen, Rebecca Antonia

    2014-06-03

    Treatment planning in ion beam therapy requires a reliable estimation of the relative biological effectiveness (RBE) of the irradiated tissue. For the pilot project at GSI Helmholtzzentrum fuer Schwerionenforschung GmbH and at other European ion beam therapy centers RBE prediction is based on a biophysical model, the Local Effect Model (LEM). The model version in use, LEM I, is optimized to give a reliable estimation of RBE in the target volume for carbon ion irradiation. However, systematic deviations are observed for the entrance channel of carbon ions and in general for lighter ions. Thus, the LEM has been continuously developed to improve accuracy. The recent version LEM IV has proven to better describe in-vitro cell experiments. Thus, for the clinical application of LEM IV it is of interest to analyze potential differences compared to LEM I under treatment-like conditions. The systematic analysis presented in this work is aiming at the comparison of RBE-weighted doses resulting from different approaches and model versions for protons and carbon ions. This will facilitate the assessment of consequences for clinical application and the interpretation of clinical results from different institutions. In the course of this thesis it has been shown that the RBE-weighted doses predicted on the basis of LEM IV for typical situations representing chordoma treatments differ on average by less than 10 % to those based on LEM I and thus also allow a consistent interpretation of the clinical results. At Japanese ion beam therapy centers the RBE is estimated using their clinical experience from neutron therapy in combination with in-vitro measurements for carbon ions (HIMAC approach). The methods presented in this work allow direct comparison of the HIMAC approach and the LEM and thus of the clinical results obtained at Japanese and European ion beam therapy centers. Furthermore, the sensitivity of the RBE on the model parameters was evaluated. Among all parameters the

  3. Impact of tissue specific parameters on the predition of the biological effectiveness for treatment planning in ion beam therapy

    International Nuclear Information System (INIS)

    Gruen, Rebecca Antonia

    2014-01-01

    Treatment planning in ion beam therapy requires a reliable estimation of the relative biological effectiveness (RBE) of the irradiated tissue. For the pilot project at GSI Helmholtzzentrum fuer Schwerionenforschung GmbH and at other European ion beam therapy centers RBE prediction is based on a biophysical model, the Local Effect Model (LEM). The model version in use, LEM I, is optimized to give a reliable estimation of RBE in the target volume for carbon ion irradiation. However, systematic deviations are observed for the entrance channel of carbon ions and in general for lighter ions. Thus, the LEM has been continuously developed to improve accuracy. The recent version LEM IV has proven to better describe in-vitro cell experiments. Thus, for the clinical application of LEM IV it is of interest to analyze potential differences compared to LEM I under treatment-like conditions. The systematic analysis presented in this work is aiming at the comparison of RBE-weighted doses resulting from different approaches and model versions for protons and carbon ions. This will facilitate the assessment of consequences for clinical application and the interpretation of clinical results from different institutions. In the course of this thesis it has been shown that the RBE-weighted doses predicted on the basis of LEM IV for typical situations representing chordoma treatments differ on average by less than 10 % to those based on LEM I and thus also allow a consistent interpretation of the clinical results. At Japanese ion beam therapy centers the RBE is estimated using their clinical experience from neutron therapy in combination with in-vitro measurements for carbon ions (HIMAC approach). The methods presented in this work allow direct comparison of the HIMAC approach and the LEM and thus of the clinical results obtained at Japanese and European ion beam therapy centers. Furthermore, the sensitivity of the RBE on the model parameters was evaluated. Among all parameters the

  4. Transcriptome Analysis of Targeted Mouse Mutations Reveals the Topography of Local Changes in Gene Expression.

    Directory of Open Access Journals (Sweden)

    David B West

    2016-02-01

    Full Text Available The unintended consequences of gene targeting in mouse models have not been thoroughly studied and a more systematic analysis is needed to understand the frequency and characteristics of off-target effects. Using RNA-seq, we evaluated targeted and neighboring gene expression in tissues from 44 homozygous mutants compared with C57BL/6N control mice. Two allele types were evaluated: 15 targeted trap mutations (TRAP; and 29 deletion alleles (DEL, usually a deletion between the translational start and the 3' UTR. Both targeting strategies insert a bacterial beta-galactosidase reporter (LacZ and a neomycin resistance selection cassette. Evaluating transcription of genes in +/- 500 kb of flanking DNA around the targeted gene, we found up-regulated genes more frequently around DEL compared with TRAP alleles, however the frequency of alleles with local down-regulated genes flanking DEL and TRAP targets was similar. Down-regulated genes around both DEL and TRAP targets were found at a higher frequency than expected from a genome-wide survey. However, only around DEL targets were up-regulated genes found with a significantly higher frequency compared with genome-wide sampling. Transcriptome analysis confirms targeting in 97% of DEL alleles, but in only 47% of TRAP alleles probably due to non-functional splice variants, and some splicing around the gene trap. Local effects on gene expression are likely due to a number of factors including compensatory regulation, loss or disruption of intragenic regulatory elements, the exogenous promoter in the neo selection cassette, removal of insulating DNA in the DEL mutants, and local silencing due to disruption of normal chromatin organization or presence of exogenous DNA. An understanding of local position effects is important for understanding and interpreting any phenotype attributed to targeted gene mutations, or to spontaneous indels.

  5. Comparative analysis of predicted plastid-targeted proteomes of sequenced higher plant genomes.

    Directory of Open Access Journals (Sweden)

    Scott Schaeffer

    Full Text Available Plastids are actively involved in numerous plant processes critical to growth, development and adaptation. They play a primary role in photosynthesis, pigment and monoterpene synthesis, gravity sensing, starch and fatty acid synthesis, as well as oil, and protein storage. We applied two complementary methods to analyze the recently published apple genome (Malus × domestica to identify putative plastid-targeted proteins, the first using TargetP and the second using a custom workflow utilizing a set of predictive programs. Apple shares roughly 40% of its 10,492 putative plastid-targeted proteins with that of the Arabidopsis (Arabidopsis thaliana plastid-targeted proteome as identified by the Chloroplast 2010 project and ∼57% of its entire proteome with Arabidopsis. This suggests that the plastid-targeted proteomes between apple and Arabidopsis are different, and interestingly alludes to the presence of differential targeting of homologs between the two species. Co-expression analysis of 2,224 genes encoding putative plastid-targeted apple proteins suggests that they play a role in plant developmental and intermediary metabolism. Further, an inter-specific comparison of Arabidopsis, Prunus persica (Peach, Malus × domestica (Apple, Populus trichocarpa (Black cottonwood, Fragaria vesca (Woodland Strawberry, Solanum lycopersicum (Tomato and Vitis vinifera (Grapevine also identified a large number of novel species-specific plastid-targeted proteins. This analysis also revealed the presence of alternatively targeted homologs across species. Two separate analyses revealed that a small subset of proteins, one representing 289 protein clusters and the other 737 unique protein sequences, are conserved between seven plastid-targeted angiosperm proteomes. Majority of the novel proteins were annotated to play roles in stress response, transport, catabolic processes, and cellular component organization. Our results suggest that the current state of

  6. Spatial analysis of ecosystem service relationships to improve targeting of payments for hydrological services.

    Science.gov (United States)

    Mokondoko, Pierre; Manson, Robert H; Ricketts, Taylor H; Geissert, Daniel

    2018-01-01

    Payment for hydrological services (PHS) are popular tools for conserving ecosystems and their water-related services. However, improving the spatial targeting and impacts of PHS, as well as their ability to foster synergies with other ecosystem services (ES), remain challenging. We aimed at using spatial analyses to evaluate the targeting performance of México's National PHS program in central Veracruz. We quantified the effectiveness of areas targeted for PHS in actually covering areas of high HS provision and social priority during 2003-2013. First, we quantified provisioning and spatial distributions of two target (water yield and soil retention), and one non-target ES (carbon storage) using InVEST. Subsequently, pairwise relationships among ES were quantified by using spatial correlation and overlap analyses. Finally, we evaluated targeting by: (i) prioritizing areas of individual and overlapping ES; (ii) quantifying spatial co-occurrences of these priority areas with those targeted by PHS; (iii) evaluating the extent to which PHS directly contribute to HS delivery; and (iv), testing if PHS targeted areas disproportionately covered areas with high ecological and social priority. We found that modelled priority areas exhibited non-random distributions and distinct spatial patterns. Our results show significant pairwise correlations between all ES suggesting synergistic relationships. However, our analysis showed a significantly lower overlap than expected and thus significant mismatches between PHS targeted areas and all types of priority areas. These findings suggest that the targeting of areas with high HS provisioning and social priority by Mexico's PHS program could be improved significantly. This study underscores: (1) the importance of using maps of HS provisioning as main targeting criteria in PHS design to channel payments towards areas that require future conservation, and (2) the need for future research that helps balance ecological and socioeconomic

  7. An assessment of independent component analysis for detection of military targets from hyperspectral images

    Science.gov (United States)

    Tiwari, K. C.; Arora, M. K.; Singh, D.

    2011-10-01

    Hyperspectral data acquired over hundreds of narrow contiguous wavelength bands are extremely suitable for target detection due to their high spectral resolution. Though spectral response of every material is expected to be unique, but in practice, it exhibits variations, which is known as spectral variability. Most target detection algorithms depend on spectral modelling using a priori available target spectra In practice, target spectra is, however, seldom available a priori. Independent component analysis (ICA) is a new evolving technique that aims at finding out components which are statistically independent or as independent as possible. The technique therefore has the potential of being used for target detection applications. A assessment of target detection from hyperspectral images using ICA and other algorithms based on spectral modelling may be of immense interest, since ICA does not require a priori target information. The aim of this paper is, thus, to assess the potential of ICA based algorithm vis a vis other prevailing algorithms for military target detection. Four spectral matching algorithms namely Orthogonal Subspace Projection (OSP), Constrained Energy Minimisation (CEM), Spectral Angle Mapper (SAM) and Spectral Correlation Mapper (SCM), and four anomaly detection algorithms namely OSP anomaly detector (OSPAD), Reed-Xiaoli anomaly detector (RXD), Uniform Target Detector (UTD) and a combination of Reed-Xiaoli anomaly detector and Uniform Target Detector (RXD-UTD) were considered. The experiments were conducted using a set of synthetic and AVIRIS hyperspectral images containing aircrafts as military targets. A comparison of true positive and false positive rates of target detections obtained from ICA and other algorithms plotted on a receiver operating curves (ROC) space indicates the superior performance of the ICA over other algorithms.

  8. Sentiment analysis enhancement with target variable in Kumar’s Algorithm

    Science.gov (United States)

    Arman, A. A.; Kawi, A. B.; Hurriyati, R.

    2016-04-01

    Sentiment analysis (also known as opinion mining) refers to the use of text analysis and computational linguistics to identify and extract subjective information in source materials. Sentiment analysis is widely applied to reviews discussion that is being talked in social media for many purposes, ranging from marketing, customer service, or public opinion of public policy. One of the popular algorithm for Sentiment Analysis implementation is Kumar algorithm that developed by Kumar and Sebastian. Kumar algorithm can identify the sentiment score of the statement, sentence or tweet, but cannot determine the relationship of the object or target related to the sentiment being analysed. This research proposed solution for that challenge by adding additional component that represent object or target to the existing algorithm (Kumar algorithm). The result of this research is a modified algorithm that can give sentiment score based on a given object or target.

  9. Analysis of the Neutron Generator and Target for the LSDTS System

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chang Je; Lee, Yong Deok; Song, Jae Hoon; Song, Kee Chan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-11-15

    A preliminary analysis was performed based on the literatures and the patents for the neutron generators and targets for the lead slowing down time spectrometer (LSDTS) system. It was found that local neutron generator did not exhibit enough neutron intensity such as 1E+12 n/s, which is a minimum requirement for the LSDTS system to overcome curium backgrounds. However, a neutron generator implemented with an electron accelerator may provide a higher intensity around 1E+13 n/s and it is required to investigate further including a detail analysis. In addition to the neutron generator, a study on target was performed with the Monte Carlo simulation. In the study, an optimal design of target was suggested to provide a high neutron yield and a better thermal resistance. The suggested target consists several cylindrical plates with a certain cooling gap, which have increasing thickness and increasing radius.

  10. Analysis of the Neutron Generator and Target for the LSDTS System

    International Nuclear Information System (INIS)

    Park, Chang Je; Lee, Yong Deok; Song, Jae Hoon; Song, Kee Chan

    2008-11-01

    A preliminary analysis was performed based on the literatures and the patents for the neutron generators and targets for the lead slowing down time spectrometer (LSDTS) system. It was found that local neutron generator did not exhibit enough neutron intensity such as 1E+12 n/s, which is a minimum requirement for the LSDTS system to overcome curium backgrounds. However, a neutron generator implemented with an electron accelerator may provide a higher intensity around 1E+13 n/s and it is required to investigate further including a detail analysis. In addition to the neutron generator, a study on target was performed with the Monte Carlo simulation. In the study, an optimal design of target was suggested to provide a high neutron yield and a better thermal resistance. The suggested target consists several cylindrical plates with a certain cooling gap, which have increasing thickness and increasing radius

  11. Target preparation and neutron activation analysis: a successful story at IRMM

    International Nuclear Information System (INIS)

    Robouch, P.; Arana, G.; Eguskiza, M.; Maguregui, M.I.; Pomme, S.; Ingelbrecht, C.

    2002-01-01

    The main task of a target producer is to make well characterized and homogeneous deposits on specific supports. Alpha and/or gamma spectrometry are traditionally used to monitor the quality of actinide deposits. With the increasing demand for enriched stable isotope targets, other analytical techniques, such as ICP-MS and NAA, are needed. This paper presents the application of neutron activation analysis to quality control of 'thin' targets, 'thicker' neutron dosimeters and 'thick' bronze disks prepared by the Reference Materials Unit at the Institute of Reference Materials and Measurements

  12. Target preparation and neutron activation analysis a successful story at IRMM

    CERN Document Server

    Robouch, P; Eguskiza, M; Maguregui, M I; Pommé, S; Ingelbrecht, C

    2002-01-01

    The main task of a target producer is to make well characterized and homogeneous deposits on specific supports. Alpha and/or gamma spectrometry are traditionally used to monitor the quality of actinide deposits. With the increasing demand for enriched stable isotope targets, other analytical techniques, such as ICP-MS and NAA, are needed. This paper presents the application of neutron activation analysis to quality control of 'thin' targets, 'thicker' neutron dosimeters and 'thick' bronze disks prepared by the Reference Materials Unit at the Institute of Reference Materials and Measurements.

  13. Release of Tissue-specific Proteins into Coronary Perfusate as a Model for Biomarker Discovery in Myocardial Ischemia/Reperfusion Injury

    DEFF Research Database (Denmark)

    Cordwell, Stuart; Edwards, Alistair; Liddy, Kiersten

    2012-01-01

    of 60 min reperfusion following brief, reversible ischemia (15 min; 15I/60R) for comparison with irreversible I/R (60I/60R). Perfusate proteins were separated using two-dimensional gel electrophoresis (2-DE) and identified by mass spectrometry (MS), revealing 26 tissue-specific proteins released during...... reperfusion post-15I. Proteins released during irreversible I/R (60I/60R) were profiled using gel-based (2-DE and one-dimensional gel electrophoresis coupled to liquid chromatography and tandem mass spectrometry; geLC–MS) and gel-free (LC–MS/MS) methods. A total of 192 tissue-specific proteins were identified......Diagnosis of acute coronary syndromes is based on protein biomarkers, such as the cardiac troponins (cTnI/cTnT) and creatine kinase (CK-MB) that are released into the circulation. Biomarker discovery is focused on identifying very low abundance tissue-derived analytes from within albumin...

  14. Multiple POU-binding motifs, recognized by tissue-specific nuclear factors, are important for Dll1 gene expression in neural stem cells

    International Nuclear Information System (INIS)

    Nakayama, Kohzo; Nagase, Kazuko; Tokutake, Yuriko; Koh, Chang-Sung; Hiratochi, Masahiro; Ohkawara, Takeshi; Nakayama, Noriko

    2004-01-01

    We cloned the 5'-flanking region of the mouse homolog of the Delta gene (Dll1) and demonstrated that the sequence between nucleotide position -514 and -484 in the 5'-flanking region of Dll1 played a critical role in the regulation of its tissue-specific expression in neural stem cells (NSCs). Further, we showed that multiple POU-binding motifs, located within this short sequence of 30 bp, were essential for transcriptional activation of Dll1 and also that multiple tissue-specific nuclear factors recognized these POU-binding motifs in various combinations through differentiation of NSCs. Thus, POU-binding factors may play an important role in Dll1 expression in developing NSCs

  15. Malware Analysis: From Large-Scale Data Triage to Targeted Attack Recognition (Dagstuhl Seminar 17281)

    OpenAIRE

    Zennou, Sarah; Debray, Saumya K.; Dullien, Thomas; Lakhothia, Arun

    2018-01-01

    This report summarizes the program and the outcomes of the Dagstuhl Seminar 17281, entitled "Malware Analysis: From Large-Scale Data Triage to Targeted Attack Recognition". The seminar brought together practitioners and researchers from industry and academia to discuss the state-of-the art in the analysis of malware from both a big data perspective and a fine grained analysis. Obfuscation was also considered. The meeting created new links within this very diverse community.

  16. Nuclear microbeam analysis of ICF target material made by GDP technique

    Energy Technology Data Exchange (ETDEWEB)

    Rong, C.; He, X. [Applied Ion Beam Physics Laboratory, Institute of Modern Physics, Department of Nuclear Science and Technology, Fudan University, Shanghai 200433 (China); Meng, J., E-mail: eleanor920@163.com [Research Center of Laser Fusion, CAEP, Mianyang 621000 (China); Gao, D. [Research Center of Laser Fusion, CAEP, Mianyang 621000 (China); Zhang, Y.; Li, X.; Lyu, H.; Zhu, Y. [Applied Ion Beam Physics Laboratory, Institute of Modern Physics, Department of Nuclear Science and Technology, Fudan University, Shanghai 200433 (China); Zheng, Y. [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204 (China); Wang, X. [Applied Ion Beam Physics Laboratory, Institute of Modern Physics, Department of Nuclear Science and Technology, Fudan University, Shanghai 200433 (China); Shen, H., E-mail: haoshen@fudan.edu.cn [Applied Ion Beam Physics Laboratory, Institute of Modern Physics, Department of Nuclear Science and Technology, Fudan University, Shanghai 200433 (China)

    2015-04-01

    Germanium doped carbon–hydrogen polymer (CH) by Glow Discharge Polymer (GDP) technique has become the preferred Inertial Confinement Fusion (ICF) target material. The nondestructive measurement of elements content in the ICF target has become a significant work in recent years. This paper presents the compositional and distributional results of the Germanium doped CH analysis. The Ge doped CH materials as thin film and as hollow sphere were investigated by the Rutherford Backscattering Spectroscopy (RBS) combined with the particle induced X-ray emission (PIXE) and the Elastic Recoil Detection Analysis (ERDA). The samples are thin film with 36 μm thickness and ICF target with 500–2000 μm diameter. The calibration and geometrical arrangement in the analysis of spherical target should be carefully considered in order to acquire accurate results. In the work, the uniformity of the sphere is shown and the ratio of carbon, hydrogen and germanium has been measured. The ratio values are in good agreement with the results obtained by the combustion method. In addition, the difference of the composition from thin film to hollow sphere is also discussed. This work demonstrates that nuclear microbeam analysis is an ideal method to evaluate the ICF target quality.

  17. Genome-Wide Analysis of miRNA targets in Brachypodium and Biomass Energy Crops

    Energy Technology Data Exchange (ETDEWEB)

    Green, Pamela J. [Univ. of Delaware, Newark, DE (United States)

    2015-08-11

    MicroRNAs (miRNAs) contribute to the control of numerous biological processes through the regulation of specific target mRNAs. Although the identities of these targets are essential to elucidate miRNA function, the targets are much more difficult to identify than the small RNAs themselves. Before this work, we pioneered the genome-wide identification of the targets of Arabidopsis miRNAs using an approach called PARE (German et al., Nature Biotech. 2008; Nature Protocols, 2009). Under this project, we applied PARE to Brachypodium distachyon (Brachypodium), a model plant in the Poaceae family, which includes the major food grain and bioenergy crops. Through in-depth global analysis and examination of specific examples, this research greatly expanded our knowledge of miRNAs and target RNAs of Brachypodium. New regulation in response to environmental stress or tissue type was found, and many new miRNAs were discovered. More than 260 targets of new and known miRNAs with PARE sequences at the precise sites of miRNA-guided cleavage were identified and characterized. Combining PARE data with the small RNA data also identified the miRNAs responsible for initiating approximately 500 phased loci, including one of the novel miRNAs. PARE analysis also revealed that differentially expressed miRNAs in the same family guide specific target RNA cleavage in a correspondingly tissue-preferential manner. The project included generation of small RNA and PARE resources for bioenergy crops, to facilitate ongoing discovery of conserved miRNA-target RNA regulation. By associating specific miRNA-target RNA pairs with known physiological functions, the research provides insights about gene regulation in different tissues and in response to environmental stress. This, and release of new PARE and small RNA data sets should contribute basic knowledge to enhance breeding and may suggest new strategies for improvement of biomass energy crops.

  18. Numerical analysis of free surface instabilities in the IFMIF lithium target

    Energy Technology Data Exchange (ETDEWEB)

    Gordeev, S.; Heinzel, V. [Research Centre of Karlsruhe (Germany). Inst. for Reactor Safety; Moeslang, A. [Research Centre of Karlsruhe (Germany). Inst. for Material Research I

    2007-07-01

    The International Fusion Materials Facility (IFMIF) facility uses a high speed (10-20 m/s) Lithium (Li) jet flow as a target for two 40 MeV/125 mA deuteron beams. The major function of the Li target is to provide a stable Li jet for the production of an intense neutron flux. For the understanding the lithium jet behaviour and elimination of the free-surface flow instabilities a detailed analysis of the Li jet flow is necessary. Different kinds of instability mechanisms in the liquid jet flow have been evaluated and classified based on analytical and experimental data. Numerical investigations of the target free surface flow have been performed. Previous numerical investigations have shown in principle the suitability of CFD code Star- CD for the simulation of the Li-target flow. The main objective of this study is detailed numerical analysis of instabilities in the Li-jet flow caused by boundary layer relaxation near the nozzle exit, transition to the turbulence flow and back wall curvature. A number of CFD models are developed to investigate the formation of instabilities on the target surface. Turbulence models are validated on the experimental data. Experimental observations have shown that the change of the nozzle geometry at the outlet such as a slight divergence of the nozzle surfaces or nozzle edge defects causes the flow separation and occurrence of longitudinal periodic structures on the free surface with an amplitude up to 5 mm. Target surface fluctuations of this magnitude can lead to the penetration of the deuteron beam in the target structure and cause the local overheating of the back plat. Analysis of large instabilities in the Li-target flow combined with the heat distribution in lithium depending on the free surface shape is performed in this study. (orig.)

  19. Numerical analysis of free surface instabilities in the IFMIF lithium target

    International Nuclear Information System (INIS)

    Gordeev, S.; Heinzel, V.; Moeslang, A.

    2007-01-01

    The International Fusion Materials Facility (IFMIF) facility uses a high speed (10-20 m/s) Lithium (Li) jet flow as a target for two 40 MeV/125 mA deuteron beams. The major function of the Li target is to provide a stable Li jet for the production of an intense neutron flux. For the understanding the lithium jet behaviour and elimination of the free-surface flow instabilities a detailed analysis of the Li jet flow is necessary. Different kinds of instability mechanisms in the liquid jet flow have been evaluated and classified based on analytical and experimental data. Numerical investigations of the target free surface flow have been performed. Previous numerical investigations have shown in principle the suitability of CFD code Star- CD for the simulation of the Li-target flow. The main objective of this study is detailed numerical analysis of instabilities in the Li-jet flow caused by boundary layer relaxation near the nozzle exit, transition to the turbulence flow and back wall curvature. A number of CFD models are developed to investigate the formation of instabilities on the target surface. Turbulence models are validated on the experimental data. Experimental observations have shown that the change of the nozzle geometry at the outlet such as a slight divergence of the nozzle surfaces or nozzle edge defects causes the flow separation and occurrence of longitudinal periodic structures on the free surface with an amplitude up to 5 mm. Target surface fluctuations of this magnitude can lead to the penetration of the deuteron beam in the target structure and cause the local overheating of the back plat. Analysis of large instabilities in the Li-target flow combined with the heat distribution in lithium depending on the free surface shape is performed in this study. (orig.)

  20. Transient analysis mode participation for modal survey target mode selection using MSC/NASTRAN DMAP

    Science.gov (United States)

    Barnett, Alan R.; Ibrahim, Omar M.; Sullivan, Timothy L.; Goodnight, Thomas W.

    1994-01-01

    Many methods have been developed to aid analysts in identifying component modes which contribute significantly to component responses. These modes, typically targeted for dynamic model correlation via a modal survey, are known as target modes. Most methods used to identify target modes are based on component global dynamic behavior. It is sometimes unclear if these methods identify all modes contributing to responses important to the analyst. These responses are usually those in areas of hardware design concerns. One method used to check the completeness of target mode sets and identify modes contributing significantly to important component responses is mode participation. With this method, the participation of component modes in dynamic responses is quantified. Those modes which have high participation are likely modal survey target modes. Mode participation is most beneficial when it is used with responses from analyses simulating actual flight events. For spacecraft, these responses are generated via a structural dynamic coupled loads analysis. Using MSC/NASTRAN DMAP, a method has been developed for calculating mode participation based on transient coupled loads analysis results. The algorithm has been implemented to be compatible with an existing coupled loads methodology and has been used successfully to develop a set of modal survey target modes.

  1. Transient analysis mode participation for modal survey target mode selection using MSC/NASTRAN DMAP

    Science.gov (United States)

    Barnett, Alan R.; Ibrahim, Omar M.; Sullivan, Timothy L.; Goodnight, Thomas W.

    1994-03-01

    Many methods have been developed to aid analysts in identifying component modes which contribute significantly to component responses. These modes, typically targeted for dynamic model correlation via a modal survey, are known as target modes. Most methods used to identify target modes are based on component global dynamic behavior. It is sometimes unclear if these methods identify all modes contributing to responses important to the analyst. These responses are usually those in areas of hardware design concerns. One method used to check the completeness of target mode sets and identify modes contributing significantly to important component responses is mode participation. With this method, the participation of component modes in dynamic responses is quantified. Those modes which have high participation are likely modal survey target modes. Mode participation is most beneficial when it is used with responses from analyses simulating actual flight events. For spacecraft, these responses are generated via a structural dynamic coupled loads analysis. Using MSC/NASTRAN DMAP, a method has been developed for calculating mode participation based on transient coupled loads analysis results. The algorithm has been implemented to be compatible with an existing coupled loads methodology and has been used successfully to develop a set of modal survey target modes.

  2. Tissue-specific and SRSF1-dependent splicing of fibronectin, a matrix protein that controls host cell invasion

    Science.gov (United States)

    Lopez-Mejia, Isabel Cristina; De Toledo, Marion; Della Seta, Flavio; Fafet, Patrick; Rebouissou, Cosette; Deleuze, Virginie; Blanchard, Jean Marie; Jorgensen, Christian; Tazi, Jamal; Vignais, Marie-Luce

    2013-01-01

    Cell invasion targets specific tissues in physiological placental implantation and pathological metastasis, which raises questions about how this process is controlled. We compare dermis and endometrium capacities to support trophoblast invasion, using matching sets of human primary fibroblasts in a coculture assay with human placental explants. Substituting endometrium, the natural trophoblast target, with dermis dramatically reduces trophoblast interstitial invasion. Our data reveal that endometrium expresses a higher rate of the fibronectin (FN) extra type III domain A+ (EDA+) splicing isoform, which displays stronger matrix incorporation capacity. We demonstrate that the high FN content of the endometrium matrix, and not specifically the EDA domain, supports trophoblast invasion by showing that forced incorporation of plasma FN (EDA–) promotes efficient trophoblast invasion. We further show that the serine/arginine-rich protein serine/arginine-rich splicing factor 1 (SRSF1) is more highly expressed in endometrium and, using RNA interference, that it is involved in the higher EDA exon inclusion rate in endometrium. Our data therefore show a mechanism by which tissues can be distinguished, for their capacity to support invasion, by their different rates of EDA inclusion, linked to their SRSF1 protein levels. In the broader context of cancer pathology, the results suggest that SRSF1 might play a central role not only in the tumor cells, but also in the surrounding stroma. PMID:23966470

  3. TRAC analysis of design basis events for the accelerator production of tritium target/blanket

    International Nuclear Information System (INIS)

    Lin, J.C.; Elson, J.

    1997-01-01

    A two-loop primary cooling system with a residual heat removal system was designed to mitigate the heat generated in the tungsten neutron source rods inside the rungs of the ladders and the shell of the rungs. The Transient Reactor Analysis Code (TRAC) was used to analyze the thermal-hydraulic behavior of the primary cooling system during a pump coastdown transient; a cold-leg, large-break loss-of-coolant accident (LBLOCA); a hot-leg LBLOCA; and a target downcomer LBLOCA. The TRAC analysis results showed that the heat generated in the tungsten neutron source rods can be mitigated by the primary cooling system for the pump coastdown transient and all the LBLOCAs except the target downcomer LBLOCA. For the target downcomer LBLOCA, a cavity flood system is required to fill the cavity with water at a level above the large fixed headers

  4. In Vivo Phosphoproteomics Analysis Reveals the Cardiac Targets of β-Adrenergic Receptor Signaling

    DEFF Research Database (Denmark)

    Lundby, Alicia; Andersen, Martin N; Steffensen, Annette B

    2013-01-01

    -X-X-pS/T), and integrative analysis of sequence motifs and interaction networks suggested that the kinases AMPK (adenosine 5'-monophosphate-activated protein kinase), Akt, and mTOR (mammalian target of rapamycin) mediate βAR signaling, in addition to the well-established pathways mediated by PKA (cyclic adenosine...

  5. Doing Televised Rhetorical Analysis as a Means of Promoting College Awareness in a Target Market.

    Science.gov (United States)

    Schnell, Jim

    This paper describes aspects of doing televised rhetorical analysis as they relate to the promotion of college awareness in a particular target market. Considerations in the paper include variables that most professors encounter in their efforts to address the "service" expectations of their employment and how these variables can be…

  6. Analysis of shots on target and goals scored in soccer matches ...

    African Journals Online (AJOL)

    The aim of this study was to analyse the characteristics and patterns of shots on target and goals scored during the 2012-European Championship. The broadcasted matches were recorded and converted into electronic video files for a computerbased analysis. This quantitative study examined 31 matches of the ...

  7. Analysis of Deregulated microRNAs and Their Target Genes in Gastric Cancer.

    Directory of Open Access Journals (Sweden)

    Simonas Juzėnas

    Full Text Available MicroRNAs (miRNAs are widely studied non-coding RNAs that modulate gene expression. MiRNAs are deregulated in different tumors including gastric cancer (GC and have potential diagnostic and prognostic implications. The aim of our study was to determine miRNA profile in GC tissues, followed by evaluation of deregulated miRNAs in plasma of GC patients. Using available databases and bioinformatics methods we also aimed to evaluate potential target genes of confirmed differentially expressed miRNA and validate these findings in GC tissues.The study included 51 GC patients and 51 controls. Initially, we screened miRNA expression profile in 13 tissue samples of GC and 12 normal gastric tissues with TaqMan low density array (TLDA. In the second stage, differentially expressed miRNAs were validated in a replication cohort using qRT-PCR in tissue and plasma samples. Subsequently, we analyzed potential target genes of deregulated miRNAs using bioinformatics approach, determined their expression in GC tissues and performed correlation analysis with targeting miRNAs.Profiling with TLDA revealed 15 deregulated miRNAs in GC tissues compared to normal gastric mucosa. Replication analysis confirmed that miR-148a-3p, miR-204-5p, miR-223-3p and miR-375 were consistently deregulated in GC tissues. Analysis of GC patients' plasma samples showed significant down-regulation of miR-148a-3p, miR-375 and up-regulation of miR-223-3p compared to healthy subjects. Further, using bioinformatic tools we identified targets of replicated miRNAs and performed disease-associated gene enrichment analysis. Ultimately, we evaluated potential target gene BCL2 and DNMT3B expression by qRT-PCR in GC tissue, which correlated with targeting miRNA expression.Our study revealed miRNA profile in GC tissues and showed that miR-148a-3p, miR-223-3p and miR-375 are deregulated in GC plasma samples, but these circulating miRNAs showed relatively weak diagnostic performance as sole biomarkers

  8. Identifying tissue-specific signal variation in MALDI mass spectrometric imaging by use of an internal standard

    NARCIS (Netherlands)

    Pirman, D.A.; Kiss, A.; Heeren, R.M.A.; Yost, R.A.

    2013-01-01

    Generating analyte-specific distribution maps of compounds in a tissue sample by matrix-assisted laser desorption/ionization (MALDI) mass spectrometric imaging (MSI) has become a useful tool in numerous areas across the biological sciences. Direct analysis of the tissue sample provides MS images of

  9. Clustering of Tissue-Specific Sub-TADs Accompanies the Regulation of HoxA Genes in Developing Limbs

    Science.gov (United States)

    Berlivet, Soizik; Paquette, Denis; Dumouchel, Annie; Langlais, David; Dostie, Josée; Kmita, Marie

    2013-01-01

    HoxA genes exhibit central roles during development and causal mutations have been found in several human syndromes including limb malformation. Despite their importance, information on how these genes are regulated is lacking. Here, we report on the first identification of bona fide transcriptional enhancers controlling HoxA genes in developing limbs and show that these enhancers are grouped into distinct topological domains at the sub-megabase scale (sub-TADs). We provide evidence that target genes and regulatory elements physically interact with each other through contacts between sub-TADs rather than by the formation of discreet “DNA loops”. Interestingly, there is no obvious relationship between the functional domains of the enhancers within the limb and how they are partitioned among the topological domains, suggesting that sub-TAD formation does not rely on enhancer activity. Moreover, we show that suppressing the transcriptional activity of enhancers does not abrogate their contacts with HoxA genes. Based on these data, we propose a model whereby chromatin architecture defines the functional landscapes of enhancers. From an evolutionary standpoint, our data points to the convergent evolution of HoxA and HoxD regulation in the fin-to-limb transition, one of the major morphological innovations in vertebrates. PMID:24385922

  10. Clustering of tissue-specific sub-TADs accompanies the regulation of HoxA genes in developing limbs.

    Directory of Open Access Journals (Sweden)

    Soizik Berlivet

    Full Text Available HoxA genes exhibit central roles during development and causal mutations have been found in several human syndromes including limb malformation. Despite their importance, information on how these genes are regulated is lacking. Here, we report on the first identification of bona fide transcriptional enhancers controlling HoxA genes in developing limbs and show that these enhancers are grouped into distinct topological domains at the sub-megabase scale (sub-TADs. We provide evidence that target genes and regulatory elements physically interact with each other through contacts between sub-TADs rather than by the formation of discreet "DNA loops". Interestingly, there is no obvious relationship between the functional domains of the enhancers within the limb and how they are partitioned among the topological domains, suggesting that sub-TAD formation does not rely on enhancer activity. Moreover, we show that suppressing the transcriptional activity of enhancers does not abrogate their contacts with HoxA genes. Based on these data, we propose a model whereby chromatin architecture defines the functional landscapes of enhancers. From an evolutionary standpoint, our data points to the convergent evolution of HoxA and HoxD regulation in the fin-to-limb transition, one of the major morphological innovations in vertebrates.

  11. Multigenic lentiviral vectors for combined and tissue-specific expression of miRNA- and protein-based antiangiogenic factors

    Directory of Open Access Journals (Sweden)

    Anne Louise Askou

    Full Text Available Lentivirus-based gene delivery vectors carrying multiple gene cassettes are powerful tools in gene transfer studies and gene therapy, allowing coexpression of multiple therapeutic factors and, if desired, fluorescent reporters. Current strategies to express transgenes and microRNA (miRNA clusters from a single vector have certain limitations that affect transgene expression levels and/or vector titers. In this study, we describe a novel vector design that facilitates combined expression of therapeutic RNA- and protein-based antiangiogenic factors as well as a fluorescent reporter from back-to-back RNApolII-driven expression cassettes. This configuration allows effective production of intron-embedded miRNAs that are released upon transduction of target cells. Exploiting such multigenic lentiviral vectors, we demonstrate robust miRNA-directed downregulation of vascular endothelial growth factor (VEGF expression, leading to reduced angiogenesis, and parallel impairment of angiogenic pathways by codelivering the gene encoding pigment epithelium-derived factor (PEDF. Notably, subretinal injections of lentiviral vectors reveal efficient retinal pigment epithelium-specific gene expression driven by the VMD2 promoter, verifying that multigenic lentiviral vectors can be produced with high titers sufficient for in vivo applications. Altogether, our results suggest the potential applicability of combined miRNA- and protein-encoding lentiviral vectors in antiangiogenic gene therapy, including new combination therapies for amelioration of age-related macular degeneration.

  12. Virtual diplomacy: an analysis of the structure of the target audiences

    Directory of Open Access Journals (Sweden)

    V. V. Verbytska

    2016-03-01

    Full Text Available In the context of the global information society the communication processes, especially at the international level, become more important.  The effectiveness of communication depends primarily on its focus, i.e. on defining clearly the target audience which it should focus on. Virtual diplomacy, as a kind of political communication at the international level, is no exception.  The novelty, rapid development and dissemination of this phenomenon require profound analysis and elaboration of effective utilization strategies, including studying its recipients and target audiences. Purpose: identification, structuring and analysis of the recipients of virtual diplomacy as the audiences of international political communication. The study uses such research methods, as system analysis, structural functionalism, dialectics and synergy, comparison, critical analysis. Main results of the research: 1. The study examined the specifics of political communication in the context of the development of the global information society at the international level. 2. It also analyzed the recipients of virtual diplomacy as a kind of political communication at the international level. 3. The study highlighted the key target groups in the global Internet network based on the tasks performed by virtual diplomacy. 4. It proved the effectiveness of cooperation with each target group in the framework of virtual diplomacy. 5. It described the specifics of the work with each target group in the context of virtual diplomacy. Practical implications: The article may be useful for writing scientific theoretical studies, tests, essays and term papers, for designing special courses in universities in the sphere of international relations and international information. It can also be a guide for the authorities carrying out diplomatic activities and international information cooperation. Findings: In the context of the establishment of the global information society political

  13. System for automatic x-ray-image analysis, measurement, and sorting of laser fusion targets

    International Nuclear Information System (INIS)

    Singleton, R.M.; Perkins, D.E.; Willenborg, D.L.

    1980-01-01

    This paper describes the Automatic X-Ray Image Analysis and Sorting (AXIAS) system which is designed to analyze and measure x-ray images of opaque hollow microspheres used as laser fusion targets. The x-ray images are first recorded on a high resolution film plate. The AXIAS system then digitizes and processes the images to accurately measure the target parameters and defects. The primary goals of the AXIAS system are: to provide extremely accurate and rapid measurements, to engineer a practical system for a routine production environment and to furnish the capability of automatically measuring an array of images for sorting and selection

  14. Hot-spot analysis for drug discovery targeting protein-protein interactions.

    Science.gov (United States)

    Rosell, Mireia; Fernández-Recio, Juan

    2018-04-01

    Protein-protein interactions are important for biological processes and pathological situations, and are attractive targets for drug discovery. However, rational drug design targeting protein-protein interactions is still highly challenging. Hot-spot residues are seen as the best option to target such interactions, but their identification requires detailed structural and energetic characterization, which is only available for a tiny fraction of protein interactions. Areas covered: In this review, the authors cover a variety of computational methods that have been reported for the energetic analysis of protein-protein interfaces in search of hot-spots, and the structural modeling of protein-protein complexes by docking. This can help to rationalize the discovery of small-molecule inhibitors of protein-protein interfaces of therapeutic interest. Computational analysis and docking can help to locate the interface, molecular dynamics can be used to find suitable cavities, and hot-spot predictions can focus the search for inhibitors of protein-protein interactions. Expert opinion: A major difficulty for applying rational drug design methods to protein-protein interactions is that in the majority of cases the complex structure is not available. Fortunately, computational docking can complement experimental data. An interesting aspect to explore in the future is the integration of these strategies for targeting PPIs with large-scale mutational analysis.

  15. An analysis of health promotion materials for Dutch truck drivers: Off target and too complex?

    Science.gov (United States)

    Boeijinga, Anniek; Hoeken, Hans; Sanders, José

    2017-01-01

    Despite various health promotion initiatives, unfavorable figures regarding Dutch truck drivers' eating behaviors, exercise behaviors, and absenteeism have not improved. The aim was to obtain a better understanding of the low level of effectiveness of current health interventions for Dutch truck drivers by examining to what extent these are tailored to the target group's particular mindset (focus of content) and health literacy skills (presentation of content). The article analyzes 21 health promotion materials for Dutch truck drivers using a two-step approach: (a) an analysis of the materials' focus, guided by the Health Action Process Approach; and (b) an argumentation analysis, guided by pragma-dialectics. The corpus analysis revealed: (a) a predominant focus on the motivation phase; and (b) in line with the aim of motivating the target group, a consistent use of pragmatic arguments, which were typically presented in an implicit way. The results indicate that existing health promotion materials for Dutch truck drivers are not sufficiently tailored to the target group's mindset and health literacy skills. Recommendations are offered to develop more tailored/effective health interventions targeting this high-risk, underserved occupational group.

  16. TargetVue: Visual Analysis of Anomalous User Behaviors in Online Communication Systems.

    Science.gov (United States)

    Cao, Nan; Shi, Conglei; Lin, Sabrina; Lu, Jie; Lin, Yu-Ru; Lin, Ching-Yung

    2016-01-01

    Users with anomalous behaviors in online communication systems (e.g. email and social medial platforms) are potential threats to society. Automated anomaly detection based on advanced machine learning techniques has been developed to combat this issue; challenges remain, though, due to the difficulty of obtaining proper ground truth for model training and evaluation. Therefore, substantial human judgment on the automated analysis results is often required to better adjust the performance of anomaly detection. Unfortunately, techniques that allow users to understand the analysis results more efficiently, to make a confident judgment about anomalies, and to explore data in their context, are still lacking. In this paper, we propose a novel visual analysis system, TargetVue, which detects anomalous users via an unsupervised learning model and visualizes the behaviors of suspicious users in behavior-rich context through novel visualization designs and multiple coordinated contextual views. Particularly, TargetVue incorporates three new ego-centric glyphs to visually summarize a user's behaviors which effectively present the user's communication activities, features, and social interactions. An efficient layout method is proposed to place these glyphs on a triangle grid, which captures similarities among users and facilitates comparisons of behaviors of different users. We demonstrate the power of TargetVue through its application in a social bot detection challenge using Twitter data, a case study based on email records, and an interview with expert users. Our evaluation shows that TargetVue is beneficial to the detection of users with anomalous communication behaviors.

  17. Design Analysis of SNS Target StationBiological Shielding Monoligh with Proton Power Uprate

    Energy Technology Data Exchange (ETDEWEB)

    Bekar, Kursat B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ibrahim, Ahmad M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-05-01

    This report documents the analysis of the dose rate in the experiment area outside the Spallation Neutron Source (SNS) target station shielding monolith with proton beam energy of 1.3 GeV. The analysis implemented a coupled three dimensional (3D)/two dimensional (2D) approach that used both the Monte Carlo N-Particle Extended (MCNPX) 3D Monte Carlo code and the Discrete Ordinates Transport (DORT) two dimensional deterministic code. The analysis with proton beam energy of 1.3 GeV showed that the dose rate in continuously occupied areas on the lateral surface outside the SNS target station shielding monolith is less than 0.25 mrem/h, which complies with the SNS facility design objective. However, the methods and codes used in this analysis are out of date and unsupported, and the 2D approximation of the target shielding monolith does not accurately represent the geometry. We recommend that this analysis is updated with modern codes and libraries such as ADVANTG or SHIFT. These codes have demonstrated very high efficiency in performing full 3D radiation shielding analyses of similar and even more difficult problems.

  18. An analysis of the dependence of saccadic latency on target position and target characteristics in human subjects

    Directory of Open Access Journals (Sweden)

    Rosenberg Jay R

    2001-09-01

    Full Text Available Abstract Background Predictions from conduction velocity data for primate retinal ganglion cell axons indicate that the conduction time to the lateral geniculate nucleus for stimulation of peripheral retina should be no longer than for stimulation of central retina. On this basis, the latency of saccadic eye movements should not increase for more peripherally located targets. However, previous studies have reported relatively very large increases, which has the implication of a very considerable increase in central processing time for the saccade-generating system. Results In order to resolve this paradox, we have undertaken an extended series of experiments in which saccadic eye movements were recorded by electro-oculography in response to targets presented in the horizontal meridian in normal young subjects. For stationary or moving targets of either normal beam intensity or reduced red intensity, with the direction of gaze either straight ahead with respect to the head or directed eccentrically, the saccadic latency was shown to remain invariant with respect to a wide range of target angular displacements. Conclusions These results indicate that, irrespective of the angular displacement of the target, the direction of gaze or the target intensity, the saccade-generating system operates with a constant generation time.

  19. Tissue-specific production of limonene in Camelina sativa with the Arabidopsis promoters of genes BANYULS and FRUITFULL.

    Science.gov (United States)

    Borghi, Monica; Xie, De-Yu

    2016-02-01

    Arabidopsis promoters of genes BANYULS and FRUITFULL are transcribed in Camelina. They triggered the transcription of limonene synthase and induced higher limonene production in seeds and fruits than CaMV 35S promoter. Camelina sativa (Camelina) is an oilseed crop of relevance for the production of biofuels and the plant has been target of a recent and intense program of genetic manipulation aimed to increase performance, seed yield and to modify the fatty acid composition of the oil. Here, we have explored the performance of two Arabidopsis thaliana (Arabidopsis) promoters in triggering transgene expression in Camelina. The promoters of two genes BANYULS (AtBAN pro ) and FRUITFULL (AtFUL pro ), which are expressed in seed coat and valves of Arabidopsis, respectively, have been chosen to induce the expression of limonene synthase (LS) from Citrus limon. In addition, the constitutive CaMV 35S promoter was utilized to overexpress LS in Camelina . The results of experiments revealed that AtBAN pro and AtFUL pro are actively transcribed in Camelina where they also retain specificity of expression in seeds and valves as previously observed in Arabidopsis. LS induced by AtBAN pro and AtFUL pro leads to higher limonene production in seeds and fruits than when the CaMV 35S was used to trigger the expression. In conclusion, the results of experiments indicate that AtBAN pro and AtFUL pro can be successfully utilized to induce the expression of the transgenes of interest in seeds and fruits of Camelina.

  20. E2a-Pbx1 induces aberrant expression of tissue-specific and developmentally regulated genes when expressed in NIH 3T3 fibroblasts.

    OpenAIRE

    Fu, X; Kamps, M P

    1997-01-01

    The E2a-Pbx1 oncoprotein contains the transactivation domain of E2a joined to the DNA-binding homeodomain (HD) of Pbx1. In mice, E2a-Pbx1 transforms T lymphoblasts and fibroblasts and blocks myeloblast differentiation. Pbx1 and E2a-Pbx1 bind DNA as heterodimers with other HD proteins whose expression is tissue specific. While the transactivation domain of E2a is required for all forms of transformation, DNA binding by the Pbx1 HD is essential for blocking myeloblast differentiation but dispen...

  1. CFD Analysis of the Active Part of the HYPER Spallation Target

    International Nuclear Information System (INIS)

    Nam-il Tak; Chungho Cho; Tae-Yung Song

    2006-01-01

    KAERI (Korea Atomic Energy Research Institute) is developing an accelerator driven system (ADS) named HYPER (HYbrid Power Extraction Reactor) for a transmutation of long-lived nuclear wastes. One of the challenging tasks for the HYPER system is to design a large spallation target having a beam power of 15∼25 MW. The present paper focuses on the thermal-hydraulic performance of the active part of the HYPER target. Computational fluid dynamics (CFD) analysis was performed using a commercial code CFX 5.7.1. Several advanced turbulence models with different grid structures were applied. The CFX results show the significant impact of the turbulence model on the window temperature. It is concluded that experimental verifications are very important for the design of the HYPER target. (authors)

  2. Mapping Long Noncoding RNA Chromatin Occupancy Using Capture Hybridization Analysis of RNA Targets (CHART).

    Science.gov (United States)

    Vance, Keith W

    2017-01-01

    Capture Hybridization Analysis of RNA Targets (CHART) has recently been developed to map the genome-wide binding profile of chromatin-associated RNAs. This protocol uses a small number of 22-28 nucleotide biotinylated antisense oligonucleotides, complementary to regions of the target RNA that are accessible for hybridization, to purify RNAs from a cross-linked chromatin extract. RNA-chromatin complexes are next immobilized on beads, washed, and specifically eluted using RNase H. Associated genomic DNA is then sequenced using high-throughput sequencing technologies and mapped to the genome to identify RNA-chromatin associations on a large scale. CHART-based strategies can be applied to determine the nature and extent of long noncoding RNA (long ncRNA) association with chromatin genome-wide and identify direct long ncRNA transcriptional targets.

  3. TARGETED AND OFF-TARGET (BYSTANDER AND ABSCOPAL) EFFECTS OF RADIATION THERAPY: REDOX MECHANISMS AND RISK-BENEFIT ANALYSIS.

    Science.gov (United States)

    Pouget, Jean-Pierre; Georgakilas, Alexandros G; Ravanat, Jean-Luc

    2018-01-19

    Radiation therapy (from external beams to unsealed and sealed radionuclide sources) takes advantage of the detrimental effects of the clustered production of radicals and reactive oxygen species (ROS). Research has mainly focused on the interaction of radiation with water, which is the major constituent of living beings, and with nuclear DNA, which contains the genetic information. This led to the so-called "target" theory according to which cells have to be hit by ionizing particles to elicit an important biological response, including cell death. In cancer therapy, the Poisson law and linear quadratic mathematical models have been used to describe the probability of hits per cell as a function of the radiation dose. However, in the last twenty years, many studies have shown that radiation generates "danger" signals that propagate from irradiated to non-irradiated cells, leading to bystander and other off-target effects. Like for targeted effects, redox mechanisms play a key role also in off-target effects through transmission of ROS and reactive nitrogen species (RNS), but also of cytokines, ATP and extracellular DNA. Particularly, nuclear factor kappa B is essential for triggering self-sustained production of ROS and RNS, thus making the bystander response similar to inflammation. In some therapeutic situations, this phenomenon is associated with recruitment of immune cells that are involved in distant irradiation effects (called "away-from-target" i.e. abscopal effects). Determining the contribution of targeted and off-target effects in the clinic is still challenging. This has important consequences in radiotherapy, but also possibly in diagnostic procedures and in radiation protection.

  4. Seismic analysis of fuel and target assemblies at a production reactor

    International Nuclear Information System (INIS)

    Braverman, J.I.; Wang, Y.K.

    1991-01-01

    This paper describes the unique modeling and analysis considerations used to assess the seismic adequacy of the fuel and target assemblies in a production reactor at Savannah River Site. This confirmatory analysis was necessary to provide assurance that the reactor can operate safely during a seismic event and be brought to a safe shutdown condition. The plant which was originally designed in the 1950's required to be assessed to more current seismic criteria. The design of the reactor internals and the magnitude of the structural responses enabled the use of a linear elastic dynamic analysis. A seismic analysis was performed using a finite element model consisting of the fuel and target assemblies, reactor tank, and a portion of the concrete structure supporting the reactor tank. The effects of submergence of the fuel and target assemblies in the water contained within the reactor tank can have a significant effect on their seismic response. Thus, the model included hydrodynamic fluid coupling effects between the assemblies and the reactor tank. Fluid coupling mass terms were based on formulations for solid bodies immersed in incompressible and frictionless fluids. The potential effects of gap conditions were also assessed in this evaluation. 5 refs., 6 figs., 1 tab

  5. Identification of FXYD Protein Genes in a Teleost: Tissue-specific Expression and Response to Salinity Change

    DEFF Research Database (Denmark)

    Tipsmark, Christian Kølbæk

    2008-01-01

    identified. Phylogenetic analysis suggests that six isoforms are homologues to the previously identified FXYD2, FXYD5, FXYD6, FXYD7, FXYD8 and FXYD9, while two additional isoforms were found (FXYD11 and FXYD12). Using quantitative PCR, tissue dependent expression of the different isoforms was analyzed......). In osmoregulatory tissues, one isoform was expressed predominantly in gill (FXYD11), one in kidney (FXYD2) and one equally in kidney and intestine (FXYD12). Expression of several FXYD genes in kidney and gill differed between fresh water and seawater salmon suggesting significance during osmoregulatory adaptations....... In addition to identify novel FXYD isoforms, these studies are the first to show the tissue dependence in their expression and modulation by salinity in any teleosts. Key words: Atlantic salmon, Na+,K+-ATPase, Osmoregulation, Salmo salar, QPCR....

  6. Towards understanding the lifespan extension by reduced insulin signaling: bioinformatics analysis of DAF-16/FOXO direct targets in Caenorhabditis elegans.

    Science.gov (United States)

    Li, Yan-Hui; Zhang, Gai-Gai

    2016-04-12

    DAF-16, the C. elegans FOXO transcription factor, is an important determinant in aging and longevity. In this work, we manually curated FOXODB http://lyh.pkmu.cn/foxodb/, a database of FOXO direct targets. It now covers 208 genes. Bioinformatics analysis on 109 DAF-16 direct targets in C. elegans found interesting results. (i) DAF-16 and transcription factor PQM-1 co-regulate some targets. (ii) Seventeen targets directly regulate lifespan. (iii) Four targets are involved in lifespan extension induced by dietary restriction. And (iv) DAF-16 direct targets might play global roles in lifespan regulation.

  7. Four-dimensional targeting error analysis in image-guided radiotherapy

    International Nuclear Information System (INIS)

    Riboldi, M; Baroni, G; Sharp, G C; Chen, G T Y

    2009-01-01

    Image-guided therapy (IGT) involves acquisition and processing of biomedical images to actively guide medical interventions. The proliferation of IGT technologies has been particularly significant in image-guided radiotherapy (IGRT), as a way to increase the tumor targeting accuracy. When IGRT is applied to moving tumors, image guidance becomes challenging, as motion leads to increased uncertainty. Different strategies may be applied to mitigate the effects of motion: each technique is related to a different technological effort and complexity in treatment planning and delivery. The objective comparison of different motion mitigation strategies can be achieved by quantifying the residual uncertainties in tumor targeting, to be detected by means of IGRT technologies. Such quantification requires an extension of targeting error theory to a 4D space, where the 3D tumor trajectory as a function of time measured (4D Targeting Error, 4DTE). Accurate 4DTE analysis can be represented by a motion probability density function, describing the statistical fluctuations of tumor trajectory. We illustrate the application of 4DTE analysis through examples, including weekly variations in tumor trajectory as detected by 4DCT, respiratory gating via external surrogates and real-time tumor tracking.

  8. Analysis of the thermomechanical behavior of the IFMIF bayonet target assembly under design loading scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Bernardi, D., E-mail: davide.bernardi@enea.it [ENEA Brasimone, Camugnano, BO (Italy); Arena, P.; Bongiovì, G.; Di Maio, P.A. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, Palermo (Italy); Frisoni, M. [ENEA Bologna, Via Martiri di Monte Sole 4, Bologna (Italy); Miccichè, G.; Serra, M. [ENEA Brasimone, Camugnano, BO (Italy)

    2015-10-15

    In the framework of the IFMIF Engineering Validation and Engineering Design Activities (IFMIF/EVEDA) phase, ENEA is responsible for the design of the European concept of the IFMIF lithium target system which foresees the possibility to periodically replace only the most irradiated and thus critical component (i.e., the backplate) while continuing to operate the rest of the target for a longer period (the so-called bayonet backplate concept). In this work, the results of the steady state thermomechanical analysis of the IFMIF bayonet target assembly under two different design loading scenarios (a “hot” scenario and a “cold” scenario) are briefly reported highlighting the relevant indications obtained with respect to the fulfillment of the design requirements. In particular, the analyses have shown that in the hot scenario the temperatures reached in the target assembly are within the material acceptable limits while in the cold scenario transition below the ductile to brittle transition temperature (DBTT) cannot be excluded. Moreover, results indicate that the contact between backplate and high flux test module is avoided and that the overall structural integrity of the system is assured in both scenarios. However, stress linearization analysis reveals that ITER Structural Design Criteria for In-vessel Components (SDC-IC) design rules are not always met along the selected paths at backplate middle plane section in the hot scenario, thus suggesting the need of a revision of the backplate design or a change of the operating conditions.

  9. Global analysis of p53-regulated transcription identifies its direct targets and unexpected regulatory mechanisms.

    Science.gov (United States)

    Allen, Mary Ann; Andrysik, Zdenek; Dengler, Veronica L; Mellert, Hestia S; Guarnieri, Anna; Freeman, Justin A; Sullivan, Kelly D; Galbraith, Matthew D; Luo, Xin; Kraus, W Lee; Dowell, Robin D; Espinosa, Joaquin M

    2014-05-27

    The p53 transcription factor is a potent suppressor of tumor growth. We report here an analysis of its direct transcriptional program using Global Run-On sequencing (GRO-seq). Shortly after MDM2 inhibition by Nutlin-3, low levels of p53 rapidly activate ∼200 genes, most of them not previously established as direct targets. This immediate response involves all canonical p53 effector pathways, including apoptosis. Comparative global analysis of RNA synthesis vs steady state levels revealed that microarray profiling fails to identify low abundance transcripts directly activated by p53. Interestingly, p53 represses a subset of its activation targets before MDM2 inhibition. GRO-seq uncovered a plethora of gene-specific regulatory features affecting key survival and apoptotic genes within the p53 network. p53 regulates hundreds of enhancer-derived RNAs. Strikingly, direct p53 targets harbor pre-activated enhancers highly transcribed in p53 null cells. Altogether, these results enable the study of many uncharacterized p53 target genes and unexpected regulatory mechanisms.DOI: http://dx.doi.org/10.7554/eLife.02200.001. Copyright © 2014, Allen et al.

  10. Direct Lymph Node Vaccination of Lentivector/Prostate-Specific Antigen is Safe and Generates Tissue-Specific Responses in Rhesus Macaques

    Directory of Open Access Journals (Sweden)

    Bryan C. Au

    2016-02-01

    Full Text Available Anti-cancer immunotherapy is emerging from a nadir and demonstrating tangible benefits to patients. A variety of approaches are now employed. We are invoking antigen (Ag-specific responses through direct injections of recombinant lentivectors (LVs that encode sequences for tumor-associated antigens into multiple lymph nodes to optimize immune presentation/stimulation. Here we first demonstrate the effectiveness and antigen-specificity of this approach in mice challenged with prostate-specific antigen (PSA-expressing tumor cells. Next we tested the safety and efficacy of this approach in two cohorts of rhesus macaques as a prelude to a clinical trial application. Our vector encodes the cDNA for rhesus macaque PSA and a rhesus macaque cell surface marker to facilitate vector titering and tracking. We utilized two independent injection schemas demarcated by the timing of LV administration. In both cohorts we observed marked tissue-specific responses as measured by clinical evaluations and magnetic resonance imaging of the prostate gland. Tissue-specific responses were sustained for up to six months—the end-point of the study. Control animals immunized against an irrelevant Ag were unaffected. We did not observe vector spread in test or control animals or perturbations of systemic immune parameters. This approach thus offers an “off-the-shelf” anti-cancer vaccine that could be made at large scale and injected into patients—even on an out-patient basis.

  11. Molecular cloning of tissue-specific transcripts of a transketolase-related gene: Implications for the evolution of new vertebrate genes

    Energy Technology Data Exchange (ETDEWEB)

    Coy, J.F.; Duebel, S.; Kioschis, P.; Delius, H.; Poustka, A. [Deutsches Krebsforschungszentrum, Heidelberg (Germany)] [and others

    1996-03-05

    As part of a systematic search for differentially expressed genes, we have isolated a novel transketolase-related gene (TKR) (HGMW-approved symbol TKT), located between the green color vision pigment gene (GCP) and the ABP-280 filamin gene (FLN1) in Xq28. Transcripts encoding tissue-specific protein isoforms could be isolated. Comparison with known transketolases (TK) demonstrated a TKR-specific deletion mutating one thiamine binding site. Genomic sequencing of the TKR gene revealed the presence of a pseudoexon as well as the acquisition of a tissue-specific spliced exon compared to TK. Since it has been postulated that the vertebrate genome arose by two cycles of tetraploidization from a cephalochordate genome, this could represent an example of the modulation of the function of a preexisting transketolase gene by gene duplication. Thiamine defiency is closely involved with two neurological disorders, Beriberi and Wernicke-Korsakoff syndromes, and in both of these conditions TK with altered activity are found. We discuss the possible involvement of TKR in explaining the observed variant transketolase forms. 34 refs., 4 figs., 1 tab.

  12. Tissue-Specific Methylation of Long Interspersed Nucleotide Element-1 of Homo Sapiens (L1Hs) During Human Embryogenesis and Roles in Neural Tube Defects.

    Science.gov (United States)

    Wang, L; Chang, S; Guan, J; Shangguan, S; Lu, X; Wang, Z; Wu, L; Zou, J; Zhao, H; Bao, Y; Qiu, Z; Niu, B; Zhang, T

    2015-01-01

    Epigenetic regulation of long interspersed nucleotide element-1 (LINE-1) retrotransposition events plays crucial roles during early development. Previously we showed that LINE-1 hypomethylation in neuronal tissues is associated with pathogenesis of neural tube defect (NTD). Herein, we further evaluated LINE-1 Homo sapiens (L1Hs) methylation in tissues derived from three germ layers of stillborn NTD fetuses, to define patterns of tissue specific methylation and site-specific hypomethylation at CpG sites within an L1Hs promoter region. Stable, tissue-specific L1Hs methylation patterns throughout three germ layer lineages of the fetus, placenta, and maternal peripheral blood were observed. Samples from maternal peripheral blood exhibited the highest level of L1Hs methylation (64.95%) and that from placenta showed the lowest (26.82%). Between samples from NTDs and controls, decrease in L1Hs methylation was only significant in NTD-affected brain tissue at 7.35%, especially in females (8.98%). L1Hs hypomethylation in NTDs was also associated with a significant increase in expression level of an L1Hs-encoded transcript in females (r = -0.846, p = 0.004). This could be due to genomic DNA instability and alternation in chromatins accessibility resulted from abnormal L1Hs hypomethylation, as showed in this study with HCT-15 cells treated with methylation inhibitor 5-Aza.

  13. Elemental chemical analysis of submerged targets by double-pulse laser-induced breakdown spectroscopy.

    Science.gov (United States)

    De Giacomo, A; Dell'Aglio, M; Casavola, A; Colonna, G; De Pascale, O; Capitelli, M

    2006-05-01

    Double-pulse laser-induced plasma spectroscopy (DP-LIPS) is applied to submerged targets to investigate its feasibility for elemental analysis. The role of experimental parameters, such as inter-pulse delay and detection time, has been discussed in terms of the dynamics of the laser-induced bubble produced by the first pulse and its confinement effect on the plasma produced by the second laser pulse. The analytical performance of this technique applied to targets in a water environment are discussed. The elemental analysis of submerged copper alloys by DP-LIPS has been compared with conventional (single-pulse) LIBS in air. Theoretical investigation of the plasma dynamics in water bubbles and open air has been performed.

  14. Allocating the Fixed Resources and Setting Targets in Integer Data Envelopment Analysis

    Directory of Open Access Journals (Sweden)

    Kobra Gholami

    2013-11-01

    Full Text Available Data envelopment analysis (DEA is a non-parametric approach to evaluate a set of decision making units (DMUs consuming multiple inputs to produce multiple outputs. Formally, DEA use to estimate the efficiency score into the empirical efficient frontier. Also, DEA can be used to allocate resources and set targets for future forecast. The data are continuous in the standard DEA model whereas there are many problems in the real life that data must be integer such as number of employee, machinery, expert and so on. Thus in this paper we propose an approach to allocate fixed resources and set fixed targets with selective integer assumption that is based on an integer data envelopment analysis (IDEA approach for the first time. The major aim in this approach is preserving the efficiency score of DMUs. We use the concept of benchmarking to reach this aim. The numerical example gets to illustrate the applicability of the proposed method.

  15. Salivary gland-specific P. berghei reporter lines enable rapid evaluation of tissue-specific sporozoite loads in mosquitoes.

    Science.gov (United States)

    Ramakrishnan, Chandra; Rademacher, Annika; Soichot, Julien; Costa, Giulia; Waters, Andrew P; Janse, Chris J; Ramesar, Jai; Franke-Fayard, Blandine M; Levashina, Elena A

    2012-01-01

    Malaria is a life-threatening human infectious disease transmitted by mosquitoes. Levels of the salivary gland sporozoites (sgs), the only mosquito stage infectious to a mammalian host, represent an important cumulative index of Plasmodium development within a mosquito. However, current techniques of sgs quantification are laborious and imprecise. Here, transgenic P. berghei reporter lines that produce the green fluorescent protein fused to luciferase (GFP-LUC) specifically in sgs were generated, verified and characterised. Fluorescence microscopy confirmed the sgs stage specificity of expression of the reporter gene. The luciferase activity of the reporter lines was then exploited to establish a simple and fast biochemical assay to evaluate sgs loads in whole mosquitoes. Using this assay we successfully identified differences in sgs loads in mosquitoes silenced for genes that display opposing effects on P. berghei ookinete/oocyst development. It offers a new powerful tool to study infectivity of P. berghei to the mosquito, including analysis of vector-parasite interactions and evaluation of transmission-blocking vaccines.

  16. Salivary gland-specific P. berghei reporter lines enable rapid evaluation of tissue-specific sporozoite loads in mosquitoes.

    Directory of Open Access Journals (Sweden)

    Chandra Ramakrishnan

    Full Text Available Malaria is a life-threatening human infectious disease transmitted by mosquitoes. Levels of the salivary gland sporozoites (sgs, the only mosquito stage infectious to a mammalian host, represent an important cumulative index of Plasmodium development within a mosquito. However, current techniques of sgs quantification are laborious and imprecise. Here, transgenic P. berghei reporter lines that produce the green fluorescent protein fused to luciferase (GFP-LUC specifically in sgs were generated, verified and characterised. Fluorescence microscopy confirmed the sgs stage specificity of expression of the reporter gene. The luciferase activity of the reporter lines was then exploited to establish a simple and fast biochemical assay to evaluate sgs loads in whole mosquitoes. Using this assay we successfully identified differences in sgs loads in mosquitoes silenced for genes that display opposing effects on P. berghei ookinete/oocyst development. It offers a new powerful tool to study infectivity of P. berghei to the mosquito, including analysis of vector-parasite interactions and evaluation of transmission-blocking vaccines.

  17. Production of avian retroviruses and tissue-specific somatic retroviral gene transfer in vivo using the RCAS/TVA system.

    Science.gov (United States)

    von Werder, Alexander; Seidler, Barbara; Schmid, Roland M; Schneider, Günter; Saur, Dieter

    2012-05-24

    Spatiotemporal retroviral gene transfer into specific somatic mammalian cells using the avian RCAS (replication-competent avian sarcoma-leukosis virus long terminal repeat with splice acceptor)/tumor virus A (TVA) system is a versatile tool for performing lineage tracing and gene function analysis in vivo. RCAS retroviruses carrying the subgroup A envelope transduce only genetically engineered mammalian cells that express the cognate avian retroviral receptor TVA. The RCAS/TVA gene delivery system has been successfully used in various different mouse TVA-expression models. This protocol contains a detailed description of the production of high-titer RCAS retroviruses in chicken fibroblasts and the transduction of proliferating TVA-positive somatic mammalian cells in vivo. By taking advantage of the combination of the RCAS/TVA with the 'universal' Cre/loxP system, the protocol can be used in nearly every proliferating cell type in vivo. The protocol takes 4 weeks from transfection of chicken fibroblasts, which act as the host cells for viral production, to the transduction of TVA-transgenic mice.

  18. Influence of sporophore development, damage, storage, and tissue specificity on the enzymic formation of volatiles in mushrooms (Agaricus bisporus).

    Science.gov (United States)

    Combet, Emilie; Henderson, Janey; Eastwood, Daniel C; Burton, Kerry S

    2009-05-13

    The enzymic oxidation of the polyunsaturated fatty acid-linoleic acid leads, in fungi, to the formation of a unique class of nonconjugated hydroperoxides, which are cleaved to form eight-carbon volatiles characteristic of mushroom and fungal flavor. However, the enzymes involved in this biosynthetic pathway, the bioavailability of the fatty acid substrate, and the occurrence of the reaction products (hydroperoxides and eight-carbon volatiles) are not fully understood. This study investigated the lipids, fatty acids, and hydroperoxide levels, as well as eight-carbon volatile variations in the fungal model Agaricus bisporus, according to four parameters: sporophore development, postharvest storage, tissue type, and damage. Eight-carbon volatiles were measured using solid phase microextraction and gas chromatography-mass spectrometry. Tissue disruption had a major impact on the volatile profile, both qualitatively and quantitatively; 3-octanone was identified as the main eight-carbon volatile in whole and sliced sporophore, an observation overlooked in previous studies due to the use of tissue disruption and solvent extraction for analysis. Fatty acid oxidation and eight-carbon volatile emissions decreased with sporophore development and storage, and differed according to tissue type. The release of 1-octen-3-ol and 3-octanone by incubation of sporophore tissue homogenate with free linoleic acid was inhibited by acetylsalicylic acid, providing evidence for the involvement of a heme-dioxygenase in eight-carbon volatile production.

  19. Mouse microsomal triglyceride transfer protein large subunit: cDNA cloning, tissue-specific expression, and chromosomal localization

    Energy Technology Data Exchange (ETDEWEB)

    Nakamuta, Makoto; Chang, Benny Hung-Junn; Hoogeveen, R. [Baylor College of Medicine, Houston, TX (United States)] [and others

    1996-04-15

    Microsomal triglyceride transfer protein (MTP) catalyzes the transfer of triglyceride, cholesteryl ester, and phospholipid between membranes. It is essential for the secretion of apolipoprotein B from the cell. Mutations in MTP are a major cause of abetalipoproteinemia. The mouse is a popular animal model for lipoprotein metabolism. We have cloned and sequenced mouse MTP cDNA. The DNA-deduced amino acid sequence indicates that mouse protein shows 93, 86, and 83% sequence indicates that mouse MTP contains 894 amino acids; the mouse protein shows 93, 86, and 83% sequence identity to the hamster, human, and bovine sequences, respectively. Northern blot analysis indicates that mouse MTP mRNA is expressed at high levels in the small intestine and at substantially lower levels in the liver and that it is not detectable in six other tissues examined. The mouse MTP gene has been localized to the distal region of chromosome 3 by Southern blots of interspecific backcross panels using progeny derived from matings of (C57BL/6J x SPRET/Ei)F1 x SPRET/Ei. Comparison of MTP sequences from human, bovine, hamster, and mouse indicates that the C-terminal region of MTP is better conserved than its N-terminal region. 21 refs., 2 figs.

  20. Simulating Serial-Target Antibacterial Drug Synergies Using Flux Balance Analysis

    DEFF Research Database (Denmark)

    Krueger, Andrew S.; Munck, Christian; Dantas, Gautam

    2016-01-01

    Flux balance analysis (FBA) is an increasingly useful approach for modeling the behavior of metabolic systems. However, standard FBA modeling of genetic knockouts cannot predict drug combination synergies observed between serial metabolic targets, even though such synergies give rise to some...... the possibility for more accurate genome-scale predictions of drug synergies, which can be used to suggest treatments for infections and other diseases....

  1. Methodological Approach to Company Cash Flows Target-Oriented Forecasting Based on Financial Position Analysis

    OpenAIRE

    Sergey Krylov

    2012-01-01

    The article treats a new methodological approach to the company cash flows target-oriented forecasting based on its financial position analysis. The approach is featured to be universal and presumes application of the following techniques developed by the author: financial ratio values correction techniques and correcting cash flows techniques. The financial ratio values correction technique assumes to analyze and forecast company financial position while the correcting cash flows technique i...

  2. Targeting khat or targeting Somalis? A discourse analysis of project evaluations on khat abuse among Somali immigrants in Scandinavia

    Directory of Open Access Journals (Sweden)

    Nordgren Johan

    2015-09-01

    Full Text Available BACKGROUND – In Denmark, Norway and Sweden, the use of the psychoactive plant khat is widely seen as a social and health problem exclusively affecting the Somali immigrant population. Several projects by governmental and municipal bodies and agencies have been initiated to reduce khat use and abuse within this target population.

  3. Ganglioside Profiling of the Human Retina: Comparison with Other Ocular Structures, Brain and Plasma Reveals Tissue Specificities.

    Science.gov (United States)

    Sibille, Estelle; Berdeaux, Olivier; Martine, Lucy; Bron, Alain M; Creuzot-Garcher, Catherine P; He, Zhiguo; Thuret, Gilles; Bretillon, Lionel; Masson, Elodie A Y

    2016-01-01

    Gangliosides make a wide family of glycosphingolipids, highly heterogeneous in both the ceramide moiety and the oligosaccharide chain. While ubiquitously expressed in mammalian tissues, they are particularly abundant in the brain and the peripheral nervous system. Gangliosides are known to play a crucial role in the development, maintenance and functional integrity of the nervous system. However, the expression and roles of gangliosides in the retina, although often considered as a window on the brain, has been far less studied. We performed an in-depth analysis of gangliosides of the human retina, especially using powerful LC/MS methods. We compared the pattern of ganglioside classes and ceramide molecular species of this tissue with other ocular structures and with brain and plasma in elderly human individuals. About a hundred of ganglioside molecular species among 15 distinct classes were detected illustrating the huge structural diversity of these compounds. The retina exhibited a very diverse ganglioside profile and shared several common features with the brain (prominence of tetraosylgangliosides, abundance of d20:1 long chain base and 18:0 fatty acid…). However, the retina stood out with the specific expression of GD3, GT3 and AcGT3, which further presented a peculiar molecular species distribution. The unique ganglioside pattern we observed in the human retina suggests that these ganglioside species play a specific role in the structure and function of this tissue. This lipidomic study, by highlighting retina specific ganglioside species, opens up novel research directions for a better understanding of the biological role of gangliosides in the retina.

  4. Conserved and non-conserved enhancers direct tissue specific transcription in ancient germ layer specific developmental control genes

    Directory of Open Access Journals (Sweden)

    Bourque Guillaume

    2011-10-01

    Full Text Available Abstract Background Identifying DNA sequences (enhancers that direct the precise spatial and temporal expression of developmental control genes remains a significant challenge in the annotation of vertebrate genomes. Locating these sequences, which in many cases lie at a great distance from the transcription start site, has been a major obstacle in deciphering gene regulation. Coupling of comparative genomics with functional validation to locate such regulatory elements has been a successful method in locating many such regulatory elements. But most of these studies looked either at a single gene only or the whole genome without focusing on any particular process. The pressing need is to integrate the tools of comparative genomics with knowledge of developmental biology to validate enhancers for developmental transcription factors in greater detail Results Our results show that near four different genes (nkx3.2, pax9, otx1b and foxa2 in zebrafish, only 20-30% of highly conserved DNA sequences can act as developmental enhancers irrespective of the tissue the gene expresses in. We find that some genes also have multiple conserved enhancers expressing in the same tissue at the same or different time points in development. We also located non-conserved enhancers for two of the genes (pax9 and otx1b. Our modified Bacterial artificial chromosome (BACs studies for these 4 genes revealed that many of these enhancers work in a synergistic fashion, which cannot be captured by individual DNA constructs and are not conserved at the sequence level. Our detailed biochemical and transgenic analysis revealed Foxa1 binds to the otx1b non-conserved enhancer to direct its activity in forebrain and otic vesicle of zebrafish at 24 hpf. Conclusion Our results clearly indicate that high level of functional conservation of genes is not necessarily associated with sequence conservation of its regulatory elements. Moreover certain non conserved DNA elements might have

  5. Globally Optimized Targeted Mass Spectrometry: Reliable Metabolomics Analysis with Broad Coverage.

    Science.gov (United States)

    Gu, Haiwei; Zhang, Ping; Zhu, Jiangjiang; Raftery, Daniel

    2015-12-15

    Targeted detection is one of the most important methods in mass spectrometry (MS)-based metabolomics; however, its major limitation is the reduced metabolome coverage that results from the limited set of targeted metabolites typically used in the analysis. In this study we describe a new approach, globally optimized targeted (GOT)-MS, that combines many of the advantages of targeted detection and global profiling in metabolomics analysis, including the capability to detect unknowns, broad metabolite coverage, and excellent quantitation. The key step in GOT-MS is a global search of precursor and product ions using a single liquid chromatography-triple quadrupole (LC-QQQ) mass spectrometer. Here, focused on measuring serum metabolites, we obtained 595 precursor ions and 1 890 multiple reaction monitoring (MRM) transitions, under positive and negative ionization modes in the mass range of 60-600 Da. For many of the MRMs/metabolites under investigation, the analytical performance of GOT-MS is better than or at least comparable to that obtained by global profiling using a quadrupole-time-of-flight (Q-TOF) instrument of similar vintage. Using a study of serum metabolites in colorectal cancer (CRC) as a representative example, GOT-MS significantly outperformed a large targeted MS assay containing ∼160 biologically important metabolites and provided a complementary approach to traditional global profiling using Q-TOF-MS. GOT-MS thus expands and optimizes the detection capabilities for QQQ-MS through a novel approach and should have the potential to significantly advance both basic and clinical metabolic research.

  6. Critical analysis of the potential for therapeutic targeting of mammalian target of rapamycin (mTOR in gastric cancer

    Directory of Open Access Journals (Sweden)

    Inokuchi M

    2014-04-01

    Full Text Available Mikito Inokuchi,1 Keiji Kato,1 Kazuyuki Kojima,2 Kenichi Sugihara1 1Department of Surgical Oncology, 2Department of Minimally Invasive Surgery, Tokyo Medical and Dental University, Tokyo, Japan Abstract: Multidisciplinary treatment including chemotherapy has become the global standard of care for patients with metastatic gastric cancer (mGC; nonetheless, survival remains poor. Although many molecular-targeted therapies have been developed for various cancers, only anti-HER2 treatment has produced promising results in patients with mGC. Mammalian target of rapamycin (mTOR plays a key role in cell proliferation, antiapoptosis, and metastasis in signaling pathways from the tyrosine kinase receptor, and its activation has been demonstrated in gastric cancer (GC cells. This review discusses the clinical relevance of mTOR in GC and examines its potential as a therapeutic target in patients with mGC. Preclinical studies in animal models suggest that suppression of the mTOR pathway inhibits the proliferation of GC cells and delays tumor progression. The mTOR inhibitor everolimus has been evaluated as second- or third-line treatment in clinical trials. Adverse events were well tolerated although the effectiveness of everolimus alone was limited. Everolimus is now being evaluated in combination with chemotherapy in Phase III clinical studies in this subgroup of patients. Two Phase III studies include exploratory biomarker research designed to evaluate the predictive value of the expression or mutation of molecules related to the Akt/mTOR signaling pathway. These biomarker studies may lead to the realization of targeted therapy for selected patients with mGC in the future. Keywords: gastric cancer, mTOR, everolimus

  7. UHR-Q-TOF Analysis Can Address Common Challenges in Targeted and Untargeted Metabolomics

    Science.gov (United States)

    Zurek, G.; Krug, D.; Muller, R.; Barsch, A.

    2011-01-01

    Here, we present an ESI-UHR-Q-TOF based analysis of myxobacterial secondary metabolites, which permits to solve several challenges frequently encountered in metabolite profiling studies. Myxobacteria are promising producers of natural products exhibiting potent biological activities, and several myxobacterial metabolites are currently under investigation as potential leads for novel drugs. However, the myxobacteria are also a striking example for the divergence between the genetic capacity for the production of secondary metabolites and the number of compounds that could be characterised to date. Wild type and mutant strains were analyzed concerning the production patterns of known metabolites and with regard to the discovery of new metabolites. Sample throughput: Since mass accuracy and resolution of TOF instruments are independent of the acquisition rate, they are perfectly suited for a coupling to UHPLC separations. These hyphenations enable a reduction of analysis time in combination with a high chromatographic resolution and therefore permit an increased sample throughput. The UHR-TOF analysis revealed that an acquisition rate of up to 20Hz did not compromise the achieved mass accuracy or resolution. Targeted and untargeted metabolite profiling: Acquisition of full scan accurate mass spectra enable the targeted screening for known compounds e.g. from the class of DKxanthenes based on very selective high resolution EIC (hrEIC) traces with small mass windows of 1.0–0.5mDa. A comparison of several datasets following a “comprehensive feature extraction” combined with a statistical analysis permits an untargeted discovery of novel biomarkers using the same data files as for the targeted analysis. Identification: Even a mass accuracy of 0.1ppm is not sufficient for an unambiguous formula identification for m/z values above 500. A combination of accurate mass data and isotopic pattern information in MS and MS/MS spectra can extend this m/z range for reliable

  8. Targeted estrogen delivery reverses the metabolic syndrome

    NARCIS (Netherlands)

    Finan, Brian; Yang, Bin; Ottaway, Nickki; Stemmer, Kerstin; Müller, Timo D.; Yi, Chun-Xia; Habegger, Kirk; Schriever, Sonja C.; García-Cáceres, Cristina; Kabra, Dhiraj G.; Hembree, Jazzminn; Holland, Jenna; Raver, Christine; Seeley, Randy J.; Hans, Wolfgang; Irmler, Martin; Beckers, Johannes; de Angelis, Martin Hrabě; Tiano, Joseph P.; Mauvais-Jarvis, Franck; Perez-Tilve, Diego; Pfluger, Paul; Zhang, Lianshan; Gelfanov, Vasily; DiMarchi, Richard D.; Tschöp, Matthias H.

    2012-01-01

    We report the development of a new combinatorial approach that allows for peptide-mediated selective tissue targeting of nuclear hormone pharmacology while eliminating adverse effects in other tissues. Specifically, we report the development of a glucagon-like peptide-1 (GLP-1)-estrogen conjugate

  9. In-silico Metabolome Target Analysis Towards PanC-based Antimycobacterial Agent Discovery.

    Science.gov (United States)

    Khoshkholgh-Sima, Baharak; Sardari, Soroush; Izadi Mobarakeh, Jalal; Khavari-Nejad, Ramezan Ali

    2015-01-01

    Mycobacterium tuberculosis, the main cause of tuberculosis (TB), has still remained a global health crisis especially in developing countries. Tuberculosis treatment is a laborious and lengthy process with high risk of noncompliance, cytotoxicity adverse events and drug resistance in patient. Recently, there has been an alarming rise of drug resistant in TB. In this regard, it is an unmet need to develop novel antitubercular medicines that target new or more effective biochemical pathways to prevent drug resistant Mycobacterium. Integrated study of metabolic pathways through in-silico approach played a key role in antimycobacterial design process in this study. Our results suggest that pantothenate synthetase (PanC), anthranilate phosphoribosyl transferase (TrpD) and 3-isopropylmalate dehydratase (LeuD) might be appropriate drug targets. In the next step, in-silico ligand analysis was used for more detailed study of chemical tractability of targets. This was helpful to identify pantothenate synthetase (PanC, Rv3602c) as the best target for antimycobacterial design procedure. Virtual library screening on the best ligand of PanC was then performed for inhibitory ligand design. At the end, five chemical intermediates showed significant inhibition of Mycobacterium bovis with good selectivity indices (SI) ≥10 according to Tuberculosis Antimicrobial Acquisition & Coordinating Facility of US criteria for antimycobacterial screening programs.

  10. Identification of Cell Surface Targets through Meta-analysis of Microarray Data

    Directory of Open Access Journals (Sweden)

    Henry Haeberle

    2012-07-01

    Full Text Available High-resolution image guidance for resection of residual tumor cells would enable more precise and complete excision for more effective treatment of cancers, such as medulloblastoma, the most common pediatric brain cancer. Numerous studies have shown that brain tumor patient outcomes correlate with the precision of resection. To enable guided resection with molecular specificity and cellular resolution, molecular probes that effectively delineate brain tumor boundaries are essential. Therefore, we developed a bioinformatics approach to analyze micro-array datasets for the identification of transcripts that encode candidate cell surface biomarkers that are highly enriched in medulloblastoma. The results identified 380 genes with greater than a two-fold increase in the expression in the medulloblastoma compared with that in the normal cerebellum. To enrich for targets with accessibility for extracellular molecular probes, we further refined this list by filtering it with gene ontology to identify genes with protein localization on, or within, the plasma membrane. To validate this meta-analysis, the top 10 candidates were evaluated with immunohistochemistry. We identified two targets, fibrillin 2 and EphA3, which specifically stain medulloblastoma. These results demonstrate a novel bioinformatics approach that successfully identified cell surface and extracellular candidate markers enriched in medulloblastoma versus adjacent cerebellum. These two proteins are high-value targets for the development of tumor-specific probes in medulloblastoma. This bioinformatics method has broad utility for the identification of accessible molecular targets in a variety of cancers and will enable probe development for guided resection.

  11. Research and Analysis Laser Target Optics Characteristics and Signal Recognition Processing in Detection Screen System

    Directory of Open Access Journals (Sweden)

    Hanshan LI

    2014-02-01

    Full Text Available In order to improve the measurement accuracy of the laser measurement distance system, this paper study the laser target optics characteristics based on the laser detection principle in the laser measurement distance system. A calculation model of laser reflective echo signal is put forward by analyzing the influence factors on the detector output value, and discuss the relationship between the distance from the detector to the target, the laser wavelength, the Transmission power of laser and the detector output power, the radiation intensity, and use the Fisher identification and modulus maxima method based on wavelet analysis to distinguish and identify the received echo signals. By the theoretical calculation and experimentation, the result shows the laser target optics characteristics are consistent with the calculation method of radiation. The real reflective signal can be identified by using wavelet transform, and the numerical value of the distance between the target and the detector is larger, the numerical value of echo signal will be smaller.

  12. Expression analysis of miRNA and target mRNAs in esophageal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Meng, X.R. [Oncology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou (China); Lu, P. [Gastrointestinal Surgery Department, People' s Hospital of Zhengzhou, Zhengzhou (China); Mei, J.Z.; Liu, G.J. [Medical Oncology Department, People' s Hospital of Zhengzhou, Zhengzhou (China); Fan, Q.X. [Oncology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou (China)

    2014-08-01

    We aimed to investigate miRNAs and related mRNAs through a network-based approach in order to learn the crucial role that they play in the biological processes of esophageal cancer. Esophageal squamous-cell carcinoma (ESCC) and adenocarcinoma (EAC)-related miRNA and gene expression data were downloaded from the Gene Expression Omnibus database, and differentially expressed miRNAs and genes were selected. Target genes of differentially expressed miRNAs were predicted and their regulatory networks were constructed. Differentially expressed miRNA analysis selected four miRNAs associated with EAC and ESCC, among which hsa-miR-21 and hsa-miR-202 were shared by both diseases. hsa-miR-202 was reported for the first time to be associated with esophageal cancer in the present study. Differentially expressed miRNA target genes were mainly involved in cancer-related and signal-transduction pathways. Functional categories of these target genes were related to transcriptional regulation. The results may indicate potential target miRNAs and genes for future investigations of esophageal cancer.

  13. Analysis on Target Detection and Classification in LTE Based Passive Forward Scattering Radar.

    Science.gov (United States)

    Raja Abdullah, Raja Syamsul Azmir; Abdul Aziz, Noor Hafizah; Abdul Rashid, Nur Emileen; Ahmad Salah, Asem; Hashim, Fazirulhisyam

    2016-09-29

    The passive bistatic radar (PBR) system can utilize the illuminator of opportunity to enhance radar capability. By utilizing the forward scattering technique and procedure into the specific mode of PBR can provide an improvement in target detection and classification. The system is known as passive Forward Scattering Radar (FSR). The passive FSR system can exploit the peculiar advantage of the enhancement in forward scatter radar cross section (FSRCS) for target detection. Thus, the aim of this paper is to show the feasibility of passive FSR for moving target detection and classification by experimental analysis and results. The signal source is coming from the latest technology of 4G Long-Term Evolution (LTE) base station. A detailed explanation on the passive FSR receiver circuit, the detection scheme and the classification algorithm are given. In addition, the proposed passive FSR circuit employs the self-mixing technique at the receiver; hence the synchronization signal from the transmitter is not required. The experimental results confirm the passive FSR system's capability for ground target detection and classification. Furthermore, this paper illustrates the first classification result in the passive FSR system. The great potential in the passive FSR system provides a new research area in passive radar that can be used for diverse remote monitoring applications.

  14. Analysis and Visualization Tool for Targeted Amplicon Bisulfite Sequencing on Ion Torrent Sequencers.

    Directory of Open Access Journals (Sweden)

    Stephan Pabinger

    Full Text Available Targeted sequencing of PCR amplicons generated from bisulfite deaminated DNA is a flexible, cost-effective way to study methylation of a sample at single CpG resolution and perform subsequent multi-target, multi-sample comparisons. Currently, no platform specific protocol, support, or analysis solution is provided to perform targeted bisulfite sequencing on a Personal Genome Machine (PGM. Here, we present a novel tool, called TABSAT, for analyzing targeted bisulfite sequencing data generated on Ion Torrent sequencers. The workflow starts with raw sequencing data, performs quality assessment, and uses a tailored version of Bismark to map the reads to a reference genome. The pipeline visualizes results as lollipop plots and is able to deduce specific methylation-patterns present in a sample. The obtained profiles are then summarized and compared between samples. In order to assess the performance of the targeted bisulfite sequencing workflow, 48 samples were used to generate 53 different Bisulfite-Sequencing PCR amplicons from each sample, resulting in 2,544 amplicon targets. We obtained a mean coverage of 282X using 1,196,822 aligned reads. Next, we compared the sequencing results of these targets to the methylation level of the corresponding sites on an Illumina 450k methylation chip. The calculated average Pearson correlation coefficient of 0.91 confirms the sequencing results with one of the industry-leading CpG methylation platforms and shows that targeted amplicon bisulfite sequencing provides an accurate and cost-efficient method for DNA methylation studies, e.g., to provide platform-independent confirmation of Illumina Infinium 450k methylation data. TABSAT offers a novel way to analyze data generated by Ion Torrent instruments and can also be used with data from the Illumina MiSeq platform. It can be easily accessed via the Platomics platform, which offers a web-based graphical user interface along with sample and parameter storage

  15. Combined target and post-run target strategy for a comprehensive analysis of pesticides in ambient air using liquid chromatography-Orbitrap high resolution mass spectrometry.

    Science.gov (United States)

    Coscollà, Clara; León, Nuria; Pastor, Agustín; Yusà, Vicent

    2014-11-14

    A comprehensive strategy for the analysis of current airborne pesticides has been developed using liquid chromatography coupled to high resolution mass spectrometry. The methodology includes both quantitative target analysis and post-run target screening analysis. The quantitative method was validated after a previous statistical optimisation of the main factors governing the ion source ionization and a study of the single-stage Orbitrap fragmentation through the HCD cell. The quantitative method presented recoveries ranging from 73 to 116%, with precision (RSD) lower than 20%, for the 35 substances in the scope of the target method. The full-scan accurate mass data were acquired with a resolving power of 50000 FWHM (scan speed, 2 Hz), and alternating two acquisition events, ESI+ without fragmentation and ESI+ with fragmentation. The method-LOQ was 6.5 pg m(-3) for most of the target pesticides. For post-target screening a customized theoretical database, that included pesticides, metabolites and other substances such as emerging flame retardants was built up. For identification, accurate exact mass with less than 5 ppm, and some diagnostic ions including isotopes and/or fragments were used. The strategy was applied to ten samples collected in a rural area of Valencia (Spain). Four pesticides, namely carbendazim, metalaxyl, myclobutanil and terbuthylazine, were detected in concentrations from 16 pg m(-3) to 174 pg m(-3). Some pesticides and metabolites (endothal, fenfuram, terbuthylazine-2-OH), in addition to two flame retardants were tentatively identified in the post-run target screening analysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. A four step model for the IL-6 amplifier, a regulator of chromic inflammations in tissue specific MHC class II-associated autoimmune diseases

    Directory of Open Access Journals (Sweden)

    Masaaki eMurakami

    2011-06-01

    Full Text Available It is thought autoimmune diseases are caused by the breakdown of self-tolerance, which suggests the recognition of specific antigens by autoreactive CD4+ T cells contribute to the specificity of autoimmune diseases. In several cases, however, even for diseases associated with class II MHC alleles, the causative tissue-specific antigens recognized by memory/activated CD4+ T cells have not been established. Rheumatoid arthritis (RA and arthritis in F759 knock-in mouse line (F759 mice are such examples, even though evidences support a pathogenic role for CD4+ T cells in both diseases. We have recently shown local events such as microbleeding together with an accumulation of activated CD4+ T cells in a manner independent of tissue antigen-recognitions induces arthritis in the joints of F759 mice. For example, local microbleeding-mediated CCL20 expression induced such an accumulation, causing arthritis development via chronic activation of an IL-17A-dependent IL-6 signaling amplification loop in type 1 collagen+ cells that is triggered by CD4+ T cell-derived cytokine(s such as IL-17A, which leads to the synergistic activation of STAT3 and NFκB in non hematopoietic cells in the joint. We named this loop the IL-6-mediated inflammation amplifier, or IL-6 amplifier. Thus, certain class II MHC–associated, tissue-specific autoimmune diseases may be induced by local events that cause an antigen-independent accumulation of effector CD4+ T cells followed by the induction of the IL-6 amplifier in the affected tissue. To explain this hypothesis, we have proposed a Four Step Model for MHC class II associated autoimmune diseases. The interaction of four local events results in chronic activation of the IL-6 amplifier, leading to the manifestation of autoimmune diseases. Thus, we have concluded the IL-6 amplifier is a critical regulator of chromic inflammations in tissue specific MHC class II-associated autoimmune diseases.

  17. A minimal peach type II chlorophyll a/b-binding protein promoter retains tissue-specificity and light regulation in tomato

    Directory of Open Access Journals (Sweden)

    Scorza Ralph

    2007-08-01

    Full Text Available Abstract Background Promoters with tissue-specificity are desirable to drive expression of transgenes in crops to avoid accumulation of foreign proteins in edible tissues/organs. Several photosynthetic promoters have been shown to be strong regulators of expression of transgenes in light-responsive tissues and would be good candidates for leaf and immature fruit tissue-specificity, if expression in the mature fruit were minimized. Results A minimal peach chlorophyll a/b-binding protein gene (Lhcb2*Pp1 promoter (Cab19 was isolated and fused to an uidA (β-glucuronidase [GUS] gene containing the PIV2 intron. A control vector carrying an enhanced mas35S CaMV promoter fused to uidA was also constructed. Two different orientations of the Cab19::GUS fusion relative to the left T-DNA border of the binary vector were transformed into tomato. Ten independent regenerants of each construct and an untransformed control line were assessed both qualitatively and quantitatively for GUS expression in leaves, fruit and flowers, and quantitatively in roots. Conclusion The minimal CAB19 promoter conferred GUS activity primarily in leaves and green fruit, as well as in response to light. GUS activity in the leaves of both Cab19 constructs averaged about 2/3 that observed with mas35S::GUS controls. Surprisingly, GUS activity in transgenic green fruit was considerably higher than leaves for all promoter constructs; however, in red, ripe fruit activities were much lower for the Cab19 promoter constructs than the mas35S::GUS. Although GUS activity was readily detectable in flowers and roots of mas35S::GUStransgenic plants, little activity was observed in plants carrying the Cab19 promoter constructs. In addition, the light-inducibility of the Cab19::GUS constructs indicated that all the requisite cis-elements for light responsiveness were contained on the Cab19 fragment. The minimal Cab19 promoter retains both tissue-specificity and light regulation and can be used to

  18. A novel graphical technique for Pinch Analysis applications: Energy Targets and grassroots design

    International Nuclear Information System (INIS)

    Gadalla, Mamdouh A.

    2015-01-01

    Graphical abstract: A new HEN graphical design. - Highlights: • A new graphical technique for heat exchanger networks design. • Pinch Analysis principles and design rules are better interpreted. • Graphical guidelines for optimum heat integration. • New temperature-based graphs provide user-interactive features. - Abstract: Pinch Analysis is for decades a leading tool to energy integration for retrofit and design. This paper presents a new graphical technique, based on Pinch Analysis, for the grassroots design of heat exchanger networks. In the new graph, the temperatures of hot streams are plotted versus those of the cold streams. The temperature–temperature based graph is constructed to include temperatures of hot and cold streams as straight lines, horizontal lines for hot streams, and vertical lines for cold streams. The graph is applied to determine the pinch temperatures and Energy Targets. It is then used to synthesise graphically a complete exchanger network, achieving the Energy Targets. Within the new graph, exchangers are represented by inclined straight lines, whose slopes are proportional to the ratio of heat capacities and flows. Pinch Analysis principles for design are easily interpreted using this new graphical technique to design a complete exchanger network. Network designs achieved by the new technique can guarantee maximum heat recovery. The new technique can also be employed to simulate basic designs of heat exchanger networks. The strengths of the new tool are that it is simply applied using computers, requires no commercial software, and can be used for academic purposes/engineering education

  19. Mechanism of microRNA-target interaction: molecular dynamics simulations and thermodynamics analysis.

    Science.gov (United States)

    Wang, Yonghua; Li, Yan; Ma, Zhi; Yang, Wei; Ai, Chunzhi

    2010-07-29

    MicroRNAs (miRNAs) are endogenously produced approximately 21-nt riboregulators that associate with Argonaute (Ago) proteins to direct mRNA cleavage or repress the translation of complementary RNAs. Capturing the molecular mechanisms of miRNA interacting with its target will not only reinforce the understanding of underlying RNA interference but also fuel the design of more effective small-interfering RNA strands. To address this, in the present work the RNA-bound (Ago-miRNA, Ago-miRNA-target) and RNA-free Ago forms were analyzed by performing both molecular dynamics simulations and thermodynamic analysis. Based on the principal component analysis results of the simulation trajectories as well as the correlation analysis in fluctuations of residues, we discover that: 1) three important (PAZ, Mid and PIWI) domains exist in Argonaute which define the global dynamics of the protein; 2) the interdomain correlated movements are so crucial for the interaction of Ago-RNAs that they not only facilitate the relaxation of the interactions between residues surrounding the RNA binding channel but also induce certain conformational changes; and 3) it is just these conformational changes that expand the cavity of the active site and open putative pathways for both the substrate uptake and product release. In addition, by thermodynamic analysis we also discover that for both the guide RNA 5'-end recognition and the facilitated site-specific cleavage of the target, the presence of two metal ions (of Mg(2+)) plays a predominant role, and this conclusion is consistent with the observed enzyme catalytic cleavage activity in the ternary complex (Ago-miRNA-mRNA). Our results find that it is the set of arginine amino acids concentrated in the nucleotide-binding channel in Ago, instead of the conventionally-deemed seed base-paring, that makes greater contributions in stabilizing the binding of the nucleic acids to Ago.

  20. High Resolution Radar Clutter Analysis and Modeling for Advanced Target Detection Strategies

    Science.gov (United States)

    2007-11-01

    UNIVERSITÀ DI PISA DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE ELETTRONICA, INFORMATICA , TELECOMUNICAZIONI ANALYSIS OF THE...processing the data. 26 10-2 10-1 100 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 SCM NSCM FP pr ob ab ili ty o f f al se a la rm target...0.3 0.4 0.5 SCM NSCM FP pr ob ab ili ty o f f al se a la rm target frequency f D Fig. 28 – Probability of false alarm with real VV data, N=8, K=16

  1. Multilingual Connotation Frames: A Case Study on Social Media for Targeted Sentiment Analysis and Forecast

    Energy Technology Data Exchange (ETDEWEB)

    Rashkin, Hannah J.; Bell, Eric B.; Choi, Yejin; Volkova, Svitlana

    2017-07-30

    People around the globe respond to major real world events through social media. To study targeted public sentiments across many languages and geographic locations, we introduce multilingual connotation frames: an extension from English connotation frames of Rashkin et al. (2016) with 10 additional European languages, focusing on the implied sentiments among event participants engaged in a frame. As a case study, we present large scale analysis on targeted public sentiments using 1.2 million multilingual connotation frames extracted from Twitter. We rely on connotation frames to build models to forecast country-specific connotation dynamics – perspective change over time towards salient entities and events. Our results demonstrate that connotation dynamics can be accurately predicted up to half a week in advance.

  2. Numerical analysis of free surface instabilities in the IFMIF lithium target

    Energy Technology Data Exchange (ETDEWEB)

    Gordeev, S. [Institute for Reactor Safety, Research Centre of Karlsruhe, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)], E-mail: gordeev@irs.fzk.de; Heinzel, V.; Leichtle, D. [Institute for Reactor Safety, Research Centre of Karlsruhe, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Moeslang, A. [Institute for Material Research I, Research Centre of Karlsruhe, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2008-12-15

    The International Fusion Materials Irradiation Facility (IFMIF) uses a high speed (10-20 m/s) lithium (Li)-jet flow as a target for two 40 MeV/125 mA deuteron beams. The major function of the Li target is to provide a stable Li jet for the production of an intense neutron flux. Different hydrodynamic instability mechanisms are possible in the Li-jet flow. The main objective of this study is to provide a detailed numerical analysis of instabilities in the Li-jet flow caused by separation of the flow near the nozzle outlet. Experimental observations have shown that the change of the nozzle geometry at the outlet or nozzle edge defects causes the flow separation and occurrence of longitudinal periodic structures on the free surface. Target surface fluctuations of large magnitude can lead to the penetration of the deuteron beam in the target structure and cause the local overheating of the back plate. This work is focused on the validation the CFD code Star-CD and choice of the suitable simulation technique for further calculations of lithium target flow. Two simulation methods, Large Eddy Simulation (LES) and Reynolds Averaged Navier-Stokes method using the Shear Stress Transport (SST) turbulence model have been validated against the experimental data. Two experimental cases with two different kinds of instability sources were used to test the suitability of turbulence models to predict waves generated near the nozzle edge. While in the first case the instability source is a stationary located obstacle at the nozzle edge, in the second one the position of the instability sources is influenced from turbulent fluctuations in the boundary layer near the nozzle edge. LES has a reasonable agreement with experimental data. SST turbulence model is not able to predict the local flow separations at the nozzle edge caused by turbulence fluctuations and to reproduce instabilities of small magnitudes.

  3. Ranking of microRNA target prediction scores by Pareto front analysis.

    Science.gov (United States)

    Sahoo, Sudhakar; Albrecht, Andreas A

    2010-12-01

    Over the past ten years, a variety of microRNA target prediction methods has been developed, and many of the methods are constantly improved and adapted to recent insights into miRNA-mRNA interactions. In a typical scenario, different methods return different rankings of putative targets, even if the ranking is reduced to selected mRNAs that are related to a specific disease or cell type. For the experimental validation it is then difficult to decide in which order to process the predicted miRNA-mRNA bindings, since each validation is a laborious task and therefore only a limited number of mRNAs can be analysed. We propose a new ranking scheme that combines ranked predictions from several methods and - unlike standard thresholding methods - utilises the concept of Pareto fronts as defined in multi-objective optimisation. In the present study, we attempt a proof of concept by applying the new ranking scheme to hsa-miR-21, hsa-miR-125b, and hsa-miR-373 and prediction scores supplied by PITA and RNAhybrid. The scores are interpreted as a two-objective optimisation problem, and the elements of the Pareto front are ranked by the STarMir score with a subsequent re-calculation of the Pareto front after removal of the top-ranked mRNA from the basic set of prediction scores. The method is evaluated on validated targets of the three miRNA, and the ranking is compared to scores from DIANA-microT and TargetScan. We observed that the new ranking method performs well and consistent, and the first validated targets are elements of Pareto fronts at a relatively early stage of the recurrent procedure, which encourages further research towards a higher-dimensional analysis of Pareto fronts. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Non-targeted analysis of unexpected food contaminants using LC-HRMS.

    Science.gov (United States)

    Kunzelmann, Marco; Winter, Martin; Åberg, Magnus; Hellenäs, Karl-Erik; Rosén, Johan

    2018-03-29

    A non-target analysis method for unexpected contaminants in food is described. Many current methods referred to as "non-target" are capable of detecting hundreds or even thousands of contaminants. However, they will typically still miss all other possible contaminants. Instead, a metabolomics approach might be used to obtain "true non-target" analysis. In the present work, such a method was optimized for improved detection capability at low concentrations. The method was evaluated using 19 chemically diverse model compounds spiked into milk samples to mimic unknown contamination. Other milk samples were used as reference samples. All samples were analyzed with UHPLC-TOF-MS (ultra-high-performance liquid chromatography time-of-flight mass spectrometry), using reversed-phase chromatography and electrospray ionization in positive mode. Data evaluation was performed by the software TracMass 2. No target lists of specific compounds were used to search for the contaminants. Instead, the software was used to sort out all features only occurring in the spiked sample data, i.e., the workflow resembled a metabolomics approach. Procedures for chemical identification of peaks were outside the scope of the study. Method, study design, and settings in the software were optimized to minimize manual evaluation and faulty or irrelevant hits and to maximize hit rate of the spiked compounds. A practical detection limit was established at 25 μg/kg. At this concentration, most compounds (17 out of 19) were detected as intact precursor ions, as fragments or as adducts. Only 2 irrelevant hits, probably natural compounds, were obtained. Limitations and possible practical use of the approach are discussed.

  5. Electro-optic analysis of the influence of target geometry on electromagnetic pulses generated by petawatt laser-matter interactions

    Directory of Open Access Journals (Sweden)

    Robinson Timothy

    2018-01-01

    Full Text Available We present an analysis of strong laser-driven electromagnetic pulses using novel electro-optic diagnostic techniques. A range of targets were considered, including thin plastic foils (20-550 nm and mass-limited, optically-levitated micro-targets. Results from foils indicate a dependence of EMP on target thickness, with larger peak electric fields observed with thinner targets. Spectral analysis suggests high repeatability between shots, with identified spectral features consistently detected with 30 MeV energies, suggesting the discharge current contribution to EMP is dominant.

  6. A Multimodal Data Analysis Approach for Targeted Drug Discovery Involving Topological Data Analysis (TDA).

    Science.gov (United States)

    Alagappan, Muthuraman; Jiang, Dadi; Denko, Nicholas; Koong, Albert C

    In silico drug discovery refers to a combination of computational techniques that augment our ability to discover drug compounds from compound libraries. Many such techniques exist, including virtual high-throughput screening (vHTS), high-throughput screening (HTS), and mechanisms for data storage and querying. However, presently these tools are often used independent of one another. In this chapter, we describe a new multimodal in silico technique for the hit identification and lead generation phases of traditional drug discovery. Our technique leverages the benefits of three independent methods-virtual high-throughput screening, high-throughput screening, and structural fingerprint analysis-by using a fourth technique called topological data analysis (TDA). We describe how a compound library can be independently tested with vHTS, HTS, and fingerprint analysis, and how the results can be transformed into a topological data analysis network to identify compounds from a diverse group of structural families. This process of using TDA or similar clustering methods to identify drug leads is advantageous because it provides a mechanism for choosing structurally diverse compounds while maintaining the unique advantages of already established techniques such as vHTS and HTS.

  7. Effects of chronic exposure to waterborne copper and nickel in binary mixture on tissue-specific metal accumulation and reproduction in fathead minnow (Pimephales promelas).

    Science.gov (United States)

    Driessnack, Melissa K; Jamwal, Ankur; Niyogi, Som

    2017-10-01

    The current study evaluated the interactive effects of chronic waterborne copper (Cu) and nickel (Ni) exposure on tissue-specific metal accumulation and reproductive performance in fathead minnow (Pimephales promelas). Fish trios (1 male: 2 female; n = 5-6) were exposed for 21 days to: (i) control (no added Cu or Ni), (ii) waterborne Cu (45 μg/L), (iii) waterborne Ni (270 μg/L), and (iv) binary mixture of waterborne Cu and Ni (45 and 270 μg/L, respectively). Fish fecundity (cumulative egg production) was found to be the most sensitive reproductive endpoint, and the interaction of Cu and Ni elicited an additive effect on egg production. Tissue-specific accumulation of both metals was not influenced by the interaction of Cu and Ni, except an increased Cu and Ni burden in the carcass and ovary, respectively, were recorded. The expressions of hepatic estrogen receptor genes (ER-α and ER-β) and the circulating estradiol level in females were also not affected by the metal-mixture treatment. However, co-exposure to waterborne Cu and Ni resulted in a significant downregulation of the hepatic vitellogenin gene in females, which was associated with the maximum upregulation of the hepatic metallothionein gene. In addition, a significant alteration of ovarian histopathology (decreased abundance of post-vitellogenic follicles, and increased follicular atresia) was also observed only in females exposed to Cu and Ni in mixture. Collectively, these observations suggest that chronic waterborne exposure to Cu and Ni in binary mixture may impair fish reproductive capacity by inducing histopathological damage in ovarian tissue, and disrupting of energy homeostasis in fish. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. An Integrated “Multi-Omics” Comparison of Embryo and Endosperm Tissue-Specific Features and Their Impact on Rice Seed Quality

    Directory of Open Access Journals (Sweden)

    Marc Galland

    2017-11-01

    Full Text Available Although rice is a key crop species, few studies have addressed both rice seed physiological and nutritional quality, especially at the tissue level. In this study, an exhaustive “multi-omics” dataset on the mature rice seed was obtained by combining transcriptomics, label-free shotgun proteomics and metabolomics from embryo and endosperm, independently. These high-throughput analyses provide a new insight on the tissue-specificity related to rice seed quality. Foremost, we pinpointed that extensive post-transcriptional regulations occur at the end of rice seed development such that the embryo proteome becomes much more diversified than the endosperm proteome. Secondly, we observed that survival in the dry state in each seed compartment depends on contrasted metabolic and enzymatic apparatus in the embryo and the endosperm, respectively. Thirdly, it was remarkable to identify two different sets of starch biosynthesis enzymes as well as seed storage proteins (glutelins in both embryo and endosperm consistently with the supernumerary embryo hypothesis origin of the endosperm. The presence of a putative new glutelin with a possible embryonic favored abundance is described here for the first time. Finally, we quantified the rate of mRNA translation into proteins. Consistently, the embryonic panel of protein translation initiation factors is much more diverse than that of the endosperm. This work emphasizes the value of tissue-specificity-centered “multi-omics” study in the seed to highlight new features even from well-characterized pathways. It paves the way for future studies of critical genetic determinants of rice seed physiological and nutritional quality.

  9. An Integrated “Multi-Omics” Comparison of Embryo and Endosperm Tissue-Specific Features and Their Impact on Rice Seed Quality

    Science.gov (United States)

    Galland, Marc; He, Dongli; Lounifi, Imen; Arc, Erwann; Clément, Gilles; Balzergue, Sandrine; Huguet, Stéphanie; Cueff, Gwendal; Godin, Béatrice; Collet, Boris; Granier, Fabienne; Morin, Halima; Tran, Joseph; Valot, Benoit; Rajjou, Loïc

    2017-01-01

    Although rice is a key crop species, few studies have addressed both rice seed physiological and nutritional quality, especially at the tissue level. In this study, an exhaustive “multi-omics” dataset on the mature rice seed was obtained by combining transcriptomics, label-free shotgun proteomics and metabolomics from embryo and endosperm, independently. These high-throughput analyses provide a new insight on the tissue-specificity related to rice seed quality. Foremost, we pinpointed that extensive post-transcriptional regulations occur at the end of rice seed development such that the embryo proteome becomes much more diversified than the endosperm proteome. Secondly, we observed that survival in the dry state in each seed compartment depends on contrasted metabolic and enzymatic apparatus in the embryo and the endosperm, respectively. Thirdly, it was remarkable to identify two different sets of starch biosynthesis enzymes as well as seed storage proteins (glutelins) in both embryo and endosperm consistently with the supernumerary embryo hypothesis origin of the endosperm. The presence of a putative new glutelin with a possible embryonic favored abundance is described here for the first time. Finally, we quantified the rate of mRNA translation into proteins. Consistently, the embryonic panel of protein translation initiation factors is much more diverse than that of the endosperm. This work emphasizes the value of tissue-specificity-centered “multi-omics” study in the seed to highlight new features even from well-characterized pathways. It paves the way for future studies of critical genetic determinants of rice seed physiological and nutritional quality. PMID:29213276

  10. Functions of IQD proteins as hubs in cellular calcium and auxin signaling: A toolbox for shape formation and tissue-specification in plants?

    Science.gov (United States)

    Bürstenbinder, Katharina; Mitra, Dipannita; Quegwer, Jakob

    2017-06-03

    Calcium (Ca 2+ ) ions play pivotal roles as second messengers in intracellular signal transduction, and coordinate many biological processes. Changes in intracellular Ca 2+ levels are perceived by Ca 2+ sensors such as calmodulin (CaM) and CaM-like (CML) proteins, which transduce Ca 2+ signals into cellular responses by regulation of diverse target proteins. Insights into molecular functions of CaM targets are thus essential to understand the molecular and cellular basis of Ca 2+ signaling. During the last decade, IQ67-domain (IQD) proteins emerged as the largest class of CaM targets in plants with mostly unknown functions. In the March issue of Plant Physiology, we presented the first comprehensive characterization of the 33-membered IQD family in Arabidopsis thaliana. We showed, by analysis of the subcellular localization of translational green fluorescent protein (GFP) fusion proteins, that most IQD members label microtubules (MTs), and additionally often localize to the cell nucleus or to membranes, where they recruit CaM Ca 2+ sensors. Important functions at MTs are supported by altered MT organization and plant growth in IQD gain-of-function lines. Because IQD proteins share structural hallmarks of scaffold proteins, we propose roles of IQDs in the assembly of macromolecular complexes to orchestrate Ca 2+ CaM signaling from membranes to the nucleus. Interestingly, expression of several IQDs is regulated by auxin, which suggests functions of IQDs as hubs in cellular auxin and calcium signaling to regulate plant growth and development.

  11. THERMAL SHOCK ANALYSIS OF WINDOWS INTERACTING WITH ENERGETIC, FOCUSED BEAM OF THE BNL MUON TARGET EXPERIMENT

    International Nuclear Information System (INIS)

    SIMOS, N.; KIRK, H.; PRIGL, R.; BROWN, K.; MCDONALD, K.

    2001-01-01

    In this paper, issues associated with the interaction of a proton beam with windows designed for the muon targetry experiment E951 at BNL are explored. Specifically, a 24 GeV proton beam up to 16 TP per pulse and a pulse length of 100 ns is tightly focused (to 0.5 mm rms radius) on an experimental target. The need to maintain an enclosed environment around the target implies the use of beam windows that will survive the passage of the proton beam. The required beam parameters in such a setting will induce very high thermal, quasi-static and shock stresses in the window structure that exceed the strength of most common materials. In this effort, a detailed analysis of the thermal/shock response of beam windows is attempted through a transient thermal and stress wave propagation formulation that incorporates energy deposition rates calculated the by hadron interaction code MARS. The thermal response of the window structure and the subsequent stress wave generation and propagation are computed using the finite element analysis procedures of the ANSYS code. This analysis attempts to address issues pertaining to an optimal combination of material, window thickness and pulse structure that will allow for a window to safely survive the extreme demands of the experiment

  12. Automated mediastinal lymph node detection from CT volumes based on intensity targeted radial structure tensor analysis.

    Science.gov (United States)

    Oda, Hirohisa; Bhatia, Kanwal K; Oda, Masahiro; Kitasaka, Takayuki; Iwano, Shingo; Homma, Hirotoshi; Takabatake, Hirotsugu; Mori, Masaki; Natori, Hiroshi; Schnabel, Julia A; Mori, Kensaku

    2017-10-01

    This paper presents a local intensity structure analysis based on an intensity targeted radial structure tensor (ITRST) and the blob-like structure enhancement filter based on it (ITRST filter) for the mediastinal lymph node detection algorithm from chest computed tomography (CT) volumes. Although the filter based on radial structure tensor analysis (RST filter) based on conventional RST analysis can be utilized to detect lymph nodes, some lymph nodes adjacent to regions with extremely high or low intensities cannot be detected. Therefore, we propose the ITRST filter, which integrates the prior knowledge on detection target intensity range into the RST filter. Our lymph node detection algorithm consists of two steps: (1) obtaining candidate regions using the ITRST filter and (2) removing false positives (FPs) using the support vector machine classifier. We evaluated lymph node detection performance of the ITRST filter on 47 contrast-enhanced chest CT volumes and compared it with the RST and Hessian filters. The detection rate of the ITRST filter was 84.2% with 9.1 FPs/volume for lymph nodes whose short axis was at least 10 mm, which outperformed the RST and Hessian filters.

  13. Next-to leading order analysis of target mass corrections to structure functions and asymmetries

    International Nuclear Information System (INIS)

    Brady, L.T.; Accardi, A.; Hobbs, T.J.; Melnitchouk, W.

    2011-01-01

    We perform a comprehensive analysis of target mass corrections (TMCs) to spin-averaged structure functions and asymmetries at next-to-leading order. Several different prescriptions for TMCs are considered, including the operator product expansion, and various approximations to it, collinear factorization, and xi-scaling. We assess the impact of each of these on a number of observables, such as the neutron to proton F 2 structure function ratio, and parity-violating electron scattering asymmetries for protons and deuterons which are sensitive to gamma-Z interference effects. The corrections from higher order radiative and nuclear effects on the parity-violating deuteron asymmetry are also quantified.

  14. Extending in silico mechanism-of-action analysis by annotating targets with pathways: application to cellular cytotoxicity readouts.

    Science.gov (United States)

    Liggi, Sonia; Drakakis, Georgios; Koutsoukas, Alexios; Cortes-Ciriano, Isidro; Martínez-Alonso, Patricia; Malliavin, Thérèse E; Velazquez-Campoy, Adrian; Brewerton, Suzanne C; Bodkin, Michael J; Evans, David A; Glen, Robert C; Carrodeguas, José Alberto; Bender, Andreas

    2014-01-01

    An in silico mechanism-of-action analysis protocol was developed, comprising molecule bioactivity profiling, annotation of predicted targets with pathways and calculation of enrichment factors to highlight targets and pathways more likely to be implicated in the studied phenotype. The method was applied to a cytotoxicity phenotypic endpoint, with enriched targets/pathways found to be statistically significant when compared with 100 random datasets. Application on a smaller apoptotic set (10 molecules) did not allowed to obtain statistically relevant results, suggesting that the protocol requires modification such as analysis of the most frequently predicted targets/annotated pathways. Pathway annotations improved the mechanism-of-action information gained by target prediction alone, allowing a better interpretation of the predictions and providing better mapping of targets onto pathways.

  15. Analysis of the Chirplet Transform-Based Algorithm for Radar Detection of Accelerated Targets

    Science.gov (United States)

    Galushko, V. G.; Vavriv, D. M.

    2017-06-01

    Purpose: Efficiency analysis of an optimal algorithm of chirp signal processing based on the chirplet transform as applied to detection of radar targets in uniformly accelerated motion. Design/methodology/approach: Standard methods of the optimal filtration theory are used to investigate the ambiguity function of chirp signals. Findings: An analytical expression has been derived for the ambiguity function of chirp signals that is analyzed with respect to detection of radar targets moving at a constant acceleration. Sidelobe level and characteristic width of the ambiguity function with respect to the coordinates frequency and rate of its change have been estimated. The gain in the signal-to-noise ratio has been assessed that is provided by the algorithm under consideration as compared with application of the standard Fourier transform to detection of chirp signals against a “white” noise background. It is shown that already with a comparatively small (processing channels (elementary filters with respect to the frequency change rate) the gain in the signal-tonoise ratio exceeds 10 dB. A block diagram of implementation of the algorithm under consideration is suggested on the basis of a multichannel weighted Fourier transform. Recommendations as for selection of the detection algorithm parameters have been developed. Conclusions: The obtained results testify to efficiency of application of the algorithm under consideration to detection of radar targets moving at a constant acceleration. Nevertheless, it seems expedient to perform computer simulations of its operability with account for the noise impact along with trial measurements in real conditions.

  16. Accurate Analysis of Target Characteristic in Bistatic SAR Images: A Dihedral Corner Reflectors Case

    Directory of Open Access Journals (Sweden)

    Dongyang Ao

    2017-12-01

    Full Text Available The dihedral corner reflectors are the basic geometric structure of many targets and are the main contributions of radar cross section (RCS in the synthetic aperture radar (SAR images. In stealth technologies, the elaborate design of the dihedral corners with different opening angles is a useful approach to reduce the high RCS generated by multiple reflections. As bistatic synthetic aperture sensors have flexible geometric configurations and are sensitive to the dihedral corners with different opening angles, they specially fit for the stealth target detections. In this paper, the scattering characteristic of dihedral corner reflectors is accurately analyzed in bistatic synthetic aperture images. The variation of RCS with the changing opening angle is formulated and the method to design a proper bistatic radar for maximizing the detection capability is provided. Both the results of the theoretical analysis and the experiments show the bistatic SAR could detect the dihedral corners, under a certain bistatic angle which is related to the geometry of target structures.

  17. Theoretical analysis of recirculation zone and buffer zone in the ADS windowless spallation target

    International Nuclear Information System (INIS)

    Liu, Jie; Pan, Chang-zhao; Tong, Jian-fei; Lu, Wen-qiang

    2015-01-01

    Highlights: • Height of recirculation zone is very important in windowless target design. • A theoretical formula for the height is derived based on the Bernoulli equation. • Numerical simulation for the LBE is performed and the height of recirculation zone is also obtained. • The theoretically-derived simulation-predicted recirculation zone heights agree with each other very well and the theoretical derivation is proved to be correct. - Abstract: The thermo-hydraulic analysis including reduction of the height of recirculation zone and stability of the free surface is very important in the design and optimization of ADS windowless spallation targets. In the present study, the Bernoulli equation is used to analyze the entire flow process in the target. Formulae for the height of the recirculation zone and the buffer zone are both obtained explicitly. Furthermore, numerical simulation for the heavy metal lead–bismuth eutectic liquid and vapor with cavitation phase change is also performed, and a novel method to calculate the height of the recirculation zone is put forward. By comparison of the theoretical formulae and numerical results, it is clearly shown that they agree with each other very well, and the heights predicted by the two methods are both determined by their own upstream flow parameters

  18. Quantitatively integrating molecular structure and bioactivity profile evidence into drug-target relationship analysis

    Directory of Open Access Journals (Sweden)

    Xu Tianlei

    2012-05-01

    Full Text Available Abstract Background Public resources of chemical compound are in a rapid growth both in quantity and the types of data-representation. To comprehensively understand the relationship between the intrinsic features of chemical compounds and protein targets is an essential task to evaluate potential protein-binding function for virtual drug screening. In previous studies, correlations were proposed between bioactivity profiles and target networks, especially when chemical structures were similar. With the lack of effective quantitative methods to uncover such correlation, it is demanding and necessary for us to integrate the information from multiple data sources to produce an comprehensive assessment of the similarity between small molecules, as well as quantitatively uncover the relationship between compounds and their targets by such integrated schema. Results In this study a multi-view based clustering algorithm was introduced to quantitatively integrate compound similarity from both bioactivity profiles and structural fingerprints. Firstly, a hierarchy clustering was performed with the fused similarity on 37 compounds curated from PubChem. Compared to clustering in a single view, the overall common target number within fused classes has been improved by using the integrated similarity, which indicated that the present multi-view based clustering is more efficient by successfully identifying clusters with its members sharing more number of common targets. Analysis in certain classes reveals that mutual complement of the two views for compound description helps to discover missing similar compound when only single view was applied. Then, a large-scale drug virtual screen was performed on 1267 compounds curated from Connectivity Map (CMap dataset based on the fused similarity, which obtained a better ranking result compared to that of single-view. These comprehensive tests indicated that by combining different data representations; an improved

  19. Small UAS Analysis of Laser Designation and Search and Target Acquisition Capabilities in an Urban Environment

    National Research Council Canada - National Science Library

    Harclerode, Eric

    2008-01-01

    Conclusions: -Small UAS has extreme difficulty lasing moving targets in high density urban environments -Lasing moving targets in medium density terrain is possible but not certain -Lasing of stationary targets...

  20. Local examination of skin diffusion using FTIR spectroscopic imaging and multivariate target factor analysis.

    Science.gov (United States)

    Tetteh, J; Mader, K T; Andanson, J-M; McAuley, W J; Lane, M E; Hadgraft, J; Kazarian, S G; Mitchell, J C

    2009-05-29

    In the context of trans-dermal drug delivery it is very important to have mechanistic insight into the barrier function of the skin's stratum corneum and the diffusion mechanisms of topically applied drugs. Currently spectroscopic imaging techniques are evolving which enable a spatial examination of various types of samples in a dynamic way. ATR-FTIR imaging opens up the possibility to monitor spatial diffusion profiles across the stratum corneum of a skin sample. Multivariate data analyses methods based on factor analysis are able to provide insight into the large amount of spectroscopically complex and highly overlapping signals generated. Multivariate target factor analysis was used for spectral resolution and local diffusion profiles with time through stratum corneum. A model drug, 4-cyanophenol in polyethylene glycol 600 and water was studied. Results indicate that the average diffusion profiles between spatially different locations show similar profiles despite the heterogeneous nature of the biological sample and the challenging experimental set-up.

  1. A new robustness analysis for climate policy evaluations: A CGE application for the EU 2020 targets

    International Nuclear Information System (INIS)

    Hermeling, Claudia; Löschel, Andreas; Mennel, Tim

    2013-01-01

    This paper introduces a new method for stochastic sensitivity analysis for computable general equilibrium (CGE) model based on Gauss Quadrature and applies it to check the robustness of a large-scale climate policy evaluation. The revised version of the Gauss-quadrature approach to sensitivity analysis reduces computations considerably vis-à-vis the commonly applied Monte-Carlo methods; this allows for a stochastic sensitivity analysis also for large scale models and multi-dimensional changes of parameters. In the application, an impact assessment of EU2020 climate policy, we focus on sectoral elasticities that are part of the basic parameters of the model and have been recently determined by econometric estimation, alongside with standard errors. The impact assessment is based on the large scale CGE model PACE. We show the applicability of the Gauss-quadrature approach and confirm the robustness of the impact assessment with the PACE model. The variance of the central model outcomes is smaller than their mean by order four to eight, depending on the aggregation level (i.e. aggregate variables such as GDP show a smaller variance than sectoral output). - Highlights: ► New, simplified method for stochastic sensitivity analysis for CGE analysis. ► Gauss quadrature with orthogonal polynomials. ► Application to climate policy—the case of the EU 2020 targets

  2. Integrated network analysis reveals potentially novel molecular mechanisms and therapeutic targets of refractory epilepsies.

    Directory of Open Access Journals (Sweden)

    Hongwei Chu

    Full Text Available Epilepsy is a complex neurological disorder and a significant health problem. The pathogenesis of epilepsy remains obscure in a significant number of patients and the current treatment options are not adequate in about a third of individuals which were known as refractory epilepsies (RE. Network medicine provides an effective approach for studying the molecular mechanisms underlying complex diseases. Here we integrated 1876 disease-gene associations of RE and located those genes to human protein-protein interaction (PPI network to obtain 42 significant RE-associated disease modules. The functional analysis of these disease modules showed novel molecular pathological mechanisms of RE, such as the novel enriched pathways (e.g., "presynaptic nicotinic acetylcholine receptors", "signaling by insulin receptor". Further analysis on the relationships between current drug targets and the RE-related disease genes showed the rational mechanisms of most antiepileptic drugs. In addition, we detected ten potential novel drug targets (e.g., KCNA1, KCNA4-6, KCNC3, KCND2, KCNMA1, CAMK2G, CACNB4 and GRM1 located in three RE related disease modules, which might provide novel insights into the new drug discovery for RE therapy.

  3. Targeted drugs for pulmonary arterial hypertension: a network meta-analysis of 32 randomized clinical trials

    Directory of Open Access Journals (Sweden)

    Gao XF

    2017-05-01

    Full Text Available Xiao-Fei Gao,1 Jun-Jie Zhang,1,2 Xiao-Min Jiang,1 Zhen Ge,1,2 Zhi-Mei Wang,1 Bing Li,1 Wen-Xing Mao,1 Shao-Liang Chen1,2 1Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 2Department of Cardiology, Nanjing Heart Center, Nanjing, People’s Republic of China Background: Pulmonary arterial hypertension (PAH is a devastating disease and ultimately leads to right heart failure and premature death. A total of four classical targeted drugs, prostanoids, endothelin receptor antagonists (ERAs, phosphodiesterase 5 inhibitors (PDE-5Is, and soluble guanylate cyclase stimulator (sGCS, have been proved to improve exercise capacity and hemodynamics compared to placebo; however, direct head-to-head comparisons of these drugs are lacking. This network meta-analysis was conducted to comprehensively compare the efficacy of these targeted drugs for PAH.Methods: Medline, the Cochrane Library, and other Internet sources were searched for randomized clinical trials exploring the efficacy of targeted drugs for patients with PAH. The primary effective end point of this network meta-analysis was a 6-minute walk distance (6MWD.Results: Thirty-two eligible trials including 6,758 patients were identified. There was a statistically significant improvement in 6MWD, mean pulmonary arterial pressure, pulmonary vascular resistance, and clinical worsening events associated with each of the four targeted drugs compared with placebo. Combination therapy improved 6MWD by 20.94 m (95% confidence interval [CI]: 6.94, 34.94; P=0.003 vs prostanoids, and 16.94 m (95% CI: 4.41, 29.47; P=0.008 vs ERAs. PDE-5Is improved 6MWD by 17.28 m (95% CI: 1.91, 32.65; P=0.028 vs prostanoids, with a similar result with combination therapy. In addition, combination therapy reduced mean pulmonary artery pressure by 3.97 mmHg (95% CI: -6.06, -1.88; P<0.001 vs prostanoids, 8.24 mmHg (95% CI: -10.71, -5.76; P<0.001 vs ERAs, 3.38 mmHg (95% CI: -6.30, -0.47; P=0.023 vs

  4. Target Fortification of Breast Milk: How Often Should Milk Analysis Be Done?

    Directory of Open Access Journals (Sweden)

    Niels Rochow

    2015-04-01

    Full Text Available Target fortification (TFO reduces natural macronutrient variation in breast milk (BM. Daily BM analysis for TFO increases neonatal intensive care unit work load by 10–15 min/patient/day and may not be feasible in all nurseries. The variation of macronutrient intake when BM analysis is done for various schedules was studied. In an observational study, we analyzed 21 subsequent samples of native 24-h BM batches, which had been prepared for 10 healthy infants (gestational age 26.1 ± 1.3 weeks, birth weight: 890 ± 210 g. Levels of protein and fat (validated near-infrared milk analyzer, as well as lactose (UPLC-MS/MS generated the database for modelling TFO to meet recommendations of European Society for Paediatric Gastroenterology Hepatology and Nutrition. Intake of macronutrients and energy were calculated for different schedules of BM measurements for TFO (n = 1/week; n = 2/week; n = 3/week; n = 5/week; n = 7/week and compared to native and fixed dose fortified BM. Day-to-day variation of macronutrients (protein 20%, carbohydrate 13%, fat 17%, energy 10% decreased as the frequency of milk analysis increased and was almost zero for protein and carbohydrate with daily measurements. Measurements two/week led to mean macronutrient intake within a range of ±5% of targeted levels. A reduced schedule for macronutrient measurement may increase the practical use of TFO. To what extent the day-to-day variation affects growth while mean intake is stable needs to be studied.

  5. The drug-minded protein interaction database (DrumPID) for efficient target analysis and drug development.

    Science.gov (United States)

    Kunz, Meik; Liang, Chunguang; Nilla, Santosh; Cecil, Alexander; Dandekar, Thomas

    2016-01-01

    The drug-minded protein interaction database (DrumPID) has been designed to provide fast, tailored information on drugs and their protein networks including indications, protein targets and side-targets. Starting queries include compound, target and protein interactions and organism-specific protein families. Furthermore, drug name, chemical structures and their SMILES notation, affected proteins (potential drug targets), organisms as well as diseases can be queried including various combinations and refinement of searches. Drugs and protein interactions are analyzed in detail with reference to protein structures and catalytic domains, related compound structures as well as potential targets in other organisms. DrumPID considers drug functionality, compound similarity, target structure, interactome analysis and organismic range for a compound, useful for drug development, predicting drug side-effects and structure-activity relationships.Database URL:http://drumpid.bioapps.biozentrum.uni-wuerzburg.de. © The Author(s) 2016. Published by Oxford University Press.

  6. Electro-optic analysis of the influence of target geometry on electromagnetic pulses generated by petawatt laser-matter interactions

    Science.gov (United States)

    Robinson, Timothy; Giltrap, Samuel; Eardley, Samuel; Consoli, Fabrizio; De Angelis, Riccardo; Ingenito, Francesco; Stuart, Nicholas; Verona, Claudio; Smith, Roland A.

    2018-01-01

    We present an analysis of strong laser-driven electromagnetic pulses using novel electro-optic diagnostic techniques. A range of targets were considered, including thin plastic foils (20-550 nm) and mass-limited, optically-levitated micro-targets. Results from foils indicate a dependence of EMP on target thickness, with larger peak electric fields observed with thinner targets. Spectral analysis suggests high repeatability between shots, with identified spectral features consistently detected with earth following ejection of hot electrons from the plasma, in contrast to predictions for pin-mounted foils in the Poyé EMP generation model. With levitated targets, no EMP was measurable above the noise threshold of any diagnostic, despite observation of protons accelerated to >30 MeV energies, suggesting the discharge current contribution to EMP is dominant.

  7. Genome-wide identification of the regulatory targets of a transcription factor using biochemical characterization and computational genomic analysis

    Directory of Open Access Journals (Sweden)

    Jolly Emmitt R

    2005-11-01

    Full Text Available Abstract Background A major challenge in computational genomics is the development of methodologies that allow accurate genome-wide prediction of the regulatory targets of a transcription factor. We present a method for target identification that combines experimental characterization of binding requirements with computational genomic analysis. Results Our method identified potential target genes of the transcription factor Ndt80, a key transcriptional regulator involved in yeast sporulation, using the combined information of binding affinity, positional distribution, and conservation of the binding sites across multiple species. We have also developed a mathematical approach to compute the false positive rate and the total number of targets in the genome based on the multiple selection criteria. Conclusion We have shown that combining biochemical characterization and computational genomic analysis leads to accurate identification of the genome-wide targets of a transcription factor. The method can be extended to other transcription factors and can complement other genomic approaches to transcriptional regulation.

  8. Thermal hydraulic analysis of window target unit for LBE cooled XADS

    International Nuclear Information System (INIS)

    Tak, N.I.; Neitzel, H.J.; Chen, H.Y.; Cheng, X.

    2004-10-01

    A window target unit for a LBE cooled primary core is one of the basic options considered in the framework of the Preliminary Design Study of eXperimental Accelerator Driven System (PDS-XADS). In the present work, thermal hydraulic analysis has been performed for this option focusing on the window cooling. At first system analysis has been performed for the entire target unit using the one-dimensional system code, HERETA. Then Computational Fluid Dynamics (CFD) analysis has been carried out for lower part of the target to study the cooling capability of the window. The CFX 5.6 code has been applied using an advanced turbulence model, called Sheer Stress Transport (SST) model, combined with the advanced wall treatment available in the new CFX 5 version. The results of the HERETA calculations show that a stable natural circulation flow, with a steady state flow rate of 192 kg/s, is established. No temperature peak is observed by a start up procedure with beam ramp having a period of 200 s. It is found, however, a start up procedure with beam jump has to be avoided to prevent the overheating of the window. Based on the results of CFX 5.6 calculations, the window thickness is reduced to 2 mm in the center from the initial proposal of 3 mm in order to satisfy the thermal design limit. The maximum temperature change rate of the window under beam trips is predicted as high as 412 C/s after 0.1 s of the beam interrupt. It is judged that beam trips with a beam interrupt duration less than 1 s could also be crucial to the integrity of the window. Finally, three postulated accidents (i.e., beam focusing, loss of heat sink, and unexpected beam jump) have been analyzed to find out the time for the beam to be switched off in order to avoid window failure. The present results show that window failure occurs in 0.1∝0.8 second after the start of the beam focusing and in about 200 seconds after loss of heat sink. However, window failure is not expected for a beam jump scenario

  9. An Approach for Identification of Novel Drug Targets in Streptococcus pyogenes SF370 Through Pathway Analysis.

    Science.gov (United States)

    Singh, Satendra; Singh, Dev Bukhsh; Singh, Anamika; Gautam, Budhayash; Ram, Gurudayal; Dwivedi, Seema; Ramteke, Pramod W

    2016-12-01

    Streptococcus pyogenes is one of the most important pathogens as it is involved in various infections affecting upper respiratory tract and skin. Due to the emergence of multidrug resistance and cross-resistance, S. Pyogenes is becoming more pathogenic and dangerous. In the present study, an in silico comparative analysis of total 65 metabolic pathways of the host (Homo sapiens) and the pathogen was performed. Initially, 486 paralogous enzymes were identified so that they can be removed from possible drug target list. The 105 enzymes of the biochemical pathways of S. pyogenes from the KEGG metabolic pathway database were compared with the proteins from the Homo sapiens by performing a BLASTP search against the non-redundant database restricted to the Homo sapiens subset. Out of these, 83 enzymes were identified as non-human homologous while 30 enzymes of inadequate amino acid length were removed for further processing. Essential enzymes were finally mined from remaining 53 enzymes. Finally, 28 essential enzymes were identified in S. pyogenes SF370 (serotype M1). In subcellular localization study, 18 enzymes were predicted with cytoplasmic localization and ten enzymes with the membrane localization. These ten enzymes with putative membrane localization should be of particular interest. Acyl-carrier-protein S-malonyltransferase, DNA polymerase III subunit beta and dihydropteroate synthase are novel drug targets and thus can be used to design potential inhibitors against S. pyogenes infection. 3D structure of dihydropteroate synthase was modeled and validated that can be used for virtual screening and interaction study of potential inhibitors with the target enzyme.

  10. Content analysis of targeted food and beverage advertisements in a Chinese-American neighbourhood.

    Science.gov (United States)

    Bragg, Marie A; Pageot, Yrvane K; Hernández-Villarreal, Olivia; Kaplan, Sue A; Kwon, Simona C

    2017-08-01

    The current descriptive study aimed to: (i) quantify the number and type of advertisements (ads) located in a Chinese-American neighbourhood in a large, urban city; and (ii) catalogue the targeted marketing themes used in the food/beverage ads. Ten pairs of trained research assistants photographed all outdoor ads in a 0·6 mile2 (1·6 km2) area where more than 60·0 % of residents identify as Chinese American. We used content analysis to assess the marketing themes of ads, including references to: Asian cultures; health; various languages; children; food or beverage type (e.g. sugar-sweetened soda). Lower East Side, a neighbourhood located in the borough of Manhattan in New York City, USA. Ads (n 1366) in the designated neighbourhood. Food/beverage ads were the largest ad category (29·7 %, n 407), followed by services (e.g. mobile phone services; 21·0 %, n 288). Sixty-seven per cent (66·9 %) of beverages featured were sugar-sweetened, and 50·8 % of food ads promoted fast food. Fifty-five per cent (54·9 %) of food/beverage ads targeted Asian Americans through language, ethnicity of person(s) in the ad or inclusion of culturally relevant images. Fifty per cent (50·2 %) of ads were associated with local/small brands. Food/beverage marketing practices are known to promote unhealthy food and beverage products. Research shows that increased exposure leads to excessive short-term consumption among consumers and influences children's food preferences and purchase requests. Given the frequency of racially targeted ads for unhealthy products in the current study and increasing rates of obesity-related diseases among Asian Americans, research and policies should address the implications of food and beverage ads on health.

  11. Practical using of TXRF spectrometers with slitless collimators for the trace analysis of targets surfaces

    International Nuclear Information System (INIS)

    Egorov, V.K.; Zuev, A.P.; Kondratiev, O.S.; Egorov, E.V.

    2000-01-01

    TXRF spectrometer with the slitless collimator used for a formation of the x-ray excitating beam (TXRF-SC spectrometer) is a new variety of an instrument been destined for the trace analysis of surfaces by x-ray fluorescence method at the total reflection of the x-ray incident beam. Some theoretical concepts are introduced for a characterization of the x-ray optics been unique to the TXRF-SC spectrometer. The principle design of the TXRF-SC spectrometer used for the trace quantitative analysis of a surface are discussed. Spectra of a secondary x-ray radiation yield for typical targets been collected by using of the TXRF-SC spectrometer and calculation of surface trace elements concentrations are presented. The analytical and operating parameters of the TXRF-SC spectrometer and one characterized by standard optical scheme are compared. The slitless collimator of the x-ray radiation is formed by two quartz polished plates mated together. Lengths of the plates are not equal. The target is placed on the surface of the long quartz plate and produces the continuation of the initial slitless collimator. Target orientation problem vanishes but problem of the surface contact effect appears. The secondary x-ray radiation excitated in a surface of the target is led out across the hole in the long quartz plate. The radiation is registered by a standard Si (Li) semiconductor detector and is collected by a multi-channel analyzer. The fundamental difference of the x-ray optical scheme been unique to TXRF-SC spectrometer from the standard one is the excitation of a studied surface by a flared x-ray beam with angle ΔΘ = 2Θ c , where Θ c is the critical angle of the total reflection. The vital peculiarity of a x-ray slitless collimation is the absence of a radiation monochromatism in output of the collimator. The sensible divergence of the x-ray excitating beam and the availability in it of monochromatic and white radiation alike allow to get in the surface layer of target the

  12. Lead-Bismuth Eutectic cooled experimental Accelerator Driven System. Windowless target unit thermal-hydraulic analysis

    International Nuclear Information System (INIS)

    Bianchi, F.; Ferri, R.; Moreau, V.

    2004-01-01

    A main concern related to the peaceful use of nuclear energy is the safe management of nuclear wastes, with particular attention to long-lived fission products. An increasing attention has recently been addressed to transmutation systems (Accelerator Driven System: ADS) able to 'burn' the actinides and some of the long-lived fission products (High-Level Waste: HLW), transforming them in short or medium-lived wastes that may be easier managed and stored in the geological disposal, with the consequent easier acceptability by population. An ADS consists of a subcritical-core coupled with an accelerator by means of a target. This paper deals with the thermal-hydraulic analysis, performed with STAR-CD and RELAP5 codes for the windowless target unit of Lead-Bismuth Eutectic (LBE) cooled experimental ADS (XADS), both to assess its behaviour during operational and accident sequences and to provide input data for the thermal-mechanical analyses. It also reports a description of modifications properly implemented in the codes used for the assessment of this kind of plants. (author)

  13. SUMOFLUX: A Generalized Method for Targeted 13C Metabolic Flux Ratio Analysis.

    Directory of Open Access Journals (Sweden)

    Maria Kogadeeva

    2016-09-01

    Full Text Available Metabolic fluxes are a cornerstone of cellular physiology that emerge from a complex interplay of enzymes, carriers, and nutrients. The experimental assessment of in vivo intracellular fluxes using stable isotopic tracers is essential if we are to understand metabolic function and regulation. Flux estimation based on 13C or 2H labeling relies on complex simulation and iterative fitting; processes that necessitate a level of expertise that ordinarily preclude the non-expert user. To overcome this, we have developed SUMOFLUX, a methodology that is broadly applicable to the targeted analysis of 13C-metabolic fluxes. By combining surrogate modeling and machine learning, we trained a predictor to specialize in estimating flux ratios from measurable 13C-data. SUMOFLUX targets specific flux features individually, which makes it fast, user-friendly, applicable to experimental design and robust in terms of experimental noise and exchange flux magnitude. Collectively, we predict that SUMOFLUX's properties realistically pave the way to high-throughput flux analyses.

  14. Analysis of structure and dynamics of superfine polyhydroxybutyrate fibers for targeted drug delivery

    Science.gov (United States)

    Olkhov, A.; Kucherenko, E.; Pantyukhov, P.; Zykova, A.; Karpova, S.; Iordanskii,