WorldWideScience

Sample records for tissue-engineered cartilage-like tissue

  1. Tissue engineering

    CERN Document Server

    Fisher, John P; Bronzino, Joseph D

    2007-01-01

    Increasingly viewed as the future of medicine, the field of tissue engineering is still in its infancy. As evidenced in both the scientific and popular press, there exists considerable excitement surrounding the strategy of regenerative medicine. To achieve its highest potential, a series of technological advances must be made. Putting the numerous breakthroughs made in this field into a broad context, Tissue Engineering disseminates current thinking on the development of engineered tissues. Divided into three sections, the book covers the fundamentals of tissue engineering, enabling technologies, and tissue engineering applications. It examines the properties of stem cells, primary cells, growth factors, and extracellular matrix as well as their impact on the development of tissue engineered devices. Contributions focus on those strategies typically incorporated into tissue engineered devices or utilized in their development, including scaffolds, nanocomposites, bioreactors, drug delivery systems, and gene t...

  2. Tissue engineering in dentistry.

    Science.gov (United States)

    Abou Neel, Ensanya Ali; Chrzanowski, Wojciech; Salih, Vehid M; Kim, Hae-Won; Knowles, Jonathan C

    2014-08-01

    of this review is to inform practitioners with the most updated information on tissue engineering and its potential applications in dentistry. The authors used "PUBMED" to find relevant literature written in English and published from the beginning of tissue engineering until today. A combination of keywords was used as the search terms e.g., "tissue engineering", "approaches", "strategies" "dentistry", "dental stem cells", "dentino-pulp complex", "guided tissue regeneration", "whole tooth", "TMJ", "condyle", "salivary glands", and "oral mucosa". Abstracts and full text articles were used to identify causes of craniofacial tissue loss, different approaches for craniofacial reconstructions, how the tissue engineering emerges, different strategies of tissue engineering, biomaterials employed for this purpose, the major attempts to engineer different dental structures, finally challenges and future of tissue engineering in dentistry. Only those articles that dealt with the tissue engineering in dentistry were selected. There have been a recent surge in guided tissue engineering methods to manage periodontal diseases beyond the traditional approaches. However, the predictable reconstruction of the innate organisation and function of whole teeth as well as their periodontal structures remains challenging. Despite some limited progress and minor successes, there remain distinct and important challenges in the development of reproducible and clinically safe approaches for oral tissue repair and regeneration. Clearly, there is a convincing body of evidence which confirms the need for this type of treatment, and public health data worldwide indicates a more than adequate patient resource. The future of these therapies involving more biological approaches and the use of dental tissue stem cells is promising and advancing. Also there may be a significant interest of their application and wider potential to treat disorders beyond the craniofacial region. Considering the

  3. Cell and Tissue Engineering

    CERN Document Server

    2012-01-01

    “Cell and Tissue Engineering” introduces the principles and new approaches in cell and tissue engineering. It includes both the fundamentals and the current trends in cell and tissue engineering, in a way useful both to a novice and an expert in the field. The book is composed of 13 chapters all of which are written by the leading experts. It is organized to gradually assemble an insight in cell and tissue function starting form a molecular nano-level, extending to a cellular micro-level and finishing at the tissue macro-level. In specific, biological, physiological, biophysical, biochemical, medical, and engineering aspects are covered from the standpoint of the development of functional substitutes of biological tissues for potential clinical use. Topics in the area of cell engineering include cell membrane biophysics, structure and function of the cytoskeleton, cell-extracellular matrix interactions, and mechanotransduction. In the area of tissue engineering the focus is on the in vitro cultivation of ...

  4. Degradable polymers for tissue engineering

    NARCIS (Netherlands)

    van Dijkhuizen-Radersma, Riemke; Moroni, Lorenzo; van Apeldoorn, Aart A.; Zhang, Zheng; Grijpma, Dirk W.; van Blitterswijk, Clemens A.

    2008-01-01

    This chapter elaborates the degradable polymers for tissue engineering and their required scaffold material in tissue engineering. It recognizes the examples of degradable polymers broadly used in tissue engineering. Tissue engineering is the persuasion of the body to heal itself through the

  5. Biomaterials for Tissue Engineering

    Science.gov (United States)

    Lee, Esther J.; Kasper, F. Kurtis; Mikos, Antonios G.

    2013-01-01

    Biomaterials serve as an integral component of tissue engineering. They are designed to provide architectural framework reminiscent of native extracellular matrix in order to encourage cell growth and eventual tissue regeneration. Bone and cartilage represent two distinct tissues with varying compositional and mechanical properties. Despite these differences, both meet at the osteochondral interface. This article presents an overview of current biomaterials employed in bone and cartilage applications, discusses some design considerations, and alludes to future prospects within this field of research. PMID:23820768

  6. Neoproteoglycans in tissue engineering

    Science.gov (United States)

    Weyers, Amanda; Linhardt, Robert J.

    2014-01-01

    Proteoglycans, comprised of a core protein to which glycosaminoglycan chains are covalently linked, are an important structural and functional family of macromolecules found in the extracellular matrix. Advances in our understanding of biological interactions have lead to a greater appreciation for the need to design tissue engineering scaffolds that incorporate mimetics of key extracellular matrix components. A variety of synthetic and semisynthetic molecules and polymers have been examined by tissue engineers that serve as structural, chemical and biological replacements for proteoglycans. These proteoglycan mimetics have been referred to as neoproteoglycans and serve as functional and therapeutic replacements for natural proteoglycans that are often unavailable for tissue engineering studies. Although neoproteoglycans have important limitations, such as limited signaling ability and biocompatibility, they have shown promise in replacing the natural activity of proteoglycans through cell and protein binding interactions. This review focuses on the recent in vivo and in vitro tissue engineering applications of three basic types of neoproteoglycan structures, protein–glycosaminoglycan conjugates, nano-glycosaminoglycan composites and polymer–glycosaminoglycan complexes. PMID:23399318

  7. Ligament Tissue Engineering

    OpenAIRE

    Khan, Wasim Sardar

    2016-01-01

    Ligaments are commonly injured in the knee joint, and have a poor capacity for healing due to their relative avascularity. Ligament reconstruction is well established for injuries such as anterior cruciate ligament rupture, however the use of autografts and allografts for ligament reconstruction are associated with complications, and outcomes are variable. Ligament tissue engineering using stem cells, growth factors and scaffolds is a novel technique that has the potential to provide an unlim...

  8. Cardiac tissue engineering

    Directory of Open Access Journals (Sweden)

    MILICA RADISIC

    2005-03-01

    Full Text Available We hypothesized that clinically sized (1-5 mm thick,compact cardiac constructs containing physiologically high density of viable cells (~108 cells/cm3 can be engineered in vitro by using biomimetic culture systems capable of providing oxygen transport and electrical stimulation, designed to mimic those in native heart. This hypothesis was tested by culturing rat heart cells on polymer scaffolds, either with perfusion of culture medium (physiologic interstitial velocity, supplementation of perfluorocarbons, or with electrical stimulation (continuous application of biphasic pulses, 2 ms, 5 V, 1 Hz. Tissue constructs cultured without perfusion or electrical stimulation served as controls. Medium perfusion and addition of perfluorocarbons resulted in compact, thick constructs containing physiologic density of viable, electromechanically coupled cells, in contrast to control constructs which had only a ~100 mm thick peripheral region with functionally connected cells. Electrical stimulation of cultured constructs resulted in markedly improved contractile properties, increased amounts of cardiac proteins, and remarkably well developed ultrastructure (similar to that of native heart as compared to non-stimulated controls. We discuss here the state of the art of cardiac tissue engineering, in light of the biomimetic approach that reproduces in vitro some of the conditions present during normal tissue development.

  9. Tissue engineered tumor models.

    Science.gov (United States)

    Ingram, M; Techy, G B; Ward, B R; Imam, S A; Atkinson, R; Ho, H; Taylor, C R

    2010-08-01

    Many research programs use well-characterized tumor cell lines as tumor models for in vitro studies. Because tumor cells grown as three-dimensional (3-D) structures have been shown to behave more like tumors in vivo than do cells growing in monolayer culture, a growing number of investigators now use tumor cell spheroids as models. Single cell type spheroids, however, do not model the stromal-epithelial interactions that have an important role in controlling tumor growth and development in vivo. We describe here a method for generating, reproducibly, more realistic 3-D tumor models that contain both stromal and malignant epithelial cells with an architecture that closely resembles that of tumor microlesions in vivo. Because they are so tissue-like we refer to them as tumor histoids. They can be generated reproducibly in substantial quantities. The bioreactor developed to generate histoid constructs is described and illustrated. It accommodates disposable culture chambers that have filled volumes of either 10 or 64 ml, each culture yielding on the order of 100 or 600 histoid particles, respectively. Each particle is a few tenths of a millimeter in diameter. Examples of histological sections of tumor histoids representing cancers of breast, prostate, colon, pancreas and urinary bladder are presented. Potential applications of tumor histoids include, but are not limited to, use as surrogate tumors for pre-screening anti-solid tumor pharmaceutical agents, as reference specimens for immunostaining in the surgical pathology laboratory and use in studies of invasive properties of cells or other aspects of tumor development and progression. Histoids containing nonmalignant cells also may have potential as "seeds" in tissue engineering. For drug testing, histoids probably will have to meet certain criteria of size and tumor cell content. Using a COPAS Plus flow cytometer, histoids containing fluorescent tumor cells were analyzed successfully and sorted using such criteria.

  10. Computational Modeling in Tissue Engineering

    CERN Document Server

    2013-01-01

    One of the major challenges in tissue engineering is the translation of biological knowledge on complex cell and tissue behavior into a predictive and robust engineering process. Mastering this complexity is an essential step towards clinical applications of tissue engineering. This volume discusses computational modeling tools that allow studying the biological complexity in a more quantitative way. More specifically, computational tools can help in:  (i) quantifying and optimizing the tissue engineering product, e.g. by adapting scaffold design to optimize micro-environmental signals or by adapting selection criteria to improve homogeneity of the selected cell population; (ii) quantifying and optimizing the tissue engineering process, e.g. by adapting bioreactor design to improve quality and quantity of the final product; and (iii) assessing the influence of the in vivo environment on the behavior of the tissue engineering product, e.g. by investigating vascular ingrowth. The book presents examples of each...

  11. Biomaterials for tissue engineering: summary

    Science.gov (United States)

    Christenson, L.; Mikos, A. G.; Gibbons, D. F.; Picciolo, G. L.; McIntire, L. V. (Principal Investigator)

    1997-01-01

    This article summarizes presentations and discussion at the workshop "Enabling Biomaterial Technology for Tissue Engineering," which was held during the Fifth World Biomaterials Congress in May 1996. Presentations covered the areas of material substrate architecture, barrier effects, and cellular response, including analysis of biomaterials challenges involved in producing specific tissue-engineered products.

  12. The growth of tissue engineering.

    Science.gov (United States)

    Lysaght, M J; Reyes, J

    2001-10-01

    This report draws upon data from a variety of sources to estimate the size, scope, and growth rate of the contemporary tissue engineering enterprise. At the beginning of 2001, tissue engineering research and development was being pursued by 3,300 scientists and support staff in more than 70 startup companies or business units with a combined annual expenditure of over $600 million. Spending by tissue engineering firms has been growing at a compound annual rate of 16%, and the aggregate investment since 1990 now exceeds $3.5 billion. At the beginning of 2001, the net capital value of the 16 publicly traded tissue engineering startups had reached $2.6 billion. Firms focusing on structural applications (skin, cartilage, bone, cardiac prosthesis, and the like) comprise the fastest growing segment. In contrast, efforts in biohybrid organs and other metabolic applications have contracted over the past few years. The number of companies involved in stem cells and regenerative medicine is rapidly increasing, and this area represents the most likely nidus of future growth for tissue engineering. A notable recent trend has been the emergence of a strong commercial activity in tissue engineering outside the United States, with at least 16 European or Australian companies (22% of total) now active.

  13. Biomaterials for tissue engineering applications.

    Science.gov (United States)

    Keane, Timothy J; Badylak, Stephen F

    2014-06-01

    With advancements in biological and engineering sciences, the definition of an ideal biomaterial has evolved over the past 50 years from a substance that is inert to one that has select bioinductive properties and integrates well with adjacent host tissue. Biomaterials are a fundamental component of tissue engineering, which aims to replace diseased, damaged, or missing tissue with reconstructed functional tissue. Most biomaterials are less than satisfactory for pediatric patients because the scaffold must adapt to the growth and development of the surrounding tissues and organs over time. The pediatric community, therefore, provides a distinct challenge for the tissue engineering community. Copyright © 2014. Published by Elsevier Inc.

  14. Chitin Scaffolds in Tissue Engineering

    Science.gov (United States)

    Jayakumar, Rangasamy; Chennazhi, Krishna Prasad; Srinivasan, Sowmya; Nair, Shantikumar V.; Furuike, Tetsuya; Tamura, Hiroshi

    2011-01-01

    Tissue engineering/regeneration is based on the hypothesis that healthy stem/progenitor cells either recruited or delivered to an injured site, can eventually regenerate lost or damaged tissue. Most of the researchers working in tissue engineering and regenerative technology attempt to create tissue replacements by culturing cells onto synthetic porous three-dimensional polymeric scaffolds, which is currently regarded as an ideal approach to enhance functional tissue regeneration by creating and maintaining channels that facilitate progenitor cell migration, proliferation and differentiation. The requirements that must be satisfied by such scaffolds include providing a space with the proper size, shape and porosity for tissue development and permitting cells from the surrounding tissue to migrate into the matrix. Recently, chitin scaffolds have been widely used in tissue engineering due to their non-toxic, biodegradable and biocompatible nature. The advantage of chitin as a tissue engineering biomaterial lies in that it can be easily processed into gel and scaffold forms for a variety of biomedical applications. Moreover, chitin has been shown to enhance some biological activities such as immunological, antibacterial, drug delivery and have been shown to promote better healing at a faster rate and exhibit greater compatibility with humans. This review provides an overview of the current status of tissue engineering/regenerative medicine research using chitin scaffolds for bone, cartilage and wound healing applications. We also outline the key challenges in this field and the most likely directions for future development and we hope that this review will be helpful to the researchers working in the field of tissue engineering and regenerative medicine. PMID:21673928

  15. Tissue Engineering of the Penis

    Directory of Open Access Journals (Sweden)

    Manish N. Patel

    2011-01-01

    Full Text Available Congenital disorders, cancer, trauma, or other conditions of the genitourinary tract can lead to significant organ damage or loss of function, necessitating eventual reconstruction or replacement of the damaged structures. However, current reconstructive techniques are limited by issues of tissue availability and compatibility. Physicians and scientists have begun to explore tissue engineering and regenerative medicine strategies for repair and reconstruction of the genitourinary tract. Tissue engineering allows the development of biological substitutes which could potentially restore normal function. Tissue engineering efforts designed to treat or replace most organs are currently being undertaken. Most of these efforts have occurred within the past decade. However, before these engineering techniques can be applied to humans, further studies are needed to ensure the safety and efficacy of these new materials. Recent progress suggests that engineered urologic tissues and cell therapy may soon have clinical applicability.

  16. Commercial considerations in tissue engineering.

    Science.gov (United States)

    Mansbridge, Jonathan

    2006-10-01

    Tissue engineering is a field with immense promise. Using the example of an early tissue-engineered skin implant, Dermagraft, factors involved in the successful commercial development of devices of this type are explored. Tissue engineering has to strike a balance between tissue culture, which is a resource-intensive activity, and business considerations that are concerned with minimizing cost and maximizing customer convenience. Bioreactor design takes place in a highly regulated environment, so factors to be incorporated into the concept include not only tissue culture considerations but also matters related to asepsis, scaleup, automation and ease of use by the final customer. Dermagraft is an allogeneic tissue. Stasis preservation, in this case cryopreservation, is essential in allogeneic tissue engineering, allowing sterility testing, inventory control and, in the case of Dermagraft, a cellular stress that may be important for hormesis following implantation. Although the use of allogeneic cells provides advantages in manufacturing under suitable conditions, it raises the spectre of immunological rejection. Such rejection has not been experienced with Dermagraft. Possible reasons for this and the vision of further application of allogeneic tissues are important considerations in future tissue-engineered cellular devices. This review illustrates approaches that indicate some of the criteria that may provide a basis for further developments. Marketing is a further requirement for success, which entails understanding of the mechanism of action of the procedure, and is illustrated for Dermagraft. The success of a tissue-engineered product is dependent on many interacting operations, some discussed here, each of which must be performed simultaneously and well.

  17. Molecular, cellular, and tissue engineering

    CERN Document Server

    Bronzino, Joseph D

    2015-01-01

    Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering. Molecular, Cellular, and Tissue Engineering, the fourth volume of the handbook, presents material from respected scientists with diverse backgrounds in molecular biology, transport phenomena, physiological modeling, tissue engineering, stem cells, drug delivery systems, artificial organs, and personalized medicine. More than three dozen specific topics are examined, including DNA vaccines, biomimetic systems, cardiovascular dynamics, biomaterial scaffolds, cell mechanobiology, synthetic biomaterials, pluripotent stem cells, hematopoietic stem cells, mesenchymal stem cells, nanobiomaterials for tissue engineering, biomedical imaging of engineered tissues, gene therapy, noninvasive targeted protein and peptide drug deliver...

  18. Bioactive glass in tissue engineering

    Science.gov (United States)

    Rahaman, Mohamed N.; Day, Delbert E.; Bal, B. Sonny; Fu, Qiang; Jung, Steven B.; Bonewald, Lynda F.; Tomsia, Antoni P.

    2011-01-01

    This review focuses on recent advances in the development and use of bioactive glass for tissue engineering applications. Despite its inherent brittleness, bioactive glass has several appealing characteristics as a scaffold material for bone tissue engineering. New bioactive glasses based on borate and borosilicate compositions have shown the ability to enhance new bone formation when compared to silicate bioactive glass. Borate-based bioactive glasses also have controllable degradation rates, so the degradation of the bioactive glass implant can be more closely matched to the rate of new bone formation. Bioactive glasses can be doped with trace quantities of elements such as Cu, Zn and Sr, which are known to be beneficial for healthy bone growth. In addition to the new bioactive glasses, recent advances in biomaterials processing have resulted in the creation of scaffold architectures with a range of mechanical properties suitable for the substitution of loaded as well as non-loaded bone. While bioactive glass has been extensively investigated for bone repair, there has been relatively little research on the application of bioactive glass to the repair of soft tissues. However, recent work has shown the ability of bioactive glass to promote angiogenesis, which is critical to numerous applications in tissue regeneration, such as neovascularization for bone regeneration and the healing of soft tissue wounds. Bioactive glass has also been shown to enhance neocartilage formation during in vitro culture of chondrocyte-seeded hydrogels, and to serve as a subchondral substrate for tissue-engineered osteochondral constructs. Methods used to manipulate the structure and performance of bioactive glass in these tissue engineering applications are analyzed. PMID:21421084

  19. Bladder tissue engineering through nanotechnology.

    Science.gov (United States)

    Harrington, Daniel A; Sharma, Arun K; Erickson, Bradley A; Cheng, Earl Y

    2008-08-01

    The field of tissue engineering has developed in phases: initially researchers searched for "inert" biomaterials to act solely as replacement structures in the body. Then, they explored biodegradable scaffolds--both naturally derived and synthetic--for the temporary support of growing tissues. Now, a third phase of tissue engineering has developed, through the subcategory of "regenerative medicine." This renewed focus toward control over tissue morphology and cell phenotype requires proportional advances in scaffold design. Discoveries in nanotechnology have driven both our understanding of cell-substrate interactions, and our ability to influence them. By operating at the size regime of proteins themselves, nanotechnology gives us the opportunity to directly speak the language of cells, through reliable, repeatable creation of nanoscale features. Understanding the synthesis of nanoscale materials, via "top-down" and "bottom-up" strategies, allows researchers to assess the capabilities and limits inherent in both techniques. Urology research as a whole, and bladder regeneration in particular, are well-positioned to benefit from such advances, since our present technology has yet to reach the end goal of functional bladder restoration. In this article, we discuss the current applications of nanoscale materials to bladder tissue engineering, and encourage researchers to explore these interdisciplinary technologies now, or risk playing catch-up in the future.

  20. Fundamentals of bladder tissue engineering | Mahfouz | African ...

    African Journals Online (AJOL)

    Fundamentals of bladder tissue engineering. ... could affect the bladder and lead to eventual loss of its integrity, with the need for replacement or repair. ... Tissue engineering relies upon three essential pillars; the scaffold, the cells seeded on ...

  1. Synthetic biology meets tissue engineering.

    Science.gov (United States)

    Davies, Jamie A; Cachat, Elise

    2016-06-15

    Classical tissue engineering is aimed mainly at producing anatomically and physiologically realistic replacements for normal human tissues. It is done either by encouraging cellular colonization of manufactured matrices or cellular recolonization of decellularized natural extracellular matrices from donor organs, or by allowing cells to self-organize into organs as they do during fetal life. For repair of normal bodies, this will be adequate but there are reasons for making unusual, non-evolved tissues (repair of unusual bodies, interface to electromechanical prostheses, incorporating living cells into life-support machines). Synthetic biology is aimed mainly at engineering cells so that they can perform custom functions: applying synthetic biological approaches to tissue engineering may be one way of engineering custom structures. In this article, we outline the 'embryological cycle' of patterning, differentiation and morphogenesis and review progress that has been made in constructing synthetic biological systems to reproduce these processes in new ways. The state-of-the-art remains a long way from making truly synthetic tissues, but there are now at least foundations for future work. © 2016 Authors; published by Portland Press Limited.

  2. Scientific and industrial status of tissue engineering ...

    African Journals Online (AJOL)

    Tissue engineering is a newly emerging field targeting many unresolved health problems. So far, the achievements of this technology in the production of different tissue engineered substitutes were promising. This review is intended to describe, briefly and in a simple language, what tissue engineering is, what the ...

  3. Nanotechnology in bone tissue engineering.

    Science.gov (United States)

    Walmsley, Graham G; McArdle, Adrian; Tevlin, Ruth; Momeni, Arash; Atashroo, David; Hu, Michael S; Feroze, Abdullah H; Wong, Victor W; Lorenz, Peter H; Longaker, Michael T; Wan, Derrick C

    2015-07-01

    Nanotechnology represents a major frontier with potential to significantly advance the field of bone tissue engineering. Current limitations in regenerative strategies include impaired cellular proliferation and differentiation, insufficient mechanical strength of scaffolds, and inadequate production of extrinsic factors necessary for efficient osteogenesis. Here we review several major areas of research in nanotechnology with potential implications in bone regeneration: 1) nanoparticle-based methods for delivery of bioactive molecules, growth factors, and genetic material, 2) nanoparticle-mediated cell labeling and targeting, and 3) nano-based scaffold construction and modification to enhance physicochemical interactions, biocompatibility, mechanical stability, and cellular attachment/survival. As these technologies continue to evolve, ultimate translation to the clinical environment may allow for improved therapeutic outcomes in patients with large bone deficits and osteodegenerative diseases. Traditionally, the reconstruction of bony defects has relied on the use of bone grafts. With advances in nanotechnology, there has been significant development of synthetic biomaterials. In this article, the authors provided a comprehensive review on current research in nanoparticle-based therapies for bone tissue engineering, which should be useful reading for clinicians as well as researchers in this field. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Tissue bionics: examples in biomimetic tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Green, David W [Bone and Joint Research Group, Developmental Origins of Health and Disease, General Hospital, University of Southampton, SO16 6YD (United Kingdom)], E-mail: Hindoostuart@googlemail.com

    2008-09-01

    Many important lessons can be learnt from the study of biological form and the functional design of organisms as design criteria for the development of tissue engineering products. This merging of biomimetics and regenerative medicine is termed 'tissue bionics'. Clinically useful analogues can be generated by appropriating, modifying and mimicking structures from a diversity of natural biomatrices ranging from marine plankton shells to sea urchin spines. Methods in biomimetic materials chemistry can also be used to fabricate tissue engineering scaffolds with added functional utility that promise human tissues fit for the clinic.

  5. Tissue bionics: examples in biomimetic tissue engineering

    International Nuclear Information System (INIS)

    Green, David W

    2008-01-01

    Many important lessons can be learnt from the study of biological form and the functional design of organisms as design criteria for the development of tissue engineering products. This merging of biomimetics and regenerative medicine is termed 'tissue bionics'. Clinically useful analogues can be generated by appropriating, modifying and mimicking structures from a diversity of natural biomatrices ranging from marine plankton shells to sea urchin spines. Methods in biomimetic materials chemistry can also be used to fabricate tissue engineering scaffolds with added functional utility that promise human tissues fit for the clinic

  6. Micro- and nanotechnology in cardiovascular tissue engineering

    International Nuclear Information System (INIS)

    Zhang Boyang; Xiao Yun; Hsieh, Anne; Thavandiran, Nimalan; Radisic, Milica

    2011-01-01

    While in nature the formation of complex tissues is gradually shaped by the long journey of development, in tissue engineering constructing complex tissues relies heavily on our ability to directly manipulate and control the micro-cellular environment in vitro. Not surprisingly, advancements in both microfabrication and nanofabrication have powered the field of tissue engineering in many aspects. Focusing on cardiac tissue engineering, this paper highlights the applications of fabrication techniques in various aspects of tissue engineering research: (1) cell responses to micro- and nanopatterned topographical cues, (2) cell responses to patterned biochemical cues, (3) controlled 3D scaffolds, (4) patterned tissue vascularization and (5) electromechanical regulation of tissue assembly and function.

  7. Biomaterials in myocardial tissue engineering

    Science.gov (United States)

    Reis, Lewis A.; Chiu, Loraine L. Y.; Feric, Nicole; Fu, Lara; Radisic, Milica

    2016-01-01

    Cardiovascular disease is the leading cause of death in the developed world, and as such there is a pressing need for treatment options. Cardiac tissue engineering emerged from the need to develop alternate sources and methods of replacing tissue damaged by cardiovascular diseases, as the ultimate treatment option for many who suffer from end-stage heart failure is a heart transplant. In this review we focus on biomaterial approaches to augment injured or impaired myocardium with specific emphasis on: the design criteria for these biomaterials; the types of scaffolds—composed of natural or synthetic biomaterials, or decellularized extracellular matrix—that have been used to develop cardiac patches and tissue models; methods to vascularize scaffolds and engineered tissue, and finally injectable biomaterials (hydrogels)designed for endogenous repair, exogenous repair or as bulking agents to maintain ventricular geometry post-infarct. The challenges facing the field and obstacles that must be overcome to develop truly clinically viable cardiac therapies are also discussed. PMID:25066525

  8. Membrane supported scaffold architectures for tissue engineering

    NARCIS (Netherlands)

    Bettahalli Narasimha, M.S.

    2011-01-01

    Tissue engineering aims at restoring or regenerating a damaged tissue. Often the tissue recreation occurs by combining cells, derived from a patient biopsy, onto a 3D porous matrix, functioning as a scaffold. One of the current limitations of tissue engineering is the inability to provide sufficient

  9. Silk fibroin in tissue engineering.

    Science.gov (United States)

    Kasoju, Naresh; Bora, Utpal

    2012-07-01

    Tissue engineering (TE) is a multidisciplinary field that aims at the in vitro engineering of tissues and organs by integrating science and technology of cells, materials and biochemical factors. Mimicking the natural extracellular matrix is one of the critical and challenging technological barriers, for which scaffold engineering has become a prime focus of research within the field of TE. Amongst the variety of materials tested, silk fibroin (SF) is increasingly being recognized as a promising material for scaffold fabrication. Ease of processing, excellent biocompatibility, remarkable mechanical properties and tailorable degradability of SF has been explored for fabrication of various articles such as films, porous matrices, hydrogels, nonwoven mats, etc., and has been investigated for use in various TE applications, including bone, tendon, ligament, cartilage, skin, liver, trachea, nerve, cornea, eardrum, dental, bladder, etc. The current review extensively covers the progress made in the SF-based in vitro engineering and regeneration of various human tissues and identifies opportunities for further development of this field. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Nanoparticles for bone tissue engineering.

    Science.gov (United States)

    Vieira, Sílvia; Vial, Stephanie; Reis, Rui L; Oliveira, J Miguel

    2017-05-01

    Tissue engineering (TE) envisions the creation of functional substitutes for damaged tissues through integrated solutions, where medical, biological, and engineering principles are combined. Bone regeneration is one of the areas in which designing a model that mimics all tissue properties is still a challenge. The hierarchical structure and high vascularization of bone hampers a TE approach, especially in large bone defects. Nanotechnology can open up a new era for TE, allowing the creation of nanostructures that are comparable in size to those appearing in natural bone. Therefore, nanoengineered systems are now able to more closely mimic the structures observed in naturally occurring systems, and it is also possible to combine several approaches - such as drug delivery and cell labeling - within a single system. This review aims to cover the most recent developments on the use of different nanoparticles for bone TE, with emphasis on their application for scaffolds improvement; drug and gene delivery carriers, and labeling techniques. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:590-611, 2017. © 2017 American Institute of Chemical Engineers.

  11. Extracellular matrix and tissue engineering applications

    NARCIS (Netherlands)

    Fernandes, H.A.M.; Moroni, Lorenzo; van Blitterswijk, Clemens; de Boer, Jan

    2009-01-01

    The extracellular matrix is a key component during regeneration and maintenance of tissues and organs, and it therefore plays a critical role in successful tissue engineering as well. Tissue engineers should recognise that engineering technology can be deduced from natural repair processes. Due to

  12. Tissue engineering in the treatment of cartilage lesions

    Directory of Open Access Journals (Sweden)

    Jakob Naranđa

    2013-11-01

    Full Text Available Background: Articular cartilage lesions with the inherent limited healing potential are difficult to treat and thus remain a challenging problem for orthopaedic surgeons. Regenerative treatment techniques, such as autologous chondrocyte implantation (ACI, are promising as a treatment option to restore hyaline-like cartilage tissue in damaged articular surfaces, as opposed to the traditional reparative procedures (e.g. bone marrow stimulation – microfracture, which promote a fibrocartilage formation with lower tissue biomechanical properties and poorer clinical results. ACI technique has undergone several advances and is constantly improving. The new concept of cartilage tissue preservation uses tissue-engineering technologies, combining new biomaterials as a scaffold, application of growth factors, use of stem cells, and mechanical stimulation. The recent development of new generations of ACI uses a cartilage-like tissue in a 3-dimensional culture system that is based on the use of biodegradable material which serves as a temporary scaffold for the in vitro growth and subsequent implantation into the cartilage defect. For clinical practice, single stage procedures appear attractive to reduce cost and patient morbidity. Finally, modern concept of tissue engineering facilitates hyaline-like cartilage formation and a permanent treatment of cartilage lesions.Conclusion: The review focuses on innovations in the treatment of cartilage lesions and covers modern concepts of tissue engineering with the use of biomaterials, growth factors, stem cells and bioreactors, and presents options for clinical use.

  13. Biological aspects of tissue-engineered cartilage.

    Science.gov (United States)

    Hoshi, Kazuto; Fujihara, Yuko; Yamawaki, Takanori; Harai, Motohiro; Asawa, Yukiyo; Hikita, Atsuhiko

    2018-04-01

    Cartilage regenerative medicine has been progressed well, and it reaches the stage of clinical application. Among various techniques, tissue engineering, which incorporates elements of materials science, is investigated earnestly, driven by high clinical needs. The cartilage tissue engineering using a poly lactide scaffold has been exploratorily used in the treatment of cleft lip-nose patients, disclosing good clinical results during 3-year observation. However, to increase the reliability of this treatment, not only accumulation of clinical evidence on safety and usefulness of the tissue-engineered products, but also establishment of scientific background on biological mechanisms, are regarded essential. In this paper, we reviewed recent trends of cartilage tissue engineering in clinical practice, summarized experimental findings on cellular and matrix changes during the cartilage regeneration, and discussed the importance of further studies on biological aspects of tissue-engineered cartilage, especially by the histological and the morphological methods.

  14. Using Polymeric Scaffolds for Vascular Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Alida Abruzzo

    2014-01-01

    Full Text Available With the high occurrence of cardiovascular disease and increasing numbers of patients requiring vascular access, there is a significant need for small-diameter (<6 mm inner diameter vascular graft that can provide long-term patency. Despite the technological improvements, restenosis and graft thrombosis continue to hamper the success of the implants. Vascular tissue engineering is a new field that has undergone enormous growth over the last decade and has proposed valid solutions for blood vessels repair. The goal of vascular tissue engineering is to produce neovessels and neoorgan tissue from autologous cells using a biodegradable polymer as a scaffold. The most important advantage of tissue-engineered implants is that these tissues can grow, remodel, rebuild, and respond to injury. This review describes the development of polymeric materials over the years and current tissue engineering strategies for the improvement of vascular conduits.

  15. Imaging in cellular and tissue engineering

    CERN Document Server

    Yu, Hanry

    2013-01-01

    Details on specific imaging modalities for different cellular and tissue engineering applications are scattered throughout articles and chapters in the literature. Gathering this information into a single reference, Imaging in Cellular and Tissue Engineering presents both the fundamentals and state of the art in imaging methods, approaches, and applications in regenerative medicine. The book underscores the broadening scope of imaging applications in cellular and tissue engineering. It covers a wide range of optical and biological applications, including the repair or replacement of whole tiss

  16. Aloe Vera for Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Shekh Rahman

    2017-02-01

    Full Text Available Aloe vera, also referred as Aloe barbadensis Miller, is a succulent plant widely used for biomedical, pharmaceutical and cosmetic applications. Aloe vera has been used for thousands of years. However, recent significant advances have been made in the development of aloe vera for tissue engineering applications. Aloe vera has received considerable attention in tissue engineering due to its biodegradability, biocompatibility, and low toxicity properties. Aloe vera has been reported to have many biologically active components. The bioactive components of aloe vera have effective antibacterial, anti-inflammatory, antioxidant, and immune-modulatory effects that promote both tissue regeneration and growth. The aloe vera plant, its bioactive components, extraction and processing, and tissue engineering prospects are reviewed in this article. The use of aloe vera as tissue engineering scaffolds, gels, and films is discussed, with a special focus on electrospun nanofibers.

  17. Aloe Vera for Tissue Engineering Applications.

    Science.gov (United States)

    Rahman, Shekh; Carter, Princeton; Bhattarai, Narayan

    2017-02-14

    Aloe vera, also referred as Aloe barbadensis Miller, is a succulent plant widely used for biomedical, pharmaceutical and cosmetic applications. Aloe vera has been used for thousands of years. However, recent significant advances have been made in the development of aloe vera for tissue engineering applications. Aloe vera has received considerable attention in tissue engineering due to its biodegradability, biocompatibility, and low toxicity properties. Aloe vera has been reported to have many biologically active components. The bioactive components of aloe vera have effective antibacterial, anti-inflammatory, antioxidant, and immune-modulatory effects that promote both tissue regeneration and growth. The aloe vera plant, its bioactive components, extraction and processing, and tissue engineering prospects are reviewed in this article. The use of aloe vera as tissue engineering scaffolds, gels, and films is discussed, with a special focus on electrospun nanofibers.

  18. Microgel Technology to Advance Modular Tissue Engineering

    NARCIS (Netherlands)

    Kamperman, Tom

    2018-01-01

    The field of tissue engineering aims to restore the function of damaged or missing tissues by combining cells and/or a supportive biomaterial scaffold into an engineered tissue construct. The construct’s design requirements are typically set by native tissues – the gold standard for tissue

  19. Introduction to tissue engineering applications and challenges

    CERN Document Server

    Birla, Ravi

    2014-01-01

    Covering a progressive medical field, Tissue Engineering describes the innovative process of regenerating human cells to restore or establish normal function in defective organs. As pioneering individuals look ahead to the possibility of generating entire organ systems, students may turn to this textbook for a comprehensive understanding and preparation for the future of regenerative medicine. This book explains chemical stimulations, the bioengineering of specific organs, and treatment plans for chronic diseases. It is a must-read for tissue engineering students and practitioners.

  20. Biomechanics and mechanobiology in functional tissue engineering

    Science.gov (United States)

    Guilak, Farshid; Butler, David L.; Goldstein, Steven A.; Baaijens, Frank P.T.

    2014-01-01

    The field of tissue engineering continues to expand and mature, and several products are now in clinical use, with numerous other preclinical and clinical studies underway. However, specific challenges still remain in the repair or regeneration of tissues that serve a predominantly biomechanical function. Furthermore, it is now clear that mechanobiological interactions between cells and scaffolds can critically influence cell behavior, even in tissues and organs that do not serve an overt biomechanical role. Over the past decade, the field of “functional tissue engineering” has grown as a subfield of tissue engineering to address the challenges and questions on the role of biomechanics and mechanobiology in tissue engineering. Originally posed as a set of principles and guidelines for engineering of load-bearing tissues, functional tissue engineering has grown to encompass several related areas that have proven to have important implications for tissue repair and regeneration. These topics include measurement and modeling of the in vivo biomechanical environment; quantitative analysis of the mechanical properties of native tissues, scaffolds, and repair tissues; development of rationale criteria for the design and assessment of engineered tissues; investigation of the effects biomechanical factors on native and repair tissues, in vivo and in vitro; and development and application of computational models of tissue growth and remodeling. Here we further expand this paradigm and provide examples of the numerous advances in the field over the past decade. Consideration of these principles in the design process will hopefully improve the safety, efficacy, and overall success of engineered tissue replacements. PMID:24818797

  1. Nanomaterials for Craniofacial and Dental Tissue Engineering.

    Science.gov (United States)

    Li, G; Zhou, T; Lin, S; Shi, S; Lin, Y

    2017-07-01

    Tissue engineering shows great potential as a future treatment for the craniofacial and dental defects caused by trauma, tumor, and other diseases. Due to the biomimetic features and excellent physiochemical properties, nanomaterials are of vital importance in promoting cell growth and stimulating tissue regeneration in tissue engineering. For craniofacial and dental tissue engineering, the frequently used nanomaterials include nanoparticles, nanofibers, nanotubes, and nanosheets. Nanofibers are attractive for cell invasion and proliferation because of their resemblance to extracellular matrix and the presence of large pores, and they have been used as scaffolds in bone, cartilage, and tooth regeneration. Nanotubes and nanoparticles improve the mechanical and chemical properties of scaffold, increase cell attachment and migration, and facilitate tissue regeneration. In addition, nanofibers and nanoparticles are also used as a delivery system to carry the bioactive agent in bone and tooth regeneration, have better control of the release speed of agent upon degradation of the matrix, and promote tissue regeneration. Although applications of nanomaterials in tissue engineering remain in their infancy with numerous challenges to face, the current results indicate that nanomaterials have massive potential in craniofacial and dental tissue engineering.

  2. Multilayer scaffolds in orthopaedic tissue engineering.

    Science.gov (United States)

    Atesok, Kivanc; Doral, M Nedim; Karlsson, Jon; Egol, Kenneth A; Jazrawi, Laith M; Coelho, Paulo G; Martinez, Amaury; Matsumoto, Tomoyuki; Owens, Brett D; Ochi, Mitsuo; Hurwitz, Shepard R; Atala, Anthony; Fu, Freddie H; Lu, Helen H; Rodeo, Scott A

    2016-07-01

    The purpose of this study was to summarize the recent developments in the field of tissue engineering as they relate to multilayer scaffold designs in musculoskeletal regeneration. Clinical and basic research studies that highlight the current knowledge and potential future applications of the multilayer scaffolds in orthopaedic tissue engineering were evaluated and the best evidence collected. Studies were divided into three main categories based on tissue types and interfaces for which multilayer scaffolds were used to regenerate: bone, osteochondral junction and tendon-to-bone interfaces. In vitro and in vivo studies indicate that the use of stratified scaffolds composed of multiple layers with distinct compositions for regeneration of distinct tissue types within the same scaffold and anatomic location is feasible. This emerging tissue engineering approach has potential applications in regeneration of bone defects, osteochondral lesions and tendon-to-bone interfaces with successful basic research findings that encourage clinical applications. Present data supporting the advantages of the use of multilayer scaffolds as an emerging strategy in musculoskeletal tissue engineering are promising, however, still limited. Positive impacts of the use of next generation scaffolds in orthopaedic tissue engineering can be expected in terms of decreasing the invasiveness of current grafting techniques used for reconstruction of bone and osteochondral defects, and tendon-to-bone interfaces in near future.

  3. Stem cells in bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Seong, Jeong Min [Department of Preventive and Social Dentistry and Institute of Oral Biology, College of Dentistry, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Kim, Byung-Chul; Park, Jae-Hong; Kwon, Il Keun; Hwang, Yu-Shik [Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, College of Dentistry, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Mantalaris, Anathathios, E-mail: yshwang@khu.ac.k [Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom)

    2010-12-15

    Bone tissue engineering has been one of the most promising areas of research, providing a potential clinical application to cure bone defects. Recently, various stem cells including embryonic stem cells (ESCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs), adipose tissue-derived stem cells (ADSCs), muscle-derived stem cells (MDSCs) and dental pulp stem cells (DPSCs) have received extensive attention in the field of bone tissue engineering due to their distinct biological capability to differentiate into osteogenic lineages. The application of these stem cells to bone tissue engineering requires inducing in vitro differentiation of these cells into bone forming cells, osteoblasts. For this purpose, efficient in vitro differentiation towards osteogenic lineage requires the development of well-defined and proficient protocols. This would reduce the likelihood of spontaneous differentiation into divergent lineages and increase the available cell source for application to bone tissue engineering therapies. This review provides a critical examination of the various experimental strategies that could be used to direct the differentiation of ESC, BM-MSC, UCB-MSC, ADSC, MDSC and DPSC towards osteogenic lineages and their potential applications in tissue engineering, particularly in the regeneration of bone. (topical review)

  4. Stem cells in bone tissue engineering

    International Nuclear Information System (INIS)

    Seong, Jeong Min; Kim, Byung-Chul; Park, Jae-Hong; Kwon, Il Keun; Hwang, Yu-Shik; Mantalaris, Anathathios

    2010-01-01

    Bone tissue engineering has been one of the most promising areas of research, providing a potential clinical application to cure bone defects. Recently, various stem cells including embryonic stem cells (ESCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs), adipose tissue-derived stem cells (ADSCs), muscle-derived stem cells (MDSCs) and dental pulp stem cells (DPSCs) have received extensive attention in the field of bone tissue engineering due to their distinct biological capability to differentiate into osteogenic lineages. The application of these stem cells to bone tissue engineering requires inducing in vitro differentiation of these cells into bone forming cells, osteoblasts. For this purpose, efficient in vitro differentiation towards osteogenic lineage requires the development of well-defined and proficient protocols. This would reduce the likelihood of spontaneous differentiation into divergent lineages and increase the available cell source for application to bone tissue engineering therapies. This review provides a critical examination of the various experimental strategies that could be used to direct the differentiation of ESC, BM-MSC, UCB-MSC, ADSC, MDSC and DPSC towards osteogenic lineages and their potential applications in tissue engineering, particularly in the regeneration of bone. (topical review)

  5. Cryopreservation of tissue engineered constructs for bone.

    Science.gov (United States)

    Kofron, Michelle D; Opsitnick, Natalie C; Attawia, Mohamed A; Laurencin, Cato T

    2003-11-01

    The large-scale clinical use of tissue engineered constructs will require provisions for its mass availability and accessibility. Therefore, it is imperative to understand the effects of low temperature (-196 degrees C) on the tissue engineered biological system. Initial studies used samples of the osteoblast-like cell line (SaOS-2) adhered to a two-dimensional poly(lactide-co-glycolide) thin film (2D-PLAGA) or a three-dimensional poly(lactide-co-glycolide) sintered microsphere matrix (3D-PLAGA) designed for bone tissue engineering. Experimental samples were tested for their ability to maintain cell viability, following low temperature banking for one week, in solutions of the penetrating cryoprotective agents, dimethylsulfoxide (DMSO), ethylene glycol, and glycerol. Results indicated the DMSO solution yielded the greatest percent cell survival for SaOS-2 cells adhered to both the 2D- and 3D-PLAGA scaffolds; therefore, DMSO was used to cryopreserve mineralizing primary rabbit osteoblasts cells adhered to 2D-PLAGA matrices for 35 days. Results indicated retention of the extracellular matrix architecture as no statistically significant difference in the pre- and post-thaw mineralized structures was measured. Percent cell viability of the mineralized constructs following low temperature storage was approximately 50%. These are the first studies to address the issue of preservation techniques for tissue engineered constructs. The ability to successfully cryopreserve mineralized tissue engineered matrices for bone may offer an unlimited and readily available source of bone-like materials for orthopaedic applications.

  6. Developing 3D microstructures for tissue engineering

    DEFF Research Database (Denmark)

    Mohanty, Soumyaranjan

    casting process to generate various large scale tissue engineering constructs with single pore geometry with the desired mechanical stiffness and porosity. In addition, a new technique was developed to fa bricate dual-pore scaffolds for various tissue-engineering applications where 3D printing...... materials have been developed and tested for enhancing the differentiation of hiPSC-derived hepatocytes and fabricating biodegradable scaffolds for in-vivo tissue engineering applications. Along with various scaffolds fabrication methods we finally presented an optimized study of hepatic differentiation...... of hiPSC-derived DE cells cultured for 25 days in a 3D perfusion bioreactor system with an array of 16 small-scale tissue-bioreactors with integrated dual-pore pore scaffolds and flow rates. Hepatic differentiation and functionality of hiPSC-derived hepatocytes were successfully assessed and compared...

  7. Bioprinting for Neural Tissue Engineering.

    Science.gov (United States)

    Knowlton, Stephanie; Anand, Shivesh; Shah, Twisha; Tasoglu, Savas

    2018-01-01

    Bioprinting is a method by which a cell-encapsulating bioink is patterned to create complex tissue architectures. Given the potential impact of this technology on neural research, we review the current state-of-the-art approaches for bioprinting neural tissues. While 2D neural cultures are ubiquitous for studying neural cells, 3D cultures can more accurately replicate the microenvironment of neural tissues. By bioprinting neuronal constructs, one can precisely control the microenvironment by specifically formulating the bioink for neural tissues, and by spatially patterning cell types and scaffold properties in three dimensions. We review a range of bioprinted neural tissue models and discuss how they can be used to observe how neurons behave, understand disease processes, develop new therapies and, ultimately, design replacement tissues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Controlled drug release for tissue engineering.

    Science.gov (United States)

    Rambhia, Kunal J; Ma, Peter X

    2015-12-10

    Tissue engineering is often referred to as a three-pronged discipline, with each prong corresponding to 1) a 3D material matrix (scaffold), 2) drugs that act on molecular signaling, and 3) regenerative living cells. Herein we focus on reviewing advances in controlled release of drugs from tissue engineering platforms. This review addresses advances in hydrogels and porous scaffolds that are synthesized from natural materials and synthetic polymers for the purposes of controlled release in tissue engineering. We pay special attention to efforts to reduce the burst release effect and to provide sustained and long-term release. Finally, novel approaches to controlled release are described, including devices that allow for pulsatile and sequential delivery. In addition to recent advances, limitations of current approaches and areas of further research are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Tissue Engineering in Regenerative Dental Therapy

    Directory of Open Access Journals (Sweden)

    Hiral Jhaveri-Desai

    2011-01-01

    Full Text Available Tissue engineering is amongst the latest exciting technologies having impacted the field of dentistry. Initially considered as a futuristic approach, tissue engineering is now being successfully applied in regenerative surgery. This article reviews the important determinants of tissue engineering and how they contribute to the improvement of wound healing and surgical outcomes in the oral region. Furthermore, we shall address the clinical applications of engineering involving oral and maxillofacial surgical and periodontal procedures along with other concepts that are still in experimental phase of development. This knowledge will aid the surgical and engineering researchers to comprehend the collaboration between these fields leading to extounding dental applications and to ever-continuing man-made miracles in the field of human science.

  10. Degradable Adhesives for Surgery and Tissue Engineering.

    Science.gov (United States)

    Bhagat, Vrushali; Becker, Matthew L

    2017-10-09

    This review highlights the research on degradable polymeric tissue adhesives for surgery and tissue engineering. Included are a comprehensive listing of specific uses, advantages, and disadvantages of different adhesive groups. A critical evaluation of challenges affecting the development of next generation materials is also discussed, and insights into the outlook of the field are explored.

  11. Development of multilayer constructs for tissue engineering

    NARCIS (Netherlands)

    Bettahalli, N. M. S.; Groen, N.; Steg, H.; Unadkat, H.; de Boer, J.; van Blitterswijk, C. A.; Wessling, M.; Stamatialis, D.

    The rapidly developing field of tissue engineering produces living substitutes that restore, maintain or improve the function of tissues or organs. In contrast to standard therapies, the engineered products become integrated within the patient, affording a potentially permanent and specific cure of

  12. Development of multilayer constructs for tissue engineering

    NARCIS (Netherlands)

    Bettahalli Narasimha, M.S.; Groen, N.; Steg, H.; Unadkat, H.V.; de Boer, Jan; van Blitterswijk, Clemens; Wessling, Matthias; Stamatialis, Dimitrios

    2014-01-01

    The rapidly developing field of tissue engineering produces living substitutes that restore, maintain or improve the function of tissues or organs. In contrast to standard therapies, the engineered products become integrated within the patient, affording a potentially permanent and specific cure of

  13. Biomechanics and mechanobiology in functional tissue engineering

    NARCIS (Netherlands)

    Guilak, F.; Butler, D.L.; Goldstein, S.A.; Baaijens, F.P.T.

    2014-01-01

    The field of tissue engineering continues to expand and mature, and several products are now in clinical use, with numerous other preclinical and clinical studies underway. However, specific challenges still remain in the repair or regeneration of tissues that serve a predominantly biomechanical

  14. Tissue engineering of ligaments for reconstructive surgery.

    Science.gov (United States)

    Hogan, MaCalus V; Kawakami, Yohei; Murawski, Christopher D; Fu, Freddie H

    2015-05-01

    The use of musculoskeletal bioengineering and regenerative medicine applications in orthopaedic surgery has continued to evolve. The aim of this systematic review was to address tissue-engineering strategies for knee ligament reconstruction. A systematic review of PubMed/Medline using the terms "knee AND ligament" AND "tissue engineering" OR "regenerative medicine" was performed. Two authors performed the search, independently assessed the studies for inclusion, and extracted the data for inclusion in the review. Both preclinical and clinical studies were reviewed, and the articles deemed most relevant were included in this article to provide relevant basic science and recent clinical translational knowledge concerning "tissue-engineering" strategies currently used in knee ligament reconstruction. A total of 224 articles were reviewed in our initial PubMed search. Non-English-language studies were excluded. Clinical and preclinical studies were identified, and those with a focus on knee ligament tissue-engineering strategies including stem cell-based therapies, growth factor administration, hybrid biomaterial, and scaffold development, as well as mechanical stimulation modalities, were reviewed. The body of knowledge surrounding tissue-engineering strategies for ligament reconstruction continues to expand. Presently, various tissue-engineering techniques have some potential advantages, including faster recovery, better ligamentization, and possibly, a reduction of recurrence. Preclinical research of these novel therapies continues to provide promising results. There remains a need for well-designed, high-powered comparative clinical studies to serve as a foundation for successful translation into the clinical setting going forward. Level IV, systematic review of Level IV studies. Copyright © 2015 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  15. Trends in Tissue Engineering for Blood Vessels

    Directory of Open Access Journals (Sweden)

    Judee Grace Nemeno-Guanzon

    2012-01-01

    Full Text Available Over the years, cardiovascular diseases continue to increase and affect not only human health but also the economic stability worldwide. The advancement in tissue engineering is contributing a lot in dealing with this immediate need of alleviating human health. Blood vessel diseases are considered as major cardiovascular health problems. Although blood vessel transplantation is the most convenient treatment, it has been delimited due to scarcity of donors and the patient’s conditions. However, tissue-engineered blood vessels are promising alternatives as mode of treatment for blood vessel defects. The purpose of this paper is to show the importance of the advancement on biofabrication technology for treatment of soft tissue defects particularly for vascular tissues. This will also provide an overview and update on the current status of tissue reconstruction especially from autologous stem cells, scaffolds, and scaffold-free cellular transplantable constructs. The discussion of this paper will be focused on the historical view of cardiovascular tissue engineering and stem cell biology. The representative studies featured in this paper are limited within the last decade in order to trace the trend and evolution of techniques for blood vessel tissue engineering.

  16. The materials used in bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Tereshchenko, V. P., E-mail: tervp@ngs.ru; Kirilova, I. A.; Sadovoy, M. A.; Larionov, P. M. [Novosibirsk Research Institute of Traumatology and Orthopedics n.a. Ya.L. Tsivyan, Novosibirsk (Russian Federation)

    2015-11-17

    Bone tissue engineering looking for an alternative solution to the problem of skeletal injuries. The method is based on the creation of tissue engineered bone tissue equivalent with stem cells, osteogenic factors, and scaffolds - the carriers of these cells. For production of tissue engineered bone equivalent is advisable to create scaffolds similar in composition to natural extracellular matrix of the bone. This will provide optimal conditions for the cells, and produce favorable physico-mechanical properties of the final construction. This review article gives an analysis of the most promising materials for the manufacture of cell scaffolds. Biodegradable synthetic polymers are the basis for the scaffold, but it alone cannot provide adequate physical and mechanical properties of the construction, and favorable conditions for the cells. Addition of natural polymers improves the strength characteristics and bioactivity of constructions. Of the inorganic compounds, to create cell scaffolds the most widely used calcium phosphates, which give the structure adequate stiffness and significantly increase its osteoinductive capacity. Signaling molecules do not affect the physico-mechanical properties of the scaffold, but beneficial effect is on the processes of adhesion, proliferation and differentiation of cells. Biodegradation of the materials will help to fulfill the main task of bone tissue engineering - the ability to replace synthetic construct by natural tissues that will restore the original anatomical integrity of the bone.

  17. MicroRNAs in skin tissue engineering.

    Science.gov (United States)

    Miller, Kyle J; Brown, David A; Ibrahim, Mohamed M; Ramchal, Talisha D; Levinson, Howard

    2015-07-01

    35.2 million annual cases in the U.S. require clinical intervention for major skin loss. To meet this demand, the field of skin tissue engineering has grown rapidly over the past 40 years. Traditionally, skin tissue engineering relies on the "cell-scaffold-signal" approach, whereby isolated cells are formulated into a three-dimensional substrate matrix, or scaffold, and exposed to the proper molecular, physical, and/or electrical signals to encourage growth and differentiation. However, clinically available bioengineered skin equivalents (BSEs) suffer from a number of drawbacks, including time required to generate autologous BSEs, poor allogeneic BSE survival, and physical limitations such as mass transfer issues. Additionally, different types of skin wounds require different BSE designs. MicroRNA has recently emerged as a new and exciting field of RNA interference that can overcome the barriers of BSE design. MicroRNA can regulate cellular behavior, change the bioactive milieu of the skin, and be delivered to skin tissue in a number of ways. While it is still in its infancy, the use of microRNAs in skin tissue engineering offers the opportunity to both enhance and expand a field for which there is still a vast unmet clinical need. Here we give a review of skin tissue engineering, focusing on the important cellular processes, bioactive mediators, and scaffolds. We further discuss potential microRNA targets for each individual component, and we conclude with possible future applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Stem Cells and Tissue Engineering

    CERN Document Server

    Pavlovic, Mirjana

    2013-01-01

    Stem cells are the building blocks for all other cells in an organism. The human body has about 200 different types of cells and any of those cells can be produced by a stem cell. This fact emphasizes the significance of stem cells in transplantational medicine, regenerative therapy and bioengineering. Whether embryonic or adult, these cells can be used for the successful treatment of a wide range of diseases that were not treatable before, such as osteogenesis imperfecta in children, different forms of leukemias, acute myocardial infarction, some neural damages and diseases, etc. Bioengineering, e.g. successful manipulation of these cells with multipotential capacity of differentiation toward appropriate patterns and precise quantity, are the prerequisites for successful outcome and treatment. By combining in vivo and in vitro techniques, it is now possible to manage the wide spectrum of tissue damages and organ diseases. Although the stem-cell therapy is not a response to all the questions, it provides more...

  19. New trends in spinal cord tissue engineering

    Czech Academy of Sciences Publication Activity Database

    Kubinová, Šárka

    2015-01-01

    Roč. 10, č. 2 (2015), s. 129-145 ISSN 1479-6708 R&D Projects: GA MŠk(CZ) LO1309 Institutional support: RVO:68378041 Keywords : biomaterial * cell therapy * regenerative medicine * spinal cord injury * stem cells scaffold * tissue engineering Subject RIV: FH - Neurology

  20. Principles of Tissue Engineering for Food

    NARCIS (Netherlands)

    Post, M.; Weele, van der Cor

    2014-01-01

    The technology required for tissue-engineering food is the same as for medical applications, and in fact is derived from it. There are major differences in the implementation of those technologies, primarily related to the enormous scale required for food production and the different economical

  1. Elastin as a biomaterial for tissue engineering.

    NARCIS (Netherlands)

    Daamen, W.F.; Veerkamp, J.H.; Hest, J.C.M. van; Kuppevelt, A.H.M.S.M. van

    2007-01-01

    Biomaterials based upon elastin and elastin-derived molecules are increasingly investigated for their application in tissue engineering. This interest is fuelled by the remarkable properties of this structural protein, such as elasticity, self-assembly, long-term stability, and biological activity.

  2. Biomaterials and tissue engineering in reconstructive surgery

    Indian Academy of Sciences (India)

    In spite of some good successes and excellent materials, there are still serious limitations to the performance of implants today, and the paper explains these limitations and develops this theme in order to describe the recent innovations in tissue engineering, which involves a different approach to reconstruction of the body.

  3. Confocal Raman Microscopy; applications in tissue engineering

    NARCIS (Netherlands)

    van Apeldoorn, Aart A.

    2005-01-01

    This dissertation describes the use of confocal Raman microscopy and spectroscopy in the field of tissue engineering. Moreover, it describes the combination of two already existing technologies, namely scanning electron microscopy and confocal Raman spectroscopy in one apparatus for the enhancement

  4. Modeling the development of tissue engineered cartilage

    NARCIS (Netherlands)

    Sengers, B.G.

    2005-01-01

    The limited healing capacity of articular cartilage forms a major clinical problem. In general, current treatments of cartilage damage temporarily reliefs symptoms, but fail in the long term. Tissue engineering (TE) has been proposed as a more permanent repair strategy. Cartilage TE aims at

  5. Biodegradable elastomeric scaffolds for soft tissue engineering

    NARCIS (Netherlands)

    Pêgo, A.P.; Poot, Andreas A.; Grijpma, Dirk W.; Feijen, Jan

    2003-01-01

    Elastomeric copolymers of 1,3-trimethylene carbonate (TMC) and ε-caprolactone (CL) and copolymers of TMC and D,L-lactide (DLLA) have been evaluated as candidate materials for the preparation of biodegradable scaffolds for soft tissue engineering. TMC-DLLA copolymers are amorphous and degrade more

  6. Co-culture in cartilage tissue engineering.

    NARCIS (Netherlands)

    Hendriks, J.A.A.; Riesle, J.U.; van Blitterswijk, Clemens

    2007-01-01

    For biotechnological research in vitro in general and tissue engineering specifically, it is essential to mimic the natural conditions of the cellular environment as much as possible. In choosing a model system for in vitro experiments, the investigator always has to balance between being able to

  7. Tissue Engineering: Current Strategies and Future Directions

    OpenAIRE

    Olson, Jennifer L.; Atala, Anthony; Yoo, James J.

    2011-01-01

    Novel therapies resulting from regenerative medicine and tissue engineering technology may offer new hope for patients with injuries, end-stage organ failure, or other clinical issues. Currently, patients with diseased and injured organs are often treated with transplanted organs. However, there is a shortage of donor organs that is worsening yearly as the population ages and as the number of new cases of organ failure increases. Scientists in the field of regenerative medicine and tissue eng...

  8. Recombinant protein scaffolds for tissue engineering

    International Nuclear Information System (INIS)

    Werkmeister, Jerome A; Ramshaw, John A M

    2012-01-01

    New biological materials for tissue engineering are now being developed using common genetic engineering capabilities to clone and express a variety of genetic elements that allow cost-effective purification and scaffold fabrication from these recombinant proteins, peptides or from chimeric combinations of these. The field is limitless as long as the gene sequences are known. The utility is dependent on the ease, product yield and adaptability of these protein products to the biomedical field. The development of recombinant proteins as scaffolds, while still an emerging technology with respect to commercial products, is scientifically superior to current use of natural materials or synthetic polymer scaffolds, in terms of designing specific structures with desired degrees of biological complexities and motifs. In the field of tissue engineering, next generation scaffolds will be the key to directing appropriate tissue regeneration. The initial period of biodegradable synthetic scaffolds that provided shape and mechanical integrity, but no biological information, is phasing out. The era of protein scaffolds offers distinct advantages, particularly with the combination of powerful tools of molecular biology. These include, for example, the production of human proteins of uniform quality that are free of infectious agents and the ability to make suitable quantities of proteins that are found in low quantity or are hard to isolate from tissue. For the particular needs of tissue engineering scaffolds, fibrous proteins like collagens, elastin, silks and combinations of these offer further advantages of natural well-defined structural scaffolds as well as endless possibilities of controlling functionality by genetic manipulation. (topical review)

  9. Tissue engineering and regenerative medicine: manufacturing challenges.

    Science.gov (United States)

    Williams, D J; Sebastine, I M

    2005-12-01

    Tissue engineering and regenerative medicine are interdisciplinary fields that apply principles of engineering and life sciences to develop biological substitutes, typically composed of biological and synthetic components, that restore, maintain or improve tissue function. Many tissue engineering technologies are still at a laboratory or pre-commercial scale. The short review paper describes the most significant manufacturing and bio-process challenges inherent in the commercialisation and exploitation of the exciting results emerging from the biological and clinical laboratories exploring tissue engineering and regenerative medicine. A three-generation road map of the industry has been used to structure a view of these challenges and to define where the manufacturing community can contribute to the commercial success of the products from these emerging fields. The first-generation industry is characterised by its demonstrated clinical applications and products in the marketplace, the second is characterised by emerging clinical applications, and the third generation is characterised by aspirational clinical applications. The paper focuses on the cost reduction requirement of the first generation of the industry to allow more market penetration and consequent patient impact. It indicates the technological requirements, for instance the creation of three-dimensional tissue structures, and value chain issues in the second generation of the industry. The third-generation industry challenges lie in fundamental biological and clinical science. The paper sets out a road map of these generations to identify areas for research.

  10. Injectable biomaterials for adipose tissue engineering

    International Nuclear Information System (INIS)

    Young, D A; Christman, K L

    2012-01-01

    Adipose tissue engineering has recently gained significant attention from materials scientists as a result of the exponential growth of soft tissue filler procedures being performed within the clinic. While several injectable materials are currently being marketed for filling subcutaneous voids, they often face limited longevity due to rapid resorption. Their inability to encourage natural adipose formation or ingrowth necessitates repeated injections for a prolonged effect and thus classifies them as temporary fillers. As a result, a significant need for injectable materials that not only act as fillers but also promote in vivo adipogenesis is beginning to be realized. This paper will discuss the advantages and disadvantages of commercially available soft tissue fillers. It will then summarize the current state of research using injectable synthetic materials, biopolymers and extracellular matrix-derived materials for adipose tissue engineering. Furthermore, the successful attributes observed across each of these materials will be outlined along with a discussion of the current difficulties and future directions for adipose tissue engineering. (paper)

  11. Esophageal tissue engineering: Current status and perspectives.

    Science.gov (United States)

    Poghosyan, T; Catry, J; Luong-Nguyen, M; Bruneval, P; Domet, T; Arakelian, L; Sfeir, R; Michaud, L; Vanneaux, V; Gottrand, F; Larghero, J; Cattan, P

    2016-02-01

    Tissue engineering, which consists of the combination and in vivo implantation of elements required for tissue remodeling toward a specific organ phenotype, could be an alternative for classical techniques of esophageal replacement. The current hybrid approach entails creation of an esophageal substitute composed of an acellular matrix and autologous epithelial and muscle cells provides the most successful results. Current research is based on the use of mesenchymal stem cells, whose potential for differentiation and proangioogenic, immune-modulator and anti-inflammatory properties are important assets. In the near future, esophageal substitutes could be constructed from acellular "intelligent matrices" that contain the molecules necessary for tissue regeneration; this should allow circumvention of the implantation step and still obtain standardized in vivo biological responses. At present, tissue engineering applications to esophageal replacement are limited to enlargement plasties with absorbable, non-cellular matrices. Nevertheless, the application of existing clinical techniques for replacement of other organs by tissue engineering in combination with a multiplication of translational research protocols for esophageal replacement in large animals should soon pave the way for health agencies to authorize clinical trials. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  12. Electrospun polyurethane membranes for Tissue Engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, Laís P., E-mail: lagabriel@gmail.com [National Institute of Biofabrication, Campinas (Brazil); Department of Chemical Engineering, University of Campinas, Campinas (Brazil); Rodrigues, Ana Amélia [National Institute of Biofabrication, Campinas (Brazil); Department of Medical Sciences, University of Campinas, Campinas (Brazil); Macedo, Milton; Jardini, André L.; Maciel Filho, Rubens [National Institute of Biofabrication, Campinas (Brazil); Department of Chemical Engineering, University of Campinas, Campinas (Brazil)

    2017-03-01

    Tissue Engineering proposes, among other things, tissue regeneration using scaffolds integrated with biological molecules, growth factors or cells for such regeneration. In this research, polyurethane membranes were prepared using the electrospinning technique in order to obtain membranes to be applied in Tissue Engineering, such as epithelial, drug delivery or cardiac applications. The influence of fibers on the structure and morphology of the membranes was studied using scanning electron microscopy (SEM), the structure was evaluated by Fourier transform infrared spectroscopy (FT-IR), and the thermal stability was analyzed by thermogravimetry analysis (TGA). In vitro cells attachment and proliferation was investigated by SEM, and in vitro cell viability was studied by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assays and Live/Dead® assays. It was found that the membranes present an homogeneous morphology, high porosity, high surface area/volume ratio, it was also observed a random fiber network. The thermal analysis showed that the membrane degradation started at 254 °C. In vitro evaluation of fibroblasts cells showed that fibroblasts spread over the membrane surface after 24, 48 and 72 h of culture. This study supports the investigation of electrospun polyurethane membranes as biocompatible scaffolds for Tissue Engineering applications and provides some guidelines for improved biomaterials with desired properties.

  13. Electrospun Nanofibrous Materials for Neural Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Yee-Shuan Lee

    2011-02-01

    Full Text Available The use of biomaterials processed by the electrospinning technique has gained considerable interest for neural tissue engineering applications. The tissue engineering strategy is to facilitate the regrowth of nerves by combining an appropriate cell type with the electrospun scaffold. Electrospinning can generate fibrous meshes having fiber diameter dimensions at the nanoscale and these fibers can be nonwoven or oriented to facilitate neurite extension via contact guidance. This article reviews studies evaluating the effect of the scaffold’s architectural features such as fiber diameter and orientation on neural cell function and neurite extension. Electrospun meshes made of natural polymers, proteins and compositions having electrical activity in order to enhance neural cell function are also discussed.

  14. Chitosan based nanofibers in bone tissue engineering.

    Science.gov (United States)

    Balagangadharan, K; Dhivya, S; Selvamurugan, N

    2017-11-01

    Bone tissue engineering involves biomaterials, cells and regulatory factors to make biosynthetic bone grafts with efficient mineralization for regeneration of fractured or damaged bones. Out of all the techniques available for scaffold preparation, electrospinning is given priority as it can fabricate nanostructures. Also, electrospun nanofibers possess unique properties such as the high surface area to volume ratio, porosity, stability, permeability and morphological similarity to that of extra cellular matrix. Chitosan (CS) has a significant edge over other materials and as a graft material, CS can be used alone or in combination with other materials in the form of nanofibers to provide the structural and biochemical cues for acceleration of bone regeneration. Hence, this review was aimed to provide a detailed study available on CS and its composites prepared as nanofibers, and their associated properties found suitable for bone tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Cardiac tissue engineering using perfusion bioreactor systems

    Science.gov (United States)

    Radisic, Milica; Marsano, Anna; Maidhof, Robert; Wang, Yadong; Vunjak-Novakovic, Gordana

    2009-01-01

    This protocol describes tissue engineering of synchronously contractile cardiac constructs by culturing cardiac cell populations on porous scaffolds (in some cases with an array of channels) and bioreactors with perfusion of culture medium (in some cases supplemented with an oxygen carrier). The overall approach is ‘biomimetic’ in nature as it tends to provide in vivo-like oxygen supply to cultured cells and thereby overcome inherent limitations of diffusional transport in conventional culture systems. In order to mimic the capillary network, cells are cultured on channeled elastomer scaffolds that are perfused with culture medium that can contain oxygen carriers. The overall protocol takes 2–4 weeks, including assembly of the perfusion systems, preparation of scaffolds, cell seeding and cultivation, and on-line and end-point assessment methods. This model is well suited for a wide range of cardiac tissue engineering applications, including the use of human stem cells, and high-fidelity models for biological research. PMID:18388955

  16. Application of polarization OCT in tissue engineering

    Science.gov (United States)

    Yang, Ying; Ahearne, Mark; Bagnaninchi, Pierre O.; Hu, Bin; Hampson, Karen; El Haj, Alicia J.

    2008-02-01

    For tissue engineering of load-bearing tissues, such as bone, tendon, cartilage, and cornea, it is critical to generate a highly organized extracellular matrix. The major component of the matrix in these tissues is collagen, which usually forms a highly hierarchical structure with increasing scale from fibril to fiber bundles. These bundles are ordered into a 3D network to withstand forces such as tensile, compressive or shear. To induce the formation of organized matrix and create a mimic body environment for tissue engineering, in particular, tendon tissue engineering, we have fabricated scaffolds with features to support the formation of uniaxially orientated collagen bundles. In addition, mechanical stimuli were applied to stimulate tissue formation and matrix organization. In parallel, we seek a nondestructive tool to monitor the changes within the constructs in response to these external stimulations. Polarizationsensitive optical coherence tomography (PSOCT) is a non-destructive technique that provides functional imaging, and possesses the ability to assess in depth the organization of tissue. In this way, an engineered tissue construct can be monitored on-line, and correlated with the application of different stimuli by PSOCT. We have constructed a PSOCT using a superluminescent diode (FWHM 52nm) in this study and produced two types of tendon constructs. The matrix structural evolution under different mechanical stimulation has been evaluated by the PSOCT. The results in this study demonstrate that PSOCT was a powerful tool enabling us to monitor non-destructively and real time the progressive changes in matrix organization and assess the impact of various stimuli on tissue orientation and growth.

  17. Natural Origin Materials for Osteochondral Tissue Engineering.

    Science.gov (United States)

    Bonani, Walter; Singhatanadgige, Weerasak; Pornanong, Aramwit; Motta, Antonella

    2018-01-01

    Materials selection is a critical aspect for the production of scaffolds for osteochondral tissue engineering. Synthetic materials are the result of man-made operations and have been investigated for a variety of tissue engineering applications. Instead, the products of physiological processes and the metabolic activity of living organisms are identified as natural materials. Over the recent decades, a number of natural materials, namely, biopolymers and bioceramics, have been proposed as the main constituent of osteochondral scaffolds, but also as cell carriers and signaling molecules. Overall, natural materials have been investigated both in the bone and in the cartilage compartment, sometimes alone, but often in combination with other biopolymers or synthetic materials. Biopolymers and bioceramics possess unique advantages over their synthetic counterparts due similarity with natural extracellular matrix, the presence of cell recognition sites and tunable chemistry. However, the characteristics of natural origin materials can vary considerably depending on the specific source and extraction process. A deeper understanding of the relationship between material variability and biological activity and the definition of standardized manufacturing procedures will be crucial for the future of natural materials in tissue engineering.

  18. Bioactive glass-based scaffolds for bone tissue engineering

    NARCIS (Netherlands)

    Will, J.; Gerhardt, L.C.; Boccaccini, A.R.

    2012-01-01

    Originally developed to fill and restore bone defects, bioactive glasses are currently also being intensively investigated for bone tissue engineering applications. In this chapter, we review and discuss current knowledge on porous bone tissue engineering scaffolds made from bioactive silicate

  19. Bioactive polymeric scaffolds for tissue engineering

    Directory of Open Access Journals (Sweden)

    Scott Stratton

    2016-12-01

    Full Text Available A variety of engineered scaffolds have been created for tissue engineering using polymers, ceramics and their composites. Biomimicry has been adopted for majority of the three-dimensional (3D scaffold design both in terms of physicochemical properties, as well as bioactivity for superior tissue regeneration. Scaffolds fabricated via salt leaching, particle sintering, hydrogels and lithography have been successful in promoting cell growth in vitro and tissue regeneration in vivo. Scaffold systems derived from decellularization of whole organs or tissues has been popular due to their assured biocompatibility and bioactivity. Traditional scaffold fabrication techniques often failed to create intricate structures with greater resolution, not reproducible and involved multiple steps. The 3D printing technology overcome several limitations of the traditional techniques and made it easier to adopt several thermoplastics and hydrogels to create micro-nanostructured scaffolds and devices for tissue engineering and drug delivery. This review highlights scaffold fabrication methodologies with a focus on optimizing scaffold performance through the matrix pores, bioactivity and degradation rate to enable tissue regeneration. Review highlights few examples of bioactive scaffold mediated nerve, muscle, tendon/ligament and bone regeneration. Regardless of the efforts required for optimization, a shift in 3D scaffold uses from the laboratory into everyday life is expected in the near future as some of the methods discussed in this review become more streamlined.

  20. Biomimetic material strategies for cardiac tissue engineering

    International Nuclear Information System (INIS)

    Prabhakaran, Molamma P.; Venugopal, J.; Kai, Dan; Ramakrishna, Seeram

    2011-01-01

    Cardiovascular disease precedes many serious complications including myocardial infarction (MI) and it remains a major problem for the global community. Adult mammalian heart has limited ability to regenerate and compensate for the loss of cardiomyocytes. Restoration of cardiac function by replacement of diseased myocardium with functional cardiomyocytes is an intriguing strategy because it offers a potential cure for MI. Biomaterials are fabricated in nanometer scale dimensions by combining the chemical, biological, mechanical and electrical aspects of material for potential tissue engineering (TE) applications. Synthetic polymers offer advantageous in their ability to tailor the mechanical properties, and natural polymers offer cell recognition sites necessary for cell, adhesion and proliferation. Cardiac tissue engineering (TE) aim for the development of a bioengineered construct that can provide physical support to the damaged cardiac tissue by replacing certain functions of the damaged extracellular matrix and prevent adverse cardiac remodeling and dysfunction after MI. Electrospun nanofibers are applied as heart muscle patches, while hydrogels serve as a platform for controlled delivery of growth factors, prevent mechanical complications and assist in cell recruitment. This article reviews the applications of different natural and synthetic polymeric materials utilized as cardiac patches, injectables or 3D constructs for cardiac TE. Smart organization of nanoscale assemblies with synergistic approaches of utilizing nanofibers and hydrogels could further advance the field of cardiac tissue engineering. Rapid innovations in biomedical engineering and cell biology will bring about new insights in the development of optimal scaffolds and methods to create tissue constructs with relevant contractile properties and electrical integration to replace or substitute the diseased myocardium.

  1. Biomimetic material strategies for cardiac tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakaran, Molamma P., E-mail: nnimpp@nus.edu.sg [Health Care and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Venugopal, J. [Health Care and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Kai, Dan [NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore (Singapore); Ramakrishna, Seeram [Health Care and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore)

    2011-04-08

    Cardiovascular disease precedes many serious complications including myocardial infarction (MI) and it remains a major problem for the global community. Adult mammalian heart has limited ability to regenerate and compensate for the loss of cardiomyocytes. Restoration of cardiac function by replacement of diseased myocardium with functional cardiomyocytes is an intriguing strategy because it offers a potential cure for MI. Biomaterials are fabricated in nanometer scale dimensions by combining the chemical, biological, mechanical and electrical aspects of material for potential tissue engineering (TE) applications. Synthetic polymers offer advantageous in their ability to tailor the mechanical properties, and natural polymers offer cell recognition sites necessary for cell, adhesion and proliferation. Cardiac tissue engineering (TE) aim for the development of a bioengineered construct that can provide physical support to the damaged cardiac tissue by replacing certain functions of the damaged extracellular matrix and prevent adverse cardiac remodeling and dysfunction after MI. Electrospun nanofibers are applied as heart muscle patches, while hydrogels serve as a platform for controlled delivery of growth factors, prevent mechanical complications and assist in cell recruitment. This article reviews the applications of different natural and synthetic polymeric materials utilized as cardiac patches, injectables or 3D constructs for cardiac TE. Smart organization of nanoscale assemblies with synergistic approaches of utilizing nanofibers and hydrogels could further advance the field of cardiac tissue engineering. Rapid innovations in biomedical engineering and cell biology will bring about new insights in the development of optimal scaffolds and methods to create tissue constructs with relevant contractile properties and electrical integration to replace or substitute the diseased myocardium.

  2. Synthetic biodegradable functional polymers for tissue engineering: a brief review

    OpenAIRE

    BaoLin, GUO; MA, Peter X.

    2014-01-01

    Scaffolds play a crucial role in tissue engineering. Biodegradable polymers with great processing flexibility are the predominant scaffolding materials. Synthetic biodegradable polymers with well-defined structure and without immunological concerns associated with naturally derived polymers are widely used in tissue engineering. The synthetic biodegradable polymers that are widely used in tissue engineering, including polyesters, polyanhydrides, polyphosphazenes, polyurethane, and poly (glyce...

  3. Tissue Engineering Strategies in Ligament Regeneration

    Directory of Open Access Journals (Sweden)

    Caglar Yilgor

    2012-01-01

    Full Text Available Ligaments are dense fibrous connective tissues that connect bones to other bones and their injuries are frequently encountered in the clinic. The current clinical approaches in ligament repair and regeneration are limited to autografts, as the gold standard, and allografts. Both of these techniques have their own drawbacks that limit the success in clinical setting; therefore, new strategies are being developed in order to be able to solve the current problems of ligament grafting. Tissue engineering is a novel promising technique that aims to solve these problems, by producing viable artificial ligament substitutes in the laboratory conditions with the potential of transplantation to the patients with a high success rate. Direct cell and/or growth factor injection to the defect site is another current approach aiming to enhance the repair process of the native tissue. This review summarizes the current approaches in ligament tissue engineering strategies including the use of scaffolds, their modification techniques, as well as the use of bioreactors to achieve enhanced regeneration rates, while also discussing the advances in growth factor and cell therapy applications towards obtaining enhanced ligament regeneration.

  4. Porous titanium bases for osteochondral tissue engineering

    Science.gov (United States)

    Nover, Adam B.; Lee, Stephanie L.; Georgescu, Maria S.; Howard, Daniel R.; Saunders, Reuben A.; Yu, William T.; Klein, Robert W.; Napolitano, Anthony P.; Ateshian, Gerard A.

    2015-01-01

    Tissue engineering of osteochondral grafts may offer a cell-based alternative to native allografts, which are in short supply. Previous studies promote the fabrication of grafts consisting of a viable cell-seeded hydrogel integrated atop a porous, bone-like metal. Advantages of the manufacturing process have led to the evaluation of porous titanium as the bone-like base material. Here, porous titanium was shown to support the growth of cartilage to produce native levels of Young’s modulus, using a clinically relevant cell source. Mechanical and biochemical properties were similar or higher for the osteochondral constructs compared to chondral-only controls. Further investigation into the mechanical influence of the base on the composite material suggests that underlying pores may decrease interstitial fluid pressurization and applied strains, which may be overcome by alterations to the base structure. Future studies aim to optimize titanium-based tissue engineered osteochondral constructs to best match the structural architecture and strength of native grafts. Statement of Significance The studies described in this manuscript follow up on previous studies from our lab pertaining to the fabrication of osteochondral grafts that consist of a bone-like porous metal and a chondrocyte-seeded hydrogel. Here, tissue engineered osteochondral grafts were cultured to native stiffness using adult chondrocytes, a clinically relevant cell source, and a porous titanium base, a material currently used in clinical implants. This porous titanium is manufactured via selective laser melting, offering the advantages of precise control over shape, pore size, and orientation. Additionally, this manuscript describes the mechanical influence of the porous base, which may have applicability to porous bases derived from other materials. PMID:26320541

  5. Periodontics--tissue engineering and the future.

    Science.gov (United States)

    Douglass, Gordon L

    2005-03-01

    Periodontics has a long history of utilizing advances in science to expand and improve periodontal therapies. Recently the American Academy of Periodontology published the findings of the Contemporary Science Workshop, which conducted state-of-the-art evidence-based reviews of current and emerging areas in periodontics. The findings of this workshop provide the basis for an evidence-based approach to periodontal therapy. While the workshop evaluated all areas of periodontics, it is in the area of tissue engineering that the most exciting advances are becoming a reality.

  6. Electrospinning of Nanofibers for Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Haifeng Liu

    2013-01-01

    Full Text Available Electrospinning is a method in which materials in solution are formed into nano- and micro-sized continuous fibers. Recent interest in this technique stems from both the topical nature of nanoscale material fabrication and the considerable potential for use of these nanoscale fibres in a range of applications including, amongst others, a range of biomedical applications processes such as drug delivery and the use of scaffolds to provide a framework for tissue regeneration in both soft and hard tissue applications systems. The objectives of this review are to describe the theory behind the technique, examine the effect of changing the process parameters on fiber morphology, and discuss the application and impact of electrospinning on the fields of vascular, neural, bone, cartilage, and tendon/ligament tissue engineering.

  7. Advances and perspectives in tooth tissue engineering.

    Science.gov (United States)

    Monteiro, Nelson; Yelick, Pamela C

    2017-09-01

    Bio-engineered teeth that can grow and remodel in a manner similar to that of natural teeth have the potential to serve as permanent replacements to the currently used prosthetic teeth, such as dental implants. A major challenge in designing functional bio-engineered teeth is to mimic both the structural and anisotropic mechanical characteristics of the native tooth. Therefore, the field of dental and whole tooth regeneration has advanced towards the molecular and nanoscale design of bio-active, biomimetic systems, using biomaterials, drug delivery systems and stem cells. The focus of this review is to discuss recent advances in tooth tissue engineering, using biomimetic scaffolds that provide proper architectural cues, exhibit the capacity to support dental stem cell proliferation and differentiation and sequester and release bio-active agents, such as growth factors and nucleic acids, in a spatiotemporal controlled manner. Although many in vitro and in vivo studies on tooth regeneration appear promising, before tooth tissue engineering becomes a reality for humans, additional research is needed to perfect methods that use adult human dental stem cells, as opposed to embryonic dental stem cells, and to devise the means to generate bio-engineered teeth of predetermined size and shape. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Silk: a potential medium for tissue engineering.

    Science.gov (United States)

    Sobajo, Cassandra; Behzad, Farhad; Yuan, Xue-Feng; Bayat, Ardeshir

    2008-01-01

    Human skin is a complex bilayered organ that serves as a protective barrier against the environment. The loss of integrity of skin by traumatic experiences such as burns and ulcers may result in considerable disability or ultimately death. Therefore, in skin injuries, adequate dermal substitutes are among primary care targets, aimed at replacing the structural and functional properties of native skin. To date, there are very few single application tissue-engineered dermal constructs fulfilling this criterion. Silk produced by the domestic silkworm, Bombyx mori, has a long history of use in medicine. It has recently been increasingly investigated as a promising biomaterial for dermal constructs. Silk contains 2 fibrous proteins, sericin and fibroin. Each one exhibits unique mechanical and biological properties. Comprehensive review of randomized-controlled trials investigating current dermal constructs and the structures and properties of silk-based constructs on wound healing. This review revealed that silk-fibroin is regarded as the most promising biomaterial, providing options for the construction of tissue-engineered skin. The research available indicates that silk fibroin is a suitable biomaterial scaffold for the provision of adequate dermal constructs.

  9. Stem Cells for Skeletal Muscle Tissue Engineering.

    Science.gov (United States)

    Pantelic, Molly N; Larkin, Lisa M

    2018-04-19

    Volumetric muscle loss (VML) is a debilitating condition wherein muscle loss overwhelms the body's normal physiological repair mechanism. VML is particularly common among military service members who have sustained war injuries. Because of the high social and medical cost associated with VML and suboptimal current surgical treatments, there is great interest in developing better VML therapies. Skeletal muscle tissue engineering (SMTE) is a promising alternative to traditional VML surgical treatments that use autogenic tissue grafts, and rather uses isolated stem cells with myogenic potential to generate de novo skeletal muscle tissues to treat VML. Satellite cells are the native precursors to skeletal muscle tissue, and are thus the most commonly studied starting source for SMTE. However, satellite cells are difficult to isolate and purify, and it is presently unknown whether they would be a practical source in clinical SMTE applications. Alternative myogenic stem cells, including adipose-derived stem cells, bone marrow-derived mesenchymal stem cells, perivascular stem cells, umbilical cord mesenchymal stem cells, induced pluripotent stem cells, and embryonic stem cells, each have myogenic potential and have been identified as possible starting sources for SMTE, although they have yet to be studied in detail for this purpose. These alternative stem cell varieties offer unique advantages and disadvantages that are worth exploring further to advance the SMTE field toward highly functional, safe, and practical VML treatments. The following review summarizes the current state of satellite cell-based SMTE, details the properties and practical advantages of alternative myogenic stem cells, and offers guidance to tissue engineers on how alternative myogenic stem cells can be incorporated into SMTE research.

  10. Tissue Engineering Organs for Space Biology Research

    Science.gov (United States)

    Vandenburgh, H. H.; Shansky, J.; DelTatto, M.; Lee, P.; Meir, J.

    1999-01-01

    Long-term manned space flight requires a better understanding of skeletal muscle atrophy resulting from microgravity. Atrophy most likely results from changes at both the systemic level (e.g. decreased circulating growth hormone, increased circulating glucocorticoids) and locally (e.g. decreased myofiber resting tension). Differentiated skeletal myofibers in tissue culture have provided a model system over the last decade for gaining a better understanding of the interactions of exogenous growth factors, endogenous growth factors, and muscle fiber tension in regulating protein turnover rates and muscle cell growth. Tissue engineering these cells into three dimensional bioartificial muscle (BAM) constructs has allowed us to extend their use to Space flight studies for the potential future development of countermeasures.

  11. Articular cartilage: from formation to tissue engineering.

    Science.gov (United States)

    Camarero-Espinosa, Sandra; Rothen-Rutishauser, Barbara; Foster, E Johan; Weder, Christoph

    2016-05-26

    Hyaline cartilage is the nonlinear, inhomogeneous, anisotropic, poro-viscoelastic connective tissue that serves as friction-reducing and load-bearing cushion in synovial joints and is vital for mammalian skeletal movements. Due to its avascular nature, low cell density, low proliferative activity and the tendency of chondrocytes to de-differentiate, cartilage cannot regenerate after injury, wear and tear, or degeneration through common diseases such as osteoarthritis. Therefore severe damage usually requires surgical intervention. Current clinical strategies to generate new tissue include debridement, microfracture, autologous chondrocyte transplantation, and mosaicplasty. While articular cartilage was predicted to be one of the first tissues to be successfully engineered, it proved to be challenging to reproduce the complex architecture and biomechanical properties of the native tissue. Despite significant research efforts, only a limited number of studies have evolved up to the clinical trial stage. This review article summarizes the current state of cartilage tissue engineering in the context of relevant biological aspects, such as the formation and growth of hyaline cartilage, its composition, structure and biomechanical properties. Special attention is given to materials development, scaffold designs, fabrication methods, and template-cell interactions, which are of great importance to the structure and functionality of the engineered tissue.

  12. Mechanostimulation Protocols for Cardiac Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Marco Govoni

    2013-01-01

    Full Text Available Owing to the inability of self-replacement by a damaged myocardium, alternative strategies to heart transplantation have been explored within the last decades and cardiac tissue engineering/regenerative medicine is among the present challenges in biomedical research. Hopefully, several studies witness the constant extension of the toolbox available to engineer a fully functional, contractile, and robust cardiac tissue using different combinations of cells, template bioscaffolds, and biophysical stimuli obtained by the use of specific bioreactors. Mechanical forces influence the growth and shape of every tissue in our body generating changes in intracellular biochemistry and gene expression. That is why bioreactors play a central role in the task of regenerating a complex tissue such as the myocardium. In the last fifteen years a large number of dynamic culture devices have been developed and many results have been collected. The aim of this brief review is to resume in a single streamlined paper the state of the art in this field.

  13. Heterogeneity of Scaffold Biomaterials in Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Lauren Edgar

    2016-05-01

    Full Text Available Tissue engineering (TE offers a potential solution for the shortage of transplantable organs and the need for novel methods of tissue repair. Methods of TE have advanced significantly in recent years, but there are challenges to using engineered tissues and organs including but not limited to: biocompatibility, immunogenicity, biodegradation, and toxicity. Analysis of biomaterials used as scaffolds may, however, elucidate how TE can be enhanced. Ideally, biomaterials should closely mimic the characteristics of desired organ, their function and their in vivo environments. A review of biomaterials used in TE highlighted natural polymers, synthetic polymers, and decellularized organs as sources of scaffolding. Studies of discarded organs supported that decellularization offers a remedy to reducing waste of donor organs, but does not yet provide an effective solution to organ demand because it has shown varied success in vivo depending on organ complexity and physiological requirements. Review of polymer-based scaffolds revealed that a composite scaffold formed by copolymerization is more effective than single polymer scaffolds because it allows copolymers to offset disadvantages a single polymer may possess. Selection of biomaterials for use in TE is essential for transplant success. There is not, however, a singular biomaterial that is universally optimal.

  14. Biomimetic nanoclay scaffolds for bone tissue engineering

    Science.gov (United States)

    Ambre, Avinash Harishchandra

    Tissue engineering offers a significant potential alternative to conventional methods for rectifying tissue defects by evoking natural regeneration process via interactions between cells and 3D porous scaffolds. Imparting adequate mechanical properties to biodegradable scaffolds for bone tissue engineering is an important challenge and extends from molecular to macroscale. This work focuses on the use of sodium montmorillonite (Na-MMT) to design polymer composite scaffolds having enhanced mechanical properties along with multiple interdependent properties. Materials design beginning at the molecular level was used in which Na-MMT clay was modified with three different unnatural amino acids and further characterized using Fourier Transform Infrared (FTIR) spectroscopy, X-ray diffraction (XRD). Based on improved bicompatibility with human osteoblasts (bone cells) and intermediate increase in d-spacing of MMT clay (shown by XRD), 5-aminovaleric acid modified clay was further used to prepare biopolymer (chitosan-polygalacturonic acid complex) scaffolds. Osteoblast proliferation in biopolymer scaffolds containing 5-aminovaleric acid modified clay was similar to biopolymer scaffolds containing hydroxyapatite (HAP). A novel process based on biomineralization in bone was designed to prepare 5-aminovaleric acid modified clay capable of imparting multiple properties to the scaffolds. Bone-like apatite was mineralized in modified clay and a novel nanoclay-HAP hybrid (in situ HAPclay) was obtained. FTIR spectroscopy indicated a molecular level organic-inorganic association between the intercalated 5-aminovaleric acid and mineralized HAP. Osteoblasts formed clusters on biopolymer composite films prepared with different weight percent compositions of in situ HAPclay. Human MSCs formed mineralized nodules on composite films and mineralized extracellular matrix (ECM) in composite scaffolds without the use of osteogenic supplements. Polycaprolactone (PCL), a synthetic polymer, was

  15. Biodegradable Polymer-Based Scaffolds for Bone Tissue Engineering

    CERN Document Server

    Sultana, Naznin

    2013-01-01

    This book addresses the principles, methods and applications of biodegradable polymer based scaffolds for bone tissue engineering. The general principle of bone tissue engineering is reviewed and the traditional and novel scaffolding materials, their properties and scaffold fabrication techniques are explored. By acting as temporary synthetic extracellular matrices for cell accommodation, proliferation, and differentiation, scaffolds play a pivotal role in tissue engineering. This book does not only provide the comprehensive summary of the current trends in scaffolding design but also presents the new trends and directions for scaffold development for the ever expanding tissue engineering applications.

  16. Modeling collagen remodeling in tissue engineered cardiovascular tissues

    NARCIS (Netherlands)

    Soares, A.L.F.

    2012-01-01

    Commonly, heart valve replacements consist of non-living materials lacking the ability to grow, repair and remodel. Tissue engineering (TE) offers a promising alternative to these replacement strategies since it can overcome its disadvantages. The technique aims to create an autologous living tissue

  17. Fibre-reinforced hydrogels for tissue engineering

    Science.gov (United States)

    Waters, Sarah; Byrne, Helen; Chen, Mike; Dias Castilho, Miguel; Kimpton, Laura; Please, Colin; Whiteley, Jonathan

    2017-11-01

    Tissue engineers aim to grow replacement tissues in vitro to replace those in the body that have been damaged through age, trauma or disease. One approach is to seed cells within a scaffold consisting of an interconnected 3D-printed lattice of polymer fibres, cast in a hydrogel, and subject the construct (cell-seeded scaffold) to an applied load in a bioreactor. A key question is to understand how this applied load is distributed throughout the construct to the mechanosensitive cells. To address this, we exploit the disparate length scales (small inter-fibre spacing compared with construct dimensions). The fibres are treated as a linear elastic material and the hydrogel as a poroelastic material. We employ homogenisation theory to derive equations governing the material properties of a periodic, elastic-poroelastic composite. To validate the mobel, model solutions are compared to experimental data describing the unconfined compression of the fibre-reinforced hydrogels. The model is used to derive the bulk mechanical properties of a cylindrical construct of the composite material for a range of fibre spacings, and the local mechanical environment experienced by cells embedded within the construct is determined. Funded by the European Union Seventh Framework Programme (FP7/2007-2013).

  18. Tissue engineered constructs: perspectives on clinical translation.

    Science.gov (United States)

    Lu, Lichun; Arbit, Harvey M; Herrick, James L; Segovis, Suzanne Glass; Maran, Avudaiappan; Yaszemski, Michael J

    2015-03-01

    In this article, a "bedside to bench and back" approach for developing tissue engineered medical products (TEMPs) for clinical applications is reviewed. The driving force behind this approach is unmet clinical needs. Preclinical research, both in vitro and in vivo using small and large animal models, will help find solutions to key research questions. In clinical research, ethical issues regarding the use of cells and tissues, their sources, donor consent, as well as clinical trials are important considerations. Regulatory issues, at both institutional and government levels, must be addressed prior to the translation of TEMPs to clinical practice. TEMPs are regulated as drugs, biologics, devices, or combination products by the U.S. Food and Drug Administration (FDA). Depending on the mode of regulation, applications for TEMP introduction must be filed with the FDA to demonstrate safety and effectiveness in premarket clinical studies, followed by 510(k) premarket clearance or premarket approval (for medical devices), biologics license application approval (for biologics), or new drug application approval (for drugs). A case study on nerve cuffs is presented to illustrate the regulatory process. Finally, perspectives on commercialization such as finding a company partner and funding issues, as well as physician culture change, are presented.

  19. The Application of Tissue Engineering Procedures to Repair the Larynx

    Science.gov (United States)

    Ringel, Robert L.; Kahane, Joel C.; Hillsamer, Peter J.; Lee, Annie S.; Badylak, Stephen F.

    2006-01-01

    The field of tissue engineering/regenerative medicine combines the quantitative principles of engineering with the principles of the life sciences toward the goal of reconstituting structurally and functionally normal tissues and organs. There has been relatively little application of tissue engineering efforts toward the organs of speech, voice,…

  20. Functional tissue engineering : ten more years of progress

    NARCIS (Netherlands)

    Guilak, F.; Baaijens, F.P.T.

    2014-01-01

    "Functional tissue engineering" is a subset of the field of tissue engineering that was proposed by the United States National Committee on Biomechanics over a decade ago in order to place more emphasis on the roles of biomechanics and mechanobiology in tissue repair and regeneration. Over the past

  1. Functional tissue engineering of ligament healing

    Directory of Open Access Journals (Sweden)

    Hsu Shan-Ling

    2010-05-01

    Full Text Available Abstract Ligaments and tendons are dense connective tissues that are important in transmitting forces and facilitate joint articulation in the musculoskeletal system. Their injury frequency is high especially for those that are functional important, like the anterior cruciate ligament (ACL and medial collateral ligament (MCL of the knee as well as the glenohumeral ligaments and the rotator cuff tendons of the shoulder. Because the healing responses are different in these ligaments and tendons after injury, the consequences and treatments are tissue- and site-specific. In this review, we will elaborate on the injuries of the knee ligaments as well as using functional tissue engineering (FTE approaches to improve their healing. Specifically, the ACL of knee has limited capability to heal, and results of non-surgical management of its midsubstance rupture have been poor. Consequently, surgical reconstruction of the ACL is regularly performed to gain knee stability. However, the long-term results are not satisfactory besides the numerous complications accompanied with the surgeries. With the rapid development of FTE, there is a renewed interest in revisiting ACL healing. Approaches such as using growth factors, stem cells and scaffolds have been widely investigated. In this article, the biology of normal and healing ligaments is first reviewed, followed by a discussion on the issues related to the treatment of ACL injuries. Afterwards, current promising FTE methods are presented for the treatment of ligament injuries, including the use of growth factors, gene delivery, and cell therapy with a particular emphasis on the use of ECM bioscaffolds. The challenging areas are listed in the future direction that suggests where collection of energy could be placed in order to restore the injured ligaments and tendons structurally and functionally.

  2. Acellular organ scaffolds for tumor tissue engineering

    Science.gov (United States)

    Guller, Anna; Trusova, Inna; Petersen, Elena; Shekhter, Anatoly; Kurkov, Alexander; Qian, Yi; Zvyagin, Andrei

    2015-12-01

    Rationale: Tissue engineering (TE) is an emerging alternative approach to create models of human malignant tumors for experimental oncology, personalized medicine and drug discovery studies. Being the bottom-up strategy, TE provides an opportunity to control and explore the role of every component of the model system, including cellular populations, supportive scaffolds and signalling molecules. Objectives: As an initial step to create a new ex vivo TE model of cancer, we optimized protocols to obtain organ-specific acellular matrices and evaluated their potential as TE scaffolds for culture of normal and tumor cells. Methods and results: Effective decellularization of animals' kidneys, ureter, lungs, heart, and liver has been achieved by detergent-based processing. The obtained scaffolds demonstrated biocompatibility and growthsupporting potential in combination with normal (Vero, MDCK) and tumor cell lines (C26, B16). Acellular scaffolds and TE constructs have been characterized and compared with morphological methods. Conclusions: The proposed methodology allows creation of sustainable 3D tumor TE constructs to explore the role of organ-specific cell-matrix interaction in tumorigenesis.

  3. Mechanical loading regulates human MSC differentiation in a multi-layer hydrogel for osteochondral tissue engineering.

    Science.gov (United States)

    Steinmetz, Neven J; Aisenbrey, Elizabeth A; Westbrook, Kristofer K; Qi, H Jerry; Bryant, Stephanie J

    2015-07-01

    A bioinspired multi-layer hydrogel was developed for the encapsulation of human mesenchymal stem cells (hMSCs) as a platform for osteochondral tissue engineering. The spatial presentation of biochemical cues, via incorporation of extracellular matrix analogs, and mechanical cues, via both hydrogel crosslink density and externally applied mechanical loads, were characterized in each layer. A simple sequential photopolymerization method was employed to form stable poly(ethylene glycol)-based hydrogels with a soft cartilage-like layer of chondroitin sulfate and low RGD concentrations, a stiff bone-like layer with high RGD concentrations, and an intermediate interfacial layer. Under a compressive load, the variation in hydrogel stiffness within each layer produced high strains in the soft cartilage-like layer, low strains in the stiff bone-like layer, and moderate strains in the interfacial layer. When hMSC-laden hydrogels were cultured statically in osteochondral differentiation media, the local biochemical and matrix stiffness cues were not sufficient to spatially guide hMSC differentiation after 21 days. However dynamic mechanical stimulation led to differentially high expression of collagens with collagen II in the cartilage-like layer, collagen X in the interfacial layer and collagen I in the bone-like layer and mineral deposits localized to the bone layer. Overall, these findings point to external mechanical stimulation as a potent regulator of hMSC differentiation toward osteochondral cellular phenotypes. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Expediting the transition from replacement medicine to tissue engineering.

    Science.gov (United States)

    Coury, Arthur J

    2016-06-01

    In this article, an expansive interpretation of "Tissue Engineering" is proposed which is in congruence with classical and recent published definitions. I further simplify the definition of tissue engineering as: "Exerting systematic control of the body's cells, matrices and fluids." As a consequence, many medical therapies not commonly considered tissue engineering are placed in this category because of their effect on the body's responses. While the progress of tissue engineering strategies is inexorable and generally positive, it has been subject to setbacks as have many important medical therapies. Medical practice is currently undergoing a transition on several fronts (academics, start-up companies, going concerns) from the era of "replacement medicine" where body parts and functions are replaced by mechanical, electrical or chemical therapies to the era of tissue engineering where health is restored by regeneration generation or limitation of the body's tissues and functions by exploiting our expanding knowledge of the body's biological processes to produce natural, healthy outcomes.

  5. The essence of biophysical cues in skeletal muscle tissue engineering

    NARCIS (Netherlands)

    Langelaan, M.L.P.

    2010-01-01

    Skeletal muscle is an appealing topic for tissue engineering because of its variety in applications. Evidently, tissue engineered skeletal muscle can be used in the field of regenerative medicine to repair muscular defects or dystrophies. Engineered skeletal muscle constructs can also be used as a

  6. Bioreactors for Tissue Engineering of Cartilage

    Science.gov (United States)

    Concaro, S.; Gustavson, F.; Gatenholm, P.

    production using confined and unconfined systems. Development of automatic culture systems and noninvasive monitoring of matrix production will take place during the next few years in order to improve the cost affectivity of tissue-engineered products.

  7. Selective laser sintered poly-ε-caprolactone scaffold hybridized with collagen hydrogel for cartilage tissue engineering

    International Nuclear Information System (INIS)

    Chen, Chih-Hao; Chen, Jyh-Ping; Shyu, Victor Bong-Hang; Lee, Ming-Yih

    2014-01-01

    Selective laser sintering (SLS), an additive manufacturing (AM) technology, can be used to produce tissue engineering scaffolds with pre-designed macro and micro features based on computer-aided design models. An in-house SLS machine was built and 3D poly-ε-caprolactone (PCL) scaffolds were manufactured using a layer-by-layer design of scaffold struts with varying orientations (0°/45°/0°/45°, 0°/90°/0°/90°, 0°/45°/90°/135°), producing scaffolds with pores of different shapes and distribution. To better enhance the scaffold properties, chondrocytes were seeded in collagen gel and loaded in scaffolds for cartilage tissue engineering. Gel uptake and dynamic mechanical analysis demonstrated the better suitability of the 0°/90°/0°/90° scaffolds for reconstructive cartilage tissue engineering purposes. Chondrocytes were then seeded onto the 0°/90°/0°/90° scaffolds in collagen I hydrogel (PCL/COL1) and compared to medium-suspended cells in terms of their cartilage-like tissue engineering parameters. PCL/COL1 allowed better cell proliferation when compared to PCL or two-dimensional tissue culture polystyrene. Scanning electron microscopy and confocal microscopy observations demonstrated a similar trend for extracellular matrix production and cell survival. Glycosaminoglycan and collagen II quantification also demonstrated the superior matrix secretion properties of PCL/COL1 hybrid scaffolds. Collagen-gel-suspended chondrocytes loaded in SLS-manufactured PCL scaffolds may provide a means of producing tissue-engineered cartilage with customized shapes and designs via AM technology. (paper)

  8. Tissue engineering: state of the art in oral rehabilitation.

    Science.gov (United States)

    Scheller, E L; Krebsbach, P H; Kohn, D H

    2009-05-01

    More than 85% of the global population requires repair or replacement of a craniofacial structure. These defects range from simple tooth decay to radical oncologic craniofacial resection. Regeneration of oral and craniofacial tissues presents a formidable challenge that requires synthesis of basic science, clinical science and engineering technology. Identification of appropriate scaffolds, cell sources and spatial and temporal signals (the tissue engineering triad) is necessary to optimize development of a single tissue, hybrid organ or interface. Furthermore, combining the understanding of the interactions between molecules of the extracellular matrix and attached cells with an understanding of the gene expression needed to induce differentiation and tissue growth will provide the design basis for translating basic science into rationally developed components of this tissue engineering triad. Dental tissue engineers are interested in regeneration of teeth, oral mucosa, salivary glands, bone and periodontium. Many of these oral structures are hybrid tissues. For example, engineering the periodontium requires growth of alveolar bone, cementum and the periodontal ligament. Recapitulation of biological development of hybrid tissues and interfaces presents a challenge that exceeds that of engineering just a single tissue. Advances made in dental interface engineering will allow these tissues to serve as model systems for engineering other tissues or organs of the body. This review will begin by covering basic tissue engineering principles and strategic design of functional biomaterials. We will then explore the impact of biomaterials design on the status of craniofacial tissue engineering and current challenges and opportunities in dental tissue engineering.

  9. Micro- and nanotechnology in cardiovascular tissue engineering.

    Science.gov (United States)

    Zhang, Boyang; Xiao, Yun; Hsieh, Anne; Thavandiran, Nimalan; Radisic, Milica

    2011-12-09

    While in nature the formation of complex tissues is gradually shaped by the long journey of development, in tissue engineering constructing complex tissues relies heavily on our ability to directly manipulate and control the micro-cellular environment in vitro. Not surprisingly, advancements in both microfabrication and nanofabrication have powered the field of tissue engineering in many aspects. Focusing on cardiac tissue engineering, this paper highlights the applications of fabrication techniques in various aspects of tissue engineering research: (1) cell responses to micro- and nanopatterned topographical cues, (2) cell responses to patterned biochemical cues, (3) controlled 3D scaffolds, (4) patterned tissue vascularization and (5) electromechanical regulation of tissue assembly and function.

  10. [Strategies to choose scaffold materials for tissue engineering].

    Science.gov (United States)

    Gao, Qingdong; Zhu, Xulong; Xiang, Junxi; Lü, Yi; Li, Jianhui

    2016-02-01

    Current therapies of organ failure or a wide range of tissue defect are often not ideal. Transplantation is the only effective way for long time survival. But it is hard to meet huge patients demands because of donor shortage, immune rejection and other problems. Tissue engineering could be a potential option. Choosing a suitable scaffold material is an essential part of it. According to different sources, tissue engineering scaffold materials could be divided into three types which are natural and its modified materials, artificial and composite ones. The purpose of tissue engineering scaffold is to repair the tissues or organs damage, so could reach the ideal recovery in its function and structure aspect. Therefore, tissue engineering scaffold should even be as close as much to the original tissue or organs in function and structure. We call it "organic scaffold" and this strategy might be the drastic perfect substitute for the tissues or organs in concern. Optimized organization with each kind scaffold materials could make up for biomimetic structure and function of the tissue or organs. Scaffold material surface modification, optimized preparation procedure and cytosine sustained-release microsphere addition should be considered together. This strategy is expected to open new perspectives for tissue engineering. Multidisciplinary approach including material science, molecular biology, and engineering might find the most ideal tissue engineering scaffold. Using the strategy of drawing on each other strength and optimized organization with each kind scaffold material to prepare a multifunctional biomimetic tissue engineering scaffold might be a good method for choosing tissue engineering scaffold materials. Our research group had differentiated bone marrow mesenchymal stem cells into bile canaliculi like cells. We prepared poly(L-lactic acid)/poly(ε-caprolactone) biliary stent. The scaffold's internal played a part in the long-term release of cytokines which

  11. Textile Technologies and Tissue Engineering: A Path Towards Organ Weaving

    Science.gov (United States)

    Akbari, Mohsen; Tamayol, Ali; Bagherifard, Sara; Serex, Ludovic; Mostafalu, Pooria; Faramarzi, Negar; Mohammadi, Mohammad Hossein

    2016-01-01

    Textile technologies have recently attracted great attention as potential biofabrication tools for engineering tissue constructs. Using current textile technologies, fibrous structures can be designed and engineered to attain the required properties that are demanded by different tissue engineering applications. Several key parameters such as physiochemical characteristics of fibers, pore size and mechanical properties of the fabrics play important role in the effective use of textile technologies in tissue engineering. This review summarizes the current advances in the manufacturing of biofunctional fibers. Different textile methods such as knitting, weaving, and braiding are discussed and their current applications in tissue engineering are highlighted. PMID:26924450

  12. Microfluidic systems for stem cell-based neural tissue engineering.

    Science.gov (United States)

    Karimi, Mahdi; Bahrami, Sajad; Mirshekari, Hamed; Basri, Seyed Masoud Moosavi; Nik, Amirala Bakhshian; Aref, Amir R; Akbari, Mohsen; Hamblin, Michael R

    2016-07-05

    Neural tissue engineering aims at developing novel approaches for the treatment of diseases of the nervous system, by providing a permissive environment for the growth and differentiation of neural cells. Three-dimensional (3D) cell culture systems provide a closer biomimetic environment, and promote better cell differentiation and improved cell function, than could be achieved by conventional two-dimensional (2D) culture systems. With the recent advances in the discovery and introduction of different types of stem cells for tissue engineering, microfluidic platforms have provided an improved microenvironment for the 3D-culture of stem cells. Microfluidic systems can provide more precise control over the spatiotemporal distribution of chemical and physical cues at the cellular level compared to traditional systems. Various microsystems have been designed and fabricated for the purpose of neural tissue engineering. Enhanced neural migration and differentiation, and monitoring of these processes, as well as understanding the behavior of stem cells and their microenvironment have been obtained through application of different microfluidic-based stem cell culture and tissue engineering techniques. As the technology advances it may be possible to construct a "brain-on-a-chip". In this review, we describe the basics of stem cells and tissue engineering as well as microfluidics-based tissue engineering approaches. We review recent testing of various microfluidic approaches for stem cell-based neural tissue engineering.

  13. Cell-Based Strategies for Meniscus Tissue Engineering

    Science.gov (United States)

    Niu, Wei; Guo, Weimin; Han, Shufeng; Zhu, Yun; Liu, Shuyun; Guo, Quanyi

    2016-01-01

    Meniscus injuries remain a significant challenge due to the poor healing potential of the inner avascular zone. Following a series of studies and clinical trials, tissue engineering is considered a promising prospect for meniscus repair and regeneration. As one of the key factors in tissue engineering, cells are believed to be highly beneficial in generating bionic meniscus structures to replace injured ones in patients. Therefore, cell-based strategies for meniscus tissue engineering play a fundamental role in meniscal regeneration. According to current studies, the main cell-based strategies for meniscus tissue engineering are single cell type strategies; cell coculture strategies also were applied to meniscus tissue engineering. Likewise, on the one side, the zonal recapitulation strategies based on mimicking meniscal differing cells and internal architectures have received wide attentions. On the other side, cell self-assembling strategies without any scaffolds may be a better way to build a bionic meniscus. In this review, we primarily discuss cell seeds for meniscus tissue engineering and their application strategies. We also discuss recent advances and achievements in meniscus repair experiments that further improve our understanding of meniscus tissue engineering. PMID:27274735

  14. Review: Polymeric-Based 3D Printing for Tissue Engineering.

    Science.gov (United States)

    Wu, Geng-Hsi; Hsu, Shan-Hui

    Three-dimensional (3D) printing, also referred to as additive manufacturing, is a technology that allows for customized fabrication through computer-aided design. 3D printing has many advantages in the fabrication of tissue engineering scaffolds, including fast fabrication, high precision, and customized production. Suitable scaffolds can be designed and custom-made based on medical images such as those obtained from computed tomography. Many 3D printing methods have been employed for tissue engineering. There are advantages and limitations for each method. Future areas of interest and progress are the development of new 3D printing platforms, scaffold design software, and materials for tissue engineering applications.

  15. Proangiogenic scaffolds as functional templates for cardiac tissue engineering

    OpenAIRE

    Madden, Lauran R.; Mortisen, Derek J.; Sussman, Eric M.; Dupras, Sarah K.; Fugate, James A.; Cuy, Janet L.; Hauch, Kip D.; Laflamme, Michael A.; Murry, Charles E.; Ratner, Buddy D.

    2010-01-01

    We demonstrate here a cardiac tissue-engineering strategy addressing multicellular organization, integration into host myocardium, and directional cues to reconstruct the functional architecture of heart muscle. Microtemplating is used to shape poly(2-hydroxyethyl methacrylate-co-methacrylic acid) hydrogel into a tissue-engineering scaffold with architectures driving heart tissue integration. The construct contains parallel channels to organize cardiomyocyte bundles, supported by micrometer-s...

  16. Alveolar bone tissue engineering using composite scaffolds for drug delivery

    Directory of Open Access Journals (Sweden)

    Tomonori Matsuno

    2010-08-01

    Full Text Available For many years, bone graft substitutes have been used to reconstruct bone defects in orthopedic and dental fields. However, synthetic bone substitutes such as hydroxyapatite or β-tricalcium phosphate have no osteoinductive or osteogenic abilities. Bone tissue engineering has also been promoted as an alternative approach to regenerating bone tissue. To succeed in bone tissue engineering, osteoconductive scaffolding biomaterials should provide a suitable environment for osteogenic cells and provide local controlled release of osteogenic growth factors. In addition, the scaffold for the bone graft substitute should biodegrade to replace the newly formed bone. Recent advances in bone tissue engineering have allowed the creation of composite scaffolds with tailored functional properties. This review focuses on composite scaffolds that consist of synthetic ceramics and natural polymers as drug delivery carriers for alveolar bone tissue engineering.

  17. Bone tissue engineering scaffolding: computer-aided scaffolding techniques.

    Science.gov (United States)

    Thavornyutikarn, Boonlom; Chantarapanich, Nattapon; Sitthiseripratip, Kriskrai; Thouas, George A; Chen, Qizhi

    Tissue engineering is essentially a technique for imitating nature. Natural tissues consist of three components: cells, signalling systems (e.g. growth factors) and extracellular matrix (ECM). The ECM forms a scaffold for its cells. Hence, the engineered tissue construct is an artificial scaffold populated with living cells and signalling molecules. A huge effort has been invested in bone tissue engineering, in which a highly porous scaffold plays a critical role in guiding bone and vascular tissue growth and regeneration in three dimensions. In the last two decades, numerous scaffolding techniques have been developed to fabricate highly interconnective, porous scaffolds for bone tissue engineering applications. This review provides an update on the progress of foaming technology of biomaterials, with a special attention being focused on computer-aided manufacturing (Andrade et al. 2002) techniques. This article starts with a brief introduction of tissue engineering (Bone tissue engineering and scaffolds) and scaffolding materials (Biomaterials used in bone tissue engineering). After a brief reviews on conventional scaffolding techniques (Conventional scaffolding techniques), a number of CAM techniques are reviewed in great detail. For each technique, the structure and mechanical integrity of fabricated scaffolds are discussed in detail. Finally, the advantaged and disadvantage of these techniques are compared (Comparison of scaffolding techniques) and summarised (Summary).

  18. Artificial implant materials - role of biomaterials in the tissue engineering

    International Nuclear Information System (INIS)

    Lewandowska-Szumiel, M.

    2007-01-01

    Lecture presents different materials applicable in production of implants. All these materials should be sterilized, however some of them can be modified using by irradiation (e.g. polymers). Numerous examples of tissue engineering are presented

  19. Impedance-based monitoring for tissue engineering applications

    DEFF Research Database (Denmark)

    Canali, Chiara; Heiskanen, Arto; Martinsen, Ø.G.

    2015-01-01

    Impedance is a promising technique for sensing the overall process of tissue engineering. Different electrode configurations can be used to characterize the scaffold that supports cell organization in terms of hydrogel polymerization and degree of porosity, monitoring cell loading, cell...

  20. Engineering a concept: the creation of tissue engineering.

    Science.gov (United States)

    Williams, D

    1997-12-01

    Tissue engineering is a fashionable phrase and a new concept. This article analyses what is meant by this term and discusses some of the products that may emerge from the translation of this concept into clinical reality.

  1. The combination of meltblown and electrospinning for bone tissue engineering

    Czech Academy of Sciences Publication Activity Database

    Erben, J.; Pilařová, K.; Sanetrník, F.; Chvojka, J.; Jenčová, V.; Blažková, L.; Havlíček, J.; Novák, O.; Mikeš, P.; Prosecká, Eva; Lukáš, D.; Kuželová Kostaková, E.

    2015-01-01

    Roč. 143, mar 15 (2015), s. 172-176 ISSN 0167-577X Institutional support: RVO:68378041 Keywords : meltblown * electrospinning * tissue engineering * polycaprolactone Subject RIV: JI - Composite Materials Impact factor: 2.437, year: 2015

  2. Tissue engineering skin: a paradigm shift in wound care.

    Science.gov (United States)

    Mason, C

    2005-12-01

    Tissue-engineered skin for the treatment of burns and ulcers is a clinical success, but making it commercially viable is more problematic. This article examines the industry, its techniques and suggests the way forward.

  3. Gene therapy for cartilage and bone tissue engineering

    CERN Document Server

    Hu, Yu-Chen

    2014-01-01

    "Gene Therapy for Cartilage and Bone Tissue Engineering" outlines the tissue engineering and possible applications of gene therapy in the field of biomedical engineering as well as basic principles of gene therapy, vectors and gene delivery, specifically for cartilage and bone engineering. It is intended for tissue engineers, cell therapists, regenerative medicine scientists and engineers, gene therapist and virologists. Dr. Yu-Chen Hu is a Distinguished Professor at the Department of Chemical Engineering, National Tsing Hua University and has received the Outstanding Research Award (National Science Council), Asia Research Award (Society of Chemical Engineers, Japan) and Professor Tsai-Teh Lai Award (Taiwan Institute of Chemical Engineers). He is also a fellow of the American Institute for Medical and Biological Engineering (AIMBE) and a member of the Tissue Engineering International & Regenerative Medicine Society (TERMIS)-Asia Pacific Council.

  4. Biological augmentation and tissue engineering approaches in meniscus surgery.

    Science.gov (United States)

    Moran, Cathal J; Busilacchi, Alberto; Lee, Cassandra A; Athanasiou, Kyriacos A; Verdonk, Peter C

    2015-05-01

    The purpose of this review was to evaluate the role of biological augmentation and tissue engineering strategies in meniscus surgery. Although clinical (human), preclinical (animal), and in vitro tissue engineering studies are included here, we have placed additional focus on addressing preclinical and clinical studies reported during the 5-year period used in this review in a systematic fashion while also providing a summary review of some important in vitro tissue engineering findings in the field over the past decade. A search was performed on PubMed for original works published from 2009 to March 31, 2014 using the term "meniscus" with all the following terms: "scaffolds," "constructs," "cells," "growth factors," "implant," "tissue engineering," and "regenerative medicine." Inclusion criteria were the following: English-language articles and original clinical, preclinical (in vivo), and in vitro studies of tissue engineering and regenerative medicine application in knee meniscus lesions published from 2009 to March 31, 2014. Three clinical studies and 18 preclinical studies were identified along with 68 tissue engineering in vitro studies. These reports show the increasing promise of biological augmentation and tissue engineering strategies in meniscus surgery. The role of stem cell and growth factor therapy appears to be particularly useful. A review of in vitro tissue engineering studies found a large number of scaffold types to be of promise for meniscus replacement. Limitations include a relatively low number of clinical or preclinical in vivo studies, in addition to the fact there is as yet no report in the literature of a tissue-engineered meniscus construct used clinically. Neither does the literature provide clarity on the optimal meniscus scaffold type or biological augmentation with which meniscus repair or replacement would be best addressed in the future. There is increasing focus on the role of mechanobiology and biomechanical and

  5. Advances in polymeric systems for tissue engineering and biomedical applications.

    Science.gov (United States)

    Ravichandran, Rajeswari; Sundarrajan, Subramanian; Venugopal, Jayarama Reddy; Mukherjee, Shayanti; Ramakrishna, Seeram

    2012-03-01

    The characteristics of tissue engineered scaffolds are major concerns in the quest to fabricate ideal scaffolds for tissue engineering applications. The polymer scaffolds employed for tissue engineering applications should possess multifunctional properties such as biocompatibility, biodegradability and favorable mechanical properties as it comes in direct contact with the body fluids in vivo. Additionally, the polymer system should also possess biomimetic architecture and should support stem cell adhesion, proliferation and differentiation. As the progress in polymer technology continues, polymeric biomaterials have taken characteristics more closely related to that desired for tissue engineering and clinical needs. Stimuli responsive polymers also termed as smart biomaterials respond to stimuli such as pH, temperature, enzyme, antigen, glucose and electrical stimuli that are inherently present in living systems. This review highlights the exciting advancements in these polymeric systems that relate to biological and tissue engineering applications. Additionally, several aspects of technology namely scaffold fabrication methods and surface modifications to confer biological functionality to the polymers have also been discussed. The ultimate objective is to emphasize on these underutilized adaptive behaviors of the polymers so that novel applications and new generations of smart polymeric materials can be realized for biomedical and tissue engineering applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The role of mechanical loading in ligament tissue engineering.

    Science.gov (United States)

    Benhardt, Hugh A; Cosgriff-Hernandez, Elizabeth M

    2009-12-01

    Tissue-engineered ligaments have received growing interest as a promising alternative for ligament reconstruction when traditional transplants are unavailable or fail. Mechanical stimulation was recently identified as a critical component in engineering load-bearing tissues. It is well established that living tissue responds to altered loads through endogenous changes in cellular behavior, tissue organization, and bulk mechanical properties. Without the appropriate biomechanical cues, new tissue formation lacks the necessary collagenous organization and alignment for sufficient load-bearing capacity. Therefore, tissue engineers utilize mechanical conditioning to guide tissue remodeling and improve the performance of ligament grafts. This review provides a comparative analysis of the response of ligament and tendon fibroblasts to mechanical loading in current bioreactor studies. The differential effect of mechanical stimulation on cellular processes such as protease production, matrix protein synthesis, and cell proliferation is examined in the context of tissue engineering design.

  7. Piezoelectric polymers as biomaterials for tissue engineering applications.

    Science.gov (United States)

    Ribeiro, Clarisse; Sencadas, Vítor; Correia, Daniela M; Lanceros-Méndez, Senentxu

    2015-12-01

    Tissue engineering often rely on scaffolds for supporting cell differentiation and growth. Novel paradigms for tissue engineering include the need of active or smart scaffolds in order to properly regenerate specific tissues. In particular, as electrical and electromechanical clues are among the most relevant ones in determining tissue functionality in tissues such as muscle and bone, among others, electroactive materials and, in particular, piezoelectric ones, show strong potential for novel tissue engineering strategies, in particular taking also into account the existence of these phenomena within some specific tissues, indicating their requirement also during tissue regeneration. This referee reports on piezoelectric materials used for tissue engineering applications. The most used materials for tissue engineering strategies are reported together with the main achievements, challenges and future needs for research and actual therapies. This review provides thus a compilation of the most relevant results and strategies and a start point for novel research pathways in the most relevant and challenging open questions. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Bioreactors in tissue engineering - principles, applications and commercial constraints.

    Science.gov (United States)

    Hansmann, Jan; Groeber, Florian; Kahlig, Alexander; Kleinhans, Claudia; Walles, Heike

    2013-03-01

    Bioreactor technology is vital for tissue engineering. Usually, bioreactors are used to provide a tissue-specific physiological in vitro environment during tissue maturation. In addition to this most obvious application, bioreactors have the potential to improve the efficiency of the overall tissue-engineering concept. To date, a variety of bioreactor systems for tissue-specific applications have been developed. Of these, some systems are already commercially available. With bioreactor technology, various functional tissues of different types were generated and cultured in vitro. Nevertheless, these efforts and achievements alone have not yet led to many clinically successful tissue-engineered implants. We review possible applications for bioreactor systems within a tissue-engineering process and present basic principles and requirements for bioreactor development. Moreover, the use of bioreactor systems for the expansion of clinically relevant cell types is addressed. In contrast to cell expansion, for the generation of functional three-dimensional tissue equivalents, additional physical cues must be provided. Therefore, bioreactors for musculoskeletal tissue engineering are discussed. Finally, bioreactor technology is reviewed in the context of commercial constraints. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Introduction to tissue engineering and application for cartilage engineering.

    Science.gov (United States)

    de Isla, N; Huseltein, C; Jessel, N; Pinzano, A; Decot, V; Magdalou, J; Bensoussan, D; Stoltz, J-F

    2010-01-01

    Tissue engineering is a multidisciplinary field that applies the principles of engineering, life sciences, cell and molecular biology toward the development of biological substitutes that restore, maintain, and improve tissue function. In Western Countries, tissues or cells management for clinical uses is a medical activity governed by different laws. Three general components are involved in tissue engineering: (1) reparative cells that can form a functional matrix; (2) an appropriate scaffold for transplantation and support; and (3) bioreactive molecules, such as cytokines and growth factors that will support and choreograph formation of the desired tissue. These three components may be used individually or in combination to regenerate organs or tissues. Thus the growing development of tissue engineering needs to solve four main problems: cells, engineering development, grafting and safety studies.

  10. The self-assembling process and applications in tissue engineering

    Science.gov (United States)

    Lee, Jennifer K.; Link, Jarrett M.; Hu, Jerry C. Y.; Athanasiou, Kyriacos A.

    2018-01-01

    Tissue engineering strives to create neotissues capable of restoring function. Scaffold-free technologies have emerged that can recapitulate native tissue function without the use of an exogenous scaffold. This chapter will survey, in particular, the self-assembling and self-organization processes as scaffold-free techniques. Characteristics and benefits of each process are described, and key examples of tissues created using these scaffold-free processes are examined to provide guidance for future tissue engineering developments. This chapter aims to explore the potential of self-assembly and self-organization scaffold-free approaches, detailing the recent progress in the in vitro tissue engineering of biomimetic tissues with these methods, toward generating functional tissue replacements. PMID:28348174

  11. Tissue engineering and surgery: from translational studies to human trials

    Directory of Open Access Journals (Sweden)

    Vranckx Jan Jeroen

    2017-06-01

    Full Text Available Tissue engineering was introduced as an innovative and promising field in the mid-1980s. The capacity of cells to migrate and proliferate in growth-inducing medium induced great expectancies on generating custom-shaped bioconstructs for tissue regeneration. Tissue engineering represents a unique multidisciplinary translational forum where the principles of biomaterial engineering, the molecular biology of cells and genes, and the clinical sciences of reconstruction would interact intensively through the combined efforts of scientists, engineers, and clinicians. The anticipated possibilities of cell engineering, matrix development, and growth factor therapies are extensive and would largely expand our clinical reconstructive armamentarium. Application of proangiogenic proteins may stimulate wound repair, restore avascular wound beds, or reverse hypoxia in flaps. Autologous cells procured from biopsies may generate an ‘autologous’ dermal and epidermal laminated cover on extensive burn wounds. Three-dimensional printing may generate ‘custom-made’ preshaped scaffolds – shaped as a nose, an ear, or a mandible – in which these cells can be seeded. The paucity of optimal donor tissues may be solved with off-the-shelf tissues using tissue engineering strategies. However, despite the expectations, the speed of translation of in vitro tissue engineering sciences into clinical reality is very slow due to the intrinsic complexity of human tissues. This review focuses on the transition from translational protocols towards current clinical applications of tissue engineering strategies in surgery.

  12. STEM CELL ORIGIN DIFFERENTLY AFFECTS BONE TISSUE ENGINEERING STRATEGIES.

    Directory of Open Access Journals (Sweden)

    Monica eMattioli-Belmonte

    2015-09-01

    Full Text Available Bone tissue engineering is a promising research area for the improvement of traditional bone grafting procedure drawbacks. Thanks to the capability of self-renewal and multi-lineage differentiation, stem cells are one of the major actors in tissue engineering approaches, and adult mesenchymal stem cells (MSCs are considered to be appropriate for regenerative medicine strategies. Bone marrow MSCs (BM-MSCs are the earliest- discovered and well-known stem cell population used in bone tissue engineering. However, several factors hamper BM-MSC clinical application and subsequently, new stem cell sources have been investigated for these purposes. The successful identification and combination of tissue engineering, scaffold, progenitor cells, and physiologic signalling molecules enabled the surgeon to design, recreate the missing tissue in its near natural form. On the basis of these considerations, we analysed the capability of two different scaffolds, planned for osteochondral tissue regeneration, to modulate differentiation of adult stem cells of dissimilar local sources (i.e. periodontal ligament, maxillary periosteum as well as adipose-derived stem cells, in view of possible craniofacial tissue engineering strategies. We demonstrated that cells are differently committed toward the osteoblastic phenotype and therefore, considering their peculiar features, they may alternatively represent interesting cell sources in different stem cell-based bone/periodontal tissue regeneration approaches.

  13. A Review of Three-Dimensional Printing in Tissue Engineering.

    Science.gov (United States)

    Sears, Nick A; Seshadri, Dhruv R; Dhavalikar, Prachi S; Cosgriff-Hernandez, Elizabeth

    2016-08-01

    Recent advances in three-dimensional (3D) printing technologies have led to a rapid expansion of applications from the creation of anatomical training models for complex surgical procedures to the printing of tissue engineering constructs. In addition to achieving the macroscale geometry of organs and tissues, a print layer thickness as small as 20 μm allows for reproduction of the microarchitectures of bone and other tissues. Techniques with even higher precision are currently being investigated to enable reproduction of smaller tissue features such as hepatic lobules. Current research in tissue engineering focuses on the development of compatible methods (printers) and materials (bioinks) that are capable of producing biomimetic scaffolds. In this review, an overview of current 3D printing techniques used in tissue engineering is provided with an emphasis on the printing mechanism and the resultant scaffold characteristics. Current practical challenges and technical limitations are emphasized and future trends of bioprinting are discussed.

  14. Natural Polymer-Cell Bioconstructs for Bone Tissue Engineering.

    Science.gov (United States)

    Titorencu, Irina; Albu, Madalina Georgiana; Nemecz, Miruna; Jinga, Victor V

    2017-01-01

    The major goal of bone tissue engineering is to develop bioconstructs which substitute the functionality of damaged natural bone structures as much as possible if critical-sized defects occur. Scaffolds that mimic the structure and composition of bone tissue and cells play a pivotal role in bone tissue engineering applications. First, composition, properties and in vivo synthesis of bone tissue are presented for the understanding of bone formation. Second, potential sources of osteoprogenitor cells have been investigated for their capacity to induce bone repair and regeneration. Third, taking into account that the main property to qualify one scaffold as a future bioconstruct for bone tissue engineering is the biocompatibility, the assessments which prove it are reviewed in this paper. Forth, various types of natural polymer- based scaffolds consisting in proteins, polysaccharides, minerals, growth factors etc, are discussed, and interaction between scaffolds and cells which proved bone tissue engineering concept are highlighted. Finally, the future perspectives of natural polymer-based scaffolds for bone tissue engineering are considered. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Oligoaniline-based conductive biomaterials for tissue engineering.

    Science.gov (United States)

    Zarrintaj, Payam; Bakhshandeh, Behnaz; Saeb, Mohammad Reza; Sefat, Farshid; Rezaeian, Iraj; Ganjali, Mohammad Reza; Ramakrishna, Seeram; Mozafari, Masoud

    2018-05-01

    The science and engineering of biomaterials have improved the human life expectancy. Tissue engineering is one of the nascent strategies with an aim to fulfill this target. Tissue engineering scaffolds are one of the most significant aspects of the recent tissue repair strategies; hence, it is imperative to design biomimetic substrates with suitable features. Conductive substrates can ameliorate the cellular activity through enhancement of cellular signaling. Biocompatible polymers with conductivity can mimic the cells' niche in an appropriate manner. Bioconductive polymers based on aniline oligomers can potentially actualize this purpose because of their unique and tailoring properties. The aniline oligomers can be positioned within the molecular structure of other polymers, thus painter acting with the side groups of the main polymer or acting as a comonomer in their backbone. The conductivity of oligoaniline-based conductive biomaterials can be tailored to mimic the electrical and mechanical properties of targeted tissues/organs. These bioconductive substrates can be designed with high mechanical strength for hard tissues such as the bone and with high elasticity to be used for the cardiac tissue or can be synthesized in the form of injectable hydrogels, particles, and nanofibers for noninvasive implantation; these structures can be used for applications such as drug/gene delivery and extracellular biomimetic structures. It is expected that with progress in the fields of biomaterials and tissue engineering, more innovative constructs will be proposed in the near future. This review discusses the recent advancements in the use of oligoaniline-based conductive biomaterials for tissue engineering and regenerative medicine applications. The tissue engineering applications of aniline oligomers and their derivatives have recently attracted an increasing interest due to their electroactive and biodegradable properties. However, no reports have systematically reviewed

  16. Textile Technologies and Tissue Engineering: A Path Toward Organ Weaving.

    Science.gov (United States)

    Akbari, Mohsen; Tamayol, Ali; Bagherifard, Sara; Serex, Ludovic; Mostafalu, Pooria; Faramarzi, Negar; Mohammadi, Mohammad Hossein; Khademhosseini, Ali

    2016-04-06

    Textile technologies have recently attracted great attention as potential biofabrication tools for engineering tissue constructs. Using current textile technologies, fibrous structures can be designed and engineered to attain the required properties that are demanded by different tissue engineering applications. Several key parameters such as physiochemical characteristics of fibers, microarchitecture, and mechanical properties of the fabrics play important roles in the effective use of textile technologies in tissue engineering. This review summarizes the current advances in the manufacturing of biofunctional fibers. Different textile methods such as knitting, weaving, and braiding are discussed and their current applications in tissue engineering are highlighted. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A new approach to heart valve tissue engineering

    DEFF Research Database (Denmark)

    Kaasi, Andreas; Cestari, Idágene A.; Stolf, Noedir A G.

    2011-01-01

    The 'biomimetic' approach to tissue engineering usually involves the use of a bioreactor mimicking physiological parameters whilst supplying nutrients to the developing tissue. Here we present a new heart valve bioreactor, having as its centrepiece a ventricular assist device (VAD), which exposes...... chamber. Subsequently, applied vacuum to the pneumatic chamber causes the blood chamber to fill. A mechanical heart valve was placed in the VAD's inflow position. The tissue engineered (TE) valve was placed in the outflow position. The VAD was coupled in series with a Windkessel compliance chamber...

  18. Mechanical design criteria for intervertebral disc tissue engineering.

    Science.gov (United States)

    Nerurkar, Nandan L; Elliott, Dawn M; Mauck, Robert L

    2010-04-19

    Due to the inability of current clinical practices to restore function to degenerated intervertebral discs, the arena of disc tissue engineering has received substantial attention in recent years. Despite tremendous growth and progress in this field, translation to clinical implementation has been hindered by a lack of well-defined functional benchmarks. Because successful replacement of the disc is contingent upon replication of some or all of its complex mechanical behaviors, it is critically important that disc mechanics be well characterized in order to establish discrete functional goals for tissue engineering. In this review, the key functional signatures of the intervertebral disc are discussed and used to propose a series of native tissue benchmarks to guide the development of engineered replacement tissues. These benchmarks include measures of mechanical function under tensile, compressive, and shear deformations for the disc and its substructures. In some cases, important functional measures are identified that have yet to be measured in the native tissue. Ultimately, native tissue benchmark values are compared to measurements that have been made on engineered disc tissues, identifying where functional equivalence was achieved, and where there remain opportunities for advancement. Several excellent reviews exist regarding disc composition and structure, as well as recent tissue engineering strategies; therefore this review will remain focused on the functional aspects of disc tissue engineering. Copyright 2009 Elsevier Ltd. All rights reserved.

  19. Scientific and industrial status of tissue engineering

    African Journals Online (AJOL)

    SERVER

    2007-12-28

    Dec 28, 2007 ... with artificial materials e.g. replacement of aortic artery with Dacron. ... Employment of living cells to replace the lost tissue, which is the basis of tissue ...... by the US National Intelligence Council, the Intelligence. Technology ...

  20. Skin Diseases Modeling using Combined Tissue Engineering and Microfluidic Technologies.

    Science.gov (United States)

    Mohammadi, Mohammad Hossein; Heidary Araghi, Behnaz; Beydaghi, Vahid; Geraili, Armin; Moradi, Farshid; Jafari, Parya; Janmaleki, Mohsen; Valente, Karolina Papera; Akbari, Mohsen; Sanati-Nezhad, Amir

    2016-10-01

    In recent years, both tissue engineering and microfluidics have significantly contributed in engineering of in vitro skin substitutes to test the penetration of chemicals or to replace damaged skins. Organ-on-chip platforms have been recently inspired by the integration of microfluidics and biomaterials in order to develop physiologically relevant disease models. However, the application of organ-on-chip on the development of skin disease models is still limited and needs to be further developed. The impact of tissue engineering, biomaterials and microfluidic platforms on the development of skin grafts and biomimetic in vitro skin models is reviewed. The integration of tissue engineering and microfluidics for the development of biomimetic skin-on-chip platforms is further discussed, not only to improve the performance of present skin models, but also for the development of novel skin disease platforms for drug screening processes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Current Concepts in Scaffolding for Bone Tissue Engineering.

    Science.gov (United States)

    Ghassemi, Toktam; Shahroodi, Azadeh; Ebrahimzadeh, Mohammad H; Mousavian, Alireza; Movaffagh, Jebraeel; Moradi, Ali

    2018-03-01

    Bone disorders are of significant worry due to their increased prevalence in the median age. Scaffold-based bone tissue engineering holds great promise for the future of osseous defects therapies. Porous composite materials and functional coatings for metallic implants have been introduced in next generation of orthopedic medicine for tissue engineering. While osteoconductive materials such as hydroxyapatite and tricalcium phosphate ceramics as well as some biodegradable polymers are suggested, much interest has recently focused on the use of osteoinductive materials like demineralized bone matrix or bone derivatives. However, physiochemical modifications in terms of porosity, mechanical strength, cell adhesion, biocompatibility, cell proliferation, mineralization and osteogenic differentiation are required. This paper reviews studies on bone tissue engineering from the biomaterial point of view in scaffolding. Level of evidence: I.

  2. Tissue engineered devices for ligament repair, replacement and ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-29

    Dec 29, 2009 ... These devices use a wide variety of materials and designs to replicate ligament mechanics and allow for new tissue regeneration. Key words: Anterior cruciate ligament (ACL), tissue engineering, cells, tensile, stress relaxation, polymer, allograft, xenograft. INTRODUCTION. The anterior cruciate ligament ...

  3. Environmental regulation of valvulogenesis:implications for tissue engineering

    NARCIS (Netherlands)

    Riem Vis, P.W.; Kluin, J.; Sluijter, J.P.G.; Herwerden, van L.A.; Bouten, C.V.C.

    2011-01-01

    Ongoing research efforts aim at improving the creation of tissue-engineered heart valves for in vivo systemic application. Hence, in vitro studies concentrate on optimising culture protocols incorporating biological as well as biophysical stimuli for tissue development. Important lessons can be

  4. Stem cell homing-based tissue engineering using bioactive materials

    Science.gov (United States)

    Yu, Yinxian; Sun, Binbin; Yi, Chengqing; Mo, Xiumei

    2017-06-01

    Tissue engineering focuses on repairing tissue and restoring tissue functions by employing three elements: scaffolds, cells and biochemical signals. In tissue engineering, bioactive material scaffolds have been used to cure tissue and organ defects with stem cell-based therapies being one of the best documented approaches. In the review, different biomaterials which are used in several methods to fabricate tissue engineering scaffolds were explained and show good properties (biocompatibility, biodegradability, and mechanical properties etc.) for cell migration and infiltration. Stem cell homing is a recruitment process for inducing the migration of the systemically transplanted cells, or host cells, to defect sites. The mechanisms and modes of stem cell homing-based tissue engineering can be divided into two types depending on the source of the stem cells: endogenous and exogenous. Exogenous stem cell-based bioactive scaffolds have the challenge of long-term culturing in vitro and for endogenous stem cells the biochemical signal homing recruitment mechanism is not clear yet. Although the stem cell homing-based bioactive scaffolds are attractive candidates for tissue defect therapies, based on in vitro studies and animal tests, there is still a long way before clinical application.

  5. Vascularization of soft tissue engineering constructs

    DEFF Research Database (Denmark)

    Pimentel Carletto, Rodrigo

    with mechanical properties in the range of soft tissues has not been fully achieved. My project focused on the fabrication and the active perfusion of hydrogel constructs with multi-dimensional vasculature and controlled mechanical properties targeting soft tissues. Specifically, the initial part of the research...... nanotechnology-based paradigm for engineering vascularised liver tissue for transplantation”) and the Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug delivery and sensing Using microcontainers and Nanomechanics (Danish National Research Foundation (DNRF122)....

  6. An Overview of Recent Patents on Musculoskeletal Interface Tissue Engineering

    Science.gov (United States)

    Rao, Rohit T.; Browe, Daniel P.; Lowe, Christopher J.; Freeman, Joseph W.

    2018-01-01

    Interface tissue engineering involves the development of engineered grafts that promote integration between multiple tissue types. Musculoskeletal tissue interfaces are critical to the safe and efficient transmission of mechanical forces between multiple musculoskeletal tissues e.g. between ligament and bone tissue. However, these interfaces often do not physiologically regenerate upon injury, resulting in impaired tissue function. Therefore, interface tissue engineering approaches are considered to be particularly relevant for the structural restoration of musculoskeletal tissues interfaces. In this article we provide an overview of the various strategies used for engineering musculoskeletal tissue interfaces with a specific focus on the recent important patents that have been issued for inventions that were specifically designed for engineering musculoskeletal interfaces as well as those that show promise to be adapted for this purpose. PMID:26577344

  7. Vascularization of soft tissue engineering constructs

    DEFF Research Database (Denmark)

    Pimentel Carletto, Rodrigo

    nanotechnology-based paradigm for engineering vascularised liver tissue for transplantation”) and the Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug delivery and sensing Using microcontainers and Nanomechanics (Danish National Research Foundation (DNRF122).......Vascularization is recognized to be the biggest challenge for the fabrication of tissues and finally, organs in vitro. So far, several fabrication techniques have been proposed to create a perfusable vasculature within hydrogels, however, the vascularization and perfusion of hydrogels...... with mechanical properties in the range of soft tissues has not been fully achieved. My project focused on the fabrication and the active perfusion of hydrogel constructs with multi-dimensional vasculature and controlled mechanical properties targeting soft tissues. Specifically, the initial part of the research...

  8. Introduction to regenerative medicine and tissue engineering.

    Science.gov (United States)

    Stoltz, J-F; Decot, V; Huseltein, C; He, X; Zhang, L; Magdalou, J; Li, Y P; Menu, P; Li, N; Wang, Y Y; de Isla, N; Bensoussan, D

    2012-01-01

    Human tissues don't regenerate spontaneously, explaining why regenerative medicine and cell therapy represent a promising alternative treatment (autologous cells or stem cells of different origins). The principle is simple: cells are collected, expanded and introduced with or without modification into injured tissues or organs. Among middle-term therapeutic applications, cartilage defects, bone repair, cardiac insufficiency, burns, liver or bladder, neurodegenerative disorders could be considered.

  9. Tissue Engineering Strategies in Ligament Regeneration

    OpenAIRE

    Yilgor, Caglar; Yilgor Huri, Pinar; Huri, Gazi

    2011-01-01

    Ligaments are dense fibrous connective tissues that connect bones to other bones and their injuries are frequently encountered in the clinic. The current clinical approaches in ligament repair and regeneration are limited to autografts, as the gold standard, and allografts. Both of these techniques have their own drawbacks that limit the success in clinical setting; therefore, new strategies are being developed in order to be able to solve the current problems of ligament grafting. Tissue eng...

  10. Surface modification of polyester biomaterials for tissue engineering

    International Nuclear Information System (INIS)

    Jiao Yanpeng; Cui Fuzhai

    2007-01-01

    Surfaces play an important role in a biological system for most biological reactions occurring at surfaces and interfaces. The development of biomaterials for tissue engineering is to create perfect surfaces which can provoke specific cellular responses and direct new tissue regeneration. The improvement in biocompatibility of biomaterials for tissue engineering by directed surface modification is an important contribution to biomaterials development. Among many biomaterials used for tissue engineering, polyesters have been well documented for their excellent biodegradability, biocompatibility and nontoxicity. However, poor hydrophilicity and the lack of natural recognition sites on the surface of polyesters have greatly limited their further application in the tissue engineering field. Therefore, how to introduce functional groups or molecules to polyester surfaces, which ideally adjust cell/tissue biological functions, becomes more and more important. In this review, recent advances in polyester surface modification and their applications are reviewed. The development of new technologies or methods used to modify polyester surfaces for developing their biocompatibility is introduced. The results of polyester surface modifications by surface morphological modification, surface chemical group/charge modification, surface biomacromolecule modification and so on are reported in detail. Modified surface properties of polyesters directly related to in vitro/vivo biological performances are presented as well, such as protein adsorption, cell attachment and growth and tissue response. Lastly, the prospect of polyester surface modification is discussed, especially the current conception of biomimetic and molecular recognition. (topical review)

  11. Nano scaffolds and stem cell therapy in liver tissue engineering

    Science.gov (United States)

    Montaser, Laila M.; Fawzy, Sherin M.

    2015-08-01

    Tissue engineering and regenerative medicine have been constantly developing of late due to the major progress in cell and organ transplantation, as well as advances in materials science and engineering. Although stem cells hold great potential for the treatment of many injuries and degenerative diseases, several obstacles must be overcome before their therapeutic application can be realized. These include the development of advanced techniques to understand and control functions of micro environmental signals and novel methods to track and guide transplanted stem cells. A major complication encountered with stem cell therapies has been the failure of injected cells to engraft to target tissues. The application of nanotechnology to stem cell biology would be able to address those challenges. Combinations of stem cell therapy and nanotechnology in tissue engineering and regenerative medicine have achieved significant advances. These combinations allow nanotechnology to engineer scaffolds with various features to control stem cell fate decisions. Fabrication of Nano fiber cell scaffolds onto which stem cells can adhere and spread, forming a niche-like microenvironment which can guide stem cells to proceed to heal damaged tissues. In this paper, current and emergent approach based on stem cells in the field of liver tissue engineering is presented for specific application. The combination of stem cells and tissue engineering opens new perspectives in tissue regeneration for stem cell therapy because of the potential to control stem cell behavior with the physical and chemical characteristics of the engineered scaffold environment.

  12. An economic survey of the emerging tissue engineering industry.

    Science.gov (United States)

    Lysaght, M J; Nguy, N A; Sullivan, K

    1998-01-01

    The contemporary scope of worldwide tissue engineering research and development was estimated by totaling the relevant annual spending and other economic parameters of firms involved the field. Operating expenses allocated to tissue engineering in 1997 exceed $450 million and fund the activities of nearly 2,500 scientists and support personnel. Growth rate is 22.5% per annum. Most activity is centered in the United States. Government spending in this field represents investment and valuation represents a remarkable act of faith in the future of a technology yet to produce its first significant revenue-generating product.

  13. The Application of Corals in Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Iraj Nabipour

    2017-05-01

    Full Text Available Natural coral exoskeleton and coralline hydroxyapatite have been used as bone replacement graft for repairing of bone defects in animal models and humans since two decades ago. These bone replacement grafts have an osteoconductive, biodegradable and biocompatible features. Currently, three lines of researches in bone tissue engineering are conducting on corals. Corals have been used for construction of bony composites, stem cells attachments, and the growth factors-scaffold-based approaches. This review have paid to the wide range of coral use in clinical experiments as a bone graft substitute and cell-scaffold-based approaches in bone tissue engineering.

  14. HEPATIC TISSUE ENGINEERING (MODERN STATE OF THIS PROBLEM

    Directory of Open Access Journals (Sweden)

    Y.S. Gulay

    2014-01-01

    Full Text Available In this article it was discussed the problem of creation implanted hepatic tissue engineering designs as a modern stage of complex investigation for working out bioartifi cial liver support systems. It was determined that for the positive decision of numerous biological and technological problems it is necessary: to use matrices with determined properties, which mimic properties of hepatic extracellular matrix; to use technology for stereotype sowing of these matrices by both parenchymal and non-parenchymal hepatic cells and to improve the technologies for making and assembling of hepatic tissue-engineering designs.

  15. Tissue-Engineered Skeletal Muscle Organoids for Reversible Gene Therapy

    Science.gov (United States)

    Vandenburgh, Herman; DelTatto, Michael; Shansky, Janet; Lemaire, Julie; Chang, Albert; Payumo, Francis; Lee, Peter; Goodyear, Amy; Raven, Latasha

    1996-01-01

    Genetically modified murine skeletal myoblasts were tissue engineered in vitro into organ-like structures (organoids) containing only postmitotic myofibers secreting pharmacological levels of recombinant human growth hormone (rhGH). Subcutaneous organoid Implantation under tension led to the rapid and stable appearance of physiological sera levels of rhGH for up to 12 weeks, whereas surgical removal led to its rapid disappearance. Reversible delivery of bioactive compounds from postimtotic cells in tissue engineered organs has several advantages over other forms of muscle gene therapy.

  16. Biocompatibility of biodegradable semiconducting melanin films for nerve tissue engineering.

    Science.gov (United States)

    Bettinger, Christopher J; Bruggeman, Joost P; Misra, Asish; Borenstein, Jeffrey T; Langer, Robert

    2009-06-01

    The advancement of tissue engineering is contingent upon the development and implementation of advanced biomaterials. Conductive polymers have demonstrated potential for use as a medium for electrical stimulation, which has shown to be beneficial in many regenerative medicine strategies including neural and cardiac tissue engineering. Melanins are naturally occurring pigments that have previously been shown to exhibit unique electrical properties. This study evaluates the potential use of melanin films as a semiconducting material for tissue engineering applications. Melanin thin films were produced by solution processing and the physical properties were characterized. Films were molecularly smooth with a roughness (R(ms)) of 0.341 nm and a conductivity of 7.00+/-1.10 x 10(-5)S cm(-1) in the hydrated state. In vitro biocompatibility was evaluated by Schwann cell attachment and growth as well as neurite extension in PC12 cells. In vivo histology was evaluated by examining the biomaterial-tissue response of melanin implants placed in close proximity to peripheral nerve tissue. Melanin thin films enhanced Schwann cell growth and neurite extension compared to collagen films in vitro. Melanin films induced an inflammation response that was comparable to silicone implants in vivo. Furthermore, melanin implants were significantly resorbed after 8 weeks. These results suggest that solution-processed melanin thin films have the potential for use as a biodegradable semiconducting biomaterial for use in tissue engineering applications.

  17. Rapid prototyping technology and its application in bone tissue engineering.

    Science.gov (United States)

    Yuan, Bo; Zhou, Sheng-Yuan; Chen, Xiong-Sheng

    Bone defects arising from a variety of reasons cannot be treated effectively without bone tissue reconstruction. Autografts and allografts have been used in clinical application for some time, but they have disadvantages. With the inherent drawback in the precision and reproducibility of conventional scaffold fabrication techniques, the results of bone surgery may not be ideal. This is despite the introduction of bone tissue engineering which provides a powerful approach for bone repair. Rapid prototyping technologies have emerged as an alternative and have been widely used in bone tissue engineering, enhancing bone tissue regeneration in terms of mechanical strength, pore geometry, and bioactive factors, and overcoming some of the disadvantages of conventional technologies. This review focuses on the basic principles and characteristics of various fabrication technologies, such as stereolithography, selective laser sintering, and fused deposition modeling, and reviews the application of rapid prototyping techniques to scaffolds for bone tissue engineering. In the near future, the use of scaffolds for bone tissue engineering prepared by rapid prototyping technology might be an effective therapeutic strategy for bone defects.

  18. Rapid prototyping technology and its application in bone tissue engineering*

    Science.gov (United States)

    YUAN, Bo; ZHOU, Sheng-yuan; CHEN, Xiong-sheng

    2017-01-01

    Bone defects arising from a variety of reasons cannot be treated effectively without bone tissue reconstruction. Autografts and allografts have been used in clinical application for some time, but they have disadvantages. With the inherent drawback in the precision and reproducibility of conventional scaffold fabrication techniques, the results of bone surgery may not be ideal. This is despite the introduction of bone tissue engineering which provides a powerful approach for bone repair. Rapid prototyping technologies have emerged as an alternative and have been widely used in bone tissue engineering, enhancing bone tissue regeneration in terms of mechanical strength, pore geometry, and bioactive factors, and overcoming some of the disadvantages of conventional technologies. This review focuses on the basic principles and characteristics of various fabrication technologies, such as stereolithography, selective laser sintering, and fused deposition modeling, and reviews the application of rapid prototyping techniques to scaffolds for bone tissue engineering. In the near future, the use of scaffolds for bone tissue engineering prepared by rapid prototyping technology might be an effective therapeutic strategy for bone defects. PMID:28378568

  19. Tissue Engineering: Toward a New Era of Medicine.

    Science.gov (United States)

    Shafiee, Ashkan; Atala, Anthony

    2017-01-14

    The goal of tissue engineering is to mitigate the critical shortage of donor organs via in vitro fabrication of functional biological structures. Tissue engineering is one of the most prominent examples of interdisciplinary fields, where scientists with different backgrounds work together to boost the quality of life by addressing critical health issues. Many different fields, such as developmental and molecular biology, as well as technologies, such as micro- and nanotechnologies and additive manufacturing, have been integral for advancing the field of tissue engineering. Over the past 20 years, spectacular advancements have been achieved to harness nature's ability to cure diseased tissues and organs. Patients have received laboratory-grown tissues and organs made out of their own cells, thus eliminating the risk of rejection. However, challenges remain when addressing more complex solid organs such as the heart, liver, and kidney. Herein, we review recent accomplishments as well as challenges that must be addressed in the field of tissue engineering and provide a perspective regarding strategies in further development.

  20. From stem to roots: Tissue engineering in endodontics

    Science.gov (United States)

    Kala, M.; Banthia, Priyank; Banthia, Ruchi

    2012-01-01

    The vitality of dentin-pulp complex is fundamental to the life of tooth and is a priority for targeting clinical management strategies. Loss of the tooth, jawbone or both, due to periodontal disease, dental caries, trauma or some genetic disorders, affects not only basic mouth functions but aesthetic appearance and quality of life. One novel approach to restore tooth structure is based on biology: regenerative endodontic procedure by application of tissue engineering. Regenerative endodontics is an exciting new concept that seeks to apply the advances in tissue engineering to the regeneration of the pulp-dentin complex. The basic logic behind this approach is that patient-specific tissue-derived cell populations can be used to functionally replace integral tooth tissues. The development of such ‘test tube teeth’ requires precise regulation of the regenerative events in order to achieve proper tooth size and shape, as well as the development of new technologies to facilitate these processes. This article provides an extensive review of literature on the concept of tissue engineering and its application in endodontics, providing an insight into the new developmental approaches on the horizon. Key words:Regenerative, tissue engineering, stem cells, scaffold. PMID:24558528

  1. Tissue engineering of cartilages using biomatrices

    DEFF Research Database (Denmark)

    Melrose, J.; Chuang, C.; Whitelock, J.

    2008-01-01

    and age-related degenerative diseases can all lead to cartilage loss; however, the low cell density and very limited self-renewal capacity of cartilage necessitate the development of effective therapeutic repair strategies for this tissue. The ontogeny of the chondrocyte, which is the cell that provides...... the biosynthetic machinery for all the component parts of cartilage, is discussed, since an understanding of cartilage development is central to the maintenance of a chondrocytic phenotype in any strategy aiming to produce a replacement cartilage. A plethora of matrices have been developed for cartilage...

  2. Biocompatibility of hydrogel-based scaffolds for tissue engineering applications.

    Science.gov (United States)

    Naahidi, Sheva; Jafari, Mousa; Logan, Megan; Wang, Yujie; Yuan, Yongfang; Bae, Hojae; Dixon, Brian; Chen, P

    2017-09-01

    Recently, understanding of the extracellular matrix (ECM) has expanded rapidly due to the accessibility of cellular and molecular techniques and the growing potential and value for hydrogels in tissue engineering. The fabrication of hydrogel-based cellular scaffolds for the generation of bioengineered tissues has been based on knowledge of the composition and structure of ECM. Attempts at recreating ECM have used either naturally-derived ECM components or synthetic polymers with structural integrity derived from hydrogels. Due to their increasing use, their biocompatibility has been questioned since the use of these biomaterials needs to be effective and safe. It is not surprising then that the evaluation of biocompatibility of these types of biomaterials for regenerative and tissue engineering applications has been expanded from being primarily investigated in a laboratory setting to being applied in the multi-billion dollar medicinal industry. This review will aid in the improvement of design of non-invasive, smart hydrogels that can be utilized for tissue engineering and other biomedical applications. In this review, the biocompatibility of hydrogels and design criteria for fabricating effective scaffolds are examined. Examples of natural and synthetic hydrogels, their biocompatibility and use in tissue engineering are discussed. The merits and clinical complications of hydrogel scaffold use are also reviewed. The article concludes with a future outlook of the field of biocompatibility within the context of hydrogel-based scaffolds. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Nanoscale hydroxyapatite particles for bone tissue engineering.

    Science.gov (United States)

    Zhou, Hongjian; Lee, Jaebeom

    2011-07-01

    Hydroxyapatite (HAp) exhibits excellent biocompatibility with soft tissues such as skin, muscle and gums, making it an ideal candidate for orthopedic and dental implants or components of implants. Synthetic HAp has been widely used in repair of hard tissues, and common uses include bone repair, bone augmentation, as well as coating of implants or acting as fillers in bone or teeth. However, the low mechanical strength of normal HAp ceramics generally restricts its use to low load-bearing applications. Recent advancements in nanoscience and nanotechnology have reignited investigation of nanoscale HAp formation in order to clearly define the small-scale properties of HAp. It has been suggested that nano-HAp may be an ideal biomaterial due to its good biocompatibility and bone integration ability. HAp biomedical material development has benefited significantly from advancements in nanotechnology. This feature article looks afresh at nano-HAp particles, highlighting the importance of size, crystal morphology control, and composites with other inorganic particles for biomedical material development. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Alginate based scaffolds for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Valente, J.F.A.; Valente, T.A.M. [CICS-UBI - Centro de Investigacao em Ciencias da Saude, Faculdade de Ciencias da Saude, Universidade da Beira Interior, Covilha (Portugal); Alves, P.; Ferreira, P. [CIEPQPF, Departamento de Engenharia Quimica, Universidade de Coimbra, Polo II, Pinhal de Marrocos, 3030-290 Coimbra (Portugal); Silva, A. [Centro de Ciencia e Tecnologia Aeroespaciais, Universidade da Beira Interior, Covilha (Portugal); Correia, I.J., E-mail: icorreia@ubi.pt [CICS-UBI - Centro de Investigacao em Ciencias da Saude, Faculdade de Ciencias da Saude, Universidade da Beira Interior, Covilha (Portugal)

    2012-12-01

    The design and production of scaffolds for bone tissue regeneration is yet unable to completely reproduce the native bone properties. In the present study new alginate microparticle and microfiber aggregated scaffolds were produced to be applied in this area of regenerative medicine. The scaffolds' mechanical properties were characterized by thermo mechanical assays. Their morphological characteristics were evaluated by isothermal nitrogen adsorption and scanning electron microscopy. The density of both types of scaffolds was determined by helium pycnometry and mercury intrusion porosimetry. Furthermore, scaffolds' cytotoxic profiles were evaluated in vitro by seeding human osteoblast cells in their presence. The results obtained showed that scaffolds have good mechanical and morphological properties compatible with their application as bone substitutes. Moreover, scaffold's biocompatibility was confirmed by the observation of cell adhesion and proliferation after 5 days of being seeded in their presence and by non-radioactive assays. - Highlights: Black-Right-Pointing-Pointer Design and production of scaffolds for bone tissue regeneration. Black-Right-Pointing-Pointer Microparticle and microfiber alginate scaffolds were produced through a particle aggregation technique; Black-Right-Pointing-Pointer Scaffolds' mechanically and biologically properties were characterized through in vitro studies;.

  5. Physical non-viral gene delivery methods for tissue engineering

    Science.gov (United States)

    Mellott, Adam J.; Forrest, M. Laird; Detamore, Michael S.

    2016-01-01

    The integration of gene therapy into tissue engineering to control differentiation and direct tissue formation is not a new concept; however, successful delivery of nucleic acids into primary cells, progenitor cells, and stem cells has proven exceptionally challenging. Viral vectors are generally highly effective at delivering nucleic acids to a variety of cell populations, both dividing and non-dividing, yet these viral vectors are marred by significant safety concerns. Non-viral vectors are preferred for gene therapy, despite lower transfection efficiencies, and possess many customizable attributes that are desirable for tissue engineering applications. However, there is no single non-viral gene delivery strategy that “fits-all” cell types and tissues. Thus, there is a compelling opportunity to examine different non-viral vectors, especially physical vectors, and compare their relative degrees of success. This review examines the advantages and disadvantages of physical non-viral methods (i.e., microinjection, ballistic gene delivery, electroporation, sonoporation, laser irradiation, magnetofection, and electric field-induced molecular vibration), with particular attention given to electroporation because of its versatility, with further special emphasis on Nucleofection™. In addition, attributes of cellular character that can be used to improve differentiation strategies are examined for tissue engineering applications. Ultimately, electroporation exhibits a high transfection efficiency in many cell types, which is highly desirable for tissue engineering applications, but electroporation and other physical non-viral gene delivery methods are still limited by poor cell viability. Overcoming the challenge of poor cell viability in highly efficient physical non-viral techniques is the key to using gene delivery to enhance tissue engineering applications. PMID:23099792

  6. Physical non-viral gene delivery methods for tissue engineering.

    Science.gov (United States)

    Mellott, Adam J; Forrest, M Laird; Detamore, Michael S

    2013-03-01

    The integration of gene therapy into tissue engineering to control differentiation and direct tissue formation is not a new concept; however, successful delivery of nucleic acids into primary cells, progenitor cells, and stem cells has proven exceptionally challenging. Viral vectors are generally highly effective at delivering nucleic acids to a variety of cell populations, both dividing and non-dividing, yet these viral vectors are marred by significant safety concerns. Non-viral vectors are preferred for gene therapy, despite lower transfection efficiencies, and possess many customizable attributes that are desirable for tissue engineering applications. However, there is no single non-viral gene delivery strategy that "fits-all" cell types and tissues. Thus, there is a compelling opportunity to examine different non-viral vectors, especially physical vectors, and compare their relative degrees of success. This review examines the advantages and disadvantages of physical non-viral methods (i.e., microinjection, ballistic gene delivery, electroporation, sonoporation, laser irradiation, magnetofection, and electric field-induced molecular vibration), with particular attention given to electroporation because of its versatility, with further special emphasis on Nucleofection™. In addition, attributes of cellular character that can be used to improve differentiation strategies are examined for tissue engineering applications. Ultimately, electroporation exhibits a high transfection efficiency in many cell types, which is highly desirable for tissue engineering applications, but electroporation and other physical non-viral gene delivery methods are still limited by poor cell viability. Overcoming the challenge of poor cell viability in highly efficient physical non-viral techniques is the key to using gene delivery to enhance tissue engineering applications.

  7. Peptide based hydrogels for bone tissue engineering

    International Nuclear Information System (INIS)

    Ranny, H.R.; Schneider, J.P.

    2007-01-01

    Peptide hydrogels are potentially ideal scaffolds for tissue repair and regeneration due to their ability to mimic natural extra cellular matrix. The 20 amino acid peptide HPL8 (H2N- VKVKVKVKVDPP TKVKVKVKV-CONH2), has been shown to fold and self-assemble into a rigid hydrogel based on Environmental cues such as pH, salt, and temperature. Due to its environmental responsiveness, hydrogel assembly can be induced by cell culture media, allowing for 3D encapsulation of osteogenic cells. Initially, 20 cultures of MC3T3 cells proved that the hydrogel is nontoxic and sustains cellular attachment in the absence of serum proteins without altering the physical properties of the hydrogel. The cell-material structure relationship in normal and pathological conditions was further investigated by 3D encapsulation. Cell were viable for 3 weeks and grew in clonogenic spheroids. Characterization of the proliferation, differentiation and constitutive expression of various osteoblastic markers was performed using spectrophotometric methods. The well-defined, fibrillar nanostructure of the hydrogel directs the attachment and attachment and growth of osteoblast cells and dictates the mineralization of hydroxyapatite in a manner similar to bone. This study will enable control over the interaction of cellular systems with the peptide hydrogel with designs for biomedical applications of bone repair. (author)

  8. Decellularized matrices for cardiovascular tissue engineering.

    Science.gov (United States)

    Moroni, Francesco; Mirabella, Teodelinda

    2014-01-01

    Cardiovascular disease (CVD) is one of the leading causes of death in the Western world. The replacement of damaged vessels and valves has been practiced since the 1950's. Synthetic grafts, usually made of bio-inert materials, are long-lasting and mechanically relevant, but fail when it comes to "biointegration". Decellularized matrices, instead, can be considered biological grafts capable of stimulating in vivo migration and proliferation of endothelial cells (ECs), recruitment and differentiation of mural cells, finally, culminating in the formation of a biointegrated tissue. Decellularization protocols employ osmotic shock, ionic and non-ionic detergents, proteolitic digestions and DNase/RNase treatments; most of them effectively eliminate the cellular component, but show limitations in preserving the native structure of the extracellular matrix (ECM). In this review, we examine the current state of the art relative to decellularization techniques and biological performance of decellularized heart, valves and big vessels. Furthermore, we focus on the relevance of ECM components, native and resulting from decellularization, in mediating in vivo host response and determining repair and regeneration, as opposed to graft corruption.

  9. Advancing biomaterials of human origin for tissue engineering

    OpenAIRE

    Chen, Fa-Ming; Liu, Xiaohua

    2015-01-01

    Biomaterials have played an increasingly prominent role in the success of biomedical devices and in the development of tissue engineering, which seeks to unlock the regenerative potential innate to human tissues/organs in a state of deterioration and to restore or reestablish normal bodily function. Advances in our understanding of regenerative biomaterials and their roles in new tissue formation can potentially open a new frontier in the fast-growing field of regenerative medicine. Taking in...

  10. Mechanical cues in orofacial tissue engineering and regenerative medicine

    NARCIS (Netherlands)

    Brouwer, K.M.; Lundvig, D.M.S.; Middelkoop, E.; Wagener, F.A.D.T.; Von den Hoff, J.W.

    2015-01-01

    Cleft lip and palate patients suffer from functional, aesthetical, and psychosocial problems due to suboptimal regeneration of skin, mucosa, and skeletal muscle after restorative cleft surgery. The field of tissue engineering and regenerative medicine (TE/RM) aims to restore the normal physiology of

  11. Enzymatically biomineralized chitosan scaffolds for tissue-engineering applications.

    NARCIS (Netherlands)

    Dash, M.; Samal, S.K.; Douglas, T.E.L.; Schaubroeck, D.; Leeuwenburgh, S.C.G.; Voort, P. van der; Declercq, H.A.; Dubruel, P.

    2017-01-01

    Porous biodegradable scaffolds represent promising candidates for tissue-engineering applications because of their capability to be preseeded with cells. We report an uncrosslinked chitosan scaffold designed with the aim of inducing and supporting enzyme-mediated formation of apatite minerals in the

  12. Pericyte-targeting drug delivery and tissue engineering

    Directory of Open Access Journals (Sweden)

    Kang E

    2016-05-01

    Full Text Available Eunah Kang,1 Jong Wook Shin2 1School of Chemical Engineering and Material Science, 2Division of Allergic and Pulmonary Medicine, Department of Internal Medicine, College of Medicine, Chung-Ang University, Dongjak-Gu, Seoul, South Korea Abstract: Pericytes are contractile mural cells that wrap around the endothelial cells of capillaries and venules. Depending on the triggers by cellular signals, pericytes have specific functionality in tumor microenvironments, properties of potent stem cells, and plasticity in cellular pathology. These features of pericytes can be activated for the promotion or reduction of angiogenesis. Frontier studies have exploited pericyte-targeting drug delivery, using pericyte-specific peptides, small molecules, and DNA in tumor therapy. Moreover, the communication between pericytes and endothelial cells has been applied to the induction of vessel neoformation in tissue engineering. Pericytes may prove to be a novel target for tumor therapy and tissue engineering. The present paper specifically reviews pericyte-specific drug delivery and tissue engineering, allowing insight into the emerging research targeting pericytes. Keywords: pericytes, pericyte-targeting drug delivery, tissue engineering, platelet-derived growth factor, angiogenesis, vascular remodeling

  13. Current opportunities and challenges in skeletal muscle tissue engineering

    NARCIS (Netherlands)

    Koning, Merel; Harmsen, Martin C; van Luyn, Marja J A; Werker, Paul M N

    The purpose of this article is to give a concise review of the current state of the art in tissue engineering (TE) of skeletal muscle and the opportunities and challenges for future clinical applicability. The endogenous progenitor cells of skeletal muscle, i.e. satellite cells, show a high

  14. Cell based bone tissue engineering in jaw defects

    NARCIS (Netherlands)

    Meijer, Gert J.; de Bruijn, Joost Dick; Koole, Ron; van Blitterswijk, Clemens

    2008-01-01

    In 6 patients the potency of bone tissue engineering to reconstruct jaw defects was tested. After a bone marrow aspirate was taken, stem cells were cultured, expanded and grown for 7 days on a bone substitute in an osteogenic culture medium to allow formation of a layer of extracellular bone matrix.

  15. Tissue engineering of urethra: Systematic review of recent literature.

    Science.gov (United States)

    Žiaran, Stanislav; Galambošová, Martina; Danišovič, L'uboš

    2017-12-01

    The purpose of this article was to perform a systematic review of the recent literature on urethral tissue engineering. A total of 31 articles describing the use of tissue engineering for urethra reconstruction were included. The obtained results were discussed in three groups: cells, scaffolds, and clinical results of urethral reconstructions using these components. Stem cells of different origin were used in many experimental studies, but only autologous urothelial cells, fibroblasts, and keratinocytes were applied in clinical trials. Natural and synthetic scaffolds were studied in the context of urethral tissue engineering. The main advantage of synthetic ones is the fact that they can be obtained in unlimited amount and modified by different techniques, but scaffolds of natural origin normally contain chemical groups and bioactive proteins which increase the cell attachment and may promote the cell proliferation and differentiation. The most promising are smart scaffolds delivering different bioactive molecules or those that can be tubularized. In two clinical trials, only onlay-fashioned transplants were used for urethral reconstruction. However, the very promising results were obtained from animal studies where tubularized scaffolds, both non-seeded and cell-seeded, were applied. Impact statement The main goal of this article was to perform a systematic review of the recent literature on urethral tissue engineering. It summarizes the most recent information about cells, seeded or non-seeded scaffolds and clinical application with respect to regeneration of urethra.

  16. Human prenatal progenitors for pediatric cardiovascular tissue engineering

    NARCIS (Netherlands)

    Schmidt, D.

    2007-01-01

    Pediatric cardiovascular tissue engineering is a promising strategy to overcome the lack of autologous, growing replacements for the early repair of congenital malformations in order to prevent secondary damage to the immature heart. Therefore, cells should be harvested during pregnancy as soon as

  17. Non-viral gene therapy for bone tissue engineering

    NARCIS (Netherlands)

    Wegman, F.

    2013-01-01

    In bone tissue engineering bone morphogentic protein-2 (BMP-2) is one of the most commonly used growth factors. It induces stem cells to differentiate into the osteogenic lineage to form new bone. Clinically however, high dosages of protein are administered due to fast degradation, which is

  18. Animal models for bone tissue engineering and modelling disease

    Science.gov (United States)

    Griffin, Michelle

    2018-01-01

    ABSTRACT Tissue engineering and its clinical application, regenerative medicine, are instructing multiple approaches to aid in replacing bone loss after defects caused by trauma or cancer. In such cases, bone formation can be guided by engineered biodegradable and nonbiodegradable scaffolds with clearly defined architectural and mechanical properties informed by evidence-based research. With the ever-increasing expansion of bone tissue engineering and the pioneering research conducted to date, preclinical models are becoming a necessity to allow the engineered products to be translated to the clinic. In addition to creating smart bone scaffolds to mitigate bone loss, the field of tissue engineering and regenerative medicine is exploring methods to treat primary and secondary bone malignancies by creating models that mimic the clinical disease manifestation. This Review gives an overview of the preclinical testing in animal models used to evaluate bone regeneration concepts. Immunosuppressed rodent models have shown to be successful in mimicking bone malignancy via the implantation of human-derived cancer cells, whereas large animal models, including pigs, sheep and goats, are being used to provide an insight into bone formation and the effectiveness of scaffolds in induced tibial or femoral defects, providing clinically relevant similarity to human cases. Despite the recent progress, the successful translation of bone regeneration concepts from the bench to the bedside is rooted in the efforts of different research groups to standardise and validate the preclinical models for bone tissue engineering approaches. PMID:29685995

  19. Poly(ether ester amide)s for tissue engineering

    NARCIS (Netherlands)

    Deschamps, A.A.; van Apeldoorn, Aart A.; de Bruijn, Joost Dick; Grijpma, Dirk W.; Feijen, Jan

    2003-01-01

    Poly(ether ester amide) (PEEA) copolymers based on poly(ethylene glycol) (PEG), 1,4-butanediol and dimethyl-7,12-diaza-6,13-dione-1,18-octadecanedioate were evaluated as scaffold materials for tissue engineering. A PEEA copolymer based on PEG with a molecular weight of 300 g/mol and 25 wt% of soft

  20. A review of rapid prototyping techniques for tissue engineering purposes

    NARCIS (Netherlands)

    Peltola, Sanna M.; Melchels, Ferry P. W.; Grijpma, Dirk W.; Kellomaki, Minna

    2008-01-01

    Rapid prototyping (RP) is a common name for several techniques, which read in data from computer-aided design (CAD) drawings and manufacture automatically three-dimensional objects layer-by-layer according to the virtual design. The utilization of RP in tissue engineering enables the production of

  1. Meet the new meat: tissue engineered skeletal muscle

    NARCIS (Netherlands)

    Langelaan, M.L.P.; Boonen, K.J.M.; Polak, R.B.; Baaijens, F.P.T.; Post, M.J.; Schaft, van der D.W.J.

    2010-01-01

    Contemporary large-scale farming and transportation of livestock brings along a high risk of infectious animal diseases and environmental burden through greenhouse gas emission. A new approach to produce meat and thereby reducing these risks is found in tissue engineering of skeletal muscle. This

  2. Tissue engineered bone versus alloplastic commercial biomaterials in craniofacial reconstruction.

    Science.gov (United States)

    Lucaciu, Ondine; Băciuţ, Mihaela; Băciuţ, G; Câmpian, R; Soriţău, Olga; Bran, S; Crişan, B; Crişan, Liana

    2010-01-01

    This research was developed in order to demonstrate the tissue engineering method as an alternative to conventional methods for bone reconstruction, in order to overcome the frequent failures of alloplastic commercial biomaterials, allografts and autografts. Tissue engineering is an in vitro method used to obtain cell based osteoinductive bone grafts. This study evaluated the feasibility of creating tissue-engineered bone using mesenchymal cells seeded on a scaffold obtained from the deciduous red deer antler. We have chosen mesenchymal stem cells because they are easy to obtain, capable to differentiate into cells of mesenchymal origin (osteoblasts) and to produce tissue such as bone. As scaffold, we have chosen the red deer antler because it has a high level of porosity. We conducted a case control study, on three groups of mice type CD1--two study groups (n=20) and a control group (n=20). For the study groups, we obtained bone grafts through tissue engineering, using mesenchymal stem cells seeded on the scaffold made of deciduous red deer antler. Bone defects were surgically induced on the left parietal bone of all subjects. In the control group, we grafted the bone defects with commercial biomaterials (OsteoSet, Wright Medical Technology, Inc., Arlington, Federal USA). Subjects were sacrificed at two and four months, the healing process was morphologically and histologically evaluated using descriptive histology and the golden standard - histological scoring. The grafts obtained in vivo through tissue engineering using adult stem cell, seeded on the scaffold obtained from the red deer antler using osteogenic medium have proven their osteogenic properties.

  3. Nanotechnology, Cell Culture and Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Kazutoshi Haraguchi

    2011-01-01

    Full Text Available We have fabricated new types of polymer hydrogels and polymer nanocomposites, i.e., nanocomposite gels (NC gels and soft, polymer nanocomposites (M-NCs: solid, with novel organic/inorganic network structures. Both NC gels and M-NCs were synthesized by in-situ free-radical polymerization in the presence of exfoliated clay platelets in aqueous systems and were obtained in various forms such as film, sheet, tube, coating, etc. and sizes with a wide range of clay contents. Here, disk-like inorganic clay nanoparticles act as multi-functional crosslinkers to form new types of network systems. Both NC gels and M-NCs have extraordinary optical and mechanical properties including ultra-high reversible extensibility, as well as a number of new characteristics relating to optical anisotropy, polymer/clay morphology, biocompatibility, stimuli-sensitive surfaces, micro-patterning, etc. For examples, the biological testing of medical devices, comprised of a sensitization test, an irritation test, an intracutaneous test and an in vitro cytotoxicity test,was carried out for NC gels and M-NCs. The safety of NC gels and M-NCs was confirmed in all tests. Also, the interaction of living tissue with NC gel was investigated in vivo by implantation in live goats; neither inflammation nor concrescence occurred around the NC gels. Furthermore, it was found that both N-NC gels consisting of poly(N-isopropylacrylamide(PNIPA/clay network and M-NCs consisting of poly(2-methoxyethyacrylate(PMEA/clay network show characteristic cell culture and subsequent cell detachment on their surfaces, although it was almost impossible to culture cells on conventional, chemically-crosslinked PNIPA hydrogels and chemically crossslinked PMEA, regardless of their crosslinker concentration. Various kinds of cells, such ashumanhepatoma cells (HepG2, normal human dermal fibroblast (NHDF, and human umbilical vein endothelial cells (HUVEC, could be cultured to be confluent on the surfaces of N

  4. Biodegradable electroactive materials for tissue engineering applications

    Science.gov (United States)

    Guimard, Nathalie Kathryn

    polymerization can be achieved at the surface of these functionalized films and that the extent of polymer immobilization appears to be affected by the presence of immobilized thiophene. The results reported in this dissertation lead the author to suggest that it is possible to generate biodegradable electroactive materials. Further, she believes that with additional optimization these materials may prove beneficial for the regeneration of peripheral nerves and possibly other tissues that respond favorably to electrical stimulation.

  5. Piezoelectric smart biomaterials for bone and cartilage tissue engineering.

    Science.gov (United States)

    Jacob, Jaicy; More, Namdev; Kalia, Kiran; Kapusetti, Govinda

    2018-01-01

    Tissues like bone and cartilage are remodeled dynamically for their functional requirements by signaling pathways. The signals are controlled by the cells and extracellular matrix and transmitted through an electrical and chemical synapse. Scaffold-based tissue engineering therapies largely disturb the natural signaling pathways, due to their rigidity towards signal conduction, despite their therapeutic advantages. Thus, there is a high need of smart biomaterials, which can conveniently generate and transfer the bioelectric signals analogous to native tissues for appropriate physiological functions. Piezoelectric materials can generate electrical signals in response to the applied stress. Furthermore, they can stimulate the signaling pathways and thereby enhance the tissue regeneration at the impaired site. The piezoelectric scaffolds can act as sensitive mechanoelectrical transduction systems. Hence, it is applicable to the regions, where mechanical loads are predominant. The present review is mainly concentrated on the mechanism related to the electrical stimulation in a biological system and the different piezoelectric materials suitable for bone and cartilage tissue engineering.

  6. Tissue-engineering as an adjunct to pelvic reconstructive surgery

    DEFF Research Database (Denmark)

    Jangö, Hanna

    of pelvic organ prolapse (POP) are warranted. Traditional native tissue repair may be associated with poor long-term outcome and augmentation with permanent polypropylene meshes is associated with frequent and severe adverse effects. Tissue-engineering is a regenerative strategy that aims at creating...... functional tissue using stem cells, scaffolds and trophic factors. The aim of this thesis was to investigate the potential adjunctive use of a tissue-engineering technique for pelvic reconstructive surgery using two synthetic biodegradable materials; methoxypolyethyleneglycol-poly(lactic-co-glycolic acid......) (MPEG-PLGA) and electrospun polycaprolactone (PCL) - with or without seeded muscle stem cells in the form of autologous fresh muscle fiber fragments (MFFs).To simulate different POP repair scenarios different animal models were used. In Study 1 and 2, MPEG-PLGA was evaluated in a native tissue repair...

  7. Burn Injury: A Challenge for Tissue Engineers

    Directory of Open Access Journals (Sweden)

    Yerneni LK

    2009-01-01

    growth of human keratinocyte stem cells capable of producing epithelia for large-scale grafting in burns and maintain long-term functionality as a self-renewing tissue. The normal functioning of such an in vitro constructed graft under long-term artificial growth conditions is limited by the difficulties of maintaining the epidermal stem cell compartment. An apparent answer to this problem of stem cell depletion during autograft preparation would be to start with a pure population of progenitor stem cells and derive sustainable autograft from them. We have been aiming to this solution and currently attempting to isolate a pool of epidermal progenitor cells using Mebiol gel, which is a Thermo-Reversible Gelation polymer and was shown by others to support the growth of multi-potent skin-derived epithelial progenitor-1 cells. Additionally, the usefulness of Mebiol gel in maintaining epidermal stem cell compartment without FBS and/or animal origin feeder cells is being investigated by our group.

  8. Crossing kingdoms: Using decellularized plants as perfusable tissue engineering scaffolds.

    Science.gov (United States)

    Gershlak, Joshua R; Hernandez, Sarah; Fontana, Gianluca; Perreault, Luke R; Hansen, Katrina J; Larson, Sara A; Binder, Bernard Y K; Dolivo, David M; Yang, Tianhong; Dominko, Tanja; Rolle, Marsha W; Weathers, Pamela J; Medina-Bolivar, Fabricio; Cramer, Carole L; Murphy, William L; Gaudette, Glenn R

    2017-05-01

    Despite significant advances in the fabrication of bioengineered scaffolds for tissue engineering, delivery of nutrients in complex engineered human tissues remains a challenge. By taking advantage of the similarities in the vascular structure of plant and animal tissues, we developed decellularized plant tissue as a prevascularized scaffold for tissue engineering applications. Perfusion-based decellularization was modified for different plant species, providing different geometries of scaffolding. After decellularization, plant scaffolds remained patent and able to transport microparticles. Plant scaffolds were recellularized with human endothelial cells that colonized the inner surfaces of plant vasculature. Human mesenchymal stem cells and human pluripotent stem cell derived cardiomyocytes adhered to the outer surfaces of plant scaffolds. Cardiomyocytes demonstrated contractile function and calcium handling capabilities over the course of 21 days. These data demonstrate the potential of decellularized plants as scaffolds for tissue engineering, which could ultimately provide a cost-efficient, "green" technology for regenerating large volume vascularized tissue mass. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Textile Technologies and Tissue Engineering: A Path Towards Organ Weaving

    OpenAIRE

    Akbari, Mohsen; Tamayol, Ali; Bagherifard, Sara; Serex, Ludovic; Mostafalu, Pooria; Faramarzi, Negar; Mohammadi, Mohammad Hossein; Khademhosseini, Ali

    2016-01-01

    Textile technologies have recently attracted great attention as potential biofabrication tools for engineering tissue constructs. Using current textile technologies, fibrous structures can be designed and engineered to attain the required properties that are demanded by different tissue engineering applications. Several key parameters such as physiochemical characteristics of fibers, pore size and mechanical properties of the fabrics play important role in the effective use of textile technol...

  10. Tissue-engineered trachea: History, problems and the future

    OpenAIRE

    Tan, Qiang; Steiner, Rudolf; Hoerstrup, Simon P.; Weder, Walter

    2017-01-01

    This review tries to summarize the efforts over the past 20 years to construct a tissue-engineered trachea. After illustrating the main technical bottlenecks faced nowadays, we discuss what might be the solutions to these bottlenecks. You may find out why the focus in this research field shifts dramatically from the construction of a tubular cartilage tissue to reepithelialization and revascularization of the prosthesis. In the end we propose a novel concept of ‘in vivo bioreactor', defined a...

  11. Mathematical modeling in wound healing, bone regeneration and tissue engineering.

    Science.gov (United States)

    Geris, Liesbet; Gerisch, Alf; Schugart, Richard C

    2010-12-01

    The processes of wound healing and bone regeneration and problems in tissue engineering have been an active area for mathematical modeling in the last decade. Here we review a selection of recent models which aim at deriving strategies for improved healing. In wound healing, the models have particularly focused on the inflammatory response in order to improve the healing of chronic wound. For bone regeneration, the mathematical models have been applied to design optimal and new treatment strategies for normal and specific cases of impaired fracture healing. For the field of tissue engineering, we focus on mathematical models that analyze the interplay between cells and their biochemical cues within the scaffold to ensure optimal nutrient transport and maximal tissue production. Finally, we briefly comment on numerical issues arising from simulations of these mathematical models.

  12. Cell Therapy and Tissue Engineering Products for Chondral Knee Injuries

    Directory of Open Access Journals (Sweden)

    Adriana Flórez Cabrera

    2017-07-01

    Full Text Available The articular cartilage is prone to suffer lesions of different etiology, being the articular cartilage lesions of the knee the most common. Although most conventional treatments reduce symptoms they lead to the production of fibrocartilage, which has different characteristics than the hyaline cartilage of the joint. There are few therapeutic approaches that promote the replacement of damaged tissue by functional hyaline cartilage. Among them are the so-called advanced therapies, which use cells and tissue engineering products to promote cartilage regeneration. Most of them are based on scaffolds made of different biomaterials, which seeded or not with endogenous or exogenous cells, can be used as cartilage artificial replacement to improve joint function. This paper reviews some therapeutic approaches focused on the regeneration of articular cartilage of the knee and the biomaterials used to develop scaffolds for cell therapy and tissue engineering of cartilage.

  13. Applications of Biomaterials in Corneal Endothelial Tissue Engineering.

    Science.gov (United States)

    Wang, Tsung-Jen; Wang, I-Jong; Hu, Fung-Rong; Young, Tai-Horng

    2016-11-01

    When corneal endothelial cells (CECs) are diseased or injured, corneal endothelium can be surgically removed and tissue from a deceased donor can replace the original endothelium. Recent major innovations in corneal endothelial transplantation include replacement of diseased corneal endothelium with a thin lamellar posterior donor comprising a tissue-engineered endothelium carried or cultured on a thin substratum with an organized monolayer of cells. Repairing CECs is challenging because they have restricted proliferative ability in vivo. CECs can be cultivated in vitro and seeded successfully onto natural tissue materials or synthetic polymeric materials as grafts for transplantation. The optimal biomaterials for substrata of CEC growth are being investigated. Establishing a CEC culture system by tissue engineering might require multiple biomaterials to create a new scaffold that overcomes the disadvantages of single biomaterials. Chitosan and polycaprolactone are biodegradable biomaterials approved by the Food and Drug Administration that have superior biological, degradable, and mechanical properties for culturing substratum. We successfully hybridized chitosan and polycaprolactone into blended membranes, and demonstrated that CECs proliferated, developed normal morphology, and maintained their physiological phenotypes. The interaction between cells and biomaterials is important in tissue engineering of CECs. We are still optimizing culture methods for the maintenance and differentiation of CECs on biomaterials.

  14. Additive manufacturing techniques for the production of tissue engineering constructs.

    Science.gov (United States)

    Mota, Carlos; Puppi, Dario; Chiellini, Federica; Chiellini, Emo

    2015-03-01

    'Additive manufacturing' (AM) refers to a class of manufacturing processes based on the building of a solid object from three-dimensional (3D) model data by joining materials, usually layer upon layer. Among the vast array of techniques developed for the production of tissue-engineering (TE) scaffolds, AM techniques are gaining great interest for their suitability in achieving complex shapes and microstructures with a high degree of automation, good accuracy and reproducibility. In addition, the possibility of rapidly producing tissue-engineered constructs meeting patient's specific requirements, in terms of tissue defect size and geometry as well as autologous biological features, makes them a powerful way of enhancing clinical routine procedures. This paper gives an extensive overview of different AM techniques classes (i.e. stereolithography, selective laser sintering, 3D printing, melt-extrusion-based techniques, solution/slurry extrusion-based techniques, and tissue and organ printing) employed for the development of tissue-engineered constructs made of different materials (i.e. polymeric, ceramic and composite, alone or in combination with bioactive agents), by highlighting their principles and technological solutions. Copyright © 2012 John Wiley & Sons, Ltd.

  15. In vivo outcomes of tissue-engineered osteochondral grafts.

    Science.gov (United States)

    Bal, B Sonny; Rahaman, Mohamed N; Jayabalan, Prakash; Kuroki, Keiichi; Cockrell, Mary K; Yao, Jian Q; Cook, James L

    2010-04-01

    Tissue-engineered osteochondral grafts have been synthesized from a variety of materials, with some success at repairing chondral defects in animal models. We hypothesized that in tissue-engineered osteochondral grafts synthesized by bonding mesenchymal stem cell-loaded hydrogels to a porous material, the choice of the porous scaffold would affect graft healing to host bone, and the quality of cell restoration at the hyaline cartilage surface. Bone marrow-derived allogeneic mesenchymal stem cells were suspended in hydrogels that were attached to cylinders of porous tantalum metal, allograft bone, or a bioactive glass. The tissue-engineered osteochondral grafts, thus created were implanted into experimental defects in rabbit knees. Subchondral bone restoration, defect fill, bone ingrowth-implant integration, and articular tissue quality were compared between the three subchondral materials at 6 and 12 weeks. Bioactive glass and porous tantalum were superior to bone allograft in integrating to adjacent host bone, regenerating hyaline-like tissue at the graft surface, and expressing type II collagen in the articular cartilage.

  16. Esophageal tissue engineering: a new approach for esophageal replacement.

    Science.gov (United States)

    Totonelli, Giorgia; Maghsoudlou, Panagiotis; Fishman, Jonathan M; Orlando, Giuseppe; Ansari, Tahera; Sibbons, Paul; Birchall, Martin A; Pierro, Agostino; Eaton, Simon; De Coppi, Paolo

    2012-12-21

    A number of congenital and acquired disorders require esophageal tissue replacement. Various surgical techniques, such as gastric and colonic interposition, are standards of treatment, but frequently complicated by stenosis and other problems. Regenerative medicine approaches facilitate the use of biological constructs to replace or regenerate normal tissue function. We review the literature of esophageal tissue engineering, discuss its implications, compare the methodologies that have been employed and suggest possible directions for the future. Medline, Embase, the Cochrane Library, National Research Register and ClinicalTrials.gov databases were searched with the following search terms: stem cell and esophagus, esophageal replacement, esophageal tissue engineering, esophageal substitution. Reference lists of papers identified were also examined and experts in this field contacted for further information. All full-text articles in English of all potentially relevant abstracts were reviewed. Tissue engineering has involved acellular scaffolds that were either transplanted with the aim of being repopulated by host cells or seeded prior to transplantation. When acellular scaffolds were used to replace patch and short tubular defects they allowed epithelial and partial muscular migration whereas when employed for long tubular defects the results were poor leading to an increased rate of stenosis and mortality. Stenting has been shown as an effective means to reduce stenotic changes and promote cell migration, whilst omental wrapping to induce vascularization of the construct has an uncertain benefit. Decellularized matrices have been recently suggested as the optimal choice for scaffolds, but smart polymers that will incorporate signalling to promote cell-scaffold interaction may provide a more reproducible and available solution. Results in animal models that have used seeded scaffolds strongly suggest that seeding of both muscle and epithelial cells on scaffolds

  17. Cell-laden hydrogels for osteochondral and cartilage tissue engineering.

    Science.gov (United States)

    Yang, Jingzhou; Zhang, Yu Shrike; Yue, Kan; Khademhosseini, Ali

    2017-07-15

    Despite tremendous advances in the field of regenerative medicine, it still remains challenging to repair the osteochondral interface and full-thickness articular cartilage defects. This inefficiency largely originates from the lack of appropriate tissue-engineered artificial matrices that can replace the damaged regions and promote tissue regeneration. Hydrogels are emerging as a promising class of biomaterials for both soft and hard tissue regeneration. Many critical properties of hydrogels, such as mechanical stiffness, elasticity, water content, bioactivity, and degradation, can be rationally designed and conveniently tuned by proper selection of the material and chemistry. Particularly, advances in the development of cell-laden hydrogels have opened up new possibilities for cell therapy. In this article, we describe the problems encountered in this field and review recent progress in designing cell-hydrogel hybrid constructs for promoting the reestablishment of osteochondral/cartilage tissues. Our focus centers on the effects of hydrogel type, cell type, and growth factor delivery on achieving efficient chondrogenesis and osteogenesis. We give our perspective on developing next-generation matrices with improved physical and biological properties for osteochondral/cartilage tissue engineering. We also highlight recent advances in biomanufacturing technologies (e.g. molding, bioprinting, and assembly) for fabrication of hydrogel-based osteochondral and cartilage constructs with complex compositions and microarchitectures to mimic their native counterparts. Despite tremendous advances in the field of regenerative medicine, it still remains challenging to repair the osteochondral interface and full-thickness articular cartilage defects. This inefficiency largely originates from the lack of appropriate tissue-engineered biomaterials that replace the damaged regions and promote tissue regeneration. Cell-laden hydrogel systems have emerged as a promising tissue-engineering

  18. Emerging bone tissue engineering via Polyhydroxyalkanoate (PHA)-based scaffolds.

    Science.gov (United States)

    Lim, Janice; You, Mingliang; Li, Jian; Li, Zibiao

    2017-10-01

    Polyhydroxyalkanoates (PHAs) are a class of biodegradable polymers derived from microorganisms. On top of their biodegradability and biocompatibility, different PHA types can contribute to varying mechanical and chemical properties. This has led to increasing attention to the use of PHAs in numerous biomedical applications over the past few decades. Bone tissue engineering refers to the regeneration of new bone through providing mechanical support while inducing cell growth on the PHA scaffolds having a porous structure for tissue regeneration. This review first introduces the various properties PHA scaffold that make them suitable for bone tissue engineering such as biocompatibility, biodegradability, mechanical properties as well as vascularization. The typical fabrication techniques of PHA scaffolds including electrospinning, salt-leaching and solution casting are further discussed, followed by the relatively new technology of using 3D printing in PHA scaffold fabrication. Finally, the recent progress of using different types of PHAs scaffold in bone tissue engineering applications are summarized in intrinsic PHA/blends forms or as composites with other polymeric or inorganic hybrid materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Proangiogenic scaffolds as functional templates for cardiac tissue engineering.

    Science.gov (United States)

    Madden, Lauran R; Mortisen, Derek J; Sussman, Eric M; Dupras, Sarah K; Fugate, James A; Cuy, Janet L; Hauch, Kip D; Laflamme, Michael A; Murry, Charles E; Ratner, Buddy D

    2010-08-24

    We demonstrate here a cardiac tissue-engineering strategy addressing multicellular organization, integration into host myocardium, and directional cues to reconstruct the functional architecture of heart muscle. Microtemplating is used to shape poly(2-hydroxyethyl methacrylate-co-methacrylic acid) hydrogel into a tissue-engineering scaffold with architectures driving heart tissue integration. The construct contains parallel channels to organize cardiomyocyte bundles, supported by micrometer-sized, spherical, interconnected pores that enhance angiogenesis while reducing scarring. Surface-modified scaffolds were seeded with human ES cell-derived cardiomyocytes and cultured in vitro. Cardiomyocytes survived and proliferated for 2 wk in scaffolds, reaching adult heart densities. Cardiac implantation of acellular scaffolds with pore diameters of 30-40 microm showed angiogenesis and reduced fibrotic response, coinciding with a shift in macrophage phenotype toward the M2 state. This work establishes a foundation for spatially controlled cardiac tissue engineering by providing discrete compartments for cardiomyocytes and stroma in a scaffold that enhances vascularization and integration while controlling the inflammatory response.

  20. Artificial urinary conduit construction using tissue engineering methods.

    Science.gov (United States)

    Kloskowski, Tomasz; Pokrywczyńska, Marta; Drewa, Tomasz

    2015-01-01

    Incontinent urinary diversion using an ileal conduit is the most popular method used by urologists after bladder cystectomy resulting from muscle invasive bladder cancer. The use of gastrointestinal tissue is related to a series of complications with the necessity of surgical procedure extension which increases the time of surgery. Regenerative medicine together with tissue engineering techniques gives hope for artificial urinary conduit construction de novo without affecting the ileum. In this review we analyzed history of urinary diversion together with current attempts in urinary conduit construction using tissue engineering methods. Based on literature and our own experience we presented future perspectives related to the artificial urinary conduit construction. A small number of papers in the field of tissue engineered urinary conduit construction indicates that this topic requires more attention. Three main factors can be distinguished to resolve this topic: proper scaffold construction along with proper regeneration of both the urothelium and smooth muscle layers. Artificial urinary conduit has a great chance to become the first commercially available product in urology constructed by regenerative medicine methods.

  1. Cell Patterning for Liver Tissue Engineering via Dielectrophoretic Mechanisms

    Directory of Open Access Journals (Sweden)

    Wan Nurlina Wan Yahya

    2014-07-01

    Full Text Available Liver transplantation is the most common treatment for patients with end-stage liver failure. However, liver transplantation is greatly limited by a shortage of donors. Liver tissue engineering may offer an alternative by providing an implantable engineered liver. Currently, diverse types of engineering approaches for in vitro liver cell culture are available, including scaffold-based methods, microfluidic platforms, and micropatterning techniques. Active cell patterning via dielectrophoretic (DEP force showed some advantages over other methods, including high speed, ease of handling, high precision and being label-free. This article summarizes liver function and regenerative mechanisms for better understanding in developing engineered liver. We then review recent advances in liver tissue engineering techniques and focus on DEP-based cell patterning, including microelectrode design and patterning configuration.

  2. 3D-Printed Biopolymers for Tissue Engineering Application

    Directory of Open Access Journals (Sweden)

    Xiaoming Li

    2014-01-01

    Full Text Available 3D printing technology has recently gained substantial interest for potential applications in tissue engineering due to the ability of making a three-dimensional object of virtually any shape from a digital model. 3D-printed biopolymers, which combine the 3D printing technology and biopolymers, have shown great potential in tissue engineering applications and are receiving significant attention, which has resulted in the development of numerous research programs regarding the material systems which are available for 3D printing. This review focuses on recent advances in the development of biopolymer materials, including natural biopolymer-based materials and synthetic biopolymer-based materials prepared using 3D printing technology, and some future challenges and applications of this technology are discussed.

  3. Electrospun nanofibrous materials for tissue engineering and drug delivery

    Directory of Open Access Journals (Sweden)

    Wenguo Cui, Yue Zhou and Jiang Chang

    2010-01-01

    Full Text Available The electrospinning technique, which was invented about 100 years ago, has attracted more attention in recent years due to its possible biomedical applications. Electrospun fibers with high surface area to volume ratio and structures mimicking extracellular matrix (ECM have shown great potential in tissue engineering and drug delivery. In order to develop electrospun fibers for these applications, different biocompatible materials have been used to fabricate fibers with different structures and morphologies, such as single fibers with different composition and structures (blending and core-shell composite fibers and fiber assemblies (fiber bundles, membranes and scaffolds. This review summarizes the electrospinning techniques which control the composition and structures of the nanofibrous materials. It also outlines possible applications of these fibrous materials in skin, blood vessels, nervous system and bone tissue engineering, as well as in drug delivery.

  4. Novel blood protein based scaffolds for cardiovascular tissue engineering

    Directory of Open Access Journals (Sweden)

    Kuhn Antonia I.

    2016-09-01

    Full Text Available A major challenge in cardiovascular tissue engineering is the fabrication of scaffolds, which provide appropriate morphological and mechanical properties while avoiding undesirable immune reactions. In this study electrospinning was used to fabricate scaffolds out of blood proteins for cardiovascular tissue engineering. Lyophilised porcine plasma was dissolved in deionised water at a final concentration of 7.5% m/v and blended with 3.7% m/v PEO. Electrospinning resulted in homogeneous fibre morphologies with a mean fibre diameter of 151 nm, which could be adapted to create macroscopic shapes (mats, tubes. Cross-linking with glutaraldehyde vapour improved the long-term stability of protein based scaffolds in comparison to untreated scaffolds, resulting in a mass loss of 41% and 96% after 28 days of incubation in aqueous solution, respectively.

  5. Physical Limitations to Tissue Engineering of Intervertabral Disc Cells

    OpenAIRE

    Kobayashi, Shigeru; Baba, Hisatoshi; Takeno, Kenichi; Miyazaki, Tsuyoshi; Meir, Adam; Urban, Jill

    2010-01-01

    There is increasing interest in the using biological methods to repair degenerate discs. Biological repair depends on the disc maintaining a population of viable and active cells. Adequate nutrition of the disc influences the outcome of such therapies and, hence, must be considered to be a crucial parameter. Therefore, it is very important to maintain an appropriate physicochemical environment to achieve successful disc repair by biological methods and tissue engineering procedures.

  6. HEPATIC TISSUE ENGINEERING (MODERN STATE OF THIS PROBLEM)

    OpenAIRE

    Y.S. Gulay; M.E. Krasheninnikov; M.Y. Shagidulin; N.A. Onishchenko

    2014-01-01

    In this article it was discussed the problem of creation implanted hepatic tissue engineering designs as a modern stage of complex investigation for working out bioartifi cial liver support systems. It was determined that for the positive decision of numerous biological and technological problems it is necessary: to use matrices with determined properties, which mimic properties of hepatic extracellular matrix; to use technology for stereotype sowing of these matrices by both parenchymal and ...

  7. On the genealogy of tissue engineering and regenerative medicine.

    Science.gov (United States)

    Kaul, Himanshu; Ventikos, Yiannis

    2015-04-01

    In this article, we identify and discuss a timeline of historical events and scientific breakthroughs that shaped the principles of tissue engineering and regenerative medicine (TERM). We explore the origins of TERM concepts in myths, their application in the ancient era, their resurgence during Enlightenment, and, finally, their systematic codification into an emerging scientific and technological framework in recent past. The development of computational/mathematical approaches in TERM is also briefly discussed.

  8. The Impact of Biomechanics in Tissue Engineering and Regenerative Medicine

    Science.gov (United States)

    Butler, David L.; Goldstein, Steven A.; Guo, X. Edward; Kamm, Roger; Laurencin, Cato T.; McIntire, Larry V.; Mow, Van C.; Nerem, Robert M.; Sah, Robert L.; Soslowsky, Louis J.; Spilker, Robert L.; Tranquillo, Robert T.

    2009-01-01

    Biomechanical factors profoundly influence the processes of tissue growth, development, maintenance, degeneration, and repair. Regenerative strategies to restore damaged or diseased tissues in vivo and create living tissue replacements in vitro have recently begun to harness advances in understanding of how cells and tissues sense and adapt to their mechanical environment. It is clear that biomechanical considerations will be fundamental to the successful development of clinical therapies based on principles of tissue engineering and regenerative medicine for a broad range of musculoskeletal, cardiovascular, craniofacial, skin, urinary, and neural tissues. Biomechanical stimuli may in fact hold the key to producing regenerated tissues with high strength and endurance. However, many challenges remain, particularly for tissues that function within complex and demanding mechanical environments in vivo. This paper reviews the present role and potential impact of experimental and computational biomechanics in engineering functional tissues using several illustrative examples of past successes and future grand challenges. PMID:19583462

  9. Recent Advances in Application of Biosensors in Tissue Engineering

    Science.gov (United States)

    Paul, Arghya; Lee, Yong-kyu; Jaffa, Ayad A.

    2014-01-01

    Biosensors research is a fast growing field in which tens of thousands of papers have been published over the years, and the industry is now worth billions of dollars. The biosensor products have found their applications in numerous industries including food and beverages, agricultural, environmental, medical diagnostics, and pharmaceutical industries and many more. Even though numerous biosensors have been developed for detection of proteins, peptides, enzymes, and numerous other biomolecules for diverse applications, their applications in tissue engineering have remained limited. In recent years, there has been a growing interest in application of novel biosensors in cell culture and tissue engineering, for example, real-time detection of small molecules such as glucose, lactose, and H2O2 as well as serum proteins of large molecular size, such as albumin and alpha-fetoprotein, and inflammatory cytokines, such as IFN-g and TNF-α. In this review, we provide an overview of the recent advancements in biosensors for tissue engineering applications. PMID:25165697

  10. Emerging Perspectives in Scaffold for Tissue Engineering in Oral Surgery.

    Science.gov (United States)

    Ceccarelli, Gabriele; Presta, Rossella; Benedetti, Laura; Cusella De Angelis, Maria Gabriella; Lupi, Saturnino Marco; Rodriguez Y Baena, Ruggero

    2017-01-01

    Bone regeneration is currently one of the most important and challenging tissue engineering approaches in regenerative medicine. Bone regeneration is a promising approach in dentistry and is considered an ideal clinical strategy in treating diseases, injuries, and defects of the maxillofacial region. Advances in tissue engineering have resulted in the development of innovative scaffold designs, complemented by the progress made in cell-based therapies. In vitro bone regeneration can be achieved by the combination of stem cells, scaffolds, and bioactive factors. The biomimetic approach to create an ideal bone substitute provides strategies for developing combined scaffolds composed of adult stem cells with mesenchymal phenotype and different organic biomaterials (such as collagen and hyaluronic acid derivatives) or inorganic biomaterials such as manufactured polymers (polyglycolic acid (PGA), polylactic acid (PLA), and polycaprolactone). This review focuses on different biomaterials currently used in dentistry as scaffolds for bone regeneration in treating bone defects or in surgical techniques, such as sinus lift, horizontal and vertical bone grafts, or socket preservation. Our review would be of particular interest to medical and surgical researchers at the interface of cell biology, materials science, and tissue engineering, as well as industry-related manufacturers and researchers in healthcare, prosthetics, and 3D printing, too.

  11. Emerging Perspectives in Scaffold for Tissue Engineering in Oral Surgery

    Directory of Open Access Journals (Sweden)

    Gabriele Ceccarelli

    2017-01-01

    Full Text Available Bone regeneration is currently one of the most important and challenging tissue engineering approaches in regenerative medicine. Bone regeneration is a promising approach in dentistry and is considered an ideal clinical strategy in treating diseases, injuries, and defects of the maxillofacial region. Advances in tissue engineering have resulted in the development of innovative scaffold designs, complemented by the progress made in cell-based therapies. In vitro bone regeneration can be achieved by the combination of stem cells, scaffolds, and bioactive factors. The biomimetic approach to create an ideal bone substitute provides strategies for developing combined scaffolds composed of adult stem cells with mesenchymal phenotype and different organic biomaterials (such as collagen and hyaluronic acid derivatives or inorganic biomaterials such as manufactured polymers (polyglycolic acid (PGA, polylactic acid (PLA, and polycaprolactone. This review focuses on different biomaterials currently used in dentistry as scaffolds for bone regeneration in treating bone defects or in surgical techniques, such as sinus lift, horizontal and vertical bone grafts, or socket preservation. Our review would be of particular interest to medical and surgical researchers at the interface of cell biology, materials science, and tissue engineering, as well as industry-related manufacturers and researchers in healthcare, prosthetics, and 3D printing, too.

  12. Photo-patterning of porous hydrogels for tissue engineering.

    Science.gov (United States)

    Bryant, Stephanie J; Cuy, Janet L; Hauch, Kip D; Ratner, Buddy D

    2007-07-01

    Since pore size and geometry strongly impact cell behavior and in vivo reaction, the ability to create scaffolds with a wide range of pore geometries that can be tailored to suit a particular cell type addresses a key need in tissue engineering. In this contribution, we describe a novel and simple technique to design porous, degradable poly(2-hydroxyethyl methacrylate) hydrogel scaffolds with well-defined architectures using a unique photolithography process and optimized polymer chemistry. A sphere-template was used to produce a highly uniform, monodisperse porous structure. To create a patterned and porous hydrogel scaffold, a photomask and initiating light were employed. Open, vertical channels ranging in size from 360+/-25 to 730+/-70 microm were patterned into approximately 700 microm thick hydrogels with pore diameters of 62+/-8 or 147+/-15 microm. Collagen type I was immobilized onto the scaffolds to facilitate cell adhesion. To assess the potential of these novel scaffolds for tissue engineering, a skeletal myoblast cell line (C2C12) was seeded onto scaffolds with 147 microm pores and 730 microm diameter channels, and analyzed by histology and digital volumetric imaging. Cell elongation, cell spreading and fibrillar formation were observed on these novel scaffolds. In summary, 3D architectures can be patterned into porous hydrogels in one step to create a wide range of tissue engineering scaffolds that may be tailored for specific applications.

  13. Biodegradable Polyphosphazene Biomaterials for Tissue Engineering and Delivery of Therapeutics

    Directory of Open Access Journals (Sweden)

    Amanda L. Baillargeon

    2014-01-01

    Full Text Available Degradable biomaterials continue to play a major role in tissue engineering and regenerative medicine as well as for delivering therapeutic agents. Although the chemistry of polyphosphazenes has been studied extensively, a systematic review of their applications for a wide range of biomedical applications is lacking. Polyphosphazenes are synthesized through a relatively well-known two-step reaction scheme which involves the substitution of the initial linear precursor with a wide range of nucleophiles. The ease of substitution has led to the development of a broad class of materials that have been studied for numerous biomedical applications including as scaffold materials for tissue engineering and regenerative medicine. The objective of this review is to discuss the suitability of poly(amino acid esterphosphazene biomaterials in regard to their unique stimuli responsive properties, tunable degradation rates and mechanical properties, as well as in vitro and in vivo biocompatibility. The application of these materials in areas such as tissue engineering and drug delivery is discussed systematically. Lastly, the utility of polyphosphazenes is further extended as they are being employed in blend materials for new applications and as another method of tailoring material properties.

  14. Recent Advances in Application of Biosensors in Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Anwarul Hasan

    2014-01-01

    Full Text Available Biosensors research is a fast growing field in which tens of thousands of papers have been published over the years, and the industry is now worth billions of dollars. The biosensor products have found their applications in numerous industries including food and beverages, agricultural, environmental, medical diagnostics, and pharmaceutical industries and many more. Even though numerous biosensors have been developed for detection of proteins, peptides, enzymes, and numerous other biomolecules for diverse applications, their applications in tissue engineering have remained limited. In recent years, there has been a growing interest in application of novel biosensors in cell culture and tissue engineering, for example, real-time detection of small molecules such as glucose, lactose, and H2O2 as well as serum proteins of large molecular size, such as albumin and alpha-fetoprotein, and inflammatory cytokines, such as IFN-g and TNF-α. In this review, we provide an overview of the recent advancements in biosensors for tissue engineering applications.

  15. Design Approaches to Myocardial and Vascular Tissue Engineering.

    Science.gov (United States)

    Akintewe, Olukemi O; Roberts, Erin G; Rim, Nae-Gyune; Ferguson, Michael A H; Wong, Joyce Y

    2017-06-21

    Engineered tissues represent an increasingly promising therapeutic approach for correcting structural defects and promoting tissue regeneration in cardiovascular diseases. One of the challenges associated with this approach has been the necessity for the replacement tissue to promote sufficient vascularization to maintain functionality after implantation. This review highlights a number of promising prevascularization design approaches for introducing vasculature into engineered tissues. Although we focus on encouraging blood vessel formation within myocardial implants, we also discuss techniques developed for other tissues that could eventually become relevant to engineered cardiac tissues. Because the ultimate solution to engineered tissue vascularization will require collaboration between wide-ranging disciplines such as developmental biology, tissue engineering, and computational modeling, we explore contributions from each field.

  16. Tissue engineering of heart valves: in vitro experiences.

    Science.gov (United States)

    Sodian, R; Hoerstrup, S P; Sperling, J S; Daebritz, S H; Martin, D P; Schoen, F J; Vacanti, J P; Mayer, J E

    2000-07-01

    Tissue engineering is a new approach, whereby techniques are being developed to transplant autologous cells onto biodegradable scaffolds to ultimately form new functional tissue in vitro and in vivo. Our laboratory has focused on the tissue engineering of heart valves, and we have fabricated a trileaflet heart valve scaffold from a biodegradable polymer, a polyhydroxyalkanoate. In this experiment we evaluated the suitability of this scaffold material as well as in vitro conditioning to create viable tissue for tissue engineering of a trileaflet heart valve. We constructed a biodegradable and biocompatible trileaflet heart valve scaffold from a porous polyhydroxyalkanoate (Meatabolix Inc, Cambridge, MA). The scaffold consisted of a cylindrical stent (1 x 15 x 20 mm inner diameter) and leaflets (0.3 mm thick), which were attached to the stent by thermal processing techniques. The porous heart valve scaffold (pore size 100 to 240 microm) was seeded with vascular cells grown and expanded from an ovine carotid artery and placed into a pulsatile flow bioreactor for 1, 4, and 8 days. Analysis of the engineered tissue included biochemical examination, enviromental scanning electron microscopy, and histology. It was possible to create a trileaflet heart valve scaffold from polyhydroxyalkanoate, which opened and closed synchronously in a pulsatile flow bioreactor. The cells grew into the pores and formed a confluent layer after incubation and pulsatile flow exposure. The cells were mostly viable and formed connective tissue between the inside and the outside of the porous heart valve scaffold. Additionally, we demonstrated cell proliferation (DNA assay) and the capacity to generate collagen as measured by hydroxyproline assay and movat-stained glycosaminoglycans under in vitro pulsatile flow conditions. Polyhydroxyalkanoates can be used to fabricate a porous, biodegradable heart valve scaffold. The cells appear to be viable and extracellular matrix formation was induced

  17. Periodontal tissue engineering strategies based on nonoral stem cells.

    Science.gov (United States)

    Requicha, João Filipe; Viegas, Carlos Alberto; Muñoz, Fernando; Reis, Rui Luís; Gomes, Manuela Estima

    2014-01-01

    Periodontal disease is an inflammatory disease which constitutes an important health problem in humans due to its enormous prevalence and life threatening implications on systemic health. Routine standard periodontal treatments include gingival flaps, root planning, application of growth/differentiation factors or filler materials and guided tissue regeneration. However, these treatments have come short on achieving regeneration ad integrum of the periodontium, mainly due to the presence of tissues from different embryonic origins and their complex interactions along the regenerative process. Tissue engineering (TE) aims to regenerate damaged tissue by providing the repair site with a suitable scaffold seeded with sufficient undifferentiated cells and, thus, constitutes a valuable alternative to current therapies for the treatment of periodontal defects. Stem cells from oral and dental origin are known to have potential to regenerate these tissues. Nevertheless, harvesting cells from these sites implies a significant local tissue morbidity and low cell yield, as compared to other anatomical sources of adult multipotent stem cells. This manuscript reviews studies describing the use of non-oral stem cells in tissue engineering strategies, highlighting the importance and potential of these alternative stem cells sources in the development of advanced therapies for periodontal regeneration. Copyright © 2013 Wiley Periodicals, Inc.

  18. The Role of Bioreactors in Ligament and Tendon Tissue Engineering.

    Science.gov (United States)

    Mace, James; Wheelton, Andy; Khan, Wasim S; Anand, Sanj

    2016-01-01

    Bioreactors are pivotal to the emerging field of tissue engineering. The formation of neotissue from pluripotent cell lineages potentially offers a source of tissue for clinical use without the significant donor site morbidity associated with many contemporary surgical reconstructive procedures. Modern bioreactor design is becoming increasingly complex to provide a both an expandable source of readily available pluripotent cells and to facilitate their controlled differentiation into a clinically applicable ligament or tendon like neotissue. This review presents the need for such a method, challenges in the processes to engineer neotissue and the current designs and results of modern bioreactors in the pursuit of engineered tendon and ligament.

  19. Combination of biochemical and mechanical cues for tendon tissue engineering.

    Science.gov (United States)

    Testa, Stefano; Costantini, Marco; Fornetti, Ersilia; Bernardini, Sergio; Trombetta, Marcella; Seliktar, Dror; Cannata, Stefano; Rainer, Alberto; Gargioli, Cesare

    2017-11-01

    Tendinopathies negatively affect the life quality of millions of people in occupational and athletic settings, as well as the general population. Tendon healing is a slow process, often with insufficient results to restore complete endurance and functionality of the tissue. Tissue engineering, using tendon progenitors, artificial matrices and bioreactors for mechanical stimulation, could be an important approach for treating rips, fraying and tissue rupture. In our work, C3H10T1/2 murine fibroblast cell line was exposed to a combination of stimuli: a biochemical stimulus provided by Transforming Growth Factor Beta (TGF-β) and Ascorbic Acid (AA); a three-dimensional environment represented by PEGylated-Fibrinogen (PEG-Fibrinogen) biomimetic matrix; and a mechanical induction exploiting a custom bioreactor applying uniaxial stretching. In vitro analyses by immunofluorescence and mechanical testing revealed that the proposed combined approach favours the organization of a three-dimensional tissue-like structure promoting a remarkable arrangement of the cells and the neo-extracellular matrix, reflecting into enhanced mechanical strength. The proposed method represents a novel approach for tendon tissue engineering, demonstrating how the combined effect of biochemical and mechanical stimuli ameliorates biological and mechanical properties of the artificial tissue compared to those obtained with single inducement. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  20. 3D bioprinting and the current applications in tissue engineering.

    Science.gov (United States)

    Huang, Ying; Zhang, Xiao-Fei; Gao, Guifang; Yonezawa, Tomo; Cui, Xiaofeng

    2017-08-01

    Bioprinting as an enabling technology for tissue engineering possesses the promises to fabricate highly mimicked tissue or organs with digital control. As one of the biofabrication approaches, bioprinting has the advantages of high throughput and precise control of both scaffold and cells. Therefore, this technology is not only ideal for translational medicine but also for basic research applications. Bioprinting has already been widely applied to construct functional tissues such as vasculature, muscle, cartilage, and bone. In this review, the authors introduce the most popular techniques currently applied in bioprinting, as well as the various bioprinting processes. In addition, the composition of bioink including scaffolds and cells are described. Furthermore, the most current applications in organ and tissue bioprinting are introduced. The authors also discuss the challenges we are currently facing and the great potential of bioprinting. This technology has the capacity not only in complex tissue structure fabrication based on the converted medical images, but also as an efficient tool for drug discovery and preclinical testing. One of the most promising future advances of bioprinting is to develop a standard medical device with the capacity of treating patients directly on the repairing site, which requires the development of automation and robotic technology, as well as our further understanding of biomaterials and stem cell biology to integrate various printing mechanisms for multi-phasic tissue engineering. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Vascular tissue engineering by computer-aided laser micromachining.

    Science.gov (United States)

    Doraiswamy, Anand; Narayan, Roger J

    2010-04-28

    Many conventional technologies for fabricating tissue engineering scaffolds are not suitable for fabricating scaffolds with patient-specific attributes. For example, many conventional technologies for fabricating tissue engineering scaffolds do not provide control over overall scaffold geometry or over cell position within the scaffold. In this study, the use of computer-aided laser micromachining to create scaffolds for vascular tissue networks was investigated. Computer-aided laser micromachining was used to construct patterned surfaces in agarose or in silicon, which were used for differential adherence and growth of cells into vascular tissue networks. Concentric three-ring structures were fabricated on agarose hydrogel substrates, in which the inner ring contained human aortic endothelial cells, the middle ring contained HA587 human elastin and the outer ring contained human aortic vascular smooth muscle cells. Basement membrane matrix containing vascular endothelial growth factor and heparin was to promote proliferation of human aortic endothelial cells within the vascular tissue networks. Computer-aided laser micromachining provides a unique approach to fabricate small-diameter blood vessels for bypass surgery as well as other artificial tissues with complex geometries.

  2. Hydrogels for precision meniscus tissue engineering: a comprehensive review.

    Science.gov (United States)

    Rey-Rico, Ana; Cucchiarini, Magali; Madry, Henning

    The meniscus plays a pivotal role to preserve the knee joint homeostasis. Lesions to the meniscus are frequent, have a reduced ability to heal, and may induce tibiofemoral osteoarthritis. Current reconstructive therapeutic options mainly focus on the treatment of lesions in the peripheral vascularized region. In contrast, few approaches are capable of stimulating repair of damaged meniscal tissue in the central, avascular portion. Tissue engineering approaches are of high interest to repair or replace damaged meniscus tissue in this area. Hydrogel-based biomaterials are of special interest for meniscus repair as its inner part contains relatively high proportions of proteoglycans which are responsible for the viscoelastic compressive properties and hydration grade. Hydrogels exhibiting high water content and providing a specific three-dimensional (3D) microenvironment may be engineered to precisely resemble this topographical composition of the meniscal tissue. Different polymers of both natural and synthetic origins have been manipulated to produce hydrogels hosting relevant cell populations for meniscus regeneration and provide platforms for meniscus tissue replacement. So far, these compounds have been employed to design controlled delivery systems of bioactive molecules involved in meniscal reparative processes or to host genetically modified cells as a means to enhance meniscus repair. This review describes the most recent advances on the use of hydrogels as platforms for precision meniscus tissue engineering.

  3. Graphene and carbon nanocompounds: biofunctionalization and applications in tissue engineering

    International Nuclear Information System (INIS)

    Jesion, Iwona; Skibniewska, Ewa; Skibniewski, Michał; Pasternak, Iwona; Strupiński, Włodzimierz; Krajewska, Aleksandra; Szulc-Dąbrowska, Lidia; Kowalczyk, Paweł; Pińkowski, Roman

    2015-01-01

    In tissue engineering, the possibility of a comprehensive restoration of the tissue, structure or a portion of the organ is largely determined by the type of material used. A wide range of materials such as graphene and other carbon nanocompounds which have different physical and chemical properties can be expected to react differently upon contact with biomolecules, cells and tissues. This mini-review describes the current knowledge on biocompatibility of graphene and its derivatives with a variety of mammalian cells, such as osteoblasts, neuroendocrine cells, fibroblasts NIH/3T3 line, PMEFs (primary mouse embryonic fibroblasts), stem cells and neurons. The results from different studies give hope for the possibility of graphene to be used in the regeneration of almost all tissues, including neural tissue implants or in the form of neural chips, which may allow in the future treatment of degenerative diseases and injuries of the central nervous system. Keywords: nanotechnology; mammalian cells; tissue regeneration; biocompatibility; cytotoxicity

  4. Potential of Bioactive Glasses for Cardiac and Pulmonary Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Saeid Kargozar

    2017-12-01

    Full Text Available Repair and regeneration of disorders affecting cardiac and pulmonary tissues through tissue-engineering-based approaches is currently of particular interest. On this matter, different families of bioactive glasses (BGs have recently been given much consideration with respect to treating refractory diseases of these tissues, such as myocardial infarction. The inherent properties of BGs, including their ability to bond to hard and soft tissues, to stimulate angiogenesis, and to elicit antimicrobial effects, along with their excellent biocompatibility, support these newly proposed strategies. Moreover, BGs can also act as a bioactive reinforcing phase to finely tune the mechanical properties of polymer-based constructs used to repair the damaged cardiac and pulmonary tissues. In the present study, we evaluated the potential of different forms of BGs, alone or in combination with other materials (e.g., polymers, in regards to repair and regenerate injured tissues of cardiac and pulmonary systems.

  5. Silk fibroin porous scaffolds for nucleus pulposus tissue engineering

    International Nuclear Information System (INIS)

    Zeng, Chao; Yang, Qiang; Zhu, Meifeng; Du, Lilong; Zhang, Jiamin; Ma, Xinlong; Xu, Baoshan; Wang, Lianyong

    2014-01-01

    Intervertebral discs (IVDs) are structurally complex tissue that hold the vertebrae together and provide mobility to spine. The nucleus pulposus (NP) degeneration often results in degenerative IVD disease that is one of the most common causes of back and neck pain. Tissue engineered nucleus pulposus offers an alternative approach to regain the function of the degenerative IVD. The aim of this study is to determine the feasibility of porous silk fibroin (SF) scaffolds fabricated by paraffin-sphere-leaching methods with freeze-drying in the application of nucleus pulposus regeneration. The prepared scaffold possessed high porosity of 92.38 ± 5.12% and pore size of 165.00 ± 8.25 μm as well as high pore interconnectivity and appropriate mechanical properties. Rabbit NP cells were seeded and cultured on the SF scaffolds. Scanning electron microscopy, histology, biochemical assays and mechanical tests revealed that the porous scaffolds could provide an appropriate microstructure and environment to support adhesion, proliferation and infiltration of NP cells in vitro as well as the generation of extracellular matrix. The NP cell–scaffold construction could be preliminarily formed after subcutaneously implanted in a nude mice model. In conclusion, The SF porous scaffold offers a potential candidate for tissue engineered NP tissue. - Highlights: • Paraffin microsphere-leaching method is used to fabricate silk fibroin scaffold. • The scaffold has appropriate mechanical property, porosity and pore size • The scaffold supports growth and infiltration of nucleus pulposus cells. • Nucleus pulposus cells can secrete extracellular matrix in the scaffolds. • The scaffold is a potential candidate for tissue engineered nucleus pulposus

  6. Silk fibroin porous scaffolds for nucleus pulposus tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Chao; Yang, Qiang [Department of Spine Surgery, Tianjin Hospital, Tianjin 300211 (China); Tianjin Medical University, Tianjin 300070 (China); Zhu, Meifeng [The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071 (China); Du, Lilong [Department of Spine Surgery, Tianjin Hospital, Tianjin 300211 (China); Tianjin Medical University, Tianjin 300070 (China); Zhang, Jiamin [The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071 (China); Ma, Xinlong [Department of Spine Surgery, Tianjin Hospital, Tianjin 300211 (China); Xu, Baoshan, E-mail: xubaoshan99@126.com [Department of Spine Surgery, Tianjin Hospital, Tianjin 300211 (China); Wang, Lianyong, E-mail: wly@nankai.edu.cn [The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071 (China)

    2014-04-01

    Intervertebral discs (IVDs) are structurally complex tissue that hold the vertebrae together and provide mobility to spine. The nucleus pulposus (NP) degeneration often results in degenerative IVD disease that is one of the most common causes of back and neck pain. Tissue engineered nucleus pulposus offers an alternative approach to regain the function of the degenerative IVD. The aim of this study is to determine the feasibility of porous silk fibroin (SF) scaffolds fabricated by paraffin-sphere-leaching methods with freeze-drying in the application of nucleus pulposus regeneration. The prepared scaffold possessed high porosity of 92.38 ± 5.12% and pore size of 165.00 ± 8.25 μm as well as high pore interconnectivity and appropriate mechanical properties. Rabbit NP cells were seeded and cultured on the SF scaffolds. Scanning electron microscopy, histology, biochemical assays and mechanical tests revealed that the porous scaffolds could provide an appropriate microstructure and environment to support adhesion, proliferation and infiltration of NP cells in vitro as well as the generation of extracellular matrix. The NP cell–scaffold construction could be preliminarily formed after subcutaneously implanted in a nude mice model. In conclusion, The SF porous scaffold offers a potential candidate for tissue engineered NP tissue. - Highlights: • Paraffin microsphere-leaching method is used to fabricate silk fibroin scaffold. • The scaffold has appropriate mechanical property, porosity and pore size • The scaffold supports growth and infiltration of nucleus pulposus cells. • Nucleus pulposus cells can secrete extracellular matrix in the scaffolds. • The scaffold is a potential candidate for tissue engineered nucleus pulposus.

  7. The influence of topography on tissue engineering perspective

    International Nuclear Information System (INIS)

    Mansouri, Negar; SamiraBagheri

    2016-01-01

    The actual in vivo tissue scaffold offers a three-dimensional (3D) structural support along with a nano-textured surfaces consist of a fibrous network in order to deliver cell adhesion and signaling. A scaffold is required, until the tissue is entirely regenerated or restored, to act as a temporary ingrowth template for cell proliferation and extracellular matrix (ECM) deposition. This review depicts some of the most significant three dimensional structure materials used as scaffolds in various tissue engineering application fields currently being employed to mimic in vivo features. Accordingly, some of the researchers' attempts have envisioned utilizing graphene for the fabrication of porous and flexible 3D scaffolds. The main focus of this paper is to evaluate the topographical and topological optimization of scaffolds for tissue engineering applications in order to improve scaffolds' mechanical performances. - Highlights: • The in vivo tissue scaffold offers a three-dimensional structural support. • Graphene can be used for fabrication of porous and flexible 3D scaffold. • Topological optimization improves scaffolds' mechanical performances.

  8. Nanoceramics on osteoblast proliferation and differentiation in bone tissue engineering.

    Science.gov (United States)

    Sethu, Sai Nievethitha; Namashivayam, Subhapradha; Devendran, Saravanan; Nagarajan, Selvamurugan; Tsai, Wei-Bor; Narashiman, Srinivasan; Ramachandran, Murugesan; Ambigapathi, Moorthi

    2017-05-01

    Bone, a highly dynamic connective tissue, consist of a bioorganic phase comprising osteogenic cells and proteins which lies over an inorganic phase predominantly made of CaPO 4 (biological apatite). Injury to bone can be due to mechanical, metabolic or inflammatory agents also owing pathological conditions like fractures, osteomyelitis, osteolysis or cysts may arise in enameloid, chondroid, cementum, or chondroid bone which forms the intermediate tissues of the body. Bone tissue engineering (BTE) applies bioactive scaffolds, host cells and osteogenic signals for restoring damaged or diseased tissues. Various bioceramics used in BTE can be bioactive (like glass ceramics and hydroxyapatite bioactive glass), bioresorbable (like tricalcium phosphates) or bioinert (like zirconia and alumina). Limiting the size of these materials to nano-scale has resulted in a higher surface area to volume ratio thereby improving multi-functionality, solubility, surface catalytic activity, high heat and electrical conductivity. Nanoceramics have been found to induce osteoconduction, osteointegration, osteogenesis and osteoinduction. The present review aims at summarizing the interactions of nanoceramics and osteoblast/stem cells for promoting the proliferation and differentiation of the osteoblast cells by nanoceramics as superior bone substitutes in bone tissue engineering applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. The influence of topography on tissue engineering perspective

    Energy Technology Data Exchange (ETDEWEB)

    Mansouri, Negar [Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); SamiraBagheri, E-mail: samira_bagheri@edu.um.my [Nanotechnology & Catalysis Research Centre (NANOCAT), IPS Building, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2016-04-01

    The actual in vivo tissue scaffold offers a three-dimensional (3D) structural support along with a nano-textured surfaces consist of a fibrous network in order to deliver cell adhesion and signaling. A scaffold is required, until the tissue is entirely regenerated or restored, to act as a temporary ingrowth template for cell proliferation and extracellular matrix (ECM) deposition. This review depicts some of the most significant three dimensional structure materials used as scaffolds in various tissue engineering application fields currently being employed to mimic in vivo features. Accordingly, some of the researchers' attempts have envisioned utilizing graphene for the fabrication of porous and flexible 3D scaffolds. The main focus of this paper is to evaluate the topographical and topological optimization of scaffolds for tissue engineering applications in order to improve scaffolds' mechanical performances. - Highlights: • The in vivo tissue scaffold offers a three-dimensional structural support. • Graphene can be used for fabrication of porous and flexible 3D scaffold. • Topological optimization improves scaffolds' mechanical performances.

  10. Silk scaffolds in bone tissue engineering: An overview.

    Science.gov (United States)

    Bhattacharjee, Promita; Kundu, Banani; Naskar, Deboki; Kim, Hae-Won; Maiti, Tapas K; Bhattacharya, Debasis; Kundu, Subhas C

    2017-11-01

    Bone tissue plays multiple roles in our day-to-day functionality. The frequency of accidental bone damage and disorder is increasing worldwide. Moreover, as the world population continues to grow, the percentage of the elderly population continues to grow, which results in an increased number of bone degenerative diseases. This increased elderly population pushes the need for artificial bone implants that specifically employ biocompatible materials. A vast body of literature is available on the use of silk in bone tissue engineering. The current work presents an overview of this literature from materials and fabrication perspective. As silk is an easy-to-process biopolymer; this allows silk-based biomaterials to be molded into diverse forms and architectures, which further affects the degradability. This makes silk-based scaffolds suitable for treating a variety of bone reconstruction and regeneration objectives. Silk surfaces offer active sites that aid the mineralization and/or bonding of bioactive molecules that facilitate bone regeneration. Silk has also been blended with a variety of polymers and minerals to enhance its advantageous properties or introduce new ones. Several successful works, both in vitro and in vivo, have been reported using silk-based scaffolds to regenerate bone tissues or other parts of the skeletal system such as cartilage and ligament. A growing trend is observed toward the use of mineralized and nanofibrous scaffolds along with the development of technology that allows to control scaffold architecture, its biodegradability and the sustained releasing property of scaffolds. Further development of silk-based scaffolds for bone tissue engineering, taking them up to and beyond the stage of human trials, is hoped to be achieved in the near future through a cross-disciplinary coalition of tissue engineers, material scientists and manufacturing engineers. The state-of-art of silk biomaterials in bone tissue engineering, covering their wide

  11. Esophageal tissue engineering: A new approach for esophageal replacement

    Institute of Scientific and Technical Information of China (English)

    Giorgia Totonelli; Panagiotis Maghsoudlou; Jonathan M Fishman; Giuseppe Orlando; Tahera Ansari; Paul Sibbons; Martin A Birchall

    2012-01-01

    A number of congenital and acquired disorders require esophageal tissue replacement.Various surgical techniques,such as gastric and colonic interposition,are standards of treatment,but frequently complicated by stenosis and other problems.Regenerative medicine approaches facilitate the use of biological constructs to replace or regenerate normal tissue function.We review the literature of esophageal tissue engineering,discuss its implications,compare the methodologies that have been employed and suggest possible directions for the future.Medline,Embase,the Cochrane Library,National Research Register and ClinicalTrials.gov databases were searched with the following search terms:stem cell and esophagus,esophageal replacement,esophageal tissue engineering,esophageal substitution.Reference lists of papers identified were also examined and experts in this field contacted for further information.All full-text articles in English of all potentially relevant abstracts were reviewed.Tissue engineering has involved acellular scaffolds that were either transplanted with the aim of being repopulated by host cells or seeded prior to transplantation.When acellular scaffolds were used to replace patch and short tubular defects they allowed epithelial and partial muscular migration whereas when employed for long tubular defects the results were poor leading to an increased rate of stenosis and mortality.Stenting has been shown as an effective means to reduce stenotic changes and promote cell migration,whilst omental wrapping to induce vascularization of the construct has an uncertain benefit.Decellularized matrices have been recently suggested as the optimal choice for scaffolds,but smart polymers that will incorporate signalling to promote cell-scaffold interaction may provide a more reproducible and available solution.Results in animal models that have used seeded scaffolds strongly suggest that seeding of both muscle and epithelial cells on scaffolds prior to implantation is a

  12. Braided nanofibrous scaffold for tendon and ligament tissue engineering.

    Science.gov (United States)

    Barber, John G; Handorf, Andrew M; Allee, Tyler J; Li, Wan-Ju

    2013-06-01

    Tendon and ligament (T/L) injuries present an important clinical challenge due to their intrinsically poor healing capacity. Natural healing typically leads to the formation of scar-like tissue possessing inferior mechanical properties. Therefore, tissue engineering has gained considerable attention as a promising alternative for T/L repair. In this study, we fabricated braided nanofibrous scaffolds (BNFSs) as a potential construct for T/L tissue engineering. Scaffolds were fabricated by braiding 3, 4, or 5 aligned bundles of electrospun poly(L-lactic acid) nanofibers, thus introducing an additional degree of flexibility to alter the mechanical properties of individual scaffolds. We observed that the Young's modulus, yield stress, and ultimate stress were all increased in the 3-bundle compared to the 4- and 5-bundle BNFSs. Interestingly, acellular BNFSs mimicked the normal tri-phasic mechanical behavior of native tendon and ligament (T/L) during loading. When cultured on the BNFSs, human mesenchymal stem cells (hMSCs) adhered, aligned parallel to the length of the nanofibers, and displayed a concomitant realignment of the actin cytoskeleton. In addition, the BNFSs supported hMSC proliferation and induced an upregulation in the expression of key pluripotency genes. When cultured on BNFSs in the presence of tenogenic growth factors and stimulated with cyclic tensile strain, hMSCs differentiated into the tenogenic lineage, evidenced most notably by the significant upregulation of Scleraxis gene expression. These results demonstrate that BNFSs provide a versatile scaffold capable of supporting both stem cell expansion and differentiation for T/L tissue engineering applications.

  13. Porous magnesium-based scaffolds for tissue engineering

    International Nuclear Information System (INIS)

    Yazdimamaghani, Mostafa; Razavi, Mehdi; Vashaee, Daryoosh; Moharamzadeh, Keyvan; Boccaccini, Aldo R.; Tayebi, Lobat

    2017-01-01

    Significant amount of research efforts have been dedicated to the development of scaffolds for tissue engineering. Although at present most of the studies are focused on non-load bearing scaffolds, many scaffolds have also been investigated for hard tissue repair. In particular, metallic scaffolds are being studied for hard tissue engineering due to their suitable mechanical properties. Several biocompatible metallic materials such as stainless steels, cobalt alloys, titanium alloys, tantalum, nitinol and magnesium alloys have been commonly employed as implants in orthopedic and dental treatments. They are often used to replace and regenerate the damaged bones or to provide structural support for healing bone defects. Among the common metallic biomaterials, magnesium (Mg) and a number of its alloys are effective because of their mechanical properties close to those of human bone, their natural ionic content that may have important functional roles in physiological systems, and their in vivo biodegradation characteristics in body fluids. Due to such collective properties, Mg based alloys can be employed as biocompatible, bioactive, and biodegradable scaffolds for load-bearing applications. Recently, porous Mg and Mg alloys have been specially suggested as metallic scaffolds for bone tissue engineering. With further optimization of the fabrication techniques, porous Mg is expected to make a promising hard substitute scaffold. The present review covers research conducted on the fabrication techniques, surface modifications, properties and biological characteristics of Mg alloys based scaffolds. Furthermore, the potential applications, challenges and future trends of such degradable metallic scaffolds are discussed in detail. - Highlights: • A porous 3D material provides the required pathways for cells to grow, proliferate, and differentiate • Porous magnesium and Mg alloys could be used as load-bearing scaffolds • Porous magnesium and Mg alloys are good

  14. Porous magnesium-based scaffolds for tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Yazdimamaghani, Mostafa [School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078 (United States); Razavi, Mehdi [Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304 (United States); Vashaee, Daryoosh [Electrical and Computer Engineering Department, North Carolina State University, Raleigh, NC 27606 (United States); Moharamzadeh, Keyvan [School of Clinical Dentistry, University of Sheffield, Claremont Crescent, Sheffield (United Kingdom); Marquette University School of Dentistry, Milwaukee, WI 53233 (United States); Boccaccini, Aldo R. [Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen (Germany); Tayebi, Lobat, E-mail: lobat.tayebi@marquette.edu [Marquette University School of Dentistry, Milwaukee, WI 53233 (United States)

    2017-02-01

    Significant amount of research efforts have been dedicated to the development of scaffolds for tissue engineering. Although at present most of the studies are focused on non-load bearing scaffolds, many scaffolds have also been investigated for hard tissue repair. In particular, metallic scaffolds are being studied for hard tissue engineering due to their suitable mechanical properties. Several biocompatible metallic materials such as stainless steels, cobalt alloys, titanium alloys, tantalum, nitinol and magnesium alloys have been commonly employed as implants in orthopedic and dental treatments. They are often used to replace and regenerate the damaged bones or to provide structural support for healing bone defects. Among the common metallic biomaterials, magnesium (Mg) and a number of its alloys are effective because of their mechanical properties close to those of human bone, their natural ionic content that may have important functional roles in physiological systems, and their in vivo biodegradation characteristics in body fluids. Due to such collective properties, Mg based alloys can be employed as biocompatible, bioactive, and biodegradable scaffolds for load-bearing applications. Recently, porous Mg and Mg alloys have been specially suggested as metallic scaffolds for bone tissue engineering. With further optimization of the fabrication techniques, porous Mg is expected to make a promising hard substitute scaffold. The present review covers research conducted on the fabrication techniques, surface modifications, properties and biological characteristics of Mg alloys based scaffolds. Furthermore, the potential applications, challenges and future trends of such degradable metallic scaffolds are discussed in detail. - Highlights: • A porous 3D material provides the required pathways for cells to grow, proliferate, and differentiate • Porous magnesium and Mg alloys could be used as load-bearing scaffolds • Porous magnesium and Mg alloys are good

  15. Hydrogel microfabrication technology toward three dimensional tissue engineering

    Directory of Open Access Journals (Sweden)

    Fumiki Yanagawa

    2016-03-01

    Full Text Available The development of biologically relevant three-dimensional (3D tissue constructs is essential for the alternative methods of organ transplantation in regenerative medicine, as well as the development of improved drug discovery assays. Recent technological advances in hydrogel microfabrication, such as micromolding, 3D bioprinting, photolithography, and stereolithography, have led to the production of 3D tissue constructs that exhibit biological functions with precise 3D microstructures. Furthermore, microfluidics technology has enabled the development of the perfusion culture of 3D tissue constructs with vascular networks. In this review, we present these hydrogel microfabrication technologies for the in vitro reconstruction and cultivation of 3D tissues. Additionally, we discuss current challenges and future perspectives of 3D tissue engineering.

  16. Fabrication of scaffolds in tissue engineering: A review

    Science.gov (United States)

    Zhao, Peng; Gu, Haibing; Mi, Haoyang; Rao, Chengchen; Fu, Jianzhong; Turng, Lih-sheng

    2018-03-01

    Tissue engineering (TE) is an integrated discipline that involves engineering and natural science in the development of biological materials to replace, repair, and improve the function of diseased or missing tissues. Traditional medical and surgical treatments have been reported to have side effects on patients caused by organ necrosis and tissue loss. However, engineered tissues and organs provide a new way to cure specific diseases. Scaffold fabrication is an important step in the TE process. This paper summarizes and reviews the widely used scaffold fabrication methods, including conventional methods, electrospinning, three-dimensional printing, and a combination of molding techniques. Furthermore, the differences among the properties of tissues, such as pore size and distribution, porosity, structure, and mechanical properties, are elucidated and critically reviewed. Some studies that combine two or more methods are also reviewed. Finally, this paper provides some guidance and suggestions for the future of scaffold fabrication.

  17. Advancing biomaterials of human origin for tissue engineering

    Science.gov (United States)

    Chen, Fa-Ming; Liu, Xiaohua

    2015-01-01

    Biomaterials have played an increasingly prominent role in the success of biomedical devices and in the development of tissue engineering, which seeks to unlock the regenerative potential innate to human tissues/organs in a state of deterioration and to restore or reestablish normal bodily function. Advances in our understanding of regenerative biomaterials and their roles in new tissue formation can potentially open a new frontier in the fast-growing field of regenerative medicine. Taking inspiration from the role and multi-component construction of native extracellular matrices (ECMs) for cell accommodation, the synthetic biomaterials produced today routinely incorporate biologically active components to define an artificial in vivo milieu with complex and dynamic interactions that foster and regulate stem cells, similar to the events occurring in a natural cellular microenvironment. The range and degree of biomaterial sophistication have also dramatically increased as more knowledge has accumulated through materials science, matrix biology and tissue engineering. However, achieving clinical translation and commercial success requires regenerative biomaterials to be not only efficacious and safe but also cost-effective and convenient for use and production. Utilizing biomaterials of human origin as building blocks for therapeutic purposes has provided a facilitated approach that closely mimics the critical aspects of natural tissue with regard to its physical and chemical properties for the orchestration of wound healing and tissue regeneration. In addition to directly using tissue transfers and transplants for repair, new applications of human-derived biomaterials are now focusing on the use of naturally occurring biomacromolecules, decellularized ECM scaffolds and autologous preparations rich in growth factors/non-expanded stem cells to either target acceleration/magnification of the body's own repair capacity or use nature's paradigms to create new tissues for

  18. Silk fibroin as biomaterial for bone tissue engineering.

    Science.gov (United States)

    Melke, Johanna; Midha, Swati; Ghosh, Sourabh; Ito, Keita; Hofmann, Sandra

    2016-02-01

    Silk fibroin (SF) is a fibrous protein which is produced mainly by silkworms and spiders. Its unique mechanical properties, tunable biodegradation rate and the ability to support the differentiation of mesenchymal stem cells along the osteogenic lineage, have made SF a favorable scaffold material for bone tissue engineering. SF can be processed into various scaffold forms, combined synergistically with other biomaterials to form composites and chemically modified, which provides an impressive toolbox and allows SF scaffolds to be tailored to specific applications. This review discusses and summarizes recent advancements in processing SF, focusing on different fabrication and functionalization methods and their application to grow bone tissue in vitro and in vivo. Potential areas for future research, current challenges, uncertainties and gaps in knowledge are highlighted. Silk fibroin is a natural biomaterial with remarkable biomedical and mechanical properties which make it favorable for a broad range of bone tissue engineering applications. It can be processed into different scaffold forms, combined synergistically with other biomaterials to form composites and chemically modified which provides a unique toolbox and allows silk fibroin scaffolds to be tailored to specific applications. This review discusses and summarizes recent advancements in processing silk fibroin, focusing on different fabrication and functionalization methods and their application to grow bone tissue in vitro and in vivo. Potential areas for future research, current challenges, uncertainties and gaps in knowledge are highlighted. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Osteochondral tissue engineering: scaffolds, stem cells and applications

    Science.gov (United States)

    Nooeaid, Patcharakamon; Salih, Vehid; Beier, Justus P; Boccaccini, Aldo R

    2012-01-01

    Osteochondral tissue engineering has shown an increasing development to provide suitable strategies for the regeneration of damaged cartilage and underlying subchondral bone tissue. For reasons of the limitation in the capacity of articular cartilage to self-repair, it is essential to develop approaches based on suitable scaffolds made of appropriate engineered biomaterials. The combination of biodegradable polymers and bioactive ceramics in a variety of composite structures is promising in this area, whereby the fabrication methods, associated cells and signalling factors determine the success of the strategies. The objective of this review is to present and discuss approaches being proposed in osteochondral tissue engineering, which are focused on the application of various materials forming bilayered composite scaffolds, including polymers and ceramics, discussing the variety of scaffold designs and fabrication methods being developed. Additionally, cell sources and biological protein incorporation methods are discussed, addressing their interaction with scaffolds and highlighting the potential for creating a new generation of bilayered composite scaffolds that can mimic the native interfacial tissue properties, and are able to adapt to the biological environment. PMID:22452848

  20. Nanocarbons in Electrospun Polymeric Nanomats for Tissue Engineering: A Review

    Directory of Open Access Journals (Sweden)

    Roberto Scaffaro

    2017-02-01

    Full Text Available Electrospinning is a versatile process technology, exploited for the production of fibers with varying diameters, ranging from nano- to micro-scale, particularly useful for a wide range of applications. Among these, tissue engineering is particularly relevant to this technology since electrospun fibers offer topological structure features similar to the native extracellular matrix, thus providing an excellent environment for the growth of cells and tissues. Recently, nanocarbons have been emerging as promising fillers for biopolymeric nanofibrous scaffolds. In fact, they offer interesting physicochemical properties due to their small size, large surface area, high electrical conductivity and ability to interface/interact with the cells/tissues. Nevertheless, their biocompatibility is currently under debate and strictly correlated to their surface characteristics, in terms of chemical composition, hydrophilicity and roughness. Among the several nanofibrous scaffolds prepared by electrospinning, biopolymer/nanocarbons systems exhibit huge potential applications, since they combine the features of the matrix with those determined by the nanocarbons, such as conductivity and improved bioactivity. Furthermore, combining nanocarbons and electrospinning allows designing structures with engineered patterns at both nano- and microscale level. This article presents a comprehensive review of various types of electrospun polymer-nanocarbon currently used for tissue engineering applications. Furthermore, the differences among graphene, carbon nanotubes, nanodiamonds and fullerenes and their effect on the ultimate properties of the polymer-based nanofibrous scaffolds is elucidated and critically reviewed.

  1. [Construction of injectable tissue engineered nucleus pulposus in vitro].

    Science.gov (United States)

    Tian, Huake; Wang, Jian; Chen, Chao; Liu, Jie; Zhou, Yue

    2009-02-01

    To investigate the feasibility of using thermo-sensitive chitosan hydrogen as a scaffold to construct tissue engineered injectable nucleus pulposus (NP). Three-month-old neonatal New Zealand rabbits (male or female) weighing 150-200 g were selected to isolate and culture NP cells. The thermo-sensitive chitosan hydrogel scaffold was made of chitosan, disodium beta-glycerophosphate and hydroxyethyl cellulose. Its physical properties and gross condition were observed. The tissue engineered NP was constructed by compounding the scaffold and rabbit NP cells. Then, the viability of NP cells in the chitosan hydrogel was observed 2 days after compound culture and the growth condition of NP cells on the scaffold was observed by SEM 7 days after compound culture. NP cells went through histology and immunohistochemistry detection and their secretion of aggrecan and expression of Col II mRNA were analyzed by RT-PCR 21 days after compound culture. The thermo-sensitive chitosan hydrogel was liquid at room temperature and solidified into gel at 37 degrees C (15 minutes) due to crosslinking reaction. Acridine orange-propidium iodide staining showed that the viability rate of NP cells in chitosan hydrogel was above 90%. Scanning electron microscope observation demonstrated that the NP cells were distributed in the reticulate scaffold, with ECM on their surfaces. The results of HE, toluidine blue, safranin O and histology and immunohistochemistry staining confirmed that the NP cells in chitosan hydrogel were capable of producing ECM. RT-PCR results showed that the secretion of Col II and aggrecan mRNA in NP cells cultured three-dimensionally by chitosan hydrogen scaffold were 0.631 +/- 0.064 and 0.832 +/- 0.052, respectively, showing more strengths of producing matrix than that of monolayer culture (0.528 +/- 0.039, 0.773 +/- 0.046) with a significant difference (P compound culture, and may be a potential NP cells carrier for tissue engineered NP.

  2. Chitosan for gene delivery and orthopedic tissue engineering applications.

    Science.gov (United States)

    Raftery, Rosanne; O'Brien, Fergal J; Cryan, Sally-Ann

    2013-05-15

    Gene therapy involves the introduction of foreign genetic material into cells in order exert a therapeutic effect. The application of gene therapy to the field of orthopaedic tissue engineering is extremely promising as the controlled release of therapeutic proteins such as bone morphogenetic proteins have been shown to stimulate bone repair. However, there are a number of drawbacks associated with viral and synthetic non-viral gene delivery approaches. One natural polymer which has generated interest as a gene delivery vector is chitosan. Chitosan is biodegradable, biocompatible and non-toxic. Much of the appeal of chitosan is due to the presence of primary amine groups in its repeating units which become protonated in acidic conditions. This property makes it a promising candidate for non-viral gene delivery. Chitosan-based vectors have been shown to transfect a number of cell types including human embryonic kidney cells (HEK293) and human cervical cancer cells (HeLa). Aside from its use in gene delivery, chitosan possesses a range of properties that show promise in tissue engineering applications; it is biodegradable, biocompatible, has anti-bacterial activity, and, its cationic nature allows for electrostatic interaction with glycosaminoglycans and other proteoglycans. It can be used to make nano- and microparticles, sponges, gels, membranes and porous scaffolds. Chitosan has also been shown to enhance mineral deposition during osteogenic differentiation of MSCs in vitro. The purpose of this review is to critically discuss the use of chitosan as a gene delivery vector with emphasis on its application in orthopedic tissue engineering.

  3. Preparation of Laponite Bioceramics for Potential Bone Tissue Engineering Applications

    Science.gov (United States)

    Li, Kai; Ju, Yaping; Li, Jipeng; Zhang, Yongxing; Li, Jinhua; Liu, Xuanyong; Shi, Xiangyang; Zhao, Qinghua

    2014-01-01

    We report a facile approach to preparing laponite (LAP) bioceramics via sintering LAP powder compacts for bone tissue engineering applications. The sintering behavior and mechanical properties of LAP compacts under different temperatures, heating rates, and soaking times were investigated. We show that LAP bioceramic with a smooth and porous surface can be formed at 800°C with a heating rate of 5°C/h for 6 h under air. The formed LAP bioceramic was systematically characterized via different methods. Our results reveal that the LAP bioceramic possesses an excellent surface hydrophilicity and serum absorption capacity, and good cytocompatibility and hemocompatibility as demonstrated by resazurin reduction assay of rat mesenchymal stem cells (rMSCs) and hemolytic assay of pig red blood cells, respectively. The potential bone tissue engineering applicability of LAP bioceramic was explored by studying the surface mineralization behavior via soaking in simulated body fluid (SBF), as well as the surface cellular response of rMSCs. Our results suggest that LAP bioceramic is able to induce hydroxyapatite deposition on its surface when soaked in SBF and rMSCs can proliferate well on the LAP bioceramic surface. Most strikingly, alkaline phosphatase activity together with alizarin red staining results reveal that the produced LAP bioceramic is able to induce osteoblast differentiation of rMSCs in growth medium without any inducing factors. Finally, in vivo animal implantation, acute systemic toxicity test and hematoxylin and eosin (H&E)-staining data demonstrate that the prepared LAP bioceramic displays an excellent biosafety and is able to heal the bone defect. Findings from this study suggest that the developed LAP bioceramic holds a great promise for treating bone defects in bone tissue engineering. PMID:24955961

  4. Approaches to improve angiogenesis in tissue-engineered skin.

    Science.gov (United States)

    Sahota, Parbinder S; Burn, J Lance; Brown, Nicola J; MacNeil, Sheila

    2004-01-01

    A problem with tissue-engineered skin is clinical failure due to delays in vascularization. The aim of this study was to explore a number of simple strategies to improve angiogenesis/vascularization using a tissue-engineered model of skin to which small vessel human dermal microvascular endothelial cells were added. For the majority of these studies, a modified Guirguis chamber was used, which allowed the investigation of several variables within the same experiment using the same human dermis; cell type, angiogenic growth factors, the influence of keratinocytes and fibroblasts, mechanical penetration of the human dermis, the site of endothelial cell addition, and the influence of hypoxia were all examined. A qualitative scoring system was used to assess the impact of these factors on the penetration of endothelial cells throughout the dermis. Similar results were achieved using freshly isolated small vessel human dermal microvascular endothelial cells or an endothelial cell line and a minimum cell seeding density was identified. Cell penetration was not influenced by the addition of angiogenic growth factors (vascular endothelial growth factor and basic fibroblast growth factor); similarly, including epidermal keratinocytes or dermal fibroblasts did not encourage endothelial cell entry, and neither did mechanical introduction of holes throughout the dermis. Two factors were identified that significantly enhanced endothelial cell penetration into the dermis: hypoxia and the site of endothelial cell addition. Endothelial cells added from the papillary surface entered into the dermis much more effectively than when cells were added to the reticular surface of the dermis. We conclude that this model is valuable in improving our understanding of how to enhance vascularization of tissue-engineered grafts.

  5. Regenerative endodontics and tissue engineering: what the future holds?

    Science.gov (United States)

    Goodis, Harold E; Kinaia, Bassam Michael; Kinaia, Atheel M; Chogle, Sami M A

    2012-07-01

    The work performed by researchers in regenerative endodontics and tissue engineering over the last decades has been superb; however, many questions remain to be answered. The basic biologic mechanisms must be elucidated that will allow the development of dental pulp and dentin in situ. Stress must be placed on the many questions that will lead to the design of effective, safe treatment options and therapies. This article discusses those questions, the answers to which may become the future of regenerative endodontics. The future remains bright, but proper support and patience are required. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Synthesis of electroactive tetraaniline grafted polyethylenimine for tissue engineering

    Science.gov (United States)

    Dong, Shilei; Han, Lu; Cai, Muhang; Li, Luhai; Wei, Yan

    2015-07-01

    Tetraaniline grafted polyethylenimine (AT-PEI) was successfully synthesized in this study. Proton Nuclear Magnetic Resonance (1H NMR) Spectroscopy was used to determine the structure of carboxyl-capped aniline tetramer (AT-COOH) and AT-PEI. UV-Vis spectroscopy and Fourier transform infrared (FT-IR) spectroscopy were employed to characterize the absorption spectrum of the obtained AT-PEI samples. The morphology of AT-PEI copolymers in aqueous solution was determined by Scanning electron microscope (SEM). Moreover, AT-PEI copolymers demonstrated excellent solubility in aqueous solution and possessed electroactivity by cyclic voltammogram (CV) curves, which showed its potential application in the field of tissue engineering.

  7. The influence of environmental factors on bone tissue engineering.

    Science.gov (United States)

    Szpalski, Caroline; Sagebin, Fabio; Barbaro, Marissa; Warren, Stephen M

    2013-05-01

    Bone repair and regeneration are dynamic processes that involve a complex interplay between the substrate, local and systemic cells, and the milieu. Although each constituent plays an integral role in faithfully recreating the skeleton, investigators have long focused their efforts on scaffold materials and design, cytokine and hormone administration, and cell-based therapies. Only recently have the intangible aspects of the milieu received their due attention. In this review, we highlight the important influence of environmental factors on bone tissue engineering. Copyright © 2012 Wiley Periodicals, Inc.

  8. Nanoscale biomaterial interface modification for advanced tissue engineering applications

    International Nuclear Information System (INIS)

    Safonov, V; Zykova, A; Smolik, J; Rogovska, R; Donkov, N; Goltsev, A; Dubrava, T; Rassokha, I; Georgieva, V

    2012-01-01

    Recently, various stem cells, including mesenchymal stem cells (MSCs), have been found to have considerable potential for application in tissue engineering and future advanced therapies due to their biological capability to differentiate into specific lineages. Modified surface properties, such as composition, nano-roughness and wettability, affect the most important processes at the biomaterial interface. The aim of the present is work is to study the stem cells' (MSCs) adhesive potential, morphology, phenotypical characteristics in in vitro tests, and to distinguish betwen the different factors influencing the cell/biomaterial interaction, such as nano-topography, surface chemistry and surface free energy.

  9. Tissue Engineering the Cornea: The Evolution of RAFT

    Science.gov (United States)

    Levis, Hannah J.; Kureshi, Alvena K.; Massie, Isobel; Morgan, Louise; Vernon, Amanda J.; Daniels, Julie T.

    2015-01-01

    Corneal blindness affects over 10 million people worldwide and current treatment strategies often involve replacement of the defective layer with healthy tissue. Due to a worldwide donor cornea shortage and the absence of suitable biological scaffolds, recent research has focused on the development of tissue engineering techniques to create alternative therapies. This review will detail how we have refined the simple engineering technique of plastic compression of collagen to a process we now call Real Architecture for 3D Tissues (RAFT). The RAFT production process has been standardised, and steps have been taken to consider Good Manufacturing Practice compliance. The evolution of this process has allowed us to create biomimetic epithelial and endothelial tissue equivalents suitable for transplantation and ideal for studying cell-cell interactions in vitro. PMID:25809689

  10. Biomimetic Materials and Fabrication Approaches for Bone Tissue Engineering.

    Science.gov (United States)

    Kim, Hwan D; Amirthalingam, Sivashanmugam; Kim, Seunghyun L; Lee, Seunghun S; Rangasamy, Jayakumar; Hwang, Nathaniel S

    2017-12-01

    Various strategies have been explored to overcome critically sized bone defects via bone tissue engineering approaches that incorporate biomimetic scaffolds. Biomimetic scaffolds may provide a novel platform for phenotypically stable tissue formation and stem cell differentiation. In recent years, osteoinductive and inorganic biomimetic scaffold materials have been optimized to offer an osteo-friendly microenvironment for the osteogenic commitment of stem cells. Furthermore, scaffold structures with a microarchitecture design similar to native bone tissue are necessary for successful bone tissue regeneration. For this reason, various methods for fabricating 3D porous structures have been developed. Innovative techniques, such as 3D printing methods, are currently being utilized for optimal host stem cell infiltration, vascularization, nutrient transfer, and stem cell differentiation. In this progress report, biomimetic materials and fabrication approaches that are currently being utilized for biomimetic scaffold design are reviewed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Intrinsic Osteoinductivity of Porous Titanium Scaffold for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Maryam Tamaddon

    2017-01-01

    Full Text Available Large bone defects and nonunions are serious complications that are caused by extensive trauma or tumour. As traditional therapies fail to repair these critical-sized defects, tissue engineering scaffolds can be used to regenerate the damaged tissue. Highly porous titanium scaffolds, produced by selective laser sintering with mechanical properties in range of trabecular bone (compressive strength 35 MPa and modulus 73 MPa, can be used in these orthopaedic applications, if a stable mechanical fixation is provided. Hydroxyapatite coatings are generally considered essential and/or beneficial for bone formation; however, debonding of the coatings is one of the main concerns. We hypothesised that the titanium scaffolds have an intrinsic potential to induce bone formation without the need for a hydroxyapatite coating. In this paper, titanium scaffolds coated with hydroxyapatite using electrochemical method were fabricated and osteoinductivity of coated and noncoated scaffolds was compared in vitro. Alizarin Red quantification confirmed osteogenesis independent of coating. Bone formation and ingrowth into the titanium scaffolds were evaluated in sheep stifle joints. The examinations after 3 months revealed 70% bone ingrowth into the scaffold confirming its osteoinductive capacity. It is shown that the developed titanium scaffold has an intrinsic capacity for bone formation and is a suitable scaffold for bone tissue engineering.

  12. Gel spinning of silk tubes for tissue engineering

    Science.gov (United States)

    Lovett, Michael; Cannizzaro, Christopher; Vunjak-Novakovic, Gordana; Kaplan, David L.

    2011-01-01

    Tubular vessels for tissue engineering are typically fabricated using a molding, dipping, or electrospinning technique. While these techniques provide some control over inner and outer diameters of the tube, they lack the ability to align the polymers or fibers of interest throughout the tube. This is an important aspect of biomaterial composite structure and function for mechanical and biological impact of tissue outcomes. We present a novel aqueous process system to spin tubes from biopolymers and proteins such as silk fibroin. Using silk as an example, this method of winding an aqueous solution around a reciprocating rotating mandrel offers substantial improvement in the control of the tube properties, specifically with regard to winding pattern, tube porosity, and composite features. Silk tube properties are further controlled via different post-spinning processing mechanisms such as methanol-treatment, air-drying, and lyophilization. This approach to tubular scaffold manufacture offers numerous tissue engineering applications such as complex composite biomaterial matrices, blood vessel grafts and nerve guides, among others. PMID:18801570

  13. Tissue Engineering Bionanocomposites Based on Poly(propylene fumarate

    Directory of Open Access Journals (Sweden)

    Ana M. Diez-Pascual

    2017-06-01

    Full Text Available Poly(propylene fumarate (PPF is a linear and unsaturated copolyester based on fumaric acid that has been widely investigated for tissue engineering applications in recent years due to its tailorable mechanical performance, adjustable biodegradability and exceptional biocompatibility. In order to improve its mechanical properties and spread its range of practical applications, novel approaches need to be developed such as the incorporation of fillers or polymer blending. Thus, PPF-based bionanocomposites reinforced with different amounts of single-walled carbon nanotubes (SWCNT, multi-walled carbon nanotubes (MWCNT, graphene oxide nanoribbons (GONR, graphite oxide nanoplatelets (GONP, polyethylene glycol-functionalized graphene oxide (PEG-GO, polyethylene glycol-grafted boron nitride nanotubes (PEG-g-BNNTs and hydroxyapatite (HA nanoparticles were synthesized via sonication and thermal curing, and their morphology, biodegradability, cytotoxicity, thermal, rheological, mechanical and antibacterial properties were investigated. An increase in the level of hydrophilicity, biodegradation rate, stiffness and strength was found upon increasing nanofiller loading. The nanocomposites retained enough rigidity and strength under physiological conditions to provide effective support for bone tissue formation, showed antibacterial activity against Gram-positive and Gram-negative bacteria, and did not induce toxicity on human dermal fibroblasts. These novel biomaterials demonstrate great potential to be used for bone tissue engineering applications.

  14. Uterine Tissue Engineering and the Future of Uterus Transplantation.

    Science.gov (United States)

    Hellström, Mats; Bandstein, Sara; Brännström, Mats

    2017-07-01

    The recent successful births following live donor uterus transplantation are proof-of-concept that absolute uterine factor infertility is a treatable condition which affects several hundred thousand infertile women world-wide due to a dysfunctional uterus. This strategy also provides an alternative to gestational surrogate motherhood which is not practiced in most countries due to ethical, religious or legal reasons. The live donor surgery involved in uterus transplantation takes more than 10 h and is then followed by years of immunosuppressive medication to prevent uterine rejection. Immunosuppression is associated with significant adverse side effects, including nephrotoxicity, increased risk of serious infections, and diabetes. Thus, the development of alternative approaches to treat absolute uterine factor infertility would be desirable. This review discusses tissue engineering principles in general, but also details strategies on how to create a bioengineered uterus that could be used for transplantation, without risky donor surgery and any need for immunosuppression. We discuss scaffolds derived from decellularized organs/tissues which may be recellularized using various types of autologous somatic/stem cells, in particular for uterine tissue engineering. It further highlights the hurdles that lay ahead in developing an alternative to an allogeneic source for uterus transplantation.

  15. Overcoming scarring in the urethra: Challenges for tissue engineering

    Directory of Open Access Journals (Sweden)

    Abdulmuttalip Simsek

    2018-04-01

    Full Text Available Urethral stricture disease is increasingly common occurring in about 1% of males over the age of 55. The stricture tissue is rich in myofibroblasts and multi-nucleated giant cells which are thought to be related to stricture formation and collagen synthesis. An increase in collagen is associated with the loss of the normal vasculature of the normal urethra. The actual incidence differs based on worldwide populations, geography, and income. The stricture aetiology, location, length and patient's age and comorbidity are important in deciding the course of treatment. In this review we aim to summarise the existing knowledge of the aetiology of urethral strictures, review current treatment regimens, and present the challenges of using tissue-engineered buccal mucosa (TEBM to repair scarring of the urethra. In asking this question we are also mindful that recurrent fibrosis occurs in other tissues—how can we learn from these other pathologies? Keywords: Urethral strictures, Fibrosis, Tissue-engineered buccal mucosa, Augmentation urethroplasty

  16. Tissue Engineering Strategies for Myocardial Regeneration: Acellular Versus Cellular Scaffolds?

    Science.gov (United States)

    Domenech, Maribella; Polo-Corrales, Lilliana; Ramirez-Vick, Jaime E; Freytes, Donald O

    2016-12-01

    Heart disease remains one of the leading causes of death in industrialized nations with myocardial infarction (MI) contributing to at least one fifth of the reported deaths. The hypoxic environment eventually leads to cellular death and scar tissue formation. The scar tissue that forms is not mechanically functional and often leads to myocardial remodeling and eventual heart failure. Tissue engineering and regenerative medicine principles provide an alternative approach to restoring myocardial function by designing constructs that will restore the mechanical function of the heart. In this review, we will describe the cellular events that take place after an MI and describe current treatments. We will also describe how biomaterials, alone or in combination with a cellular component, have been used to engineer suitable myocardium replacement constructs and how new advanced culture systems will be required to achieve clinical success.

  17. Overcoming scarring in the urethra: Challenges for tissue engineering.

    Science.gov (United States)

    Simsek, Abdulmuttalip; Aldamanhori, Reem; Chapple, Christopher R; MacNeil, Sheila

    2018-04-01

    Urethral stricture disease is increasingly common occurring in about 1% of males over the age of 55. The stricture tissue is rich in myofibroblasts and multi-nucleated giant cells which are thought to be related to stricture formation and collagen synthesis. An increase in collagen is associated with the loss of the normal vasculature of the normal urethra. The actual incidence differs based on worldwide populations, geography, and income. The stricture aetiology, location, length and patient's age and comorbidity are important in deciding the course of treatment. In this review we aim to summarise the existing knowledge of the aetiology of urethral strictures, review current treatment regimens, and present the challenges of using tissue-engineered buccal mucosa (TEBM) to repair scarring of the urethra. In asking this question we are also mindful that recurrent fibrosis occurs in other tissues-how can we learn from these other pathologies?

  18. Growth factor effects on costal chondrocytes for tissue engineering fibrocartilage

    Science.gov (United States)

    Johns, D.E.; Athanasiou, K.A.

    2010-01-01

    Tissue engineered fibrocartilage could become a feasible option for replacing tissues like the knee meniscus or temporomandibular joint disc. This study employed five growth factors insulin-like growth factor-I, transforming growth factor-β1, epidermal growth factor, platelet-derived growth factor-BB, and basic fibroblast growth factor in a scaffoldless approach with costal chondrocytes, attempting to improve biochemical and mechanical properties of engineered constructs. Samples were quantitatively assessed for total collagen, glycosaminoglycans, collagen type I, collagen type II, cells, compressive properties, and tensile properties at two time points. Most treated constructs were worse than the no growth factor control, suggesting a detrimental effect, but the IGF treatment tended to improve the constructs. Additionally, the 6wk time point was consistently better than 3wks, with total collagen, glycosaminoglycans, and aggregate modulus doubling during this time. Further optimization of the time in culture and exogenous stimuli will be important in making a more functional replacement tissue. PMID:18597118

  19. Application of stem cells in tissue engineering for defense medicine.

    Science.gov (United States)

    Ude, Chinedu Cletus; Miskon, Azizi; Idrus, Ruszymah Bt Hj; Abu Bakar, Muhamad Bin

    2018-02-26

    The dynamic nature of modern warfare, including threats and injuries faced by soldiers, necessitates the development of countermeasures that address a wide variety of injuries. Tissue engineering has emerged as a field with the potential to provide contemporary solutions. In this review, discussions focus on the applications of stem cells in tissue engineering to address health risks frequently faced by combatants at war. Human development depends intimately on stem cells, the mysterious precursor to every kind of cell in the body that, with proper instruction, can grow and differentiate into any new tissue or organ. Recent reports have suggested the greater therapeutic effects of the anti-inflammatory, trophic, paracrine and immune-modulatory functions associated with these cells, which induce them to restore normal healing and tissue regeneration by modulating immune reactions, regulating inflammation, and suppressing fibrosis. Therefore, the use of stem cells holds significant promise for the treatment of many battlefield injuries and their complications. These applications include the treatment of injuries to the skin, sensory organs, nervous system tissues, the musculoskeletal system, circulatory/pulmonary tissues and genitals/testicles and of acute radiation syndrome and the development of novel biosensors. The new research developments in these areas suggest that solutions are being developed to reduce critical consequences of wounds and exposures suffered in warfare. Current military applications of stem cell-based therapies are already saving the lives of soldiers who would have died in previous conflicts. Injuries that would have resulted in deaths previously now result in wounds today; similarly, today's permanent wounds may be reduced to tomorrow's bad memories with further advances in stem cell-based therapies.

  20. Bio-functionalized PCL nanofibrous scaffolds for nerve tissue engineering

    International Nuclear Information System (INIS)

    Ghasemi-Mobarakeh, Laleh; Prabhakaran, Molamma P.; Morshed, Mohammad; Nasr-Esfahani, Mohammad Hossein; Ramakrishna, S.

    2010-01-01

    Surface properties of scaffolds such as hydrophilicity and the presence of functional groups on the surface of scaffolds play a key role in cell adhesion, proliferation and migration. Different modification methods for hydrophilicity improvement and introduction of functional groups on the surface of scaffolds have been carried out on synthetic biodegradable polymers, for tissue engineering applications. In this study, alkaline hydrolysis of poly (ε-caprolactone) (PCL) nanofibrous scaffolds was carried out for different time periods (1 h, 4 h and 12 h) to increase the hydrophilicity of the scaffolds. The formation of reactive groups resulting from alkaline hydrolysis provides opportunities for further surface functionalization of PCL nanofibrous scaffolds. Matrigel was attached covalently on the surface of an optimized 4 h hydrolyzed PCL nanofibrous scaffolds and additionally the fabrication of blended PCL/matrigel nanofibrous scaffolds was carried out. Chemical and mechanical characterization of nanofibrous scaffolds were evaluated using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, contact angle, scanning electron microscopy (SEM) and tensile measurement. In vitro cell adhesion and proliferation study was carried out after seeding nerve precursor cells (NPCs) on different scaffolds. Results of cell proliferation assay and SEM studies showed that the covalently functionalized PCL/matrigel nanofibrous scaffolds promote the proliferation and neurite outgrowth of NPCs compared to PCL and hydrolyzed PCL nanofibrous scaffolds, providing suitable substrates for nerve tissue engineering.

  1. Nanoscale tissue engineering: spatial control over cell-materials interactions

    Science.gov (United States)

    Wheeldon, Ian; Farhadi, Arash; Bick, Alexander G.; Jabbari, Esmaiel; Khademhosseini, Ali

    2011-01-01

    Cells interact with the surrounding environment by making tens to hundreds of thousands of nanoscale interactions with extracellular signals and features. The goal of nanoscale tissue engineering is to harness the interactions through nanoscale biomaterials engineering in order to study and direct cellular behaviors. Here, we review the nanoscale tissue engineering technologies for both two- and three-dimensional studies (2- and 3D), and provide a holistic overview of the field. Techniques that can control the average spacing and clustering of cell adhesion ligands are well established and have been highly successful in describing cell adhesion and migration in 2D. Extension of these engineering tools to 3D biomaterials has created many new hydrogel and nanofiber scaffolds technologies that are being used to design in vitro experiments with more physiologically relevant conditions. Researchers are beginning to study complex cell functions in 3D, however, there is a need for biomaterials systems that provide fine control over the nanoscale presentation of bioactive ligands in 3D. Additionally, there is a need for 2- and 3D techniques that can control the nanoscale presentation of multiple bioactive ligands and the temporal changes in cellular microenvironment. PMID:21451238

  2. Interconnected porous hydroxyapatite ceramics for bone tissue engineering

    Science.gov (United States)

    Yoshikawa, Hideki; Tamai, Noriyuki; Murase, Tsuyoshi; Myoui, Akira

    2008-01-01

    Several porous calcium hydroxyapatite (HA) ceramics have been used clinically as bone substitutes, but most of them possessed few interpore connections, resulting in pathological fracture probably due to poor bone formation within the substitute. We recently developed a fully interconnected porous HA ceramic (IP-CHA) by adopting the ‘foam-gel’ technique. The IP-CHA had a three-dimensional structure with spherical pores of uniform size (average 150 μm, porosity 75%), which were interconnected by window-like holes (average diameter 40 μm), and also demonstrated adequate compression strength (10–12 MPa). In animal experiments, the IP-CHA showed superior osteoconduction, with the majority of pores filled with newly formed bone. The interconnected porous structure facilitates bone tissue engineering by allowing the introduction of mesenchymal cells, osteotropic agents such as bone morphogenetic protein or vasculature into the pores. Clinically, we have applied the IP-CHA to treat various bony defects in orthopaedic surgery, and radiographic examinations demonstrated that grafted IP-CHA gained radiopacity more quickly than the synthetic HA in clinical use previously. We review the accumulated data on bone tissue engineering using the novel scaffold and on clinical application in the orthopaedic field. PMID:19106069

  3. Bridging the divide between neuroprosthetic design, tissue engineering and neurobiology

    Directory of Open Access Journals (Sweden)

    Jennie Leach

    2010-02-01

    Full Text Available Neuroprosthetic devices have made a major impact in the treatment of a variety of disorders such as paralysis and stroke. However, a major impediment in the advancement of this technology is the challenge of maintaining device performance during chronic implantation (months to years due to complex intrinsic host responses such as gliosis or glial scarring. The objective of this review is to bring together research communities in neurobiology, tissue engineering, and neuroprosthetics to address the major obstacles encountered in the translation of neuroprosthetics technology into long-term clinical use. This article draws connections between specific challenges faced by current neuroprosthetics technology and recent advances in the areas of nerve tissue engineering and neurobiology. Within the context of the device-nervous system interface and central nervous system (CNS implants, areas of synergistic opportunity are discussed, including platforms to present cells with multiple cues, controlled delivery of bioactive factors, three-dimensional constructs and in vitro models of gliosis and brain injury, nerve regeneration strategies, and neural stem/progenitor cell (NPC biology. Finally, recent insights gained from the fields of developmental neurobiology and cancer biology are discussed as examples of exciting new biological knowledge that may provide fresh inspiration towards novel technologies to address the complexities associated with long-term neuroprosthetic device performance.

  4. Cardiac tissue engineering and regeneration using cell-based therapy

    Directory of Open Access Journals (Sweden)

    Alrefai MT

    2015-05-01

    Full Text Available Mohammad T Alrefai,1–3 Divya Murali,4 Arghya Paul,4 Khalid M Ridwan,1,2 John M Connell,1,2 Dominique Shum-Tim1,2 1Division of Cardiac Surgery, 2Division of Surgical Research, McGill University Health Center, Montreal, QC, Canada; 3King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia; 4Department of Chemical and Petroleum Engineering, School of Engineering, University of Kansas, Lawrence, KS, USA Abstract: Stem cell therapy and tissue engineering represent a forefront of current research in the treatment of heart disease. With these technologies, advancements are being made into therapies for acute ischemic myocardial injury and chronic, otherwise nonreversible, myocardial failure. The current clinical management of cardiac ischemia deals with reestablishing perfusion to the heart but not dealing with the irreversible damage caused by the occlusion or stenosis of the supplying vessels. The applications of these new technologies are not yet fully established as part of the management of cardiac diseases but will become so in the near future. The discussion presented here reviews some of the pioneering works at this new frontier. Key results of allogeneic and autologous stem cell trials are presented, including the use of embryonic, bone marrow-derived, adipose-derived, and resident cardiac stem cells. Keywords: stem cells, cardiomyocytes, cardiac surgery, heart failure, myocardial ischemia, heart, scaffolds, organoids, cell sheet and tissue engineering

  5. Optimizing gelling parameters of gellan gum for fibrocartilage tissue engineering.

    Science.gov (United States)

    Lee, Haeyeon; Fisher, Stephanie; Kallos, Michael S; Hunter, Christopher J

    2011-08-01

    Gellan gum is an attractive biomaterial for fibrocartilage tissue engineering applications because it is cell compatible, can be injected into a defect, and gels at body temperature. However, the gelling parameters of gellan gum have not yet been fully optimized. The aim of this study was to investigate the mechanics, degradation, gelling temperature, and viscosity of low acyl and low/high acyl gellan gum blends. Dynamic mechanical analysis showed that increased concentrations of low acyl gellan gum resulted in increased stiffness and the addition of high acyl gellan gum resulted in greatly decreased stiffness. Degradation studies showed that low acyl gellan gum was more stable than low/high acyl gellan gum blends. Gelling temperature studies showed that increased concentrations of low acyl gellan gum and CaCl₂ increased gelling temperature and low acyl gellan gum concentrations below 2% (w/v) would be most suitable for cell encapsulation. Gellan gum blends were generally found to have a higher gelling temperature than low acyl gellan gum. Viscosity studies showed that increased concentrations of low acyl gellan gum increased viscosity. Our results suggest that 2% (w/v) low acyl gellan gum would have the most appropriate mechanics, degradation, and gelling temperature for use in fibrocartilage tissue engineering applications. Copyright © 2011 Wiley Periodicals, Inc.

  6. Evaluation of immunocompatibility of tissue-engineered periosteum

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Lin; Wang Shuanke; Xia Yayi; Liu Jia; He Jing; Wang Xin [Orthopaedic Institute of the 2nd Hospital of Lanzhou University, 80 CuiYingMen, ChengGuan District, Lanzhou City, 730030 (China); Zhao Junli, E-mail: bonezl@qq.com [Department of Nephrology, the 2nd Hospital of Lanzhou University, 80 CuiYingMen, ChengGuan District, Lanzhou City, 730030 (China)

    2011-02-15

    Tissue-engineered periosteum (TEP) and 'intramembranous ossification' may be an alternative approach to bone tissue engineering. In the previous study we attained successful bone defect reparation with homemade TEP in an allogenic rabbit model. But its allogenic immunocompatibility remained unknown. In this study TEP was constructed by seeding osteogenically induced mesenchymal stem cells of rabbit onto porcine small intestinal submucosa (SIS). A mixed lymphocyte reaction (MLR) was applied to evaluate the in vitro immunogenicity. The ratio of CD4{sup +}/CD8{sup +} T-lymphocytes was tested kinetically to evaluate the systematic reaction of the TEP allograft, and a histological examination was performed to investigate local inflammation and ectopic osteogenesis. MLR indicated that TEP had a higher in vitro immunostimulation than SIS (p < 0.05). The ratios of CD4{sup +}/CD8{sup +} lymphocytes increased in both TEP and SIS implanted groups in 2 weeks, followed by a decrease to a normal level from 2 to 4 weeks. Histological examination revealed modest lymphocyte infiltration for no more than 2 weeks. Moreover, subcutaneous ectopic ossification was observed in TEP allograft animals (8/12). Our findings imply that TEP has a certain immune reaction for the allograft, but it is not severe enough to impact osteogenesis in the allogenic rabbit model.

  7. Nanoscale tissue engineering: spatial control over cell-materials interactions

    International Nuclear Information System (INIS)

    Wheeldon, Ian; Farhadi, Arash; Bick, Alexander G; Khademhosseini, Ali; Jabbari, Esmaiel

    2011-01-01

    Cells interact with the surrounding environment by making tens to hundreds of thousands of nanoscale interactions with extracellular signals and features. The goal of nanoscale tissue engineering is to harness these interactions through nanoscale biomaterials engineering in order to study and direct cellular behavior. Here, we review two- and three-dimensional (2- and 3D) nanoscale tissue engineering technologies, and provide a holistic overview of the field. Techniques that can control the average spacing and clustering of cell adhesion ligands are well established and have been highly successful in describing cell adhesion and migration in 2D. Extension of these engineering tools to 3D biomaterials has created many new hydrogel and nanofiber scaffold technologies that are being used to design in vitro experiments with more physiologically relevant conditions. Researchers are beginning to study complex cell functions in 3D. However, there is a need for biomaterials systems that provide fine control over the nanoscale presentation of bioactive ligands in 3D. Additionally, there is a need for 2- and 3D techniques that can control the nanoscale presentation of multiple bioactive ligands and that can control the temporal changes in the cellular microenvironment. (topical review)

  8. Soy Protein Scaffold Biomaterials for Tissue Engineering and Regenerative Medicine

    Science.gov (United States)

    Chien, Karen B.

    Developing functional biomaterials using highly processable materials with tailorable physical and bioactive properties is an ongoing challenge in tissue engineering. Soy protein is an abundant, natural resource with potential use for regenerative medicine applications. Preliminary studies show that soy protein can be physically modified and fabricated into various biocompatible constructs. However, optimized soy protein structures for tissue regeneration (i.e. 3D porous scaffolds) have not yet been designed. Furthermore, little work has established the in vivo biocompatibility of implanted soy protein and the benefit of using soy over other proteins including FDA-approved bovine collagen. In this work, freeze-drying and 3D printing fabrication processes were developed using commercially available soy protein to create porous scaffolds that improve cell growth and infiltration compared to other soy biomaterials previously reported. Characterization of scaffold structure, porosity, and mechanical/degradation properties was performed. In addition, the behavior of human mesenchymal stem cells seeded on various designed soy scaffolds was analyzed. Biological characterization of the cell-seeded scaffolds was performed to assess feasibility for use in liver tissue regeneration. The acute and humoral response of soy scaffolds implanted in an in vivo mouse subcutaneous model was also investigated. All fabricated soy scaffolds were modified using thermal, chemical, and enzymatic crosslinking to change properties and cell growth behavior. 3D printing allowed for control of scaffold pore size and geometry. Scaffold structure, porosity, and degradation rate significantly altered the in vivo response. Freeze-dried soy scaffolds had similar biocompatibility as freeze-dried collagen scaffolds of the same protein content. However, the soy scaffolds degraded at a much faster rate, minimizing immunogenicity. Interestingly, subcutaneously implanted soy scaffolds affected blood

  9. Nanotopography-guided tissue engineering and regenerative medicine☆

    Science.gov (United States)

    Kim, Hong Nam; Jiao, Alex; Hwang, Nathaniel S.; Kim, Min Sung; Kang, Do Hyun; Kim, Deok-Ho; Suh, Kahp-Yang

    2017-01-01

    Human tissues are intricate ensembles of multiple cell types embedded in complex and well-defined structures of the extracellular matrix (ECM). The organization of ECM is frequently hierarchical from nano to macro, with many proteins forming large scale structures with feature sizes up to several hundred microns. Inspired from these natural designs of ECM, nanotopography-guided approaches have been increasingly investigated for the last several decades. Results demonstrate that the nanotopography itself can activate tissue-specific function in vitro as well as promote tissue regeneration in vivo upon transplantation. In this review, we provide an extensive analysis of recent efforts to mimic functional nanostructures in vitro for improved tissue engineering and regeneration of injured and damaged tissues. We first characterize the role of various nanostructures in human tissues with respect to each tissue-specific function. Then, we describe various fabrication methods in terms of patterning principles and material characteristics. Finally, we summarize the applications of nanotopography to various tissues, which are classified into four types depending on their functions: protective, mechano-sensitive, electro-active, and shear stress-sensitive tissues. Some limitations and future challenges are briefly discussed at the end. PMID:22921841

  10. Multi-axial mechanical stimulation of tissue engineered cartilage: Review

    Directory of Open Access Journals (Sweden)

    S D Waldman

    2007-04-01

    Full Text Available The development of tissue engineered cartilage is a promising new approach for the repair of damaged or diseased tissue. Since it has proven difficult to generate cartilaginous tissue with properties similar to that of native articular cartilage, several studies have used mechanical stimuli as a means to improve the quantity and quality of the developed tissue. In this study, we have investigated the effect of multi-axial loading applied during in vitro tissue formation to better reflect the physiological forces that chondrocytes are subjected to in vivo. Dynamic combined compression-shear stimulation (5% compression and 5% shear strain amplitudes increased both collagen and proteoglycan synthesis (76 ± 8% and 73 ± 5%, respectively over the static (unstimulated controls. When this multi-axial loading condition was applied to the chondrocyte cultures over a four week period, there were significant improvements in both extracellular matrix (ECM accumulation and the mechanical properties of the in vitro-formed tissue (3-fold increase in compressive modulus and 1.75-fold increase in shear modulus. Stimulated tissues were also significantly thinner than the static controls (19% reduction suggesting that there was a degree of ECM consolidation as a result of long-term multi-axial loading. This study demonstrated that stimulation by multi-axial forces can improve the quality of the in vitro-formed tissue, but additional studies are required to further optimize the conditions to favour improved biochemical and mechanical properties of the developed tissue.

  11. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications

    International Nuclear Information System (INIS)

    Xu Tao; Binder, Kyle W; Albanna, Mohammad Z; Dice, Dennis; Zhao Weixin; Yoo, James J; Atala, Anthony

    2013-01-01

    Bioprinting is an emerging technique used to fabricate viable, 3D tissue constructs through the precise deposition of cells and hydrogels in a layer-by-layer fashion. Despite the ability to mimic the native properties of tissue, printed 3D constructs that are composed of naturally-derived biomaterials still lack structural integrity and adequate mechanical properties for use in vivo, thus limiting their development for use in load-bearing tissue engineering applications, such as cartilage. Fabrication of viable constructs using a novel multi-head deposition system provides the ability to combine synthetic polymers, which have higher mechanical strength than natural materials, with the favorable environment for cell growth provided by traditional naturally-derived hydrogels. However, the complexity and high cost associated with constructing the required robotic system hamper the widespread application of this approach. Moreover, the scaffolds fabricated by these robotic systems often lack flexibility, which further restrict their applications. To address these limitations, advanced fabrication techniques are necessary to generate complex constructs with controlled architectures and adequate mechanical properties. In this study, we describe the construction of a hybrid inkjet printing/electrospinning system that can be used to fabricate viable tissues for cartilage tissue engineering applications. Electrospinning of polycaprolactone fibers was alternated with inkjet printing of rabbit elastic chondrocytes suspended in a fibrin–collagen hydrogel in order to fabricate a five-layer tissue construct of 1 mm thickness. The chondrocytes survived within the printed hybrid construct with more than 80% viability one week after printing. In addition, the cells proliferated and maintained their basic biological properties within the printed layered constructs. Furthermore, the fabricated constructs formed cartilage-like tissues both in vitro and in vivo as evidenced by the

  12. Challenges and opportunities for tissue-engineering polarized epithelium.

    Science.gov (United States)

    Paz, Ana C; Soleas, John; Poon, James C H; Trieu, Dennis; Waddell, Thomas K; McGuigan, Alison P

    2014-02-01

    The epithelium is one of the most important tissue types in the body and the specific organization of the epithelial cells in these tissues is important for achieving appropriate function. Since many tissues contain an epithelial component, engineering functional epithelium and understanding the factors that control epithelial maturation and organization are important for generating whole artificial organ replacements. Furthermore, disruption of the cellular organization leads to tissue malfunction and disease; therefore, engineered epithelium could provide a valuable in vitro model to study disease phenotypes. Despite the importance of epithelial tissues, a surprisingly limited amount of effort has been focused on organizing epithelial cells into artificial polarized epithelium with an appropriate structure that resembles that seen in vivo. In this review, we provide an overview of epithelial tissue organization and highlight the importance of cell polarization to achieve appropriate epithelium function. We next describe the in vitro models that exist to create polarized epithelium and summarize attempts to engineer artificial epithelium for clinical use. Finally, we highlight the opportunities that exist to translate strategies from tissue engineering other tissues to generate polarized epithelium with a functional structure.

  13. Three-dimensional bioprinting in tissue engineering and regenerative medicine.

    Science.gov (United States)

    Gao, Guifang; Cui, Xiaofeng

    2016-02-01

    With the advances of stem cell research, development of intelligent biomaterials and three-dimensional biofabrication strategies, highly mimicked tissue or organs can be engineered. Among all the biofabrication approaches, bioprinting based on inkjet printing technology has the promises to deliver and create biomimicked tissue with high throughput, digital control, and the capacity of single cell manipulation. Therefore, this enabling technology has great potential in regenerative medicine and translational applications. The most current advances in organ and tissue bioprinting based on the thermal inkjet printing technology are described in this review, including vasculature, muscle, cartilage, and bone. In addition, the benign side effect of bioprinting to the printed mammalian cells can be utilized for gene or drug delivery, which can be achieved conveniently during precise cell placement for tissue construction. With layer-by-layer assembly, three-dimensional tissues with complex structures can be printed using converted medical images. Therefore, bioprinting based on thermal inkjet is so far the most optimal solution to engineer vascular system to the thick and complex tissues. Collectively, bioprinting has great potential and broad applications in tissue engineering and regenerative medicine. The future advances of bioprinting include the integration of different printing mechanisms to engineer biphasic or triphasic tissues with optimized scaffolds and further understanding of stem cell biology.

  14. A Novel bioreactor with mechanical stimulation for skeletal tissue engineering

    Directory of Open Access Journals (Sweden)

    M. Petrović

    2009-01-01

    Full Text Available The provision of mechanical stimulation is believed to be necessary for the functional assembly of skeletal tissues, which are normally exposed to a variety of biomechanical signals in vivo. In this paper, we present a development and validation of a novel bioreactor aimed for skeletal tissue engineering that provides dynamic compression and perfusion of cultivated tissues. Dynamic compression can be applied at frequencies up to 67.5 Hz and displacements down to 5 m thus suitable for the simulation of physiological conditions in a native cartilage tissue (0.1-1 Hz, 5-10 % strain. The bioreactor also includes a load sensor that was calibrated so to measure average loads imposed on tissue samples. Regimes of the mechanical stimulation and acquisition of load sensor outputs are directed by an automatic control system using applications developed within the LabView platform. In addition, perfusion of tissue samples at physiological velocities (10–100 m/s provides efficient mass transfer, as well as the possibilities to expose the cells to hydrodynamic shear and simulate the conditions in a native bone tissue. Thus, the novel bioreactor is suited for studies of the effects of different biomechanical signals on in vitro regeneration of skeletal tissues, as well as for the studies of newly formulated biomaterials and cell biomaterial interactions under in vivo-like settings.

  15. Transglutaminase reactivity with gelatine: perspective applications in tissue engineering.

    Science.gov (United States)

    Bertoni, F; Barbani, N; Giusti, P; Ciardelli, G

    2006-05-01

    Gelatine was crosslinked by means of an enzymatic treatment using tissue transglutaminase (tTGase) (Sigma) and microbial transglutaminase (mTGase) (Ajinomoto) which catalyses the formation of isopeptide bonds between the gamma-carbonyl group of a glutamine residue and the epsilon-amino group of a lysine residue. The reaction is an interesting alternative to the traditional glutaraldehyde crosslinking, which has several drawbacks (e.g., in medical application) due to the toxicity of the chemical reagent. To further investigate the possibility to utilize the modified protein for tissue engineering application, TGase crosslinked gelatine was incorporated in a gellan matrix, a polysaccharide, to enhance the stability in aqueous media. Films obtained by casting were characterized by thermal analysis, chemical imaging, swelling behaviour and cell adhesion.

  16. Electrospinning polymer blends for biomimetic scaffolds for ACL tissue engineering

    Science.gov (United States)

    Garcia, Vanessa Lizeth

    The anterior cruciate ligament (ACL) rupture is one of the most common knee injuries. Current ACL reconstructive strategies consist of using an autograft or an allograft to replace the ligament. However, limitations have led researchers to create tissue engineered grafts, known as scaffolds, through electrospinning. Scaffolds made of natural and synthetic polymer blends have the potential to promote cell adhesion while having strong mechanical properties. However, enzymes found in the knee are known to degrade tissues and affect the healing of intra-articular injuries. Results suggest that the natural polymers used in this study modify the thermal properties and tensile strength of the synthetic polymers when blended. Scanning electron microscopy display bead-free and enzyme biodegradability of the fibers. Raman spectroscopy confirms the presence of the natural and synthetic polymers in the scaffolds while, amino acid analysis present the types of amino acids and their concentrations found in the natural polymers.

  17. Design properties of hydrogel tissue-engineering scaffolds

    Science.gov (United States)

    Zhu, Junmin; Marchant, Roger E

    2011-01-01

    This article summarizes the recent progress in the design and synthesis of hydrogels as tissue-engineering scaffolds. Hydrogels are attractive scaffolding materials owing to their highly swollen network structure, ability to encapsulate cells and bioactive molecules, and efficient mass transfer. Various polymers, including natural, synthetic and natural/synthetic hybrid polymers, have been used to make hydrogels via chemical or physical crosslinking. Recently, bioactive synthetic hydrogels have emerged as promising scaffolds because they can provide molecularly tailored biofunctions and adjustable mechanical properties, as well as an extracellular matrix-like microenvironment for cell growth and tissue formation. This article addresses various strategies that have been explored to design synthetic hydrogels with extracellular matrix-mimetic bioactive properties, such as cell adhesion, proteolytic degradation and growth factor-binding. PMID:22026626

  18. Basic Potential of Carbon Nanotubes in Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Hisao Haniu

    2012-01-01

    Full Text Available Carbon nanotubes (CNTs are attracting interest in various fields of science because they possess a high surface area-to-volume ratio and excellent electronic, mechanical, and thermal properties. Various medical applications of CNTs are expected, and the properties of CNTs have been greatly improved for use in biomaterials. However, the safety of CNTs remains unclear, which impedes their medical application. Our group is evaluating the biological responses of multiwall CNTs (MWCNTs in vivo and in vitro for the promotion of tissue regeneration as safe scaffold materials. We recently showed that intracellular accumulation is important for the cytotoxicity of CNTs, and we reported the active physiological functions CNTs in cells. In this review, we describe the effects of CNTs in vivo and in vitro observed by our group from the standpoint of tissue engineering, and we introduce the findings of other research groups.

  19. A high throughput mechanical screening device for cartilage tissue engineering.

    Science.gov (United States)

    Mohanraj, Bhavana; Hou, Chieh; Meloni, Gregory R; Cosgrove, Brian D; Dodge, George R; Mauck, Robert L

    2014-06-27

    Articular cartilage enables efficient and near-frictionless load transmission, but suffers from poor inherent healing capacity. As such, cartilage tissue engineering strategies have focused on mimicking both compositional and mechanical properties of native tissue in order to provide effective repair materials for the treatment of damaged or degenerated joint surfaces. However, given the large number design parameters available (e.g. cell sources, scaffold designs, and growth factors), it is difficult to conduct combinatorial experiments of engineered cartilage. This is particularly exacerbated when mechanical properties are a primary outcome, given the long time required for testing of individual samples. High throughput screening is utilized widely in the pharmaceutical industry to rapidly and cost-effectively assess the effects of thousands of compounds for therapeutic discovery. Here we adapted this approach to develop a high throughput mechanical screening (HTMS) system capable of measuring the mechanical properties of up to 48 materials simultaneously. The HTMS device was validated by testing various biomaterials and engineered cartilage constructs and by comparing the HTMS results to those derived from conventional single sample compression tests. Further evaluation showed that the HTMS system was capable of distinguishing and identifying 'hits', or factors that influence the degree of tissue maturation. Future iterations of this device will focus on reducing data variability, increasing force sensitivity and range, as well as scaling-up to even larger (96-well) formats. This HTMS device provides a novel tool for cartilage tissue engineering, freeing experimental design from the limitations of mechanical testing throughput. © 2013 Published by Elsevier Ltd.

  20. Recent advances in hydrogels for cartilage tissue engineering.

    Science.gov (United States)

    Vega, S L; Kwon, M Y; Burdick, J A

    2017-01-30

    Articular cartilage is a load-bearing tissue that lines the surface of bones in diarthrodial joints. Unfortunately, this avascular tissue has a limited capacity for intrinsic repair. Treatment options for articular cartilage defects include microfracture and arthroplasty; however, these strategies fail to generate tissue that adequately restores damaged cartilage. Limitations of current treatments for cartilage defects have prompted the field of cartilage tissue engineering, which seeks to integrate engineering and biological principles to promote the growth of new cartilage to replace damaged tissue. To date, a wide range of scaffolds and cell sources have emerged with a focus on recapitulating the microenvironments present during development or in adult tissue, in order to induce the formation of cartilaginous constructs with biochemical and mechanical properties of native tissue. Hydrogels have emerged as a promising scaffold due to the wide range of possible properties and the ability to entrap cells within the material. Towards improving cartilage repair, hydrogel design has advanced in recent years to improve their utility. Some of these advances include the development of improved network crosslinking (e.g. double-networks), new techniques to process hydrogels (e.g. 3D printing) and better incorporation of biological signals (e.g. controlled release). This review summarises these innovative approaches to engineer hydrogels towards cartilage repair, with an eye towards eventual clinical translation.

  1. Recent advances in hydrogels for cartilage tissue engineering

    Directory of Open Access Journals (Sweden)

    SL Vega

    2017-01-01

    Full Text Available Articular cartilage is a load-bearing tissue that lines the surface of bones in diarthrodial joints. Unfortunately, this avascular tissue has a limited capacity for intrinsic repair. Treatment options for articular cartilage defects include microfracture and arthroplasty; however, these strategies fail to generate tissue that adequately restores damaged cartilage. Limitations of current treatments for cartilage defects have prompted the field of cartilage tissue engineering, which seeks to integrate engineering and biological principles to promote the growth of new cartilage to replace damaged tissue. To date, a wide range of scaffolds and cell sources have emerged with a focus on recapitulating the microenvironments present during development or in adult tissue, in order to induce the formation of cartilaginous constructs with biochemical and mechanical properties of native tissue. Hydrogels have emerged as a promising scaffold due to the wide range of possible properties and the ability to entrap cells within the material. Towards improving cartilage repair, hydrogel design has advanced in recent years to improve their utility. Some of these advances include the development of improved network crosslinking (e.g. double-networks, new techniques to process hydrogels (e.g. 3D printing and better incorporation of biological signals (e.g. controlled release. This review summarises these innovative approaches to engineer hydrogels towards cartilage repair, with an eye towards eventual clinical translation.

  2. Magnetic nanoparticle-loaded electrospun polymeric nanofibers for tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Heng [Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou 646000 (China); Xia, JiYi [Department of Science and Technology, Southwest Medical University, Luzhou 646000 (China); Pang, XianLun [Health Management Center, The Affiliated Hospital (TCM) of Southwest Medical University, Luzhou 646000 (China); Zhao, Ming; Wang, BiQiong; Yang, LingLin [Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou 646000 (China); Wan, HaiSu [Experiment Center of Basic Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 (China); Wu, JingBo, E-mail: wjb6147@163.com [Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou 646000 (China); Fu, ShaoZhi, E-mail: shaozhifu513@163.com [Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou 646000 (China)

    2017-04-01

    Magnetic nanoparticles have been one of the most attractive nanomaterials for various biomedical applications including magnetic resonance imaging (MRI), diagnostic contrast enhancement, magnetic cell separation, and targeted drug delivery. Three-dimensional (3-D) fibrous scaffolds have broad application prospects in the biomedical field, such as drug delivery and tissue engineering. In this work, a novel three-dimensional composite membrane composed of the tri-block copolymer poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PCL-PEG-PCL, PCEC) and magnetic iron oxide nanoparticles (Fe{sub 3}O{sub 4} NPs) were fabricated using electrospinning technology. The physico-chemical properties of the PCEC/Fe{sub 3}O{sub 4} membranes were investigated by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Morphological observation using scanning electron microscopy (SEM) showed that the composite fibers containing 5% Fe{sub 3}O{sub 4} nanoparticles had a diameter of 250 nm. In vitro cell culture of NIH 3T3 cells on the PCEC/Fe{sub 3}O{sub 4} membranes showed that the PCEC/Fe{sub 3}O{sub 4} fibers might be a suitable scaffold for cell adhesion. Moreover, MTT analysis also demonstrated that the membranes possessed lower cytotoxicity. Therefore, this study revealed that the magnetic PCEC/Fe{sub 3}O{sub 4} fibers might have great potential for using in skin tissue engineering. - Graphical abstract: In this study, we prepared a kind of magnetic three-dimensional scaffolds (PCEC/Fe{sub 3}O{sub 4}) using iron oxide nanoparticles (Fe{sub 3}O{sub 4} NPs) and poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) copolymer through electrospinning technique. Their crystallization property, thermal property, in vitro degradation, and morphology were investigated. Furthermore, the cell compatibility and toxicity were also evaluated using NIH 3T3 cells. The results showed that the Fe{sub 3}O

  3. 3D conductive nanocomposite scaffold for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Shahini A

    2013-12-01

    Full Text Available Aref Shahini,1 Mostafa Yazdimamaghani,2 Kenneth J Walker,2 Margaret A Eastman,3 Hamed Hatami-Marbini,4 Brenda J Smith,5 John L Ricci,6 Sundar V Madihally,2 Daryoosh Vashaee,1 Lobat Tayebi2,7 1School of Electrical and Computer Engineering, Helmerich Advanced Technology Research Center, 2School of Chemical Engineering, 3Department of Chemistry, 4School of Mechanical and Aerospace Engineering, 5Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA; 6Department of Biomaterials and Biomimetics, New York University, New York, NY; 7School of Material Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK, USA Abstract: Bone healing can be significantly expedited by applying electrical stimuli in the injured region. Therefore, a three-dimensional (3D ceramic conductive tissue engineering scaffold for large bone defects that can locally deliver the electrical stimuli is highly desired. In the present study, 3D conductive scaffolds were prepared by employing a biocompatible conductive polymer, ie, poly(3,4-ethylenedioxythiophene poly(4-styrene sulfonate (PEDOT:PSS, in the optimized nanocomposite of gelatin and bioactive glass. For in vitro analysis, adult human mesenchymal stem cells were seeded in the scaffolds. Material characterizations using hydrogen-1 nuclear magnetic resonance, in vitro degradation, as well as thermal and mechanical analysis showed that incorporation of PEDOT:PSS increased the physiochemical stability of the composite, resulting in improved mechanical properties and biodegradation resistance. The outcomes indicate that PEDOT:PSS and polypeptide chains have close interaction, most likely by forming salt bridges between arginine side chains and sulfonate groups. The morphology of the scaffolds and cultured human mesenchymal stem cells were observed and analyzed via scanning electron microscope, micro-computed tomography, and confocal fluorescent

  4. Neural tissue engineering options for peripheral nerve regeneration.

    Science.gov (United States)

    Gu, Xiaosong; Ding, Fei; Williams, David F

    2014-08-01

    Tissue engineered nerve grafts (TENGs) have emerged as a potential alternative to autologous nerve grafts, the gold standard for peripheral nerve repair. Typically, TENGs are composed of a biomaterial-based template that incorporates biochemical cues. A number of TENGs have been used experimentally to bridge long peripheral nerve gaps in various animal models, where the desired outcome is nerve tissue regeneration and functional recovery. So far, the translation of TENGs to the clinic for use in humans has met with a certain degree of success. In order to optimize the TENG design and further approach the matching of TENGs with autologous nerve grafts, many new cues, beyond the traditional ones, will have to be integrated into TENGs. Furthermore, there is a strong requirement for monitoring the real-time dynamic information related to the construction of TENGs. The aim of this opinion paper is to specifically and critically describe the latest advances in the field of neural tissue engineering for peripheral nerve regeneration. Here we delineate new attempts in the design of template (or scaffold) materials, especially in the context of biocompatibility, the choice and handling of support cells, and growth factor release systems. We further discuss the significance of RNAi for peripheral nerve regeneration, anticipate the potential application of RNAi reagents for TENGs, and speculate on the possible contributions of additional elements, including angiogenesis, electrical stimulation, molecular inflammatory mediators, bioactive peptides, antioxidant reagents, and cultured biological constructs, to TENGs. Finally, we consider that a diverse array of physicochemical and biological cues must be orchestrated within a TENG to create a self-consistent coordinated system with a close proximity to the regenerative microenvironment of the peripheral nervous system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Mechanical cues in orofacial tissue engineering and regenerative medicine.

    Science.gov (United States)

    Brouwer, Katrien M; Lundvig, Ditte M S; Middelkoop, Esther; Wagener, Frank A D T G; Von den Hoff, Johannes W

    2015-01-01

    Cleft lip and palate patients suffer from functional, aesthetical, and psychosocial problems due to suboptimal regeneration of skin, mucosa, and skeletal muscle after restorative cleft surgery. The field of tissue engineering and regenerative medicine (TE/RM) aims to restore the normal physiology of tissues and organs in conditions such as birth defects or after injury. A crucial factor in cell differentiation, tissue formation, and tissue function is mechanical strain. Regardless of this, mechanical cues are not yet widely used in TE/RM. The effects of mechanical stimulation on cells are not straight-forward in vitro as cellular responses may differ with cell type and loading regime, complicating the translation to a therapeutic protocol. We here give an overview of the different types of mechanical strain that act on cells and tissues and discuss the effects on muscle, and skin and mucosa. We conclude that presently, sufficient knowledge is lacking to reproducibly implement external mechanical loading in TE/RM approaches. Mechanical cues can be applied in TE/RM by fine-tuning the stiffness and architecture of the constructs to guide the differentiation of the seeded cells or the invading surrounding cells. This may already improve the treatment of orofacial clefts and other disorders affecting soft tissues. © 2015 by the Wound Healing Society.

  6. Tissue Engineering Using Transfected Growth-Factor Genes

    Science.gov (United States)

    Madry, Henning; Langer, Robert S.; Freed, Lisa E.; Trippel, Stephen; Vunjak-Novakovic, Gordana

    2005-01-01

    A method of growing bioengineered tissues includes, as a major component, the use of mammalian cells that have been transfected with genes for secretion of regulator and growth-factor substances. In a typical application, one either seeds the cells onto an artificial matrix made of a synthetic or natural biocompatible material, or else one cultures the cells until they secrete a desired amount of an extracellular matrix. If such a bioengineered tissue construct is to be used for surgical replacement of injured tissue, then the cells should preferably be the patient s own cells or, if not, at least cells matched to the patient s cells according to a human-leucocyteantigen (HLA) test. The bioengineered tissue construct is typically implanted in the patient's injured natural tissue, wherein the growth-factor genes enhance metabolic functions that promote the in vitro development of functional tissue constructs and their integration with native tissues. If the matrix is biodegradable, then one of the results of metabolism could be absorption of the matrix and replacement of the matrix with tissue formed at least partly by the transfected cells. The method was developed for articular chondrocytes but can (at least in principle) be extended to a variety of cell types and biocompatible matrix materials, including ones that have been exploited in prior tissue-engineering methods. Examples of cell types include chondrocytes, hepatocytes, islet cells, nerve cells, muscle cells, other organ cells, bone- and cartilage-forming cells, epithelial and endothelial cells, connective- tissue stem cells, mesodermal stem cells, and cells of the liver and the pancreas. Cells can be obtained from cell-line cultures, biopsies, and tissue banks. Genes, molecules, or nucleic acids that secrete factors that influence the growth of cells, the production of extracellular matrix material, and other cell functions can be inserted in cells by any of a variety of standard transfection techniques.

  7. Barriers to the clinical translation of orthopedic tissue engineering.

    Science.gov (United States)

    Evans, Christopher H

    2011-12-01

    Tissue engineering and regenerative medicine have been the subject of increasingly intensive research for over 20 years, and there is concern in some quarters over the lack of clinically useful products despite the large sums of money invested. This review provides one perspective on orthopedic applications from a biologist working in academia. It is suggested that the delay in clinical application is not atypical of new, biologically based technologies. Some barriers to progress are acknowledged and discussed, but it is also noted that preclinical studies have identified several promising types of cells, scaffolds, and morphogenetic signals, which, although not optimal, are worth advancing toward human trials to establish a bridgehead in the clinic. Although this transitional technology will be replaced by more sophisticated, subsequent systems, it will perform valuable pioneering functions and facilitate the clinical development of the field. Some strategies for achieving this are suggested. © Mary Ann Liebert, Inc.

  8. Ultraporous, Compressible, Wettable Polylactide/Polycaprolactone Sponges for Tissue Engineering.

    Science.gov (United States)

    Mader, Michael; Jérôme, Valérie; Freitag, Ruth; Agarwal, Seema; Greiner, Andreas

    2018-05-14

    Ultraporous, degradable sponges made of either polylactide or of blends of polylactide/poly(ε-caprolactone) are prepared by freeze-drying of dispersions of short electrospun fibers and subsequent thermal annealing. The sponges feature ultrahigh porosity (99.6%), a hierarchical cellular structure, and high reversible compressibility with fast recovery from deformation in the dry as well as in the wet state. The sponge properties depend on the fiber dispersion concentration and the annealing temperature. Sponge characteristics like fiber density (2.5-20 mg/cm 3 ), size, shape, crystallinity, mechanical strength, wetability, and structural integrity are user adjustable. Cell culture experiments were successfully performed with Jurkat cells with Confocal Laser Scanning Microscopy and MTT staining showing rapid cell proliferation. Live/Dead staining demonstrated high viability of the seeded cells. The sponge characteristics and modifications investigated and presented here reveal that these sponges are highly promising for tissue engineering applications.

  9. Polyelectrolyte-complex nanostructured fibrous scaffolds for tissue engineering

    International Nuclear Information System (INIS)

    Verma, Devendra; Katti, Kalpana S.; Katti, Dinesh R.

    2009-01-01

    In the current work, polyelectrolyte complex (PEC) fibrous scaffolds for tissue engineering have been synthesized and a mechanism of their formation has been investigated. The scaffolds are synthesized using polygalacturonic acid and chitosan using the freeze drying methodology. Highly interconnected pores of sizes in the range of 5-20 μm are observed in the scaffolds. The thickness of the fibers was found to be in the range of 1-2 μm. Individual fibers have a nanogranular structure as observed using AFM imaging. In these scaffolds, PEC nanoparticles assemble together at the interface of ice crystals during freeze drying process. Further investigation shows that the freezing temperature and concentration have a remarkable effect on structure of scaffolds. Biocompatibility studies show that scaffold containing chitosan, polygalacturonic acid and hydroxyapatite promotes cell adhesion and proliferation. On the other hand, cells on scaffolds fabricated without hydroxyapatite nanoparticles showed poor adhesion.

  10. 2, 3-Dihydrazone cellulose: Prospective material for tissue engineering scaffolds

    International Nuclear Information System (INIS)

    Verma, Vipin; Verma, Poonam; Ray, Pratima; Ray, Alok R.

    2008-01-01

    Cellulose was oxidized by sodium metaperiodate to give rise to 2, 3-dialdehyde cellulose with 92% oxidation ratio, which was further reacted with hydrazine to form 2, 3-dihydrazone cellulose for the incorporation of NH 2 groups. Two forms of matrix, i.e. films and sponges were fabricated. The materials were characterized by FTIR spectroscopy. Scanning electron microscopy revealed its porous architecture with an average pore size of 150 μm. Swelling studies were carried out in phosphate buffer saline (PBS) at physiological pH 7.4. The contact angle of the 2, 3-dihydrazone cellulose surface was determined for assessing its hydrophilicity which came out to be 23 deg. ± 2 deg. NIH3T3 mice fibroblast cells were used for determining the cytocompatibility of the surfaces. The morphology of the cells was observed through optical inverted microscopy. The results show that 2, 3-dihydrazone cellulose can be used as scaffold material in tissue engineering

  11. Research in Biomaterials and Tissue Engineering: Achievements and perspectives.

    Science.gov (United States)

    Ventre, Maurizio; Causa, Filippo; Netti, Paolo A; Pietrabissa, Riccardo

    2015-01-01

    Research on biomaterials and related subjects has been active in Italy. Starting from the very first examples of biomaterials and biomedical devices, Italian researchers have always provided valuable scientific contributions. This trend has steadily increased. To provide a rough estimate of this, it is sufficient to search PubMed, a free search engine accessing primarily the MEDLINE database of references and abstracts on life sciences and biomedical topics, with the keywords "biomaterials" or "tissue engineering" and sort the results by affiliation. Again, even though this is a crude estimate, the results speak for themselves, as Italy is the third European country, in terms of publications, with an astonishing 3,700 products in the last decade.

  12. Accordion-like honeycombs for tissue engineering of cardiac anisotropy

    Science.gov (United States)

    Engelmayr, George C.; Cheng, Mingyu; Bettinger, Christopher J.; Borenstein, Jeffrey T.; Langer, Robert; Freed, Lisa E.

    2008-12-01

    Tissue-engineered grafts may be useful in myocardial repair; however, previous scaffolds have been structurally incompatible with recapitulating cardiac anisotropy. Here, we use microfabrication techniques to create an accordion-like honeycomb microstructure in poly(glycerol sebacate), which yields porous, elastomeric three-dimensional (3D) scaffolds with controllable stiffness and anisotropy. Accordion-like honeycomb scaffolds with cultured neonatal rat heart cells demonstrated utility through: (1) closely matched mechanical properties compared to native adult rat right ventricular myocardium, with stiffnesses controlled by polymer curing time; (2) heart cell contractility inducible by electric field stimulation with directionally dependent electrical excitation thresholds (pthe formation of grafts with aligned heart cells and mechanical properties more closely resembling native myocardium.

  13. Tissue engineering and regenerative medicine: past, present, and future.

    Science.gov (United States)

    Salgado, António J; Oliveira, Joaquim M; Martins, Albino; Teixeira, Fábio G; Silva, Nuno A; Neves, Nuno M; Sousa, Nuno; Reis, Rui L

    2013-01-01

    Tissue and organ repair still represents a clinical challenge. Tissue engineering and regenerative medicine (TERM) is an emerging field focused on the development of alternative therapies for tissue/organ repair. This highly multidisciplinary field, in which bioengineering and medicine merge, is based on integrative approaches using scaffolds, cell populations from different sources, growth factors, nanomedicine, gene therapy, and other techniques to overcome the limitations that currently exist in the clinics. Indeed, its overall objective is to induce the formation of new functional tissues, rather than just implanting spare parts. This chapter aims at introducing the reader to the concepts and techniques of TERM. It begins by explaining how TERM have evolved and merged into TERM, followed by a short overview of some of its key aspects such as the combinations of scaffolds with cells and nanomedicine, scaffold processing, and new paradigms of the use of stem cells for tissue repair/regeneration, which ultimately could represent the future of new therapeutic approaches specifically aimed at clinical applications. © 2013 Elsevier Inc. All rights reserved.

  14. ASTM International Workshop on Standards & Measurements for Tissue Engineering Scaffolds

    Science.gov (United States)

    Simon, Carl G.; Yaszemski, Michael J.; Ratcliffe, Anthony; Tomlins, Paul; Luginbuehl, Reto; Tesk, John A.

    2016-01-01

    The “Workshop on Standards & Measurements for Tissue Engineering Scaffolds” was held on May 21, 2013 in Indianapolis, IN and was sponsored by the ASTM International (ASTM). The purpose of the workshop was to identify the highest priority items for future standards work for scaffolds used in the development and manufacture of tissue engineered medical products (TEMPs). Eighteen speakers and 78 attendees met to assess current scaffold standards and to prioritize needs for future standards. A key finding was that the ASTM TEMPs subcommittees (F04.41-46) have many active “guide” documents for educational purposes, but that few standard “test methods” or “practices” have been published. Overwhelmingly, the most clearly identified need was standards for measuring the structure of scaffolds, followed by standards for biological characterization, including in vitro testing, animal models and cell-material interactions. The third most pressing need was to develop standards for assessing the mechanical properties of scaffolds. Additional needs included standards for assessing scaffold degradation, clinical outcomes with scaffolds, effects of sterilization on scaffolds, scaffold composition and drug release from scaffolds. Discussions also highlighted the need for additional scaffold reference materials and the need to use them for measurement traceability. Finally, dialogue emphasized the needs to promote the use of standards in scaffold fabrication, characterization, and commercialization and to assess the use and impact of standards in the TEMPs community. Many scaffold standard needs have been identified and focus should now turn to generating these standards to support the use of scaffolds in TEMPs. PMID:25220952

  15. Tumor Engineering: The Other Face of Tissue Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Ghajar, Cyrus M; Bissell, Mina J

    2010-03-09

    Advances in tissue engineering have been accomplished for years by employing biomimetic strategies to provide cells with aspects of their original microenvironment necessary to reconstitute a unit of both form and function for a given tissue.We believe that the most critical hallmark of cancer is loss of integration of architecture and function; thus, it stands to reason that similar strategies could be employed to understand tumor biology. In this commentary, we discuss work contributed by Fischbach-Teschl and colleagues to this special issue of Tissue Engineering in the context of 'tumor engineering', that is, the construction of complex cell culture models that recapitulate aspects of the in vivo tumor microenvironment to study the dynamics of tumor development, progression, and therapy on multiple scales. We provide examples of fundamental questions that could be answered by developing such models, and encourage the continued collaboration between physical scientists and life scientists not only for regenerative purposes, but also to unravel the complexity that is the tumor microenvironment. In 1993, Vacanti and Langer cast a spotlight on the growing gap between patients in need of organ transplants and the amount of available donor organs; they reaffirmed that tissue engineering could eventually address this problem by 'applying principles of engineering and the life sciences toward the development of biological substitutes. Mortality figures and direct health care costs for cancer patients rival those of patients who experience organ failure. Cancer is the second leading cause of death in the United States (Source: American Cancer Society) and it is estimated that direct medical costs for cancer patients approach $100B yearly in the United States alone (Source: National Cancer Institute). In addition, any promising therapy that emerges from the laboratory costs roughly $1.7B to take from bench to bedside. Whereas we have indeed waged war on

  16. Polycaprolactone Scaffolds Fabricated via Bioextrusion for Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Marco Domingos

    2009-01-01

    Full Text Available The most promising approach in Tissue Engineering involves the seeding of porous, biocompatible/biodegradable scaffolds, with donor cells to promote tissue regeneration. Additive biomanufacturing processes are increasingly recognized as ideal techniques to produce 3D structures with optimal pore size and spatial distribution, providing an adequate mechanical support for tissue regeneration while shaping in-growing tissues. This paper presents a novel extrusion-based system to produce 3D scaffolds with controlled internal/external geometry for TE applications.The BioExtruder is a low-cost system that uses a proper fabrication code based on the ISO programming language enabling the fabrication of multimaterial scaffolds. Poly(ε-caprolactone was the material chosen to produce porous scaffolds, made by layers of directionally aligned microfilaments. Chemical, morphological, and in vitro biological evaluation performed on the polymeric constructs revealed a high potential of the BioExtruder to produce 3D scaffolds with regular and reproducible macropore architecture, without inducing relevant chemical and biocompatibility alterations of the material.

  17. Current Concepts in Tissue Engineering: Skin and Wound.

    Science.gov (United States)

    Tenenhaus, Mayer; Rennekampff, Hans-Oliver

    2016-09-01

    Pure regenerative healing with little to no donor morbidity remains an elusive goal for both surgeon and patient. The ability to engineer and promote the development of like tissue holds so much promise, and efforts in this direction are slowly but steadily advancing. Products selected and reviewed reflect historical precedence and importance and focus on current clinically available products in use. Emerging technologies we anticipate will further expand our therapeutic options are introduced. The topic of tissue engineering is incredibly broad in scope, and as such the authors have focused their review on that of constructs specifically designed for skin and wound healing. A review of pertinent and current clinically related literature is included. Products such as biosynthetics, biologics, cellular promoting factors, and commercially available matrices can be routinely found in most modern health care centers. Although to date no complete regenerative or direct identical soft-tissue replacement exists, currently available commercial components have proven beneficial in augmenting and improving some types of wound healing scenarios. Cost, directed specificity, biocompatibility, and bioburden tolerance are just some of the impending challenges to adoption. Quality of life and in fact the ability to sustain life is dependent on our most complex and remarkable organ, skin. Although pure regenerative healing and engineered soft-tissue constructs elude us, surgeons and health care providers are slowly gaining comfort and experience with concepts and strategies to improve the healing of wounds.

  18. Tissue Engineering Applications of Three-Dimensional Bioprinting.

    Science.gov (United States)

    Zhang, Xiaoying; Zhang, Yangde

    2015-07-01

    Recent advances in tissue engineering have adapted the additive manufacturing technology, also known as three-dimensional printing, which is used in several industrial applications, for the fabrication of bioscaffolds and viable tissue and/or organs to overcome the limitations of other in vitro conventional methods. 3D bioprinting technology has gained enormous attention as it enabled 3D printing of a multitude of biocompatible materials, different types of cells and other supporting growth factors into complex functional living tissues in a 3D format. A major advantage of this technology is its ability for simultaneously 3D printing various cell types in defined spatial locations, which makes this technology applicable to regenerative medicine to meet the need for suitable for transplantation suitable organs and tissues. 3D bioprinting is yet to successfully overcome the many challenges related to building 3D structures that closely resemble native organs and tissues, which are complex structures with defined microarchitecture and a variety of cell types in a confined area. An integrated approach with a combination of technologies from the fields of engineering, biomaterials science, cell biology, physics, and medicine is required to address these complexities. Meeting this challenge is being made possible by directing the 3D bioprinting to manufacture biomimetic-shaped 3D structures, using organ/tissue images, obtained from magnetic resonance imaging and computerized tomography, and employing computer-aided design and manufacturing technologies. Applications of 3D bioprinting include the generation of multilayered skin, bone, vascular grafts, heart valves, etc. The current 3D bioprinting technologies need to be improved with respect to the mechanical strength and integrity in the manufactured constructs as the presently used biomaterials are not of optimal viscosity. A better understanding of the tissue/organ microenvironment, which consists of multiple types of

  19. Variation in tissue outcome of ovine and human engineered heart valve constructs : relevance for tissue engineering

    NARCIS (Netherlands)

    Geemen, van D.; Driessen - Mol, A.; Grootzwagers, L.G.M.; Soekhradj - Soechit, R.S.; Riem Vis, P.W.; Baaijens, F.P.T.; Bouten, C.V.C.

    AIM: Clinical application of tissue engineered heart valves requires precise control of the tissue culture process to predict tissue composition and mechanical properties prior to implantation, and to understand the variation in tissue outcome. To this end we investigated cellular phenotype and

  20. Tissue engineering as a potential alternative or adjunct to surgical reconstruction in treating pelvic organ prolapse

    DEFF Research Database (Denmark)

    Boennelycke, M; Gräs, Søren; Lose, G

    2013-01-01

    Cell-based tissue engineering strategies could potentially provide attractive alternatives to surgical reconstruction of native tissue or the use of surgical implants in treating pelvic organ prolapse (POP).......Cell-based tissue engineering strategies could potentially provide attractive alternatives to surgical reconstruction of native tissue or the use of surgical implants in treating pelvic organ prolapse (POP)....

  1. Tissue Engineering Stem Cells - An e-Governance Strategy.

    Science.gov (United States)

    Grange, Simon

    2011-01-01

    The rules of governance are changing. They are necessarily becoming more stringent as interventions offered to treat conditions carry unpredictable side effects, often associated with novel therapeutic vectors. The clinical relevance of this relates to the obligations of those involved in research, to ensure the best protection for subjects whilst encouraging the development of the field. Existing evidence supports the concept of e-Governance both in operational health research and more broadly in the strategic domain of policy formation. Building on the impact of the UK Comprehensive Research Network and recent EU Directives, it is now possible to focus on the issues of regulation for cell therapies in musculoskeletal science through the development of the Advanced Therapeutic Medicinal Products (ATMP) category of research products. This article reviews the framework that has borne this and the need for more detailed Virtual Research Integration and Collaboration (VRIC) systems to ensure regulatory compliance. Technology research and development plans must develop in close association between tissue engineering and treating clinicians. The scope of this strategy relates to the handling of human tissues the transport and storage of specimens in accordance with current EU directives and the Human Tissue Authority (HTA) regulations.

  2. Mechanical stimulation improves tissue-engineered human skeletal muscle

    Science.gov (United States)

    Powell, Courtney A.; Smiley, Beth L.; Mills, John; Vandenburgh, Herman H.

    2002-01-01

    Human bioartificial muscles (HBAMs) are tissue engineered by suspending muscle cells in collagen/MATRIGEL, casting in a silicone mold containing end attachment sites, and allowing the cells to differentiate for 8 to 16 days. The resulting HBAMs are representative of skeletal muscle in that they contain parallel arrays of postmitotic myofibers; however, they differ in many other morphological characteristics. To engineer improved HBAMs, i.e., more in vivo-like, we developed Mechanical Cell Stimulator (MCS) hardware to apply in vivo-like forces directly to the engineered tissue. A sensitive force transducer attached to the HBAM measured real-time, internally generated, as well as externally applied, forces. The muscle cells generated increasing internal forces during formation which were inhibitable with a cytoskeleton depolymerizer. Repetitive stretch/relaxation for 8 days increased the HBAM elasticity two- to threefold, mean myofiber diameter 12%, and myofiber area percent 40%. This system allows engineering of improved skeletal muscle analogs as well as a nondestructive method to determine passive force and viscoelastic properties of the resulting tissue.

  3. Computer aided design of architecture of degradable tissue engineering scaffolds.

    Science.gov (United States)

    Heljak, M K; Kurzydlowski, K J; Swieszkowski, W

    2017-11-01

    One important factor affecting the process of tissue regeneration is scaffold stiffness loss, which should be properly balanced with the rate of tissue regeneration. The aim of the research reported here was to develop a computer tool for designing the architecture of biodegradable scaffolds fabricated by melt-dissolution deposition systems (e.g. Fused Deposition Modeling) to provide the required scaffold stiffness at each stage of degradation/regeneration. The original idea presented in the paper is that the stiffness of a tissue engineering scaffold can be controlled during degradation by means of a proper selection of the diameter of the constituent fibers and the distances between them. This idea is based on the size-effect on degradation of aliphatic polyesters. The presented computer tool combines a genetic algorithm and a diffusion-reaction model of polymer hydrolytic degradation. In particular, we show how to design the architecture of scaffolds made of poly(DL-lactide-co-glycolide) with the required Young's modulus change during hydrolytic degradation.

  4. Tissue Engineering Stem Cells – An e-Governance Strategy

    Science.gov (United States)

    Grange, Simon

    2011-01-01

    The rules of governance are changing. They are necessarily becoming more stringent as interventions offered to treat conditions carry unpredictable side effects, often associated with novel therapeutic vectors. The clinical relevance of this relates to the obligations of those involved in research, to ensure the best protection for subjects whilst encouraging the development of the field. Existing evidence supports the concept of e-Governance both in operational health research and more broadly in the strategic domain of policy formation. Building on the impact of the UK Comprehensive Research Network and recent EU Directives, it is now possible to focus on the issues of regulation for cell therapies in musculoskeletal science through the development of the Advanced Therapeutic Medicinal Products (ATMP) category of research products. This article reviews the framework that has borne this and the need for more detailed Virtual Research Integration and Collaboration (VRIC) systems to ensure regulatory compliance. Technology research and development plans must develop in close association between tissue engineering and treating clinicians. The scope of this strategy relates to the handling of human tissues the transport and storage of specimens in accordance with current EU directives and the Human Tissue Authority (HTA) regulations. PMID:21886693

  5. Next Generation Tissue Engineering of Orthopedic Soft Tissue-to-Bone Interfaces

    Science.gov (United States)

    Boys, Alexander J.; McCorry, Mary Clare; Rodeo, Scott; Bonassar, Lawrence J.; Estroff, Lara A.

    2017-01-01

    Soft tissue-to-bone interfaces are complex structures that consist of gradients of extracellular matrix materials, cell phenotypes, and biochemical signals. These interfaces, called entheses for ligaments, tendons, and the meniscus, are crucial to joint function, transferring mechanical loads and stabilizing orthopedic joints. When injuries occur to connected soft tissue, the enthesis must be re-established to restore function, but due to structural complexity, repair has proven challenging. Tissue engineering offers a promising solution for regenerating these tissues. This prospective review discusses methodologies for tissue engineering the enthesis, outlined in three key design inputs: materials processing methods, cellular contributions, and biochemical factors. PMID:29333332

  6. Improved repair of bone defects with prevascularized tissue-engineered bones constructed in a perfusion bioreactor.

    Science.gov (United States)

    Li, De-Qiang; Li, Ming; Liu, Pei-Lai; Zhang, Yuan-Kai; Lu, Jian-Xi; Li, Jian-Min

    2014-10-01

    Vascularization of tissue-engineered bones is critical to achieving satisfactory repair of bone defects. The authors investigated the use of prevascularized tissue-engineered bone for repairing bone defects. The new bone was greater in the prevascularized group than in the non-vascularized group, indicating that prevascularized tissue-engineered bone improves the repair of bone defects. [Orthopedics. 2014; 37(10):685-690.]. Copyright 2014, SLACK Incorporated.

  7. Fabrication of Novel Porous Chitosan Matrices as Scaffolds for Bone Tissue Engineering

    National Research Council Canada - National Science Library

    Jiang, Tao; Pilane, Cyril M; Laurencin, Cato T

    2005-01-01

    .... Chitosan, a natural polymer obtained from chitin, which forms a major component of crustacean exoskeleton, is a potential candidate for bone tissue engineering due to its excellent osteocompatibility...

  8. Development of Novel Biodegradable Amino Acid Ester Based Polyphosphazene-Hydroxyapatite Composites for Bone Tissue Engineering

    National Research Council Canada - National Science Library

    Sethuraman, Swaminathan; Nair, Lakshmi S; Singh, Anurima; Bender, Jared D; Greish, Yaser E; Brown, Paul W; Allcock, H. R; Laurencin, Cato T

    2005-01-01

    .... CPCs are attractive candidates for the development of scaffolds for bone tissue engineering, since they are moldable, resorbable, set at physiological temperature without the use of toxic chemicals...

  9. Development of a Novel Tissue Engineering Strategy Towards Whole Limb Regeneration

    National Research Council Canada - National Science Library

    Laurencin, Cato T

    2008-01-01

    .... In contrast to the bottom up approach of limb regeneration that relies on blastema formation outgrowth and cell dedifferentiation as seen in amphibians and lower vertebrates tissue engineering...

  10. ZnO Nanostructures for Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Marco Laurenti

    2017-11-01

    Full Text Available This review focuses on the most recent applications of zinc oxide (ZnO nanostructures for tissue engineering. ZnO is one of the most investigated metal oxides, thanks to its multifunctional properties coupled with the ease of preparing various morphologies, such as nanowires, nanorods, and nanoparticles. Most ZnO applications are based on its semiconducting, catalytic and piezoelectric properties. However, several works have highlighted that ZnO nanostructures may successfully promote the growth, proliferation and differentiation of several cell lines, in combination with the rise of promising antibacterial activities. In particular, osteogenesis and angiogenesis have been effectively demonstrated in numerous cases. Such peculiarities have been observed both for pure nanostructured ZnO scaffolds as well as for three-dimensional ZnO-based hybrid composite scaffolds, fabricated by additive manufacturing technologies. Therefore, all these findings suggest that ZnO nanostructures represent a powerful tool in promoting the acceleration of diverse biological processes, finally leading to the formation of new living tissue useful for organ repair.

  11. Emerging nanotechnology approaches in tissue engineering for peripheral nerve regeneration.

    Science.gov (United States)

    Cunha, Carla; Panseri, Silvia; Antonini, Stefania

    2011-02-01

    Effective nerve regeneration and functional recovery subsequent to peripheral nerve injury is still a clinical challenge. Autologous nerve graft transplantation is a feasible treatment in several clinical cases, but it is limited by donor site morbidity and insufficient donor tissue, impairing complete functional recovery. Tissue engineering has introduced innovative approaches to promote and guide peripheral nerve regeneration by using biomimetic conduits creating favorable microenvironments for nervous ingrowth, but despite the development of a plethora of nerve prostheses, few approaches have as yet entered the clinic. Promising strategies using nanotechnology have recently been proposed, such as the use of scaffolds with functionalized cell-binding domains, the use of guidance channels with cell-scale internally oriented fibers, and the possibility of sustained release of neurotrophic factors. This review addresses the fabrication, advantages, drawbacks, and results achieved by the most recent nanotechnology approaches in view of future solutions for peripheral nerve repair. Peripheral nerve repair strategies are very limited despite numerous advances on the field of neurosciences and regenerative medicine. This review discusses nanotechnology based strategies including scaffolds with functionalized cell binding domains, the use of guidance channels, and the potential use of sustained release neurotropic factors. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Surface modified electrospun nanofibrous scaffolds for nerve tissue engineering

    International Nuclear Information System (INIS)

    Prabhakaran, Molamma P; Venugopal, J; Chan, Casey K; Ramakrishna, S

    2008-01-01

    The development of biodegradable polymeric scaffolds with surface properties that dominate interactions between the material and biological environment is of great interest in biomedical applications. In this regard, poly-ε-caprolactone (PCL) nanofibrous scaffolds were fabricated by an electrospinning process and surface modified by a simple plasma treatment process for enhancing the Schwann cell adhesion, proliferation and interactions with nanofibers necessary for nerve tissue formation. The hydrophilicity of surface modified PCL nanofibrous scaffolds (p-PCL) was evaluated by contact angle and x-ray photoelectron spectroscopy studies. Naturally derived polymers such as collagen are frequently used for the fabrication of biocomposite PCL/collagen scaffolds, though the feasibility of procuring large amounts of natural materials for clinical applications remains a concern, along with their cost and mechanical stability. The proliferation of Schwann cells on p-PCL nanofibrous scaffolds showed a 17% increase in cell proliferation compared to those on PCL/collagen nanofibrous scaffolds after 8 days of cell culture. Schwann cells were found to attach and proliferate on surface modified PCL nanofibrous scaffolds expressing bipolar elongations, retaining their normal morphology. The results of our study showed that plasma treated PCL nanofibrous scaffolds are a cost-effective material compared to PCL/collagen scaffolds, and can potentially serve as an ideal tissue engineered scaffold, especially for peripheral nerve regeneration.

  13. Multiscale fabrication of biomimetic scaffolds for tympanic membrane tissue engineering

    International Nuclear Information System (INIS)

    Mota, Carlos; Danti, Serena; D’Alessandro, Delfo; Trombi, Luisa; Ricci, Claudio; Berrettini, Stefano; Puppi, Dario; Dinucci, Dinuccio; Chiellini, Federica; Milazzo, Mario; Stefanini, Cesare; Moroni, Lorenzo

    2015-01-01

    The tympanic membrane (TM) is a thin tissue able to efficiently collect and transmit sound vibrations across the middle ear thanks to the particular orientation of its collagen fibers, radiate on one side and circular on the opposite side. Through the combination of advanced scaffolds and autologous cells, tissue engineering (TE) could offer valuable alternatives to autografting in major TM lesions. In this study, a multiscale approach based on electrospinning (ES) and additive manufacturing (AM) was investigated to fabricate scaffolds, based on FDA approved copolymers, resembling the anatomic features and collagen fiber arrangement of the human TM. A single scale TM scaffold was manufactured using a custom-made collector designed to confer a radial macro-arrangement to poly(lactic-co-glycolic acid) electrospun fibers during their deposition. Dual and triple scale scaffolds were fabricated combining conventional ES with AM to produce poly(ethylene oxide terephthalate)/poly(butylene terephthalate) block copolymer scaffolds with anatomic-like architecture. The processing parameters were optimized for each manufacturing method and copolymer. TM scaffolds were cultured in vitro with human mesenchymal stromal cells, which were viable, metabolically active and organized following the anisotropic character of the scaffolds. The highest viability, cell density and protein content were detected in dual and triple scale scaffolds. Our findings showed that these biomimetic micro-patterned substrates enabled cell disposal along architectural directions, thus appearing as promising substrates for developing functional TM replacements via TE. (paper)

  14. Surface-modified polymers for cardiac tissue engineering.

    Science.gov (United States)

    Moorthi, Ambigapathi; Tyan, Yu-Chang; Chung, Tze-Wen

    2017-09-26

    Cardiovascular disease (CVD), leading to myocardial infarction and heart failure, is one of the major causes of death worldwide. The physiological system cannot significantly regenerate the capabilities of a damaged heart. The current treatment involves pharmacological and surgical interventions; however, less invasive and more cost-effective approaches are sought. Such new approaches are developed to induce tissue regeneration following injury. Hence, regenerative medicine plays a key role in treating CVD. Recently, the extrinsic stimulation of cardiac regeneration has involved the use of potential polymers to stimulate stem cells toward the differentiation of cardiomyocytes as a new therapeutic intervention in cardiac tissue engineering (CTE). The therapeutic potentiality of natural or synthetic polymers and cell surface interactive factors/polymer surface modifications for cardiac repair has been demonstrated in vitro and in vivo. This review will discuss the recent advances in CTE using polymers and cell surface interactive factors that interact strongly with stem cells to trigger the molecular aspects of the differentiation or formulation of cardiomyocytes for the functional repair of heart injuries or cardiac defects.

  15. Repair and tissue engineering techniques for articular cartilage.

    Science.gov (United States)

    Makris, Eleftherios A; Gomoll, Andreas H; Malizos, Konstantinos N; Hu, Jerry C; Athanasiou, Kyriacos A

    2015-01-01

    Chondral and osteochondral lesions due to injury or other pathology commonly result in the development of osteoarthritis, eventually leading to progressive total joint destruction. Although current progress suggests that biologic agents can delay the advancement of deterioration, such drugs are incapable of promoting tissue restoration. The limited ability of articular cartilage to regenerate renders joint arthroplasty an unavoidable surgical intervention. This Review describes current, widely used clinical repair techniques for resurfacing articular cartilage defects; short-term and long-term clinical outcomes of these techniques are discussed. Also reviewed is a developmental pipeline of acellular and cellular regenerative products and techniques that could revolutionize joint care over the next decade by promoting the development of functional articular cartilage. Acellular products typically consist of collagen or hyaluronic-acid-based materials, whereas cellular techniques use either primary cells or stem cells, with or without scaffolds. Central to these efforts is the prominent role that tissue engineering has in translating biological technology into clinical products; therefore, concomitant regulatory processes are also discussed.

  16. Chitosan composite three dimensional macrospheric scaffolds for bone tissue engineering.

    Science.gov (United States)

    Vyas, Veena; Kaur, Tejinder; Thirugnanam, Arunachalam

    2017-11-01

    The present work deals with the fabrication of chitosan composite scaffolds with controllable and predictable internal architecture for bone tissue engineering. Chitosan (CS) based composites were developed by varying montmorillonite (MMT) and hydroxyapatite (HA) combinations to fabricate macrospheric three dimensional (3D) scaffolds by direct agglomeration of the sintered macrospheres. The fabricated CS, CS/MMT, CS/HA and CS/MMT/HA 3D scaffolds were characterized for their physicochemical, biological and mechanical properties. The XRD and ATR-FTIR studies confirmed the presence of the individual constituents and the molecular interaction between them, respectively. The reinforcement with HA and MMT showed reduced swelling and degradation rate. It was found that in comparison to pure CS, the CS/HA/MMT composites exhibited improved hemocompatibility and protein adsorption. The sintering of the macrospheres controlled the swelling ability of the scaffolds which played an important role in maintaining the mechanical strength of the 3D scaffolds. The CS/HA/MMT composite scaffold showed 14 folds increase in the compressive strength when compared to pure CS scaffolds. The fabricated scaffolds were also found to encourage the MG 63 cell proliferation. Hence, from the above studies it can be concluded that the CS/HA/MMT composite 3D macrospheric scaffolds have wider and more practical application in bone tissue regeneration applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Polycaprolactone thin films for retinal tissue engineering and drug delivery

    Science.gov (United States)

    Steedman, Mark Rory

    This dissertation focuses on the development of polycaprolactone thin films for retinal tissue engineering and drug delivery. We combined these thin films with techniques such as micro and nanofabrication to develop treatments for age-related macular degeneration (AMD), a disease that leads to the death of rod and cone photoreceptors. Current treatments are only able to slow or limit the progression of the disease, and photoreceptors cannot be regenerated or replaced by the body once lost. The first experiments presented focus on a potential treatment for AMD after photoreceptor death has occurred. We developed a polymer thin film scaffold technology to deliver retinal progenitor cells (RPCs) to the affected area of the eye. Earlier research showed that RPCs destined to become photoreceptors are capable of incorporating into a degenerated retina. In our experiments, we showed that RPC attachment to a micro-welled polycaprolactone (PCL) thin film surface enhanced the differentiation of these cells toward a photoreceptor fate. We then used our PCL thin films to develop a drug delivery device capable of sustained therapeutic release over a multi-month period that would maintain an effective concentration of the drug in the eye and eliminate the need for repeated intraocular injections. We first investigated the biocompatibility of PCL in the rabbit eye. We injected PCL thin films into the anterior chamber or vitreous cavity of rabbit eyes and monitored the animals for up to 6 months. We found that PCL thin films were well tolerated in the rabbit eye, showing no signs of chronic inflammation due to the implant. We then developed a multilayered thin film device containing a microporous membrane. We loaded these devices with lyophilized proteins and quantified drug elution for 10 weeks, finding that both bovine serum albumin and immunoglobulin G elute from these devices with zero order release kinetics. These experiments demonstrate that PCL is an extremely useful

  18. Biologically improved nanofibrous scaffolds for cardiac tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Bhaarathy, V. [Centre for Nanofibers and Nanotechnology, NUSNNI, Faculty of Engineering, National University of Singapore, 117576 (Singapore); Department of Nanoscience and Technology, School of Physical Sciences, Bharathiar University, Coimbatore 641046 (India); Lee Kong Chian School of Medicine, Nanyang Technological University, 138673 (Singapore); Venugopal, J., E-mail: nnijrv@nus.edu.sg [Centre for Nanofibers and Nanotechnology, NUSNNI, Faculty of Engineering, National University of Singapore, 117576 (Singapore); Gandhimathi, C. [Centre for Nanofibers and Nanotechnology, NUSNNI, Faculty of Engineering, National University of Singapore, 117576 (Singapore); Ponpandian, N.; Mangalaraj, D. [Department of Nanoscience and Technology, School of Physical Sciences, Bharathiar University, Coimbatore 641046 (India); Ramakrishna, S. [Centre for Nanofibers and Nanotechnology, NUSNNI, Faculty of Engineering, National University of Singapore, 117576 (Singapore)

    2014-11-01

    Nanofibrous structure developed by electrospinning technology provides attractive extracellular matrix conditions for the anchorage, migration and differentiation of stem cells, including those responsible for regenerative medicine. Recently, biocomposite nanofibers consisting of two or more polymeric blends are electrospun more tidily in order to obtain scaffolds with desired functional and mechanical properties depending on their applications. The study focuses on one such an attempt of using copolymer Poly(L-lactic acid)-co-poly (ε-caprolactone) (PLACL), silk fibroin (SF) and Aloe Vera (AV) for fabricating biocomposite nanofibrous scaffolds for cardiac tissue engineering. SEM micrographs of fabricated electrospun PLACL, PLACL/SF and PLACL/SF/AV nanofibrous scaffolds are porous, beadless, uniform nanofibers with interconnected pores and obtained fibre diameter in the range of 459 ± 22 nm, 202 ± 12 nm and 188 ± 16 nm respectively. PLACL, PLACL/SF and PLACL/SF/AV electrospun mats obtained at room temperature with an elastic modulus of 14.1 ± 0.7, 9.96 ± 2.5 and 7.0 ± 0.9 MPa respectively. PLACL/SF/AV nanofibers have more desirable properties to act as flexible cell supporting scaffolds compared to PLACL for the repair of myocardial infarction (MI). The PLACL/SF and PLACL/SF/AV nanofibers had a contact angle of 51 ± 12° compared to that of 133 ± 15° of PLACL alone. Cardiac cell proliferation was increased by 21% in PLACL/SF/AV nanofibers compared to PLACL by day 6 and further increased to 42% by day 9. Confocal analysis for cardiac expression proteins myosin and connexin 43 was observed better by day 9 compared to all other nanofibrous scaffolds. The results proved that the fabricated PLACL/SF/AV nanofibrous scaffolds have good potentiality for the regeneration of infarcted myocardium in cardiac tissue engineering. - Highlights: • Fabricated nanofibrous scaffolds are porous, beadless and uniform structures. • PLACL/SF/AV nanofibers improve the

  19. Biologically improved nanofibrous scaffolds for cardiac tissue engineering

    International Nuclear Information System (INIS)

    Bhaarathy, V.; Venugopal, J.; Gandhimathi, C.; Ponpandian, N.; Mangalaraj, D.; Ramakrishna, S.

    2014-01-01

    Nanofibrous structure developed by electrospinning technology provides attractive extracellular matrix conditions for the anchorage, migration and differentiation of stem cells, including those responsible for regenerative medicine. Recently, biocomposite nanofibers consisting of two or more polymeric blends are electrospun more tidily in order to obtain scaffolds with desired functional and mechanical properties depending on their applications. The study focuses on one such an attempt of using copolymer Poly(L-lactic acid)-co-poly (ε-caprolactone) (PLACL), silk fibroin (SF) and Aloe Vera (AV) for fabricating biocomposite nanofibrous scaffolds for cardiac tissue engineering. SEM micrographs of fabricated electrospun PLACL, PLACL/SF and PLACL/SF/AV nanofibrous scaffolds are porous, beadless, uniform nanofibers with interconnected pores and obtained fibre diameter in the range of 459 ± 22 nm, 202 ± 12 nm and 188 ± 16 nm respectively. PLACL, PLACL/SF and PLACL/SF/AV electrospun mats obtained at room temperature with an elastic modulus of 14.1 ± 0.7, 9.96 ± 2.5 and 7.0 ± 0.9 MPa respectively. PLACL/SF/AV nanofibers have more desirable properties to act as flexible cell supporting scaffolds compared to PLACL for the repair of myocardial infarction (MI). The PLACL/SF and PLACL/SF/AV nanofibers had a contact angle of 51 ± 12° compared to that of 133 ± 15° of PLACL alone. Cardiac cell proliferation was increased by 21% in PLACL/SF/AV nanofibers compared to PLACL by day 6 and further increased to 42% by day 9. Confocal analysis for cardiac expression proteins myosin and connexin 43 was observed better by day 9 compared to all other nanofibrous scaffolds. The results proved that the fabricated PLACL/SF/AV nanofibrous scaffolds have good potentiality for the regeneration of infarcted myocardium in cardiac tissue engineering. - Highlights: • Fabricated nanofibrous scaffolds are porous, beadless and uniform structures. • PLACL/SF/AV nanofibers improve the

  20. Cytocompatible and water stable ultrafine protein fibers for tissue engineering

    Science.gov (United States)

    Jiang, Qiuran

    This dissertation proposal focuses on the development of cytocompatible and water stable protein ultrafine fibers for tissue engineering. The protein-based ultrafine fibers have the potential to be used for biomedicine, due to their biocompatibility, biodegradability, similarity to natural extracellular matrix (ECM) in physical structure and chemical composition, and superior adsorption properties due to their high surface to volume ratio. However, the current technologies to produce the protein-based ultrafine fibers for biomedical applications still have several problems. For instance, the current electrospinning and phase separation technologies generate scaffolds composed of densely compacted ultrafine fibers, and cells can spread just on the surface of the fiber bulk, and hardly penetrate into the inner sections of scaffolds. Thus, these scaffolds can merely emulate the ECM as a two dimensional basement membrane, but are difficult to mimic the three dimensional ECM stroma. Moreover, the protein-based ultrafine fibers do not possess sufficient water stability and strength for biomedical applications, and need modifications such as crosslinking. However, current crosslinking methods are either high in toxicity or low in crosslinking efficiency. To solve the problems mentioned above, zein, collagen, and gelatin were selected as the raw materials to represent plant proteins, animal proteins, and denatured proteins in this dissertation. A benign solvent system was developed specifically for the fabrication of collagen ultrafine fibers. In addition, the gelatin scaffolds with a loose fibrous structure, high cell-accessibility and cell viability were produced by a novel ultralow concentration phase separation method aiming to simulate the structure of three dimensional (3D) ECM stroma. Non-toxic crosslinking methods using citric acid as the crosslinker were also developed for electrospun or phase separated scaffolds from these three proteins, and proved to be

  1. Soft tissue engineering with micronized-gingival connective tissues.

    Science.gov (United States)

    Noda, Sawako; Sumita, Yoshinori; Ohba, Seigo; Yamamoto, Hideyuki; Asahina, Izumi

    2018-01-01

    The free gingival graft (FGG) and connective tissue graft (CTG) are currently considered to be the gold standards for keratinized gingival tissue reconstruction and augmentation. However, these procedures have some disadvantages in harvesting large grafts, such as donor-site morbidity as well as insufficient gingival width and thickness at the recipient site post-treatment. To solve these problems, we focused on an alternative strategy using micronized tissue transplantation (micro-graft). In this study, we first investigated whether transplantation of micronized gingival connective tissues (MGCTs) promotes skin wound healing. MGCTs (≤100 µm) were obtained by mincing a small piece (8 mm 3 ) of porcine keratinized gingiva using the RIGENERA system. The MGCTs were then transplanted to a full skin defect (5 mm in diameter) on the dorsal surface of immunodeficient mice after seeding to an atelocollagen matrix. Transplantations of atelocollagen matrixes with and without micronized dermis were employed as experimental controls. The results indicated that MGCTs markedly promote the vascularization and epithelialization of the defect area 14 days after transplantation compared to the experimental controls. After 21 days, complete wound closure with low contraction was obtained only in the MGCT grafts. Tracking analysis of transplanted MGCTs revealed that some mesenchymal cells derived from MGCTs can survive during healing and may function to assist in wound healing. We propose here that micro-grafting with MGCTs represents an alternative strategy for keratinized tissue reconstruction that is characterized by low morbidity and ready availability. © 2017 Wiley Periodicals, Inc.

  2. Design, Materials, and Mechanobiology of Biodegradable Scaffolds for Bone Tissue Engineering

    Science.gov (United States)

    Velasco, Marco A.; Narváez-Tovar, Carlos A.; Garzón-Alvarado, Diego A.

    2015-01-01

    A review about design, manufacture, and mechanobiology of biodegradable scaffolds for bone tissue engineering is given. First, fundamental aspects about bone tissue engineering and considerations related to scaffold design are established. Second, issues related to scaffold biomaterials and manufacturing processes are discussed. Finally, mechanobiology of bone tissue and computational models developed for simulating how bone healing occurs inside a scaffold are described. PMID:25883972

  3. Tissue-engineering-based Strategies for Regenerative Endodontics

    Science.gov (United States)

    Albuquerque, M.T.P.; Valera, M.C.; Nakashima, M.; Nör, J.E.; Bottino, M.C.

    2014-01-01

    Stemming from in vitro and in vivo pre-clinical and human models, tissue-engineering-based strategies continue to demonstrate great potential for the regeneration of the pulp-dentin complex, particularly in necrotic, immature permanent teeth. Nanofibrous scaffolds, which closely resemble the native extracellular matrix, have been successfully synthesized by various techniques, including but not limited to electrospinning. A common goal in scaffold synthesis has been the notion of promoting cell guidance through the careful design and use of a collection of biochemical and physical cues capable of governing and stimulating specific events at the cellular and tissue levels. The latest advances in processing technologies allow for the fabrication of scaffolds where selected bioactive molecules can be delivered locally, thus increasing the possibilities for clinical success. Though electrospun scaffolds have not yet been tested in vivo in either human or animal pulpless models in immature permanent teeth, recent studies have highlighted their regenerative potential both from an in vitro and in vivo (i.e., subcutaneous model) standpoint. Possible applications for these bioactive scaffolds continue to evolve, with significant prospects related to the regeneration of both dentin and pulp tissue and, more recently, to root canal disinfection. Nonetheless, no single implantable scaffold can consistently guide the coordinated growth and development of the multiple tissue types involved in the functional regeneration of the pulp-dentin complex. The purpose of this review is to provide a comprehensive perspective on the latest discoveries related to the use of scaffolds and/or stem cells in regenerative endodontics. The authors focused this review on bioactive nanofibrous scaffolds, injectable scaffolds and stem cells, and pre-clinical findings using stem-cell-based strategies. These topics are discussed in detail in an attempt to provide future direction and to shed light on

  4. PLDLA/PCL-T Scaffold for Meniscus Tissue Engineering.

    Science.gov (United States)

    Esposito, Andrea Rodrigues; Moda, Marlon; Cattani, Silvia Mara de Melo; de Santana, Gracy Mara; Barbieri, Juliana Abreu; Munhoz, Monique Moron; Cardoso, Túlio Pereira; Barbo, Maria Lourdes Peris; Russo, Teresa; D'Amora, Ugo; Gloria, Antonio; Ambrosio, Luigi; Duek, Eliana Aparecida de Rezende

    2013-04-01

    The inability of the avascular region of the meniscus to regenerate has led to the use of tissue engineering to treat meniscal injuries. The aim of this study was to evaluate the ability of fibrochondrocytes preseeded on PLDLA/PCL-T [poly(L-co-D,L-lactic acid)/poly(caprolactone-triol)] scaffolds to stimulate regeneration of the whole meniscus. Porous PLDLA/PCL-T (90/10) scaffolds were obtained by solvent casting and particulate leaching. Compressive modulus of 9.5±1.0 MPa and maximum stress of 4.7±0.9 MPa were evaluated. Fibrochondrocytes from rabbit menisci were isolated, seeded directly on the scaffolds, and cultured for 21 days. New Zealand rabbits underwent total meniscectomy, after which implants consisting of cell-free scaffolds or cell-seeded scaffolds were introduced into the medial knee meniscus; the negative control group consisted of rabbits that received no implant. Macroscopic and histological evaluations of the neomeniscus were performed 12 and 24 weeks after implantation. The polymer scaffold implants adapted well to surrounding tissues, without apparent rejection, infection, or chronic inflammatory response. Fibrocartilaginous tissue with mature collagen fibers was observed predominantly in implants with seeded scaffolds compared to cell-free implants after 24 weeks. Similar results were not observed in the control group. Articular cartilage was preserved in the polymeric implants and showed higher chondrocyte cell number than the control group. These findings show that the PLDLA/PCL-T 90/10 scaffold has potential for orthopedic applications since this material allowed the formation of fibrocartilaginous tissue, a structure of crucial importance for repairing injuries to joints, including replacement of the meniscus and the protection of articular cartilage from degeneration.

  5. Tissue properties and collagen remodeling in heart valve tissue engineering

    NARCIS (Netherlands)

    Geemen, van D.

    2012-01-01

    Valvular heart disease is a major health problem worldwide causing morbidity and mortality. Heart valve replacement is frequently applied to avoid serious cardiac, pulmonary, or systemic problems. However, the current replacements do not consist of living tissue and, consequently, cannot grow,

  6. Physiologically Distributed Loading Patterns Drive the Formation of Zonally Organized Collagen Structures in Tissue-Engineered Meniscus.

    Science.gov (United States)

    Puetzer, Jennifer L; Bonassar, Lawrence J

    2016-07-01

    The meniscus is a dense fibrocartilage tissue that withstands the complex loads of the knee via a unique organization of collagen fibers. Attempts to condition engineered menisci with compression or tensile loading alone have failed to reproduce complex structure on the microscale or anatomic scale. Here we show that axial loading of anatomically shaped tissue-engineered meniscus constructs produced spatial distributions of local strain similar to those seen in the meniscus when the knee is loaded at full extension. Such loading drove formation of tissue with large organized collagen fibers, levels of mechanical anisotropy, and compressive moduli that match native tissue. Loading accelerated the development of native-sized and aligned circumferential and radial collagen fibers. These loading patterns contained both tensile and compressive components that enhanced the major biochemical and functional properties of the meniscus, with loading significantly improved glycosaminoglycan (GAG) accumulation 200-250%, collagen accumulation 40-55%, equilibrium modulus 1000-1800%, and tensile moduli 500-1200% (radial and circumferential). Furthermore, this study demonstrates local changes in mechanical environment drive heterogeneous tissue development and organization within individual constructs, highlighting the importance of recapitulating native loading environments. Loaded menisci developed cartilage-like tissue with rounded cells, a dense collagen matrix, and increased GAG accumulation in the more compressively loaded horns, and fibrous collagen-rich tissue in the more tensile loaded outer 2/3, similar to native menisci. Loaded constructs reached a level of organization not seen in any previous engineered menisci and demonstrate great promise as meniscal replacements.

  7. Tissue Engineered Skeletal Myofibers can Directly "Sense" Gravitational Force Changes

    Science.gov (United States)

    Vandenburgh, Herman H.; Shansky, J.; DelTatto, M.; Lee, Peter; Meir, J.

    1999-01-01

    Long-term manned space flight requires a better understanding of skeletal muscle atrophy resulting from microgravity. Atrophy most likely results from changes at both the systemic level (e.g. decreased circulating growth hormone, increased circulating glucocorticoids) and locally (e.g. decreased myofiber resting tension). Differentiated skeletal myofibers in tissue culture have provided a model system over the last decade for gaining a better understanding of the interactions of exogenous growth factors, endogenous growth factors, and muscle fiber tension in regulating protein turnover rates and muscle cell growth. Tissue engineering these cells into three dimensional bioartificial muscle (BAM) constructs has allowed us to extend their use to Space flight studies for the potential future development of countermeasures. Embryonic avian muscle cells were isolated and BAMs tissue engineered as described previously. The myoblasts proliferate and fuse into aligned postmitotic myofibers after ten to fourteen days in vitro. A cylindrical muscle-like structure containing several thousand myofibers is formed which is approximately 30 mm in length, 2-3 mm in diameter, and attached at each end. For the Space Shuttle experiments, the BAMs were transferred to 55 mL bioreactor cartridges (6 BAMs/cartridge). At Kennedy Space Center, the cartridges were mounted in two Space Tissue Loss (STL) Modules (three to four cartridges per Module) and either maintained as ground controls or loaded in a Mid-Deck locker of the Space Shuttle. The BAM cartridges were continuously perfused during the experiment at 1.5 mL/ min with tissue culture medium. Eighteen BAMs were flown for nine days on Mission STS66 while eighteen BAMs served as ground controls. The complete experiment was repeated on Mission STS77 with twenty four BAMs in each group. BAMs could be maintained in a healthy state for at least 30 days in the perfusion bioreactor cartridges. The BAM muscle fibers directly detected both the

  8. Preparation of hybrid biomaterials for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Vilma Conceição Costa

    2007-03-01

    Full Text Available Tissue engineering has evolved from the use of biomaterials for bone substitution that fulfill the clinical demands of biocompatibility, biodegradability, non-immunogeneity, structural strength and porosity. Porous scaffolds have been developed in many forms and materials, but few reached the need of adequate physical, biological and mechanical properties. In the present paper we report the preparation of hybrid porous polyvinyl alcohol (PVA/bioactive glass through the sol-gel route, using partially and fully hydrolyzed polyvinyl alcohol, and perform structural characterization. Hybrids containing PVA and bioactive glass with composition 58SiO2-33CaO-9P2O5 were synthesized by foaming a mixture of polymer solution and bioactive glass sol-gel precursor solution. Sol-gel solution was prepared from mixing tetraethoxysilane (TEOS, triethylphosphate (TEP, and calcium chloride as chemical precursors. The hybrid composites obtained after aging and drying at low temperature were chemically and morphologically characterized through infrared spectroscopy and scanning electron microscopy. The degree of hydrolysis of PVA, concentration of PVA solution and different PVA-bioglass composition ratios affect the synthesis procedure. Synthesis parameters must be very well combined in order to allow foaming and gelation. The hybrid scaffolds obtained exhibited macroporous structure with pore size varying from 50 to 600 µm.

  9. The effect of scaffold pore size in cartilage tissue engineering.

    Science.gov (United States)

    Nava, Michele M; Draghi, Lorenza; Giordano, Carmen; Pietrabissa, Riccardo

    2016-07-26

    The effect of scaffold pore size and interconnectivity is undoubtedly a crucial factor for most tissue engineering applications. The aim of this study was to examine the effect of pore size and porosity on cartilage construct development in different scaffolds seeded with articular chondrocytes. We fabricated poly-L-lactide-co-trimethylene carbonate scaffolds with different pore sizes, using a solvent-casting/particulate-leaching technique. We seeded primary bovine articular chondrocytes on these scaffolds, cultured the constructs for 2 weeks and examined cell proliferation, viability and cell-specific production of cartilaginous extracellular matrix proteins, including GAG and collagen. Cell density significantly increased up to 50% with scaffold pore size and porosity, likely facilitated by cell spreading on the internal surface of bigger pores, and by increased mass transport of gases and nutrients to cells, and catabolite removal from cells, allowed by lower diffusion barriers in scaffolds with a higher porosity. However, both the cell metabolic activity and the synthesis of cartilaginous matrix proteins significantly decreased by up to 40% with pore size. We propose that the association of smaller pore diameters, causing 3-dimensional cell aggregation, to a lower oxygenation caused by a lower porosity, could have been the condition that increased the cell-specific synthesis of cartilaginous matrix proteins in the scaffold with the smallest pores and the lowest porosity among those tested. In the initial steps of in vitro cartilage engineering, the combination of small scaffold pores and low porosity is an effective strategy with regard to the promotion of chondrogenesis.

  10. Cobalt doped proangiogenic hydroxyapatite for bone tissue engineering application

    International Nuclear Information System (INIS)

    Kulanthaivel, Senthilguru; Roy, Bibhas; Agarwal, Tarun; Giri, Supratim; Pramanik, Krishna; Pal, Kunal; Ray, Sirsendu S.; Maiti, Tapas K.; Banerjee, Indranil

    2016-01-01

    ABSTRACT: The present study delineates the synthesis and characterization of cobalt doped proangiogenic–osteogenic hydroxyapatite. Hydroxyapatite samples, doped with varying concentrations of bivalent cobalt (Co"2"+) were prepared by the ammoniacal precipitation method and the extent of doping was measured by ICP–OES. The crystalline structure of the doped hydroxyapatite samples was confirmed by XRD and FTIR studies. Analysis pertaining to the effect of doped hydroxyapatite on cell cycle progression and proliferation of MG-63 cells revealed that the doping of cobalt supported the cell viability and proliferation up to a threshold limit. Furthermore, such level of doping also induced differentiation of the bone cells, which was evident from the higher expression of differentiation markers (Runx2 and Osterix) and better nodule formation (SEM study). Western blot analysis in conjugation with ELISA study confirmed that the doped HAp samples significantly increased the expression of HIF-1α and VEGF in MG-63 cells. The analysis described here confirms the proangiogenic–osteogenic properties of the cobalt doped hydroxyapatite and indicates its potential application in bone tissue engineering. - Highlights: • Cobalt (Co"+"2) doped hydroxyapatite (Co-HAp) can be prepared by the wet chemical method. • The concentration of Co"+"2 influences the physico-chemical properties of HAp. • Co-HAp was found to be biocompatible and osteogenic. • Co-HAp enhanced cellular VEGF secretion through HIF-1α stabilization. • The optimum biological performance of Co-HAp was achieved for 0.33% (w/w) Co"+"2 doping.

  11. Cobalt doped proangiogenic hydroxyapatite for bone tissue engineering application.

    Science.gov (United States)

    Kulanthaivel, Senthilguru; Roy, Bibhas; Agarwal, Tarun; Giri, Supratim; Pramanik, Krishna; Pal, Kunal; Ray, Sirsendu S; Maiti, Tapas K; Banerjee, Indranil

    2016-01-01

    The present study delineates the synthesis and characterization of cobalt doped proangiogenic-osteogenic hydroxyapatite. Hydroxyapatite samples, doped with varying concentrations of bivalent cobalt (Co(2+)) were prepared by the ammoniacal precipitation method and the extent of doping was measured by ICP-OES. The crystalline structure of the doped hydroxyapatite samples was confirmed by XRD and FTIR studies. Analysis pertaining to the effect of doped hydroxyapatite on cell cycle progression and proliferation of MG-63 cells revealed that the doping of cobalt supported the cell viability and proliferation up to a threshold limit. Furthermore, such level of doping also induced differentiation of the bone cells, which was evident from the higher expression of differentiation markers (Runx2 and Osterix) and better nodule formation (SEM study). Western blot analysis in conjugation with ELISA study confirmed that the doped HAp samples significantly increased the expression of HIF-1α and VEGF in MG-63 cells. The analysis described here confirms the proangiogenic-osteogenic properties of the cobalt doped hydroxyapatite and indicates its potential application in bone tissue engineering. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Single walled carbon nanotube composites for bone tissue engineering.

    Science.gov (United States)

    Gupta, Ashim; Woods, Mia D; Illingworth, Kenneth David; Niemeier, Ryan; Schafer, Isaac; Cady, Craig; Filip, Peter; El-Amin, Saadiq F

    2013-09-01

    The purpose of this study was to develop single walled carbon nanotubes (SWCNT) and poly lactic-co-glycolic acid (PLAGA) composites for orthopedic applications and to evaluate the interaction of human stem cells (hBMSCs) and osteoblasts (MC3T3-E1 cells) via cell growth, proliferation, gene expression, extracellular matrix production and mineralization. PLAGA and SWCNT/PLAGA composites were fabricated with various amounts of SWCNT (5, 10, 20, 40, and 100 mg), characterized and degradation studies were performed. Cells were seeded and cell adhesion/morphology, growth/survival, proliferation and gene expression analysis were performed to evaluate biocompatibility. Imaging studies demonstrated uniform incorporation of SWCNT into the PLAGA matrix and addition of SWCNT did not affect the degradation rate. Imaging studies revealed that MC3T3-E1 and hBMSCs cells exhibited normal, non-stressed morphology on the composites and all were biocompatible. Composites with 10 mg SWCNT resulted in highest rate of cell proliferation (p PLAGA composites imparted beneficial cellular growth capabilities and gene expression, and mineralization abilities were well established. These results demonstrate the potential of SWCNT/PLAGA composites for musculoskeletal regeneration and bone tissue engineering (BTE) and are promising for orthopedic applications. Copyright © 2013 Orthopaedic Research Society.

  13. Sticktechnologie für medizinische Textilien und Tissue Engineering

    Science.gov (United States)

    Karamuk, Erdal; Mayer, Jörg; Wintermantel, Erich

    Textile Strukturen werden in grossem Ausmass als medizinische Implantate eingesetzt, um Weich- und Hartgewebe zu unterstützen oder zu ersetzen. Im Tissue Engineering gewinnen sie an Bedeutung als scaffolds, um biologische Gewebe in vitro zu züchten für anschliessende Implantation oder extrakorporale Anwendungen. Textilien sind gewöhnlich anisotrope zweidimensionale Strukturen mit hoher Steifigkeit in der Ebene und geringer Biegesteifigkeit. Durch eine Vielzahl textiler Prozesse und durch entsprechende Wahl des Fasermaterials ist es möglich, Oberfläche, Porosität und mechanische Anisotropie in hohem Masse zu variieren. Wegen ihrer einzigartigen strukturellen und mechanischen Eigenschaften können faserbasierte Materialien in weitem Masse biologischem Gewebe nachgeahmt werden [1]. Gesticke erweitern das Feld von technischen und besonders medizinischen Textilien, denn sie vereinen sehr hohe strukturelle Variabilität mit der Möglichkeit, mechanische Eigenschaften in einem grossen Bereich einzustellen, um so die mechanischen Anforderungen des Empfängergewebes zu erfüllen (Abb. 42.1).

  14. Perspectives on the role of nanotechnology in bone tissue engineering.

    Science.gov (United States)

    Saiz, Eduardo; Zimmermann, Elizabeth A; Lee, Janice S; Wegst, Ulrike G K; Tomsia, Antoni P

    2013-01-01

    This review surveys new developments in bone tissue engineering, specifically focusing on the promising role of nanotechnology and describes future avenues of research. The review first reinforces the need to fabricate scaffolds with multi-dimensional hierarchies for improved mechanical integrity. Next, new advances to promote bioactivity by manipulating the nanolevel internal surfaces of scaffolds are examined followed by an evaluation of techniques using scaffolds as a vehicle for local drug delivery to promote bone regeneration/integration and methods of seeding cells into the scaffold. Through a review of the state of the field, critical questions are posed to guide future research toward producing materials and therapies to bring state-of-the-art technology to clinical settings. The development of scaffolds for bone regeneration requires a material able to promote rapid bone formation while possessing sufficient strength to prevent fracture under physiological loads. Success in simultaneously achieving mechanical integrity and sufficient bioactivity with a single material has been limited. However, the use of new tools to manipulate and characterize matter down to the nano-scale may enable a new generation of bone scaffolds that will surpass the performance of autologous bone implants. Published by Elsevier Ltd.

  15. Aligned and random nanofibrous nanocomposite scaffolds for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Amir Doustgani

    2013-01-01

    Full Text Available Abstract  Aligned and random nanocomposite nanofibrous scaffolds were electrospun from polycaprolactone (PCL, poly (vinyl alcohol (PVA and hydroxyapatite nanoparticles (nHA. The morphology and mechanical characteristics of the nanofibers were evaluated using scanning electron microscopy and tensile testing, respectively. Scanning electron microscopy revealed fibers with an average diameter of 123 ± 32 nm and 339 ± 107 nm for aligned and random nanofibers, respectively. The mechanical data indicated the higher tensile strength and elastic modulus of aligned nanofibers. The in vitro biocompatibility of aligned and random nanofibrous scaffolds was also assessed by growing mesenchymal stem cells (MSCs, and investigating the proliferation and alkaline phosphatase activity (ALP on different nanofibrous scaffolds. Our  findings  showed  that  the  alignment  orientation  of  nanofibers  enhanced  the osteogenic differentiation of stem cells. The in vitro results showed that the aligned biocomposite nanofibrous scaffolds of PCL/nHA/PVA could be a potential substrate for tissue engineering applications, especially in the field of artificial bone implant.

  16. Scaffold library for tissue engineering: a geometric evaluation.

    Science.gov (United States)

    Chantarapanich, Nattapon; Puttawibul, Puttisak; Sucharitpwatskul, Sedthawatt; Jeamwatthanachai, Pongnarin; Inglam, Samroeng; Sitthiseripratip, Kriskrai

    2012-01-01

    Tissue engineering scaffold is a biological substitute that aims to restore, to maintain, or to improve tissue functions. Currently available manufacturing technology, that is, additive manufacturing is essentially applied to fabricate the scaffold according to the predefined computer aided design (CAD) model. To develop scaffold CAD libraries, the polyhedrons could be used in the scaffold libraries development. In this present study, one hundred and nineteen polyhedron models were evaluated according to the established criteria. The proposed criteria included considerations on geometry, manufacturing feasibility, and mechanical strength of these polyhedrons. CAD and finite element (FE) method were employed as tools in evaluation. The result of evaluation revealed that the close-cellular scaffold included truncated octahedron, rhombicuboctahedron, and rhombitruncated cuboctahedron. In addition, the suitable polyhedrons for using as open-cellular scaffold libraries included hexahedron, truncated octahedron, truncated hexahedron, cuboctahedron, rhombicuboctahedron, and rhombitruncated cuboctahedron. However, not all pore size to beam thickness ratios (PO:BT) were good for making the open-cellular scaffold. The PO:BT ratio of each library, generating the enclosed pore inside the scaffold, was excluded to avoid the impossibility of material removal after the fabrication. The close-cellular libraries presented the constant porosity which is irrespective to the different pore sizes. The relationship between PO:BT ratio and porosity of open-cellular scaffold libraries was displayed in the form of Logistic Power function. The possibility of merging two different types of libraries to produce the composite structure was geometrically evaluated in terms of the intersection index and was mechanically evaluated by means of FE analysis to observe the stress level. The couples of polyhedrons presenting low intersection index and high stress level were excluded. Good couples for

  17. Scaffold Library for Tissue Engineering: A Geometric Evaluation

    Directory of Open Access Journals (Sweden)

    Nattapon Chantarapanich

    2012-01-01

    Full Text Available Tissue engineering scaffold is a biological substitute that aims to restore, to maintain, or to improve tissue functions. Currently available manufacturing technology, that is, additive manufacturing is essentially applied to fabricate the scaffold according to the predefined computer aided design (CAD model. To develop scaffold CAD libraries, the polyhedrons could be used in the scaffold libraries development. In this present study, one hundred and nineteen polyhedron models were evaluated according to the established criteria. The proposed criteria included considerations on geometry, manufacturing feasibility, and mechanical strength of these polyhedrons. CAD and finite element (FE method were employed as tools in evaluation. The result of evaluation revealed that the close-cellular scaffold included truncated octahedron, rhombicuboctahedron, and rhombitruncated cuboctahedron. In addition, the suitable polyhedrons for using as open-cellular scaffold libraries included hexahedron, truncated octahedron, truncated hexahedron, cuboctahedron, rhombicuboctahedron, and rhombitruncated cuboctahedron. However, not all pore size to beam thickness ratios (PO : BT were good for making the open-cellular scaffold. The PO : BT ratio of each library, generating the enclosed pore inside the scaffold, was excluded to avoid the impossibility of material removal after the fabrication. The close-cellular libraries presented the constant porosity which is irrespective to the different pore sizes. The relationship between PO : BT ratio and porosity of open-cellular scaffold libraries was displayed in the form of Logistic Power function. The possibility of merging two different types of libraries to produce the composite structure was geometrically evaluated in terms of the intersection index and was mechanically evaluated by means of FE analysis to observe the stress level. The couples of polyhedrons presenting low intersection index and high stress

  18. The contribution of matrix and cells to leaflet retraction in heart valve tissue engineering

    NARCIS (Netherlands)

    Vlimmeren, van M.A.A.

    2011-01-01

    Heart valve tissue engineering is a promising technique to overcome the drawbacks of currently used mechanical and prosthetic heart valve replacements. Tissue engineered (TE) heart valves are viable and autologous implants that have the capacity to grow, remodel and repair throughout a patient’s

  19. Bone tissue engineering using silica-based mesoporous nanobiomaterials:Recent progress.

    Science.gov (United States)

    Shadjou, Nasrin; Hasanzadeh, Mohammad

    2015-10-01

    Bone disorders are of significant concern due to increase in the median age of our population. It is in this context that tissue engineering has been emerging as a valid approach to the current therapies for bone regeneration/substitution. Tissue-engineered bone constructs have the potential to alleviate the demand arising from the shortage of suitable autograft and allograft materials for augmenting bone healing. Silica based mesostructured nanomaterials possessing pore sizes in the range 2-50 nm and surface reactive functionalities have elicited immense interest due to their exciting prospects in bone tissue engineering. In this review we describe application of silica-based mesoporous nanomaterials for bone tissue engineering. We summarize the preparation methods, the effect of mesopore templates and composition on the mesopore-structure characteristics, and different forms of these materials, including particles, fibers, spheres, scaffolds and composites. Also, the effect of structural and textural properties of mesoporous materials on development of new biomaterials for production of bone implants and bone cements was discussed. Also, application of different mesoporous materials on construction of manufacture 3-dimensional scaffolds for bone tissue engineering was discussed. It begins by giving the reader a brief background on tissue engineering, followed by a comprehensive description of all the relevant components of silica-based mesoporous biomaterials on bone tissue engineering, going from materials to scaffolds and from cells to tissue engineering strategies that will lead to "engineered" bone. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Bioactive glass and glass-ceramic scaffolds for bone tissue engineering

    NARCIS (Netherlands)

    Gerhardt, L.C.; Boccaccini, A.R.

    2010-01-01

    Traditionally, bioactive glasses have been used to fill and restore bone defects. More recently, this category of biomaterials has become an emerging research field for bone tissue engineering applications. Here, we review and discuss current knowledge on porous bone tissue engineering scaffolds on

  1. Engineering spinal fusion: evaluating ceramic materials for cell based tissue engineered approaches

    NARCIS (Netherlands)

    Wilson, C.E.

    2011-01-01

    The principal aim of this thesis was to advance the development of tissue engineered posterolateral spinal fusion by investigating the potential of calcium phosphate ceramic materials to support cell based tissue engineered bone formation. This was accomplished by developing several novel model

  2. Regenerative therapy and tissue engineering for the treatment of end-stage cardiac failure

    Science.gov (United States)

    Finosh, G.T.; Jayabalan, Muthu

    2012-01-01

    Regeneration of myocardium through regenerative therapy and tissue engineering is appearing as a prospective treatment modality for patients with end-stage heart failure. Focusing on this area, this review highlights the new developments and challenges in the regeneration of myocardial tissue. The role of various cell sources, calcium ion and cytokine on the functional performance of regenerative therapy is discussed. The evolution of tissue engineering and the role of tissue matrix/scaffold, cell adhesion and vascularisation on tissue engineering of cardiac tissue implant are also discussed. PMID:23507781

  3. Tissue - engineering as an adjunct to pelvic reconstructive surgery.

    Science.gov (United States)

    Jangö, Hanna

    2017-08-01

    This PhD-thesis is based on animal studies and comprises three original papers and unpublished data. The studies were con-ducted during my employment as a research fellow at the Department of Obstetrics and Gynecology, Herlev University Hospital, Denmark. New strategies for surgical reconstruction of pelvic organ pro-lapse (POP) are warranted. Traditional native tissue repair may be associated with poor long-term outcome and augmentation with permanent polypropylene meshes is associated with frequent and severe adverse effects. Tissue-engineering is a regenerative strategy that aims at creating functional tissue using stem cells, scaffolds and trophic factors. The aim of this thesis was to investigate the potential adjunctive use of a tissue-engineering technique for pelvic reconstructive surgery using two synthetic biodegradable materials; methoxypolyethyleneglycol-poly(lacticco-glycolic acid) (MPEG-PLGA) and electrospun polycaprolactone (PCL) - with or without seeded muscle stem cells in the form of autologous fresh muscle fiber fragments (MFFs). To simulate different POP repair scenarios different animal models were used. In Study 1 and 2, MPEG-PLGA was evaluated in a native tissue re-pair model and a partial defect model of the rat abdominal wall. We found that the scaffold was fully degraded after eight weeks. Cells from added MFFs could be traced and had resulted in the formation of new striated muscle fibers. Also, biomechanical changes were found in the groups with added MFFs. In Study 3, the long-term degradable electrospun PCL scaffold was evaluated in three rat abdominal wall models representing different loads on the scaffold. Surprisingly, cells from the MFFs did not survive. After eight weeks, a marked inflammatory foreign-body response was observed with numerous giant cells located between and around the PCL fibers which appeared not to be degraded. This response caused a considerable increase in the thickness of the mesh, resulting in a neotissue

  4. Recent Developments in Thiolated Polymeric Hydrogels for Tissue Engineering Applications.

    Science.gov (United States)

    Gajendiran, Mani; Rhee, Jae-Sung; Kim, Kyobum

    2018-02-01

    This review focuses on the recent strategy in the preparation of thiolated polymers and fabrication of their hydrogel matrices. The mechanism involved in the synthesis of thiolated polymers and fabrication of thiolated polymer hydrogels is exemplified with suitable schematic representations reported in the recent literature. The 2-iminothiolane namely "Traut's reagent" has been widely used for effectively thiolating the natural polymers such as collagen and gelatin, which contain free amino group in their backbone. The free carboxylic acid group containing polymers such as hyaluronic acid and heparin have been thiolated by using the bifunctional molecules such as cysteamine and L-cysteine via N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide/N-hydroxysuccinimide (EDC/NHS) coupling reaction. The degree of thiolation in the polymer chain has been widely determined by using Ellman's assay method. The thiolated polymer hydrogels are prepared by disulfide bond formation (or) thiol-ene reaction (or) Michael-type addition reaction. The thiolated polymers such as thiolated gelatin are reacted with polyethylene glycol diacrylate for obtaining interpenetrating polymer network hydrogel scaffolds. Several in vitro cell culture experiments indicate that the developed thiolated polymer hydrogels exhibited biocompatibility and cellular mimicking properties. The developed hydrogel scaffolds efficiently support proliferation and differentiation of various cell types. In the present review article, the thiol-functionalized protein-based biopolymers, carbohydrate-based polymers, and some synthetic polymers have been covered with recently published research articles. In addition, the usage of new thiolated nanomaterials as a crosslinking agent for the preparation of three-dimensional tissue-engineered hydrogels is highlighted.

  5. Novel mechanically competent polysaccharide scaffolds for bone tissue engineering

    International Nuclear Information System (INIS)

    Kumbar, S G; Toti, U S; Deng, M; James, R; Laurencin, C T; Aravamudhan, A; Harmon, M; Ramos, D M

    2011-01-01

    The success of the scaffold-based bone regeneration approach critically depends on the biomaterial's mechanical and biological properties. Cellulose and its derivatives are inherently associated with exceptional strength and biocompatibility due to their β-glycosidic linkage and extensive hydrogen bonding. This polymer class has a long medical history as a dialysis membrane, wound care system and pharmaceutical excipient. Recently cellulose-based scaffolds have been developed and evaluated for a variety of tissue engineering applications. In general porous polysaccharide scaffolds in spite of many merits lack the necessary mechanical competence needed for load-bearing applications. The present study reports the fabrication and characterization of three-dimensional (3D) porous sintered microsphere scaffolds based on cellulose derivatives using a solvent/non-solvent sintering approach for load-bearing applications. These 3D scaffolds exhibited a compressive modulus and strength in the mid-range of human trabecular bone and underwent degradation resulting in a weight loss of 10–15% after 24 weeks. A typical stress–strain curve for these scaffolds showed an initial elastic region and a less-stiff post-yield region similar to that of native bone. Human osteoblasts cultured on these scaffolds showed progressive growth with time and maintained expression of osteoblast phenotype markers. Further, the elevated expression of alkaline phosphatase and mineralization at early time points as compared to heat-sintered poly(lactic acid–glycolic acid) control scaffolds with identical pore properties affirmed the advantages of polysaccharides and their potential for scaffold-based bone regeneration.

  6. Cobalt doped proangiogenic hydroxyapatite for bone tissue engineering application

    Energy Technology Data Exchange (ETDEWEB)

    Kulanthaivel, Senthilguru [Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha 769008 (India); Roy, Bibhas [Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302 (India); Agarwal, Tarun [Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha 769008 (India); Giri, Supratim [Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008 (India); Pramanik, Krishna; Pal, Kunal; Ray, Sirsendu S. [Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha 769008 (India); Maiti, Tapas K. [Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302 (India); Banerjee, Indranil, E-mail: indraniliit@gmail.com [Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha 769008 (India)

    2016-01-01

    ABSTRACT: The present study delineates the synthesis and characterization of cobalt doped proangiogenic–osteogenic hydroxyapatite. Hydroxyapatite samples, doped with varying concentrations of bivalent cobalt (Co{sup 2+}) were prepared by the ammoniacal precipitation method and the extent of doping was measured by ICP–OES. The crystalline structure of the doped hydroxyapatite samples was confirmed by XRD and FTIR studies. Analysis pertaining to the effect of doped hydroxyapatite on cell cycle progression and proliferation of MG-63 cells revealed that the doping of cobalt supported the cell viability and proliferation up to a threshold limit. Furthermore, such level of doping also induced differentiation of the bone cells, which was evident from the higher expression of differentiation markers (Runx2 and Osterix) and better nodule formation (SEM study). Western blot analysis in conjugation with ELISA study confirmed that the doped HAp samples significantly increased the expression of HIF-1α and VEGF in MG-63 cells. The analysis described here confirms the proangiogenic–osteogenic properties of the cobalt doped hydroxyapatite and indicates its potential application in bone tissue engineering. - Highlights: • Cobalt (Co{sup +2}) doped hydroxyapatite (Co-HAp) can be prepared by the wet chemical method. • The concentration of Co{sup +2} influences the physico-chemical properties of HAp. • Co-HAp was found to be biocompatible and osteogenic. • Co-HAp enhanced cellular VEGF secretion through HIF-1α stabilization. • The optimum biological performance of Co-HAp was achieved for 0.33% (w/w) Co{sup +2} doping.

  7. A bioprintable form of chitosan hydrogel for bone tissue engineering.

    Science.gov (United States)

    Demirtaş, Tuğrul Tolga; Irmak, Gülseren; Gümüşderelioğlu, Menemşe

    2017-07-13

    Bioprinting can be defined as 3D patterning of living cells and other biologics by filling and assembling them using a computer-aided layer-by-layer deposition approach to fabricate living tissue and organ analogs for tissue engineering. The presence of cells within the ink to use a 'bio-ink' presents the potential to print 3D structures that can be implanted or printed into damaged/diseased bone tissue to promote highly controlled cell-based regeneration and remineralization of bone. In this study, it was shown for the first time that chitosan solution and its composite with nanostructured bone-like hydroxyapatite (HA) can be mixed with cells and printed successfully. MC3T3-E1 pre-osteoblast cell laden chitosan and chitosan-HA hydrogels, which were printed with the use of an extruder-based bioprinter, were characterized by comparing these hydrogels to alginate and alginate-HA hydrogels. Rheological analysis showed that all groups had viscoelastic properties. It was also shown that under simulated physiological conditions, chitosan and chitosan-HA hydrogels were stable. Also, the viscosity values of the bio-solutions were in an applicable range to be used in 3D bio-printers. Cell viability and proliferation analyses documented that after printing with bio-solutions, cells continued to be viable in all groups. It was observed that cells printed within chitosan-HA composite hydrogel had peak expression levels for early and late stages osteogenic markers. It was concluded that cells within chitosan and chitosan-HA hydrogels had mineralized and differentiated osteogenically after 21 days of culture. It was also discovered that chitosan is superior to alginate, which is the most widely used solution preferred in bioprinting systems, in terms of cell proliferation and differentiation. Thus, applicability and printability of chitosan as a bio-printing solution were clearly demonstrated. Furthermore, it was proven that the presence of bone-like nanostructured HA in

  8. Ligament Tissue Engineering and Its Potential Role in Anterior Cruciate Ligament Reconstruction

    OpenAIRE

    Yates, E. W.; Rupani, A.; Foley, G. T.; Khan, W. S.; Cartmell, S.; Anand, S. J.

    2011-01-01

    Tissue engineering is an emerging discipline that combines the principle of science and engineering. It offers an unlimited source of natural tissue substitutes and by using appropriate cells, biomimetic scaffolds, and advanced bioreactors, it is possible that tissue engineering could be implemented in the repair and regeneration of tissue such as bone, cartilage, tendon, and ligament. Whilst repair and regeneration of ligament tissue has been demonstrated in animal studies, further research ...

  9. Growing tissues in real and simulated microgravity: new methods for tissue engineering.

    Science.gov (United States)

    Grimm, Daniela; Wehland, Markus; Pietsch, Jessica; Aleshcheva, Ganna; Wise, Petra; van Loon, Jack; Ulbrich, Claudia; Magnusson, Nils E; Infanger, Manfred; Bauer, Johann

    2014-12-01

    Tissue engineering in simulated (s-) and real microgravity (r-μg) is currently a topic in Space medicine contributing to biomedical sciences and their applications on Earth. The principal aim of this review is to highlight the advances and accomplishments in the field of tissue engineering that could be achieved by culturing cells in Space or by devices created to simulate microgravity on Earth. Understanding the biology of three-dimensional (3D) multicellular structures is very important for a more complete appreciation of in vivo tissue function and advancing in vitro tissue engineering efforts. Various cells exposed to r-μg in Space or to s-μg created by a random positioning machine, a 2D-clinostat, or a rotating wall vessel bioreactor grew in the form of 3D tissues. Hence, these methods represent a new strategy for tissue engineering of a variety of tissues, such as regenerated cartilage, artificial vessel constructs, and other organ tissues as well as multicellular cancer spheroids. These aggregates are used to study molecular mechanisms involved in angiogenesis, cancer development, and biology and for pharmacological testing of, for example, chemotherapeutic drugs or inhibitors of neoangiogenesis. Moreover, they are useful for studying multicellular responses in toxicology and radiation biology, or for performing coculture experiments. The future will show whether these tissue-engineered constructs can be used for medical transplantations. Unveiling the mechanisms of microgravity-dependent molecular and cellular changes is an up-to-date requirement for improving Space medicine and developing new treatment strategies that can be translated to in vivo models while reducing the use of laboratory animals.

  10. Melt Electrospinning Writing of Poly-Hydroxymethylglycolide-co-ε-Caprolactone-Based Scaffolds for Cardiac Tissue Engineering

    NARCIS (Netherlands)

    Castilho, Miguel; Feyen, Dries; Flandes-Iparraguirre, María; Hochleitner, Gernot; Groll, Jürgen; Doevendans, Pieter A.F.; Vermonden, Tina; Ito, Keita; Sluijter, Joost P G; Malda, Jos

    2017-01-01

    Current limitations in cardiac tissue engineering revolve around the inability to fully recapitulate the structural organization and mechanical environment of native cardiac tissue. This study aims at developing organized ultrafine fiber scaffolds with improved biocompatibility and architecture in

  11. Melt Electrospinning Writing of Poly-Hydroxymethylglycolide-co-ε-Caprolactone-Based Scaffolds for Cardiac Tissue Engineering

    NARCIS (Netherlands)

    Castilho, Miguel; Feyen, Dries; Flandes-Iparraguirre, María; Hochleitner, Gernot; Groll, Jürgen; Doevendans, Pieter A.F.; Vermonden, Tina; Ito, Keita; Sluijter, Joost P.G.; Malda, Jos

    Current limitations in cardiac tissue engineering revolve around the inability to fully recapitulate the structural organization and mechanical environment of native cardiac tissue. This study aims at developing organized ultrafine fiber scaffolds with improved biocompatibility and architecture in

  12. Melt electrospinning writing of poly-Hydroxymethylglycolide-co-ε-Caprolactone-based scaffolds for cardiac tissue engineering

    NARCIS (Netherlands)

    Castilho, M.; Feyen, D.; Flandes-Iparraguirre, M.; Hochleitner, G.; Groll, J.; Doevendans, P.A.F.; Vermonden, T.; Ito, K.; Sluijter, J.P.G.; Malda, J.

    2017-01-01

    Current limitations in cardiac tissue engineering revolve around the inability to fully recapitulate the structural organization and mechanical environment of native cardiac tissue. This study aims at developing organized ultrafine fiber scaffolds with improved biocompatibility and architecture in

  13. Reverse engineering development: Crosstalk opportunities between developmental biology and tissue engineering.

    Science.gov (United States)

    Marcucio, Ralph S; Qin, Ling; Alsberg, Eben; Boerckel, Joel D

    2017-11-01

    The fields of developmental biology and tissue engineering have been revolutionized in recent years by technological advancements, expanded understanding, and biomaterials design, leading to the emerging paradigm of "developmental" or "biomimetic" tissue engineering. While developmental biology and tissue engineering have long overlapping histories, the fields have largely diverged in recent years at the same time that crosstalk opportunities for mutual benefit are more salient than ever. In this perspective article, we will use musculoskeletal development and tissue engineering as a platform on which to discuss these emerging crosstalk opportunities and will present our opinions on the bright future of these overlapping spheres of influence. The multicellular programs that control musculoskeletal development are rapidly becoming clarified, represented by shifting paradigms in our understanding of cellular function, identity, and lineage specification during development. Simultaneously, advancements in bioartificial matrices that replicate the biochemical, microstructural, and mechanical properties of developing tissues present new tools and approaches for recapitulating development in tissue engineering. Here, we introduce concepts and experimental approaches in musculoskeletal developmental biology and biomaterials design and discuss applications in tissue engineering as well as opportunities for tissue engineering approaches to inform our understanding of fundamental biology. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2356-2368, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  14. Computational model-informed design and bioprinting of cell-patterned constructs for bone tissue engineering.

    Science.gov (United States)

    Carlier, Aurélie; Skvortsov, Gözde Akdeniz; Hafezi, Forough; Ferraris, Eleonora; Patterson, Jennifer; Koç, Bahattin; Van Oosterwyck, Hans

    2016-05-17

    Three-dimensional (3D) bioprinting is a rapidly advancing tissue engineering technology that holds great promise for the regeneration of several tissues, including bone. However, to generate a successful 3D bone tissue engineering construct, additional complexities should be taken into account such as nutrient and oxygen delivery, which is often insufficient after implantation in large bone defects. We propose that a well-designed tissue engineering construct, that is, an implant with a specific spatial pattern of cells in a matrix, will improve the healing outcome. By using a computational model of bone regeneration we show that particular cell patterns in tissue engineering constructs are able to enhance bone regeneration compared to uniform ones. We successfully bioprinted one of the most promising cell-gradient patterns by using cell-laden hydrogels with varying cell densities and observed a high cell viability for three days following the bioprinting process. In summary, we present a novel strategy for the biofabrication of bone tissue engineering constructs by designing cell-gradient patterns based on a computational model of bone regeneration, and successfully bioprinting the chosen design. This integrated approach may increase the success rate of implanted tissue engineering constructs for critical size bone defects and also can find a wider application in the biofabrication of other types of tissue engineering constructs.

  15. Bone Tissue Engineering and Regeneration: From Discovery to the Clinic—An Overview

    OpenAIRE

    O'Keefe, Regis J.; Mao, Jeremy

    2011-01-01

    A National Institutes of Health sponsored workshop “Bone Tissue Engineering and Regeneration: From Discovery to the Clinic” gathered thought leaders from medicine, science, and industry to determine the state of art in the field and to define the barriers to translating new technologies to novel therapies to treat bone defects. Tissue engineering holds enormous promise to improve human health through prevention of disease and the restoration of healthy tissue functions. Bone tissue engineerin...

  16. Tissue engineering and regenerative medicine in applied research: a year in review of 2014.

    Science.gov (United States)

    Lin, Xunxun; Huang, Jia; Shi, Yuan; Liu, Wei

    2015-04-01

    Tissue engineering and regenerative medicine (TERM) remains to be one of the fastest growing fields, which covers a wide scope of topics of both basic and applied biological researches. This overview article summarized the advancements in applied researches of TERM area, including stem cell-mediated tissue regeneration, material science, and TERM clinical trial. These achievements demonstrated the great potential of clinical regenerative therapy of tissue/organ disease or defect through stem cells and tissue engineering approaches.

  17. Nanoreinforced Hydrogels for Tissue Engineering: Biomaterials that are Compatible with Load-Bearing and Electroactive Tissues

    DEFF Research Database (Denmark)

    Mehrali, Mehdi; Thakur, Ashish; Pennisi, Christian Pablo

    2017-01-01

    , mechanical, and electrical properties. Here, recent advances in the fabrication and application of nanocomposite hydrogels in tissue engineering applications are described, with specific attention toward skeletal and electroactive tissues, such as cardiac, nerve, bone, cartilage, and skeletal muscle......Given their highly porous nature and excellent water retention, hydrogel-based biomaterials can mimic critical properties of the native cellular environment. However, their potential to emulate the electromechanical milieu of native tissues or conform well with the curved topology of human organs...

  18. Human DPSCs fabricate vascularized woven bone tissue: A new tool in bone tissue engineering

    Czech Academy of Sciences Publication Activity Database

    Paino, F.; Noce, M.L.; Giuliani, A.; de Rosa, A.; Mazzoni, F.; Laino, L.; Amler, Evžen; Papaccio, G.; Desiderio, V.; Tirino, V.

    2017-01-01

    Roč. 131, č. 8 (2017), s. 699-713 ISSN 0143-5221 Institutional support: RVO:68378041 Keywords : bone differentiation * bone regeneration * bone tissue engineering Subject RIV: FP - Other Medical Disciplines OBOR OECD: Orthopaedics Impact factor: 4.936, year: 2016

  19. Development of Synthetic and Natural Materials for Tissue Engineering Applications Using Adipose Stem Cells

    Directory of Open Access Journals (Sweden)

    Yunfan He

    2016-01-01

    Full Text Available Adipose stem cells have prominent implications in tissue regeneration due to their abundance and relative ease of harvest from adipose tissue and their abilities to differentiate into mature cells of various tissue lineages and secrete various growth cytokines. Development of tissue engineering techniques in combination with various carrier scaffolds and adipose stem cells offers great potential in overcoming the existing limitations constraining classical approaches used in plastic and reconstructive surgery. However, as most tissue engineering techniques are new and highly experimental, there are still many practical challenges that must be overcome before laboratory research can lead to large-scale clinical applications. Tissue engineering is currently a growing field of medical research; in this review, we will discuss the progress in research on biomaterials and scaffolds for tissue engineering applications using adipose stem cells.

  20. In vitro precultivation alleviates post-implantation inflammation and enhances development of tissue-engineered tubular cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Luo Xusong; Zhou Guangdong; Liu Wei; Zhang Wenjie; Cui Lei; Cao Yilin [Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 (China); Cen Lian, E-mail: guangdongzhou@126.co, E-mail: yilincao@yahoo.co [National Tissue Engineering Center of China, Shanghai 200011 (China)

    2009-04-15

    Tissue-engineered tubular cartilage is a promising graft for tracheal reconstruction. But polylactic acid/polyglycolic acid (PLA/PGA) fibers, the frequently used scaffolds for cartilage engineering, often elicit an obvious inflammation response following implantation into immunocompetent animals. We propose that the inflammation could be alleviated by in vitro precultivation. In this study, after in vitro culture for either 2 days (direct implantation group (DI)) or for 2 weeks (precultivation implantation group (PI)), autologous tubular chondrocyte-PLA/PGA constructs were subcutaneously implanted into rabbits. In the PI group, after 2 weeks of precultivation, most of the fibers were found to be completely embedded in an extracellular matrix (ECM) produced by the chondrocytes. Importantly, no obvious inflammatory reaction was observed after in vivo implantation and homogeneous cartilage-like tissue was formed with biomechanical properties close to native tracheal cartilage at 4 weeks post-implantation. In the DI group, however, an obvious inflammatory reaction was observed within and around the cell-scaffold constructs at 1 week implantation and only sporadic cartilage islands separated by fibrous tissue were observed at 4 weeks. These results demonstrated that the post-implantation inflammatory reaction could be alleviated by in vitro precultivation, which contributes to the formation of satisfactory tubular cartilage for tracheal reconstruction.

  1. The Crosstalk between Tissue Engineering and Pharmaceutical Biotechnology: Recent Advances and Future Directions.

    Science.gov (United States)

    Pacheco, Daniela P; Reis, Rui L; Correlo, Vítor M; Marques, Alexandra P

    2015-01-01

    Tissue-engineered constructs made of biotechnology-derived materials have been preferred due to their chemical and physical composition, which offers both high versatility and a support to enclose/ incorporate relevant signaling molecules and/or genes known to therapeutically induce tissue repair. Herein, a critical overview of the impact of different biotechnology-derived materials, scaffolds, and recombinant signaling molecules over the behavior of cells, another element of tissue engineered constructs, as well its regulatory role in tissue regeneration and disease progression is given. Additionally, these tissue-engineered constructs evolved to three-dimensional (3D) tissue-like models that, as an advancement of two-dimensional standard culture methods, are expected to be a valuable tool in the field of drug discovery and pharmaceutical research. Despite the improved design and conception of current proposed 3D tissue-like models, advanced control systems to enable and accelerate streamlining and automation of the numerous labor-intensive steps intrinsic to the development of tissue-engineered constructs are still to be achieved. In this sense, this review intends to present the biotechnology- derived materials that are being explored in the field of tissue engineering to generate 3D tissue-analogues and briefly highlight their foremost breakthroughs in tissue regeneration and drug discovery. It also aims to reinforce that the crosstalk between tissue engineering and pharmaceutical biotechnology has been fostering the outcomes of tissue engineering approaches through the use of biotechnology-derived signaling molecules. Gene delivery/therapy is also discussed as a forefront area that represents another cross point between tissue engineering and pharmaceutical biotechnology, in which nucleic acids can be considered a "super pharmaceutical" to drive biological responses, including tissue regeneration.

  2. Applied Induced Pluripotent Stem Cells in Combination With Biomaterials in Bone Tissue Engineering.

    Science.gov (United States)

    Ardeshirylajimi, Abdolreza

    2017-10-01

    Due to increasing of the orthopedic lesions and fractures in the world and limitation of current treatment methods, researchers, and surgeons paid attention to the new treatment ways especially to tissue engineering and regenerative medicine. Innovation in stem cells and biomaterials accelerate during the last decade as two main important parts of the tissue engineering. Recently, induced pluripotent stem cells (iPSCs) introduced as cells with highly proliferation and differentiation potentials that hold great promising features for used in tissue engineering and regenerative medicine. As another main part of tissue engineering, synthetic, and natural polymers have been shown daily grow up in number to increase and improve the grade of biopolymers that could be used as scaffold with or without stem cells for implantation. One of the developed areas of tissue engineering is bone tissue engineering; the aim of this review is present studies were done in the field of bone tissue engineering while used iPSCs in combination with natural and synthetic biomaterials. J. Cell. Biochem. 118: 3034-3042, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Tissue engineering for urinary tract reconstruction and repair: Progress and prospect in China.

    Science.gov (United States)

    Zou, Qingsong; Fu, Qiang

    2018-04-01

    Several urinary tract pathologic conditions, such as strictures, cancer, and obliterations, require reconstructive plastic surgery. Reconstruction of the urinary tract is an intractable task for urologists due to insufficient autologous tissue. Limitations of autologous tissue application prompted urologists to investigate ideal substitutes. Tissue engineering is a new direction in these cases. Advances in tissue engineering over the last 2 decades may offer alternative approaches for the urinary tract reconstruction. The main components of tissue engineering include biomaterials and cells. Biomaterials can be used with or without cultured cells. This paper focuses on cell sources, biomaterials, and existing methods of tissue engineering for urinary tract reconstruction in China. The paper also details challenges and perspectives involved in urinary tract reconstruction.

  4. Progress on materials and scaffold fabrications applied to esophageal tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Qiuxiang; Shi, Peina; Gao, Mongna; Yu, Xuechan; Liu, Yuxin; Luo, Ling; Zhu, Yabin, E-mail: zhuyabin@nbu.edu.cn

    2013-05-01

    The mortality rate from esophageal disease like atresia, carcinoma, tracheoesophageal fistula, etc. is increasing rapidly all over the world. Traditional therapies such as surgery, radiotherapy or chemotherapy have been met with very limited success resulting in reduced survival rate and quality of patients' life. Tissue-engineered esophagus, a novel substitute possessing structure and function similar to native tissue, is believed to be an effective therapy and a promising replacement in the future. However, research on esophageal tissue engineering is still at an early stage. Considerable research has been focused on developing ideal scaffolds with optimal materials and methods of fabrication. This article gives a review of materials and scaffold fabrications currently applied in esophageal tissue engineering research. - Highlights: ► Natural and synthesized materials are being developed as scaffold matrices. ► Several technologies have been applied to reconstruct esophagus tissue scaffold. ► Tissue-engineered esophagus is a promising artificial replacement.

  5. The Ability of Tissue Engineered Skin Accelerating the Closure of Different Wound

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    1 IntroductionIn the past several decades, a number of reseacher have described the principal efficacy of tissue engineered skin to promote wound healing of venous and diabetic ulcers. But the true value of tissue-engineered skin products in different wound care remains yet to be more clearly defined. In this trial, we analysis the effective of tissue-engineered skin (ActivSkin) in the management of burns, donor sites and ulcers, which were also the frequently injury caused with warfare, disaster and terror...

  6. Novel Textile Scaffolds Generated by Flock Technology for Tissue Engineering of Bone and Cartilage.

    Science.gov (United States)

    Walther, Anja; Hoyer, Birgit; Springer, Armin; Mrozik, Birgit; Hanke, Thomas; Cherif, Chokri; Pompe, Wolfgang; Gelinsky, Michael

    2012-03-22

    Textile scaffolds can be found in a variety of application areas in regenerative medicine and tissue engineering. In the present study we used electrostatic flocking-a well-known textile technology-to produce scaffolds for tissue engineering of bone. Flock scaffolds stand out due to their unique structure: parallel arranged fibers that are aligned perpendicularly to a substrate, resulting in mechanically stable structures with a high porosity. In compression tests we demonstrated good mechanical properties of such scaffolds and in cell culture experiments we showed that flock scaffolds allow attachment and proliferation of human mesenchymal stem cells and support their osteogenic differentiation. These matrices represent promising scaffolds for tissue engineering.

  7. [Progress in application of 3D bioprinting in cartilage regeneration and reconstruction for tissue engineering].

    Science.gov (United States)

    Liao, Junlin; Wang, Shaohua; Chen, Jia; Xie, Hongju; Zhou, Jianda

    2017-02-28

    Three-dimensional (3D) bioprinting provides an advanced technology for tissue engineering and regenerative medicine because of its ability to produce the models or organs with higher precision and more suitable for human body. It has been successfully used to produce a variety of cartilage scaffold materials. In addition, 3D bioprinter can directly to print tissue and organs with live chondrocytes. In conclusion, 3D bioprinting may have broad prospect for cartilage regeneration and reconstruction in tissue engineering.

  8. Fine-tuning Cartilage Tissue Engineering by Applying Principles from Embryonic Development

    OpenAIRE

    Hellingman, Catharine

    2012-01-01

    textabstractCartilage has a very poor capacity for regeneration in vivo. In head and neck surgery cartilage defects are usually reconstructed with autologous cartilage from for instance the external ear or the ribs. Cartilage tissue engineering may be a promising alternative to supply tissue for cartilage reconstructions in otorhinolaryngology as well as in plastic surgery and orthopaedics. The aim of this thesis is to find new tools by which cartilage tissue engineering can be better control...

  9. Detection of abnormalities in the superficial zone of cartilage repaired using a tissue engineered construct derived from synovial stem cells

    Directory of Open Access Journals (Sweden)

    W Ando

    2012-09-01

    Full Text Available The present study investigated the surface structure and mechanical properties of repair cartilage generated from a tissue engineered construct (TEC derived from synovial mesenchymal stem cells at six months post-implantation compared to those of uninjured cartilage. TEC-mediated repair tissue was cartilaginous with Safranin O staining, and had comparable macro-scale compressive properties with uninjured cartilage. However, morphological assessments revealed that the superficial zone of TEC-mediated tissue was more fibrocartilage-like, in contrast to the middle or deep zones that were more hyaline cartilage-like with Safranin O staining. Histological scoring of the TEC-mediated tissue was significantly lower in the superficial zone than in the middle and deep zones. Scanning electron microscopy showed a thick tangential bundle of collagen fibres at the most superficial layer of uninjured cartilage, while no corresponding structure was detected at the surface of TEC-mediated tissue. Immunohistochemical analysis revealed that PRG4 was localised in the superficial area of uninjured cartilage, as well as the TEC-mediated tissue. Friction testing showed that the lubrication properties of the two tissues was similar, however, micro-indentation analysis revealed that the surface stiffness of the TEC-repair tissue was significantly lower than that of uninjured cartilage. Permeability testing indicated that the TEC-mediated tissue exhibited lower water retaining capacity than did uninjured cartilage, specifically at the superficial zone. Thus, TEC-mediated tissue exhibited compromised mechanical properties at the superficial zone, properties which need improvement in the future for maintenance of long term repair cartilage integrity.

  10. Detection of abnormalities in the superficial zone of cartilage repaired using a tissue engineered construct derived from synovial stem cells.

    Science.gov (United States)

    Ando, Wataru; Fujie, Hiromichi; Moriguchi, Yu; Nansai, Ryosuke; Shimomura, Kazunori; Hart, David A; Yoshikawa, Hideki; Nakamura, Norimasa

    2012-09-28

    The present study investigated the surface structure and mechanical properties of repair cartilage generated from a tissue engineered construct (TEC) derived from synovial mesenchymal stem cells at six months post-implantation compared to those of uninjured cartilage. TEC-mediated repair tissue was cartilaginous with Safranin O staining, and had comparable macro-scale compressive properties with uninjured cartilage. However, morphological assessments revealed that the superficial zone of TEC-mediated tissue was more fibrocartilage-like, in contrast to the middle or deep zones that were more hyaline cartilage-like with Safranin O staining. Histological scoring of the TEC-mediated tissue was significantly lower in the superficial zone than in the middle and deep zones. Scanning electron microscopy showed a thick tangential bundle of collagen fibres at the most superficial layer of uninjured cartilage, while no corresponding structure was detected at the surface of TEC-mediated tissue. Immunohistochemical analysis revealed that PRG4 was localised in the superficial area of uninjured cartilage, as well as the TEC-mediated tissue. Friction testing showed that the lubrication properties of the two tissues was similar, however, micro-indentation analysis revealed that the surface stiffness of the TEC-repair tissue was significantly lower than that of uninjured cartilage. Permeability testing indicated that the TEC-mediated tissue exhibited lower water retaining capacity than did uninjured cartilage, specifically at the superficial zone. Thus, TEC-mediated tissue exhibited compromised mechanical properties at the superficial zone, properties which need improvement in the future for maintenance of long term repair cartilage integrity.

  11. [Development of computer aided forming techniques in manufacturing scaffolds for bone tissue engineering].

    Science.gov (United States)

    Wei, Xuelei; Dong, Fuhui

    2011-12-01

    To review recent advance in the research and application of computer aided forming techniques for constructing bone tissue engineering scaffolds. The literature concerning computer aided forming techniques for constructing bone tissue engineering scaffolds in recent years was reviewed extensively and summarized. Several studies over last decade have focused on computer aided forming techniques for bone scaffold construction using various scaffold materials, which is based on computer aided design (CAD) and bone scaffold rapid prototyping (RP). CAD include medical CAD, STL, and reverse design. Reverse design can fully simulate normal bone tissue and could be very useful for the CAD. RP techniques include fused deposition modeling, three dimensional printing, selected laser sintering, three dimensional bioplotting, and low-temperature deposition manufacturing. These techniques provide a new way to construct bone tissue engineering scaffolds with complex internal structures. With rapid development of molding and forming techniques, computer aided forming techniques are expected to provide ideal bone tissue engineering scaffolds.

  12. Surface Modification using Plasma treatments and Adhesion Peptide for Durable Tissue-Engineered Heart Valves

    International Nuclear Information System (INIS)

    Jung, Young mee; Kim, Soo Hyun

    2010-01-01

    Artificial heart valves are used in valvular heart diseases, but these valves have disadvantages that they cannot grow, repair and remodel. In current study, the strategies to development of in vitro cultured functional tissue by tissue engineering is available to heart valve disease. In the point of using viable autolougous cells, tissue engineered heart valves have some advantage to include that they can repair, remodel, and grow. Because heart valve is placed under the strong shear stress condition by pumping of heart, the durability of tissue-engineered heart valves is now questionable. The purpose of the study is to evaluate of the durability of tissue engineered heart valve with surface modified scaffolds under hemodynamic conditions

  13. Developing bioactive composite scaffolds for bone tissue engineering

    Science.gov (United States)

    Chen, Yun

    bone-like apatite/collagen composite coating. Saos-2 osteoblast-like cells were used to evaluate the cellular behaviors on these biomimetic coatings. Cell morphologies on the surfaces of PLLA films and scaffolds, PLLA films and scaffolds with apatite coating, and PLLA films and scaffolds with apatite/collagen composite coating were studied by SEM. Cell viability was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrasodium bromide (MTT) assay. In addition, differentiated cell function was assessed by measuring alkaline phosphatase activity. These results suggested that the apatite coating and apatite/collagen composite coating fabricated through the accelerated biomimetic processes could improve the interactions between osteoblasts and PLLA. The composite coating was more effective than apatite coating in improving such interactions. PLLA scaffolds coated with submicron collagen fibrils and submicron apatite paticulates are expected to be one of the promising 3D substrates for bone tissue engineering. To facilitate coating into scaffolds, the flowing condition was introduced into the accelerated biomimetic process. The apatite formed in the different sites in the scaffold was characterized using SEM. It was found that the accelerated biomimetic process performed in the flowing condition yielded more uniform spatial distribution of apatite particles than that in the regular shaking condition. This work provides a novel condition for obtaining uniform spatial distribution of bone-like apatite within the scaffolds in a timely manner, which is expected to facilitate uniform distribution of attached cells within the scaffoldsin vitro and in vivo.

  14. Strategies and applications for incorporating physical and chemical signal gradients in tissue engineering.

    Science.gov (United States)

    Singh, Milind; Berkland, Cory; Detamore, Michael S

    2008-12-01

    From embryonic development to wound repair, concentration gradients of bioactive signaling molecules guide tissue formation and regeneration. Moreover, gradients in cellular and extracellular architecture as well as in mechanical properties are readily apparent in native tissues. Perhaps tissue engineers can take a cue from nature in attempting to regenerate tissues by incorporating gradients into engineering design strategies. Indeed, gradient-based approaches are an emerging trend in tissue engineering, standing in contrast to traditional approaches of homogeneous delivery of cells and/or growth factors using isotropic scaffolds. Gradients in tissue engineering lie at the intersection of three major paradigms in the field-biomimetic, interfacial, and functional tissue engineering-by combining physical (via biomaterial design) and chemical (with growth/differentiation factors and cell adhesion molecules) signal delivery to achieve a continuous transition in both structure and function. This review consolidates several key methodologies to generate gradients, some of which have never been employed in a tissue engineering application, and discusses strategies for incorporating these methods into tissue engineering and implant design. A key finding of this review was that two-dimensional physicochemical gradient substrates, which serve as excellent high-throughput screening tools for optimizing desired biomaterial properties, can be enhanced in the future by transitioning from two dimensions to three dimensions, which would enable studies of cell-protein-biomaterial interactions in a more native tissue-like environment. In addition, biomimetic tissue regeneration via combined delivery of graded physical and chemical signals appears to be a promising strategy for the regeneration of heterogeneous tissues and tissue interfaces. In the future, in vivo applications will shed more light on the performance of gradient-based mechanical integrity and signal delivery

  15. New tools for non-invasive exploration of collagen network in cartilaginous tissue-engineered substitute.

    Science.gov (United States)

    Henrionnet, Christel; Dumas, Dominique; Hupont, Sébastien; Stoltz, Jean François; Mainard, Didier; Gillet, Pierre; Pinzano, Astrid

    2017-01-01

    In tissue engineering approaches, the quality of substitutes is a key element to determine its ability to treat cartilage defects. However, in clinical practice, the evaluation of tissue-engineered cartilage substitute quality is not possible due to the invasiveness of the standard procedure, which is to date histology. The aim of this work was to validate a new innovative system performed from two-photon excitation laser adapted to an optical macroscope to evaluate at macroscopic scale the collagen network in cartilage tissue-engineered substitutes in confrontation with gold standard histologic techniques or immunohistochemistry to visualize type II collagen. This system permitted to differentiate the quality of collagen network between ITS and TGF-β1 treatments. Multiscale large field imaging combined to multimodality approaches (SHG-TCSPC) at macroscopical scale represent an innovative and non-invasive technique to monitor the quality of collagen network in cartilage tissue-engineered substitutes before in vivo implantation.

  16. Advancing Tissue Engineering: A Tale of Nano-, Micro-, and Macroscale Integration

    NARCIS (Netherlands)

    Leijten, Jeroen Christianus Hermanus; Rouwkema, Jeroen; Zhang, Y.S.; Nasajpour, A.; Dokmeci, M.R.; Khademhosseini, A.

    2016-01-01

    Tissue engineering has the potential to revolutionize the health care industry. Delivering on this promise requires the generation of efficient, controllable and predictable implants. The integration of nano- and microtechnologies into macroscale regenerative biomaterials plays an essential role in

  17. Investigation of particle-functionalized tissue engineering scaffolds using X-ray tomographic microscopy

    DEFF Research Database (Denmark)

    Nygaard, J V; Andersen, M Ø; Howard, K A

    2008-01-01

    A low-density, porous chitosan/poly-(dl-lactide-co-glycolide) (PLGA) microparticle composite scaffold was produced by thermally induced phase separation followed by lyophilization, to provide a bicontinuous microstructure potentially suitable for tissue engineering and locally controlled drug...

  18. Poly( E-caprolactone) nanocomposite scaffolds for tissue engineering: a brief overview

    CSIR Research Space (South Africa)

    Mkhabela, VJ

    2014-01-01

    Full Text Available that require long-term degradation kinetics for example in bone tissue engineering. The incorporation of nanofillers or blending of polycaprolactone with other polymers has yielded a class of hybrid materials with significantly improved physical and chemical...

  19. A dual flow bioreactor with controlled mechanical stimulation for cartilage tissue engineering

    NARCIS (Netherlands)

    Spitters, Tim; Leijten, Jeroen Christianus Hermanus; Deus, F.D.; Costa, I.B.F.; van Apeldoorn, Aart A.; van Blitterswijk, Clemens; Karperien, Hermanus Bernardus Johannes

    2013-01-01

    In cartilage tissue engineering bioreactors can create a controlled environment to study chondrocyte behavior under mechanical stimulation or produce chondrogenic grafts of clinically relevant size. Here we present a novel bioreactor, which combines mechanical stimulation with a two compartment

  20. Review on patents for mechanical stimulation of articular cartilage tissue engineering

    NARCIS (Netherlands)

    Donkelaar, van C.C.; Schulz, R.M.

    2008-01-01

    To repair articular cartilage defects in osteoarthritic patients with three-dimensional tissue engineered chondrocyte grafts, requires the formation of new cartilage with sufficient mechanical properties. The premise is that mechanical stimulation during the culturing process is necessary to reach

  1. Nanostructured 3D Constructs Based on Chitosan and Chondroitin Sulphate Multilayers for Cartilage Tissue Engineering

    NARCIS (Netherlands)

    Silva, J.M.; Georgi, Nicole; Costa, R.; Sher, P.; Reis, R L; van Blitterswijk, Clemens; Karperien, Hermanus Bernardus Johannes; Mano, J.F.

    2013-01-01

    Nanostructured three-dimensional constructs combining layer-by-layer technology (LbL) and template leaching were processed and evaluated as possible support structures for cartilage tissue engineering. Multilayered constructs were formed by depositing the polyelectrolytes chitosan (CHT) and

  2. Evaluation of histological scoring systems for tissue-engineered, repaired and osteoarthritic cartilage

    NARCIS (Netherlands)

    Rutgers, M.; van Pelt, M.J.; Dhert, W.J.A.; Creemers, L.B.; Saris, D.B.F.

    2010-01-01

    Osteoarthritis and Cartilage Volume 18, Issue 1, January 2010, Pages 12-23 -------------------------------------------------------------------------------- Review Evaluation of histological scoring systems for tissue-engineered, repaired and osteoarthritic cartilage M. Rutgers†, M.J.P. van Pelt†,

  3. High Definition Confocal Imaging Modalities for the Characterization of Tissue-Engineered Substitutes.

    Science.gov (United States)

    Mayrand, Dominique; Fradette, Julie

    2018-01-01

    Optimal imaging methods are necessary in order to perform a detailed characterization of thick tissue samples from either native or engineered tissues. Tissue-engineered substitutes are featuring increasing complexity including multiple cell types and capillary-like networks. Therefore, technical approaches allowing the visualization of the inner structural organization and cellular composition of tissues are needed. This chapter describes an optical clearing technique which facilitates the detailed characterization of whole-mount samples from skin and adipose tissues (ex vivo tissues and in vitro tissue-engineered substitutes) when combined with spectral confocal microscopy and quantitative analysis on image renderings.

  4. Recent Advances in Biomaterials for 3D Printing and Tissue Engineering

    OpenAIRE

    Udayabhanu Jammalamadaka; Karthik Tappa

    2018-01-01

    Three-dimensional printing has significant potential as a fabrication method in creating scaffolds for tissue engineering. The applications of 3D printing in the field of regenerative medicine and tissue engineering are limited by the variety of biomaterials that can be used in this technology. Many researchers have developed novel biomaterials and compositions to enable their use in 3D printing methods. The advantages of fabricating scaffolds using 3D printing are numerous, including the abi...

  5. Novel Textile Scaffolds Generated by Flock Technology for Tissue Engineering of Bone and Cartilage

    OpenAIRE

    Walther, Anja; Hoyer, Birgit; Springer, Armin; Mrozik, Birgit; Hanke, Thomas; Cherif, Chokri; Pompe, Wolfgang; Gelinsky, Michael

    2012-01-01

    Textile scaffolds can be found in a variety of application areas in regenerative medicine and tissue engineering. In the present study we used electrostatic flocking—a well-known textile technology—to produce scaffolds for tissue engineering of bone. Flock scaffolds stand out due to their unique structure: parallel arranged fibers that are aligned perpendicularly to a substrate, resulting in mechanically stable structures with a high porosity. In compression tests we demonstrated good mechani...

  6. Reducing the number of laboratory animals used in tissue engineering research by restricting the variety of animal models. Articular cartilage tissue engineering as a case study.

    Science.gov (United States)

    de Vries, Rob B M; Buma, Pieter; Leenaars, Marlies; Ritskes-Hoitinga, Merel; Gordijn, Bert

    2012-12-01

    The use of laboratory animals in tissue engineering research is an important underexposed ethical issue. Several ethical questions may be raised about this use of animals. This article focuses on the possibilities of reducing the number of animals used. Given that there is considerable debate about the adequacy of the current animal models in tissue engineering research, we investigate whether it is possible to reduce the number of laboratory animals by selecting and using only those models that have greatest predictive value for future clinical application of the tissue engineered product. The field of articular cartilage tissue engineering is used as a case study. Based on a study of the scientific literature and interviews with leading experts in the field, an overview is provided of the animal models used and the advantages and disadvantages of each model, particularly in terms of extrapolation to the human situation. Starting from this overview, it is shown that, by skipping the small models and using only one large preclinical model, it is indeed possible to restrict the number of animal models, thereby reducing the number of laboratory animals used. Moreover, it is argued that the selection of animal models should become more evidence based and that researchers should seize more opportunities to choose or create characteristics in the animal models that increase their predictive value.

  7. Reducing the number of laboratory animals used in tissue engineering research by restricting the variety of animal models. Articular cartilage tissue engineering as a case study

    NARCIS (Netherlands)

    Vries, R.B.M. de; Buma, P.; Leenaars, M.; Ritskes-Hoitinga, M.; Gordijn, B.

    2012-01-01

    The use of laboratory animals in tissue engineering research is an important underexposed ethical issue. Several ethical questions may be raised about this use of animals. This article focuses on the possibilities of reducing the number of animals used. Given that there is considerable debate about

  8. The necessity of a theory of biology for tissue engineering: metabolism-repair systems.

    Science.gov (United States)

    Ganguli, Suman; Hunt, C Anthony

    2004-01-01

    Since there is no widely accepted global theory of biology, tissue engineering and bioengineering lack a theoretical understanding of the systems being engineered. By default, tissue engineering operates with a "reductionist" theoretical approach, inherited from traditional engineering of non-living materials. Long term, that approach is inadequate, since it ignores essential aspects of biology. Metabolism-repair systems are a theoretical framework which explicitly represents two "functional" aspects of living organisms: self-repair and self-replication. Since repair and replication are central to tissue engineering, we advance metabolism-repair systems as a potential theoretical framework for tissue engineering. We present an overview of the framework, and indicate directions to pursue for extending it to the context of tissue engineering. We focus on biological networks, both metabolic and cellular, as one such direction. The construction of these networks, in turn, depends on biological protocols. Together these concepts may help point the way to a global theory of biology appropriate for tissue engineering.

  9. Fabrication and characterization of scaffold from cadaver goat-lung tissue for skin tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Sweta K. [Department of Polymer and Process Engineering, Indian Institute of Technology, Roorkee (India); Dinda, Amit K. [Department of Pathology, All India Institute of Medical Sciences, New Delhi (India); Potdar, Pravin D. [Department of Molecular Medicine, Jaslok Hospital and Research Centre, Mumbai (India); Mishra, Narayan C., E-mail: mishrawise@gmail.com [Department of Polymer and Process Engineering, Indian Institute of Technology, Roorkee (India)

    2013-10-15

    The present study aims to fabricate scaffold from cadaver goat-lung tissue and evaluate it for skin tissue engineering applications. Decellularized goat-lung scaffold was fabricated by removing cells from cadaver goat-lung tissue enzymatically, to have cell-free 3D-architecture of natural extracellular matrix. DNA quantification assay and Hematoxylin and eosin staining confirmed the absence of cellular material in the decellularized lung-tissue. SEM analysis of decellularized scaffold shows the intrinsic porous structure of lung tissue with well-preserved pore-to-pore interconnectivity. FTIR analysis confirmed non-denaturation and well maintainance of collagenous protein structure of decellularized scaffold. MTT assay, SEM analysis and H and E staining of human skin-derived Mesenchymal Stem cell, seeded over the decellularized scaffold, confirms stem cell attachment, viability, biocompatibility and proliferation over the decellularized scaffold. Expression of Keratin18 gene, along with CD105, CD73 and CD44, by human skin-derived Mesenchymal Stem cells over decellularized scaffold signifies that the cells are viable, proliferating and migrating, and have maintained their critical cellular functions in the presence of scaffold. Thus, overall study proves the applicability of the goat-lung tissue derived decellularized scaffold for skin tissue engineering applications. - Highlights: • We successfully fabricated decellularized scaffold from cadaver goat-lung tissue. • Decellularized goat-lung scaffolds were found to be highly porous. • Skin derived MSC shows high cell viability and proliferation over the scaffold. • Phenotype of MSCs was well maintained over the scaffold. • The scaffold shows potential for applications in skin tissue engineering.

  10. Fabrication and characterization of scaffold from cadaver goat-lung tissue for skin tissue engineering applications

    International Nuclear Information System (INIS)

    Gupta, Sweta K.; Dinda, Amit K.; Potdar, Pravin D.; Mishra, Narayan C.

    2013-01-01

    The present study aims to fabricate scaffold from cadaver goat-lung tissue and evaluate it for skin tissue engineering applications. Decellularized goat-lung scaffold was fabricated by removing cells from cadaver goat-lung tissue enzymatically, to have cell-free 3D-architecture of natural extracellular matrix. DNA quantification assay and Hematoxylin and eosin staining confirmed the absence of cellular material in the decellularized lung-tissue. SEM analysis of decellularized scaffold shows the intrinsic porous structure of lung tissue with well-preserved pore-to-pore interconnectivity. FTIR analysis confirmed non-denaturation and well maintainance of collagenous protein structure of decellularized scaffold. MTT assay, SEM analysis and H and E staining of human skin-derived Mesenchymal Stem cell, seeded over the decellularized scaffold, confirms stem cell attachment, viability, biocompatibility and proliferation over the decellularized scaffold. Expression of Keratin18 gene, along with CD105, CD73 and CD44, by human skin-derived Mesenchymal Stem cells over decellularized scaffold signifies that the cells are viable, proliferating and migrating, and have maintained their critical cellular functions in the presence of scaffold. Thus, overall study proves the applicability of the goat-lung tissue derived decellularized scaffold for skin tissue engineering applications. - Highlights: • We successfully fabricated decellularized scaffold from cadaver goat-lung tissue. • Decellularized goat-lung scaffolds were found to be highly porous. • Skin derived MSC shows high cell viability and proliferation over the scaffold. • Phenotype of MSCs was well maintained over the scaffold. • The scaffold shows potential for applications in skin tissue engineering

  11. Do cell based tissue engineering products for meniscus regeneration influence vascularization?

    Science.gov (United States)

    Koch, Matthias; Ehrenreich, Tobias; Koehl, Gudrun; Pattappa, Girish; Pfeifer, Christian; Loibl, Markus; Müller, Michael; Nerlich, Michael; Angele, Peter; Zellner, Johannes

    2017-01-01

    Meniscus regeneration is observed within the peripheral, vascularized zone but decreases in the inner two thirds alongside the vascularization. Within this avascular area, cell-based tissue-engineering-approaches appear to be a promising strategy for the treatment of meniscal defects. Evaluation of the angiogenic potential of cell-based tissue-engineering-products for meniscus healing. Evaluation of angiogenesis induced by rabbit meniscus-pellets, meniscus-cells (MC) or mesenchymal stem-cells (MSC) in cell-based tissue-engineering-products within a rabbit meniscus-ring was performed using a transparent dorsal skin fold chamber in nude mice. Observations were undertaken during a 14 days period. Cell preconditioning differed between experimental groups. Immunohistochemical analysis of the regenerated tissue in the meniscus-ring induced by cell loaded composite scaffolds for differentiation and anti-angiogenic factors were performed. Meniscus-pellets and MSC-/MC-based tissue-engineering-products induced angiogenesis. An accelerated vascularization was detected in the group of meniscus-pellets derived from the vascularized zone compared to avascular meniscus-pellets. In terms of cell-based tissue-engineering-products, chondrogenic preconditioning resulted in significantly increased vessel growth. MSC-constructs showed an accelerated angiogenesis. Immunohistochemical evaluation showed a progressive differentiation and lower content for anti-angiogenic endostatin in the precultured group. Preconditioning of MC-/MSC-based tissue-engineering-products is a promising tool to influence the angiogenic potential of tissue-engineering-products and to adapt these properties according to the aimed tissue qualities.

  12. Co-culture systems-based strategies for articular cartilage tissue engineering.

    Science.gov (United States)

    Zhang, Yu; Guo, Weimin; Wang, Mingjie; Hao, Chunxiang; Lu, Liang; Gao, Shuang; Zhang, Xueliang; Li, Xu; Chen, Mingxue; Li, Penghao; Jiang, Peng; Lu, Shibi; Liu, Shuyun; Guo, Quanyi

    2018-03-01

    Cartilage engineering facilitates repair and regeneration of damaged cartilage using engineered tissue that restores the functional properties of the impaired joint. The seed cells used most frequently in tissue engineering, are chondrocytes and mesenchymal stem cells. Seed cells activity plays a key role in the regeneration of functional cartilage tissue. However, seed cells undergo undesirable changes after in vitro processing procedures, such as degeneration of cartilage cells and induced hypertrophy of mesenchymal stem cells, which hinder cartilage tissue engineering. Compared to monoculture, which does not mimic the in vivo cellular environment, co-culture technology provides a more realistic microenvironment in terms of various physical, chemical, and biological factors. Co-culture technology is used in cartilage tissue engineering to overcome obstacles related to the degeneration of seed cells, and shows promise for cartilage regeneration and repair. In this review, we focus first on existing co-culture systems for cartilage tissue engineering and related fields, and discuss the conditions and mechanisms thereof. This is followed by methods for optimizing seed cell co-culture conditions to generate functional neo-cartilage tissue, which will lead to a new era in cartilage tissue engineering. © 2017 Wiley Periodicals, Inc.

  13. Knee Ligament Injury and the Clinical Application of Tissue Engineering Techniques: A Systematic Review.

    Science.gov (United States)

    Riley, Thomas C; Mafi, Reza; Mafi, Pouya; Khan, Wasim S

    2018-02-23

    The incidence of knee ligament injury is increasing and represents a significant cost to healthcare providers. Current interventions include tissue grafts, suture repair and non-surgical management. These techniques have demonstrated good patient outcomes but have been associated graft rejection, infection, long term immobilization and reduced joint function. The limitations of traditional management strategies have prompted research into tissue engineering of knee ligaments. This paper aims to evaluate whether tissue engineering of knee ligaments offers a viable alternative in the clinical management of knee ligament injuries. A search of existing literature was performed using OVID Medline, Embase, AMED, PubMed and Google Scholar, and a manual review of citations identified within these papers. Silk, polymer and extracellular matrix based scaffolds can all improve graft healing and collagen production. Fibroblasts and stem cells demonstrate compatibility with scaffolds, and have been shown to increase organized collagen production. These effects can be augmented using growth factors and extracellular matrix derivatives. Animal studies have shown tissue engineered ligaments can provide the biomechanical characteristics required for effective treatment of knee ligament injuries. There is a growing clinical demand for a tissue engineered alternative to traditional management strategies. Currently, there is limited consensus regarding material selection for use in tissue engineered ligaments. Further research is required to optimize tissue engineered ligament production before clinical application. Controlled clinical trials comparing the use of tissue engineered ligaments and traditional management in patients with knee ligament injury could determine whether they can provide a cost-effective alternative. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Tissue-Engineered Solutions in Plastic and Reconstructive Surgery: Principles and Practice.

    Science.gov (United States)

    Al-Himdani, Sarah; Jessop, Zita M; Al-Sabah, Ayesha; Combellack, Emman; Ibrahim, Amel; Doak, Shareen H; Hart, Andrew M; Archer, Charles W; Thornton, Catherine A; Whitaker, Iain S

    2017-01-01

    Recent advances in microsurgery, imaging, and transplantation have led to significant refinements in autologous reconstructive options; however, the morbidity of donor sites remains. This would be eliminated by successful clinical translation of tissue-engineered solutions into surgical practice. Plastic surgeons are uniquely placed to be intrinsically involved in the research and development of laboratory engineered tissues and their subsequent use. In this article, we present an overview of the field of tissue engineering, with the practicing plastic surgeon in mind. The Medical Research Council states that regenerative medicine and tissue engineering "holds the promise of revolutionizing patient care in the twenty-first century." The UK government highlighted regenerative medicine as one of the key eight great technologies in their industrial strategy worthy of significant investment. The long-term aim of successful biomanufacture to repair composite defects depends on interdisciplinary collaboration between cell biologists, material scientists, engineers, and associated medical specialties; however currently, there is a current lack of coordination in the field as a whole. Barriers to translation are deep rooted at the basic science level, manifested by a lack of consensus on the ideal cell source, scaffold, molecular cues, and environment and manufacturing strategy. There is also insufficient understanding of the long-term safety and durability of tissue-engineered constructs. This review aims to highlight that individualized approaches to the field are not adequate, and research collaboratives will be essential to bring together differing areas of expertise to expedite future clinical translation. The use of tissue engineering in reconstructive surgery would result in a paradigm shift but it is important to maintain realistic expectations. It is generally accepted that it takes 20-30 years from the start of basic science research to clinical utility

  15. A review of fibrin and fibrin composites for bone tissue engineering.

    Science.gov (United States)

    Noori, Alireza; Ashrafi, Seyed Jamal; Vaez-Ghaemi, Roza; Hatamian-Zaremi, Ashraf; Webster, Thomas J

    2017-01-01

    Tissue engineering has emerged as a new treatment approach for bone repair and regeneration seeking to address limitations associated with current therapies, such as autologous bone grafting. While many bone tissue engineering approaches have traditionally focused on synthetic materials (such as polymers or hydrogels), there has been a lot of excitement surrounding the use of natural materials due to their biologically inspired properties. Fibrin is a natural scaffold formed following tissue injury that initiates hemostasis and provides the initial matrix useful for cell adhesion, migration, proliferation, and differentiation. Fibrin has captured the interest of bone tissue engineers due to its excellent biocompatibility, controllable biodegradability, and ability to deliver cells and biomolecules. Fibrin is particularly appealing because its precursors, fibrinogen, and thrombin, which can be derived from the patient's own blood, enable the fabrication of completely autologous scaffolds. In this article, we highlight the unique properties of fibrin as a scaffolding material to treat bone defects. Moreover, we emphasize its role in bone tissue engineering nanocomposites where approaches further emulate the natural nanostructured features of bone when using fibrin and other nanomaterials. We also review the preparation methods of fibrin glue and then discuss a wide range of fibrin applications in bone tissue engineering. These include the delivery of cells and/or biomolecules to a defect site, distributing cells, and/or growth factors throughout other pre-formed scaffolds and enhancing the physical as well as biological properties of other biomaterials. Thoughts on the future direction of fibrin research for bone tissue engineering are also presented. In the future, the development of fibrin precursors as recombinant proteins will solve problems associated with using multiple or single-donor fibrin glue, and the combination of nanomaterials that allow for the

  16. Fabrication and characterization of scaffold from cadaver goat-lung tissue for skin tissue engineering applications.

    Science.gov (United States)

    Gupta, Sweta K; Dinda, Amit K; Potdar, Pravin D; Mishra, Narayan C

    2013-10-01

    The present study aims to fabricate scaffold from cadaver goat-lung tissue and evaluate it for skin tissue engineering applications. Decellularized goat-lung scaffold was fabricated by removing cells from cadaver goat-lung tissue enzymatically, to have cell-free 3D-architecture of natural extracellular matrix. DNA quantification assay and Hematoxylin and eosin staining confirmed the absence of cellular material in the decellularized lung-tissue. SEM analysis of decellularized scaffold shows the intrinsic porous structure of lung tissue with well-preserved pore-to-pore interconnectivity. FTIR analysis confirmed non-denaturation and well maintainance of collagenous protein structure of decellularized scaffold. MTT assay, SEM analysis and H&E staining of human skin-derived Mesenchymal Stem cell, seeded over the decellularized scaffold, confirms stem cell attachment, viability, biocompatibility and proliferation over the decellularized scaffold. Expression of Keratin18 gene, along with CD105, CD73 and CD44, by human skin-derived Mesenchymal Stem cells over decellularized scaffold signifies that the cells are viable, proliferating and migrating, and have maintained their critical cellular functions in the presence of scaffold. Thus, overall study proves the applicability of the goat-lung tissue derived decellularized scaffold for skin tissue engineering applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Cell microenvironment engineering and monitoring for tissue engineering and regenerative medicine: the recent advances.

    Science.gov (United States)

    Barthes, Julien; Özçelik, Hayriye; Hindié, Mathilde; Ndreu-Halili, Albana; Hasan, Anwarul; Vrana, Nihal Engin

    2014-01-01

    In tissue engineering and regenerative medicine, the conditions in the immediate vicinity of the cells have a direct effect on cells' behaviour and subsequently on clinical outcomes. Physical, chemical, and biological control of cell microenvironment are of crucial importance for the ability to direct and control cell behaviour in 3-dimensional tissue engineering scaffolds spatially and temporally. In this review, we will focus on the different aspects of cell microenvironment such as surface micro-, nanotopography, extracellular matrix composition and distribution, controlled release of soluble factors, and mechanical stress/strain conditions and how these aspects and their interactions can be used to achieve a higher degree of control over cellular activities. The effect of these parameters on the cellular behaviour within tissue engineering context is discussed and how these parameters are used to develop engineered tissues is elaborated. Also, recent techniques developed for the monitoring of the cell microenvironment in vitro and in vivo are reviewed, together with recent tissue engineering applications where the control of cell microenvironment has been exploited. Cell microenvironment engineering and monitoring are crucial parts of tissue engineering efforts and systems which utilize different components of the cell microenvironment simultaneously can provide more functional engineered tissues in the near future.

  18. Cell Microenvironment Engineering and Monitoring for Tissue Engineering and Regenerative Medicine: The Recent Advances

    Directory of Open Access Journals (Sweden)

    Julien Barthes

    2014-01-01

    Full Text Available In tissue engineering and regenerative medicine, the conditions in the immediate vicinity of the cells have a direct effect on cells’ behaviour and subsequently on clinical outcomes. Physical, chemical, and biological control of cell microenvironment are of crucial importance for the ability to direct and control cell behaviour in 3-dimensional tissue engineering scaffolds spatially and temporally. In this review, we will focus on the different aspects of cell microenvironment such as surface micro-, nanotopography, extracellular matrix composition and distribution, controlled release of soluble factors, and mechanical stress/strain conditions and how these aspects and their interactions can be used to achieve a higher degree of control over cellular activities. The effect of these parameters on the cellular behaviour within tissue engineering context is discussed and how these parameters are used to develop engineered tissues is elaborated. Also, recent techniques developed for the monitoring of the cell microenvironment in vitro and in vivo are reviewed, together with recent tissue engineering applications where the control of cell microenvironment has been exploited. Cell microenvironment engineering and monitoring are crucial parts of tissue engineering efforts and systems which utilize different components of the cell microenvironment simultaneously can provide more functional engineered tissues in the near future.

  19. Nanotechnology in vascular tissue engineering: from nanoscaffolding towards rapid vessel biofabrication.

    Science.gov (United States)

    Mironov, Vladimir; Kasyanov, Vladimir; Markwald, Roger R

    2008-06-01

    The existing methods of biofabrication for vascular tissue engineering are still bioreactor-based, extremely expensive, laborious and time consuming and, furthermore, not automated, which would be essential for an economically successful large-scale commercialization. The advances in nanotechnology can bring additional functionality to vascular scaffolds, optimize internal vascular graft surface and even help to direct the differentiation of stem cells into the vascular cell phenotype. The development of rapid nanotechnology-based methods of vascular tissue biofabrication represents one of most important recent technological breakthroughs in vascular tissue engineering because it dramatically accelerates vascular tissue assembly and, importantly, also eliminates the need for a bioreactor-based scaffold cellularization process.

  20. Tissue Engineering of Blood Vessels: Functional Requirements, Progress, and Future Challenges.

    Science.gov (United States)

    Kumar, Vivek A; Brewster, Luke P; Caves, Jeffrey M; Chaikof, Elliot L

    2011-09-01

    Vascular disease results in the decreased utility and decreased availability of autologus vascular tissue for small diameter (requires combined approaches from biomaterials science, cell biology, and translational medicine to develop feasible solutions with the requisite mechanical support, a non-fouling surface for blood flow, and tissue regeneration. Over the past two decades interest in blood vessel tissue engineering has soared on a global scale, resulting in the first clinical implants of multiple technologies, steady progress with several other systems, and critical lessons-learned. This review will highlight the current inadequacies of autologus and synthetic grafts, the engineering requirements for implantation of tissue-engineered grafts, and the current status of tissue-engineered blood vessel research.

  1. [Tissue engineering with mesenchymal stem cells for cartilage and bone regeneration].

    Science.gov (United States)

    Schaefer, D J; Klemt, C; Zhang, X H; Stark, G B

    2000-09-01

    Tissue engineering offers the possibility to fabricate living substitutes for tissues and organs by combining histogenic cells and biocompatible carrier materials. Pluripotent mesenchymal stem cells are isolated and subcultured ex vivo and then their histogenic differentiation is induced by external factors. The fabrication of bone and cartilage constructs, their combinations and gene therapeutic approaches are demonstrated. Advantages and disadvantages of these methods are described by in vitro and in vitro testing. The proof of histotypical function after implantation in vivo is essential. The use of autologous cells and tissue engineering methods offers the possibility to overcome the disadvantages of classical tissue reconstruction--donor site morbidity of autologous grafts, immunogenicity of allogenic grafts and loosening of alloplastic implants. Furthermore, tissue engineering widens the spectrum of surgical indications in bone and cartilage reconstruction.

  2. Corrugated round fibers to improve cell adhesion and proliferation in tissue engineering scaffolds

    NARCIS (Netherlands)

    Bettahalli Narasimha, M.S.; Arkesteijn, I.T.M.; Wessling, Matthias; Poot, Andreas A.; Stamatialis, Dimitrios

    2013-01-01

    Optimal cell interaction with biomaterial scaffolds is one of the important requirements for the development of successful in vitro tissue-engineered tissues. Fast, efficient and spatially uniform cell adhesion can improve the clinical potential of engineered tissue. Three-dimensional (3-D) solid

  3. Advances of mesenchymal stem cells derived from bone marrow and dental tissue in craniofacial tissue engineering.

    Science.gov (United States)

    Yang, Maobin; Zhang, Hongming; Gangolli, Riddhi

    2014-05-01

    Bone and dental tissues in craniofacial region work as an important aesthetic and functional unit. Reconstruction of craniofacial tissue defects is highly expected to ensure patients to maintain good quality of life. Tissue engineering and regenerative medicine have been developed in the last two decades, and been advanced with the stem cell technology. Bone marrow derived mesenchymal stem cells are one of the most extensively studied post-natal stem cell population, and are widely utilized in cell-based therapy. Dental tissue derived mesenchymal stem cells are a relatively new stem cell population that isolated from various dental tissues. These cells can undergo multilineage differentiation including osteogenic and odontogenic differentiation, thus provide an alternative source of mesenchymal stem cells for tissue engineering. In this review, we discuss the important issues in mesenchymal stem cell biology including the origin and functions of mesenchymal stem cells, compare the properties of these two types of mesenchymal cells, update recent basic research and clinic applications in this field, and address important future challenges.

  4. Controlled Bioactive Molecules Delivery Strategies for Tendon and Ligament Tissue Engineering using Polymeric Nanofibers.

    Science.gov (United States)

    Hiong Teh, Thomas Kok; Hong Goh, James Cho; Toh, Siew Lok

    2015-01-01

    The interest in polymeric nanofibers has escalated over the past decade given its promise as tissue engineering scaffolds that can mimic the nanoscale structure of the native extracellular matrix. With functionalization of the polymeric nanofibers using bioactive molecules, localized signaling moieties can be established for the attached cells, to stimulate desired biological effects and direct cellular or tissue response. The inherently high surface area per unit mass of polymeric nanofibers can enhance cell adhesion, bioactive molecules loading and release efficiencies, and mass transfer properties. In this review article, the application of polymeric nanofibers for controlled bioactive molecules delivery will be discussed, with a focus on tendon and ligament tissue engineering. Various polymeric materials of different mechanical and degradation properties will be presented along with the nanofiber fabrication techniques explored. The bioactive molecules of interest for tendon and ligament tissue engineering, including growth factors and small molecules, will also be reviewed and compared in terms of their nanofiber incorporation strategies and release profiles. This article will also highlight and compare various innovative strategies to control the release of bioactive molecules spatiotemporally and explore an emerging tissue engineering strategy involving controlled multiple bioactive molecules sequential release. Finally, the review article concludes with challenges and future trends in the innovation and development of bioactive molecules delivery using polymeric nanofibers for tendon and ligament tissue engineering.

  5. Two-layer tissue engineered urethra using oral epithelial and muscle derived cells.

    Science.gov (United States)

    Mikami, Hiroshi; Kuwahara, Go; Nakamura, Nobuyuki; Yamato, Masayuki; Tanaka, Masatoshi; Kodama, Shohta

    2012-05-01

    We fabricated novel tissue engineered urethral grafts using autologously harvested oral cells. We report their viability in a canine model. Oral tissues were harvested by punch biopsy and divided into mucosal and muscle sections. Epithelial cells from mucosal sections were cultured as epithelial cell sheets. Simultaneously muscle derived cells were seeded on collagen mesh matrices to form muscle cell sheets. At 2 weeks the sheets were joined and tubularized to form 2-layer tissue engineered urethras, which were autologously grafted to surgically induced urethral defects in 10 dogs in the experimental group. Tissue engineered grafts were not applied to the induced urethral defect in control dogs. The dogs were followed 12 weeks postoperatively. Urethrogram and histological examination were done to evaluate the grafting outcome. We successfully fabricated 2-layer tissue engineered urethras in vitro and transplanted them in dogs in the experimental group. The 12-week complication-free rate was significantly higher in the experimental group than in controls. Urethrogram confirmed urethral patency without stricture in the complication-free group at 12 weeks. Histologically urethras in the transplant group showed a stratified epithelial layer overlying well differentiated submucosa. In contrast, urethras in controls showed severe fibrosis without epithelial layer formation. Two-layer tissue engineered urethras were engineered using cells harvested by minimally invasive oral punch biopsy. Results suggest that this technique can encourage regeneration of a functional urethra. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  6. Different methods of dentin processing for application in bone tissue engineering: A systematic review.

    Science.gov (United States)

    Tabatabaei, Fahimeh Sadat; Tatari, Saeed; Samadi, Ramin; Moharamzadeh, Keyvan

    2016-10-01

    Dentin has become an interesting potential biomaterial for tissue engineering of oral hard tissues. It can be used as a scaffold or as a source of growth factors in bone tissue engineering. Different forms of dentin have been studied for their potential use as bone substitutes. Here, we systematically review different methods of dentin preparation and the efficacy of processed dentin in bone tissue engineering. An electronic search was carried out in PubMed and Scopus databases for articles published from 2000 to 2016. Studies on dentin preparation for application in bone tissue engineering were selected. The initial search yielded a total of 1045 articles, of which 37 were finally selected. Review of studies showed that demineralization was the most commonly used dentin preparation process for use in tissue engineering. Dentin extract, dentin particles (tooth ash), freeze-dried dentin, and denatured dentin are others method of dentin preparation. Based on our literature review, we can conclude that preparation procedure and the size and shape of dentin particles play an important role in its osteoinductive and osteoconductive properties. Standardization of these methods is important to draw a conclusion in this regard. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2616-2627, 2016. © 2016 Wiley Periodicals, Inc.

  7. Cell-based tissue engineering strategies used in the clinical repair of articular cartilage.

    Science.gov (United States)

    Huang, Brian J; Hu, Jerry C; Athanasiou, Kyriacos A

    2016-08-01

    One of the most important issues facing cartilage tissue engineering is the inability to move technologies into the clinic. Despite the multitude of current research in the field, it is known that 90% of new drugs that advance past animal studies fail clinical trials. The objective of this review is to provide readers with an understanding of the scientific details of tissue engineered cartilage products that have demonstrated a certain level of efficacy in humans, so that newer technologies may be developed upon this foundation. Compared to existing treatments, such as microfracture or autologous chondrocyte implantation, a tissue engineered product can potentially provide more consistent clinical results in forming hyaline repair tissue and in filling the entirety of the defect. The various tissue engineering strategies (e.g., cell expansion, scaffold material, media formulations, biomimetic stimuli, etc.) used in forming these products, as collected from published literature, company websites, and relevant patents, are critically discussed. The authors note that many details about these products remain proprietary, not all information is made public, and that advancements to the products are continuously made. Nevertheless, by understanding the design and production processes of these emerging technologies, one can gain tremendous insight into how to best use them and also how to design the next generation of tissue engineered cartilage products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Cell-based tissue engineering strategies used in the clinical repair of articular cartilage

    Science.gov (United States)

    Huang, Brian J.; Hu, Jerry C.; Athanasiou, Kyriacos A.

    2016-01-01

    One of the most important issues facing cartilage tissue engineering is the inability to move technologies into the clinic. Despite the multitude of review articles on the paradigm of biomaterials, signals, and cells, it is reported that 90% of new drugs that advance past animal studies fail clinical trials (1). The intent of this review is to provide readers with an understanding of the scientific details of tissue engineered cartilage products that have demonstrated a certain level of efficacy in humans, so that newer technologies may be developed upon this foundation. Compared to existing treatments, such as microfracture or autologous chondrocyte implantation, a tissue engineered product can potentially provide more consistent clinical results in forming hyaline repair tissue and in filling the entirety of the defect. The various tissue engineering strategies (e.g., cell expansion, scaffold material, media formulations, biomimetic stimuli, etc.) used in forming these products, as collected from published literature, company websites, and relevant patents, are critically discussed. The authors note that many details about these products remain proprietary, not all information is made public, and that advancements to the products are continuously made. Nevertheless, by fully understanding the design and production processes of these emerging technologies, one can gain tremendous insight into how to best use them and also how to design the next generation of tissue engineered cartilage products. PMID:27177218

  9. Tissue-engineered skin preserving the potential of epithelial cells to differentiate into hair after grafting.

    Science.gov (United States)

    Larouche, Danielle; Cuffley, Kristine; Paquet, Claudie; Germain, Lucie

    2011-03-01

    The aim of this study was to evaluate whether tissue-engineered skin produced in vitro was able to sustain growth of hair follicles in vitro and after grafting. Different tissues were designed. Dissociated newborn mouse keratinocytes or newborn mouse hair buds (HBs) were added onto dermal constructs consisting of a tissue-engineered cell-derived matrix elaborated from either newborn mouse or adult human fibroblasts cultured with ascorbic acid. After 7-21 days of maturation at the air-liquid interface, no hair was noticed in vitro. Epidermal differentiation was observed in all tissue-engineered skin. However, human fibroblast-derived tissue-engineered dermis (hD) promoted a thicker epidermis than mouse fibroblast-derived tissue-engineered dermis (mD). In association with mD, HBs developed epithelial cyst-like inclusions presenting outer root sheath-like attributes. In contrast, epidermoid cyst-like inclusions lined by a stratified squamous epithelium were present in tissues composed of HBs and hD. After grafting, pilo-sebaceous units formed and hair grew in skin elaborated from HBs cultured 10-26 days submerged in culture medium in association with mD. However, the number of normal hair follicles decreased with longer culture time. This hair-forming capacity after grafting was not observed in tissues composed of hD overlaid with HBs. These results demonstrate that epithelial stem cells can be kept in vitro in a permissive tissue-engineered dermal environment without losing their potential to induce hair growth after grafting.

  10. [Research progress of co-culture system for constructing vascularized tissue engineered bone].

    Science.gov (United States)

    Fu, Weili; Xiang, Zhou

    2014-02-01

    To review the research progress of the co-culture system for constructing vascularized tissue engineered bone. The recent literature concerning the co-culture system for constructing vascularized tissue engineered bone was reviewed, including the selection of osteogenic and endothelial lineages, the design and surface modification of scaffolds, the models and dimensions of the co-culture system, the mechanism, the culture conditions, and their application progress. The construction of vascularized tissue engineered bone is the prerequisite for their survival and further clinical application in vivo. Mesenchymal stem cells (owning the excellent osteogenic potential) and endothelial progenitor cells (capable of directional differentiation into endothelial cell) are considered as attractive cell types for the co-culture system to construct vascularized tissue engineered bone. The culture conditions need to be further optimized. Furthermore, how to achieve the clinical goals of minimal invasion and autologous transplantation also need to be further studied. The strategy of the co-culture system for constructing vascularized tissue engineered bone would have a very broad prospects for clinical application in future.

  11. Effects of mechanical loading on human mesenchymal stem cells for cartilage tissue engineering.

    Science.gov (United States)

    Choi, Jane Ru; Yong, Kar Wey; Choi, Jean Yu

    2018-03-01

    Today, articular cartilage damage is a major health problem, affecting people of all ages. The existing conventional articular cartilage repair techniques, such as autologous chondrocyte implantation (ACI), microfracture, and mosaicplasty, have many shortcomings which negatively affect their clinical outcomes. Therefore, it is essential to develop an alternative and efficient articular repair technique that can address those shortcomings. Cartilage tissue engineering, which aims to create a tissue-engineered cartilage derived from human mesenchymal stem cells (MSCs), shows great promise for improving articular cartilage defect therapy. However, the use of tissue-engineered cartilage for the clinical therapy of articular cartilage defect still remains challenging. Despite the importance of mechanical loading to create a functional cartilage has been well demonstrated, the specific type of mechanical loading and its optimal loading regime is still under investigation. This review summarizes the most recent advances in the effects of mechanical loading on human MSCs. First, the existing conventional articular repair techniques and their shortcomings are highlighted. The important parameters for the evaluation of the tissue-engineered cartilage, including chondrogenic and hypertrophic differentiation of human MSCs are briefly discussed. The influence of mechanical loading on human MSCs is subsequently reviewed and the possible mechanotransduction signaling is highlighted. The development of non-hypertrophic chondrogenesis in response to the changing mechanical microenvironment will aid in the establishment of a tissue-engineered cartilage for efficient articular cartilage repair. © 2017 Wiley Periodicals, Inc.

  12. Dental pulp stem cells. Biology and use for periodontal tissue engineering.

    Science.gov (United States)

    Ashri, Nahid Y; Ajlan, Sumaiah A; Aldahmash, Abdullah M

    2015-12-01

    Inflammatory periodontal disease is a major cause of loss of tooth-supporting structures. Novel approaches for regeneration of periodontal apparatus is an area of intensive research. Periodontal tissue engineering implies the use of appropriate regenerative cells, delivered through a suitable scaffold, and guided through signaling molecules. Dental pulp stem cells have been used in an increasing number of studies in dental tissue engineering. Those cells show mesenchymal (stromal) stem cell-like properties including self-renewal and multilineage differentiation potentials, aside from their relative accessibility and pleasant handling properties. The purpose of this article is to review the biological principles of periodontal tissue engineering, along with the challenges facing the development of a consistent and clinically relevant tissue regeneration platform. This article includes an updated review on dental pulp stem cells and their applications in periodontal regeneration, in combination with different scaffolds and growth factors.

  13. Tissue engineered vascular grafts: Origins, development, and current strategies for clinical application.

    Science.gov (United States)

    Benrashid, Ehsan; McCoy, Christopher C; Youngwirth, Linda M; Kim, Jina; Manson, Roberto J; Otto, James C; Lawson, Jeffrey H

    2016-04-15

    Since the development of a dependable and durable synthetic non-autogenous vascular conduit in the mid-twentieth century, the field of vascular surgery has experienced tremendous growth. Concomitant with this growth, development in the field of bioengineering and the development of different tissue engineering techniques have expanded the armamentarium of the surgeon for treating a variety of complex cardiovascular diseases. The recent development of completely tissue engineered vascular conduits that can be implanted for clinical application is a particularly exciting development in this field. With the rapid advances in the field of tissue engineering, the great hope of the surgeon remains that this conduit will function like a true blood vessel with an intact endothelial layer, with the ability to respond to endogenous vasoactive compounds. Eventually, these engineered tissues may have the potential to supplant older organic but not truly biologic technologies, which are used currently. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Advances in tissue engineering through stem cell-based co-culture.

    Science.gov (United States)

    Paschos, Nikolaos K; Brown, Wendy E; Eswaramoorthy, Rajalakshmanan; Hu, Jerry C; Athanasiou, Kyriacos A

    2015-05-01

    Stem cells are the future in tissue engineering and regeneration. In a co-culture, stem cells not only provide a target cell source with multipotent differentiation capacity, but can also act as assisting cells that promote tissue homeostasis, metabolism, growth and repair. Their incorporation into co-culture systems seems to be important in the creation of complex tissues or organs. In this review, critical aspects of stem cell use in co-culture systems are discussed. Direct and indirect co-culture methodologies used in tissue engineering are described, along with various characteristics of cellular interactions in these systems. Direct cell-cell contact, cell-extracellular matrix interaction and signalling via soluble factors are presented. The advantages of stem cell co-culture strategies and their applications in tissue engineering and regenerative medicine are portrayed through specific examples for several tissues, including orthopaedic soft tissues, bone, heart, vasculature, lung, kidney, liver and nerve. A concise review of the progress and the lessons learned are provided, with a focus on recent developments and their implications. It is hoped that knowledge developed from one tissue can be translated to other tissues. Finally, we address challenges in tissue engineering and regenerative medicine that can potentially be overcome via employing strategies for stem cell co-culture use. Copyright © 2014 John Wiley & Sons, Ltd.

  15. A Tissue Engineered Model of Aging: Interdependence and Cooperative Effects in Failing Tissues.

    Science.gov (United States)

    Acun, A; Vural, D C; Zorlutuna, P

    2017-07-11

    Aging remains a fundamental open problem in modern biology. Although there exist a number of theories on aging on the cellular scale, nearly nothing is known about how microscopic failures cascade to macroscopic failures of tissues, organs and ultimately the organism. The goal of this work is to bridge microscopic cell failure to macroscopic manifestations of aging. We use tissue engineered constructs to control the cellular-level damage and cell-cell distance in individual tissues to establish the role of complex interdependence and interactions between cells in aging tissues. We found that while microscopic mechanisms drive aging, the interdependency between cells plays a major role in tissue death, providing evidence on how cellular aging is connected to its higher systemic consequences.

  16. Morphological changes in paraurethral area after introduction of tissue engineering construct on the basis of adipose tissue stromal cells.

    Science.gov (United States)

    Makarov, A V; Arutyunyan, I V; Bol'shakova, G B; Volkov, A V; Gol'dshtein, D V

    2009-10-01

    We studied morphological changes in the paraurethral area of Wistar rats after introduction of tissue engineering constructs on the basis of multipotent mesenchymal stem cells and gelatin sponge. The tissue engineering construct containing autologous culture of the stromal fraction of the adipose tissue was most effective. After introduction of this construct we observed more rapid degradation of the construct matrix and more intensive formation of collagen fibers.

  17. Recent advances on biomedical applications of scaffolds in wound healing and dermal tissue engineering.

    Science.gov (United States)

    Rahmani Del Bakhshayesh, Azizeh; Annabi, Nasim; Khalilov, Rovshan; Akbarzadeh, Abolfazl; Samiei, Mohammad; Alizadeh, Effat; Alizadeh-Ghodsi, Mohammadreza; Davaran, Soodabeh; Montaseri, Azadeh

    2018-06-01

    The tissue engineering field has developed in response to the shortcomings related to the replacement of the tissues lost to disease or trauma: donor tissue rejection, chronic inflammation and donor tissue shortages. The driving force behind the tissue engineering is to avoid the mentioned issues by creating the biological substitutes capable of replacing the damaged tissue. This is done by combining the scaffolds, cells and signals in order to create the living, physiological, three-dimensional tissues. A wide variety of skin substitutes are used in the treatment of full-thickness injuries. Substitutes made from skin can harbour the latent viruses, and artificial skin grafts can heal with the extensive scarring, failing to regenerate structures such as glands, nerves and hair follicles. New and practical skin scaffold materials remain to be developed. The current article describes the important information about wound healing scaffolds. The scaffold types which were used in these fields were classified according to the accepted guideline of the biological medicine. Moreover, the present article gave the brief overview on the fundamentals of the tissue engineering, biodegradable polymer properties and their application in skin wound healing. Also, the present review discusses the type of the tissue engineered skin substitutes and modern wound dressings which promote the wound healing.

  18. Tissue engineered devices for ligament repair, replacement and ...

    African Journals Online (AJOL)

    potential, severe damage warrants surgical intervention including complete replacement. Ligaments are longitudinally arranged, complex tissues; the mechanical properties of ligaments are a direct result of their components and the arrangement of these components in the tissue. It is these mechanics that have made ...

  19. Indirect Low-Intensity Ultrasonic Stimulation for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Hyoungshin Park

    2010-01-01

    Full Text Available Low-intensity ultrasound (LIUS treatment has been shown to increase mass transport, which could benefit tissue grafts during the immediate postimplant period, when blood supply to the implanted tissue is suboptimal. In this in vitro study, we investigated effects of LIUS stimulation on dye diffusion, proliferation, metabolism, and tropomyosin expression of muscle cells (C2C12 and on tissue viability and gene expression of human adipose tissue organoids. We found that LIUS increased dye diffusion within adjacent tissue culture wells and caused anisotropic diffusion patterns. This effect was confirmed by a hydrophone measurement resulting in acoustic pressure 150–341 Pa in wells. Cellular studies showed that LIUS significantly increased proliferation, metabolic activity, and expression of tropomyosin. Adipose tissue treated with LIUS showed significantly increased metabolic activity and the cells had similar morphology to normal unilocular adipocytes. Gene analysis showed that tumor necrosis factor-alpha expression (a marker for tissue damage was significantly lower for stimulated organoids than for control groups. Our data suggests that LIUS could be a useful modality for improving graft survival in vivo.

  20. Regeneration of the anterior cruciate ligament: Current strategies in tissue engineering

    Science.gov (United States)

    Nau, Thomas; Teuschl, Andreas

    2015-01-01

    Recent advancements in the field of musculoskeletal tissue engineering have raised an increasing interest in the regeneration of the anterior cruciate ligament (ACL). It is the aim of this article to review the current research efforts and highlight promising tissue engineering strategies. The four main components of tissue engineering also apply in several ACL regeneration research efforts. Scaffolds from biological materials, biodegradable polymers and composite materials are used. The main cell sources are mesenchymal stem cells and ACL fibroblasts. In addition, growth factors and mechanical stimuli are applied. So far, the regenerated ACL constructs have been tested in a few animal studies and the results are encouraging. The different strategies, from in vitro ACL regeneration in bioreactor systems to bio-enhanced repair and regeneration, are under constant development. We expect considerable progress in the near future that will result in a realistic option for ACL surgery soon. PMID:25621217

  1. Fabrication of chitin-chitosan/nano TiO2-composite scaffolds for tissue engineering applications.

    Science.gov (United States)

    Jayakumar, R; Ramachandran, Roshni; Divyarani, V V; Chennazhi, K P; Tamura, H; Nair, S V

    2011-03-01

    In this study, we prepared chitin-chitosan/nano TiO(2) composite scaffolds using lyophilization technique for bone tissue engineering. The prepared composite scaffold was characterized using SEM, XRD, FTIR and TGA. In addition, swelling, degradation and biomineralization capability of the composite scaffolds were evaluated. The developed composite scaffold showed controlled swelling and degradation when compared to the control scaffold. Cytocompatibility of the scaffold was assessed by MTT assay and cell attachment studies using osteoblast-like cells (MG-63), fibroblast cells (L929) and human mesenchymal stem cells (hMSCs). Results indicated no sign of toxicity and cells were found attached to the pore walls within the scaffolds. These results suggested that the developed composite scaffold possess the prerequisites for tissue engineering scaffolds and it can be used for tissue engineering applications. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Bioactive Glass and Glass-Ceramic Scaffolds for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Aldo R. Boccaccini

    2010-07-01

    Full Text Available Traditionally, bioactive glasses have been used to fill and restore bone defects. More recently, this category of biomaterials has become an emerging research field for bone tissue engineering applications. Here, we review and discuss current knowledge on porous bone tissue engineering scaffolds on the basis of melt-derived bioactive silicate glass compositions and relevant composite structures. Starting with an excerpt on the history of bioactive glasses, as well as on fundamental requirements for bone tissue engineering scaffolds, a detailed overview on recent developments of bioactive glass and glass-ceramic scaffolds will be given, including a summary of common fabrication methods and a discussion on the microstructural-mechanical properties of scaffolds in relation to human bone (structure-property and structure-function relationship. In addition, ion release effects of bioactive glasses concerning osteogenic and angiogenic responses are addressed. Finally, areas of future research are highlighted in this review.

  3. Profiling Osteogenic microRNAs For RNAi-Functionalization Of Scaffolds In Bone Tissue Engineering

    DEFF Research Database (Denmark)

    Chang, Chi-Chih (Clare); Chen, Li; Venø, Morten Trillingsgaard

    is limited and grafts are required to assist in bone repair. The use of allografts can cause immunological complications, whilst autografts subject the patient to two surgeries. Bone tissue engineering is a multidisciplinary field encompassing material science, medicine, chemistry and molecular biology aimed...... both miRNAs that have been reported previously and many novel miRNAs with potent osteogenic capabilities. For tissue engineering applications, we then functionalized scaffolds with the miRNAs we identified and observed an increase in osteogenic capabilities in our 3D cultures. Our findings depicted...... the miRNA expression landscape as mesenchymal stem cells underwent osteogenic differentiation. We also highlight the potency of miRNAs as biological therapeutics in bone tissue engineering....

  4. Novel Textile Scaffolds Generated by Flock Technology for Tissue Engineering of Bone and Cartilage

    Science.gov (United States)

    Walther, Anja; Hoyer, Birgit; Springer, Armin; Mrozik, Birgit; Hanke, Thomas; Cherif, Chokri; Pompe, Wolfgang; Gelinsky, Michael

    2012-01-01

    Textile scaffolds can be found in a variety of application areas in regenerative medicine and tissue engineering. In the present study we used electrostatic flocking—a well-known textile technology—to produce scaffolds for tissue engineering of bone. Flock scaffolds stand out due to their unique structure: parallel arranged fibers that are aligned perpendicularly to a substrate, resulting in mechanically stable structures with a high porosity. In compression tests we demonstrated good mechanical properties of such scaffolds and in cell culture experiments we showed that flock scaffolds allow attachment and proliferation of human mesenchymal stem cells and support their osteogenic differentiation. These matrices represent promising scaffolds for tissue engineering. PMID:28817062

  5. Novel Textile Scaffolds Generated by Flock Technology for Tissue Engineering of Bone and Cartilage

    Directory of Open Access Journals (Sweden)

    Thomas Hanke

    2012-03-01

    Full Text Available Textile scaffolds can be found in a variety of application areas in regenerative medicine and tissue engineering. In the present study we used electrostatic flocking—a well-known textile technology—to produce scaffolds for tissue engineering of bone. Flock scaffolds stand out due to their unique structure: parallel arranged fibers that are aligned perpendicularly to a substrate, resulting in mechanically stable structures with a high porosity. In compression tests we demonstrated good mechanical properties of such scaffolds and in cell culture experiments we showed that flock scaffolds allow attachment and proliferation of human mesenchymal stem cells and support their osteogenic differentiation. These matrices represent promising scaffolds for tissue engineering.

  6. A Review of Hyaluronic Acid and Hyaluronic Acid-based Hydrogels for Vocal Fold Tissue Engineering.

    Science.gov (United States)

    Walimbe, Tanaya; Panitch, Alyssa; Sivasankar, Preeti M

    2017-07-01

    Vocal fold scarring is a common cause of dysphonia. Current treatments involving vocal fold augmentation do not yield satisfactory outcomes in the long term. Tissue engineering and regenerative medicine offer an attractive treatment option for vocal fold scarring, with the aim to restore the native extracellular matrix microenvironment and biomechanical properties of the vocal folds by inhibiting progression of scarring and thus leading to restoration of normal vocal function. Hyaluronic acid is a bioactive glycosaminoglycan responsible for maintaining optimum viscoelastic properties of the vocal folds and hence is widely targeted in tissue engineering applications. This review covers advances in hyaluronic acid-based vocal fold tissue engineering and regeneration strategies. Copyright © 2017. Published by Elsevier Inc.

  7. Poly(dopamine) coating to biodegradable polymers for bone tissue engineering.

    Science.gov (United States)

    Tsai, Wei-Bor; Chen, Wen-Tung; Chien, Hsiu-Wen; Kuo, Wei-Hsuan; Wang, Meng-Jiy

    2014-02-01

    In this study, a technique based on poly(dopamine) deposition to promote cell adhesion was investigated for the application in bone tissue engineering. The adhesion and proliferation of rat osteoblasts were evaluated on poly(dopamine)-coated biodegradable polymer films, such as polycaprolactone, poly(l-lactide) and poly(lactic-co-glycolic acid), which are commonly used biodegradable polymers in tissue engineering. Cell adhesion was significantly increased to a plateau by merely 15 s of dopamine incubation, 2.2-4.0-folds of increase compared to the corresponding untreated substrates. Cell proliferation was also greatly enhanced by poly(dopamine) deposition, indicated by shortened cell doubling time. Mineralization was also increased on the poly(dopamine)-deposited surfaces. The potential of poly(dopamine) deposition in bone tissue engineering is demonstrated in this study.

  8. A review on chitosan centred scaffolds and their applications in tissue engineering.

    Science.gov (United States)

    Ahmed, Shakeel; Annu; Sheikh, Javed; Ali, Akbar

    2018-05-03

    The diversity and availability of biopolymer and increased clinical demand for safe scaffolds lead to an increased interest in fabricating scaffolds in order to achieve fruitful progress in tissue engineering. Due to biocompatibility, biodegradability, inherent antimicrobial character, chitosan has drawn ample consideration in recent years. Chitosan is a biopolymer obtained by de-acetylation of chitin extracted from shells of crustaceans and fungi. Due to the presence of reactive functionality in the molecular chain chitosan can be modified either chemically or physically to fabricate the tailor-made scaffolds having desired properties for tissue engineering centered applications. In this review chitosan, its properties and role either virgin, chemically or physically modified, 2D or 3D scaffolds for tissue engineering application have been highlighted. Copyright © 2017. Published by Elsevier B.V.

  9. Current Advancements and Strategies in Tissue Engineering for Wound Healing: A Comprehensive Review.

    Science.gov (United States)

    Ho, Jasmine; Walsh, Claire; Yue, Dominic; Dardik, Alan; Cheema, Umber

    2017-06-01

    Significance: With an aging population leading to an increase in diabetes and associated cutaneous wounds, there is a pressing clinical need to improve wound-healing therapies. Recent Advances: Tissue engineering approaches for wound healing and skin regeneration have been developed over the past few decades. A review of current literature has identified common themes and strategies that are proving successful within the field: The delivery of cells, mainly mesenchymal stem cells, within scaffolds of the native matrix is one such strategy. We overview these approaches and give insights into mechanisms that aid wound healing in different clinical scenarios. Critical Issues: We discuss the importance of the biomimetic niche, and how recapitulating elements of the native microenvironment of cells can help direct cell behavior and fate. Future Directions: It is crucial that during the continued development of tissue engineering in wound repair, there is close collaboration between tissue engineers and clinicians to maintain the translational efficacy of this approach.

  10. Functional Attachment of Soft Tissues to Bone: Development, Healing, and Tissue Engineering

    Science.gov (United States)

    Lu, Helen H.; Thomopoulos, Stavros

    2014-01-01

    Connective tissues such as tendons or ligaments attach to bone across a multitissue interface with spatial gradients in composition, structure, and mechanical properties. These gradients minimize stress concentrations and mediate load transfer between the soft and hard tissues. Given the high incidence of tendon and ligament injuries and the lack of integrative solutions for their repair, interface regeneration remains a significant clinical challenge. This review begins with a description of the developmental processes and the resultant structure-function relationships that translate into the functional grading necessary for stress transfer between soft tissue and bone. It then discusses the interface healing response, with a focus on the influence of mechanical loading and the role of cell-cell interactions. The review continues with a description of current efforts in interface tissue engineering, highlighting key strategies for the regeneration of the soft tissue–to-bone interface, and concludes with a summary of challenges and future directions. PMID:23642244

  11. Regenerative endodontics as a tissue engineering approach: past, current and future.

    Science.gov (United States)

    Malhotra, Neeraj; Mala, Kundabala

    2012-12-01

    With the reported startling statistics of high incidence of tooth decay and tooth loss, the current interest is focused on the development of alternate dental tissue replacement therapies. This has led to the application of dental tissue engineering as a clinically relevant method for the regeneration of dental tissues and generation of bioengineered whole tooth. Although, tissue engineering approach requires the three main key elements of stem cells, scaffold and morphogens, a conductive environment (fourth element) is equally important for successful engineering of any tissue and/or organ. The applications of this science has evolved continuously in dentistry, beginning from the application of Ca(OH)(2) in vital pulp therapy to the development of a fully functional bioengineered tooth (mice). Thus, with advances in basic research, recent reports and studies have shown successful application of tissue engineering in the field of dentistry. However, certain practical obstacles are yet to be overcome before dental tissue regeneration can be applied as evidence-based approach in clinics. The article highlights on the past achievements, current developments and future prospects of tissue engineering and regenerative therapy in the field of endodontics and bioengineered teeth (bioteeth). © 2012 The Authors. Australian Endodontic Journal © 2012 Australian Society of Endodontology.

  12. Effects of a combined mechanical stimulation protocol: Value for skeletal muscle tissue engineering

    NARCIS (Netherlands)

    Boonen, K.J.M.; Langelaan, M.L.P.; Polak, R.B.; Schaft, van der D.W.J.; Baaijens, F.P.T.; Post, M.J.

    2010-01-01

    Skeletal muscle is an appealing topic for tissue engineering because of its variety in applications for regenerative medicine, in vitro physiological model systems, and in vitro meat production. Besides conventional biochemical cues to promote muscle tissue maturation in vitro, biophysical stimuli

  13. Tailoring the foreign body response for in situ vascular tissue engineering

    NARCIS (Netherlands)

    Rothuizen, T.C.; Damanik, Febriyani; Anderson, J.; Lavrijsen, T.; Cox, M.A.J.; Rabelink, T.J.; Moroni, Lorenzo; Rotmans, J.

    2015-01-01

    This study describes a screening platform for a guided in situ vascular tissue engineering approach. Polymer rods were developed that upon 3 weeks of subcutaneous implantation evoke a controlled inflammatory response culminating in encapsulation by a tube-shaped autologous fibrocellular tissue

  14. Nondestructive and noninvasive assessment of mechanical properties in heart valve tissue engineering

    NARCIS (Netherlands)

    Kortsmit, J.; Driessen, N.J.B.; Rutten, M.C.M.; Baaijens, F.P.T.

    2009-01-01

    Despite recent progress, mechanical behavior of tissue-engineered heart valves still needs improvement when native aortic valves are considered as a benchmark. Although it is known that cyclic straining enhances tissue formation, optimal loading protocols have not been defined yet. To obtain a

  15. Sequential use of human-derived medium supplements favours cardiovascular tissue engineering

    NARCIS (Netherlands)

    Riem Vis, P.W.; Sluijter, J.P.G.; Soekhradj - Soechit, R.S.; Herwerden, van L.A.; Kluin, J.; Bouten, C.V.C.

    2012-01-01

    For clinical application of tissue engineering strategies, the use of animal-derived serum in culture medium is not recommended, because it can evoke immune responses in patients. We previously observed that human platelet-lysate (PL) is favourable for cell expansion, but generates weaker tissue as

  16. The rotator cuff: from bench to bedside. Developments in tissue engineering, surgical techniques and pathogenetic factors

    NARCIS (Netherlands)

    Longo, U.G.

    2012-01-01

    This thesis originates from the difficulties in the management of patients with rotator cuff tears. Since tendon healing rate is relatively slow compared with other connective tissues, we reviewed the available literature on tissue engineered biological augmentation for tendon healing, including

  17. Synthetic scaffolds based on biodegradable, functionalized polyesters for tissue engineering applications

    NARCIS (Netherlands)

    Seyednejad, S.H.

    2012-01-01

    The aim of this thesis was to investigate the possibility of using a novel hydroxyl-functionalized polyester [poly(hydroxymethylglycolide-co-ε-caprolactone), pHMGCL] (Fig.9) to fabricate scaffolds for tissue engineering applications. Degradable polymers that are frequently used for tissue

  18. An Update to Space Biomedical Research: Tissue Engineering in Microgravity Bioreactors

    Directory of Open Access Journals (Sweden)

    Abolfazl Barzegari

    2012-03-01

    Full Text Available Introduction: The severe need for constructing replacement tissues in organ transplantation has necessitated the development of tissue engineering approaches and bioreactors that can bring these approaches to reality. The inherent limitations of conventional bioreactors in generating realistic tissue constructs led to the devise of the microgravity tissue engineering that uses Rotating Wall Vessel (RWV bioreactors initially developed by NASA. Methods: In this review article, we intend to highlight some major advances and accomplishments in the rapidly-growing field of tissue engineering that could not be achieved without using microgravity. Results: Research is now focused on assembly of 3 dimensional (3D tissue fragments from various cell types in human body such as chondrocytes, osteoblasts, embryonic and mesenchymal stem cells, hepatocytes and pancreas islet cells. Hepatocytes cultured under microgravity are now being used in extracorporeal bioartificial liver devices. Tissue constructs can be used not only in organ replacement therapy, but also in pharmaco-toxicology and food safety assessment. 3D models of various cancers may be used in studying cancer development and biology or in high-throughput screening of anticancer drug candidates. Finally, 3D heterogeneous assemblies from cancer/immune cells provide models for immunotherapy of cancer. Conclusion: Tissue engineering in (simulated microgravity has been one of the stunning impacts of space research on biomedical sciences and their applications on earth.

  19. Current concepts: tissue engineering and regenerative medicine applications in the ankle joint

    NARCIS (Netherlands)

    Correia, S. I.; Pereira, H.; Silva-Correia, J.; van Dijk, C. N.; Espregueira-Mendes, J.; Oliveira, J. M.; Reis, R. L.

    2014-01-01

    Tissue engineering and regenerative medicine (TERM) has caused a revolution in present and future trends of medicine and surgery. In different tissues, advanced TERM approaches bring new therapeutic possibilities in general population as well as in young patients and high-level athletes, improving

  20. Fine-tuning Cartilage Tissue Engineering by Applying Principles from Embryonic Development

    NARCIS (Netherlands)

    C.A. Hellingman (Catharine)

    2012-01-01

    textabstractCartilage has a very poor capacity for regeneration in vivo. In head and neck surgery cartilage defects are usually reconstructed with autologous cartilage from for instance the external ear or the ribs. Cartilage tissue engineering may be a promising alternative to supply tissue for

  1. Lymphatic Vascular Regeneration : The Next Step in Tissue Engineering

    NARCIS (Netherlands)

    Huethorst, Eline; Krebber, Merle M; Fledderus, Joost O; Gremmels, Hendrik; Xu, Yan Juan; Pei, Jiayi; Verhaar, Marianne C; Cheng, Caroline

    2016-01-01

    The lymphatic system plays a crucial role in interstitial fluid drainage, lipid absorption, and immunological defense. Lymphatic dysfunction results in lymphedema, fluid accumulation, and swelling of soft tissues, as well as a potentially impaired immune response. Lymphedema significantly reduces

  2. Mid-term clinical results of tissue-engineered vascular autografts

    International Nuclear Information System (INIS)

    Matsumura, Goki; Shin'oka, Toshiharu; Hibino, Narutoshi; Saito, Satoshi; Sakamoto, Takahiko; Ichihara, Yuki; Hobo, Kyoko; Miyamoto, Shin'ka; Kurosawa, Hiromi

    2007-01-01

    Prosthetic and bioprosthetic materials currently in use lack growth potential and therefore must be repeatedly replaced in pediatric patients as they grow. Tissue engineering is a new discipline that offers the potential for creating replacement structures from autologous cells and biodegradable polymer scaffolds. In May 2000, we initiated clinical application of tissue-engineered vascular grafts seeded with cultured cells. However, cell culturing is time-consuming, and xenoserum must be used. To overcome these disadvantages, we began to use bone marrow cells, readily available on the day of surgery, as a cell source. Since September 2001, tissue-engineered grafts seeded with autologous bone marrow cells have been implanted in 44 patients. The patients or their parents were fully informed and had given consent to the procedure. A 3 to 10 ml/kg specimen of bone marrow was aspirated with the patient under general anesthesia before the skin incision. The polymer tube serving as a scaffold for the cells was composed of a copolymer of lactide and ε-caprolactone (50:50) which degrades by hydrolysis. Polyglycolic or poly-l-lactic acid woven fabric was used for reinforcement. Twenty-six tissue-engineered conduits and 19 tissue-engineered patches were used for the repair of congenital heart defects. The patients' ages ranged from 1 to 24 years (median 7.4 years). All patients underwent a catheterization study, CT scan, or both, for evaluation after the operation. There were 4 late deaths due to heart failure with or without multiple organ failure or brain bleeding in this series; these were unrelated to the tissue-engineered graft function. One patient required percutaneous balloon angioplasty for tubular graft-stenosis and 4 patients for the stenosis of the patch-shaped tissue engineered material. Two patients required re-do operation; one for recurrent pulmonary stenosis and another for a resulting R-L shunt after the lateral tunnel method. Kaplan-Meier analysis in

  3. A review of fibrin and fibrin composites for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Noori A

    2017-07-01

    Full Text Available Alireza Noori,1 Seyed Jamal Ashrafi,2 Roza Vaez-Ghaemi,3 Ashraf Hatamian-Zaremi,4 Thomas J Webster5 1Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 2School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; 3Department of Chemical and Biological Engineering, Faculty of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada; 4Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran; 5Department of Chemical Engineering, Northeastern University, Boston, MA, USA Abstract: Tissue engineering has emerged as a new treatment approach for bone repair and regeneration seeking to address limitations associated with current therapies, such as autologous bone grafting. While many bone tissue engineering approaches have traditionally focused on synthetic materials (such as polymers or hydrogels, there has been a lot of excitement surrounding the use of natural materials due to their biologically inspired properties. Fibrin is a natural scaffold formed following tissue injury that initiates hemostasis and provides the initial matrix useful for cell adhesion, migration, proliferation, and differentiation. Fibrin has captured the interest of bone tissue engineers due to its excellent biocompatibility, controllable biodegradability, and ability to deliver cells and biomolecules. Fibrin is particularly appealing because its precursors, fibrinogen, and thrombin, which can be derived from the patient’s own blood, enable the fabrication of completely autologous scaffolds. In this article, we highlight the unique properties of fibrin as a scaffolding material to treat bone defects. Moreover, we emphasize its role in bone tissue engineering nanocomposites where approaches further emulate the natural nanostructured features of bone when using fibrin and other nanomaterials. We also review the

  4. Evaluating learning and attitudes on tissue engineering: a study of children viewing animated digital dome shows detailing the biomedicine of tissue engineering.

    Science.gov (United States)

    Wilson, Anna C; Gonzalez, Laura L; Pollock, John A

    2012-03-01

    Informal science education creates opportunities for the general public to learn about complex health and science topics. Tissue engineering is a fast-growing field of medical science that combines advanced chemistries to create synthetic scaffolds, stem cells, and growth factors that individually or in combination can support the bodies own healing powers to remedy a range of maladies. Health literacy about this topic is increasingly important as our population ages and as treatments become more technologically advanced. We are using a science center planetarium as a projection space to engage and educate the public about the science and biomedical research that supports tissue engineering. The purpose of this study was to test the effectiveness of the films that we have produced for part of the science center planetarium demographic, specifically children ranging in age from 7 to 16 years. A two-group pre- and post-test design was used to compare children's learning and attitude changes in response to the two versions of the film. One version uses traditional voice-over narration; the other version uses dialog between two animated characters. The results of this study indicate that children demonstrated increases in knowledge of the topic with either film format, but preferred the animated character version. The percentage change in children's scores on the knowledge questions given before and after viewing the show exhibited an improvement from 23% correct to 61% correct on average. In addition, many of the things that the children reported liking were part of the design process of the art-science collaboration. Other results indicated that before viewing the shows 77% of the children had not even heard about tissue engineering and only 17% indicated that they were very interested in it, whereas after viewing the shows, 95% indicated that tissue engineering was a good idea. We also find that after viewing the show, 71% of the children reported that the show made

  5. Tissue engineering and microRNAs: future perspectives in regenerative medicine.

    Science.gov (United States)

    Gori, Manuele; Trombetta, Marcella; Santini, Daniele; Rainer, Alberto

    2015-01-01

    Tissue engineering is a growing area of biomedical research, holding great promise for a broad range of potential applications in the field of regenerative medicine. In recent decades, multiple tissue engineering strategies have been adopted to mimic and improve specific biological functions of tissues and organs, including biomimetic materials, drug-releasing scaffolds, stem cells, and dynamic culture systems. MicroRNAs (miRNAs), noncoding small RNAs that negatively regulate the expression of downstream target mRNAs, are considered a novel class of molecular targets and therapeutics that may play an important role in tissue engineering. Herein, we highlight the latest achievements in regenerative medicine, focusing on the role of miRNAs as key modulators of gene expression, stem cell self-renewal, proliferation and differentiation, and eventually in driving cell fate decisions. Finally, we will discuss the contribution of miRNAs in regulating the rearrangement of the tissue microenvironment and angiogenesis, and the range of strategies for miRNA delivery into target cells and tissues. Manipulation of miRNAs is an alternative approach and an attractive strategy for controlling several aspects of tissue engineering, although some issues concerning their in vivo effects and optimal delivery methods still remain uncovered.

  6. Human adipose-derived stem cells: definition, isolation, tissue-engineering applications.

    Science.gov (United States)

    Nae, S; Bordeianu, I; Stăncioiu, A T; Antohi, N

    2013-01-01

    Recent researches have demonstrated that the most effective repair system of the body is represented by stem cells - unspecialized cells, capable of self-renewal through successive mitoses, which have also the ability to transform into different cell types through differentiation. The discovery of adult stem cells represented an important step in regenerative medicine because they no longer raises ethical or legal issues and are more accessible. Only in 2002, stem cells isolated from adipose tissue were described as multipotent stem cells. Adipose tissue stem cells benefits in tissue engineering and regenerative medicine are numerous. Development of adipose tissue engineering techniques offers a great potential in surpassing the existing limits faced by the classical approaches used in plastic and reconstructive surgery. Adipose tissue engineering clinical applications are wide and varied, including reconstructive, corrective and cosmetic procedures. Nowadays, adipose tissue engineering is a fast developing field, both in terms of fundamental researches and medical applications, addressing issues related to current clinical pathology or trauma management of soft tissue injuries in different body locations.

  7. Biomineralization of Engineered Spider Silk Protein-Based Composite Materials for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    John G. Hardy

    2016-07-01

    Full Text Available Materials based on biodegradable polyesters, such as poly(butylene terephthalate (PBT or poly(butylene terephthalate-co-poly(alkylene glycol terephthalate (PBTAT, have potential application as pro-regenerative scaffolds for bone tissue engineering. Herein, the preparation of films composed of PBT or PBTAT and an engineered spider silk protein, (eADF4(C16, that displays multiple carboxylic acid moieties capable of binding calcium ions and facilitating their biomineralization with calcium carbonate or calcium phosphate is reported. Human mesenchymal stem cells cultured on films mineralized with calcium phosphate show enhanced levels of alkaline phosphatase activity suggesting that such composites have potential use for bone tissue engineering.

  8. Tissue Engineering in der Hals-Nasen-Ohrenheilkunde, Kopf- und Halschirurgie

    Science.gov (United States)

    Bücheler, Markus; Bootz, Friedrich

    Tissue Engineering ist eine Schlüsseltechnologie für den Gewebeersatz der Zukunft. Am Beispiel der Hals-Nasen-Ohrenheilkunde, Kopf- und Halschirurgie werden klinisch etablierte Gewebeersatzmethoden und aktuelle Entwicklungen des Tissue Engineering gegenübergestellt. Die Besonderheiten der zu ersetzenden Gewebe im Kopf- und Halsbereich erfordert vielfältige Ersatzverfahren. Im klinischen Alltag werden heute vor allem autogene Transplantate und Implantate für den Gewebeersatz verwendet [1]. In vitro hergestellte Gewebe werden abgesehen von Einzelanwendungen zur Zeit noch nicht am Patienten eingesetzt.

  9. 3D printed porous ceramic scaffolds for bone tissue engineering: a review.

    Science.gov (United States)

    Wen, Yu; Xun, Sun; Haoye, Meng; Baichuan, Sun; Peng, Chen; Xuejian, Liu; Kaihong, Zhang; Xuan, Yang; Jiang, Peng; Shibi, Lu

    2017-08-22

    This study summarizes the recent research status and development of three-dimensional (3D)-printed porous ceramic scaffolds in bone tissue engineering. Recent literature on 3D-printed porous ceramic scaffolds was reviewed. Compared with traditional processing and manufacturing technologies, 3D-printed porous ceramic scaffolds have obvious advantages, such as enhancement of the controllability of the structure or improvement of the production efficiency. More sophisticated scaffolds were fabricated by 3D printing technology. 3D printed bioceramics have broad application prospects in bone tissue engineering. Through understanding the advantages and limitations of different 3D-printing approaches, new classes of bone graft substitutes can be developed.

  10. Poly-ε-caprolactone mesh as a scaffold for in vivo tissue engineering in rabbit esophagus

    DEFF Research Database (Denmark)

    Diemer, Pernille; Markoew, S.; Le, Dang Quang Svend

    2015-01-01

    Repair of long-gap esophageal atresia is associated with a high degree of complications. Tissue engineering on a scaffold of a bioresorbable material could be a solution. The aim of the present study was to investigate the in vivo tissue engineering of smooth muscle cells and epithelium on a poly....... Fifteen rabbits survived the trial period. Six had no complications and had the mesh in situ. They all had ingrowth of epithelial and smooth muscle cells and an almost completely degraded mesh. Nine rabbits developed pseudo-diverticula. It proved possible to engineer both epithelial and smooth muscle...

  11. Functionalized Ormosil Scaffolds Processed by Direct Laser Polymerization for Application in Tissue Engineering

    DEFF Research Database (Denmark)

    Matei, A.; Schou, Jørgen; Canulescu, Stela

    The N,N’-(methacryloyloxyethyl triehtoxy silyl propyl carbamoyl-oxyhexyl)-urea hybrid methacrylate for applications in tissue engineering was synthesized and afterwards polymerized by direct laser polymerization using femtosecond laser pulses with the aim of using it for further applications...... in tissue engineering. The as-obtained scaffolds were modified either by low pressure argon plasma treatment or by using two different proteins (lysozyme, fibrinogen). For improved adhesion, the proteins were deposited by matrix assisted pulsed laser evaporation. The functionalized structures were tested...

  12. Design and Fabrication of Biodegradable Porous Chitosan/Gelatin/Tricalcium Phosphate Hybrid Scaffolds for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Y. Mohammadi

    2007-08-01

    Full Text Available In this study, based on a biomimetic approach, novel 3D biodegradable porous hybrid scaffolds consisting of chitosan, gelatin, and tricalcium phosphate were developed for bone and cartilage tissue engineering. Macroporous chitosan/ gelatin/β-TCP scaffolds were prepared through the process of freeze-gelation/solid-liquid phase separation. The results showed that the prepared scaffolds are highly porous, with porosities larger than 80%, and have interconnected pores. Biocompatibility studies were successfully performed by in vitro and in vivo assays. Moreover, the attachment, migration, and proliferation of chondrocytes on these unique temporary scaffolds were examined to determine their potentials in tissue engineering applications.

  13. Patch esophagoplasty using an in-body-tissue-engineered collagenous connective tissue membrane.

    Science.gov (United States)

    Okuyama, Hiroomi; Umeda, Satoshi; Takama, Yuichi; Terasawa, Takeshi; Nakayama, Yasuhide

    2018-02-01

    Although many approaches to esophageal replacement have been investigated, these efforts have thus far only met limited success. In-body-tissue-engineered connective tissue tubes have been reported to be effective as vascular replacement grafts. The aim of this study was to investigate the usefulness of an In-body-tissue-engineered collagenous connective tissue membrane, "Biosheet", as a novel esophageal scaffold in a beagle model. We prepared Biosheets by embedding specially designed molds into subcutaneous pouches in beagles. After 1-2months, the molds, which were filled with ingrown connective tissues, were harvested. Rectangular-shaped Biosheets (10×20mm) were then implanted to replace defects of the same size that had been created in the cervical esophagus of the beagle. An endoscopic evaluation was performed at 4 and 12weeks after implantation. The esophagus was harvested and subjected to a histological evaluation at 4 (n=2) and 12weeks (n=2) after implantation. The animal study protocols were approved by the National Cerebral and Cardiovascular Centre Research Institute Committee (No. 16048). The Biosheets showed sufficient strength and flexibility to replace the esophagus defect. All animals survived with full oral feeding during the study period. No anastomotic leakage was observed. An endoscopic study at 4 and 12weeks after implantation revealed that the anastomotic sites and the internal surface of the Biosheets were smooth, without stenosis. A histological analysis at 4weeks after implantation demonstrated that stratified squamous epithelium was regenerated on the internal surface of the Biosheets. A histological analysis at 12weeks after implantation showed the regeneration of muscle tissue in the implanted Biosheets. The long-term results of patch esophagoplasty using Biosheets showed regeneration of stratified squamous epithelium and muscular tissues in the implanted sheets. These results suggest that Biosheets may be useful as a novel esophageal

  14. Synthesis of collagenase-sensitive polyureas for ligament tissue engineering.

    Science.gov (United States)

    Benhardt, Hugh; Sears, Nick; Touchet, Tyler; Cosgriff-Hernandez, Elizabeth

    2011-08-11

    Recently, poly(ester urethanes) were investigated for use as ligament grafts due to their exceptional mechanical properties and highly tunable structure; however, these grafts are susceptible to hydrolytic degradation that occurs independent of tissue regeneration. To address this limitation, polyureas containing collagen-derived peptides were synthesized which enable cellular release of proteases to dictate degradation rate. It is hypothesized that this cell-responsive design will facilitate load transfer from the biodegradable scaffold to neotissue at a rate that promotes proper tissue orientation and function while maintaining construct integrity. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Recombinant heparan sulfate for use in tissue engineering applications

    DEFF Research Database (Denmark)

    Whitelock, J.; Ma, J.L.; Davies, N.

    2008-01-01

    Background: Heparan sulfate (HS) is an important component of many extracellular matrices that interacts with mitogens and morphogens to guide and control tissue and organ development. These interactions are controlled by its structure, which varies when produced by different cell types and diffe......Background: Heparan sulfate (HS) is an important component of many extracellular matrices that interacts with mitogens and morphogens to guide and control tissue and organ development. These interactions are controlled by its structure, which varies when produced by different cell types...

  16. Tissue Engineering of Cartilage on Ground-Based Facilities

    DEFF Research Database (Denmark)

    Aleshcheva, Ganna; Bauer, Johann; Hemmersbach, Ruth

    2016-01-01

    Investigations under simulated microgravity offer the opportunity for a better understanding of the influence of altered gravity on cells and the scaffold-free threedimensional (3D) tissue formation. To investigate the shortterm influence, human chondrocytes were cultivated for 2h, 4 h, 16 h...

  17. A Dual Flow Bioreactor for Cartilage Tissue Engineering

    NARCIS (Netherlands)

    Spitters, Tim

    2014-01-01

    Preventing the onset of a degenerative disease like osteoarthritis by restoring tissue function before cartilage degradation occurs will decrease health costs, reduce socio-economic burdens of patients and preserve quality of life. However, producing ex vivo cartilage implants of clinically relevant

  18. Of cells and surfaces for bone tissue engineering

    NARCIS (Netherlands)

    Barradas, A.M.C.

    2012-01-01

    New biomaterials are being developed to meet the bone healing needs of patients. When these biomaterials encounter cells in the tissues within the body, their physico-chemical properties (namely their chemical composition and structural properties) will impact the way cells behave and consequently

  19. A multi-scale controlled tissue engineering scaffold prepared by 3D printing and NFES technology

    Directory of Open Access Journals (Sweden)

    Feifei Yan

    2014-03-01

    Full Text Available The current focus in the field of life science is the use of tissue engineering scaffolds to repair human organs, which has shown great potential in clinical applications. Extracellular matrix morphology and the performance and internal structure of natural organs are required to meet certain requirements. Therefore, integrating multiple processes can effectively overcome the limitations of the individual processes and can take into account the needs of scaffolds for the material, structure, mechanical properties and many other aspects. This study combined the biological 3D printing technology and the near-field electro-spinning (NFES process to prepare a multi-scale controlled tissue engineering scaffold. While using 3D printing technology to directly prepare the macro-scaffold, the compositing NFES process to build tissue micro-morphology ultimately formed a tissue engineering scaffold which has the specific extracellular matrix structure. This scaffold not only takes into account the material, structure, performance and many other requirements, but also focuses on resolving the controllability problems in macro- and micro-forming which further aim to induce cell directed differentiation, reproduction and, ultimately, the formation of target tissue organs. It has in-depth immeasurable significance to build ideal scaffolds and further promote the application of tissue engineering.

  20. Immobilization and Application of Electrospun Nanofiber Scaffold-based Growth Factor in Bone Tissue Engineering.

    Science.gov (United States)

    Chen, Guobao; Lv, Yonggang

    2015-01-01

    Electrospun nanofibers have been extensively used in growth factor delivery and regenerative medicine due to many advantages including large surface area to volume ratio, high porosity, excellent loading capacity, ease of access and cost effectiveness. Their relatively large surface area is helpful for cell adhesion and growth factor loading, while storage and release of growth factor are essential to guide cellular behaviors and tissue formation and organization. In bone tissue engineering, growth factors are expected to transmit signals that stimulate cellular proliferation, migration, differentiation, metabolism, apoptosis and extracellular matrix (ECM) deposition. Bolus administration is not always an effective method for the delivery of growth factors because of their rapid diffusion from the target site and quick deactivation. Therefore, the integration of controlled release strategy within electrospun nanofibers can provide protection for growth factors against in vivo degradation, and can manipulate desired signal at an effective level with extended duration in local microenvironment to support tissue regeneration and repair which normally takes a much longer time. In this review, we provide an overview of growth factor delivery using biomimetic electrospun nanofiber scaffolds in bone tissue engineering. It begins with a brief introduction of different kinds of polymers that were used in electrospinning and their applications in bone tissue engineering. The review further focuses on the nanofiber-based growth factor delivery and summarizes the strategies of growth factors loading on the nanofiber scaffolds for bone tissue engineering applications. The perspectives on future challenges in this area are also pointed out.

  1. A novel method for isolation of epithelial cells from ovine esophagus for tissue engineering.

    Science.gov (United States)

    Macheiner, Tanja; Kuess, Anna; Dye, Julian; Saxena, Amulya K

    2014-01-01

    The yield of a critical number of basal epithelial cells with high mitotic rates from native tissue is a challenge in the field of tissue engineering. There are many protocols that use enzymatic methods for isolation of epithelial cells with unsatisfactory results for tissue engineering. This study aimed to develop a protocol for isolating a sufficient number of epithelial cells with a high Proliferating Index from ovine esophagus for tissue engineering applications. Esophageal mucosa was pretreated with dispase-collagenase solution and plated on collagen-coated culture dishes. Distinction of the various types of epithelial cells and developmental stages was done with specific primary antibodies to Cytokeratins and to Proliferating Cell Nuclear Antigen (PCNA). Up to approximately 8100 epithelial cells/mm2 of mucosa tissue were found after one week of migration. Cytokeratin 14 (CK 14) was positive identified in cells even after 83 days. At the same time the Proliferating Index was 71%. Our protocol for isolation of basal epithelial cells was successful to yield sufficient numbers of cells predominantly with proliferative character and without noteworthy negative enzymatic affection. The results at this study offer the possibility of generation critical cell numbers for tissue engineering applications.

  2. Surface modification of polycaprolactone scaffolds fabricated via selective laser sintering for cartilage tissue engineering

    International Nuclear Information System (INIS)

    Chen, Chih-Hao; Lee, Ming-Yih; Shyu, Victor Bong-Hang; Chen, Yi-Chieh; Chen, Chien-Tzung; Chen, Jyh-Ping

    2014-01-01

    Surface modified porous polycaprolactone scaffolds fabricated via rapid prototyping techniques were evaluated for cartilage tissue engineering purposes. Polycaprolactone scaffolds manufactured by selective laser sintering (SLS) were surface modified through immersion coating with either gelatin or collagen. Three groups of scaffolds were created and compared for both mechanical and biological properties. Surface modification with collagen or gelatin improved the hydrophilicity, water uptake and mechanical strength of the pristine scaffold. From microscopic observations and biochemical analysis, collagen-modified scaffold was the best for cartilage tissue engineering in terms of cell proliferation and extracellular matrix production. Chondrocytes/collagen-modified scaffold constructs were implanted subdermally in the dorsal spaces of female nude mice. Histological and immunohistochemical staining of the retrieved implants after 8 weeks revealed enhanced cartilage tissue formation. We conclude that collagen surface modification through immersion coating on SLS-manufactured scaffolds is a feasible scaffold for cartilage tissue engineering in craniofacial reconstruction. - Highlights: • Selective laser sintered polycaprolactone scaffolds are prepared. • Scaffolds are surface modified through immersion coating with gelatin or collagen. • Collagen-scaffold is the best for cartilage tissue engineering in vitro. • Chondrocytes/collagen-scaffold reveals enhanced cartilage tissue formation in vivo

  3. Chitosan and Its Potential Use as a Scaffold for Tissue Engineering in Regenerative Medicine

    Science.gov (United States)

    Rodríguez-Vázquez, Martin; Vega-Ruiz, Brenda; Ramos-Zúñiga, Rodrigo; Saldaña-Koppel, Daniel Alexander; Quiñones-Olvera, Luis Fernando

    2015-01-01

    Tissue engineering is an important therapeutic strategy to be used in regenerative medicine in the present and in the future. Functional biomaterials research is focused on the development and improvement of scaffolding, which can be used to repair or regenerate an organ or tissue. Scaffolds are one of the crucial factors for tissue engineering. Scaffolds consisting of natural polymers have recently been developed more quickly and have gained more popularity. These include chitosan, a copolymer derived from the alkaline deacetylation of chitin. Expectations for use of these scaffolds are increasing as the knowledge regarding their chemical and biological properties expands, and new biomedical applications are investigated. Due to their different biological properties such as being biocompatible, biodegradable, and bioactive, they have given the pattern for use in tissue engineering for repair and/or regeneration of different tissues including skin, bone, cartilage, nerves, liver, and muscle. In this review, we focus on the intrinsic properties offered by chitosan and its use in tissue engineering, considering it as a promising alternative for regenerative medicine as a bioactive polymer. PMID:26504833

  4. Bone tissue engineering with human mesenchymal stem cell sheets constructed using magnetite nanoparticles and magnetic force.

    Science.gov (United States)

    Shimizu, Kazunori; Ito, Akira; Yoshida, Tatsuro; Yamada, Yoichi; Ueda, Minoru; Honda, Hiroyuki

    2007-08-01

    An in vitro reconstruction of three-dimensional (3D) tissues without the use of scaffolds may be an alternative strategy for tissue engineering. We have developed a novel tissue engineering strategy, termed magnetic force-based tissue engineering (Mag-TE), in which magnetite cationic liposomes (MCLs) with a positive charge at the liposomal surface, and magnetic force were used to construct 3D tissue without scaffolds. In this study, human mesenchymal stem cells (MSCs) magnetically labeled with MCLs were seeded onto an ultra-low attachment culture surface, and a magnet (4000 G) was placed on the reverse side. The MSCs formed multilayered sheet-like structures after a 24-h culture period. MSCs in the sheets constructed by Mag-TE maintained an in vitro ability to differentiate into osteoblasts, adipocytes, or chondrocytes after a 21-day culture period using each induction medium. Using an electromagnet, MSC sheets constructed by Mag-TE were harvested and transplanted into the bone defect in the crania of nude rats. Histological observation revealed that new bone surrounded by osteoblast-like cells was formed in the defect area 14 days after transplantation with MSC sheets, whereas no bone formation was observed in control rats without the transplant. These results indicated that Mag-TE could be used for the transplantation of MSC sheets using magnetite nanoparticles and magnetic force, providing novel methodology for bone tissue engineering.

  5. Surface modification of polycaprolactone scaffolds fabricated via selective laser sintering for cartilage tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chih-Hao [Department of Chemical and Materials Engineering, Chang Gung University, Kweishan, Taoyuan 333, Taiwan, ROC (China); Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Craniofacial Research Center, Chang Gung University, Kweishann, Taoyuan 333, Taiwan, ROC (China); Lee, Ming-Yih [Graduate Institute of Medical Mechatronics, Chang Gung University, Kweishan, Taoyuan 333, Taiwan, ROC (China); Shyu, Victor Bong-Hang; Chen, Yi-Chieh; Chen, Chien-Tzung [Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Craniofacial Research Center, Chang Gung University, Kweishann, Taoyuan 333, Taiwan, ROC (China); Chen, Jyh-Ping, E-mail: jpchen@mail.cgu.edu.tw [Department of Chemical and Materials Engineering, Chang Gung University, Kweishan, Taoyuan 333, Taiwan, ROC (China); Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Kweishan, Taoyuan 333, Taiwan, ROC (China)

    2014-07-01

    Surface modified porous polycaprolactone scaffolds fabricated via rapid prototyping techniques were evaluated for cartilage tissue engineering purposes. Polycaprolactone scaffolds manufactured by selective laser sintering (SLS) were surface modified through immersion coating with either gelatin or collagen. Three groups of scaffolds were created and compared for both mechanical and biological properties. Surface modification with collagen or gelatin improved the hydrophilicity, water uptake and mechanical strength of the pristine scaffold. From microscopic observations and biochemical analysis, collagen-modified scaffold was the best for cartilage tissue engineering in terms of cell proliferation and extracellular matrix production. Chondrocytes/collagen-modified scaffold constructs were implanted subdermally in the dorsal spaces of female nude mice. Histological and immunohistochemical staining of the retrieved implants after 8 weeks revealed enhanced cartilage tissue formation. We conclude that collagen surface modification through immersion coating on SLS-manufactured scaffolds is a feasible scaffold for cartilage tissue engineering in craniofacial reconstruction. - Highlights: • Selective laser sintered polycaprolactone scaffolds are prepared. • Scaffolds are surface modified through immersion coating with gelatin or collagen. • Collagen-scaffold is the best for cartilage tissue engineering in vitro. • Chondrocytes/collagen-scaffold reveals enhanced cartilage tissue formation in vivo.

  6. Bone tissue engineering and regeneration: from discovery to the clinic--an overview.

    Science.gov (United States)

    O'Keefe, Regis J; Mao, Jeremy

    2011-12-01

    A National Institutes of Health sponsored workshop "Bone Tissue Engineering and Regeneration: From Discovery to the Clinic" gathered thought leaders from medicine, science, and industry to determine the state of art in the field and to define the barriers to translating new technologies to novel therapies to treat bone defects. Tissue engineering holds enormous promise to improve human health through prevention of disease and the restoration of healthy tissue functions. Bone tissue engineering, similar to that for other tissues and organs, requires integration of multiple disciplines such as cell biology, stem cells, developmental and molecular biology, biomechanics, biomaterials science, and immunology and transplantation science. Although each of the research areas has undergone enormous advances in last decade, the translation to clinical care and the development of tissue engineering composites to replace human tissues has been limited. Bone, similar to other tissue and organs, has complex structure and functions and requires exquisite interactions between cells, matrices, biomechanical forces, and gene and protein regulatory factors for sustained function. The process of engineering bone, thus, requires a comprehensive approach with broad expertise. Although in vitro and preclinical animal studies have been pursued with a large and diverse collection of scaffolds, cells, and biomolecules, the field of bone tissue engineering remains fragmented up to the point that a clear translational roadmap has yet to emerge. Translation is particularly important for unmet clinical needs such as large segmental defects and medically compromised conditions such as tumor removal and infection sites. Collectively, manuscripts in this volume provide luminary examples toward identification of barriers and strategies for translation of fundamental discoveries into clinical therapeutics. © Mary Ann Liebert, Inc.

  7. Bone Tissue Engineering and Regeneration: From Discovery to the Clinic—An Overview

    Science.gov (United States)

    2011-01-01

    A National Institutes of Health sponsored workshop “Bone Tissue Engineering and Regeneration: From Discovery to the Clinic” gathered thought leaders from medicine, science, and industry to determine the state of art in the field and to define the barriers to translating new technologies to novel therapies to treat bone defects. Tissue engineering holds enormous promise to improve human health through prevention of disease and the restoration of healthy tissue functions. Bone tissue engineering, similar to that for other tissues and organs, requires integration of multiple disciplines such as cell biology, stem cells, developmental and molecular biology, biomechanics, biomaterials science, and immunology and transplantation science. Although each of the research areas has undergone enormous advances in last decade, the translation to clinical care and the development of tissue engineering composites to replace human tissues has been limited. Bone, similar to other tissue and organs, has complex structure and functions and requires exquisite interactions between cells, matrices, biomechanical forces, and gene and protein regulatory factors for sustained function. The process of engineering bone, thus, requires a comprehensive approach with broad expertise. Although in vitro and preclinical animal studies have been pursued with a large and diverse collection of scaffolds, cells, and biomolecules, the field of bone tissue engineering remains fragmented up to the point that a clear translational roadmap has yet to emerge. Translation is particularly important for unmet clinical needs such as large segmental defects and medically compromised conditions such as tumor removal and infection sites. Collectively, manuscripts in this volume provide luminary examples toward identification of barriers and strategies for translation of fundamental discoveries into clinical therapeutics. PMID:21902614

  8. Collagen as potential cell scaffolds for tissue engineering.

    Science.gov (United States)

    Annuar, N; Spier, R E

    2004-05-01

    Selections of collagen available commercially were tested for their biocompatibility as scaffold to promote cell growth in vitro via simple collagen fast test and cultivation of mammalian cells on the selected type of collagen. It was found that collagen type C9791 promotes the highest degree of aggregation as well as cells growth. This preliminary study also indicated potential use of collagen as scaffold in engineered tissue.

  9. Repair and tissue engineering techniques for articular cartilage

    OpenAIRE

    Makris, Eleftherios A.; Gomoll, Andreas H.; Malizos, Konstantinos N.; Hu, Jerry C.; Athanasiou, Kyriacos A.

    2014-01-01

    © 2015 Macmillan Publishers Limited. All rights reserved. Chondral and osteochondral lesions due to injury or other pathology commonly result in the development of osteoarthritis, eventually leading to progressive total joint destruction. Although current progress suggests that biologic agents can delay the advancement of deterioration, such drugs are incapable of promoting tissue restoration. The limited ability of articular cartilage to regenerate renders joint arthroplasty an unavoidable s...

  10. Micro and Nano-mediated 3D Cardiac Tissue Engineering

    Science.gov (United States)

    2010-10-01

    dilated cardiomyopathy . Critical Care Medicine. 2009;37:1197-1205 21. Leor J. Bioengineered cardiac grafts: A new approach to repair the infarcted...chamber and while the atrium “helps” during inner flow. Since increase of amplitude as response to synchronism is a measure of contraction and dilation ...optimal pump function in canine hearts. Journal of the American College of Cardiology. 2003;41:1218-1226 4. Storaa C. Tissue motion imaging of the left

  11. Synthesis of a nanocomposite biomaterial for implant tissue engineering

    OpenAIRE

    Santos Montes, Angélica

    2015-01-01

    In order to improve health and quality of life, the challenge to develop new biomaterials has become extremely relevant. In this project, our main objective is to obtain a nanocomposite biopolymer that serves as a temporal synthetic extracellular matrix for cell growth and tissue regeneration. This matrix consists of a hydrogel lm of chitosan or agarose doped with di erent ceramic nanoparticles: titanium dioxide (TiO2) and aluminum oxide (Al2O3). Once developed, this composite will be tested...

  12. Modularity in developmental biology and artificial organs: a missing concept in tissue engineering.

    Science.gov (United States)

    Lenas, Petros; Luyten, Frank P; Doblare, Manuel; Nicodemou-Lena, Eleni; Lanzara, Andreina Elena

    2011-06-01

    Tissue engineering is reviving itself, adopting the concept of biomimetics of in vivo tissue development. A basic concept of developmental biology is the modularity of the tissue architecture according to which intermediates in tissue development constitute semiautonomous entities. Both engineering and nature have chosen the modular architecture to optimize the product or organism development and evolution. Bioartificial tissues do not have a modular architecture. On the contrary, artificial organs of modular architecture have been already developed in the field of artificial organs. Therefore the conceptual support of tissue engineering by the field of artificial organs becomes critical in its new endeavor of recapitulating in vitro the in vivo tissue development. © 2011, Copyright the Authors. Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  13. An update on the Application of Nanotechnology in Bone Tissue Engineering.

    Science.gov (United States)

    Griffin, M F; Kalaskar, D M; Seifalian, A; Butler, P E

    2016-01-01

    Natural bone is a complex and hierarchical structure. Bone possesses an extracellular matrix that has a precise nano-sized environment to encourage osteoblasts to lay down bone by directing them through physical and chemical cues. For bone tissue regeneration, it is crucial for the scaffolds to mimic the native bone structure. Nanomaterials, with features on the nanoscale have shown the ability to provide the appropriate matrix environment to guide cell adhesion, migration and differentiation. This review summarises the new developments in bone tissue engineering using nanobiomaterials. The design and selection of fabrication methods and biomaterial types for bone tissue engineering will be reviewed. The interactions of cells with different nanostructured scaffolds will be discussed including nanocomposites, nanofibres and nanoparticles. Several composite nanomaterials have been able to mimic the architecture of natural bone. Bioceramics biomaterials have shown to be very useful biomaterials for bone tissue engineering as they have osteoconductive and osteoinductive properties. Nanofibrous scaffolds have the ability to provide the appropriate matrix environment as they can mimic the extracellular matrix structure of bone. Nanoparticles have been used to deliver bioactive molecules and label and track stem cells. Future studies to improve the application of nanomaterials for bone tissue engineering are needed.

  14. Preparation and Characterization of Polycaprolactone / Layered Double Hydroxide Nanocomposite for Hard Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    M. Baradaran

    2016-12-01

    Full Text Available In recent years the use of nanomaterials in bone tissue engineering scaffold has been considered due to its imitating the structure of natural bone tissue which contains a nanocomposite structure mixed with a three-dimensional matrix. In the meantime, Polycaprol actone has been used as a bio-polymer in bone tissue engineering applications as a scaffold. The aim of this study is to develop porous scaffolds made of polycaprol actone/layered double hydroxide biocomposite, with appropriate mechanical, bioactive and biological properties, for bone tissue engineering application. The nanocomposite scaffolds were fabricated by the particulate leaching method and freeze-drying method. In this study, MG63 cells (osteosarcoma was investigated for cellular study. Energy dispersive X-ray analysis confirmed uniform distribution of ceramic phase in polycaprol actone matrix. The results of mechanical tests showed the increase in young’s modulus after addition of ceramic phase. The microscopic investigations demonstrated that the pores generated after addition of ceramic phase and the average size of pores was as large as 100-600μm. Also by the addition of LDH, the hydrophilicity of PCL increased but the rate of hydroxyapatite formation was delayed due to presence of magnesium ions. The cell culture experiments confirmed the attachment and proliferation of cells on the scaffolds. The results showed that the fabricated scaffolds have the potential to be used in cancellous bone tissue engineering.

  15. Modeling the Human Scarred Heart In Vitro: Toward New Tissue Engineered Models.

    Science.gov (United States)

    Deddens, Janine C; Sadeghi, Amir Hossein; Hjortnaes, Jesper; van Laake, Linda W; Buijsrogge, Marc; Doevendans, Pieter A; Khademhosseini, Ali; Sluijter, Joost P G

    2017-02-01

    Cardiac remodeling is critical for effective tissue healing, however, excessive production and deposition of extracellular matrix components contribute to scarring and failing of the heart. Despite the fact that novel therapies have emerged, there are still no lifelong solutions for this problem. An urgent need exists to improve the understanding of adverse cardiac remodeling in order to develop new therapeutic interventions that will prevent, reverse, or regenerate the fibrotic changes in the failing heart. With recent advances in both disease biology and cardiac tissue engineering, the translation of fundamental laboratory research toward the treatment of chronic heart failure patients becomes a more realistic option. Here, the current understanding of cardiac fibrosis and the great potential of tissue engineering are presented. Approaches using hydrogel-based tissue engineered heart constructs are discussed to contemplate key challenges for modeling tissue engineered cardiac fibrosis and to provide a future outlook for preclinical and clinical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Tissue engineering: technological advances to improve its applications in reconstructive surgery.

    Science.gov (United States)

    Alberti, C

    2012-01-01

    Tremendous advances in biomaterials science and nanotechnologies, together with thorough research on stem cells, have recently promoted an intriguing development of regenerative medicine/tissue engineering. The nanotechnology represents a wide interdisciplinary field that implies the manipulation of different materials at nanometer level to achieve the creation of constructs that mimic the nanoscale-based architecture of native tissues. The purpose of this article is to highlight the significant new knowledges regarding this matter. To widen the range of scaffold materials resort has been carried out to either recombinant DNA technology-generated materials, such as a collagen-like protein, or the incorporation of bioactive molecules, such as RDG (arginine-glycine-aspartic acid), into synthetic products. Both the bottom-up and the top-down fabrication approaches may be properly used to respectively obtain sopramolecular architectures or, instead, micro-/nanostructures to incorporate them within a preexisting complex scaffold construct. Computer-aided design/manufacturing (CAD/CAM) scaffold technique allows to achieve patient-tailored organs. Stem cells, because of their peculiar properties - ability to proliferate, self-renew and specific cell-lineage differentiate under appropriate conditions - represent an attractive source for intriguing tissue engineering/regenerative medicine applications. New developments in the realization of different organs tissue engineering will depend on further progress of both the science of nanoscale-based materials and the knowledge of stem cell biology. Moreover the in vivo tissue engineering appears to be the logical step of the current research.

  17. Microablation of collagen-based substrates for soft tissue engineering

    International Nuclear Information System (INIS)

    Kumar, Vivek A; Caves, Jeffrey M; Naik, Nisarga; Haller, Carolyn A; Chaikof, Elliot L; Martinez, Adam W

    2014-01-01

    Noting the abundance and importance of collagen as a biomaterial, we have developed a facile method for the production of a dense fibrillar extracellular matrix mimicking collagen–elastin hybrids with tunable mechanical properties. Through the use of excimer-laser technology, we have optimized conditions for the ablation of collagen lamellae without denaturation of protein, maintenance of fibrillar ultrastructure and preservation of native D-periodicity. Strengths of collagen–elastin hybrids ranged from 0.6 to 13 MPa, elongation at break from 9 to 70% and stiffness from 2.9 to 94 MPa, allowing for the design of a wide variety of tissue specific scaffolds. Further, large (centimeter scale) lamellae can be fabricated and embedded with recombinant elastin to generate collagen–elastin hybrids. Exposed collagen in hybrids act as cell adhesive sites for rat mesenchymal stem cells that conform to ablate waveforms. The ability to modulate these features allows for the generation of a class of biopolymers that can architecturally and physiologically replicate native tissue. (communication)

  18. A comprehensive review of cryogels and their roles in tissue engineering applications.

    Science.gov (United States)

    Hixon, Katherine R; Lu, Tracy; Sell, Scott A

    2017-10-15

    The extracellular matrix is fundamental in providing an appropriate environment for cell interaction and signaling to occur. Replicating such a matrix is advantageous in the support of tissue ingrowth and regeneration through the field of tissue engineering. While scaffolds can be fabricated in many ways, cryogels have recently become a popular approach due to their macroporous structure and durability. Produced through the crosslinking of gel precursors followed by a subsequent controlled freeze/thaw cycle, the resulting cryogel provides a unique, sponge-like structure. Therefore, cryogels have proven advantageous for many tissue engineering applications including roles in bioreactor systems, cell separation, and scaffolding. Specifically, the matrix has been demonstrated to encourage the production of various molecules, such as antibodies, and has also been used for cryopreservation. Cryogels can pose as a bioreactor for the expansion of cell lines, as well as a vehicle for cell separation. Lastly, this matrix has shown excellent potential as a tissue engineered scaffold, encouraging regrowth at numerous damaged tissue sites in vivo. This review will briefly discuss the fabrication of cryogels, with an emphasis placed on their application in various facets of tissue engineering to provide an overview of this unique scaffold's past and future roles. Cryogels are unique scaffolds produced through the controlled freezing and thawing of a polymer solution. There is an ever-growing body of literature that demonstrates their applicability in the realm of tissue engineering as extracellular matrix analogue scaffolds; with extensive information having been provided regarding the fabrication, porosity, and mechanical integrity of the scaffolds. Additionally, cryogels have been reviewed with respect to their role in bioseparation and as cellular incubators. This all-inclusive view of the roles that cryogels can play is critical to advancing the technology and expanding its

  19. Collagenous Extracellular Matrix Biomaterials for Tissue Engineering: Lessons from the Common Sea Urchin Tissue.

    Science.gov (United States)

    Goh, Kheng Lim; Holmes, David F

    2017-04-25

    Scaffolds for tissue engineering application may be made from a collagenous extracellular matrix (ECM) of connective tissues because the ECM can mimic the functions of the target tissue. The primary sources of collagenous ECM material are calf skin and bone. However, these sources are associated with the risk of having bovine spongiform encephalopathy or transmissible spongiform encephalopathy. Alternative sources for collagenous ECM materials may be derived from livestock, e.g., pigs, and from marine animals, e.g., sea urchins. Collagenous ECM of the sea urchin possesses structural features and mechanical properties that are similar to those of mammalian ones. However, even more intriguing is that some tissues such as the ligamentous catch apparatus can exhibit mutability, namely rapid reversible changes in the tissue mechanical properties. These tissues are known as mutable collagenous tissues (MCTs). The mutability of these tissues has been the subject of on-going investigations, covering the biochemistry, structural biology and mechanical properties of the collagenous components. Recent studies point to a nerve-control system for regulating the ECM macromolecules that are involved in the sliding action of collagen fibrils in the MCT. This review discusses the key attributes of the structure and function of the ECM of the sea urchin ligaments that are related to the fibril-fibril sliding action-the focus is on the respective components within the hierarchical architecture of the tissue. In this context, structure refers to size, shape and separation distance of the ECM components while function is associated with mechanical properties e.g., strength and stiffness. For simplicity, the components that address the different length scale from the largest to the smallest are as follows: collagen fibres, collagen fibrils, interfibrillar matrix and collagen molecules. Application of recent theories of stress transfer and fracture mechanisms in fibre reinforced

  20. Collagenous Extracellular Matrix Biomaterials for Tissue Engineering: Lessons from the Common Sea Urchin Tissue

    Directory of Open Access Journals (Sweden)

    Kheng Lim Goh

    2017-04-01

    Full Text Available Scaffolds for tissue engineering application may be made from a collagenous extracellular matrix (ECM of connective tissues because the ECM can mimic the functions of the target tissue. The primary sources of collagenous ECM material are calf skin and bone. However, these sources are associated with the risk of having bovine spongiform encephalopathy or transmissible spongiform encephalopathy. Alternative sources for collagenous ECM materials may be derived from livestock, e.g., pigs, and from marine animals, e.g., sea urchins. Collagenous ECM of the sea urchin possesses structural features and mechanical properties that are similar to those of mammalian ones. However, even more intriguing is that some tissues such as the ligamentous catch apparatus can exhibit mutability, namely rapid reversible changes in the tissue mechanical properties. These tissues are known as mutable collagenous tissues (MCTs. The mutability of these tissues has been the subject of on-going investigations, covering the biochemistry, structural biology and mechanical properties of the collagenous components. Recent studies point to a nerve-control system for regulating the ECM macromolecules that are involved in the sliding action of collagen fibrils in the MCT. This review discusses the key attributes of the structure and function of the ECM of the sea urchin ligaments that are related to the fibril-fibril sliding action—the focus is on the respective components within the hierarchical architecture of the tissue. In this context, structure refers to size, shape and separation distance of the ECM components while function is associated with mechanical properties e.g., strength and stiffness. For simplicity, the components that address the different length scale from the largest to the smallest are as follows: collagen fibres, collagen fibrils, interfibrillar matrix and collagen molecules. Application of recent theories of stress transfer and fracture mechanisms in fibre

  1. Collagenous Extracellular Matrix Biomaterials for Tissue Engineering: Lessons from the Common Sea Urchin Tissue

    Science.gov (United States)

    Goh, Kheng Lim; Holmes, David F.

    2017-01-01

    Scaffolds for tissue engineering application may be made from a collagenous extracellular matrix (ECM) of connective tissues because the ECM can mimic the functions of the target tissue. The primary sources of collagenous ECM material are calf skin and bone. However, these sources are associated with the risk of having bovine spongiform encephalopathy or transmissible spongiform encephalopathy. Alternative sources for collagenous ECM materials may be derived from livestock, e.g., pigs, and from marine animals, e.g., sea urchins. Collagenous ECM of the sea urchin possesses structural features and mechanical properties that are similar to those of mammalian ones. However, even more intriguing is that some tissues such as the ligamentous catch apparatus can exhibit mutability, namely rapid reversible changes in the tissue mechanical properties. These tissues are known as mutable collagenous tissues (MCTs). The mutability of these tissues has been the subject of on-going investigations, covering the biochemistry, structural biology and mechanical properties of the collagenous components. Recent studies point to a nerve-control system for regulating the ECM macromolecules that are involved in the sliding action of collagen fibrils in the MCT. This review discusses the key attributes of the structure and function of the ECM of the sea urchin ligaments that are related to the fibril-fibril sliding action—the focus is on the respective components within the hierarchical architecture of the tissue. In this context, structure refers to size, shape and separation distance of the ECM components while function is associated with mechanical properties e.g., strength and stiffness. For simplicity, the components that address the different length scale from the largest to the smallest are as follows: collagen fibres, collagen fibrils, interfibrillar matrix and collagen molecules. Application of recent theories of stress transfer and fracture mechanisms in fibre reinforced

  2. Mechanical Characterization of Tissue-Engineered Cartilage Using Microscopic Magnetic Resonance Elastography

    Science.gov (United States)

    Yin, Ziying; Schmid, Thomas M.; Yasar, Temel K.; Liu, Yifei; Royston, Thomas J.

    2014-01-01

    Knowledge of mechanical properties of tissue-engineered cartilage is essential for the optimization of cartilage tissue engineering strategies. Microscopic magnetic resonance elastography (μMRE) is a recently developed MR-based technique that can nondestructively visualize shear wave motion. From the observed wave pattern in MR phase images the tissue mechanical properties (e.g., shear modulus or stiffness) can be extracted. For quantification of the dynamic shear properties of small and stiff tissue-engineered cartilage, μMRE needs to be performed at frequencies in the kilohertz range. However, at frequencies greater than 1 kHz shear waves are rapidly attenuated in soft tissues. In this study μMRE, with geometric focusing, was used to overcome the rapid wave attenuation at high frequencies, enabling the measurement of the shear modulus of tissue-engineered cartilage. This methodology was first tested at a frequency of 5 kHz using a model system composed of alginate beads embedded in agarose, and then applied to evaluate extracellular matrix development in a chondrocyte pellet over a 3-week culture period. The shear stiffness in the pellet was found to increase over time (from 6.4 to 16.4 kPa), and the increase was correlated with both the proteoglycan content and the collagen content of the chondrocyte pellets (R2=0.776 and 0.724, respectively). Our study demonstrates that μMRE when performed with geometric focusing can be used to calculate and map the shear properties within tissue-engineered cartilage during its development. PMID:24266395

  3. Magnetic resonance microscopy for monitoring osteogenesis in tissue-engineered construct in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Xu Huihui [Bioengineering Department (MC 063), University of Illinois at Chicago, 851 South Morgan Street, Chicago, IL 60607-7052 (United States); Othman, Shadi F [Bioengineering Department (MC 063), University of Illinois at Chicago, 851 South Morgan Street, Chicago, IL 60607-7052 (United States); Hong Liu [Bioengineering Department (MC 063), University of Illinois at Chicago, 851 South Morgan Street, Chicago, IL 60607-7052 (United States); Peptan, Ioana A [Bioengineering Department (MC 063), University of Illinois at Chicago, 851 South Morgan Street, Chicago, IL 60607-7052 (United States); Magin, Richard L [Bioengineering Department (MC 063), University of Illinois at Chicago, 851 South Morgan Street, Chicago, IL 60607-7052 (United States)

    2006-02-07

    Magnetic resonance microscopy (MRM) is used to monitor osteogenesis in tissue-engineered constructs. Measurements of the developing tissue's MR relaxation times (T{sub 1} and T{sub 2}), apparent diffusion coefficient (ADC) and elastic shear modulus were conducted over a 4-week growth period using an 11.74 T Bruker spectrometer with an imaging probe adapted for MR elastography (MRE). Both the relaxation times and the ADC show a statistically significant decrease after only one week of tissue development while the tissue stiffness increases progressively during the first two weeks of in vitro growth. The measured MR parameters are correlated with histologically monitored osteogenic tissue development. This study shows that MRM can provide quantitative data with which to characterize the growth and development of tissue-engineered bone.

  4. Colloquium: Modeling the dynamics of multicellular systems: Application to tissue engineering

    Science.gov (United States)

    Kosztin, Ioan; Vunjak-Novakovic, Gordana; Forgacs, Gabor

    2012-10-01

    Tissue engineering is a rapidly evolving discipline that aims at building functional tissues to improve or replace damaged ones. To be successful in such an endeavor, ideally, the engineering of tissues should be based on the principles of developmental biology. Recent progress in developmental biology suggests that the formation of tissues from the composing cells is often guided by physical laws. Here a comprehensive computational-theoretical formalism is presented that is based on experimental input and incorporates biomechanical principles of developmental biology. The formalism is described and it is shown that it correctly reproduces and predicts the quantitative characteristics of the fundamental early developmental process of tissue fusion. Based on this finding, the formalism is then used toward the optimization of the fabrication of tubular multicellular constructs, such as a vascular graft, by bioprinting, a novel tissue engineering technology.

  5. Adipose tissue engineering: state of the art, recent advances and innovative approaches.

    Science.gov (United States)

    Tanzi, Maria Cristina; Farè, Silvia

    2009-09-01

    Adipose tissue is a highly specialized connective tissue found either in white or brown forms, the white form being the most abundant in adult humans. Loss or damage of white adipose tissue due to aging or pathological conditions needs reconstructive approaches. To date, two main strategies are being investigated for generating functional adipose tissue: autologous tissue/cell transplantation and adipose tissue engineering. Free-fat transplantation rarely achieves sufficient tissue augmentation owing to delayed neovascularization, with subsequent cell necrosis and graft volume shrinkage. Tissue engineering approaches represent, instead, a more suitable alternative for adipose tissue regeneration; they can be performed either with in situ or de novo adipogenesis. In situ adipogenesis or transplantation of encapsulated cells can be useful in healing small-volume defects, whereas restoration of large defects, where vascularization and a rapid volumetric gain are strict requirements, needs de novo strategies with 3D scaffold/filling matrix combinations. For adipose tissue engineering, the use of adult mesenchymal stem cells (both adipose- and bone marrow-derived stem cells) or of preadipocytes is preferred to the use of mature adipocytes, which have low expandability and poor ability for volume retention. This review intends to assemble and describe recent work on this topic, critically presenting successes obtained and drawbacks faced to date.

  6. Tissue-Engineered Solutions in Plastic and Reconstructive Surgery: Principles and Practice

    Science.gov (United States)

    Al-Himdani, Sarah; Jessop, Zita M.; Al-Sabah, Ayesha; Combellack, Emman; Ibrahim, Amel; Doak, Shareen H.; Hart, Andrew M.; Archer, Charles W.; Thornton, Catherine A.; Whitaker, Iain S.

    2017-01-01

    Recent advances in microsurgery, imaging, and transplantation have led to significant refinements in autologous reconstructive options; however, the morbidity of donor sites remains. This would be eliminated by successful clinical translation of tissue-engineered solutions into surgical practice. Plastic surgeons are uniquely placed to be intrinsically involved in the research and development of laboratory engineered tissues and their subsequent use. In this article, we present an overview of the field of tissue engineering, with the practicing plastic surgeon in mind. The Medical Research Council states that regenerative medicine and tissue engineering “holds the promise of revolutionizing patient care in the twenty-first century.” The UK government highlighted regenerative medicine as one of the key eight great technologies in their industrial strategy worthy of significant investment. The long-term aim of successful biomanufacture to repair composite defects depends on interdisciplinary collaboration between cell biologists, material scientists, engineers, and associated medical specialties; however currently, there is a current lack of coordination in the field as a whole. Barriers to translation are deep rooted at the basic science level, manifested by a lack of consensus on the ideal cell source, scaffold, molecular cues, and environment and manufacturing strategy. There is also insufficient understanding of the long-term safety and durability of tissue-engineered constructs. This review aims to highlight that individualized approaches to the field are not adequate, and research collaboratives will be essential to bring together differing areas of expertise to expedite future clinical translation. The use of tissue engineering in reconstructive surgery would result in a paradigm shift but it is important to maintain realistic expectations. It is generally accepted that it takes 20–30 years from the start of basic science research to clinical utility

  7. Cellularized cylindrical fiber/hydrogel composites for ligament tissue engineering.

    Science.gov (United States)

    Thayer, Patrick S; Dimling, Anna F; Plessl, Daniel S; Hahn, Mariah R; Guelcher, Scott A; Dahlgren, Linda A; Goldstein, Aaron S

    2014-01-13

    Electrospun meshes suffer from poor cell infiltration and limited thickness, which restrict their use to thin tissue applications. Herein, we demonstrate two complementary processes to overcome these limitations and achieve elastomeric composites that may be suitable for ligament repair. First, C3H10T1/2 mesenchymal stem cells were incorporated into electrospun meshes using a hybrid electrospinning/electrospraying process. Second, electrospun meshes were rolled and formed into composites with an interpenetrating polyethylene glycol (PEG) hydrogel network. Stiffer composites were formed from poly(lactic-co-glycolic acid) (PLGA) meshes, while softer and more elastic composites were formed from poly(ester-urethane urea) (PEUUR) meshes. As-spun PLGA and PEUUR rolled meshes had tensile moduli of 19.2 ± 1.9 and 0.86 ± 0.34 MPa, respectively, which changed to 11.6 ± 4.8 and 1.05 ± 0.39 MPa with the incorporation of a PEG hydrogel phase. In addition, cyclic tensile testing indicated that PEUUR-based composites deformed elastically to at least 10%. Finally, C3H10T1/2 cells incorporated into electrospun meshes survived the addition of the PEG phase and remained viable for up to 5 days. These results indicate that the fabricated cellularized composites are support cyclic mechanical conditioning, and have potential application in ligament repair.

  8. Electrospun biocomposite nanofibrous patch for cardiac tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakaran, Molamma P; Ramakrishna, Seeram [Health Care and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Kai, Dan [NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore (Singapore); Ghasemi-Mobarakeh, Laleh, E-mail: nnimpp@nus.edu.s [Islamic Azad University, Najafabad Branch, Isfahan (Iran, Islamic Republic of)

    2011-10-15

    A bioengineered construct that matches the chemical, mechanical, biological properties and extracellular matrix morphology of native tissue could be suitable as a cardiac patch for supporting the heart after myocardial infarction. The potential of utilizing a composite nanofibrous scaffold of poly(dl-lactide-co-glycolide)/gelatin (PLGA/Gel) as a biomimetic cardiac patch is studied by culturing a population of cardiomyocyte containing cells on the electrospun scaffolds. The chemical characterization and mechanical properties of the electrospun PLGA and PLGA/Gel nanofibers were studied by Fourier transform infrared spectroscopy, scanning electron microscopy and tensile measurements. The biocompatibility of the scaffolds was also studied and the cardiomyocytes seeded on PLGA/Gel nanofibers were found to express the typical functional cardiac proteins such as alpha-actinin and troponin I, showing the easy integration of cardiomyocytes on PLGA/Gel scaffolds. Our studies strengthen the application of electrospun PLGA/Gel nanofibers as a bio-mechanical support for injured myocardium and as a potential substrate for induction of endogenous cardiomyocyte proliferation, ultimately reducing the cardiac dysfunction and improving cardiac remodeling.

  9. Tissue Engineering of Cartilage on Ground-Based Facilities

    Science.gov (United States)

    Aleshcheva, Ganna; Bauer, Johann; Hemmersbach, Ruth; Egli, Marcel; Wehland, Markus; Grimm, Daniela

    2016-06-01

    Investigations under simulated microgravity offer the opportunity for a better understanding of the influence of altered gravity on cells and the scaffold-free three-dimensional (3D) tissue formation. To investigate the short-term influence, human chondrocytes were cultivated for 2 h, 4 h, 16 h, and 24 h on a 2D Fast-Rotating Clinostat (FRC) in DMEM/F-12 medium supplemented with 10 % FCS. We detected holes in the vimentin network, perinuclear accumulations of vimentin after 2 h, and changes in the chondrocytes shape visualised by F-actin staining after 4 h of FRC-exposure. Scaffold-free cultivation of chondrocytes for 7 d on the Random Positioning Machine (RPM), the FRC and the Rotating Wall Vessel (RWV) resulted in spheroid formation, a phenomenon already known from spaceflight experiments with chondrocytes (MIR Space Station) and thyroid cancer cells (SimBox/Shenzhou-8 space mission). The experiments enabled by the ESA-CORA-GBF programme gave us an optimal opportunity to study gravity-related cellular processes, validate ground-based facilities for our chosen cell system, and prepare long-term experiments under real microgravity conditions in space

  10. Biomimetic coatings for bone tissue engineering of critical-sized defects

    NARCIS (Netherlands)

    Liu, Y.; Wu, G.; de Groot, K.

    2010-01-01

    The repair of critical-sized bone defects is still challenging in the fields of implantology, maxillofacial surgery and orthopaedics. Current therapies such as autografts and allografts are associated with various limitations. Cytokine-based bone tissue engineering has been attracting increasing

  11. Oxygen gradients in tissue-engineered PEGT/PBT cartilaginous constructs: Measurement and modeling

    NARCIS (Netherlands)

    Malda, J.; Rouwkema, Jeroen; Martens, D.E.; le Comte, EP; Kooy, F.K.; Tramper, J.; van Blitterswijk, Clemens; Riesle, J.U.

    2004-01-01

    The supply of oxygen within three-dimensional tissue-engineered (TE) cartilage polymer constructs is mainly by diffusion. Oxygen consumption by cells results in gradients in the oxygen concentration. The aims of this study were, firstly, to identify the gradients within TE cartilage polymer

  12. Oxygen gradients in tissue-engineered PEGT/PBT cartilaginous constructs: measurement and modeling

    NARCIS (Netherlands)

    Malda, J.; Rouwkema, J.; Martens, D.E.; Paul le Comte, E.; Kooy, F.K.; Tramper, J.; Blitterswijk, van C.A.; Riesle, J.

    2004-01-01

    The supply of oxygen within three-dimensional tissue-engineered (TE) cartilage polymer constructs is mainly by diffusion. Oxygen consumption by cells results in gradients in the oxygen concentration. The aims of this study were, firstly, to identify the gradients within TE: cartilage polymer

  13. The effect of PEGT/PBT scaffold architecture on oxygen gradients in tissue engineered cartilaginous constructs

    NARCIS (Netherlands)

    Malda, J.; Woodfield, T.B.F.; van der Vloodt, F.; Kooy, F.K.; Martens, D.E.; Tramper, J.C.; van Blitterswijk, Clemens; Riesle, J.U.

    2004-01-01

    Repair of articular cartilage defects using tissue engineered constructs composed of a scaffold and cultured autologous cells holds promise for future treatments. However, nutrient limitation (e.g. oxygen) has been suggested as a cause of the onset of chondrogenesis solely within the peripheral

  14. An integrated finite-element approach to mechanics, transport and biosynthesis in tissue engineering

    NARCIS (Netherlands)

    Sengers, B.G.; Oomens, C.W.J.; Baaijens, F.P.T.

    2004-01-01

    A finite-element approach was formulated, aimed at enabling an integrated study of mechanical and biochemical factors that control the functional development of tissue engineered constructs. A nonlinear biphasic displacement-velocity-pressure description was combined with adjective and diffusive

  15. High Throughput Micro-Well Generation of Hepatocyte Micro-Aggregates for Tissue Engineering

    NARCIS (Netherlands)

    Gevaert, Elien; Dollé, Laurent; Billiet, Thomas; Dubruel, Peter; van Grunsven, Leo; van Apeldoorn, Aart A.; Cornelissen, Ria

    2014-01-01

    The main challenge in hepatic tissue engineering is the fast dedifferentiation of primary hepatocytes in vitro. One successful approach to maintain hepatocyte phenotype on the longer term is the cultivation of cells as aggregates. This paper demonstrates the use of an agarose micro-well chip for the

  16. Bioactive nanofibers for fibroblastic differentiation of mesenchymal precursor cells for ligament/tendon tissue engineering applications.

    Science.gov (United States)

    Sahoo, Sambit; Ang, Lay-Teng; Cho-Hong Goh, James; Toh, Siew-Lok

    2010-02-01

    Mesenchymal stem cells and precursor cells are ideal candidates for tendon and ligament tissue engineering; however, for the stem cell-based approach to succeed, these cells would be required to proliferate and differentiate into tendon/ligament fibroblasts on the tissue engineering scaffold. Among the various fiber-based scaffolds that have been used in tendon/ligament tissue engineering, hybrid fibrous scaffolds comprising both microfibers and nanofibers have been recently shown to be particularly promising. With the nanofibrous coating presenting a biomimetic surface, the scaffolds can also potentially mimic the natural extracellular matrix in function by acting as a depot for sustained release of growth factors. In this study, we demonstrate that basic fibroblast growth factor (bFGF) could be successfully incorporated, randomly dispersed within blend-electrospun nanofibers and released in a bioactive form over 1 week. The released bioactive bFGF activated tyrosine phosphorylation signaling within seeded BMSCs. The bFGF-releasing nanofibrous scaffolds facilitated BMSC proliferation, upregulated gene expression of tendon/ligament-specific ECM proteins, increased production and deposition of collagen and tenascin-C, reduced multipotency of the BMSCs and induced tendon/ligament-like fibroblastic differentiation, indicating their potential in tendon/ligament tissue engineering applications. 2009 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  17. A Standardized Rat Model of Volumetric Muscle Loss Injury for the Development of Tissue Engineering Therapies

    Science.gov (United States)

    2012-12-01

    appropriate sample size and dura- tion required to adequately characterize a treatment. Further compounding the need for a standard preclinical VML...al. In vivo tissue engineer- ing of functional skeletal muscle by freshly isolated satellite cells embedded in a photopolymerizable hydrogel. FASEB J

  18. Barriers and strategies for the clinical translation of advanced orthopaedic tissue engineering protocols.

    Science.gov (United States)

    Madry, H; Alini, M; Stoddart, M J; Evans, C; Miclau, T; Steiner, S

    2014-05-06

    Research in orthopaedic tissue engineering has intensified over the last decade and new protocols continue to emerge. The clinical translation of these new applications, however, remains associated with a number of obstacles. This report highlights the major issues that impede the clinical translation of advanced tissue engineering concepts, discusses strategies to overcome these barriers, and examines the need to increase incentives for translational strategies. The statements are based on presentations and discussions held at the AO Foundation-sponsored symposium "Where Science meets Clinics 2013" held at the Congress Center in Davos, Switzerland, in September, 2013. The event organisers convened a diverse group of over one hundred stakeholders involved in clinical translation of orthopaedic tissue engineering, including scientists, clinicians, healthcare industry professionals and regulatory agency representatives. A major point that emerged from the discussions was that there continues to be a critical need for early trans-disciplinary communication and collaboration in the development and execution of research approaches. Equally importantly was the need to address the shortage of sustained funding programs for multidisciplinary teams conducting translational research. Such detailed discussions between experts contribute towards the development of a roadmap to more successfully advance the clinical translation of novel tissue engineering concepts and ultimately improve patient care in orthopaedic and trauma surgery.

  19. Barriers and strategies for the clinical translation of advanced orthopaedic tissue engineering protocols