WorldWideScience

Sample records for tissue oxygen consumption

  1. Simultaneous sampling of tissue oxygenation and oxygen consumption in skeletal muscle.

    Science.gov (United States)

    Nugent, William H; Song, Bjorn K; Pittman, Roland N; Golub, Aleksander S

    2016-05-01

    Under physiologic conditions, microvascular oxygen delivery appears to be well matched to oxygen consumption in respiring tissues. We present a technique to measure interstitial oxygen tension (PISFO2) and oxygen consumption (VO2) under steady-state conditions, as well as during the transitions from rest to activity and back. Phosphorescence Quenching Microscopy (PQM) was employed with pneumatic compression cycling to achieve 1 to 10 Hz sampling rates of interstitial PO2 and simultaneous recurrent sampling of VO2 (3/min) in the exteriorized rat spinotrapezius muscle. The compression pressure was optimized to 120-130 mmHg without adverse effect on the tissue preparation. A cycle of 5s compression followed by 15s recovery yielded a resting VO2 of 0.98 ± 0.03 ml O2/100 cm(3)min while preserving microvascular oxygen delivery. The measurement system was then used to assess VO2 dependence on PISFO2 at rest and further tested under conditions of isometric muscle contraction to demonstrate a robust ability to monitor the on-kinetics of tissue respiration and the compensatory changes in PISFO2 during contraction and recovery. The temporal and spatial resolution of this approach is well suited to studies seeking to characterize microvascular oxygen supply and demand in thin tissues. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Metformin Targets Brown Adipose Tissue in vivo and Reduces Oxygen Consumption in vitro

    DEFF Research Database (Denmark)

    Breining, Peter; Jensen, Jonas B; Sundelin, Elias I

    2018-01-01

    basic metabolic rate, making BAT an attractive target for treatment of type 2 diabetes. Under the hypothesis that BAT is a metformin target tissue, we investigated in vivo uptake of [11 C]-metformin tracer in mice and studied in vitro effects of metformin on cultured human brown adipocytes. Injected [11......Metformin is the most widely prescribed oral antidiabetic drug worldwide. Despite well-documented beneficial effects on health outcomes in diabetic patients, the target organs that mediate the effects of metformin remain to be established. In adult humans, brown adipose tissue (BAT) can influence...... uptake. Gene expression profiles of OCTs in BAT revealed ample OCT3 expression in both human and mouse BAT. Incubation of a human brown adipocyte cell models with metformin reduced cellular oxygen consumption in a dose dependent manner. Collectively, these results support BAT as a putative metformin...

  3. Relationship between level of forage intake, blood flow and oxygen consumption by splanchnic tissues of sheep fed a tropical grass forage.

    Science.gov (United States)

    Hentz, F; Kozloski, G V; Zeni, D; Brun, M V; Stefanello, S

    2017-02-01

    Four Polwarth castrated male sheep (42 ± 4.4 kg live weight (LW) surgically implanted with chronic indwelling catheters into the mesenteric, portal and hepatic veins, housed in metabolism cages and offered Cynodon sp. hay at rates (g of dry matter (DM)/kg LW) of 7, 14, 21 or ad libitum, were used in a 4 × 4 Latin square experiment to evaluate the effect of the level of forage intake on blood flow and oxygen consumption by the portal-drained viscera (PDV), liver and total splanchnic tissues (ST). The portal blood flow and the oxygen consumption by PDV linearly increased at increased organic matter (OM) intake. No effect of level of OM intake was obtained for the hepatic artery blood flow and oxygen consumption by liver. As a consequence, the level of OM intake only tended to directly affect hepatic blood flow and oxygen consumption by total ST. Oxygen consumption was linearly and positively related to blood flow across PDV, liver and total ST. The heat production by PDV and total ST, as proportion of metabolizable energy (ME) intake, decreased curvilinearly at increased ME intake. In conclusion, the oxygen consumption by PDV, but not by liver, was directly related to the level of forage intake by sheep. Moreover, when ingested at levels below maintenance, most of ME was spent as heat produced by ST. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  4. Microgradients of microbial oxygen consumption in a barley rhizosphere model system

    DEFF Research Database (Denmark)

    Højberg, Ole; Sorensen, J.

    1993-01-01

    A microelectrode technique was used to map the radial distribution of oxygen concentrations and oxygen consumption rates around single roots of 7- day-old barley seedlings. The seedlings were grown in gel-stabilized medium containing a nutrient solution, a soil extract, and an inert polymer. Oxygen...... consumption by microbial respiration in the rhizosphere (30 mm from the root) was determined by using Fick's laws of diffusion and an analytical approach with curve fitting to measured microprofiles of oxygen concentration. A marked increase of microbial respiration...... was observed in the inner 0- to 3-mm-thick, concentric zone around the root (rhizosphere). The volume-specific oxygen consumption rate (specific activity) was thus 30 to 60 times higher in the innermost 0 to 0.01 mm (rhizoplane) than in the bulk medium. The oxygen consumption rate in the root tissue...

  5. Influence of substrate composition on vitro oxygen consumption of ...

    African Journals Online (AJOL)

    The endogenous oxygen consumption of lung, liver and spleen slices is only slightly increased by glucose in an SRP medium compared with its effect on heart and kidney slices. Individual substrates which induced a highly significant increase in oxygen uptake of lung tissue were succinate, acetate, pyruvate and glucose, ...

  6. Diffusion Limitation and Hyperoxic Enhancement of Oxygen Consumption in Zooxanthellate Sea Anemones, Zoanthids, and Corals.

    Science.gov (United States)

    Shick, J M

    1990-08-01

    Depending on their size and morphology, anthozoan polyps and colonies may be diffusion-limited in their oxygen consumption, even under well-stirred, air-saturated conditions. This is indicated by an enhancement of oxygen consumption under steady-state hyperoxic conditions that simulate the levels of O2 produced photosynthetically by zooxanthellae in the hosts' tissues. Such hyperoxia in the tissues of zooxanthellate species negates the effect of the diffusive boundary layer, and increases the rate of oxygen consumption; thus, in many cases, the rate of respiration measured under normoxia in the dark may not be representative of the rate during the day when the zooxanthellae are photosynthesizing and when the supply of oxygen for respiration is in the tissues themselves, not from the environment. These results have implications in respirometric methodology and in calculating the rate of gross photosynthesis in energetic studies. The activity of cytochrome c oxidase is higher in aposymbiotic than in zooxanthellate specimens of the sea anemone Aiptasia pulchella, and this may indicate a compensation for the relative hypoxia in the tissues of the former, enhancing the delivery of oxygen to the mitochondria from the environment.

  7. Effects of cadmium chloride on oxygen consumption and gill morphology of Indian flying barb, Esomus danricus.

    Science.gov (United States)

    Das, Suchismita; Gupta, Abhik

    2012-11-01

    Effects of three sub lethal concentrations of cadmium chloride (0.636, 0.063 and 0.006 mg l(-1)) on oxygen consumption and gill morphology in Indian flying barb, Esomus danricus (Hamilton-Buchanan), a teleost fish, were studied. When compared to control, 0.636 mg l(-1) of cadmium chloride after 7,14, 21 and 28 day exposure showed a significant decline in rates of oxygen consumption at 32.98, 28.40, 23.88 and 21.69 ml hr(1) 100 g(-1) of tissue, respectively; while, 0.063 mg l(-1) of cadmium chloride for the same exposure durations showed a significant decline in rates of oxygen consumption at 34.28, 29.30, 28.05 and 26.47 ml hr(1)100 g(-1) of tissue, respectively. However, significant decline in the rate of oxygen consumption at 0.006 mg l(-1) of cadmium chloride could be observed from 21st day of exposure. Gill tissue showed various histopathological changes including epithelial lifting, hyperplasia, mucous secretion, marked leucocyte infiltration in the epithelium after 28 days of cadmium chloride exposure.

  8. Oxygen gradients in tissue-engineered PEGT/PBT cartilaginous constructs: Measurement and modeling

    NARCIS (Netherlands)

    Malda, J.; Rouwkema, Jeroen; Martens, D.E.; le Comte, EP; Kooy, F.K.; Tramper, J.; van Blitterswijk, Clemens; Riesle, J.U.

    2004-01-01

    The supply of oxygen within three-dimensional tissue-engineered (TE) cartilage polymer constructs is mainly by diffusion. Oxygen consumption by cells results in gradients in the oxygen concentration. The aims of this study were, firstly, to identify the gradients within TE cartilage polymer

  9. Oxygen gradients in tissue-engineered PEGT/PBT cartilaginous constructs: measurement and modeling

    NARCIS (Netherlands)

    Malda, J.; Rouwkema, J.; Martens, D.E.; Paul le Comte, E.; Kooy, F.K.; Tramper, J.; Blitterswijk, van C.A.; Riesle, J.

    2004-01-01

    The supply of oxygen within three-dimensional tissue-engineered (TE) cartilage polymer constructs is mainly by diffusion. Oxygen consumption by cells results in gradients in the oxygen concentration. The aims of this study were, firstly, to identify the gradients within TE: cartilage polymer

  10. Therapeutic effect of forearm low level light treatment on blood flow, oxygenation, and oxygen consumption

    Science.gov (United States)

    Wang, Pengbo; Sun, Jiajing; Meng, Lingkang; Li, Zebin; Li, Ting

    2018-02-01

    Low level light/laser therapy (LLLT) is considered as a novel, non-invasive, and potential therapy in a variety of psychological and physical conditions, due to its effective intricate photobiomodulation. The mechanism of LLLT is that when cells are stimulated by photons, mitochondria produce a large quantity of ATP, which accelerates biochemical responses in the cell. It is of great significance to gain a clear insight into the change or interplay of various physiological parameters. In this study, we used functional near-infrared spectroscopy (fNIRS) and venous-occlusion plethysmography to measure the LLLT-induced changes in blood flow, oxygenation, and oxygen consumption in human forearms in vivo. Six healthy human participants (4 males and 2 females) were administered with 810-nm light emitted by LED array in ten minutes and blood flow, oxygenation and oxygen consumption were detected in the entire experiment. We found that LLLT induced an increase of blood flow and oxygen consumption on the treated site. Meanwhile, LLLT took a good role in promoting oxygenation of regional tissue, which was indicated by a significant increase of oxygenated hemoglobin concentration (Δ[HbO2]), a nearly invariable deoxygenated hemoglobin concentration (Δ[Hb]) and a increase of differential hemoglobin concentration (Δ[HbD] = Δ[HbO2] - Δ[Hb]). These results not only demonstrate enormous potential of LLLT, but help to figure out mechanisms of photobiomodulation.

  11. Effect of meal and propranolol on whole body and splanchnic oxygen consumption in patients with cirrhosis

    DEFF Research Database (Denmark)

    Krag, Aleksander; Simonsen, Lene; Henriksen, Jens H

    2006-01-01

    Our aim was to measure whole body energy expenditure after a mixed liquid meal, with and without simultaneous propranolol infusion, in patients with cirrhosis. We also wanted to investigate the effect of propranolol on substrate fluxes and oxygen uptake in the tissues drained by the hepatic vein ...... as splanchnic oxygen uptake. The splanchnic reduction in oxygen consumption can explain almost the entire reduction in whole body oxygen consumption....

  12. [The oxygen consumption of ostrich embryos during incubation].

    Science.gov (United States)

    Reiner, G; Dzapo, V

    1995-02-01

    This work deals with the oxygen consumption of ostrich chicks during incubation. Brood eggs were incubated in a hermetic isolated acrylic-glass cylinder. Reduction of oxygen content in the air surrounding the egg was measured using an oxygen-sensitive electrode. A sigmoid curve could be drawn during incubation, with the steepest phase being around day 26. Maximum oxygen consumption was reached on day 36. It was slightly decreased until day 39, when the embryo switches to lung circulation, followed again by an increase until hatching. Average oxygen consumptions for the whole brood interval were calculated to 63.6 liters. Oxygen volumes consumed on day 36 result in a demand about to 240 liters of fresh air per egg and day. Oxygen consumption of the embryos on day 36 was significantly positive correlated with their vitality. Numb or less vital embryos could be clearly differentiated from others. The higher a chick's oxygen consumption, the earlier and shorter its hatching. Possible applications of the method in regard to the evaluation of incubation parameters or chicken constitution are discussed.

  13. High intensity aerobic interval training improves peak oxygen consumption in patients with metabolic syndrome: CAT

    Directory of Open Access Journals (Sweden)

    Alexis Espinoza Salinas

    2014-06-01

    Full Text Available Introduction A number of cardiovascular risk factors characterizes the metabolic syndrome: insulin resistance (IR, low HDL cholesterol and high triglycerides. The aforementioned risk factors lead to elevated levels of abdominal adipose tissue, resulting in oxygen consumption deficiency. Purpose To verify the validity and applicability of using high intensity interval training (HIIT in subjects with metabolic syndrome and to answer the following question: Can HIIT improve peak oxygen consumption? Method The systematic review "Effects of aerobic interval training on exercise capacity and metabolic risk factors in individuals with cardiometabolic disorders" was analyzed. Results Data suggests high intensity aerobic interval training increases peak oxygen consumption by a standardized mean difference of 3.60 mL/kg-1/min-1 (95% confidence interval, 0.28-4.91. Conclusion In spite of the methodological shortcomings of the primary studies included in the systematic review, we reasonably conclude that implementation of high intensity aerobic interval training in subjects with metabolic syndrome, leads to increases in peak oxygen consumption.

  14. Effects of motexafin gadolinium on tumor oxygenation and cellular oxygen consumption

    International Nuclear Information System (INIS)

    Donnelly, E.T.; Liu, Y.; Rockwell, S.; Magda, D.

    2003-01-01

    Full text: Recent work in our laboratory showed that motexafin gadolinium (MGd, Xcytrin), a drug currently in Phase III clinical trials as an adjuvant to radiation therapy, modulates the oxygen tensions in EMT6 tumors. The median pO 2 increased from the control value of 1.5±0.4 mmHg to 7.4 ± 3.8 mmHg six hours after treatment with 40 μmol/kg MGd and the percentage of severely hypoxic readings in the tumors ( 7 plateau phase EMT6 cells in 3 mL Dulbecco's Modified Eagle's Medium supplemented with 10% dialyzed fetal bovine serum, which contains no ascorbic acid. In the absence of ascorbic acid, 100 μM MGd did not alter the cellular oxygen consumption rate for EMT6 cells significantly. Marked inhibition of cellular oxygen consumption was observed when cells were incubated with 100 μM MGd in medium supplemented with equimolar ascorbic acid (a 31.5% decrease in consumption was observed after 6 hours of treatment). The 5% mannitol vehicle solution with equimolar ascorbic acid had no discernible effect on cellular oxygen consumption. Ascorbic acid may facilitate cellular uptake of MGd via the intermediate formation of a MGd-oxalate complex. These studies suggest that changes in cellular oxygen consumption could contribute to the changes in tumor oxygenation seen after administration of MGd. These experiments were supported by Pharmacyclics and training grant T32CA09085 from the NIH (E.T.D.). We thank Dr. Raymond Russell for allowing us to use his oxygen electrode apparatus

  15. A theoretical model for oxygen transport in skeletal muscle under conditions of high oxygen demand.

    Science.gov (United States)

    McGuire, B J; Secomb, T W

    2001-11-01

    Oxygen transport from capillaries to exercising skeletal muscle is studied by use of a Krogh-type cylinder model. The goal is to predict oxygen consumption under conditions of high demand, on the basis of a consideration of transport processes occurring at the microvascular level. Effects of the decline in oxygen content of blood flowing along capillaries, intravascular resistance to oxygen diffusion, and myoglobin-facilitated diffusion are included. Parameter values are based on human skeletal muscle. The dependence of oxygen consumption on oxygen demand, perfusion, and capillary density are examined. When demand is moderate, the tissue is well oxygenated and consumption is slightly less than demand. When demand is high, capillary oxygen content declines rapidly with axial distance and radial oxygen transport is limited by diffusion resistance within the capillary and the tissue. Under these conditions, much of the tissue is hypoxic, consumption is substantially less than demand, and consumption is strongly dependent on capillary density. Predicted consumption rates are comparable with experimentally observed maximal rates of oxygen consumption.

  16. A Method for Combined Retinal Vascular and Tissue Oxygen Tension Imaging.

    Science.gov (United States)

    Felder, Anthony E; Wanek, Justin; Tan, Michael R; Blair, Norman P; Shahidi, Mahnaz

    2017-09-06

    The retina requires adequate oxygenation to maintain cellular metabolism and visual function. Inner retinal oxygen metabolism is directly related to retinal vascular oxygen tension (PO 2 ) and inner retinal oxygen extraction fraction (OEF), whereas outer retinal oxygen consumption (QO 2 ) relies on oxygen availability by the choroid and is contingent upon retinal tissue oxygen tension (tPO 2 ) gradients across the retinal depth. Thus far, these oxygenation and metabolic parameters have been measured independently by different techniques in separate animals, precluding a comprehensive and correlative assessment of retinal oxygenation and metabolism dynamics. The purpose of the current study is to report an innovative optical system for dual oxyphor phosphorescence lifetime imaging to near-simultaneously measure retinal vascular PO 2 and tPO 2 in rats. The use of a new oxyphor with different spectral characteristics allowed differentiation of phosphorescence signals from the retinal vasculature and tissue. Concurrent measurements of retinal arterial and venous PO 2 , tPO 2 through the retinal depth, inner retinal OEF, and outer retinal QO 2 were demonstrated, permitting a correlative assessment of retinal oxygenation and metabolism. Future application of this method can be used to investigate the relations among retinal oxygen content, extraction and metabolism under pathologic conditions and thus advance knowledge of retinal hypoxia pathophysiology.

  17. Mechanisms controlling the oxygen consumption in experimentally induced hypochloremic alkalosis in calves.

    Science.gov (United States)

    Cambier, Carole; Clerbaux, Thierry; Amory, Hélène; Detry, Bruno; Florquin, Sandra; Marville, Vincent; Frans, Albert; Gustin, Pascal

    2002-01-01

    The study was carried out on healthy Friesian calves (n = 10) aged between 10 and 30 days. Hypochloremia and alkalosis were induced by intravenous administration of furosemide and isotonic sodium bicarbonate. The venous and arterial blood samples were collected repeatedly. 2,3-diphosphoglycerate (2,3-DPG), hemoglobin and plasmatic chloride concentrations were determined. The red blood cell chloride concentration was also calculated. pH, PCO2 and PO2 were measured in arterial and mixed venous blood. The oxygen equilibrium curve (OEC) was measured in standard conditions. The correspondence of the OEC to the arterial and mixed venous compartments was calculated, taking blood temperature, pH and PCO2 values into account. The oxygen exchange fraction (OEF%), corresponding to the degree of blood desaturation between the arterial and mixed venous compartments and the amount of oxygen released at the tissue level by 100 mL of blood (OEF Vol%) were calculated from the arterial and mixed venous OEC, combined with PO2 and hemoglobin concentration. Oxygen delivery (DO2) was calculated using the arterial oxygen content, the cardiac output measured by thermodilution, and the body weight of the animal. The oxygen consumption (VO2) was derived from the cardiac output, OEF Vol% and body weight values. Despite the plasma hypochloremia, the erythrocyte chloride concentration was not influenced by furosemide and sodium bicarbonate infusion. Due to the alkalosis-induced increase in the 2,3-DPG, the standard OEC was shifted to the right, allowing oxygen to dissociate from hemoglobin more rapidly. These changes opposed the increased affinity of hemoglobin for oxygen induced by alkalosis. Moreover, respiratory acidosis, hemoconcentration, and the slight decrease in the partial oxygen pressure in mixed venous blood (Pvo2) tended to improve the OEF Vol% and maintain the oxygen consumption in a physiological range while the cardiac output, and the oxygen delivery were significantly decreased

  18. Characterization of Adipose Tissue Product Quality Using Measurements of Oxygen Consumption Rate.

    Science.gov (United States)

    Suszynski, Thomas M; Sieber, David A; Mueller, Kathryn; Van Beek, Allen L; Cunningham, Bruce L; Kenkel, Jeffrey M

    2018-03-14

    Fat grafting is a common procedure in plastic surgery but associated with unpredictable graft retention. Adipose tissue (AT) "product" quality is affected by the methods used for harvest, processing and transfer, which vary widely amongst surgeons. Currently, there is no method available to accurately assess the quality of AT. In this study, we present a novel method for the assessment of AT product quality through direct measurements of oxygen consumption rate (OCR). OCR has exhibited potential in predicting outcomes following pancreatic islet transplant. Our study aim was to reapportion existing technology for its use with AT preparations and to confirm that these measurements are feasible. OCR was successfully measured for en bloc and postprocessed AT using a stirred microchamber system. OCR was then normalized to DNA content (OCR/DNA), which represents the AT product quality. Mean (±SE) OCR/DNA values for fresh en bloc and post-processed AT were 149.8 (± 9.1) and 61.1 (± 6.1) nmol/min/mg DNA, respectively. These preliminary data suggest that: (1) OCR and OCR/DNA measurements of AT harvested using conventional protocol are feasible; and (2) standard AT processing results in a decrease in overall AT product quality. OCR measurements of AT using existing technology can be done and enables accurate, real-time, quantitative assessment of the quality of AT product prior to transfer. The availability and further validation of this type of assay could enable optimization of fat grafting protocol by providing a tool for the more detailed study of procedural variables that affect AT product quality.

  19. Oxygen delivery in irradiated normal tissue

    Energy Technology Data Exchange (ETDEWEB)

    Kiani, M.F.; Ansari, R. [Univ. of Tennessee Health Science Center, Memphis, TN (United States). School of Biomedical Engineering; Gaber, M.W. [St. Jude Children' s Research Hospital, Memphis, TN (United States)

    2003-03-01

    Ionizing radiation exposure significantly alters the structure and function of microvascular networks, which regulate delivery of oxygen to tissue. In this study we use a hamster cremaster muscle model to study changes in microvascular network parameters and use a mathematical model to study the effects of these observed structural and microhemodynamic changes in microvascular networks on oxygen delivery to the tissue. Our experimental observations indicate that in microvascular networks while some parameters are significantly affected by irradiation (e.g. red blood cell (RBC) transit time), others remain at the control level (e.g. RBC path length) up to 180 days post-irradiation. The results from our mathematical model indicate that tissue oxygenation patterns are significantly different in irradiated normal tissue as compared to age-matched controls and the differences are apparent as early as 3 days post irradiation. However, oxygen delivery to irradiated tissue was not found to be significantly different from age matched controls at any time between 7 days to 6 months post-irradiation. These findings indicate that microvascular late effects in irradiated normal tissue may be due to factors other than compromised tissue oxygenation. (author)

  20. Circadian rhythm of energy expenditure and oxygen consumption.

    Science.gov (United States)

    Leuck, Marlene; Levandovski, Rosa; Harb, Ana; Quiles, Caroline; Hidalgo, Maria Paz

    2014-02-01

    This study aimed to evaluate the effect of continuous and intermittent methods of enteral nutrition (EN) administration on circadian rhythm. Thirty-four individuals, aged between 52 and 80 years, were fed through a nasoenteric tube. Fifteen individuals received a continuous infusion for 24 hours/d, and 19 received an intermittent infusion in comparable quantities, every 4 hours from 8:00 to 20:00. In each patient, 4 indirect calorimetric measurements were carried out over 24 hours (A: 7:30, B: 10:30, C: 14:30, and D: 21:30) for 3 days. Energy expenditure and oxygen consumption were significantly higher in the intermittent group than in the continuous group (1782 ± 862 vs 1478 ± 817 kcal/24 hours, P = .05; 257 125 vs 212 117 ml/min, P = .048, respectively). The intermittent group had higher levels of energy expenditure and oxygen consumption at all the measured time points compared with the continuous group. energy expenditure and oxygen consumption in both groups were significantly different throughout the day for 3 days. There is circadian rhythm variation of energy expenditure and oxygen consumption with continuous and intermittent infusion for EN. This suggests that only one indirect daily calorimetric measurement is not able to show the patient's true needs. Energy expenditure is higher at night with both food administration methods. Moreover, energy expenditure and oxygen consumption are higher with the intermittent administration method at all times.

  1. Noninvasive optical quantification of absolute blood flow, blood oxygenation, and oxygen consumption rate in exercising skeletal muscle

    Science.gov (United States)

    Gurley, Katelyn; Shang, Yu; Yu, Guoqiang

    2012-07-01

    This study investigates a method using novel hybrid diffuse optical spectroscopies [near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS)] to obtain continuous, noninvasive measurement of absolute blood flow (BF), blood oxygenation, and oxygen consumption rate (\\Vdot O2) in exercising skeletal muscle. Healthy subjects (n=9) performed a handgrip exercise to increase BF and \\Vdot O2 in forearm flexor muscles, while a hybrid optical probe on the skin surface directly monitored oxy-, deoxy-, and total hemoglobin concentrations ([HbO2], [Hb], and THC), tissue oxygen saturation (StO2), relative BF (rBF), and relative oxygen consumption rate (r\\Vdot O2). The rBF and r\\Vdot O2 signals were calibrated with absolute baseline BF and \\Vdot O2 obtained through venous and arterial occlusions, respectively. Known problems with muscle-fiber motion artifacts in optical measurements during exercise were mitigated using a novel gating algorithm that determined muscle contraction status based on control signals from a dynamometer. Results were consistent with previous findings in the literature. This study supports the application of NIRS/DCS technology to quantitatively evaluate hemodynamic and metabolic parameters in exercising skeletal muscle and holds promise for improving diagnosis and treatment evaluation for patients suffering from diseases affecting skeletal muscle and advancing fundamental understanding of muscle and exercise physiology.

  2. Single Cell Oxygen Mapping (SCOM) by Scanning Electrochemical Microscopy Uncovers Heterogeneous Intracellular Oxygen Consumption

    OpenAIRE

    Santos, Carla Santana; Kowaltowski, Alicia J.; Bertotti, Mauro

    2017-01-01

    We developed a highly sensitive oxygen consumption scanning microscopy system using platinized platinum disc microelectrodes. The system is capable of reliably detecting single-cell respiration, responding to classical regulators of mitochondrial oxygen consumption activity as expected. Comparisons with commercial multi-cell oxygen detection systems show that the system has comparable errors (if not smaller), with the advantage of being able to monitor inter and intra-cell heterogeneity in ox...

  3. 'Multi-associations': predisposed to misinterpretation of peripheral tissue oxygenation and circulation in neonates.

    Science.gov (United States)

    Pichler, Gerhard; Pocivalnik, Mirjam; Riedl, Regina; Pichler-Stachl, Elisabeth; Morris, Nicholas; Zotter, Heinz; Müller, Wilhelm; Urlesberger, Berndt

    2011-08-01

    Interpretation of peripheral circulation in ill neonates is crucial but difficult. The aim was to analyse parameters potentially influencing peripheral oxygenation and circulation. In a prospective observational cohort study in 116 cardio-circulatory stable neonates, peripheral muscle near-infrared spectroscopy (NIRS) with venous occlusion was performed. Tissue oxygenation index (TOI), mixed venous oxygenation (SvO(2)), fractional oxygen extraction (FOE), fractional tissue oxygen extraction (FTOE), haemoglobin flow (Hbflow), oxygen delivery (DO(2)), oxygen consumption (VO(2)), and vascular resistance (VR) were assessed. Correlation coefficients between NIRS parameters and demographic parameters (gestational age, birth weight, age, actual weight, diameter of calf, subcutaneous adipose tissue), monitoring parameters (heart rate, arterial oxygen saturation (SaO(2)), mean blood pressure (MAP), core/peripheral temperature, central/peripheral capillary refill time) and laboratory parameters (haemoglobin concentration (Hb-blood), pCO(2)) were calculated. All demographic parameters except for Hbflow and DO(2) correlated with NIRS parameters. Heart rate correlated with TOI, SvO(2), VO(2) and VR. SaO(2) correlated with FOE/FTOE. MAP correlated with Hbflow, DO(2), VO(2) and VR. Core temperature correlated with FTOE. Peripheral temperature correlated with all NIRS parameters except VO(2). Hb-blood correlated with FOE and VR. pCO(2) levels correlated with TOI and SvO(2). The presence of multiple interdependent factors associated with peripheral oxygenation and circulation highlights the difficulty in interpreting NIRS data. Nevertheless, these findings have to be taken into account when analysing peripheral oxygenation and circulation data.

  4. Differences in breast tissue oxygenation following radiotherapy

    International Nuclear Information System (INIS)

    Dornfeld, Ken; Gessert, Charles E.; Renier, Colleen M.; McNaney, David D.; Urias, Rodolfo E.; Knowles, Denise M.; Beauduy, Jean L.; Widell, Sherry L.; McDonald, Bonita L.

    2011-01-01

    Tissue perfusion and oxygenation changes following radiotherapy may result from and/or contribute to the toxicity of treatment. Breast tissue oxygenation levels were determined in the treated and non-treated breast 1 year after radiotherapy for breast conserving treatment. Transcutaneous oxygenation varied between subjects in both treated and non-treated breast. Subjects without diabetes mellitus (n = 16) had an average oxygenation level of 64.8 ± 19.9 mmHg in the irradiated breast and an average of 72.3 ± 18.1 mmHg (p = 0.018) at the corresponding location in the control breast. Patients with diabetes (n = 4) showed a different oxygenation pattern, with lower oxygenation levels in control tissue and no decrease in the irradiated breast. This study suggests oxygenation levels in normal tissues vary between patients and may respond differently after radiotherapy.

  5. A new method to measure local oxygen consumption in human skeletal muscle during dynamic exercise using near-infrared spectroscopy

    International Nuclear Information System (INIS)

    Binzoni, Tiziano; Cooper, Chris E; Wittekind, Anna L; Beneke, Ralph; Elwell, Clare E; Leung, Terence S; Van De Ville, Dimitri

    2010-01-01

    Near infrared spectroscopy (NIRS) can readily report on changes in blood volume and oxygenation. However, it has proved more problematic to measure real-time changes in blood flow and oxygen consumption. Here we report the development of a novel method using NIRS to measure local oxygen consumption in human muscle. The method utilizes the blood volume changes induced by the muscle pump during rhythmically contracting exercising skeletal muscle. We found that the saturation of the blood during the contraction phase was lower than that during the relaxation phase. The calculated oxygen drop was then divided by the contraction time to generate a value for the muscle oxygen consumption in the optical region of interest. As a test we measured the muscle oxygen consumption in the human vastus lateralis during exercise on a cycle ergometer by 11 trained male athletes (32 ± 11 years old) at 40% and 110% peak aerobic power. We saw an increase from 13.78 µmol 100 g −1 min −1 to 19.72 µmol 100 g −1 min −1 with the increase in power. The measurements are theoretically exempt from usual NIRS confounders such as myoglobin and adipose tissue and could provide a useful tool for studying human physiology

  6. Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia

    Science.gov (United States)

    Carreau, Aude; Hafny-Rahbi, Bouchra El; Matejuk, Agata; Grillon, Catherine; Kieda, Claudine

    2011-01-01

    Abstract Oxygen supply and diffusion into tissues are necessary for survival. The oxygen partial pressure (pO2), which is a key component of the physiological state of an organ, results from the balance between oxygen delivery and its consumption. In mammals, oxygen is transported by red blood cells circulating in a well-organized vasculature. Oxygen delivery is dependent on the metabolic requirements and functional status of each organ. Consequently, in a physiological condition, organ and tissue are characterized by their own unique ‘tissue normoxia’ or ‘physioxia’ status. Tissue oxygenation is severely disturbed during pathological conditions such as cancer, diabetes, coronary heart disease, stroke, etc., which are associated with decrease in pO2, i.e. ‘hypoxia’. In this review, we present an array of methods currently used for assessing tissue oxygenation. We show that hypoxia is marked during tumour development and has strong consequences for oxygenation and its influence upon chemotherapy efficiency. Then we compare this to physiological pO2 values of human organs. Finally we evaluate consequences of physioxia on cell activity and its molecular modulations. More importantly we emphasize the discrepancy between in vivo and in vitro tissue and cells oxygen status which can have detrimental effects on experimental outcome. It appears that the values corresponding to the physioxia are ranging between 11% and 1% O2 whereas current in vitro experimentations are usually performed in 19.95% O2, an artificial context as far as oxygen balance is concerned. It is important to realize that most of the experiments performed in so-called normoxia might be dangerously misleading. PMID:21251211

  7. Differences in temperature, organic carbon and oxygen consumption among lowland streams

    DEFF Research Database (Denmark)

    Sand-Jensen, K.; Pedersen, N. L.

    2005-01-01

    1. Temperature, organic carbon and oxygen consumption were measured over a year at 13 sites in four lowlands streams within the same region in North Zealand, Denmark with the objectives of determining: (i) spatial and seasonal differences between open streams, forest streams and streams with or w......1. Temperature, organic carbon and oxygen consumption were measured over a year at 13 sites in four lowlands streams within the same region in North Zealand, Denmark with the objectives of determining: (i) spatial and seasonal differences between open streams, forest streams and streams...... the exponential increase of oxygen consumption rate between 4 and 20 °C averaged 0.121 °C-1 (Q10 of 3.35) in 70 measurements and showed no significant variations between seasons and stream sites or correlations with ambient temperature and organic content. 5. Oxygen consumption rate was enhanced downstream...... at ambient temperature by 30-40% and 80-130%, respectively. Faster consumption of organic matter and dissolved oxygen downstream of point sources should increase the likelihood of oxygen stress of the stream biota and lead to the export of less organic matter but more mineralised nutrients to the coastal...

  8. Investigating tissue respiration and skin microhaemocirculation under adaptive changes and the synchronization of blood flow and oxygen saturation rhythms

    International Nuclear Information System (INIS)

    Dunaev, A V; Palmer, S G; Stewart, N A; Sokolovski, S G; Rafailov, E U; Sidorov, V V; Krupatkin, A I; Rafailov, I E

    2014-01-01

    Multi-functional laser non-invasive diagnostic systems allow the study of a number of microcirculatory parameters, including index of blood microcirculation (I m ) (by laser Doppler flowmetry, LDF) and oxygen saturation (S t O 2 ) of skin tissue (by tissue reflectance oximetry, TRO). This research aimed to use such a system to investigate the synchronization of microvascular blood flow and oxygen saturation rhythms under normal and adaptive change conditions. Studies were conducted on eight healthy volunteers of 21–49 years. These volunteers were observed between one and six months, totalling 422 basic tests (3 min each). Measurements were performed on the palmar surface of the right middle finger and the lower forearm's medial surface. Rhythmic oscillations of LDF and TRO were studied using wavelet analysis. Combined tissue oxygen consumption data for all volunteers during ‘adaptive changes’ increased relative to normal conditions with and without arteriovenous anastomoses. Data analysis revealed resonance and synchronized rhythms in microvascular blood flow and oxygen saturation as an adaptive change in myogenic oscillation (vasomotion) resulting from exercise and possibly psychoemotional stress. Synchronization of myogenic rhythms during adaptive changes may lead to increased oxygen consumption as a result of increased microvascular blood flow velocity. (paper)

  9. Yeast alter micro-oxygenation of wine: oxygen consumption and aldehyde production.

    Science.gov (United States)

    Han, Guomin; Webb, Michael R; Richter, Chandra; Parsons, Jessica; Waterhouse, Andrew L

    2017-08-01

    Micro-oxygenation (MOx) is a common winemaking treatment used to improve red wine color development and diminish vegetal aroma, amongst other effects. It is commonly applied to wine immediately after yeast fermentation (phase 1) or later, during aging (phase 2). Although most winemakers avoid MOx during malolactic (ML) fermentation, it is often not possible to avoid because ML bacteria are often present during phase 1 MOx treatment. We investigated the effect of common yeast and bacteria on the outcome of micro-oxygenation. Compared to sterile filtered wine, Saccharomyces cerevisiae inoculation significantly increased oxygen consumption, keeping dissolved oxygen in wine below 30 µg L -1 during micro-oxygenation, whereas Oenococcus oeni inoculation was not associated with a significant impact on the concentration of dissolved oxygen. The unfiltered baseline wine also had both present, although with much higher populations of bacteria and consumed oxygen. The yeast-treated wine yielded much higher levels of acetaldehyde, rising from 4.3 to 29 mg L -1 during micro-oxygenation, whereas no significant difference was found between the bacteria-treated wine and the filtered control. The unfiltered wine exhibited rapid oxygen consumption but no additional acetaldehyde, as well as reduced pyruvate. Analysis of the acetaldehyde-glycerol acetal levels showed a good correlation with acetaldehyde concentrations. The production of acetaldehyde is a key outcome of MOx and it is dramatically increased in the presence of yeast, although it is possibly counteracted by the metabolism of O. oeni bacteria. Additional controlled experiments are necessary to clarify the interaction of yeast and bacteria during MOx treatments. Analysis of the glycerol acetals may be useful as a proxy for acetaldehyde levels. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia.

    Science.gov (United States)

    Carreau, Aude; El Hafny-Rahbi, Bouchra; Matejuk, Agata; Grillon, Catherine; Kieda, Claudine

    2011-06-01

    Oxygen supply and diffusion into tissues are necessary for survival. The oxygen partial pressure (pO(2)), which is a key component of the physiological state of an organ, results from the balance between oxygen delivery and its consumption. In mammals, oxygen is transported by red blood cells circulating in a well-organized vasculature. Oxygen delivery is dependent on the metabolic requirements and functional status of each organ. Consequently, in a physiological condition, organ and tissue are characterized by their own unique 'tissue normoxia' or 'physioxia' status. Tissue oxygenation is severely disturbed during pathological conditions such as cancer, diabetes, coronary heart disease, stroke, etc., which are associated with decrease in pO(2), i.e. 'hypoxia'. In this review, we present an array of methods currently used for assessing tissue oxygenation. We show that hypoxia is marked during tumour development and has strong consequences for oxygenation and its influence upon chemotherapy efficiency. Then we compare this to physiological pO(2) values of human organs. Finally we evaluate consequences of physioxia on cell activity and its molecular modulations. More importantly we emphasize the discrepancy between in vivo and in vitro tissue and cells oxygen status which can have detrimental effects on experimental outcome. It appears that the values corresponding to the physioxia are ranging between 11% and 1% O(2) whereas current in vitro experimentations are usually performed in 19.95% O(2), an artificial context as far as oxygen balance is concerned. It is important to realize that most of the experiments performed in so-called normoxia might be dangerously misleading. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  11. 'Multi-associations': predisposed to misinterpretation of peripheral tissue oxygenation and circulation in neonates

    International Nuclear Information System (INIS)

    Pichler, Gerhard; Pocivalnik, Mirjam; Pichler-Stachl, Elisabeth; Morris, Nicholas; Zotter, Heinz; Müller, Wilhelm; Urlesberger, Berndt; Riedl, Regina

    2011-01-01

    Interpretation of peripheral circulation in ill neonates is crucial but difficult. The aim was to analyse parameters potentially influencing peripheral oxygenation and circulation. In a prospective observational cohort study in 116 cardio-circulatory stable neonates, peripheral muscle near-infrared spectroscopy (NIRS) with venous occlusion was performed. Tissue oxygenation index (TOI), mixed venous oxygenation (SvO 2 ), fractional oxygen extraction (FOE), fractional tissue oxygen extraction (FTOE), haemoglobin flow (Hbflow), oxygen delivery (DO 2 ), oxygen consumption (VO 2 ), and vascular resistance (VR) were assessed. Correlation coefficients between NIRS parameters and demographic parameters (gestational age, birth weight, age, actual weight, diameter of calf, subcutaneous adipose tissue), monitoring parameters (heart rate, arterial oxygen saturation (SaO 2 ), mean blood pressure (MAP), core/peripheral temperature, central/peripheral capillary refill time) and laboratory parameters (haemoglobin concentration (Hb-blood), pCO 2 ) were calculated. All demographic parameters except for Hbflow and DO 2 correlated with NIRS parameters. Heart rate correlated with TOI, SvO 2 , VO 2 and VR. SaO 2 correlated with FOE/FTOE. MAP correlated with Hbflow, DO 2 , VO 2 and VR. Core temperature correlated with FTOE. Peripheral temperature correlated with all NIRS parameters except VO 2 . Hb-blood correlated with FOE and VR. pCO 2 levels correlated with TOI and SvO 2 . The presence of multiple interdependent factors associated with peripheral oxygenation and circulation highlights the difficulty in interpreting NIRS data. Nevertheless, these findings have to be taken into account when analysing peripheral oxygenation and circulation data

  12. Oxygen consumption rates by different oenological tannins in a model wine solution.

    Science.gov (United States)

    Pascual, Olga; Vignault, Adeline; Gombau, Jordi; Navarro, Maria; Gómez-Alonso, Sergio; García-Romero, Esteban; Canals, Joan Miquel; Hermosín-Gutíerrez, Isidro; Teissedre, Pierre-Louis; Zamora, Fernando

    2017-11-01

    The kinetics of oxygen consumption by different oenological tannins were measured in a model wine solution using the non-invasive method based on luminiscence. The results indicate that the oxygen consumption rate follows second-order kinetics depending on tannin and oxygen concentrations. They also confirm that the oxygen consumption rate is influenced by temperature in accordance with Arrhenius law. The indications are that ellagitannins are the fastest oxygen consumers of the different oenological tannins, followed in decreasing order by quebracho tannins, skin tannins, seed tannins and finally gallotannins. This methodology can therefore be proposed as an index for determining the effectiveness of different commercial tannins in protecting wines against oxidation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Biotite dissolution and oxygen consumption in aqueous media at 100 degrees C

    International Nuclear Information System (INIS)

    Taylor, P.; Owen, D.G.

    1997-04-01

    The ability of biotite to consume dissolved oxygen, and hence restore reducing conditions in a nuclear fuel waste vault after closure, has been assessed experimentally. Oxygen consumption has been measured directly, and also deduced from experimental biotite dissolution rates. Results from the dissolution experiments on granitic biotite from the Lac du Bonnet region, Manitoba indicate that the biotite component of granite backfill should consume entrained oxygen in about 50 years at 100 degrees C. Direct measurements of oxygen consumption by commercial biotite specimens originating from Bancroft, Ontario were reasonably consistent with this finding. Magnetite is significantly more effective than biotite at oxygen consumption, perhaps two orders of magnitude faster at 100 degrees C. (author)

  14. Oxygen consumption in EPDM irradiated under different oxygen pressures and at different LET

    International Nuclear Information System (INIS)

    Dely, N.; Ngono-Ravache, Y.; Ramillon, J.-M.; Balanzat, E.

    2005-01-01

    We conceived a novel set-up for measuring the radiochemical yields of oxygen consumption in polymers. The measurement is based on a sampling of the gas mixture with a mass spectrometer, before and after irradiation. We irradiated an ethylene, propylene and 1,4-hexadiene terpolymer (EPDM) with 1 MeV electron and 10.75 MeV/A carbon beams. Samples were irradiated under oxygen within a wide range of pressure (5-200 mbar). The yields under C irradiation are four times smaller than the yields under electron irradiation. This shows that radiooxidation is very sensitive to the linear energy transfer of the projectiles and hence to the heterogeneity of the energy deposition. The oxygen consumption yields do not vary significantly in the range of pressure investigated; even at 5 mbar, the kinetics is still governed by the bimolecular recombination of peroxy radicals

  15. Value of cerebral blood flow rate and regional oxygen consumption studies in cerebral ischaemia

    Energy Technology Data Exchange (ETDEWEB)

    Clanet, M

    1987-06-18

    Studies of experimentally-induced ischaemia have shown that the intensity of neuronal suffering is related to the fall in perfusion rate. Below a certain level, called functional threshold, cerebral function is reversibly altered, whereas at a lower level (tissue necrosis threshold) the damage inflicted on neurons is irreversible. Between these two thresholds lies a ''penumbra zone''. This concept of thresholds must be mitigated by 2 parameters: duration of ischaemia and selective vulnerability of the various structures affected. Variations in blood flow rate only indirectly affect the state of tissues. Techniques developed from positron emission tomography make it possible to evaluate the metabolic activity of brain tissue in vivo: oxygen consumption (CMRO/sub 2/), oxygen extraction (EO/sub 2/) and glucose consumption (CMRG) which are thus correlated to cerebral blood flow and cerebral blood volume, sometimes also to tissue pH. Normal relations between blood flow rate and metabolism may be altered. Misery perfusion reflects a fall in cerebral blood flow with an increase in EO/sub 2/ and often a decrease in CMRO/sub 2/, whereas luxury perfusion reflects an increase in cerebral blood flow rate with reduction of CMRO/sub 2/, EO/sub 2/ and CMRG. The type of alteration encountered in human ischaemia varies according to the nature of the accident: studies of transient accidents emphasize the different haemodynamic aspects of occlusion of the wider arteries. The metabolic and haemodynamic profiles of established ischaemic accidents vary according to their type and to the time of the study, reflecting the complexity of the physiopathological mechanisms involved; they are frequently associated with metabolic repercussions at a distance from the ischaemic focus, which supports the concept of diaschisis.

  16. Value of cerebral blood flow rate and regional oxygen consumption studies in cerebral ischaemia

    International Nuclear Information System (INIS)

    Clanet, M.

    1987-01-01

    Studies of experimentally-induced ischaemia have shown that the intensity of neuronal suffering is related to the fall in perfusion rate. Below a certain level, called functional threshold, cerebral function is reversibly altered, whereas at a lower level (tissue necrosis threshold) the damage inflicted on neurons is irreversible. Between these two thresholds lies a ''penumbra zone''. This concept of thresholds must be mitigated by 2 parameters: duration of ischaemia and selective vulnerability of the various structures affected. Variations in blood flow rate only indirectly affect the state of tissues. Techniques developed from positron emission tomography make it possible to evaluate the metabolic activity of brain tissue in vivo: oxygen consumption (CMRO 2 ), oxygen extraction (EO 2 ) and glucose consumption (CMRG) which are thus correlated to cerebral blood flow and cerebral blood volume, sometimes also to tissue pH. Normal relations between blood flow rate and metabolism may be altered. Misery perfusion reflects a fall in cerebral blood flow with an increase in EO 2 and often a decrease in CMRO 2 , whereas luxury perfusion reflects an increase in cerebral blood flow rate with reduction of CMRO 2 , EO 2 and CMRG. The type of alteration encountered in human ischaemia varies according to the nature of the accident: studies of transient accidents emphasize the different haemodynamic aspects of occlusion of the wider arteries. The metabolic and haemodynamic profiles of established ischaemic accidents vary according to their type and to the time of the study, reflecting the complexity of the physiopathological mechanisms involved; they are frequently associated with metabolic repercussions at a distance from the ischaemic focus, which supports the concept of diaschisis [fr

  17. Sources of variation in oxygen consumption of aquatic animals demonstrated by simulated constant oxygen consumption and respirometers of different sizes

    DEFF Research Database (Denmark)

    Svendsen, Morten Bo Søndergaard; Bushnell, P.G.; Christensen, Emil Aputsiaq Flindt

    2016-01-01

    As intermittent-flow respirometry has become a common method for the determination of resting metabolism or standard metabolic rate (SMR), this study investigated how much of the variability seen in the experiments was due to measurement error. Experiments simulated different constant oxygen cons...... oxygen consumption rates of fishes in systems with reasonable RFRs mainly comes from the animal, not from the measuring equipment....

  18. Contribution of Respiratory Muscle Oxygen Consumption to Breathing Limitation and Cyspnea

    Directory of Open Access Journals (Sweden)

    Pere Casan

    1997-01-01

    Full Text Available During exercise, the sustainable activity of large muscle groups is limited by oxygen delivery. The purpose of this study was to see whether the oxygen consumption of the respiratory muscles reaches a similar critical value under maximal resistive loading and hyperventilation. A secondary objective was to see whether dyspnea (estimated discomfort experienced with breathing using the Borg 0-10 scale and the oxygen consumption of the respiratory muscles are closely related across conditions. This would be expected if intramuscular sensory nerve fibres stimulated as a consequence of metabolic events contributed to this sensation. In six normal subjects the respiratory muscles were progressively activated by the addition of incremental inspiratory resistive loads to a maximum of 300 cm H20×s/L (SD=66.4, and incremental dead space to a maximum of 2638 mL (SD=452, associated with an increase in ventilation to 75.1 L/min (SD=29.79. Each increment was maintained for 5 mins to allow the measurement of oxygen uptake in a steady state. During resistive loading total oxygen consumption increased from 239 mL/min (SD=38.2 to 299 mL/min (SD=52.3 and dyspnea increased to "very severe" (Borg scale 7.5, SD=1.55. During dead space loading total oxygen consumption increased from 270 mL/min (SD=20.2 to 426 mL/min (SD=81.9 and dyspnea increased to "very severe" (7.1, SD=0.66. Oxygen cost of inspiratory muscle power was 25 mL/watt (95% confidence limits 16.7 to 34.3 with dead space loading and 91 mL/watt (95% confidence limits 54 to 128 with resistive loading. Oxygen consumption did not reach a critical common value in the two types of loading, 60 mL/min (SD 22.3 during maximal resistive loading and 156 mL/min (SD 82.4 during maximal dead space loading (P<0.05. Physiological factors limiting the respiratory muscles are not uniquely related to oxygen consumption and appear to be expressed through the activation of sensory structures, perceptually manifested as

  19. Renal transplantation induces mitochondrial uncoupling, increased kidney oxygen consumption, and decreased kidney oxygen tension

    NARCIS (Netherlands)

    Papazova, Diana A.; Friederich-Persson, Malou; Joles, Jaap A.; Verhaar, Marianne C.

    2015-01-01

    Hypoxia is an acknowledged pathway to renal injury and ischemia-reperfusion (I/R) and is known to reduce renal oxygen tension (PO2). We hypothesized that renal I/R increases oxidative damage and induces mitochondrial uncoupling, resulting in increased oxygen consumption and hence kidney

  20. Implantable oxygen microelectrode suitable for medium-term investigations of post-surgical tissue hypoxia and changes in tumor tissue oxygenation produced by radiotherapy

    International Nuclear Information System (INIS)

    Burke, T.R.; Johnson, R.J.; Krishnamsetty, C.B.; Sako, K.; Karakousis, C.; Wojtas, F.

    1980-01-01

    Teflon-covered platinum oxygen probes were used to monitor tissue oxygen levels in post-surgical cancer patients and those treated with radiotherapy. Progressive wound healing was usually accompanied by a decrease in tissue pO2. Radiotherapy produced a slight increase in pO2 while hyperthermia effected a significant increase in the oxygen level during 100% oxygen breathing

  1. Measurement of forearm oxygen consumption

    DEFF Research Database (Denmark)

    Astrup, A; Simonsen, L; Bülow, J

    1988-01-01

    The classical forearm technique widely used for studies of skeletal muscle metabolism requires arterial cannulation. To avoid arterial puncture it is becoming more common to arterialize blood from a contralateral hand vein by local heating. This modification and the classical method have produced...... blood flow and decreases skeletal muscle blood flow. This facilitates mixing of superficial blood with deep venous blood. Contralateral heating increased deep venous oxygen saturation and abolished the pronounced glucose-induced increase in oxygen consumption observed in the control experiments after...... contradictory results regarding the contribution of skeletal muscle to glucose-induced thermogenesis. The effect on forearm circulation and the metabolism of heating the contralateral hand was examined before and after an oral glucose load. The results suggest that contralateral heating increases subcutaneous...

  2. Oxygen consumption through metabolism and photodynamic reactions in cells cultured on microbeads

    International Nuclear Information System (INIS)

    Schunck, T.; Poulet, P.

    2000-01-01

    Oxygen consumption by cultured cells, through metabolism and photosensitization reactions, has been calculated theoretically. From this result, we have derived the partial oxygen pressure P O 2 in the perfusion medium flowing across sensitized cultured cells during photodynamic experiments. The P O 2 variations in the perfusate during light irradiation are related to the rate of oxygen consumption through photoreactions, and to the number of cells killed per mole of oxygen consumed through metabolic processes. After irradiation, the reduced metabolic oxygen consumption yields information on the cell death rate, and on the photodynamic cell killing efficiency. The aim of this paper is to present an experimental set-up and the corresponding theoretical model that allows us to control the photodynamic efficiency for a given cell-sensitizer pair, under well defined and controlled conditions of irradiation and oxygen supply. To demonstrate the usefulness of the methodology described, CHO cells cultured on microbeads were sensitized with pheophorbide a and irradiated with different light fluence rates. The results obtained, i.e. oxygen consumption of about 0.1 μMs -1 m -3 under a light fluence rate of 1 W m -2 , 10 5 cells killed per mole of oxygen consumed and a decay rate of about 1 h -1 of living cells after irradiation, are in good agreement with the theoretical predictions and with previously published data. (author)

  3. The effect of temperature and salinity on oxygen consumption in the ...

    African Journals Online (AJOL)

    The aquatic oxygen consumption of the estuarine brachyuran crab, Cyclograpsus punctatus, was investigated after a 24-hour acclimation period at different temperature (12.5, 20, 30°C) and salinity (9, 17.5, 35, and 44‰) combinations . Salinity had no significant effect on oxygen consumption at 12.5 and 20°C in both large ...

  4. Comparative oxygen consumption rates of subitaneous and delayed hatching eggs of the calanoid copepod Acartia tonsa (Dana)

    DEFF Research Database (Denmark)

    Hansen, Benni Winding; Drillet, Guillaume

    2013-01-01

    nanorespirometry to monitor initial oxygen consumption rate of individual eggs of the ubiquitous neritic calanoid copepod Acartia tonsa to distinguish between subitaneous and DHE. We hypothesized that subitaneous eggs exhibit higher initial oxygen consumption rates than DHE, and that initial egg oxygen consumption...... rate is correlated to the time for the individual egg to hatch. Subitaneous eggs exhibited higher initial oxygen consumption rates than DHE and there were no pattern in initial oxygen consumption rates vs. time to hatch or die from the eggs. Variability in initial oxygen consumption rates within...... batches of both subitaneous and DHE, as well as between these egg types, is prevalent. There was a continuum from sluggish- to fast metabolising eggs considering initial oxygen consumption rates most likely reflecting phenotypic variation within cohorts. No matter the individual initial egg oxygen...

  5. Measurement of oxygen consumption during muscle flaccidity exercise by near-infrared spectroscopy

    Science.gov (United States)

    Fukuda, K.; Fukawa, Y.

    2013-03-01

    Quantitative measurement oxygen consumption in the muscles is important to evaluate the effect of the exercise. Near-infrared spectroscopy (NIRS) is a noninvasive method for measuring muscle oxygenation. However, measurement results are affected by blood volume change due to changes in the blood pressure. In order to evaluate changes in blood volume and to improve measurement accuracy, we proposed a calculation method of three-wavelength measurement with considering the scattering factor and the measurement with monitoring blood flow for measuring the temporal change of the oxygen concentration more precisely. We applied three-wavelength light source (680nm, 808nm and 830nm) for the continued wave measurement. Two detectors (targeted detector and the reference detector) were placed near the target muscle and apart from it. We measured the blood flow by controlling the intravascular pressure and the oxygen consumption with the handgrip exercise in the forearm. The measured results show that the scattering factor contains the artifact at the surface and the blood flow in the artery and the vein in the same phase. The artifact and the blood flow in the same phase are reduced from the oxygenated and the deoxygenated hemoglobin densities. Thus our proposed method is effective for reducing the influence of the artifact and the blood flow in the same phase from the oxygen consumption measurement. Further, it is shown that the oxygen consumption is measured more accurately by subtracting the blood flow measured by the reference detector.

  6. Oxygen consumption and blood flow coupling in human motor cortex during intense finger tapping

    DEFF Research Database (Denmark)

    Seyedi Vafaee, Manouchehr; Vang, Kim; Bergersen, Linda H

    2012-01-01

    Rates of cerebral blood flow (CBF) and glucose consumption (CMR(glc)) rise in cerebral cortex during continuous stimulation, while the oxygen-glucose index (OGI) declines as an index of mismatched coupling of oxygen consumption (cerebral metabolic rate of oxygen-CMRO(2)) to CBF and CMR(glc). To t...

  7. Apparatus for the automatic determination of oxygen consumption in ...

    African Journals Online (AJOL)

    An apparatus is described which permits the automatic determination of the oxygen consumption of three fish and a control for 24 hours per day. This is made possible by an electrical control system operating four three-way valves which allow water from one of four respiration chambers at a time to flow past an oxygen ...

  8. Relations of morphological characteristics and maximal oxygen consumption of fourth grade pupils based on gender

    Directory of Open Access Journals (Sweden)

    Jakovljević Vladimir

    2014-01-01

    Full Text Available On a sample of 71 respondents, 37 boys and 34 girls, age of fourth grade elementary school, accordingly 9 years +/- 6 months, it is assessed correlation and prediction of maximal oxygen consumption based measures of morphological range. Maximum oxygen consumption was measured by indirect method, using a field test of maximal multiple load of feedback running at 20 meters. Range of morphology was analyzed based on 5 measures of longitudinal dimensionality, 4 measures of volume and body mass and 3 measures of transversal dimensionality. Results of correlation analysis showed that in both sexes there was no statistically significant correlation between results of maximal oxygen consumption and measures of longitudinal dimensionality, while regression analysis confirmed that there was no statistically significant prediction of maximum oxygen consumption based on measures of longitudinal dimensionality. While the correlation analysis deduced that part of volume measures and body mass and transversal dimensionality have statistically significant correlation only with female respondents with results of maximal oxygen consumption. Regression analysis showed statistically significant prediction of maximal oxygen consumption based on part of volume measures and body mass and transversal dimensionality. It is determined that female respondents with larger volumes of the thigh and lower leg, accordingly with smaller diameters of knee joint and ankle joint most likely will achieve better results in applied test, and therefore higher maximal oxygen consumption.

  9. Direct tissue oxygen monitoring by in vivo photoacoustic lifetime imaging (PALI)

    Science.gov (United States)

    Shao, Qi; Morgounova, Ekaterina; Ashkenazi, Shai

    2014-03-01

    Tissue oxygen plays a critical role in maintaining tissue viability and in various diseases, including response to therapy. Images of oxygen distribution provide the history of tissue hypoxia and evidence of oxygen availability in the circulatory system. Currently available methods of direct measuring or imaging tissue oxygen all have significant limitations. Previously, we have reported a non-invasive in vivo imaging modality based on photoacoustic lifetime. The technique maps the excited triplet state of oxygen-sensitive dye, thus reflects the spatial and temporal distribution of tissue oxygen. We have applied PALI on tumor hypoxia in small animals, and the hypoxic region imaged by PALI is consistent with the site of the tumor imaged by ultrasound. Here, we present two studies of applying PALI to monitor changes of tissue oxygen by modulations. The first study involves an acute ischemia model using a thin thread tied around the hind limb of a normal mouse to reduce the blood flow. PALI images were acquired before, during, and after the restriction. The drop of muscle pO2 and recovery from hypoxia due to reperfusion were observed by PALI tracking the same region. The second study modulates tissue oxygen by controlling the percentage of oxygen the mouse inhales. We demonstrate that PALI is able to reflect the change of oxygen level with respect to both hyperbaric and hypobaric conditions. We expect this technique to be very attractive for a range of clinical applications in which tissue oxygen mapping would improve therapy decision making and treatment planning.

  10. Oxygen consumption by sticklebacks (Gasterosteus aculeatus L. ) exposed to zinc

    Energy Technology Data Exchange (ETDEWEB)

    Brafield, A.E.; Matthiessen, P.

    1976-10-01

    The rate of oxygen consumption by sticklebacks has been studied by long-term continuous-flow respirometry. Exposure to 1 ppM zinc in calcium-free water causes wide variations in individual responses, but oxygen uptake tends to rise and then become extremely erratic, before declining as death approaches. Behavioural abnormalities such as increased ventilation rate, loss of balance, and long periods of inactivity alternating with spasmodic swimming also occur. Exposure to 6.5 ppM zinc in high-calcium water generally causes a rise in oxygen consumption, followed by fluctuations in the rate of uptake, but no behavioural abnormalities occur and deaths are rare even after exposure for 400 h. If restored to zinc-free water after 40 h exposure to zinc, recovery is generally complete, although fluctuating rates of oxygen uptake persist. These results are discussed in relation to previous work on the effects of heavy metals on fish respiration.

  11. Local cerebral blood flow and local oxygen consumption in prolonged hemiplegic migraine

    International Nuclear Information System (INIS)

    Baron, J.C.; Lebrun-Grandie, P.; Serdaru, M.; Bousser, M.G.; Lhermitte, F.; Cabanis, E.

    1982-09-01

    This work gives the results of a study by positron emission tomography of the cerebral blood flow (CBF), oxygen-extraction rate (O 2 E) and oxygen consumption (CMRO 2 ) during severe and prolonged attack of hemiplegic migraine. The salient facts observed are a high (CBF) in the brain hemisphere affected (ruling out the hypothesis of a persistent cerebral ischemia), together with a collapsed O 2 E (''luxury perfusion'') and especially preservation of the CMRO 2 suggesting a decoupling not only between CBF and CMRO 2 but also between CMRO 2 and functional state of the tissue. Some time after the attack a new study showed the recoupling between CBF and CMRO 2 , but with the latter reduced in the affected hemisphere although the clinical and tomodensitometric state had returned to normal. These new observations should not however be improperly generalised to all migraines, given the unusual characteristics of the disorder in our patient [fr

  12. A Stirred Microchamber for Oxygen Consumption Rate Measurements With Pancreatic Islets

    Science.gov (United States)

    Papas, Klearchos K.; Pisania, Anna; Wu, Haiyan; Weir, Gordon C.; Colton, Clark K.

    2010-01-01

    Improvements in pancreatic islet transplantation for treatment of diabetes are hindered by the absence of meaningful islet quality assessment methods. Oxygen consumption rate (OCR) has previously been used to assess the quality of organs and primary tissue for transplantation. In this study, we describe and characterize a stirred microchamber for measuring OCR with small quantities of islets. The device has a titanium body with a chamber volume of about 200 µL and is magnetically stirred and water jacketed for temperature control. Oxygen partial pressure (pO2) is measured by fluorescence quenching with a fiber optic probe, and OCR is determined from the linear decrease of pO2 with time. We demonstrate that measurements can be made rapidly and with high precision. Measurements with βTC3 cells and islets show that OCR is directly proportional to the number of viable cells in mixtures of live and dead cells and correlate linearly with membrane integrity measurements made with cells that have been cultured for 24 h under various stressful conditions. PMID:17497731

  13. Assessment of tissue oxygen saturation during a vascular occlusion test using near-infrared spectroscopy: the role of probe spacing and measurement site studied in healthy volunteers

    NARCIS (Netherlands)

    Bezemer, R.; Lima, A.; Myers, D.; Klijn, E.; Heger, M.; Goedhart, P.T.; Bakker, J.; Ince, C.

    2009-01-01

    INTRODUCTION: To assess potential metabolic and microcirculatory alterations in critically ill patients, near-infrared spectroscopy (NIRS) has been used, in combination with a vascular occlusion test (VOT), for the non-invasive measurement of tissue oxygen saturation (StO2), oxygen consumption, and

  14. Effects of extracellular zinc ion on the rate of oxygen consumption of ...

    African Journals Online (AJOL)

    The inhibitory effect of extracellular zinc ion on the rate of oxygen consumption of rat brain mitochondria pre-incubated in 1.0 mM Ca2+EDTA were determined. There was a significant increase [P<0.01] in the rate of oxygen consumption in the rat brain mitochondria pre-incubated in 1.0 mM. Ca2+EDTA in a succinate ...

  15. Variable ATP yields and uncoupling of oxygen consumption in human brain

    DEFF Research Database (Denmark)

    Gjedde, Albert; Aanerud, Joel; Peterson, Ericka

    2011-01-01

    normalized the metabolic rate to the population average of that region. Coefficients of variation ranged from 10 to 15% in the different regions of the human brain and the normalized regional metabolic rates ranged from 70% to 140% of the population average for each region, equal to a two-fold variation......The distribution of brain oxidative metabolism values among healthy humans is astoundingly wide for a measure that reflects normal brain function and is known to change very little with most changes of brain function. It is possible that the part of the oxygen consumption rate that is coupled...... to ATP turnover is the same in all healthy human brains, with different degrees of uncoupling explaining the variability of total oxygen consumption among people. To test the hypothesis that about 75% of the average total oxygen consumption of human brains is common to all individuals, we determined...

  16. Oxygen diffusion and oxygen effect in tumor tissue

    International Nuclear Information System (INIS)

    Eissa, H.M.; Hehn, G.

    1979-06-01

    The diffusion of oxygen in tumor cords of bronchus carcinoma of the lung have been studied with refined computer methods for solving the diffusion equation in axis symmetric tumor structures. In this tumor configuration we may find three different regions consisting of euoxic cells, hypoxic tumor cells and necrotic parts. In the case of oxygen supply from a capillary inside a cylinder of tumor tissue with radius 200 μm or in a tumor cord of radius 300 μm with oxygen supply by capillaries outside, we get a relation of well oxygenated cells to hypoxic cells approximately as 1:8 or as 1:1.1 respectively. Of course most of the tumor cords observed in histological slices have smaller diameters, so that an average of approximately 20% hypoxic cells can be assumed. Based on the work of Ardenne, the diffusion of oxygen and glucose in a tumor of type DS-carcinosarcom has been investigated in both intact tumor and tumor treated with ionizing radiation. We can show that a strong reoxygenation effect takes place in that the well supplied regions may increase in some tumor configurations up to a factor of four by volume. The biological consequences of the oxygen pressure determined in tumor cells are discussed in detail. The investigation of oxygen diffusion in the intercapillary tumor region should give a quantitative physical basis for considering the oxygen effect with the aim to explain the advantages of neutron therapy against conventional radiotherapy. (orig./MG) [de

  17. A novel approach to the assess biotic oxygen consumption in marine sediment communities

    Science.gov (United States)

    Baranov, Victor; Queiros, Ana; Widdicombe, Stephen; Stephens, Nick; Lessin, Gennadi; Krause, Stefan; Lewandowski, Joerg

    2016-04-01

    Bioturbation , the mixing of the sediment matrix by burrowing animals impacts sediment metabolism, including respiration through redistribution of particulate organics, changes in bacterial biota diversity and acitivity, as well as via burrowing fauna's own metabolism. Bioturbation, reflecting faunal activity, is also a proxy for the general sedimentary ecosystem health, and can be impacted by many of emerging marine environmental issues such as ocean acidification, warming and the occurrence of heat waves. Sedimentary oxygen consumption is often taken as a proxy for the activity of bioturbating fauna, but determining baselines can be difficult because of the confounding effects of other fauna and microbes present in sediments, as well as irnorganic processes that consume oxygen. Limitations therefore exist in current methodologies, and numerous confounding factors are hampering progress in this area. Here, we present novel method for the assessment of sediment respiration which is expected to be affected only by the biogenic oxygen consumption (namely aerobic respiration). As long as tracer reduction "immune" to inorganic oxygen consumption, so that measurements using this method can be used, alongside traditional methods, to decouple biological respiration from inorganic oxygen consumption reactions. The tracer is easily detectable, non-toxic and can be applied in systems with constant oxygen supply. The latter allow for incubation without the need to to work with unsealed experimental units, bringing procedural advantage over traditional methods. Consequently assessed bioturbating fauna is not exposed to hypoxia and additional stress. Here, we had applied system for the first time to investigate impacts of a common North-Atlantic bioturbator, the brittle star Amphiura filiformis, - on respiration of marine sediments. Two series of experiments were conducted with animals and sediment collected from Cawsand Bay, Plymouth, UK Preliminary results show that tracer

  18. Estimate of oxygen consumption and intracellular zinc concentration of human spermatozoa in relation to motility.

    Science.gov (United States)

    Henkel, Ralf R; Defosse, Kerstin; Koyro, Hans-Wilhelm; Weissmann, Norbert; Schill, Wolf-Bernhard

    2003-03-01

    To investigate the human sperm oxygen/energy consumption and zinc content in relation to motility. In washed spermatozoa from 67 ejaculates, the oxygen consumption was determined. Following calculation of the total oxygen consumed by the Ideal Gas Law, the energy consumption of spermatozoa was calculated. In addition, the zinc content of the sperm was determined using an atomic absorption spectrometer. The resulting data were correlated to the vitality and motility. The oxygen consumption averaged 0.24 micromol/10(6) sperm x 24h, 0.28 micromol/10(6) live sperm x 24h and 0.85 micromol/10(6) live motile sperm x 24h. Further calculations revealed that sperm motility was the most energy consuming process (164.31 mJ/10(6) motile spermatozoa x 24h), while the oxygen consumption of the total spermatozoa was 46.06 mJ/10(6) spermatozoa x 24h. The correlation of the oxygen/energy consumption and zinc content with motility showed significant negative correlations (r= -0.759; P<0.0001 and r=-0.441; P<0.0001, respectively). However, when correlating sperm energy consumption with the zinc content, a significant positive relation (r=0.323; P=0.01) was observed. Poorly motile sperm are actually wasting the available energy. Moreover, our data clearly support the "Geometric Clutch Model" of the axoneme function and demonstrate the importance of the outer dense fibers for the generation of sperm motility, especially progressive motility.

  19. Oxygen consumption and cytochrome exidase activity of axolotl limbs muscle tissue in restoration of regenerative ability suprressed by X-irradiation

    International Nuclear Information System (INIS)

    Teplits, N.A.

    1975-01-01

    The rate of oxygen use and activity of cytochrome oxidase in a homogenate of mitochondria and nuclei of muscle tissue of axolotl limbs after suppression of their regenerative capability by x irradiation and their restoration was studied experimentally. With suppression of the regenative capability the use of oxygen was depressed. Cytochrome oxidase activity in the homogenate and mitochondria decreased compared to that of the intact limb, in the nuclei of muscle tissue it was the same or greater. With restoration of the regenerative capability of the limbs the respiration rate of the homogenate and the mitochondria increased, accompanied by increased cytochrome oxidase activity. In the nuclei the cytochrome oxidase activity did not change in the blastema stage and sharply decreased in the limb formation state. (E.T.)

  20. Oxygen consumption and cytochrome exidase activity of axolotl limbs muscle tissue in restoration of regenerative ability suppressed by X-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Teplits, N A [AN SSSR, Moscow. Inst. Biologii Razvitiya

    1975-01-01

    The rate of oxygen use and activity of cytochrome oxidase in a homogenate of mitochondria and nuclei of muscle tissue of axolotl limbs after suppression of their regenerative capability by x irradiation and their restoration was studied experimentally. With suppression of the regenative capability the use of oxygen was depressed. Cytochrome oxidase activity in the homogenate and mitochondria decreased compared to that of the intact limb, in the nuclei of muscle tissue it was the same or greater. With restoration of the regenerative capability of the limbs the respiration rate of the homogenate and the mitochondria increased, accompanied by increased cytochrome oxidase activity. In the nuclei the cytochrome oxidase activity did not change in the blastema stage and sharply decreased in the limb formation state.

  1. Measurement of oxygen consumption rate of osteoblasts from ...

    African Journals Online (AJOL)

    The cells were evaluated through live/dead assay, hematoxylin-eosin (HE) and alkaline phosphatase (ALP) staining. Moreover, Von-Kossa staining and Alizarin Red S staining were carried out for mineralized nodule formation. Following this, the oxygen consumption rates of osteoblasts in the earlier mentioned different ...

  2. Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue.

    Science.gov (United States)

    Sakadzić, Sava; Roussakis, Emmanuel; Yaseen, Mohammad A; Mandeville, Emiri T; Srinivasan, Vivek J; Arai, Ken; Ruvinskaya, Svetlana; Devor, Anna; Lo, Eng H; Vinogradov, Sergei A; Boas, David A

    2010-09-01

    Measurements of oxygen partial pressure (pO(2)) with high temporal and spatial resolution in three dimensions is crucial for understanding oxygen delivery and consumption in normal and diseased brain. Among existing pO(2) measurement methods, phosphorescence quenching is optimally suited for the task. However, previous attempts to couple phosphorescence with two-photon laser scanning microscopy have faced substantial difficulties because of extremely low two-photon absorption cross-sections of conventional phosphorescent probes. Here we report to our knowledge the first practical in vivo two-photon high-resolution pO(2) measurements in small rodents' cortical microvasculature and tissue, made possible by combining an optimized imaging system with a two-photon-enhanced phosphorescent nanoprobe. The method features a measurement depth of up to 250 microm, sub-second temporal resolution and requires low probe concentration. The properties of the probe allowed for direct high-resolution measurement of cortical extravascular (tissue) pO(2), opening many possibilities for functional metabolic brain studies.

  3. Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue

    Science.gov (United States)

    Sakadžić, Sava; Roussakis, Emmanuel; Yaseen, Mohammad A.; Mandeville, Emiri T.; Srinivasan, Vivek J.; Arai, Ken; Ruvinskaya, Svetlana; Devor, Anna; Lo, Eng H.; Vinogradov, Sergei A.; Boas, David A.

    2010-01-01

    The ability to measure oxygen partial pressure (pO2) with high temporal and spatial resolution in three dimensions is crucial for understanding oxygen delivery and consumption in normal and diseased brain. Among existing pO2 measurement methods, phosphorescence quenching is optimally suited for the task. However, previous attempts to couple phosphorescence with two-photon laser scanning microscopy have faced substantial difficulties because of extremely low two-photon absorption cross-sections of conventional phosphorescent probes. Here, we report the first practical in vivo two-photon high-resolution pO2 measurements in small rodents’ cortical microvasculature and tissue, made possible by combining an optimized imaging system with a two-photon-enhanced phosphorescent nanoprobe. The method features a measurement depth of up to 250 µm, sub-second temporal resolution and requires low probe concentration. Most importantly, the properties of the probe allowed for the first direct high-resolution measurement of cortical extravascular (tissue) pO2, opening numerous possibilities for functional metabolic brain studies. PMID:20693997

  4. Oxygen consumption in Plasmodium berghei-infected murine red cells: a direct spectrophotometric assay in intact erythrocytes.

    Science.gov (United States)

    Deslauriers, R; Moffatt, D J; Smith, I C

    1986-05-29

    A spectrophotometric assay has been devised to measure oxygen consumption non-invasively in intact murine red cells parasitized by Plasmodium berghei. The method uses oxyhemoglobin in the erythrocytes both as a source of oxygen and as an indicator of oxygen consumption. Spectra of intact cells show broad peaks and sloping baselines due to light-scattering. In order to ascertain the number of varying components in the 370-450 nm range, the resolution of the spectra was enhanced using Fourier transforms of the frequency domain spectra. Calculation of oxygen consumption was carried out for two-component systems (oxyhemoglobin, deoxyhemoglobin) using absorbances at 415 and 431 nm. Samples prepared from highly parasitized mice (greater than 80% parasitemia, 5% hematocrit) showed oxygen consumption rates of (4-8) X 10(-8) microliter/cell per h. This rate was not attributable to the presence of white cells or reticulocytes. The rate of oxygen consumption in the erythrocytes is shown to be modulated by various agents: the respiratory inhibitors NaN3 and KCN (1 mM) reduced oxygen consumption 2-3-fold; salicylhydroxamic acid (2.5 mM) caused a 20% reduction in rate and 10 mM NaN3, completely blocked deoxygenation. Antimalarial drugs and metal-chelating agents were also tested. Chloroquine, EDTA and desferal (desferoxamine mesylate) did not decrease the deoxygenation rate of hemoglobin in parasitized cells. Quinacrine, quinine and primaquine reduced the rate of formation of deoxyhemoglobin but also produced substantial quantities of methemoglobin. The lipophilic chelator, 5-hydroxyquinoline, decreased the rate of deoxygenation one-third. The spectrophotometric assay provides a convenient means to monitor oxygen consumption in parasitized red cells, to test the effects of various agents thereon, and potentially to explore possible mechanisms for oxygen utilization.

  5. Effect of a High-intensity Interval Training method on maximum oxygen consumption in Chilean schoolchildren

    Directory of Open Access Journals (Sweden)

    Sergio Galdames-Maliqueo

    2017-12-01

    Full Text Available Introduction: The low levels of maximum oxygen consumption (VO2max evaluated in Chilean schoolchildren suggest the startup of trainings that improve the aerobic capacity. Objective: To analyze the effect of a High-intensity Interval Training method on maximum oxygen consumption in Chilean schoolchildren. Materials and methods: Thirty-two high school students from the eighth grade, who were divided into two groups, were part of the study (experimental group = 16 students and control group = 16 students. The main analyzed variable was the maximum oxygen consumption through the Course Navette Test. A High-intensity Interval training method was applied based on the maximum aerobic speed obtained through the Test. A mixed ANOVA was used for statistical analysis. Results: The experimental group showed a significant increase in the Maximum Oxygen Consumption between the pretest and posttest when compared with the control group (p < 0.0001. Conclusion: The results of the study showed a positive effect of the High-intensity Interval Training on the maximum consumption of oxygen. At the end of the study, it is concluded that High-intensity Interval Training is a good stimulation methodology for Chilean schoolchildren.

  6. Crouch severity is a poor predictor of elevated oxygen consumption in cerebral palsy.

    Science.gov (United States)

    Steele, Katherine M; Shuman, Benjamin R; Schwartz, Michael H

    2017-07-26

    Children with cerebral palsy (CP) expend more energy to walk compared to typically-developing peers. One of the most prevalent gait patterns among children with CP, crouch gait, is often singled out as especially exhausting. The dynamics of crouch gait increase external flexion moments and the demand on extensor muscles. This elevated demand is thought to dramatically increase energy expenditure. However, the impact of crouch severity on energy expenditure has not been investigated among children with CP. We evaluated oxygen consumption and gait kinematics for 573 children with bilateral CP. The average net nondimensional oxygen consumption during gait of the children with CP (0.18±0.06) was 2.9 times that of speed-matched typically-developing peers. Crouch severity was only modestly related to oxygen consumption, with measures of knee flexion angle during gait explaining only 5-20% of the variability in oxygen consumption. While knee moment and muscle activity were moderately to strongly correlated with crouch severity (r 2 =0.13-0.73), these variables were only weakly correlated with oxygen consumption (r 2 =0.02-0.04). Thus, although the dynamics of crouch gait increased muscle demand, these effects did not directly result in elevated energy expenditure. In clinical gait analysis, assumptions about an individual's energy expenditure should not be based upon kinematics or kinetics alone. Identifying patient-specific factors that contribute to increased energy expenditure may provide new pathways to improve gait for children with CP. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. [The effect of prophylactically administered n-acetylcysteine on clinical indicators for tissue oxygenation during hyperoxic ventilation in cardiac risk patients].

    Science.gov (United States)

    Spies, C; Giese, C; Meier-Hellmann, A; Specht, M; Hannemann, L; Schaffartzik, W; Reinhart, K

    1996-04-01

    Hyperoxic ventilation, used to prevent hypoxia during potential periods of hypoventilation, has been reported to paradoxically decrease whole-body oxygen consumption (VO2). Reduction in nutritive blood flow due to oxygen radical production is one possible mechanism. We investigated whether pretreatment with the sulfhydryl group donor and O2 radical scavenger N-acetylcysteine (NAC) would preserve VO2 and other clinical indicators of tissue oxygenation in cardiac risk patients. Thirty patients, requiring hemodynamic monitoring (radial and pulmonary artery catheters) because of cardiac risk factors, were included in this randomized investigation. All patients exhibited stable clinical conditions (hemodynamics, body temperature, hemoglobin, F1O2 depression ( > 0.2 mV) was significantly less marked in the NAC group (NAC: -0.02 +/- 0.17 vs placebo: -0.23 +/- 0.15; P depression if patients were prophylactically treated with NAC. This suggests that pretreatment with NAC could be considered to attenuate impaired tissue oxygenation and to preserve myocardial performance better in cardiac risk patients during hyperoxia.

  8. Myocardial oxygen consumption at rest and during submaximal ...

    African Journals Online (AJOL)

    Overweight and obesity are major risk factors for cardiovascular diseases. The objective of this study was to determine the effect of increased adiposity on myocardial oxygen consumption at rest and during submaximal exercise in young adults. The study consisted of 85 young adults (18-22years) grouped into 3 based on ...

  9. Relation of Mitochondrial Oxygen Consumption in Peripheral Blood Mononuclear Cells to Vascular Function in Type 2 Diabetes Mellitus

    Science.gov (United States)

    Hartman, Mor-Li; Shirihai, Orian S.; Holbrook, Monika; Xu, Guoquan; Kocherla, Marsha; Shah, Akash; Fetterman, Jessica L.; Kluge, Matthew A.; Frame, Alissa A.; Hamburg, Naomi M.; Vita, Joseph A.

    2014-01-01

    Recent studies have shown mitochondrial dysfunction and increased production of reactive oxygen species in peripheral blood mononuclear cells (PBMC’s) and endothelial cells from patients with diabetes mellitus. Mitochondria oxygen consumption is coupled to ATP production and also occurs in an uncoupled fashion during formation of reactive oxygen species by components of the electron transport chain and other enzymatic sites. We therefore hypothesized that diabetes would be associated with higher total and uncoupled oxygen consumption in PBMC’s that would correlate with endothelial dysfunction. We developed a method to measure oxygen consumption in freshly isolated PBMC’s and applied it to 26 patients with type 2 diabetes mellitus and 28 non-diabetic controls. Basal (192±47 vs. 161±44 pMoles/min, P=0.01), uncoupled (64±16 vs. 53±16 pMoles/min, P=0.007), and maximal (795±87 vs. 715±128 pMoles/min, P=0.01) oxygen consumption rates were higher in diabetic patients compared to controls. There were no significant correlations between oxygen consumption rates and endothelium-dependent flow-mediated dilation measured by vascular ultrasound. Non-endothelium-dependent nitroglycerin-mediated dilation was lower in diabetics (10.1±6.6 vs. 15.8±4.8%, P=0.03) and correlated with maximal oxygen consumption (R= −0.64, P=0.001). In summary, we found that diabetes mellitus is associated with a pattern of mitochondrial oxygen consumption consistent with higher production of reactive oxygen species. The correlation between oxygen consumption and nitroglycerin-mediated dilation may suggest a link between mitochondrial dysfunction and vascular smooth muscle cell dysfunction that merits further study. Finally, the described method may have utility for assessment of mitochondrial function in larger scale observational and interventional studies in humans. PMID:24558030

  10. Oxygen consumption rate and mitochondrial density in human melanoma monolayer cultures and multicellular spheroids.

    Science.gov (United States)

    Hystad, M E; Rofstad, E K

    1994-05-15

    Rate of oxygen consumption per cell has been shown in previous studies to decrease with increasing depth in the viable rim of multicellular spheroids initiated from rodent cells, human colon-carcinoma cells, and human glioma cells, due to progressive accumulation of quiescent cells during spheroid growth. The purpose of our work was to determine oxygen-consumption profiles in human melanoma spheroids. Monolayer cultures of 4 lines (BEX-c, COX-c, SAX-c, and WIX-c) and spheroid cultures of 2 lines (BEX-c and WIX-c) were subjected to investigation. Spheroids were initiated from monolayer cell cultures and grown in spinner flasks. Rate of oxygen consumption was measured with a Clarke-type electrode. Mitochondrial density was determined by stereological analysis of transmission electron micrographs. Thickness of viable rim and cell packing density were assessed by light microscopy of central spheroid sections. Cell-cycle distribution was determined by analysis of DNA histograms measured by flow cytometry. Cell volume was measured by an electronic particle counter. Rate of oxygen consumption per cell differed by a factor of approximately 1.8 between the 4 cell lines and was positively correlated to total volume of mitochondria per cell. Rate of oxygen consumption per cell and total volume of mitochondria per cell were equal for monolayer cell cultures, 600-microns spheroids and 1,200-microns spheroids of the same line. Mitochondrial density and location in the cell did not differ between cells at the spheroid surface, in the middle of the viable rim and adjacent to the central necrosis. Cell-cycle distribution, cell volume, and cell-packing density in the outer and inner halves of the viable rim were not significantly different. Consequently, the rate of oxygen consumption per cell in inner regions of the viable rim was probably equal to that at the spheroid surface, suggesting that oxygen diffusion distances may be shorter in some melanomas than in many other tumor

  11. Oxygen consumption during exercise in a heated pool.

    Science.gov (United States)

    Kirby, R L; Sacamano, J T; Balch, D E; Kriellaars, D J

    1984-01-01

    The heated hydrotherapy pool is a common exercise site for patients with painful musculoskeletal conditions. Oxygen consumption of swimming is 87 to 89% of maximum in postmyocardial infarction patients according to one recent investigation. We studied 13 able-bodied subjects to test the hypothesis that enough energy could be expended during various forms of hydrotherapy to produce both an aerobic training effect and a risk to patients with coronary artery disease. Oxygen consumption (VO2) was measured in six settings: resting supine; resting seated shoulder deep in the pool (36C); walking at comfortable speed in chest-deep water; running at the fastest speed possible in chest-deep water; using hand paddles; and running in place at shoulder depth. The mean VO2 expressed in ml/kg/min (and metabolic equivalents) were 4.91 (1.00), 4.93 (1.02), 9.34 (2.01), 27.79 (6.23), 18.25 (4.30) and 29.11 (7.09) respectively, suggesting that the more vigorous exercises stress aerobic capacity heavily but not excessively.

  12. Effect of selective blockade of oxygen consumption, glucose transport, and Ca2+ influx on thyroxine action in human mononuclear cells

    DEFF Research Database (Denmark)

    Kvetny, J; Matzen, L E

    1990-01-01

    The effect of selective blockade of cellular glucose transporters, Ca2+ influx, and mitochondrial oxygen consumption on thyroxine (T4)-stimulated oxygen consumption and glucose uptake was examined in human mononuclear blood cells. Blockade of glucose transporters by cytochalasin B (1 x 10(-5) mol....../L) and of Ca2+ influx by alprenolol (1 x 10(-5) mol/L) and verapamil (4 x 10(-4) mol/L) inhibited T4-activated glucose uptaken and reduced T4-stimulated oxygen consumption by 20%. Uncoupling of mitochondrial oxygen consumption by azide (1 x 10(-3) mol/L) inhibited T4-stimulated oxygen consumption, but had...... no effect on glucose uptake. We conclude that T4-stimulated glucose uptake in human mononuclear blood cells is dependent on intact glucose transporters and Ca2+ influx, but not on mitochondrial oxygen consumption. However, oxygen consumption is, in part, dependent on intact glucose uptake....

  13. Effect of training in minimalist footwear on oxygen consumption during walking and running.

    Science.gov (United States)

    Bellar, D; Judge, L W

    2015-06-01

    The present study sought to examine the effect of 5 weeks of training with minimalist footwear on oxygen consumption during walking and running. Thirteen college-aged students (male n = 7, female n = 6, age: 21.7±1.4 years, height: 168.9±8.8 cm, weight: 70.4±15.8 kg, VO2max: 46.6±6.6 ml·kg(-1)·min(-1)) participated in the present investigation. The participants did not have experience with minimalist footwear. Participants underwent metabolic testing during walking (5.6 km·hr(-1)), light running (7.2 km·hr(-1)), and moderate running (9.6 km·hr(-1)). The participants completed this assessment barefoot, in running shoes, and in minimalist footwear in a randomized order. The participants underwent 5 weeks of training with the minimalist footwear. Afterwards, participants repeated the metabolic testing. Data was analyzed via repeated measures ANOVA. The analysis revealed a significant (F4,32= 7.576, [Formula: see text]=0.408, p ≤ 0.001) interaction effect (time × treatment × speed). During the initial assessment, the minimalist footwear condition resulted in greater oxygen consumption at 9.6 km·hr(-1) (p ≤ 0.05) compared to the barefoot condition, while the running shoe condition resulted in greater oxygen consumption than both the barefoot and minimalist condition at 7.2 and 9.6 km·hr(-1). At post-testing the minimalist footwear was not different at any speed compared to the barefoot condition (p> 0.12). This study suggests that initially minimalist footwear results in greater oxygen consumption than running barefoot, however; with utilization the oxygen consumption becomes similar.

  14. Tissue oxygen demand in regulation of the behavior of the cells in the vasculature.

    Science.gov (United States)

    Barvitenko, Nadezhda N; Aslam, Muhammad; Filosa, Jessica; Matteucci, Elena; Nikinmaa, Mikko; Pantaleo, Antonella; Saldanha, Carlota; Baskurt, Oguz K

    2013-08-01

    The control of arteriolar diameters in microvasculature has been in the focus of studies on mechanisms matching oxygen demand and supply at the tissue level. Functionally, important vascular elements include EC, VSMC, and RBC. Integration of these different cell types into functional units aimed at matching tissue oxygen supply with tissue oxygen demand is only achieved when all these cells can respond to the signals of tissue oxygen demand. Many vasoactive agents that serve as signals of tissue oxygen demand have their receptors on all these types of cells (VSMC, EC, and RBC) implying that there can be a coordinated regulation of their behavior by the tissue oxygen demand. Such functions of RBC as oxygen carrying by Hb, rheology, and release of vasoactive agents are considered. Several common extra- and intracellular signaling pathways that link tissue oxygen demand with control of VSMC contractility, EC permeability, and RBC functioning are discussed. © 2013 John Wiley & Sons Ltd.

  15. Oxygen Consumption of Tilapia and Preliminary Mass Flows through a Prototype Closed Aquaculture System

    Science.gov (United States)

    Muller, Matthew S.; Bauer, Clarence F.

    1994-01-01

    Performance of NASA's prototype CELSS Breadboard Project Closed Aquaculture System was evaluated by estimating gas exchange quantification and preliminary carbon and nitrogen balances. The total system oxygen consumption rate was 535 mg/hr kg/fish (cv = 30%) when stocked with Tilapia aurea populations (fresh weights of 97 +/- 19 to 147 +/- 36 g/fish for various trials). Oxygen consumption by T. aurea (260 mg/hr kg/fish) contributed to approximately one-half of total system demand. Continuous carbon dioxide quantification methods were analyzed using the,relation of carbon dioxide to oxygen consumption. Overall food conversion rates averaged 18.2 +/- 3.2%. Major pathways for nitrogen and carbon in the system were described with preliminary mass closure of 60-80% and 60% for nitrogen and carbon.

  16. Benthic oxygen consumption on continental shelves off eastern Canada

    Science.gov (United States)

    Grant, Jonathan; Emerson, Craig W.; Hargrave, Barry T.; Shortle, Jeannette L.

    1991-08-01

    The consumption of phytoplankton production by the benthos is an important component of organic carbon budgets for continental shelves. Sediment texture is a major factor regulating benthic processes because fine sediment areas are sites of enhanced deposition from the water column, resulting in increased organic content, bacterial biomass and community metabolism. Although continental shelves at mid- to high latitudes consist primarily of coarse relict sediments ( PIPER, Continental Shelf Research, 11, 1013-1035), shelf regions of boreal and subarctic eastern Canada contain large areas of silt and clay sediments ( FADER, Continental Shelf Research, 11, 1123-1153). We collated estimates of benthic oxygen consumption in coarse (<20% silt-clay, <0.5% organic matter) and fine sediments (20% silt-clay, 0.5% organic matter) for northwest Atlantic continental shelves including new data for Georges Bank, the Scotian Shelf, the Grand Banks of Newfoundland and Labrador Shelf. Estimates were applied to the areal distribution of sediment type on these shelves to obtain a general relationship between sediment texture and benthic carbon consumption. Mean benthic oxygen demand was 2.7 times greater in fine sediment than in coarse sediment, when normalized to mean annual temperature. In terms of carbon equivalents, shelf regions with minimal fine sediment (Georges Bank, the Grand Banks of Newfoundland-northeast Newfoundland) consumed only 5-8% of annual primary production. Benthos of the Gulf of Maine (100% fine sediment) and the Scotian Shelf (35% fine sediment) utilized 16-19% of primary production. Although 32% of the Labrador Shelf area contained fine sediments, benthic consumption of pelagic production (8%) was apparently limited by low mean annual temperature (2°C). These results indicate that incorporation of sediment-specific oxygen uptake into shelf carbon budgets may increase estimates of benthic consumption by 50%. Furthermore, respiration and production by large

  17. Effect of remifentanil on mitochondrial oxygen consumption of cultured human hepatocytes.

    Directory of Open Access Journals (Sweden)

    Siamak Djafarzadeh

    Full Text Available During sepsis, liver dysfunction is common, and failure of mitochondria to effectively couple oxygen consumption with energy production has been described. In addition to sepsis, pharmacological agents used to treat septic patients may contribute to mitochondrial dysfunction. This study addressed the hypothesis that remifentanil interacts with hepatic mitochondrial oxygen consumption. The human hepatoma cell line HepG2 and their isolated mitochondria were exposed to remifentanil, with or without further exposure to tumor necrosis factor-α (TNF-α. Mitochondrial oxygen consumption was measured by high-resolution respirometry, Caspase-3 protein levels by Western blotting, and cytokine levels by ELISA. Inhibitory κBα (IκBα phosphorylation, measurement of the cellular ATP content and mitochondrial membrane potential in intact cells were analysed using commercial ELISA kits. Maximal cellular respiration increased after one hour of incubation with remifentanil, and phosphorylation of IκBα occurred, denoting stimulation of nuclear factor κB (NF-κB. The effect on cellular respiration was not present at 2, 4, 8 or 16 hours of incubation. Remifentanil increased the isolated mitochondrial respiratory control ratio of complex-I-dependent respiration without interfering with maximal respiration. Preincubation with the opioid receptor antagonist naloxone prevented a remifentanil-induced increase in cellular respiration. Remifentanil at 10× higher concentrations than therapeutic reduced mitochondrial membrane potential and ATP content without uncoupling oxygen consumption and basal respiration levels. TNF-α exposure reduced respiration of complex-I, -II and -IV, an effect which was prevented by prior remifentanil incubation. Furthermore, prior remifentanil incubation prevented TNF-α-induced IL-6 release of HepG2 cells, and attenuated fragmentation of pro-caspase-3 into cleaved active caspase 3 (an early marker of apoptosis. Our data suggest that

  18. Uptake rate of cationic mitochondrial inhibitor MKT-077 determines cellular oxygen consumption change in carcinoma cells.

    Directory of Open Access Journals (Sweden)

    John L Chunta

    Full Text Available OBJECTIVE: Since tumor radiation response is oxygen-dependent, radiosensitivity can be enhanced by increasing tumor oxygenation. Theoretically, inhibiting cellular oxygen consumption is the most efficient way to increase oxygen levels. The cationic, rhodacyanine dye-analog MKT-077 inhibits mitochondrial respiration and could be an effective metabolic inhibitor. However, the relationship between cellular MKT-077 uptake and metabolic inhibition is unknown. We hypothesized that rat and human mammary carcinoma cells would take up MKT-077, causing a decrease in oxygen metabolism related to drug uptake. METHODS: R3230Ac rat breast adenocarcinoma cells were exposed to MKT-077. Cellular MKT-077 concentration was quantified using spectroscopy, and oxygen consumption was measured using polarographic electrodes. MKT-077 uptake kinetics were modeled by accounting for uptake due to both the concentration and potential gradients across the plasma and mitochondrial membranes. These kinetic parameters were used to model the relationship between MKT-077 uptake and metabolic inhibition. MKT-077-induced changes in oxygen consumption were also characterized in MDA-MB231 human breast carcinoma cells. RESULTS: Cells took up MKT-077 with a time constant of ∼1 hr, and modeling showed that over 90% of intracellular MKT-077 was bound or sequestered, likely by the mitochondria. The uptake resulted in a rapid decrease in oxygen consumption, with a time constant of ∼30 minutes. Surprisingly the change in oxygen consumption was proportional to uptake rate, not cellular concentration. MKT-077 proved a potent metabolic inhibitor, with dose-dependent decreases of 45-73% (p = 0.003. CONCLUSIONS: MKT-077 caused an uptake rate-dependent decrease in cellular metabolism, suggesting potential efficacy for increasing tumor oxygen levels and radiosensitivity in vivo.

  19. Oxygen and tissue culture affect placental gene expression.

    Science.gov (United States)

    Brew, O; Sullivan, M H F

    2017-07-01

    Placental explant culture is an important model for studying placental development and functions. We investigated the differences in placental gene expression in response to tissue culture, atmospheric and physiologic oxygen concentrations. Placental explants were collected from normal term (38-39 weeks of gestation) placentae with no previous uterine contractile activity. Placental transcriptomic expressions were evaluated with GeneChip ® Human Genome U133 Plus 2.0 arrays (Affymetrix). We uncovered sub-sets of genes that regulate response to stress, induction of apoptosis programmed cell death, mis-regulation of cell growth, proliferation, cell morphogenesis, tissue viability, and protection from apoptosis in cultured placental explants. We also identified a sub-set of genes with highly unstable pattern of expression after exposure to tissue culture. Tissue culture irrespective of oxygen concentration induced dichotomous increase in significant gene expression and increased enrichment of significant pathways and transcription factor targets (TFTs) including HIF1A. The effect was exacerbated by culture at atmospheric oxygen concentration, where further up-regulation of TFTs including PPARA, CEBPD, HOXA9 and down-regulated TFTs such as JUND/FOS suggest intrinsic heightened key biological and metabolic mechanisms such as glucose use, lipid biosynthesis, protein metabolism; apoptosis, inflammatory responses; and diminished trophoblast proliferation, differentiation, invasion, regeneration, and viability. These findings demonstrate that gene expression patterns differ between pre-culture and cultured explants, and the gene expression of explants cultured at atmospheric oxygen concentration favours stressed, pro-inflammatory and increased apoptotic transcriptomic response. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Excess posthypoxic oxygen consumption in rainbow trout (Oncorhynchus mykiss): recovery in normoxia and hypoxia

    DEFF Research Database (Denmark)

    Svendsen, Jon Christian; Steffensen, John Fleng; Aarestrup, Kim

    2012-01-01

    at which the standard metabolic rate becomes dependent upon the ambient oxygen content. Using rainbow trout (Oncorhynchus mykiss (Walbaum, 1792), this study quantified the excess posthypoxic oxygen consumption (EPHOC) occurring after exposure to oxygen availability below S(crit). Tests showed that S...

  1. Large arteriolar component of oxygen delivery implies a safe margin of oxygen supply to cerebral tissue.

    Science.gov (United States)

    Sakadžić, Sava; Mandeville, Emiri T; Gagnon, Louis; Musacchia, Joseph J; Yaseen, Mohammad A; Yucel, Meryem A; Lefebvre, Joel; Lesage, Frédéric; Dale, Anders M; Eikermann-Haerter, Katharina; Ayata, Cenk; Srinivasan, Vivek J; Lo, Eng H; Devor, Anna; Boas, David A

    2014-12-08

    What is the organization of cerebral microvascular oxygenation and morphology that allows adequate tissue oxygenation at different activity levels? We address this question in the mouse cerebral cortex using microscopic imaging of intravascular O2 partial pressure and blood flow combined with numerical modelling. Here we show that parenchymal arterioles are responsible for 50% of the extracted O2 at baseline activity, and the majority of the remaining O2 exchange takes place within the first few capillary branches. Most capillaries release little O2 at baseline acting as an O2 reserve that is recruited during increased neuronal activity or decreased blood flow. Our results challenge the common perception that capillaries are the major site of O2 delivery to cerebral tissue. The understanding of oxygenation distribution along arterio-capillary paths may have profound implications for the interpretation of blood-oxygen-level dependent (BOLD) contrast in functional magnetic resonance imaging and for evaluating microvascular O2 delivery capacity to support cerebral tissue in disease.

  2. CELL RESPIRATION STUDIES : II. A COMPARATIVE STUDY OF THE OXYGEN CONSUMPTION OF BLOOD FROM NORMAL INDIVIDUALS AND PATIENTS WITH INCREASED LEUCOCYTE COUNTS (SEPSIS; CHRONIC MYELOGENOUS LEUCEMIA).

    Science.gov (United States)

    Daland, G A; Isaacs, R

    1927-06-30

    1. The oxygen consumption of blood of normal individuals, when the hemoglobin is saturated with oxygen, is practically zero within the limits of experimental error of the microspirometer used. 2. The oxygen consumed in a microspirometer by the blood of patients with chronic myelogenous leucemia with a high white blood cell count, and of one with leucocytosis from sepsis, was proportional to the number of adult polymorphonuclear neutrophils in the blood. 3. No correlation could be made between the rate of oxygen absorption and the total number of white blood cells in the blood, or the total number of immature cells, or the number of red blood cells, or the amount of oxyhemoglobin. 4. The blood of patients with chronic myelogenous leucemia continued to use oxygen in the microspirometer longer than that of normal individuals, and the hemoglobin, in the leucemic bloods, became desaturated even though exposed to air. 5. In blood in which the bulk. of the cells were immature and the mature cells few, the oxygen consumption was lower than in blood in which the mature cells predominated. The rate of oxygen consumption of the immature cells was relatively low as compared to the mature. 6. The slower rate of oxygen absorption by the immature leucocytes in chronic myelogenous leucemia as compared to the mature cells, places them, in accord with Warburg's reports, in the class of the malignant tissues in this respect rather than in the group of young or embryonic cells.

  3. Effects of Fiber Type and Size on the Heterogeneity of Oxygen Distribution in Exercising Skeletal Muscle

    Science.gov (United States)

    Liu, Gang; Mac Gabhann, Feilim; Popel, Aleksander S.

    2012-01-01

    The process of oxygen delivery from capillary to muscle fiber is essential for a tissue with variable oxygen demand, such as skeletal muscle. Oxygen distribution in exercising skeletal muscle is regulated by convective oxygen transport in the blood vessels, oxygen diffusion and consumption in the tissue. Spatial heterogeneities in oxygen supply, such as microvascular architecture and hemodynamic variables, had been observed experimentally and their marked effects on oxygen exchange had been confirmed using mathematical models. In this study, we investigate the effects of heterogeneities in oxygen demand on tissue oxygenation distribution using a multiscale oxygen transport model. Muscles are composed of different ratios of the various fiber types. Each fiber type has characteristic values of several parameters, including fiber size, oxygen consumption, myoglobin concentration, and oxygen diffusivity. Using experimentally measured parameters for different fiber types and applying them to the rat extensor digitorum longus muscle, we evaluated the effects of heterogeneous fiber size and fiber type properties on the oxygen distribution profile. Our simulation results suggest a marked increase in spatial heterogeneity of oxygen due to fiber size distribution in a mixed muscle. Our simulations also suggest that the combined effects of fiber type properties, except size, do not contribute significantly to the tissue oxygen spatial heterogeneity. However, the incorporation of the difference in oxygen consumption rates of different fiber types alone causes higher oxygen heterogeneity compared to control cases with uniform fiber properties. In contrast, incorporating variation in other fiber type-specific properties, such as myoglobin concentration, causes little change in spatial tissue oxygenation profiles. PMID:23028531

  4. Tissue oxygenation and haemodynamics measurement with spatially resolved NIRS

    Science.gov (United States)

    Zhang, Y.; Scopesi, F.; Serra, G.; Sun, J. W.; Rolfe, P.

    2010-08-01

    We describe the use of Near Infrared Spectroscopy (NIRS) for the non-invasive investigation of changes in haemodynamics and oxygenation of human peripheral tissues. The goal was to measure spatial variations of tissue NIRS oxygenation variables, namely deoxy-haemoglobin (HHb), oxy-haemoglobin (HbO2), total haemoglobin (HbT), and thereby to evaluate the responses of the peripheral circulation to imposed physiological challenges. We present a skinfat- muscle heterogeneous tissue model with varying fat thickness up to 15mm and a Monte Carlo simulation of photon transport within this model. The mean partial path length and the mean photon visit depth in the muscle layer were derived for different source-detector spacing. We constructed NIRS instrumentation comprising of light-emitting diodes (LED) as light sources at four wavelengths, 735nm, 760nm, 810nm and 850nm and sensitive photodiodes (PD) as the detectors. Source-detector spacing was varied to perform measurements at different depths within forearm tissue. Changes in chromophore concentration in response to venous and arterial occlusion were calculated using the modified Lambert-Beer Law. Studies in fat and thin volunteers indicated greater sensitivity in the thinner subjects for the tissue oxygenation measurement in the muscle layer. These results were consistent with those found using Monte Carlo simulation. Overall, the results of this investigation demonstrate the usefulness of the NIRS instrument for deriving spatial information from biological tissues.

  5. Aerobic composting of waste activated sludge: Kinetic analysis for microbiological reaction and oxygen consumption

    International Nuclear Information System (INIS)

    Yamada, Y.; Kawase, Y.

    2006-01-01

    In order to examine the optimal design and operating parameters, kinetics for microbiological reaction and oxygen consumption in composting of waste activated sludge were quantitatively examined. A series of experiments was conducted to discuss the optimal operating parameters for aerobic composting of waste activated sludge obtained from Kawagoe City Wastewater Treatment Plant (Saitama, Japan) using 4 and 20 L laboratory scale bioreactors. Aeration rate, compositions of compost mixture and height of compost pile were investigated as main design and operating parameters. The optimal aerobic composting of waste activated sludge was found at the aeration rate of 2.0 L/min/kg (initial composting mixture dry weight). A compost pile up to 0.5 m could be operated effectively. A simple model for composting of waste activated sludge in a composting reactor was developed by assuming that a solid phase of compost mixture is well mixed and the kinetics for microbiological reaction is represented by a Monod-type equation. The model predictions could fit the experimental data for decomposition of waste activated sludge with an average deviation of 2.14%. Oxygen consumption during composting was also examined using a simplified model in which the oxygen consumption was represented by a Monod-type equation and the axial distribution of oxygen concentration in the composting pile was described by a plug-flow model. The predictions could satisfactorily simulate the experiment results for the average maximum oxygen consumption rate during aerobic composting with an average deviation of 7.4%

  6. Oxygen consumption by hydrazine in long sample lines

    International Nuclear Information System (INIS)

    Chi, Lisheng; Turner, Carl-W.

    2012-09-01

    In nuclear power plants secondary side system dissolved oxygen concentration is a strictly controlled chemistry parameter intended to minimize corrosion and fouling of steam cycle components. Low dissolved oxygen concentration is maintained by a combination of mechanical de-aeration and chemical reaction. The dissolved oxygen concentration in feedwater is monitored by sampling systems to ensure it remains within station specification during operation. The sample lines in a nuclear power plant's sampling system can be from 5 to nearly 200 meters in length, resulting in sample residence times between the take-off point to the analyzer from a few seconds to several minutes, depending on the flow rate and the length of the sample line. For many chemical parameters the residence time is of no concern. For measurements of dissolved oxygen and hydrazine in the secondary coolant, however, for residence times longer than one minute, it is uncertain whether the sample is representative of conditions in the secondary coolant, especially for samples taken from locations where the temperature is well over 100 deg. C. To address this concern, a series of tests were conducted under both warm-up and power operation conditions, respectively, to investigate the effect of temperature, residence time, sample line length, surface area, hydrazine-to-oxygen ratio, and the concentrations of dissolved oxygen and hydrazine on the consumption of oxygen by hydrazine. The test results revealed that dissolved oxygen measurements in CANDU plants are underestimated to various degrees, depending on the sampling system operating conditions. Two distinct types of behaviours are observed for the oxygen removal rate: 1) the percentage removal of dissolved oxygen is invariant with time during the tests, and increases with increasing residence time in the test section, when the reaction between hydrazine and oxygen is better described by a homogenous reaction mechanism, and 2) the percentage oxygen

  7. Preliminary Study on the Oxygen Consumption Dynamics During Brain Hypothermia Resuscitation

    National Research Council Canada - National Science Library

    Ji, Yan

    2001-01-01

    .... Two cooling approaches (the surface cooling and volumetric cooling are applied to analyze the effect of hypothermia on the transient temperature and the oxygen consumption rate in different regions of brain...

  8. Restricting glycolysis impairs brown adipocyte glucose and oxygen consumption

    DEFF Research Database (Denmark)

    Winther, Sally; Isidor, Marie Sophie; Basse, Astrid Linde

    2018-01-01

    During thermogenic activation, brown adipocytes take up large amounts of glucose. In addition, cold stimulation leads to an upregulation of glycolytic enzymes. Here we have investigated the importance of glycolysis for brown adipocyte glucose consumption and thermogenesis. Using siRNA-mediated kn......During thermogenic activation, brown adipocytes take up large amounts of glucose. In addition, cold stimulation leads to an upregulation of glycolytic enzymes. Here we have investigated the importance of glycolysis for brown adipocyte glucose consumption and thermogenesis. Using si...... of glycolysis, i.e., hexokinase 2 (HK2) and pyruvate kinase M (PKM), respectively, decreased glucose uptake and ISO-stimulated oxygen consumption. HK2 knockdown had a more severe effect, which, in contrast to PKM knockdown, could not be rescued by supplementation with pyruvate. Hence, brown adipocytes rely...... on glucose consumption and glycolytic flux to achieve maximum thermogenic output, with glycolysis likely supporting thermogenesis not only by pyruvate formation but also by supplying intermediates for efferent metabolic pathways....

  9. Metabolic cold adaptation of polar fish based on measurements of aerobic oxygen consumption: fact or artefact? Artefact!

    DEFF Research Database (Denmark)

    Steffensen, John Fleng

    2002-01-01

    Whether metabolic cold adaptation in polar fish, based on measurements of aerobic standard metabolic rate, is a fact or an artefact has been a dispute since Holeton asked the question in 1974. So far polar fish had been considered to be metabolically cold adapted because they were reported to have...... a considerably elevated resting oxygen consumption, or standard metabolic rate, compared with oxygen consumption values of tropical or temperate fish extrapolated to similar low polar temperatures. Recent experiments on arctic and Antarctic fish, however, do not show elevated resting aerobic oxygen consumption...

  10. Simultaneous Blood–Tissue Exchange of Oxygen, Carbon Dioxide, Bicarbonate, and Hydrogen Ion

    Science.gov (United States)

    Dash, Ranjan K.; Bassingthwaighte, James B.

    2014-01-01

    A detailed nonlinear four-region (red blood cell, plasma, interstitial fluid, and parenchymal cell) axially distributed convection-diffusion-permeation-reaction-binding computational model is developed to study the simultaneous transport and exchange of oxygen (O2) and carbon dioxide (CO2) in the blood–tissue exchange system of the heart. Since the pH variation in blood and tissue influences the transport and exchange of O2 and CO2 (Bohr and Haldane effects), and since most CO2 is transported as HCO3- (bicarbonate) via the CO2 hydration (buffering) reaction, the transport and exchange of HCO3- and H+ are also simulated along with that of O2 and CO2. Furthermore, the model accounts for the competitive nonlinear binding of O2 and CO2 with the hemoglobin inside the red blood cells (nonlinear O2–CO2 interactions, Bohr and Haldane effects), and myoglobin-facilitated transport of O2 inside the parenchymal cells. The consumption of O2 through cytochrome-c oxidase reaction inside the parenchymal cells is based on Michaelis–Menten kinetics. The corresponding production of CO2 is determined by respiratory quotient (RQ), depending on the relative consumption of carbohydrate, protein, and fat. The model gives a physiologically realistic description of O2 transport and metabolism in the microcirculation of the heart. Furthermore, because model solutions for tracer transients and steady states can be computed highly efficiently, this model may be the preferred vehicle for routine data analysis where repetitive solutions and parameter optimization are required, as is the case in PET imaging for estimating myocardial O2 consumption. PMID:16775761

  11. Real-time changes in brain tissue oxygen during endovascular treatment of cerebral vasospasm

    DEFF Research Database (Denmark)

    Rasmussen, Rune; Bache, Søren; Stavngaard, Trine

    2015-01-01

    pressure (PtiO₂) in target parenchyma. However, during the intervention, dangerously low levels of brain tissue oxygen, leading to cerebral infarction, may occur. Thus, no clinical improvement was seen in two of the patients and a dramatic worsening was observed in the third patient. Because the decrease...... minute-by-minute changes in brain tissue oxygen during balloon angioplasty and intraarterial administration of vasodilators in three patients.Our results confirm that endovascular intervention is capable of not only resolving angiographic vasospasm, but also of normalizing values of brain tissue oxygen...... in brain tissue oxygen was seen after administration of vasopressor agents, this may be a contributing factor....

  12. 2,3-diphosphoglycerate and oxygen supply of tissues in cardiosurgical diabetics.

    Science.gov (United States)

    Beder, I; Mataseje, A; Kittova, M; Carsky, J; Fischer, V

    2005-01-01

    The oxygen supply of tissues was studied under haemodilution in cardiosurgical diabetic and non-diabetic patients. There were 30 cardiosurgery patients examined, 9 were patients with diabetes mellitus.and 21 were non-diabetic patients. Venous blood samples were examined preoperatively, intraoperatively and for 10 days after operation. Haemodilution caused a decrease in haematocrit values in both groups, as well as in the erythrocyte count and haemoglobin concentration. Postoperatively, an increase was recorded in haematological values in both groups, the values had not reached the baseline even by 10th day. Increased values of blood oxygen saturation and partial oxygen pressure during the operation returned to baseline in both groups in the postoperative days. Values of p50 did not change in both groups for the period of observation. The obtained data suggest that sufficient oxygen supply to tissues was ensured under haemodilution in cardiosurgery patients in both groups. These results confirm multifactorial dependence of blood oxygen transport to tissues (Tab. 1, Fig. 3, Ref. 13).

  13. Noninvasive assessment of tissue-engineered graft viability by oxygen-17 magnetic resonance spectroscopy.

    Science.gov (United States)

    Einstein, Samuel A; Weegman, Bradley P; Kitzmann, Jennifer P; Papas, Klearchos K; Garwood, Michael

    2017-05-01

    Transplantation of macroencapsulated tissue-engineered grafts (TEGs) is being investigated as a treatment for type 1 diabetes, but there is a critical need to measure TEG viability both in vitro and in vivo. Oxygen deficiency is the most critical issue preventing widespread implementation of TEG transplantation and delivery of supplemental oxygen (DSO) has been shown to enhance TEG survival and function in vivo. In this study, we demonstrate the first use of oxygen-17 magnetic resonance spectroscopy ( 17 O-MRS) to measure the oxygen consumption rate (OCR) of TEGs and show that in addition to providing therapeutic benefits to TEGs, DSO with 17 O 2 can also enable measurements of TEG viability. Macroencapsulated TEGs containing βTC3 murine insulinoma cells were prepared with three fractional viabilities and provided with 17 O 2 . Cellular metabolism of 17 O 2 into nascent mitochondrial water (H 2 17 O) was monitored by 17 O-MRS and, from the measured data, OCR was calculated. For comparison, OCR was simultaneously measured on a separate, but equivalent sample of cells with a well-established stirred microchamber technique. OCR measured by 17 O-MRS agreed well with measurements made in the stirred microchamber device. These studies confirm that 17 O-MRS can quantify TEG viability noninvasively. Biotechnol. Bioeng. 2017;114: 1118-1121. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Hypoxic Response of Tumor Tissues in a Microfluidic Environment

    Science.gov (United States)

    Morshed, Adnan; Dutta, Prashanta

    2017-11-01

    Inside a tumor tissue, cells growing further away from the blood vessel often suffer from low oxygen levels known as hypoxia. Cancer cells have shown prolonged survival in hostile hypoxic conditions by sharply changing the cellular metabolism. In this work, different stages of growth of the tumor tissue and the oxygen transport across the tissue are investigated. The tissue was modeled as a contiguous block of cells inside a microfluidic environment with nutrient transport through advection and diffusion. While oxygen uptake inside the tissue is through diffusion, ascorbate transport from the extracellular medium is addressed by a concentration dependent uptake model. By varying the experimentally observed oxygen consumption rate, different types of cancer cells and their normoxic and hypoxic stages were studied. Even when the oxygen supply in the channel is maintained at normoxic levels, our results show the onset of hypoxia within minutes inside the cellblock. Interestingly, modeled cell blocks with and without a structured basal layer showed less than 5% variation in hypoxic response in chronic hypoxia. Results also indicate that the balance of cell survival and growth are affected by the flow rate of nutrients and the oxygen consumption rate. This work was supported in part by the National Science Foundation under Grant No. DMS 1317671.

  15. Non-invasive monitoring of tissue oxygenation during laparoscopic donor nephrectomy

    Directory of Open Access Journals (Sweden)

    Kirk Allan D

    2008-04-01

    Full Text Available Abstract Background Standard methods for assessment of organ viability during surgery are typically limited to visual cues and tactile feedback in open surgery. However, during laparoscopic surgery, these processes are impaired. This is of particular relevance during laparoscopic renal donation, where the condition of the kidney must be optimized despite considerable manipulation. However, there is no in vivo methodology to monitor renal parenchymal oxygenation during laparoscopic surgery. Methods We have developed a method for the real time, in vivo, whole organ assessment of tissue oxygenation during laparoscopic nephrectomy to convey meaningful biological data to the surgeon during laparoscopic surgery. We apply the 3-CCD (charge coupled device camera to monitor qualitatively renal parenchymal oxygenation with potential real-time video capability. Results We have validated this methodology in a porcine model across a range of hypoxic conditions, and have then applied the method during clinical laparoscopic donor nephrectomies during clinically relevant pneumoperitoneum. 3-CCD image enhancement produces mean region of interest (ROI intensity values that can be directly correlated with blood oxygen saturation measurements (R2 > 0.96. The calculated mean ROI intensity values obtained at the beginning of the laparoscopic nephrectomy do not differ significantly from mean ROI intensity values calculated immediately before kidney removal (p > 0.05. Conclusion Here, using the 3-CCD camera, we qualitatively monitor tissue oxygenation. This means of assessing intraoperative tissue oxygenation may be a useful method to avoid unintended ischemic injury during laparoscopic surgery. Preliminary results indicate that no significant changes in renal oxygenation occur as a result of pneumoperitoneum.

  16. Excess post-hypoxic oxygen consumption is independent from lactate accumulation in two cyprinid fishes

    DEFF Research Database (Denmark)

    Genz, J.; Jyde, M.B.; Svendsen, Jon Christian

    2013-01-01

    the increase in oxygen consumption in fish required following strenuous exercise or low environmental oxygen availability has been frequently considered, the primary contributing mechanism remains unknown. This study utilized the close relationship but strongly divergent physiology between C. carpio and C...

  17. Noninvasive in vivo optical characterization of blood flow and oxygen consumption in the superficial plexus of skin

    Science.gov (United States)

    Liasi, Faezeh Talebi; Samatham, Ravikant; Jacques, Steven L.

    2017-11-01

    Assessing the metabolic activity of a tissue, whether normal, damaged, aged, or pathologic, is useful for diagnosis and evaluating the effects of drugs. This report describes a handheld optical fiber probe that contacts the skin, applies pressure to blanch the superficial vascular plexus of the skin, then releases the pressure to allow refill of the plexus. The optical probe uses white light spectroscopy to record the time dynamics of blanching and refilling. The magnitude and dynamics of changes in blood content and hemoglobin oxygen saturation yield an estimate of the oxygen consumption rate (OCR) in units of attomoles per cell per second. The average value of OCR on nine forearm sites on five subjects was 10±5 (amol/cell/s). This low-cost, portable, rapid, noninvasive optical probe can characterize the OCR of a skin site to assess the metabolic activity of the epidermis or a superficial lesion.

  18. Diffuse reflectance spectroscopy for the measurement of tissue oxygen saturation

    International Nuclear Information System (INIS)

    Sircan-Kucuksayan, A; Canpolat, M; Uyuklu, M

    2015-01-01

    Tissue oxygen saturation (StO 2 ) is a useful parameter for medical applications. A spectroscopic method has been developed to detect pathologic tissues, due to a lack of normal blood circulation, by measuring StO 2 . In this study, human blood samples with different levels of oxygen saturation have been prepared and spectra were acquired using an optical fiber probe to investigate the correlation between the oxygen saturation levels and the spectra. A linear correlation between the oxygen saturation and ratio of the intensities (760 nm to 790 nm) of the spectra acquired from blood samples has been found. In a validation study, oxygen saturations of the blood samples were estimated from the spectroscopic measurements with an error of 2.9%. It has also been shown that the linear dependence between the ratio and the oxygen saturation of the blood samples was valid for the blood samples with different hematocrits. Spectra were acquired from the forearms of 30 healthy volunteers to estimate StO 2 prior to, at the beginning of, after 2 min, and at the release of total vascular occlusion. The average StO 2 of a forearm before and after the two minutes occlusion was significantly different. The results suggested that optical reflectance spectroscopy is a sensitive method to estimate the StO 2 levels of human tissue. The technique developed to measure StO 2 has potential to detect ischemia in real time. (paper)

  19. Regional myocardial oxygen consumption estimated by carbon-11 acetate and positron emission tomography before and after repetitive ischemia

    DEFF Research Database (Denmark)

    Kofoed, K F; Hansen, P R; Holm, S

    2000-01-01

    alternating with 5 minutes of reperfusion. Before and after repetitive coronary occlusions, oxygen 15 water/oxygen 15 carbon monoxide (blood flow), and 11C-acetate (oxygen consumption) PET imaging were performed. Left ventricular regional systolic wall thickening was measured with sonomicrometry. Forty......BACKGROUND: Preserved myocardial oxygen consumption estimated by carbon 11-acetate and positron emission tomography (PET) in myocardial regions with chronic but reversibly depressed contractile function in patients with ischemic heart disease have been suggested to be caused by repeated short......-five minutes after the ischemic episodes, systolic ventricular wall thickening was decreased by 90%, whereas myocardial blood flow was reduced by 21% compared with baseline values (P consumption was unaltered compared with the baseline level...

  20. Regional myocardial oxygen consumption determined noninvasively in humans with [1-11C]acetate and dynamic positron tomography

    International Nuclear Information System (INIS)

    Armbrecht, J.J.; Buxton, D.B.; Brunken, R.C.; Phelps, M.E.; Schelbert, H.R.

    1989-01-01

    Experimental studies of animals have previously demonstrated the validity of [1-11C]acetate as a tracer of oxidative metabolism for use with positron emission tomography. The present study was undertaken to define in normal human volunteers the relation between myocardial clearance kinetics of [1-11C]acetate, and the rate-pressure product as an index of myocardial oxygen consumption. Twenty-two studies were performed of 12 volunteers. The rate-pressure product was increased with continuous supine bicycle exercise in six studies. Of the 16 resting studies, seven were performed in the fasted state and nine following an oral glucose load, to define possible effects of substrate availability on the tracer-tissue kinetics. Myocardial tissue time-activity curves were biexponential. Clearance of activity was homogeneous throughout the myocardium. The rate constants k1, obtained from biexponential fitting, and kmono, obtained by monoexponential fitting of the initial linear portion of the time-activity curves, correlated well with the rate-pressure product. Although the correlation coefficient was higher for k1 than for kmono (0.95 vs. 0.91), analysis on a sectorial basis showed less regional variability in kmono. This suggests that kmono, which is more practical than k1 because it requires shorter acquisition times, may be more clinically and experimentally useful for detection of myocardial segments with abnormal oxygen consumption. Overall, changes in myocardial substrate supply were without significant effect on the relation between the rate constants (k1 and kmono) and the rate-pressure product, although a small decrease in kmono/rate-pressure product was observed following oral glucose by paired analysis in four subjects

  1. Design of a tissue oxygenation monitor and verification on human skin

    Science.gov (United States)

    Liu, Hongyuan; Kohl-Bareis, Matthias; Huang, Xiabing

    2011-07-01

    We report the design of a tissue oxygen and temperature monitor. The non-invasive, fibre based device monitors tissue haemoglobin (Hb) and oxygen saturation (SO2) and is based on white-light reflectance spectroscopy.Visible light with wavelengths in the 500 - 650nm range is utilized. The spectroscopic algorithm takes into account the tissue scattering and melanin absorption for the calculation of tissue haemoglobin concentration and oxygen saturation. The monitor can probe superficial layers of tissue with a high spatial resolution (mm3) and a high temporal resolution (40 Hz). It provides an accurate measurement with the accuracy of SO2 at 2 % and high reliability with less than 2 % variation of continuous SO2 measurement over 12 hours. It can also form a modular system when used in conjunction with a laser Doppler monitor, enabling simultaneous measurements of Hb, SO2 and blood flow. We found experimentally that the influence of the source-detector separation on the haemoglobin parameters is small. This finding is discussed by Monte Carlo simulations for the depth sensitivity profile. The influence of probe pressure and the skin pigmentation on the measurement parameters are assessed before in vivo experimental data is presented. The combination with laser Doppler flowmetry demonstrates the importance of a measurement of both the haemoglobin and the blood flow parameters for a full description of blood tissue perfusion. This is discussed in experimental data on human skin during cuff occlusion and after hyperemisation by a pharmacological cream. Strong correlation is observed between tissue oxygen (Hb and SO2) and blood flow measurements.

  2. Using micro-patterned sensors and cell self-assembly for measuring the oxygen consumption rate of single cells

    International Nuclear Information System (INIS)

    Etzkorn, James R; Parviz, Babak A; Wu, Wen-Chung; Tian, Zhiyuan; Kim, Prince; Jang, Sei-Hum; Jen, Alex K-Y; Meldrum, Deirdre R

    2010-01-01

    We present a method for self-assembling arrays of live single cells on a glass chip using a photopatternable polymer to form micro-traps. We have studied the single-cell self-assembly method and optimized the process to obtain a 52% yield of single-trapped cells. We also report a method to measure the oxygen consumption rate of a single cell using micro-patterned sensors. These molecular oxygen sensors were fabricated around each micro-trap allowing optical interrogation of oxygen concentration in the immediate environment of the trapped cell. Micromachined micro-wells were then used to seal the trap, sensor and cell in order to determine the oxygen consumption rate of single cells. These techniques reported here add to the collection of tools for performing 'singe-cell' biology. An oxygen consumption rate of 1.05 ± 0.28 fmol min −1 was found for a data set consisting of 25 single A549 cells.

  3. Renal Tissue Oxygenation in Essential Hypertension and Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Menno Pruijm

    2013-01-01

    Full Text Available Animal studies suggest that renal tissue hypoxia plays an important role in the development of renal damage in hypertension and renal diseases, yet human data were scarce due to the lack of noninvasive methods. Over the last decade, blood oxygenation level-dependent magnetic resonance imaging (BOLD-MRI, detecting deoxyhemoglobin in hypoxic renal tissue, has become a powerful tool to assess kidney oxygenation noninvasively in humans. This paper provides an overview of BOLD-MRI studies performed in patients suffering from essential hypertension or chronic kidney disease (CKD. In line with animal studies, acute changes in cortical and medullary oxygenation have been observed after the administration of medication (furosemide, blockers of the renin-angiotensin system or alterations in sodium intake in these patient groups, underlining the important role of renal sodium handling in kidney oxygenation. In contrast, no BOLD-MRI studies have convincingly demonstrated that renal oxygenation is chronically reduced in essential hypertension or in CKD or chronically altered after long-term medication intake. More studies are required to clarify this discrepancy and to further unravel the role of renal oxygenation in the development and progression of essential hypertension and CKD in humans.

  4. Correlating two-photon excited fluorescence imaging of breast cancer cellular redox state with seahorse flux analysis of normalized cellular oxygen consumption

    Science.gov (United States)

    Hou, Jue; Wright, Heather J.; Chan, Nicole; Tran, Richard; Razorenova, Olga V.; Potma, Eric O.; Tromberg, Bruce J.

    2016-06-01

    Two-photon excited fluorescence (TPEF) imaging of the cellular cofactors nicotinamide adenine dinucleotide and oxidized flavin adenine dinucleotide is widely used to measure cellular metabolism, both in normal and pathological cells and tissues. When dual-wavelength excitation is used, ratiometric TPEF imaging of the intrinsic cofactor fluorescence provides a metabolic index of cells-the "optical redox ratio" (ORR). With increased interest in understanding and controlling cellular metabolism in cancer, there is a need to evaluate the performance of ORR in malignant cells. We compare TPEF metabolic imaging with seahorse flux analysis of cellular oxygen consumption in two different breast cancer cell lines (MCF-7 and MDA-MB-231). We monitor metabolic index in living cells under both normal culture conditions and, for MCF-7, in response to cell respiration inhibitors and uncouplers. We observe a significant correlation between the TPEF-derived ORR and the flux analyzer measurements (R=0.7901, p<0.001). Our results confirm that the ORR is a valid dynamic index of cell metabolism under a range of oxygen consumption conditions relevant for cancer imaging.

  5. Hemodynamic parameters change earlier than tissue oxygen tension in hemorrhage.

    Science.gov (United States)

    Pestel, Gunther J; Fukui, Kimiko; Kimberger, Oliver; Hager, Helmut; Kurz, Andrea; Hiltebrand, Luzius B

    2010-05-15

    Untreated hypovolemia results in impaired outcome. This study tests our hypothesis whether general hemodynamic parameters detect acute blood loss earlier than monitoring parameters of regional tissue beds. Eight pigs (23-25 kg) were anesthetized and mechanically ventilated. A pulmonary artery catheter and an arterial catheter were inserted. Tissue oxygen tension was measured with Clark-type electrodes in the jejunal and colonic wall, in the liver, and subcutaneously. Jejunal microcirculation was assessed by laser Doppler flowmetry (LDF). Intravascular volume was optimized using difference in pulse pressure (dPP) to keep dPP below 13%. Sixty minutes after preparation, baseline measurements were taken. At first, 5% of total blood volume was withdrawn, followed by another 5% increment, and then in 10% increments until death. After withdrawal of 5% of estimated blood volume, dPP increased from 6.1% +/- 3.0% to 20.8% +/- 2.7% (P < 0.01). Mean arterial pressure (MAP), mean pulmonary artery pressure (PAP) and pulmonary artery occlusion pressure (PAOP) decreased with a blood loss of 10% (P < 0.01). Cardiac output (CO) changed after a blood loss of 20% (P < 0.05). Tissue oxygen tension in central organs, and blood flow in the jejunal muscularis decreased (P < 0.05) after a blood loss of 20%. Tissue oxygen tension in the skin, and jejunal mucosa blood flow decreased (P < 0.05) after a blood loss of 40% and 50%, respectively. In this hemorrhagic pig model systemic hemodynamic parameters were more sensitive to detect acute hypovolemia than tissue oxygen tension measurements or jejunal LDF measurements. Acute blood loss was detected first by dPP. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  6. High-spatial-resolution mapping of the oxygen concentration in cortical tissue (Conference Presentation)

    Science.gov (United States)

    Jaswal, Rajeshwer S.; Yaseen, Mohammad A.; Fu, Buyin; Boas, David A.; Sakadžic, Sava

    2016-03-01

    Due to a lack of imaging tools for high-resolution imaging of cortical tissue oxygenation, the detailed maps of the oxygen partial pressure (PO2) around arterioles, venules, and capillaries remain largely unknown. Therefore, we have limited knowledge about the mechanisms that secure sufficient oxygen delivery in microvascular domains during brain activation, and provide some metabolic reserve capacity in diseases that affect either microvascular networks or the regulation of cerebral blood flow (CBF). To address this challenge, we applied a Two-Photon PO2 Microscopy to map PO2 at different depths in mice cortices. Measurements were performed through the cranial window in the anesthetized healthy mice as well as in the mouse models of microvascular dysfunctions. In addition, microvascular morphology was recorded by the two-photon microscopy at the end of each experiment and subsequently segmented. Co-registration of the PO2 measurements and exact microvascular morphology enabled quantification of the tissue PO2 dependence on distance from the arterioles, capillaries, and venules at various depths. Our measurements reveal significant spatial heterogeneity of the cortical tissue PO2 distribution that is dominated by the high oxygenation in periarteriolar spaces. In cases of impaired oxygen delivery due to microvascular dysfunction, significant reduction in tissue oxygenation away from the arterioles was observed. These tissue domains may be the initial sites of cortical injury that can further exacerbate the progression of the disease.

  7. Reaction of oxygen with the respiratory chain in cells and tissues.

    Science.gov (United States)

    Chance, B

    1965-09-01

    This paper considers the way in which the oxygen reaction described by Dr. Nicholls and the ADP control reactions described by Dr. Racker could cooperate to establish a purposeful metabolic control phenomenon in vivo. This has required an examination of the kinetic properties of the respiratory chain with particular reference to methods for determinations of oxygen affinity (K(m)). The constant parameter for tissue respiration is k(1), the velocity constant for the reaction of oxygen with cytochrome oxidase. Not only is this quantity a constant for a particular tissue or mitochondria; it appears to vary little over a wide range of biological material, and for practical purposes a value of 5 x 10(7) at 25 degrees close to our original value (20) is found to apply with adequate accuracy for calculation of K(m) for mammalia. The quantity which will depend upon the tissue and its metabolic state is the value of K(m) itself, and K(m) may be as large as 0.5 microM and may fall to 0.05 microM or less in resting, controlled, or inhibited states. The control characteristic for ADP may depend upon the electron flux due to the cytochrome chain (40); less ADP is required to activate the slower electron transport at lower temperatures than at higher temperatures. The affinity constants for ADP control appear to be less dependent upon substrate supplied to the system. The balance of ADP and oxygen control in vivo is amply demonstrated experimentally and is dependent on the oxygen concentration as follows. In the presence of excess oxygen, control may be due to the ADP or phosphate (or substrate), and the kinetics of oxygen utilization will be independent of the oxygen concentration. As the oxygen concentration is diminished, hemoglobin becomes disoxygenated, deep gradients of oxygen concentration develop in the tissue, and eventually cytochrome oxidase becomes partially and then completely reduced. DPN at this point will become reduced and the electron flow diminished. The rate

  8. Metabolic Prosthesis for Oxygenation of Ischemic Tissue

    Energy Technology Data Exchange (ETDEWEB)

    Greenbaum, Elias [ORNL

    2009-01-01

    This communication discloses new ideas and preliminary results on the development of a "metabolic prosthesis" for local oxygenation of ischemic tissue under physiological neutral conditions. We report for the first time the selective electrolysis of physiological saline by repetitively pulsed charge-limited electrolysis for the production of oxygen and suppression of free chlorine. For example, using 800 A amplitude current pulses and <200 sec pulse durations, we demonstrated prompt oxygen production and delayed chlorine production at the surface of a shiny 0.85 mm diameter spherical platinum electrode. The data, interpreted in terms of the ionic structure of the electric double layer, suggest a strategy for in situ production of metabolic oxygen via a new class of "smart" prosthetic implants for dealing with ischemic disease such as diabetic retinopathy. We also present data indicating that drift of the local pH of the oxygenated environment can be held constant using a feedback-controlled three electrode electrolysis system that chooses anode and cathode pair based on pH data provided by local microsensors. The work is discussed in the context of diabetic retinopathy since surgical techniques for multielectrode prosthetic implants aimed at retinal degenerative diseases have been developed.

  9. Cerebral interstitial tissue oxygen tension, pH, HCO3, CO2.

    Science.gov (United States)

    Charbel, F T; Hoffman, W E; Misra, M; Hannigan, K; Ausman, J I

    1997-10-01

    There are many techniques for monitoring the injured brain following trauma, subarachnoid hemorrhage, or surgery. It is thought that the major determinants for recovery of injured cerebral tissue are oxygen, glucose delivery, and the clearance of metabolites. These factors, at optimal levels, are probably responsible for the regaining of neuronal functions. These parameters are in turn dependent on the tissue's blood flow and metabolism. We have been using a single, compact, polyethylene sensor, the Paratrend 7 for the measurement of cerebral oxygen tension, CO2, pH, and temperature. This sensor is designed for continuous blood gas analysis to aid in monitoring neurosurgical patients, both during surgery and in the intensive care unit. Using the Paratrend 7 sensor, we found the normal range of values to be: PO2 33 +/- 11 mm Hg; PCO2 48 +/- 7 mm Hg; pH 7.19 +/- 0.11. Critical measurements are considered to be tissue PO2 60 mm Hg, and pH effective method of measuring tissue cerebral oxygen tension, along with carbon dioxide levels, pH, and temperature.

  10. Implementing oxygen control in chip-based cell and tissue culture systems.

    Science.gov (United States)

    Oomen, Pieter E; Skolimowski, Maciej D; Verpoorte, Elisabeth

    2016-09-21

    Oxygen is essential in the energy metabolism of cells, as well as being an important regulatory parameter influencing cell differentiation and function. Interest in precise oxygen control for in vitro cultures of tissues and cells continues to grow, especially with the emergence of the organ-on-a-chip and the desire to emulate in vivo conditions. This was recently discussed in this journal in a Critical Review by Brennan et al. (Lab Chip (2014). DOI: ). Microfluidics can be used to introduce flow to facilitate nutrient supply to and waste removal from in vitro culture systems. Well-defined oxygen gradients can also be established. However, cells can quickly alter the oxygen balance in their vicinity. In this Tutorial Review, we expand on the Brennan paper to focus on the implementation of oxygen analysis in these systems to achieve continuous monitoring. Both electrochemical and optical approaches for the integration of oxygen monitoring in microfluidic tissue and cell culture systems will be discussed. Differences in oxygen requirements from one organ to the next are a challenging problem, as oxygen delivery is limited by its uptake into medium. Hence, we discuss the factors determining oxygen concentrations in solutions and consider the possible use of artificial oxygen carriers to increase dissolved oxygen concentrations. The selection of device material for applications requiring precise oxygen control is discussed in detail, focusing on oxygen permeability. Lastly, a variety of devices is presented, showing the diversity of approaches that can be employed to control and monitor oxygen concentrations in in vitro experiments.

  11. Oxygen delivery and consumption during on-bypass cabg in htea and central analgesia

    Directory of Open Access Journals (Sweden)

    Віталій Олексійович Собокарь

    2015-04-01

    Full Text Available Objective. Despite some advantages, the use of high thoracic epidural anesthesia (HTEA during on-bypass cardiac surgery may be discouraged by fear of adverse hemodynamic effects and associated disturbances of oxygen delivery.Aim. To compare oxygen delivery and consumption during on-bypass coronary artery bypass grafting in settings of HTEA and central analgesia (CA.Methods. 132 patients were assigned into two groups – study group (n=85, where the surgery was performed under HTEA and control group (n=47 - where the surgery was carried out under CA. Using data of transesophageal cardiac ultrasound and blood oximetry blood oxygen delivery (DO2, oxygen consumption (VO2, oxygen extraction coefficient (CEO2 were calculated at four stages of the surgery: after induction, sternotomy, cardiopulmonary bypass and at the end of the surgery.Results. In the initial stages of the surgery DO2 and VO2 were reduced relative to reference values with a tendency to increase in the course of the operation and achievement of the normal or supernormal level (VO2, study group in the final stage. The decrease was due to moderate hypodynamic circulation and hemodilution. After sternotomy DO2 in the study group was higher than that of the control: 356 (279; 458 vs 317±89 ml·min-1·m-2, (р=0,021. After cardiopulmonary bypass oxygen saturation of venous blood (SatvO2, in the study group was 71 ± 9 % compared with 68 ± 10 % in the control group. At the end of the surgery SatvO2 in the study group was 71 (66; 75 vs 59 (53; 70 % in the control (р = 0,005 and oxygen tension of venous blood (РvО2 was correspondingly 39 ± 6 and 33 (30; 38 mm Hg (р = 0,027. Despite the decrease in DO2 and VO2, oxygen extraction indices - CEO2, pvO2, SatvO2, and remained within the reference range, except that of the control group at the end of the surgery. Furthermore, at no stage lactate rise or acid-base deviations was observed in the both groups.Conclusions. In patients operated

  12. Step Test: a method for evaluating maximum oxygen consumption to determine the ability kind of work among students of medical emergencies.

    Science.gov (United States)

    Heydari, Payam; Varmazyar, Sakineh; Nikpey, Ahmad; Variani, Ali Safari; Jafarvand, Mojtaba

    2017-03-01

    Maximum oxygen consumption shows the maximum oxygen rate of muscle oxygenation that is acceptable in many cases, to measure the fitness between person and the desired job. Given that medical emergencies are important, and difficult jobs in emergency situations require people with high physical ability and readiness for the job, the aim of this study was to evaluate the maximum oxygen consumption, to determine the ability of work type among students of medical emergencies in Qazvin in 2016. This study was a descriptive - analytical, and in cross-sectional type conducted among 36 volunteer students of medical emergencies in Qazvin in 2016. After necessary coordination for the implementation of the study, participants completed health questionnaires and demographic characteristics and then the participants were evaluated with step tests of American College of Sport Medicine (ACSM). Data analysis was done by SPSS version 18 and U-Mann-Whitney tests, Kruskal-Wallis and Pearson correlation coefficient. Average of maximum oxygen consumption of the participants was estimated 3.15±0.50 liters per minute. 91.7% of medical emergencies students were selected as appropriate in terms of maximum oxygen consumption and thus had the ability to do heavy and too heavy work. Average of maximum oxygen consumption evaluated by the U-Mann-Whitney test and Kruskal-Wallis, had significant relationship with age (p<0.05) and weight groups (p<0.001). There was a significant positive correlation between maximum oxygen consumption with weight and body mass index (p<0.001). The results of this study showed that demographic variables of weight and body mass index are the factors influencing the determination of maximum oxygen consumption, as most of the students had the ability to do heavy, and too heavy work. Therefore, people with ability to do average work are not suitable for medical emergency tasks.

  13. Association of intraoperative tissue oxygenation with suspected risk factors for tissue hypoxia.

    Science.gov (United States)

    Spruit, R J; Schwarte, L A; Hakenberg, O W; Scheeren, T W L

    2013-10-01

    Tissue hypoxia may cause organ dysfunction, but not much is known about tissue oxygenation in the intraoperative setting. We studied microcirculatory tissue oxygen saturation (StO₂) to determine representative values for anesthetized patients undergoing urological surgery and to test the hypothesis that StO₂ is associated with known perioperative risk factors for morbidity and mortality, conventionally monitored variables, and hypotension requiring norepinephrine. Using near-infrared spectroscopy, we measured StO₂ on the thenar eminence in 160 patients undergoing open urological surgery under general anesthesia (FiO2 0.35-0.4), and calculated its correlations with age, risk level for general perioperative complications and mortality (high if age ≥70 and procedure is radical cystectomy), mean arterial pressure (MAP), hemoglobin concentration (Hb), central venous oxygen saturation (ScvO₂), and norepinephrine use. The time averaged StO₂ was 86 ± 6 % (mean ± SD). In the multivariate analysis, Hb [standardized coefficient (SC) 0.21, p = 0.003], ScvO₂ (SC 0.53, p SStO₂ was partly dependent on MAP only when this was below 65 mmHg (lowest MAP SC 0.20, p = 0.006, MAP area under the curve <65 mmHg SC 0.03, p = 0.02). Finally, StO₂ was slightly lower in patients requiring norepinephrine (85 ± 6 vs. 89 ± 6 %, p = 0.001). Intraoperative StO₂ in urological patients was comparable to that of healthy volunteers breathing room air as reported in the literature and correlated with known perioperative risk factors. Further research should investigate its association with outcome and the effect of interventions aimed at optimizing StO₂.

  14. Consumption and efficiency of a passenger car with a hydrogen/oxygen PEFC based hybrid electric drivetrain

    Energy Technology Data Exchange (ETDEWEB)

    Buechi, F.N.; Dietrich, P.; Tsukada, A.; Koetz, R.; Freunberger, S.A. [Paul Scherrer Institut, Electrochemistry Laboratory, CH-5232 Villigen PSI (Switzerland); Paganelli, G.; Laurent, D.; Varenne, P.; Delfino, A.; Magne, P.A.; Walser, D.; Olsommer, D. [Conception et Developpement Michelin, Route Andre-Piller 30, CH-1762 Givisiez (Switzerland)

    2007-08-15

    The main factors for reducing the consumption of a vehicle are reduction of curb weight, air drag and increase in the drivetrain efficiency. Highly efficient drivetrains can be developed based on PEFC technology and curb weight may be limited by an innovative vehicle construction. In this paper, data on consumption and efficiency of a four-place passenger vehicle with a curb weight of 850 kg and an H{sub 2}/O{sub 2} fed PEFC/Supercap hybrid electric powertrain are presented. Hydrogen consumption in the New European Driving Cycle is 0.67 kg H{sub 2}/100 km, which corresponds to a gasoline equivalent consumption of 2.5 l/100 km. When including the energy needed to supply pure oxygen, the calculated consumption increases from 0.67 to 0.69-0.79 kg H{sub 2}/100 km, depending on the method of oxygen production. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  15. Modeling the oxygen microheterogeneity of tumors for photodynamic therapy dosimetry

    Science.gov (United States)

    Pogue, Brian W.; Paulsen, Keith D.; O'Hara, Julia A.; Hoopes, P. Jack; Swartz, Harold

    2000-03-01

    Photodynamic theory of tumors uses optical excitation of a sensitizing drug within tissue to produce large deposits of singlet oxygen, which are thought to ultimately cause the tumor destruction. Predicting dose deposition of singlet oxygen in vivo is challenging because measurement of this species in vivo is not easily achieved. But it is possible to follow the concentration of oxygen in vivo, and so measuring the oxygen concentration transients during PDT may provide a viable method of estimating the delivered dose of singlet oxygen. However modeling the microscopic heterogeneity of the oxygen distribution within a tumor is non-trivial, and predicting the microscopic dose deposition requires further study, but this study present the framework and initial calibration needed or modeling oxygen transport in complex geometries. Computational modeling with finite elements provides a versatile structure within which oxygen diffusion and consumption can be modeled within realistic tissue geometries. This study develops the basic tools required to simulate a tumor region, and examines the role of (i) oxygen supply and consumption rates, (ii) inter- capillary spacing, (iii) photosensitizer distribution, and (iv) differences between simulated tumors and those derived directly from histology. The result of these calculations indicate that realistic tumor tissue capillary networks can be simulated using the finite element method, without excessive computational burden for 2D regions near 1 mm2, and 3D regions near 0.1mm3. These simulations can provide fundamental information about tissue and ways to implement appropriate oxygen measurements. These calculations suggest that photodynamic therapy produces the majority of singlet oxygen in and near the blood vessels, because these are the sites of highest oxygen tension. These calculations support the concept that tumor vascular regions are the major targets for PDT dose deposition.

  16. Improvement of Brain Tissue Oxygenation by Inhalation of Carbogen

    DEFF Research Database (Denmark)

    Ashkanian, M.; Borghammer, P.; Gjedde, A.

    2008-01-01

    tomography (PET) to measure CBF and cerebral metabolic rate of oxygen (CMRO(2)) during inhalation of test gases (O(2), CO(2), carbogen and atmospheric air) in 10 healthy volunteers. Arterial blood gases were recorded during administration of each gas. The data were analyzed with volume-of-interest and voxel...... is sufficient for optimal oxygenation of healthy brain tissue, whereas carbogen induces concomitant increases of CBF and Sa(O2)....

  17. Effects of salinity and pH on the activity and oxygen consumption of Brachionus plicatilis (rotatoria)

    Energy Technology Data Exchange (ETDEWEB)

    Epp, R.W.; Winston, P.W.

    1978-01-01

    Activity and respiratory rates of the rotifer, Brachionus plicatilis, were determined following exposure to pH values of 6.5, 7.5 and 8.5 and to concentrations of 10, 50 and 100 mosm. Changes in the hydrogen-ion concentration had no detectable effect on either activity or metabolism. Acute reduction in osmolarity of the medium resulted in a reduction in oxygen consumption and activity. Both activity and oxygen consumption increased upon acclimatization to osmolarities of 50 and 100 mosm.

  18. Event-Associated Oxygen Consumption Rate Increases ca. Five-Fold When Interictal Activity Transforms into Seizure-Like Events In Vitro

    Directory of Open Access Journals (Sweden)

    Karl Schoknecht

    2017-09-01

    Full Text Available Neuronal injury due to seizures may result from a mismatch of energy demand and adenosine triphosphate (ATP synthesis. However, ATP demand and oxygen consumption rates have not been accurately determined, yet, for different patterns of epileptic activity, such as interictal and ictal events. We studied interictal-like and seizure-like epileptiform activity induced by the GABAA antagonist bicuculline alone, and with co-application of the M-current blocker XE-991, in rat hippocampal slices. Metabolic changes were investigated based on recording partial oxygen pressure, extracellular potassium concentration, and intracellular flavine adenine dinucleotide (FAD redox potential. Recorded data were used to calculate oxygen consumption and relative ATP consumption rates, cellular ATP depletion, and changes in FAD/FADH2 ratio by applying a reactive-diffusion and a two compartment metabolic model. Oxygen-consumption rates were ca. five times higher during seizure activity than interictal activity. Additionally, ATP consumption was higher during seizure activity (~94% above control than interictal activity (~15% above control. Modeling of FAD transients based on partial pressure of oxygen recordings confirmed increased energy demand during both seizure and interictal activity and predicted actual FAD autofluorescence recordings, thereby validating the model. Quantifying metabolic alterations during epileptiform activity has translational relevance as it may help to understand the contribution of energy supply and demand mismatches to seizure-induced injury.

  19. Cerebral tissue oxygen saturation and extraction in preterm infants before and after blood transfusion

    NARCIS (Netherlands)

    van Hoften, Jacorina C. R.; Verhagen, Elise A.; Keating, Paul; ter Horst, Hendrik J.; Bos, Arend F.

    Objective Preterm infants often need red blood cell (RBC) transfusions. The aim of this study was to determine whether haemoglobin levels before transfusion were associated with regional cerebral tissue oxygen saturation (r(c)SO(2)) and fractional tissue oxygen extraction (FTOE) and whether RBC

  20. Food consumption and adipose tissue DDT levels in Mexican women

    Directory of Open Access Journals (Sweden)

    Marcia Galván-Portillo

    2002-04-01

    Full Text Available This article analyzes food consumption in relation to levels of DDE (the principal metabolite of DDT in the adipose tissue of 207 Mexican women residing in States with high and low exposure to DDT. Data on the women's dietary habits and childbearing history were obtained from a personal interview. Adipose tissue DDE levels were measured by gas-liquid chromatography and compared by analysis of variance (ANOVA and multiple linear regression. Adipose tissue DDE levels increased significantly with age (p = 0.005 and residence in coastal areas (p = 0.002 and non-significantly with the consumption of onion, cauliflower, prickly pear, squash blossoms, sweet corn, broad beans, chili pepper sauce, ham, and fish. Even so, during breastfeeding there was a non-significant reduction in these levels. The findings suggest that certain foods serve as vehicles for DDE residues and confirm that breastfeeding is a mechanism for the elimination of this insecticide, which accumulates over the years in the human body.

  1. Food consumption and adipose tissue DDT levels in Mexican women

    Directory of Open Access Journals (Sweden)

    Galván-Portillo Marcia

    2002-01-01

    Full Text Available This article analyzes food consumption in relation to levels of DDE (the principal metabolite of DDT in the adipose tissue of 207 Mexican women residing in States with high and low exposure to DDT. Data on the women's dietary habits and childbearing history were obtained from a personal interview. Adipose tissue DDE levels were measured by gas-liquid chromatography and compared by analysis of variance (ANOVA and multiple linear regression. Adipose tissue DDE levels increased significantly with age (p = 0.005 and residence in coastal areas (p = 0.002 and non-significantly with the consumption of onion, cauliflower, prickly pear, squash blossoms, sweet corn, broad beans, chili pepper sauce, ham, and fish. Even so, during breastfeeding there was a non-significant reduction in these levels. The findings suggest that certain foods serve as vehicles for DDE residues and confirm that breastfeeding is a mechanism for the elimination of this insecticide, which accumulates over the years in the human body.

  2. Measurement of oxygen consumption with the Cosmed K2: a comparative study

    NARCIS (Netherlands)

    Forkink, A.; Frings-Dresen, M. H.

    1994-01-01

    An instrument that accurately measures oxygen consumption (VO2) during field performance is valuable for investigations of physiological workload. Cosmed (Rome, Italy) has introduced such an instrument, the Cosmed K2. In this study the Cosmed K2 was compared with the Oxyconbeta (Jaeger, Breda, The

  3. Association between intraoperative tissue oxygenation, arterial blood pressure and noradrenaline use in urological patients

    NARCIS (Netherlands)

    Spruit, R.J.; Schwarte, L.A.; Hakenberg, O.W.; Scheeren, T.

    2011-01-01

    Background and Goal of Study: Inadequate tissue oxygenation should be prevented during surgery as it might cause postoperative morbidity. In this observational study we looked at factors that might influence tissue oxygenation (StO2) such as blood pressure and use of vasoactive drugs. Materials and

  4. Effects of acupuncture on tissue oxygenation of the rat brain.

    Science.gov (United States)

    Chen, G S; Erdmann, W

    1978-04-01

    Acupuncture has been claimed to be effective in restoring consciousness in some comatose patients. Possible mechanisms to explain alleged acupuncture-induced arousal may include vasodilatory effects caused by smypathetic stimulation which leads to an augmentation of cerebral microcirculation and thereby improves oxygen supply to the brain tissue. Experiments were performed in ten albino rats (Wistar) employing PO2 microelectrodes which were inserted into the cortex through small burholes. Brain tissue PO2 was continuously recorded before, during, and after acupuncture. Stimulation of certain acupuncture points (Go-26) resulted in immediate increase of PO2 in the frontal cortex of the rat brain. This effect was reproducible and was comparable to that obtained with increase of inspiratory CO2 known to induce arterial vasodilatation and thus capillary perfusion pressure. The effect was more significant as compared to tissue PO2 increases obtained after increase in inspiratory oxygen concentration from 21% to 100%. It appears that acupuncture causes increased brain tissue perfusion which may be, at least in part, responsible for arousal of unconscious patients.

  5. The dual roles of red blood cells in tissue oxygen delivery

    DEFF Research Database (Denmark)

    Jensen, Frank Bo

    2009-01-01

    Vertebrate red blood cells (RBCs) seem to serve tissue oxygen delivery in two distinct ways. Firstly, RBCs enable the adequate transport of O2 between respiratory surfaces and metabolizing tissues by means of their high intracellular concentration of hemoglobin (Hb), appropriate allosteric...

  6. Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues

    Science.gov (United States)

    Tzoumas, Stratis; Nunes, Antonio; Olefir, Ivan; Stangl, Stefan; Symvoulidis, Panagiotis; Glasl, Sarah; Bayer, Christine; Multhoff, Gabriele; Ntziachristos, Vasilis

    2016-06-01

    Light propagating in tissue attains a spectrum that varies with location due to wavelength-dependent fluence attenuation, an effect that causes spectral corruption. Spectral corruption has limited the quantification accuracy of optical and optoacoustic spectroscopic methods, and impeded the goal of imaging blood oxygen saturation (sO2) deep in tissues; a critical goal for the assessment of oxygenation in physiological processes and disease. Here we describe light fluence in the spectral domain and introduce eigenspectra multispectral optoacoustic tomography (eMSOT) to account for wavelength-dependent light attenuation, and estimate blood sO2 within deep tissue. We validate eMSOT in simulations, phantoms and animal measurements and spatially resolve sO2 in muscle and tumours, validating our measurements with histology data. eMSOT shows substantial sO2 accuracy enhancement over previous optoacoustic methods, potentially serving as a valuable tool for imaging tissue pathophysiology.

  7. Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues.

    Science.gov (United States)

    Tzoumas, Stratis; Nunes, Antonio; Olefir, Ivan; Stangl, Stefan; Symvoulidis, Panagiotis; Glasl, Sarah; Bayer, Christine; Multhoff, Gabriele; Ntziachristos, Vasilis

    2016-06-30

    Light propagating in tissue attains a spectrum that varies with location due to wavelength-dependent fluence attenuation, an effect that causes spectral corruption. Spectral corruption has limited the quantification accuracy of optical and optoacoustic spectroscopic methods, and impeded the goal of imaging blood oxygen saturation (sO2) deep in tissues; a critical goal for the assessment of oxygenation in physiological processes and disease. Here we describe light fluence in the spectral domain and introduce eigenspectra multispectral optoacoustic tomography (eMSOT) to account for wavelength-dependent light attenuation, and estimate blood sO2 within deep tissue. We validate eMSOT in simulations, phantoms and animal measurements and spatially resolve sO2 in muscle and tumours, validating our measurements with histology data. eMSOT shows substantial sO2 accuracy enhancement over previous optoacoustic methods, potentially serving as a valuable tool for imaging tissue pathophysiology.

  8. The relationship between tumor oxygenation and cell proliferation in human soft tissue sarcomas

    International Nuclear Information System (INIS)

    Nordsmark, Marianne; Hoeyer, Morten; Keller, Johnny; Nielsen, Ole Steen; Jensen, Oluf Myhre; Overgaard, Jens

    1996-01-01

    Purpose: In malignant tumors the oxygenation status and tumor cell proliferation are known to influence local tumor control after radiotherapy. However, the relationship between oxygenation status and tumor cell kinetics in human tumors has not yet been described. Newly developed clinically applicable techniques such as oxygen electrode measurements and assessment of tumor cell proliferation rates have been suggested as promising predictive assays. The purpose of the present study was to characterize tumor oxygenation status in soft tissue sarcomas and to compare this with tumor cell kinetics and clinical parameters. Methods and Materials: Pretreatment tumor oxygenation status was measured by polarographic oxygen needle electrodes and evaluated as the median pO 2 and the percentage of pO 2 values ≤ 5 mmHg and ≤ 2.5 mmHg in 22 patients with primary soft tissue sarcomas. All tumors were characterized by histology, grade of malignancy, the level of microscopic necrosis, the level of effective hemoglobin, and magnetic resonance imaging estimation of tumor volume. The tumor cell potential doubling time and labeling index were measured by flow cytometric and immunohistochemical analysis of tumor biopsy specimens after in vivo incorporation of iododeoxyuridine. Results: There was a significant correlation between the median pO 2 and the tumor cell potential doubling time (p = 0.041), whereas no correlation was found between the level of hypoxia expressed by the percentage of pO 2 values ≤ 2.5 and ≤ 5 mmHg, respectively, and tumor cell potential doubling time. Furthermore, no correlation was found between either of the three tumor oxygenation parameters and labeling index. The material represented large intertumor heterogeneity in oxygenation status, cell kinetics, and tumor volume, and no correlation was found between oxygenation status and either volume, histopathology, grade of malignancy, or effective hemoglobin. Conclusion: This report is the first to suggest

  9. Increased tissue oxygenation explains the attenuation of hyperemia upon repetitive pneumatic compression of the lower leg.

    Science.gov (United States)

    Messere, Alessandro; Ceravolo, Gianluca; Franco, Walter; Maffiodo, Daniela; Ferraresi, Carlo; Roatta, Silvestro

    2017-12-01

    The rapid hyperemia evoked by muscle compression is short lived and was recently shown to undergo a rapid decrease even in spite of continuing mechanical stimulation. The present study aims at investigating the mechanisms underlying this attenuation, which include local metabolic mechanisms, desensitization of mechanosensitive pathways, and reduced efficacy of the muscle pump. In 10 healthy subjects, short sequences of mechanical compressions ( n = 3-6; 150 mmHg) of the lower leg were delivered at different interstimulus intervals (ranging from 20 to 160 s) through a customized pneumatic device. Hemodynamic monitoring included near-infrared spectroscopy, detecting tissue oxygenation and blood volume in calf muscles, and simultaneous echo-Doppler measurement of arterial (superficial femoral artery) and venous (femoral vein) blood flow. The results indicate that 1 ) a long-lasting (>100 s) increase in local tissue oxygenation follows compression-induced hyperemia, 2 ) compression-induced hyperemia exhibits different patterns of attenuation depending on the interstimulus interval, 3 ) the amplitude of the hyperemia is not correlated with the amount of blood volume displaced by the compression, and 4 ) the extent of attenuation negatively correlates with tissue oxygenation ( r  = -0,78, P < 0.05). Increased tissue oxygenation appears to be the key factor for the attenuation of hyperemia upon repetitive compressive stimulation. Tissue oxygenation monitoring is suggested as a useful integration in medical treatments aimed at improving local circulation by repetitive tissue compression. NEW & NOTEWORTHY This study shows that 1 ) the hyperemia induced by muscle compression produces a long-lasting increase in tissue oxygenation, 2 ) the hyperemia produced by subsequent muscle compressions exhibits different patterns of attenuation at different interstimulus intervals, and 3 ) the extent of attenuation of the compression-induced hyperemia is proportional to the level of

  10. Monitoring tissue oxygen availability with near infrared spectroscopy (NIRS) in health and disease

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher; Langberg, H; Olesen, J

    2001-01-01

    , brain and connective tissue, and more recently it has been used in the clinical setting to assess circulatory and metabolic abnormalities. Quantitative measures of blood flow are also possible using NIRS and a light-absorbing tracer, which can be applied to evaluate circulatory responses to exercise......Near infrared spectroscopy (NIRS) is becoming a widely used research instrument to measure tissue oxygen (O2) status non-invasively. Continuous-wave spectrometers are the most commonly used devices, which provide semi-quantitative changes in oxygenated and deoxygenated hemoglobin in small blood...... vessels (arterioles, capillaries and venules). Refinement of NIRS hardware and the algorithms used to deconvolute the light absorption signal have improved the resolution and validity of cytochrome oxidase measurements. NIRS has been applied to measure oxygenation in a variety of tissues including muscle...

  11. Factors determining the oxygen consumption rate (VO2) on-kinetics in skeletal muscles.

    OpenAIRE

    Korzeniewski, Bernard; Zoladz, Jerzy A

    2004-01-01

    Using a computer model of oxidative phosphorylation developed previously [Korzeniewski and Mazat (1996) Biochem. J. 319, 143-148; Korzeniewski and Zoladz (2001) Biophys. Chem. 92, 17-34], we analyse the effect of several factors on the oxygen-uptake kinetics, especially on the oxygen consumption rate (VO2) and half-transition time t(1/2), at the onset of exercise in skeletal muscles. Computer simulations demonstrate that an increase in the total creatine pool [PCr+/-Cr] (where Cr stands for c...

  12. Effect of oxygen breathing on micro oxygen bubbles in nitrogen-depleted rat adipose tissue at sea level and 25 kPa altitude exposures

    DEFF Research Database (Denmark)

    Randsoe, Thomas; Hyldegaard, Ole

    2012-01-01

    The standard treatment of altitude decompression sickness (aDCS) caused by nitrogen bubble formation is oxygen breathing and recompression. However, micro air bubbles (containing 79% nitrogen), injected into adipose tissue, grow and stabilize at 25 kPa regardless of continued oxygen breathing...... at 101.3 kPa (sea level) or at 25 kPa altitude exposures during continued oxygen breathing. In keeping with previous observations and bubble kinetic models, we hypothesize that oxygen breathing may contribute to oxygen bubble growth at altitude. Anesthetized rats were exposed to 3 h of oxygen...... prebreathing at 101.3 kPa (sea level). Micro oxygen bubbles of 500-800 nl were then injected into the exposed abdominal adipose tissue. The oxygen bubbles were studied for up to 3.5 h during continued oxygen breathing at either 101.3 or 25 kPa ambient pressures. At 101.3 kPa, all bubbles shrank consistently...

  13. Mitochondrial function in engineered cardiac tissues is regulated by extracellular matrix elasticity and tissue alignment.

    Science.gov (United States)

    Lyra-Leite, Davi M; Andres, Allen M; Petersen, Andrew P; Ariyasinghe, Nethika R; Cho, Nathan; Lee, Jezell A; Gottlieb, Roberta A; McCain, Megan L

    2017-10-01

    Mitochondria in cardiac myocytes are critical for generating ATP to meet the high metabolic demands associated with sarcomere shortening. Distinct remodeling of mitochondrial structure and function occur in cardiac myocytes in both developmental and pathological settings. However, the factors that underlie these changes are poorly understood. Because remodeling of tissue architecture and extracellular matrix (ECM) elasticity are also hallmarks of ventricular development and disease, we hypothesize that these environmental factors regulate mitochondrial function in cardiac myocytes. To test this, we developed a new procedure to transfer tunable polydimethylsiloxane disks microcontact-printed with fibronectin into cell culture microplates. We cultured Sprague-Dawley neonatal rat ventricular myocytes within the wells, which consistently formed tissues following the printed fibronectin, and measured oxygen consumption rate using a Seahorse extracellular flux analyzer. Our data indicate that parameters associated with baseline metabolism are predominantly regulated by ECM elasticity, whereas the ability of tissues to adapt to metabolic stress is regulated by both ECM elasticity and tissue alignment. Furthermore, bioenergetic health index, which reflects both the positive and negative aspects of oxygen consumption, was highest in aligned tissues on the most rigid substrate, suggesting that overall mitochondrial function is regulated by both ECM elasticity and tissue alignment. Our results demonstrate that mitochondrial function is regulated by both ECM elasticity and myofibril architecture in cardiac myocytes. This provides novel insight into how extracellular cues impact mitochondrial function in the context of cardiac development and disease. NEW & NOTEWORTHY A new methodology has been developed to measure O 2 consumption rates in engineered cardiac tissues with independent control over tissue alignment and matrix elasticity. This led to the findings that matrix

  14. Fractional Consumption of Liquid Hydrogen and Liquid Oxygen During the Space Shuttle Program

    Science.gov (United States)

    Partridge, Jonathan K.

    2011-01-01

    The Space Shuttle uses the propellants, liquid hydrogen and liquid oxygen, to meet part of the propulsion requirements from ground to orbit. The Kennedy Space Center procured over 25 million kilograms of liquid hydrogen and over 250 million kilograms of liquid oxygen during the 3D-year Space Shuttle Program. Because of the cryogenic nature of the propellants, approximately 55% of the total purchased liquid hydrogen and 30% of the total purchased liquid oxygen were used in the Space Shuttle Main Engines. The balance of the propellants were vaporized during operations for various purposes. This paper dissects the total consumption of liqUid hydrogen and liqUid oxygen and determines the fraction attributable to each of the various processing and launch operations that occurred during the entire Space Shuttle Program at the Kennedy Space Center.

  15. Oxygen dependence of respiration in rat spinotrapezius muscle in situ

    OpenAIRE

    Golub, Aleksander S.; Pittman, Roland N.

    2012-01-01

    The oxygen dependence of respiration in striated muscle in situ was studied by measuring the rate of decrease of interstitial Po2 [oxygen disappearance curve (ODC)] following rapid arrest of blood flow by pneumatic tissue compression, which ejected red blood cells from the muscle vessels and made the ODC independent from oxygen bound to hemoglobin. After the contribution of photo-consumption of oxygen by the method was evaluated and accounted for, the corrected ODCs were converted into the Po...

  16. Continuous Real-time Viability Assessment of Kidneys Based on Oxygen Consumption

    Science.gov (United States)

    Weegman, B.P.; Kirchner, V.A.; Scott, W.E.; Avgoustiniatos, E.S.; Suszynski, T.M.; Ferrer-Fabrega, J.; Rizzari, M.D.; Kidder, L.S.; Kandaswamy, R.; Sutherland, D.E.R.; Papas, K.K.

    2010-01-01

    Background Current ex vivo quality assessment of donor kidneys is limited to vascular resistance measurements and histological analysis. New techniques for the assessment of organ quality before transplantation may further improve clinical outcomes while expanding the depleted deceased-donor pool. We propose the measurement of whole organ oxygen consumption rate (WOOCR) as a method to assess the quality of kidneys in real time before transplantation. Methods Five porcine kidneys were procured using a donation after cardiac death (DCD) model. The renal artery and renal vein were cannulated and the kidney connected to a custom-made hypothermic machine perfusion (HMP) system equipped with an inline oxygenator and fiber-optic oxygen sensors. Kidneys were perfused at 8°C, and the perfusion parameters and partial oxygen pressures (pO2) were measured to calculate WOOCR. Results Without an inline oxygenator, the pO2 of the perfusion solution at the arterial inlet and venous outlet diminished to near 0 within minutes. However, once adequate oxygenation was provided, a significant pO2 difference was observed and used to calculate the WOOCR. The WOOCR was consistently measured from presumably healthy kidneys, and results suggest that it can be used to differentiate between healthy and purposely damaged organs. Conclusions Custom-made HMP systems equipped with an oxygenator and inline oxygen sensors can be applied for WOOCR measurements. We suggest that WOOCR is a promising approach for the real-time quality assessment of kidneys and other organs during preservation before transplantation. PMID:20692397

  17. Effect of the Combination of Ezetimibe and Simvastatin on Gluconeogenesis and Oxygen Consumption in the Rat Liver.

    Science.gov (United States)

    Bracht, Lívia; Caparroz-Assef, Silvana Martins; Bracht, Adelar; Bersani-Amado, Ciomar Aparecida

    2016-06-01

    The aim of this work was to investigate the effects of chronic treatment with the combination of ezetimibe and simvastatin on gluconeogenesis in rat liver. Rats were treated daily for 28 days with the combination of ezetimibe and simvastatin (10/40 mg/kg) by oral gavage. To measure gluconeogenesis and the associated pathways, isolated perfused rat liver was used. In addition, subcellular fractions, such as microsomes and mitochondria, were used for complementary measures of enzymatic activities. Treatment with the combination of simvastatin and ezetimibe resulted in a decrease in gluconeogenesis from pyruvate (-62%). Basal oxygen consumption of the treated animals was higher (+22%) than that of the control rats, but the resulting oxygen consumption that occurred after pyruvate infusion was 43% lower in animals treated with the combination of simvastatin and ezetimibe. Oxygen consumption in the livers from treated animals was completely inhibited by cyanide (electron transport chain inhibitor), but not by proadifen (cytochrome P450 inhibitor). Chronic treatment with ezetimibe/simvastatin decreased the activity of the key enzymes glucose-6-phosphatase and fructose-1,6-bisphosphatase by 59% and 45%, respectively, which is probably the major reason for the decreased gluconeogenesis seen in ezetimibe-/simvastatin-treated rats. It is also possible that part of the effect of this combination on gluconeogenesis and on the oxygen consumption is related to the impairment of mitochondrial energy transduction. © 2015 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  18. Combined effect of protein and oxygen on reactive oxygen and nitrogen species in the plasma treatment of tissue

    Science.gov (United States)

    Gaur, Nishtha; Szili, Endre J.; Oh, Jun-Seok; Hong, Sung-Ha; Michelmore, Andrew; Graves, David B.; Hatta, Akimitsu; Short, Robert D.

    2015-09-01

    The influence of protein and molecular, ground state oxygen (O2) on the plasma generation, and transport of reactive oxygen and nitrogen species (RONS) in tissue are investigated. A tissue target, comprising a 1 mm thick gelatin film (a surrogate for real tissue), is placed on top of a 96-well plate; each well is filled with phosphate buffered saline (PBS, pH 7.4) containing one fluorescent or colorimetric reporter that is specific for one of three RONS (i.e., H2O2, NO2-, or OH•) or a broad spectrum reactive oxygen species reporter (2,7-dichlorodihydrofluorescein). A helium cold atmospheric plasma (CAP) jet contacts the top of the gelatin surface, and the concentrations of RONS generated in PBS are measured on a microplate reader. The data show that H2O2, NO2-, or OH• are generated in PBS underneath the target. Independently, measurements are made of the O2 concentration in the PBS with and without the gelatin target. Adding bovine serum albumin protein to the PBS or gelatin shows that protein either raises or inhibits RONS depending upon the O2 concentration. Our results are discussed in the context of plasma-soft tissue interactions that are important in the development of CAP technology for medicine, biology, and food manufacturing.

  19. Localized increase of tissue oxygen tension by magnetic targeted drug delivery

    Science.gov (United States)

    Liong, Celine; Ortiz, Daniel; Ao-ieong, Eilleen; Navati, Mahantesh S.; Friedman, Joel M.; Cabrales, Pedro

    2014-07-01

    Hypoxia is the major hindrance to successful radiation therapy of tumors. Attempts to increase the oxygen (O2) tension (PO2) of tissue by delivering more O2 have been clinically disappointing, largely due to the way O2 is transported and released by the hemoglobin (Hb) within the red blood cells (RBCs). Systemic manipulation of O2 transport increases vascular resistance due to metabolic autoregulation of blood flow to prevent over oxygenation. This study investigates a new technology to increase O2 delivery to a target tissue by decreasing the Hb-O2 affinity of the blood circulating within the targeted tissue. As the Hb-O2 affinity decreases, the tissue PO2 to satisfy tissue O2 metabolic needs increases without increasing O2 delivery or extraction. Paramagnetic nanoparticles (PMNPs), synthetized using gadolinium oxide, were coated with the cell permeable Hb allosteric effector L35 (3,5-trichlorophenylureido-phenoxy-methylpropionic acid). L35 decreases Hb affinity for O2 and favors the release of O2. The L35-coated PMNPs (L35-PMNPs) were intravenously infused (10 mg kg-1) to hamsters instrumented with the dorsal window chamber model. A magnetic field of 3 mT was applied to localize the effects of the L35-PMNPs to the window chamber. Systemic O2 transport characteristics and microvascular tissue oxygenation were measured after administration of L35-PMNPs with and without magnetic field. The tissue PO2 in untreated control animals was 25.2 mmHg. L35-PMNPs without magnetic field decreased tissue PO2 to 23.4 mmHg, increased blood pressure, and reduced blood flow, largely due to systemic modification of Hb-O2 affinity. L35-PMNPs with magnetic field increased tissue PO2 to 27.9 mmHg, without systemic or microhemodynamic changes. These results indicate that localized modification of Hb-O2 affinity can increase PO2 of target tissue without affecting systemic O2 delivery or triggering O2 autoregulation mechanisms. This technology can be used to treat local hypoxia and to

  20. Retrievable micro-inserts containing oxygen sensors for monitoring tissue oxygenation using EPR oximetry

    International Nuclear Information System (INIS)

    Dinguizli, M; Beghein, N; Gallez, B

    2008-01-01

    Tissue oxygenation is a crucial parameter in various physiopathological situations and can influence the therapeutic response of tumours. EPR oximetry is a reliable method for assessing and monitoring oxygen levels in vivo over long periods of time. Among the different paramagnetic oxygen sensors available for EPR oximetry, lithium phthalocyanine (LiPc) is a serious candidate for in vivo applications because of its narrow linewidth and its high signal-to-noise ratio. To enhance the biocompatibility of the sensors, fluoropolymer Teflon AF2400 was used to make cylindrical micro-inserts containing LiPc crystals. This new micro-pellet design has several advantages for in vivo studies, including the possibility of being able to choose the implant size, a high sensor content, the facility of in vivo insertion and complete protection with preservation of the oxygen sensor's characteristics. The response to oxygen and the kinetics of this response were tested using in vivo EPR: no differences were observed between micro-inserts and uncoated LiPc crystals. Pellets implanted in vivo in muscles conserved their responsiveness over a long period of time (∼two months), which is much longer than the few days of stability observed using LiPc crystals without protection by the implant. Finally, evaluation of the biocompatibility of the implants revealed no inflammatory reaction around the implantation area

  1. Oxygen dependence of respiration in rat spinotrapezius muscle in situ

    Science.gov (United States)

    Pittman, Roland N.

    2012-01-01

    The oxygen dependence of respiration in striated muscle in situ was studied by measuring the rate of decrease of interstitial Po2 [oxygen disappearance curve (ODC)] following rapid arrest of blood flow by pneumatic tissue compression, which ejected red blood cells from the muscle vessels and made the ODC independent from oxygen bound to hemoglobin. After the contribution of photo-consumption of oxygen by the method was evaluated and accounted for, the corrected ODCs were converted into the Po2 dependence of oxygen consumption, V̇o2, proportional to the rate of Po2 decrease. Fitting equations obtained from a model of heterogeneous intracellular Po2 were applied to recover the parameters describing respiration in muscle fibers, with a predicted sigmoidal shape for the dependence of V̇o2 on Po2. This curve consists of two regions connected by the point for critical Po2 of the cell (i.e., Po2 at the sarcolemma when the center of the cell becomes anoxic). The critical Po2 was below the Po2 for half-maximal respiratory rate (P50) for the cells. In six muscles at rest, the rate of oxygen consumption was 139 ± 6 nl O2/cm3·s and mitochondrial P50 was k = 10.5 ± 0.8 mmHg. The range of Po2 values inside the muscle fibers was found to be 4–5 mmHg at the critical Po2. The oxygen dependence of respiration can be studied in thin muscles under different experimental conditions. In resting muscle, the critical Po2 was substantially lower than the interstitial Po2 of 53 ± 2 mmHg, a finding that indicates that V̇o2 under this circumstance is independent of oxygen supply and is discordant with the conventional hypothesis of metabolic regulation of the oxygen supply to tissue. PMID:22523254

  2. Cerebral Microcirculation and Oxygen Tension in the Human Secondary Cortex

    Science.gov (United States)

    Linninger, A. A.; Gould, I. G.; Marinnan, T.; Hsu, C.-Y.; Chojecki, M.; Alaraj, A.

    2013-01-01

    The three-dimensional spatial arrangement of the cortical microcirculatory system is critical for understanding oxygen exchange between blood vessels and brain cells. A three-dimensional computer model of a 3 × 3 × 3 mm3 subsection of the human secondary cortex was constructed to quantify oxygen advection in the microcirculation, tissue oxygen perfusion, and consumption in the human cortex. This computer model accounts for all arterial, capillary and venous blood vessels of the cerebral microvascular bed as well as brain tissue occupying the extravascular space. Microvessels were assembled with optimization algorithms emulating angiogenic growth; a realistic capillary bed was built with space filling procedures. The extravascular tissue was modeled as a porous medium supplied with oxygen by advection–diffusion to match normal metabolic oxygen demand. The resulting synthetic computer generated network matches prior measured morphometrics and fractal patterns of the cortical microvasculature. This morphologically accurate, physiologically consistent, multi-scale computer network of the cerebral microcirculation predicts the oxygen exchange of cortical blood vessels with the surrounding gray matter. Oxygen tension subject to blood pressure and flow conditions were computed and validated for the blood as well as brain tissue. Oxygen gradients along arterioles, capillaries and veins agreed with in vivo trends observed recently in imaging studies within experimental tolerances and uncertainty. PMID:23842693

  3. Oxygen dynamics and transport in the Mediterranean sponge Aplysina aerophoba

    DEFF Research Database (Denmark)

    Hoffmann, F.; Røy, Hans; Bayer, K.

    2008-01-01

    The Mediterranean sponge Aplysina aerophoba kept in aquaria or cultivation tanks can stop pumping for several hours or even days. To investigate changes in the chemical microenvironments, we measured oxygen profiles over the surface and into the tissue of pumping and non-pumping A. aerophoba...... specimens with Clark-type oxygen microelectrodes (tip diameters 18-30 μm). Total oxygen consumption rates of whole sponges were measured in closed chambers. These rates were used to back-calculate the oxygen distribution in a finite-element model. Combining direct measurements with calculations of diffusive...... flux and modeling revealed that the tissue of non-pumping sponges turns anoxic within 15 min, with the exception of a 1 mm surface layer where oxygen intrudes due to molecular diffusion over the sponge surface. Molecular diffusion is the only transport mechanism for oxygen into non-pumping sponges...

  4. Optic nerve oxygenation

    DEFF Research Database (Denmark)

    Stefánsson, Einar; Pedersen, Daniella Bach; Jensen, Peter Koch

    2005-01-01

    The oxygen tension of the optic nerve is regulated by the intraocular pressure and systemic blood pressure, the resistance in the blood vessels and oxygen consumption of the tissue. The oxygen tension is autoregulated and moderate changes in intraocular pressure or blood pressure do not affect...... the optic nerve oxygen tension. If the intraocular pressure is increased above 40 mmHg or the ocular perfusion pressure decreased below 50 mmHg the autoregulation is overwhelmed and the optic nerve becomes hypoxic. A disturbance in oxidative metabolism in the cytochromes of the optic nerve can be seen...... at similar levels of perfusion pressure. The levels of perfusion pressure that lead to optic nerve hypoxia in the laboratory correspond remarkably well to the levels that increase the risk of glaucomatous optic nerve atrophy in human glaucoma patients. The risk for progressive optic nerve atrophy in human...

  5. Atrial natriuretic peptide regulates lipid mobilization and oxygen consumption in human adipocytes by activating AMPK

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Sandra C. [Translational Sciences - Translational Medicine, Novartis Institutes for Biomedical Research, Inc., 220 Massachusetts Avenue, Cambridge, MA 02139 (United States); Chau, Mary D.L.; Yang, Qing [Cardiovascular and Metabolism Disease Area, Novartis Institutes for Biomedical Research, Inc., 100 Technology Square, Cambridge, MA 02139 (United States); Gauthier, Marie-Soleil [Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02140 (United States); Clairmont, Kevin B.; Wu, Zhidan; Gromada, Jesper [Cardiovascular and Metabolism Disease Area, Novartis Institutes for Biomedical Research, Inc., 100 Technology Square, Cambridge, MA 02139 (United States); Dole, William P., E-mail: bill.dole@novartis.com [Translational Sciences - Translational Medicine, Novartis Institutes for Biomedical Research, Inc., 220 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2011-07-08

    Highlights: {yields} Treatment of differentiated human adipocytes with atrial natriuretic peptide (ANP) increased lipolysis and oxygen consumption by activating AMP-activated protein kinase (AMPK). {yields} ANP stimulated lipid mobilization by selective activation of the alpha2 subunit of AMPK and increased energy utilization through activation of both the alpha1 and alpha2 subunits of AMPK. {yields} ANP enhanced adipocyte mitochondrial oxidative capacity as evidenced by induction of oxidative mitochondrial genes and increase in oxygen consumption. {yields} Exposure of human adipocytes to fatty acids and (TNF{alpha}) induced insulin resistance and decreased expression of mitochondrial genes which was restored to normal by ANP. -- Abstract: Atrial natriuretic peptide (ANP) has been shown to regulate lipid and carbohydrate metabolism providing a possible link between cardiovascular function and metabolism by mediating the switch from carbohydrate to lipid mobilization and oxidation. ANP exerts a potent lipolytic effect via cGMP-dependent protein kinase (cGK)-I mediated-stimulation of AMP-activated protein kinase (AMPK). Activation of the ANP/cGK signaling cascade also promotes muscle mitochondrial biogenesis and fat oxidation. Here we demonstrate that ANP regulates lipid metabolism and oxygen utilization in differentiated human adipocytes by activating the alpha2 subunit of AMPK. ANP treatment increased lipolysis by seven fold and oxygen consumption by two fold, both of which were attenuated by inhibition of AMPK activity. ANP-induced lipolysis was shown to be mediated by the alpha2 subunit of AMPK as introduction of dominant-negative alpha2 subunit of AMPK attenuated ANP effects on lipolysis. ANP-induced activation of AMPK enhanced mitochondrial oxidative capacity as evidenced by a two fold increase in oxygen consumption and induction of mitochondrial genes, including carnitine palmitoyltransferase 1A (CPT1a) by 1.4-fold, cytochrome C (CytC) by 1.3-fold, and

  6. Atrial natriuretic peptide regulates lipid mobilization and oxygen consumption in human adipocytes by activating AMPK

    International Nuclear Information System (INIS)

    Souza, Sandra C.; Chau, Mary D.L.; Yang, Qing; Gauthier, Marie-Soleil; Clairmont, Kevin B.; Wu, Zhidan; Gromada, Jesper; Dole, William P.

    2011-01-01

    Highlights: → Treatment of differentiated human adipocytes with atrial natriuretic peptide (ANP) increased lipolysis and oxygen consumption by activating AMP-activated protein kinase (AMPK). → ANP stimulated lipid mobilization by selective activation of the alpha2 subunit of AMPK and increased energy utilization through activation of both the alpha1 and alpha2 subunits of AMPK. → ANP enhanced adipocyte mitochondrial oxidative capacity as evidenced by induction of oxidative mitochondrial genes and increase in oxygen consumption. → Exposure of human adipocytes to fatty acids and (TNFα) induced insulin resistance and decreased expression of mitochondrial genes which was restored to normal by ANP. -- Abstract: Atrial natriuretic peptide (ANP) has been shown to regulate lipid and carbohydrate metabolism providing a possible link between cardiovascular function and metabolism by mediating the switch from carbohydrate to lipid mobilization and oxidation. ANP exerts a potent lipolytic effect via cGMP-dependent protein kinase (cGK)-I mediated-stimulation of AMP-activated protein kinase (AMPK). Activation of the ANP/cGK signaling cascade also promotes muscle mitochondrial biogenesis and fat oxidation. Here we demonstrate that ANP regulates lipid metabolism and oxygen utilization in differentiated human adipocytes by activating the alpha2 subunit of AMPK. ANP treatment increased lipolysis by seven fold and oxygen consumption by two fold, both of which were attenuated by inhibition of AMPK activity. ANP-induced lipolysis was shown to be mediated by the alpha2 subunit of AMPK as introduction of dominant-negative alpha2 subunit of AMPK attenuated ANP effects on lipolysis. ANP-induced activation of AMPK enhanced mitochondrial oxidative capacity as evidenced by a two fold increase in oxygen consumption and induction of mitochondrial genes, including carnitine palmitoyltransferase 1A (CPT1a) by 1.4-fold, cytochrome C (CytC) by 1.3-fold, and peroxisome proliferator

  7. Oxygen consumption during mineralization of organic compounds in water samples from a small sub-tropical reservoir (Brazil

    Directory of Open Access Journals (Sweden)

    Cunha-Santino Marcela Bianchessi da

    2003-01-01

    Full Text Available Assays were carried out to evaluate the oxygen consumption resulting from mineralization of different organic compounds: glucose, sucrose, starch, tannic acid, lysine and glycine. The compounds were added to 1 l of water sample from Monjolinho Reservoir. Dissolved oxygen and dissolved organic carbon were monitored during 20 days and the results were fitted to first order kinetics model. During the 20 days of experiments, the oxygen consumption varied from 4.5 mg.l-1 (tannic acid to 71.5 mg.l-1 (glucose. The highest deoxygenation rate (kD was observed for mineralization of tannic acid (0.321 day-1 followed by glycine, starch, lysine, sucrose and glucose (0.1004, 0.0504, 0.0486, 0.0251 and 0.0158 day-1, respectively. From theoretical calculations and oxygen and carbon concentrations we obtained the stoichiometry of the mineralization processes. Stoichiometric values varied from 0.17 (tannic acid to 2.55 (sucrose.

  8. Quantifying salinity and season effects on eastern oyster clearance and oxygen consumption rates

    Science.gov (United States)

    Casas, S.M.; Lavaud, Romain; LaPeyre, Megan K.; Comeau, L. A.; Filgueira, R.; LaPeyre, Jerome F.

    2018-01-01

    There are few data on Crassostrea virginica physiological rates across the range of salinities and temperatures to which they are regularly exposed, and this limits the applicability of growth and production models using these data. The objectives of this study were to quantify, in winter (17 °C) and summer (27 °C), the clearance and oxygen consumption rates of C. virginica from Louisiana across a range of salinities typical of the region (3, 6, 9, 15 and 25). Salinity and season (temperature and reproduction) affected C. virginica physiology differently; salinity impacted clearance rates with reduced feeding rates at low salinities, while season had a strong effect on respiration rates. Highest clearance rates were found at salinities of 9–25, with reductions ranging from 50 to 80 and 90 to 95% at salinities of 6 and 3, respectively. Oxygen consumption rates in summer were four times higher than in winter. Oxygen consumption rates were within a narrow range and similar among salinities in winter, but varied greatly among individuals and salinities in summer. This likely reflected varying stages of gonad development. Valve movements measured at the five salinities indicated oysters were open 50–60% of the time in the 6–25 salinity range and ~ 30% at a salinity of 3. Reduced opening periods, concomitant with narrower valve gap amplitudes, are in accord with the limited feeding at the lowest salinity (3). These data indicate the need for increased focus on experimental determination of optimal ranges and thresholds to better quantify oyster population responses to environmental changes.

  9. Effects of acupuncture on tissue-oxygenation of the rat brain.

    Science.gov (United States)

    Chen, G S; Erdmann, W

    1977-01-01

    Acupuncture has been claimed to be effective in restoring consciousness in some comatose patients. Possible mechanisms to explain alleged acupuncture-induced arousal may include vasodilatory effects caused by sympathetic stimulation which leads to an augmentation of cerebral microcirculation and thereby improves oxygen supply to the brain tissue. Experiments were performed in ten albino rats (Wistar) employing PO2 microelectrodes which were inserted into the cortex of the animals through small burholes. Brain tissue PO2 was continuously recorded before, during, and after acupuncture. Stimulation of certain acupuncture loci (Go-26) resulted in immediate increase of PO2 in the frontal cortex of the rat brain. This effect was reproducible. The effect was comparable to that obtained with increase of inspiratory CO2 known to induce arterial vasodilatation and thus capillary perfusion pressure. The effect was more significant as compared to tissue PO2 increases obtained after increase of inspiratory oxygen concentration from 21% to 100%. It appears that acupuncture causes an increase of brain tissue perfusion which may be, at least in part, responsible for arousal of unconscious patients. Dilatation of cerebral vascular vessels and improvement of autoregulation in the brain by acupuncture stimulation may also explain the effectiveness of acupuncture in the treatment of migraine headache.

  10. The effects of interval- vs. continuous exercise on excess post-exercise oxygen consumption and substrate oxidation rates in subjects with type 2 diabetes

    DEFF Research Database (Denmark)

    Karstoft, Kristian; Wallis, Gareth A.; Pedersen, Bente K.

    2016-01-01

    Background For unknown reasons, interval training often reduces body weight more than energy-expenditure matched continuous training. We compared the acute effects of time-duration and oxygen-consumption matched interval- vs. continuous exercise on excess post-exercise oxygen consumption (EPOC...... (MMTT, 450 kcal) was consumed by the subjects 45 min after completion of the intervention with blood samples taken regularly. Results Exercise interventions were successfully matched for total oxygen consumption (CW = 1641 ± 133 mL/min; IW = 1634 ± 126 mL/min, P > 0.05). EPOC was higher after IW (8......, free fatty acids and glycerol concentrations, and glycerol kinetics were increased comparably during and after IW and CW compared to CON. Conclusions Interval exercise results in greater EPOC than oxygen-consumption matched continuous exercise during a post-exercise MMTT in subjects with T2D, whereas...

  11. The responses of photosynthesis and oxygen consumption to short-term changes in temperature and irradiance in a cyanobacterial mat (Ebro Delta, Spain)

    DEFF Research Database (Denmark)

    Epping, E.H.G.; Kühl, Michael

    2000-01-01

    We have evaluated the effects of short-term changes in incident irradiance and temperature on oxygenic photosynthesis and oxygen consumption in a hypersaline cyanobacterial mat from the Ebro Delta, Spain, in which Microcoleus chthonoplastes was the dominant phototrophic organism. The mat was incu......We have evaluated the effects of short-term changes in incident irradiance and temperature on oxygenic photosynthesis and oxygen consumption in a hypersaline cyanobacterial mat from the Ebro Delta, Spain, in which Microcoleus chthonoplastes was the dominant phototrophic organism. The mat...... was incubated in the laboratory at 15, 20, 25 and 308C at incident irradiances ranging from 0 to 1000 mmol photons m22 s21. Oxygen microsensors were used to measure steady-state oxygen profiles and the rates of gross photosynthesis, which allowed the calculation of areal gross photosynthesis, areal net oxygen...... production, and oxygen consumption in the aphotic layer of the mat. The lowest surface irradiance that resulted in detectable rates of gross photosynthesis increased with increasing temperature from 50 mmol photons m22 s21 at 158C to 500 mmol photons m22 s21 at 308C. These threshold irradiances were also...

  12. Oxygen consumption of elite distance runners on an anti-gravity treadmill®.

    Science.gov (United States)

    McNeill, David K P; Kline, John R; de Heer, Hendrick D; Coast, J Richard

    2015-06-01

    Lower body positive pressure (LBPP), or 'anti-gravity' treadmills® have become increasingly popular among elite distance runners. However, to date, few studies have assessed the effect of body weight support (BWS) on the metabolic cost of running among elite runners. This study evaluated how BWS influenced the relationship between velocity and metabolic cost among 6 elite male distance runners. Participants ran three- 16 minute tests consisting of 4 stages of 4 minutes at 8, 7, 6 and 5 min·mile(-1) pace (3.35, 3.84, 4.47 and 5.36 m·s(-1)), while maintaining an aerobic effort (Respiratory Exchange Ratio ≤1.00). One test was run on a regular treadmill, one on an anti-gravity treadmill with 40% BWS and one with 20% BWS being provided. Expired gas data were collected and regression equations used to determine and compare slopes. Significant decreases in oxygen uptake (V̇O2) were found with each increase in BWS (p rate, perceived exertion or directly measured oxygen uptake) should be used to guide training intensity when training on the LBPP treadmill. Key pointsWith increasing amounts of body weight-support (BWS), the slope of the relationship between velocity and oxygen consumption (ΔVO2/Δv) decreases significantly. This means the change in oxygen consumption (VO2) is significantly smaller over a given change in velocity at higher amounts of BWS.There is a non-linear decrease in VO2 with increasing BWS. As such, with each increment in the amount of BWS provided, the reduction in VO2 becomes increasingly smaller.This paper provides first of its kind data on the effects of BWS on the cost of running among highly trained, elite runners. The outcomes of this study are in line with previous findings among non-elite runners.

  13. Mitigating an increase of specific power consumption in a cryogenic air separation unit at reduced oxygen production

    Science.gov (United States)

    Singla, Rohit; Chowdhury, Kanchan

    2017-02-01

    Specific power consumed in a Linde double column air separation unit (ASU) increases as the quantity of oxygen produced at a given purity is decreased due to the changes of system requirement or market demand. As the plant operates in part load condition, the specific power consumption (SPC) increases as the total power consumption remains the same. In order to mitigate the increase of SPC at lower oxygen production, the operating pressure of high pressure column (HPC) can be lowered by extending the low pressure column (LPC) by a few trays and adding a second reboiler. As the duty of second reboiler in LPC is increased, the recovery of oxygen decreases with a lowering of the HPC pressure. This results in mitigation of the increase of SPC of the plant. A Medium pressure ASU with dual reboiler that produces pressurised gaseous and liquid products of oxygen and nitrogen is simulated in Aspen Hysys 8.6®, a commercial process simulator to determine SPC at varying oxygen production. The effects of reduced pressure of air feed into the cold box on the size of heat exchangers (HX) are analysed. Operation strategy to obtain various oxygen production rates at varying demand is also proposed.

  14. Pectoral fin beat frequency predicts oxygen consumption during spontaneous activity in a labriform swimming fish (Embiotoca lateralis)

    DEFF Research Database (Denmark)

    Tudorache, Christian; Jordan, Anders D.; Svendsen, Jon Christian

    2009-01-01

    The objective of this study was to identify kinematic variables correlated with oxygen consumption during spontaneous labriform swimming. Kinematic variables (swimming speed, change of speed, turning angle, turning rate, turning radius and pectoral fin beat frequency) and oxygen consumption (MO2......) of spontaneous swimming in Embiotoca lateralis were measured in a circular arena using video tracking and respirometry, respectively. The main variable influencing MO2 was pectoral fin beat frequency (r (2) = 0.71). No significant relationship was found between swimming speed and pectoral fin beat frequency....... Complementary to other methods within biotelemetry such as EMG it is suggested that such correlations of pectoral fin beat frequency may be used to measure the energy requirements of labriform swimming fish such as E. lateralis in the field, but need to be taken with great caution since movement and oxygen...

  15. Reflex bradycardia does not influence oxygen consumption during hypoxia in the European eel (Anguilla anguilla)

    DEFF Research Database (Denmark)

    Iversen, Nina Kerting; McKenzie, David; Malte, H.

    2010-01-01

    the bradycardia on oxygen consumption (MO2), standard metabolic rate (SMR) and the critical oxygen partial pressure for regulation of SMR in hypoxia (Pcrit) in European eels Anguilla anguilla (mean ± SEM mass 528 ± 36 g; n = 14). Eels were instrumented with a Transonic flow probe around the ventral aorta......Most teleost fish reduce heart rate when exposed to acute hypoxia. This hypoxic bradycardia has been characterised for many fish species, but it remains uncertain whether this reflex contributes to the maintenance of oxygen uptake in hypoxia. Here we describe the effects of inhibiting...

  16. Oxygen and SO2 Consumption Rates in White and Rosé Wines: Relationship with and Effects on Wine Chemical Composition.

    Science.gov (United States)

    Carrascón, Vanesa; Bueno, Mónica; Fernandez-Zurbano, Purificación; Ferreira, Vicente

    2017-11-01

    This Article addresses the study of O 2 and SO 2 consumption rates of white and rosé wines, their relationship to the initial chemical composition, and their effects on the chemical changes experienced by wine during oxidation. Eight wines were subjected to five consecutive air-saturation cycles. O 2 was monitored periodically; SO 2 , color, and antioxidant indexes were determined after each cycle, and the initial and final compositions of the wines were thoroughly determined. Wines consumed oxygen at progressively decreasing rates. In the last cycles, after a strong decrease, consistent increases of oxygen levels were seen. Oxygen consumption rates were satisfactorily modeled, being proportional to wine copper, quercetin, and kaempherol contents and negatively proportional to cinnamic acids. SO 2 consumption rates were highly diverse between wines and were positively related to free SO 2 , Mn, and pH, among others. In the last saturations, SO 2 consumption took place regardless of O 2 consumption, implying that SO 2 should reduce chemical species oxidized in previous saturations. Some volatile phenols seem to be the end point of radical-mediated oxidation of polyphenols taking place preferably in the first saturation.

  17. In situ measurement of the rate of oxygen consumption by the Callovo-Oxfordian argillaceous rock

    International Nuclear Information System (INIS)

    Vinsot, A.; Lundy, M.; Claret, F.; Wechner, S.

    2012-01-01

    Document available in extended abstract form only. The ventilation of excavated drifts in the Callovo-Oxfordian argillaceous rock induces its exposure to air. The oxygen from air reacts with several reduced mineral species from the rock. It may also react with organic species existing in the rock. The effects of these reactions on the rock mineralogy were observed in the first meters of many boreholes drilled in the Andra's Underground Research Laboratory (URL) drifts at 490 m deep. They generate mainly sulfated and ferric secondary phases. The consequences of these reactions on the evolution of a radioactive waste disposal in such a rock are two folds. First, they will contribute to oxygen consumption and the generation of an anoxic atmosphere in the drifts and vaults after their closure. In addition, they will influence the composition of the water which will later on fill the drifts and vaults. These phenomena are taken into account in the modeling of disposal evolutions at various times and space scales. The main remaining uncertainties regarding these phenomena concern: i) the identification of all the species involved in the oxygen reduction; ii) the reaction kinetics; and iii) the extension of the oxidized zone around the drifts and vaults. The aim of the 'POX experiment' is to reduce these uncertainties. This experiment includes a test dedicated to the quantitative study of oxygen consumption in the Callovo-Oxfordian argillaceous rock. This test was implemented in 2009 in the Andra's URL. After an initial phase during which the rock natural gases and pore water at the test location were observed, the first oxygen injection was performed in July 2011. The experimental concept is based on gas circulation in a borehole. It consists of a 15 m-long and 76 mm-diameter ascending borehole, from which the last 5 m constitute the test interval. The rock surface in the test interval is close to 1 m 2 . The last 6 m of the borehole were cored with argon as a drilling

  18. Rate of oxygen consumption of hamster melanoma cells as a factor influencing their radioresistance

    International Nuclear Information System (INIS)

    Pajak, S.; Subczynski, W.; Panz, T.; Lukiewicz, S.

    1980-01-01

    It has been reported in recent years that the level of radiosensitivity of neoplasmic cells in vivo and of sphaeroids in vitro can be modified by controlling their rate of oxygen consumption. Thus, an attempt was made to compare this rate in the case of the melanotic and amelanotic lines of Bomirski hamster melanoma in vitro, as it is known that these two lines distinctly differ in their reactivity to ionizing radiations. The measurements carried out by the use of a new ESR method revealed that pigmented and pigmentless cells consume oxygen at significantly different rates. This means that oxygen utilization may contribute to the overall level of radioresistance of melanoma cells. (author)

  19. Red blood cell transfusions and tissue oxygenation in anemic hematology outpatients.

    Science.gov (United States)

    Yuruk, Koray; Bartels, Sebastiaan A; Milstein, Dan M J; Bezemer, Rick; Biemond, Bart J; Ince, Can

    2012-03-01

    There is little clinical evidence that red blood cell (RBC) transfusions improve oxygen availability at the microcirculatory level. We tested the hypotheses that anemia in chronically anemic patients with relatively healthy microcirculation would be associated with low tissue hemoglobin (Hb) and tissue oxygenation levels and that these conditions would be improved after RBC transfusions. Near-infrared spectroscopy (NIRS) was used to determine tissue oxygen saturation (StO(2)) and tissue Hb index (THI; an index of the amount of Hb in the NIRS measurement volume) in the thenar eminence and sublingual tissue before and 30 minutes after RBC transfusions in 20 chronically anemic hematology outpatients. Data are presented as median (25%-75%). The patients received three (two to three) bags of RBCs in saline-adenine-glucose-mannitol with an age of 21 (7-21) days, which was infused intravenously at the rate of 0.7 bag/hr. RBC transfusions significantly increased hematocrit level from 26% (24%-28%) to 32% (30%-34%; p viscosity from 3.4 (3.1-3.5) mPa/sec to 4.2 (4.0-4.5) mPa/sec (p < 0.0001), thenar StO(2) from 81% (80%-84%) to 86% (81%-89%; p = 0.002), thenar THI from 11.2 (9.3-13.3) AU to 13.7 (9.7-15.3) AU (p = 0.024), sublingual StO(2) from 86% (81%-89%) to 91% (86%-92%; p < 0.0001), and sublingual THI from 15.2 (13.0-17.4) AU to 17.2 (13.5-19.7) AU (p = 0.040). Although anemia in chronically anemic hematology outpatients was not associated with low StO(2) and THI levels, RBC transfusions were successful in improving these variables. © 2011 American Association of Blood Banks.

  20. The oxygen consumption rates of different life stages of the endoparasitic nematode

    Directory of Open Access Journals (Sweden)

    Willie van Aardt

    2010-01-01

    Full Text Available The oxygen consumption rates of different life stages of the endoparasitic nematode, Pratylenchus zeae (Nematoda: Tylenchida during non- and post-anhydrobiosisPratylenchus zeae, widely distributed in tropical and subtropical regions, is an endoparasite in roots of maize and other crop plants. The nematode is attracted to plant roots by CO2 and root exudates and feeds primarily on cells of the root cortex, making channels and openings where the eggs are deposited, with the result that secondary infection occurs due to bacteria and fungi. Nothing is known about the respiration physiology of this nematode and how it manages to survive during dry seasons. To measure the oxygen consumption rate (VO2 of individual P. zeae (less than half a millimeter long, a special measuring technique namely Cartesian diver micro-respirometry was applied. The Cartesian divers were machined from Perspex, and proved to be more accurate to measure VO2 compared with heavier glass divers used in similar experiments on free living nematodes. An accuracy of better than one nanoliter of oxygen consumed per hour was achieved with a single P. zeae inside the diver. Cartesian diver micro-respirometry measurements are based in principle on the manometric changes that occur in a fl otation tube in a manometer set-up when oxygen is consumed by P. zeae and CO2 from the animal is chemically absorbed. VO2 was measured for eggs (length: < 0.05 mm, larvae (length: 0.36 mm and adults (length: 0.47 mm before induction to anhydrobiosis. P. zeae from infected maize roots were extracted and exposed aseptically to in vitro maize root cultures in a grow cabinet at 50 % to 60% relative humidity at 28 ºC using eggs, larvae and adults. VO2 was also measured for post-anhydrobiotic eggs, larvae and adults by taking 50 individuals, eggs and larvae from the culture and placing them in Petri-dishes with 1% agar/water to dry out for 11 days at 28 ºC and 50% relative humidity. The VO2 was measured

  1. Artificial membrane-binding proteins stimulate oxygenation of stem cells during engineering of large cartilage tissue

    Science.gov (United States)

    Armstrong, James P. K.; Shakur, Rameen; Horne, Joseph P.; Dickinson, Sally C.; Armstrong, Craig T.; Lau, Katherine; Kadiwala, Juned; Lowe, Robert; Seddon, Annela; Mann, Stephen; Anderson, J. L. Ross; Perriman, Adam W.; Hollander, Anthony P.

    2015-06-01

    Restricted oxygen diffusion can result in central cell necrosis in engineered tissue, a problem that is exacerbated when engineering large tissue constructs for clinical application. Here we show that pre-treating human mesenchymal stem cells (hMSCs) with synthetic membrane-active myoglobin-polymer-surfactant complexes can provide a reservoir of oxygen capable of alleviating necrosis at the centre of hyaline cartilage. This is achieved through the development of a new cell functionalization methodology based on polymer-surfactant conjugation, which allows the delivery of functional proteins to the hMSC membrane. This new approach circumvents the need for cell surface engineering using protein chimerization or genetic transfection, and we demonstrate that the surface-modified hMSCs retain their ability to proliferate and to undergo multilineage differentiation. The functionalization technology is facile, versatile and non-disruptive, and in addition to tissue oxygenation, it should have far-reaching application in a host of tissue engineering and cell-based therapies.

  2. "Tissue oxygen tension, a determinant of resistance to infection and ...

    African Journals Online (AJOL)

    "Tissue oxygen tension, a determinant of resistance to infection and healing" - An Inaugural Lecture. K Jönsson. Abstract. An Inaugural Lecture Given in the University of Zimbabwe on 21 June 2001. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  3. Measurement of local blood flow and oxygen consumption in evolving irreversible cerebral infarction: an in vivo study in man

    International Nuclear Information System (INIS)

    Baron, J.C.; Rougemont, D.; Lebrun-Grandie, P.; Bousser, M.G.; Cabanis, E.; Bories, J.; Comar, D.; Castaigne, P.

    1982-09-01

    Positron emission tomography (PET) allows in vivo measurement of local cerebral blood flow (1CBF), oxygen consumption rate (1CMRO 2 ) and glucose utilisation (1CMRG1c) in man. Although 1CMRG1c is accessible in animals, this is not the case for 1CMRO 2 , an excellent index of local functional state. PET imaging of the local interrelationship of CBF and metabolism in completed ischemic stroke has attracted considerable interest because of its potential to differentiate irreversibly damaged from viable tissue on the basis of the CBF- metabolism patterns. Several qualitative or semi-quantitative pioneering studies provided a limited insight into this question, while the single truly quantitative study was only briefly reported. We report here a detailed study of the local CBF-CMRO 2 quantitative patterns in irreversibly infarcted brain regions

  4. Multispectral imaging of acute wound tissue oxygenation

    Directory of Open Access Journals (Sweden)

    Audrey Huong

    2017-05-01

    Full Text Available This paper investigates the appropriate range of values for the transcutaneous blood oxygen saturation (StO2 of granulating tissues and the surrounding tissue that can ensure timely wound recovery. This work has used a multispectral imaging system to collect wound images at wavelengths ranging between 520nm and 600nm with a resolution of 10nm. As part of this research, a pilot study was conducted on three injured individuals with superficial wounds of different wound ages at different skin locations. The StO2 value predicted for the examined wounds using the Extended Modified Lambert–Beer model revealed a mean StO2 of 61±10.3% compared to 41.6±6.2% at the surrounding tissues, and 50.1±1.53% for control sites. These preliminary results contribute to the existing knowledge on the possible range and variation of wound bed StO2 that are to be used as indicators of the functioning of the vasomotion system and wound health. This study has concluded that a high StO2 of approximately 60% and a large fluctuation in this value should precede a good progression in wound healing.

  5. Correlation of FMISO simulations with pimonidazole-stained tumor xenografts: A question of O{sub 2} consumption?

    Energy Technology Data Exchange (ETDEWEB)

    Wack, L. J., E-mail: linda-jacqueline.wack@med.uni-tuebingen.de; Thorwarth, D. [Section for Biomedical Physics, Department of Radiation Oncology, University Hospital Tübingen, Tübingen 72076 (Germany); Mönnich, D. [Section for Biomedical Physics, Department of Radiation Oncology, University Hospital Tübingen, Tübingen 72076 (Germany); German Cancer Consortium (DKTK), Tübingen 72076 (Germany); German Cancer Research Center (DKFZ), Heidelberg 69121 (Germany); Yaromina, A. [OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden 01309, Germany and Department of Radiation Oncology (MAASTRO), GROW—School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht 6229 ET (Netherlands); Zips, D. [German Cancer Consortium (DKTK), Tübingen 72076 (Germany); German Cancer Research Center (DKFZ), Heidelberg 69121 (Germany); Department of Radiation Oncology, University Hospital Tübingen, Tübingen 72076 (Germany); and others

    2016-07-15

    Purpose: To compare a dedicated simulation model for hypoxia PET against tumor microsections stained for different parameters of the tumor microenvironment. The model can readily be adapted to a variety of conditions, such as different human head and neck squamous cell carcinoma (HNSCC) xenograft tumors. Methods: Nine different HNSCC tumor models were transplanted subcutaneously into nude mice. Tumors were excised and immunoflourescently labeled with pimonidazole, Hoechst 33342, and CD31, providing information on hypoxia, perfusion, and vessel distribution, respectively. Hoechst and CD31 images were used to generate maps of perfused blood vessels on which tissue oxygenation and the accumulation of the hypoxia tracer FMISO were mathematically simulated. The model includes a Michaelis–Menten relation to describe the oxygen consumption inside tissue. The maximum oxygen consumption rate M{sub 0} was chosen as the parameter for a tumor-specific optimization as it strongly influences tracer distribution. M{sub 0} was optimized on each tumor slice to reach optimum correlations between FMISO concentration 4 h postinjection and pimonidazole staining intensity. Results: After optimization, high pixel-based correlations up to R{sup 2} = 0.85 were found for individual tissue sections. Experimental pimonidazole images and FMISO simulations showed good visual agreement, confirming the validity of the approach. Median correlations per tumor model varied significantly (p < 0.05), with R{sup 2} ranging from 0.20 to 0.54. The optimum maximum oxygen consumption rate M{sub 0} differed significantly (p < 0.05) between tumor models, ranging from 2.4 to 5.2 mm Hg/s. Conclusions: It is feasible to simulate FMISO distributions that match the pimonidazole retention patterns observed in vivo. Good agreement was obtained for multiple tumor models by optimizing the oxygen consumption rate, M{sub 0}, whose optimum value differed significantly between tumor models.

  6. Oxygen Consumption Constrains Food Intake in Fish Fed Diets Varying in Essential Amino Acid Composition

    NARCIS (Netherlands)

    Subramanian, S.; Geurden, I.; Figueiredo-Silva, A.C.; Nusantoro, S.; Kaushik, S.J.; Verreth, J.A.J.; Schrama, J.W.

    2013-01-01

    Compromisation of food intake when confronted with diets deficient in essential amino acids is a common response of fish and other animals, but the underlying physiological factors are poorly understood. We hypothesize that oxygen consumption of fish is a possible physiological factor constraining

  7. Activity-Dependent Calcium, Oxygen, and Vascular Responses in a Mouse Model of Familial Hemiplegic Migraine Type 1

    DEFF Research Database (Denmark)

    Khennouf, Lila; Gesslein, Bodil; Lind, Barbara Lykke

    2016-01-01

    it with assessment of local field potentials by electrophysiological recordings, cerebral blood flow by laser Doppler flowmetry, and oxygen consumption with measurement of the oxygen tissue tension. Results: During spreading depression, the evoked increase in cytosolic Ca2+ was larger and faster in FHM1 mice than...... wild-type (WT) mice. It was accompanied by larger increases in oxygen consumption in FHM1 mice, leading to tissue anoxia, but moderate hypoxia, in WT mice. In comparison, before CSD, Ca2+ and hemodynamic responses to somatosensory stimulations were smaller in FHM1 mice than WT mice and almost abolished...... after CSD. The CSD-induced Ca2+ changes were mitigated by the CaV2.1 gating modifier, tert-butyl dihydroquinone. Interpretation: Our findings suggest that tissue anoxia might be a mechanism for prolonged aura in FHM1. Reduced Ca2+ signals during normal network activity in FHM1 as compared to WT mice may...

  8. Brown Adipose Tissue Bioenergetics: A New Methodological Approach

    Science.gov (United States)

    Calderon‐Dominguez, María; Alcalá, Martín; Sebastián, David; Zorzano, Antonio; Viana, Marta; Serra, Dolors

    2017-01-01

    The rediscovery of brown adipose tissue (BAT) in humans and its capacity to oxidize fat and dissipate energy as heat has put the spotlight on its potential as a therapeutic target in the treatment of several metabolic conditions including obesity and diabetes. To date the measurement of bioenergetics parameters has required the use of cultured cells or extracted mitochondria with the corresponding loss of information in the tissue context. Herein, we present a method to quantify mitochondrial bioenergetics directly in BAT. Based on XF Seahorse Technology, we assessed the appropriate weight of the explants, the exact concentration of each inhibitor in the reaction, and the specific incubation time to optimize bioenergetics measurements. Our results show that BAT basal oxygen consumption is mostly due to proton leak. In addition, BAT presents higher basal oxygen consumption than white adipose tissue and a positive response to b‐adrenergic stimulation. Considering the whole tissue and not just subcellular populations is a direct approach that provides a realistic view of physiological respiration. In addition, it can be adapted to analyze the effect of potential activators of thermogenesis, or to assess the use of fatty acids or glucose as a source of energy. PMID:28435771

  9. Validation of NIRS in measuring tissue hemoglobin concentration and oxygen saturation on ex vivo and isolated limb models

    Science.gov (United States)

    Xu, Xiaorong; Zhu, Wen; Padival, Vikram; Xia, Mengna; Cheng, Xuefeng; Bush, Robin; Christenson, Linda; Chan, Tim; Doherty, Tim; Iatridis, Angelo

    2003-07-01

    Photonify"s tissue spectrometer uses Near-Infrared Spectroscopy for real-time, noninvasive measurement of hemoglobin concentration and oxygen saturation [SO2] of biological tissues. The technology was validated by a series of ex vivo and animal studies. In the ex vivo experiment, a close loop blood circulation system was built, precisely controlling the oxygen saturation and the hemoglobin concentration of a liquid phantom. Photonify"s tissue spectrometer was placed on the surface of the liquid phantom for real time measurement and compared with a gas analyzer, considered the gold standard to measure oxygen saturation and hemoglobin concentration. In the animal experiment, the right hind limb of each dog accepted onto the study was surgically removed. The limb was kept viable by connecting the femoral vein and artery to a blood-primed extracorporeal circuit. Different concentrations of hemoglobin were obtained by adding designated amount of saline solution into the perfusion circuit. Photonify"s tissue spectrometers measured oxygen saturation and hemoglobin concentration at various locations on the limb and compared with gas analyzer results. The test results demonstrated that Photonify"s tissue spectrometers were able to detect the relative changes in tissue oxygen saturation and hemoglobin concentration with a high linear correlation compared to the gas analyzer

  10. Influence of radioprotectors on total body weight evolution and on oxygen consumption in lethal dose irradiated animals. (Preliminary study)

    International Nuclear Information System (INIS)

    Fatome, M.; Martine, G.; Bargy, E.; Andrieu, L.

    Comparison of total body weight evolution and oxygen consumption in lethal dose irradiated animals, protected by various well known radioprotective substances, isolated or in mixture, with evolution and consumption of non protected animals irradiated at the same dose and with these of check animals [fr

  11. Correlation of cutaneous tension distribution and tissue oxygenation with acute external tissue expansion

    Directory of Open Access Journals (Sweden)

    Marquardt C

    2009-11-01

    Full Text Available Abstract Today, the biomechanical fundamentals of skin expansion are based on viscoelastic models of the skin. Although many studies have been conducted in vitro, analyses performed in vivo are rare. Here, we present in vivo measurements of the expansion at the skin surface as well as measurement of the corresponding intracutaneous oxygen partial pressure. In our study the average skin stretching was 24%, with a standard deviation of 11%, excluding age or gender dependency. The measurement of intracutaneous oxygen partial pressure produced strong inter-individual fluctuations, including initial values at the beginning of the measurement, as well as varying individual patient reactions to expansion of the skin. Taken together, we propose that even large defect wounds can be closed successfully using the mass displacement caused by expansion especially in areas where soft, voluminous tissue layers are present.

  12. Temperature induced variation in oxygen consumption of juvenile and adult stage of the dog conch Laevistrombus canarium (Linnaeus 1758)

    Science.gov (United States)

    Hassan, Wan Nurul Husna Wan; Amin, S. M. Nurul; Ghaffar, Mazlan Abd; Cob, Zaidi Che

    2015-09-01

    Laevistrombus canarium Linnaeus, 1758 is one of the important edible sea snail within the western Johor Straits, Malaysia. In this study, the impact of temperature on oxygen consumption (MO2) of L. canarium based on their ontogenetic changes (juvenile and adult) was measured in the laboratory condition at 22.0, 26.0, 30.0 and 34.0°C. Measurement of MO2 were taken every 1 s for 60 min on 4.20 - 34.00 g dog conch using respirometry chamber. All experiments were carried out in static conditions in five replicates with one snail per chambers. The results of oxygen consumption showed that juvenile dog conch respired at the rate of 0.163 ml h-1 and adult respired at the rate of 0.119 ml h-1. Consequently, the oxygen consumption in juvenile and adult dog conch was expressed as a total energy spends. The results indicates that total energy spend for oxygen consumed (ml h-1) of L. canarium at different temperature regimes (22.0 to 34.0°C) slightly increased over time period (0.63 ± 0.12 to 3.24 ± 0.05 J h-1) respectively. This finding of the present study suggested L. canarium is well adapted for life in high temperature environment.

  13. Hyperspectral imaging solutions for brain tissue metabolic and hemodynamic monitoring: past, current and future developments

    Science.gov (United States)

    Giannoni, Luca; Lange, Frédéric; Tachtsidis, Ilias

    2018-04-01

    Hyperspectral imaging (HSI) technologies have been used extensively in medical research, targeting various biological phenomena and multiple tissue types. Their high spectral resolution over a wide range of wavelengths enables acquisition of spatial information corresponding to different light-interacting biological compounds. This review focuses on the application of HSI to monitor brain tissue metabolism and hemodynamics in life sciences. Different approaches involving HSI have been investigated to assess and quantify cerebral activity, mainly focusing on: (1) mapping tissue oxygen delivery through measurement of changes in oxygenated (HbO2) and deoxygenated (HHb) hemoglobin; and (2) the assessment of the cerebral metabolic rate of oxygen (CMRO2) to estimate oxygen consumption by brain tissue. Finally, we introduce future perspectives of HSI of brain metabolism, including its potential use for imaging optical signals from molecules directly involved in cellular energy production. HSI solutions can provide remarkable insight in understanding cerebral tissue metabolism and oxygenation, aiding investigation on brain tissue physiological processes.

  14. PTP1B controls non-mitochondrial oxygen consumption by regulating RNF213 to promote tumour survival during hypoxia.

    Science.gov (United States)

    Banh, Robert S; Iorio, Caterina; Marcotte, Richard; Xu, Yang; Cojocari, Dan; Rahman, Anas Abdel; Pawling, Judy; Zhang, Wei; Sinha, Ankit; Rose, Christopher M; Isasa, Marta; Zhang, Shuang; Wu, Ronald; Virtanen, Carl; Hitomi, Toshiaki; Habu, Toshiyuki; Sidhu, Sachdev S; Koizumi, Akio; Wilkins, Sarah E; Kislinger, Thomas; Gygi, Steven P; Schofield, Christopher J; Dennis, James W; Wouters, Bradly G; Neel, Benjamin G

    2016-07-01

    Tumours exist in a hypoxic microenvironment and must limit excessive oxygen consumption. Hypoxia-inducible factor (HIF) controls mitochondrial oxygen consumption, but how/if tumours regulate non-mitochondrial oxygen consumption (NMOC) is unknown. Protein-tyrosine phosphatase-1B (PTP1B) is required for Her2/Neu-driven breast cancer (BC) in mice, although the underlying mechanism and human relevance remain unclear. We found that PTP1B-deficient HER2(+) xenografts have increased hypoxia, necrosis and impaired growth. In vitro, PTP1B deficiency sensitizes HER2(+) BC lines to hypoxia by increasing NMOC by α-KG-dependent dioxygenases (α-KGDDs). The moyamoya disease gene product RNF213, an E3 ligase, is negatively regulated by PTP1B in HER2(+) BC cells. RNF213 knockdown reverses the effects of PTP1B deficiency on α-KGDDs, NMOC and hypoxia-induced death of HER2(+) BC cells, and partially restores tumorigenicity. We conclude that PTP1B acts via RNF213 to suppress α-KGDD activity and NMOC. This PTP1B/RNF213/α-KGDD pathway is critical for survival of HER2(+) BC, and possibly other malignancies, in the hypoxic tumour microenvironment.

  15. AquaResp® — free open-source software for measuring oxygen consumption of resting aquatic animals

    DEFF Research Database (Denmark)

    Svendsen, Morten Bo S.; Skov, Peter Vilhelm; Bushnell, Peter G.

    AquaResp® is a free open-source software program developed to measure the oxygen consumption of aquatic animals using intermittent flow techniques. This free program is based on Microsoft Excel, and uses the MCC Universal Library and a data acquisition board to acquire analogue readings from up...... to four input ports and output control via two digital and two analogue ports. In addition AquaResp can read one COM-port if the oxygen analyser has a RS-232 output signal. The present version of the program has options for parsing data strings generated by two major fibre optic oxygen electrode...

  16. A unique mode of tissue oxygenation and the adaptive radiation of teleost fishes.

    Science.gov (United States)

    Randall, D J; Rummer, J L; Wilson, J M; Wang, S; Brauner, C J

    2014-04-15

    Teleost fishes constitute 95% of extant aquatic vertebrates, and we suggest that this is related in part to their unique mode of tissue oxygenation. We propose the following sequence of events in the evolution of their oxygen delivery system. First, loss of plasma-accessible carbonic anhydrase (CA) in the gill and venous circulations slowed the Jacobs-Stewart cycle and the transfer of acid between the plasma and the red blood cells (RBCs). This ameliorated the effects of a generalised acidosis (associated with an increased capacity for burst swimming) on haemoglobin (Hb)-O2 binding. Because RBC pH was uncoupled from plasma pH, the importance of Hb as a buffer was reduced. The decrease in buffering was mediated by a reduction in the number of histidine residues on the Hb molecule and resulted in enhanced coupling of O2 and CO2 transfer through the RBCs. In the absence of plasma CA, nearly all plasma bicarbonate ultimately dehydrated to CO2 occurred via the RBCs, and chloride/bicarbonate exchange was the rate-limiting step in CO2 excretion. This pattern of CO2 excretion across the gills resulted in disequilibrium states for CO2 hydration/dehydration reactions and thus elevated arterial and venous plasma bicarbonate levels. Plasma-accessible CA embedded in arterial endothelia was retained, which eliminated the localized bicarbonate disequilibrium forming CO2 that then moved into the RBCs. Consequently, RBC pH decreased which, in conjunction with pH-sensitive Bohr/Root Hbs, elevated arterial oxygen tensions and thus enhanced tissue oxygenation. Counter-current arrangement of capillaries (retia) at the eye and later the swim bladder evolved along with the gas gland at the swim bladder. Both arrangements enhanced and magnified CO2 and acid production and, therefore, oxygen secretion to those specialised tissues. The evolution of β-adrenergically stimulated RBC Na(+)/H(+) exchange protected gill O2 uptake during stress and further augmented plasma disequilibrium states

  17. Oxygen consumption rate v. rate of energy utilization of fishes: a comparison and brief history of the two measurements.

    Science.gov (United States)

    Nelson, J A

    2016-01-01

    Accounting for energy use by fishes has been taking place for over 200 years. The original, and continuing gold standard for measuring energy use in terrestrial animals, is to account for the waste heat produced by all reactions of metabolism, a process referred to as direct calorimetry. Direct calorimetry is not easy or convenient in terrestrial animals and is extremely difficult in aquatic animals. Thus, the original and most subsequent measurements of metabolic activity in fishes have been measured via indirect calorimetry. Indirect calorimetry takes advantage of the fact that oxygen is consumed and carbon dioxide is produced during the catabolic conversion of foodstuffs or energy reserves to useful ATP energy. As measuring [CO2 ] in water is more challenging than measuring [O2 ], most indirect calorimetric studies on fishes have used the rate of O2 consumption. To relate measurements of O2 consumption back to actual energy usage requires knowledge of the substrate being oxidized. Many contemporary studies of O2 consumption by fishes do not attempt to relate this measurement back to actual energy usage. Thus, the rate of oxygen consumption (M˙O2 ) has become a measurement in its own right that is not necessarily synonymous with metabolic rate. Because all extant fishes are obligate aerobes (many fishes engage in substantial net anaerobiosis, but all require oxygen to complete their life cycle), this discrepancy does not appear to be of great concern to the fish biology community, and reports of fish oxygen consumption, without being related to energy, have proliferated. Unfortunately, under some circumstances, these measures can be quite different from one another. A review of the methodological history of the two measurements and a look towards the future are included. © 2016 The Fisheries Society of the British Isles.

  18. Red blood cell transfusions and tissue oxygenation in anemic hematology outpatients

    NARCIS (Netherlands)

    Yuruk, Koray; Bartels, Sebastiaan A.; Milstein, Dan M. J.; Bezemer, Rick; Biemond, Bart J.; Ince, Can

    2012-01-01

    BACKGROUND: There is little clinical evidence that red blood cell (RBC) transfusions improve oxygen availability at the microcirculatory level. We tested the hypotheses that anemia in chronically anemic patients with relatively healthy microcirculation would be associated with low tissue hemoglobin

  19. Determination of optical properties, drug concentration, and tissue oxygenation in human pleural tissue before and after Photofrin-mediated photodynamic therapy

    Science.gov (United States)

    Ong, Yi Hong; Padawer-Curry, Jonah; Finlay, Jarod C.; Kim, Michele M.; Dimofte, Andreea; Cengel, Keith; Zhu, Timothy C.

    2018-02-01

    PDT efficacy depends on the concentration of photosensitizer, oxygen, and light delivery in patient tissues. In this study, we measure the in-vivo distribution of important dosimetric parameters, namely the tissue optical properties (absorption μa (λ) and scattering μs ' (λ) coefficients), photofrin concentration (cphotofrin), blood oxygen saturation (%StO2), and total hemoglobin concentration (THC), before and after PDT. We characterize the inter- and intra-patient heterogeneity of these quantities and explore how these properties change as a result of PDT treatment. The result suggests the need for real-time dosimetry during PDT to optimize the treatment condition depending on the optical and physiological properties.

  20. The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy

    International Nuclear Information System (INIS)

    Gray, L.H.; Conger, A.D.; Ebert, M.; Hornsey, S.; Scott, O.C.A.

    1984-01-01

    The sensitivity of tumour cells to X rays has been shown to be about three times as great when irradiated in a well-oxygenated medium as under anoxic conditions. The manner in which sensitivity depends on oxygen tension closely resembles that found by other workers for plant and insect tissues. The sensitivity of the tumour cells to fast neutron radiation is only slightly affected by oxygen tension. Consideration is given to the supply of oxygen to tissues as a factor in radiotherapy, and it is concluded on the basis of existing knowledge that in certain circumstances the effectiveness of X-ray treatment might be increased if the patient were breathing oxygen at the time of irradiation

  1. The effect of the transfusion of stored RBCs on intestinal microvascular oxygenation in the rat

    NARCIS (Netherlands)

    van Bommel, J.; de Korte, D.; Lind, A.; Siegemund, M.; Trouwborst, A.; Verhoeven, A. J.; Ince, C.; Henny, C. P.

    2001-01-01

    Although it is known that the transfusion of stored RBCs does not always improve tissue O(2) consumption under conditions of limited tissue oxygenation, the efficiency of O(2) delivery to the microcirculation by stored RBCs has never been determined. In a rat hemorrhagic shock model, the effects of

  2. Oxygen consumption rate and Na+/K+-ATPase activity in early developmental stages of the sea urchin Paracentrotus lividus Lam.

    Science.gov (United States)

    Tomšić, Sanja; Stanković, Suzana; Lucu, Čedomil

    2011-09-01

    Changes in oxygen consumption rate and Na+/K+-ATPase activity during early development were studied in the sea urchin Paracentrotus lividus Lam. The oxygen consumption rate increased from 0.12 μmol O2 mg protein-1 h-1 in unfertilized eggs to 0.38 μmol O2 mg protein-1 h-1 25 min after fertilization. Specific activity of the Na+/K+-ATPase was significantly stimulated after fertilization, ranging up to 1.07 μmol Pi h-1 mg protein-1 in the late blastula stage and slightly lower values in the early and late pluteus stages.

  3. Oxygen consumption remains stable while ammonia excretion is reduced upon short time exposure to high salinity in Macrobrachium acanthurus (Caridae: Palaemonidae, a recent freshwater colonizer

    Directory of Open Access Journals (Sweden)

    Carolina A. Freire

    2017-10-01

    Full Text Available ABSTRACT Palaemonid shrimps occur in the tropical and temperate regions of South America and the Indo-Pacific, in brackish/freshwater habitats, and marine coastal areas. They form a clade that recently (i.e., ~30 mya invaded freshwater, and one included genus, Macrobrachium Bate, 1868, is especially successful in limnic habitats. Adult Macrobrachium acanthurus (Wiegmann, 1836 dwell in coastal freshwaters, have diadromous habit, and need brackish water to develop. Thus, they are widely recognized as euryhaline. Here we test how this species responds to a short-term exposure to increased salinity. We hypothesized that abrupt exposure to high salinity would result in reduced gill ventilation/perfusion and decreased oxygen consumption. Shrimps were subjected to control (0 psu and experimental salinities (10, 20, 30 psu, for four and eight hours (n = 8 in each group. The water in the experimental containers was saturated with oxygen before the beginning of the experiment; aeration was interrupted before placing the shrimp in the experimental container. Dissolved oxygen (DO, ammonia concentration, and pH were measured from the aquaria water, at the start and end of each experiment. After exposure, the shrimp’s hemolymph was sampled for lactate and osmolality assays. Muscle tissue was sampled for hydration content (Muscle Water Content, MWC. Oxygen consumption was not reduced and hemolymph lactate did not increase with increased salinity. The pH of the water decreased with time, under all conditions. Ammonia excretion decreased with increased salinity. Hemolymph osmolality and MWC remained stable at 10 and 20 psu, but osmolality increased (~50% and MWC decreased (~4% at 30 psu. The expected reduction in oxygen consumption was not observed. This shrimp is able to tolerate significant changes in water salt concentrations for a few hours by keeping its metabolism in aerobic mode, and putatively shutting down branchial salt uptake to avoid massive salt

  4. Carbogen inhalation increases oxygen transport to hypoperfused brain tissue in patients with occlusive carotid artery disease: increased oxygen transport to hypoperfused brain

    DEFF Research Database (Denmark)

    Ashkanian, Mahmoud; Gjedde, Albert; Mouridsen, Kim

    2009-01-01

    to inhaled oxygen (the mixture known as carbogen). In the present study, we measured CBF by positron emission tomography (PET) during inhalation of test gases (O(2), carbogen, and atmospheric air) in healthy volunteers (n = 10) and in patients with occlusive carotid artery disease (n = 6). Statistical...... and Sa(O2) are readily obtained with carbogen, while oxygen increases only Sa(O2). Thus, carbogen improves oxygen transport to brain tissue more efficiently than oxygen alone. Further studies with more subjects are, however, needed to investigate the applicability of carbogen for long-term inhalation...

  5. Effect of oxygen and heliox breathing on air bubbles in adipose tissue during 25-kPa altitude exposures

    DEFF Research Database (Denmark)

    Randsoe, T.; Kvist, T.M.; Hyldegaard, O.

    2008-01-01

    and heliox breathing. Preoxygenation enhanced bubble disappearance compared with oxygen and heliox breathing but did not prevent bubble growth. The results indicate that oxygen breathing at 25 kPa promotes air bubble growth in adipose tissue regardless of the tissue nitrogen pressure Udgivelsesdato: 2008/11...

  6. [Oxidative power and intracellular distribution of mitochondria control cell oxygen regime when arterial hypoxemia occurs].

    Science.gov (United States)

    Liabakh, E G; Lissov, P N

    2012-01-01

    The regulatory impact of the mitochondria spatial distribution and enlargement in their oxidative power qO2 on the tissue oxygenation of skeletal muscle during hypoxia were studied. Investigations were performed by the mathematical modeling of 3D O2 diffusion-reaction in muscle fiber. The oxygen consumption rate VO2 and tissue pO2 were analyzed in response to a decrease in arterial blood oxygen concentration from 19.5 to 10 vol. % at a moderate load (3.5 ml/min per 100 g). The cells with evenly (case 1) and unevenly (case 2) distributed mitochondria were considered. According to calculations due to a rise in mitochondria oxidative power from 3.5 to 6.5 ml/min. per 100 g of tissue it is possible to maintain muscle oxygen V(O2) at constant level of 3.5 ml/min per 100 g despite a decrease in O2 delivery. Minimum value of tissue pO2 was about 0 and an area of hypoxia appeared inside the cell in case 1. But hypoxia disappeared and minimum value of pO2 increased from 0 to 4 mm Hg if mitochondria were distributed unevenly (case 2). It is shown that the possibilities of such regulation were limited and depended on the ratio of "the degree of hypoxemia--the level of oxygen delivery." It was assumed that an increase in mitochondria enzyme activity and mitochondria migration to the places of the greatest oxygen consumption rate can improve oxygen regime in the cells in terms of their adaptation to hypoxia. It is possible that changes in mitochondrial oxidative power and their intracellular redistribution may be considered as a new dimension in regulation of cell oxygen regime.

  7. Near infrared spectroscopy (NIRS) to monitor tissue haemoglobin (and myoglobin) oxygenation

    NARCIS (Netherlands)

    Scheeren, T. W. L.

    2010-01-01

    Introduction: Tissue oxygenation may be monitored noninvasively by near infrared spectroscopy (NIRS) both on the thenar eminescence (muscle) and on the forehead (brain). Thenar measurement have been used to guide therapy in trauma patients ( 1 ) and to determine the prognosis of septic patients ( 2

  8. Acute effects of Cu on oxygen consumption and 96 hr-LC 50 values ...

    African Journals Online (AJOL)

    The median lethal copper (Cu) concentration (96 hr-LC50) values for acute Cu toxicity for Tilapia sparrmanii (live mass: 30 ± 8g) in Mooi River hard water of dolomitic origin at 20° C, pH 7.9, was 68.1 µmol l–1. At this 96 hr-LC50 value the specific oxygen consumption rate (∉ O2) decreased by 44.2 (± 2.1) % from a ...

  9. Improvement of oxygen supply by an artificial carrier in combination with normobaric oxygenation decreases the volume of tissue hypoxia and tissue damage from transient focal cerebral ischemia

    NARCIS (Netherlands)

    Seiffge, David J.; Lapina, Natalia E.; Tsagogiorgas, Charalambos; Theisinger, Bastian; Henning, Robert H.; Schilling, Lothar

    Tissue hypoxia may play an important role in the development of ischemic brain damage. In the present study we investigated in a rat model of transient focal brain ischemia the neuroprotective effects of increasing the blood oxygen transport capacity by applying a semifluorinated alkane

  10. Alveolar gas exchange and tissue oxygenation during incremental treadmill exercise, and their associations with blood O2 carrying capacity

    Directory of Open Access Journals (Sweden)

    Antti-Pekka E. Rissanen

    2012-07-01

    Full Text Available The magnitude and timing of oxygenation responses in highly active leg muscle, less active arm muscle, and cerebral tissue, have not been studied with simultaneous alveolar gas exchange measurement during incremental treadmill exercise. Nor is it known, if blood O2 carrying capacity affects the tissue-specific oxygenation responses. Thus, we investigated alveolar gas exchange and tissue (m. vastus lateralis, m. biceps brachii, cerebral cortex oxygenation during incremental treadmill exercise until volitional fatigue, and their associations with blood O2 carrying capacity in 22 healthy men. Alveolar gas exchange was measured, and near-infrared spectroscopy (NIRS was used to monitor relative concentration changes in oxy- (Δ[O2Hb], deoxy- (Δ[HHb] and total hemoglobin (Δ[tHb], and tissue saturation index (TSI. NIRS inflection points (NIP, reflecting changes in tissue-specific oxygenation, were determined and their coincidence with ventilatory thresholds (anaerobic threshold (AT, respiratory compensation point (RC; V-slope method was examined. Blood O2 carrying capacity (total hemoglobin mass (tHb-mass was determined with the CO-rebreathing method. In all tissues, NIPs coincided with AT, whereas RC was followed by NIPs. High tHb-mass associated with leg muscle deoxygenation at peak exercise (e.g., Δ[HHb] from baseline walking to peak exercise vs. tHb-mass: r = 0.64, p < 0.01, but not with arm muscle- or cerebral deoxygenation. In conclusion, regional tissue oxygenation was characterized by inflection points, and tissue oxygenation in relation to alveolar gas exchange during incremental treadmill exercise resembled previous findings made during incremental cycling. It was also found out, that O2 delivery to less active m. biceps brachii may be limited by an accelerated increase in ventilation at high running intensities. In addition, high capacity for blood O2 carrying was associated with a high level of m. vastus lateralis deoxygenation at peak

  11. Tissue oxygenation as a target for goal-directed therapy in high-risk surgery : a pilot study

    NARCIS (Netherlands)

    van Beest, Paul A.; Vos, Jaap Jan; Poterman, Marieke; Kalmar, Alain F.; Scheeren, Thomas W. L.

    2014-01-01

    Background:  Tissue hypoperfusion occurs frequently during surgery and may contribute to postoperative organ dysfunction. There is a need for perioperative treatment protocols aiming at improving tissue oxygenation (StO(2)). We hypothesised that intra-operative optimisation of StO(2) improves tissue

  12. The Pathway for Oxygen: Tutorial Modelling on Oxygen Transport from Air to Mitochondrion: The Pathway for Oxygen.

    Science.gov (United States)

    Bassingthwaighte, James B; Raymond, Gary M; Dash, Ranjan K; Beard, Daniel A; Nolan, Margaret

    2016-01-01

    The 'Pathway for Oxygen' is captured in a set of models describing quantitative relationships between fluxes and driving forces for the flux of oxygen from the external air source to the mitochondrial sink at cytochrome oxidase. The intervening processes involve convection, membrane permeation, diffusion of free and heme-bound O2 and enzymatic reactions. While this system's basic elements are simple: ventilation, alveolar gas exchange with blood, circulation of the blood, perfusion of an organ, uptake by tissue, and consumption by chemical reaction, integration of these pieces quickly becomes complex. This complexity led us to construct a tutorial on the ideas and principles; these first PathwayO2 models are simple but quantitative and cover: (1) a 'one-alveolus lung' with airway resistance, lung volume compliance, (2) bidirectional transport of solute gasses like O2 and CO2, (3) gas exchange between alveolar air and lung capillary blood, (4) gas solubility in blood, and circulation of blood through the capillary syncytium and back to the lung, and (5) blood-tissue gas exchange in capillaries. These open-source models are at Physiome.org and provide background for the many respiratory models there.

  13. Noninvasive determination of myocardial blood flow, oxygen consumption and efficiency in normal humans by carbon-11 acetate positron emission tomography imaging

    International Nuclear Information System (INIS)

    Porenta, G.; Cherry, S.; Czernin, J.; Brunken, R.; Kuhle, W.; Hashimoto, T.; Schelbert, H.R.

    1999-01-01

    The aims of this study were: (1) to measure noninvasively and near simultaneously myocardial blood flow, oxygen consumption, and contractile function and (2) to analyze myocardial energy expenditure and efficiency at rest and during dobutamine stress in normal humans. Dynamic and gated carbon-11 acetate positron emission tomography (PET) imaging was performed in 11 normal subjects. The initial uptake of 11 C-acetate was measured to estimate myocardial blood flow. Oxygen consumption was derived from the monoexponential slope of the 11 C-clearance curve recorded during myocardial washout. ECG-gated systolic and diastolic images were acquired during the peak myocardial 11 C activity to measure left ventricular radius, myocardial wall thickness, and long axis length. Myocardial oxygen consumption and parameters of cardiac geometry were used to determine myocardial energetics and cardiac efficiency by tension-area area analysis. Myocardial blood flow averaged 0.8±0.06 ml min -1 g -1 at rest and 1.48±0.15 ml min -1 g -1 during dobutamine stress. Oxygen delivery and consumption were 151±13 and 88±15 μl O 2 min -1 g -1 at rest and increased to 291±31 and 216±31 μl O 2 min -1 g -1 , respectively, during pharmacological stress (P 11 C acetate imaging provides the unique capability to study noninvasively determinants of myocardial energy delivery, expenditure, and efficiency. (orig.)

  14. Diffusion and Monod kinetics model to determine in vivo human corneal oxygen-consumption rate during soft contact lens wear

    Directory of Open Access Journals (Sweden)

    Luis F. Del Castillo

    2015-01-01

    Conclusion: Present results are relevant for the calculation on the partial pressure of oxygen, available at different depths into the corneal tissue behind contact lenses of different oxygen transmissibility.

  15. Changes in Whole-Body Oxygen Consumption and Skeletal Muscle Mitochondria During Linezolid-Induced Lactic Acidosis.

    Science.gov (United States)

    Protti, Alessandro; Ronchi, Dario; Bassi, Gabriele; Fortunato, Francesco; Bordoni, Andreina; Rizzuti, Tommaso; Fumagalli, Roberto

    2016-07-01

    To better clarify the pathogenesis of linezolid-induced lactic acidosis. Case report. ICU. A 64-year-old man who died with linezolid-induced lactic acidosis. Skeletal muscle was sampled at autopsy to study mitochondrial function. Lactic acidosis developed during continuous infusion of linezolid while oxygen consumption and oxygen extraction were diminishing from 172 to 52 mL/min/m and from 0.27 to 0.10, respectively. Activities of skeletal muscle respiratory chain complexes I, III, and IV, encoded by nuclear and mitochondrial DNA, were abnormally low, whereas activity of complex II, entirely encoded by nuclear DNA, was not. Protein studies confirmed stoichiometric imbalance between mitochondrial (cytochrome c oxidase subunits 1 and 2) and nuclear (succinate dehydrogenase A) DNA-encoded respiratory chain subunits. These findings were not explained by defects in mitochondrial DNA or transcription. There were no compensatory mitochondrial biogenesis (no induction of nuclear respiratory factor 1 and mitochondrial transcript factor A) or adaptive unfolded protein response (reduced concentration of heat shock proteins 60 and 70). Linezolid-induced lactic acidosis is associated with diminished global oxygen consumption and extraction. These changes reflect selective inhibition of mitochondrial protein synthesis (probably translation) with secondary mitonuclear imbalance. One novel aspect of linezolid toxicity that needs to be confirmed is blunting of reactive mitochondrial biogenesis and unfolded protein response.

  16. Cerebral blood flow and oxygen consumption during ethanol withdrawal in the rat.

    Science.gov (United States)

    Hemmingsen, R; Barry, D I; Hertz, M M; Klinken, L

    1979-09-14

    The ethanol withdrawal syndrome in man and animals is characterized by signs of CNS hyperactivity although a direct measurement of a physiological variable reflecting this CNS hyperactivity has never been performed in untreated man or in animals. We induced ethanol dependence in the rat by means of intragastric intubation with a 20% w/v ethanol solution, thus keeping the animals in a state of continuous severe intoxication for 3--4 days; during the subsequent state of withdrawal characterized by tremor, rigidity, stereotyped movements and general seizures a 25% increase in cerebral oxygen consumption (CMRO2) could be measured; this increase was not due to catecholamines originating from adrenal medulla as adrenomedullectomized animals showed a similar increase in CMRO2 (28%); the withdrawing animals showed a corresponding cerebral blood flow (CBF) increase. The elevated CMRO2 and CBF could be reduced to normal by administration of a beta-adrenergic receptor blocker (propranolol 2 mg/kg i.v.), and hence the increased CMRO2 during ethanol withdrawal could be related to catecholaminergic systems in the brain, e.g. the noradrenergic locus coeruleus system which is anatomically well suited as a general activating system. This interpretation is supported by the earlier neurochemical finding of an increased cerebral noradrenaline turnover during ethanol withdrawal. The exact mechanism underlying the increased cerebral oxygen consumption during ethanol withdrawal and the effect of propranolol on cerebral function during this condition remains to be clarified.

  17. PET imaging of cerebral perfusion and oxygen consumption in acute ischemic stroke: Relation to outcome

    International Nuclear Information System (INIS)

    Marchal, G.; Serrati, C.; Rioux, P.; Petit-Taboue, M.C.; Viader, F.; Sayette, V. de la; Doze, F. le; Lonchon, P; Derlon, J.M.; Orgogozo, J.M.; Baron, J.C.

    1993-01-01

    The authors used positron emission tomography (PET) to assess the relation between combined imaging of cerebral blood flow and oxygen consumption 5-18 h after first middle cerebral artery (MCA) stroke and neurological outcome at 2 months. All 18 patients could be classified into three visually defined PET patterns of perfusion and oxygen consumption changes. Pattern 1 suggested extensive irreversible damage and was consistently associated with poor outcome. Pattern 2 suggested continuing ischemia and was associated with variable outcome. Pattern 3 with hyperperfusion and little or no metabolic alteration, was associated with excellent recovery, which suggests that early reperfusion is beneficial. This relation between PET and outcome was highly significant. The results suggest that within 5-18 h of stroke onset, PET is a good predictor of outcome in patterns 1 and 3, for which therapy seems limited. The absence of predictive value for pattern 2 suggests that it is due to a reversible ischemic state that is possibly amenable to therapy. These findings may have important implications for acute MCA stroke management and for patients' selection for therapeutic trials

  18. Oxygen regulation of uricase and sucrose synthase synthesis in soybean callus tissue is exerted at the mRNA level

    DEFF Research Database (Denmark)

    Xue, Z T; Larsen, K; Jochimsen, B U

    1991-01-01

    The effect of lowering oxygen concentration on the expression of nodulin genes in soybean callus tissue devoid of the microsymbiont has been examined. Poly(A)+ RNA was isolated from tissue cultivated in 4% oxygen and in normal atmosphere. Quantitative mRNA hybridization experiments using nodule...

  19. Positron tomography investigation in humans of the local coupling among CBF, oxygen consumption and glucose utilization

    Energy Technology Data Exchange (ETDEWEB)

    Baron, J C; Rougemont, D; Soussaline, F; Crouzel, C; Bousser, M G; Comar, D

    1983-06-01

    Positron tomography investigation of the local coupling among cerebral blood flow (CBF), oxygen consumption (CMRO/sub 2/) and glucose utilization (CMRGlc) was performed in 5 controls and 6 ischemic stroke patients, using oxygen 15 inhalation technique immediately followed by I.V. injection of /sup 18/F-Fluoro-Desoxyglucose (/sup 18/FDG). The normal couple among all 3 variables was demonstrated; but on the other hand significant disruption of either or both the CBF-CMRGlc and the CMRO/sub 2/-CMRGlc couples was found in all 6 stroke patients. Comments on these new findings were made.

  20. Low Oxygen Consumption is Related to a Hypomethylation and an Increased Secretion of IL-6 in Obese Subjects with Sleep Apnea-Hypopnea Syndrome.

    Science.gov (United States)

    Lopez-Pascual, Amaya; Lasa, Arrate; Portillo, María P; Arós, Fernando; Mansego, María L; González-Muniesa, Pedro; Martinez, J Alfredo

    2017-01-01

    Deoxyribonucleic acid (DNA) methylation is an epigenetic modification involved in gene expression regulation, usually via gene silencing, which contributes to the risks of many multifactorial diseases. The aim of the present study was to analyze the influence of resting oxygen consumption on global and gene DNA methylation as well as protein secretion of inflammatory markers in blood cells from obese subjects with sleep apnea-hypopnea syndrome (SAHS). A total of 44 obese participants with SAHS were categorized in 2 groups according to their resting oxygen consumption. DNA methylation levels were evaluated using a methylation-sensitive high resolution melting approach. The analyzed interleukin 6 (IL6) gene cytosine phosphate guanine (CpG) islands showed a hypomethylation, while serum IL-6 was higher in the low compared to the high oxygen consumption group (p DNA methylation of tumor necrosis factor (B = -0.82, 95% CI -1.33 to -0.30) and long interspersed nucleotide element 1 (B = -0.46; 95% CI -0.87 to -0.04) gene CpGs were found. Finally, studied CpG methylation levels of serpin peptidase inhibitor, clade E member 1 (r = 0.43; p = 0.01), and IL6 (r = 0.41; p = 0.02) were positively associated with fat-free mass. These findings suggest a potential role of oxygen in the regulation of inflammatory genes. Oxygen consumption measurement at rest could be proposed as a clinical biomarker of metabolic health. © 2017 S. Karger AG, Basel.

  1. Early resuscitation with polymerized bovine hemoglobin reverses acidosis, but not peripheral tissue oxygenation, in a severe hamster shock model.

    Science.gov (United States)

    Wettstein, Reto; Tsai, Amy G; Harder, Yves; Erni, Dominique; Intaglietta, Marcos

    2006-11-01

    Awake hamsters equipped with the dorsal window chamber preparation were subjected to hemorrhage of 50% of the estimated blood volume. Initial resuscitation (25% of estimated blood volume) with polymerized bovine hemoglobin (PBH) or 10% hydroxyethyl starch (HES) occurred in concert with an equivolumetric bleeding to simulate the early, prehospital setting (exchange transfusion). Resuscitation (25% of estimated blood volume) without bleeding was performed with PBH, HES, or autologous red blood cells (HES-RBCs). Peripheral microcirculation, tissue oxygenation, and systemic hemodynamic and blood gas parameters were assessed. After exchange transfusion, base deficit was -8.6 +/- 3.7 mmol/L (PBH) and -5.1 +/- 5.3 mmol/L (HES) (not significant). Functional capillary density was 17% +/- 6% of baseline (PBH) and 31% +/- 11% (HES) (P < 0.05) and arteriolar diameter 73% +/- 3% of baseline (PBH) and 90% + 5% (HES) (P < 0.01). At the end, hemoglobin levels were 3.7 +/- 0.3 g/dL with HES, 8.2 +/- 0.6 g/dL with PBH, and 10.4 +/- 0.8 g/dL with HES-RBCs (P < 0.01 HES vs. PBH and HES-RBCs, P < 0.05 PBH vs. HES-RBCs). Base excess was restored to baseline with PBH and HES-RBCs, but not with HES (P < 0.05). Functional capillary density was 46% +/- 5% of baseline (PBH), 62% + 20% (HES-RBCs), and 36% +/- 19% (HES) (P < 0.01 HES-RBCs vs. HES). Peripheral oxygen delivery and consumption was highest with HES-RBCs, followed by PBH (P < 0.05 HES-RBCs vs. PBH, P < 0.01 HES-RBCs and PBH vs. HES). In conclusion, the PBH led to a correction of base deficit comparable to blood transfusion. However, oxygenation of the peripheral tissue was inferior with PBH. This was attributed to its negative impact on the peripheral microcirculation caused by arteriolar vasoconstriction.

  2. NODC Standard Format Seabed Oxygen Consumption from In-Situ Sources (F050) Data (1974-1978) (NODC Accession 0014186)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data type contains data from analyses of seabed oxygen consumption determined from measurements over a specified time interval of initial and final dissolved...

  3. Measurement of Diaphragmatic Blood Flow and Oxygen Consumption in the Dog by the Kety-Schmidt Technique

    Science.gov (United States)

    Rochester, Dudley F.

    1974-01-01

    To assess energy expenditure of the diaphragm directly, a method was devised for percutaneous catheterization of the left inferior phrenic vein in dogs. Necropsy studies, including retrograde injection of india ink and measurement of radioactivity in diaphragmatic muscle strips, suggested that the territory drained by the inferior phrenic vein was uniformly perfused, and that there were no major anastomoses between this bed and adjacent ones. Diaphragmatic blood flow (˙Q di) was calculated from the integrated diaphragmatic arteriovenous difference of 85Kr by the Kety-Schmidt technique. Diaphragmatic oxygen consumption (˙Vo2 di) was determined as the product of ˙Q di and the diaphragmatic arteriovenous oxygen content difference [(A-V)O2 di]. When lightly anesthetized dogs breathed quietly, ˙Q di was 22±SD 6 ml/min/100 g, (A-V)O2 di was 6.1±SD 2.5 ml/100 ml, and ˙VO2 di averaged 1.2±SD 0.3 ml/min/100 g. This represented 1.0±SD 0.2% of total body oxygen consumption. ˙VO2 di remained relatively constant during quiet breathing, whereas ˙Q di varied directly with cardiac output and reciprocally with (A-V)O2 di. The oxygen consumption of the noncontracting diaphragm was 60±SD 20% of the level measured during quiet breathing. The energy expended by the diaphragm to support simple hyperventilation was small. A 100% increase in minute ventilation, induced by inhalation of 5% CO2 in 21% or 14% O2, increased ˙Q di 13%, (A-V)O2 di 19%, and ˙VO2 di 40%. The diaphragm consumed 0.13±SD 0.09 ml O2 for each additional liter of ventilation. In four dogs, pneumonia appeared to increase ˙VO2 both by increasing minute ventilation and by increasing the energy cost per liter of ventilation. PMID:4825221

  4. Metabolic control over the oxygen consumption flux in intact skeletal muscle: in silico studies.

    Science.gov (United States)

    Liguzinski, Piotr; Korzeniewski, Bernard

    2006-12-01

    It has been postulated previously that a direct activation of all oxidative phosphorylation complexes in parallel with the activation of ATP usage and substrate dehydrogenation (the so-called each-step activation) is the main mechanism responsible for adjusting the rate of ATP production by mitochondria to the current energy demand during rest-to-work transition in intact skeletal muscle in vivo. The present in silico study, using a computer model of oxidative phosphorylation developed previously, analyzes the impact of the each-step-activation mechanism on the distribution of control (defined within Metabolic Control Analysis) over the oxygen consumption flux among the components of the bioenergetic system in intact oxidative skeletal muscle at different energy demands. It is demonstrated that in the absence of each-step activation, the oxidative phosphorylation complexes take over from ATP usage most of the control over the respiration rate and oxidative ATP production at higher (but still physiological) energy demands. This leads to a saturation of oxidative phosphorylation, impossibility of a further acceleration of oxidative ATP synthesis, and dramatic drop in the phosphorylation potential. On the other hand, the each-step-activation mechanism allows maintenance of a high degree of the control exerted by ATP usage over the ATP turnover and oxygen consumption flux even at high energy demands and thus enables a potentially very large increase in ATP turnover. It is also shown that low oxygen concentration shifts the metabolic control from ATP usage to cytochrome oxidase and thus limits the oxidative ATP production.

  5. Measurement of characteristic prompt gamma rays emitted from oxygen and carbon in tissue-equivalent samples during proton beam irradiation.

    Science.gov (United States)

    Polf, Jerimy C; Panthi, Rajesh; Mackin, Dennis S; McCleskey, Matt; Saastamoinen, Antti; Roeder, Brian T; Beddar, Sam

    2013-09-07

    The purpose of this work was to characterize how prompt gamma (PG) emission from tissue changes as a function of carbon and oxygen concentration, and to assess the feasibility of determining elemental concentration in tissues irradiated with proton beams. For this study, four tissue-equivalent water-sucrose samples with differing densities and concentrations of carbon, hydrogen, and oxygen were irradiated with a 48 MeV proton pencil beam. The PG spectrum emitted from each sample was measured using a high-purity germanium detector, and the absolute detection efficiency of the detector, average beam current, and delivered dose distribution were also measured. Changes to the total PG emission from (12)C (4.44 MeV) and (16)O (6.13 MeV) per incident proton and per Gray of absorbed dose were characterized as a function of carbon and oxygen concentration in the sample. The intensity of the 4.44 MeV PG emission per incident proton was found to be nearly constant for all samples regardless of their carbon concentration. However, we found that the 6.13 MeV PG emission increased linearly with the total amount (in grams) of oxygen irradiated in the sample. From the measured PG data, we determined that 1.64 × 10(7) oxygen PGs were emitted per gram of oxygen irradiated per Gray of absorbed dose delivered with a 48 MeV proton beam. These results indicate that the 6.13 MeV PG emission from (16)O is proportional to the concentration of oxygen in tissue irradiated with proton beams, showing that it is possible to determine the concentration of oxygen within tissues irradiated with proton beams by measuring (16)O PG emission.

  6. FORMING SELF-ASSEMBLED CELL ARRAYS AND MEASURING THE OXYGEN CONSUMPTION RATE OF A SINGLE LIVE CELL.

    Science.gov (United States)

    Etzkorn, James R; McQuaide, Sarah C; Anderson, Judy B; Meldrum, Deirdre R; Parviz, Babak A

    2009-06-01

    We report a method for forming arrays of live single cells on a chip using polymer micro-traps made of SU8. We have studied the toxicity of the microfabricated structures and the associated environment for two cell lines. We also report a method for measuring the oxygen consumption rate of a single cell using optical interrogation of molecular oxygen sensors placed in micromachined micro-wells by temporarily sealing the cells in the micro-traps. The new techniques presented here add to the collection of tools available for performing "single-cell" biology. A single-cell self-assembly yield of 61% was achieved with oxygen draw down rates of 0.83, 0.82, and 0.71 fmol/minute on three isolated live A549 cells.

  7. Wii, Kinect, and Move. Heart Rate, Oxygen Consumption, Energy Expenditure, and Ventilation due to Different Physically Active Video Game Systems in College Students.

    Science.gov (United States)

    Scheer, Krista S; Siebrant, Sarah M; Brown, Gregory A; Shaw, Brandon S; Shaw, Ina

    Nintendo Wii, Sony Playstation Move , and Microsoft XBOX Kinect are home video gaming systems that involve player movement to control on-screen game play. Numerous investigations have demonstrated that playing Wii is moderate physical activity at best, but Move and Kinect have not been as thoroughly investigated. The purpose of this study was to compare heart rate, oxygen consumption, and ventilation while playing the games Wii Boxing, Kinect Boxing, and Move Gladiatorial Combat. Heart rate, oxygen consumption, and ventilation were measured at rest and during a graded exercise test in 10 males and 9 females (19.8 ± 0.33 y, 175.4 ± 2.0 cm, 80.2 ± 7.7 kg,). On another day, in a randomized order, the participants played Wii Boxing, K inect Boxing, and Move Gladiatorial Combat while heart rate, ventilation, and oxygen consumption were measured. There were no differences in heart rate (116.0 ± 18.3 vs. 119.3 ± 17.6 vs. 120.1 ± 17.6 beats/min), oxygen consumption (9.2 ± 3.0 vs. 10.6 ± 2.4 vs. 9.6 ± 2.4 ml/kg/min), or minute ventilation (18.9 ± 5.7 vs. 20.8 ± 8.0 vs. 19.7 ± 6.4 L/min) when playing Wii boxing, Kinect boxing, or Move Gladiatorial Combat (respectively). Playing Nintendo Wii Boxing, XBOX Kinect Boxing, and Sony PlayStation Move Gladiatorial Combat all increase heart rate, oxygen consumption, and ventilation above resting levels but there were no significant differences between gaming systems. Overall, playing a "physically active" home video game system does not meet the minimal threshold for moderate intensity physical activity, regardless of gaming system.

  8. Somatosensory evoked changes in cerebral oxygen consumption measured non-invasively in premature neonates

    Science.gov (United States)

    Roche-Labarbe, Nadege; Fenoglio, Angela; Radakrishnan, Harsha; Kocienski-Filip, Marcia; Carp, Stefan A.; Dubb, Jay; Boas, David A.; Grant, P. Ellen; Franceschini, Maria Angela

    2013-01-01

    The hemodynamic functional response is used as a reliable marker of neuronal activity in countless studies of brain function and cognition. In newborns and infants, however, conflicting results have appeared in the literature concerning the typical response, and there is little information on brain metabolism and functional activation. Measurement of all hemodynamic components and oxygen metabolism is critical for understanding neurovascular coupling in the developing brain. To this end, we combined multiple near infrared spectroscopy techniques to measure oxy- and deoxy-hemoglobin concentrations, cerebral blood volume (CBV), and relative cerebral blood flow (CBF) in the somatosensory cortex of 6 preterm neonates during passive tactile stimulation of the hand. By combining these measures we estimated relative changes in the cerebral metabolic rate of oxygen consumption (rCMRO2). CBF starts increasing immediately after stimulus onset, and returns to baseline before blood volume. This is consistent with the model of pre-capillary arteriole active dilation driving the CBF response, with a subsequent CBV increase influenced by capillaries and veins dilating passively to accommodate the extra blood. rCMRO2 estimated using the steady-state formulation shows a biphasic pattern: an increase immediately after stimulus onset, followed by a post-stimulus undershoot due to blood flow returning faster to baseline than oxygenation. However, assuming a longer mean transit time from the arterial to the venous compartment, due to the immature vascular system of premature infants, reduces the post-stimulus undershoot and increases the flow/consumption ratio to values closer to adult values reported in the literature. We are the first to report changes in local rCBF and rCMRO2 during functional activation in preterm infants. The ability to measure these variables in addition to hemoglobin concentration changes is critical for understanding neurovascular coupling in the developing

  9. Glucose consumption by various tissues in pregnant rats : effects of a 6-day euglycaemic hyperinsulinaemic clamp

    NARCIS (Netherlands)

    Nieuwenhuizen, AG; Schuiling, GA; Bonen, A; Paans, AMJ; Vaalburg, W; Koiter, TR

    In the course of pregnancy maternal tissues become increasingly more insensitive to insulin. As 6 days of euglycaemic hyperinsulinaemic clamping, from day 8 until 14 of gestation, ameliorates total glucose consumption, we analysed the contribution of individual tissues in this phenomenon. We

  10. Changes in oxygen partial pressure of brain tissue in an animal model of obstructive apnea

    Directory of Open Access Journals (Sweden)

    Torres Marta

    2010-01-01

    Full Text Available Abstract Background Cognitive impairment is one of the main consequences of obstructive sleep apnea (OSA and is usually attributed in part to the oxidative stress caused by intermittent hypoxia in cerebral tissues. The presence of oxygen-reactive species in the brain tissue should be produced by the deoxygenation-reoxygenation cycles which occur at tissue level during recurrent apneic events. However, how changes in arterial blood oxygen saturation (SpO2 during repetitive apneas translate into oxygen partial pressure (PtO2 in brain tissue has not been studied. The objective of this study was to assess whether brain tissue is partially protected from intermittently occurring interruption of O2 supply during recurrent swings in arterial SpO2 in an animal model of OSA. Methods Twenty-four male Sprague-Dawley rats (300-350 g were used. Sixteen rats were anesthetized and non-invasively subjected to recurrent obstructive apneas: 60 apneas/h, 15 s each, for 1 h. A control group of 8 rats was instrumented but not subjected to obstructive apneas. PtO2 in the cerebral cortex was measured using a fast-response oxygen microelectrode. SpO2 was measured by pulse oximetry. The time dependence of arterial SpO2 and brain tissue PtO2 was carried out by Friedman repeated measures ANOVA. Results Arterial SpO2 showed a stable periodic pattern (no significant changes in maximum [95.5 ± 0.5%; m ± SE] and minimum values [83.9 ± 1.3%]. By contrast, brain tissue PtO2 exhibited a different pattern from that of arterial SpO2. The minimum cerebral cortex PtO2 computed during the first apnea (29.6 ± 2.4 mmHg was significantly lower than baseline PtO2 (39.7 ± 2.9 mmHg; p = 0.011. In contrast to SpO2, the minimum and maximum values of PtO2 gradually increased (p 2 were significantly greater relative to baseline and the first apnea dip, respectively. Conclusions These data suggest that the cerebral cortex is partially protected from intermittently occurring interruption of

  11. Islet oxygen consumption rate (OCR) dose predicts insulin independence for first clinical islet allotransplants

    Science.gov (United States)

    Kitzmann, JP; O’Gorman, D; Kin, T; Gruessner, AC; Senior, P; Imes, S; Gruessner, RW; Shapiro, AMJ; Papas, KK

    2014-01-01

    Human islet allotransplant (ITx) for the treatment of type 1 diabetes is in phase III clinical registration trials in the US and standard of care in several other countries. Current islet product release criteria include viability based on cell membrane integrity stains, glucose stimulated insulin release (GSIR), and islet equivalent (IE) dose based on counts. However, only a fraction of patients transplanted with islets that meet or exceed these release criteria become insulin independent following one transplant. Measurements of islet oxygen consumption rate (OCR) have been reported as highly predictive of transplant outcome in many models. In this paper we report on the assessment of clinical islet allograft preparations using islet oxygen consumption rate (OCR) dose (or viable IE dose) and current product release assays in a series of 13 first transplant recipients. The predictive capability of each assay was examined and successful graft function was defined as 100% insulin independence within 45 days post-transplant. Results showed that OCR dose was most predictive of CTO. IE dose was also highly predictive, while GSIR and membrane integrity stains were not. In conclusion, OCR dose can predict CTO with high specificity and sensitivity and is a useful tool for evaluating islet preparations prior to clinical ITx. PMID:25131089

  12. Modelling benthic oxygen consumption and benthic-pelagic coupling at a shallow station in the southern North Sea

    NARCIS (Netherlands)

    Provoost, P.; Braeckman, U.; Van Gansbeke, D.; Moodley, L.; Soetaert, K.; Middelburg, J.J.; Vanaverbeke, J.

    2013-01-01

    A time-series of benthic oxygen consumption, water-column and sediment chlorophyll concentrations, and temperature in the southern North Sea was subjected to inverse modelling in order to study benthic-pelagic coupling in this coastal marine system. The application of a Markov Chain Monte Carlo

  13. Using carbon emissions, oxygen consumption, and retained energy to calculate dietary ME intake by beef steers

    Science.gov (United States)

    Eight cross-bred beef steers (initial BW = 241 ± 4.10 kg) were used in a 77-d feeding experiment to determine if ME intake can be determined from carbon emissions, oxygen consumption, and energy retention estimates. Steers were housed in a pen equipped with individual feed bunks and animal access w...

  14. Polydeoxyribonucleotide Improves Peripheral Tissue Oxygenation and Accelerates Angiogenesis in Diabetic Foot Ulcers

    Directory of Open Access Journals (Sweden)

    Seoyoung Kim

    2017-11-01

    Full Text Available Background Polydeoxyribonucleotide (PDRN is known to have anti-inflammatory and angiogenic effects and to accelerate wound healing. The aim of this study was to investigate whether PDRN could improve peripheral tissue oxygenation and angiogenesis in diabetic foot ulcers. Methods This was a prospective randomized controlled clinical trial. Twenty patients with a non-healing diabetic foot ulcer were randomly distributed into a control group (n=10 and a PDRN group (n=10. Initial surgical debridement and secondary surgical procedures such as a split-thickness skin graft, primary closure, or local flap were performed. Between the initial surgical debridement and secondary surgical procedures, 0.9% normal saline (3 mL or PDRN was injected for 2 weeks by the intramuscular (1 ampule, 3 mL, 5.625 mg, 5 days per week and perilesional routes (1 ampule, 3 mL, 5.625 mg, 2 days per week. Transcutaneous oxygen tension (TcPO2 was evaluated using the Periflux System 5000 with TcPO2/CO2 unit 5040 before the injections and on days 1, 3, 7, 14, and 28 after the start of the injections. A pathologic review (hematoxylin and eosin stain of the debrided specimens was conducted by a pathologist, and vessel density (average number of vessels per visual field was calculated. Results Compared with the control group, the PDRN-treated group showed improvements in peripheral tissue oxygenation on day 7 (P<0.01, day 14 (P<0.001, and day 28 (P<0.001. The pathologic review of the specimens from the PDRN group showed increased angiogenesis and improved inflammation compared with the control group. No statistically significant difference was found between the control group and the PDRN group in terms of vessel density (P=0.094. Complete healing was achieved in every patient. Conclusions In this study, PDRN improved peripheral tissue oxygenation. Moreover, PDRN is thought to be effective in improving inflammation and angiogenesis in diabetic foot ulcers.

  15. Effects of prolonged compression on the variations of haemoglobin oxygenation-assessment by spectral analysis of reflectance spectrophotometry signals

    International Nuclear Information System (INIS)

    Li, Zengyong; Tam, Eric W C; Mak, Arthur F T; Lau, Roy Y C

    2006-01-01

    The consequences of rhythmical flow motion for nutrition and the oxygen supply to tissue are largely unknown. In this study, the periodic variations of haemoglobin oxygenation in compressed and uncompressed skin were evaluated with a reflection spectrometer using an in vivo Sprague-Dawley rat model. Skin compression was induced over the trochanter area by a locally applied external pressure of 13.3 kPa (100 mmHg) via a specifically designed pneumatic indentor. A total of 19 rats were used in this study. The loading duration is 6 h per day for four consecutive days. Haemoglobin oxygenation variations were quantified using spectral analysis based on wavelets' transformation. The results found that in both compressed and uncompressed skin, periodic variations of the haemoglobin oxygenation were characterized by two frequencies in the range of 0.01-0.05 Hz and 0.15-0.4 Hz. These frequency ranges coincide with those of the frequency range of the endothelial-related metabolic and myogenic activities found in the flow motion respectively. Tissue compression following the above loading schedule induced a significant decrease in the spectral amplitudes of frequency interval 0.01-0.05 Hz during the pre-occlusion period on day 3 and day 4 as compared to that on day 1 (p 2 consumption rates of arteriolar walls. The modification of vessel wall oxygen consumption might substantially affect the available oxygen supply to the compressed tissue. This mechanism might be involved in the process leading to pressure ulcer formation

  16. Oxygen consumption and heart rate responses to isolated ballet exercise sets.

    Science.gov (United States)

    Rodrigues-Krause, Josianne; Dos Santos Cunha, Giovani; Alberton, Cristine Lima; Follmer, Bruno; Krause, Mauricio; Reischak-Oliveira, Alvaro

    2014-01-01

    Ballet stage performances are associated with higher cardiorespiratory demand than rehearsals and classes. Hence, new interest is emerging to create periodized training that enhances dancers' fitness while minimizing delayed exercise-induced fatigue and possible injuries. Finding out in what zones of intensity dancers work during different ballet movements may support the use of supplemental training adjusted to the needs of the individual dancer. Therefore, the main purpose of this study was to describe dancers' oxygen consumption (VO2) and heart rate (HR) responses during the performance of nine isolated ballet exercise sets, as correlated with their first and second ventilatory thresholds (VT1 and VT2). Twelve female ballet dancers volunteered for the study. Their maximum oxygen consumption (VO2max), VT1, and VT2 were determined by use of an incremental treadmill test. Nine sets of ballet movements were assessed: pliés, tendus, jetés, rond de jambes, fondus, grand adage (adage), grand battements, temps levés, and sautés. The sets were randomly executed and separated by 5 minute rest periods. ANOVA for repeated measurements followed by the Bonferroni Post-hoc test were applied (p ballet sets. This stratification followed closely, but not exactly, the variation in HR. For example, rond de jambes (156.8 ± 19 b·min(-1)) did not show any significant difference from all the other ballet sets, nor VT1 or VT2. It is concluded that the workloads of isolated ballet sets, based on VO2 responses, vary between low and moderate aerobic intensity in relation to dancers' VT1 and VT2. However, ballet set workloads may be higher when based on HR responses, due to the intermittent and isometric components of dance.

  17. Effects of different acute hypoxic regimens on tissue oxygen profiles and metabolic outcomes.

    Science.gov (United States)

    Reinke, Christian; Bevans-Fonti, Shannon; Drager, Luciano F; Shin, Mi-Kyung; Polotsky, Vsevolod Y

    2011-09-01

    Obstructive sleep apnea (OSA) causes intermittent hypoxia (IH) during sleep. Both obesity and OSA are associated with insulin resistance and systemic inflammation, which may be attributable to tissue hypoxia. We hypothesized that a pattern of hypoxic exposure determines both oxygen profiles in peripheral tissues and systemic metabolic outcomes, and that obesity has a modifying effect. Lean and obese C57BL6 mice were exposed to 12 h of intermittent hypoxia 60 times/h (IH60) [inspired O₂ fraction (Fi(O₂)) 21-5%, 60/h], IH 12 times/h (Fi(O₂) 5% for 15 s, 12/h), sustained hypoxia (SH; Fi(O₂) 10%), or normoxia while fasting. Tissue oxygen partial pressure (Pti(O₂)) in liver, skeletal muscle and epididymal fat, plasma leptin, adiponectin, insulin, blood glucose, and adipose tumor necrosis factor-α (TNF-α) were measured. In lean mice, IH60 caused oxygen swings in the liver, whereas fluctuations of Pti(O₂) were attenuated in muscle and abolished in fat. In obese mice, baseline liver Pti(O₂) was lower than in lean mice, whereas muscle and fat Pti(O₂) did not differ. During IH, Pti(O₂) was similar in obese and lean mice. All hypoxic regimens caused insulin resistance. In lean mice, hypoxia significantly increased leptin, especially during SH (44-fold); IH60, but not SH, induced a 2.5- to 3-fold increase in TNF-α secretion by fat. Obesity was associated with striking increases in leptin and TNF-α, which overwhelmed effects of hypoxia. In conclusion, IH60 led to oxygen fluctuations in liver and muscle and steady hypoxia in fat. IH and SH induced insulin resistance, but inflammation was increased only by IH60 in lean mice. Obesity caused severe inflammation, which was not augmented by acute hypoxic regimens.

  18. A procedure for the measurement of Oxygen Consumption Rates (OCRs) in red wines and some observations about the influence of wine initial chemical composition.

    Science.gov (United States)

    Marrufo-Curtido, Almudena; Carrascón, Vanesa; Bueno, Mónica; Ferreira, Vicente; Escudero, Ana

    2018-05-15

    The rates at which wine consumes oxygen are important technological parameters for whose measurement there are not accepted procedures. In this work, volumes of 8 wines are contacted with controlled volumes of air in air-tight tubes containing oxygen-sensors and are further agitated at 25 °C until O 2 consumption is complete. Three exposure levels of O 2 were used: low (10 mg/L) and medium or high (18 or 32 mg/L plus the required amount to oxidize all wine SO 2 ). In each oxygen level, 2-4 independent segments following pseudo-first order kinetics were identified, plus an initial segment at which wine consumed O 2 very fast. Overall, multivariate data techniques identify six different Oxygen-Consumption-Rates (OCRs) as required to completely define wine O 2 consumption. Except the last one, all could be modeled from the wine initial chemical composition. Total acetaldehyde, Mn, Cu/Fe, blue and red pigments and gallic acid seem to be essential to determine these OCRs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Concurrent validity of the PAM accelerometer relative to the MTI Actigraph using oxygen consumption as a reference

    NARCIS (Netherlands)

    Slootmaker, S.M.; Chin A Paw, M.J.M.; Schuit, A.J.; Mechelen, W. van; Koppes, L.L.J.

    2009-01-01

    The purpose of this study was to examine the concurrent validity of the Personal Activity Monitor (PAM) accelerometer relative to the Actigraph accelerometer using oxygen consumption as a reference, and to assess the test-retest reliability of the PAM. Thirty-two fit, normal weight adults (aged

  20. The effect of neuromuscular blockade on oxygen consumption in sedated and mechanically ventilated pediatric patients after cardiac surgery.

    NARCIS (Netherlands)

    Lemson, J.; Driessen, J.J.; Hoeven, J.G. van der

    2008-01-01

    OBJECTIVE: To measure the effect of intense neuromuscular blockade (NMB) on oxygen consumption (VO(2)) in deeply sedated and mechanically ventilated children on the first day after complex congenital cardiac surgery. DESIGN: Prospective clinical interventional study. SETTING: Pediatric intensive

  1. Blood transfusion in preterm infants improves intestinal tissue oxygenation without alteration in blood flow.

    Science.gov (United States)

    Banerjee, J; Leung, T S; Aladangady, N

    2016-11-01

    The objective of the study was to investigate the splanchnic blood flow velocity and oximetry response to blood transfusion in preterm infants according to postnatal age. Preterm infants receiving blood transfusion were recruited to three groups: 1-7 (group 1; n = 20), 8-28 (group 2; n = 21) and ≥29 days of life (group 3; n = 18). Superior mesenteric artery (SMA) peak systolic (PSV) and diastolic velocities were measured 30-60 min pre- and post-transfusion using Doppler ultrasound scan. Splanchnic tissue haemoglobin index (sTHI), tissue oxygenation index (sTOI) and fractional tissue oxygen extraction (sFTOE) were measured from 15-20 min before to post-transfusion using near-infrared spectroscopy. The mean pretransfusion Hb in group 1, 2 and 3 was 11, 10 and 9 g/dl, respectively. The mean (SD) pretransfusion SMA PSV in group 1, 2 and 3 was 0·63 (0·32), 0·81 (0·33) and 0·97 (0·40) m/s, respectively, and this did not change significantly following transfusion. The mean (SD) pretransfusion sTOI in group 1, 2 and 3 was 36·7 (19·3), 44·6 (10·4) and 41·3 (10·4)%, respectively. The sTHI and sTOI increased (P transfusion in all groups. On multivariate analysis, changes in SMA PSV and sTOI following blood transfusion were not associated with PDA, feeding, pretransfusion Hb and mean blood pressure. Pretransfusion baseline splanchnic tissue oximetry and blood flow velocity varied with postnatal age. Blood transfusion improved intestinal tissue oxygenation without altering mesenteric blood flow velocity irrespective of postnatal ages. © 2016 International Society of Blood Transfusion.

  2. L-NIL prevents renal microvascular hypoxia and increase of renal oxygen consumption after ischemia-reperfusion in rats

    NARCIS (Netherlands)

    Legrand, Matthieu; Almac, Emre; Mik, Egbert G.; Johannes, Tanja; Kandil, Asli; Bezemer, Rick; Payen, Didier; Ince, Can

    2009-01-01

    Legrand M, Almac E, Mik EG, Johannes T, Kandil A, Bezemer R, Payen D, Ince C. L-NIL prevents renal microvascular hypoxia and increase of renal oxygen consumption after ischemia-reperfusion in rats. Am J Physiol Renal Physiol 296: F1109-F1117, 2009. First published February 18, 2009;

  3. Effect of aeration interval on oxygen consumption and GHG emission during pig manure composting.

    Science.gov (United States)

    Zeng, Jianfei; Yin, Hongjie; Shen, Xiuli; Liu, Ning; Ge, Jinyi; Han, Lujia; Huang, Guangqun

    2018-02-01

    To verify the optimal aeration interval for oxygen supply and consumption and investigate the effect of aeration interval on GHG emission, reactor-scale composting was conducted with different aeration intervals (0, 10, 30 and 50 min). Although O 2 was sufficiently supplied during aeration period, it could be consumed to  0.902), suggesting that lengthening the duration of aeration interval to some extent could effectively reduce GHG emission. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Pyruvate induces transient tumor hypoxia by enhancing mitochondrial oxygen consumption and potentiates the anti-tumor effect of a hypoxia-activated prodrug TH-302.

    Directory of Open Access Journals (Sweden)

    Yoichi Takakusagi

    Full Text Available BACKGROUND: TH-302 is a hypoxia-activated prodrug (HAP of bromo isophosphoramide mustard that is selectively activated within hypoxic regions in solid tumors. Our recent study showed that intravenously administered bolus pyruvate can transiently induce hypoxia in tumors. We investigated the mechanism underlying the induction of transient hypoxia and the combination use of pyruvate to potentiate the anti-tumor effect of TH-302. METHODOLOGY/RESULTS: The hypoxia-dependent cytotoxicity of TH-302 was evaluated by a viability assay in murine SCCVII and human HT29 cells. Modulation in cellular oxygen consumption and in vivo tumor oxygenation by the pyruvate treatment was monitored by extracellular flux analysis and electron paramagnetic resonance (EPR oxygen imaging, respectively. The enhancement of the anti-tumor effect of TH-302 by pyruvate treatment was evaluated by monitoring the growth suppression of the tumor xenografts inoculated subcutaneously in mice. TH-302 preferentially inhibited the growth of both SCCVII and HT29 cells under hypoxic conditions (0.1% O2, with minimal effect under aerobic conditions (21% O2. Basal oxygen consumption rates increased after the pyruvate treatment in SCCVII cells in a concentration-dependent manner, suggesting that pyruvate enhances the mitochondrial respiration to consume excess cellular oxygen. In vivo EPR oxygen imaging showed that the intravenous administration of pyruvate globally induced the transient hypoxia 30 min after the injection in SCCVII and HT29 tumors at the size of 500-1500 mm(3. Pretreatment of SCCVII tumor bearing mice with pyruvate 30 min prior to TH-302 administration, initiated with small tumors (∼ 550 mm(3, significantly delayed tumor growth. CONCLUSIONS/SIGNIFICANCE: Our in vitro and in vivo studies showed that pyruvate induces transient hypoxia by enhancing mitochondrial oxygen consumption in tumor cells. TH-302 therapy can be potentiated by pyruvate pretreatment if started at the

  5. Pyruvate induces transient tumor hypoxia by enhancing mitochondrial oxygen consumption and potentiates the anti-tumor effect of a hypoxia-activated prodrug TH-302.

    Science.gov (United States)

    Takakusagi, Yoichi; Matsumoto, Shingo; Saito, Keita; Matsuo, Masayuki; Kishimoto, Shun; Wojtkowiak, Jonathan W; DeGraff, William; Kesarwala, Aparna H; Choudhuri, Rajani; Devasahayam, Nallathamby; Subramanian, Sankaran; Munasinghe, Jeeva P; Gillies, Robert J; Mitchell, James B; Hart, Charles P; Krishna, Murali C

    2014-01-01

    TH-302 is a hypoxia-activated prodrug (HAP) of bromo isophosphoramide mustard that is selectively activated within hypoxic regions in solid tumors. Our recent study showed that intravenously administered bolus pyruvate can transiently induce hypoxia in tumors. We investigated the mechanism underlying the induction of transient hypoxia and the combination use of pyruvate to potentiate the anti-tumor effect of TH-302. The hypoxia-dependent cytotoxicity of TH-302 was evaluated by a viability assay in murine SCCVII and human HT29 cells. Modulation in cellular oxygen consumption and in vivo tumor oxygenation by the pyruvate treatment was monitored by extracellular flux analysis and electron paramagnetic resonance (EPR) oxygen imaging, respectively. The enhancement of the anti-tumor effect of TH-302 by pyruvate treatment was evaluated by monitoring the growth suppression of the tumor xenografts inoculated subcutaneously in mice. TH-302 preferentially inhibited the growth of both SCCVII and HT29 cells under hypoxic conditions (0.1% O2), with minimal effect under aerobic conditions (21% O2). Basal oxygen consumption rates increased after the pyruvate treatment in SCCVII cells in a concentration-dependent manner, suggesting that pyruvate enhances the mitochondrial respiration to consume excess cellular oxygen. In vivo EPR oxygen imaging showed that the intravenous administration of pyruvate globally induced the transient hypoxia 30 min after the injection in SCCVII and HT29 tumors at the size of 500-1500 mm(3). Pretreatment of SCCVII tumor bearing mice with pyruvate 30 min prior to TH-302 administration, initiated with small tumors (∼ 550 mm(3)), significantly delayed tumor growth. Our in vitro and in vivo studies showed that pyruvate induces transient hypoxia by enhancing mitochondrial oxygen consumption in tumor cells. TH-302 therapy can be potentiated by pyruvate pretreatment if started at the appropriate tumor size and oxygen concentration.

  6. Regional myocardial oxygen consumption estimated by carbon-11 acetate and positron emission tomography before and after repetitive ischemia

    DEFF Research Database (Denmark)

    Kofoed, K F; Hansen, P R; Holm, S

    2011-01-01

    Preserved myocardial oxygen consumption estimated by carbon 11-acetate and positron emission tomography (PET) in myocardial regions with chronic but reversibly depressed contractile function in patients with ischemic heart disease have been suggested to be caused by repeated short episodes of acu...

  7. The Effects of Bougie Diameters on Tissue Oxygen Levels After Sleeve Gastrectomy: A Randomized Experimental Trial

    Directory of Open Access Journals (Sweden)

    Can Konca

    2018-05-01

    Full Text Available Background: Staple-line leak is the most frightening complication of laparoscopic sleeve gastrectomy and several predisposing factors such as using improper staple sizes regardless of gastric wall thickness, narrower bougie diameter and ischemia of the staple line are asserted. Aims: To evaluate the effects of different bougie diameters on tissue oxygen partial pressure at the esophagogastric junction after sleeve gastrectomy. Study Design: A randomized and controlled animal experiment with 1:1:1:1 allocation ratio. Methods: Thirty-two male Wistar Albino rats were randomly divided into 4 groups of 8 each. While 12-Fr bougies were used in groups 1 and 3, 8-Fr bougies were used in groups 2 and 4. Fibrin sealant application was also carried out around the gastrectomy line after sleeve gastrectomy in groups 3 and 4. Burst pressure of gastrectomy line, tissue oxygen partial pressure and hydroxyproline levels at the esophagogastric junction were measured and compared among groups. Results: Mortality was detected in 2 out of 32 rats (6.25% and one of them was in group 2 and the cause of this mortality was gastric leak. Gastric leak was detected in 2 out of 32 rats (6.25%. There was no significant difference in terms of burst pressures, tissue oxygen partial pressure and tissue hydroxyproline levels among the 4 groups. Conclusion: The use of narrower bougie along with fibrin sealant has not had a negative effect on tissue perfusion and wound healing.

  8. Substrate stiffness and oxygen as regulators of stem cell differentiation during skeletal tissue regeneration: a mechanobiological model.

    Directory of Open Access Journals (Sweden)

    Darren Paul Burke

    Full Text Available Extrinsic mechanical signals have been implicated as key regulators of mesenchymal stem cell (MSC differentiation. It has been possible to test different hypotheses for mechano-regulated MSC differentiation by attempting to simulate regenerative events such as bone fracture repair, where repeatable spatial and temporal patterns of tissue differentiation occur. More recently, in vitro studies have identified other environmental cues such as substrate stiffness and oxygen tension as key regulators of MSC differentiation; however it remains unclear if and how such cues determine stem cell fate in vivo. As part of this study, a computational model was developed to test the hypothesis that substrate stiffness and oxygen tension regulate stem cell differentiation during fracture healing. Rather than assuming mechanical signals act directly on stem cells to determine their differentiation pathway, it is postulated that they act indirectly to regulate angiogenesis and hence partially determine the local oxygen environment within a regenerating tissue. Chondrogenesis of MSCs was hypothesized to occur in low oxygen regions, while in well vascularised regions of the regenerating tissue a soft local substrate was hypothesised to facilitate adipogenesis while a stiff substrate facilitated osteogenesis. Predictions from the model were compared to both experimental data and to predictions of a well established computational mechanobiological model where tissue differentiation is assumed to be regulated directly by the local mechanical environment. The model predicted all the major events of fracture repair, including cartilaginous bridging, endosteal and periosteal bony bridging and bone remodelling. It therefore provides support for the hypothesis that substrate stiffness and oxygen play a key role in regulating MSC fate during regenerative events such as fracture healing.

  9. Effects of zilpaterol hydrochloride on methane production, total body oxygen consumption, and blood metabolites in finishing beef steers

    Science.gov (United States)

    An indirect calorimetry experiment was conducted to determine the effects of feeding zilpaterol hydrochloride (ZH) for 20 d on total body oxygen consumption, respiratory quotient, methane production, and blood metabolites in finishing beef steers. Sixteen Angus steers (initial BW = 555 ± 12.7 kg) w...

  10. Energy savings in sea bass swimming in a school: measurements of tail beat frequency and oxygen consumption at different swimming speeds

    DEFF Research Database (Denmark)

    Herskin, J; Steffensen, JF

    1998-01-01

    Tail beat frequency of sea bass, Dicentrarchus labrax (L.) (23.5 ± 0·5 cm, LT), swimming at the front of a school was significantly higher than when swimming at the rear, for all water velocities tested from 14·8 to 32 cm s-1. The logarithm of oxygen consumption rate, and the tail beat frequency...... of solitary swimming sea bass (28·8 ± 0·4 cm, LT), were each correlated linearly with swimming speed, and also with one another. The tail beat frequency of individual fish was 9-14% lower when at the rear of a school than when at the front, corresponding to a 9-23% reduction in oxygen consumption rate....

  11. Stress-sensitive tissue regeneration in viscoelastic biomaterials subjected to modulated tensile strain.

    Science.gov (United States)

    Belfiore, Laurence A; Floren, Michael L; Paulino, Alexandre T; Belfiore, Carol J

    2011-09-01

    This research contribution addresses the mechanochemistry of intra-tissue mass transfer for nutrients, oxygen, growth factors, and other essential ingredients that anchorage-dependent cells require for successful proliferation on biocompatible surfaces. The unsteady state reaction-diffusion equation (i.e., modified diffusion equation) is solved according to the von Kármán-Pohlhausen integral method of boundary layer analysis when nutrient consumption and tissue regeneration are stimulated by harmonically imposed stress. The mass balance with diffusion and stress-sensitive kinetics represents a rare example where the Damköhler and Deborah numbers appear together in an effort to simulate the development of mass transfer boundary layers in porous viscoelastic biomaterials. The Boltzmann superposition integral is employed to calculate time-dependent strain in terms of the real and imaginary components of dynamic compliance for viscoelastic solids that transmit harmonic excitation to anchorage-dependent cells. Rates of nutrient consumption under stress-free conditions are described by third-order kinetics which include local mass densities of nutrients, oxygen, and attached cells that maintain dynamic equilibrium with active protein sites in the porous matrix. Thinner nutrient mass transfer boundary layers are stabilized at shorter dimensionless diffusion times when the stress-free intra-tissue Damköhler number increases above its initial-condition-sensitive critical value. The critical stress-sensitive intra-tissue Damköhler number, above which it is necessary to consider the effect of harmonic strain on nutrient consumption and tissue regeneration, is proportional to the Deborah number and corresponds to a larger fraction of the stress-free intra-tissue Damköhler number in rigid biomaterials. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Tissue oxygenation in brain, muscle, and fat in a rat model of sleep apnea: differential effect of obstructive apneas and intermittent hypoxia.

    Science.gov (United States)

    Almendros, Isaac; Farré, Ramon; Planas, Anna M; Torres, Marta; Bonsignore, Maria R; Navajas, Daniel; Montserrat, Josep M

    2011-08-01

    To test the hypotheses that the dynamic changes in brain oxygen partial pressure (PtO(2)) in response to obstructive apneas or to intermittent hypoxia differ from those in other organs and that the changes in brain PtO(2) in response to obstructive apneas is a source of oxidative stress. Prospective controlled animal study. University laboratory. 98 Sprague-Dawley rats. Cerebral cortex, skeletal muscle, or visceral fat tissues were exposed in anesthetized animals subjected to either obstructive apneas or intermittent hypoxia (apneic and hypoxic events of 15 s each and 60 events/h) for 1 h. Arterial oxygen saturation (SpO(2)) presented a stable pattern, with similar desaturations during both stimuli. The PtO(2) was measured by a microelectrode. During obstructive apneas, a fast increase in cerebral PtO(2) was observed (38.2 ± 3.4 vs. 54.8 ± 5.9 mm Hg) but not in the rest of tissues. This particular cerebral response was not found during intermittent hypoxia. The cerebral content of reduced glutathione was decreased after obstructive apneas (46.2% ± 15.2%) compared to controls (100.0% ± 14.7%), but not after intermittent hypoxia. This antioxidant consumption after obstructive apneas was accompanied by increased cerebral lipid peroxidation under this condition. No changes were observed for these markers in the other tissues. These results suggest that cerebral cortex could be protected in some way from hypoxic periods caused by obstructive apneas. The increased cerebral PtO(2) during obstructive apneas may, however, cause harmful effects (oxidative stress). The obstructive apnea model appears to be more adequate than the intermittent hypoxia model for studying brain changes associated with OSA.

  13. Acetazolamide during acute hypoxia improves tissue oxygenation in the human brain.

    Science.gov (United States)

    Wang, Kang; Smith, Zachary M; Buxton, Richard B; Swenson, Erik R; Dubowitz, David J

    2015-12-15

    Low doses of the carbonic anhydrase inhibitor acetazolamide provides accelerated acclimatization to high-altitude hypoxia and prevention of cerebral and other symptoms of acute mountain sickness. We previously observed increases in cerebral O2 metabolism (CMRO2 ) during hypoxia. In this study, we investigate whether low-dose oral acetazolamide (250 mg) reduces this elevated CMRO2 and in turn might improve cerebral tissue oxygenation (PtiO2 ) during acute hypoxia. Six normal human subjects were exposed to 6 h of normobaric hypoxia with and without acetazolamide prophylaxis. We determined CMRO2 and cerebral PtiO2 from MRI measurements of cerebral blood flow (CBF) and cerebral venous O2 saturation. During normoxia, low-dose acetazolamide resulted in no significant change in CBF, CMRO2 , or PtiO2 . During hypoxia, we observed increases in CBF [48.5 (SD 12.4) (normoxia) to 65.5 (20.4) ml·100 ml(-1)·min(-1) (hypoxia), P effect was improved cerebral tissue PtiO2 during acute hypoxia [11.4 (2.7) (hypoxia) to 16.5 (3.0) mmHg (hypoxia + acetazolamide), P effect, low-dose acetazolamide is effective at the capillary endothelium, and we hypothesize that local interruption in cerebral CO2 excretion accounts for the improvements in CMRO2 and ultimately in cerebral tissue oxygenation during hypoxia. This study suggests a potentially pivotal role of cerebral CO2 and pH in modulating CMRO2 and PtiO2 during acute hypoxia. Copyright © 2015 the American Physiological Society.

  14. Molecular mechanisms regulating oxygen transport and consumption in high altitude and hibernating mammals

    DEFF Research Database (Denmark)

    Revsbech, Inge Grønvall

    2016-01-01

    The aim of this thesis is to broaden the knowledge of molecular mechanisms of adjustment in oxygen (O2) uptake, conduction, delivery and consumption in mammals adapted to extreme conditions. For this end, I have worked with animals living at high altitude as an example of environmental hypoxia...... of the repeatedly found adaptive traits in animals living at high altitude and in hibernating mammals during hibernation compared with the active state. Factors that affect O2 affinity of Hb include temperature, H+/CO2 via the Bohr effect as well as Cl- and organic phosphates, in mammals mainly 2...

  15. Effect of music-movement synchrony on exercise oxygen consumption.

    Science.gov (United States)

    Bacon, C J; Myers, T R; Karageorghis, C I

    2012-08-01

    Past research indicates that endurance is improved when exercise movements are synchronised with a musical beat, however it is unclear whether such benefits are associated with reduced metabolic cost. We compared oxygen consumption (.VO2) and related physiological effects of exercise conducted synchronously and asynchronously with music. Three music tracks, each recorded at three different tempi (123, 130, and 137 beats.min-1), accompanied cycle ergometry at 65 pedal revolutions.min-1. Thus three randomly-assigned experimental conditions were administered: slow tempo asynchronous, synchronous, and fast tempo asynchronous. Exercise response of .VO2, HR, and ratings of perceived exertion (RPE), to each condition was monitored in 10 untrained male participants aged 21.7±0.8 years (mean±SD) who cycled for 12 min at 70% maximal heart rate (HR). Mean .VO2 differed among conditions (P=0.008), being lower in the synchronous (1.80±0.22 L.min-1) compared to the slow tempo asynchronous condition (1.94±0.21 L.min-1; Pmusic than when musical tempo is slightly slower than the rate of cyclical movement.

  16. Stable hydrogen, oxygen and sulfur isotopes composition in different tissues of cattle

    International Nuclear Information System (INIS)

    Sun Fengmei; Shi Guangyu; Wang Huiwen; Yang Shuming

    2012-01-01

    In order to research on stable hydrogen, oxygen, sulfur isotopes composition in different tissues of cattle, as well as the breed, δ 2 H and δ 34 S values of different defatted muscle, cattle tail hair, blood, liver, also δ 2h and δ 18 O values of water from muscle were determined by isotope ratio mass spectrometry. The stable sulfur isotope composition was not affected by cattle variety, meanwhile the hydrogen was uncertain; the δ 2 H and δ 34 S values between different defatted muscle, blood, liver, cattle hair were significantly different, at the same time the δ 34 S and δ 2 H values between each tissue were not significantly correlated; the δ 2 H values were strongly correlated with the δ 18 O values of muscle water. The above results indicated that stable sulfur and hydrogen isotopes fractionation in the various tissues were discrepant, thus the proper tissue should be selected according to the purpose and object in the beef traceability. (authors)

  17. Comparison Between Cerebral Tissue Oxygen Tension and Energy Metabolism in Experimental Subdural Hematoma

    DEFF Research Database (Denmark)

    Nielsen, Troels Halfeld; Engell, Susanne I; Johnsen, Rikke Aagaard

    2011-01-01

    BACKGROUND: An experimental swine model (n = 7) simulating an acute subdural hematoma (ASDH) was employed (1) to explore the relation between the brain tissue oxygenation (PbtO(2)) and the regional cerebral energy metabolism as obtained by microdialysis, and (2) to define the lowest level of PbtO(2...

  18. Oxygen uptake efficiency slope and peak oxygen consumption predict prognosis in children with tetralogy of Fallot.

    Science.gov (United States)

    Tsai, Yun-Jeng; Li, Min-Hui; Tsai, Wan-Jung; Tuan, Sheng-Hui; Liao, Tin-Yun; Lin, Ko-Long

    2016-07-01

    Oxygen uptake efficiency slope (OUES) and peak oxygen consumption (VO2peak) are exercise parameters that can predict cardiac morbidity in patients with numerous heart diseases. But the predictive value in patients with tetralogy of Fallot is still undetermined, especially in children. We evaluated the prognostic value of OUES and VO2peak in children with total repair of tetralogy of Fallot. Retrospective cohort study. Forty tetralogy of Fallot patients younger than 12 years old were recruited. They underwent a cardiopulmonary exercise test during the follow-up period after total repair surgery. The results of the cardiopulmonary exercise test were used to predict the cardiac related hospitalization in the following two years after the test. OUES normalized by body surface area (OUES/BSA) and the percentage of predicted VO2peak appeared to be predictive for two-year cardiac related hospitalization. Receiver operating characteristic curve analysis demonstrated that the best threshold value for OUES/BSA was 1.029 (area under the curve = 0.70, p = 0.03), and for VO2peak was 74% of age prediction (area under the curve = 0.72, p = 0.02). The aforementioned findings were confirmed by Kaplan-Meier plots and log-rank test. OUES/BSA and VO2peak are useful predictors of cardiac-related hospitalization in children with total repair of tetralogy of Fallot. © The European Society of Cardiology 2015.

  19. The oxygen effect and adaptive response of cells. Report 3. Simulation of respiratory oxygenation and oxygen permeability of cells

    International Nuclear Information System (INIS)

    Ehpshtejn, I.M.

    1978-01-01

    Variations in the oxygen concentration in extracellural [O 2 ] 0 and intracellular [Osub(2)]sub(i) media of cells small in size (d = 2 ] 0 - t-curves). It is shown that the Value of [Osub(2)]sub(i) may be expressed by four variants of its functional dependence: (a) on enzymic reaction of oxygen consumption, (b) on the order of reaction with respect to oxygen, (c) on physiological parameters of cells, and (d) on characteristic oxygen concentrations in the system. Items (c) and (d) are based on the postulated diffusion-kinetic model of oxygen consumption by an idealized cell of small size that consists of a drop of homogenous solution of the respiratory enzyme which is characterized by an equivalent Michaelis constant. The drop is enveloped in a uniform membrane that possesses a definite diffuse resistance to oxygen

  20. Integration of oxygen signaling at the consensus HRE.

    Science.gov (United States)

    Wenger, Roland H; Stiehl, Daniel P; Camenisch, Gieri

    2005-10-18

    The hypoxia-inducible factor 1 (HIF-1) was initially identified as a transcription factor that regulated erythropoietin gene expression in response to a decrease in oxygen availability in kidney tissue. Subsequently, a family of oxygen-dependent protein hydroxylases was found to regulate the abundance and activity of three oxygen-sensitive HIFalpha subunits, which, as part of the HIF heterodimer, regulated the transcription of at least 70 different effector genes. In addition to responding to a decrease in tissue oxygenation, HIF is proactively induced, even under normoxic conditions, in response to stimuli that lead to cell growth, ultimately leading to higher oxygen consumption. The growing cell thus profits from an anticipatory increase in HIF-dependent target gene expression. Growth stimuli-activated signaling pathways that influence the abundance and activity of HIFs include pathways in which kinases are activated and pathways in which reactive oxygen species are liberated. These pathways signal to the HIF protein hydroxylases, as well as to HIF itself, by means of covalent or redox modifications and protein-protein interactions. The final point of integration of all of these pathways is the hypoxia-response element (HRE) of effector genes. Here, we provide comprehensive compilations of the known growth stimuli that promote increases in HIF abundance, of protein-protein interactions involving HIF, and of the known HIF effector genes. The consensus HRE derived from a comparison of the HREs of these HIF effectors will be useful for identification of novel HIF target genes, design of oxygen-regulated gene therapy, and prediction of effects of future drugs targeting the HIF system.

  1. Flexible Sheet-Type Sensor for Noninvasive Measurement of Cellular Oxygen Metabolism on a Culture Dish.

    Directory of Open Access Journals (Sweden)

    Mari Kojima

    Full Text Available A novel flexible sensor was developed for the noninvasive oxygen metabolism measurement of cultivated cells and tissues. This device is composed of a transparent double-layered polymer sheet of ethylene-vinyl alcohol (EVOH and poly(dimethylsiloxane (PDMS having an array of microhole structures of 90 μm diameter and 50 μm depth on its surface. All the microhole structures were equipped with a 1-μm-thick optical chemical sensing layer of platinum porphyrin-fluoropolymer on their bottom. The three-dimensional microstructures of the sensor were fabricated by a newly developed simple and low-cost production method named self-aligned hot embossing. The device was designed to be attached slightly above the cells cultivated on a dish to form a temporarily closed microspace over the target cells during measurement. Since the change in oxygen concentration is relatively fast in the microcompartmentalized culture medium, a rapid evaluation of the oxygen consumption rate is possible by measuring the phosphorescence lifetime of the platinum porphyrin-fluoropolymer. The combined use of the device and an automated optical measurement system enabled the high-throughput sensing of cellular oxygen consumption (100 points/min. We monitored the oxygen metabolism of the human breast cancer cell line MCF7 on a Petri dish and evaluated the oxygen consumption rate to be 0.72 ± 0.12 fmol/min/cell. Furthermore, to demonstrate the utility of the developed sensing system, we demonstrated the mapping of the oxygen consumption rate of rat brain slices and succeeded in visualizing a clear difference among the layer structures of the hippocampus, i.e., the cornu ammonis (CA1 and CA3 and dentate gyrus (DG.

  2. [Observation on changes of oxygen partial pressure in the deep tissues along the large intestine meridian during acupuncture in healthy subjects].

    Science.gov (United States)

    Chen, Ming; Hu, Xiang-long; Wu, Zu-xing

    2010-06-01

    To observe changes of the partial oxygen pressure in the deep tissues along the Large Intestine Meridian (LIM) during acupuncture stimulation, so as to reveal the characteristics of energy metabolism in the tissues along the LIM. Thirty-one healthy volunteer subjects were enlisted in the present study. Partial oxygen pressure (POP) in the tissues (at a depth of about 1.5 cm) of acupoints Binao (LI 14), Shouwuli (LI 13), Shousanli (LI 10), 2 non-acupoints [the midpoints between Quchi (LI 11) and LI 14, and between Yangxi (LI 5) and LI 11) of the LIM, and 10 non-meridian points, 1.5-2.0 cm lateral and medial to each of the tested points of the LIM was detected before, during and after electroacupuncture (EA) stimulation of Hegu (LI 4) by using a tissue oxygen tension needle-like sensor. In normal condition, the POP values in the deep tissues along the LIM were significantly higher than those of the non-meridian control points on its bilateral sides. During and after EA of Hegu (LI 4), the POP levels decreased significantly in the deep tissues along the LIM in comparison with pre-EA (P 0.05). POP is significantly higher in the deep tissues along the LIM of healthy subjects under normal conditions, which can be downregulated by EA of Hegu (LI 4), suggesting an increase of both the utilization rate of oxygen and energy metabolism after EA.

  3. Hypoxyradiotherapy: lack of experimental evidence for a preferential radioprotective effect on normal versus tumor tissue as shown by direct oxygenation measurements in experimental sarcomas

    International Nuclear Information System (INIS)

    Kelleher, Debra K.; Thews, Oliver; Vaupel, Peter

    1997-01-01

    Aim: In order to investigate possible pathophysiological mechanisms underlying the postulated preferential protective effect of hypoxia on normal tissue during radiotherapy, the impact of acute respiratory hypoxia (8.2% O 2 + 91.8% N 2 ) on tissue oxygenation was assessed. Methods: Tumor and normal tissue oxygenation was directly determined using O 2 -sensitive electrodes in two experimental rat tumors (DS and Yoshida sarcomas) and in the normal subcutis of the hind foot dorsum. Results: During respiratory hypoxia, arterial blood O 2 tension (pO 2 ), oxyhemoglobin saturation and mean arterial blood pressure decreased. Changes in the arterial blood gas status were accompanied by a reflex hyperventilation leading to hypocapnia and respiratory alkalosis. In the subcutis, tissue oxygenation worsened during acute hypoxia, with decreases in the mean and median pO 2 . Significant increases in the hypoxic fractions were, however, not seen. In tumor tissues, oxygenation also worsened upon hypoxic hypoxia with significant decreases in the mean and median pO 2 and increases in the size of the hypoxic fractions for both sarcomas. Conclusion: These results suggest that during respiratory hypoxia, radiobiologically relevant reductions in the oxygenation (and a subsequent selective radioprotection) of normal tissue may not be achieved. In addition, in the tumor models studied, a worsening of tumor oxygenation was seen which could result in an increased radioresistance

  4. Local cerebral blood flow (1CBF) and oxygen consumption (1CMRO2) in evolving irreversible ischemic infarction: a study with positron tomography and oxygen-15

    International Nuclear Information System (INIS)

    Baron, J.C.; Rougemont, D.; Lebrun-Grandie, P.; Comar, D.; Bousser, M.G.; Bories, J.; Castaigne, P.; Cabanis, E.

    1982-09-01

    In 25 patients suffering from cerebral ischemia set up in the area of the internal carotid artery the local cerebral blood flow (lCBF) and local cerebral oxygen consumption (lCMRO 2 ) were measured by the method of continuous inhalation of oxygen 15-labelled gas combined with positron emission tomography. These two local parameters and their ratio, the local oxygen extraction rate (lO 2 E), were studied inside the brain region tending spontaneously towards ischemic necrosis, a zone defined by means of repeated tomodensitometric examinations. The essential facts observed are the variability of the lCBF and the lO 2 E values, from extremely low to extremely high, whereas the collapse of the lCMRO 2 is constant. Consequently this last parameter alone would be a good prognostic index, an lCMRO 2 decrease to a level below about 70% of the controlateral value indicating that the necrosis is spontaneously irreparable. These results are discussed in the light of published data

  5. Spectral filtering modulation method for estimation of hemoglobin concentration and oxygenation based on a single fluorescence emission spectrum in tissue phantoms.

    Science.gov (United States)

    Liu, Quan; Vo-Dinh, Tuan

    2009-10-01

    Hemoglobin concentration and oxygenation in tissue are important biomarkers that are useful in both research and clinical diagnostics of a wide variety of diseases such as cancer. The authors aim to develop simple ratiometric method based on the spectral filtering modulation (SFM) of fluorescence spectra to estimate the total hemoglobin concentration and oxygenation in tissue using only a single fluorescence emission spectrum, which will eliminate the need of diffuse reflectance measurements and prolonged data processing as required by most current methods, thus enabling rapid clinical measurements. The proposed method consists of two steps. In the first step, the total hemoglobin concentration is determined by comparing a ratio of fluorescence intensities at two emission wavelengths to a calibration curve. The second step is to estimate oxygen saturation by comparing a double ratio that involves three emission wavelengths to another calibration curve that is a function of oxygen saturation for known total hemoglobin concentration. Theoretical derivation shows that the ratio in the first step is linearly proportional to the total hemoglobin concentrations and the double ratio in the second step is related to both total hemoglobin concentration and hemoglobin oxygenation for the chosen fiber-optic probe geometry. Experiments on synthetic fluorescent tissue phantoms, which included hemoglobin with both constant and varying oxygenation as the absorber, polystyrene spheres as scatterers, and flavin adenine dinucleotide as the fluorophore, were carried out to validate the theoretical prediction. Tissue phantom experiments confirm that the ratio in the first step is linearly proportional to the total hemoglobin concentration and the double ratio in the second step is related to both total hemoglobin concentrations and hemoglobin oxygenation. Furthermore, the relations between the two ratios and the total hemoglobin concentration and hemoglobin oxygenation are insensitive

  6. A technique for measuring oxygen saturation in biological tissues based on diffuse optical spectroscopy

    Science.gov (United States)

    Kleshnin, Mikhail; Orlova, Anna; Kirillin, Mikhail; Golubiatnikov, German; Turchin, Ilya

    2017-07-01

    A new approach to optical measuring blood oxygen saturation was developed and implemented. This technique is based on an original three-stage algorithm for reconstructing the relative concentration of biological chromophores (hemoglobin, water, lipids) from the measured spectra of diffusely scattered light at different distances from the probing radiation source. The numerical experiments and approbation of the proposed technique on a biological phantom have shown the high reconstruction accuracy and the possibility of correct calculation of hemoglobin oxygenation in the presence of additive noise and calibration errors. The obtained results of animal studies have agreed with the previously published results of other research groups and demonstrated the possibility to apply the developed technique to monitor oxygen saturation in tumor tissue.

  7. [Tissue oxygen saturation in the critically ill patient].

    Science.gov (United States)

    Gruartmoner, G; Mesquida, J; Baigorri, F

    2014-05-01

    Hemodynamic resuscitation seeks to correct global macrocirculatory parameters of pressure and flow. However, current evidence has shown that despite the normalization of these global parameters, microcirculatory and regional perfusion alterations can persist, and these alterations have been independently associated with a poorer patient prognosis. This in turn has lead to growing interest in new technologies for exploring regional circulation and microcirculation. Near infra-red spectroscopy allows us to monitor tissue oxygen saturation, and has been proposed as a noninvasive, continuous and easy-to-obtain measure of regional circulation. The present review aims to summarize the existing evidence on near infra-red spectroscopy and its potential clinical role in the resuscitation of critically ill patients in shock. Copyright © 2013 Elsevier España, S.L. and SEMICYUC. All rights reserved.

  8. Prognostic value of cerebral tissue oxygen saturation during neonatal extracorporeal membrane oxygenation.

    Directory of Open Access Journals (Sweden)

    Marie-Philippine Clair

    Full Text Available Extracorporeal membrane oxygenation support is indicated in severe and refractory respiratory or circulatory failures. Neurological complications are typically represented by acute ischemic or hemorrhagic lesions, which induce higher morbidity and mortality. The primary goal of this study was to assess the prognostic value of cerebral tissue oxygen saturation (StcO2 on mortality in neonates and young infants treated with ECMO. A secondary objective was to evaluate the association between StcO2 and the occurrence of cerebral lesions.This was a prospective study in infants < 3 months of age admitted to a pediatric intensive care unit and requiring ECMO support.The assessment of cerebral perfusion was made by continuous StcO2 monitoring using near-infrared spectroscopy (NIRS sensors placed on the two temporo-parietal regions. Neurological lesions were identified by MRI or transfontanellar echography.Thirty-four infants <3 months of age were included in the study over a period of 18 months. The ECMO duration was 10±7 days. The survival rate was 50% (17/34 patients, and the proportion of brain injuries was 20% (7/34 patients. The mean StcO2 during ECMO in the non-survivors was reduced in both hemispheres (p = 0.0008 right, p = 0.03 left compared to the survivors. StcO2 was also reduced in deceased or brain-injured patients compared to the survivors without brain injury (p = 0.002.StcO2 appears to be a strong prognostic factor of survival and of the presence of cerebral lesions in young infants during ECMO.

  9. Dietary Supplementation with the Microalga Galdieria sulphuraria (Rhodophyta) Reduces Prolonged Exercise-Induced Oxidative Stress in Rat Tissues

    OpenAIRE

    Carfagna, Simona; Napolitano, Gaetana; Barone, Daniela; Pinto, Gabriele; Pollio, Antonino; Venditti, Paola

    2015-01-01

    We studied the effects of ten-day 1% Galdieria sulphuraria dietary supplementation on oxidative damage and metabolic changes elicited by acute exercise (6-hour swimming) determining oxygen consumption, lipid hydroperoxides, protein bound carbonyls in rat tissue (liver, heart, and muscle) homogenates and mitochondria, tissue glutathione peroxidase and glutathione reductase activities, glutathione content, and rates of H2O2 mitochondrial release. Exercise increased oxidative damage in tissues a...

  10. Changes in muscle tissue oxygenation during stagnant ischemia in septic patients.

    Science.gov (United States)

    Pareznik, Roman; Knezevic, Rajko; Voga, Gorazd; Podbregar, Matej

    2006-01-01

    To determine changes in the rate of thenar muscles tissue deoxygenation during stagnant ischemia in patients with severe sepsis and septic shock. Prospective observational study in the medical ICU of a general hospital. Consecutive patients admitted to ICU with septic shock (n=6), severe sepsis (n=6), localized infection (n=3), and healthy volunteers (n=15). Upper limb ischemia was induced by rapid automatic pneumatic cuff inflation around upper arm. Thenar muscle tissue oxygen saturation (StO2) was measured continuously by near-infrared spectroscopy before and during upper limb ischemia. StO(2) before intervention was comparable in patients with septic shock, severe sepsis, or localized infection and healthy volunteers (89 [65, 92]% vs. 82 [72, 91]% vs. 87 [85, 92]% vs. 83 [79, 93]%, respectively; p>0.1). The rate of StO(2) decrease during stagnant ischemia after initial hemodynamic stabilization was slower in septic shock patients than in those with severe sepsis or localized infection and in controls (-7.0 [-3.6, -11.0] %/min vs. -10.4 [-7.8, -13.3] %/min vs. -19.5 [-12.3, -23.3] vs. -37.4 [-27.3, -56.2] %/min, respectively; p=0.041). At ICU discharge the rate of StO2 decrease did not differ between the septic shock, severe sepsis, and localized infection groups (-17.0 [-9.3, -28.9] %/min vs. -19.9 [-13.3, -23.6] %/min vs. -23.1 [-20.7, -26.2] %/min, respectively), but remained slower than in controls (p<0.01). The rate of StO2 decrease was correlated with Sequential Organ Failure Assessment (SOFA) score (r=0.739, p<0.001). After hemodynamic stabilization thenar muscle tissue oxygen saturation during stagnant ischemia decreases slower in septic shock patients than in patients with severe sepsis or localized infection and in healthy volunteers. During ICU stay and improvement of sepsis the muscle tissue deoxygenation rate increases in survivors of both septic shock and severe sepsis and was correlated with SOFA score.

  11. Four Weeks of Off-Season Training Improves Peak Oxygen Consumption in Female Field Hockey Players

    OpenAIRE

    Lindsey T. Funch; Erik Lind; Larissa True; Deborah Van Langen; John T. Foley; James F. Hokanson

    2017-01-01

    The purpose of the study was to examine the changes in peak oxygen consumption ( V ˙O2peak) and running economy (RE) following four-weeks of high intensity training and concurrent strength and conditioning during the off-season in collegiate female field hockey players. Fourteen female student-athletes (age 19.29 ± 0.91 years) were divided into two training groups, matched from baseline V ˙O2peak: High Intensity Training (HITrun; n = 8) and High Intensity Interval Training (HIIT; ...

  12. The effect of external dummy transmitters on oxygen consumption and performance of swimming Atlantic cod

    DEFF Research Database (Denmark)

    Steinhausen, M.F.; Andersen, Niels Gerner; Steffensen, J.F.

    2006-01-01

    Decreased critical swimming speed and increased oxygen consumption (Mo-2) was found for externally tagged Atlantic cod Gadus morhua swimming at a high speed of 0 center dot 9 body length (total length, L-Gamma) s(-1). No difference was found in the standard metabolic rate, indicating...... that the higher Mo-2 for tagged cod was due to drag force rather than increased costs to keep buoyancy. (c) 2006 The Authors Journal compilation (c) 2006 The Fisheries Society of the British Isles....

  13. Evaluation of different near-infrared spectroscopy technologies for assessment of tissue oxygen saturation during a vascular occlusion test.

    Science.gov (United States)

    Steenhaut, Kevin; Lapage, Koen; Bové, Thierry; De Hert, Stefan; Moerman, Annelies

    2017-12-01

    An increasing number of NIRS devices are used to provide measurements of peripheral tissue oxygen saturation (S t O 2 ). The aim of the present study is to test the hypothesis that despite technological differences between devices, similar trend values will be obtained during a vascular occlusion test. The devices compared are NIRO-200NX, which measures S t O 2 and oxyhemoglobin by spatially resolved spectroscopy and the Beer-Lambert law, respectively, and INVOS 5100C and Foresight Elite, which both measure S t O 2 with the Beer-Lambert law, enhanced with the spatial resolution technique. Forty consenting adults scheduled for CABG surgery were recruited. The respective sensors of the three NIRS devices were applied over the brachioradial muscle. Before induction of anesthesia, 3 min of ischemia were induced by inflating a blood pressure cuff at the upper arm, whereafter cuff pressure was rapidly released. Tissue oxygenation measurements included baseline, minimum and maximum values, desaturation and resaturation slopes, and rise time. Comparisons between devices were performed with the Kruskal-Wallis test with post hoc Mann-Whitney pairwise comparisons. Agreement was evaluated using Bland-Altman plots. Oxyhemoglobin measured with NIRO responded faster than the other NIRS technologies to changes in peripheral tissue oxygenation (20 vs. 27-40 s, p ≤ 0.01). When comparing INVOS with Foresight, oxygenation changes were prompter (upslope 311 [92-523]%/min vs. 114[65-199]%/min, p ≤ 0.01) and more pronounced (minimum value 36 [21-48] vs. 45 [40-51]%, p ≤ 0.01) with INVOS. Significant differences in tissue oxygen saturation measurements were observed, both within the same device as between different devices using the same measurement technology.

  14. Sodium cyanide induced alteration in the whole animal oxygen consumption and behavioural pattern of freshwater fish Labeo rohita.

    Science.gov (United States)

    David, Muniswamy; Sangeetha, Jeyabalan; Harish, Etigemane R

    2015-03-01

    Sodium cyanide is a common environmental pollutant which is mainly used in many industries such as mining, electroplating, steel manufacturing, pharmaceutical production and other specialized applications including dyes and agricultural products. It enters aquatic environment through effluents from these industries. Static renewal bioassay test has been conducted to determine LC, of sodium cyanide on indigenous freshwater carp, Labeo rohita. The behavioural pattern and oxygen consumption were observed in fish at both lethal and sub lethal concentrations. Labeo rohita in toxic media exhibited irregular and erratic swimming movements, hyper excitability, loss of equilibrium and shrinking to the bottom, which may be due to inhibition of cytochrome C oxidase activity and decreased blood pH. The combination of cytotoxic hypoxia with lactate acidosis depresses the central nervous system resulting in respiratory arrest and death. Decrease in oxygen consumption was observed at both lethal and sub lethal concentrations of sodium cyanide. Mortality was insignificant at sub lethal concentration test when fishes were found under stress. Consequence of impaired oxidative metabolism and elevated physiological response by fish against sodium cyanide stress showed alteration in respiratory rate.

  15. EC treatment for reuse of tissue paper wastewater: aspects that affect energy consumption.

    Science.gov (United States)

    Terrazas, Eduardo; Vázquez, Armando; Briones, Roberto; Lázaro, Isabel; Rodríguez, Israel

    2010-09-15

    The need for more rational use of water also calls for more efficient usage. An example is the production of tissue paper, where large amounts of water are discharged into the drain because its turbidity does not allow for recirculation. While this is a serious problem, even worse is the fact that the quality of such wastewater makes it difficult not only to recirculate but also to discharge due to environmental law restrictions. In this paper, electrocoagulation is proposed as a suitable technology to meet standards of water discharge, and even better, as a treatment option for removal of turbidity. Since energy consumption has been a drawback for EC applications, relevant aspects that contribute to increase it such as cell voltage and current density have been reviewed. For this purpose a systematic micro-electrolysis study combined with macro-electrolysis experiments have provided evidence that shows it is possible to achieve a turbidity removal of 92% with an energy consumption of 0.68 kWh/m(3). Thus, the results presented in this paper support the use of EC to obtain water of acceptable quality for reuse in the tissue paper industry. Copyright 2010 Elsevier B.V. All rights reserved.

  16. Effects of prolonged compression on the variations of haemoglobin oxygenation-assessment by spectral analysis of reflectance spectrophotometry signals

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zengyong; Tam, Eric W C; Mak, Arthur F T; Lau, Roy Y C [Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong (China)

    2006-11-07

    The consequences of rhythmical flow motion for nutrition and the oxygen supply to tissue are largely unknown. In this study, the periodic variations of haemoglobin oxygenation in compressed and uncompressed skin were evaluated with a reflection spectrometer using an in vivo Sprague-Dawley rat model. Skin compression was induced over the trochanter area by a locally applied external pressure of 13.3 kPa (100 mmHg) via a specifically designed pneumatic indentor. A total of 19 rats were used in this study. The loading duration is 6 h per day for four consecutive days. Haemoglobin oxygenation variations were quantified using spectral analysis based on wavelets' transformation. The results found that in both compressed and uncompressed skin, periodic variations of the haemoglobin oxygenation were characterized by two frequencies in the range of 0.01-0.05 Hz and 0.15-0.4 Hz. These frequency ranges coincide with those of the frequency range of the endothelial-related metabolic and myogenic activities found in the flow motion respectively. Tissue compression following the above loading schedule induced a significant decrease in the spectral amplitudes of frequency interval 0.01-0.05 Hz during the pre-occlusion period on day 3 and day 4 as compared to that on day 1 (p < 0.05). In contrast, at a frequency range of 0.15-0.4 Hz, prolonged compression caused a significant increase in spectral amplitude during the pre-occlusion period in the compressed tissue on day 3 (p = 0.041) and day 4 (p = 0.024) compared to that in the uncompressed tissue on day 1. These suggested that the variations of the haemoglobin oxygenation were closely related to the endothelial-related metabolic and myogenic activities. Increased amplitude in the frequency interval 0.15-0.4 Hz indicated an increased workload of the vascular smooth muscle and could be attributed to the increase of O{sub 2} consumption rates of arteriolar walls. The modification of vessel wall oxygen consumption might

  17. Oxygen limitation and tissue metabolic potential of the African fish Barbus neumayeri: roles of native habitat and acclimatization

    Directory of Open Access Journals (Sweden)

    Rees Bernard B

    2011-01-01

    Full Text Available Abstract Background Oxygen availability in aquatic habitats is a major environmental factor influencing the ecology, behaviour, and physiology of fishes. This study evaluates the contribution of source population and hypoxic acclimatization of the African fish, Barbus neumayeri, in determining growth and tissue metabolic enzyme activities. Individuals were collected from two sites differing dramatically in concentration of dissolved oxygen (DO, Rwembaita Swamp (annual average DO 1.35 mgO2 L-1 and Inlet Stream West (annual average DO 5.58 mgO2 L-1 in Kibale National Park, Uganda, and reciprocally transplanted using a cage experiment in the field, allowing us to maintain individuals under natural conditions of oxygen, food availability, and flow. Fish were maintained under these conditions for four weeks and sampled for growth rate and the activities of phosphofructokinase (PFK, lactate dehydrogenase (LDH, citrate synthase (CS, and cytochrome c oxidase (CCO in four tissues, liver, heart, brain, and skeletal muscle. Results Acclimatization to the low DO site resulted in lower growth rates, lower activities of the aerobic enzyme CCO in heart, and higher activities of the glycolytic enzyme PFK in heart and skeletal muscle. The activity of LDH in liver tissue was correlated with site of origin, being higher in fish collected from a hypoxic habitat, regardless of acclimatization treatment. Conclusions Our results suggest that the influence of site of origin and hypoxic acclimatization in determining enzyme activity differs among enzymes and tissues, but both factors contribute to higher glycolytic capacity and lower aerobic capacity in B. neumayeri under naturally-occurring conditions of oxygen limitation.

  18. Patterns of oxygen consumption during simultaneously occurring elevated metabolic states in the viviparous snake Thamnophis marcianus.

    Science.gov (United States)

    Jackson, Alexander G S; Leu, Szu-Yun; Ford, Neil B; Hicks, James W

    2015-11-01

    Snakes exhibit large factorial increments in oxygen consumption during digestion and physical activity, and long-lasting sub-maximal increments during reproduction. Under natural conditions, all three physiological states may occur simultaneously, but the integrated response is not well understood. Adult male and female checkered gartersnakes (Thamnophis marcianus) were used to examine increments in oxygen consumption (i.e. V̇(O2)) and carbon dioxide production (i.e. V̇(CO2)) associated with activity (Act), digestion (Dig) and post-prandial activity (Act+Dig). For females, we carried out these trials in the non-reproductive state, and also during the vitellogenic (V) and embryogenic (E) phases of a reproductive cycle. Endurance time (i.e. time to exhaustion, TTE) was recorded for all groups during Act and Act+Dig trials. Our results indicate that male and non-reproductive female T. marcianus exhibit significant increments in V̇(O2) during digestion (∼5-fold) and activity (∼9-fold), and that Act+Dig results in a similar increment in V̇(O2) (∼9- to 10-fold). During reproduction, resting V̇(O2) increased by 1.6- to 1.7-fold, and peak increments during digestion were elevated by 30-50% above non-reproductive values, but values associated with Act and Act+Dig were not significantly different from non-reproductive values. During Act+Dig, endurance time remained similar for all of the groups in the present study. Overall, our results indicate that prioritization is the primary pattern of interaction in oxygen delivery exhibited by this species. We propose that the metabolic processes associated with digestion, and perhaps reproduction, are temporarily compromised during activity. © 2015. Published by The Company of Biologists Ltd.

  19. Asymmetry of quadriceps muscle oxygenation during elite short-track speed skating.

    Science.gov (United States)

    Hesford, Catherine Mary; Laing, Stewart J; Cardinale, Marco; Cooper, Chris E

    2012-03-01

    It has been suggested that, because of the low sitting position in short-track speed skating, muscle blood flow is restricted, leading to decreases in tissue oxygenation. Therefore, wearable wireless-enabled near-infrared spectroscopy (NIRS) technology was used to monitor changes in quadriceps muscle blood volume and oxygenation during a 500-m race simulation in short-track speed skaters. Six elite skaters, all of Olympic standard (age = 23 ± 1.8 yr, height = 1.8 ± 0.1 m, mass = 80.1 ± 5.7 kg, midthigh skinfold thickness = 7 ± 2 mm), were studied. Subjects completed a 500-m race simulation time trial (TT). Whole-body oxygen consumption was simultaneously measured with muscle oxygenation in right and left vastus lateralis as measured by NIRS. Mean time for race completion was 44.8 ± 0.4 s. VO2 peaked 20 s into the race. In contrast, muscle tissue oxygen saturation (TSI%) decreased and plateaued after 8 s. Linear regression analysis showed that right leg TSI% remained constant throughout the rest of the TT (slope value = 0.01), whereas left leg TSI% increased steadily (slope value = 0.16), leading to a significant asymmetry (P skating has implications for training and performance.

  20. The effect of exercise intensity and excess postexercise oxygen consumption on postprandial blood lipids in physically inactive men.

    Science.gov (United States)

    Littlefield, Laurel A; Papadakis, Zacharias; Rogers, Katie M; Moncada-Jiménez, José; Taylor, J Kyle; Grandjean, Peter W

    2017-09-01

    Reductions in postprandial lipemia have been observed following aerobic exercise of sufficient energy expenditure. Increased excess postexercise oxygen consumption (EPOC) has been documented when comparing high- versus low-intensity exercise. The contribution of EPOC energy expenditure to alterations in postprandial lipemia has not been determined. The purpose of this study was to evaluate the effects of low- and high-intensity exercise on postprandial lipemia in healthy, sedentary, overweight and obese men (age, 43 ± 10 years; peak oxygen consumption, 31.1 ± 7.5 mL·kg -1 ·min -1 ; body mass index, 31.8 ± 4.5 kg/m 2 ) and to determine the contribution of EPOC to reductions in postprandial lipemia. Participants completed 4 conditions: nonexercise control, low-intensity exercise at 40%-50% oxygen uptake reserve (LI), high-intensity exercise at 70%-80% oxygen uptake reserve (HI), and HI plus EPOC re-feeding (HI+EERM), where the difference in EPOC energy expenditure between LI and HI was re-fed in the form of a sports nutrition bar (Premier Nutrition Corp., Emeryville, Calif., USA). Two hours following exercise participants ingested a high-fat (1010 kcals, 99 g sat fat) test meal. Blood samples were obtained before exercise, before the test meal, and at 2, 4, and 6 h postprandially. Triglyceride incremental area under the curve was significantly reduced following LI, HI, and HI+EERM when compared with nonexercise control (p exercise conditions (p > 0.05). In conclusions, prior LI and HI exercise equally attenuated postprandial triglyceride responses to the test meal. The extra energy expended during EPOC does not contribute significantly to exercise energy expenditure or to reductions in postprandial lipemia in overweight men.

  1. Non-invasive transdermal two-dimensional mapping of cutaneous oxygenation with a rapid-drying liquid bandage.

    Science.gov (United States)

    Li, Zongxi; Roussakis, Emmanuel; Koolen, Pieter G L; Ibrahim, Ahmed M S; Kim, Kuylhee; Rose, Lloyd F; Wu, Jesse; Nichols, Alexander J; Baek, Yunjung; Birngruber, Reginald; Apiou-Sbirlea, Gabriela; Matyal, Robina; Huang, Thomas; Chan, Rodney; Lin, Samuel J; Evans, Conor L

    2014-11-01

    Oxygen plays an important role in wound healing, as it is essential to biological functions such as cell proliferation, immune responses and collagen synthesis. Poor oxygenation is directly associated with the development of chronic ischemic wounds, which affect more than 6 million people each year in the United States alone at an estimated cost of $25 billion. Knowledge of oxygenation status is also important in the management of burns and skin grafts, as well as in a wide range of skin conditions. Despite the importance of the clinical determination of tissue oxygenation, there is a lack of rapid, user-friendly and quantitative diagnostic tools that allow for non-disruptive, continuous monitoring of oxygen content across large areas of skin and wounds to guide care and therapeutic decisions. In this work, we describe a sensitive, colorimetric, oxygen-sensing paint-on bandage for two-dimensional mapping of tissue oxygenation in skin, burns, and skin grafts. By embedding both an oxygen-sensing porphyrin-dendrimer phosphor and a reference dye in a liquid bandage matrix, we have created a liquid bandage that can be painted onto the skin surface and dries into a thin film that adheres tightly to the skin or wound topology. When captured by a camera-based imaging device, the oxygen-dependent phosphorescence emission of the bandage can be used to quantify and map both the pO2 and oxygen consumption of the underlying tissue. In this proof-of-principle study, we first demonstrate our system on a rat ischemic limb model to show its capabilities in sensing tissue ischemia. It is then tested on both ex vivo and in vivo porcine burn models to monitor the progression of burn injuries. Lastly, the bandage is applied to an in vivo porcine graft model for monitoring the integration of full- and partial-thickness skin grafts.

  2. A method for volumetric retinal tissue oxygen tension imaging.

    Science.gov (United States)

    Felder, Anthony E; Wanek, Justin; Teng, Pang-Yu; Blair, Norman P; Shahidi, Mahnaz

    2018-01-01

    Inadequate retinal oxygenation occurs in many vision-threatening retinal diseases, including diabetic retinopathy, retinal vascular occlusions, and age-related macular degeneration. Therefore, techniques that assess retinal oxygenation are necessary to understand retinal physiology in health and disease. The purpose of the current study is to report a method for the three-dimensional (3D) imaging of retinal tissue oxygen tension (tPO 2 ) in rats. Imaging was performed in Long Evans pigmented rats under systemic normoxia (N = 6) or hypoxia (N = 3). A vertical laser line was horizontally scanned on the retina and a series of optical section phase-delayed phosphorescence images were acquired. From these images, phosphorescence volumes at each phase delay were constructed and a 3D retinal tPO 2 volume was generated. Retinal tPO 2 volumes were quantitatively analyzed by generating retinal depth profiles of mean tPO 2 (M tPO2 ) and the spatial variation of tPO 2 (SV tPO2 ). The effects of systemic condition (normoxia/hypoxia) and retinal depth on M tPO2 and SV tPO2 were determined by mixed linear model. Each 3D retinal tPO 2 volume was approximately 500 × 750 × 200 μm (horizontal × vertical × depth) and consisted of 45 en face tPO 2 images through the retinal depth. M tPO2 at the chorioretinal interface was significantly correlated with systemic arterial oxygen tension (P = 0.007; N = 9). There were significant effects of both systemic condition and retinal depth on M tPO2 and SV tPO2 , such that both were lower under hypoxia than normoxia and higher in the outer retina than inner retina (P < 0.001). For the first time, 3D imaging of retinal tPO 2 was demonstrated, with potential future application for assessment of physiological alterations in animal models of retinal diseases.

  3. Tissue Oxygenation and Negative-Pressure Wound Therapy When Applied to the Feet of Persons With Diabetes Mellitus: An Observational Study.

    Science.gov (United States)

    Lee, Ye-Na; Lee, Jong Seok; Han, Seung-Kyu; Jung, Hye-Kyung

    Our group has reported that negative-pressure wound therapy (NPWT) decreases tissue oxygenation by 84% in the foot of diabetic patients because the pad of the connecting drainage tube and foam sponge of the NPWT system compress the wound bed. The purpose of this study was to determine whether an NPWT modified dressing application reduces tissue oxygenation in the feet of persons with diabetes mellitus. A prospective, clinical, observational study. We enrolled 30 patients with diabetic mellitus; their mean age was 63.9 ± 11.2 years (mean ± standard deviation). All were cared for at the diabetic wound center at an academic tertiary medical center in South Korea between 2014 and January 2015. Transcutaneous partial oxygen pressures (TcpO2) were measured to determine tissue oxygenation levels beneath modified NPWT dressings. A TcpO2 sensor was fixed at the tarsometatarsal area of the contralateral unwounded foot. A negative pressure of -125 mm Hg was applied until TcpO2 reached a plateau state; values were measured before, during, and after the modified NPWT. The Wilcoxon' and Mann-Whitney U tests were used to compare differences between these measurements. TcpO2 levels decreased by 26% during the modified NPWT. Mean TcpO2 values before, during, and after turning off the therapy were 54.3 ± 15.3 mm Hg, 41.6 ± 16.3 mm Hg, and 53.3 ± 15.6 mm Hg (P drainage tube significantly reduces the amount of tissue oxygenation loss beneath foam dressings on the skin of the foot dorsum in diabetic patients.

  4. The effect of PEGT/PBT scaffold architecture on oxygen gradients in tissue engineered cartilaginous constructs

    NARCIS (Netherlands)

    Malda, J.; Woodfield, T.B.F.; van der Vloodt, F.; Kooy, F.K.; Martens, D.E.; Tramper, J.C.; van Blitterswijk, Clemens; Riesle, J.U.

    2004-01-01

    Repair of articular cartilage defects using tissue engineered constructs composed of a scaffold and cultured autologous cells holds promise for future treatments. However, nutrient limitation (e.g. oxygen) has been suggested as a cause of the onset of chondrogenesis solely within the peripheral

  5. Diet-induced weight loss decreases adipose tissue oxygen tension with parallel changes in adipose tissue phenotype and insulin sensitivity in overweight humans

    NARCIS (Netherlands)

    Vink, R.G.; Roumans, N.J.; Čajlaković, M.; Cleutjens, J.P.M.; Boekschoten, M.V.; Fazelzadeh, P.; Vogel, M.A.A.; Blaak, E.E.; Mariman, E.C.; Baak, van M.A.; Goossens, G.H.

    2017-01-01

    Background/objectives: Although adipose tissue (AT) hypoxia is present in rodent models of obesity, evidence for this in humans is limited. Here, we investigated the effects of diet-induced weight loss (WL) on abdominal subcutaneous AT oxygen tension (pO 2), AT blood flow (ATBF), AT capillary

  6. Morphological Pulmonary Diffusion Capacity for Oxygen of Burmese Pythons (Python molurus): a Comparison of Animals in Healthy Condition and with Different Pulmonary Infections.

    Science.gov (United States)

    Starck, J M; Weimer, I; Aupperle, H; Müller, K; Marschang, R E; Kiefer, I; Pees, M

    2015-11-01

    A qualitative and quantitative morphological study of the pulmonary exchange capacity of healthy and diseased Burmese pythons (Python molurus) was carried out in order to test the hypothesis that the high morphological excess capacity for oxygen exchange in the lungs of these snakes is one of the reasons why pathological processes extend throughout the lung parenchyma and impair major parts of the lungs before clinical signs of respiratory disease become apparent. Twenty-four Burmese pythons (12 healthy and 12 diseased) were included in the study. A stereology-based approach was used to quantify the lung parenchyma using computed tomography. Light microscopy was used to quantify tissue compartments and the respiratory exchange surface, and transmission electron microscopy was used to measure the thickness of the diffusion barrier. The morphological diffusion capacity for oxygen of the lungs and the anatomical diffusion factor were calculated. The calculated anatomical diffusion capacity was compared with published values for oxygen consumption of healthy snakes, and the degree to which the exchange capacity can be obstructed before normal physiological function is impaired was estimated. Heterogeneous pulmonary infections result in graded morphological transformations of pulmonary parenchyma involving lymphocyte migration into the connective tissue and thickening of the septal connective tissue, increasing thickness of the diffusion barrier and increasing transformation of the pulmonary epithelium into a columnar pseudostratified or stratified epithelium. The transformed epithelium developed by hyperplasia of ciliated cells arising from the tip of the faveolar septa and by hyperplasia of type II pneumocytes. These results support the idea that the lungs have a remarkable overcapacity for oxygen consumption and that the development of pulmonary disease continuously reduces the capacity for oxygen consumption. However, due to the overcapacity of the lungs, this

  7. Consumo de oxigênio pós-prandial de juvenis do pampo Trachinotus marginatus Postprandial oxygen consumption of juvenile pompano Trachinotus marginatus

    Directory of Open Access Journals (Sweden)

    Viviana Lisboa Cunha

    2009-07-01

    Full Text Available Para determinar a viabilidade do cultivo de uma espécie, é importante o conhecimento dos fatores limitantes para sua produção. Conhecer a taxa de consumo de oxigênio pós-prandial pode auxiliar na determinação da freqüência alimentar ideal para as espécies cultivadas. O objetivo deste trabalho foi estudar a taxa de consumo de oxigênio pós-prandial para juvenis do pampo Trachinotus marginatus. A avaliação do consumo de oxigênio foi feita a 24°C e 33‰, com pampos (9,64±0,2g alimentados com 12% da biomassa por dia com dieta NRD INVE (59% proteína. Foi observado um pico de consumo de oxigênio 30min após a alimentação (1,06mgO2 g-1 h-1 e seu retorno ao nível de jejum (0,79mgO2 g-1 h-1 depois de decorridos mais 120min. A alimentação de juvenis de pampo pode ser realizada com uma freqüência de aproximadamente oito vezes por dia, pois a cada 2,5h a taxa de consumo de oxigênio já não mostra a elevação característica da fase pós-prandial, sugerindo que os processos de digestão e assimilação dos nutrientes estejam finalizados.In order to determine the viability of new species for aquaculture, it is important to know the limiting factors for its production. The knowledge about postprandial oxygen consumption of fish is useful to estimate the time for returning to appetite and allows to estimate the proper feeding frequency. The objective of this research was to study the postprandial oxygen consumption of juvenile pompano Trachinotus marginatus. Oxygen consumption rate was determined at 24°C and 33‰ and fish (9.64±0.2g were fed daily with 12% total of biomass NRD INVE diet (59% protein. Postprandial increase in oxygen consumption was observed 30min after feeding (1.06mgO2 g-1 h-1, and it returned to the routine metabolic rate (0.79mgO2 g-1 h-1 within the next 120min. According to these results, it seems appropriated to feed juvenile pompano 8 times per day, because every 2.5h the oxygen consumption rate declines to

  8. Effects of a whole-body spandex garment on rectal temperature and oxygen consumption in healthy dogs.

    Science.gov (United States)

    Reimer, S Brent; Schulz, Kurt S; Mason, David R; Jones, James H

    2004-01-01

    To determine whether a full-body spandex garment would alter rectal temperatures of healthy dogs at rest in cool and warm environments. Prospective study. 10 healthy dogs. Each dog was evaluated at a low (20 degrees to 25 degrees C [68 degrees to 77 degrees F]) or high (30 degrees to 35 degrees C [86 degrees to 95 degrees F]) ambient temperature while wearing or not wearing a commercially available whole-body spandex garment designed for dogs. Oxygen consumption was measured by placing dogs in a flow-through indirect calorimeter for 90 to 120 minutes. Rectal temperature was measured before dogs were placed in the calorimeter and after they were removed. Rectal temperature increased significantly more at the higher ambient temperature than at the lower temperature and when dogs were not wearing the garment than when they were wearing it. The specific rate of oxygen consumption was significantly higher at the lower ambient temperature than at the higher temperature. Results suggest that wearing a snug spandex body garment does not increase the possibility that dogs will overheat while in moderate ambient temperatures. Instead, wearing such a garment may enable dogs to better maintain body temperature during moderate heat loading. These results suggest that such garments might be used for purposes such as wound or suture protection without causing dogs to overheat.

  9. Effect of oxygen breathing and perfluorocarbon emulsion treatment on air bubbles in adipose tissue during decompression sickness

    DEFF Research Database (Denmark)

    Randsoe, T; Hyldegaard, O

    2009-01-01

    Decompression sickness (DCS) after air diving has been treated with success by means of combined normobaric oxygen breathing and intravascular perfluorocarbon (PFC) emulsions causing increased survival rate and faster bubble clearance from the intravascular compartment. The beneficial PFC effect...... has been explained by the increased transport capacity of oxygen and inert gases in blood. However, previous reports have shown that extravascular bubbles in lipid tissue of rats suffering from DCS will initially grow during oxygen breathing at normobaric conditions. We hypothesize that the combined...... effect of normobaric oxygen breathing and intravascular PFC infusion could lead to either enhanced extravascular bubble growth on decompression due to the increased oxygen supply, or that PFC infusion could lead to faster bubble elimination due to the increased solubility and transport capacity in blood...

  10. Efficient isolation of pure and functional mitochondria from mouse tissues using automated tissue disruption and enrichment with anti-TOM22 magnetic beads.

    Directory of Open Access Journals (Sweden)

    Andras Franko

    Full Text Available To better understand molecular mechanisms regulating changes in metabolism, as observed e.g. in diabetes or neuronal disorders, the function of mitochondria needs to be precisely determined. The usual isolation methods such as differential centrifugation result in isolates of highly variable quality and quantity. To fulfill the need of a reproducible isolation method from solid tissues, which is suitable to handle parallel samples simultaneously, we developed a protocol based on anti-TOM22 (translocase of outer mitochondrial membrane 22 homolog antibody-coupled magnetic beads. To measure oxygen consumption rate in isolated mitochondria from various mouse tissues, a traditional Clark electrode and the high-throughput XF Extracellular Flux Analyzer were used. Furthermore, Western blots, transmission electron microscopic and proteomic studies were performed to analyze the purity and integrity of the mitochondrial preparations. Mitochondrial fractions isolated from liver, brain and skeletal muscle by anti-TOM22 magnetic beads showed oxygen consumption capacities comparable to previously reported values and little contamination with other organelles. The purity and quality of isolated mitochondria using anti-TOM22 magnetic beads was compared to traditional differential centrifugation protocol in liver and the results indicated an obvious advantage of the magnetic beads method compared to the traditional differential centrifugation technique.

  11. Determination of in vitro oxygen consumption rates for tumor cells

    International Nuclear Information System (INIS)

    Cardenas-Navia, L.I.; Moeller, B.J.; Kirkpatrick, J.P.; Laursen, T.A.; Dewhirst, M.W.

    2003-01-01

    To determine pO 2 at the surface of a monolayer of confluent HCT 116 cells, and to then determine consumption rate in vitro by examining the pO 2 profile in media above the cells. Materials and Methods: A recessed-tip polarographic oxygen microelectrode (diameter ∼10μm) was used to measure pO 2 profiles of media above a confluent monolayer of HCT 116 human colon adenocarcinoma cells in a T25 flask exposed to a 95% air, 5% CO 2 mixture. A two-dimensional finite element analysis of the diffusion equation was used to fit the data, thereby extracting a steady-state O 2 consumption rate. The diffusion equation was solved for zeroth and first-order expressions. No-flux boundary conditions were imposed on its bottom and side boundaries and experimental data was used for boundary conditions at the gas-media boundary. All flasks show an O 2 gradient in the media, with a mean (SE) media layer of 1677 (147) μm and a mean pO 2 at the cell layer/media interface of 44 (8) mm Hg (n=9). pO 2 gradient over the entire media layer is 630 (90) mm Hg/cm, equivalent to a consumption rate of 6.3 x 10 -4 (9.0 x 10 -5 ) mm Hg/s. The mean values for the zeroth and first order rate constants are 8.1 x 10 -9 (1.3 x 10 -9 ) g mol O 2 /cm 3 s and 1.0 x 10 3 (0.46 x 10 3 ) /s, respectively. Control experiments in flasks containing no cells show slight gradients in pO 2 of 38 (12) mm Hg/cm, resulting from some O 2 diffusion through the flask into the surrounding water bath. An addition of 10 -3 M NaCN to the media results in a dramatic increase in pO 2 at the cell layer, consistent with a shut-down in respiration. Under normal cell culture conditions there is an O 2 gradient present in the media of cull culture systems, resulting in physiologic O 2 concentrations at the cell layer, despite the non-physiologic O 2 concentration of the gas mixture to which the cell culture system is exposed. This significant (p -6 ) O 2 gradient in the media of cell culture systems is a result of cell O 2

  12. Mathematics applied to radiotherapy problem: oxygen diffusion in live tissues; La matematica aplicada en un problema de radioterapia: la difusion de oxigeno en los tejidos vivos

    Energy Technology Data Exchange (ETDEWEB)

    Moyano, Edgardo A.; Dominici, Diego E. [Comision Nacional de Energia Atomica, Buenos Aires (Argentina)

    1996-07-01

    It is known that the oxygenation of living tissues increases the effect of irradiation. Thus it's convenient to oxygen tumor tissues and to know, before irradiation, the change of concentration of available oxygen already in it, between the sealed surface and the furthest depth of penetration or interface. In the present work we solve a model proposed by J. Cranck and R. Gupta, that describes thediffusion of oxygen in living tissues. Landau's transformation we used and finite differences for approximating the problem. We describe two implicit algorithms. The transformation allows to work with a fixed number of nodes during all the simulation. (author)

  13. Nanoparticle-enhanced spectral photoacoustic tomography: effect of oxygen saturation and tissue heterogeneity

    Science.gov (United States)

    Vogt, William C.; Jia, Congxian; Wear, Keith A.; Garra, Brian S.; Pfefer, T. Joshua

    2016-03-01

    Molecular imaging for breast cancer detection, infectious disease diagnostics and preclinical animal research may be achievable through combined use of targeted exogenous agents - such as nanoparticles - and spectral Photoacoustic Tomography (PAT). However, tissue heterogeneity can alter fluence distributions and acoustic propagation, corrupting measured PAT absorption spectra and complicating in vivo nanoparticle detection and quantitation. Highly absorptive vascular structures represent a common confounding factor, and variations in vessel hemoglobin saturation (SO2) may alter spectral content of signals from adjacent/deeper regions. To evaluate the impact of this effect on PAT nanoparticle detectability, we constructed heterogeneous phantoms with well-characterized channel-inclusion geometries and biologically relevant optical and acoustic properties. Phantoms contained an array of tubes at several depths filled with hemoglobin solutions doped with varying concentrations of gold nanorods with an absorption peak at 780 nm. Both overlying and target network SO2 was tuned using sodium dithionite. Phantoms were imaged from 700 to 900 nm using a custom PAT system comprised of a tunable pulsed laser and a research-grade ultrasound system. Recovered nanoparticle spectra were analyzed and compared with results from both spectrophotometry and PAT data from waterimmersed tubes containing blood and nanoparticle solutions. Results suggested that nanoparticle selection for a given PAT application should take into account expected oxygenation states of both target blood vessel and background tissue oxygenation to achieve optimal performance.

  14. Duration of effects of acute environmental changes on food anticipatory behaviour, feed intake, oxygen consumption, and cortisol release in Atlantic salmon parr.

    Science.gov (United States)

    Folkedal, Ole; Torgersen, Thomas; Olsen, Rolf Erik; Fernö, Anders; Nilsson, Jonatan; Oppedal, Frode; Stien, Lars H; Kristiansen, Tore S

    2012-01-18

    We compared behavioural and physiological responses and recovery time after different acute environmental challenges in groups of salmon parr. The fish were prior to the study conditioned to a flashing light signalling arrival of food 30 s later to study if the strength of Pavlovian conditioned food anticipatory behaviour can be used to assess how salmon parr cope with various challenges. The effect on anticipatory behaviour was compared to the effect on feed intake and physiological responses of oxygen hyper-consumption and cortisol excretion. The challenges were temperature fluctuation (6.5C° over 4 h), hyperoxia (up to 380% O(2) saturation over 4 h), and intense chasing for 10 min. Cortisol excretion was only elevated after hyperoxia and chasing, and returned to baseline levels after around 3 h or less. Oxygen hyper-consumption persisted for even shorter periods. Feed intake was reduced the first feeding after all challenges and recovered within 3 h after temperature and hyperoxia, but was reduced for days after chasing. Food anticipatory behaviour was reduced for a longer period than feed intake after hyperoxia and was low at least 6 h after chasing. Our findings suggest that a recovery of challenged Atlantic salmon parr to baseline levels of cortisol excretion and oxygen consumption does not mean full recovery of all psychological and physiological effects of environmental challenges, and emphasise the need for measuring several factors including behavioural parameters when assessing fish welfare. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Intraoperative transfusion threshold and tissue oxygenation

    DEFF Research Database (Denmark)

    Nielsen, K; Dahl, B; Johansson, P I

    2012-01-01

    Transfusion with allogeneic red blood cells (RBCs) may be needed to maintain oxygen delivery during major surgery, but the appropriate haemoglobin (Hb) concentration threshold has not been well established. We hypothesised that a higher level of Hb would be associated with improved subcutaneous...... oxygen tension during major spinal surgery....

  16. Ketosis After Cardiopulmonary Bypass in Children Is Associated With an Inadequate Balance Between Oxygen Transport and Consumption.

    Science.gov (United States)

    Klee, Philippe; Arni, Delphine; Saudan, Sonja; Schwitzgebel, Valérie M; Sharma, Ruchika; Karam, Oliver; Rimensberger, Peter C

    2016-09-01

    Hyperglycemia after cardiac surgery and cardiopulmonary bypass in children has been associated with worse outcome; however, causality has never been proven. Furthermore, the benefit of tight glycemic control is inconsistent. The purpose of this study was to describe the metabolic constellation of children before, during, and after cardiopulmonary bypass, in order to identify a subset of patients that might benefit from insulin treatment. Prospective observational study, in which insulin treatment was initiated when postoperative blood glucose levels were more than 12 mmol/L (216 mg/dL). Tertiary PICU. Ninety-six patients 6 months to 16 years old undergoing cardiac surgery with cardiopulmonary bypass. None. Metabolic tests were performed before anesthesia, at the end of cardiopulmonary bypass, at PICU admission, and 4 and 12 hours after PICU admission, as well as 4 hours after initiation of insulin treatment. Ketosis was present in 17.9% patients at the end of cardiopulmonary bypass and in 31.2% at PICU admission. Young age was an independent risk factor for this condition. Ketosis at PICU admission was an independent risk factor for an increased difference between arterial and venous oxygen saturation. Four hours after admission (p = 0.05). Insulin corrected ketosis within 4 hours. In this study, we found a high prevalence of ketosis at PICU admission, especially in young children. This was independently associated with an imbalance between oxygen transport and consumption and was corrected by insulin. These results set the basis for future randomized controlled trials, to test whether this subgroup of patients might benefit from increased glucose intake and insulin during surgery to avoid ketosis, as improving oxygen transport and consumption might improve patient outcome.

  17. Assessment of the oxygen consumption in the backfill. Geochemical modelling in a saturated backfill

    International Nuclear Information System (INIS)

    Grandia, Fidel; Domenech, Cristina; Arcos, David; Duro, Lara

    2006-11-01

    The consumption of oxygen in the deep disposal is a major concern due to the ability of this element to corrode the canisters where high level nuclear wastes (HLNW) are disposed. The anoxic conditions initially present in a deep geologic environment are disturbed by the excavation of the repository facilities. After sealing the deposition holes and tunnels using clay-based materials, oxygen remains dissolved in porewater or as a gas phase in the unsaturated pores. The main mechanisms of oxygen depletion that can be considered in the backfill materials are: (1) diffusion into the surrounding rock and (2) kinetic reactions with accessory minerals and organic matter existing in the backfill. In this report, a set of numerical simulations are carried out in one and two dimensions in order to test the effect on the oxygen concentration in the pore water of all these mechanisms. The backfill considered is a 0/70 mixture of MX-80 bentonite and crushed material from the excavation itself. In addition to organic matter, the solid phases with reducing capacity in the backfill are Fe(II)-bearing minerals: pyrite (FeS 2 ) and siderite (FeCO) (as accessory minerals in the bentonite) and Fe-biotite (from the crushed granite). In the simulations, other chemical processes like cation exchange and surface complexation onto clay surfaces, and thermodynamic equilibrium with calcite, gypsum and quartz are considered. Initial composition of porewater is obtained by equilibrating the Forsmark groundwater with the backfill material. The 1D simulation consists of a number of cells with no reactive minerals or organic matter representing granite. The central cell, however, contains oxygen and reactive minerals resembling a backfill. Oxygen is allowed to move only by diffusion. The 2D model simulates the interaction with a backfill of a granitic groundwater flowing through a fracture. Like in the 1D model, the backfill contains oxygen and reactive solids. The results are very similar in

  18. Assessment of the oxygen consumption in the backfill. Geochemical modelling in a saturated backfill

    Energy Technology Data Exchange (ETDEWEB)

    Grandia, Fidel; Domenech, Cristina; Arcos, David; Duro, Lara [Enviros Spain S.L., Barcelona (Spain)

    2006-11-15

    The consumption of oxygen in the deep disposal is a major concern due to the ability of this element to corrode the canisters where high level nuclear wastes (HLNW) are disposed. The anoxic conditions initially present in a deep geologic environment are disturbed by the excavation of the repository facilities. After sealing the deposition holes and tunnels using clay-based materials, oxygen remains dissolved in porewater or as a gas phase in the unsaturated pores. The main mechanisms of oxygen depletion that can be considered in the backfill materials are: (1) diffusion into the surrounding rock and (2) kinetic reactions with accessory minerals and organic matter existing in the backfill. In this report, a set of numerical simulations are carried out in one and two dimensions in order to test the effect on the oxygen concentration in the pore water of all these mechanisms. The backfill considered is a 0/70 mixture of MX-80 bentonite and crushed material from the excavation itself. In addition to organic matter, the solid phases with reducing capacity in the backfill are Fe(II)-bearing minerals: pyrite (FeS{sub 2}) and siderite (FeCO) (as accessory minerals in the bentonite) and Fe-biotite (from the crushed granite). In the simulations, other chemical processes like cation exchange and surface complexation onto clay surfaces, and thermodynamic equilibrium with calcite, gypsum and quartz are considered. Initial composition of porewater is obtained by equilibrating the Forsmark groundwater with the backfill material. The 1D simulation consists of a number of cells with no reactive minerals or organic matter representing granite. The central cell, however, contains oxygen and reactive minerals resembling a backfill. Oxygen is allowed to move only by diffusion. The 2D model simulates the interaction with a backfill of a granitic groundwater flowing through a fracture. Like in the 1D model, the backfill contains oxygen and reactive solids. The results are very similar in

  19. Gait transition and oxygen consumption in swimming striped surfperch Embiotoca lateralis Agassiz

    DEFF Research Database (Denmark)

    Cannas, M.; Schaefer, J.; Domenici, P.

    2006-01-01

    A flow-through respirometer and swim tunnel was used to estimate the gait transition speed (Up-c) of striped surfperch Embiotoca lateralis, a labriform swimmer, and to investigate metabolic costs associated with gait transition. The Up-c was defined as the lowest speed at which fish decrease...... the use of pectoral fins significantly. While the tail was first recruited for manoeuvring at relatively low swimming speeds, the use of the tail at these low speeds [as low as 0·75 body (fork) lengths s-1, LF s-1) was rare (..., either in addition to pectoral fins or during burst-and-coast mode. Oxygen consumption increased exponentially with swimming speeds up to gait transition, and then levelled off. Similarly, cost of transport (CT) decreased with increasing speed, and then levelled off near Up-c. When speeds =Up...

  20. 3D printing of microtube in solid phantom to simulate tissue oxygenation and perfusion (Conference Presentation)

    Science.gov (United States)

    Lv, Xiang; Xue, Yue; Wang, Haili; Shen, Shu Wei; Zhou, Ximing; Liu, Guangli; Dong, Erbao; Xu, Ronald X.

    2017-03-01

    Tissue-simulating phantoms with interior vascular network may facilitate traceable calibration and quantitative validation of many medical optical devices. However, a solid phantom that reliably simulates tissue oxygenation and blood perfusion is still not available. This paper presents a new method to fabricate hollow microtubes for blood vessel simulation in solid phantoms. The fabrication process combines ultraviolet (UV) rapid prototyping technique with fluid mechanics of a coaxial jet flow. Polydimethylsiloxane (PDMS) and a UV-curable polymer are mixed at the designated ratio and extruded through a coaxial needle device to produce a coaxial jet flow. The extruded jet flow is quickly photo-polymerized by ultraviolet (UV) light to form vessel-simulating solid structures at different sizes ranging from 700 μm to 1000 μm. Microtube structures with adequate mechanical properties can be fabricated by adjusting material compositions and illumination intensity. Curved, straight and stretched microtubes can be formed by adjusting the extrusion speed of the materials and the speed of the 3D printing platform. To simulate vascular structures in biologic tissue, we embed vessel-simulating microtubes in a gel wax phantom of 10 cm x10 cm x 5 cm at the depth from 1 to 2 mm. Bloods at different oxygenation and hemoglobin concentration levels are circulated through the microtubes at different flow rates in order to simulate different oxygenation and perfusion conditions. The simulated physiologic parameters are detected by a tissue oximeter and a laser speckle blood flow meter respectively and compared with the actual values. Our experiments demonstrate that the proposed 3D printing process is able to produce solid phantoms with simulated vascular networks for potential applications in medical device calibration and drug delivery studies.

  1. Modeling of oxygen transport and cellular energetics explains observations on in vivo cardiac energy metabolism.

    Directory of Open Access Journals (Sweden)

    Daniel A Beard

    2006-09-01

    Full Text Available Observations on the relationship between cardiac work rate and the levels of energy metabolites adenosine triphosphate (ATP, adenosine diphosphate (ADP, and phosphocreatine (CrP have not been satisfactorily explained by theoretical models of cardiac energy metabolism. Specifically, the in vivo stability of ATP, ADP, and CrP levels in response to changes in work and respiratory rate has eluded explanation. Here a previously developed model of mitochondrial oxidative phosphorylation, which was developed based on data obtained from isolated cardiac mitochondria, is integrated with a spatially distributed model of oxygen transport in the myocardium to analyze data obtained from several laboratories over the past two decades. The model includes the components of the respiratory chain, the F0F1-ATPase, adenine nucleotide translocase, and the mitochondrial phosphate transporter at the mitochondrial level; adenylate kinase, creatine kinase, and ATP consumption in the cytoplasm; and oxygen transport between capillaries, interstitial fluid, and cardiomyocytes. The integrated model is able to reproduce experimental observations on ATP, ADP, CrP, and inorganic phosphate levels in canine hearts over a range of workload and during coronary hypoperfusion and predicts that cytoplasmic inorganic phosphate level is a key regulator of the rate of mitochondrial respiration at workloads for which the rate of cardiac oxygen consumption is less than or equal to approximately 12 mumol per minute per gram of tissue. At work rates corresponding to oxygen consumption higher than 12 mumol min(-1 g(-1, model predictions deviate from the experimental data, indicating that at high work rates, additional regulatory mechanisms that are not currently incorporated into the model may be important. Nevertheless, the integrated model explains metabolite levels observed at low to moderate workloads and the changes in metabolite levels and tissue oxygenation observed during graded

  2. Blood flow and oxygenation in peritendinous tissue and calf muscle during dynamic exercise in humans

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher; Langberg, H; Green, Sara Marie Ehrenreich

    2000-01-01

    1. Circulation around tendons may act as a shunt for muscle during exercise. The perfusion and oxygenation of Achilles' peritendinous tissue was measured in parallel with that of calf muscle during exercise to determine (1) whether blood flow is restricted in peritendinous tissue during exercise......, and (2) whether blood flow is coupled to oxidative metabolism. 2. Seven individuals performed dynamic plantar flexion from 1 to 9 W. Radial artery and popliteal venous blood were sampled for O2, peritendinous blood flow was determined by 133Xe-washout, calf blood flow by plethysmography, cardiac output...

  3. Differential effects of phenylephrine and norepinephrine on peripheral tissue oxygenation during general anaesthesia : A randomised controlled trial

    NARCIS (Netherlands)

    Poterman, Marieke; Vos, Jaap Jan; Vereecke, Hugo E. M.; Struys, Michel M. R. F.; Vanoverschelde, Henk; Scheeren, Thomas W. L.; Kalmar, Alain F.

    BACKGROUND Phenylephrine and norepinephrine are two vasopressors commonly used to counteract anaesthesia-induced hypotension. Their dissimilar working mechanisms may differentially affect the macro and microcirculation, and ultimately tissue oxygenation. OBJECTIVES We investigated the differential

  4. Adipose tissue redistribution caused by an early consumption of a high sucrose diet in a rat model.

    Science.gov (United States)

    Castellanos Jankiewicz, Ashley Kate; Rodríguez Peredo, Sofía Montserrat; Cardoso Saldaña, Guillermo; Díaz Díaz, Eulises; Tejero Barrera, María Elizabeth; del Bosque Plata, Laura; Carbó Zabala, Roxana

    2015-06-01

    Obesity is a major public health problem worldwide. The quantity and site of accumulation of adipose tissue is of great importance for the physiopathology of this disease. The aim of this study was to assess the effect of a high carbohydrate diet on adipose tissue distribution. Male Wistar rats, control (CONT) and high sucrose diet (HSD; 30% sucrose in their drinking water), were monitored during 24 weeks and total energy and macronutrient intake were estimated by measuring daily average consumption. A bioelectrical impedance procedure was performed at 22 weeks of treatment to assess body compartments and systolic arterial blood pressure was measured. Serum was obtained and retroperitoneal adipose tissue was collected and weighed. HSD ingested less pellets and beverage, consuming less lipids and proteins than CONT, but the same amount of carbohydrates. Retroperitoneal adipose tissue was more abundant in HSD. Both groups were normoglycemic; triglycerides, adiponectin and leptin levels were higher, while total cholesterol and HDL-cholesterol were lower in HSD; insulin, HOMA index and systolic blood pressure had a tendency of being higher in HSD. This model presents dyslipidemia and a strong tendency for insulin resistance and hypertension. Even though there was no difference in body compartments between groups, retroperitoneal adipose tissue was significantly increased in HSD. This suggests that a rearrangement of adipose tissue distribution towards the abdominal cavity takes place as a result of chronic high sucrose consumption, which contributes to a higher risk of suffering from metabolic and chronic degenerative diseases. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  5. Quantitative determination of localized tissue oxygen concentration in vivo by two-photon excitation phosphorescence lifetime measurements

    NARCIS (Netherlands)

    Mik, Egbert G.; van Leeuwen, Ton G.; Raat, Nicolaas J.; Ince, Can

    2004-01-01

    This study describes the use of two-photon excitation phosphorescence lifetime measurements for quantitative oxygen determination in vivo. Doubling the excitation wavelength of Pd-porphyrin from visible light to the infrared allows for deeper tissue penetration and a more precise and confined

  6. Persistent increase in oxygen consumption and impaired neurovascular coupling after spreading depression in rat neocortex

    DEFF Research Database (Denmark)

    Hansen, Henning Piilgaard; Lauritzen, Martin

    2009-01-01

    trauma. Here we tested the hypothesis that single episodes of CSD induced acute hypoxia, and prolonged impairment of neurovascular and neurometabolic coupling. Cortical spreading depression was induced in rat frontal cortex, whereas cortical electrical activity and local field potentials (LFPs) were......Cortical spreading depression (CSD) is associated with a dramatic failure of brain ion homeostasis and increased energy metabolism. There is strong clinical and experimental evidence to suggest that CSD is the mechanism of migraine, and involved in progressive neuronal injury in stroke and head...... recorded by glass microelectrodes, cerebral blood flow (CBF) by laser-Doppler flowmetry, and tissue oxygen tension (tpO(2)) with polarographic microelectrodes. Cortical spreading depression increased cerebral metabolic rate of oxygen (CMRO(2)) by 71%+/-6.7% and CBF by 238%+/-48.1% for 1 to 2 mins...

  7. The Oxygen Consumption and Metabolic Cost of Walking and Running in Adults With Achondroplasia

    Science.gov (United States)

    Sims, David T.; Onambélé-Pearson, Gladys L.; Burden, Adrian; Payton, Carl; Morse, Christopher I.

    2018-01-01

    The disproportionate body mass and leg length of Achondroplasic individuals may affect their net oxygen consumption (V͘O2) and metabolic cost (C) when walking at running compared to those of average stature (controls). The aim of this study was to measure submaximal V͘O2 and C during a range of set walking speeds (SWS; 0.56 – 1.94 m⋅s-1, increment 0.28 m⋅s-1), set running speeds (SRS; 1.67 – 3.33 m⋅s-1, increment 0.28 m⋅s-1) and a self-selected walking speed (SSW). V͘O2 and C was scaled to total body mass (TBM) and fat free mass (FFM) while gait speed was scaled to leg length using Froude’s number (Fr). Achondroplasic V͘O2TBM and V͘O2FFM were on average 29 and 35% greater during SWS (P 0.05), but CTBM and CFFM at SSW were 23 and 29% higher (P < 0.05) in the Achondroplasic group compared to controls, respectively. V͘O2TBM and V͘O2FFM correlated with Fr for both groups (r = 0.984 – 0.999, P < 0.05). Leg length accounted for the majority of the higher V͘O2TBM and V͘O2FFM in the Achondroplasic group, but further work is required to explain the higher Achondroplasic CTBM and CFFM at all speeds compared to controls. New and Noteworthy: There is a leftward shift of oxygen consumption scaled to total body mass and fat free mass in Achondroplasic adults when walking and running. This is nullified when talking into account leg length. However, despite these scalars, Achondroplasic individuals have a higher walking and metabolic cost compared to age matched non-Achondroplasic individuals, suggesting biomechanical differences between the groups. PMID:29720948

  8. The role of tissue oxygen tension in the control of local blood flow in the microcirculation of skeletal muscles

    DEFF Research Database (Denmark)

    Ngo, Thuc Anh

    2010-01-01

    In the microcirculation blood flow is highly regulated dependent on the metabolic activity of the tissues. Among several mechanisms, mechanisms involved in the coupling of changes in tissue oxygen tension due to changes in the metabolic activity of the tissue play an important role. In the systemic...... (inhibitor of KATP channels) in the superfusate abolished both vasodilatation and constriction to low and high oxygen superfusate, indicating that KATP channels are involved in both hypoxic vasodilatation and hyperoxic vasoconstriction. Red blood cells (RBCs) have been proposed to release ATP and...... as in the intact blood-perfused arteriole. This indicates that RBCs are not essential for hypoxic vasodilatation. In addition several potential pathways were evaluated. Application of DPCPX (inhibitor of adenosine A1 and A2 receptors) and L-NAME (inhibitor of NO-synthase) did not affect vasomotor responses to low...

  9. Influence of different production strategies on the stability of color, oxygen consumption and metmyoglobin reducing activity of meat from Ningxia Tan sheep.

    Science.gov (United States)

    Gao, Xiaoguang; Wang, Zhenyu; Miao, Jing; Xie, Li; Dai, Yan; Li, Xingmin; Chen, Yong; Luo, Hailing; Dai, Ruitong

    2014-02-01

    Fifty male Ningxia Tan sheep were randomly divided into five groups (10 per group). Different feeding strategies were applied to each group for 120 days prior to slaughter. The sheep belong to five groups were pastured for 0 h (feedlot-fed), 2h, 4h, 8h, 12h per day on a natural grazing ground, respectively. M. semitendinosus muscle from Tan sheep was obtained after slaughter. Instrumental color, pH values, oxygen consumption rate, metmyoglobin reducing activity and relative metmyoglobin percentages were analyzed after 1, 3, 5, 7 and 9 days of refrigerated storage. Long-term daily grazing and herbage-based diet were conducive to maintain a lower oxygen consumption rate, higher metmyoglobin reducing activity and lower metmyoglobin accumulation. The combination of pasture-fed and feedlot-fed was conducive to weight gain, and at the same time, increased the color stability of the meat from Ningxia Tan sheep. © 2013.

  10. Effects of Low-Permeability Layers in the Hyporheic Zone on Oxygen Consumption Under Losing and Gaining Groundwater Flow Conditions

    Science.gov (United States)

    Arnon, S.; Krause, S.; Gomez-Velez, J. D.; De Falco, N.

    2017-12-01

    Recent studies at the watershed scale have demonstrated the dominant role that river bedforms play in driving hyporheic exchange and constraining biogeochemical processes along river corridors. At the reach and bedform scales, modeling studies have shown that sediment heterogeneity significantly modifies hyporheic flow patterns within bedforms, resulting in spatially heterogeneous biogeochemical processes. In this work, we summarize a series of flume experiments to evaluate the effect that low-permeability layers, representative of structural heterogeneity, have on hyporheic exchange and oxygen consumption in sandy streambeds. In this case, we systematically changed the geometry of the heterogeneities, the surface channel flow driving the exchange, and groundwater fluxes (gaining/losing) modulating the exchange. The flume was packed with natural sediments, which were amended with compost to minimize carbon limitations. Structural heterogeneities were represented by continuous and discontinuous layers of clay material. Flow patterns were studied using dye imaging through the side walls. Oxygen distribution in the streambed was measured using planar optodes. The experimental observations revealed that the clay layer had a significant effect on flow patterns and oxygen distribution in the streambed under neutral and losing conditions. Under gaining conditions, the aerobic zone was limited to the upper sections of the bedform and thus was less influenced by the clay layers that were located at a depth of 1-3 cm below the water-sediment interface. We are currently analyzing the results with a numerical flow and transport model to quantify the reactions rates under the different flow conditions and spatial sediment structures. Our preliminary results enable us to show the importance of the coupling between flow conditions, local heterogeneity within the streambed and oxygen consumption along bed forms and are expected to improve our ability to model the effect of stream

  11. Aquatic respiration rate measurements at low oxygen concentrations.

    Directory of Open Access Journals (Sweden)

    Moritz Holtappels

    Full Text Available Despite its huge ecological importance, microbial oxygen respiration in pelagic waters is little studied, primarily due to methodological difficulties. Respiration measurements are challenging because of the required high resolution of oxygen concentration measurements. Recent improvements in oxygen sensing techniques bear great potential to overcome these limitations. Here we compare 3 different methods to measure oxygen consumption rates at low oxygen concentrations, utilizing amperometric Clark type sensors (STOX, optical sensors (optodes, and mass spectrometry in combination with (18-18O2 labeling. Oxygen concentrations and consumption rates agreed well between the different methods when applied in the same experimental setting. Oxygen consumption rates between 30 and 400 nmol L(-1 h(-1 were measured with high precision and relative standard errors of less than 3%. Rate detection limits in the range of 1 nmol L(-1 h(-1 were suitable for rate determinations in open ocean water and were lowest at the lowest applied O2 concentration.

  12. Effects of variation in cerebral haemodynamics during aneurysm surgery on brain tissue oxygen and metabolism.

    Science.gov (United States)

    Kett-White, R; Hutchinson, P J; Czosnyka, M; al-Rawi, P; Gupta, A; Pickard, J D; Kirkpatrick, P J

    2002-01-01

    This study explores the sensitivities of multiparameter tissue gas sensors and microdialysis to variations in blood pressure, CSF drainage and to well-defined periods of ischaemia accompanying aneurysm surgery, and their predictive value for infarction. A Neurotrend sensor [brain tissue partial pressure of oxygen (PBO2), carbon dioxide (PBCO2), brain pH (pHB) and temperature] and microdialysis catheter were inserted into the appropriate vascular territory prior to craniotomy. Baseline data showed a clear correlation between PBO2 and mean arterial pressure (MAP) below a threshold of 80 mmHg. PBO2 improved with CSF drainage in 20 out of 28 (Wilcoxon: P sensors can be sensitive to acute ischaemia. Microdialysis shows potential in the detection of metabolic changes during tissue hypoxia.

  13. Radiation-induced DNA damage in tumors and normal tissues. II. Influence of dose, residual DNA damage and physiological factors in oxygenated cells

    International Nuclear Information System (INIS)

    Zhang, H.; Wheeler, K.T.

    1994-01-01

    Detection and quantification of hypoxic cells in solid tumors is important for many experimental and clinical situations. Several laboratories, including ours, have suggested that assays which measure radiation-induced DNA strand breaks and DNA-protein crosslinks (DPCs) might be used to detect or quantify hypoxic cells in tumors and normal tissues. Recently, we demonstrated the feasibility of using an alkaline elution assay that measures strand breaks and DPCs to detect and/or quantify hypoxic cells in tissues. For this approach to be valid, DPCs must not be formed to any great extent in irradiated oxygenated cells, and the formation and repair of strand breaks and DPCs in oxygenated cells must not be modified appreciably by physiological factors (e.g., temperature, pH and nutrient depletion) that are often found in solid tumors. To address these issues, two sets of experiments were performed. In one set of experiments, oxygenated 9L cells in tissue culture, subcutaneous 9L tumors and rat cerebella were irradiated with doses of 15 or 50 Gy and allowed to repair until the residual strand break damage was low enough to detect DPCs. In another set of experiments, oxygenated exponentially growing or plateau-phase 9L cells in tissue culture were irradiated with a dose of 15 Gy at 37 or 20 degrees C, while the cells were maintained at a pH of either 6.6 or 7.3. DNA-protein crosslinks were formed in oxygenated cells about 100 times less efficiently than in hypoxic cells. In addition, temperature, pH, nutrient depletion and growth phase did not appreciably alter the formation and repair of strand breaks or the formation of DPCs in oxygenated 9L cells. These results support the use of this DNA damage assay for the detection and quantification of hypoxic cells in solid tumors. 27 refs., 5 tabs

  14. The effects of capillary transit time heterogeneity (CTH on the cerebral uptake of glucose and glucose analogs:Application to FDG and comparison to oxygen uptake.

    Directory of Open Access Journals (Sweden)

    Hugo Angleys

    2016-10-01

    Full Text Available Glucose is the brain’s principal source of ATP, but the extent to which cerebral glucose consumption (CMRglc is coupled with its oxygen consumption (CMRO2 remains unclear. Measurements of the brain’s oxygen-glucose index OGI=CMRO2/CMRglc suggest that its oxygen uptake largely suffices for oxidative phosphorylation. Nevertheless, during functional activation and in some disease states, brain tissue seemingly produces lactate although cerebral blood flow (CBF delivers sufficient oxygen, so-called aerobic glycolysis. OGI measurements, in turn, are method-dependent in that estimates based on glucose analog uptake depend on the so-called lumped constant (LC to arrive at CMRglc. Capillary transit time heterogeneity (CTH, which is believed to change during functional activation and some disease states, affects the extraction efficacy of oxygen from blood. We developed a three-compartment model of glucose extraction to examine whether CTH also affects glucose extraction into brain tissue. We then combined this model with our previous model of oxygen extraction to examine whether differential glucose and oxygen extraction might favor nonoxidative glucose metabolism under certain conditions. Our model predicts that glucose uptake is largely unaffected by changes in its plasma concentration, while changes in CBF and CTH affect glucose and oxygen uptake to different extents. Accordingly, functional hyperemia facilitates glucose uptake more than oxygen uptake, favoring aerobic glycolysis during enhanced energy demands. Applying our model to glucose analogs, we observe that LC depends on physiological state, with a risk of overestimating relative increases in CMRglc during functional activation by as much as 50%.

  15. Simultaneous evaluation of substrate-dependent oxygen consumption rates and mitochondrial membrane potential by TMRM and safranin in cortical mitochondria.

    Science.gov (United States)

    Chowdhury, Subir Roy; Djordjevic, Jelena; Albensi, Benedict C; Fernyhough, Paul

    2015-12-08

    Mitochondrial membrane potential (mtMP) is critical for maintaining the physiological function of the respiratory chain to generate ATP. The present study characterized the inter-relationship between mtMP, using safranin and tetramethyl rhodamine methyl ester (TMRM), and mitochondrial respiratory activity and established a protocol for functional analysis of mitochondrial bioenergetics in a multi-sensor system. Coupled respiration was decreased by 27 and 30-35% in the presence of TMRM and safranin respectively. Maximal respiration was higher than coupled with Complex I- and II-linked substrates in the presence of both dyes. Safranin showed decreased maximal respiration at a higher concentration of carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP) compared with TMRM. FCCP titration revealed that maximal respiration in the presence of glutamate and malate was not sustainable at higher FCCP concentrations as compared with pyruvate and malate. Oxygen consumption rate (OCR) and mtMP in response to mitochondrial substrates were higher in isolated mitochondria compared with tissue homogenates. Safranin exhibited higher sensitivity to changes in mtMP than TMRM. This multi-sensor system measured mitochondrial parameters in the brain of transgenic mice that model Alzheimer's disease (AD), because mitochondrial dysfunction is believed to be a primary event in the pathogenesis of AD. The coupled and maximal respiration of electron transport chain were decreased in the cortex of AD mice along with the mtMP compared with age-matched controls. Overall, these data demonstrate that safranin and TMRM are suitable for the simultaneous evaluation of mtMP and respiratory chain activity using isolated mitochondria and tissue homogenate. However, certain care should be taken concerning the selection of appropriate substrates and dyes for specific experimental circumstances. © 2016 Authors.

  16. Bilateral changes in forearm oxygen consumption at rest and after exercise in patients with unilateral Repetitive Strain Injury : A case control study

    NARCIS (Netherlands)

    J. Oosterhof; D. Thijssen; M. Hopman; J. Brunnekreef

    2011-01-01

    To investigate whether oxygen consumption and blood flow at rest and after exercise are lower in the affected arm of patients with repetitive strain injury (RSI) compared to controls, and lower in the healthy nonaffected forearm within patients with unilateral RSI. RSI is considered an upper

  17. Oxygen consumption rates in hovering hummingbirds reflect substrate-dependent differences in P/O ratios: carbohydrate as a 'premium fuel'.

    Science.gov (United States)

    Welch, Kenneth C; Altshuler, Douglas L; Suarez, Raul K

    2007-06-01

    The stoichiometric relationship of ATP production to oxygen consumption, i.e. the P/O ratio, varies depending on the nature of the metabolic substrate used. The latest estimates reveal a P/O ratio approximately 15% higher when glucose is oxidized compared with fatty acid oxidation. Because the energy required to produce aerodynamic lift for hovering is independent of the metabolic fuel oxidized, we hypothesized that the rate of oxygen consumption, VO2, should decline as the respiratory quotient, RQ (VCO2/VO2), increases from 0.71 to 1.0 as hummingbirds transition from a fasted to a fed state. Here, we show that hovering VO2 values in rufous (Selasphorus rufus) and Anna's hummingbirds (Calypte anna) are significantly greater when fats are metabolized (RQ=0.71) than when carbohydrates are used (RQ=1.0). Because hummingbirds gained mass during our experiments, making mass a confounding variable, we estimated VO2 per unit mechanical power output. Expressed in this way, the difference in VO2 when hummingbirds display an RQ=0.71 (fasted) and an RQ=1.0 (fed) is between 16 and 18%, depending on whether zero or perfect elastic energy storage is assumed. These values closely match theoretical expectations, indicating that a combination of mechanical power estimates and ;indirect calorimetry', i.e. the measurement of rates of gas exchange, enables precise estimates of ATP turnover and metabolic flux rates in vivo. The requirement for less oxygen when oxidizing carbohydrate suggests that carbohydrate oxidation may facilitate hovering flight in hummingbirds at high altitude.

  18. Effect of limb cooling on peripheral and global oxygen consumption in neonates.

    Science.gov (United States)

    Hassan, I A-A; Wickramasinghe, Y A; Spencer, S A

    2003-03-01

    To evaluate peripheral oxygen consumption (VO(2)) measurements using near infrared spectroscopy (NIRS) with arterial occlusion in healthy term neonates by studying the effect of limb cooling on peripheral and global VO(2). Twenty two healthy term neonates were studied. Peripheral VO(2) was measured by NIRS using arterial occlusion and measurement of the oxyhaemoglobin (HbO(2)) decrement slope. Global VO(2) was measured by open circuit calorimetry. Global and peripheral VO(2) was measured in each neonate before and after limb cooling. In 10 neonates, a fall in forearm temperature of 2.2 degrees C (mild cooling) decreased forearm VO(2) by 19.6% (p forearm temperature of 4 degrees C (moderate cooling) decreased forearm VO(2) by 34.7% (p cooling. The changes are more pronounced with moderate limb cooling when a concomitant rise in global VO(2) is observed. Change in peripheral temperature must be taken into consideration in the interpretation of peripheral VO(2) measurements in neonates.

  19. Effect of esmolol infusion on myocardial oxygen consumption during extubation and quality of recovery in elderly patients undergoing general anesthesia: randomized, double blinded, clinical trial

    Directory of Open Access Journals (Sweden)

    Sherif A. ELokda

    2015-04-01

    Conclusions: Esmolol is a safe, effective and well-tolerated drug that can be used in elderly patients undergoing general anesthesia to reduce the myocardial oxygen consumption and improve the quality of recovery.

  20. Factors determining the oxygen consumption rate (VO2) on-kinetics in skeletal muscles.

    Science.gov (United States)

    Korzeniewski, Bernard; Zoladz, Jerzy A

    2004-05-01

    Using a computer model of oxidative phosphorylation developed previously [Korzeniewski and Mazat (1996) Biochem. J. 319, 143-148; Korzeniewski and Zoladz (2001) Biophys. Chem. 92, 17-34], we analyse the effect of several factors on the oxygen-uptake kinetics, especially on the oxygen consumption rate (VO2) and half-transition time t(1/2), at the onset of exercise in skeletal muscles. Computer simulations demonstrate that an increase in the total creatine pool [PCr+/-Cr] (where Cr stands for creatine and PCr for phosphocreatine) and in glycolytic ATP supply lengthen the half-transition time, whereas increase in mitochondrial content, in parallel activation of ATP supply and ATP usage, in oxygen concentration, in proton leak, in resting energy demand, in resting cytosolic pH and in initial alkalization decrease this parameter. Theoretical studies show that a decrease in the activity of creatine kinase (CK) [displacement of this enzyme from equilibrium during on-transient (rest-to-work transition)] accelerates the first stage of the VO2 on-transient, but slows down the second stage of this transient. It is also demonstrated that a prior exercise terminated a few minutes before the principal exercise shortens the transition time. Finally, it is shown that at a given ATP demand, and under conditions where CK works near the thermodynamic equilibrium, the half-transition time of VO2 kinetics is determined by the amount of PCr that has to be transformed into Cr during rest-to-work transition; therefore any factor that diminishes the difference in [PCr] between rest and work at a given energy demand will accelerate the VO2 on-kinetics. Our conclusions agree with the general idea formulated originally by Easterby [(1981) Biochem. J. 199, 155-161] that changes in metabolite concentrations determine the transition times between different steady states in metabolic systems.

  1. Investigation of endocrine and immunological response in fat tissue to hyperbaric oxygen administration in rats.

    Science.gov (United States)

    Şen, H; Erbağ, G; Ovali, M A; Öztopuz, R Ö; Uzun, M

    2016-04-30

    Though HBO treatment is becoming more common, the mechanism of action is not fully known. The positive effects of HBO administration on the inflammatory response is thought to be a possible basic mechanism. As a result, we aimed to research whether endocrine and immunological response of fat tissue changes in rats given HBO treatment model. This research was carried out on Wistar albino rats, they were treated with hyperbaric oxygen therapy. Their fatty tissue were taken from the abdomen, gene expression of the cytokines and adipokines were analyzed with Real time PCR method. When the gene expression of hormones and cytokines by fat tissue was examined, the leptin, visfatin, TNF-α, IL-1β and IL-10 levels in the HBO treatment group were statistically significantly increased compared to the control group (p=0.0313, p=0.0156, p=0.0156, p=0.0156, p=0.0313). In conclusion, in our study we identified that HBO administration affected the endochrinological functions of fat tissue.

  2. [Peroxynitrite effect on the haemoglobin oxygen affinity in vitro in presence of different partial pressure of carbon dioxide].

    Science.gov (United States)

    Stepuro, T L; Zinchuk, V V

    2011-08-01

    Peroxynitrite (ONOO-) besides its toxic possesses regulatory action that includes the modulation of oxygen binding properties of blood. The aim of this work was to estimate ONOO- effect on the haemoglobin oxygen affinity (HOA) in vitro in presence of different partial pressure of carbon dioxide (CO2). The ONOO- presence in venous blood in conditions of hypercapnia induced oxyhaemoglobin dissociation curve shift leftward while in hypocapnic conditions the result of a different character was obtained. The revealed effect of ONOO- is realized, possibly, through various modifications ofhaemoglobin whose formation is dependent on the CO2 pressure. The ONOO- influences the HOA in different manner that can be important in regulation of blood oxygenation in lungs and maintenance of oxygen consumption in tissues.

  3. [The effects of oxygen partial pressure changes on the osteometric markers of the bone tissue in rats].

    Science.gov (United States)

    Berezovs'kyĭ, V Ia; Zamors'ka, T M; Ianko, R V

    2013-01-01

    Our purpose was to investigate the oxygen partial pressure changes on the osteometric and biochemical markers of bone tissue in rats. It was shown that breathing of altered gas mixture did not change the mass, general length, sagittal diameter and density thigh-bones in 12-month Wistar male-rats. The dosed normobaric hypoxia increased the activity of alkaline phosphatase and decreased the activity of tartrate-resistant acid phosphatase. At the same time normobaric hyperoxia with 40 and 90% oxygen conversely decreased the activity of alkaline phosphatase and increased the activity of tartrate-resistant acid phosphatase.

  4. Oxygen Mapping within Healthy and Acutely Infarcted Brain Tissue in Humans Using the NMR Relaxation of Lipids: A Proof-Of-Concept Translational Study.

    Science.gov (United States)

    Colliez, Florence; Safronova, Marta M; Magat, Julie; Joudiou, Nicolas; Peeters, André P; Jordan, Bénédicte F; Gallez, Bernard; Duprez, Thierry

    2015-01-01

    The clinical applicability of brain oxygenation mapping using the MOBILE (Mapping of Oxygen By Imaging Lipids relaxation Enhancement) magnetic resonance (MR) technique was assessed in the clinical setting of normal brain and of acute cerebral ischemia as a founding proof-of-concept translational study. Changes in the oxygenation level within healthy brain tissue can be detected by analyzing the spin-lattice proton relaxation ('Global T1' combining water and lipid protons) because of the paramagnetic properties of molecular oxygen. It was hypothesized that selective measurement of the relaxation of the lipid protons ('Lipids T1') would result in enhanced sensitivity of pO2 mapping because of higher solubility of oxygen in lipids than in water, and this was demonstrated in pre-clinical models using the MOBILE technique. In the present study, 12 healthy volunteers and eight patients with acute (48-72 hours) brain infarction were examined with the same clinical 3T MR system. Both Lipids R1 (R1 = 1/T1) and Global R1 were significantly different in the infarcted area and the contralateral unaffected brain tissue, with a higher statistical significance for Lipids R1 (median difference: 0.408 s-1; pbrain tissue of stroke patients were not significantly different from the R1 values calculated in the brain tissue of healthy volunteers. The main limitations of the present prototypic version of the MOBILE sequence are the long acquisition time (4 min), hampering robustness of data in uncooperative patients, and a 2 mm slice thickness precluding accurate measurements in small infarcts because of partial volume averaging effects.

  5. [Evaluation of heart impact in the 100 m extreme intensity sport using near-infrared non-invasive muscle oxygen detecting device and sports heart rate detection technology].

    Science.gov (United States)

    Wang, Pei-Yong; Long, Fei-Xiao; Fu, Lan-Ying; Li, Yue; Ding, Hai-Shu; Qu, An-Lian; Zhou, Xiao-Ping

    2010-02-01

    Using continuous two wavelength near-infrared technology to detect the variation in the consistency of oxygen hemoglobin in the muscle and the sports heart rate wireless real time collection technology, we devised the real time muscle tissue oxygenation and instantaneous heart rate experiment scheme and implemented it for the process of the 100 m run with two parameters given simultaneously. The experiment shows that the concentration of the oxygen hemoglobin in the muscle tissue continues decreasing after the end of the 100 m run, and the time interval between the moment when the concentration of the oxygen hemoglobin attains the minimum value and the moment when the athletes finish the 100 m run is (6.65 +/- 1.10) sec; while the heart rate continues increasing after the end of the 100 m run, and the time interval between the moment when the heart rate attains the maximum value and the moment when the athletes finish the 100 m run is (8.00 +/- 1.57) sec. The results show that the two wavelength near-infrared tissue oxygenation detection technology and the sports heart rate real time collection equipment can accurately measure the sports tissue oxygenation and the heart rate in the extreme intensity sport, and reveal the process of muscle oxygen transportation and consumption and its dynamic character with the heart rate in the extreme intensity sport.

  6. Thicker three-dimensional tissue from a "symbiotic recycling system" combining mammalian cells and algae.

    Science.gov (United States)

    Haraguchi, Yuji; Kagawa, Yuki; Sakaguchi, Katsuhisa; Matsuura, Katsuhisa; Shimizu, Tatsuya; Okano, Teruo

    2017-01-31

    In this paper, we report an in vitro co-culture system that combines mammalian cells and algae, Chlorococcum littorale, to create a three-dimensional (3-D) tissue. While the C2C12 mouse myoblasts and rat cardiac cells consumed oxygen actively, intense oxygen production was accounted for by the algae even in the co-culture system. Although cell metabolism within thicker cardiac cell-layered tissues showed anaerobic respiration, the introduction of innovative co-cultivation partially changed the metabolism to aerobic respiration. Moreover, the amount of glucose consumption and lactate production in the cardiac tissues and the amount of ammonia in the culture media decreased significantly when co-cultivated with algae. In the cardiac tissues devoid of algae, delamination was observed histologically, and the release of creatine kinase (CK) from the tissues showed severe cardiac cell damage. On the other hand, the layered cell tissues with algae were observed to be in a good histological condition, with less than one-fifth decline in CK release. The co-cultivation with algae improved the culture condition of the thicker tissues, resulting in the formation of 160 μm-thick cardiac tissues. Thus, the present study proposes the possibility of creating an in vitro "symbiotic recycling system" composed of mammalian cells and algae.

  7. Differential Effects of Temperature on Oxygen Consumption and Branchial Fluxes of Urea, Ammonia, and Water in the Dogfish Shark (Squalus acanthias suckleyi).

    Science.gov (United States)

    Giacomin, Marina; Schulte, Patricia M; Wood, Chris M

    Environmental temperature can greatly influence the homeostasis of ectotherms through its effects on biochemical reactions and whole-animal physiology. Elasmobranchs tend to be N limited and are osmoconformers, retaining ammonia and urea-N at the gills and using the latter as a key osmolyte to maintain high blood osmolality. However, the effects of temperature on these key processes remain largely unknown. We evaluated the effects of acute exposure to different temperatures (7°, 12°, 15°, 18°, 22°C) on oxygen consumption, ammonia, urea-N, and diffusive water fluxes at the gills of Squalus acanthias suckleyi. We hypothesized that as metabolic demand for oxygen increased with temperature, the fluxes of ammonia, urea-N, and 3 H 2 O at the gills would increase in parallel with those of oxygen. Oxygen consumption (overall [Formula: see text] from 7.5° to 22°C) and water fluxes (overall [Formula: see text]) responded to increases in temperature in a similar, almost linear, manner. Ammonia-N efflux rates varied the most, increasing almost 15-fold from 7.5° to 22°C ([Formula: see text]). Urea-N efflux was tightly conserved over the 7.5°-15°C range ([Formula: see text]) but increased greatly at higher temperatures, yielding an overall [Formula: see text]. These differences likely reflect differences in the transport pathways for the four moieties. They also suggest the failure of urea-N- and ammonia-N-conserving mechanisms at the gill above 15°C. Hyperoxia did not alleviate the effects of high temperature. Indeed, urea-N and ammonia-N effluxes were dramatically increased when animals were exposed to high temperatures in the presence of hyperoxia, suggesting that high partial pressure of oxygen may have caused oxidative damage to gill epithelial membranes.

  8. Tumour oxygenation assessed by 18F-fluoromisonidazole PET and polarographic needle electrodes in human soft tissue tumours

    DEFF Research Database (Denmark)

    Bentzen, L.; Keiding, S.; Nordsmark, M.

    2003-01-01

    Background and purpose: The aim of the study was to identify hypoxia in human soft tissue sarcomas (STS) by PET scanning using the hypoxia marker [F-18]-fluoromisonidazole ([F-18]FMISO) and invasive oxygen sensitive probes (Eppendorf pO(2) Histograph, Germany). Materials and methods: Thirteen pat...

  9. Simultaneous Monitoring of Vascular Oxygenation and Tissue Oxygen Tension of Breast Tumors Under Hyperbaric Oxygen Exposure

    Science.gov (United States)

    2008-04-01

    28. Alagoz, T., R. Buller, B. Anderson, K. Terrell , R...and oxygenation Ann . New Acad. Sci. 838 29–45 Chapman J D, Stobbe C C, Arnfield M R, Santus R, Lee J and McPhee M S 1991 Oxygen dependency of tumor

  10. Deficiency of Interleukin-15 Confers Resistance to Obesity by Diminishing Inflammation and Enhancing the Thermogenic Function of Adipose Tissues.

    Directory of Open Access Journals (Sweden)

    Gregory Lacraz

    Full Text Available IL-15 is an inflammatory cytokine secreted by many cell types. IL-15 is also produced during physical exercise by skeletal muscle and has been reported to reduce weight gain in mice. Contrarily, our findings on IL-15 knockout (KO mice indicate that IL-15 promotes obesity. The aim of this study is to investigate the mechanisms underlying the pro-obesity role of IL-15 in adipose tissues.Control and IL-15 KO mice were maintained on high fat diet (HFD or normal control diet. After 16 weeks, body weight, adipose tissue and skeletal mass, serum lipid levels and gene/protein expression in the adipose tissues were evaluated. The effect of IL-15 on thermogenesis and oxygen consumption was also studied in primary cultures of adipocytes differentiated from mouse preadipocyte and human stem cells.Our results show that IL-15 deficiency prevents diet-induced weight gain and accumulation of lipids in visceral and subcutaneous white and brown adipose tissues. Gene expression analysis also revealed elevated expression of genes associated with adaptive thermogenesis in the brown and subcutaneous adipose tissues of IL-15 KO mice. Accordingly, oxygen consumption was increased in the brown adipocytes from IL-15 KO mice. In addition, IL-15 KO mice showed decreased expression of pro-inflammatory mediators in their adipose tissues.Absence of IL-15 results in decreased accumulation of fat in the white adipose tissues and increased lipid utilization via adaptive thermogenesis. IL-15 also promotes inflammation in adipose tissues that could sustain chronic inflammation leading to obesity-associated metabolic syndrome.

  11. Effect of thyroxine on cellular oxygen-consumption and glucose uptake: evidence of an effect of total T4 and not "free T4"

    DEFF Research Database (Denmark)

    Kvetny, J; Matzen, L E

    1990-01-01

    Recent studies of cellular T4 and T3 uptake have indicated active transport of the hormones into the cell rather than passive diffusion of the non-protein bound fraction. In order to study the significance of the extracellular environment, oxygen consumption and glucose uptake were examined...... in human mononuclear blood cells. Cells were incubated in protein free medium and in human serum totally depleted of thyroid hormones by resin treatment and fixed amounts of T4 (total T4 = 0-50-100-5000 nmol/l; free T4 = 0-5-11-5600 pmol/l) were added. Thyroxine stimulated glucose uptake and oxygen......-consumption in a dose dependent manner but the T4 stimulation was dependent on the total concentration of T4 and did not differ between serum incubation or non-protein containing medium. Addition of ANS (100 mg/l) which inhibits binding of T4 to TBG, did not increase T4 effect in serum. Inhibition of the Na...

  12. Decreased muscle oxygenation and increased arterial blood flow in the non-exercising limb during leg exercise.

    Science.gov (United States)

    Shiroishi, Kiyoshi; Kime, Ryotaro; Osada, Takuya; Murase, Norio; Shimomura, Kousuke; Katsumura, Toshihito

    2010-01-01

    We evaluated arterial blood flow, muscle tissue oxygenation and muscle metabolism in the non-exercising limb during leg cycling exercise. Ten healthy male volunteers performed a graded leg cycling exercise at 0, 40, 80, 120 and 160 watts (W) for 5 min each. Tissue oxygenation index (TOI) of the non-exercising left forearm muscle was measured using a near-infrared spatially resolved spectroscopy (NIR(SRS)), and non-exercising forearm blood flow ((NONEX)FBF) in the brachial artery was also evaluated by a Doppler ultrasound system. We also determined O(2) consumption of the non-exercising forearm muscle (NONEXV(O)(2mus)) by the rate of decrease in O(2)Hb during arterial occlusion at each work rate. TOI was significantly decreased at 160 W (p exercising muscle may be reduced, even though (NONEX)FBF increases at high work rates during leg cycling exercise.

  13. Concurrent Longitudinal EPR Monitoring of Tissue Oxygenation, Acidosis, and Reducing Capacity in Mouse Xenograft Tumor Models.

    Science.gov (United States)

    Bobko, Andrey A; Evans, Jason; Denko, Nicholas C; Khramtsov, Valery V

    2017-06-01

    Tissue oxygenation, extracellular acidity, and tissue reducing capacity are among crucial parameters of tumor microenvironment (TME) of significant importance for tumor pathophysiology. In this paper, we demonstrate the complementary application of particulate lithium octa-n-butoxy-naphthalocyanine and soluble nitroxide paramagnetic probes for monitoring of these TME parameters using electron paramagnetic resonance (EPR) technique. Two different types of therapeutic interventions were studied: hypothermia and systemic administration of metabolically active drug. In summary, the results demonstrate the utility of EPR technique for non-invasive concurrent longitudinal monitoring of physiologically relevant chemical parameters of TME in mouse xenograft tumor models, including that under therapeutic intervention.

  14. Bio-filtration capacity, oxygen consumption and ammonium excretion of Dosinia ponderosa and Chione gnidia (Veneroida: Veneridae) from areas impacted and non-impacted by shrimp aquaculture effluents.

    Science.gov (United States)

    Ramos-Corella, Karime; Martínez-Córdova, Luis Rafael; Enríquez-Ocaña, Luis Fernando; Miranda-Baeza, Anselmo; López-Elías, José Antonio

    2014-09-01

    Mollusks are some of the most important, abundant and diverse organisms inhabiting not only aquatic ecosystems, but also terrestrial environments. Recently, they have been used for bioremediation of aquaculture effluents; nevertheless, for that purpose it is necessary to analyze the capacity of a particular species. In this context, an experimental investigation was developed to evaluate the performance of two bivalves C. gnidia and D. ponderosa, collected from areas with or without shrimp aquaculture effluents. For this, the filtration capacity (as clearance rate) as well as the oxygen consumption and ammonia excretion rates were measured following standard methods. The clearance rate was significantly higher for D. ponderosa from impacted areas, when com- pared to C. gnidia, from both areas. Contrarily, the oxygen consumption was greater for C. gnidia from impacted areas compared to D. ponderosa from both areas. The same tendency was observed for the ammonia excretion with the highest rates observed for C. gnidia from impacted areas, whereas no differences were observed among D. ponderosa from both areas. The results suggest that both species developed different strategies to thrive and survive under the impacted conditions; D. ponderosa improved its filtration efficiency, while C. gnidia modified its oxygen consumption and ammonia excretion. We concluded that both species, and particularly D. ponderosa, can be used for bioremediation purposes.

  15. Bio-filtration capacity, oxygen consumption and ammonium excretion of Dosinia ponderosa and Chione gnidia (Veneroida: Veneridae from areas impacted and non-impacted by shrimp aquaculture effluents

    Directory of Open Access Journals (Sweden)

    Karime Ramos-Corella

    2014-09-01

    Full Text Available Mollusks are some of the most important, abundant and diverse organisms inhabiting not only aquatic ecosystems, but also terrestrial environments. Recently, they have been used for bioremediation of aquaculture effluents; nevertheless, for that purpose it is necessary to analyze the capacity of a particular species. In this context, an experimental investigation was developed to evaluate the performance of two bivalves C. gnidia and D. ponderosa, collected from areas with or without shrimp aquaculture effluents. For this, the filtration capacity (as clearance rate as well as the oxygen consumption and ammonia excretion rates were measured following standard methods. The clearance rate was significantly higher for D. ponderosa from impacted areas, when com- pared to C. gnidia, from both areas. Contrarily, the oxygen consumption was greater for C. gnidia from impacted areas compared to D. ponderosa from both areas. The same tendency was observed for the ammonia excretion with the highest rates observed for C. gnidia from impacted areas, whereas no differences were observed among D. ponderosa from both areas. The results suggest that both species developed different strategies to thrive and survive under the impacted conditions; D. ponderosa improved its filtration efficiency, while C. gnidia modified its oxygen consumption and ammonia excretion. We concluded that both species, and particularly D. ponderosa, can be used for bioremediation purposes.

  16. The Effect of Active versus Passive Recovery Periods during High Intensity Intermittent Exercise on Local Tissue Oxygenation in 18 - 30 Year Old Sedentary Men.

    Directory of Open Access Journals (Sweden)

    Yuri Kriel

    Full Text Available High intensity interval training (HIIT has been proposed as a time-efficient format of exercise to reduce the chronic disease burden associated with sedentary behaviour. Changes in oxygen utilisation at the local tissue level during an acute session of HIIT could be the primary stimulus for the health benefits associated with this format of exercise. The recovery periods of HIIT effect the physiological responses that occur during the session. It was hypothesised that in sedentary individuals, local and systemic oxygen utilisation would be higher during HIIT interspersed with active recovery periods, when compared to passive recovery periods.Twelve sedentary males (mean ± SD; age 23 ± 3 yr completed three conditions on a cycle ergometer: 1 HIIT with passive recovery periods between four bouts (HIITPASS 2 HIIT with active recovery periods between four bouts (HIITACT 3 HIITACT with four HIIT bouts replaced with passive periods (REC. Deoxygenated haemoglobin (HHb in the vastus lateralis (VL and gastrocnemius (GN muscles and the pre-frontal cortex (FH, oxygen consumption (VO2, power output and heart rate (HR were measured continuously during the three conditions.There was a significant increase in HHb at VL during bouts 2 (p = 0.017, 3 (p = 0.035 and 4 (p = 0.035 in HIITACT, compared to HIITPASS. Mean power output was significantly lower in HIITACT, compared to HIITPASS (p < 0.001. There was a significant main effect for site in both HIITPASS (p = 0.029 and HIITACT (p = 0.005. There were no significant differences in VO2 and HR between HIITPASS and HIITACT.The increase in HHb at VL and the lower mean power output during HIITACT could indicate that a higher level of deoxygenation contributes to decreased mechanical power in sedentary participants. The significant differences in HHb between sites indicates the specificity of oxygen utilisation.

  17. Cerebral oxygenation in contusioned vs. nonlesioned brain tissue: monitoring of PtiO2 with Licox and Paratrend.

    Science.gov (United States)

    Sarrafzadeh, A S; Kiening, K L; Bardt, T F; Schneider, G H; Unterberg, A W; Lanksch, W R

    1998-01-01

    Brain tissue PO2 in severely head injured patients was monitored in parallel with two different PO2-microsensors (Licox and Paratrend). Three different locations of sensor placement were chosen: (1) both catheters into non lesioned tissue (n = 3), (2) both catheters into contusioned tissue (n = 2), and (3) one catheter (Licox) into pericontusional versus one catheter (Paratrend) into non lesioned brain tissue (n = 2). Mean duration of PtiO2-monitoring with both microsensors in parallel was 68.1 hours. Brain tissue PO2 varied when measured in lesioned and nonlesioned tissue. In non lesioned tissue both catheters closely correlated (delta Licox/Paratrend: mean PtiO2 delta lesioned/non lesioned: mean PtiO2: 10.3 mm Hg). In contusioned brain tissue PtiO2 was always below the "hypoxic threshold" of 10 mm Hg, independent of the type of microsensor used. During a critical reduction in cerebral perfusion pressure (PO2, only increased PtiO2 when measured in pericontusional and nonlesioned brain. To recognize critical episodes of hypoxia or ischemia, PtiO2-monitoring of cerebral oxygenation is recommended in nonlesioned brain tissue.

  18. Thicker three-dimensional tissue from a “symbiotic recycling system” combining mammalian cells and algae

    Science.gov (United States)

    Haraguchi, Yuji; Kagawa, Yuki; Sakaguchi, Katsuhisa; Matsuura, Katsuhisa; Shimizu, Tatsuya; Okano, Teruo

    2017-01-01

    In this paper, we report an in vitro co-culture system that combines mammalian cells and algae, Chlorococcum littorale, to create a three-dimensional (3-D) tissue. While the C2C12 mouse myoblasts and rat cardiac cells consumed oxygen actively, intense oxygen production was accounted for by the algae even in the co-culture system. Although cell metabolism within thicker cardiac cell-layered tissues showed anaerobic respiration, the introduction of innovative co-cultivation partially changed the metabolism to aerobic respiration. Moreover, the amount of glucose consumption and lactate production in the cardiac tissues and the amount of ammonia in the culture media decreased significantly when co-cultivated with algae. In the cardiac tissues devoid of algae, delamination was observed histologically, and the release of creatine kinase (CK) from the tissues showed severe cardiac cell damage. On the other hand, the layered cell tissues with algae were observed to be in a good histological condition, with less than one-fifth decline in CK release. The co-cultivation with algae improved the culture condition of the thicker tissues, resulting in the formation of 160 μm-thick cardiac tissues. Thus, the present study proposes the possibility of creating an in vitro “symbiotic recycling system” composed of mammalian cells and algae. PMID:28139713

  19. Effects of normobaric versus hyperbaric oxygen on cell injury induced by oxygen and glucose deprivation in acute brain slices

    Directory of Open Access Journals (Sweden)

    Laurent Chazalviel

    2016-01-01

    Full Text Available Normobaric oxygen (NBO and hyperbaric oxygen (HBO are emerging as a possible co-treatment of acute ischemic stroke. Both have been shown to reduce infarct volume, to improve neurologic outcome, to promote endogenous tissue plasminogen activator-induced thrombolysis and cerebral blood flow, and to improve tissue oxygenation through oxygen diffusion in the ischemic areas, thereby questioning the interest of HBO compared to NBO. In the present study, in order to investigate and compare the oxygen diffusion effects of NBO and HBO on acute ischemic stroke independently of their effects at the vascular level, we used acute brain slices exposed to oxygen and glucose deprivation, an ex vivo model of brain ischemia that allows investigating the acute effects of NBO (partial pressure of oxygen (pO 2 = 1 atmospheres absolute (ATA = 0.1 MPa and HBO (pO 2 = 2.5 ATA = 0.25 MPa through tissue oxygenation on ischemia-induced cell injury as measured by the release of lactate dehydrogenase. We found that HBO, but not NBO, reduced oxygen and glucose deprivation-induced cell injury, indicating that passive tissue oxygenation (i.e. without vascular support of the brain parenchyma requires oxygen partial pressure higher than 1 ATA.

  20. A method for measuring brain partial pressure of oxygen in unanesthetized unrestrained subjects: the effect of acute and chronic hypoxia on brain tissue PO(2).

    Science.gov (United States)

    Ortiz-Prado, E; Natah, Siraj; Srinivasan, Sathyanarayanan; Dunn, Jeff F

    2010-11-30

    The level of tissue oxygenation provides information related to the balance between oxygen delivery, oxygen utilization, tissue reactivity and morphology during physiological conditions. Tissue partial pressure of oxygen (PtO(2)) is influenced by the use of anesthesia or restraint. These factors may impact the absolute level of PtO(2). In this study we present a novel fiber optic method to measure brain PtO(2). This method can be used in unanesthetized, unrestrained animals, provides absolute values for PO(2), has a stable calibration, does not consume oxygen and is MRI compatible. Brain PtO(2) was studied during acute hypoxia, as well as before and after 28 days of high altitude acclimatization. A sensor was chronically implanted in the frontal cortex of eight Wistar rats. It is comprised of a fiber optic probe with a tip containing material that fluoresces with an oxygen dependent lifetime. Brain PtO(2) declines by 80% and 76% pre- and post-acclimatization, respectively, when the fraction of inspired oxygen declines from 0.21 to 0.08. In addition, a linear relationship between brain PtO(2) and inspired O(2) levels was demonstrated r(2)=0.98 and r(2)=0.99 (pre- and post-acclimatization). Hypoxia acclimatization resulted in an increase in the overall brain PtO(2) by approximately 35%. This paper demonstrates the use of a novel chronically implanted fiber optic based sensor for measuring absolute PtO(2). It shows a very strong linear relationship in awake animals between inspired O(2) and tissue O(2), and shows that there is a proportional increase in PtO(2) over a range of inspired values after exposure to chronic hypoxia. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Enhanced oxygen consumption in Herbaspirillum seropedicae fnr mutants leads to increased NifA mediated transcriptional activation.

    Science.gov (United States)

    Batista, Marcelo Bueno; Wassem, Roseli; Pedrosa, Fábio de Oliveira; de Souza, Emanuel Maltempi; Dixon, Ray; Monteiro, Rose Adele

    2015-05-07

    Orthologous proteins of the Crp/Fnr family have been previously implicated in controlling expression and/or activity of the NifA transcriptional activator in some diazotrophs. This study aimed to address the role of three Fnr-like proteins from H. seropedicae SmR1 in controlling NifA activity and consequent NifA-mediated transcription activation. The activity of NifA-dependent transcriptional fusions (nifA::lacZ and nifB::lacZ) was analysed in a series of H. seropedicae fnr deletion mutant backgrounds. We found that combined deletions in both the fnr1 and fnr3 genes lead to higher expression of both the nifA and nifB genes and also an increased level of nifH transcripts. Expression profiles of nifB under different oxygen concentrations, together with oxygen consumption measurements suggest that the triple fnr mutant has higher respiratory activity when compared to the wild type, which we believe to be responsible for greater stability of the oxygen sensitive NifA protein. This conclusion was further substantiated by measuring the levels of NifA protein and its activity in fnr deletion strains in comparison with the wild-type. Fnr proteins are indirectly involved in controlling the activity of NifA in H. seropedicae, probably as a consequence of their influence on respiratory activity in relation to oxygen availability. Additionally we can suggest that there is some redundancy in the physiological function of the three Fnr paralogs in this organism, since altered respiration and effects on NifA activity are only observed in deletion strains lacking both fnr1 and fnr3.

  2. Spontaneous calcium waves in Bergman glia increase with age and hypoxia and may reduce tissue oxygen.

    Science.gov (United States)

    Mathiesen, Claus; Brazhe, Alexey; Thomsen, Kirsten; Lauritzen, Martin

    2013-02-01

    Glial calcium (Ca(2+)) waves constitute a means to spread signals between glial cells and to neighboring neurons and blood vessels. These waves occur spontaneously in Bergmann glia (BG) of the mouse cerebellar cortex in vivo. Here, we tested three hypotheses: (1) aging and reduced blood oxygen saturation alters wave activity; (2) glial Ca(2+) waves change cerebral oxygen metabolism; and (3) neuronal and glial wave activity is correlated. We used two-photon microscopy in the cerebellar cortexes of adult (8- to 15-week-old) and aging (48- to 80-week-old) ketamine-anesthetized mice after bolus loading with OGB-1/AM and SR101. We report that the occurrence of spontaneous waves is 20 times more frequent in the cerebellar cortex of aging as compared with adult mice, which correlated with a reduction in resting brain oxygen tension. In adult mice, spontaneous glial wave activity increased on reducing resting brain oxygen tension, and ATP-evoked glial waves reduced the tissue O(2) tension. Finally, although spontaneous Purkinje cell (PC) activity was not associated with increased glia wave activity, spontaneous glial waves did affect intracellular Ca(2+) activity in PCs. The increased wave activity during aging, as well as low resting brain oxygen tension, suggests a relationship between glial waves, brain energy homeostasis, and pathology.

  3. The oxygen sensitivity of a multipoint antimony electrode for tissue pH measurements. A study of the sensitivity for in vivo PO2 variations below 6 kPa.

    Science.gov (United States)

    Sjöberg, F; Edwall, G; Lund, N

    1987-02-01

    Monocrystalline micro antimony electrodes in a multipoint arrangement as described by Lund et al. were placed on the skeletal muscle surface of the rabbit. Tissue oxygen levels were measured simultaneously with the MDO (Mehrdraht Dortmund Oberfläche) oxygen electrode. The sensitivity for variations in tissue PO2 (PO2(t)) was evaluated for the antimony metal-metal oxide sensor. The sensitivity (delta E/delta log10 PO2)+/- SE was found to be 21.8 +/- 1.2 mV in the interval between 0.1 kPa and 1 kPa and 53 +/- 5 mV in the interval between 1 kPa and 6 kPa. These results are not consistent with the oxygen sensitivity of monocrystalline antimony described in vitro, but are in agreement with the findings of Nilsson & Edwall. A plausible explanation for the S-shaped oxygen sensitivity curve of antimony at oxygen levels below 10 kPa could be an interaction, at the electrode surface, between the dissolved oxygen and the oxygen bound to haemoglobin. If this is the case, the use of an antimony electrode would make possible the determination of the dissociation of oxyhaemoglobin in tissues.

  4. Effect of thoracic epidural anesthesia on oxygen delivery and utilization in cardiac surgical patients scheduled to undergo off-pump coronary artery bypass surgery: a prospective study.

    Science.gov (United States)

    Suryaprakash, Sharadaprasad; Chakravarthy, Murali; Gautam, Mamatha; Gandhi, Anurag; Jawali, Vivek; Patil, Thimmannagowda; Jayaprakash, Krishnamoorthy; Pandey, Saurabh; Muniraju, Geetha

    2011-01-01

    To evaluate the effect of thoracic epidural anesthesia (TEA) on tissue oxygen delivery and utilization in patients undergoing cardiac surgery. This prospective observational study was conducted in a tertiary referral heart hospital. A total of 25 patients undergoing elective off-pump coronary artery bypass surgery were enrolled in this study. All patients received thoracic epidural catheter in the most prominent inter-vertebral space between C7 and T3 on the day before operation. On the day of surgery, an arterial catheter and Swan Ganz catheter (capable of measuring cardiac index) was inserted. After administering full dose of local anesthetic in the epidural space, serial hemodynamic and oxygen transport parameters were measured for 30 minute prior to administration of general anesthesia, with which the study was culminated. A significant decrease in oxygen delivery index with insignificant changes in oxygen extraction and consumption indices was observed. We conclude that TEA does not affect tissue oxygenation despite a decrease in arterial pressures and cardiac output.

  5. Effect of thoracic epidural anesthesia on oxygen delivery and utilization in cardiac surgical patients scheduled to undergo off-pump coronary artery bypass surgery: A prospective study

    Directory of Open Access Journals (Sweden)

    Suryaprakash Sharadaprasad

    2011-01-01

    Full Text Available To evaluate the effect of thoracic epidural anesthesia (TEA on tissue oxygen delivery and utilization in patients undergoing cardiac surgery. This prospective observational study was conducted in a tertiary referral heart hospital. A total of 25 patients undergoing elective off-pump coronary artery bypass surgery were enrolled in this study. All patients received thoracic epidural catheter in the most prominent inter-vertebral space between C7 and T3 on the day before operation. On the day of surgery, an arterial catheter and Swan Ganz catheter (capable of measuring cardiac index was inserted. After administering full dose of local anesthetic in the epidural space, serial hemodynamic and oxygen transport parameters were measured for 30 minute prior to administration of general anesthesia, with which the study was culminated. A significant decrease in oxygen delivery index with insignificant changes in oxygen extraction and consumption indices was observed. We conclude that TEA does not affect tissue oxygenation despite a decrease in arterial pressures and cardiac output.

  6. Effects of Cortical Spreading Depression on Synaptic Activity, Blood Flow and Oxygen Consumption in Rat Cerebral Cortex

    DEFF Research Database (Denmark)

    Hansen, Henning Piilgaard

    2010-01-01

    As the title of this thesis indicates I have during my PhD studied the effects of cortical spreading depression (CSD) on synaptic activity, blood flow and oxygen consumption in rat cerebral cortex. This was performed in vivo using an open cranial window approach in anesthetized rats. I applied...... parameters of the whisker/infraorbital nerve etwork (IO) targeting the same cortical area. We tested the hypothesis that the relation between increases in CBF and CMRO2 evoked by stimulation and synaptic activity differed for the two activated networks and that activation of two distinct networks activate...

  7. Kinetics of oxygen consumption after a single flash of light in photoreceptors of the drone (Apis mellifera)

    OpenAIRE

    1982-01-01

    The time course of the rate of oxygen consumption (QO2) after a single flash of light has been measured in 300-micrometers slices of drone retina at 22 degrees C. To measure delta QO2(t), the change in QO2 from its level in darkness, the transients of the partial pressure of O2 (PO2) were recorded with O2 microelectrodes simultaneously in two sites in the slice and delta QO2 was calculated by a computer using Fourier transforms. After a 40-ms flash of intense light, delta QO2, reached a peak ...

  8. Osmotic phenomena in application for hyperbaric oxygen treatment.

    Science.gov (United States)

    Babchin, A; Levich, E; Melamed M D, Y; Sivashinsky, G

    2011-03-01

    Hyperbaric oxygen (HBO) treatment defines the medical procedure when the patient inhales pure oxygen at elevated pressure conditions. Many diseases and all injuries are associated with a lack of oxygen in tissues, known as hypoxia. HBO provides an effective method for fast oxygen delivery in medical practice. The exact mechanism of the oxygen transport under HBO conditions is not fully identified. The objective of this article is to extend the colloid and surface science basis for the oxygen transport in HBO conditions beyond the molecular diffusion transport mechanism. At a pressure in the hyperbaric chamber of two atmospheres, the partial pressure of oxygen in the blood plasma increases 10 times. The sharp increase of oxygen concentration in the blood plasma creates a considerable concentration gradient between the oxygen dissolved in the plasma and in the tissue. The concentration gradient of oxygen as a non-electrolyte solute causes an osmotic flow of blood plasma with dissolved oxygen. In other words, the molecular diffusion transport of oxygen is supplemented by the convective diffusion raised due to the osmotic flow, accelerating the oxygen delivery from blood to tissue. A non steady state equation for non-electrolyte osmosis is solved asymptotically. The solution clearly demonstrates two modes of osmotic flow: normal osmosis, directed from lower to higher solute concentrations, and anomalous osmosis, directed from higher to lower solute concentrations. The fast delivery of oxygen from blood to tissue is explained on the basis of the strong molecular interaction between the oxygen and the tissue, causing an influx of oxygen into the tissue by convective diffusion in the anomalous osmosis process. The transport of the second gas, nitrogen, dissolved in the blood plasma, is also taken into the consideration. As the patient does not inhale nitrogen during HBO treatment, but exhales it along with oxygen and carbon dioxide, the concentration of nitrogen in blood

  9. Modeling and experimental methods to predict oxygen distribution in bone defects following cell transplantation.

    Science.gov (United States)

    Heylman, Christopher M; Santoso, Sharon; Krebs, Melissa D; Saidel, Gerald M; Alsberg, Eben; Muschler, George F

    2014-04-01

    We have developed a mathematical model that allows simulation of oxygen distribution in a bone defect as a tool to explore the likely effects of local changes in cell concentration, defect size or geometry, local oxygen delivery with oxygen-generating biomaterials (OGBs), and changes in the rate of oxygen consumption by cells within a defect. Experimental data for the oxygen release rate from an OGB and the oxygen consumption rate of a transplanted cell population are incorporated into the model. With these data, model simulations allow prediction of spatiotemporal oxygen concentration within a given defect and the sensitivity of oxygen tension to changes in critical variables. This information may help to minimize the number of experiments in animal models that determine the optimal combinations of cells, scaffolds, and OGBs in the design of current and future bone regeneration strategies. Bone marrow-derived nucleated cell data suggest that oxygen consumption is dependent on oxygen concentration. OGB oxygen release is shown to be a time-dependent function that must be measured for accurate simulation. Simulations quantify the dependency of oxygen gradients in an avascular defect on cell concentration, cell oxygen consumption rate, OGB oxygen generation rate, and OGB geometry.

  10. Influence of the environmental factors on the intensity of the oxygen, ammonium, and phosphate metabolism in the agar-containing seaweed Ahnfeltia tobuchiensis (Ahnfeltiales, Rhodophyta)

    Science.gov (United States)

    Cherbadgy, I. I.; Sabitova, L. I.

    2011-02-01

    A complex study of the influence of various environmental factors on the rate of the oxygen (MO 2), ammonium (MNH 4), and phosphate (MPO 4) metabolism in Ahnfeltia tobuchiensis has been carried out in situ in the Izmena Bay of Kunashir Island. The following environmental factors have been included into the investigation: the photosynthetically active radiation (PAR); the ammonium (NH4); the phosphate (PO4); and the tissue content of carbon (C), nitrogen (N), phosphorus (P), and chlorophyll a (Chl). The population of agar-containing seaweed A. tobuchiensis forms a layer with a thickness up to 0.5 m, which occupies about 23.3 km2; the population's biomass is equal to 125000 tons. The quantitative assessment of the organic matter production and nutrient consumption during the oxygen metabolism (MO 2) has been carried out for the whole population. It has been shown that the daily rate depends on the PAR intensity, the seawater concentrations of PO4 and NH4, and the tissue content of N and P ( r 2 = 0.78, p < 0.001). The daily NH4 consumption averages 0.21 μmol/(gDW h) and depends on the NH4 and O2 concentrations in the seawater and on the C and Chl a content in the algal tissues ( r 2 = 0.64, p < 0.001). The daily PO4 consumption averages 0.01 μmol/(gDW h) and depends on the NH4 concentration in the seawater and on the P content in the algal tissues ( r 2 = 0.40, p < 0.001).

  11. Blood flow and tissue oxygen pressures of liver and pancreas in rats: effects of volatile anesthetics and of hemorrhage.

    Science.gov (United States)

    Vollmar, B; Conzen, P F; Kerner, T; Habazettl, H; Vierl, M; Waldner, H; Peter, K

    1992-09-01

    The object of this investigation was to compare the effects of volatile anesthetics and of hemorrhage at comparable arterial blood pressures on splanchnic blood flow (radioactive microspheres) and tissue oxygenation of the liver and pancreas (surface PO2 [PSO2] electrodes). In contrast to earlier studies, we did not use identical minimum alveolar anesthetic concentration multiples as a reference to compare volatile anesthetics; rather, we used the splanchnic perfusion pressure. Under general anesthesia (intravenous chloralose) and controlled ventilation, 12 Sprague-Dawley rats underwent laparotomy to allow access to abdominal organs. Mean arterial pressure was decreased from 84 +/- 3 mm Hg (mean +/- SEM) at control to 50 mm Hg by 1.0 +/- 0.1 vol% halothane, 2.2 +/- 0.2 vol% enflurane, and 2.3 +/- 0.1 vol% isoflurane in a randomized sequence. For hemorrhagic hypotension, blood was withdrawn gradually until a mean arterial pressure of 50 mm Hg was attained. Volatile anesthetics and hemorrhage reduced cardiac output, and hepatic arterial, portal venous, and total hepatic blood flows by comparable degrees. Mean hepatic PSO2 decreased significantly from 30.7 +/- 2.6 mm Hg at control to 17.4 +/- 2 and 17.5 +/- 2 mm Hg during enflurane and isoflurane (each P less than 0.05) anesthesia, respectively. The decrease to 11.5 +/- 2.5 mm Hg was more pronounced during halothane anesthesia. Hemorrhagic hypotension was associated with the lowest hepatic PSO2 (3.4 +/- 1.3 mm Hg) and the highest number of hypoxic (0-5 mm Hg 86%) and anoxic PSO2 values (0 mm Hg 46%). Pancreatic blood flow and oxygenation remained unchanged from control during halothane and enflurane administration, whereas isoflurane increased both variables. Hemorrhagic hypotension slightly reduced pancreatic flow (-8%) but significantly decreased PSO2 from 58 +/- 5 mm Hg at control to 36 +/- 3 mm Hg, with 7% of all measured values in the hypoxic range. Thus, volatile anesthetics preserved pancreatic but not hepatic

  12. Impact of Increasing Levels of Oxygen Consumption on the Evolution of Color, Phenolic, and Volatile Compounds of Nebbiolo Wines.

    Science.gov (United States)

    Petrozziello, Maurizio; Torchio, Fabrizio; Piano, Federico; Giacosa, Simone; Ugliano, Maurizio; Bosso, Antonella; Rolle, Luca

    2018-01-01

    Since the end of the last century, many works have been carried out to verify the effect of controlled oxygen intake on the chemical and organoleptic characteristics of red wines. In spite of the large number of studies on this subject, oxygen remains a cutting-edge research topic in oenology. Oxygen consumption leads to complex and not univocal changes in wine composition, sometimes positive such as color stabilization, softening of mouthfeel, increase of aroma complexity. However, the variability of these effects, which depend both on the oxygenation conditions and the composition of the wine, require more efforts in this research field to effectively manage wine oxygen exposure. The present study is focused on the evolution of the chemical composition of four different Nebbiolo wines, each of them added with 4 different doses of oxygen (7, 14, 21, and 28 mg/L total intake) during the first month of storage. In this perspective, the evolution over time of wine color and polyphenols was studied. Acetaldehyde, glyceraldehyde and glyoxylic acid were quantified by HPLC. These compounds can play a role in wine aging creating condensed colored and stable products involving anthocyanins with or without tannins. Moreover, some volatile aldehydes correlated with oxidized olfactory notes, including methional and (E)-2-alkenals, have been quantified by GC-MS. Overall, during storage a decrease of color intensity, total and free anthocyanins and an increase in polymeric pigments (in particular the contribution to the red color of pigments not-bleachable by SO 2 or dTAT%) and some minor aldehydes was observed. Nevertheless, the differences in color parameters between the samples with different doses of oxygen were modest. These evidences were in contrast with an evident and detectable increase of free acetaldehyde content at increasing doses of oxygen measured after 60 days of storage. The effect of oxygen on color and production of SO 2 non-bleachable pigments during aging

  13. Impact of Increasing Levels of Oxygen Consumption on the Evolution of Color, Phenolic, and Volatile Compounds of Nebbiolo Wines

    Science.gov (United States)

    Petrozziello, Maurizio; Torchio, Fabrizio; Piano, Federico; Giacosa, Simone; Ugliano, Maurizio; Bosso, Antonella; Rolle, Luca

    2018-01-01

    Since the end of the last century, many works have been carried out to verify the effect of controlled oxygen intake on the chemical and organoleptic characteristics of red wines. In spite of the large number of studies on this subject, oxygen remains a cutting-edge research topic in oenology. Oxygen consumption leads to complex and not univocal changes in wine composition, sometimes positive such as color stabilization, softening of mouthfeel, increase of aroma complexity. However, the variability of these effects, which depend both on the oxygenation conditions and the composition of the wine, require more efforts in this research field to effectively manage wine oxygen exposure. The present study is focused on the evolution of the chemical composition of four different Nebbiolo wines, each of them added with 4 different doses of oxygen (7, 14, 21, and 28 mg/L total intake) during the first month of storage. In this perspective, the evolution over time of wine color and polyphenols was studied. Acetaldehyde, glyceraldehyde and glyoxylic acid were quantified by HPLC. These compounds can play a role in wine aging creating condensed colored and stable products involving anthocyanins with or without tannins. Moreover, some volatile aldehydes correlated with oxidized olfactory notes, including methional and (E)-2-alkenals, have been quantified by GC-MS. Overall, during storage a decrease of color intensity, total and free anthocyanins and an increase in polymeric pigments (in particular the contribution to the red color of pigments not-bleachable by SO2 or dTAT%) and some minor aldehydes was observed. Nevertheless, the differences in color parameters between the samples with different doses of oxygen were modest. These evidences were in contrast with an evident and detectable increase of free acetaldehyde content at increasing doses of oxygen measured after 60 days of storage. The effect of oxygen on color and production of SO2 non-bleachable pigments during aging

  14. The impact of including spatially longitudinal heterogeneities of vessel oxygen content and vascular fraction in 3D tumor oxygenation models on predicted radiation sensitivity.

    Science.gov (United States)

    Lagerlöf, Jakob H; Kindblom, Jon; Bernhardt, Peter

    2014-04-01

    Oxygen distribution models have been used to analyze the influences of oxygen tensions on tissue response after radiotherapy. These distributions are often generated assuming constant oxygen tension in the blood vessels. However, as red blood cells progress through the vessels, oxygen is continuously released into the plasma and the surrounding tissue, resulting in longitudinally varying oxygen levels in the blood vessels. In the present study, the authors investigated whether a tumor oxygenation model that incorporated longitudinally varying oxygen levels would provide different predictions of necrotic fractions and radiosensitivity compared to commonly used models with a constant oxygen pressure. Our models simulated oxygen diffusion based on a Green's function approach and oxygen consumption according to the Michaelis-Menten equation. The authors constructed tumor models with different vascular fractions (VFs), from which they generated depth oxygenation curves and a look-up table of oxygen pressure gradients. The authors evaluated models of spherical tumors of various sizes, from 1 to 10(4) mg. The authors compared the results from a model with constant vessel oxygen (CVO) pressure to those from models with longitudinal variations in oxygen saturation and either a constant VF (CVF) or variable VF (VVF) within the tumor tissue. The authors monitored the necrotic fractions, defined as tumor regions with an oxygen pressure below 1 mmHg. Tumor radiation sensitivity was expressed as D99, the homogeneous radiation dose required for a tumor control probability of 0.99. In the CVO saturation model, no necrosis was observed, and decreasing the VF could only decrease the D99 by up to 10%. Furthermore, the D99 vs VF dependence was similar for different tumor masses. Compared to the CVO model, the extended CVF and VVF models provided clearly different results, including pronounced effects of VF and tumor size on the necrotic fraction and D99, necrotic fractions ranging

  15. Hypoxic training increases maximal oxygen consumption in Thoroughbred horses well-trained in normoxia.

    Science.gov (United States)

    Ohmura, Hajime; Mukai, Kazutaka; Takahashi, Yuji; Takahashi, Toshiyuki; Jones, James H

    2017-01-01

    Hypoxic training is effective for improving athletic performance in humans. It increases maximal oxygen consumption (V̇O 2 max) more than normoxic training in untrained horses. However, the effects of hypoxic training on well-trained horses are unclear. We measured the effects of hypoxic training on V̇O 2 max of 5 well-trained horses in which V̇O 2 max had not increased over 3 consecutive weeks of supramaximal treadmill training in normoxia which was performed twice a week. The horses trained with hypoxia (15% inspired O 2 ) twice a week. Cardiorespiratory valuables were analyzed with analysis of variance between before and after 3 weeks of hypoxic training. Mass-specific V̇O 2 max increased after 3 weeks of hypoxic training (178 ± 10 vs. 194 ± 12.3 ml O 2 (STPD)/(kg × min), Phorses, at least for the durations of time evaluated in this study. Training while breathing hypoxic gas may have the potential to enhance normoxic performance of Thoroughbred horses.

  16. Evaluation of tissue oxygen measurements for flap monitoring in an animal model

    DEFF Research Database (Denmark)

    Bonde, Christian; Elberg, Jens; Holstein-Rathlou, N.-H.

    2008-01-01

    Tissue oxygen tension (p(ti)O(2)) measurements are common in neurosurgery but uncommon in plastic surgery. We examined this technique as a monitoring method with probe placement in the subcutaneous tissue and addressed the importance of probe placement. Myocutaneous flaps were raised in an animal...... model and p(ti)O(2) measurements performed at different levels in the subcutaneous fat. Flap artery and vein were occluded until a 50% p(ti)O(2) reduction had occurred (T(1/2)). We found no significant effect of depth (P>0.10) on the level of p(ti)O(2). T(1/2)(arterial) was 7.2 minutes and T(1/2)(venous......) was 18 minutes. We found no significant relation between initial levels of p(ti)O(2) and T(1/2). Location of the probe and absolute p(ti)O(2) value is of little relevance for flap monitoring. It is the relative change in p(ti)O(2) that is important. The p(ti)O(2) technique is well suited for monitoring...

  17. A role for haemolymph oxygen capacity in heat tolerance of eurythermal crabs.

    Directory of Open Access Journals (Sweden)

    Folco eGiomi

    2013-05-01

    Full Text Available Heat tolerance in aquatic ectotherms is constrained by a mismatch, occurring at high temperatures, between oxygen delivery and demand which compromises the maintenance of aerobic scope. The present study analyses how the wide thermal tolerance range of an eurythermal model species, the green crab Carcinus maenas is supported and limited by its ability to sustain efficient oxygen transport to tissues. Similar to other eurytherms, C. maenas sustains naturally occurring acute warming events through the integrated response of circulatory and respiratory systems. The response of C. maenas to warming is characterized by two phases. During initial warming, oxygen consumption and heart rate increase while stroke volume and haemolymph oxygen partial pressures decrease. During further warming, dissolved oxygen levels in the venous compartment decrease below the threshold of full haemocyanin oxygen saturation. The progressive release of haemocyanin bound oxygen with further warming follows an exponential pattern, thereby saving energy in oxygen transport and causing an associated leveling off of metabolic rate. According to the concept of oxygen and capacity limited thermal tolerance, this indicates that the thermal tolerance window is widened by the increasing contribution of haemocyanin oxygen transport and associated energy savings in cardiocirculation. Haemocyanin bound oxygen sustains cardiac performance to cover the temperature range experienced by C. maenas in the field. To our knowledge this is the first study providing evidence of a relationship between thermal tolerance and blood (haemolymph oxygen transport in eurythermal invertebrates.

  18. A role for haemolymph oxygen capacity in heat tolerance of eurythermal crabs.

    Science.gov (United States)

    Giomi, Folco; Pörtner, Hans-Otto

    2013-01-01

    Heat tolerance in aquatic ectotherms is constrained by a mismatch, occurring at high temperatures, between oxygen delivery and demand which compromises the maintenance of aerobic scope. The present study analyses how the wide thermal tolerance range of an eurythermal model species, the green crab Carcinus maenas is supported and limited by its ability to sustain efficient oxygen transport to tissues. Similar to other eurytherms, C. maenas sustains naturally occurring acute warming events through the integrated response of circulatory and respiratory systems. The response of C. maenas to warming can be characterized by two phases. During initial warming, oxygen consumption and heart rate increase, while stroke volume and haemolymph oxygen partial pressure decrease. During further warming, dissolved oxygen levels in the venous compartment decrease below the threshold of full haemocyanin oxygen saturation. The progressive release of haemocyanin bound oxygen with further warming follows an exponential pattern, thereby saving energy in oxygen transport and causing an associated leveling off of metabolic rate. According to the concept of oxygen and capacity limited thermal tolerance (OCLTT), this indicates that the thermal tolerance window is widened by the increasing contribution of haemocyanin oxygen transport and associated energy savings in cardiocirculation. Haemocyanin bound oxygen sustains cardiac performance to cover the temperature range experienced by C. maenas in the field. To our knowledge this is the first study providing evidence of a relationship between thermal tolerance and blood (haemolymph) oxygen transport in a eurythermal invertebrate.

  19. Intracellular expression of reactive oxygen species-generating NADPH oxidase NOX4 in normal and cancer thyroid tissues

    NARCIS (Netherlands)

    Weyemi, Urbain; Caillou, Bernard; Talbot, Monique; Ameziane-El-Hassani, Rabii; Lacroix, Ludovic; Lagent-Chevallier, Odile; Al Ghuzlan, Abir; Roos, Dirk; Bidart, Jean-Michel; Virion, Alain; Schlumberger, Martin; Dupuy, Corinne

    2010-01-01

    NADPH oxidase 4 (NOX4) belongs to the NOX family that generates reactive oxygen species (ROS). Function and tissue distribution of NOX4 have not yet been entirely clarified. To date, in the thyroid gland, only DUOX1/2 NOX systems have been described. NOX4 mRNA expression, as shown by real-time PCR,

  20. Myocardial Blood Volume Is Associated with Myocardial Oxygen Consumption: An Experimental Study with CMR in a Canine Model

    Science.gov (United States)

    McCommis, Kyle S.; Zhang, Haosen; Goldstein, Thomas A.; Misselwitz, Bernd; Abendschein, Dana R.; Gropler, Robert J.; Zheng, Jie

    2009-01-01

    OBJECTIVES To evaluate the feasibility of cardiovascular MR (CMR) to determine regional myocardial perfusion and O2 metabolism, and assess the role of myocardial blood volume (MBV) on oxygen supply. BACKGROUND Coronary artery disease presents as an imbalance of myocardial oxygen supply and demand. We have developed relevant CMR methods to determine the relationship of myocardial blood flow (MBF) and MBV to oxygen consumption (MVO2) during pharmacologic hyperemia. METHODS Twenty-one mongrel dogs were studied with varying stenosis severities imposed on the proximal left anterior descending (LAD) coronary artery. MBF and MBV were determined by CMR first-pass perfusion, while the oxygen extraction fraction (OEF) and MVO2 were determined by the myocardial Blood-Oxygen-Level-Dependent (BOLD) effect and Fick’s law, respectively. MR imaging was performed at rest, and during either dipyridamole-induced vasodilation or dobutamine-induced hyperemia. Regional differences in myocardial perfusion and oxygenation were then evaluated. RESULTS Dipyridamole and dobutamine both led to 145–200% increases in MBF and 50–80% increases in MBV in normal perfused myocardium. As expected, MVO2 increased more significantly with dobutamine (~175%) than dipyridamole (~40%). Coronary stenosis resulted in an attenuation of MBF, MBV, and MVO2 in both the LAD-subtended stenosis region and the left circumflex subtended remote region. Liner regression analysis showed that MBV reserve appears to be more correlated with MVO2 reserve during dobutamine stress than MBF reserve, particularly in the stenotic regions. Conversely, MBF reserve appears to be more correlated with MVO2 reserve during dipyridamole, although neither of these differences was significant. CONCLUSIONS Noninvasive evaluation of both myocardial perfusion and oxygenation by CMR facilitates direct monitoring of regional myocardial ischemia and provides a valuable tool for better understanding microvascular pathophysiology. These

  1. Chronic consumption of fructose rich soft drinks alters tissue lipids of rats

    Directory of Open Access Journals (Sweden)

    Botezelli Jose D

    2010-06-01

    Full Text Available Abstract Background Fructose-based diets are apparently related to the occurrence of several metabolic dysfunctions, but the effects of the consumption of high amounts of fructose on body tissues have not been well described. The aim of this study was to analyze the general characteristics and the lipid content of different tissues of rats after chronic ingestion of a fructose rich soft drink. Methods Forty-five Wistar rats were used. The rats were divided into three groups (n = 15 and allowed to consume water (C, light Coca Cola ® (L or regular Coca Cola® (R as the sole source of liquids for eight weeks. Results The R group presented significantly higher daily liquid intake and significantly lower food intake than the C and L groups. Moreover, relative to the C and L groups, the R group showed higher triglyceride concentrations in the serum and liver. However, the L group animals presented lower values of serum triglycerides and cholesterol than controls. Conclusions Based on the results, it can be concluded that daily ingestion of a large amount of fructose- rich soft drink resulted in unfavorable alterations to the lipid profile of the rats.

  2. Exogenous and endogenous angiotensin‐II decrease renal cortical oxygen tension in conscious rats by limiting renal blood flow

    Science.gov (United States)

    Emans, Tonja W.; Janssen, Ben J.; Pinkham, Maximilian I.; Ow, Connie P. C.; Evans, Roger G.; Joles, Jaap A.; Malpas, Simon C.; Krediet, C. T. Paul

    2016-01-01

    Key points Our understanding of the mechanisms underlying the role of hypoxia in the initiation and progression of renal disease remains rudimentary.We have developed a method that allows wireless measurement of renal tissue oxygen tension in unrestrained rats.This method provides stable and continuous measurements of cortical tissue oxygen tension (PO2) for more than 2 weeks and can reproducibly detect acute changes in cortical oxygenation.Exogenous angiotensin‐II reduced renal cortical tissue PO2 more than equi‐pressor doses of phenylephrine, probably because it reduced renal oxygen delivery more than did phenylephrine.Activation of the endogenous renin–angiotensin system in transgenic Cyp1a1Ren2 rats reduced cortical tissue PO2; in this model renal hypoxia precedes the development of structural pathology and can be reversed acutely by an angiotensin‐II receptor type 1 antagonist.Angiotensin‐II promotes renal hypoxia, which may in turn contribute to its pathological effects during development of chronic kidney disease. Abstract We hypothesised that both exogenous and endogenous angiotensin‐II (AngII) can decrease the partial pressure of oxygen (PO2) in the renal cortex of unrestrained rats, which might in turn contribute to the progression of chronic kidney disease. Rats were instrumented with telemeters equipped with a carbon paste electrode for continuous measurement of renal cortical tissue PO2. The method reproducibly detected acute changes in cortical oxygenation induced by systemic hyperoxia and hypoxia. In conscious rats, renal cortical PO2 was dose‐dependently reduced by intravenous AngII. Reductions in PO2 were significantly greater than those induced by equi‐pressor doses of phenylephrine. In anaesthetised rats, renal oxygen consumption was not affected, and filtration fraction was increased only in the AngII infused animals. Oxygen delivery decreased by 50% after infusion of AngII and renal blood flow (RBF) fell by 3.3 ml min−1

  3. Monitoring of caffeine consumption effect on skin blood properties by diffuse reflectance spectroscopy

    Science.gov (United States)

    Milanic, Matija; Marin, Ana; Stergar, Jost; Verdel, Nina; Majaron, Boris

    2017-07-01

    Caffeine is the most widely consumed psychoactive substance in the world. It affects many tissues and organs, in particular central nervous system, heart, and blood vessels. The effect of caffeine on vascular smooth muscle cells is an initial transient contraction followed by significant vasodilatation. In this study we investigate the use of diffuse reflectance spectroscopy (DRS) for monitoring of vascular changes in human skin induced by caffeine consumption. DRS spectra were recorded on volar sides of the forearms of ten healthy volunteers at time delays of 0, 30, 60, 120, and 180 minutes after consumption of caffeine, while one subject served as a negative control. Analytical diffusion approximation solutions for diffuse reflectance from three-layer structures were used to assess skin composition (e.g., dermal blood volume fraction and oxygen saturation) by fitting to experimental data. The results demonstrate that cutaneous vasodynamics induced by caffeine consumption can be monitored by DRS, while changes in the control subject not consuming caffeine were insignificant.

  4. Renal oxygenation and hemodynamics in acute kidney injury and chronic kidney disease

    Science.gov (United States)

    Singh, Prabhleen; Ricksten, Sven-Erik; Bragadottir, Gudrun; Redfors, Bengt; Nordquist, Lina

    2013-01-01

    Summary 1. Acute kidney injury (AKI) puts a major burden on health systems that may arise from multiple initiating insults, including ischemia-reperfusion injury, cardiovascular surgery, radio-contrast administration as well as sepsis. Similarly, the incidence and prevalence of chronic kidney disease (CKD) continues to increase with significant morbidity and mortality. Moreover, an increasing number of AKI patients survive to develop CKD and end-stage kidney disease (ESRD). 2. Although the mechanisms for development of AKI and progression of CKD remain poorly understood, initial impairment of oxygen balance is likely to constitute a common pathway, causing renal tissue hypoxia and ATP starvation that will in turn induce extracellular matrix production, collagen deposition and fibrosis. Thus, possible future strategies for one or both conditions may involve dopamine, loop-diuretics, inducible nitric oxide synthase inhibitors and atrial natriuretic peptide, substances that target kidney oxygen consumption and regulators of renal oxygenation such as nitric oxide and heme oxygenase-1. PMID:23360244

  5. Feed intake and oxygen consumption in fish

    NARCIS (Netherlands)

    Subramanian, S.

    2013-01-01

    In fish, the voluntary feed intake is influenced by dietary, environmental and/or physiological factors. It is well known that under hypoxia the concentration of oxygen in the water (DO) determines the feed intake of fish. However at non-limiting water DO levels (normoxia), several other

  6. The Oxygen Consumption and Metabolic Cost of Walking and Running in Adults With Achondroplasia

    Directory of Open Access Journals (Sweden)

    David T. Sims

    2018-04-01

    Full Text Available The disproportionate body mass and leg length of Achondroplasic individuals may affect their net oxygen consumption (V͘O2 and metabolic cost (C when walking at running compared to those of average stature (controls. The aim of this study was to measure submaximal V͘O2 and C during a range of set walking speeds (SWS; 0.56 – 1.94 m⋅s-1, increment 0.28 m⋅s-1, set running speeds (SRS; 1.67 – 3.33 m⋅s-1, increment 0.28 m⋅s-1 and a self-selected walking speed (SSW. V͘O2 and C was scaled to total body mass (TBM and fat free mass (FFM while gait speed was scaled to leg length using Froude’s number (Fr. Achondroplasic V͘O2TBM and V͘O2FFM were on average 29 and 35% greater during SWS (P < 0.05 and 12 and 18% higher during SRS (P < 0.05 than controls, respectively. Achondroplasic CTBM and CFFM were 29 and 33% greater during SWS (P < 0.05 and 12 and 18% greater during SRS (P < 0.05 than controls, respectively. There was no difference in SSW V͘O2TBM or V͘O2FFM between groups (P > 0.05, but CTBM and CFFM at SSW were 23 and 29% higher (P < 0.05 in the Achondroplasic group compared to controls, respectively. V͘O2TBM and V͘O2FFM correlated with Fr for both groups (r = 0.984 – 0.999, P < 0.05. Leg length accounted for the majority of the higher V͘O2TBM and V͘O2FFM in the Achondroplasic group, but further work is required to explain the higher Achondroplasic CTBM and CFFM at all speeds compared to controls.New and Noteworthy: There is a leftward shift of oxygen consumption scaled to total body mass and fat free mass in Achondroplasic adults when walking and running. This is nullified when talking into account leg length. However, despite these scalars, Achondroplasic individuals have a higher walking and metabolic cost compared to age matched non-Achondroplasic individuals, suggesting biomechanical differences between the groups.

  7. Oscillation of tissue oxygen index in non-exercising muscle during exercise.

    Science.gov (United States)

    Yano, T; Afroundeh, R; Shirakawa, K; Lian, C-S; Shibata, K; Xiao, Z; Yunoki, T

    2015-09-01

    The purpose of the present study was to examine how oscillation of tissue oxygen index (TOI) in non-exercising exercise is affected during high-intensity and low-intensity exercises. Three exercises were performed with exercise intensities of 30% and 70% peak oxygen uptake (Vo(2)peak) for 12 min and with exercise intensity of 70% Vo(2)peak for 30 s. TOI in non-exercising muscle (biceps brachii) during the exercises for 12 min was determined by nearinfrared spectroscopy. TOI in the non-exercising muscle during the exercises was analyzed by fast Fourier transform (FFT) to obtain power spectra density (PSD). The frequency at which maximal PSD appeared (Fmax) during the exercise with 70% Vo(2)peak for 12 min (0.00477 ± 0.00172 Hz) was significantly lower than that during the exercise with 30% Vo2peak for 12 min (0.00781 ± 0.00338 Hz). There were significant differences in blood pH and blood lactate between the exercise with 70% Vo(2)peak and the exercise with 30% Vo(2)peak. It is concluded that TOI in nonexercising muscle oscillates during low-intensity exercise as well as during high-intensity exercise and that the difference in Fmax between the two exercises is associated with the difference in increase in blood lactate derived from the exercise.

  8. Cerebral time domain-NIRS: Reproducibility analysis, optical properties, hemoglobin species and tissue oxygen saturation in a cohort of adult subjects

    OpenAIRE

    Giacalone, Giacomo; Zanoletti, Marta; Contini, Davide; Rebecca, Re; Spinelli, Lorenzo; Roveri, Luisa; Torricelli, Alessandro

    2017-01-01

    The reproducibility of cerebral time-domain near-infrared spectroscopy (TD-NIRS) has not been investigated so far. Besides, reference intervals of cerebral optical properties, of absolute concentrations of deoxygenated-hemoglobin (HbR), oxygenated-hemoglobin (HbO), total hemoglobin (HbT) and tissue oxygen saturation (StO2) and their variability have not been reported. We have addressed these issues on a sample of 88 adult healthy subjects. TD-NIRS measurements at 690, 785, 830 nm were fitted ...

  9. Critical oxygen tension and the effect of hypoxia on the oxygen consumption of the striped catfish, Pangasius hypophthaimos (Pangasiidae)

    DEFF Research Database (Denmark)

    Lefevre, S.; Bayley, Mark; Wang, Tobias

    2008-01-01

    The striped catfish (Pangasius hypophthalmus) is an air-breathing teleost that uses a modified swim bladder for aerial gas exchange. Pangasius is of enormous importance for aquaculture industry in the Mekong Delta(Vietnam), but little is known about its physiology. We have initiated a series...... consumption (VO2), measured with intermittent closed respirometry, was 67.8 ± 5.1 mLO2/kg/h when the fish were maintained without access to air at 27 °C. The critical oxygen tension (Pcrit) at these conditions was 57.9 ± 8.9 mmHg (N = 7). The metabolic response to aquatic hypoxia was studied in fish subjected....... The ontogenetic effect of environmental PO2 on metabolism is currently under investigation with fish being reared in 30%, 60% and 100% saturation. Data on resting VO2and Pcrit will be presented and discussed for these animals....

  10. Taurine Supplementation Improves Functional Capacity, Myocardial Oxygen Consumption, and Electrical Activity in Heart Failure.

    Science.gov (United States)

    Ahmadian, Mehdi; Dabidi Roshan, Valiollah; Ashourpore, Eadeh

    2017-07-04

    Taurine is an amino acid found abundantly in the heart in very high concentrations. It is assumed that taurine contributes to several physiological functions of mammalian cells, such as osmoregulation, anti-inflammation, membrane stabilization, ion transport modulation, and regulation of oxidative stress and mitochondrial protein synthesis. The objective of the current study was to evaluate the effectiveness of taurine supplementation on functional capacity, myocardial oxygen consumption, and electrical activity in patients with heart failure. In a double-blind and randomly designed study, 16 patients with heart failure were assigned to two groups: taurine (TG, n = 8) and placebo (PG, n = 8). TG received 500-mg taurine supplementation three times per day for two weeks. Significant decrease in the values of Q-T segments (p heart failure patients. Together, these findings support the view that taurine improves cardiac function and functional capacity in patients with heart failure. This idea warrants further study.

  11. The SafeBoosC Phase II Randomised Clinical Trial : A Treatment Guideline for Targeted Near-Infrared-Derived Cerebral Tissue Oxygenation versus Standard Treatment in Extremely Preterm Infants

    NARCIS (Netherlands)

    Pellicer, Adelina; Greisen, Gorm; Benders, Manon; Claris, Olivier; Dempsey, Eugene; Fumagalli, Monica; Gluud, Christian; Hagmann, Cornelia; Hellstroem-Westas, Lena; Hyttel-Sorensen, Simon; Lemmers, Petra; Naulaers, Gunnar; Pichler, Gerhard; Roll, Claudia; van Bel, Frank; van Oeveren, Wim; Skoog, Maria; Wolf, Martin; Austin, Topun

    2013-01-01

    Near-infrared spectroscopy-derived regional tissue oxygen saturation of haemoglobin (rSto(2)) reflects venous oxygen saturation. If cerebral metabolism is stable, rSto(2) can be used as an estimate of cerebral oxygen delivery. The SafeBoosC phase II randomised clinical trial hypothesises that the

  12. Glucose consumption of inflammatory cells masks metabolic deficits in the brain.

    Science.gov (United States)

    Backes, Heiko; Walberer, Maureen; Ladwig, Anne; Rueger, Maria A; Neumaier, Bernd; Endepols, Heike; Hoehn, Mathias; Fink, Gereon R; Schroeter, Michael; Graf, Rudolf

    2016-03-01

    Inflammatory cells such as microglia need energy to exert their functions and to maintain their cellular integrity and membrane potential. Subsequent to cerebral ischemia, inflammatory cells infiltrate tissue with limited blood flow where neurons and astrocytes died due to insufficient supply with oxygen and glucose. Using dual tracer positron emission tomography (PET), we found that concomitant with the presence of inflammatory cells, transport and consumption of glucose increased up to normal levels but returned to pathological levels as soon as inflammatory cells disappeared. Thus, inflammatory cells established sufficient glucose supply to satisfy their energy demands even in regions with insufficient supply for neurons and astrocytes to survive. Our data suggest that neurons and astrocytes died from oxygen deficiency and inflammatory cells metabolized glucose non-oxidatively in regions with residual availability. As a consequence, glucose metabolism of inflammatory cells can mask metabolic deficits in neurodegenerative diseases. We further found that the PET tracer did not bind to inflammatory cells in severely hypoperfused regions and thus only a part of the inflammation was detected. We conclude that glucose consumption of inflammatory cells should be taken into account when analyzing disease-related alterations of local cerebral metabolism. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Pharmaceutical preparation of oxygen-15 labelled molecular oxygen and carbon monoxide gasses in a hospital setting.

    NARCIS (Netherlands)

    Luurtsema, Geert; Boellaard, Ronald; Greuter, Henri; Rijbroek, Abraham; Takkenkamp, Kevin; de Geest, Frank; Buijs, Fred; Hendrikse, NH; Franssen, Eric; van Lingen, Arthur; Lammertsma, Adriaan A.

    BACKGROUND: Clinical positron emission tomography (PET) requires safe and effective PET radiopharmaceuticals. Tracers used for measuring oxygen consumption and blood volume are [(15)O]O(2) and [(15)O]CO, respectively. In general, these oxygen-15 labelled tracers are produced using a cyclotron that

  14. Oxygen Consumption and Usage During Physical Exercise: The Balance Between Oxidative Stress and ROS-Dependent Adaptive Signaling

    Science.gov (United States)

    Zhao, Zhongfu; Koltai, Erika; Ohno, Hideki; Atalay, Mustafa

    2013-01-01

    Abstract The complexity of human DNA has been affected by aerobic metabolism, including endurance exercise and oxygen toxicity. Aerobic endurance exercise could play an important role in the evolution of Homo sapiens, and oxygen was not important just for survival, but it was crucial to redox-mediated adaptation. The metabolic challenge during physical exercise results in an elevated generation of reactive oxygen species (ROS) that are important modulators of muscle contraction, antioxidant protection, and oxidative damage repair, which at moderate levels generate physiological responses. Several factors of mitochondrial biogenesis, such as peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), mitogen-activated protein kinase, and SIRT1, are modulated by exercise-associated changes in the redox milieu. PGC-1α activation could result in decreased oxidative challenge, either by upregulation of antioxidant enzymes and/or by an increased number of mitochondria that allows lower levels of respiratory activity for the same degree of ATP generation. Endogenous thiol antioxidants glutathione and thioredoxin are modulated with high oxygen consumption and ROS generation during physical exercise, controlling cellular function through redox-sensitive signaling and protein–protein interactions. Endurance exercise-related angiogenesis, up to a significant degree, is regulated by ROS-mediated activation of hypoxia-inducible factor 1α. Moreover, the exercise-associated ROS production could be important to DNA methylation and post-translation modifications of histone residues, which create heritable adaptive conditions based on epigenetic features of chromosomes. Accumulating data indicate that exercise with moderate intensity has systemic and complex health-promoting effects, which undoubtedly involve regulation of redox homeostasis and signaling. Antioxid. Redox Signal. 18, 1208–1246. PMID:22978553

  15. Low Cerebral Oxygen Consumption and Blood Flow in Patients With Cirrhosis and an Acute Episode of Hepatic Encephalopathy

    DEFF Research Database (Denmark)

    Iversen, Peter; Bak, Lasse Kristoffer; Waagepetersen, Helle Sønderby

    2009-01-01

    (15)O-water PET in 6 patients with liver cirrhosis and an acute episode of overt HE, 6 cirrhotic patients without HE, and 7 healthy subjects. RESULTS: Neither whole-brain CMRO(2) nor CBF differed significantly between cirrhotic patients without HE and healthy subjects, but were both significantly...... that the reductions in CMRO(2) and CBF in patients with HE were essentially generalized throughout the brain. CONCLUSIONS: The observations imply that reduced cerebral oxygen consumption and blood flow in cirrhotic patients with an acute episode of overt HE are associated with HE and not cirrhosis as such...

  16. Oxygen effects on senescence in chondrocytes and mesenchymal stem cells: consequences for tissue engineering.

    Science.gov (United States)

    Moussavi-Harami, Farid; Duwayri, Yazan; Martin, James A; Moussavi-Harami, Farshid; Buckwalter, Joseph A

    2004-01-01

    Primary isolates of chondrocytes and mesenchymal stem cells are often insufficient for cell-based autologous grafting procedures, necessitating in vitro expansion of cell populations. However, the potential for expansion is limited by cellular senescence, a form of irreversible cell cycle arrest regulated by intrinsic and extrinsic factors. Intrinsic mechanisms common to most somatic cells enforce senescence at the so-called "Hayflick limit" of 60 population doublings. Termed "replicative senescence", this mechanism prevents cellular immortalization and suppresses oncogenesis. Although it is possible to overcome the Hayflick limit by genetically modifying cells, such manipulations are regarded as prohibitively dangerous in the context of tissue engineering. On the other hand, senescence associated with extrinsic factors, often called "stress-induced" senescence, can be avoided simply by modifying culture conditions. Because stress-induced senescence is "premature" in the sense that it can halt growth well before the Hayflick limit is reached, growth potential can be significantly enhanced by minimizing culture related stress. Standard culture techniques were originally developed to optimize the growth of fibroblasts but these conditions are inherently stressful to many other cell types. In particular, the 21% oxygen levels used in standard incubators, though well tolerated by fibroblasts, appear to induce oxidative stress in other cells. We reasoned that chondrocytes and MSCs, which are adapted to relatively low oxygen levels in vivo, might be sensitive to this form of stress. To test this hypothesis we compared the growth of MSC and chondrocyte strains in 21% and 5% oxygen. We found that incubation in 21% oxygen significantly attenuated growth and was associated with increased oxidant production. These findings indicated that sub-optimal standard culture conditions sharply limited the expansion of MSC and chondrocyte populations and suggest that cultures for

  17. Effects of normobaric versus hyperbaric oxygen on cell injury induced by oxygen and glucose deprivation in acute brain slices

    OpenAIRE

    Laurent Chazalviel; Jean-Eric Blatteau; Nicolas Vallée; Jean-Jacques Risso; Stéphane Besnard; Jacques H Abraini

    2016-01-01

    Normobaric oxygen (NBO) and hyperbaric oxygen (HBO) are emerging as a possible co-treatment of acute ischemic stroke. Both have been shown to reduce infarct volume, to improve neurologic outcome, to promote endogenous tissue plasminogen activator-induced thrombolysis and cerebral blood flow, and to improve tissue oxygenation through oxygen diffusion in the ischemic areas, thereby questioning the interest of HBO compared to NBO. In the present study, in order to investigate and compare the oxy...

  18. Oxygen requirement of separated hybrid catfish eggs

    Science.gov (United States)

    Channel catfish egg masses require hatchery water with over 7.8 ppm dissolved oxygen at 80° F (95% air saturation) to maintain maximum oxygen consumption as they near hatching. This concentration is called the critical oxygen requirement by scientists but for the purpose of this article we will call...

  19. Singlet oxygen explicit dosimetry to predict long-term local tumor control for Photofrin-mediated photodynamic therapy

    Science.gov (United States)

    Penjweini, Rozhin; Kim, Michele M.; Ong, Yi Hong; Zhu, Timothy C.

    2017-02-01

    Although photodynamic therapy (PDT) is an established modality for the treatment of cancer, current dosimetric quantities do not account for the variations in PDT oxygen consumption for different fluence rates (φ). In this study we examine the efficacy of reacted singlet oxygen concentration ([1O2]rx) to predict long-term local control rate (LCR) for Photofrin-mediated PDT. Radiation-induced fibrosarcoma (RIF) tumors in the right shoulders of female C3H mice are treated with different in-air fluences of 225-540 J/cm2 and in-air fluence rate (φair) of 50 and 75 mW/cm2 at 5 mg/kg Photofrin and a drug-light interval of 24 hours using a 1 cm diameter collimated laser beam at 630 nm wavelength. [1O2]rx is calculated by using a macroscopic model based on explicit dosimetry of Photofrin concentration, tissue optical properties, tissue oxygenation and blood flow changes during PDT. The tumor volume of each mouse is tracked for 90 days after PDT and Kaplan-Meier analyses for LCR are performed based on a tumor volume defined as a temporal integral of photosensitizer concentration and Φ at a 3 mm tumor depth. φ is calculated throughout the treatment volume based on Monte-Carlo simulation and measured tissue optical properties. Our preliminary studies show that [1O2]rx is the best dosimetric quantity that can predict tumor response and correlate with LCR. Moreover, [1O2]rx calculated using the blood flow changes was in agreement with [1O2]rx calculated based on the actual tissue oxygenation.

  20. Impact of Increasing Levels of Oxygen Consumption on the Evolution of Color, Phenolic, and Volatile Compounds of Nebbiolo Wines

    Directory of Open Access Journals (Sweden)

    Maurizio Petrozziello

    2018-04-01

    Full Text Available Since the end of the last century, many works have been carried out to verify the effect of controlled oxygen intake on the chemical and organoleptic characteristics of red wines. In spite of the large number of studies on this subject, oxygen remains a cutting-edge research topic in oenology. Oxygen consumption leads to complex and not univocal changes in wine composition, sometimes positive such as color stabilization, softening of mouthfeel, increase of aroma complexity. However, the variability of these effects, which depend both on the oxygenation conditions and the composition of the wine, require more efforts in this research field to effectively manage wine oxygen exposure. The present study is focused on the evolution of the chemical composition of four different Nebbiolo wines, each of them added with 4 different doses of oxygen (7, 14, 21, and 28 mg/L total intake during the first month of storage. In this perspective, the evolution over time of wine color and polyphenols was studied. Acetaldehyde, glyceraldehyde and glyoxylic acid were quantified by HPLC. These compounds can play a role in wine aging creating condensed colored and stable products involving anthocyanins with or without tannins. Moreover, some volatile aldehydes correlated with oxidized olfactory notes, including methional and (E-2-alkenals, have been quantified by GC-MS. Overall, during storage a decrease of color intensity, total and free anthocyanins and an increase in polymeric pigments (in particular the contribution to the red color of pigments not-bleachable by SO2 or dTAT% and some minor aldehydes was observed. Nevertheless, the differences in color parameters between the samples with different doses of oxygen were modest. These evidences were in contrast with an evident and detectable increase of free acetaldehyde content at increasing doses of oxygen measured after 60 days of storage. The effect of oxygen on color and production of SO2 non-bleachable pigments

  1. Moderate dose of watercress and red radish does not reduce oxygen consumption during graded exhaustive exercise

    Directory of Open Access Journals (Sweden)

    Abbas Meamarbashi

    2014-06-01

    Full Text Available Objective: Very recent studies have reported positive effects of dietary nitrate on the oxygen consumption during exercise. This research aimed to study the effect of moderate dose of high-nitrate vegetables, watercress (Nasturtium officinale and red radish (Raphanus sativus compared with a control group on the incremental treadmill exercise test following a standard Bruce protocol controlled by computer. Materials and Methods: Group 1 consumed 100 g watercress (n=11, 109.5 mg nitrate/day, and group 2 consumed 100 g red radish (n=11, mg 173.2 mg nitrate/day for seven days, and control group (n=14 was prohibited from high nitrate intake. Results: During exercise, watercress group showed significant changes in the maximum values of Respiratory Exchange Ratio (RER (p

  2. Noninvasive Real-Time Assessment of Cell Viability in a Three-Dimensional Tissue.

    Science.gov (United States)

    Mahfouzi, Seyed Hossein; Amoabediny, Ghassem; Doryab, Ali; Safiabadi-Tali, Seyed Hamid; Ghanei, Mostafa

    2018-04-01

    Maintaining cell viability within 3D tissue engineering scaffolds is an essential step toward a functional tissue or organ. Assessment of cell viability in 3D scaffolds is necessary to control and optimize tissue culture process. Monitoring systems based on respiration activity of cells (e.g., oxygen consumption) have been used in various cell cultures. In this research, an online monitoring system based on respiration activity was developed to monitor cell viability within acellular lung scaffolds. First, acellular lung scaffolds were recellularized with human umbilical cord vein endothelial cells, and then, cell viability was monitored during a 5-day period. The real-time monitoring system generated a cell growth profile representing invaluable information on cell viability and proliferative states during the culture period. The cell growth profile obtained by the monitoring system was consistent with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide analysis and glucose consumption measurement. This system provided a means for noninvasive, real-time, and repetitive investigation of cell viability. Also, we showed the applicability of this monitoring system by introducing shaking as an operating parameter in a long-term culture.

  3. Physiological modelling of oxygen consumption in birds during flight

    Science.gov (United States)

    Bishop; Butler

    1995-01-01

    This study combines data on changes in cardiovascular variables with body mass (Mb) and with exercise intensity to model the oxygen supply available to birds during flight. Its main purpose is to provide a framework for identifying the factors involved in limiting aerobic power input to birds during flight and to suggest which cardiovascular variables are the most likely to have been influenced by natural selection when considering both allometric and adaptive variation. It is argued that natural selection has acted on heart rate (fh) and cardiac stroke volume (Vs), so that the difference in the arteriovenous oxygen content (CaO2-Cv¯O2) in birds, both at rest and during flight, is independent of Mb. Therefore, the Mb exponent for oxygen consumption (V(dot)O2) during flight can be estimated from measurements of heart rate and stroke volume. Stroke volume is likely to be directly proportional to heart mass (Mh) and, using empirical data, values for the Mb coefficients and exponents of various cardiovascular variables are estimated. It is concluded that, as found for mammals, fh is the main adaptive variable when considering allometric variation, although Mh also shows a slight scaling effect. Relative Mh is likely to be the most important when considering adaptive specialisations. The Fick equation may be represented as: (V(dot)O2)Mbz = (fh)Mbw x (Vs)Mbx x (CaO2 - Cv¯O2)Mby , where w, x, y, z are the body mass exponents for each variable and the terms in parentheses represent the Mb coefficients. Utilising this formula and data from the literature, the scaling of minimum V(dot)O2 during flight for bird species with a 'high aerobic capacity' (excluding hummingbirds) is calculated to be: 166Mb0.77±0.09 = 574Mb-0.19±0.02 x 3.48Mb0.96±0.02 x 0.083Mb0.00±0.05 , and for hummingbirds (considered separately owing to their unique wing kinematics) it is: 314Mb0.90±0.22 = 617Mb-0.10±0.06 x 6.13Mb1.00±0.11 x 0.083Mb0.00±0.05 . These results are largely dependent on the

  4. Further Controversies About Brain Tissue Oxygenation Pressure-Reactivity After Traumatic Brain Injury

    DEFF Research Database (Denmark)

    Andresen, Morten; Donnelly, Joseph; Aries, Marcel

    2018-01-01

    arterial pressure and intracranial pressure. A new ORx index based on brain tissue oxygenation and cerebral perfusion pressure (CPP) has been proposed that similarly allows for evaluation of cerebrovascular reactivity. Conflicting results exist concerning its clinical utility. METHODS: Retrospective......BACKGROUND: Continuous monitoring of cerebral autoregulation is considered clinically useful due to its ability to warn against brain ischemic insults, which may translate to a relationship with adverse outcome. It is typically performed using the pressure reactivity index (PRx) based on mean...... analysis was performed in 85 patients with traumatic brain injury (TBI). ORx was calculated using three time windows of 5, 20, and 60 min. Correlation coefficients and individual "optimal CPP" (CPPopt) were calculated using both PRx and ORx, and relation to patient outcome investigated. RESULTS...

  5. Brain tissue partial pressure of oxygen predicts the outcome of severe traumatic brain injury under mild hypothermia treatment

    Directory of Open Access Journals (Sweden)

    Sun H

    2016-08-01

    Full Text Available Hongtao Sun,1,* Maohua Zheng,2,* Yanmin Wang,1 Yunfeng Diao,1 Wanyong Zhao,1 Zhengjun Wei1 1Sixth Department of Neurosurgery, Affiliated Hospital of Logistics University of People’s Armed Police Force, Tianjin, 2Department of Neurosurgery, The First Hospital of Lanzhou University, Lanzhou, People’s Republic of China *These authors contributed equally to this work Objective: The aim of this study was to investigate the clinical significance and changes of brain tissue partial pressure of oxygen (PbtO2 in the course of mild hypothermia treatment (MHT for treating severe traumatic brain injury (sTBI. Methods: There were 68 cases with sTBI undergoing MHT. PbtO2, intracranial pressure (ICP, jugular venous oxygen saturation (SjvO2, and cerebral perfusion pressure (CPP were continuously monitored, and clinical outcomes were evaluated using the Glasgow Outcome Scale score. Results: Of 68 patients with sTBI, PbtO2, SjvO2, and CPP were obviously increased, but decreased ICP level was observed throughout the MHT. PbtO2 and ICP were negatively linearly correlated, while there was a positive linear correlation between PbtO2 and SjvO2. Monitoring CPP and SjvO2 was performed under normal circumstances, and a large proportion of patients were detected with low PbtO2. Decreased PbtO2 was also found after MHT. Conclusion: Continuous PbtO2 monitoring could be introduced to evaluate the condition of regional cerebral oxygen metabolism, thereby guiding the clinical treatment and predicting the outcome. Keywords: severe traumatic brain injury, hypothermia, brain tissue partial pressure of oxygen, therapy

  6. Quantifying oxygen in paper-based cell cultures with luminescent thin film sensors.

    Science.gov (United States)

    Boyce, Matthew W; Kenney, Rachael M; Truong, Andrew S; Lockett, Matthew R

    2016-04-01

    Paper-based scaffolds are an attractive material for generating 3D tissue-like cultures because paper is readily available and does not require specialized equipment to pattern, cut, or use. By controlling the exchange of fresh culture medium with the paper-based scaffolds, we can engineer diffusion-dominated environments similar to those found in spheroids or solid tumors. Oxygen tension directly regulates cellular phenotype and invasiveness through hypoxia-inducible transcription factors and also has chemotactic properties. To date, gradients of oxygen generated in the paper-based cultures have relied on cellular response-based readouts. In this work, we prepared a luminescent thin film capable of quantifying oxygen tensions in apposed cell-containing paper-based scaffolds. The oxygen sensors, which are polystyrene films containing a Pd(II) tetrakis(pentafluorophenyl)porphyrin dye, are photostable, stable in culture conditions, and not cytotoxic. They have a linear response for oxygen tensions ranging from 0 to 160 mmHg O2, and a Stern-Volmer constant (K sv) of 0.239 ± 0.003 mmHg O2 (-1). We used these oxygen-sensing films to measure the spatial and temporal changes in oxygen tension for paper-based cultures containing a breast cancer line that was engineered to constitutively express a fluorescent protein. By acquiring images of the oxygen-sensing film and the fluorescently labeled cells, we were able to approximate the oxygen consumption rates of the cells in our cultures.

  7. Influence of exercise duration on cardiorespiratory responses, energy cost and tissue oxygenation within a 6 hour treadmill run.

    Science.gov (United States)

    Kerhervé, Hugo A; McLean, Scott; Birkenhead, Karen; Parr, David; Solomon, Colin

    2017-01-01

    The physiological mechanisms for alterations in oxygen utilization ([Formula: see text]) and the energy cost of running ( C r ) during prolonged running are not completely understood, and could be linked with alterations in muscle and cerebral tissue oxygenation. Eight trained ultramarathon runners (three women; mean ± SD; age 37 ± 7 yr; maximum [Formula: see text] 60 ± 15 mL min -1  kg -1 ) completed a 6 hr treadmill run (6TR), which consisted of four modules, including periods of moderate (3 min at 10 km h -1 , 10-CR) and heavy exercise intensities (6 min at 70% of maximum [Formula: see text], HILL), separated by three, 100 min periods of self-paced running (SP). We measured [Formula: see text], minute ventilation ([Formula: see text]), ventilatory efficiency ([Formula: see text]), respiratory exchange ratio (RER), C r , muscle and cerebral tissue saturation index (TSI) during the modules, and heart rate (HR) and perceived exertion (RPE) during the modules and SP. Participants ran 58.3 ± 10.5 km during 6TR. Speed decreased and HR and RPE increased during SP. Across the modules, HR and [Formula: see text] increased (10-CR), and RER decreased (10-CR and HILL). There were no significant changes in [Formula: see text], [Formula: see text], C r , TSI and RPE across the modules. In the context of positive pacing (decreasing speed), increased cardiac drift and perceived exertion over the 6TR, we observed increased RER and increased HR at moderate and heavy exercise intensity, increased [Formula: see text] at moderate intensity, and no effect of exercise duration on ventilatory efficiency, energy cost of running and tissue oxygenation.

  8. Hyperbaric oxygen therapy in periodontal diseases

    Directory of Open Access Journals (Sweden)

    Swapna A. Mahale

    2013-01-01

    Full Text Available Hyperbaric oxygen (HBO 2 has been successfully used in several medical fields. The therapeutic effect is related to elevated partial oxygen pressure in the tissues. The pressure itself enhances oxygen solubility in the tissue fluids. HBO 2 has shown to affect angiogenesis, bone metabolism and bone turnover. Studies have been conducted to analyze the effects of HBO 2 therapy on periodontal disease. HBO 2 increases local oxygen distribution, especially at the base of the periodontal pocket, which inhibits the growth of anaerobic bacteria and allows the ischemic tissues to receive an adequate intake of oxygen sufficient for a rapid recovery of cell metabolism. It is increasingly being accepted as a beneficial adjunct to diverse clinical conditions. Nonhealing ulcers, chronic wounds and refractory osteomyelitis are a few conditions for which HBO therapy (HBOT has been extensively tried out. The dental surgeons have found a good ally in HBOT in managing dental condition.

  9. The influence of systemic hemodynamics and oxygen transport on cerebral oxygen saturation in neonates after the Norwood procedure.

    Science.gov (United States)

    Li, Jia; Zhang, Gencheng; Holtby, Helen; Guerguerian, Anne-Marie; Cai, Sally; Humpl, Tilman; Caldarone, Christopher A; Redington, Andrew N; Van Arsdell, Glen S

    2008-01-01

    Ischemic brain injury is an important morbidity in neonates after the Norwood procedure. Its relationship to systemic hemodynamic oxygen transport is poorly understood. Sixteen neonates undergoing the Norwood procedure were studied. Continuous cerebral oxygen saturation was measured by near-infrared spectroscopy. Continuous oxygen consumption was measured by respiratory mass spectrometry. Pulmonary and systemic blood flow, systemic vascular resistance, oxygen delivery, and oxygen extraction ratio were derived with measurements of arterial, and superior vena cava and pulmonary venous gases and pressures at 2- to 4-hour intervals during the first 72 hours in the intensive care unit. Mean cerebral oxygen saturation was 66% +/- 12% before the operation, reduced to 51% +/- 13% on arrival in the intensive care unit, and remained low during the first 8 hours; it increased to 56% +/- 9% at 72 hours, still significantly lower than the preoperative level (P blood flow and oxygen delivery (P blood flow (P = .001) and hemoglobin (P = .02) and negatively correlated with systemic vascular resistance (P = .003). It was not correlated with oxygen consumption (P > .05). Cerebral oxygen saturation decreased significantly in neonates during the early postoperative period after the Norwood procedure and was significantly influenced by systemic hemodynamic and metabolic events. As such, hemodynamic interventions to modify systemic oxygen transport may provide further opportunities to reduce the risk of cerebral ischemia and improve neurodevelopmental outcomes.

  10. Hyperbaric oxygen therapy. Promoting healing in difficult cases

    International Nuclear Information System (INIS)

    Cohn, G.H.

    1986-01-01

    Inhalation of pressurized 100% oxygen is a helpful adjunctive treatment for certain patients, because the increased oxygen carried by the blood to the tissue enhances new growth of microcirculation and, thus, healing. Patients with tissue breakdown after radiation therapy, refractory osteomyelitis, gas gangrene, soft-tissue infection with necrosis from mixed aerobic and anaerobic organisms, crush injuries resulting in acute ischemia, and compromised skin grafts or non-healing wounds are likely to benefit from hyperbaric oxygen therapy

  11. The continuous inhalation of oxygen-15 for assessing regional oxygen extraction in the brain of man

    International Nuclear Information System (INIS)

    Jones, T.; Chesler, D.A.; Ter-Pogossian, M.M.

    1976-01-01

    A non-invasive steady-state method for studying the regional accumulation of oxygen in the brain by continuously inhaling oxygen-15 has been investigated. Oxygen respiration by tissue results in the formation of water of metabolism which may be considered as the 'exhaust product' of respiration. In turn the steady-state distribution of this product may be related to that of oxygen utilization. It has been found in monkeys than an appreciable component of the signal, recorded over the head during the inhalation of 15 O 2 , was attributable to the local production of 15 O-labelled water of metabolism. In man the distribution of radioactivity recorded over the head during 15 O 2 inhalation clearly related to active cerebal tissue. Theoretically the respiration product is linearly dependent on the oxygen extraction ratio of the tissue, and at normal cerebal perfusion it is less sensitive to changes in blood flow. At low rates of perfusion a more linear dependence on flow is shown. The dual dependence on blood flow and oxygen extraction limited the interpretation of the cerebal distribution obtained with this technique. Means for obtaining more definitive measurements with this approach are discussed. (author)

  12. Microbial CH4 and N2O consumption in acidic wetlands

    Directory of Open Access Journals (Sweden)

    Steffen eKolb

    2012-03-01

    Full Text Available Acidic wetlands are global sources of the atmospheric greenhouse gases methane (CH4, and nitrous oxide (N2O. Consumption of both atmospheric gases has been observed in various acidic wetlands, but information on the microbial mechanisms underlying these phenomena is scarce. A substantial amount of CH4 is consumed in sub soil by aerobic methanotrophs at anoxic–oxic interfaces (e.g., tissues of Sphagnum mosses, rhizosphere of vascular plant roots. Methylocystis-related species are likely candidates that are involved in the consumption of atmospheric CH4 in acidic wetlands. Oxygen availability regulates the activity of methanotrophs of acidic wetlands. Other parameters impacting on the methanotroph-mediated CH4 consumption have not been systematically evaluated. N2O is produced and consumed by microbial denitrification, thus rendering acidic wetlands as temporary sources or sinks for N2O. Denitrifier communities in such ecosystems are diverse, and largely uncultured and/or new, and environmental factors that control their consumption activity are unresolved. Analyses of the composition of N2O reductase genes in acidic wetlands suggest that acid-tolerant Proteobacteria have the potential to mediate N2O consumption in such soils. Thus, the fragmented current state of knowledge raises open questions concerning methanotrophs and dentrifiers that consume atmospheric CH4 and N2O in acidic wetlands.

  13. Sulfur Isotope Trends in Archean Microbialite Facies Record Early Oxygen Production and Consumption

    Science.gov (United States)

    Zerkle, A.; Meyer, N.; Izon, G.; Poulton, S.; Farquhar, J.; Claire, M.

    2014-12-01

    The major and minor sulfur isotope composition (δ34S and Δ33S) of pyrites preserved in ~2.65-2.5 billion-year-old (Ga) microbialites record localized oxygen production and consumption near the mat surface. These trends are preserved in two separate drill cores (GKF01 and BH1-Sacha) transecting the Campbellrand-Malmani carbonate platform (Ghaap Group, Transvaal Supergroup, South Africa; Zerkle et al., 2012; Izon et al., in review). Microbialite pyrites possess positive Δ33S values, plotting parallel to typical Archean trends (with a Δ33S/δ34S slope of ~0.9) but enriched in 34S by ~3 to 7‰. We propose that these 34S-enriched pyrites were formed from a residual pool of sulfide that was partially oxidized via molecular oxygen produced by surface mat-dwelling cyanobacteria. Sulfide, carrying the range of Archean Δ33S values, could have been produced deeper within the microbial mat by the reduction of sulfate and elemental sulfur, then fractionated upon reaction with O2 produced by oxygenic photosynthesis. Preservation of this positive 34S offset requires that: 1) sulfide was only partially (50­­-80%) consumed by oxidation, meaning H2S was locally more abundant (or more rapidly produced) than O2, and 2) the majority of the sulfate produced via oxidation was not immediately reduced to sulfide, implying either that the sulfate pool was much larger than the sulfide pool, or that the sulfate formed near the mat surface was transported and reduced in another part of the system. Contrastingly, older microbialite facies (> 2.7 Ga; Thomazo et al., 2013) appear to lack these observed 34S enrichments. Consequently, the onset of 34S enrichments could mark a shift in mat ecology, from communities dominated by anoxygenic photosynthesizers to cyanobacteria. Here, we test these hypotheses with new spatially resolved mm-scale trends in sulfur isotope measurements from pyritized stromatolites of the Vryburg Formation, sampled in the lower part of the BH1-Sacha core. Millimeter

  14. Exogenous and endogenous angiotensin-II decrease renal cortical oxygen tension in conscious rats by limiting renal blood flow.

    Science.gov (United States)

    Emans, Tonja W; Janssen, Ben J; Pinkham, Maximilian I; Ow, Connie P C; Evans, Roger G; Joles, Jaap A; Malpas, Simon C; Krediet, C T Paul; Koeners, Maarten P

    2016-11-01

    Our understanding of the mechanisms underlying the role of hypoxia in the initiation and progression of renal disease remains rudimentary. We have developed a method that allows wireless measurement of renal tissue oxygen tension in unrestrained rats. This method provides stable and continuous measurements of cortical tissue oxygen tension (PO2) for more than 2 weeks and can reproducibly detect acute changes in cortical oxygenation. Exogenous angiotensin-II reduced renal cortical tissue PO2 more than equi-pressor doses of phenylephrine, probably because it reduced renal oxygen delivery more than did phenylephrine. Activation of the endogenous renin-angiotensin system in transgenic Cyp1a1Ren2 rats reduced cortical tissue PO2; in this model renal hypoxia precedes the development of structural pathology and can be reversed acutely by an angiotensin-II receptor type 1 antagonist. Angiotensin-II promotes renal hypoxia, which may in turn contribute to its pathological effects during development of chronic kidney disease. We hypothesised that both exogenous and endogenous angiotensin-II (AngII) can decrease the partial pressure of oxygen (PO2) in the renal cortex of unrestrained rats, which might in turn contribute to the progression of chronic kidney disease. Rats were instrumented with telemeters equipped with a carbon paste electrode for continuous measurement of renal cortical tissue PO2. The method reproducibly detected acute changes in cortical oxygenation induced by systemic hyperoxia and hypoxia. In conscious rats, renal cortical PO2 was dose-dependently reduced by intravenous AngII. Reductions in PO2 were significantly greater than those induced by equi-pressor doses of phenylephrine. In anaesthetised rats, renal oxygen consumption was not affected, and filtration fraction was increased only in the AngII infused animals. Oxygen delivery decreased by 50% after infusion of AngII and renal blood flow (RBF) fell by 3.3 ml min -1 . Equi-pressor infusion of

  15. Comparative study of activities in reactive oxygen species production/defense system in mitochondria of rat brain and liver, and their susceptibility to methylmercury toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Mori, N.; Hirayama, K. [Kumamoto University, School of Health Science, Kumamoto (Japan); Yasutake, A. [National Institute for Minamata Disease, Minamata (Japan)

    2007-11-15

    The involvement of oxidative stress has been suggested as a mechanism for neurotoxicity caused by methylmercury (MeHg), but the mechanism for MeHg selective toxicity in the central nervous system is still unclear. In this research, to clarify the mechanism of selective neurotoxicity caused by MeHg, the oxygen consumption levels, the reactive oxygen species (ROS) production rates and several antioxidant levels in mitochondria were compared among the cerebrum, cerebellum and liver of male Wistar rats. In addition, the alterations of these indexes were examined in MeHg-intoxicated rats (oral administration of 10 mg/kg day, for 5 days). Although the cerebrum and cerebellum in intact rats showed higher mitochondrial oxygen consumption levels and ROS production rates than the liver, glutathione peroxidase (GPX) and superoxide dismutase (SOD) activities were much lower in the cerebrum and cerebellum than in the liver. Especially, the cerebellum showed the highest oxygen consumption and ROS production rate and the lowest mitochondrial glutathione (GSH) levels among the tissues examined. In the MeHg-treated rats, decrease in the oxygen consumption and increase in the ROS generation were found only in the cerebellum mitochondria, despite a lower Hg accumulation in the mitochondrial fraction compared to the liver. Since MeHg treatment produced an enhancement of ROS generation in cerebellum mitochondria supplemented with succinate substrates, MeHg-induced oxidative stress might affect the complex II-III mediated pathway in the electron transfer chain in the cerebellum mitochondria. Our study suggested that inborn factors, high production system activity and low defense system activity of ROS in the brain, would relate to the high susceptibility of the central nervous system to MeHg toxicity. (orig.)

  16. Detection of light images by simple tissues as visualized by photosensitized magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Catherine Tempel-Brami

    Full Text Available In this study, we show how light can be absorbed by the body of a living rat due to an injected pigment circulating in the blood stream. This process is then physiologically translated in the tissue into a chemical signature that can be perceived as an image by magnetic resonance imaging (MRI. We previously reported that illumination of an injected photosynthetic bacteriochlorophyll-derived pigment leads to a generation of reactive oxygen species, upon oxygen consumption in the blood stream. Consequently, paramagnetic deoxyhemoglobin accumulating in the illuminated area induces changes in image contrast, detectable by a Blood Oxygen Level Dependent (BOLD-MRI protocol, termed photosensitized (psMRI. Here, we show that laser beam pulses synchronously trigger BOLD-contrast transients in the tissue, allowing representation of the luminous spatiotemporal profile, as a contrast map, on the MR monitor. Regions with enhanced BOLD-contrast (7-61 fold were deduced as illuminated, and were found to overlap with the anatomical location of the incident light. Thus, we conclude that luminous information can be captured and translated by typical oxygen exchange processes in the blood of ordinary tissues, and made visible by psMRI (Fig. 1. This process represents a new channel for communicating environmental light into the body in certain analogy to light absorption by visual pigments in the retina where image perception takes place in the central nervous system. Potential applications of this finding may include: non-invasive intra-operative light guidance and follow-up of photodynamic interventions, determination of light diffusion in opaque tissues for optical imaging and possible assistance to the blind.

  17. Biochemical changes related to hypoxia during cerebral aneurysm surgery: combined microdialysis and tissue oxygen monitoring: case report.

    Science.gov (United States)

    Hutchinson, P J; Al-Rawi, P G; O'Connell, M T; Gupta, A K; Pickard, J D; Kirkpatrick, P J

    2000-01-01

    The objective of this study was to monitor brain metabolism on-line during aneurysm surgery, by combining the use of a multiparameter (brain tissue oxygen, brain carbon dioxide, pH, and temperature) sensor with microdialysis (extracellular glucose, lactate, pyruvate, and glutamate). The case illustrates the potential value of these techniques by demonstrating the effects of adverse physiological events on brain metabolism and the ability to assist in both intraoperative and postoperative decision-making. A 41-year-old woman presented with a World Federation of Neurological Surgeons Grade I subarachnoid hemorrhage. Angiography revealed a basilar artery aneurysm that was not amenable to coiling, so the aneurysm was clipped. Before the craniotomy was performed, a multiparameter sensor and a microdialysis catheter were inserted to monitor brain metabolism. During the operation, the brain oxygen level decreased, in relation to biochemical changes, including the reduction of extracellular glucose and pyruvate and the elevation of lactate and glutamate. These changes were reversible. However, when the craniotomy was closed, a second decrease in brain oxygen occurred in association with brain swelling, which immediately prompted a postoperative computed tomographic scan. The scan demonstrated acute hydrocephalus, requiring external ventricular drainage. The patient made a full recovery. The monitoring techniques influenced clinical decision-making in the treatment of this patient. On-line measurement of brain tissue gases and extracellular chemistry has the potential to assist in the perioperative and postoperative management of patients undergoing complex cerebrovascular surgery and to establish the effects of intervention on brain homeostasis.

  18. Rapid determination of oxygen saturation and vascularity for cancer detection.

    Directory of Open Access Journals (Sweden)

    Fangyao Hu

    Full Text Available A rapid heuristic ratiometric analysis for estimating tissue hemoglobin concentration and oxygen saturation from measured tissue diffuse reflectance spectra is presented. The analysis was validated in tissue-mimicking phantoms and applied to clinical measurements in head and neck, cervical and breast tissues. The analysis works in two steps. First, a linear equation that translates the ratio of the diffuse reflectance at 584 nm and 545 nm to estimate the tissue hemoglobin concentration using a Monte Carlo-based lookup table was developed. This equation is independent of tissue scattering and oxygen saturation. Second, the oxygen saturation was estimated using non-linear logistic equations that translate the ratio of the diffuse reflectance spectra at 539 nm to 545 nm into the tissue oxygen saturation. Correlations coefficients of 0.89 (0.86, 0.77 (0.71 and 0.69 (0.43 were obtained for the tissue hemoglobin concentration (oxygen saturation values extracted using the full spectral Monte Carlo and the ratiometric analysis, for clinical measurements in head and neck, breast and cervical tissues, respectively. The ratiometric analysis was more than 4000 times faster than the inverse Monte Carlo analysis for estimating tissue hemoglobin concentration and oxygen saturation in simulated phantom experiments. In addition, the discriminatory power of the two analyses was similar. These results show the potential of such empirical tools to rapidly estimate tissue hemoglobin in real-time spectral imaging applications.

  19. Muscle contraction duration and fibre recruitment influence blood flow and oxygen consumption independent of contractile work during steady-state exercise in humans.

    Science.gov (United States)

    Richards, Jennifer C; Crecelius, Anne R; Kirby, Brett S; Larson, Dennis G; Dinenno, Frank A

    2012-06-01

    We tested the hypothesis that, among conditions of matched contractile work, shorter contraction durations and greater muscle fibre recruitment result in augmented skeletal muscle blood flow and oxygen consumption ( ) during steady-state exercise in humans. To do so, we measured forearm blood flow (FBF; Doppler ultrasound) during 4 min of rhythmic hand-grip exercise in 24 healthy young adults and calculated forearm oxygen consumption ( ) via blood samples obtained from a catheter placed in retrograde fashion into a deep vein draining the forearm muscle. In protocol 1 (n = 11), subjects performed rhythmic isometric hand-grip exercise at mild and moderate intensities during conditions in which time-tension index (isometric analogue of work) was held constant but contraction duration was manipulated. In this protocol, shorter contraction durations led to greater FBF (184 ± 25 versus 164 ± 25 ml min(-1)) and (23 ± 3 versus 17 ± 2 ml min(-1); both P flow. Our collective data indicate that, among matched workloads, shorter contraction duration and greater muscle fibre recruitment augment FBF and during mild-intensity forearm exercise, and that muscle blood flow is more closely related to metabolic cost ( ) rather than contractile work per se during steady-state exercise in humans.

  20. Oxygen as a driver of early arthropod micro-benthos evolution.

    Directory of Open Access Journals (Sweden)

    Mark Williams

    Full Text Available BACKGROUND: We examine the physiological and lifestyle adaptations which facilitated the emergence of ostracods as the numerically dominant Phanerozoic bivalve arthropod micro-benthos. METHODOLOGY/PRINCIPAL FINDINGS: The PO(2 of modern normoxic seawater is 21 kPa (air-equilibrated water, a level that would cause cellular damage if found in the tissues of ostracods and much other marine fauna. The PO(2 of most aquatic breathers at the cellular level is much lower, between 1 and 3 kPa. Ostracods avoid oxygen toxicity by migrating to waters which are hypoxic, or by developing metabolisms which generate high consumption of O(2. Interrogation of the Cambrian record of bivalve arthropod micro-benthos suggests a strong control on ecosystem evolution exerted by changing seawater O(2 levels. The PO(2 of air-equilibrated Cambrian-seawater is predicted to have varied between 10 and 30 kPa. Three groups of marine shelf-dwelling bivalve arthropods adopted different responses to Cambrian seawater O(2. Bradoriida evolved cardiovascular systems that favoured colonization of oxygenated marine waters. Their biodiversity declined during intervals associated with black shale deposition and marine shelf anoxia and their diversity may also have been curtailed by elevated late Cambrian (Furongian oxygen-levels that increased the PO(2 gradient between seawater and bradoriid tissues. Phosphatocopida responded to Cambrian anoxia differently, reaching their peak during widespread seabed dysoxia of the SPICE event. They lacked a cardiovascular system and appear to have been adapted to seawater hypoxia. As latest Cambrian marine shelf waters became well oxygenated, phosphatocopids went extinct. Changing seawater oxygen-levels and the demise of much of the seabed bradoriid micro-benthos favoured a third group of arthropod micro-benthos, the ostracods. These animals adopted lifestyles that made them tolerant of changes in seawater O(2. Ostracods became the numerically

  1. Measurement of oxygen consumption rate of osteoblasts from ...

    African Journals Online (AJOL)

    Jane

    2011-05-10

    May 10, 2011 ... E-mail: kedongsong@dlut.edu.cn. Tel: +86 411 ... the experiments, including inverted phase contrast microscope. (IX70-Olympus ... The pictures showed that the osteoblasts still had very high cellular viability. consumption of ...

  2. Mitochondrial Respiration and Oxygen Tension.

    Science.gov (United States)

    Shaw, Daniel S; Meitha, Karlia; Considine, Michael J; Foyer, Christine H

    2017-01-01

    Measurements of respiration and oxygen tension in plant organs allow a precise understanding of mitochondrial capacity and function within the context of cellular oxygen metabolism. Here we describe methods that can be routinely used for the isolation of intact mitochondria, and the determination of respiratory electron transport, together with techniques for in vivo determination of oxygen tension and measurement of respiration by both CO 2 production and O 2 consumption that enables calculation of the respiratory quotient [CO 2 ]/[O 2 ].

  3. Nitric Oxide is Required for Homeostasis of Oxygen and Reactive Oxygen Species in Barley Roots under Aerobic Conditions

    DEFF Research Database (Denmark)

    Gupta, Kapuganti J; Hebelstrup, Kim; Kruger, Nicholas J

    2014-01-01

    Oxygen, the terminal electron acceptor for mitochondrial electron transport, is vital for plants because of its role in the production of ATP by oxidative phosphorylation. While photosynthetic oxygen production contributes to the oxygen supply in leaves, reducing the risk of oxygen limitation of ...... electron transport chain (Gupta et al., 2011). Thus, NO could influence oxygen consumption under normal aerobic conditions in roots, and it is this specific function that is assessed here.......Oxygen, the terminal electron acceptor for mitochondrial electron transport, is vital for plants because of its role in the production of ATP by oxidative phosphorylation. While photosynthetic oxygen production contributes to the oxygen supply in leaves, reducing the risk of oxygen limitation...

  4. The oxygen effect and cellular adaptation

    International Nuclear Information System (INIS)

    Meshcherikova, V.V.; Vajnson, A.A.; Yarmonenko, S.P.

    1979-01-01

    The radiomodifying effect of oxygen was shown to depend on the level of cellular oxygenation prior to irradiation. Acute hypoxia created at the time of irradiation protects previously normally oxygenated cells with DMF approximately 1.4 times larger than that of cells cultured for 24 hours under conditions of mild hypoxia. It is suggested that a decrease in the radioprotective effect of acute hypoxia on chronically hypoxic cells is correlated with an appreciable decrease in the rate of oxygen consumption by these cells, due to which the oxygen concentration near the intracellular targets in chronically hypoxic cells may be higher than in normal cells under conditions of poor oxygenation

  5. DPPH and oxygen free radicals as pro-oxidant of biomolecules.

    Science.gov (United States)

    Letelier, María Eugenia; Molina-Berríos, Alfredo; Cortés-Troncoso, Juan; Jara-Sandoval, José; Holst, Marianne; Palma, Karina; Montoya, Margarita; Miranda, Dante; González-Lira, Víctor

    2008-03-01

    Numerous investigations exist about the alterations that oxygen free radicals can provoke on biomolecules; these modifications can be prevented and/or reversed by different antioxidants agents. On the other hand, 2,2-diphenyl-1-picrylhydrazyl radical (DPPH), a stable nitrogen synthetic radical, is used to evaluate the antioxidant capacity of medicinal herbal products; however, the structural changes that this radical provoke on the herbal active principles are not clear yet. In this work, we compared the redox reactivity of oxygen free radicals and DPPH radical on phospholipids and protein thiol groups present in rat liver microsomes. Cu2+/ascorbate was used as generator system of oxygen free radical and as antioxidant, an extract of Buddleja globosa's leaves. Cu2+/ascorbate provoked microsomal lipid peroxidation, microsomal thiols oxidation and oxygen consumption; all of these phenomena were inhibited by B. globosa extract. On the other hand, DPPH was bleached in different extension by the herbal extract and phosphatidyl choline; beside, DPPH decreased microsomal thiols content, but this phenomenon were not prevented by the herbal extract. Furthermore, DPPH did not induce oxygen consumption and neither modified the oxygen consumption induced by Cu2+/ascorbate. Distinct redox mechanisms may explain the differences between the reactivity of DPPH and oxygen free radicals on biomolecules, which is discussed.

  6. Maximal oxygen consumption, respiratory volume and some related factors in fire-fighting personnel

    Directory of Open Access Journals (Sweden)

    Touraj Khazraee

    2017-01-01

    Full Text Available Background: Firefighters for difficult activities and rescue of damaged people must be in appropriate physical ability. Maximal oxygen capacity is an indicator for diagnosis of physical ability of workers. This study aimed to assess the cardiorespiratory system and its related factors in firefighters. Methods: This study was conducted on 110 firefighters from various stations. An self-administered questionnaire (respiratory disorders questionnaire, Tuxworth-Shahnavaz step test, and pulmonary function test was used to collection of required data. Average of humidity and temperature was 52% and 17°C, respectively. Background average noise levels were between 55 and 65 dB. Data were analyzed using SPSS software (version 19. Results: The mean age of the study participants was 32 ± 6.2 years. The means of forced vital capacity (FVC, forced expiratory volume in 1 s (FEV1, and FEV1/FVC were 92% ±9.4%, 87% ±9.2%, and 80% ±6.1%, respectively. The participants' mean VO2-max was 2.79 ± 0.29 L/min or 37.34 ± 4.27 ml/kg body weight per minute. The results revealed that weight has a direct association with vital capacity (VC, FVC, and peak expiratory flow. In addition, height was directly associated with VC, FVC, and VO2-max (P < 0.05. However, there was an inverse and significant association between height and FEV1/FVC (r = −0.23,P< 0.05. Height, weight, body mass index, and waist circumference were directly associated with VO2-max. Conclusions: The findings of this study showed that the amount of maximum oxygen consumption is close with the proposed range of this parameter among firefighters in other studies. Furthermore, the results of the study revealed that individuals had normal amounts of lung volume index. This issue can be attributed to the appropriate usage of respiratory masks.

  7. Cutaneous Mitochondrial PO2, but Not Tissue Oxygen Saturation, Is an Early Indicator of the Physiologic Limit of Hemodilution in the Pig.

    Science.gov (United States)

    Römers, Luuk H L; Bakker, Charlotte; Dollée, Nathalie; Hoeks, Sanne E; Lima, Alexandre; Raat, Nicolaas J H; Johannes, Tanja; Stolker, Robert J; Mik, Egbert G

    2016-07-01

    Hemodilution is a consequence of fluid replacement during blood loss and is limited by the individual ability to compensate for decreasing hemoglobin level. We tested the ability of a novel noninvasive method for measuring cutaneous mitochondrial PO2 (mitoPO2) to detect this threshold early. Anesthetized and ventilated pigs were hemodynamically monitored and randomized into a hemodilution (n = 12) or a time control (TC) group (n = 14). MitoPO2 measurements were done by oxygen-dependent delayed fluorescence of protoporphyrin IX after preparation of the skin with 20% 5-aminolevulinic acid cream. Tissue oxygen saturation (StO2) was measured with near infrared spectroscopy on the thoracic wall. After baseline measurements, progressive normovolemic hemodilution was performed in the hemodilution group in equal steps (500 ml blood replaced by 500 ml Voluven; Fresenius Kabi AG, Germany). Consecutive measurements were performed after 20-min stabilization periods and repeated 8 times or until the animal died. The TC animals remained stable with regard to hemodynamics and mitoPO2. In the hemodilution group, mitoPO2 became hemoglobin-dependent after reaching a threshold of 2.6 ± 0.2 g/dl. During hemodilution, hemoglobin and mitoPO2 decreased (7.9 ± 0.2 to 2.1 ± 0.2 g/dl; 23.6 ± 2 to 9.9 ± 0.8 mmHg), but StO2 did not. Notably, mitoPO2 dropped quite abruptly (about 39%) at the individual threshold. We observed that this decrease in mitoPO2 occurred at least one hemodilution step before changes in other conventional parameters. Cutaneous mitoPO2 decreased typically one hemodilution step before occurrence of significant alterations in systemic oxygen consumption and lactate levels. This makes mitoPO2 a potential early indicator of the physiologic limit of hemodilution and possibly a physiologic trigger for blood transfusion.

  8. Does recombinant human Epo increase exercise capacity by means other than augmenting oxygen transport?

    DEFF Research Database (Denmark)

    Lundby, C; Robach, P; Boushel, R

    2008-01-01

    This study was performed to test the hypothesis that administration of recombinant human erythropoietin (rHuEpo) in humans increases maximal oxygen consumption by augmenting the maximal oxygen carrying capacity of blood. Systemic and leg oxygen delivery and oxygen uptake were studied during...... before rHuEpo treatment). Blood buffer capacity remained unaffected by rHuEpo treatment and hemodilution. The augmented hematocrit did not compromise peak cardiac output. In summary, in healthy humans, rHuEpo increases maximal oxygen consumption due to augmented systemic and muscular peak oxygen delivery....

  9. Oxygen depletion of bismuth molybdates

    Energy Technology Data Exchange (ETDEWEB)

    Yong, L.K.; Howe, R.F.; Keulks, G.W.; Hall, W.K.

    1978-05-01

    Pure ..cap alpha..-phase bismuth molybdate (Bi/sub 2/Mo/sub 3/O/sub 12/), which is known to be weakly active for selective oxidation, and pure ..gamma..-phase bismuth molybdate (Bi/sub 2/MoO/sub 6/), which has good activity, were subjected to oxidation-reduction cycles with known amounts of hydrogen and oxygen, at 300/sup 0/-570/sup 0/C and with evacuation steps between treatments. The volume of oxygen consumed during reoxidation was equal to half the hydrogen consumed during the reduction on the ..cap alpha..-phase, which indicated that no hydrogen was retained during reduction. For the ..gamma..-phase, the oxygen consumption was greater than half of the hydrogen consumption and it increased with extent of reduction. The excess oxygen was apparently consumed by filling anion vacancies formed during outgassing subsequent to the reduction step. ESR spectroscopy and temperature-programed oxidation-reduction indicated that lattice oxide ions which bridge between bismuth and molybdenum layers of the koechlinite structure become more labile when the catalyst is in a partially reduced state, and that this effect is greater in the ..gamma..- than the ..cap alpha..-phase. Table and 15 references.

  10. Cerebral tissue oxygenation index and superior vena cava blood flow in the very low birth weight infant.

    LENUS (Irish Health Repository)

    Moran, M

    2012-02-01

    BACKGROUND: Superior vena cava (SVC) flow assesses blood flow from the upper body, including the brain. Near infrared spectroscopy (NIRS) provides information on brain perfusion and oxygenation. AIM: To assess the relationship between cerebral tissue oxygenation index (cTOI) and cardiac output measures in the very low birth weight (VLBW) infant in the first day of life. METHODS: A prospective observational cohort study. Neonates with birth weight less than 1500 g (VLBW) were eligible for enrollment. Newborns with congenital heart disease, major congenital malformations and greater than Papile grade1 Intraventricular Haemorrhage on day 1 of life were excluded. Echocardiographic evaluation of SVC flow was performed in the first 24 h of life. Low SVC flow states were defined as a flow less than 40 mL\\/kg\\/min. cTOI was measured using NIRO 200 Hamamatsu. RESULTS: Twenty-seven VLBW neonates had both echocardiography and NIRS performed. The median (range) gestation was 29\\/40 (25 + 3 to 31 + 5 weeks) and median birth weight was 1.2 kg (0.57-1.48 kg). The mean (SD) TOI was 68.1 (7.9)%. The mean (SD) SVC flow was 70.36(39.5) mLs\\/kg\\/min. The correlation coefficient of cerebral tissue oxygenation and SVC flow was r = 0.53, p-value 0.005. There was a poor correlation between right and left ventricular output and cTOI which is not surprising considering the influence of intra- and extracardiac shunts. CONCLUSION: There is a positive relationship between cerebral TOI values and SVC flow in the very low birth infant on day one of life.

  11. Effective oxygen-consumption rates in fermentation broths with filamentous organisms

    Energy Technology Data Exchange (ETDEWEB)

    Reuss, M; Bajpai, R K; Berke, W

    1982-01-01

    The concept of coupling molecular diffusion and reaction has been applied in the past to various biological systems with clearly defined geometrical properties like pellets and immobilised enzymes/microorganisms. This paper investigates the use of the same principle to characterise the diffusional limitation in suspensions of filamentous microorganisms. Experimental results of oxygen-uptake measurements from Aspergillus niger fermentations in a 50 cu.dm turbine-agitated fermentor are presented with theoretical predictions of coupled diffusion and oxygen kinetics. Results are discussed on the basis of turbulence theory so that the mycelial broth can be structured in hypothetical spherical elements. Consideration of local energy-dissipation rates in the impeller region provides reasonable explanation of the strong influence of the impeller/tank diameter ratio on the effective oxygen-uptake rate at a given power input. (Refs. 18).

  12. Peripheral tissue oximetry

    DEFF Research Database (Denmark)

    Hyttel-Sorensen, Simon; Hessel, Trine Witzner; Greisen, Gorm

    2014-01-01

    Estimation of regional tissue oxygenation (rStO2) by near infrared spectroscopy enables non-invasive end-organ oxygen balance monitoring and could be a valuable tool in intensive care. However, the diverse absolute values and dynamics of different devices, and overall poor repeatability of measur......Estimation of regional tissue oxygenation (rStO2) by near infrared spectroscopy enables non-invasive end-organ oxygen balance monitoring and could be a valuable tool in intensive care. However, the diverse absolute values and dynamics of different devices, and overall poor repeatability......, and response to changing oxygenation by the down slope of rStO2 during vascular occlusion in the respective arm. 10 healthy adults, 21-29 years old, with double skinfolds on the forearm less than 10 mm participated. The median rStO2 was 70.7% (interquartile range (IQR) 7.7%), 68.4% (IQR 8.4%), and 64.6% (IQR 4...

  13. Relationship between iodine-123-beta-methyl-p-iodophenyl-pentadecanoic acid washout ratio and oxygen consumption in normal and ischemic myocardium

    International Nuclear Information System (INIS)

    Saito, Kimimasa; Okamoto, Ryuji; Saito, Yasuhiro

    1997-01-01

    The relationship between oxygen consumption and iodine-123-beta-methyl-p-iodophenyl-pentadecanoic acid ( 123 I-BMIPP) washout at rest and after exercise was investigated in normal and ischemic myocardium. Sixteen healthy volunteers and 14 patients with ischemic heart disease were examined. After injection of 111 MBq of 123 I-BMIPP, serial single photon emission computed tomography imaging was performed to evaluate washout ratio after 30 min and 1 hour of rest and after exercise. In the volunteers, the mean washout ratio was 3.3±3.5% after 1 hour of rest and increased during exercise. The exercise washout ratio showed a better correlation with net pressure rate product (net PRP: cumulative values of PRP during exercise) than with the peak PRP. The exercise washout ratio showed a strong correlation with the net PRP in the range from 180 to 300x10 3 mmHg·beat/min and a plateau of 10-15%. In the nine ischemic patients with net PRP≥300x10 3 mmHg·beat/min, the exercise washout ratio values were significantly elevated in normal segments relative to ischemic segments (10.1±1.9% vs 4.7±2.9%, p 3 mmHg·beat/min, washout ratio at rest and after exercise did not differ significantly between normal and ischemic segments. 123 I-BMIPP washout ratio increased with increased oxygen consumption during exercise in normal myocardium but not in ischemic myocardium. The patient must exercise before fatty acid metabolism can be compared between normal and ischemic myocardium. (author)

  14. Intramyocardial oxygen transport by quantitative diffuse reflectance spectroscopy in calves

    Science.gov (United States)

    Lindbergh, Tobias; Larsson, Marcus; Szabó, Zoltán; Casimir-Ahn, Henrik; Strömberg, Tomas

    2010-03-01

    Intramyocardial oxygen transport was assessed during open-chest surgery in calves by diffuse reflectance spectroscopy using a small intramuscular fiber-optic probe. The sum of hemo- and myoglobin tissue fraction and oxygen saturation, the tissue fraction and oxidation of cytochrome aa3, and the tissue fraction of methemoglobin were estimated using a calibrated empirical light transport model. Increasing the oxygen content in the inhaled gas, 21%-50%-100%, in five calves (group A) gave an increasing oxygen saturation of 19+/-4%, 24+/-5%, and 28+/-8% (panimals increased with LVAD pump speed (p<0.001, ANOVA) and with oxygen content in inhaled gas (p<0.001, ANOVA). The cytochrome aa3 oxidation level was above 96% in both group A and group B calves, including the two cases involving cardiac arrest. In conclusion, the estimated tissue fractions and oxygenation/oxidation levels of the myocardial chromophores during respiratory and hemodynamic provocations were in agreement with previously presented results, demonstrating the potential of the method.

  15. Effects of whole-body gamma irradiation on oxygen transport by rat erythrocytes

    International Nuclear Information System (INIS)

    Thiriot, Christian; Kergonou, J.F.; Rocquet, Guy; Allary, Michel; Saint-Blancard, Jacques

    1982-01-01

    In this work, we studied the influence of whole-body gamma irradiation (8 Gy) upon oxygen transport by erythrocytes, through the erythrocyte count and related parameters, and through the factors affecting the oxygen affinity of hemoglobin. The oxygen affinity of hemoglobin is increased from day D + 5 after irradiation, and a severe erythropenia develops from day D + 8. These modifications probably result in tissue hypoxia via diminished oxygen transport from lungs to tissues, and decreased oxygen release from oxyhemoglobin in tissues

  16. Evaluation of the effects of the metals Cd, Cr, Pb and their mixture on the filtration and oxygen consumption rates in catarina scallop, Argopecten ventricosus juveniles.

    Science.gov (United States)

    Sobrino-Figueroa, Alma S; Cáceres-Martinez, Carlos

    2014-01-01

    In this work, we evaluated the effect of sublethal concentrations ( LC25, LC10 and LC5) of cadmium, chromium, lead, and their mixture on the filtration rate and oxygen consumption rate of Catarina scallop, Argopecten ventricosus (Sowerby, 1842), juveniles, in order to evaluate the use of these biomarkers as a reliable tool in environmental monitoring studies, because these metals have been found at high levels in water and sediments in the Mexican Pacific systems. An inverse dose-response relationship was observed when metal concentration and exposure time increased, the filtration rate and oxygen consumption rate reduced. The physiological responses evaluated in this study were sufficiently sensitive to detect alterations in the organisms at 0.014 mg l(-1) Cd, 0.311 mg l(-1) Cr, 0.125 mg l(-1) Pb and 0.05 mg l(-1) Cd + Cr + Pb at 24 and 72 hrs. Cd showed the most drastic effect. The Catarina scallop juveniles were more sensitive to Cd, Cr and Pb as compared to other bivalves. The biomarkers evaluated are a reliable tool to carry out environmental monitoring studies.

  17. Microfluidic monitoring of programmed cell death in living plant seed tissue

    DEFF Research Database (Denmark)

    Mark, Christina; Heiskanen, Arto; Zor, Kinga

    , et al., (2006), BioEssays, 28, p. 1091). Microfluidic cell culture enables in vitro experiments to approach in vivo conditions. Combining microfluidics with the Lab-On-a-Chip concept allows implementing a wide range of assays for real-time monitoring of effects in a biological system of factors...... such as concentration of selected compounds, external pH, oxygen consumption, redox state and cell viability. The aleurone layer of the barley seed is a 2-3 single cell type thick tissue that can be dissected from the embryo and starchy endosperm. During incubation in vitro this mechanically very robust maintains...

  18. Oxygen and coke oven gas (COG) consumption optimization at hot stove of Usiminas blast furnace 3; Otimizacao do consumo de oxigenio e GCO nos regeneradores do alto forno 3 da Usiminas

    Energy Technology Data Exchange (ETDEWEB)

    Cervino, Marco Antonio; Bastos, Moises Hofer [Usiminas, Ipatinga, MG (Brazil)

    2001-07-01

    This paper presents the model developed for determination of the correlation between oxygen and coke oven gas (COG) consumption in the hot stove at Usiminas blast furnace 3, the applicability and results obtained. (author)

  19. Consumption of resistant starch decreases postprandial lipogenesis in white adipose tissue of the rat

    Directory of Open Access Journals (Sweden)

    Brown Marc A

    2006-09-01

    Full Text Available Abstract Chronic consumption of diets high in resistant starch (RS leads to reduced fat cell size compared to diets high in digestible starch (DS in rats and increases total and meal fat oxidation in humans. The aim of the present study was to examine the rate of lipogenesis in key lipogenic organs following a high RS or DS meal. Following an overnight fast, male Wistar rats ingested a meal with an RS content of 2% or 30% of total carbohydrate and were then administered an i.p bolus of 50 μCi 3H2O either immediately or 1 hour post-meal. One hour following tracer administration, rats were sacrificed, a blood sample collected, and the liver, white adipose tissue (WAT, and gastrocnemius muscle excised and frozen until assayed for total 3H-lipid and 3H-glycogen content. Plasma triglyceride and NEFA concentrations and 3H-glycogen content did not differ between groups. In all tissues, except the liver, there was a trend for the rate of lipogenesis to be higher in the DS group than the RS group which reached significance only in WAT at 1 h (p

  20. Accelerated oxygen consumption by catecholamines in the presence of aromatic nitro and nitroso compounds. Implications and neurotoxicity of nitro compounds

    International Nuclear Information System (INIS)

    Sridhar, K.

    1981-01-01

    The interactions of catecholamines with nitro and nitroso compounds are studied in view of the possible involvement of catecholamine type neurotransmitters in neurotoxicity caused by hypoxic cell sensitizers. The data reported suggest that neurotoxicity of nitro compounds may be due to depletion of oxygen, catecholamines and ascorbate in nerve tissue with concomitant generation of toxic species such as hydroxyl, hydronitroxyl and superoxide free radicals as well as nitroso and quinonoid derivatives. 5 references, 1 figure

  1. Wii, Kinect, and Move. Heart Rate, Oxygen Consumption, Energy Expenditure, and Ventilation due to Different Physically Active Video Game Systems in College Students

    OpenAIRE

    SCHEER, KRISTA S.; SIEBRANT, SARAH M.; BROWN, GREGORY A.; SHAW, BRANDON S.; SHAW, INA

    2014-01-01

    Nintendo Wii, Sony Playstation Move, and Microsoft XBOX Kinect are home video gaming systems that involve player movement to control on-screen game play. Numerous investigations have demonstrated that playing Wii is moderate physical activity at best, but Move and Kinect have not been as thoroughly investigated. The purpose of this study was to compare heart rate, oxygen consumption, and ventilation while playing the games Wii Boxing, Kinect Boxing, and Move Gladiatorial Combat. Heart rate, o...

  2. Effects of Hyperoxia on Oxygen-Related Inflammation with a Focus on Obesity

    Directory of Open Access Journals (Sweden)

    Pedro González-Muniesa

    2016-01-01

    Full Text Available Several studies have shown a pathological oxygenation (hypoxia/hyperoxia on the adipose tissue in obese subjects. Additionally, the excess of body weight is often accompanied by a state of chronic low-degree inflammation. The inflammation phenomenon is a complex biological response mounted by tissues to combat injurious stimuli in order to maintain cell homeostasis. Furthermore, it is believed that the abnormal oxygen partial pressure occurring in adipose tissue is involved in triggering inflammatory processes. In this context, oxygen is used in modern medicine as a treatment for several diseases with inflammatory components. Thus, hyperbaric oxygenation has demonstrated beneficial effects, apart from improving local tissue oxygenation, on promoting angiogenesis, wound healing, providing neuroprotection, facilitating glucose uptake, appetite, and others. Nevertheless, an excessive hyperoxia exposure can lead to deleterious effects such as oxidative stress, pulmonary edema, and maybe inflammation. Interestingly, some of these favorable outcomes occur under high and low oxygen concentrations. Hereby, we review a potential therapeutic approach to the management of obesity as well as the oxygen-related inflammation accompanying expanded adipose tissue, based on elevated oxygen concentrations. To conclude, we highlight at the end of this review some areas that need further clarification.

  3. Simultaneous Monitoring of Vascular Oxygenation and Tissue Oxygen Tension of Breast Tumors Under Hyperbaric Oxygen Exposure

    National Research Council Canada - National Science Library

    Xia, Mengna

    2005-01-01

    The goals of the study in the first stage are 1) to develop a mathematic model by which we can derive tumor blood flow and metabolic rate of oxygen from hemoglobin concentration during interventions, 2...

  4. Maximal Oxygen Consumption is Reduced in Aquaporin-1 Knockout Mice

    Directory of Open Access Journals (Sweden)

    Samer Al-Samir

    2016-08-01

    Full Text Available We have measured maximal oxygen consumption (V’O2,max of mice lacking one or two of the established mouse red-cell CO2 channels AQP1, AQP9 and Rhag. We intended to study whether these proteins, by acting as channels for O2, determine O2 exchange in the lung and in the periphery. We found that V’O2,max as determined by the Helox technique is reduced by ~ 16%, when AQP1 is knocked out, but not when AQP9 or Rhag are lacking. This figure holds for animals respiring normoxic as well as hypoxic gas mixtures. To see whether the reduction of V’O2,max is due to impaired O2 uptake in the lung, we measured carotid arterial O2 saturation (SO2 by pulse oximetry. Neither under normoxic (inspiratory O2 21% nor under hypoxic conditions (11% O2 is there a difference in SO2 between AQP1null and WT mice, suggesting that AQP1 is not critical for O2 uptake in the lung. The fact that the % reduction of V’O2,max is identical in normoxia and hypoxia indicates moreover that the limitation of V’O2,max is not due to an O2 diffusion problem, neither in the lung nor in the periphery. Instead, it appears likely that AQP1null animals exhibit a reduced V’O2,max due to the reduced wall thickness and muscle mass of the left ventricles of their hearts, as reported previously. We conclude that very likely the properties of the hearts of AQP1 knockout mice cause a reduced maximal cardiac output and thus cause a reduced V’O2,max, which constitutes a new phenotype of these mice.

  5. Water consumption in Iron Age, Roman, and Early Medieval Croatia.

    Science.gov (United States)

    Lightfoot, E; Slaus, M; O'Connell, T C

    2014-08-01

    Patterns of water consumption by past human populations are rarely considered, yet drinking behavior is socially mediated and access to water sources is often socially controlled. Oxygen isotope analysis of archeological human remains is commonly used to identify migrants in the archeological record, but it can also be used to consider water itself, as this technique documents water consumption rather than migration directly. Here, we report an oxygen isotope study of humans and animals from coastal regions of Croatia in the Iron Age, Roman, and Early Medieval periods. The results show that while faunal values have little diachronic variation, the human data vary through time, and there are wide ranges of values within each period. Our interpretation is that this is not solely a result of mobility, but that human behavior can and did lead to human oxygen isotope ratios that are different from that expected from consumption of local precipitation. © 2014 Wiley Periodicals, Inc.

  6. Modification of the radiation response of pig skin by manipulation of tissue oxygen tension using anesthetics and administration of BW12C

    International Nuclear Information System (INIS)

    van den Aardweg, G.J.; Hopewell, J.W.; Barnes, D.W.; Sansom, J.M.; Nethersell, A.B.

    1989-01-01

    The importance of tissue oxygen tension on radiosensitivity was studied by examining modifications in the incidence of moist desquamation in pig skin after irradiation with strontium-90 plaques. The effects were analyzed using quantal dose-response data and comparisons were made using ED50 values for moist desquamation. Under standard anesthetic conditions of 2% halothane, approximately 70% oxygen, and approximately 30% nitrous oxide, the ED50 value (+/- SE) for moist desquamation was 27.32 +/- 0.52 Gy with no significant variation in radiosensitivity between dorsal, lateral, and ventral skin sites on the flank. Irradiation with 2% halothane and air increased the ED50 to 31.25 +/- 0.94 Gy, primarily due to an increased radioresistance of the dorsal sites. When combined with BW12C, a drug which binds oxygen selectively to hemoglobin and hence reduced the oxygen availability to tissues, a further increase in the ED50 values was observed. This was approximately 39 Gy with BW12C concentrations of 30 mg/kg and 50 mg/kg b.w. of BW12C, indicating a dose modification factor (DMF) of approximately 1.26. However, when animals were breathing the standard gas mixture, this DMF was reduced to 1.15 for 30 mg/kg of BW12C, indicating that a higher level of oxygen partly counteracted the effects of the drug in these studies with BW12C. The greatest variability in radiosensitivity was seen in the dorsal fields. This suggested complex physiological adaptation, a phenomenon that might also explain the absence of any modification of the radiation response when 100 mg/kg of BW12C was used

  7. Impact of hypoxia on consumption of Baltic cod in a multispecies stock assessment context

    DEFF Research Database (Denmark)

    Teschner, E.C.; Kraus, G.; Neuenfeldt, Stefan

    2010-01-01

    The Baltic Sea is characterised by a heterogeneous oceanographic environment. The deep water layers forming the habitat of Baltic cod (Gadus morhua callarias L.) are subjected to frequently occurring pronounced anoxic conditions. Adverse oxygen conditions result in physiological stress for organi......The Baltic Sea is characterised by a heterogeneous oceanographic environment. The deep water layers forming the habitat of Baltic cod (Gadus morhua callarias L.) are subjected to frequently occurring pronounced anoxic conditions. Adverse oxygen conditions result in physiological stress...... for organisms living under these conditions. For cod e.g. a direct relationship between oxygen availability and food intake with a decreasing ingestion rate at hypoxia could be revealed. In the present study, the effects of oxygen deficiency on consumption rates were investigated and how these translate...... to stock size estimates in multi-species models. Based on results from laboratory experiments, a model was fitted to evacuation rates at different oxygen levels and integrated into the existing consumption model for Baltic cod. Individual mean oxygen corrected consumption rates were 0.1–10.9% lower than...

  8. Engineering zonal cartilaginous tissue by modulating oxygen levels and mechanical cues through the depth of infrapatellar fat pad stem cell laden hydrogels.

    Science.gov (United States)

    Luo, Lu; O'Reilly, Adam R; Thorpe, Stephen D; Buckley, Conor T; Kelly, Daniel J

    2017-09-01

    Engineering tissues with a structure and spatial composition mimicking those of native articular cartilage (AC) remains a challenge. This study examined if infrapatellar fat pad-derived stem cells (FPSCs) can be used to engineer cartilage grafts with a bulk composition and a spatial distribution of matrix similar to the native tissue. In an attempt to mimic the oxygen gradients and mechanical environment within AC, FPSC-laden hydrogels (either 2 mm or 4 mm in height) were confined to half of their thickness and/or subjected to dynamic compression (DC). Confining FPSC-laden hydrogels was predicted to accentuate the gradient in oxygen tension through the depth of the constructs (higher in the top and lower in the bottom), leading to enhanced glycosaminoglycan (GAG) and collagen synthesis in 2 mm high tissues. When subjected to DC alone, both GAG and collagen accumulation increased within 2 mm high unconfined constructs. Furthermore, the dynamic modulus of constructs increased from 0.96 MPa to 1.45 MPa following the application of DC. There was no synergistic benefit of coupling confinement and DC on overall levels of matrix accumulation; however in all constructs, irrespective of their height, the combination of these boundary conditions led to the development of engineered tissues that spatially best resembled native AC. The superficial region of these constructs mimicked that of native tissue, staining weakly for GAG, strongly for type II collagen, and in 4 mm high tissues more intensely for proteoglycan 4 (lubricin). This study demonstrated that FPSCs respond to joint-like environmental conditions by producing cartilage tissues mimicking native AC. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Simultaneously Occurring Elevated Metabolic States Expose Constraints in Maximal Levels of Oxygen Consumption in the Oviparous Snake Lamprophis fuliginosus.

    Science.gov (United States)

    Jackson, Alexander Garrett Schavran; Leu, Szu-Yun; Hicks, James W

    African house snakes (Lamprophis fuliginosus) were used to compare the metabolic increments associated with reproduction, digestion, and activity both individually and when combined simultaneously. Rates of oxygen consumption ([Formula: see text]) and carbon dioxide production ([Formula: see text]) were measured in adult female (nonreproductive and reproductive) and adult male snakes during rest, digestion, activity while fasting, and postprandial activity. We also compared the endurance time (i.e., time to exhaustion) during activity while fasting and postprandial activity in males and females. For nonreproductive females and males, our results indicate that the metabolic increments of digestion (∼3-6-fold) and activity while fasting (∼6-10-fold) did not interact in an additive fashion; instead, the aerobic scope associated with postprandial activity was 40%-50% lower, and animals reached exhaustion up to 11 min sooner. During reproduction, there was no change in digestive [Formula: see text], but aerobic scope for activity while fasting was 30% lower than nonreproductive values. The prioritization pattern of oxygen delivery exhibited by L. fuliginosus during postprandial activity (in both males and females) and for activity while fasting (in reproductive females) was more constrained than predicted (i.e., instead of unchanged [Formula: see text], peak values were 30%-40% lower). Overall, our results indicate that L. fuliginosus's cardiopulmonary system's capacity for oxygen delivery was not sufficient to maintain the metabolic increments associated with reproduction, digestion, and activity simultaneously without limiting aerobic scope and/or activity performance.

  10. A pilot study of a new spectrophotometry device to measure tissue oxygen saturation.

    Science.gov (United States)

    Abel, Gemma; Allen, John; Drinnan, Michael

    2014-09-01

    Tissue oxygen saturation (SO2) measurements have the potential for far wider use than at present but are limited by device availability and portability for many potential applications. A device based on a small, low-cost general-purpose spectrophotometer (the Harrison device) might facilitate wider use. The aim of this study was to compare the Harrison device with a commercial instrument, the LEA O2C.Measurements were carried out on the forearm and finger of 20 healthy volunteers, using a blood pressure cuff on the upper arm to induce different levels of oxygenation. Repeatability of both devices was assessed, and the Bland-Altman method was used to assess agreement between them.The devices showed agreement in overall tracking of changes in SO2. Test-retest agreement for the Harrison device was worse than for O2C, with SD repeatability of 10.6% (forearm) or 18.6% (finger). There was no overall bias between devices, but mean (SD) difference of 1.2 (11.8%) (forearm) or 4.4 (11.5%) (finger) were outside of a clinically acceptable range.Disagreements were attributed to the stability of the Harrison probe and the natural SO2 variations across the skin surface increasing the random error. Therefore, though not equivalent to the LEA O2C, a probe redesign and averaged measurements may help establish the Harrison device as a low cost alternative.

  11. A pilot study of a new spectrophotometry device to measure tissue oxygen saturation

    International Nuclear Information System (INIS)

    Abel, Gemma; Allen, John; Drinnan, Michael

    2014-01-01

    Tissue oxygen saturation (SO2) measurements have the potential for far wider use than at present but are limited by device availability and portability for many potential applications. A device based on a small, low-cost general-purpose spectrophotometer (the Harrison device) might facilitate wider use. The aim of this study was to compare the Harrison device with a commercial instrument, the LEA O2C. Measurements were carried out on the forearm and finger of 20 healthy volunteers, using a blood pressure cuff on the upper arm to induce different levels of oxygenation. Repeatability of both devices was assessed, and the Bland–Altman method was used to assess agreement between them. The devices showed agreement in overall tracking of changes in SO2. Test–retest agreement for the Harrison device was worse than for O2C, with SD repeatability of 10.6% (forearm) or 18.6% (finger). There was no overall bias between devices, but mean (SD) difference of 1.2 (11.8%) (forearm) or 4.4 (11.5%) (finger) were outside of a clinically acceptable range. Disagreements were attributed to the stability of the Harrison probe and the natural SO2 variations across the skin surface increasing the random error. Therefore, though not equivalent to the LEA O2C, a probe redesign and averaged measurements may help establish the Harrison device as a low cost alternative. (paper)

  12. Persistent increase in oxygen consumption and impaired neurovascular coupling after spreading depression in rat neocortex.

    Science.gov (United States)

    Piilgaard, Henning; Lauritzen, Martin

    2009-09-01

    Cortical spreading depression (CSD) is associated with a dramatic failure of brain ion homeostasis and increased energy metabolism. There is strong clinical and experimental evidence to suggest that CSD is the mechanism of migraine, and involved in progressive neuronal injury in stroke and head trauma. Here we tested the hypothesis that single episodes of CSD induced acute hypoxia, and prolonged impairment of neurovascular and neurometabolic coupling. Cortical spreading depression was induced in rat frontal cortex, whereas cortical electrical activity and local field potentials (LFPs) were recorded by glass microelectrodes, cerebral blood flow (CBF) by laser-Doppler flowmetry, and tissue oxygen tension (tpO(2)) with polarographic microelectrodes. Cortical spreading depression increased cerebral metabolic rate of oxygen (CMRO(2)) by 71%+/-6.7% and CBF by 238%+/-48.1% for 1 to 2 mins. For the following 2 h, basal tpO(2) and CBF were reduced whereas basal CMRO(2) was persistently elevated by 8.1%+/-2.9%. In addition, within first hour after CSD we found impaired neurovascular coupling (LFP versus CBF), whereas neurometabolic coupling (LFP versus CMRO(2)) remained unaffected. Impaired neurovascular coupling was explained by both reduced vascular reactivity and suppressed function of cortical inhibitory interneurons. The protracted effects of CSD on basal CMRO(2) and neurovascular coupling may contribute to cellular dysfunction in patients with migraine and acutely injured cerebral cortex.

  13. The influence of ascorbic acid on the oxygen consumption and the heat production by the cells of wheat seedling roots with their mitochondrial electron transport chain inhibited at complexes I and III

    International Nuclear Information System (INIS)

    Gordon, L.K.; Rakhmatullina, D.F.; Ogorodnikova, T.I.; Alyabyev, A.J.; Minibayeva, F.V.; Loseva, N.L.; Mityashina, S.Y.

    2007-01-01

    The influence of exogenous ascorbic acid (AsA) on oxidative phosphorylation was studied using wheat seedling roots. Treatment of them with AsA stimulated the rates of oxygen consumption and the heat production and caused a decrease of the respiratory coefficient. The increase in respiration was prevented by inhibitors of ascorbate oxidase, diethyldithiocarbamate (DEDTC), and of cytochrome oxidase, cyanide (KCN). Exogenous AsA sharply stimulated the rate of oxygen consumption of roots when complexes I and III of the mitochondrial electron transport chain were inhibited by rotenone and antimycin A, respectively, while the rates of heat production did not change significantly. It is concluded that AsA is a potent energy substrate, which can be used in conditions of failing I and III complexes in the mitochondrial electron transport chain

  14. Optoacoustic measurements of human placenta and umbilical blood oxygenation

    Science.gov (United States)

    Nanovskaya, T. N.; Petrov, I. Y.; Petrov, Y.; Patrikeeva, S. L.; Ahmed, M. S.; Hankins, G. D. V.; Prough, D. S.; Esenaliev, R. O.

    2016-03-01

    Adequate oxygenation is essential for normal embryogenesis and fetal growth. Perturbations in the intrauterine oxidative environment during pregnancy are associated with several pathophysiological disorders such as pregnancy loss, preeclampsia, and intrauterine growth restriction. We proposed to use optoacoustic technology for monitoring placental and fetal umbilical blood oxygenation. In this work, we studied optoacoustic monitoring of oxygenation in placenta and umbilical cord blood ex vivo using technique of placenta perfusion. We used a medical grade, nearinfrared, tunable, optoacoustic system developed and built for oxygenation monitoring in blood vessels and in tissues. First, we calibrated the system for cord blood oxygenation measurements by using a CO-Oximeter (gold standard). Then we performed validation in cord blood circulating through the catheters localized on the fetal side of an isolated placental lobule. Finally, the oxygenation measurements were performed in the perfused placental tissue. To increase or decrease blood oxygenation, we used infusion of a gas mixture of 95% O2 + 5% CO2 and 95% N2 + 5% CO2, respectively. In placental tissue, up to four cycles of changes in oxygenation were performed. The optoacoustically measured oxygenation in circulating cord blood and in placental lobule closely correlated with the actual oxygenation data measured by CO-Oximeter. We plan to further test the placental and cord blood oxygenation monitoring with optoacoustics in animal and clinical studies.

  15. Brain Oxygen Optimization in Severe Traumatic Brain Injury Phase-II: A Phase II Randomized Trial.

    Science.gov (United States)

    Okonkwo, David O; Shutter, Lori A; Moore, Carol; Temkin, Nancy R; Puccio, Ava M; Madden, Christopher J; Andaluz, Norberto; Chesnut, Randall M; Bullock, M Ross; Grant, Gerald A; McGregor, John; Weaver, Michael; Jallo, Jack; LeRoux, Peter D; Moberg, Dick; Barber, Jason; Lazaridis, Christos; Diaz-Arrastia, Ramon R

    2017-11-01

    A relationship between reduced brain tissue oxygenation and poor outcome following severe traumatic brain injury has been reported in observational studies. We designed a Phase II trial to assess whether a neurocritical care management protocol could improve brain tissue oxygenation levels in patients with severe traumatic brain injury and the feasibility of a Phase III efficacy study. Randomized prospective clinical trial. Ten ICUs in the United States. One hundred nineteen severe traumatic brain injury patients. Patients were randomized to treatment protocol based on intracranial pressure plus brain tissue oxygenation monitoring versus intracranial pressure monitoring alone. Brain tissue oxygenation data were recorded in the intracranial pressure -only group in blinded fashion. Tiered interventions in each arm were specified and impact on intracranial pressure and brain tissue oxygenation measured. Monitors were removed if values were normal for 48 hours consecutively, or after 5 days. Outcome was measured at 6 months using the Glasgow Outcome Scale-Extended. A management protocol based on brain tissue oxygenation and intracranial pressure monitoring reduced the proportion of time with brain tissue hypoxia after severe traumatic brain injury (0.45 in intracranial pressure-only group and 0.16 in intracranial pressure plus brain tissue oxygenation group; p injury after severe traumatic brain injury based on brain tissue oxygenation and intracranial pressure values was consistent with reduced mortality and increased proportions of patients with good recovery compared with intracranial pressure-only management; however, the study was not powered for clinical efficacy. Management of severe traumatic brain injury informed by multimodal intracranial pressure and brain tissue oxygenation monitoring reduced brain tissue hypoxia with a trend toward lower mortality and more favorable outcomes than intracranial pressure-only treatment. A Phase III randomized trial to assess

  16. Measurement of Local Partial Pressure of Oxygen in the Brain Tissue under Normoxia and Epilepsy with Phosphorescence Lifetime Microscopy

    Science.gov (United States)

    Zhang, Cong; Bélanger, Samuel; Pouliot, Philippe; Lesage, Frédéric

    2015-01-01

    In this work a method for measuring brain oxygen partial pressure with confocal phosphorescence lifetime microscopy system is reported. When used in conjunction with a dendritic phosphorescent probe, Oxyphor G4, this system enabled minimally invasive measurements of oxygen partial pressure (pO2) in cerebral tissue with high spatial and temporal resolution during 4-AP induced epileptic seizures. Investigating epileptic events, we characterized the spatio-temporal distribution of the "initial dip" in pO2 near the probe injection site and along nearby arterioles. Our results reveal a correlation between the percent change in the pO2 signal during the "initial dip" and the duration of seizure-like activity, which can help localize the epileptic focus and predict the length of seizure. PMID:26305777

  17. Measurement of Local Partial Pressure of Oxygen in the Brain Tissue under Normoxia and Epilepsy with Phosphorescence Lifetime Microscopy.

    Science.gov (United States)

    Zhang, Cong; Bélanger, Samuel; Pouliot, Philippe; Lesage, Frédéric

    2015-01-01

    In this work a method for measuring brain oxygen partial pressure with confocal phosphorescence lifetime microscopy system is reported. When used in conjunction with a dendritic phosphorescent probe, Oxyphor G4, this system enabled minimally invasive measurements of oxygen partial pressure (pO2) in cerebral tissue with high spatial and temporal resolution during 4-AP induced epileptic seizures. Investigating epileptic events, we characterized the spatio-temporal distribution of the "initial dip" in pO2 near the probe injection site and along nearby arterioles. Our results reveal a correlation between the percent change in the pO2 signal during the "initial dip" and the duration of seizure-like activity, which can help localize the epileptic focus and predict the length of seizure.

  18. Oxygen consumption and responses of the freshwater snail Bulinus ...

    African Journals Online (AJOL)

    behaviour to oxygen differences in the water is of special interest. Knowledge of this ... fold, the prosobranch, to enhance the gaseous exchange between the animal ..... meins that little stress on the respiration ability was encountered towards ...

  19. Hepatic blood flow and splanchnic oxygen consumption in patients with liver failure. Effect of high-volume plasmapheresis.

    Science.gov (United States)

    Clemmesen, J O; Gerbes, A L; Gülberg, V; Hansen, B A; Larsen, F S; Skak, C; Tygstrup, N; Ott, P

    1999-02-01

    Liver failure represents a major therapeutic challenge, and yet basic pathophysiological questions about hepatic perfusion and oxygenation in this condition have been poorly investigated. In this study, hepatic blood flow (HBF) and splanchnic oxygen delivery (DO2, sp) and oxygen consumption (VO2,sp) were assessed in patients with liver failure defined as hepatic encephalopathy grade II or more. Measurements were repeated after high-volume plasmapheresis (HVP) with exchange of 8 to 10 L of plasma. HBF was estimated by use of constant infusion of D-sorbitol and calculated according to Fick's principle from peripheral artery and hepatic vein concentrations. In 14 patients with acute liver failure (ALF), HBF (1.78 +/- 0.78 L/min) and VO2,sp (3.9 +/- 0.9 mmol/min) were higher than in 11 patients without liver disease (1.07 +/- 0.19 L/min, P HVP, HBF increased from 1.67 +/- 0.72 to 2.07 +/- 1.11 L/min (n=11) in ALF, and from 1.89 +/- 1.32 to 2.34 +/- 1.54 L/min (n=7) in AOCLD, P HVP. Blood flow was redirected to the liver as the systemic vascular resistance index increased (1,587 +/- 650 vs. 2, 020 +/- 806 Dyne. s. cm-5. m2, P HVP, but as cardiac output increased from 9.1 +/- 2.8 to 10.1 +/- 2.9 L/min (P HVP (n=18), DO2,sp increased by 15% (P HVP. Changes of ET-1 were positively correlated with changes in HBF (P HVP (P HVP did not correlate. Our data suggest that liver failure is associated with increased HBF and VO2, sp. HVP further increased HBF and DO2,sp but VO2,sp was unchanged, indicating that splanchnic hypoxia was not present.

  20. Singlet oxygen explicit dosimetry to predict long-term local tumor control for BPD-mediated photodynamic therapy

    Science.gov (United States)

    Kim, Michele M.; Penjweini, Rozhin; Ong, Yi Hong; Zhu, Timothy C.

    2017-02-01

    Photodynamic therapy (PDT) is a well-established treatment modality for cancer and other malignant diseases; however, quantities such as light fluence, photosensitizer photobleaching rate, and PDT dose do not fully account for all of the dynamic interactions between the key components involved. In particular, fluence rate (Φ) effects are not accounted for, which has a large effect on the oxygen consumption rate. In this preclinical study, reacted singlet oxygen [1O2]rx was investigated as a dosimetric quantity for PDT outcome. The ability of [1O2]rx to predict the long-term local tumor control rate (LCR) for BPD-mediated PDT was examined. Mice bearing radioactivelyinduced fibrosarcoma (RIF) tumors were treated with different in-air fluences (250, 300, and 350 J/cm2) and in-air ϕ (75, 100, and150 mW/cm2) with a BPD dose of 1 mg/kg and a drug-light interval of 3 hours. Treatment was delivered with a collimated laser beam of 1 cm diameter at 690 nm. Explicit dosimetry of initial tissue oxygen concentration, tissue optical properties, and BPD concentration was used to calculate [1O2]rx. Φ was calculated for the treatment volume based on Monte-Carlo simulations and measured tissue optical properties. Kaplan-Meier analyses for LCR were done for an endpoint of tumor volume defined as the product of the timeintegral of photosensitizer concentration and Φ at a 3 mm tumor depth. Preliminary studies show that [1O2]rx better correlates with LCR and is an effective dosimetric quantity that can predict treatment outcome.

  1. Influence of exercise duration on cardiorespiratory responses, energy cost and tissue oxygenation within a 6 hour treadmill run

    Directory of Open Access Journals (Sweden)

    Hugo A. Kerhervé

    2017-10-01

    Full Text Available Purpose The physiological mechanisms for alterations in oxygen utilization ( $\\dot {\\mathrm{V }}{\\mathrm{O}}_{2}$ V ̇ O 2 and the energy cost of running (Cr during prolonged running are not completely understood, and could be linked with alterations in muscle and cerebral tissue oxygenation. Methods Eight trained ultramarathon runners (three women; mean ± SD; age 37 ± 7 yr; maximum $\\dot {\\mathrm{V }}{\\mathrm{O}}_{2}$ V ̇ O 2 60 ± 15 mL min−1 kg−1 completed a 6 hr treadmill run (6TR, which consisted of four modules, including periods of moderate (3 min at 10 km h−1, 10-CR and heavy exercise intensities (6 min at 70% of maximum $\\dot {\\mathrm{V }}{\\mathrm{O}}_{2}$ V ̇ O 2 , HILL, separated by three, 100 min periods of self-paced running (SP. We measured $\\dot {\\mathrm{V }}{\\mathrm{O}}_{2}$ V ̇ O 2 , minute ventilation ( ${\\dot {\\mathrm{V }}}_{\\mathrm{E}}$ V ̇ E , ventilatory efficiency ( ${\\dot {\\mathrm{V }}}_{\\mathrm{E}}:\\dot {\\mathrm{V }}{\\mathrm{O}}_{2}$ V ̇ E : V ̇ O 2 , respiratory exchange ratio (RER, Cr, muscle and cerebral tissue saturation index (TSI during the modules, and heart rate (HR and perceived exertion (RPE during the modules and SP. Results Participants ran 58.3 ± 10.5 km during 6TR. Speed decreased and HR and RPE increased during SP. Across the modules, HR and $\\dot {\\mathrm{V }}{\\mathrm{O}}_{2}$ V ̇ O 2 increased (10-CR, and RER decreased (10-CR and HILL. There were no significant changes in ${\\dot {\\mathrm{V }}}_{\\mathrm{E}}$ V ̇ E , ${\\dot {\\mathrm{V }}}_{\\mathrm{E}}:\\dot {\\mathrm{V }}{\\mathrm{O}}_{2}$ V ̇ E : V ̇ O 2 , Cr, TSI and RPE across the modules. Conclusions In the context of positive pacing (decreasing speed, increased cardiac drift and perceived exertion over the 6TR, we observed increased RER and increased HR at moderate and heavy exercise intensity, increased $\\dot {\\mathrm{V }}{\\mathrm{O}}_{2}$ V ̇ O 2 at moderate intensity, and no effect of

  2. The kinetics of oxygen and SO2 consumption by red wines. What do they tell about oxidation mechanisms and about changes in wine composition?

    Science.gov (United States)

    Carrascón, Vanesa; Vallverdú-Queralt, Anna; Meudec, Emmanuelle; Sommerer, Nicolas; Fernandez-Zurbano, Purificación; Ferreira, Vicente

    2018-02-15

    This work seeks to understand the kinetics of O 2 and SO 2 consumption of air-saturated red wine as a function of its chemical composition, and to describe the chemical changes suffered during the process in relation to the kinetics. Oxygen Consumption Rates (OCRs) are faster with higher copper and epigallocatechin contents and with higher absorbance at 620nm and slower with higher levels of gallic acid and catechin terminal units in tannins. Acetaldehyde Reactive Polyphenols (ARPs) may be key elements determining OCRs. It is confirmed that SO 2 is poorly consumed in the first saturation. Phenylalanine, methionine and maybe, cysteine, seem to be consumed instead. A low SO 2 consumption is favoured by low levels of SO 2 , by a low availability of free SO 2 caused by a high anthocyanin/tannin ratio, and by a polyphenolic profile poor in epigallocatechin and rich in catechin-rich tannins. Wines consuming SO 2 efficiently consume more epigallocatechin, prodelphinidins and procyanidins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Local CBF, oxygen extraction fraction (OEF) and CMRO/sub 2/: prognostic value in recent supratentorial infarction in humans

    Energy Technology Data Exchange (ETDEWEB)

    Baron, J C; Rougemont, D; Bousser, M G; Lebrun-Grandie, P; Iba-Zizen, M T; Chiras, J

    1983-06-01

    Cerebral blood flow (CBF) and oxygen consumption (CMRO/sub 2/) have been measured locally using positron emission tomography (PET) in 25 patients (34 studies) with recent cerebral infarction. The data analysis yielded threshold values for CBF and CMRO/sub 2/ that reliably separated the brain areas spontaneously evolving to necrosis from those maintaining integrity (as determined by C.T. Scanning) but still showing significant changes in CBF and/or CMRO/sub 2/. These results suggest the potential use of PET for estimation of tissue prognosis in recent cerebral infarction.

  4. Oxygen uptake from aquatic macrophyte decomposition from Piraju Reservoir (Piraju, SP, Brazil

    Directory of Open Access Journals (Sweden)

    I. Bianchini Jr.

    Full Text Available The kinetics of oxygen consumption related to mineralisation of 18 taxa of aquatic macrophytes (Cyperus sp, Azolla caroliniana, Echinodorus macrophyllus, Eichhornia azurea, Eichhornia crassipes, Eleocharis sp1, Eleocharis sp2, Hetereanthera multiflora, Hydrocotyle raniculoides, Ludwigia sp, Myriophyllum aquaticum, Nymphaea elegans, Oxycaryum cubense, Ricciocarpus natans, Rynchospora corymbosa, Salvinia auriculata, Typha domingensis and Utricularia foliosa from the reservoir of Piraju Hydroelectric Power Plant (São Paulo state, Brazil were described. For each species, two incubations were prepared with ca. 300.0 mg of plant (DW and 1.0 L of reservoir water sample. The incubations were maintained in the dark and at 20 ºC. Periodically the dissolved oxygen (DO concentrations were measured; the accumulated DO values were fitted to 1st order kinetic model and the results showed that: i high oxygen consumption was observed for Ludwigia sp (533 mg g-1 DW, while the lowest was registered for Eleocharis sp1 (205 mg g-1 DW mineralisation; ii the higher deoxygenation rate constants were verified in the mineralisation of A. caroliniana (0.052 day-1, H. raniculoides (0.050 day-1 and U. foliosa (0.049 day-1. The oxygen consumption rate constants of Ludwigia sp and Eleocharis sp2 mineralisation (0.027 day-1 were the lowest. The half-time of oxygen consumption varied from 9 to 26 days. In the short term, the detritus of E. macrophyllus, H. raniculoides, Ludwigia sp, N. elegans and U. foliosa were the critical resources to the reservoir oxygen demand; while in the long term, A. caroliniana, H. multiflora and T. domingensis were the resources that can potentially contribute to the benthic oxygen demand of this reservoir.

  5. Brain tissue partial pressure of oxygen predicts the outcome of severe traumatic brain injury under mild hypothermia treatment.

    Science.gov (United States)

    Sun, Hongtao; Zheng, Maohua; Wang, Yanmin; Diao, Yunfeng; Zhao, Wanyong; Wei, Zhengjun

    2016-01-01

    The aim of this study was to investigate the clinical significance and changes of brain tissue partial pressure of oxygen (PbtO2) in the course of mild hypothermia treatment (MHT) for treating severe traumatic brain injury (sTBI). There were 68 cases with sTBI undergoing MHT. PbtO2, intracranial pressure (ICP), jugular venous oxygen saturation (SjvO2), and cerebral perfusion pressure (CPP) were continuously monitored, and clinical outcomes were evaluated using the Glasgow Outcome Scale score. Of 68 patients with sTBI, PbtO2, SjvO2, and CPP were obviously increased, but decreased ICP level was observed throughout the MHT. PbtO2 and ICP were negatively linearly correlated, while there was a positive linear correlation between PbtO2 and SjvO2. Monitoring CPP and SjvO2 was performed under normal circumstances, and a large proportion of patients were detected with low PbtO2. Decreased PbtO2 was also found after MHT. Continuous PbtO2 monitoring could be introduced to evaluate the condition of regional cerebral oxygen metabolism, thereby guiding the clinical treatment and predicting the outcome.

  6. The Effects of Walking or Walking-with-Poles Training on Tissue Oxygenation in Patients with Peripheral Arterial Disease

    Directory of Open Access Journals (Sweden)

    Eileen G. Collins

    2012-01-01

    Full Text Available This randomized trial proposed to determine if there were differences in calf muscle StO2 parameters in patients before and after 12 weeks of a traditional walking or walking-with-poles exercise program. Data were collected on 85 patients who were randomized to a traditional walking program ( or walking-with-poles program ( of exercise training. Patients walked for 3 times weekly for 12 weeks. Seventy-one patients completed both the baseline and the 12-week follow-up progressive treadmill tests ( traditional walking and walking-with-poles. Using the near-infrared spectroscopy measures, StO2 was measured prior to, during, and after exercise. At baseline, calf muscle oxygenation decreased from % prior to the treadmill test to % at peak exercise. The time elapsed prior to reaching nadir StO2 values increased more in the traditional walking group when compared to the walking-with-poles group. Likewise, absolute walking time increased more in the traditional walking group than in the walking-with-poles group. Tissue oxygenation decline during treadmill testing was less for patients assigned to a 12-week traditional walking program when compared to those assigned to a 12-week walking-with-poles program. In conclusion, the 12-week traditional walking program was superior to walking-with-poles in improving tissue deoxygenation in patients with PAD.

  7. Water flow requirements related to oxygen consumption in juveniles of Oplegnathus insignis Requerimientos de flujo de agua en función del consumo de oxígeno en juveniles de Oplegnathus insignis

    Directory of Open Access Journals (Sweden)

    Elio Segovia

    2012-09-01

    Full Text Available In this study the oxygen consumption rate in four groups of Oplegnathus insignis was examined under three different water temperatures 13, 18 and 23°C. Average weight of each group of fish was 9.5, 198, 333 and 525 g respectively. Oxygen consumption was measured in a respirometer of 18.8 L capacity and results show that at the same water temperature occurs an inverse relationship between body weight and oxygen consumption whereas for same body weight (W in kg the respiration rate varies proportionally with temperature rise (T in °C. The generalized equation of oxygen consumption (Ro in routine metabolism was determined as: Ro (mg O2 kg-1 h-1 = [85.229 + (10.03 T]-(221.344 W. The information it is analized with regard to establishing quantitative relationships that allow a more precise specification of the water flow requirements and renewal rates in open flow systems without oxygenation, considering aspects such as body weight, respiratory rate, temperature and stocking density.Se determinó la tasa de consumo de oxígeno de Oplegnathus insignis en cuatro grupos de peces bajo tres temperaturas diferentes: 13, 18 y 23°C. El peso promedio de cada grupo de peces fue de 9,5, 198, 333 y 523 g respectivamente. El consumo de oxígeno se determinó en un respirómetro de 18,8 L de capacidad y los resultados muestran que a una misma temperatura ocurre una relación inversa entre el peso corporal (W en kg y el consumo de oxígeno, mientras que para un mismo peso corporal la tasa respiratoria varía proporcionalmente con el ascenso de temperatura (T en °C. La ecuación generalizada que representa el consumo de oxígeno (Ro en metabolismo de rutina se determinó como: Ro (mg O2 kg-1 h-1 = [85.229 + (10.03 T]-(221.344 W. Se analizó la información en relación a establecer las relaciones cuantitativas que permitan una especificación más exacta de los requerimientos de flujo de agua y tasas de renovación en sistemas de flujo abierto y sin oxigenaci

  8. In-vivo quantitative measurement of tissue oxygen saturation of human webbing using a transmission type continuous-wave near-infrared spectroscopy

    Science.gov (United States)

    Aizimu, Tuerxun; Adachi, Makoto; Nakano, Kazuya; Ohnishi, Takashi; Nakaguchi, Toshiya; Takahashi, Nozomi; Nakada, Taka-aki; Oda, Shigeto; Haneishi, Hideaki

    2018-02-01

    Near-infrared spectroscopy (NIRS) is a noninvasive method for monitoring tissue oxygen saturation (StO2). Many commercial NIRS devices are presently available. However, the precision of those devices is relatively poor because they are using the reflectance-model with which it is difficult to obtain the blood volume and other unchanged components of the tissue. Human webbing is a thin part of the hand and suitable to measure spectral transmittance. In this paper, we present a method for measuring StO2 of human webbing from a transmissive continuous-wave nearinfrared spectroscopy (CW-NIRS) data. The method is based on the modified Beer-Lambert law (MBL) and it consists of two steps. In the first step, we give a pressure to the upstream region of the measurement point to perturb the concentration of deoxy- and oxy-hemoglobin as remaining the other components and measure the spectral signals. From the measured data, spectral absorbance due to the components other than hemoglobin is calculated. In the second step, spectral measurement is performed at arbitrary time instance and the spectral absorbance obtained in the step 1 is subtracted from the measured absorbance. The tissue oxygen saturation (StO2) is estimated from the remained data. The method was evaluated on an arterial occlusion test (AOT) and a venous occlusion test (VOT). In the evaluation experiment, we confirmed that reasonable values of StO2 were obtained by the proposed method.

  9. Technical Resources for Fish and Shellfish Consumption

    Science.gov (United States)

    Information on ways to develop local fish advisories, access national state and local fish advisories, obtain information on fish tissue contamination and fish tissue studies, and access information on fish consumption and human health.

  10. Adipose Tissue CLK2 Promotes Energy Expenditure during High-Fat Diet Intermittent Fasting.

    Science.gov (United States)

    Hatting, Maximilian; Rines, Amy K; Luo, Chi; Tabata, Mitsuhisa; Sharabi, Kfir; Hall, Jessica A; Verdeguer, Francisco; Trautwein, Christian; Puigserver, Pere

    2017-02-07

    A promising approach to treating obesity is to increase diet-induced thermogenesis in brown adipose tissue (BAT), but the regulation of this process remains unclear. Here we find that CDC-like kinase 2 (CLK2) is expressed in BAT and upregulated upon refeeding. Mice lacking CLK2 in adipose tissue exhibit exacerbated obesity and decreased energy expenditure during high-fat diet intermittent fasting. Additionally, tissue oxygen consumption and protein levels of UCP1 are reduced in CLK2-deficient BAT. Phosphorylation of CREB, a transcriptional activator of UCP1, is markedly decreased in BAT cells lacking CLK2 due to enhanced CREB dephosphorylation. Mechanistically, CREB dephosphorylation is rescued by the inhibition of PP2A, a phosphatase that targets CREB. Our results suggest that CLK2 is a regulatory component of diet-induced thermogenesis in BAT through increased CREB-dependent expression of UCP1. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Blue light irradiation-induced oxidative stress in vivo via ROS generation in rat gingival tissue.

    Science.gov (United States)

    Yoshida, Ayaka; Shiotsu-Ogura, Yukako; Wada-Takahashi, Satoko; Takahashi, Shun-suke; Toyama, Toshizo; Yoshino, Fumihiko

    2015-10-01

    It has been reported that oxidative stress with reactive oxygen species (ROS) generation is induced by blue light irradiation to a living body. Only limited research has been reported in dental field on the dangers of blue light, mostly focusing on cytotoxicity associated with heat injury of dental pulp. We thus performed an in vivo study on oral tissue exposed to blue light. ROS generated upon blue light irradiation of flavin adenine dinucleotide were measured by electron spin resonance spectroscopy. After blue light irradiation, the palatal gingiva of Wistar rats were isolated. Collected samples were subjected to biochemical analysis of lipid peroxidation and glutathione. Singlet oxygen was generated by blue light irradiation, but was significantly quenched in an N-acetyl-L-cysteine (NAC) concentration-dependent manner. Blue light significantly accelerated oxidative stress and increased the oxidized glutathione levels in gingival tissue. These effects were also inhibited by NAC pre-administration. The results suggest that blue light irradiation at clinical levels of tooth bleaching treatment may enhance lipid peroxidation by the induction of oxidative stress and the consumption of a significant amount of intracellular glutathione. In addition, NAC might be an effective supplement for the protection of oral tissues against blue light irradiation-induced oxidative damage. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Oxygen--a limiting factor for brain recovery.

    Science.gov (United States)

    Hadanny, Amir; Efrati, Shai

    2015-09-01

    Effective brain metabolism is highly dependent on a narrow therapeutic window of oxygen. In major insults to the brain (e.g., intracerebral hemorrhage), a slight decrease in oxygen supply, as occurs in a hypobaric environment at high altitude, has devastating effects on the injured brain tissue. Conversely, increasing brain oxygenation, by the use of hyperbaric oxygen therapy, can improve brain metabolism and its dependent regenerative processes.

  13. Oxygen - a limiting factor for brain recovery

    OpenAIRE

    Hadanny, Amir; Efrati, Shai

    2015-01-01

    Effective brain metabolism is highly dependent on a narrow therapeutic window of oxygen. In major insults to the brain (e.g., intracerebral hemorrhage), a slight decrease in oxygen supply, as occurs in a hypobaric environment at high altitude, has devastating effects on the injured brain tissue. Conversely, increasing brain oxygenation, by the use of hyperbaric oxygen therapy, can improve brain metabolism and its dependent regenerative processes.

  14. Muscle mitochondrial capacity exceeds maximal oxygen delivery in humans

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher; Gnaiger, Erich; Calbet, Jose A L

    2011-01-01

    Across a wide range of species and body mass a close matching exists between maximal conductive oxygen delivery and mitochondrial respiratory rate. In this study we investigated in humans how closely in-vivo maximal oxygen consumption (VO(2) max) is matched to state 3 muscle mitochondrial respira...

  15. Magnetic field effects on spectrally resolved lifetime of on-line oxygen monitoring using magneto-optic probes

    Science.gov (United States)

    Mermut, O.; Gallant, P.; Le Bouch, N.; Leclair, S.; Noiseux, I.; Vernon, M.; Morin, J.-F.; Diamond, K.; Patterson, M. S.; Samkoe, K.; Pogue, B.

    2009-02-01

    Multimodal agents that serve as both probes for contrast and light-activated effectors of cellular processes in diseased tissue were developed. These agents were introduced into multicellular tumor spheroids (3D tissue models) and in the chorioallantoic membrane (CAM) of a chicken embryo. The luminescence decay was examined using a novel technique involving a spectrally-resolved fluorescence lifetime apparatus integrated with a weak electromagnet. A spectrallyresolved lifetime setup was used to identify magneto-optic species sensitive to magnetic field effects and distinguish from background emissions. We demonstrate that the applied magnetic fields can alter reaction rates and product distribution of some dyes detected by time- and spectrally-resolved luminescence changes. We will discuss the use of exogenous magneto-optical probes taken up in tumors to both induce phototoxicity, a process that is governed by complex and dynamically evolving mechanisms involving reactive oxygen species, and monitor treatment progress. The magnetic field enhancement, measured over a range of weak fields (0-300 mT) is correlated to oxygenation and may be used to monitor dynamic changes occurring due to oxygen consumption over the course of photodynamic therapy. Such online measurements provide the possibility to derive real-time information about response to treatment via monitoring magnetic field enhancement/suppression of the time-resolved, spectrally-resolved luminescence of the probe at the site of the treatment directly. Magnetic perturbation of lifetime can serve as a status reporter, providing optical feedback of oxygen-mediated treatments in situ and allowing for real-time adjustment of a phototherapy treatment plan.

  16. HIGD1A Regulates Oxygen Consumption, ROS Production, and AMPK Activity during Glucose Deprivation to Modulate Cell Survival and Tumor Growth

    Directory of Open Access Journals (Sweden)

    Kurosh Ameri

    2015-02-01

    Full Text Available Hypoxia-inducible gene domain family member 1A (HIGD1A is a survival factor induced by hypoxia-inducible factor 1 (HIF-1. HIF-1 regulates many responses to oxygen deprivation, but viable cells within hypoxic perinecrotic solid tumor regions frequently lack HIF-1α. HIGD1A is induced in these HIF-deficient extreme environments and interacts with the mitochondrial electron transport chain to repress oxygen consumption, enhance AMPK activity, and lower cellular ROS levels. Importantly, HIGD1A decreases tumor growth but promotes tumor cell survival in vivo. The human Higd1a gene is located on chromosome 3p22.1, where many tumor suppressor genes reside. Consistent with this, the Higd1a gene promoter is differentially methylated in human cancers, preventing its hypoxic induction. However, when hypoxic tumor cells are confronted with glucose deprivation, DNA methyltransferase activity is inhibited, enabling HIGD1A expression, metabolic adaptation, and possible dormancy induction. Our findings therefore reveal important new roles for this family of mitochondrial proteins in cancer biology.

  17. Effect of pneumatic tourniquet on muscle oxygen tension.

    Science.gov (United States)

    Santavirta, S; Höckerstedt, K; Niinikoski, J

    1978-10-01

    Recent investigations suggest that circulation in a limb can be reduced with a tourniquet to less than 1 per cent of the control limb, or even completely occluded. The development of tissue oxygen tonometry with implanted silastic tubes has provided new possibilities for assessing muscle tissue oxygen tension. In the present work, this method was employed to register the effect of tourniquet blackade on the lower limb muscle PO2 in rabbits. The duration of the tourniquet blockade was 60, 120 and 180 minutes. The baseline muscle PO2 in the tibialis anterior muscle was 22.6 +/- 0.6 mmHg. During the tourniquet blockade the oxygen tension dropped to minimal values between 9.2 +/- 0.5 and 10.7 +/- 0.6 mmHg in these experimental groups, but the tissue microclimate never reached fully anoxic conditions. The rapid response of muscle PO2 to oxygen breathing after release of the blockade suggests that limb microcirculation tolerates tourniquet occlusion well.

  18. Radio-oxidation of an EPDM elastomer under weak or strong ionising radiations: measurement and modelling of dioxygen consumption

    International Nuclear Information System (INIS)

    Dely, N.

    2005-10-01

    Usually, the irradiation of polymers under ionising radiations occurs in air that is in the presence of oxygen. This leads to a radio oxidation process and to oxygen consumption. Our material is an EPDM elastomer (ethylene propylene 1,4 hexadiene) used as insulator in control-command cables in nuclear plants (Pressurised Water Reactor). A specific device has been conceived and built up during this PhD work for measuring very small oxygen consumptions with an accuracy of around 10%. Ionising radiations used are electrons at 1 MeV and carbon ions at 11 MeV per nucleon. Under both electron and ion irradiations, the influence of oxygen pressure on oxygen consumption has been studied in a very large range: between 1 and 200 mbar. In both cases, the yield of oxygen consumption is constant in-between 200 and 5 mbar. Then, at lower pressures, it decreases appreciably. On the other hand, the oxygen consumption during ion irradiation is four times smaller than during electron irradiation. This emphasizes the role of the heterogeneity of the energy deposition at a nano-metric scale. The adjustment of the experimental results obtained during electron irradiation with the general homogeneous steady-state kinetic model has allowed extracting all the values of the kinetic parameters for the chosen mechanism of radio oxidation. The knowledge of these numbers will allow us to face our results obtained during ion irradiation with a heterogeneous kinetic model under development. (author)

  19. Acute effects of nicotine and smoking on blood flow, tissue oxygen, and aerobe metabolism of the skin and subcutis

    DEFF Research Database (Denmark)

    Sørensen, Lars Tue; Jørgensen, Stig; Petersen, Lars J

    2009-01-01

    BACKGROUND: Nicotine released from tobacco smoke causing reduction in blood flow has been suggested as causative for postoperative wound complications in smokers, but the mechanism remains unknown. MATERIALS AND METHODS: In eight healthy male smokers and eight ex-smokers, the cutaneous and subcut......BACKGROUND: Nicotine released from tobacco smoke causing reduction in blood flow has been suggested as causative for postoperative wound complications in smokers, but the mechanism remains unknown. MATERIALS AND METHODS: In eight healthy male smokers and eight ex-smokers, the cutaneous...... and subcutaneous blood flow (QBF, SqBF) was assessed by Laser Doppler and 133Xe clearance. Tissue oxygen tension (TO(2)) was measured by a LICOX O(2)-electrode. Tissue glucose and lactate (Tgluc, Tlact) were assessed by microdialysis. The parameters were studied after intravenous infusion of 1.0 mg nicotine......, smoking of one cigarette, arterial occlusion, and reperfusion. RESULTS: Nicotine infusion decreased SqBF from 4.2 +/- 2.0 to 3.1 +/- 1.2 mL/100 g tissue/min (P

  20. [Gradation in the level of vitamin consumption: possible risk of excessive consumption].

    Science.gov (United States)

    Kodentsova, V M

    2014-01-01

    The ratio between the levels of consumption of certain vitamins and minerals [recommended daily allowance for labelling purposes Vitamin A and beta-carotene maximum supplement levels coincides with UL, and recommended daily allowance for these micronutrients coincides with the maximal level of consumption through dietary supplements and/or multivitamins. Except for vitamin A and beta-carotene recommended daily allowance for other vitamins adopted in Russia are considerably lower than the upper safe level of consumption. For vitamin A and beta-carotene there is a potential risk for excess consumption. According to the literature data (meta-analysis) prolonged intake of high doses of antioxidant vitamins (above the RDA) both alone and in combination with two other vitamins or vitamin C [> 800 microg (R.E.) of vitamin A, > 9.6 mg of beta-carotene, > 15 mg (T.E.) of vitamin E] do not possess preventive effects and may be harmful with unwanted consequences to health, especially in well-nourished populations, persons having risk of lung cancer (smokers, workers exposed to asbestos), in certain conditions (in the atmosphere with high oxygen content, hyperoxia, oxygen therapy). Proposed mechanisms of such action may be due to the manifestation of prooxidant action when taken in high doses, shifting balance with other important natural antioxidants, their displacement (substitution), interference with the natural defense mechanisms. Athletes are the population group that requires attention as used antioxidant vitamins A, C, E, both individually and in combination in extremely high doses. In summary, it should be noted that intake of physiological doses which are equivalent to the needs of the human organism, as well as diet inclusion of fortified foods not only pose no threat to health, but will bring undoubted benefits, filling the existing lack of vitamins in the ration.

  1. Even mild respiratory distress alters tissue oxygenation significantly in preterm infants during neonatal transition

    International Nuclear Information System (INIS)

    Schwaberger, Bernhard; Pichler, Gerhard; Binder, Corinna; Pocivalnik, Mirjam; Urlesberger, Berndt; Avian, Alexander

    2014-01-01

    Near-infrared spectroscopy (NIRS) enables continuous non-invasive measurements of regional oxygen saturation (rSO 2 ). The aim was to evaluate the dynamics of rSO 2 of the brain, preductal and postductal tissues during postnatal transition in preterm infants with and without respiratory support (RS). This single-centre study was designed as an exploratory prospective observational study. Fifty one preterm infants (≥ 30 + 0 and < 37 + 0 weeks) delivered by caesarean section were included. RS using a T-Piece-Resuscitator and supplemental oxygen were given according to guidelines. NIRS measurements were carried out by using Invos Monitor (Covidien; USA) for the first 15 min of life. Three NIRS transducers were attached on the forehead (rSO 2 brain), the right forearm (rSO 2 arm) and the left lower leg (rSO 2 leg). Two groups were compared based on need for RS: normal transition (NT) and RS group. Results: In NT group rSO 2 brain increased over time and was significantly higher than rSO 2 arm, whereas in RS group rSO 2 brain and rSO 2 arm increased without significant differences. Courses of rSO 2 arm and rSO 2 leg increased over time and showed a converging pattern with initially lower values of rSO 2 leg in NT group and a diverging pattern with lower levels of rSO 2 leg in RS group. Overall, rSO 2 levels were higher in NT compared to RS group. Conclusion: Our findings indicate that the decreased rSO 2 levels in RS group compared to NT group are not only caused by lower arterial oxygen saturation levels, but also by a compromised perfusion even in infants with only mild respiratory distress. (paper)

  2. Preliminary Study of Oxygen-Enhanced Longitudinal Relaxation in MRI: A Potential Novel Biomarker of Oxygenation Changes in Solid Tumors

    International Nuclear Information System (INIS)

    O'Connor, James P.B.; Naish, Josephine H.; Parker, Geoff J.M.; Waterton, John C.; Watson, Yvonne; Jayson, Gordon C.; Buonaccorsi, Giovanni A.; Cheung, Sue; Buckley, David L.; McGrath, Deirdre M.; West, Catharine M.L.; Davidson, Susan E.; Roberts, Caleb; Mills, Samantha J.; Mitchell, Claire L.; Hope, Lynn; Ton, N. Chan; Jackson, Alan

    2009-01-01

    Purpose: There is considerable interest in developing non-invasive methods of mapping tumor hypoxia. Changes in tissue oxygen concentration produce proportional changes in the magnetic resonance imaging (MRI) longitudinal relaxation rate (R 1 ). This technique has been used previously to evaluate oxygen delivery to healthy tissues and is distinct from blood oxygenation level-dependent (BOLD) imaging. Here we report application of this method to detect alteration in tumor oxygenation status. Methods and materials: Ten patients with advanced cancer of the abdomen and pelvis underwent serial measurement of tumor R 1 while breathing medical air (21% oxygen) followed by 100% oxygen (oxygen-enhanced MRI). Gadolinium-based dynamic contrast-enhanced MRI was then performed to compare the spatial distribution of perfusion with that of oxygen-induced ΔR 1 . Results: ΔR 1 showed significant increases of 0.021 to 0.058 s -1 in eight patients with either locally recurrent tumor from cervical and hepatocellular carcinomas or metastases from ovarian and colorectal carcinomas. In general, there was congruency between perfusion and oxygen concentration. However, regional mismatch was observed in some tumor cores. Here, moderate gadolinium uptake (consistent with moderate perfusion) was associated with low area under the ΔR 1 curve (consistent with minimal increase in oxygen concentration). Conclusions: These results provide evidence that oxygen-enhanced longitudinal relaxation can monitor changes in tumor oxygen concentration. The technique shows promise in identifying hypoxic regions within tumors and may enable spatial mapping of change in tumor oxygen concentration.

  3. Real-Time Monitoring of Singlet Oxygen and Oxygen Partial Pressure During the Deep Photodynamic Therapy In Vitro.

    Science.gov (United States)

    Li, Weitao; Huang, Dong; Zhang, Yan; Liu, Yangyang; Gu, Yueqing; Qian, Zhiyu

    2016-09-01

    Photodynamic therapy (PDT) is an effective noninvasive method for the tumor treatment. The major challenge in current PDT research is how to quantitatively evaluate therapy effects. To our best knowledge, this is the first time to combine multi-parameter detection methods in PDT. More specifically, we have developed a set of system, including the high-sensitivity measurement of singlet oxygen, oxygen partial pressure and fluorescence image. In this paper, the detection ability of the system was validated by the different concentrations of carbon quantum dots. Moreover, the correlation between singlet oxygen and oxygen partial pressure with laser irradiation was observed. Then, the system could detect the signal up to 0.5 cm tissue depth with 660 nm irradiation and 1 cm tissue depth with 980 nm irradiation by using up-conversion nanoparticles during PDT in vitro. Furthermore, we obtained the relationship among concentration of singlet oxygen, oxygen partial pressure and tumor cell viability under certain conditions. The results indicate that the multi-parameter detection system is a promising asset to evaluate the deep tumor therapy during PDT. Moreover, the system might be potentially used for the further study in biology and molecular imaging.

  4. Measurement of brain oxygenation changes using dynamic T1-weighted imaging

    DEFF Research Database (Denmark)

    Haddock, Bryan; Larsson, Henrik B W; Hansen, Adam E

    2013-01-01

    Magnetic resonance imaging (MRI) has proven useful in evaluating oxygenation in several types of tissue and blood. This study evaluates brain tissue oxygenation changes between normoxia and hyperoxia in healthy subjects using dynamic T1 and T2*-weighted imaging sequences. The change in FiO2 induced...... by hyperoxia caused a significant decrease in T1. A model to determine changes in tissue oxygen tension from the T1-weighted MRI signal is presented based on previous findings that T1 is sensitive to oxygen tension whereas T2* is sensitive to blood saturation. The two sequences produce results with different...... regional and temporal dynamics. These differences combined with results from simulations of the T1 signal intensities, indicate an increase in extravascular oxygen tension during hyperoxia. This study concludes that T1 and T2* responses to FiO2 serve as independent biomarkers of oxygen physiology...

  5. Temperature dependence of microbial degradation of organic matter in marine sediments: polysaccharide hydrolysis, oxygen consumption, and sulfate reduction

    DEFF Research Database (Denmark)

    Arnosti, C.; Jørgensen, BB; Sagemann, J.

    1998-01-01

    The temperature dependence of representative initial and terminal steps of organic carbon remineralization was measured at 2 temperate sites with annual temperature ranges of 0 to 30 degrees C and 4 to 15 degrees C and 2 Arctic sites with temperatures of 2.6 and -1.7 degrees C. Slurried sediments...... were incubated in a temperature gradient block spanning a temperature range of ca 45 degrees C. The initial step of organic carbon remineralization, macromolecule hydrolysis, was measured via the enzymatic hydrolysis of fluorescently labeled polysaccharides. The terminal steps of organic carbon...... remineralization were monitored through consumption of oxygen and reduction of (SO42-)-S-35. At each of the 4 sites, the temperature response of the initial step of organic carbon remineralization was similar to that of the terminal steps. Although optimum temperatures were always well above ambient environmental...

  6. The physiological role of fat body and muscle tissues in response to cold stress in the tropical cockroach Gromphadorhina coquereliana.

    Directory of Open Access Journals (Sweden)

    Szymon Chowański

    Full Text Available Protective mechanisms against cold stress are well studied in terrestrial and polar insects; however, little is known about these mechanisms in tropical insects. In our study, we tested if a tropical cockroach Gromphadorhina coquereliana, possesses any protective mechanisms against cold stress. Based on the results of earlier studies, we examined how short-term (3 h cold (4°C influences biochemical parameters, mitochondrial respiration activity, and the level of HSPs and aquaporins expression in the fat body and leg muscles of G. coquereliana. Following cold exposure, we found that the level of carbohydrates, lipids and proteins did not change significantly. Nevertheless, we observed significant changes in mitochondrial respiration activity. The oxygen consumption of resting (state 4 and phosphorylating (state 3 mitochondria was altered following cold exposure. The increase in respiratory rate in state 4 respiration was observed in both tissues. In state 3, oxygen consumption by mitochondria in fat body was significantly lower compared to control insects, whereas there were no changes observed for mitochondria in muscle tissue. Moreover, there were cold-induced changes in UCP protein activity, but the changes in activity differed in fat body and in muscles. Additionally, we detected changes in the level of HSP70 and aquaporins expression. Insects treated with cold had significantly higher levels of HSP70 in fat body and muscles. On the other hand, there were lower levels of aquaporins in both tissues following exposure to cold. These results suggest that fat body play an important role in protecting tropical insects from cold stress.

  7. The Neuroprotection Effect of Oxygen Therapy: A Systematic Review ...

    African Journals Online (AJOL)

    2018-04-04

    Apr 4, 2018 ... investigating the neuroprotective effect of oxygen, but the outcomes as well as ...... Neuroprotective gases – Fantasy or reality for clinical use? Prog .... of oxygen on brain tissue oxygen tension in children with severe traumatic ...

  8. Hyperbaric oxygen and radiotherapy

    International Nuclear Information System (INIS)

    Mayer, R.; Hamilton-Farrell, M.R.; Kleij, A.J. van der

    2005-01-01

    Background: Hyperbaric oxygen (HBO) therapy is the inhalation of 100% oxygen at a pressure of at least 1.5 atmospheres absolute (150 kPa). It uses oxygen as a drug by dissolving it in the plasma and delivering it to the tissues independent of hemoglobin. For a variety of organ systems, HBO is known to promote new vessel growth into areas with reduced oxygen tension due to poor vascularity, and therewith promotes wound healing and recovery of radiation-injured tissue. Furthermore, tumors may be sensitized to irradiation by raising intratumoral oxygen tensions. Methods: A network of hyperbaric facilities exists in Europe, and a number of clinical studies are ongoing. The intergovernmental framework COST B14 action 'Hyperbaric Oxygen Therapy' started in 1999. The main goal of the Working Group Oncology is preparation and actual implementation of prospective study protocols in the field of HBO and radiation oncology in Europe. Results: In this paper a short overview on HBO is given and the following randomized clinical studies are presented: (a) reirradiation of recurrent squamous cell carcinoma of the head and neck after HBO sensitization; (b) role of HBO in enhancing radiosensitivity on glioblastoma multiforme; (c) osseointegration in irradiated patients; adjunctive HBO to prevent implant failures; (d) the role of HBO in the treatment of late irradiation sequelae in the pelvic region. The two radiosensitization protocols (a, b) allow a time interval between HBO and subsequent irradiation of 10-20 min. Conclusion: Recruitment of centers and patients is being strongly encouraged, detailed information is given on www.oxynet.org. (orig.)

  9. In vitro study of 3D PLGA/n-HAp/β-TCP composite scaffolds with etched oxygen plasma surface modification in bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Hee-Sang [Department of Dental Materials, School of Dentistry, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452 (Korea, Republic of); Jung, Sang-Chul [Department of Environmental Engineering, Sunchon National University, 255 Jungang-ro, Sunchon 57922 (Korea, Republic of); Kook, Min-Suk [Department of Oral and Maxillofacial Surgery, School of Dentistry, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186 (Korea, Republic of); Kim, Byung-Hoon, E-mail: kim5055@chosun.ac.kr [Department of Dental Materials, School of Dentistry, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452 (Korea, Republic of)

    2016-12-01

    Highlights: • PLGA and PLGA/n-HAp/β-TCP scaffolds were successfully fabricated by 3D printing. • Oxygen plasma etching increases the wettability and surface roughness. • Bioceramics and oxygen plasma etching and could be used to improve the cell affinity. - Abstract: Three-dimensional (3D) scaffolds have many advantageous properties for bone tissue engineering application, due to its controllable properties such as pore size, structural shape and interconnectivity. In this study, effects on oxygen plasma surface modification and adding of nano-hydroxyapatite (n-HAp) and β-tricalcium phosphate (β-TCP) on the 3D PLGA/n-HAp/β-TCP scaffolds for improving preosteoblast cell (MC3T3-E1) adhesion, proliferation and differentiation were investigated. The 3D PLGA/n-HAp/β-TCP scaffolds were fabricated by 3D Bio-Extruder equipment. The 3D scaffolds were prepared with 0°/90° architecture and pore size of approximately 300 μm. In addition 3D scaffolds surface were etched by oxygen plasma to enhance the hydrophilic property and surface roughness. After oxygen plasma treatment, the surface chemistry and morphology were investigated by Fourier transform infrared spectroscopy, scanning electron microscopy, and atomic force microscopy. And also hydrophilic property was measured by contact angle. The MC3T3-E1 cell proliferation and differentiation were investigated by MTT assay and ALP activity. In present work, the 3D PLGA/HAp/beta-TCP composite scaffold with suitable structure for the growth of osteoblast cells was successfully fabricated by 3D rapid prototyping technique. The surface hydrophilicity and roughness of 3D scaffold increased by oxygen plasma treatment had a positive effect on cell adhesion, proliferation, and differentiation. Furthermore, the differentiation of MC3T3-E1 cell was significantly enhanced by adding of n-HAp and β-TCP on 3D PLGA scaffold. As a result, combination of bioceramics and oxygen plasma treatment showed a synergistic effect on

  10. Comparison of local adipose tissue content and SRS-derived NIRS muscle oxygenation measurements in 90 individuals.

    Science.gov (United States)

    Cooper, Chris E; Penfold, Stacey-Marie; Elwell, Clare E; Angus, Caroline

    2010-01-01

    Adipose content in the region over the vastus lateralis muscle was measured in a young (21.1 +/- 3.1 years old, mean +/- SD) population of males (n = 62) and females (n = 28). Three techniques were used: skinfold thickness, ultrasound and near infrared spectroscopy. All techniques closely correlated with each other and all showed a significantly larger adipose content in females and a limited overlap with the range of values in males. Spatially resolved near infrared spectroscopy (SRS-NIRS) was then used to measure the tissue oxygenation index (TOI) at the same site. A source-detector separation of 4 cm was used to allow for significant light penetration into muscle tissue. TOI at rest was significantly higher in the female (65.3 +/- 7.0, mean +/- SD) than the male (61.9 +/- 5.1, mean +/- SD) group. There was a strong positive correlation between adipose content and TOI in male subjects. However, no correlation was seen in the female group. The possible optical and physiological explanations for these results are discussed.

  11. Effects of topical negative pressure therapy on tissue oxygenation and wound healing in vascular foot wounds.

    Science.gov (United States)

    Chiang, Nathaniel; Rodda, Odette A; Sleigh, Jamie; Vasudevan, Thodur

    2017-08-01

    Topical negative pressure (TNP) therapy is widely used in the treatment of acute wounds in vascular patients on the basis of proposed multifactorial benefits. However, numerous recent systematic reviews have concluded that there is inadequate evidence to support its benefits at a scientific level. This study evaluated the changes in wound volume, surface area, depth, collagen deposition, and tissue oxygenation when using TNP therapy compared with traditional dressings in patients with acute high-risk foot wounds. This study was performed with hospitalized vascular patients. Forty-eight patients were selected with an acute lower extremity wound after surgical débridement or minor amputation that had an adequate blood supply without requiring further surgical revascularization and were deemed suitable for TNP therapy. The 22 patients who completed the study were randomly allocated to a treatment group receiving TNP or to a control group receiving regular topical dressings. Wound volume and wound oxygenation were analyzed using a modern stereophotographic wound measurement system and a hyperspectral transcutaneous oxygenation measurement system, respectively. Laboratory analysis was conducted on wound biopsy samples to determine hydroxyproline levels, a surrogate marker to collagen. Differences in clinical or demographic characteristics or in the location of the foot wounds were not significant between the two groups. All patients, with the exception of two, had diabetes. The two patients who did not have diabetes had end-stage renal failure. There was no significance in the primary outcome of wound volume reduction between TNP and control patients on day 14 (44.2% and 20.9%, respectively; P = .15). Analyses of secondary outcomes showed a significant result of better healing rates in the TNP group by demonstrating a reduction in maximum wound depth at day 14 (36.0% TNP vs 17.6% control; P = .03). No significant findings were found for the other outcomes of changes

  12. Intraportal islet oxygenation.

    Science.gov (United States)

    Suszynski, Thomas M; Avgoustiniatos, Efstathios S; Papas, Klearchos K

    2014-05-01

    Islet transplantation (IT) is a promising therapy for the treatment of diabetes. The large number of islets required to achieve insulin independence limit its cost-effectiveness and the number of patients who can be treated. It is believed that >50% of islets are lost in the immediate post-IT period. Poor oxygenation in the early post-IT period is recognized as a possible reason for islet loss and dysfunction but has not been extensively studied. Several key variables affect oxygenation in this setting, including (1) local oxygen partial pressure (pO(2)), (2) islet oxygen consumption, (3) islet size (diameter, D), and (4) presence or absence of thrombosis on the islet surface. We discuss implications of oxygen-limiting conditions on intraportal islet viability and function. Of the 4 key variables, the islet size appears to be the most important determinant of the anoxic and nonfunctional islet volume fractions. Similarly, the effect of thrombus formation on the islet surface may be substantial. At the University of Minnesota, average size distribution data from clinical alloislet preparations (n = 10) indicate that >150-µm D islets account for only ~30% of the total islet number, but >85% of the total islet volume. This suggests that improved oxygen supply to the islets may have a profound impact on islet survivability and function since most of the β-cell volume is within large islets which are most susceptible to oxygen-limiting conditions. The assumption that the liver is a suitable islet transplant site from the standpoint of oxygenation should be reconsidered. © 2014 Diabetes Technology Society.

  13. Aerobic Microbial Respiration In Oceanic Oxygen Minimum Zones

    DEFF Research Database (Denmark)

    Kalvelage, Tim; Lavik, Gaute; Jensen, Marlene Mark

    2015-01-01

    Namibia and Peru. Experiments with additions of double-labelled oxygen revealed high aerobic activity in the upper OMZs, likely controlled by surface organic matter export. Consistently observed oxygen consumption in samples retrieved throughout the lower OMZs hints at efficient exploitation of vertically...... and laterally advected, oxygenated waters in this zone by aerobic microorganisms. In accordance, metagenomic and metatranscriptomic analyses identified genes encoding for aerobic terminal oxidases and demonstrated their expression by diverse microbial communities, even in virtually anoxic waters. Our results...

  14. Plasma osmolality and oxygen consumption of perch Perca fluviatilis in response to different salinities and temperatures

    DEFF Research Database (Denmark)

    Christensen, Emil Aputsiaq Flindt; Svendsen, Morten Bo Søndergaard; Steffensen, John Fleng

    2017-01-01

    with salinity at 10 and 20° C. Maximum metabolic rate (MMR) and aerobic scope was lowest at salinity of 15 at 5° C, yet at 20° C, they were lowest at a salinity of 0. A cost of osmoregulation (SMR at a salinity of 0 and 15 compared with SMR at a salinity of 10) could only be detected at a salinity of 15 at 20...... of osmoregulation (28%) at a salinity of 15 at 20° C indicates that the cost of osmoregulation in P. fluviatilis increases with temperature under hyperosmotic conditions and a power analysis showed that the cost of osmoregulation could be lower than 12·5% under other environmental conditions. The effect of salinity......The present study determined the blood plasma osmolality and oxygen consumption of the perch Perca fluviatilis at different salinities (0, 10 and 15) and temperatures (5, 10 and 20° C). Blood plasma osmolality increased with salinity at all temperatures. Standard metabolic rate (SMR) increased...

  15. Influence of Substrate Composition on vitro Oxygen Consumption of ...

    African Journals Online (AJOL)

    1974-09-11

    Sep 11, 1974 ... and it activates the angiotensin sys- tem by converting angiotensin I to angiotensin n.l3 It also participates in the de 110\\10 synthesis of fatty acids," pro- teins" and of phospholipids (surfactant)." The oxygen consumed by the lung is used not only for its own basal metabolic needs but for additional metabolic.

  16. Comparison of cerebral tissue oxygenation values in full term and preterm newborns by the simultaneous use of two near-infrared spectroscopy devices: an absolute and a relative trending oximeter

    Science.gov (United States)

    Szczapa, Tomasz; Karpiński, Łukasz; Moczko, Jerzy; Weindling, Michael; Kornacka, Alicja; Wróblewska, Katarzyna; Adamczak, Aleksandra; Jopek, Aleksandra; Chojnacka, Karolina; Gadzinowski, Janusz

    2013-08-01

    The aim of this study is to compare a two-wavelength light emitting diode-based tissue oximeter (INVOS), which is designed to show trends in tissue oxygenation, with a four-wavelength laser-based oximeter (FORE-SIGHT), designed to deliver absolute values of tissue oxygenation. Simultaneous values of cerebral tissue oxygenation (StO2) are measured using both devices in 15 term and 15 preterm clinically stable newborns on the first and third day of life. Values are recorded simultaneously in two periods between which oximeter sensor positions are switched to the contralateral side. Agreement between StO2 values before and after the change of sensor position is analyzed. We find that mean cerebral StO2 values are similar between devices for term and preterm babies, but INVOS shows StO2 values spread over a wider range, with wider standard deviations than shown by the FORE-SIGHT. There is relatively good agreement with a bias up to 3.5% and limits of agreement up to 11.8%. Measurements from each side of the forehead show better repeatability for the FORE-SIGHT monitor. We conclude that performance of the two devices is probably acceptable for clinical purposes. Both performed sufficiently well, but the use of FORE-SIGHT may be associated with tighter range and better repeatability of data.

  17. Oxygen-controlled Biosurfactant Production in a Bench Scale Bioreactor

    Science.gov (United States)

    de Kronemberger, Frederico Araujo; Anna, Lidia Maria Melo Santa; Fernandes, Ana Carolina Loureiro Brito; de Menezes, Reginaldo Ramos; Borges, Cristiano Piacsek; Freire, Denise Maria Guimarães

    Rhamnolipids have been pointed out as promising biosurfactants. The most studied microorganisms for the aerobic production of these molecules are the bacteria of the genus Pseudomonas. The aim of this work was to produce a rhamnolipid-type biosurfactant in a bench-scale bioreactor by one strain of Pseudomonas aeruginosa isolated from oil environments. To study the microorganism growth and production dependency on oxygen, a nondispersive oxygenation device was developed, and a programmable logic controller (PLC) was used to set the dissolved oxygen (DO) concentration. Using the data stored in a computer and the predetermined characteristics of the oxygenation device, it was possible to evaluate the oxygen uptake rate (OUR) and the specific OUR (SOUR) of this microorganism. These rates, obtained for some different DO concentrations, were then compared to the bacterial growth, to the carbon source consumption, and to the rhamnolipid and other virulence factors production. The SOUR presented an initial value of about 60.0 mg02/gdw h. Then, when the exponential growth phase begins, there is a rise in this rate. After that, the SOUR reduces to about 20.0 mg02/gdw h. The carbon source consumption is linear during the whole process.

  18. Noninvasive Intracranial Pressure and Tissue Oxygen Measurements for Space and Earth

    Science.gov (United States)

    Hargens, A. R.; Ballard, R. E.; Murthy, G.; Watenpaugh, D. E.

    1994-01-01

    The paper discusses the following: Increasing intracranial pressure in humans during simulated microgravity. and near-infrared monitoring of model chronic compartment syndrome in exercising skeletal muscle. Compared to upright-seated posture, 0 deg. supine, 6 deg. HDT, and 15 deg. HDT produced TMD changes of 317 +/- 112, 403 +/- 114, and 474 +/- 112 n1 (means +/- S.E.), respectively. Furthermore, postural transitions from 0 deg. supine to 6 deg. HDT and from 6 deg. to 15 deg. HDT generated significant TMD changes (p less than 0.05). There was no hysteresis when postural transitions to HDT were compared to reciprocal transitions toward upright seated posture. Currently, diagnosis of chronic compartment syndrome (CCS) depends on measurement of intramuscular pressure by invasive catheterization. We hypothesized that this syndrome can be detected noninvasively by near-infrared (NIR) spectroscopy, which tracks variations in muscle hemoglobin/myoglobin oxygen saturation. CCS was simulated in the tibialis anterior muscle of 7 male and 3 female subjects by gradual inflation of a cuff placed around the leg to 40 mmHg during 14 minutes of cyclic isokinetic dorsiflexion exercise. On a separate day, subjects underwent the identical exercise protocol with no external compression. In both cases, tissue oxygenation (T(sub O2) was measured in the tibialis anterior by NIR spectroscopy and normalized to a percentage scale between baseline and a T(sub O2) nadir reached during exercise to ischemic exhaustion. Over the course of exercise, T(sub O2) declined at a rate of 1.4 +/- 0.3% per minute with model CCS, yet did not decrease during control exercise. Post-exercise recovery of T(sub O2) was slower with model CCS (2.5 +/- 0.6 min) than in control (1.3 +/- 0.2 min). These results demonstrate that NIR spectroscopy can detect muscle deoxygenation caused by pathologically elevated intramuscular pressure in exercising skeletal muscle. Consequently, this technique shows promise as a

  19. Effect of supplemental oxygen versus dobutamine administration on liver oxygen tension in dPP-guided normovolemic pigs.

    Science.gov (United States)

    Pestel, G; Fukui, K; Hager, H; Kurz, A; Hiltebrand, L

    2009-01-01

    Difference in pulse pressure (dPP) confirms adequate intravascular filling as a prerequisite for tissue perfusion. We hypothesized that both oxygen and dobutamine increase liver tissue oxygen tension (ptO(2)). Eight anesthetized pigs received dPP-guided fluid management. Hepatic pO(2) was measured with Clark-type electrodes placed subcapsularly, and on the liver surface. Pigs received: (1) supplemental oxygen (F(i)O(2) 1.0); (2) dobutamine 2.5 microg/kg/min, and (3) dobutamine 5 microg/kg/min. Data were analyzed using repeated-measures ANOVA followed by a Tukey post-test for multiple comparisons. ptO(2 )measured subcapsularly and at the liver surface were compared using the Bland-Altman plot. Variation in F(i)O(2) changed local hepatic tissue ptO(2) [subcapsular measurement: 39 +/- 12 (F(i)O(2) 0.3), 89 +/- 35 mm Hg (F(i)O(2) 1.0, p = 0.01 vs. F(i)O(2) 0.3), 44 +/- 10 mm Hg (F(i)O(2) 0.3, p = 0.05 vs. F(i)O(2) 1.0); surface measurement: 52 +/- 35 (F(i)O(2) 0.3), 112 +/- 24 mm Hg (F(i)O(2) 1.0, p = 0.001 vs. F(i)O(2) 0.3), 54 +/- 24 mm Hg (F(i)O(2) 0.3, p = 0.001 vs. F(i)O(2) 1.0)]. Surface measurements were widely scattered compared to subcapsular measurements (bias: -15 mm Hg, precision: 76.3 mm Hg). Dobutamine did not affect hepatic oxygenation. Supplemental oxygen increased hepatic tissue pO(2) while dobutamine did not. Although less invasive, the use of surface measurements is discouraged. Copyright 2009 S. Karger AG, Basel.

  20. Seasonal Oxygen Dynamics in a Thermokarst Bog in Interior Alaska: Implications for Rates of Methane Oxidation

    Science.gov (United States)

    Neumann, R. B.; Moorberg, C.; Wong, A.; Waldrop, M. P.; Turetsky, M. R.

    2015-12-01

    Methane is a potent greenhouse gas, and wetlands represent the largest natural source of methane to the atmosphere. However, much of the methane generated in anoxic wetlands never gets emitted to the atmosphere; up to >90% of generated methane can get oxidized to carbon dioxide. Thus, oxidation is an important methane sink and changes in the rate of methane oxidation can affect wetland methane emissions. Most methane is aerobically oxidized at oxic-anoxic interfaces where rates of oxidation strongly depend on methane and oxygen concentrations. In wetlands, oxygen is often the limiting substrate. To improve understanding of belowground oxygen dynamics and its impact on methane oxidation, we deployed two planar optical oxygen sensors in a thermokarst bog in interior Alaska. Previous work at this site indicated that, similar to other sites, rates of methane oxidation decrease over the growing season. We used the sensors to track spatial and temporal patterns of oxygen concentrations over the growing season. We coupled these in-situ oxygen measurements with periodic oxygen injection experiments performed against the sensor to quantify belowground rates of oxygen consumption. We found that over the season, the thickness of the oxygenated water layer at the peatland surface decreased. Previous research has indicated that in sphagnum-dominated peatlands, like the one studied here, rates of methane oxidation are highest at or slightly below the water table. It is in these saturated but oxygenated locations that both methane and oxygen are available. Thus, a seasonal reduction in the thickness of the oxygenated water layer could restrict methane oxidation. The decrease in thickness of the oxygenated layer coincided with an increase in the rate of oxygen consumption during our oxygen injection experiments. The increase in oxygen consumption was not explained by temperature; we infer it was due to an increase in substrate availability for oxygen consuming reactions and

  1. Placental Gas Exchange and the Oxygen Supply to the Fetus

    DEFF Research Database (Denmark)

    Carter, Anthony M

    2015-01-01

    The oxygen supply of the fetus depends on the blood oxygen content and flow rate in the uterine and umbilical arteries and the diffusing capacity of the placenta. Oxygen consumption by the placenta is a significant factor and a potential limitation on availability to the fetus. The relevance...... anaerobic conditions and even the fetus is adapted to a low oxygen environment. Nevertheless, there is a reserve capacity, and during acute hypoxia the fetus can counter a 50% reduction in oxygen delivery by increasing fractional extraction. During sustained hypoxia, on the other hand, fetal growth...

  2. The limitations of tissue-oxygen measurement and positron emission tomography as additional methods for postoperative breast reconstruction free-flap monitoring.

    Science.gov (United States)

    Schrey, Aleksi; Niemi, Tarja; Kinnunen, Ilpo; Minn, Heikki; Vahlberg, Tero; Kalliokoski, Kari; Suominen, Erkki; Grénman, Reidar; Aitasalo, Kalle

    2010-02-01

    Twelve patients who underwent breast reconstruction with a microvascular flap were monitored postoperatively with continuous partial tissue oxygenation (p(ti)O(2)) measurement. The regional blood flow (BF) of the entire flap was evaluated with positron emission tomography (PET) using oxygen-15-labelled water on the first postoperative (POP) morning to achieve data of the perfusion of the entire flap. A re-exploration was carried out if the p(ti)O(2) value remained lower than 15 mmHg for over 30 min. The mean p(ti)O(2) value of the flaps was 52.9+/-5.5 mmHg, whereas the mean BF values were 3.3+/-1.0 ml per 100 g min(-1). One false-positive result was detected by p(ti)O(2) measurement, resulting in an unnecessary re-exploration. Another re-operation suggested by the low p(ti)O(2) results was avoided due to the normal BF results assessed with PET. Totally, three flaps were re-explored. This prospective study suggests that continuous tissue-oxygen measurement with a polarographic needle probe is reliable for monitoring free breast flaps from one part of the flap, but assessing perfusion of the entire flap requires more complex monitoring methods, for example, PET. Clinical examination by experienced personnel remains important in free-breast-flap monitoring. PET could be useful in assessing free-flap perfusion in selected high-risk patients as an alternative to a re-operation when clinical examination and evaluation by other means are unreliable or present controversial results. 2008 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  3. How to assess the plasma delivery of RONS into tissue fluid and tissue

    Science.gov (United States)

    Oh, Jun-Seok; Szili, Endre J.; Gaur, Nishtha; Hong, Sung-Ha; Furuta, Hiroshi; Kurita, Hirofumi; Mizuno, Akira; Hatta, Akimitsu; Short, Robert D.

    2016-08-01

    The efficacy of helium (He) and argon (Ar) plasma jets are being investigated for different healthcare applications including wound and cancer therapy, sterilisation and surface disinfections. Current research points to a potential link between the generation of reactive oxygen and nitrogen species (RONS) and outcomes in a range of biological and medical applications. As new data accrue, further strengthening this link, it becomes important to understand the controlled delivery of RONS into solutions, tissue fluids and tissues. This paper investigates the use of He and Ar plasma jets to deliver three RONS (hydrogen peroxide—H2O2, nitrite—\\text{NO}2- and nitrate—\\text{NO}3- ) and molecular oxygen (O2) directly into deionised (DI) water, or indirectly into DI water through an agarose target. The DI water is used in place of tissue fluid and the agarose target serves as a surrogate of tissue. Direct plasma jet treatments deliver more RONS and O2 than the through-agarose treatments for equivalent treatments times. The former only deliver RONS whilst the plasma jets are ignited; the latter continues to deliver RONS into the DI water long after the plasmas are extinguished. The He plasma jet is more effective at delivering H2O2 and \\text{NO}2- directly into DI water, but the Ar plasma jet is more effective at nitrating the DI water in both direct and through-agarose treatments. DI water directly treated with the plasma jets is deoxygenated, with the He plasma jet purging more O2 than the Ar plasma jet. This effect is known as ‘sparging’. In contrast, for through-agarose treatments both jets oxygenated the DI water. These results indicate that in the context of direct and indirect plasma jet treatments of real tissue fluids and tissue, the choice of process gas (He or Ar) could have a profound effect on the concentrations of RONS and O2. Irrespective of operating gas, sparging of tissue fluid (in an open wound) for long prolonged periods during direct plasma

  4. Gradually Increased Oxygen Administration Improved Oxygenation and Mitigated Oxidative Stress after Resuscitation from Severe Hemorrhagic Shock.

    Science.gov (United States)

    Luo, Xin; Yin, Yujing; You, Guoxing; Chen, Gan; Wang, Ying; Zhao, Jingxiang; Wang, Bo; Zhao, Lian; Zhou, Hong

    2015-11-01

    The optimal oxygen administration strategy during resuscitation from hemorrhagic shock (HS) is still controversial. Improving oxygenation and mitigating oxidative stress simultaneously seem to be contradictory goals. To maximize oxygen delivery while minimizing oxidative damage, the authors proposed the notion of gradually increased oxygen administration (GIOA), which entails making the arterial blood hypoxemic early in resuscitation and subsequently gradually increasing to hyperoxic, and compared its effects with normoxic resuscitation, hyperoxic resuscitation, and hypoxemic resuscitation in severe HS. Rats were subjected to HS, and on resuscitation, the rats were randomly assigned to four groups (n = 8): the normoxic, the hyperoxic, the hypoxemic, and the GIOA groups. Rats were observed for an additional 1 h. Hemodynamics, acid-base status, oxygenation, and oxidative injury were observed and evaluated. Central venous oxygen saturation promptly recovered only in the hyperoxic and the GIOA groups, and the liver tissue partial pressure of oxygen was highest in the GIOA group after resuscitation. Oxidative stress in GIOA group was significantly reduced compared with the hyperoxic group as indicated by the reduced malondialdehyde content, increased catalase activity, and the lower histologic injury scores in the liver. In addition, the tumor necrosis factor-α and interleukin-6 expressions in the liver were markedly decreased in the GIOA group than in the hyperoxic and normoxic groups as shown by the immunohistochemical staining. GIOA improved systemic/tissue oxygenation and mitigated oxidative stress simultaneously after resuscitation from severe HS. GIOA may be a promising strategy to improve resuscitation from HS and deserves further investigation.

  5. Microencapsulated 3-dimensional sensor for the measurement of oxygen in single isolated pancreatic islets.

    Directory of Open Access Journals (Sweden)

    Wanyu Chen

    Full Text Available Oxygen consumption reflects multiple processes in pancreatic islets including mechanisms contributing to insulin secretion, oxidative stress and viability, providing an important readout in studies of islet function, islet viability and drug testing. Due to the scarcity, heterogeneity, and intrinsic kinetic properties of individual islets, it would be of great benefit to detect oxygen consumption by single islets. We present a novel method we have developed to image oxygen in single islets.Using a microfluidics system, individual islets and a fluorescent oxygen-sensitive dye were encased within a thin alginate polymer layer. Insulin secretion by the encapsulated islets was normal. Fluorescent signal from the encased dye, detected using a standard inverted fluorescence microscope and digital camera, was stable and proportional to the amount of oxygen in the media. When integrated into a perifusion system, the sensing system detected changes in response to metabolic substrates, mitochondrial poisons, and induced-oscillations. Glucose responses averaged 30.1±7.1% of the response to a metabolic inhibitor (cyanide, increases were observed in all cases (n = 6, and the system was able to resolve changes in oxygen consumption that had a period greater than 0.5 minutes. The sensing system operated similarly from 2-48 hours following encapsulation, and viability and function of the islets were not significantly affected by the encapsulation process.An oxygen-dependent dye situated around and within a pancreatic islet encapsulated by a thin layer of alginate was sensitive to changes in oxygen consumption, and was not harmful to the function or viability of islets over the course of two days. The microcapsule-based sensing method is particularly suited to assessing the effects of compounds (dose responses and time courses and chronic changes occurring over the course of days. The approach should be applicable to other cell types and dyes sensitive to other

  6. Evaluation of Renal Blood Flow and Oxygenation in CKD Using Magnetic Resonance Imaging.

    Science.gov (United States)

    Khatir, Dinah S; Pedersen, Michael; Jespersen, Bente; Buus, Niels H

    2015-09-01

    Animal studies suggest that progression of chronic kidney disease (CKD) is related to renal hypoxia. With renal blood supply determining oxygen delivery and sodium absorption being the main contributor to oxygen consumption, we describe the relationship between renal oxygenation, renal artery blood flow, and sodium absorption in patients with CKD and healthy controls. Cross-sectional study. 62 stable patients with CKD stages 3 to 4 (mean age, 61±13 [SD] years) and 24 age- and sex-matched controls. CKD versus control status. Renal artery blood flow, tissue oxygenation (relative changes in deoxyhemoglobin concentration of the renal medulla [MR2*] and cortex [CR2*]), and sodium absorption. Renal artery blood flow was determined by phase-contrast magnetic resonance imaging (MRI); MR2* and CR2* were determined by blood oxygen level-dependent MRI. Ultrafiltered and reabsorbed sodium were determined from measured glomerular filtration rate (mGFR) and 24-hour urine collections. mGFR in patients was 37% that of controls (36±15 vs 97±23 mL/min/1.73 m(2); P renal artery blood flow was 72% that of controls (319 vs 443 mL/min; P renal artery blood flow or sodium absorption. Increasing arterial blood oxygen tension by breathing 100% oxygen had very small effects on CR2*, but reduced MR2* in both groups. Only renal artery blood flow was determined and thus regional perfusion could not be related to CR2* or MR2*. In CKD, reductions of mGFR and reabsorbed sodium are more than double that of renal artery blood flow, whereas cortical and medullary oxygenation are within the range of healthy persons. Reduction in glomerular filtration fraction may prevent renal hypoxia in CKD. Copyright © 2015 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  7. Oxygen sensitization of mammalian cells under different irradiation conditions

    International Nuclear Information System (INIS)

    Ling, C.C.; Michaels, H.B.; Gerweck, L.E.; Epp, E.R.; Peterson, E.C.

    1981-01-01

    The oxygen dependence of the radiosensitivity of cultured CHO cells was examined in detail with particular attention paid to avoiding possible artifacts due to radiolytic oxygen depletion. Two methods of gas equilibration and irradiation were used. In the first approach, cells were irradiated with 50-kVp X rays in a thin-layer geometry which offered maximum interchange between the cells and the surrounding gas. The second technique employed 280-kVp X irradiation of cells under full-medium conditions with mechanical agitation to minimize the effect of radiochemical oxygen consumption by promoting rapid oxygen replenishment. With these techniques oxygen radiosensitization was clearly resolved at an oxygen concentration of 0.03% in the gas phase. The oxygen K curves measured by these two methods were similar in shape over a wide range of oxygen concentration

  8. Low Temperature Soda-Oxygen Pulping of Bagasse

    OpenAIRE

    Fengxia Yue; Ke-Li Chen; Fachuang Lu

    2016-01-01

    Wood shortages, environmental pollution and high energy consumption remain major obstacles hindering the development of today’s pulp and paper industry. Energy-saving and environmental friendly pulping processes are still needed, especially for non-woody materials. In this study, soda-oxygen pulping of bagasse was investigated and a successful soda-oxygen pulping process for bagasse at 100 °C was established. The pulping parameters of choice were under active alkali charge of 23%, maximum coo...

  9. Microsensor Studies of Oxygen and Light-Distribution in the Green Macroalga Codium Fragile

    DEFF Research Database (Denmark)

    LASSEN, C.; BEBOUT, LE; PAERL, HW

    1994-01-01

    to multiple scattering in the medullary tissue. The constant intensity of visible light below 0.2 mm was thus a result of the combined effects of absorption and backscattering from the medulla. The oxygen exchange between the alga and the surrounding water was diffusion-limited with a steep O-2 gradient......Scalar irradiance, oxygen concentration, and oxygenic photosynthesis were measured at 0.1 mm spatial resolution within the tissue of the siphonous green macroalga Codium fragile subsp. tomentosoides (van Goer) Silva by fiber-optic scalar irradiance microsensors and oxygen microelectrodes......, The scalar irradiance of visible light was strongly attenuated in the outer 0.2 mm of the tissue but was nearly constant for the subsequent 1.0 mm of photosynthetic tissue. Far-red scalar irradiance at 750 nm increased below the tissue surface to a maximum of 200% of incident irradiance at 1.2 mm depth due...

  10. Effects of acetazolamide on cerebral blood flow and brain tissue oxygenation

    DEFF Research Database (Denmark)

    Lassen, N A; Friberg, L; Kastrup, J

    1987-01-01

    Oral administration of 1 g of acetazolamide to 8 normal subjects studied at sea level and in normoxia caused an acute increase in cerebral blood flow (CBF). During the subsequent prolonged oral treatment with 1 g of acetazolamide daily, CBF returned to normal within 2 days. The alveolar CO2 tension...... decreased gradually to 70% of the control value, indicating hyperventilation. At sea level hyperventilation will not increase brain oxygenation significantly in normal man, as the arterial oxygen content only increases minimally, while CBF is unchanged. At high altitude the beneficial effects...... of acetazolamide on the symptoms of acute mountain sickness may well be due to an improved oxygen supply to the brain, as hyperventilation will, at the low ambient PO2, cause a significant increase of the arterial oxygen content, while CBF presumably is unaffected by the drug. During hypoxia at high altitude...

  11. Synoviocytes, not chondrocytes, release free radicals after cycles of anoxia/re-oxygenation

    International Nuclear Information System (INIS)

    Schneider, Nicole; Mouithys-Mickalad, Ange L.; Lejeune, Jean-Philippe; Deby-Dupont, Ginette P.; Hoebeke, Maryse; Serteyn, Didier A.

    2005-01-01

    By oxymetry and electron paramagnetic resonance (EPR), we investigated the effects of repeated anoxia/re-oxygenation (A/R) periods on the respiration and production of free radicals by synoviocytes (rabbit HIG-82 cell line and primary equine synoviocytes) and equine articular chondrocytes. Three periods of 20 min anoxia followed by re-oxygenation were applied to 10 7 cells; O 2 consumption was measured before anoxia and after each re-oxygenation. After the last A/R, cellular free radical formation was investigated by EPR spectroscopy with spin trapping technique (n = 3 for each cell line). Both types of synoviocytes showed a high O 2 consumption, which was slowered after anoxia. By EPR with the spin trap POBN, we proved a free radical formation. Results were similar for equine and rabbit synoviocytes. For chondrocytes, we observed a low O 2 consumption, unchanged by anoxia, and no free radical production. These observations suggest an oxidant activity of synoviocytes, potentially important for the onset of osteoarthritis

  12. Two-photon NADH imaging exposes boundaries of oxygen diffusion in cortical vascular supply regions.

    Science.gov (United States)

    Kasischke, Karl A; Lambert, Elton M; Panepento, Ben; Sun, Anita; Gelbard, Harris A; Burgess, Robert W; Foster, Thomas H; Nedergaard, Maiken

    2011-01-01

    Oxygen transport imposes a possible constraint on the brain's ability to sustain variable metabolic demands, but oxygen diffusion in the cerebral cortex has not yet been observed directly. We show that concurrent two-photon fluorescence imaging of endogenous nicotinamide adenine dinucleotide (NADH) and the cortical microcirculation exposes well-defined boundaries of tissue oxygen diffusion in the mouse cortex. The NADH fluorescence increases rapidly over a narrow, very low pO(2) range with a p(50) of 3.4 ± 0.6 mm Hg, thereby establishing a nearly binary reporter of significant, metabolically limiting hypoxia. The transient cortical tissue boundaries of NADH fluorescence exhibit remarkably delineated geometrical patterns, which define the limits of tissue oxygen diffusion from the cortical microcirculation and bear a striking resemblance to the ideal Krogh tissue cylinder. The visualization of microvessels and their regional contribution to oxygen delivery establishes penetrating arterioles as major oxygen sources in addition to the capillary network and confirms the existence of cortical oxygen fields with steep microregional oxygen gradients. Thus, two-photon NADH imaging can be applied to expose vascular supply regions and to localize functionally relevant microregional cortical hypoxia with micrometer spatial resolution.

  13. Divergent outcomes of fructose consumption on exercise capacity of rats: friend or foe.

    Science.gov (United States)

    Sun, Angela; Huang, An; Kertowidjojo, Elizabeth; Song, Su; Hintze, Thomas H; Sun, Dong

    2017-02-01

    To test the hypothesis that high fructose (HF) consumption divergently affects exercise capability as a function of feeding duration, rats were fed a normal (as control) diet or a normal caloric diet with HF for 3, 6, 10, and 30 days, respectively, and then were run on a treadmill. Results show that running distance and work were significantly increased, which was associated with greater exercise oxygen consumption in rats fed HF for 3 (HF-3D) and 6 days, but were decreased in rats fed HF for 30 days (HF-30D) compared with rats in their respective control groups. Shear stress-induced vasodilation (SSID) in isolated plantaris muscle arterioles was significantly greater in the HF-3D group than the control group. The difference in SSID between the two groups was abolished by N ω -nitro-l-arginine methyl ester (L-NAME), suggesting a nitric oxide (NO)-mediated response. Expression of phosphorylated/activated endothelial NO synthase (eNOS) and release of nitrite/NO were significantly increased in vessels of animals in the HF-3D group than controls. In contrast, arterioles isolated from the hypertensive rats in the HF-30D group displayed significantly attenuated NO-mediated SSID accompanied with greater production of superoxide compared with vessels of control animals. Additionally, the NO-dependent modulation of myocardial oxygen consumption (MV̇o 2 ) was also impaired in the HF-30D group, and was prevented by blocking superoxide production with apocynin, an inhibitor that also normalized the reduced SSID in the HF-30D group. In conclusion, short-term (3-6 days) HF feeding enhances exercise potential via an increase in endothelial sensitivity to shear stress, which stimulates eNOS to release NO, leading to better tissue perfusion and utilization of oxygen. However, long-term (30 days) HF feeding initiates endothelial dysfunction by superoxide-dependent mechanisms to compromise exercise performance. NEW & NOTEWORTHY The evidence that short-term fructose intake

  14. Oxidative stress under ambient and physiological oxygen tension in tissue culture

    Science.gov (United States)

    Jagannathan, Lakshmanan; Cuddapah, Suresh; Costa, Max

    2016-01-01

    Oxygen (O2) levels range from 2–9% in vivo. However, cell culture experiments are performed at atmospheric O2 levels (21%). Oxidative stress due to generation of reactive oxygen species (ROS) in cells cultured at higher than physiological levels is implicated in multitude of deleterious effects including DNA damage, genomic instability and senescence. In addition, oxidative stress activates redox sensitive transcription factors related to inflammatory signaling and apoptotic signaling. Furthermore, several chromatin-modifying enzymes are affected by ROS, potentially impacting epigenetic regulation of gene expression. While primary cells are cultured at lower O2 levels due to their inability to grow at higher O2, the immortalized cells, which display no such apparent growth difficulties, are typically cultured at 21% O2. This review will provide an overview of issues associated with increased oxygen levels in in vitro cell culture and point out the benefits of using lower levels of oxygen tension even for immortalized cells. PMID:27034917

  15. Engineering vascular development for tissue regeneration

    NARCIS (Netherlands)

    Rivron, N.C.

    2010-01-01

    Tissue engineering and regenerative medicine aim at restoring a damaged tissue by recreating in vitro or promoting its regeneratin in vovo. The vasculature is central to these therapies for the irrigation of the defective tissue (oxygen, nutrients or circulating regenerative cells) and as an

  16. Assessment of muscle tissue oxygen saturation after out-of-hospital cardiac arrest.

    Science.gov (United States)

    Orban, Jean-Christophe; Scarlatti, Audrey; Danin, Pierre-Eric; Dellamonica, Jean; Bernardin, Gilles; Ichai, Carole

    2015-12-01

    Pathophysiology of cardiac arrest corresponds to an ischemia-reperfusion syndrome with deep impairment of microcirculation. Muscular tissue oxygen saturation (StO2) is a noninvasive method of evaluation of microcirculation. Our study was aimed at assessing the prognosis value of muscular StO2 in patients admitted for out-of-hospital cardiac arrest (OHCA) and treated with hypothermia. We conducted a prospective bicentric observational study including OHCA patients treated with therapeutic hypothermia. Baseline StO2, derived variables (desaturation and resaturation slopes), and lactate levels were compared at different times between patients with good and poor outcomes. Prognosis was assessed by the Cerebral Performance Category (CPC) score at 6 months after admission (CPC 1-2, good outcome; CPC 3-5, poor outcome). Forty-four patients were included, 17 good and 27 poor outcomes at 6 months. At admission, StO2 and lactate levels were lower in good outcome patients. Desaturation and resaturation slopes did not differ between groups. After an OHCA treated with therapeutic hypothermia, StO2 was correlated with outcome. Further research is needed to better understand the pathophysiological process underlying our results. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Point-of-care instrument for monitoring tissue health during skin graft repair

    Science.gov (United States)

    Gurjar, R. S.; Seetamraju, M.; Zhang, J.; Feinberg, S. E.; Wolf, D. E.

    2011-06-01

    We have developed the necessary theoretical framework and the basic instrumental design parameters to enable mapping of subsurface blood dynamics and tissue oxygenation for patients undergoing skin graft procedures. This analysis forms the basis for developing a simple patch geometry, which can be used to map by diffuse optical techniques blood flow velocity and tissue oxygenation as a function of depth in subsurface tissue.skin graft, diffuse correlation analysis, oxygen saturation.

  18. The influence of construct scale on the composition and functional properties of cartilaginous tissues engineered using bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Buckley, Conor T; Meyer, Eric G; Kelly, Daniel J

    2012-02-01

    Engineering cartilaginous tissue of a scale necessary to treat defects observed clinically is a well-documented challenge in the field of cartilage tissue engineering. The objective of this study was to determine how the composition and mechanical properties of cartilaginous tissues that are engineered by using bone marrow-derived mesenchymal stem cells (MSCs) depend on the scale of the construct. Porcine bone marrow-derived MSCs were encapsulated in agarose hydrogels, and constructs of different cylindrical geometries (Ø4×1.5 mm; Ø5×3 mm; Ø6×4.5 mm; Ø8×4.5 mm) were fabricated and maintained in a chemically defined serum-free medium supplemented with transforming growth factor-β3 for 42 days. Total sulfated glycosaminoglycan (sGAG) accumulation by day 42 increased from 0.14% w/w to 0.88% w/w as the construct geometry increased from Ø4×1.5 to Ø8×4.5 mm, with collagen accumulation increasing from 0.31% w/w to 1.62% w/w. This led to an increase in the dynamic modulus from 90.81 to 327.51 kPa as the engineered tissue increased in scale from Ø4×1.5 to Ø8×4.5 mm. By decreasing the external oxygen tension from 20% to 5%, it was possible to achieve these higher levels of mechanical functionality in the smaller engineered tissues. Constructs were then sectioned into smaller subregions to quantify the spatial accumulation of extracellular matrix components, and a model of oxygen diffusion and consumption was used to predict spatial gradients in oxygen concentration throughout the construct. sGAG accumulation was always highest in regions where oxygen concentration was predicted to be lowest. In addition, as the size of the engineered construct increased, different regions of the construct preferentially supported either sGAG or collagen accumulation, thus suggesting that gradients in regulatory factors other than oxygen were playing a role in determining levels of collagen synthesis. The identification of such factors and the means to control their

  19. Oxygen consumption of a pneumatically controlled ventilator in a field anesthesia machine.

    Science.gov (United States)

    Szpisjak, Dale F; Javernick, Elizabeth N; Kyle, Richard R; Austin, Paul N

    2008-12-01

    Field anesthesia machines (FAM) have been developed for remote locations where reliable supplies of compressed medical gases or electricity may be absent. In place of electricity, pneumatically controlled ventilators use compressed gas to power timing circuitry and actuate valves. We sought to determine the total O(2) consumption and ventilator gas consumption (drive gas [DG] plus pneumatic control [PC] gas) of a FAM's pneumatically controlled ventilator in mechanical models of high (HC) and low (LC) total thoracic compliance. The amount of total O(2) consumed by the Magellan-2200 (Oceanic Medical Products, Atchison, KS) FAM with pneumatically controlled ventilator was calculated using the ideal gas law and the measured mass of O(2) consumed from E cylinders. DG to the bellows canister assembly was measured with the Wright Respirometer Mk 8 (Ferraris Respiratory Europe, Hertford, UK). PC gas consumption was calculated by subtracting DG and fresh gas flow (FGF) from the total O(2) consumed from the E cylinder. The delivered tidal volume (V(T)) was measured with a pneumotach (Hans Rudolph, KS City, MO). Three different V(T) were tested (500, 750, and 1000 mL) with two lung models (HC and LC) using the Vent Aid Training Test Lung (MI Instruments, Grand Rapids, MI). Respiratory variables included an I:E of 1:2, FGF of 1 L/min, and respiratory rate of 10 breaths/min. Total O(2) consumption was directly proportional to V(T) and inversely proportional to compliance. The smallest total O(2) consumption rate (including FGF) was 9.3 +/- 0.4 L/min in the HC-500 model and the largest was 15.9 +/- 0.5 L/min in the LC-1000 model (P < 0.001). The mean PC circuitry consumption was 3.9 +/- 0.24 L/min or 390 mL +/- 24 mL/breath. To prepare for loss of central DG supply, patient safety will be improved by estimating cylinder duration for low total thoracic compliance. Using data from the smaller compliance and greatest V(T) model (LC-1000), a full O(2) E cylinder would be depleted in

  20. Selection for high and low oxygen consumption-induced differences in maintenance energy requirements of mice.

    Science.gov (United States)

    Darhan, Hongyu; Kikusato, Motoi; Toyomizu, Masaaki; Roh, Sang-Gun; Katoh, Kazuo; Sato, Masahiro; Suzuki, Keiichi

    2017-07-01

    Maintenance energy requirements (MER) of mice selected for high (H) or low (L) oxygen consumption (OC) were compared. Forty-four mice from H and L OC lines were weaned at 3 weeks and divided into four experimental groups: group A were sacrificed at 4 weeks; group B were fed ad libitum, and groups C and D were fed 2.8 and 2.4 g/day, respectively, from 4 to 8 weeks of age. Groups B-D were sacrificed at 8 weeks. Chemical components were estimated for all groups. MER was estimated using a model that partitioned metabolizable energy intake into that used for maintenance, and protein and fat deposition. The feed conversion ratio for the B group was significantly higher in the H than in the L line. Feed intake for metabolic energy content per metabolic body size was significantly also higher in the H line, whereas accumulated energy content per metabolic body size was significantly higher in the L line. MER of the H line was greater than that of the L line (P < 0.10). These results suggest that selection for H or L OC produced differences in chemical components, feed efficiency, and MER between the H and L lines. © 2016 Japanese Society of Animal Science.

  1. Near-infrared spectroscopy for monitoring muscle oxygenation

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher; Piantadosi, C A

    2000-01-01

    Near-infrared spectroscopy (NIRS) is a non-invasive method for monitoring oxygen availability and utilization by the tissues. In intact skeletal muscle, NIRS allows semi-quantitative measurements of haemoglobin plus myoglobin oxygenation (tissue O2 stores) and the haemoglobin volume. Specialized...... algorithms allow assessment of the oxidation-reduction (redox) state of the copper moiety (CuA) of mitochondrial cytochrome c oxidase and, with the use of specific tracers, accurate assessment of regional blood flow. NIRS has demonstrated utility for monitoring changes in muscle oxygenation and blood flow...... during submaximal and maximal exercise and under pathophysiological conditions including cardiovascular disease and sepsis. During work, the extent to which skeletal muscles deoxygenate varies according to the type of muscle, type of exercise and blood flow response. In some instances, a strong...

  2. Linking Arenicola marina irrigation behavior to oxygen transport and dynamics in sandy sediments

    DEFF Research Database (Denmark)

    Timmermann, Karen; Banta, Gary T.; Glud, Ronnie Nøhr

    2007-01-01

    In this study we examine how the irrigation behavior of the common lugworm Arenicola marina affects the distribution, transport and dynamics of oxygen in sediments using microelectrodes, planar optodes and diagenetic modeling. The irrigation pattern was characterized by a regular recurring period...... and only in rare situations with very high pumping rates (>200 ml h-1) and/or a narrow feeding funnel (water....... concentration in the burrow was high (80% air saturation) and oxygen was detected at distances up to 0.7 mm from the burrow wall. Volume specific oxygen consumption rates calculated from measured oxygen profiles were up to 4 times higher for sediments surrounding worm burrows as compared to surface sediments....... Model results indicated that oxygen consumption also was higher in the feeding pocket/funnel compared to the activity in surface sediments. An oxygen budget revealed that 49% of the oxygen pumped into the burrow during lugworm irrigation was consumed by the worm itself while 23% supported the diffusive...

  3. Radiation-induced DNA damage in tumors and normal tissues. III. Oxygen dependence of the formation of strand breaks and DNA-protein crosslinks

    International Nuclear Information System (INIS)

    Zhang, H.; Wallen, C.A.; Wheeler, K.T.; Joch, C.J.

    1995-01-01

    Results from several laboratories, including ours, have suggested that measurements of radiation-induced DNA strand breaks and DNA-protein crosslinks (DPCs) may be used to estimate the hypoxic fraction or fractional hypoxic volume of tumors and normal tissues. This suggestion has been predicated on both published and nonpublished information that (1) the oxygen dependence of the formation of strand breaks in irradiated mammalian cells is similar to the oxygen dependence of radiation-produced cell killing, and (2) the oxygen dependence of the formation of DPCs in irradiated mammalian cells is the mirror image of the oxygen dependence of radiation-induced cell killing. However, the published studies that attempted to determine the relationship between the oxygen dependence of the formation of strand breaks and the radiation sensitivity of mammalian cells were not performed at 37 degrees C, the exact oxygen concentrations were not always known, and the results were conflicting. In addition, most of the data on the oxygen dependence of the formation of DPCs are unpublished. Consequently, we have undertaken a comprehensive investigation of one cell line, 9L/Ro rat brain tumor cells, to determine if the shape of the oxygen dependence curve and the K m value for radiation-induced strand breaks and DPCs were similar when 9L cells were irradiated under both ideal gas-liquid equilibrium conditions at 4 degrees C and nonideal gas-liquid equilibrium conditions at 37 degrees C. At 4 degrees C under ideal gas-liquid equilibrium conditions, the K m for the formation of strand breaks was approximately 0.0045 mM, and Km for radiation sensitivity was approximately 0.005mM. A similar comparison for the formation of DPCs at 4 degrees C could not be made, because the efficiency of the formation of DPC was much lower at 4 degrees C than at 37 degrees C. 30 refs., 3 figs

  4. Enhanced oxygen delivery induced by perfluorocarbon emulsions in capillary tube oxygenators.

    Science.gov (United States)

    Vaslef, S N; Goldstick, T K

    1994-01-01

    Previous studies showed that a new generation of perfluorocarbon (PFC) emulsions increased tissue PO2 in the cat retina to a degree that could not be explained by the small increase in arterial O2 content seen after the infusion of low doses of 1 g PFC/kg body weight. It seems that increased O2 delivery at the tissue level after PFC infusion is caused by a local effect in the microcirculation. The authors studies this effect in vitro at steady state in a closed loop circuit, consisting of one of two types of capillary tube oxygenators, deoxygenator(s), a reservoir bag filled with anticoagulated bovine blood or saline (control), and a roller pump, to see if the addition of PFC would have an effect on the PO2 difference (delta PO2) across the capillary tube membrane oxygenator at a blood flow rate of 3 l/min. Perfluorocarbon was added in three incremental doses, each giving about 0.7 vol% of PFC. The delta PO2 across the oxygenator was measured before and after each dose. The mean percent increases in delta PO2 in blood for two types of oxygenators were 19.2 +/- 8% (mean +/- SD, n = 6, P = 0.002) and 9.9 +/- 4% (n = 3, P = 0.05), respectively, whereas the mean percent change in delta PO2 in saline was -4.9 +/- 2% (n = 2, P = 0.2). Inlet PO2s to the oxygenator were only minimally increased. The authors conclude that O2 delivery was significantly enhanced after injection of PFC in blood in this capillary tube model. A near wall excess of PFC particles may account for the augmentation of O2 diffusion in this model.

  5. Modeling of oxygen gas diffusion and consumption during the oxic transient in a disposal cell of radioactive waste

    International Nuclear Information System (INIS)

    De Windt, Laurent; Marsal, François; Corvisier, Jérôme; Pellegrini, Delphine

    2014-01-01

    Highlights: • This paper deals with the geochemistry of underground HLW disposals. • The oxic transient is a key issue in performance assessment (e.g. corrosion, redox). • A reactive transport model is explicitly coupled to gas diffusion and reactivity. • Application to in situ experiment (Tournemire laboratory) and HLW disposal cell. • Extent of the oxidizing/reducing front is investigated by sensitivity analysis. - Abstract: The oxic transient in geological radioactive waste disposals is a key issue for the performance of metallic components that may undergo high corrosion rates under such conditions. A previous study carried out in situ in the argillite formation of Tournemire (France) has suggested that oxic conditions could have lasted several years. In this study, a multiphase reactive transport model is performed with the code HYTEC to analyze the balance between the kinetics of pyrite oxidative dissolution, the kinetics of carbon steel corrosion and oxygen gas diffusion when carbon steel components are emplaced in the geological medium. Two cases were modeled: firstly, the observations made in situ have been reproduced, and the model established was then applied to a disposal cell for high-level waste (HLW) in an argillaceous formation, taking into account carbon steel components and excavated damaged zones (EDZ). In a closed system, modeling leads to a complete and fast consumption of oxygen in both cases. Modeling results are more consistent with the in situ test while considering residual voids between materials and/or a water unsaturated state allowing for oxygen gas diffusion (open conditions). Under similar open conditions and considering ventilation of the handling drifts, a redox contrast occurs between reducing conditions at the back of the disposal cell (with anoxic corrosion of steel and H 2 production) and oxidizing conditions at the front of the cell (with oxic corrosion of steel). The extent of the oxidizing/reducing front in the

  6. Oxygen tension measurements of tumors growing in mice

    International Nuclear Information System (INIS)

    Adam, Markus F.; Dorie, Mary Jo; Brown, J. Martin

    1999-01-01

    Purpose: Clinical studies using the Eppendorf histograph have shown that patients whose tumors have a low pO 2 have worse local control after radiotherapy, and have higher metastatic rates. Because preclinical studies of methods of overcoming, or exploiting, hypoxia generally use transplanted tumors in mice, we have compared the oxygenation of mouse tumors with human tumors to determine the appropriateness of the transplanted mouse model for such preclinical studies. Methods and Materials: We evaluated the oxygenation status of subcutaneous (s.c.) tissue and of 12 intradermally (i.d.)- and 7 s.c.-growing mouse or human transplanted tumors in mice using the Eppendorf histograph, and compared the values obtained with measurements of human head and neck nodes. Results: The normal tissue pO 2 profile of air-breathing mice showed a nearly Gaussian distribution (38.2 ± 14.9 mmHg). Breathing 10% O 2 or carbogen resulted in dramatic changes in normal tissue oxygenation. Tumors growing intradermally in the back of air-breathing mice were extremely hypoxic and resistant to expected changes in oxygenation (carbogen breathing, size, and use of anesthetics). Tumors growing s.c. in the foot showed higher oxygen profiles with marked changes in oxygenation when exposing the animals to different levels of oxygen. However, the oxygenation of the mouse tumors transplanted in either site was only a fraction of that of the majority of human tumors. Conclusion: Experimental mouse tumors are markedly hypoxic, with median values of 10-20% of those of human tumors. Hence, mouse tumors are probably good models for the most hypoxic human tumors that respond poorly to radiotherapy; however, caution has to be exercised in extrapolating data from mouse to man

  7. [Oxygen peak consumption is a better predictor of cardiovascular risk than handgrip strength in older Chilean women].

    Science.gov (United States)

    Farías-Valenzuela, Claudio; Pérez-Luco, Cristian; Ramírez-Campillo, Rodrigo; Álvarez, Cristian; Castro-Sepúlveda, Mauricio

    Handgrip strength (HS) and peak oxygen consumption (Vo2peak) are powerful predictors of cardiovascular risk, although it is unknown which of the two variables is the better predictor. The objective of the following study was to relate HS and Vo2peak to cardiovascular risk markers in older Chilean women. Physically active adult women (n=51; age, 69±4.7years) participated in this study. The HS and Vo2peak were evaluated and related to the anthropometric variables of body mass, body mass index (BMI), waist circumference (WC), hip circumference (HC), waist ratio (WR), and waist height ratio (WHR), as well as with the cardiovascular variables systolic (SBP) and diastolic (DBP) and cardiac recovery in one minute (RHR1). A multilinear regression model was used for the analysis of the associated variables (Pcardiovascular risk markers associated (Pcardiovascular risk markers, Vo2peak offers greater associative power with these cardiovascular risk factors. Copyright © 2017 SEGG. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. Excess postexercise oxygen consumption is unaffected by the resistance and aerobic exercise order in an exercise session.

    Science.gov (United States)

    Oliveira, Norton L; Oliveira, Jose

    2011-10-01

    The main purpose of this study was to compare the magnitude and duration of excess postexercise oxygen consumption (EPOC) after 2 exercise sessions with different exercise mode orders, resistance followed by aerobic exercise (R-A); aerobic by resistance exercise (A-R). Seven young men (19.6 ± 1.4 years) randomly underwent the 2 sessions. Aerobic exercise was performed on a treadmill for 30 minutes (80-85% of reserve heart rate). Resistance exercise consisted of 3 sets of 10 repetition maximum on 5 exercises. Previous to the exercise sessions, V(O2), heart rate, V(CO2), and respiratory exchange rate (RER) were measured for 15 minutes and again during recovery from exercise for 60 minutes. The EPOC magnitude was not significantly different between R-A (5.17 ± 2.26 L) and A-R (5.23 ± 2.48 L). Throughout the recovery period (60 minutes), V(O2) and HR values were significantly higher than those observed in the pre-exercise period (p better to start a training session.

  9. Dynamic mechanisms of cardiac oxygenation during brief ischemia and reperfusion

    International Nuclear Information System (INIS)

    Parsons, W.J.; Rembert, J.C.; Bauman, R.P.; Greenfield, J.C. Jr.; Piantadosi, C.A.

    1990-01-01

    Myocardial oxygenation may be altered markedly by changes in tissue blood flow. During brief ischemia and reperfusion produced by transient occlusion of the left anterior descending artery in 10 open-chest dogs, changes in the oxygenation of tissue hemoglobin (Hb) plus myoglobin (Mb) and the oxidation-reduction (redox) state of mitochondrial cytochrome aa3 were monitored continuously using near-infrared spectroscopy. The nondestructive optical technique indicated that coronary occlusion produced an abrupt drop in tissue oxygen stores (tHb02 + Mb02), tissue blood volume (tBV), and the oxidation level of cytochrome aa3. Changes in the cytochrome oxidation state were related inversely to transmural collateral blood flow within the ischemic region (r = 0.77) measured with radiolabeled microspheres. Furthermore, there was a direct relationship (r = 0.91) between collateral blood flow and the tissue level of desaturated Hb and Mb (tHb + Mb). Reperfusion after 2 min of ischemia led to a synchronous overshoot of baseline in coronary flow and tBV followed by supranormal increases in tHb + Mb02 and the oxidation level of cytochrome aa3. The tHb + Mb level increased transiently during reperfusion. This response correlated inversely with collateral flow during ischemia (r = 0.91). Accordingly, the time required to reach peak tHb + Mb levels was shortest in dogs with high collateral flows (r = 0.75). Thus collateral blood flow partially sustains myocardial oxygenation during coronary artery occlusion and influences tissue reoxygenation early during reperfusion

  10. Tissue distribution of HCH and DDT congeners and human health risk associated with consumption of fish collected from Kabul River, Pakistan.

    Science.gov (United States)

    Aamir, Muhammad; Khan, Sardar; Nawab, Javed; Qamar, Zahir; Khan, Anwarzeb

    2016-03-01

    Distribution of hexachlorocyclohexane (HCH) and dichlorodiphenyltrichloroethane (DDT) congeners in tissues of four different fish species and their associated potential health risks to local consumers are presented in this paper. The average ∑(HCHs+DDTs) concentration in Glyptothorax punjabensis (214ngg(-1) wet weight (ww)) (carnivores) was found higher than Tor putitora (155ngg(-1) ww) (herbivores). The distribution of ∑(HCHs+DDTs) in all fish tissues was found in order of liver>muscle>stomach>gills. The profile of congeners (β-HCH/∑HCH from 0.29-0.47) indicated that all selected fish species were contaminated with HCH because of its recent usage in the study area. Furthermore, DDT profile ((DDE+DDD)/∑DDT from 0.61-0.78) showed that fish contamination with DDT originated from past usage and long-time degradation mechanism. The average estimated daily dietary intake of ∑HCHs (15.0ngkg(-1) day(-1)) was higher than ∑DDTs (12.5ngkg(-1) day(-1)) by the local consumers via fish consumption. On the basis of both 50th and 95th percentile exposure levels, the carcinogenic hazard ratios for DDT and its congeners were exceeded one (safe limit) for all fish species, indicating a great potential cancer risk for local consumers with life time consumption of contaminated fish collected from Kabul River. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Microencapsulated 3-Dimensional Sensor for the Measurement of Oxygen in Single Isolated Pancreatic Islets

    Science.gov (United States)

    Khalil, Gamal; Sweet, Ian R.; Shen, Amy Q.

    2012-01-01

    Background Oxygen consumption reflects multiple processes in pancreatic islets including mechanisms contributing to insulin secretion, oxidative stress and viability, providing an important readout in studies of islet function, islet viability and drug testing. Due to the scarcity, heterogeneity, and intrinsic kinetic properties of individual islets, it would be of great benefit to detect oxygen consumption by single islets. We present a novel method we have developed to image oxygen in single islets. Methodology/Principal Findings Using a microfluidics system, individual islets and a fluorescent oxygen-sensitive dye were encased within a thin alginate polymer layer. Insulin secretion by the encapsulated islets was normal. Fluorescent signal from the encased dye, detected using a standard inverted fluorescence microscope and digital camera, was stable and proportional to the amount of oxygen in the media. When integrated into a perifusion system, the sensing system detected changes in response to metabolic substrates, mitochondrial poisons, and induced-oscillations. Glucose responses averaged 30.1±7.1% of the response to a metabolic inhibitor (cyanide), increases were observed in all cases (n = 6), and the system was able to resolve changes in oxygen consumption that had a period greater than 0.5 minutes. The sensing system operated similarly from 2–48 hours following encapsulation, and viability and function of the islets were not significantly affected by the encapsulation process. Conclusions/Significance An oxygen-dependent dye situated around and within a pancreatic islet encapsulated by a thin layer of alginate was sensitive to changes in oxygen consumption, and was not harmful to the function or viability of islets over the course of two days. The microcapsule-based sensing method is particularly suited to assessing the effects of compounds (dose responses and time courses) and chronic changes occurring over the course of days. The approach should be

  12. The Diffusive Boundary-Layer of Sediments - Oxygen Microgradients Over a Microbial Mat

    DEFF Research Database (Denmark)

    JØRGENSEN, BB; MARAIS, DJD

    1990-01-01

    Oxygen microelectrodes were used to analyze the distribution of the diffusive boundary layer (DBL) at the sedimen-water interface in relation to surface topography and flow velocity. The sediment, collected from saline ponds, was covered by a microbial mat that had high oxygen consumption rate...

  13. Inorganic Nitrate Promotes the Browning of White Adipose Tissue through the Nitrate-Nitrite-Nitric Oxide Pathway

    Science.gov (United States)

    Roberts, Lee D; Ashmore, Tom; Kotwica, Aleksandra O; Murfitt, Steven A; Fernandez, Bernadette O; Feelisch, Martin; Griffin, Julian L

    2015-01-01

    Inorganic nitrate was once considered an oxidation end-product of nitric oxide metabolism with little biological activity. However, recent studies have demonstrated that dietary nitrate can modulate mitochondrial function in man and is effective in reversing features of the metabolic syndrome in mice. Using a combined histological, metabolomics, and transcriptional and protein analysis approach we mechanistically define that nitrate not only increases the expression of thermogenic genes in brown-adipose tissue but also induces the expression of brown adipocyte-specific genes and proteins in white adipose tissue, substantially increasing oxygen consumption and fatty acid β-oxidation in adipocytes. Nitrate induces these phenotypic changes through a mechanism distinct from known physiological small molecule activators of browning, the recently identified nitrate-nitrite-nitric oxide pathway. The nitrate-induced browning effect was enhanced in hypoxia, a serious co-morbidity affecting white adipose tissue in obese individuals, and corrected impaired brown adipocyte-specific gene expression in white adipose tissue in a murine model of obesity. Since resulting beige/brite cells exhibit anti-obesity and anti-diabetic effects, nitrate may be an effective means of inducing the browning response in adipose tissue to treat the metabolic syndrome. PMID:25249574

  14. Is oxygen availability a limiting factor for in vitro folliculogenesis?

    Directory of Open Access Journals (Sweden)

    Riccardo Talevi

    Full Text Available Transplantation of ovarian tissue for the preservation of fertility in oncological patients is becoming an accepted clinical practice. However, the risk of re-introducing tumour cells at transplantation has stirred an increased interest for complete in vitro folliculogenesis. This has not yet been achieved in humans possibly for the lack of knowledge on the environmental milieu that orchestrates folliculogenesis in vivo. The main aim of this study was to investigate the effect of oxygen availability on follicle health and growth during in vitro culture of ovarian tissue strips. To this end, a model was developed to predict the dissolved oxygen concentration in tissue under varying culture conditions. Ovarian cortical strips of bovine, adopted as an animal model, and human tissue were cultured in conventional (CD and gas permeable (PD dishes under different media column heights and gaseous oxygen tensions for 3, 6 and 9 days. Follicle quality, activation of primordial follicles to the primary stage, and progression to the secondary stage were analysed through histology. Follicle viability was assessed through a live-dead assay at the confocal scanning laser microscope. Findings showed a higher follicle quality and viability after culture of bovine ovarian strips in PD in adequate medium height and oxygen tensions. The best culture conditions found in the bovine were adopted for human ovarian strip culture and promoted a higher follicle quality, viability and progression. Overall, data demonstrated that modulation of oxygen availability in tissue plays a key role in maintaining follicles' health and their ability to survive and progress to the secondary stage during ovarian tissue in vitro culture. Such culture conditions could increase the yield of healthy secondary follicles for subsequent dissection and individual culture to obtain competent oocytes.

  15. Mapping of cerebral metabolic rate of oxygen using dynamic susceptibility contrast and blood oxygen level dependent MR imaging in acute ischemic stroke

    Energy Technology Data Exchange (ETDEWEB)

    Gersing, Alexandra S.; Schwaiger, Benedikt J. [Technical University Munich, Klinikum rechts der Isar, Department of Neuroradiology, Munich (Germany); University of California, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States); Ankenbrank, Monika; Toth, Vivien; Bauer, Jan S.; Zimmer, Claus [Technical University Munich, Klinikum rechts der Isar, Department of Neuroradiology, Munich (Germany); Janssen, Insa [Technical University Munich, Department of Neurosurgery, Munich (Germany); Kooijman, Hendrik [Philips Healthcare, Hamburg (Germany); Wunderlich, Silke [Technical University Munich, Department of Neurology, Munich (Germany); Preibisch, Christine [Technical University Munich, Klinikum rechts der Isar, Department of Neuroradiology, Munich (Germany); Technical University Munich, Department of Neurology, Munich (Germany)

    2015-12-15

    MR-derived cerebral metabolic rate of oxygen utilization (CMRO{sub 2}) has been suggested to be analogous to PET-derived CMRO{sub 2} and therefore may be used for detection of viable tissue at risk for infarction. The purpose of this study was to evaluate MR-derived CMRO{sub 2} mapping in acute ischemic stroke in relation to established diffusion- and perfusion-weighted imaging. In 23 patients (mean age 63 ± 18.7 years, 11 women) with imaging findings for acute ischemic stroke, relative oxygen extraction fraction was calculated from quantitative transverse relaxation times (T2, T2*) and relative cerebral blood volume using a quantitative blood oxygenation level dependent (BOLD) approach in order to detect a local increase of deoxyhemoglobin. Relative CMRO{sub 2} (rCMRO{sub 2}) maps were calculated by multiplying relative oxygen extraction fraction (rOEF) by cerebral blood flow, derived from PWI. After co-registration, rCMRO{sub 2} maps were evaluated in comparison with apparent diffusion coefficient (ADC) and time-to-peak (TTP) maps. Mean rCMRO{sub 2} values in areas with diffusion-restriction or TTP/ADC mismatch were compared with rCMRO{sub 2} values in the contralateral tissue. In tissue with diffusion restriction, mean rCMRO{sub 2} values were significantly decreased compared to perfusion-impaired (17.9 [95 % confidence interval 10.3, 25.0] vs. 58.1 [95 % confidence interval 50.1, 70.3]; P < 0.001) and tissue in the contralateral hemisphere (68.2 [95 % confidence interval 61.4, 75.0]; P < 0.001). rCMRO{sub 2} in perfusion-impaired tissue showed no significant change compared to tissue in the contralateral hemisphere (58.1 [95 % confidence interval 50.1, 70.3] vs. 66.7 [95 % confidence interval 53.4, 73.4]; P = 0.34). MR-derived CMRO{sub 2} was decreased within diffusion-restricted tissue and stable within perfusion-impaired tissue, suggesting that this technique may be adequate to reveal different pathophysiological stages in acute stroke. (orig.)

  16. The generation of singlet oxygen (o(2)) by the nitrodiphenyl ether herbicide oxyfluorfen is independent of photosynthesis.

    Science.gov (United States)

    Haworth, P; Hess, F D

    1988-03-01

    The mechanism of action of the p-nitrodiphenyl ether herbicides has remained ambiguous because of conflicting reports in the literature. The diphenyl ether herbicide oxyfluorfen causes a light induced consumption of oxygen which resembles the electron acceptor reaction of paraquat. However, this reaction is not linked to the transport of electrons through photosystem I. This conclusion is based on the observation that the rate of oxygen consumption, in the presence of oxyfluorfen, does not demonstrate a first order rate dependence on light intensity. Using the bleaching of N,N-dimethyl p-nitrosoaniline as a specific detector of singlet oxygen, we demonstrate that oxyfluorfen is a potent generator of this toxic radical. The production of singlet oxygen occurs in the presence of inhibitors of photosynthetic electron transport (oxyfluorfen at 10(-4) molar and paraquat) and also under temperature conditions (3 degrees C) which prevent electron transport. This light induced reaction results in oxygen consumption and is the primary cause of lethality for oxyfluorfen. The production of singlet oxygen occurs rapidly and at low herbicide concentrations (10(-9) molar). The reaction occurs without photosynthetic electron transport but does require an intact thylakoid membrane.

  17. Long-term fasting decreases mitochondrial avian UCP-mediated oxygen consumption in hypometabolic king penguins.

    Science.gov (United States)

    Rey, Benjamin; Halsey, Lewis G; Dolmazon, Virginie; Rouanet, Jean-Louis; Roussel, Damien; Handrich, Yves; Butler, Patrick J; Duchamp, Claude

    2008-07-01

    In endotherms, regulation of the degree of mitochondrial coupling affects cell metabolic efficiency. Thus it may be a key contributor to minimizing metabolic rate during long periods of fasting. The aim of the present study was to investigate whether variation in mitochondrial avian uncoupling proteins (avUCP), as putative regulators of mitochondrial oxidative phosphorylation, may contribute to the ability of king penguins (Aptenodytes patagonicus) to withstand fasting for several weeks. After 20 days of fasting, king penguins showed a reduced rate of whole animal oxygen consumption (Vo2; -33%) at rest, together with a reduced abundance of avUCP and peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC1-alpha) mRNA in pectoralis muscle (-54%, -36%, respectively). These parameters were restored after the birds had been refed for 3 days. Furthermore, in recently fed, but not in fasted penguins, isolated muscle mitochondria showed a guanosine diphosphate-inhibited, fatty acid plus superoxide-activated respiration, indicating the presence of a functional UCP. It was calculated that variation in mitochondrial UCP-dependent respiration in vitro may contribute to nearly 20% of the difference in resting Vo2 between fed or refed penguins and fasted penguins measured in vivo. These results suggest that the lowering of avUCP activity during periods of long-term energetic restriction may contribute to the reduction in metabolic rate and hence the ability of king penguins to face prolonged periods of fasting.

  18. Resolving Contributions of Oxygen-Consuming and ROS-Generating Enzymes at the Synapse

    Directory of Open Access Journals (Sweden)

    Engy A. Abdel-Rahman

    2016-01-01

    Full Text Available Disruption of cellular redox homeostasis is implicated in a wide variety of pathologic conditions and aging. A fundamental factor that dictates such balance is the ratio between mitochondria-mediated complete oxygen reduction into water and incomplete reduction into superoxide radical by mitochondria and NADPH oxidase (NOX enzymatic activity. Here we determined mitochondrial as well as NOX-dependent rates of oxygen consumption in parallel with H2O2 generation in freshly isolated synaptosomes using high resolution respirometry combined with fluorescence or electrochemical sensory. Our results indicate that although synaptic mitochondria exhibit substantially higher respiratory activities (8–82-fold greater than NOX oxygen consumption depending on mitochondrial respiratory state, NADPH-dependent oxygen consumption is associated with greater H2O2 production (6-7-fold higher NOX-H2O2. We also show that, in terms of the consumed oxygen, while synaptic mitochondria “leaked” 0.71%±0.12 H2O2 during NAD+-linked resting, 0.21%±0.04 during NAD+-linked active respiration, and 0.07%±0.02 during FAD+-linked active respiration, NOX converted 38%±13 of O2 into H2O2. Our results indicate that NOX rather than mitochondria is the major source of synaptic H2O2. The present approach may assist in the identification of redox-modulating synaptic factors that underlie a variety of physiological and pathological processes in neurons.

  19. The relationship between heart rate and rate of oxygen consumption in Galapagos marine iguanas (Amblyrhynchus cristatus) at two different temperatures.

    Science.gov (United States)

    Butler, Patrick J; Frappell, Peter B; Wang, Tobias; Wikelski, Martin

    2002-07-01

    To enable the use of heart rate (fH) for estimating field metabolic rate (FMR) in free-ranging Galapagos marine iguanas Amblyrhynchus cristatus, we determined the relationships between fH and mass-specific rate of oxygen consumption (sVO2) in seven iguanas before and during exercise on a treadmill and during the post-exercise period. The experiments were conducted at 27 and 35 degrees C, which are the temperatures that represent the lowest and highest average body temperatures of these animals in the field during summer. There were linear and significant relationships between fH and sVO2 at both temperatures (r(2)=0.86 and 0.91 at 27 degrees C and 36 degrees C, respectively). The slopes of the two regression lines did not differ, but there were significant differences in their intercepts. Thus, while heart rate can be used to predict FMR, the effects of temperature on the intercept of the regression must be taken into account when converting fH to sVO2. On the basis of our data, this can be achieved by applying the following formula: sVO2=0.0113fH-0.2983Q(10)((T(b)-27)/10). The increase in sVO2 with elevated body temperature results from an increase in fH, with no significant change in mass-specific oxygen pulse (sO(2) pulse; cardiac stroke volume times the difference in oxygen content between arterial and mixed venous blood). However, during exercise at both temperatures, increases in fH are insufficient to provide all of the additional O(2) required and there are also significant increases in the sO(2) pulses. This creates the situation whereby the same fH at the two temperatures can represent different values of sVO2.

  20. Administration of 3,5-diiodothyronine (3,5-T2) causes central hypothyroidism and stimulates thyroid-sensitive tissues.

    Science.gov (United States)

    Padron, Alvaro Souto; Neto, Ruy Andrade Louzada; Pantaleão, Thiago Urgal; de Souza dos Santos, Maria Carolina; Araujo, Renata Lopes; de Andrade, Bruno Moulin; da Silva Leandro, Monique; de Castro, João Pedro Saar Werneck; Ferreira, Andrea Claudia Freitas; de Carvalho, Denise Pires

    2014-06-01

    In general, 3,5-diiodothyronine (3,5-T2) increases the resting metabolic rate and oxygen consumption, exerting short-term beneficial metabolic effects on rats subjected to a high-fat diet. Our aim was to evaluate the effects of chronic 3,5-T2 administration on the hypothalamus-pituitary-thyroid axis, body mass gain, adipose tissue mass, and body oxygen consumption in Wistar rats from 3 to 6 months of age. The rats were treated daily with 3,5-T2 (25, 50, or 75 μg/100 g body weight, s.c.) for 90 days between the ages of 3 and 6 months. The administration of 3,5-T2 suppressed thyroid function, reducing not only thyroid iodide uptake but also thyroperoxidase, NADPH oxidase 4 (NOX4), and thyroid type 1 iodothyronine deiodinase (D1 (DIO1)) activities and expression levels, whereas the expression of the TSH receptor and dual oxidase (DUOX) were increased. Serum TSH, 3,3',5-triiodothyronine, and thyroxine were reduced in a 3,5-T2 dose-dependent manner, whereas oxygen consumption increased in these animals, indicating the direct action of 3,5-T2 on this physiological variable. Type 2 deiodinase activity increased in both the hypothalamus and the pituitary, and D1 activities in the liver and kidney were also increased in groups treated with 3,5-T2. Moreover, after 3 months of 3,5-T2 administration, body mass and retroperitoneal fat pad mass were significantly reduced, whereas the heart rate and mass were unchanged. Thus, 3,5-T2 acts as a direct stimulator of energy expenditure and reduces body mass gain; however, TSH suppression may develop secondary to 3,5-T2 administration. © 2014 The authors.