WorldWideScience

Sample records for tissue fluid homeostasis

  1. Neural Control Mechanisms and Body Fluid Homeostasis

    Science.gov (United States)

    Johnson, Alan Kim

    1998-01-01

    The goal of the proposed research was to study the nature of afferent signals to the brain that reflect the status of body fluid balance and to investigate the central neural mechanisms that process this information for the activation of response systems which restore body fluid homeostasis. That is, in the face of loss of fluids from intracellular or extracellular fluid compartments, animals seek and ingest water and ionic solutions (particularly Na(+) solutions) to restore the intracellular and extracellular spaces. Over recent years, our laboratory has generated a substantial body of information indicating that: (1) a fall in systemic arterial pressure facilitates the ingestion of rehydrating solutions and (2) that the actions of brain amine systems (e.g., norepinephrine; serotonin) are critical for precise correction of fluid losses. Because both acute and chronic dehydration are associated with physiological stresses, such as exercise and sustained exposure to microgravity, the present research will aid in achieving a better understanding of how vital information is handled by the nervous system for maintenance of the body's fluid matrix which is critical for health and well-being.

  2. Mechanical homeostasis regulating adipose tissue volume

    Directory of Open Access Journals (Sweden)

    Svedman Paul

    2007-09-01

    Full Text Available Abstract Background The total body adipose tissue volume is regulated by hormonal, nutritional, paracrine, neuronal and genetic control signals, as well as components of cell-cell or cell-matrix interactions. There are no known locally acting homeostatic mechanisms by which growing adipose tissue might adapt its volume. Presentation of the hypothesis Mechanosensitivity has been demonstrated by mesenchymal cells in tissue culture. Adipocyte differentiation has been shown to be inhibited by stretching in vitro, and a pathway for the response has been elucidated. In humans, intermittent stretching of skin for reconstructional purposes leads to thinning of adipose tissue and thickening of epidermis – findings matching those observed in vitro in response to mechanical stimuli. Furthermore, protracted suspension of one leg increases the intermuscular adipose tissue volume of the limb. These findings may indicate a local homeostatic adipose tissue volume-regulating mechanism based on movement-induced reduction of adipocyte differentiation. This function might, during evolution, have been of importance in confined spaces, where overgrowth of adipose tissue could lead to functional disturbance, as for instance in the turtle. In humans, adipose tissue near muscle might in particular be affected, for instance intermuscularly, extraperitoneally and epicardially. Mechanical homeostasis might also contribute to protracted maintainment of soft tissue shape in the face and neck region. Testing of the hypothesis Assessment of messenger RNA-expression of human adipocytes following activity in adjacent muscle is planned, and study of biochemical and volumetric adipose tissue changes in man are proposed. Implications of the hypothesis The interpretation of metabolic disturbances by means of adipose tissue might be influenced. Possible applications in the head and neck were discussed.

  3. Innate immunity orchestrates adipose tissue homeostasis.

    Science.gov (United States)

    Lin, Yi-Wei; Wei, Li-Na

    2017-06-23

    Obesity is strongly associated with multiple diseases including insulin resistance, type 2 diabetes, cardiovascular diseases, fatty liver disease, neurodegenerative diseases and cancers, etc. Adipose tissue (AT), mainly brown AT (BAT) and white AT (WAT), is an important metabolic and endocrine organ that maintains whole-body homeostasis. BAT contributes to non-shivering thermogenesis in a cold environment; WAT stores energy and produces adipokines that fine-tune metabolic and inflammatory responses. Obesity is often characterized by over-expansion and inflammation of WAT where inflammatory cells/mediators are abundant, especially pro-inflammatory (M1) macrophages, resulting in chronic low-grade inflammation and leading to insulin resistance and metabolic complications. Macrophages constitute the major component of innate immunity and can be activated as a M1 or M2 (anti-inflammatory) phenotype in response to environmental stimuli. Polarized M1 macrophage causes AT inflammation, whereas polarized M2 macrophage promotes WAT remodeling into the BAT phenotype, also known as WAT browning/beiging, which enhances insulin sensitivity and metabolic health. This review will discuss the regulation of AT homeostasis in relation to innate immunity.

  4. Renal renin secretion as regulator of body fluid homeostasis

    DEFF Research Database (Denmark)

    Damkjær, Mads; Isaksson, Gustaf L; Stubbe, Jane

    2013-01-01

    The renin-angiotensin system is essential for body fluid homeostasis and blood pressure regulation. This review focuses on the homeostatic regulation of the secretion of active renin in the kidney, primarily in humans. Under physiological conditions, renin secretion is determined mainly by sodium...

  5. Integrating physiological regulation with stem cell and tissue homeostasis

    Science.gov (United States)

    Nakada, Daisuke; Levi, Boaz P.; Morrison, Sean J.

    2015-01-01

    Summary Stem cells are uniquely able to self-renew, to undergo multilineage differentiation, and to persist throughout life in a number of tissues. Stem cells are regulated by a combination of shared and tissue-specific mechanisms and are distinguished from restricted progenitors by differences in transcriptional and epigenetic regulation. Emerging evidence suggests that other aspects of cellular physiology, including mitosis, signal transduction, and metabolic regulation also differ between stem cells and their progeny. These differences may allow stem cells to be regulated independently of differentiated cells in response to circadian rhythms, changes in metabolism, diet, exercise, mating, aging, infection, and disease. This allows stem cells to sustain homeostasis or to remodel relevant tissues in response to physiological change. Stem cells are therefore not only regulated by short-range signals that maintain homeostasis within their tissue of origin, but also by long-range signals that integrate stem cell function with systemic physiology. PMID:21609826

  6. The plasticity of extracellular fluid homeostasis in insects.

    Science.gov (United States)

    Beyenbach, Klaus W

    2016-09-01

    In chemistry, the ratio of all dissolved solutes to the solution's volume yields the osmotic concentration. The present Review uses this chemical perspective to examine how insects deal with challenges to extracellular fluid (ECF) volume, solute content and osmotic concentration (pressure). Solute/volume plots of the ECF (hemolymph) reveal that insects tolerate large changes in all three of these ECF variables. Challenges beyond those tolerances may be 'corrected' or 'compensated'. While a correction simply reverses the challenge, compensation accommodates the challenge with changes in the other two variables. Most insects osmoregulate by keeping ECF volume and osmotic concentration within a wide range of tolerance. Other insects osmoconform, allowing the ECF osmotic concentration to match the ambient osmotic concentration. Aphids are unique in handling solute and volume loads largely outside the ECF, in the lumen of the gut. This strategy may be related to the apparent absence of Malpighian tubules in aphids. Other insects can suspend ECF homeostasis altogether in order to survive extreme temperatures. Thus, ECF homeostasis in insects is highly dynamic and plastic, which may partly explain why insects remain the most successful class of animals in terms of both species number and biomass. © 2016. Published by The Company of Biologists Ltd.

  7. Cell-size distribution in epithelial tissue formation and homeostasis.

    Science.gov (United States)

    Puliafito, Alberto; Primo, Luca; Celani, Antonio

    2017-03-01

    How cell growth and proliferation are orchestrated in living tissues to achieve a given biological function is a central problem in biology. During development, tissue regeneration and homeostasis, cell proliferation must be coordinated by spatial cues in order for cells to attain the correct size and shape. Biological tissues also feature a notable homogeneity of cell size, which, in specific cases, represents a physiological need. Here, we study the temporal evolution of the cell-size distribution by applying the theory of kinetic fragmentation to tissue development and homeostasis. Our theory predicts self-similar probability density function (PDF) of cell size and explains how division times and redistribution ensure cell size homogeneity across the tissue. Theoretical predictions and numerical simulations of confluent non-homeostatic tissue cultures show that cell size distribution is self-similar. Our experimental data confirm predictions and reveal that, as assumed in the theory, cell division times scale like a power-law of the cell size. We find that in homeostatic conditions there is a stationary distribution with lognormal tails, consistently with our experimental data. Our theoretical predictions and numerical simulations show that the shape of the PDF depends on how the space inherited by apoptotic cells is redistributed and that apoptotic cell rates might also depend on size. © 2017 The Author(s).

  8. Osteopontin: Relation between Adipose Tissue and Bone Homeostasis

    Directory of Open Access Journals (Sweden)

    Carolina De Fusco

    2017-01-01

    Full Text Available Osteopontin (OPN is a multifunctional protein mainly associated with bone metabolism and remodeling. Besides its physiological functions, OPN is implicated in the pathogenesis of a variety of disease states, such as obesity and osteoporosis. Importantly, during the last decades obesity and osteoporosis have become among the main threats to health worldwide. Because OPN is a protein principally expressed in cells with multifaceted effects on bone morphogenesis and remodeling and because it seems to be one of the most overexpressed genes in the adipose tissue of the obese contributing to osteoporosis, this mini review will highlight recent insights about relation between adipose tissue and bone homeostasis.

  9. Osteopontin: Relation between Adipose Tissue and Bone Homeostasis.

    Science.gov (United States)

    De Fusco, Carolina; Messina, Antonietta; Monda, Vincenzo; Viggiano, Emanuela; Moscatelli, Fiorenzo; Valenzano, Anna; Esposito, Teresa; Sergio, Chieffi; Cibelli, Giuseppe; Monda, Marcellino; Messina, Giovanni

    2017-01-01

    Osteopontin (OPN) is a multifunctional protein mainly associated with bone metabolism and remodeling. Besides its physiological functions, OPN is implicated in the pathogenesis of a variety of disease states, such as obesity and osteoporosis. Importantly, during the last decades obesity and osteoporosis have become among the main threats to health worldwide. Because OPN is a protein principally expressed in cells with multifaceted effects on bone morphogenesis and remodeling and because it seems to be one of the most overexpressed genes in the adipose tissue of the obese contributing to osteoporosis, this mini review will highlight recent insights about relation between adipose tissue and bone homeostasis.

  10. The applied biochemistry of PEDF and implications for tissue homeostasis

    Science.gov (United States)

    BROADHEAD, MATTHEW L.; BECERRA, S. PATRICIA; CHOONG, PETER F. M.; DASS, CRISPIN R.

    2012-01-01

    Pigment epithelium-derived factor (PEDF) is an endogenously produced glycoprotein with a spectrum of biological roles across diverse pathologies. Recent research has focused on the biochemical properties of PEDF and its associated receptors. This review discusses the recent developments in PEDF biochemistry and how this new knowledge will help progress our understanding of PEDF as a molecular mediator for anti-angiogenesis and -tumorigenesis. Additionally, pathophysiological roles for PEDF in healing and tissue homeostasis are being revealed and our enhanced understanding of the interactions between PEDF and its receptors may yet prove useful in propelling PEDF towards clinical application. PMID:20166889

  11. Innate lymphoid cells in tissue homeostasis and diseases.

    Science.gov (United States)

    Ignacio, Aline; Breda, Cristiane Naffah Souza; Camara, Niels Olsen Saraiva

    2017-08-18

    Innate lymphoid cells (ILCs) are the most recently discovered family of innate immune cells. They are a part of the innate immune system, but develop from the lymphoid lineage. They lack pattern-recognition receptors and rearranged receptors, and therefore cannot directly mediate antigen specific responses. The progenitors specifically associated with the ILCs lineage have been uncovered, enabling the distinction between ILCs and natural killer cells. Based on the requirement of specific transcription factors and their patterns of cytokine production, ILCs are categorized into three subsets (ILC1, ILC2 and ILC3). First observed in mucosal surfaces, these cell populations interact with hematopoietic and non-hematopoietic cells throughout the body during homeostasis and diseases, promoting immunity, commensal microbiota tolerance, tissue repair and inflammation. Over the last 8 years, ILCs came into the spotlight as an essential cell type able to integrate diverse host immune responses. Recently, it became known that ILC subsets play a key role in immune responses at barrier surfaces, interacting with the microbiota, nutrients and metabolites. Since the liver receives the venous blood directly from the intestinal vein, the intestine and liver are essential to maintain tolerance and can rapidly respond to infections or tissue damage. Therefore, in this review, we discuss recent findings regarding ILC functions in homeostasis and disease, with a focus on the intestine and liver.

  12. Interleukin-33 in Tissue Homeostasis, Injury, and Inflammation.

    Science.gov (United States)

    Molofsky, Ari B; Savage, Adam K; Locksley, Richard M

    2015-06-16

    Interleukin-33 (IL-33) is a nuclear-associated cytokine of the IL-1 family originally described as a potent inducer of allergic type 2 immunity. IL-33 signals via the receptor ST2, which is highly expressed on group 2 innate lymphoid cells (ILC2s) and T helper 2 (Th2) cells, thus underpinning its association with helminth infection and allergic pathology. Recent studies have revealed ST2 expression on subsets of regulatory T cells, and for a role for IL-33 in tissue homeostasis and repair that suggests previously unrecognized interactions within these cellular networks. IL-33 can participate in pathologic fibrotic reactions, or, in the setting of microbial invasion, can cooperate with inflammatory cytokines to promote responses by cytotoxic NK cells, Th1 cells, and CD8(+) T cells. Here, we highlight the regulation and function of IL-33 and ST2 and review their roles in homeostasis, damage, and inflammation, suggesting a conceptual framework for future studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Tissues Use Resident Dendritic Cells and Macrophages to Maintain Homeostasis and to Regain Homeostasis upon Tissue Injury: The Immunoregulatory Role of Changing Tissue Environments

    Science.gov (United States)

    Lech, Maciej; Gröbmayr, Regina; Weidenbusch, Marc; Anders, Hans-Joachim

    2012-01-01

    Most tissues harbor resident mononuclear phagocytes, that is, dendritic cells and macrophages. A classification that sufficiently covers their phenotypic heterogeneity and plasticity during homeostasis and disease does not yet exist because cell culture-based phenotypes often do not match those found in vivo. The plasticity of mononuclear phagocytes becomes obvious during dynamic or complex disease processes. Different data interpretation also originates from different conceptual perspectives. An immune-centric view assumes that a particular priming of phagocytes then causes a particular type of pathology in target tissues, conceptually similar to antigen-specific T-cell priming. A tissue-centric view assumes that changing tissue microenvironments shape the phenotypes of their resident and infiltrating mononuclear phagocytes to fulfill the tissue's need to maintain or regain homeostasis. Here we discuss the latter concept, for example, why different organs host different types of mononuclear phagocytes during homeostasis. We further discuss how injuries alter tissue environments and how this primes mononuclear phagocytes to enforce this particular environment, for example, to support host defense and pathogen clearance, to support the resolution of inflammation, to support epithelial and mesenchymal healing, and to support the resolution of fibrosis to the smallest possible scar. Thus, organ- and disease phase-specific microenvironments determine macrophage and dendritic cell heterogeneity in a temporal and spatial manner, which assures their support to maintain and regain homeostasis in whatever condition. Mononuclear phagocytes contributions to tissue pathologies relate to their central roles in orchestrating all stages of host defense and wound healing, which often become maladaptive processes, especially in sterile and/or diffuse tissue injuries. PMID:23251037

  14. Hypothalamic regulation of brown adipose tissue thermogenesis and energy homeostasis

    Directory of Open Access Journals (Sweden)

    Wei eZhang

    2015-08-01

    Full Text Available Obesity and diabetes are increasing at an alarming rate worldwide, but the strategies for the prevention and treatment of these disorders remain inadequate. Brown adipose tissue (BAT is important for cold protection by producing heat using lipids and glucose as metabolic fuels. This thermogenic action causes increased energy expenditure and significant lipid/glucose disposal. In addition, BAT in white adipose tissue (WAT or beige cells have been found and they also exhibit the thermogenic action similar to BAT. These data provide evidence indicating BAT/beige cells as a potential target for combating obesity and diabetes. Recent discoveries of active BAT and beige cells in adult humans have further highlighted this potential. Growing studies have also shown the importance of central nervous system in the control of BAT thermogenesis and WAT browning using animal models. This review is focused on central neural thermoregulation, particularly addressing our current understanding of the importance of hypothalamic neural signaling in the regulation of BAT/beige thermogenesis and energy homeostasis.

  15. Integrative studies on cartilage tissue engineering and joint homeostasis

    NARCIS (Netherlands)

    Rutgers, M.

    2014-01-01

    The impact of cartilage injury to the joint is often larger than the initial clinical symptoms suggest. Through an alteration in joint homeostasis and biomechanical loading, cartilage lesions may accelerate osteoarthritis onset. Although good clinical results are achieved in patients treated by the

  16. Bolus fluid therapy and sodium homeostasis in paediatric gastroenteritis.

    Science.gov (United States)

    Freedman, Stephen B; Geary, Denis F

    2013-03-01

    The study aims to assess the risk of developing hyponatraemia when large-volume bolus fluid rehydration therapy is administered. We conducted a prospective randomised study in a tertiary-care centre emergency department. Participants included children with gastroenteritis and dehydration requiring intravenous rehydration. They were randomised to receive 60 mL/kg (large) or 20 mL/kg (standard) 0.9% saline bolus followed by maintenance 0.9% saline for 3 h. Biochemical tests were performed at baseline and 4 h. The primary outcome measure was the development of hyponatraemia at 4 h. Secondary outcome measures were (i) change in sodium relative to baseline value; (ii) magnitude of decrease among those who experienced a decrease; (iii) risk of hypernatraemia; (iv) correlations between urine parameters and hyponatraemia; and (v) fluid overload. Eighty-four of 224 (38%) participants were hyponatraemic at baseline. At 4 h, 22% (48/217) had a dysnatraemia, and similar numbers of children were hyponatraemic in both groups: large (23% (26/112)) versus standard (21% (22/105)) (P = 0.69). Among initially hyponatraemic children, 63% (30/48) who received large-volume rehydration and 44% (15/34) of those administered standard rehydration were isonatraemic at 4 h (P = 0.10). Overall, children who received 60 mL/kg experienced a larger mean increase (1.6 ± 2.4 mEq/L vs. 0.9 ± 2.2 mEq/L; P = 0.04) and were less likely to experience a sodium decrease of ≥2 mEq/L (8/112 vs. 17/105; P = 0.04) than those administered 20 mL/kg. Large-volume bolus rehydration therapy with 0.9% saline is safe. It does not promote the development of hyponatraemia over the short term, but hastens the resolution of baseline hyponatraemia. © 2013 The Authors. Journal of Paediatrics and Child Health © 2013 Paediatrics and Child Health Division (Royal Australasian College of Physicians).

  17. Tissue-resident memory T cells in tissue homeostasis, persistent infection, and cancer surveillance.

    Science.gov (United States)

    Gebhardt, Thomas; Palendira, Umaimainthan; Tscharke, David C; Bedoui, Sammy

    2018-05-01

    A large proportion of memory T cells disseminated throughout the body are non-recirculating cells whose maintenance and function is regulated by tissue-specific environmental cues. These sessile cells are referred to as tissue-resident memory T (T RM ) cells and similar populations of non-recirculating cells also exist among unconventional T cells and innate lymphocyte cells. The pool of T RM cells is highly diverse with respect to anatomical positioning, phenotype, molecular regulation and effector function. Nevertheless, certain transcriptional programs are shared and appear as important unifying features for the overall population of T RM cells and tissue-resident lymphocytes. It is now widely appreciated that T RM cells are a critical component of our immune defense by acting as peripheral sentinels capable of rapidly mobilizing protective tissue immunity upon pathogen recognition. This function is of particular importance in anatomical sites that are not effectively surveilled by blood-borne memory T cells in absence of inflammation, such as neuronal tissues or epithelial compartments in skin and mucosae. Focusing on the well-characterized subtype of CD8 +  CD69 +  CD103 + T RM cells, we will review current concepts on the generation, persistence and function of T RM cells and will summarize commonly used tools to study these cells. Furthermore, we will discuss accumulating data that emphasize localized T RM responses as an important determinant of tissue homeostasis and immune defense in the context of microbiota-immune interactions, persistent infections and cancer surveillance. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Dysregulated homeostasis of target tissues or autoantigens - A novel principle in autoimmunity.

    Science.gov (United States)

    Petersen, Frank; Yue, Xiaoyang; Riemekasten, Gabriela; Yu, Xinhua

    2017-06-01

    Monogenic autoimmune disorders provide a powerful tool for our understanding of the principles of autoimmunity due to the obvious impact of a single gene on the disease. So far, approximately 100 single gene defects causing murine monogenic autoimmune disorders have been reported and the functional characterization of these genes will provide significant progress in understanding the nature of autoimmunity. According to their function, genes leading to monogenic autoimmune disorders can be categorized into two groups. An expectable first group contains genes involved in the homeostasis of the immune system, including homeostasis of immune organs and immune cells. Intriguingly, the second group consists of genes functionally involved in the homeostasis of target tissues or autoantigens. According to our novel hypothesis, we propose that autoimmunity represents a consequence of a dysregulated homeostasis of the immune system and/or its targets including autoantigens and target tissues. In this review we refer to both aspects of homeostasis in autoimmunity with a highlight on the role of the homeostasis of target tissues and autoantigens. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. The Role of Follicular Fluid Thiol/Disulphide Homeostasis in Polycystic Ovary Syndrome.

    Science.gov (United States)

    Tola, Esra Nur; Köroğlu, Nadiye; Ergin, Merve; Oral, Hilmi Baha; Turgut, Abdülkadir; Erel, Özcan

    2018-04-04

    Oxidative stress is suggested as a potential triggering factor in the etiopathogenesis of Polycystic ovary syndrome related infertility. Thiol/disulphide homeostasis, a recently oxidative stress marker, is one of the antioxidant mechanism in human which have critical roles in folliculogenesis and ovulation. The aim of our study is to investigate follicular fluid thiol/disulphide homeostasis in the etiopathogenesis of Polycystic ovary syndrome and to determine its' association with in vitro fertilization outcome. The study procedures were approved by local ethic committee. Cross sectional design Methods: Follicular fluid of twenty-two Polycystic ovary syndrome women and twenty ovulatory controls undergoing in vitro fertilization treatment were recruited. Thiol/disulphide homeostasis was analyzed via a novel spectrophotometric method. Follicular native thiol levels were found to be lower in Polycystic ovary syndrome group than non- Polycystic ovary syndrome group (p=0.041) as well as native thiol/total thiol ratio (pPolycystic ovary syndrome group (pPolycystic ovary syndrome patients was found. A positive predictive effect of native thiol on fertilization rate among Polycystic ovary syndrome group was also found (p=0.03, β=0.45, 95% CI=0.031-0.643). Deterioration in thiol/disulphide homeostasis, especially elevated disulphide levels could be one of the etiopathogenetic mechanism in Polycystic ovary syndrome. Increased native thiol levels is related to fertilization rate among Polycystic ovary syndrome patients and also positive predictor marker of fertilization rate among Polycystic ovary syndrome patients. Improvement of thiol/disulphide homeostasis could be of importance in the treatment of Polycystic ovary syndrome to increase in vitro fertilization success in Polycystic ovary syndrome.

  20. γδ T cells in homeostasis and host defence of epithelial barrier tissues.

    Science.gov (United States)

    Nielsen, Morten M; Witherden, Deborah A; Havran, Wendy L

    2017-12-01

    Epithelial surfaces line the body and provide a crucial interface between the body and the external environment. Tissue-resident epithelial γδ T cells represent a major T cell population in the epithelial tissues and are ideally positioned to carry out barrier surveillance and aid in tissue homeostasis and repair. In this Review, we focus on the intraepithelial γδ T cell compartment of the two largest epithelial tissues in the body - namely, the epidermis and the intestine - and provide a comprehensive overview of the crucial contributions of intraepithelial γδ T cells to tissue integrity and repair, host homeostasis and protection in the context of the symbiotic relationship with the microbiome and during pathogen clearance. Finally, we describe epithelium-specific butyrophilin-like molecules and briefly review their emerging role in selectively shaping and regulating epidermal and intestinal γδ T cell repertoires.

  1. γδ T cells in homeostasis and host defence of epithelial barrier tissues

    DEFF Research Database (Denmark)

    Nielsen, Morten M.; Witherden, Deborah A.; Havran, Wendy L.

    2017-01-01

    Epithelial surfaces line the body and provide a crucial interface between the body and the external environment. Tissue-resident epithelial γδ T cells represent a major T cell population in the epithelial tissues and are ideally positioned to carry out barrier surveillance and aid in tissue...... homeostasis and repair. In this Review, we focus on the intraepithelial γδ T cell compartment of the two largest epithelial tissues in the body — namely, the epidermis and the intestine — and provide a comprehensive overview of the crucial contributions of intraepithelial γδ T cells to tissue integrity...

  2. Skeletal muscle aging: stem cell function and tissue homeostasis

    OpenAIRE

    Victor, Pedro Sousa

    2012-01-01

    Muscle aging, in particular, is characterized by the reduction of tissue mass and function, which are particularly prominent in geriatric individuals undergoing sarcopenia. The age-associated muscle wasting is also associated with a decline in regenerative ability and a reduction in resident muscle stem cell (satellite cell) number and function. Although sarcopenia is one of the major contributors to the general loss of physiological function, the mechanisms involved in age-related loss of mu...

  3. Non-myogenic Contribution to Muscle Development and Homeostasis: The Role of Connective Tissues.

    Science.gov (United States)

    Nassari, Sonya; Duprez, Delphine; Fournier-Thibault, Claire

    2017-01-01

    Skeletal muscles belong to the musculoskeletal system, which is composed of bone, tendon, ligament and irregular connective tissue, and closely associated with motor nerves and blood vessels. The intrinsic molecular signals regulating myogenesis have been extensively investigated. However, muscle development, homeostasis and regeneration require interactions with surrounding tissues and the cellular and molecular aspects of this dialogue have not been completely elucidated. During development and adult life, myogenic cells are closely associated with the different types of connective tissue. Connective tissues are defined as specialized (bone and cartilage), dense regular (tendon and ligament) and dense irregular connective tissue. The role of connective tissue in muscle morphogenesis has been investigated, thanks to the identification of transcription factors that characterize the different types of connective tissues. Here, we review the development of the various connective tissues in the context of the musculoskeletal system and highlight their important role in delivering information necessary for correct muscle morphogenesis, from the early step of myoblast differentiation to the late stage of muscle maturation. Interactions between muscle and connective tissue are also critical in the adult during muscle regeneration, as impairment of the regenerative potential after injury or in neuromuscular diseases results in the progressive replacement of the muscle mass by fibrotic tissue. We conclude that bi-directional communication between muscle and connective tissue is critical for a correct assembly of the musculoskeletal system during development as well as to maintain its homeostasis in the adult.

  4. Bim: guardian of tissue homeostasis and critical regulator of the immune system, tumorigenesis and bone biology.

    Science.gov (United States)

    Akiyama, Toru; Tanaka, Sakae

    2011-08-01

    One of the most important roles of apoptosis is the maintenance of tissue homeostasis. Impairment of apoptosis leads to a number of pathological conditions. In response to apoptotic signals, various proteins are activated in a pathway and signal-specific manner. Recently, the pro-apoptotic molecule Bim has attracted increasing attention as a pivotal regulator of tissue homeostasis. The Bim expression level is strictly controlled in both transcriptional and post-transcriptional levels. This control is dependent on cell, tissue and apoptotic stimuli. The phenotype of Bim-deficient mice is a systemic lupus erythematosus-like autoimmune disease with an abnormal accumulation of hematopoietic cells. Bim is thus a critical regulator of hematopoietic cells and immune system. Further studies have revealed the critical roles of Bim in various normal and pathological conditions, including bone homeostasis and tumorigenesis. The current understanding of Bim signaling and roles in the maintenance of tissue homeostasis is reviewed in this paper, focusing on the immune system, bone biology and tumorigenesis to illustrate the diversified role of Bim.

  5. Heads and tails of endoderm development and adult tissue homeostasis in zebrafish

    NARCIS (Netherlands)

    Faro, A.

    2010-01-01

    The regulatory signaling pathways crucial during embryonic development seem to play key roles in adult tissues homeostasis and are often deregulated in pathological conditions. The Wnt pathway plays a pivotal role in orchestrating cell fate decisions during embryonic development, organogenesis, and

  6. Critical transition in tissue homeostasis accompanies murine lung senescence.

    Directory of Open Access Journals (Sweden)

    Carla L Calvi

    Full Text Available BACKGROUND: Respiratory dysfunction is a major contributor to morbidity and mortality in aged populations. The susceptibility to pulmonary insults is attributed to "low pulmonary reserve", ostensibly reflecting a combination of age-related musculoskeletal, immunologic and intrinsic pulmonary dysfunction. METHODS/PRINCIPAL FINDINGS: Using a murine model of the aging lung, senescent DBA/2 mice, we correlated a longitudinal survey of airspace size and injury measures with a transcriptome from the aging lung at 2, 4, 8, 12, 16 and 20 months of age. Morphometric analysis demonstrated a nonlinear pattern of airspace caliber enlargement with a critical transition occurring between 8 and 12 months of age marked by an initial increase in oxidative stress, cell death and elastase activation which is soon followed by inflammatory cell infiltration, immune complex deposition and the onset of airspace enlargement. The temporally correlative transcriptome showed exuberant induction of immunoglobulin genes coincident with airspace enlargement. Immunohistochemistry, ELISA analysis and flow cytometry demonstrated increased immunoglobulin deposition in the lung associated with a contemporaneous increase in activated B-cells expressing high levels of TLR4 (toll receptor 4 and CD86 and macrophages during midlife. These midlife changes culminate in progressive airspace enlargement during late life stages. CONCLUSION/SIGNIFICANCE: Our findings establish that a tissue-specific aging program is evident during a presenescent interval which involves early oxidative stress, cell death and elastase activation, followed by B lymphocyte and macrophage expansion/activation. This sequence heralds the progression to overt airspace enlargement in the aged lung. These signature events, during middle age, indicate that early stages of the aging immune system may have important correlates in the maintenance of tissue morphology. We further show that time-course analyses of aging

  7. The influence of perivascular adipose tissue on vascular homeostasis.

    Science.gov (United States)

    Szasz, Theodora; Bomfim, Gisele Facholi; Webb, R Clinton

    2013-01-01

    The perivascular adipose tissue (PVAT) is now recognized as an active contributor to vascular function. Adipocytes and stromal cells contained within PVAT are a source of an ever-growing list of molecules with varied paracrine effects on the underlying smooth muscle and endothelial cells, including adipokines, cytokines, reactive oxygen species, and gaseous compounds. Their secretion is regulated by systemic or local cues and modulates complex processes, including vascular contraction and relaxation, smooth muscle cell proliferation and migration, and vascular inflammation. Recent evidence demonstrates that metabolic and cardiovascular diseases alter the morphological and secretory characteristics of PVAT, with notable consequences. In obesity and diabetes, the expanded PVAT contributes to vascular insulin resistance. PVAT-derived cytokines may influence key steps of atherogenesis. The physiological anticontractile effect of PVAT is severely diminished in hypertension. Above all, a common denominator of the PVAT dysfunction in all these conditions is the immune cell infiltration, which triggers the subsequent inflammation, oxidative stress, and hypoxic processes to promote vascular dysfunction. In this review, we discuss the currently known mechanisms by which the PVAT influences blood vessel function. The important discoveries in the study of PVAT that have been made in recent years need to be further advanced, to identify the mechanisms of the anticontractile effects of PVAT, to explore the vascular-bed and species differences in PVAT function, to understand the regulation of PVAT secretion of mediators, and finally, to uncover ways to ameliorate cardiovascular disease by targeting therapeutic approaches to PVAT.

  8. Bone morphogenetic proteins in inflammation, glucose homeostasis and adipose tissue energy metabolism

    DEFF Research Database (Denmark)

    Grgurevic, Lovorka; Christensen, Gitte Lund; Schulz, Tim J

    2016-01-01

    implicated in pancreas development as well as control of adult glucose homeostasis. Lastly, we review the recently recognized role of BMPs in brown adipose tissue formation and their consequences for energy expenditure and adiposity. In summary, BMPs play a pivotal role in metabolism beyond their role...... homeostasis (anaemia, hemochromatosis) and oxidative damage. The second and third parts of this review focus on BMPs in the development of metabolic pathologies such as type-2 diabetes mellitus and obesity. The pancreatic beta cells are the sole source of the hormone insulin and BMPs have recently been...

  9. The influence of perivascular adipose tissue on vascular homeostasis

    Directory of Open Access Journals (Sweden)

    Szasz T

    2013-03-01

    Full Text Available Theodora Szasz,1 Gisele Facholi Bomfim,2 R Clinton Webb1 1Department of Physiology, Georgia Regents University, Augusta, USA; 2Department of Pharmacology, University of São Paulo, São Paulo, Brazil Abstract: The perivascular adipose tissue (PVAT is now recognized as an active contributor to vascular function. Adipocytes and stromal cells contained within PVAT are a source of an ever-growing list of molecules with varied paracrine effects on the underlying smooth muscle and endothelial cells, including adipokines, cytokines, reactive oxygen species, and gaseous compounds. Their secretion is regulated by systemic or local cues and modulates complex processes, including vascular contraction and relaxation, smooth muscle cell proliferation and migration, and vascular inflammation. Recent evidence demonstrates that metabolic and cardiovascular diseases alter the morphological and secretory characteristics of PVAT, with notable consequences. In obesity and diabetes, the expanded PVAT contributes to vascular insulin resistance. PVAT-derived cytokines may influence key steps of atherogenesis. The physiological anticontractile effect of PVAT is severely diminished in hypertension. Above all, a common denominator of the PVAT dysfunction in all these conditions is the immune cell infiltration, which triggers the subsequent inflammation, oxidative stress, and hypoxic processes to promote vascular dysfunction. In this review, we discuss the currently known mechanisms by which the PVAT influences blood vessel function. The important discoveries in the study of PVAT that have been made in recent years need to be further advanced, to identify the mechanisms of the anticontractile effects of PVAT, to explore the vascular-bed and species differences in PVAT function, to understand the regulation of PVAT secretion of mediators, and finally, to uncover ways to ameliorate cardiovascular disease by targeting therapeutic approaches to PVAT. Keywords: adipokines

  10. Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis.

    Science.gov (United States)

    Klose, Christoph S N; Artis, David

    2016-06-21

    Research over the last 7 years has led to the formal identification of innate lymphoid cells (ILCs), increased the understanding of their tissue distribution and has established essential functions of ILCs in diverse physiological processes. These include resistance to pathogens, the regulation of autoimmune inflammation, tissue remodeling, cancer and metabolic homeostasis. Notably, many ILC functions appear to be regulated by mechanisms distinct from those of other innate and adaptive immune cells. In this Review, we focus on how group 2 ILC (ILC2) and group 3 ILC (ILC3) responses are regulated and how these cells interact with other immune and non-immune cells to mediate their functions. We highlight experimental evidence from mouse models and patient-based studies that have elucidated the effects of ILCs on the maintenance of tissue homeostasis and the consequences for health and disease.

  11. The Immune System in Tissue Environments Regaining Homeostasis after Injury: Is "Inflammation" Always Inflammation?

    Science.gov (United States)

    Kulkarni, Onkar P; Lichtnekert, Julia; Anders, Hans-Joachim; Mulay, Shrikant R

    2016-01-01

    Inflammation is a response to infections or tissue injuries. Inflammation was once defined by clinical signs, later by the presence of leukocytes, and nowadays by expression of "proinflammatory" cytokines and chemokines. But leukocytes and cytokines often have rather anti-inflammatory, proregenerative, and homeostatic effects. Is there a need to redefine "inflammation"? In this review, we discuss the functions of "inflammatory" mediators/regulators of the innate immune system that determine tissue environments to fulfill the need of the tissue while regaining homeostasis after injury.

  12. Tissue polypeptide antigen activity in cerebrospinal fluid

    DEFF Research Database (Denmark)

    Bach, F; Söletormos, Georg; Dombernowsky, P

    1991-01-01

    Tissue polypeptide antigen (TPpA) in the cerebrospinal fluid (CSF) was measured in 59 consecutive breast cancer patients with suspected central nervous system (CNS) metastases. Subsequently, we determined that 13 patients had parenchymal brain metastases, 10 had leptomeningeal carcinomatosis......, and 36 had no CNS involvement. The concentration of TPpA, which is a nonspecific marker for cell proliferation, was significantly higher in patients with CNS metastases than in those without it (P less than .0001; Mann-Whitney test). A tentative cutoff value for CNS metastases was set at 95 U/L TPp...... metastases, no correlation was found between TPpA activity in corresponding CSF and blood samples (correlation coefficient, Spearman's rho = .4; P greater than .1). In three patients treated for leptomeningeal carcinomatosis, the measurements of CSF TPpA showed correlation between the presence of tumor cells...

  13. The Phagocytic Function of Macrophage-Enforcing Innate Immunity and Tissue Homeostasis

    Directory of Open Access Journals (Sweden)

    Daisuke Hirayama

    2017-12-01

    Full Text Available Macrophages are effector cells of the innate immune system that phagocytose bacteria and secrete both pro-inflammatory and antimicrobial mediators. In addition, macrophages play an important role in eliminating diseased and damaged cells through their programmed cell death. Generally, macrophages ingest and degrade dead cells, debris, tumor cells, and foreign materials. They promote homeostasis by responding to internal and external changes within the body, not only as phagocytes, but also through trophic, regulatory, and repair functions. Recent studies demonstrated that macrophages differentiate from hematopoietic stem cell-derived monocytes and embryonic yolk sac macrophages. The latter mainly give rise to tissue macrophages. Macrophages exist in all vertebrate tissues and have dual functions in host protection and tissue injury, which are maintained at a fine balance. Tissue macrophages have heterogeneous phenotypes in different tissue environments. In this review, we focused on the phagocytic function of macrophage-enforcing innate immunity and tissue homeostasis for a better understanding of the role of tissue macrophages in several pathological conditions.

  14. Mucosal Ecological Network of Epithelium and Immune Cells for Gut Homeostasis and Tissue Healing.

    Science.gov (United States)

    Kurashima, Yosuke; Kiyono, Hiroshi

    2017-04-26

    The intestinal epithelial barrier includes columnar epithelial, Paneth, goblet, enteroendocrine, and tuft cells as well as other cell populations, all of which contribute properties essential for gastrointestinal homeostasis. The intestinal mucosa is covered by mucin, which contains antimicrobial peptides and secretory IgA and prevents luminal bacteria, fungi, and viruses from stimulating intestinal immune responses. Conversely, the transport of luminal microorganisms-mediated by M, dendritic, and goblet cells-into intestinal tissues facilitates the harmonization of active and quiescent mucosal immune responses. The bacterial population within gut-associated lymphoid tissues creates the intratissue cohabitations for harmonized mucosal immunity. Intermolecular and intercellular communication among epithelial, immune, and mesenchymal cells creates an environment conducive for epithelial regeneration and mucosal healing. This review summarizes the so-called intestinal mucosal ecological network-the complex but vital molecular and cellular interactions of epithelial mesenchymal cells, immune cells, and commensal microbiota that achieve intestinal homeostasis, regeneration, and healing.

  15. Copeptin in the diagnosis of vasopressin-dependent disorders of fluid homeostasis.

    Science.gov (United States)

    Christ-Crain, Mirjam; Fenske, Wiebke

    2016-03-01

    Copeptin and arginine vasopressin (AVP) are derived from a common precursor molecule and have equimolar secretion and response to osmotic, haemodynamic and stress-related stimuli. Plasma concentrations of copeptin and AVP in relation to serum osmolality are highly correlated. The physiological functions of AVP with respect to homeostasis of fluid balance, vascular tonus and regulation of the endocrine stress response are well known, but the exact function of copeptin is undetermined. Quantification of AVP can be difficult, but copeptin is stable in plasma and can be easily measured with a sandwich immunoassay. For this reason, copeptin has emerged as a promising marker for the diagnosis of AVP-dependent fluid disorders. Copeptin measurements can enable differentiation between various conditions within the polyuria-polydipsia syndrome. In the absence of prior fluid deprivation, baseline copeptin levels >20 pmol/l identify patients with nephrogenic diabetes insipidus. Conversely, copeptin levels measured upon osmotic stimulation differentiate primary polydipsia from partial central diabetes insipidus. In patients with hyponatraemia, low levels of copeptin together with low urine osmolality identify patients with primary polydipsia, and the ratio of copeptin to urinary sodium can distinguish the syndrome of inappropriate antidiuretic hormone secretion from other AVP-dependent forms of hyponatraemia.

  16. Acute effects of head-down tilt and hypoxia on modulators of fluid homeostasis

    Science.gov (United States)

    Whitson, P. A.; Cintron, N. M.; Pietrzyk, R. A.; Scotto, P.; Loeppky, J. A.

    1994-01-01

    In an effort to understand the interaction between acute postural fluid shifts and hypoxia on hormonal regulation of fluid homeostasis, the authors measured the responses to head-down tilt with and without acute exposure to normobaric hypoxia. Plasma atrial natriuretic peptide (ANP), cyclic guanosine monophosphate (cGMP), cyclic adenosine monophosphate (cAMP), plasma aldosterone (ALD), and plasma renin activity (PRA) were measured in six healthy male volunteers who were exposed to a head-down tilt protocol during normoxia and hypoxia. The tilt protocol consisted of a 17 degrees head-up phase (30 minutes), a 28 degrees head-down phase (1 hour), and a 17 degrees head-up recovery period (2 hours, with the last hour normoxic in both experiments). Altitude equivalent to 14,828 ft was simulated by having the subjects breathe an inspired gas mixture with 13.9% oxygen. The results indicate that the postural fluid redistribution associated with a 60-minute head-down tilt induces the release of ANP and cGMP during both hypoxia and normoxia. Hypoxia increased cGMP, cAMP, ALD, and PRA throughout the protocol and significantly potentiated the increase in cGMP during head-down tilt. Hypoxia had no overall effect on the release of ANP, but appeared to attenuate the increase with head-down tilt. This study describes the acute effects of hypoxia on the endocrine response during fluid redistribution and suggests that the magnitude, but not the direction, of these changes with posture is affected by hypoxia.

  17. B-type natriuretic peptide and acute heart failure: Fluid homeostasis, biomarker and therapeutics.

    Science.gov (United States)

    Torres-Courchoud, I; Chen, H H

    2016-10-01

    Natriuretic peptides are a family of peptides with similar structures, but are genetically distinct with diverse actions in cardiovascular, renal and fluid homeostasis. The family consists of an atrial natriuretic peptide (ANP) and a brain natriuretic peptide (BNP) of myocardial cell origin, a C-type natriuretic peptide (CNP) of endothelial origin, and a urodilatin (Uro) which is processed from a prohormone ANP in the kidney. Nesiritide, a human recombinant BNP, was approved by the Federal Drug Administration (FDA) for the management of acute heart failure (AHF) in 2001. Human recombinant ANP (Carperitide) was approved for the same clinical indication in Japan in 1995, and human recombinant Urodilatin (Ularitide) is currently undergoing phase III clinical trial (TRUE AHF). This review will provide an update on important issues regarding the role of BNP in fluid hemostasis as a biomarker and therapeutics in AHF. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Medicina Interna (SEMI). All rights reserved.

  18. Primary cilia and coordination of signaling pathways in heart development and tissue Homeostasis

    DEFF Research Database (Denmark)

    Clement, Christian Alexandro

    of primary cilia in coordinating Hh signaling in human pancreatic development and postnatal tissue homeostasis. In cultures of human pancreatic duct adenocarcinoma cell lines PANC-1 and CFPAC-1, Ptc in addition to Gli2 and Smo localize to primary cilia. These findings are consistent with the idea...... that the primary cilium continues to coordinate Hh signaling in cells derived from the mature pancreas. The fact that the Hh signaling pathway is active in the CFPAC-1 and PANC-1 cell lines without Hh stimulation suggests that ciliary Hh signaling plays a potential role in tumorigenesis. In conclusion, this thesis...

  19. Regulation of body fluid and salt homeostasis--from observations in space to new concepts on Earth.

    Science.gov (United States)

    Gerzer, R; Heer, M

    2005-08-01

    The present manuscript summarizes recent discoveries that were made by studying salt and fluid homeostasis in weightlessness. These data indicate that 1. atrial natriuretic peptide appears not to play an important role in natriuresis in physiology, 2. the distribution of body fluids appears to be tightly coupled with hunger and thirst regulation, 3. intrathoracic pressure may be an important co-regulator of body fluid homeostasis, 4. a so far unknown low-affinity, high capacity osmotically inactive sodium storage mechanism appears to be present in humans that is acting through sodium/hydrogen exchange on glycosaminoglycans and might explain the pathophysiology, e.g., of salt sensitive hypertension. The surprising and unexpected data underline that weightlessness is an excellent tool to investigate the physiology of our human body: If we knew it, we should be able to predict changes that occur when gravity is absent. But, as data from space demonstrate, we do not.

  20. Impact of Perturbed Pancreatic β-Cell Cholesterol Homeostasis on Adipose Tissue and Skeletal Muscle Metabolism

    Science.gov (United States)

    Cochran, Blake J.; Hou, Liming; Manavalan, Anil Paul Chirackal; Moore, Benjamin M.; Tabet, Fatiha; Sultana, Afroza; Cuesta Torres, Luisa; Tang, Shudi; Shrestha, Sudichhya; Senanayake, Praween; Patel, Mili; Ryder, William J.; Bongers, Andre; Maraninchi, Marie; Wasinger, Valerie C.; Westerterp, Marit; Tall, Alan R.; Barter, Philip J.

    2016-01-01

    Elevated pancreatic β-cell cholesterol levels impair insulin secretion and reduce plasma insulin levels. This study establishes that low plasma insulin levels have a detrimental effect on two major insulin target tissues: adipose tissue and skeletal muscle. Mice with increased β-cell cholesterol levels were generated by conditional deletion of the ATP-binding cassette transporters, ABCA1 and ABCG1, in β-cells (β-DKO mice). Insulin secretion was impaired in these mice under basal and high-glucose conditions, and glucose disposal was shifted from skeletal muscle to adipose tissue. The β-DKO mice also had increased body fat and adipose tissue macrophage content, elevated plasma interleukin-6 and MCP-1 levels, and decreased skeletal muscle mass. They were not, however, insulin resistant. The adipose tissue expansion and reduced skeletal muscle mass, but not the systemic inflammation or increased adipose tissue macrophage content, were reversed when plasma insulin levels were normalized by insulin supplementation. These studies identify a mechanism by which perturbation of β-cell cholesterol homeostasis and impaired insulin secretion increase adiposity, reduce skeletal muscle mass, and cause systemic inflammation. They further identify β-cell dysfunction as a potential therapeutic target in people at increased risk of developing type 2 diabetes. PMID:27702832

  1. Modular design of artificial tissue homeostasis: robust control through synthetic cellular heterogeneity.

    Directory of Open Access Journals (Sweden)

    Miles Miller

    Full Text Available Synthetic biology efforts have largely focused on small engineered gene networks, yet understanding how to integrate multiple synthetic modules and interface them with endogenous pathways remains a challenge. Here we present the design, system integration, and analysis of several large scale synthetic gene circuits for artificial tissue homeostasis. Diabetes therapy represents a possible application for engineered homeostasis, where genetically programmed stem cells maintain a steady population of β-cells despite continuous turnover. We develop a new iterative process that incorporates modular design principles with hierarchical performance optimization targeted for environments with uncertainty and incomplete information. We employ theoretical analysis and computational simulations of multicellular reaction/diffusion models to design and understand system behavior, and find that certain features often associated with robustness (e.g., multicellular synchronization and noise attenuation are actually detrimental for tissue homeostasis. We overcome these problems by engineering a new class of genetic modules for 'synthetic cellular heterogeneity' that function to generate beneficial population diversity. We design two such modules (an asynchronous genetic oscillator and a signaling throttle mechanism, demonstrate their capacity for enhancing robust control, and provide guidance for experimental implementation with various computational techniques. We found that designing modules for synthetic heterogeneity can be complex, and in general requires a framework for non-linear and multifactorial analysis. Consequently, we adapt a 'phenotypic sensitivity analysis' method to determine how functional module behaviors combine to achieve optimal system performance. We ultimately combine this analysis with Bayesian network inference to extract critical, causal relationships between a module's biochemical rate-constants, its high level functional behavior in

  2. Modular design of artificial tissue homeostasis: robust control through synthetic cellular heterogeneity.

    Science.gov (United States)

    Miller, Miles; Hafner, Marc; Sontag, Eduardo; Davidsohn, Noah; Subramanian, Sairam; Purnick, Priscilla E M; Lauffenburger, Douglas; Weiss, Ron

    2012-01-01

    Synthetic biology efforts have largely focused on small engineered gene networks, yet understanding how to integrate multiple synthetic modules and interface them with endogenous pathways remains a challenge. Here we present the design, system integration, and analysis of several large scale synthetic gene circuits for artificial tissue homeostasis. Diabetes therapy represents a possible application for engineered homeostasis, where genetically programmed stem cells maintain a steady population of β-cells despite continuous turnover. We develop a new iterative process that incorporates modular design principles with hierarchical performance optimization targeted for environments with uncertainty and incomplete information. We employ theoretical analysis and computational simulations of multicellular reaction/diffusion models to design and understand system behavior, and find that certain features often associated with robustness (e.g., multicellular synchronization and noise attenuation) are actually detrimental for tissue homeostasis. We overcome these problems by engineering a new class of genetic modules for 'synthetic cellular heterogeneity' that function to generate beneficial population diversity. We design two such modules (an asynchronous genetic oscillator and a signaling throttle mechanism), demonstrate their capacity for enhancing robust control, and provide guidance for experimental implementation with various computational techniques. We found that designing modules for synthetic heterogeneity can be complex, and in general requires a framework for non-linear and multifactorial analysis. Consequently, we adapt a 'phenotypic sensitivity analysis' method to determine how functional module behaviors combine to achieve optimal system performance. We ultimately combine this analysis with Bayesian network inference to extract critical, causal relationships between a module's biochemical rate-constants, its high level functional behavior in isolation, and

  3. NOD-Like Receptors in Intestinal Homeostasis and Epithelial Tissue Repair

    Science.gov (United States)

    Parlato, Marianna; Yeretssian, Garabet

    2014-01-01

    The intestinal epithelium constitutes a dynamic physical barrier segregating the luminal content from the underlying mucosal tissue. Following injury, the epithelial integrity is restored by rapid migration of intestinal epithelial cells (IECs) across the denuded area in a process known as wound healing. Hence, through a sequence of events involving restitution, proliferation and differentiation of IECs the gap is resealed and homeostasis reestablished. Relapsing damage followed by healing of the inflamed mucosa is a hallmark of several intestinal disorders including inflammatory bowel diseases (IBD). While several regulatory peptides, growth factors and cytokines stimulate restitution of the epithelial layer after injury, recent evidence in the field underscores the contribution of innate immunity in controlling this process. In particular, nucleotide-binding and oligomerization domain-like receptors (NLRs) play critical roles in sensing the commensal microbiota, maintaining homeostasis, and regulating intestinal inflammation. Here, we review the process of intestinal epithelial tissue repair and we specifically focus on the impact of NLR-mediated signaling mechanisms involved in governing epithelial wound healing during disease. PMID:24886810

  4. Targeted Apoptosis of Senescent Cells Restores Tissue Homeostasis in Response to Chemotoxicity and Aging.

    Science.gov (United States)

    Baar, Marjolein P; Brandt, Renata M C; Putavet, Diana A; Klein, Julian D D; Derks, Kasper W J; Bourgeois, Benjamin R M; Stryeck, Sarah; Rijksen, Yvonne; van Willigenburg, Hester; Feijtel, Danny A; van der Pluijm, Ingrid; Essers, Jeroen; van Cappellen, Wiggert A; van IJcken, Wilfred F; Houtsmuller, Adriaan B; Pothof, Joris; de Bruin, Ron W F; Madl, Tobias; Hoeijmakers, Jan H J; Campisi, Judith; de Keizer, Peter L J

    2017-03-23

    The accumulation of irreparable cellular damage restricts healthspan after acute stress or natural aging. Senescent cells are thought to impair tissue function, and their genetic clearance can delay features of aging. Identifying how senescent cells avoid apoptosis allows for the prospective design of anti-senescence compounds to address whether homeostasis can also be restored. Here, we identify FOXO4 as a pivot in senescent cell viability. We designed a FOXO4 peptide that perturbs the FOXO4 interaction with p53. In senescent cells, this selectively causes p53 nuclear exclusion and cell-intrinsic apoptosis. Under conditions where it was well tolerated in vivo, this FOXO4 peptide neutralized doxorubicin-induced chemotoxicity. Moreover, it restored fitness, fur density, and renal function in both fast aging Xpd TTD/TTD and naturally aged mice. Thus, therapeutic targeting of senescent cells is feasible under conditions where loss of health has already occurred, and in doing so tissue homeostasis can effectively be restored. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Pathogenesis of cerebral palsy through the prism of immune regulation of nervous tissue homeostasis: literature review.

    Science.gov (United States)

    Lisovska, Natalya; Daribayev, Zholtay; Lisovskyy, Yevgeny; Kussainova, Kenzhe; Austin, Lana; Bulekbayeva, Sholpan

    2016-11-01

    The cerebral palsy is highly actual issue of pediatrics, causing significant neurological disability. Though the great progress in the neuroscience has been recently achieved, the pathogenesis of cerebral palsy is still poorly understood. In this work, we reviewed available experimental and clinical data concerning the role of immune cells in pathogenesis of cerebral palsy. Maintaining of homeostasis in nervous tissue and its transformation in case of periventricular leukomalacia were analyzed. The reviewed data demonstrate involvement of immune regulatory cells in the formation of nervous tissue imbalance and chronicity of inborn brain damage. The supported opinion, that periventricular leukomalacia is not a static phenomenon, but developing process, encourages our optimism about the possibility of its correction. The further studies of changes of the nervous and immune systems in cerebral palsy are needed to create fundamentally new directions of the specific therapy and individual schemes of rehabilitation.

  6. Pancreatic tissue fluid pressure during drainage operations for chronic pancreatitis

    DEFF Research Database (Denmark)

    Ebbehøj, N; Borly, L; Madsen, P

    1990-01-01

    Pancreatic tissue fluid pressure was measured in 10 patients undergoing drainage operations for painful chronic pancreatitis. The pressure was measured by the needle technique in the three anatomic regions of the pancreas before and at different stages of the drainage procedure, and the results...... a decrease in pancreatic tissue fluid pressure during drainage operations for pain in chronic pancreatitis. Regional pressure decrease were apparently unrelated to ERCP findings....

  7. The nutrition of the human meniscus: A computational analysis investigating the effect of vascular recession on tissue homeostasis.

    Science.gov (United States)

    Travascio, Francesco; Jackson, Alicia R

    2017-08-16

    The meniscus is essential to the functioning of the knee, offering load support, congruency, lubrication, and protection to the underlying cartilage. Meniscus degeneration affects ∼35% of the population, and potentially leads to knee osteoarthritis. The etiology of meniscal degeneration remains to be elucidated, although many factors have been considered. However, the role of nutritional supply to meniscus cells in the pathogenesis of meniscus degeneration has been so far overlooked. Nutrients are delivered to meniscal cells through the surrounding synovial fluid and the blood vessels present in the outer region of the meniscus. During maturation, vascularization progressively recedes up to the outer 10% of the tissue, leaving the majority avascular. It has been hypothesized that vascular recession might significantly reduce the nutrient supply to cells, thus contributing to meniscus degeneration. The objective of this study was to evaluate the effect of vascular recession on nutrient levels available to meniscus cells. This was done by developing a novel computational model for meniscus homeostasis based on mixture theory. It was found that transvascular transport of nutrients in the vascularized region of the meniscus contributes to more than 40% of the glucose content in the core of the tissue. However, vascular recession does not significantly alter nutrient levels in the meniscus, reducing at most 5% of the nutrient content in the central portion of the tissue. Therefore, our analysis suggests that reduced vascularity is not likely a primary initiating source in tissue degeneration. However, it does feasibly play a key role in inability for self-repair, as seen clinically. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Prevalence, extension and characteristics of fluid-fluid levels in bone and soft tissue tumors

    Energy Technology Data Exchange (ETDEWEB)

    Dyck, P. van; Venstermans, C.; Gielen, J.; Parizel, P.M. [University Hospital Antwerp, Department of Radiology, Edegem (Belgium); Vanhoenacker, F.M. [University Hospital Antwerp, Department of Radiology, Edegem (Belgium); AZ St-Maarten, Department of Radiology, Duffel/Mechelen (Belgium); Vogel, J. [Leiden University Medical Centre, Department of Orthopedics, Leiden (Netherlands); Kroon, H.M.; Bloem, J.L. [Leiden University Medical Centre, Department of Radiology, Leiden (Netherlands); Schepper, A.M.A. de [University Hospital Antwerp, Department of Radiology, Edegem (Belgium); Leiden University Medical Centre, Department of Radiology, Leiden (Netherlands)

    2006-12-15

    The purpose of this study was to determine the prevalence, extension and signal characteristics of fluid-fluid levels in a large series of 700 bone and 700 soft tissue tumors. Out of a multi-institutional database, MRI of 700 consecutive patients with a bone tumor and MRI of 700 consecutive patients with a soft tissue neoplasm were retrospectively reviewed for the presence of fluid-fluid levels. Extension (single, multiple and proportion of the lesion occupied by fluid-fluid levels) and signal characteristics on magnetic resonance imaging of fluid-fluid levels were determined. In all patients, pathologic correlation was available. Of 700 patients with a bone tumor, 19 (10 male and 9 female; mean age, 29 years) presented with a fluid-fluid level (prevalence 2.7%). Multiple fluid-fluid levels occupying at least one half of the total volume of the lesion were found in the majority of patients. Diagnoses included aneurysmal bone cyst (ten cases), fibrous dysplasia (two cases), osteoblastoma (one case), simple bone cyst (one case), telangiectatic osteosarcoma (one case), ''brown tumor'' (one case), chondroblastoma (one case) and giant cell tumor (two cases). Of 700 patients with a soft tissue tumor, 20 (9 males and 11 females; mean age, 34 years) presented with a fluid-fluid level (prevalence 2.9%). Multiple fluid-fluid levels occupying at least one half of the total volume of the lesion were found in the majority of patients. Diagnoses included cavernous hemangioma (12 cases), synovial sarcoma (3 cases), angiosarcoma (1 case), aneurysmal bone cyst of soft tissue (1 case), myxofibrosarcoma (1 case) and high-grade sarcoma ''not otherwise specified'' (2 cases). In our series, the largest reported in the literature to the best of our knowledge, the presence of fluid-fluid levels is a rare finding with a prevalence of 2.7 and 2.9% in bone and soft tissue tumors, respectively. Fluid-fluid levels remain a non-specific finding and can

  9. Salisphere derived c-Kit+ cell transplantation restores tissue homeostasis in irradiated salivary gland

    International Nuclear Information System (INIS)

    Nanduri, Lalitha S.Y.; Lombaert, Isabelle M.A.; Zwaag, Marianne van der; Faber, Hette; Brunsting, Jeanette F.; Os, Ronald P. van; Coppes, Robert P.

    2013-01-01

    Introduction: During radiotherapy salivary glands of head and neck cancer patients are unavoidably co-irradiated, potentially resulting in life-long impairment. Recently we showed that transplantation of salisphere-derived c-Kit expressing cells can functionally regenerate irradiated salivary glands. This study aims to select a more potent subpopulation of c-Kit + cells, co-expressing stem cell markers and to investigate whether long-term tissue homeostasis is restored after stem cell transplantation. Methods and results: Salisphere derived c-Kit + cells that co-expressed CD24 and/or CD49f markers, were intra-glandularly injected into 15 Gy irradiated submandibular glands of mice. Particularly, c-Kit + /CD24 + /CD49f + cell transplanted mice improved saliva production (54.59 ± 11.1%) versus the irradiated control group (21.5 ± 8.7%). Increase in expression of cells with differentiated duct cell markers like, cytokeratins (CK8, 18, 7 and 14) indicated functional recovery of this compartment. Moreover, ductal stem cell marker expression like c-Kit, CD133, CD24 and CD49f reappeared after transplantation indicating long-term functional maintenance potential of the gland. Furthermore, a normalization of vascularization as indicated by CD31 expression and reduction of fibrosis was observed, indicative of normalization of the microenvironment. Conclusions: Our results show that stem cell transplantation not only rescues hypo-salivation, but also restores tissue homeostasis of the irradiated gland, necessary for long-term maintenance of adult tissue

  10. Diversity and Versatility of Phagocytosis: Roles in Innate Immunity, Tissue Remodeling, and Homeostasis.

    Science.gov (United States)

    Lim, Justin J; Grinstein, Sergio; Roth, Ziv

    2017-01-01

    Phagocytosis, a critical early event in the microbicidal response of neutrophils, is now appreciated to serve multiple functions in a variety of cell types. Professional phagocytes play a central role in innate immunity by eliminating pathogenic bacteria, fungi and malignant cells, and contribute to adaptive immunity by presenting antigens to lymphocytes. In addition, phagocytes play a part in tissue remodeling and maintain overall homeostasis by disposing of apoptotic cells, a task shared by non-professional phagocytes, often of epithelial origin. This functional versatility is supported by a vast array of receptors capable of recognizing a striking variety of foreign and endogenous ligands. Here we present an abbreviated overview of the different types of phagocytes, their varied modes of signaling and particle engulfment, and the multiple physiological roles of phagocytosis.

  11. Regulatory mechanisms of anthrax toxin receptor 1-dependent vascular and connective tissue homeostasis.

    Science.gov (United States)

    Besschetnova, Tatiana Y; Ichimura, Takaharu; Katebi, Negin; St Croix, Brad; Bonventre, Joseph V; Olsen, Bjorn R

    2015-03-01

    It is well known that angiogenesis is linked to fibrotic processes in fibroproliferative diseases, but insights into pathophysiological processes are limited, due to lack of understanding of molecular mechanisms controlling endothelial and fibroblastic homeostasis. We demonstrate here that the matrix receptor anthrax toxin receptor 1 (ANTXR1), also known as tumor endothelial marker 8 (TEM8), is an essential component of these mechanisms. Loss of TEM8 function in mice causes reduced synthesis of endothelial basement membrane components and hyperproliferative and leaky blood vessels in skin. In addition, endothelial cell alterations in mutants are almost identical to those of endothelial cells in infantile hemangioma lesions, including activated VEGF receptor signaling in endothelial cells, increased expression of the downstream targets VEGF and CXCL12, and increased numbers of macrophages and mast cells. In contrast, loss of TEM8 in fibroblasts leads to increased rates of synthesis of fiber-forming collagens, resulting in progressive fibrosis in skin and other organs. Compromised interactions between TEM8-deficient endothelial and fibroblastic cells cause dramatic reduction in the activity of the matrix-degrading enzyme MMP2. In addition to insights into mechanisms of connective tissue homeostasis, our data provide molecular explanations for vascular and connective tissue abnormalities in GAPO syndrome, caused by loss-of-function mutations in ANTXR1. Furthermore, the loss of MMP2 activity suggests that fibrotic skin abnormalities in GAPO syndrome are, in part, the consequence of pathophysiological mechanisms underlying syndromes (NAO, Torg and Winchester) with multicentric skin nodulosis and osteolysis caused by homozygous loss-of-function mutations in MMP2. Copyright © 2014 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  12. The volume of fluid injected into the tissue expander and the tissue expansion

    Directory of Open Access Journals (Sweden)

    Mahmood Omranifard

    2014-01-01

    Full Text Available Background: Replacement of the lost tissue is the major concerns of the plastic surgeons. Expanded area should be coherent with the surrounding tissue. Tissue expansion technique is the reforming methods the skin tissue scarcities. Several methods for tissue expansion are available; including usage of silicon balloon and injecting fluid into the tissue expander. Materials and Methods: In a clinical trial study, 35 patients, with burn scars, in the face, skull and neck area were studied. We provided a tissue expander device with capacities of 125, 250 and 350cc. Fluid was injected inside the device, 3 consecutive weeks with 1-week interval. After 3 months the device was set out and the tissue expansion was measured using a transparent board and the results were analyzed. Multiple regression was done by SPSS 20 to analyze the data. Results: Regression model showed Skin expansion was positively correlated with the volume of the injected fluid. For each centimeter square of skin expansion, about 6-8 ml of fluid must be injected. Conclusion: Correction of skin defects resulting from burning scar is possible using tissue expanders. The tissue expansion is correlated with the amount of the injected fluid.

  13. Puberty is an important developmental period for the establishment of adipose tissue mass and metabolic homeostasis.

    Science.gov (United States)

    Holtrup, Brandon; Church, Christopher D; Berry, Ryan; Colman, Laura; Jeffery, Elise; Bober, Jeremy; Rodeheffer, Matthew S

    2017-07-03

    Over the past 2 decades, the incidence of childhood obesity has risen dramatically. This recent rise in childhood obesity is particularly concerning as adults who were obese during childhood develop type II diabetes that is intractable to current forms of treatment compared with individuals who develop obesity in adulthood. While the mechanisms responsible for the exacerbated diabetic phenotype associated with childhood obesity is not clear, it is well known that childhood is an important time period for the establishment of normal white adipose tissue in humans. This association suggests that exposure to obesogenic stimuli during adipose development may have detrimental effects on adipose function and metabolic homeostasis. In this study, we identify the period of development associated with puberty, postnatal days 18-34, as critical for the establishment of normal adipose mass in mice. Exposure of mice to high fat diet only during this time period results in metabolic dysfunction, increased leptin expression, and increased adipocyte size in adulthood in the absence of sustained increased fat mass or body weight. These findings indicate that exposure to obesogenic stimuli during critical developmental periods have prolonged effects on adipose tissue function that may contribute to the exacerbated metabolic dysfunctions associated with childhood obesity.

  14. Pancreatic tissue fluid pressure during drainage operations for chronic pancreatitis

    DEFF Research Database (Denmark)

    Ebbehøj, N; Borly, L; Madsen, P

    1990-01-01

    Pancreatic tissue fluid pressure was measured in 10 patients undergoing drainage operations for painful chronic pancreatitis. The pressure was measured by the needle technique in the three anatomic regions of the pancreas before and at different stages of the drainage procedure, and the results...... were compared with preoperative endoscopic retrograde cholangiopancreatography (ERCP) morphology. The preoperatively elevated pressure decreased in all patients but one, to normal or slightly elevated values. The median pressure decrease was 50% (range, 0-90%; p = 0.01). The drainage anastomosis (a...... a decrease in pancreatic tissue fluid pressure during drainage operations for pain in chronic pancreatitis. Regional pressure decrease were apparently unrelated to ERCP findings....

  15. Effects of Beer, Non-Alcoholic Beer and Water Consumption before Exercise on Fluid and Electrolyte Homeostasis in Athletes.

    Science.gov (United States)

    Castro-Sepulveda, Mauricio; Johannsen, Neil; Astudillo, Sebastián; Jorquera, Carlos; Álvarez, Cristian; Zbinden-Foncea, Hermann; Ramírez-Campillo, Rodrigo

    2016-06-07

    Fluid and electrolyte status have a significant impact on physical performance and health. Pre-exercise recommendations cite the possibility of consuming beverages with high amounts of sodium. In this sense, non-alcoholic beer can be considered an effective pre-exercise hydration beverage. This double-blind, randomized study aimed to compare the effect of beer, non-alcoholic beer and water consumption before exercise on fluid and electrolyte homeostasis. Seven male soccer players performed 45 min of treadmill running at 65% of the maximal heart rate, 45 min after ingesting 0.7 L of water (W), beer (AB) or non-alcoholic beer (NAB). Body mass, plasma Na⁺ and K⁺ concentrations and urine specific gravity (USG) were assessed before fluid consumption and after exercise. After exercise, body mass decreased (p beer before exercise could help maintain electrolyte homeostasis during exercise. Alcoholic beer intake reduced plasma Na⁺ and increased plasma K⁺ during exercise, which may negatively affect health and physical performance, and finally, the consumption of water before exercise could induce decreases of Na⁺ in plasma during exercise.

  16. GM-CSF Controls Nonlymphoid Tissue Dendritic Cell Homeostasis but Is Dispensable for the Differentiation of Inflammatory Dendritic Cells

    Science.gov (United States)

    Greter, Melanie; Helft, Julie; Chow, Andrew; Hashimoto, Daigo; Mortha, Arthur; Agudo-Cantero, Judith; Bogunovic, Milena; Gautier, Emmanuel L.; Miller, Jennifer; Leboeuf, Marylene; Lu, Geming; Aloman, Costica; Brown, Brian D.; Pollard, Jeffrey W.; Xiong, Huabao; Randolph, Gwendalyn J.; Chipuk, Jerry E.; Frenette, Paul S.; Merad, Miriam

    2012-01-01

    SUMMARY GM-CSF (Csf-2) is a critical cytokine for the in vitro generation of dendritic cells (DCs) and is thought to control the development of inflammatory DCs and resident CD103+ DCs in some tissues. Here we showed that in contrast to the current understanding, Csf-2 receptor acts in the steady state to promote the survival and homeostasis of nonlymphoid tissue-resident CD103+ and CD11b+ DCs. Absence of Csf-2 receptor on lung DCs abrogated the induction of CD8+ T cell immunity after immunization with particulate antigens. In contrast, Csf-2 receptor was dispensable for the differentiation and innate function of inflammatory DCs during acute injuries. Instead, inflammatory DCs required Csf-1 receptor for their development. Thus, Csf-2 is important in vaccine-induced CD8+ T cell immunity through the regulation of nonlymphoid tissue DC homeostasis rather than control of inflammatory DCs in vivo. PMID:22749353

  17. Djhsp90s are crucial regulators during planarian regeneration and tissue homeostasis.

    Science.gov (United States)

    Dong, Zimei; Chu, Gengbo; Sima, Yingxu; Chen, Guangwen

    2018-04-15

    Heat shock protein 90 family members (HSP90s), as molecular chaperones, have conserved roles in the physiological processes of eukaryotes regulating cytoprotection, increasing host resistance and so on. However, whether HSP90s affect regeneration in animals is unclear. Planarians are emerging models for studying regeneration in vivo. Here, the roles of three hsp90 genes from planarian Dugesia japonica are investigated by WISH and RNAi. The results show that: (1) Djhsp90s expressions are induced by heat and cold shock, tissue damage and ionic liquid; (2) Djhsp90s mRNA are mainly distributed each side of the body in intact worms as well as blastemas in regenerative worms; (3) the worms show head regression, lysis, the body curling and the regeneration arrest or even failure after Djhsp90s RNAi; (4) Djhsp90s are involved in autophagy and locomotion of the body. The research results suggest that Djhsp90s are not only conserved in cytoprotection, but also involved in homeostasis maintenance and regeneration process by regulating different pathways in planarians. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Pancreatic tissue fluid pressure and pain in chronic pancreatitis

    DEFF Research Database (Denmark)

    Ebbehøj, N

    1992-01-01

    A casual relation between pancreatic pressure and pain has been searched for decades but lack of appropriate methods for pressure measurements has hindered progress. During the 1980's the needle method has been used for direct intraoperative pancreatic tissue fluid pressure measurements and later...... for percutaneous sonographically-guided pressure measurements. Clinical and experimental evaluation of the method showed comparable results at intraoperative and percutaneous measurements and little week-to-week variation. Furthermore, comparable pressures in duct and adjacent pancreatic tissue were found, i.......e. the needle pressure mirrors the intraductal pressure. Comparisons of pain registrations, morphological and functional parameters with pancreatic tissue fluid pressure measurements have revealed a relation between pressure and pain which probably is causal. In patients with pain the high pressures previously...

  19. Facial Soft Tissue Measurement in Microgravity-induces Fluid Shifts

    Science.gov (United States)

    Marshburn, Thomas; Cole, Richard; Pavela, James; Garcia, Kathleen; Sargsyan, Ashot

    2014-01-01

    Fluid shifts are a well-known phenomenon in microgravity, and one result is facial edema. Objective measurement of tissue thickness in a standardized location could provide a correlate with the severity of the fluid shift. Previous studies of forehead tissue thickness (TTf) suggest that when exposed to environments that cause fluid shifts, including hypergravity, head-down tilt, and high-altitude/lowpressure, TTf changes in a consistent and measurable fashion. However, the technique in past studies is not well described or standardized. The International Space Station (ISS) houses an ultrasound (US) system capable of accurate sub-millimeter measurements of TTf. We undertook to measure TTf during long-duration space flight using a new accurate, repeatable and transferable technique. Methods: In-flight and post-flight B-mode ultrasound images of a single astronaut's facial soft tissues were obtained using a Vivid-q US system with a 12L-RS high-frequency linear array probe (General Electric, USA). Strictly mid-sagittal images were obtained involving the lower frontal bone, the nasofrontal angle, and the osseo-cartilaginous junction below. Single images were chosen for comparison that contained identical views of the bony landmarks and identical acoustical interface between the probe and skin. Using Gingko CADx DICOM viewing software, soft tissue thickness was measured at a right angle to the most prominent point of the inferior frontal bone to the epidermis. Four independent thickness measurements were made. Conclusions: Forehead tissue thickness measurement by ultrasound in microgravity is feasible, and our data suggest a decrease in tissue thickness upon return from microgravity environment, which is likely related to the cessation of fluid shifts. Further study is warranted to standardize the technique with regard to the individual variability of the local anatomy in this area.

  20. Tissue expansion and fluid absorption by skin tissue following intradermal injections through hollow microneedles

    Science.gov (United States)

    Shrestha, Pranav; Stoeber, Boris

    2017-11-01

    Hollow microneedles provide a promising alternative to conventional drug delivery techniques due to improved patient compliance and the dose sparing effect. The dynamics of fluid injected through hollow microneedles into skin, which is a heterogeneous and deformable porous medium, have not been investigated extensively in the past. We have introduced the use of Optical Coherence Tomography (OCT) for real-time visualization of fluid injections into excised porcine tissue. The results from ex-vivo experiments, including cross-sectional tissue images from OCT and pressure/flow-rate measurements, show a transient mode of high flow-rate into the tissue followed by a lower steady-state infusion rate. The injected fluid expands the underlying tissue and causes the external free surface of the skin to rise, forming a characteristic intradermal wheal. We have used OCT to visualize the evolution of tissue and free surface deformation, and advancement of the boundary between regions of expanding and stationary tissue. We will show the effect of different injection parameters such as fluid pressure, viscosity and microneedle retraction on the injected volume. This work has been supported through funding from the Collaborative Health Research Program by the Natural Science and Engineering Research Council of Canada and the Canadian Health Research Institute, and through the Canada Research Chairs program.

  1. Exposure to pastures fertilised with sewage sludge disrupts bone tissue homeostasis in sheep

    Energy Technology Data Exchange (ETDEWEB)

    Lind, P. Monica [Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden)], E-mail: Monica.Lind@ki.se; Gustafsson, Magnus [Department of Environmental Toxicology, Uppsala University, Uppsala (Sweden); Hermsen, Sanne A.B. [Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden); Larsson, Sune [Department of Orthopaedics, University of Uppsala, Uppsala (Sweden); Kyle, Carol E. [Macaulay Institute, Craigiebuckler, Aberdeen AB15 8QH (United Kingdom); Orberg, Jan [Department of Environmental Toxicology, Uppsala University, Uppsala (Sweden); Rhind, Stewart M. [Macaulay Institute, Craigiebuckler, Aberdeen AB15 8QH (United Kingdom)

    2009-03-15

    The femurs of male and female sheep (Ovis aries), aged 18 months, bred on pastures fertilized twice annually with sewage sludge (2.25 tonnes dry matter/ha; Treated; T)) or on pastures treated with inorganic fertilizer (Control; C) were studied, using peripheral Quantitative Computed Tomography (pQCT) and the three-point bending test. Males were maintained on the respective treatments from conception to weaning and then maintained on control pastures while the females were maintained on the respective treatments until slaughter. T rams exhibited increased total bone mineral density (BMD) at the metaphyseal part of femur (+ 10.5%, p < 0.01) compared with C rams but had a reduced total cross sectional area (CSA, - 11.5%, p < 0.001), trabecular CSA (- 17.1%, p < 0.01) and periosteal circumference (- 5.7%, p < 0.001). In the mid-diaphyseal part, T rams had an increased total BMD (+ 13.8%, p < 0.0001) and stiffness (+ 6.4%, p < 0.01) but reduced total CSA (- 12.1%, p < 0.0001) and marrow cavity (- 25.8%, p < 0.0001), relative to C rams. In ewes although pQCT analysis of neither the metaphyseal nor the mid-diaphyseal part of the female femur bones showed any significant differences with treatment, the biomechanical method revealed a reduction in load at failure (- 17.3%, p < 0.01) and stiffness (- 10.7%, p < 0.05) amongst T ewes. It is concluded that exposure to pollutants present in sewage sludge can perturb bone tissue homeostasis in sheep, but particularly in males.

  2. Circadian rhythm disruption impairs tissue homeostasis and exacerbates chronic inflammation in the intestine.

    Science.gov (United States)

    Pagel, René; Bär, Florian; Schröder, Torsten; Sünderhauf, Annika; Künstner, Axel; Ibrahim, Saleh M; Autenrieth, Stella E; Kalies, Kathrin; König, Peter; Tsang, Anthony H; Bettenworth, Dominik; Divanovic, Senad; Lehnert, Hendrik; Fellermann, Klaus; Oster, Henrik; Derer, Stefanie; Sina, Christian

    2017-11-01

    Endogenous circadian clocks regulate 24-h rhythms of physiology and behavior. Circadian rhythm disruption (CRD) is suggested as a risk factor for inflammatory bowel disease. However, the underlying molecular mechanisms remain unknown. Intestinal biopsies from Per1/2 mutant and wild-type (WT) mice were investigated by electron microscopy, immunohistochemistry, and bromodeoxyuridine pulse-chase experiments. TNF-α was injected intraperitoneally, with or without necrostatin-1, into Per1/2 mice or rhythmic and externally desynchronized WT mice to study intestinal epithelial cell death. Experimental chronic colitis was induced by oral administration of dextran sodium sulfate. In vitro , caspase activity was assayed in Per1/2-specific small interfering RNA-transfected cells. Wee1 was overexpressed to study antiapoptosis and the cell cycle. Genetic ablation of circadian clock function or environmental CRD in mice increased susceptibility to severe intestinal inflammation and epithelial dysregulation, accompanied by excessive necroptotic cell death and a reduced number of secretory epithelial cells. Receptor-interacting serine/threonine-protein kinase (RIP)-3-mediated intestinal necroptosis was linked to increased mitotic cell cycle arrest via Per1/2-controlled Wee1, resulting in increased antiapoptosis via cellular inhibitor of apoptosis-2. Together, our data suggest that circadian rhythm stability is pivotal for the maintenance of mucosal barrier function. CRD increases intestinal necroptosis, thus rendering the gut epithelium more susceptible to inflammatory processes.-Pagel, R., Bär, F., Schröder, T., Sünderhauf, A., Künstner, A., Ibrahim, S. M., Autenrieth, S. E., Kalies, K., König, P., Tsang, A. H., Bettenworth, D., Divanovic, S., Lehnert, H., Fellermann, K., Oster, H., Derer, S., Sina, C. Circadian rhythm disruption impairs tissue homeostasis and exacerbates chronic inflammation in the intestine. © FASEB.

  3. Exposure to pastures fertilised with sewage sludge disrupts bone tissue homeostasis in sheep

    International Nuclear Information System (INIS)

    Lind, P. Monica; Gustafsson, Magnus; Hermsen, Sanne A.B.; Larsson, Sune; Kyle, Carol E.; Orberg, Jan; Rhind, Stewart M.

    2009-01-01

    The femurs of male and female sheep (Ovis aries), aged 18 months, bred on pastures fertilized twice annually with sewage sludge (2.25 tonnes dry matter/ha; Treated; T)) or on pastures treated with inorganic fertilizer (Control; C) were studied, using peripheral Quantitative Computed Tomography (pQCT) and the three-point bending test. Males were maintained on the respective treatments from conception to weaning and then maintained on control pastures while the females were maintained on the respective treatments until slaughter. T rams exhibited increased total bone mineral density (BMD) at the metaphyseal part of femur (+ 10.5%, p < 0.01) compared with C rams but had a reduced total cross sectional area (CSA, - 11.5%, p < 0.001), trabecular CSA (- 17.1%, p < 0.01) and periosteal circumference (- 5.7%, p < 0.001). In the mid-diaphyseal part, T rams had an increased total BMD (+ 13.8%, p < 0.0001) and stiffness (+ 6.4%, p < 0.01) but reduced total CSA (- 12.1%, p < 0.0001) and marrow cavity (- 25.8%, p < 0.0001), relative to C rams. In ewes although pQCT analysis of neither the metaphyseal nor the mid-diaphyseal part of the female femur bones showed any significant differences with treatment, the biomechanical method revealed a reduction in load at failure (- 17.3%, p < 0.01) and stiffness (- 10.7%, p < 0.05) amongst T ewes. It is concluded that exposure to pollutants present in sewage sludge can perturb bone tissue homeostasis in sheep, but particularly in males

  4. Effects of Beer, Non-Alcoholic Beer and Water Consumption before Exercise on Fluid and Electrolyte Homeostasis in Athletes

    Directory of Open Access Journals (Sweden)

    Mauricio Castro-Sepulveda

    2016-06-01

    Full Text Available Fluid and electrolyte status have a significant impact on physical performance and health. Pre-exercise recommendations cite the possibility of consuming beverages with high amounts of sodium. In this sense, non-alcoholic beer can be considered an effective pre-exercise hydration beverage. This double-blind, randomized study aimed to compare the effect of beer, non-alcoholic beer and water consumption before exercise on fluid and electrolyte homeostasis. Seven male soccer players performed 45 min of treadmill running at 65% of the maximal heart rate, 45 min after ingesting 0.7 L of water (W, beer (AB or non-alcoholic beer (NAB. Body mass, plasma Na+ and K+ concentrations and urine specific gravity (USG were assessed before fluid consumption and after exercise. After exercise, body mass decreased (p < 0.05 in W (−1.1%, AB (−1.0% and NAB (−1.0%. In the last minutes of exercise, plasma Na+ was reduced (p < 0.05 in W (−3.9% and AB (−3.7%, plasma K+ was increased (p < 0.05 in AB (8.5%, and USG was reduced in W (−0.9% and NAB (−1.0%. Collectively, these results suggest that non-alcoholic beer before exercise could help maintain electrolyte homeostasis during exercise. Alcoholic beer intake reduced plasma Na+ and increased plasma K+ during exercise, which may negatively affect health and physical performance, and finally, the consumption of water before exercise could induce decreases of Na+ in plasma during exercise.

  5. Fluid and electrolyte homeostasis during spaceflight: Elucidation of mechanisms in a primate

    Science.gov (United States)

    Churchill, Susanne

    1990-01-01

    Although it is now well accepted that exposure to the hypogravic environment of space induces a shift of fluid from the lower extremities toward the upper body, the actual physiological responses to this central volume expansion have not been well characterized. Because it is likely that the fluid and electrolyte response to hypogravity plays a critical role in the development of Cardiovascular Deconditioning, elucidation of these mechanisms is of critical importance. The goal of flight experiment 223, scheduled to fly on SLS-2, is the definition of the basic renal, fluid and electrolyte response to spaceflight in four instrumented squirrel monkeys. The studies were those required to support the development of flight hardware and optimal inflight procedures, and to evaluate a ground-based model for weightlessness, lower body positive pressure (LBPP).

  6. How to assess the plasma delivery of RONS into tissue fluid and tissue

    Science.gov (United States)

    Oh, Jun-Seok; Szili, Endre J.; Gaur, Nishtha; Hong, Sung-Ha; Furuta, Hiroshi; Kurita, Hirofumi; Mizuno, Akira; Hatta, Akimitsu; Short, Robert D.

    2016-08-01

    The efficacy of helium (He) and argon (Ar) plasma jets are being investigated for different healthcare applications including wound and cancer therapy, sterilisation and surface disinfections. Current research points to a potential link between the generation of reactive oxygen and nitrogen species (RONS) and outcomes in a range of biological and medical applications. As new data accrue, further strengthening this link, it becomes important to understand the controlled delivery of RONS into solutions, tissue fluids and tissues. This paper investigates the use of He and Ar plasma jets to deliver three RONS (hydrogen peroxide—H2O2, nitrite—\\text{NO}2- and nitrate—\\text{NO}3- ) and molecular oxygen (O2) directly into deionised (DI) water, or indirectly into DI water through an agarose target. The DI water is used in place of tissue fluid and the agarose target serves as a surrogate of tissue. Direct plasma jet treatments deliver more RONS and O2 than the through-agarose treatments for equivalent treatments times. The former only deliver RONS whilst the plasma jets are ignited; the latter continues to deliver RONS into the DI water long after the plasmas are extinguished. The He plasma jet is more effective at delivering H2O2 and \\text{NO}2- directly into DI water, but the Ar plasma jet is more effective at nitrating the DI water in both direct and through-agarose treatments. DI water directly treated with the plasma jets is deoxygenated, with the He plasma jet purging more O2 than the Ar plasma jet. This effect is known as ‘sparging’. In contrast, for through-agarose treatments both jets oxygenated the DI water. These results indicate that in the context of direct and indirect plasma jet treatments of real tissue fluids and tissue, the choice of process gas (He or Ar) could have a profound effect on the concentrations of RONS and O2. Irrespective of operating gas, sparging of tissue fluid (in an open wound) for long prolonged periods during direct plasma

  7. Adipose tissue NAD+-homeostasis, sirtuins and poly(ADP-ribose) polymerases -important players in mitochondrial metabolism and metabolic health.

    Science.gov (United States)

    Jokinen, Riikka; Pirnes-Karhu, Sini; Pietiläinen, Kirsi H; Pirinen, Eija

    2017-08-01

    Obesity, a chronic state of energy overload, is characterized by adipose tissue dysfunction that is considered to be the major driver for obesity associated metabolic complications. The reasons for adipose tissue dysfunction are incompletely understood, but one potential contributing factor is adipose tissue mitochondrial dysfunction. Derangements of adipose tissue mitochondrial biogenesis and pathways associate with obesity and metabolic diseases. Mitochondria are central organelles in energy metabolism through their role in energy derivation through catabolic oxidative reactions. The mitochondrial processes are dependent on the proper NAD + /NADH redox balance and NAD + is essential for reactions catalyzed by the key regulators of mitochondrial metabolism, sirtuins (SIRTs) and poly(ADP-ribose) polymerases (PARPs). Notably, obesity is associated with disturbed adipose tissue NAD + homeostasis and the balance of SIRT and PARP activities. In this review we aim to summarize existing literature on the maintenance of intracellular NAD + pools and the function of SIRTs and PARPs in adipose tissue during normal and obese conditions, with the purpose of comprehending their potential role in mitochondrial derangements and obesity associated metabolic complications. Understanding the molecular mechanisms that are the root cause of the adipose tissue mitochondrial derangements is crucial for developing new effective strategies to reverse obesity associated metabolic complications. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Fabp4-Cre-mediated Sirt6 deletion impairs adipose tissue function and metabolic homeostasis in mice.

    Science.gov (United States)

    Xiong, Xiwen; Zhang, Cuicui; Zhang, Yang; Fan, Rui; Qian, Xinlai; Dong, X Charlie

    2017-06-01

    SIRT6 is a member of sirtuin family of deacetylases involved in diverse processes including genome stability, metabolic homeostasis and anti-inflammation. However, its function in the adipose tissue is not well understood. To examine the metabolic function of SIRT6 in the adipose tissue, we generated two mouse models that are deficient in Sirt6 using the Cre-lox approach. Two commonly used Cre lines that are driven by either the mouse Fabp4 or Adipoq gene promoter were chosen for this study. The Sirt6- knockout mice generated by the Fabp4-Cre line ( Sirt6 f/f : Fabp4-Cre) had a significant increase in both body weight and fat mass and exhibited glucose intolerance and insulin resistance as compared with the control wild-type mice. At the molecular levels, the Sirt6 f/f :Fabp4-Cre-knockout mice had increased expression of inflammatory genes including F4/80, TNFα, IL-6 and MCP-1 in both white and brown adipose tissues. Moreover, the knockout mice showed decreased expression of the adiponectin gene in the white adipose tissue and UCP1 in the brown adipose tissue, respectively. In contrast, the Sirt6 knockout mice generated by the Adipoq-Cre line ( Sirt6 f/f :Adipoq-Cre) only had modest insulin resistance. In conclusion, our data suggest that the function of SIRT6 in the Fabp4-Cre-expressing cells in addition to mature adipocytes plays a critical role in body weight maintenance and metabolic homeostasis. © 2017 Society for Endocrinology.

  9. Beneficial Autoimmunity at Body Surfaces – Immune Surveillance and Rapid Type 2 Immunity Regulate Tissue Homeostasis and Cancer

    Science.gov (United States)

    Dalessandri, Tim; Strid, Jessica

    2014-01-01

    Epithelial cells (ECs) line body surface tissues and provide a physicochemical barrier to the external environment. Frequent microbial and non-microbial challenges such as those imposed by mechanical disruption, injury or exposure to noxious environmental substances including chemicals, carcinogens, ultraviolet-irradiation, or toxins cause activation of ECs with release of cytokines and chemokines as well as alterations in the expression of cell-surface ligands. Such display of epithelial stress is rapidly sensed by tissue-resident immunocytes, which can directly interact with self-moieties on ECs and initiate both local and systemic immune responses. ECs are thus key drivers of immune surveillance at body surface tissues. However, ECs have a propensity to drive type 2 immunity (rather than type 1) upon non-invasive challenge or stress – a type of immunity whose regulation and function still remain enigmatic. Here, we review the induction and possible role of type 2 immunity in epithelial tissues and propose that rapid immune surveillance and type 2 immunity are key regulators of tissue homeostasis and carcinogenesis. PMID:25101088

  10. Beneficial autoimmunity at body surfaces - immune surveillance and rapid type 2 immunity regulate tissue homeostasis and cancer.

    Science.gov (United States)

    Dalessandri, Tim; Strid, Jessica

    2014-01-01

    Epithelial cells (ECs) line body surface tissues and provide a physicochemical barrier to the external environment. Frequent microbial and non-microbial challenges such as those imposed by mechanical disruption, injury or exposure to noxious environmental substances including chemicals, carcinogens, ultraviolet-irradiation, or toxins cause activation of ECs with release of cytokines and chemokines as well as alterations in the expression of cell-surface ligands. Such display of epithelial stress is rapidly sensed by tissue-resident immunocytes, which can directly interact with self-moieties on ECs and initiate both local and systemic immune responses. ECs are thus key drivers of immune surveillance at body surface tissues. However, ECs have a propensity to drive type 2 immunity (rather than type 1) upon non-invasive challenge or stress - a type of immunity whose regulation and function still remain enigmatic. Here, we review the induction and possible role of type 2 immunity in epithelial tissues and propose that rapid immune surveillance and type 2 immunity are key regulators of tissue homeostasis and carcinogenesis.

  11. Effects of fluid dynamic stress on fracturing of cell-aggregated tissue during purification for islets of Langerhans transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Shintaku, H; Kawano, S [Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Machikaneyama-cho, Toyonaka, Osaka 560-8531 (Japan); Okitsu, T [Transplantation Unit, Kyoto University Hospital, Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Matsumoto, S [Baylor Research Institute Islet Cell Laboratory, 1400 Eight Avenue, Fort Worth, TX 76104 (United States); Suzuki, T; Kanno, I; Kotera, H [Department of Microengineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)], E-mail: shintaku@me.es.osaka-u.ac.jp

    2008-06-07

    Among clinical treatments for type 1 diabetes mellitus, the transplantation of islets of Langerhans to the portal vein of the hepar is a commonly used treatment for glucose homeostasis. Islet purification using the density gradient of a solution in a centrifuge separator is required for safety and efficiency. In the purification, the number of tissues to be transplanted is reduced by removing the acinar tissue and gathering the islet from the digest of pancreas. However, the mechanical effects on the fracture of islets in the centrifuge due to fluid dynamic stress are a serious problem in the purification process. In this study, a preliminary experiment using a cylindrical rotating viscometer with a simple geometry is conducted in order to systematically clarify the effect of fluid dynamic stress on the fracture of islets. The effects of fluid dynamic stress on the islet configuration is quantitatively measured for various flow conditions, and a predictive fracture model is developed based on the experimental results. Furthermore, in the practical purification process in the COBE (Gambro BCT), which is widely used in clinical applications, we perform a numerical analysis of the fluid dynamic stress based on Navier-Stokes equations to estimate the stress conditions for islets. Using the fracture model and numerical analysis, the islet fracture characteristics using the COBE are successfully investigated. The results obtained in this study provide crucial information for the purification of islets by centrifuge in practical and clinical applications.

  12. Effects of fluid dynamic stress on fracturing of cell-aggregated tissue during purification for islets of Langerhans transplantation

    International Nuclear Information System (INIS)

    Shintaku, H; Kawano, S; Okitsu, T; Matsumoto, S; Suzuki, T; Kanno, I; Kotera, H

    2008-01-01

    Among clinical treatments for type 1 diabetes mellitus, the transplantation of islets of Langerhans to the portal vein of the hepar is a commonly used treatment for glucose homeostasis. Islet purification using the density gradient of a solution in a centrifuge separator is required for safety and efficiency. In the purification, the number of tissues to be transplanted is reduced by removing the acinar tissue and gathering the islet from the digest of pancreas. However, the mechanical effects on the fracture of islets in the centrifuge due to fluid dynamic stress are a serious problem in the purification process. In this study, a preliminary experiment using a cylindrical rotating viscometer with a simple geometry is conducted in order to systematically clarify the effect of fluid dynamic stress on the fracture of islets. The effects of fluid dynamic stress on the islet configuration is quantitatively measured for various flow conditions, and a predictive fracture model is developed based on the experimental results. Furthermore, in the practical purification process in the COBE (Gambro BCT), which is widely used in clinical applications, we perform a numerical analysis of the fluid dynamic stress based on Navier-Stokes equations to estimate the stress conditions for islets. Using the fracture model and numerical analysis, the islet fracture characteristics using the COBE are successfully investigated. The results obtained in this study provide crucial information for the purification of islets by centrifuge in practical and clinical applications

  13. Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans

    Science.gov (United States)

    Brown adipose tissue (BAT) has attracted scientific interest as an antidiabetic tissue owing to its ability to dissipate energy as heat. Despite a plethora of data concerning the role of BAT in glucose metabolism in rodents, the role of BAT (if any) in glucose metabolism in humans remains unclear. T...

  14. Research into the Physiology of Cerebrospinal Fluid Reaches a New Horizon: Intimate Exchange between Cerebrospinal Fluid and Interstitial Fluid May Contribute to Maintenance of Homeostasis in the Central Nervous System.

    Science.gov (United States)

    Matsumae, Mitsunori; Sato, Osamu; Hirayama, Akihiro; Hayashi, Naokazu; Takizawa, Ken; Atsumi, Hideki; Sorimachi, Takatoshi

    2016-07-15

    Cerebrospinal fluid (CSF) plays an essential role in maintaining the homeostasis of the central nervous system. The functions of CSF include: (1) buoyancy of the brain, spinal cord, and nerves; (2) volume adjustment in the cranial cavity; (3) nutrient transport; (4) protein or peptide transport; (5) brain volume regulation through osmoregulation; (6) buffering effect against external forces; (7) signal transduction; (8) drug transport; (9) immune system control; (10) elimination of metabolites and unnecessary substances; and finally (11) cooling of heat generated by neural activity. For CSF to fully mediate these functions, fluid-like movement in the ventricles and subarachnoid space is necessary. Furthermore, the relationship between the behaviors of CSF and interstitial fluid in the brain and spinal cord is important. In this review, we will present classical studies on CSF circulation from its discovery over 2,000 years ago, and will subsequently introduce functions that were recently discovered such as CSF production and absorption, water molecule movement in the interstitial space, exchange between interstitial fluid and CSF, and drainage of CSF and interstitial fluid into both the venous and the lymphatic systems. Finally, we will summarize future challenges in research. This review includes articles published up to February 2016.

  15. Kynurenic Acid and Gpr35 Regulate Adipose Tissue Energy Homeostasis and Inflammation

    DEFF Research Database (Denmark)

    Agudelo, Leandro Z; Ferreira, Duarte M S; Cervenka, Igor

    2018-01-01

    The role of tryptophan-kynurenine metabolism in psychiatric disease is well established, but remains less explored in peripheral tissues. Exercise training activates kynurenine biotransformation in skeletal muscle, which protects from neuroinflammation and leads to peripheral kynurenic acid accum...

  16. Commensal bacteria-dependent select expression of CXCL2 contributes to periodontal tissue homeostasis.

    Science.gov (United States)

    Zenobia, Camille; Luo, Xiao Long; Hashim, Ahmed; Abe, Toshiharu; Jin, Lijian; Chang, Yucheng; Jin, Zhi Chao; Sun, Jian Xun; Hajishengallis, George; Curtis, Mike A; Darveau, Richard P

    2013-08-01

    The oral and intestinal host tissues both carry a heavy microbial burden. Although commensal bacteria contribute to healthy intestinal tissue structure and function, their contribution to oral health is poorly understood. A crucial component of periodontal health is the recruitment of neutrophils to periodontal tissue. To elucidate this process, gingival tissues of specific-pathogen-free and germ-free wild-type mice and CXCR2KO and MyD88KO mice were examined for quantitative analysis of neutrophils and CXCR2 chemoattractants (CXCL1, CXCL2). We show that the recruitment of neutrophils to the gingival tissue does not require commensal bacterial colonization but is entirely dependent on CXCR2 expression. Strikingly, however, commensal bacteria selectively upregulate the expression of CXCL2, but not CXCL1, in a MyD88-dependent way that correlates with increased neutrophil recruitment as compared with germ-free conditions. This is the first evidence that the selective use of chemokine receptor ligands contributes to neutrophil homing to healthy periodontal tissue. © 2013 John Wiley & Sons Ltd.

  17. The Unexplored Role of Intra-articular Adipose Tissue in the Homeostasis and Pathology of Articular Joints

    Directory of Open Access Journals (Sweden)

    Luminita Labusca

    2018-03-01

    Full Text Available Intra-articular adipose tissue deposits known as articular fat pads (AFPs are described to exist within synovial joints. Their assumed role in normal joint biomechanics is increasingly objectivized by means of advanced methods of functional imaging. AFPs possess structural similarity with body subcutaneous white adipose tissue (WAT, however, seems to be regulated by independent metabolic loops. AFP dimension are conserved during extreme WAT states: obesity, metabolic syndrome, lipodystrophy, and cachexia. Hoffa fat pad (HFP in the knee is increasingly recognized as a major player in pathological joint states such as anterior knee pain and osteoarthritis. HFP contains numerous population of mesenchymal and endothelial progenitors; however, the possible role of mature adipocytes in the maintenance of stem cell niche is unknown. We propose that AFP is an active component of the joint organ with multifunctional roles in the maintenance of joint homeostasis. Endowed with a rich network of sensitive nervous fibbers, AFPs may act as a proprioceptive organ. Adipokines and growth factors released by AFP-resident mature adipocytes could participate in the maintenance of progenitor stem cell niche as well as in local immune regulation. AFP metabolism may be locally controlled, correlated with but independent of WAT homeostasis. The identification of AFP role in normal joint turnover and its possible implication in pathological states could deliver diagnostic and therapeutic targets. Drug and/or cell therapies that restore AFP structure and function could become the next step in the design of disease modifying therapies for disabling joint conditions such as osteoarthritis and inflammatory arthritis.

  18. Delineating Molecular Mechanisms of Squamous Tissue Homeostasis and Neoplasia: Focus on p63

    Directory of Open Access Journals (Sweden)

    Kathryn E. King

    2013-01-01

    Full Text Available Mouse models have informed us that p63 is critical for normal epidermal development and homeostasis. The p53/p63/p73 family is expressed as multiple protein isoforms due to a combination of alternative promoter usage and C-terminal alternative splicing. These isoforms can mimic or interfere with one another, and their balance ultimately determines biological outcome in a context-dependent manner. While not frequently mutated, p63, and in particular the ΔNp63 subclass, is commonly overexpressed in human squamous cell cancers. In vitro keratinocytes and murine transgenic and transplantation models have been invaluable in elucidating the contribution of altered p63 levels to cancer development, and studies have identified the roles for ΔNp63 isoforms in keratinocyte survival and malignant progression, likely due in part to their transcriptional regulatory function. These findings can be extended to human cancers; for example, the novel recognition of NFκB/c-Rel as a downstream effector of p63 has identified a role for NFκB/c-Rel in human squamous cell cancers. These models will be critical in enhancing the understanding of the specific molecular mechanisms of cancer development and progression.

  19. The Immune System in Tissue Environments Regaining Homeostasis after Injury: Is “Inflammation” Always Inflammation?

    OpenAIRE

    Kulkarni, Onkar P.; Lichtnekert, Julia; Anders, Hans-Joachim; Mulay, Shrikant R.

    2016-01-01

    Inflammation is a response to infections or tissue injuries. Inflammation was once defined by clinical signs, later by the presence of leukocytes, and nowadays by expression of “proinflammatory” cytokines and chemokines. But leukocytes and cytokines often have rather anti-inflammatory, proregenerative, and homeostatic effects. Is there a need to redefine “inflammation”? In this review, we discuss the functions of “inflammatory” mediators/regulators of the innate immune system that determine t...

  20. Effects of experimentally increased protein supply to postpartum dairy cows on plasma protein synthesis, rumen tissue proliferation, and immune homeostasis

    DEFF Research Database (Denmark)

    Larsen, Mogens; Røntved, Christine Maria; Theil, Peter Kappel

    2017-01-01

    The effect of experimentally increasing the postpartum protein supply on plasma protein synthesis, rumen tissue proliferation, and immune homeostasis was studied using 8 periparturient Holstein cows in a complete randomized design. At calving, cows were assigned to abomasal infusion of water (CTRL......) or casein (CAS) in addition to a lactation diet. Casein infusion was gradually decreased from 696 ± 1 g/d at +2 d relative to calving (DRTC) to 212 ± 10 g/d at +29 DRTC to avoid excessive supply. Synthesis rate of plasma proteins was measured at –14, +4, +15, and +29 DRTC by measuring [13C]Phe isotopic...... enrichment in arterial plasma free Phe, total plasma proteins, and albumin after 3, 5, and 7 h of jugular ring[13C]Phe infusion. Plasma volume was determined at +4 and +29 DRTC by dilution of a [125I]BSA dose. Synthesis rate of tissue protein in biopsied rumen papillae was determined by measuring [13C...

  1. Critical role of CD4 T cells in maintaining lymphoid tissue structure for immune cell homeostasis and reconstitution.

    Science.gov (United States)

    Zeng, Ming; Paiardini, Mirko; Engram, Jessica C; Beilman, Greg J; Chipman, Jeffrey G; Schacker, Timothy W; Silvestri, Guido; Haase, Ashley T

    2012-08-30

    Loss of the fibroblastic reticular cell (FRC) network in lymphoid tissues during HIV-1 infection has been shown to impair the survival of naive T cells and limit immune reconstitution after antiretroviral therapy. What causes this FRC loss is unknown. Because FRC loss correlates with loss of both naive CD4 and CD8 T-cell subsets and decreased lymphotoxin-β, a key factor for maintenance of FRC network, we hypothesized that loss of naive T cells is responsible for loss of the FRC network. To test this hypothesis, we assessed the consequences of antibody-mediated depletion of CD4 and CD8 T cells in rhesus macaques and sooty mangabeys. We found that only CD4 T-cell depletion resulted in FRC loss in both species and that this loss was caused by decreased lymphotoxin-β mainly produced by the CD4 T cells. We further found the same dependence of the FRC network on CD4 T cells in HIV-1-infected patients before and after antiretroviral therapy and in other immunodeficiency conditions, such as CD4 depletion in cancer patients induced by chemotherapy and irradiation. CD4 T cells thus play a central role in the maintenance of lymphoid tissue structure necessary for their own homeostasis and reconstitution.

  2. The emerging role of senescent cells in tissue homeostasis and pathophysiology

    Directory of Open Access Journals (Sweden)

    Kaoru Tominaga

    2015-05-01

    Full Text Available Cellular senescence is a state of permanent growth arrest and is thought to play a pivotal role in tumor suppression. Cellular senescence may play an important role in tumor suppression, wound healing, and protection against tissue fibrosis in physiological conditions in vivo. However, accumulating evidence that senescent cells may have harmful effects in vivo and may contribute to tissue remodeling, organismal aging, and many age-related diseases also exists. Cellular senescence can be induced by various intrinsic and extrinsic factors. Both p53/p21 and p16/RB pathways are important for irreversible growth arrest in senescent cells. Senescent cells secret numerous biologically active factors. This specific secretion phenotype by senescent cells may largely contribute to physiological and pathological consequences in organisms. Here I review the molecular basis of cell cycle arrest and the specific secretion phenotype in cellular senescence. I also summarize the current knowledge of the role of cellular senescence in vivo in physiological and pathological settings.

  3. Epidermal Homeostasis and Radiation Responses in a Multiscale Tissue Modeling Framework

    Science.gov (United States)

    Hu, Shaowen; Cucinotta, Francis A.

    2013-01-01

    The surface of skin is lined with several thin layers of epithelial cells that are maintained throughout life time by a small population of stem cells. High dose radiation exposures could injure and deplete the underlying proliferative cells and induce cutaneous radiation syndrome. In this work we propose a multiscale computational model for skin epidermal dynamics that links phenomena occurring at the subcellular, cellular, and tissue levels of organization, to simulate the experimental data of the radiation response of swine epidermis, which is closely similar to human epidermis. Incorporating experimentally measured histological and cell kinetic parameters, we obtain results of population kinetics and proliferation indexes comparable to observations in unirradiated and acutely irradiated swine experiments. At the sub-cellular level, several recently published Wnt signaling controlled cell-cycle models are applied and the roles of key components and parameters are analyzed. Based on our simulation results, we demonstrate that a moderate increase of proliferation rate for the survival proliferative cells is sufficient to fully repopulate the area denuded by high dose radiation, as long as the integrity of underlying basement membrane is maintained. Our work highlights the importance of considering proliferation kinetics as well as the spatial organization of tissues when conducting in vivo investigations of radiation responses. This integrated model allow us to test the validity of several basic biological rules at the cellular level and sub-cellular mechanisms by qualitatively comparing simulation results with published research, and enhance our understanding of the pathophysiological effects of ionizing radiation on skin.

  4. Influence of exogenous leptin on redox homeostasis in neutrophils and lymphocytes cultured in synovial fluid isolated from patients with rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Michał Gajewski

    2016-07-01

    Full Text Available Objectives : Leptin is an adipose cells derived hormone that regulates energy homeostasis within the body. Energy metabolism of immune cells influences their activity within numerous pathological states, but the effect of leptin on these cells in unclear. On the one hand, it was observed that leptin induces neutrophils chemotaxis and modulates phagocytosis. On the other hand, neutrophils exposed to leptin did not display detectable Ca 2+ ions mobilization or β 2 -integrin upregulation. In this study, we investigated the effect of leptin on the redox homeostasis in lymphocytes and neutrophils. Material and methods : Neutrophils and lymphocytes were isolated by density-gradient centrifugation of blood from healthy volunteers. Cells were cultured with or without leptin (100 ng/ml for lymphocytes and 500 ng/ml for neutrophils or with or without synovial fluid (85% for 0–72 h. Culture media were not changed during incubation. Cells were homogenized and homogenate was frozen until laboratory measurements. Redox homeostasis was assessed by the reduced glutathione (GSH vs. oxidized glutathione (GSSG ratio and membrane lipid peroxidation evaluation. Results : Lymphocytes cultured with leptin and synovial fluid showed a significant increase of the GSSG level. The GSSG/GSH ratio increased by 184 ±37%. In neutrophils incubated in a similar environment, the GSSG/GSH ratio increased by just 21 ±7%, and the effect was observed irrespectively of whether they were exposed to leptin or synovial fluid or both together. Neither leptin nor synovial fluid influenced lipid peroxidation in neutrophils, but in lymphocytes leptin intensified lipid peroxidation. Conclusions : Leptin altered the lymphocytes, but not neutrophils redox state. Because firstly neutrophils are anaerobic cells and have just a few mitochondria and secondly lymphocytes have typical aerobic metabolism, the divergence of our data supports the hypothesis that leptin induces oxidative stress by

  5. Group 2 Innate Lymphoid Cells in Pulmonary Immunity and Tissue Homeostasis

    Directory of Open Access Journals (Sweden)

    Barbara C. Mindt

    2018-04-01

    Full Text Available Group 2 innate lymphoid cells (ILC2 represent an evolutionary rather old but only recently identified member of the family of innate lymphoid cells and have received much attention since their detailed description in 2010. They can orchestrate innate as well as adaptive immune responses as they interact with and influence several immune and non-immune cell populations. Moreover, ILC2 are able to rapidly secrete large amounts of type 2 cytokines that can contribute to protective but also detrimental host immune responses depending on timing, location, and physiological context. Interestingly, ILC2, despite their scarcity, are the dominant innate lymphoid cell population in the lung, indicating a key role as first responders and amplifiers upon immune challenge at this site. In addition, the recently described tissue residency of ILC2 further underlines the importance of their respective microenvironment. In this review, we provide an overview of lung physiology including a description of the most prominent pulmonary resident cells together with a review of known and potential ILC2 interactions within this unique environment. We will further outline recent observations regarding pulmonary ILC2 during immune challenge including respiratory infections and discuss different models and approaches to study ILC2 biology in the lung.

  6. Group 2 Innate Lymphoid Cells in Pulmonary Immunity and Tissue Homeostasis.

    Science.gov (United States)

    Mindt, Barbara C; Fritz, Jörg H; Duerr, Claudia U

    2018-01-01

    Group 2 innate lymphoid cells (ILC2) represent an evolutionary rather old but only recently identified member of the family of innate lymphoid cells and have received much attention since their detailed description in 2010. They can orchestrate innate as well as adaptive immune responses as they interact with and influence several immune and non-immune cell populations. Moreover, ILC2 are able to rapidly secrete large amounts of type 2 cytokines that can contribute to protective but also detrimental host immune responses depending on timing, location, and physiological context. Interestingly, ILC2, despite their scarcity, are the dominant innate lymphoid cell population in the lung, indicating a key role as first responders and amplifiers upon immune challenge at this site. In addition, the recently described tissue residency of ILC2 further underlines the importance of their respective microenvironment. In this review, we provide an overview of lung physiology including a description of the most prominent pulmonary resident cells together with a review of known and potential ILC2 interactions within this unique environment. We will further outline recent observations regarding pulmonary ILC2 during immune challenge including respiratory infections and discuss different models and approaches to study ILC2 biology in the lung.

  7. Tissue-Specific Apocarotenoid Glycosylation Contributes to Carotenoid Homeostasis in Arabidopsis Leaves1

    Science.gov (United States)

    Hübner, Michaela; Matsubara, Shizue; Beyer, Peter

    2015-01-01

    Attaining defined steady-state carotenoid levels requires balancing of the rates governing their synthesis and metabolism. Phytoene formation mediated by phytoene synthase (PSY) is rate limiting in the biosynthesis of carotenoids, whereas carotenoid catabolism involves a multitude of nonenzymatic and enzymatic processes. We investigated carotenoid and apocarotenoid formation in Arabidopsis (Arabidopsis thaliana) in response to enhanced pathway flux upon PSY overexpression. This resulted in a dramatic accumulation of mainly β-carotene in roots and nongreen calli, whereas carotenoids remained unchanged in leaves. We show that, in chloroplasts, surplus PSY was partially soluble, localized in the stroma and, therefore, inactive, whereas the membrane-bound portion mediated a doubling of phytoene synthesis rates. Increased pathway flux was not compensated by enhanced generation of long-chain apocarotenals but resulted in higher levels of C13 apocarotenoid glycosides (AGs). Using mutant lines deficient in carotenoid cleavage dioxygenases (CCDs), we identified CCD4 as being mainly responsible for the majority of AGs formed. Moreover, changed AG patterns in the carotene hydroxylase mutants lutein deficient1 (lut1) and lut5 exhibiting altered leaf carotenoids allowed us to define specific xanthophyll species as precursors for the apocarotenoid aglycons detected. In contrast to leaves, carotenoid hyperaccumulating roots contained higher levels of β-carotene-derived apocarotenals, whereas AGs were absent. These contrasting responses are associated with tissue-specific capacities to synthesize xanthophylls, which thus determine the modes of carotenoid accumulation and apocarotenoid formation. PMID:26134165

  8. Regrowing the adult brain: NF-κB controls functional circuit formation and tissue homeostasis in the dentate gyrus.

    Directory of Open Access Journals (Sweden)

    Yvonne Imielski

    Full Text Available Cognitive decline during aging is correlated with a continuous loss of cells within the brain and especially within the hippocampus, which could be regenerated by adult neurogenesis. Here we show that genetic ablation of NF-κB resulted in severe defects in the neurogenic region (dentate gyrus of the hippocampus. Despite increased stem cell proliferation, axogenesis, synaptogenesis and neuroprotection were hampered, leading to disruption of the mossy fiber pathway and to atrophy of the dentate gyrus during aging. Here, NF-κB controls the transcription of FOXO1 and PKA, regulating axogenesis. Structural defects culminated in behavioral impairments in pattern separation. Re-activation of NF-κB resulted in integration of newborn neurons, finally to regeneration of the dentate gyrus, accompanied by a complete recovery of structural and behavioral defects. These data identify NF-κB as a crucial regulator of dentate gyrus tissue homeostasis suggesting NF-κB to be a therapeutic target for treating cognitive and mood disorders.

  9. Regrowing the Adult Brain: NF-κB Controls Functional Circuit Formation and Tissue Homeostasis in the Dentate Gyrus

    Science.gov (United States)

    Imielski, Yvonne; Schwamborn, Jens C.; Lüningschrör, Patrick; Heimann, Peter; Holzberg, Magdalena; Werner, Hendrikje; Leske, Oliver; Püschel, Andreas W.; Memet, Sylvie; Heumann, Rolf; Israel, Alain; Kaltschmidt, Christian; Kaltschmidt, Barbara

    2012-01-01

    Cognitive decline during aging is correlated with a continuous loss of cells within the brain and especially within the hippocampus, which could be regenerated by adult neurogenesis. Here we show that genetic ablation of NF-κB resulted in severe defects in the neurogenic region (dentate gyrus) of the hippocampus. Despite increased stem cell proliferation, axogenesis, synaptogenesis and neuroprotection were hampered, leading to disruption of the mossy fiber pathway and to atrophy of the dentate gyrus during aging. Here, NF-κB controls the transcription of FOXO1 and PKA, regulating axogenesis. Structural defects culminated in behavioral impairments in pattern separation. Re-activation of NF-κB resulted in integration of newborn neurons, finally to regeneration of the dentate gyrus, accompanied by a complete recovery of structural and behavioral defects. These data identify NF-κB as a crucial regulator of dentate gyrus tissue homeostasis suggesting NF-κB to be a therapeutic target for treating cognitive and mood disorders. PMID:22312433

  10. Catalpic acid decreases abdominal fat deposition, improves glucose homeostasis and upregulates PPAR alpha expression in adipose tissue.

    Science.gov (United States)

    Hontecillas, Raquel; Diguardo, Maggie; Duran, Elisa; Orpi, Marcel; Bassaganya-Riera, Josep

    2008-10-01

    Catalpic acid (CAT) is a conjugated linolenic acid (CLN) isomer containing trans-9, trans-11, cis-13 double bonds in an 18-carbon chain and it is found primarily in the seed oil of ornamental and medicinal trees and shrubs of the family Bignoniaceae. The objective of this study was to investigate whether CAT decreases obesity and ameliorates insulin sensitivity and glucose tolerance in mice fed high-fat diets. To test the efficacy of CAT in decreasing obesity and diabetes we used both a model of diet-induced obesity (DIO) and a genetic model of obesity (i.e., mice lacking the leptin receptor). Blood was collected on days 0, 7, 14, 21 and 28 for determining fasting glucose and insulin concentrations in plasma. In addition, a glucose tolerance test was administered on day 28. We found that dietary CAT (1g/100g) decreased fasting plasma glucose and insulin concentrations, ameliorated the glucose normalizing ability following glucose challenge and decreased abdominal white adipose tissue accumulation. In white adipose tissue (WAT), CAT upregulated peroxisome proliferator-activated receptor (PPAR) alpha and its responsive genes [i.e., stearoyl-coenzyme A desaturase (SCD1) and enoyl-coenzyme A hydratase (ECH)], increased concentrations of high-density lipoprotein (HDL) cholesterol and decreased plasma triglyceride (TG) levels. CAT decreased abdominal fat deposition, increased HDL cholesterol, decreased TG concentrations, decreased glucose and insulin homeostasis and modulated WAT gene expression in a manner reminiscent of the actions of the PPAR alpha-activating fibrate class of lipid-lowering drugs.

  11. Detection of cancerous kidney tissue areas by means of infrared spectroscopy of intercellular fluid

    Science.gov (United States)

    Urboniene, V.; Jankevicius, F.; Zelvys, A.; Steiner, G.; Sablinskas, V.

    2014-03-01

    In this work the infrared absorption spectra of intercellular fluid of normal and tumor kidney tissue were recorded and analyzed. The samples were prepared by stamping freshly resected tissue onto a CaF2 substrate. FT-IR spectra obtained from intracellular fluid of tumor tissue exhibit stronger absorption bands in the spectral region from 1000-1200 cm-1 and around 1750 cm-1 than those obtained from normal tissue. It is likely the spectra of extracellular matrix of kidney tumor tissue with large increases in the intensities of these bands represent a higher concentration of fatty acids and glycerol. Amide I and amide II bands are stronger in spectra of normal tissue indicating a higher level of proteins. The results demonstrate that FT-IR spectroscopy of intercellular fluids is a novel approach for a quick diagnosis during surgical resection, which can improve the therapy of kidney tumors.

  12. Growth hormone receptor antagonist (GHA) transgenic mice have increased subcutaneous adipose tissue mass, altered glucose homeostasis, and no change in white adipose tissue cellular senescence

    Science.gov (United States)

    Comisford, Ross; Lubbers, Ellen R.; Householder, Lara; Suer, Ozan; Tchkonia, Tamara; Kirkland, James L.; List, Edward O.; Kopchick, John J.; Berryman, Darlene E.

    2015-01-01

    Background Growth hormone (GH) resistant/deficient mice experience improved glucose homeostasis and substantially increased lifespan. Recent evidence suggests long-lived GH resistant/deficient mice are protected from white adipose tissue (WAT) dysfunction, including WAT cellular senescence, impaired adipogenesis and loss of subcutaneous WAT in old age. This preservation of WAT function has been suggested to be a potential mechanism for the extended lifespan of these mice. OBJECTIVE The objective of this study was to examine white adipose tissue (WAT) senescence, WAT distribution, and glucose homeostasis in dwarf growth hormone receptor antagonist (GHA) transgenic mice, a unique mouse strain having decreased GH action but normal longevity. METHODS 18mo old female GHA mice and wild type (WT) littermate controls were used. Prior to dissection, body composition, fasting blood glucose, and glucose and insulin tolerance tests were performed. WAT distribution was determined by weighing four distinct WAT depots at the time of dissection. Cellular senescence in four WAT depots was assessed using senescence-associated β-galactosidase (SA-β-gal) staining to quantify the senescent cell burden and real time qPCR to quantify gene expression of senescence markers p16 and IL-6. RESULTS GHA mice had a 22% reduction in total body weight, 33% reduction in lean mass, and a 10% increase in body fat percentage compared to WT controls. GHA mice had normal fasting blood glucose and improved insulin sensitivity; however, they exhibited impaired glucose tolerance. Moreover, GHA mice displayed enhanced lipid storage in the inguinal subcutaneous WAT depot (p<.05) and a 1.7 fold increase in extra-/intraperitoneal WAT ratio compared to controls (p<.05). Measurements of WAT cellular senescence showed no difference between GHA mice and WT controls. CONCLUSIONS Similar to other mice with decreased GH action, female GHA mice display reduced age-related lipid redistribution and improved insulin

  13. Movement of 125I albumin and 125I polyvinylpyrrolidone through bone tissue fluid

    International Nuclear Information System (INIS)

    Owen, M.; Howlett, C.R.; Triffitt, J.T.

    1977-01-01

    The passage of tissue fluid through cortical bone has been investigated using radioactively labelled macromolocules as markers. The results suggest that in the cortex of young rabbit femur the movement of tissue fluid is in the same net direction as blood, mainly from the endosteal to the periosteal surface. Some albumin is incorporated from extravascular tissue fluid into calcified matrix at sites of bone formation. Polyvinylpyrrolidone, average molecular weight 35,000, is able to pass through extravascular tissue fluid in bone but is not incorporated into calcified matrix. In rabbits made vitamin D deficient, much less albumin is retained in regions of bone formation than is the case with controls. Albumin adsorbs to the surface of calcium phosphate precipitates, and it is suggested that this mechanism may be mainly responsible for its incorporation into bone. (orig.) 891 AJ [de

  14. Effect of experimentally increased protein supply to postpartum dairy cows on plasma protein synthesis, rumen tissue proliferation, and immune homeostasis.

    Science.gov (United States)

    Larsen, M; Røntved, C M; Theil, P K; Khatun, M; Lauridsen, C; Kristensen, N B

    2017-05-01

    The effect of experimentally increasing the postpartum protein supply on plasma protein synthesis, rumen tissue proliferation, and immune homeostasis was studied using 8 periparturient Holstein cows in a complete randomized design. At calving, cows were assigned to abomasal infusion of water (CTRL) or casein (CAS) in addition to a lactation diet. Casein infusion was gradually decreased from 696 ± 1 g/d at +2 d relative to calving (DRTC) to 212 ± 10 g/d at +29 DRTC to avoid excessive supply. Synthesis rate of plasma proteins was measured at -14, +4, +15, and +29 DRTC by measuring [C]Phe isotopic enrichment in arterial plasma free Phe, total plasma proteins, and albumin after 3, 5, and 7 h of jugular ring[C]Phe infusion. Plasma volume was determined at +4 and +29 DRTC by dilution of a [I]BSA dose. Synthesis rate of tissue protein in biopsied rumen papillae was determined by measuring [C]Phe isotopic enrichment, and mRNA expression of selected genes was measured by real-time qPCR. Total and differential leukocyte counts were performed and immune responsiveness of monocytes was evaluated by tumor necrosis factor ɑ (TNFɑ) concentration on ex vivo whole blood stimulation with Escherichia coli lipopolysaccharide (LPS) and responsiveness of T-lymphocytes by interferon γ (IFNγ) concentration on stimulation with Staphylococcus aureus enterotoxin β (SEB). Further, ELISA plasma concentrations of IgM, IgA, and IgG were determined. The DRTC affected the majority of investigated parameters as expected. The CAS treatment increased milk protein yield (P = 0.04), and tended to lower TNFɑ (P = 0.06), and lowered IFNγ (P = 0.03) responsiveness per monocyte and lymphocyte, respectively, compared with CTRL. Further, fractional synthesis rate of albumin was greater at +4 DRTC for CAS compared with CTRL but did not differ by +29 DRTC (interaction: P = 0.01). In rumen papillae, synthesis rate of tissue protein was greater for CAS compared with CTRL (P protein supply seem to

  15. Gene expression profiling of the Notch-AhR-IL22 axis at homeostasis and in response to tissue injury.

    Science.gov (United States)

    Weidenbusch, Marc; Rodler, Severin; Song, Shangqing; Romoli, Simone; Marschner, Julian A; Kraft, Franziska; Holderied, Alexander; Kumar, Santosh; Mulay, Shrikant R; Honarpisheh, Mohsen; Kumar Devarapu, Satish; Lech, Maciej; Anders, Hans-Joachim

    2017-12-22

    Notch and interleukin-22 (IL-22) signaling are known to regulate tissue homeostasis and respond to injury in humans and mice, and the induction of endogenous aryl hydrocarbon receptor (Ahr) ligands through Notch links the two pathways in a hierarchical fashion. However in adults, the species-, organ- and injury-specific gene expression of the Notch-AhR-IL22 axis components is unknown. We therefore performed gene expression profiling of DLL1, DLL3, DLL4, DLK1, DLK2, JAG1, JAG2, Notch1, Notch2, Notch3, Notch4, ADAM17/TNF-α ADAM metalloprotease converting enzyme (TACE), PSEN1, basigin (BSG)/CD147, RBP-J, HES1, HES5, HEY1, HEYL, AHR, ARNT, ARNT2, CYP1A1, CYP24A1, IL-22, IL22RA1, IL22RA2, IL10RB, and STAT3 under homeostatic conditions in ten mature murine and human organs. Additionally, the expression of these genes was assessed in murine models of acute sterile inflammation and progressive fibrosis. We show that there are organ-specific gene expression profiles of the Notch-AhR-IL22 axis in humans and mice. Although there is an overall interspecies congruency, specific differences between human and murine expression signatures do exist. In murine tissues with AHR/ARNT expression CYP1A1 and IL-22 were correlated with HES5 and HEYL expression, while in human tissues no such correlation was found. Notch and AhR signaling are involved in renal inflammation and fibrosis with specific gene expression changes in each model. Despite the presence of all Notch pathway molecules in the kidney and a model-specific induction of Notch ligands, IL-22 was only up-regulated in acute inflammation, but rapidly down-regulated during regeneration. This implies that for targeting injury responses, e.g. via IL-22, species-specific differences, injury type and time points have to be considered. © 2017 The Author(s).

  16. Comparison of regional pancreatic tissue fluid pressure and endoscopic retrograde pancreatographic morphology in chronic pancreatitis

    DEFF Research Database (Denmark)

    Ebbehøj, N; Borly, L; Madsen, P

    1990-01-01

    The relation between pancreatic tissue fluid pressure measured by the needle method and pancreatic duct morphology was studied in 16 patients with chronic pancreatitis. After preoperative endoscopic retrograde pancreatography (ERP) the patients were submitted to a drainage operation. The predrain......The relation between pancreatic tissue fluid pressure measured by the needle method and pancreatic duct morphology was studied in 16 patients with chronic pancreatitis. After preoperative endoscopic retrograde pancreatography (ERP) the patients were submitted to a drainage operation...

  17. Bone tissue engineering: the role of interstitial fluid flow

    Science.gov (United States)

    Hillsley, M. V.; Frangos, J. A.

    1994-01-01

    It is well established that vascularization is required for effective bone healing. This implies that blood flow and interstitial fluid (ISF) flow are required for healing and maintenance of bone. The fact that changes in bone blood flow and ISF flow are associated with changes in bone remodeling and formation support this theory. ISF flow in bone results from transcortical pressure gradients produced by vascular and hydrostatic pressure, and mechanical loading. Conditions observed to alter flow rates include increases in venous pressure in hypertension, fluid shifts occurring in bedrest and microgravity, increases in vascularization during the injury-healing response, and mechanical compression and bending of bone during exercise. These conditions also induce changes in bone remodeling. Previously, we hypothesized that interstitial fluid flow in bone, and in particular fluid shear stress, serves to mediate signal transduction in mechanical loading- and injury-induced remodeling. In addition, we proposed that a lack or decrease of ISF flow results in the bone loss observed in disuse and microgravity. The purpose of this article is to review ISF flow in bone and its role in osteogenesis.

  18. Growth Hormone Receptor Antagonist Transgenic Mice Have Increased Subcutaneous Adipose Tissue Mass, Altered Glucose Homeostasis and No Change in White Adipose Tissue Cellular Senescence.

    Science.gov (United States)

    Comisford, Ross; Lubbers, Ellen R; Householder, Lara A; Suer, Ozan; Tchkonia, Tamara; Kirkland, James L; List, Edward O; Kopchick, John J; Berryman, Darlene E

    2016-01-01

    Growth hormone (GH)-resistant/deficient mice experience improved glucose homeostasis and substantially increased lifespan. Recent evidence suggests that long-lived GH-resistant/deficient mice are protected from white adipose tissue (WAT) dysfunction, including WAT cellular senescence, impaired adipogenesis and loss of subcutaneous WAT in old age. This preservation of WAT function has been suggested to be a potential mechanism for the extended lifespan of these mice. The objective of this study was to examine WAT senescence, WAT distribution and glucose homeostasis in dwarf GH receptor antagonist (GHA) transgenic mice, a unique mouse strain having decreased GH action but normal longevity. 18-month-old female GHA mice and wild-type (WT) littermate controls were used. Prior to dissection, body composition, fasting blood glucose as well as glucose and insulin tolerance tests were performed. WAT distribution was determined by weighing four distinct WAT depots at the time of dissection. Cellular senescence in four WAT depots was assessed using senescence-associated β-galactosidase staining to quantify the senescent cell burden, and real-time qPCR to quantify gene expression of senescence markers p16 and IL-6. GHA mice had a 22% reduction in total body weight, a 33% reduction in lean mass and a 10% increase in body fat percentage compared to WT controls. GHA mice had normal fasting blood glucose and improved insulin sensitivity; however, they exhibited impaired glucose tolerance. Moreover, GHA mice displayed enhanced lipid storage in the inguinal subcutaneous WAT depot (p < 0.05) and a 1.7-fold increase in extra-/intraperitoneal WAT ratio compared to controls (p < 0.05). Measurements of WAT cellular senescence showed no difference between GHA mice and WT controls. Similar to other mice with decreased GH action, female GHA mice display reduced age-related lipid redistribution and improved insulin sensitivity, but no change in cellular senescence. The similar abundance of

  19. The assessment of cold atmospheric plasma treatment of DNA in synthetic models of tissue fluid, tissue and cells

    Science.gov (United States)

    Szili, Endre J.; Gaur, Nishtha; Hong, Sung-Ha; Kurita, Hirofumi; Oh, Jun-Seok; Ito, Masafumi; Mizuno, Akira; Hatta, Akimitsu; Cowin, Allison J.; Graves, David B.; Short, Robert D.

    2017-07-01

    There is a growing literature database that demonstrates the therapeutic potential of cold atmospheric plasma (herein referred to as plasma). Given the breadth of proposed applications (e.g. from teeth whitening to cancer therapy) and vast gamut of plasma devices being researched, it is timely to consider plasma interactions with specific components of the cell in more detail. Plasma can produce highly reactive oxygen and nitrogen species (RONS) such as the hydroxyl radical (OH•), peroxynitrite (ONOO-) and superoxide (\\text{O}2- ) that would readily modify essential biomolecules such as DNA. These modifications could in principle drive a wide range of biological processes. Against this possibility, the reported therapeutic action of plasmas are not underpinned by a particularly deep knowledge of the potential plasma-tissue, -cell or -biomolecule interactions. In this study, we aim to partly address this issue by developing simple models to study plasma interactions with DNA, in the form of DNA-strand breaks. This is carried out using synthetic models of tissue fluid, tissue and cells. We argue that this approach makes experimentation simpler, more cost-effective and faster than compared to working with real biological materials and cells. Herein, a helium plasma jet source was utilised for these experiments. We show that the plasma jet readily induced DNA-strand breaks in the tissue fluid model and in the cell model, surprisingly without any significant poration or rupture of the phospholipid membrane. In the plasma jet treatment of the tissue model, DNA-strand breaks were detected in the tissue mass after pro-longed treatment (on the time-scale of minutes) with no DNA-strand breaks being detected in the tissue fluid model underneath the tissue model. These data are discussed in the context of the therapeutic potential of plasma.

  20. The Effects of High Level Magnesium Dialysis/Substitution Fluid on Magnesium Homeostasis under Regional Citrate Anticoagulation in Critically Ill.

    Directory of Open Access Journals (Sweden)

    Mychajlo Zakharchenko

    Full Text Available The requirements for magnesium (Mg supplementation increase under regional citrate anticoagulation (RCA because citrate acts by chelation of bivalent cations within the blood circuit. The level of magnesium in commercially available fluids for continuous renal replacement therapy (CRRT may not be sufficient to prevent hypomagnesemia.Patients (n = 45 on CRRT (2,000 ml/h, blood flow (Qb 100 ml/min with RCA modality (4% trisodium citrate using calcium free fluid with 0.75 mmol/l of Mg with additional magnesium substitution were observed after switch to the calcium-free fluid with magnesium concentration of 1.50 mmol/l (n = 42 and no extra magnesium replenishment. All patients had renal indications for CRRT, were treated with the same devices, filters and the same postfilter ionized calcium endpoint (<0.4 mmol/l of prefilter citrate dosage. Under the high level Mg fluid the Qb, dosages of citrate and CRRT were consequently escalated in 9h steps to test various settings.Median balance of Mg was -0.91 (-1.18 to -0.53 mmol/h with Mg 0.75 mmol/l and 0.2 (0.06-0.35 mmol/h when fluid with Mg 1.50 mmol/l was used. It was close to zero (0.02 (-0.12-0.18 mmol/h with higher blood flow and dosage of citrate, increased again to 0.15 (-0.11-0.25 mmol/h with 3,000 ml/h of high magnesium containing fluid (p<0.001. The arterial levels of Mg were mildly increased after the change for high level magnesium containing fluid (p<0.01.Compared to ordinary dialysis fluid the mildly hypermagnesemic fluid provided even balances and adequate levels within ordinary configurations of CRRT with RCA and without a need for extra magnesium replenishment.ClinicalTrials.gov Identifier: NCT01361581.

  1. Atrial natriuretic peptide in the locus coeruleus and its possible role in the regulation of arterial blood pressure, fluid and electrolyte homeostasis

    International Nuclear Information System (INIS)

    Geiger, H.; Sterzel, R.B.; Bahner, U.; Heidland, A.; Palkovits, M.

    1991-01-01

    Atrial natriuretic factor (ANP) is present in neuronal cells of the locus coeruleus and its vicinity in the pontine tegmentum and moderate amount of ANP is detectable in this area by radioimmunoassay. The ANP is known as a neuropeptide which may influence the body salt and water homeostasis and blood pressure by targeting both central and peripheral regulatory mechanisms. Whether this pontine ANP cell group is involved in any of these regulatory mechanisms, the effect of various types of hypertension and experimental alterations in the salt and water balance on ANP levels was measured by radioimmunoassay in the locus coeruleus of rats. Adrenalectomy, as well as aldosterone and dexamethasone treatments failed to alter ANP levels in the locus coeruleus. Reduced ANP levels were measured in spontaneously hypertensive rats, and in diabetes insipidus rats with vasopressin replacement. In contrast to these situations, elevated ANP levels were found in rats with DOCA-salt or 1-Kidney-1-clip hypertension. These data suggest a link between ANP levels in the locus coeruleus and fluid volume homeostasis. Whether this link is causal and connected with the major activity of locus coeruleus neurons needs further information

  2. Fluid mechanics as a driver of tissue-scale mechanical signaling in organogenesis.

    Science.gov (United States)

    Gilbert, Rachel M; Morgan, Joshua T; Marcin, Elizabeth S; Gleghorn, Jason P

    2016-12-01

    Organogenesis is the process during development by which cells self-assemble into complex, multi-scale tissues. Whereas significant focus and research effort has demonstrated the importance of solid mechanics in organogenesis, less attention has been given to the fluid forces that provide mechanical cues over tissue length scales. Fluid motion and pressure is capable of creating spatial gradients of forces acting on cells, thus eliciting distinct and localized signaling patterns essential for proper organ formation. Understanding the multi-scale nature of the mechanics is critically important to decipher how mechanical signals sculpt developing organs. This review outlines various mechanisms by which tissues generate, regulate, and sense fluid forces and highlights the impact of these forces and mechanisms in case studies of normal and pathological development.

  3. Model of pulmonary fluid traffic homeostasis based on respiratory cycle pressure, bidirectional bronchiolo-pulmonar shunting and water evaporation.

    Science.gov (United States)

    Kurbel, Sven; Kurbel, Beatrica; Gulam, Danijela; Spajić, Borislav

    2010-06-01

    The main puzzle of the pulmonary circulation is how the alveolar spaces remain dry over a wide range of pulmonary vascular pressures and blood flows. Although normal hydrostatic pressure in pulmonary capillaries is probably always below 10 mmHg, well bellow plasma colloid pressure of 25 mmHg, most textbooks state that some fluid filtration through capillary walls does occur, while the increased lymph drainage prevents alveolar fluid accumulation. The lack of a measurable pressure drop along pulmonary capillaries makes the classic description of Starling forces unsuitable to the low pressure, low resistance pulmonary circulation. Here presented model of pulmonary fluid traffic describes lungs as a matrix of small vascular units, each consisting of alveoli whose capillaries are anastomotically linked to the bronchiolar capillaries perfused by a single bronchiolar arteriole. It proposes that filtration and absorption in pulmonary and in bronchiolar capillaries happen as alternating periods of low and of increased perfusion pressures. The model is based on three levels of filtration control: short filtration phases due to respiratory cycle of the whole lung are modulated by bidirectional bronchiolo-pulmonar shunting independently in each small vascular unit, while fluid evaporation from alveolar groups further tunes local filtration. These mechanisms are used to describe a self-sustaining regulator that allows optimal fluid traffic in different settings. The proposed concept is used to describe development of pulmonary edema in several clinical entities (exercise in wet or dry climate, left heart failure, people who rapidly move to high altitudes, acute cyanide and carbon monoxide poisoning, large pulmonary embolisms). .

  4. Gestational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin alters retinoid homeostasis in maternal and perinatal tissues of the Holtzman rat

    International Nuclear Information System (INIS)

    Kransler, Kevin M.; Tonucci, David A.; McGarrigle, Barbara P.; Napoli, Joseph L.; Olson, James R.

    2007-01-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), one of the most widely studied environmental contaminants, causes a variety of adverse health effects including teratogenesis and altered development which may be related to disruptions in retinoid homeostasis. The purpose of this study was to determine the effect that gestational administration of TCDD has on retinoid homeostasis in both pregnant Holtzman rats and developing fetuses and neonates. A single oral dose of TCDD (0, 1.5, 3, or 6 μg/kg) was administered to pregnant rats on gestation day 10, with fetuses analyzed on gestation days 17 and 20, and neonates analyzed on post natal day 7. Exposure to TCDD generally produced decreases in the concentrations of retinyl esters, such as retinyl palmitate, and retinol in maternal and perinatal liver and lung, while increasing levels in the maternal kidney. Additionally, perinatal hepatic retinol binding protein 1-dependent retinyl ester hydrolysis was also decrease by TCDD. Sensitivity of the developing perinates to TCDD appeared to have an age-related component demonstrated by an increased rate of mortality and significant alterations to body weight and length on post natal day 7 relative to that observed at gestation day 20. A unique observation made in this study was a significant decrease in lung weight observed in the perinates exposed to TCDD. Taken together, these data demonstrate that TCDD significantly alters retinoid homeostasis in tissues of the developing fetus and neonate, suggesting that their unique sensitivity to TCDD may at least be in part the result of altered retinoid homeostasis

  5. DETERMINATION OF ROCURONIUM AND ITS PUTATIVE METABOLITES IN BODY-FLUIDS AND TISSUE-HOMOGENATES

    NARCIS (Netherlands)

    KLEEF, UW; PROOST, JH; ROGGEVELD, J

    1993-01-01

    A sensitive and selective HPLC method was developed for the quantification of the neuromuscular blocking agent rocuronium and its putative metabolites (the 17-desacetyl derivative and the N-desallyl derivative of rocuronium) in plasma, urine, bile, tissue homogenates and stoma fluid. Samples were

  6. Chlamydia pecorum in Joint Tissue and Synovial Fluid of a Koala ( Phascolarctos cinereus) with Arthritis.

    Science.gov (United States)

    Burnard, Delaney; Gillett, Amber; Polkinghorne, Adam

    2018-03-02

    A small number of koalas ( Phascolarctos cinereus) presented to wildlife hospitals in Queensland, Australia, with signs of arthritis in one or more joints. Molecular analysis identified Chlamydia pecorum in the tarsal tissue and synovial fluid of an affected joint of a koala, suggesting that in addition to livestock, C. pecorum has the potential to cause arthritis in the koala.

  7. Quantitative analysis of microbicide concentrations in fluids, gels and tissues using confocal Raman spectroscopy.

    Directory of Open Access Journals (Sweden)

    Oranat Chuchuen

    Full Text Available Topical vaginal anti-HIV microbicides are an important focus in female-based strategies to prevent the sexual transmission of HIV. Understanding microbicide pharmacokinetics is essential to development, characterization and implementation of efficacious microbicide drug delivery formulations. Current methods to measure drug concentrations in tissue (e.g., LC-MS/MS, liquid chromatography coupled with tandem mass spectrometry are highly sensitive, but destructive and complex. This project explored the use of confocal Raman spectroscopy to detect microbicide drugs and to measure their local concentrations in fluids, drug delivery gels, and tissues. We evaluated three candidate microbicide drugs: tenofovir, Dapivirine and IQP-0528. Measurements were performed in freshly excised porcine buccal tissue specimens, gel vehicles and fluids using two Horiba Raman microscopes, one of which is confocal. Characteristic spectral peak calibrations for each drug were obtained using serial dilutions in the three matrices. These specific Raman bands demonstrated strong linear concentration dependences in the matrices and were characterized with respect to their unique vibrational signatures. At least one specific Raman feature was identified for each drug as a marker band for detection in tissue. Sensitivity of detection was evaluated in the three matrices. A specific peak was also identified for tenofovir diphosphate, the anti-HIV bioactive product of tenofovir after phosphorylation in host cells. Z-scans of drug concentrations vs. depth in excised tissue specimens, incubated under layers of tenofovir solution in a Transwell assay, showed decreasing concentration with depth from the surface into the tissue. Time-dependent concentration profiles were obtained from tissue samples incubated in the Transwell assay, for times ranging 30 minutes - 6 hours. Calibrations and measurements from tissue permeation studies for tenofovir showed good correlation with gold

  8. Quantitative Analysis of Microbicide Concentrations in Fluids, Gels and Tissues Using Confocal Raman Spectroscopy

    Science.gov (United States)

    Chuchuen, Oranat; Henderson, Marcus H.; Sykes, Craig; Kim, Min Sung; Kashuba, Angela D. M.; Katz, David F.

    2013-01-01

    Topical vaginal anti-HIV microbicides are an important focus in female-based strategies to prevent the sexual transmission of HIV. Understanding microbicide pharmacokinetics is essential to development, characterization and implementation of efficacious microbicide drug delivery formulations. Current methods to measure drug concentrations in tissue (e.g., LC-MS/MS, liquid chromatography coupled with tandem mass spectrometry) are highly sensitive, but destructive and complex. This project explored the use of confocal Raman spectroscopy to detect microbicide drugs and to measure their local concentrations in fluids, drug delivery gels, and tissues. We evaluated three candidate microbicide drugs: tenofovir, Dapivirine and IQP-0528. Measurements were performed in freshly excised porcine buccal tissue specimens, gel vehicles and fluids using two Horiba Raman microscopes, one of which is confocal. Characteristic spectral peak calibrations for each drug were obtained using serial dilutions in the three matrices. These specific Raman bands demonstrated strong linear concentration dependences in the matrices and were characterized with respect to their unique vibrational signatures. At least one specific Raman feature was identified for each drug as a marker band for detection in tissue. Sensitivity of detection was evaluated in the three matrices. A specific peak was also identified for tenofovir diphosphate, the anti-HIV bioactive product of tenofovir after phosphorylation in host cells. Z-scans of drug concentrations vs. depth in excised tissue specimens, incubated under layers of tenofovir solution in a Transwell assay, showed decreasing concentration with depth from the surface into the tissue. Time-dependent concentration profiles were obtained from tissue samples incubated in the Transwell assay, for times ranging 30 minutes - 6 hours. Calibrations and measurements from tissue permeation studies for tenofovir showed good correlation with gold standard LC-MS/MS data

  9. An aqueous extract of Curcuma longa (turmeric) rhizomes stimulates insulin release and mimics insulin action on tissues involved in glucose homeostasis in vitro.

    Science.gov (United States)

    Mohankumar, Sureshkumar; McFarlane, James R

    2011-03-01

    Curcuma longa (turmeric) has been used widely as a spice, particularly in Asian countries. It is also used in the Ayurvedic system of medicine as an antiinflammatory and antimicrobial agent and for numerous other curative properties. The aim of this study was to investigate the effects of an aqueous extract of Curcuma longa (AEC) on tissues involved in glucose homeostasis. The extract was prepared by soaking 100 g of ground turmeric in 1 L of water, which was filtered and stored at -20°C prior to use. Pancreas and muscle tissues of adult mice were cultured in DMEM with 5 or 12 mmol/L glucose and varying doses of extract. The AEC stimulated insulin secretion from mouse pancreatic tissues under both basal and hyperglycaemic conditions, although the maximum effect was only 68% of that of tolbutamide. The AEC induced stepwise stimulation of glucose uptake from abdominal muscle tissues in the presence and absence of insulin, and the combination of AEC and insulin significantly potentiated the glucose uptake into abdominal muscle tissue. However, this effect was attenuated by wortmannin, suggesting that AEC possibly acts via the insulin-mediated glucose uptake pathway. In summary, water soluble compounds of turmeric exhibit insulin releasing and mimicking actions within in vitro tissue culture conditions. Copyright © 2010 John Wiley & Sons, Ltd.

  10. Postmortem Fluid and Tissue Concentrations of THC, 11-OH-THC and THC-COOH.

    Science.gov (United States)

    Saenz, Sunday R; Lewis, Russell J; Angier, Mike K; Wagner, Jarrad R

    2017-07-01

    Marijuana is the most commonly abused illicit drug worldwide. Marijuana is used for its euphoric and relaxing properties. However, marijuana use has been shown to result in impaired memory, cognitive skills and psychomotor function. The Federal Aviation Administration's Civil Aerospace Medical Institute conducts toxicological analysis on aviation fatalities. Due to severe trauma associated with aviation accidents, blood is not always available; therefore, the laboratory must rely on specimens other than blood for toxicological analysis in ~30-40% of cases. However, the postmortem distribution of cannabinoids has not been well characterized. The purpose of this research is to evaluate the distribution of Δ9-tetrahydrocannabinol (THC), and its metabolites, 11-hydroxy-tetrahydrocannabinol (11-OH-THC) and THC-COOH, in postmortem fluid and tissue specimens from 11 fatal aviation accident cases (2014-2015) previously found positive for cannabinoids. Specimens evaluated, when available, included: blood, urine, vitreous humor, liver, lung, kidney, spleen, muscle, brain, heart and bile. We developed and validated (following SWGTOX guidelines) a sensitive and robust method using solid-phase extraction and liquid chromatography-tandem mass spectrometry to identify and quantify THC, 11-OH-THC and THC-COOH in postmortem fluids and tissues. The method readily identified and quantified these cannabinoids in postmortem fluids and tissues below 1 ng/mL. Qualitative cannabinoid results within each case were comparable between blood and non-blood specimens. However, there was no consistent distribution of the cannabinoids between blood and any other fluids or tissues. Therefore, while quantitative interpretation of non-blood postmortem fluid and tissues samples is not prudent, a majority of the non-blood specimens tested could be suitable alternative/supplemental choices for qualitative cannabinoid detection. Published by Oxford University Press 2017. This work is written by (a) US

  11. Glucose homeostasis in rainbow trout fed a high-carbohydrate diet: metformin and insulin interact in a tissue-dependent manner.

    Science.gov (United States)

    Polakof, S; Moon, T W; Aguirre, P; Skiba-Cassy, S; Panserat, S

    2011-01-01

    Carnivorous fish species such as the rainbow trout (Oncorhynchus mykiss) are considered to be "glucose intolerant" because of the prolonged hyperglycemia experienced after intake of a carbohydrate-enriched meal. In the present study, we use this species to study glucose homeostasis in fish chronically infused with the hypoglycemic agents, insulin, and metformin, and fed with a high proportion of carbohydrates (30%). We analyzed liver, skeletal muscle, and white adipose tissue (WAT), which are insulin- and metformin-specific targets at both the biochemical and molecular levels. Trout infused with the combination of insulin and metformin can effectively utilize dietary glucose at the liver, resulting in lowered glycemia, increased insulin sensitivity, and glucose storage capacity, combined with reduced glucose output. However, in both WAT and skeletal muscle, we observed decreased insulin sensitivity with the combined insulin + metformin treatment, resulting in the absence of changes at the metabolic level in the skeletal muscle and an increased potential for glucose uptake and storage in the WAT. Thus, the poor utilization by rainbow trout of a diet with a high proportion of carbohydrate can at least be partially improved by a combined treatment with insulin and metformin, and the glucose intolerance observed in this species could be, in part, due to some of the downstream components of the insulin and metformin signaling pathways. However, the predominant effects of metformin treatment on the action of insulin in these three tissues thought to be involved in glucose homeostasis remain exclusive in this species.

  12. Role of α{sub 2}-adrenoceptors in the lateral parabrachial nucleus in the control of body fluid homeostasis

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, C.A.F.; Andrade-Franzé, G.M.F.; De Paula, P.M.; De Luca, L.A. Jr.; Menani, J.V. [Departamento de Fisiologia e Patologia, Faculdade de Odontologia, Universidade Estadual Paulista, Araraquara, SP (Brazil)

    2014-01-10

    Central α{sub 2}-adrenoceptors and the pontine lateral parabrachial nucleus (LPBN) are involved in the control of sodium and water intake. Bilateral injections of moxonidine (α{sub 2}-adrenergic/imidazoline receptor agonist) or noradrenaline into the LPBN strongly increases 0.3 M NaCl intake induced by a combined treatment of furosemide plus captopril. Injection of moxonidine into the LPBN also increases hypertonic NaCl and water intake and reduces oxytocin secretion, urinary sodium, and water excreted by cell-dehydrated rats, causing a positive sodium and water balance, which suggests that moxonidine injected into the LPBN deactivates mechanisms that restrain body fluid volume expansion. Pretreatment with specific α{sub 2}-adrenoceptor antagonists injected into the LPBN abolishes the behavioral and renal effects of moxonidine or noradrenaline injected into the same area, suggesting that these effects depend on activation of LPBN α{sub 2}-adrenoceptors. In fluid-depleted rats, the palatability of sodium is reduced by ingestion of hypertonic NaCl, limiting intake. However, in rats treated with moxonidine injected into the LPBN, the NaCl palatability remains high, even after ingestion of significant amounts of 0.3 M NaCl. The changes in behavioral and renal responses produced by activation of α{sub 2}-adrenoceptors in the LPBN are probably a consequence of reduction of oxytocin secretion and blockade of inhibitory signals that affect sodium palatability. In this review, a model is proposed to show how activation of α{sub 2}-adrenoceptors in the LPBN may affect palatability and, consequently, ingestion of sodium as well as renal sodium excretion.

  13. Role of α2-adrenoceptors in the lateral parabrachial nucleus in the control of body fluid homeostasis

    International Nuclear Information System (INIS)

    Andrade, C.A.F.; Andrade-Franzé, G.M.F.; De Paula, P.M.; De Luca, L.A. Jr.; Menani, J.V.

    2014-01-01

    Central α 2 -adrenoceptors and the pontine lateral parabrachial nucleus (LPBN) are involved in the control of sodium and water intake. Bilateral injections of moxonidine (α 2 -adrenergic/imidazoline receptor agonist) or noradrenaline into the LPBN strongly increases 0.3 M NaCl intake induced by a combined treatment of furosemide plus captopril. Injection of moxonidine into the LPBN also increases hypertonic NaCl and water intake and reduces oxytocin secretion, urinary sodium, and water excreted by cell-dehydrated rats, causing a positive sodium and water balance, which suggests that moxonidine injected into the LPBN deactivates mechanisms that restrain body fluid volume expansion. Pretreatment with specific α 2 -adrenoceptor antagonists injected into the LPBN abolishes the behavioral and renal effects of moxonidine or noradrenaline injected into the same area, suggesting that these effects depend on activation of LPBN α 2 -adrenoceptors. In fluid-depleted rats, the palatability of sodium is reduced by ingestion of hypertonic NaCl, limiting intake. However, in rats treated with moxonidine injected into the LPBN, the NaCl palatability remains high, even after ingestion of significant amounts of 0.3 M NaCl. The changes in behavioral and renal responses produced by activation of α 2 -adrenoceptors in the LPBN are probably a consequence of reduction of oxytocin secretion and blockade of inhibitory signals that affect sodium palatability. In this review, a model is proposed to show how activation of α 2 -adrenoceptors in the LPBN may affect palatability and, consequently, ingestion of sodium as well as renal sodium excretion

  14. Benign mural nodules within fluid collections at MRI after soft-tissue sarcoma resection.

    Science.gov (United States)

    Lantos, Joshua E; Hwang, Sinchun; Panicek, David M

    2014-06-01

    The purpose of this study was to determine the prevalence and clinical significance of nodules within fluid collections on MRI after surgical resection of soft-tissue sarcoma. This retrospective study included 175 patients who underwent resection of primary soft-tissue sarcoma and whose postoperative MRI reports mentioned fluid. Images were reviewed to determine the presence of fluid collections of 1 cm or greater in diameter in the surgical bed and any nodule (measuring ≥ 0.7 cm) within the collection. Signal intensity and characteristics of each collection and rim and presence of septa or blood products were recorded. Size, signal intensity, and contrast enhancement of nodules were reviewed. Nodules were classified as benign or malignant on the basis of histologic results or clinical or MRI follow-up. Fluid collections were present in 75 patients. Of those, 45 collections (60%) showed homogeneous fluid signal intensity and 30 (40%) were heterogeneous; septa were present in 45 (60%) and blood products in 12 (16%). Most collections showed a thin rim (59%) and rim enhancement (88%). Nodules were present along the inner wall of six (8%) collections. Four (66%) nodules enhanced and two (33%) were T1 hyperintense. At follow-up MRI, two nodules were stable in size, one decreased, and three resolved. Nodules in three patients were biopsied; all were benign. Two other patients had no recurrence at follow-up, and another died at 3 months. A nodule within a postoperative fluid collection at MRI after soft-tissue sarcoma resection generally does not represent tumor recurrence; short-interval follow-up MRI is recommended rather than immediate biopsy.

  15. Thyroid Hormone Effects on Whole-Body Energy Homeostasis and Tissue-Specific Fatty Acid Uptake in Vivo

    NARCIS (Netherlands)

    Klieverik, Lars P.; Coomans, Claudia P.; Endert, Erik; Sauerwein, Hans P.; Havekes, Louis M.; Voshol, Peter J.; Rensen, Patrick C. N.; Romijn, Johannes A.; Kalsbeek, Andries; Fliers, Eric

    2009-01-01

    The effects of thyroid hormone (TH) status on energy metabolism and tissue-specific substrate supply in vivo are incompletely understood. To study the effects of TH status on energy metabolism and tissue-specific fatty acid (FA) fluxes, we used metabolic cages as well as C-14-labeled FA and

  16. Online recovery of radiocesium from soil, tissue paper and plant samples by supercritical fluid extraction

    International Nuclear Information System (INIS)

    Kanekar, A.S.; Pathak, P.N.; Mohapatra, P.K.

    2014-01-01

    The feasibility of recovery of radio-cesium from soil, tissue papers, and plant samples has been evaluated by supercritical fluid extraction (SFE) route employing calix(4)arene-mono(crown-6) (CC) dissolved in acetonitrile. These studies showed that quantitative recovery of 137 Cs from soil samples was difficult under the conditions of these studies. However, experiments performed on tissue papers (cellulose matrix) showed quantitative recovery of 137 Cs. On the other hand, 137 Cs recovery from plant samples varied between ∼50 % (for stems) and ∼67.2 % (for leaves) employing 1x10 -3 M CC + 4 M HNO 3 dissolved in acetonitrile. (author)

  17. Modelling of Cortical Bone Tissue as a Fluid Saturated Double-Porous Material - Parametric Study

    Directory of Open Access Journals (Sweden)

    Jana TURJANICOVÁ

    2013-06-01

    Full Text Available In this paper, the cortical bone tissue is considered as a poroelastic material with periodic structure represented at microscopic and mesoscopic levels. The pores of microscopic scale are connected with the pores of mesoscopic scale creating one system of connected network filled with compressible fluid. The method of asymptotic homogenization is applied to upscale the microscopic model of the fluid-solid interaction under a static loading. Obtained homogenized coefficients describe material properties of the poroelastic matrix fractured by fluid-filled pores whose geometry is described at the mesoscopic level. The second-level upscaling provides homogenized poroelastic coefficients relevant on the macroscopic scale. Furthermore, we study the dependence of these coefficients on geometrical parameters on related microscopic and macroscopic scales.

  18. Flaxseed Oil Alleviates Chronic HFD-Induced Insulin Resistance through Remodeling Lipid Homeostasis in Obese Adipose Tissue.

    Science.gov (United States)

    Yu, Xiao; Tang, Yuhan; Liu, Peiyi; Xiao, Lin; Liu, Liegang; Shen, Ruiling; Deng, Qianchun; Yao, Ping

    2017-11-08

    Emerging evidence suggests that higher circulating long-chain n-3 polyunsaturated fatty acids (n-3PUFA) levels were intimately associated with lower prevalence of obesity and insulin resistance. However, the understanding of bioactivity and potential mechanism of α-linolenic acid-rich flaxseed oil (ALA-FO) against insulin resistance was still limited. This study evaluated the effect of FO on high-fat diet (HFD)-induced insulin resistance in C57BL/6J mice focused on adipose tissue lipolysis. Mice after HFD feeding for 16 weeks (60% fat-derived calories) exhibited systemic insulin resistance, which was greatly attenuated by medium dose of FO (M-FO), paralleling with differential accumulation of ALA and its n-3 derivatives across serum lipid fractions. Moreover, M-FO was sufficient to effectively block the metabolic activation of adipose tissue macrophages (ATMs), thereby improving adipose tissue insulin signaling. Importantly, suppression of hypoxia-inducible factors HIF-1α and HIF-2α were involved in FO-mediated modulation of adipose tissue lipolysis, accompanied by specific reconstitution of n-3PUFA within adipose tissue lipid fractions.

  19. A long-distance fluid transport pathway within fibrous connective tissues in patients with ankle edema.

    Science.gov (United States)

    Li, Hongyi; Yang, Chongqing; Lu, Kuiyuan; Zhang, Liyang; Yang, Jiefu; Wang, Fang; Liu, Dongge; Cui, Di; Sun, Mingjun; Pang, Jianxin; Dai, Luru; Han, Dong; Liao, Fulong

    2016-10-05

    Although the microcirculatory dysfunctions of edema formation are well documented, the draining pattern of dermal edema lacks information. This study was to assess the potential drainage pathways of the interstitial fluid in patients with ankle edema using the anatomical and histological methods. Four amputees of lower leg participated in this study. Fluorescent imaging agent was injected into lateral ankle dermis in one volunteered patient before the amputation and three lower legs after the amputation. Physiologically in the volunteer or enhanced by cyclical compression on three amputated limbs, several fluorescent longitudinal pathways from ankle dermis to the broken end of the amputated legs were subsequently visualized and studied using histological methods, laser confocal microscopy and electron microscopy methods respectively. Interestingly, the fluorescent pathways confirmed to be fibrous connective tissues and the presence of two types: those of the cutaneous pathway (located in dermis or the interlobular septum among adipose tissues within the hypodermis) and those of the perivascular pathway (located in connective tissues surrounding the veins and the arteries). The intrinsic three-dimensional architecture of each fluorescent pathway was the longitudinally running and interconnected fibril bundles, upon which, an interfacial transport pathway within connective tissues was visualized by fluorescein. The current anatomical data suggested that a unique long-distance transport pathway composed of oriented fibrous connective tissues might play a pathophysiological role in draining dermal edema besides vascular circulations and provide novel understandings of general fibrous connective tissues in life science.

  20. Distribution of polybrominated diphenyl ethers in Japanese autopsy tissue and body fluid samples.

    Science.gov (United States)

    Hirai, Tetsuya; Fujimine, Yoshinori; Watanabe, Shaw; Nakano, Takeshi

    2012-09-01

    Brominated flame retardants are components of many plastics and are used in products such as cars, textiles, televisions, and personal computers. Human exposure to polybrominated diphenyl ether (PBDE) flame retardants has increased exponentially during the last three decades. Our objective was to measure the body burden and distribution of PBDEs and to determine the concentrations of the predominant PBDE congeners in samples of liver, bile, adipose tissue, and blood obtained from Japanese autopsy cases. Tissues and body fluids obtained from 20 autopsy cases were analyzed. The levels of 25 PBDE congeners, ranging from tri- to hexa-BDEs, were assessed. The geometric means of the sum of the concentrations of PBDE congeners having detection frequencies >50 % (ΣPBDE) in the blood, liver, bile, and adipose tissue were 2.4, 2.6, 1.4, and 4.3 ng/g lipid, respectively. The most abundant congeners were BDE-47 and BDE-153, followed by BDE-100, BDE-99, and BDE-28+33. These concentrations of PBDE congeners were similar to other reports of human exposure in Japan but were notably lower than concentrations than those reported in the USA. Significant positive correlations were observed between the concentrations of predominant congeners and ΣPBDE among the samples analyzed. The ΣPBDE concentration was highest in the adipose tissue, but PBDEs were distributed widely among the tissues and body fluids analyzed. The PBDE levels observed in the present study are similar to those reported in previous studies in Japan and significantly lower than those reported in the USA.

  1. Processing of novel bioactive polymeric matrixes for tissue engineering using supercritical fluid technology

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, Ana Rita C., E-mail: aduarte@dep.uminho.pt [3B' s Research Group, Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimaraes (Portugal); IBB, Institute for Biotechnology and Bioengineering, PT Government Associated Laboratory, Guimaraes (Portugal); Caridade, Sofia G.; Mano, Joao F.; Reis, Rui L. [3B' s Research Group, Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimaraes (Portugal); IBB, Institute for Biotechnology and Bioengineering, PT Government Associated Laboratory, Guimaraes (Portugal)

    2009-08-31

    The aim of this study was to develop a new process for the production of bioactive 3D scaffolds using a clean and environmentally friendly technology. The possibility of preparing composite scaffolds of Bioglass and a polymeric blend of starch and poly(L-lactic acid) (SPLA50) was evaluated. Supercritical phase-inversion technique was used to prepare inorganic particles loaded starch-based porous composite matrixes in a one-step process for bone tissue engineering purposes. Due to their osteoconductive properties some glasses and ceramics are interesting materials to be used for bone tissue engineering purposes; however their poor mechanical properties create the need of a polymeric support where the inorganic fraction can be dispersed. Samples impregnated with different concentrations of Bioglass (10 and 15% wt/wt polymer) were prepared at 200 bar and 55 deg. C. The presence of Bioglass did not affect the porosity or interconnectivity of the polymeric matrixes. Dynamic mechanical analysis has proven that the modulus of the SPLA50 scaffolds increases when glass particles are impregnated within the matrix. In vitro bioactivity studies were carried out using simulated body fluid and the results show that a calcium-phosphate layer started to be formed after only 1 day of immersion. Chemical analysis of the apatite layer formed on the surface of the scaffold was performed by different techniques, namely EDS and FTIR spectroscopy and X-ray diffraction (XRD). The ion concentration in the simulated body fluid was also carried out by ICP analysis. Results suggest that a bone-like apatite layer was formed. This study reports the feasibility of using supercritical fluid technology to process, in one step, a porous matrix loaded with a bioactive material for tissue engineering purposes.

  2. A RhoA-FRET Biosensor Mouse for Intravital Imaging in Normal Tissue Homeostasis and Disease Contexts

    Directory of Open Access Journals (Sweden)

    Max Nobis

    2017-10-01

    Full Text Available The small GTPase RhoA is involved in a variety of fundamental processes in normal tissue. Spatiotemporal control of RhoA is thought to govern mechanosensing, growth, and motility of cells, while its deregulation is associated with disease development. Here, we describe the generation of a RhoA-fluorescence resonance energy transfer (FRET biosensor mouse and its utility for monitoring real-time activity of RhoA in a variety of native tissues in vivo. We assess changes in RhoA activity during mechanosensing of osteocytes within the bone and during neutrophil migration. We also demonstrate spatiotemporal order of RhoA activity within crypt cells of the small intestine and during different stages of mammary gestation. Subsequently, we reveal co-option of RhoA activity in both invasive breast and pancreatic cancers, and we assess drug targeting in these disease settings, illustrating the potential for utilizing this mouse to study RhoA activity in vivo in real time.

  3. Computational fluid dynamics modeling of momentum transport in rotating wall perfused bioreactor for cartilage tissue engineering.

    Science.gov (United States)

    Cinbiz, Mahmut N; Tığli, R Seda; Beşkardeş, Işil Gerçek; Gümüşderelioğlu, Menemşe; Colak, Uner

    2010-11-01

    In this study, computational fluid dynamics (CFD) analysis of a rotating-wall perfused-vessel (RWPV) bioreactor is performed to characterize the complex hydrodynamic environment for the simulation of cartilage development in RWPV bioreactor in the presence of tissue-engineered cartilage constructs, i.e., cell-chitosan scaffolds. Shear stress exerted on chitosan scaffolds in bioreactor was calculated for different rotational velocities in the range of 33-38 rpm. According to the calculations, the lateral and lower surfaces were exposed to 0.07926-0.11069 dyne/cm(2) and 0.05974-0.08345 dyne/cm(2), respectively, while upper surfaces of constructs were exposed to 0.09196-0.12847 dyne/cm(2). Results validate adequate hydrodynamic environment for scaffolds in RWPV bioreactor for cartilage tissue development which concludes the suitability of operational conditions of RWPV bioreactor. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Profiles of cortical tissue depolarization in cat focal cerebral ischemia in relation to calcium ion homeostasis and nitric oxide production.

    Science.gov (United States)

    Ohta, K; Graf, R; Rosner, G; Heiss, W D

    1997-11-01

    Cortical depolarization was investigated in a topographic gradient of ischemic density after 1-hour transient middle cerebral artery occlusion in halothane-anesthetized cats. A laser Doppler flow probe, an ion-selective microelectrode, and a nitric oxide (NO) electrode measured regional CBF (rCBF), direct current (DC) potential, extracellular Ca2+ concentration ([Ca2+]o), and NO concentration in ectosylvian and suprasylvian gyri of nine animals. Recordings revealed 12 of 18 sites with persistent negative shifts of the DC potential, severe rCBF reduction, and a drop of [Ca2+]o characteristic for core regions of focal ischemia. Among these sites, two types were distinguished by further analysis. In Type 1 (n = 5), rapid, negative DC shifts resembled anoxic depolarization as described for complete global ischemia. In this type, ischemia was most severe (8.9 +/- 2.5% of control rCBF), [Ca2+]o dropped fast and deepest (0.48 +/- 0.20 mmol/L), and NO concentration increased transiently (36.1 +/- 24.0 nmol/L at 2.5 minutes), and decreased thereafter. In Type 2 (n = 7), the DC potential fell gradually over the first half of the ischemic episode, rCBF and [Ca2+]o reductions were smaller than in Type 1 (16.2 +/- 8.2%; 0.77 +/- 0.41 mmol/L), and NO increased continuously during ischemia (53.1 +/- 60.4 nmol/L at 60 minutes) suggesting that in this type NO most likely exerts its diverse actions on ischemia-threatened tissue. In the remaining six recording sites, a third type (Type 3) attributable to the ischemic periphery was characterized by minimal DC shifts, mild ischemia (37.2 +/- 13.3%), nonsignificant alterations of [Ca2+]o, but decreased NO concentrations during middle cerebral artery occlusion. Reperfusion returned the various parameters to baseline levels within 1 hour, the recovery of [Ca2+]o and NO concentration being delayed in Type 1. An NO synthase inhibitor (N(G)-nitro-L-arginine, 50 mg/kg intravenously; four animals) abolished NO elevation during ischemia. In

  5. Deletion of the Androgen Receptor in Adipose Tissue in Male Mice Elevates Retinol Binding Protein 4 and Reveals Independent Effects on Visceral Fat Mass and on Glucose Homeostasis

    Science.gov (United States)

    McInnes, Kerry J.; Smith, Lee B.; Hunger, Nicole I.; Saunders, Philippa T.K.; Andrew, Ruth; Walker, Brian R.

    2012-01-01

    Testosterone deficiency is epidemic in obese ageing males with type 2 diabetes, but the direction of causality remains unclear. Testosterone-deficient males and global androgen receptor (AR) knockout mice are insulin resistant with increased fat, but it is unclear whether AR signaling in adipose tissue mediates body fat redistribution and alters glucose homoeostasis. To investigate this, mice with selective knockdown of AR in adipocytes (fARKO) were generated. Male fARKO mice on normal diet had reduced perigonadal fat but were hyperinsulinemic and by age 12 months, were insulin deficient in the absence of obesity. On high-fat diet, fARKO mice had impaired compensatory insulin secretion and hyperglycemia, with increased susceptibility to visceral obesity. Adipokine screening in fARKO mice revealed a selective increase in plasma and intra-adipose retinol binding protein 4 (RBP4) that preceded obesity. AR activation in murine 3T3 adipocytes downregulated RBP4 mRNA. We conclude that AR signaling in adipocytes not only protects against high-fat diet–induced visceral obesity but also regulates insulin action and glucose homeostasis, independently of adiposity. Androgen deficiency in adipocytes in mice resembles human type 2 diabetes, with early insulin resistance and evolving insulin deficiency. PMID:22415878

  6. Probing the mystery of Chinese medicine meridian channels with special emphasis on the connective tissue interstitial fluid system, mechanotransduction, cells durotaxis and mast cell degranulation

    Directory of Open Access Journals (Sweden)

    Fung Peter

    2009-05-01

    Full Text Available Abstract This article hypothesizes that the Chinese medicine meridian system is a special channel network comprising of skin with abundant nerves and nociceptive receptors of various types, and deeper connective tissues inside the body with the flowing interstitial fluid system. These meridian channels provide efficient migratory tracks mainly due to durotaxis (also including chemotaxis for mast cells, fibroblasts and other cells to migrate and carry out a number of physiological functions. Acupuncture acting on meridian channel causes cytoskeletal remodeling through mechanotransduction, leading to regulation of gene expression and the subsequent production of related proteins. Also, stimulation on cell surface can trigger Ca2+ activities, resulting in a cascade of intra- and inter-cellular signaling. Moreover, nerve endings in the meridian channels interact with mast cells and induce the degranulation of these cells, leading to the release of many specific biomolecules needed for homeostasis, immune surveillance, wound healing and tissue repair. Acupoint along a meridian channel is a functional site to trigger the above functions with specificity and high efficiency.

  7. Carprofen pharmacokinetics in plasma and in control and inflamed canine tissue fluid using in vivo ultrafiltration.

    Science.gov (United States)

    Messenger, K M; Wofford, J A; Papich, M G

    2016-02-01

    Measurement of unbound drug concentrations at their sites of action is necessary for accurate PK/PD modeling. The objective of this study was to determine the unbound concentration of carprofen in canine interstitial fluid (ISF) using in vivo ultrafiltration and to compare pharmacokinetic parameters of free carprofen concentrations between inflamed and control tissue sites. We hypothesized that active concentrations of carprofen would exhibit different dispositions in ISF between inflamed vs. normal tissues. Bilateral ultrafiltration probes were placed subcutaneously in six healthy Beagle dogs 12 h prior to induction of inflammation. Two milliliters of either 2% carrageenan or saline control was injected subcutaneously at each probe site, 12 h prior to intravenous carprofen (4 mg/kg) administration. Plasma and ISF samples were collected at regular intervals for 72 h, and carprofen concentrations were determined using HPLC. Prostaglandin E2 (PGE2 ) concentrations were quantified in ISF using ELISA. Unbound carprofen concentrations were higher in ISF compared with predicted unbound plasma drug concentrations. Concentrations were not significantly higher in inflamed ISF compared with control ISF. Compartmental modeling was used to generate pharmacokinetic parameter estimates, which were not significantly different between sites. Terminal half-life (T½) was longer in the ISF compared with plasma. PGE2 in ISF decreased following administration of carprofen. In vivo ultrafiltration is a reliable method to determine unbound carprofen in ISF, and that disposition of unbound drug into tissue is much higher than predicted from unbound drug concentration in plasma. However, concentrations and pharmacokinetic parameter estimates are not significantly different in inflamed vs. un-inflamed tissues. © 2015 John Wiley & Sons Ltd.

  8. Pancreatic tissue fluid pressure in chronic pancreatitis. Relation to pain, morphology, and function

    DEFF Research Database (Denmark)

    Ebbehøj, N; Borly, L; Bülow, J

    1990-01-01

    The relation between pancreatic tissue fluid pressure and pain, morphology, and function was studied in a cross-sectional investigation. Pressure measurements were performed by percutaneous fine-needle puncture. Thirty-nine patients with chronic pancreatitis were included, 25 with pain and 14...... without (p = 0.004 and p = 0.0003, respectively). The pressure was significantly related (inversely) to pancreatic duct diameter only in the group of 19 patients with earlier pancreatic surgery (R = -0.57, p = 0.02). The pressure was not related to functional factors or the presence of pancreatic...... without pain. The pressure was higher in patients with pain than in patients without pain (p = 0.000001), and this was significantly related to a pain score from a visual analogue scale (p less than 0.001). Patients with pancreatic pseudocysts had both higher pressure and higher pain score than patients...

  9. MAPU: Max-Planck Unified database of organellar, cellular, tissue and body fluid proteomes.

    Science.gov (United States)

    Zhang, Yanling; Zhang, Yong; Adachi, Jun; Olsen, Jesper V; Shi, Rong; de Souza, Gustavo; Pasini, Erica; Foster, Leonard J; Macek, Boris; Zougman, Alexandre; Kumar, Chanchal; Wisniewski, Jacek R; Jun, Wang; Mann, Matthias

    2007-01-01

    Mass spectrometry (MS)-based proteomics has become a powerful technology to map the protein composition of organelles, cell types and tissues. In our department, a large-scale effort to map these proteomes is complemented by the Max-Planck Unified (MAPU) proteome database. MAPU contains several body fluid proteomes; including plasma, urine, and cerebrospinal fluid. Cell lines have been mapped to a depth of several thousand proteins and the red blood cell proteome has also been analyzed in depth. The liver proteome is represented with 3200 proteins. By employing high resolution MS and stringent validation criteria, false positive identification rates in MAPU are lower than 1:1000. Thus MAPU datasets can serve as reference proteomes in biomarker discovery. MAPU contains the peptides identifying each protein, measured masses, scores and intensities and is freely available at http://www.mapuproteome.com using a clickable interface of cell or body parts. Proteome data can be queried across proteomes by protein name, accession number, sequence similarity, peptide sequence and annotation information. More than 4500 mouse and 2500 human proteins have already been identified in at least one proteome. Basic annotation information and links to other public databases are provided in MAPU and we plan to add further analysis tools.

  10. Amyloid-β oligomer detection by ELISA in cerebrospinal fluid and brain tissue.

    Science.gov (United States)

    Bruggink, Kim A; Jongbloed, Wesley; Biemans, Elisanne A L M; Veerhuis, Rob; Claassen, Jurgen A H R; Kuiperij, H Bea; Verbeek, Marcel M

    2013-02-15

    Amyloid-β (Aβ) deposits are important pathological hallmarks of Alzheimer's disease (AD). Aβ aggregates into fibrils; however, the intermediate oligomers are believed to be the most neurotoxic species and, therefore, are of great interest as potential biomarkers. Here, we have developed an enzyme-linked immunosorbent assay (ELISA) specific for Aβ oligomers by using the same capture and (labeled) detection antibody. The ELISA predominantly recognizes relatively small oligomers (10-25 kDa) and not monomers. In brain tissue of APP/PS1 transgenic mice, we found that Aβ oligomer levels increase with age. However, for measurements in human samples, pretreatment to remove human anti-mouse antibodies (HAMAs) was required. In HAMA-depleted human hippocampal extracts, the Aβ oligomer concentration was significantly increased in AD compared with nondemented controls. Aβ oligomer levels could also be quantified in pretreated cerebrospinal fluid (CSF) samples; however, no difference was detected between AD and control groups. Our data suggest that levels of small oligomers might not be suitable as biomarkers for AD. In addition, we demonstrate the importance of avoiding HAMA interference in assays to quantify Aβ oligomers in human body fluids. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Intra-operative on-line discrimination of kidney cancer from normal tissue by IR ATR spectroscopy of extracellular fluid

    Science.gov (United States)

    Urboniene, V.; Velicka, M.; Ceponkus, J.; Pucetaite, M.; Jankevicius, F.; Sablinskas, V.; Steiner, G.

    2016-03-01

    Determination of cancerous and normal kidney tissues during partial, simple or radical nephrectomy surgery was performed by using differences in the IR absorption spectra of extracellular fluid taken from the corresponding tissue areas. The samples were prepared by stamping of the kidney tissue on ATR diamond crystal. The spectral measurements were performed directly in the OR during surgery for 58 patients. It was found that intensities of characteristic spectral bands of glycogen (880-1200 cm-1) in extracellular fluid are sensitive to the type of the tissue and can be used as spectral markers of tumours. Characteristic spectral band of lactic acid (1730 cm-1) - product of the anaerobic glycolysis, taking place in the cancer cells is not suitable for use as a spectral marker of cancerous tissue, since it overlaps with the band of carbonyl stretch in phospholipids and fatty acids. Results of hierarchical cluster analysis of the spectra show that the spectra of healthy and tumour tissue films can be reliably separated into two groups. On the other hand, possibility to differentiate between tumours of different types and grades remains in question. While the fluid from highly malignant G3 tumour tissue contains highly pronounced glycogen spectral bands and can be well separated from benign and G1 tumours by principal component analysis, the variations between spectra from sample to sample prevent from obtaining conclusive results about the grouping between different tumour types and grades. The proposed method is instant and can be used in situ and even in vivo.

  12. Metabolism and toxicological analysis of synthetic cannabinoids in biological fluids and tissues.

    Science.gov (United States)

    Presley, B C; Gurney, S M R; Scott, K S; Kacinko, S L; Logan, B K

    2016-07-01

    Synthetic cannabinoids, which began proliferating in the United States in 2009, have gone through numerous iterations of modification to their chemical structures. More recent generations of compounds have been associated with significant adverse outcomes following use, including cognitive and psychomotor impairment, seizures, psychosis, tissue injury and death. These effects increase the urgency for forensic and public health laboratories to develop methods for the detection and identification of novel substances, and apply these to the determination of their metabolism and disposition in biological samples. This comprehensive review describes the history of the appearance of the drugs in the United States, discusses the naming conventions emerging to designate new structures, and describes the most prominent new compounds linked to the adverse effects now associated with their use. We review in depth the metabolic pathways that have been elucidated for the major members of each of the prevalent synthetic cannabinoid drug subclasses, the enzyme systems responsible for their metabolism, and the use of in silico approaches to assist in predicting and identifying the metabolites of novel compounds and drug subclasses that will continue to appear. Finally, we review and critique analytical methods applied to the detection of the drugs and their metabolites, including immunoassay screening, and liquid chromatography mass spectrometry confirmatory techniques applied to urine, serum, whole blood, oral fluid, hair, and tissues. Copyright © 2016 Central Police University.

  13. A mathematical model for fluid shear-sensitive 3D tissue construct development.

    Science.gov (United States)

    Liu, Dan; Chua, Chee-Kai; Leong, Kah-Fai

    2013-01-01

    This research studies dynamic culture for 3D tissue construct development with computational fluid dynamics. It proposes a mathematical model to evaluate the impact of flow rates and flow shear stress on cell growth in 3D constructs under perfusion. The modeling results show that dynamic flow, even at flow rate as low as 0.002 cm/s, can support much better mass exchange, higher cell number, and more even cell and nutrient distribution compared to static culture. Higher flow rate can further improve nutrient supply and mass exchange in the construct, promoting better nutritious environment and cell proliferation compared to lower flow rate. In addition, consideration of flow shear stress predicts much higher cell number in the construct compared to that without shear consideration. While the nutrient can dominate shear stress in influencing cell proliferation, the shear effect increases with flow rate. The proposed model helps tissue engineers better understand the cell-flow relationship at the molecular level during dynamic culture.

  14. Informatic system for a global tissue-fluid biorepository with a graph theory-oriented graphical user interface

    NARCIS (Netherlands)

    Butler, William E.; Atai, Nadia; Carter, Bob; Hochberg, Fred

    2014-01-01

    The Richard Floor Biorepository supports collaborative studies of extracellular vesicles (EVs) found in human fluids and tissue specimens. The current emphasis is on biomarkers for central nervous system neoplasms but its structure may serve as a template for collaborative EV translational studies

  15. Push-out bond strength of bioceramic materials in a synthetic tissue fluid.

    Directory of Open Access Journals (Sweden)

    Noushin Shokouhinejad

    2013-12-01

    Full Text Available This study compared the push-out bond strength of EndoSequence Root Repair Material (ERRM and Bioaggregate (BA, new bioceramic materials, to that of mineral trioxide aggregate (MTA after incubation in phosphate-buffered saline (PBS, a synthetic tissue fluid, for either 1 week or 2 months.One-hundred and twenty root sections were filled with ProRoot MTA, BA, or ERRM. Each tested material was then randomly divided into two subgroups (n = 20: root sections were immersed in PBS for 1 week or 2 months. The bond strengths were measured using a universal testing machine. After that, the failure modes were examined with stereomicroscopy and scanning electron microscopy (SEM. The push-out data and failure mode categories were analyzed by two-way ANOVA and chi-square tests, respectively.The bond strength of ERRM was significantly higher than that of BA and MTA at both incubation periods. No significant difference was found between the bond strength of MTA and BA at either 1 week or 2 months. Increasing the incubation time to 2 months resulted in a significant increase in bond strength of all the materials. The failure mode was mainly mixed for MTA and BA, but cohesive for ERRM at both incubation periods.ERRM had significantly higher bond strength to root canal walls compared to MTA and BA. Increasing the incubation time significantly improved the bond strength and bioactive reaction products of all materials.

  16. The application of cell cultures, body fluids and tissues in oncoproteomics

    Directory of Open Access Journals (Sweden)

    Kamila Duś-Szachniewicz

    2014-11-01

    Full Text Available Mass spectrometry (MS-based proteomics is a rapidly developing technology for the large scale analysis of proteins, their interactions and subcellular localization. In recent years proteomics has attracted much attention in medicine. Since a single biomarker might not have sufficient sensitivity and specificity in clinical practice, the identification of biomarker panels that comprise several proteins would improve the detection and clinical management of cancer patients. Additionally, the characteristics of protein profiles of most severe human malignancies certainly contribute to the understanding of the biology of cancer and fill the gap in our knowledge of carcinogenesis. This knowledge also is likely to result in the discovery of novel potential cancer markers and targets for molecular therapeutics. It is believed that the novel biomarkers will help in the development of personalized therapy tailored to the individual patient and will thereby reduce the mortality rate from cancer. In this review, the use of different types of human clinical samples (cell cultures, tissues and body fluids in oncoproteomics is explained and the latest advances in mass spectrometry-based proteomics biomarker discovery are discussed.

  17. COMPARISON OF CULTURE OF SYNOVIAL FLUID, PERIPROSTHETIC TISSUE AND PROSTHESIS SONICATE FOR THE DIAGNOSIS OF KNEE PROSTHESIS INFECTION

    Directory of Open Access Journals (Sweden)

    Andrej Trampuž

    2003-03-01

    Full Text Available Background. Synovial fluid and periprosthetic tissue specimens are the standard specimens cultured for the diagnosis of prosthetic joint infection (PJI. We hypothesize that ultrasonication of the explanted prosthesis may improve diagnosis of PJI by dislodging biofilm bacteria from the prosthesis surface and improve the sensitivity and specificity of diagnosis of PJI.Methods. Included were patients undergoing knee prosthesis exchange for septic or biomechanical failure and have not received antimicrobial therapy in the last 2 weeks prior specimen collection. Cultures of synovial fluid and periprosthetic tissue specimens were performed per the usual clinical practice. Additionally, explanted joint components were sonicated for 5 minutes at frequency 40 kHz in sterile Ringer’s solution; aliquots of 0.5 ml sonicate were plated onto five aerobic and five anaerobic blood agar plates, and incubated at 37 °C and examined for the next seven days. The number and identity of each colony morphology was recorded.Results. 35 patients undergoing knee replacement have been studied (24 for aseptic biomechanical failure and 11 for suspected PJI. In patients with PJI, coagulase-negative staphylococci (7 cases, Corynebacterium spp. (2 cases, Staphylococcus aureus (1 case, and viridans group streptococcus (1 case were recovered. Culture sensitivity and specificity were for synovial fluid 88% and 100%, for periprosthetic tissue 83% and 81%, and for explant sonicate 91% and 100%, respectively. In sonicate cultures higher numbers of microorganisms than in periprosthetic tissue cultures were consistently detected.Conclusions. Using synovial fluid, periprosthetic tissue, and explant sonicate cultures, 12%, 17% and 9% of PJI were missed, respectively. Explant sonicate cultures were the most sensitive with respect to the diagnosis of PJI, indicating that explant ultrasonication may improve bacterial recovery. In sonicate cultures, infecting organisms were detected in

  18. Amyloid and immune homeostasis.

    Science.gov (United States)

    Wang, Ying-Hui; Zhang, Yu-Gen

    2018-03-01

    Extracellular amyloid deposition defines a range of amyloidosis and amyloid-related disease. Addition to primary and secondary amyloidosis, amyloid-related disease can be observed in different tissue/organ that sharing the common pathogenesis based on the formation of amyloid deposition. Currently, both Alzheimer's disease and type 2 diabetes can be diagnosed with certainly only based on the autopsy results, by which amyloidosis of the associative tissue/organ is observed. Intriguingly, since it demonstrated that amyloid deposits trigger inflammatory reaction through the activation of cascaded immune response, wherein several lines of evidence implies a protective role of amyloid in preventing autoimmunity. Furthermore, attempts for preventing amyloid formation and/or removing amyloid deposits from the brain have caused meningoencephalitis and consequent deaths among the subjects. Hence, it is important to note that amyloid positively participates in maintaining immune homeostasis and contributes to irreversible inflammatory response. In this review, we will focus on the interactive relationship between amyloid and the immune system, discussing the potential functional roles of amyloid in immune tolerance and homeostasis. Copyright © 2017 Elsevier GmbH. All rights reserved.

  19. Mechanics of Fluid-Filled Interstitial Gaps. I. Modeling Gaps in a Compact Tissue.

    Science.gov (United States)

    Parent, Serge E; Barua, Debanjan; Winklbauer, Rudolf

    2017-08-22

    Fluid-filled interstitial gaps are a common feature of compact tissues held together by cell-cell adhesion. Although such gaps can in principle be the result of weak, incomplete cell attachment, adhesion is usually too strong for this to occur. Using a mechanical model of tissue cohesion, we show that, instead, a combination of local prevention of cell adhesion at three-cell junctions by fluidlike extracellular material and a reduction of cortical tension at the gap surface are sufficient to generate stable gaps. The size and shape of these interstitial gaps depends on the mechanical tensions between cells and at gap surfaces, and on the difference between intracellular and interstitial pressures that is related to the volume of the interstitial fluid. As a consequence of the dependence on tension/tension ratios, the presence of gaps does not depend on the absolute strength of cell adhesion, and similar gaps are predicted to occur in tissues of widely differing cohesion. Tissue mechanical parameters can also vary within and between cells of a given tissue, generating asymmetrical gaps. Within limits, these can be approximated by symmetrical gaps. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. Fluid distribution and tissue thickness changes in 29 men during 1 week at moderate altitude (2,315 m).

    Science.gov (United States)

    Gunga, H C; Kirsch, K; Baartz, F; Steiner, H J; Wittels, P; Röcker, L

    1995-01-01

    To quantify fluid distribution at a moderate altitude (2,315 m) 29 male subjects were studied with respect to tissue thickness changes [front (forehead), sternum, tibia], changes of total body water, changes of plasma volume, total protein concentrations (TPC), colloid osmotic pressure (COP), and electrolytes. Tissue thickness at the forehead showed a significant increase from 4.14 mm to 4.41 mm 48 h after ascent to the Rudolfshuette (2,315 m) (P Rudolf-shuette in Saalfelden (744 m) COP was back to the control values. The TPC also showed an initial drop from 7.75 g.dl-1 to 7.48 g.dl-1 after 48 h at altitude and remained below the control value during the whole week (P < 0.01). It seems from our study that even with exposure to moderate altitude measurable fluid shifts to the upper part of the body occurred which were detected by our ultrasound method.

  1. Ageing and water homeostasis

    Science.gov (United States)

    Robertson, David; Jordan, Jens; Jacob, Giris; Ketch, Terry; Shannon, John R.; Biaggioni, Italo

    2002-01-01

    This review outlines current knowledge concerning fluid intake and volume homeostasis in ageing. The physiology of vasopressin is summarized. Studies have been carried out to determine orthostatic changes in plasma volume and to assess the effect of water ingestion in normal subjects, elderly subjects, and patients with dysautonomias. About 14% of plasma volume shifts out of the vasculature within 30 minutes of upright posture. Oral ingestion of water raises blood pressure in individuals with impaired autonomic reflexes and is an important source of noise in blood pressure trials in the elderly. On the average, oral ingestion of 16 ounces (473ml) of water raises blood pressure 11 mmHg in elderly normal subjects. In patients with autonomic impairment, such as multiple system atrophy, strikingly exaggerated pressor effects of water have been seen with blood pressure elevations greater than 75 mmHg not at all uncommon. Ingestion of water is a major determinant of blood pressure in the elderly population. Volume homeostasis is importantly affected by posture and large changes in plasma volume may occur within 30 minutes when upright posture is assumed.

  2. Analysis of Zolpidem in Postmortem Fluids and Tissues Using Ultra-Performance Liquid Chromatography-Mass Spectrometry

    Science.gov (United States)

    2014-02-01

    in postmortem fluids and tissues. 17. Key Words 18. Distribution Statement Forensic Toxicology , Zolpidem, Ambien, Postmortem Distribution, LC/MS/MS...Institute (CAMI) toxicology database identified 10 fatalities from separate avia- tion accidents that were reported positive for zolpidem and also...Sample Selection and Storage A search of the CAMI toxicology database (ToxFLO, DiscoverSoft Development, LLC; Oklahoma City, OK) identi- fied 10

  3. Informatic system for a global tissue-fluid biorepository with a graph theory-oriented graphical user interface

    OpenAIRE

    Butler, William E.; Atai, Nadia; Carter, Bob; Hochberg, Fred

    2014-01-01

    The Richard Floor Biorepository supports collaborative studies of extracellular vesicles (EVs) found in human fluids and tissue specimens. The current emphasis is on biomarkers for central nervous system neoplasms but its structure may serve as a template for collaborative EV translational studies in other fields. The informatic system provides specimen inventory tracking with bar codes assigned to specimens and containers and projects, is hosted on globalized cloud computing resources, and e...

  4. Detection of cancerous biological tissue areas by means of infrared absorption and SERS spectroscopy of intercellular fluid

    Science.gov (United States)

    Velicka, M.; Urboniene, V.; Ceponkus, J.; Pucetaite, M.; Jankevicius, F.; Sablinskas, V.

    2015-08-01

    We present a novel approach to the detection of cancerous kidney tissue areas by measuring vibrational spectra (IR absorption or SERS) of intercellular fluid taken from the tissue. The method is based on spectral analysis of cancerous and normal tissue areas in order to find specific spectral markers. The samples were prepared by sliding the kidney tissue over a substrate - surface of diamond ATR crystal in case of IR absorption or calcium fluoride optical window in case of SERS. For producing the SERS signal the dried fluid film was covered by silver nanoparticle colloidal solution. In order to suppress fluorescence background the measurements were performed in the NIR spectral region with the excitation wavelength of 1064 nm. The most significant spectral differences - spectral markers - were found in the region between 400 and 1800 cm-1, where spectral bands related to various vibrations of fatty acids, glycolipids and carbohydrates are located. Spectral markers in the IR and SERS spectra are different and the methods can complement each other. Both of them have potential to be used directly during surgery. Additionally, IR absorption spectroscopy in ATR mode can be combined with waveguide probe what makes this method usable in vivo.

  5. A controllable tactile device for human-like tissue realization using smart magneto-rheological fluids: fabrication and modeling

    Science.gov (United States)

    Cha, Seung-Woo; Kang, Seok-Rae; Hwang, Yong-Hoon; Oh, Jong-Seok; Choi, Seung-Bok

    2018-06-01

    This paper proposes a new tactile device to realize the force of human-like organs using the viscoelastic property by combing a smart magneto-rheological (MR) fluid with a sponge (MR sponge in short). The effectiveness of the sensor is validated through the comparison of the force obtained through measurement and the proposed prediction model. As the first step, a conventional standard linear solid model is adopted to independently investigate the force characteristics of MR fluid and sponge. Force is measured using a 3-axis robot with a force sensor to obtain certain properties of MR fluid and sponge. In addition, to show that the proposed MR sponge can realize the force of human-like tissues, experiments are performed using three specimens, i.e., porcine heart, lung, and liver. Subsequently, a quasi-static model for predicting the field-dependent force of the MR sponge is formulated using empirical values. It is demonstrated through comparison that the proposed force model can accurately predict the force of the specimens without significant error. In addition, a psychophysical test is carried out by ordinary subjects to validate the effectiveness of the proposed tactile device. Results show that the MR sponge tactile device can easily produce various levels of the force of human-like tissues, such as the liver and lung of the porcine, by controlling input current.

  6. Estimation of tissue and crevicular fluid oxidative stress marker in premenopausal, perimenopausal and postmenopausal women with chronic periodontitis.

    Science.gov (United States)

    Chandra, Rampalli Viswa; Sailaja, Sistla; Reddy, Aileni Amarender

    2017-09-01

    The aim of this study was to estimate tissue and gingival crevicular fluid (GCF) levels of the oxidative stress marker 8-hydroxy-2'-deoxyguanosine (8-OHdG) in premenopausal, perimenopausal and postmenopausal women with chronic periodontitis. Oxidative stress has been implicated in the etiopathogenesis of periodontitis and menopause induces oxidative stress. According to Stages of Reproductive Aging Workshop (STRAW) criteria, women diagnosed with periodontitis were subdivided into three groups of 31 participants each 1. Premenopausal 2. Perimenopausal and 3. Postmenopausal. GCF and gingival tissue samples were collected from sites with maximum probing depth. Tissue DNA was extracted from the gingival sample and 8-OHdG in the extracted DNA, and GCF samples were measured using ELISA. There was a highly significant difference in the overall GCF 8-OHdG levels among the three groups with the pairwise difference being highly significant between the premenopausal-postmenopausal groups and perimenopausal-postmenopausal groups. However, no overall significant differences in tissue 8-OHdG levels were found among the three groups. Pairwise, highly significant differences were found between the premenopausal-postmenopausal groups and perimenopausal-postmenopausal groups for tissue 8-OHdG levels. No significant correlations were found between various measure of periodontal disease and GCF/tissue 8-OHdG levels among all the groups. Premenopausal-postmenopausal and perimenopausal-postmenopausal transition resulted in significant increase in tissue and GCF 8-OHdG levels. However, no association was found between stages of reproductive ageing and tissue levels of 8-OHdG. © 2017 John Wiley & Sons A/S and The Gerodontology Association. Published by John Wiley & Sons Ltd.

  7. Short-Term Effects of Nose-Only Cigarette Smoke Exposure on Glutathione Redox Homeostasis, Cytochrome P450 1A1/2 and Respiratory Enzyme Activities in Mice Tissues

    Directory of Open Access Journals (Sweden)

    Haider Raza

    2013-05-01

    Full Text Available Background/Aims: The components of cigarette smoke (CS have been implicated in the development of cancer as well as in cardiopulmonary diseases. We have previously reported increased oxidative stress in rat tissues induced by tobacco-specific toxins nicotine and 4-(N-methyl-N-nitrosamino-1-(3-pyridyl-1-butanone (NNK. Recently, we have also shown increased oxidative stress and associated inflammatory responses in various tissues after exposure to cigarette smoke. Methods: In this study, we have further investigated the effects of nose-only cigarette smoke exposure on mitochondrial functions and glutathione-dependent redox metabolism in tissues of BALB/C mice. Liver, kidney, heart and lung tissues were analyzed for oxidative stress, glutathione (GSH and cytochrome P450 dependent enzyme activities and mitochondrial functions after exposure to smoke generated by 9 cigarettes/day for 4 days. Control mice were exposed to air only. Results: An increase in oxidative stress as observed by increased production of reactive oxygen species (ROS and altered GSH metabolism was apparent in all the tissues, but lung and heart appeared to be the main targets. Increased expression and activity of CYP450 1A1 and 1A2 were also observed in the tissues after exposure to cigarette smoke. Mitochondrial respiratory dysfunction in the tissues, as observed by alterations in the activities of Complex I and IV enzymes, was also observed after exposure to cigarette smoke. SDS-PAGE and Western blot results also indicate that alterations in the expression of enzyme proteins were in accordance with the changes in their catalytic functions. Conclusion: These results suggest that even short term exposure of cigarette smoke have adverse effects on mitochondrial functions and redox homeostasis in tissues which may progress to further complications associated with chronic smoking.

  8. Lymphatic Filariasis Increases Tissue Compressibility and Extracellular Fluid in Lower Limbs of Asymptomatic Young People in Central Myanmar

    Directory of Open Access Journals (Sweden)

    Janet Douglass

    2017-09-01

    Full Text Available When normal lymphatic function is hampered, imperceptible subcutaneous edema can develop and progress to overt lymphedema. Low-cost reliable devices for objective assessment of lymphedema are well accepted in clinical practice and research on breast-cancer related lymphedema but are untested in populations with lymphatic filariasis (LF. This is a cross-sectional analysis of baseline data in a longitudinal study on asymptomatic, LF antigen-positive and -negative young people in Myanmar. Rapid field screening was used to identify antigen-positive cases and a group of antigen-negative controls of similar age and gender were invited to continue in the study. Tissue compressibility was assessed with three tissue tonometers, and free fluids were assessed using bio-impedance spectroscopy (BIS. Infection status was confirmed by Og4C3 antigen assay. At baseline (n = 98, antigen-positive cases had clinically relevant increases in tissue compressibility at the calf using a digital Indurometer (11.1%, p = 0.021, and in whole-leg free fluid using BIS (9.2%, p = 0.053. Regression analysis for moderating factors (age, gender, hydration reinforced the between-infection group differences. Results demonstrate that sub-clinical changes associated with infection can be detected in asymptomatic cases. Further exploration of these low-cost devices in clinical and research settings on filariasis-related lymphedema are warranted.

  9. Host DNA synthesis-suppressing factor in culture fluid of tissue cultures infected with measles virus

    International Nuclear Information System (INIS)

    Minagawa, T.; Nakaya, C.; Iida, H.

    1974-01-01

    Host DNA synthesis is suppressed by the culture fluid of cell cultures infected with measles virus. This activity in the culture fluid is initiated somewhat later than the growth of infectious virus. Ninety percent of host DNA synthesis in HeLa cells is inhibited by culture fluid of 3-day-old cell cultures of Vero or HeLa cells infected with measles virus. This suppressing activity is not a property of the virion, but is due to nonvirion-associated componentnent which shows none of the activities of measles virus such as hemagglutination, hemolysis, or cell fusion nor does it have the antigenicity of measles virus as tested by complement-fixation or hemagglutination-inhibiting antibody blocking tests. Neutralization of the activity of this component is not attained with the pooled sera of convalescent measles patients. This component has molecular weights of about 45,000, 20,000, and 3,000 and appears to be a heat-stable protein. The production of host DNA suppressing factor (DSF) is blocked by cycloheximide. Neither uv-inactivated nor antiserum-neutralized measles virus produce DSF. Furthermore, such activity of nonvirion-associated component is not detected in the culture fluid of cultures infected with other RNA viruses such as poliovirus, vesicular stomatitis virus, or Sindbis virus. (auth)

  10. Complete removal of uranyl nitrate from tissue matrix using supercritical fluid extraction

    International Nuclear Information System (INIS)

    Kumar, R.; Sivaraman, N.; Senthil Vadivu, E.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2003-01-01

    The removal of uranyl nitrate from tissue matrix has been studied with supercritical carbon dioxide modified with methanol alone as well as complexing reagents dissolved in methanol. A systematic study of various complexing agents led to the development of an extraction procedure for the quantitative recovery of uranium from tissue matrix with supercritical carbon dioxide modified with methanol containing small quantities of acetylacetone. The drying time and temperature employed in loading of uranyl nitrate onto tissue paper were found to influence the extraction efficiency significantly

  11. Osmotic relations of the coelomic fluid and body wall tissues in Arenicola marina subjected to salinity change

    DEFF Research Database (Denmark)

    Weber, Roy E.; Spaargaren, D.H.

    1979-01-01

    nitrogenous organic molecules (ninhydrin-positive substances, NPS) in the body wall tissues and in the coelomic fluid of specimens of Arenicola in response to sudden changes in salinity. The coelomic solutes consist almost entirely of electrolytes and the osmotic contribution of NPS is essentially negligible....... In the body wall extracts, however, NPS accounts for at least one third of the osmotic concentration and for most of the substantial non-electrolyte fraction. There is no evidence from coelomic NPS measurements for extrusion of cellular amino acids during adaptation to lowered salinity. In diluted sea water...

  12. An overview of the analytical methods for the determination of organic ultraviolet filters in biological fluids and tissues

    Energy Technology Data Exchange (ETDEWEB)

    Chisvert, Alberto, E-mail: alberto.chisvert@uv.es [Departamento de Quimica Analitica, Facultad de Quimica, Universitat de Valencia, Doctor Moliner St. 50, 46100 Burjassot, Valencia (Spain); Leon-Gonzalez, Zacarias [Unidad Analitica, Instituto de Investigacion Sanitaria Fundacion Hospital La Fe, 46009 Valencia (Spain); Tarazona, Isuha; Salvador, Amparo [Departamento de Quimica Analitica, Facultad de Quimica, Universitat de Valencia, Doctor Moliner St. 50, 46100 Burjassot, Valencia (Spain); Giokas, Dimosthenis [Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina (Greece)

    2012-11-08

    Highlights: Black-Right-Pointing-Pointer Papers describing the determination of UV filters in fluids and tissues are reviewed. Black-Right-Pointing-Pointer Matrix complexity and low amounts of analytes require effective sample treatments. Black-Right-Pointing-Pointer The published papers do not cover the study of all the substances allowed as UV filters. Black-Right-Pointing-Pointer New analytical methods for UV filters determination in these matrices are encouraged. - Abstract: Organic UV filters are chemical compounds added to cosmetic sunscreen products in order to protect users from UV solar radiation. The need of broad-spectrum protection to avoid the deleterious effects of solar radiation has triggered a trend in the cosmetic market of including these compounds not only in those exclusively designed for sun protection but also in all types of cosmetic products. Different studies have shown that organic UV filters can be absorbed through the skin after topical application, further metabolized in the body and eventually excreted or bioaccumulated. These percutaneous absorption processes may result in various adverse health effects, such as genotoxicity caused by the generation of free radicals, which can even lead to mutagenic or carcinogenic effects, and estrogenicity, which is associated with the endocrine disruption activity caused by some of these compounds. Due to the absence of official monitoring protocols, there is a demand for analytical methods that enable the determination of UV filters in biological fluids and tissues in order to retrieve more information regarding their behavior in the human body and thus encourage the development of safer cosmetic formulations. In view of this demand, there has recently been a noticeable increase in the development of sensitive and selective analytical methods for the determination of UV filters and their metabolites in biological fluids (i.e., urine, plasma, breast milk and semen) and tissues. The complexity of

  13. An overview of the analytical methods for the determination of organic ultraviolet filters in biological fluids and tissues

    International Nuclear Information System (INIS)

    Chisvert, Alberto; León-González, Zacarías; Tarazona, Isuha; Salvador, Amparo; Giokas, Dimosthenis

    2012-01-01

    Highlights: ► Papers describing the determination of UV filters in fluids and tissues are reviewed. ► Matrix complexity and low amounts of analytes require effective sample treatments. ► The published papers do not cover the study of all the substances allowed as UV filters. ► New analytical methods for UV filters determination in these matrices are encouraged. - Abstract: Organic UV filters are chemical compounds added to cosmetic sunscreen products in order to protect users from UV solar radiation. The need of broad-spectrum protection to avoid the deleterious effects of solar radiation has triggered a trend in the cosmetic market of including these compounds not only in those exclusively designed for sun protection but also in all types of cosmetic products. Different studies have shown that organic UV filters can be absorbed through the skin after topical application, further metabolized in the body and eventually excreted or bioaccumulated. These percutaneous absorption processes may result in various adverse health effects, such as genotoxicity caused by the generation of free radicals, which can even lead to mutagenic or carcinogenic effects, and estrogenicity, which is associated with the endocrine disruption activity caused by some of these compounds. Due to the absence of official monitoring protocols, there is a demand for analytical methods that enable the determination of UV filters in biological fluids and tissues in order to retrieve more information regarding their behavior in the human body and thus encourage the development of safer cosmetic formulations. In view of this demand, there has recently been a noticeable increase in the development of sensitive and selective analytical methods for the determination of UV filters and their metabolites in biological fluids (i.e., urine, plasma, breast milk and semen) and tissues. The complexity of the biological matrix and the low concentration levels of these compounds inevitably impose sample

  14. Mathematical model of microbicidal flow dynamics and optimization of rheological properties for intra-vaginal drug delivery: Role of tissue mechanics and fluid rheology.

    Science.gov (United States)

    Anwar, Md Rajib; Camarda, Kyle V; Kieweg, Sarah L

    2015-06-25

    Topically applied microbicide gels can provide a self-administered and effective strategy to prevent sexually transmitted infections (STIs). We have investigated the interplay between vaginal tissue elasticity and the yield-stress of non-Newtonian fluids during microbicide deployment. We have developed a mathematical model of tissue deformation driven spreading of microbicidal gels based on thin film lubrication approximation and demonstrated the effect of tissue elasticity and fluid yield-stress on the spreading dynamics. Our results show that both elasticity of tissue and yield-stress rheology of gel are strong determinants of the coating behavior. An optimization framework has been demonstrated which leverages the flow dynamics of yield-stress fluid during deployment to maximize retention while reaching target coating length for a given tissue elasticity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Effects of Initial Seeding Density and Fluid Perfusion Rate on Formation of Tissue-Engineered Bone

    OpenAIRE

    GRAYSON, WARREN L.; BHUMIRATANA, SARINDR; CANNIZZARO, CHRISTOPHER; CHAO, P.-H. GRACE; LENNON, DONALD P.; CAPLAN, ARNOLD I.; VUNJAK-NOVAKOVIC, GORDANA

    2008-01-01

    We describe a novel bioreactor system for tissue engineering of bone that enables cultivation of up to six tissue constructs simultaneously, with direct perfusion and imaging capability. The bioreactor was used to investigate the relative effects of initial seeding density and medium perfusion rate on the growth and osteogenic differentiation patterns of bone marrow–derived human mesenchymal stem cells (hMSCs) cultured on three-dimensional scaffolds. Fully decellularized bovine trabecular bon...

  16. In situ monitoring of localized shear stress and fluid flow within developing tissue constructs by Doppler optical coherence tomography

    Science.gov (United States)

    Jia, Yali; Bagnaninchi, Pierre O.; Wang, Ruikang K.

    2008-02-01

    Mechanical stimuli can be introduced to three dimensional (3D) cell cultures by use of perfusion bioreactor. Especially in musculoskeletal tissues, shear stress caused by fluid flow generally increase extra-cellular matrix (ECM) production and cell proliferation. The relationship between the shear stress and the tissue development in situ is complicated because of the non-uniform pore distribution within the cell-seeded scaffold. In this study, we firstly demonstrated that Doppler optical coherence tomography (DOCT) is capable of monitoring localized fluid flow and shear stress in the complex porous scaffold by examining their variation trends at perfusion rate of 5, 8, 10 and 12 ml/hr. Then, we developed the 3D porous cellular constructs, cell-seeded chitosan scaffolds monitored during several days by DOCT. The fiber based fourier domain DOCT employed a 1300 nm superluminescent diode with a bandwidth of 52 nm and a xyz resolution of 20×20×15 μm in free space. This setup allowed us not only to assess the cell growth and ECM deposition by observing their different scattering behaviors but also to further investigate how the cell attachment and ECM production has the effect on the flow shear stress and the relationship between flow rate and shear stress in the developing tissue construct. The possibility to monitor continuously the constructs under perfusion will easily indicate the effect of flow rate or shear stress on the cell viability and cell proliferation, and then discriminate the perfusion parameters affecting the pre-tissue formation rate growth.

  17. A mixture theory model of fluid and solute transport in the microvasculature of normal and malignant tissues. I. Theory.

    Science.gov (United States)

    Schuff, M M; Gore, J P; Nauman, E A

    2013-05-01

    In order to better understand the mechanisms governing transport of drugs, nanoparticle-based treatments, and therapeutic biomolecules, and the role of the various physiological parameters, a number of mathematical models have previously been proposed. The limitations of the existing transport models indicate the need for a comprehensive model that includes transport in the vessel lumen, the vessel wall, and the interstitial space and considers the effects of the solute concentration on fluid flow. In this study, a general model to describe the transient distribution of fluid and multiple solutes at the microvascular level was developed using mixture theory. The model captures the experimentally observed dependence of the hydraulic permeability coefficient of the capillary wall on the concentration of solutes present in the capillary wall and the surrounding tissue. Additionally, the model demonstrates that transport phenomena across the capillary wall and in the interstitium are related to the solute concentration as well as the hydrostatic pressure. The model is used in a companion paper to examine fluid and solute transport for the simplified case of an axisymmetric geometry with no solid deformation or interconversion of mass.

  18. A radioenzymatic technique for the measurement of free and conjugated 3,4-dihydroxyphenylethyleneglycol in brain tissue and biological fluids

    International Nuclear Information System (INIS)

    Dennis, T.; Scatton, B.

    1982-01-01

    A simple, sensitive and specific radioenzymatic assay for the measurement of 3,4-dihydroxyphenylethyleneglycol (DOPEG) was developed. The assay is based on the conversion of the compound to its O-methylated derivative in the presence of catechol-O-methyltransferase and [ 3 H]S-adenosyl-methionine. The tritiated 3-methoxy-4-hydroxyphenylethyleneglycol formed is selectively extracted in organic solvents and isolated by thin layer chromatography. After oxidation to vanillin the O-methylated compound is extracted and measured by liquid scintillation spectrophotometry. This assay has been applied to the measurement of free and conjugated DOPEG is a variety of biological tissues and fluids. Both free and conjugated DOPEG were readily detected in discrete rat brain areas. Substantial amounts of free and conjugated DOPEG were also measured in ventricular perfusates from freely moving rats. Finally, the presence of DOPEG was also demonstrated in human cerebrospinal fluid, plasma and urine. Only the free form of DOPEG was found in cerebrospinal fluid, whereas both unconjugated and conjugated forms were present in plasma and urine. (Auth.)

  19. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in gingival crevicular fluid during orthodontic tooth movement.

    NARCIS (Netherlands)

    Bildt, M.M.; Bloemen, M.; Kuijpers-Jagtman, A.M.; Hoff, J.W. Von den

    2009-01-01

    Orthodontic tooth movement requires extensive re-modelling of the periodontium. Matrix metalloproteinases (MMPs) degrade the extracellular matrix during re-modelling, while their activity is regulated by the tissue inhibitors of metalloproteinases (TIMPs). The aim of this study was to investigate

  20. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in gingival crevicular fluid during orthodontic tooth movement

    NARCIS (Netherlands)

    Bildt, Miriam; Bloemen, M; Kuijpers-Jagtman, A.M.; Von Den Hoff, Johannes W

    2009-01-01

    Orthodontic tooth movement requires extensive re-modelling of the periodontium. Matrix metalloproteinases (MMPs) degrade the extracellular matrix during re-modelling, while their activity is regulated by the tissue inhibitors of metalloproteinases (TIMPs). The aim of this study was to investigate

  1. Supercritical fluid extraction of uranium from tissue paper matrix using organic extractants

    International Nuclear Information System (INIS)

    Kanekar, A.S.; Bhattacharyya, A.; Pathak, P.N.; Mohapatra, P.K.; Manchanda, V.K.

    2009-01-01

    Direct extraction of dried uranyl nitrate from tissue paper matrix was carried out using supercritical carbon dioxide modified with methanol solutions of extractants such as tri-n-butyl phosphate (TBP) and di-n-hexyl octanamide (DHOA)). The effects of temperature, pressure, extractant and nitric acid concentration on the extraction of uranyl ion were investigated. (author)

  2. Semianalytical Solution for the Deformation of an Elastic Layer under an Axisymmetrically Distributed Power-Form Load: Application to Fluid-Jet-Induced Indentation of Biological Soft Tissues.

    Science.gov (United States)

    Lu, Minhua; Huang, Shuai; Yang, Xianglong; Yang, Lei; Mao, Rui

    2017-01-01

    Fluid-jet-based indentation is used as a noncontact excitation technique by systems measuring the mechanical properties of soft tissues. However, the application of these devices has been hindered by the lack of theoretical solutions. This study developed a mathematical model for testing the indentation induced by a fluid jet and determined a semianalytical solution. The soft tissue was modeled as an elastic layer bonded to a rigid base. The pressure of the fluid jet impinging on the soft tissue was assumed to have a power-form function. The semianalytical solution was verified in detail using finite-element modeling, with excellent agreement being achieved. The effects of several parameters on the solution behaviors are reported, and a method for applying the solution to determine the mechanical properties of soft tissues is suggested.

  3. IL-34 Expression in Gingival Fibroblasts, Gingival Crevicular Fluid and Gingival Tissue

    OpenAIRE

    Kreidly, Mariam

    2014-01-01

    IL-34 is a protein associated with bone degenerative diseases but the role in periodontal disease is unknown. The aim of this study was to assess the expression of IL-34 in primary human gingival fibroblasts (GF) and investigate if the expression is regulated by the pro-inflammatory cytokines interleukin-1 (IL-1β) and tumor necrosis factor α(TNF-α). We also investigated if IL-34 is detectible in gingival crevicular fluid (GCF) in healthy, gingivitis and periodontitis sites. Furthermore, we e...

  4. Radioenzymatic microassay for picogram quantities of serotonin or acetylserotonin in biological fluids and tissues

    International Nuclear Information System (INIS)

    Hussain, M.N.; Benedict, C.R.

    1987-01-01

    This paper describes several modifications of the original radioenzymatic assay for serotonin which increase the sensitivity of the assay 20-fold as well as enhance its reliability. Using this method serotonin concentrations can be directly measured in biological examples without precleaning the sample. When compared to currently available methods this assay is specific and sensitive to approximately 1 pg of serotonin and can be used to measure serotonin levels in individual brain nuclei or microliter quantities of biological fluids. This assay can be easily adapted for the direct measurement of N-acetylserotonin. A large number of samples can be assayed in a single working day

  5. Spatial-temporal ultrasound imaging of residual cavitation bubbles around a fluid-tissue interface in histotripsy.

    Science.gov (United States)

    Hu, Hong; Xu, Shanshan; Yuan, Yuan; Liu, Runna; Wang, Supin; Wan, Mingxi

    2015-05-01

    Cavitation is considered as the primary mechanism of soft tissue fragmentation (histotripsy) by pulsed high-intensity focused ultrasound. The residual cavitation bubbles have a dual influence on the histotripsy pulses: these serve as nuclei for easy generation of new cavitation, and act as strong scatterers causing energy "shadowing." To monitor the residual cavitation bubbles in histotripsy, an ultrafast active cavitation imaging method with relatively high signal-to-noise ratio and good spatial-temporal resolution was proposed in this paper, which combined plane wave transmission, minimum variance beamforming, and coherence factor weighting. The spatial-temporal evolutions of residual cavitation bubbles around a fluid-tissue interface in histotripsy under pulse duration (PD) of 10-40 μs and pulse repetition frequency (PRF) of 0.67-2 kHz were monitored by this method. The integrated bubble area curves inside the tissue interface were acquired from the bubble image sequence, and the formation process of histotripsy damage was estimated. It was observed that the histotripsy efficiency decreased with both longer PDs and higher PRFs. A direct relationship with a coefficient of 1.0365 between histotripsy lesion area and inner residual bubble area was found. These results can assist in monitoring and optimization of the histotripsy treatment further.

  6. Generation of monoclonal antibodies and development of an immunofluorometric assay for the detection of CUZD1 in tissues and biological fluids.

    Science.gov (United States)

    Farkona, Sofia; Soosaipillai, Antoninus; Filippou, Panagiota; Korbakis, Dimitrios; Serra, Stefano; Rückert, Felix; Diamandis, Eleftherios P; Blasutig, Ivan M

    2017-12-01

    CUB and zona pellucida-like domain-containing protein 1 (CUZD1) was identified as a pancreas-specific protein and was proposed as a candidate biomarker for pancreatic related disorders. CUZD1 protein levels in tissues and biological fluids have not been extensively examined. The purpose of the present study was to generate specific antibodies targeting CUZD1 to assess CUZD1 expression within tissues and biological fluids. Mouse monoclonal antibodies against CUZD1 were generated and used to perform immunohistochemical analyses and to develop a sensitive and specific enzyme-linked immunosorbent assay (ELISA). CUZD1 protein expression was assessed in various human tissue extracts and biological fluids and in gel filtration chromatography-derived fractions of pancreatic tissue extract, pancreatic juice and recombinant protein. Immunohistochemical staining of CUZD1 in pancreatic tissue showed that the protein is localized to the acinar cells and the lumen of the acini. Western blot analysis detected the protein in pancreatic tissue extract and pancreatic juice. The newly developed ELISA measured CUZD1 in high levels in pancreas and in much lower but detectable levels in several other tissues. In the biological fluids tested, CUZD1 expression was detected exclusively in pancreatic juice. The analysis of gel filtration chromatography-derived fractions of pancreatic tissue extract, pancreatic juice and recombinant CUZD1 suggested that the protein exists in high molecular weight protein complexes. This study describes the development of tools targeting CUZD1 protein, its tissue expression pattern and levels in several biological fluids. These new tools will facilitate future investigations aiming to delineate the role of CUZD1 in physiology and pathobiology. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  7. Chronic alcohol exposure disturbs lipid homeostasis at the adipose tissue-liver axis in mice: analysis of triacylglycerols using high-resolution mass spectrometry in combination with in vivo metabolite deuterium labeling.

    Directory of Open Access Journals (Sweden)

    Xiaoli Wei

    Full Text Available A method of employing high-resolution mass spectrometry in combination with in vivo metabolite deuterium labeling was developed in this study to investigate the effects of alcohol exposure on lipid homeostasis at the white adipose tissue (WAT-liver axis in a mouse model of alcoholic fatty liver. In order to differentiate the liver lipids synthesized from the fatty acids that were transported back from adipose tissue and the lipids synthesized from other sources of fatty acids, a two-stage mouse feeding experiment was performed to incorporate deuterium into metabolites. Hepatic lipids extracted from mouse liver, epididymal white adipose tissue (eWAT and subcutaneous white adipose tissue (sWAT were analyzed. It was found that 13 and 10 triacylglycerols (TGs incorporated with a certain number of deuterium were significantly increased in alcohol induced fatty liver at two and four weeks of alcohol feeding periods, respectively. The concentration changes of these TGs ranged from 1.7 to 6.3-fold increase. A total of 14 deuterated TGs were significantly decreased in both eWAT and sWAT at the two and four weeks and the fold-change ranged from 0.19 to 0.77. The increase of deuterium incorporated TGs in alcohol-induced fatty liver and their decrease in both eWAT and sWAT indicate that alcohol exposure induces hepatic influx of fatty acids which are released from WATs. The results of time course analysis further indicate a mechanistic link between adipose fat loss and hepatic fat gain in alcoholic fatty liver.

  8. Estimation of the physiological mechanical conditioning in vascular tissue engineering by a predictive fluid-structure interaction approach.

    Science.gov (United States)

    Tresoldi, Claudia; Bianchi, Elena; Pellegata, Alessandro Filippo; Dubini, Gabriele; Mantero, Sara

    2017-08-01

    The in vitro replication of physiological mechanical conditioning through bioreactors plays a crucial role in the development of functional Small-Caliber Tissue-Engineered Blood Vessels. An in silico scaffold-specific model under pulsatile perfusion provided by a bioreactor was implemented using a fluid-structure interaction (FSI) approach for viscoelastic tubular scaffolds (e.g. decellularized swine arteries, DSA). Results of working pressures, circumferential deformations, and wall shear stress on DSA fell within the desired physiological range and indicated the ability of this model to correctly predict the mechanical conditioning acting on the cells-scaffold system. Consequently, the FSI model allowed us to a priori define the stimulation pattern, driving in vitro physiological maturation of scaffolds, especially with viscoelastic properties.

  9. Evaluating the forensic application of 19 target microRNAs as biomarkers in body fluid and tissue identification.

    Science.gov (United States)

    Sirker, M; Fimmers, R; Schneider, P M; Gomes, I

    2017-03-01

    RNA-based body fluid and tissue identification has evolved as a promising and reliable new technique to classify type and source of biological evidence in crime cases. In particular, mRNA-based approaches are currently on the rise to replace conventional protein-based methods and are increasingly implemented into forensic casework. However, degradation of these nucleic acid molecules can cause issues on laboratory scale and need to be considered for a credible investigation. For this reason, the analysis of miRNAs using qPCR has been proposed to be a sensitive and specific approach to identify the origin of a biological trace taking advantage of their small size and resistance to degradation. Despite the straightforward workflow of this method, suitable endogenous controls are inevitable when performing real-time PCR to ensure accurate normalization of gene expression data in order to allow a meaningful interpretation. In this regard, we have validated reference genes for a set of forensically relevant body fluids and tissues (blood, saliva, semen, vaginal secretions, menstrual blood and skin) and tested 15 target genes aiming to identify abovementioned sample types. Our data showed that preselected endogenous controls (miR26b, miR92 and miR484) and miR144, initially selected as potential marker for the detection of menstrual blood, were the most stable expressed genes among our set of samples. Normalizing qPCR data with these four validated references revealed that only five miRNA markers are necessary to differentiate between the six different cell types selected in this study. Nevertheless, our observations in the present study indicate that miRNA analysis methods may not provide straightforward data interpretation strategies required for an implementation in forensic casework. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. INTRACELLULAR Ca2+ HOMEOSTASIS

    Directory of Open Access Journals (Sweden)

    Shahdevi Nandar Kurniawan

    2015-01-01

    Full Text Available Ca2+ signaling functions to regulate many cellular processes. Dynamics of Ca2+ signaling or homeostasis is regulated by the interaction between ON and OFF reactions that control Ca2+ flux in both the plasma membrane and internal organelles such as the endoplasmic reticulum (ER and mitochondria. External stimuli activate the ON reactions, which include Ca2+ into the cytoplasm either through channels in the plasma membrane or from internal storage like in ER. Most of the cells utilize both channels/sources, butthere area few cells using an external or internal source to control certain processes. Most of the Ca2+ entering the cytoplasm adsorbed to the buffer, while a smaller part activate effect or to stimulate cellular processes. Reaction OFF is pumping of cytoplasmic Ca2+ using a combination mechanism of mitochondrial and others. Changes in Ca2+ signal has been detected in various tissues isolated from animals induced into diabetes as well as patients with diabetes. Ca2+ signal interference is also found in sensory neurons of experimental animals with diabetes. Ca2+ signaling is one of the main signaling systems in the cell.

  11. A fluid dynamics approach to bioreactor design for cell and tissue culture.

    Science.gov (United States)

    Dusting, Jonathan; Sheridan, John; Hourigan, Kerry

    2006-08-20

    The problem of controlling cylindrical tank bioreactor conditions for cell and tissue culture purposes has been considered from a flow dynamics perspective. Simple laminar flows in the vortex breakdown region are proposed as being a suitable alternative to turbulent spinner flask flows and horizontally oriented rotational flows. Vortex breakdown flows have been measured using three-dimensional Stereoscopic particle image velocimetry, and non-dimensionalized velocity and stress distributions are presented. Regions of locally high principal stress occur in the vicinity of the impeller and the lower sidewall. Topological changes in the vortex breakdown region caused by an increase in Reynolds number are reflected in a redistribution of the peak stress regions. The inclusion of submerged scaffold models adds complexity to the flow, although vortex breakdown may still occur. Relatively large stresses occur along the edge of disks jutting into the boundary of the vortex breakdown region. Copyright 2006 Wiley Periodicals, Inc.

  12. Growth hormone (GH) differentially regulates NF-kB activity in preadipocytes and macrophages: implications for GH's role in adipose tissue homeostasis in obesity.

    Science.gov (United States)

    Kumar, P Anil; Chitra, P Swathi; Lu, Chunxia; Sobhanaditya, J; Menon, Ram

    2014-06-01

    Adipose tissue remodeling in obesity involves macrophage infiltration and chronic inflammation. NF-kB-mediated chronic inflammation of the adipose tissue is directly implicated in obesity-associated insulin resistance. We have investigated the effect of growth hormone (GH) on NF-kB activity in preadipocytes (3T3-F442A) and macrophages (J774A.1). Our studies indicate that whereas GH increases NF-kB activity in preadipocytes, it decreases NF-kB activity in macrophages. This differential response of NF-kB activity to GH correlates with the GH-dependent expression of a cadre of NF-kB-activated cytokines in these two cell types. Activation of NF-kB by GH in preadipocytes heightens inflammatory response by stimulating production of multiple cytokines including TNF-α, IL-6, and MCP-1, the mediators of both local and systemic insulin resistance and chemokines that recruit macrophages. Our studies also suggest differential regulation of miR132 and SIRT1 expression as a mechanism underlying the observed variance in GH-dependent NF-kB activity and altered cytokine profile in preadipocytes and macrophages. These findings further our understanding of the complex actions of GH on adipocytes and insulin sensitivity.

  13. Ochratoxin A in feeds, fluids and tissues of poultry in Algeria

    Directory of Open Access Journals (Sweden)

    D. Mohammedi

    2014-07-01

    Full Text Available Ochratoxin A (OTA is a mycotoxin produced by a large num- ber of Aspergillus species and by Penicillium verrucosum. It is nephrotoxic, hepatotoxic, immunotoxic and carcinogenic in animals and humans. The consumption of feeds contaminated by OTA affects the health and productivity of animals and can cause the presence of OTA in animal products destined for human consumption. The prevalence of OTA in poultry products in Algeria was determined from feeds, and from blood and organs collected from broilers, laying hens and turkeys. The analytical method was based on the partition coefficient of OTA in aqueous and organic solvents by adjusting the pH. High performance liquid chromatography (HPLC and spectrofluorimetry were used for detection and quantification. OTA was found in many poultry feeds at concentrations between 0.02 and 63 µg/kg. Serum concentrations were between 0.57 and 1.22 ng/ml. Although some serum samples were negative, organs (liver, testes, kidneys from the same animals contained OTA. Kidneys (concentrations between 0.02 and 9.73 ng/ml and testes (concentrations between 0.12 and 2.11 ng/ml seemed to be the most contaminated tissues. This study shows that it would be important to search systematically for OTA in the kidneys of poultry and, depending on results, prohibit consumption of their giblets.

  14. Acute exposure to space flight results in evidence of reduced lymph Transport, tissue fluid Shifts, and immune alterations in the rat gastrointestinal system

    Science.gov (United States)

    Cromer, W. E.; Zawieja, D. C.

    2018-05-01

    Space flight causes a number of alterations in physiological systems, changes in the immunological status of subjects, and altered interactions of the host to environmental stimuli. We studied the effect of space flight on the lymphatic system of the gastrointestinal tract which is responsible for lipid transport and immune surveillance which includes the host interaction with the gut microbiome. We found that there were signs of tissue damage present in the space flown animals that was lacking in ground controls (epithelial damage, crypt morphological changes, etc.). Additionally, morphology of the lymphatic vessels in the tissue suggested a collapsed state at time of harvest and there was a profound change in the retention of lipid in the villi of the ileum. Contrary to our assumptions there was a reduction in tissue fluid volume likely associated with other fluid shifts described. The reduction of tissue fluid volume in the colon and ileum is a likely contributing factor to the state of the lymphatic vessels and lipid transport issues observed. There were also associated changes in the number of MHC-II+ immune cells in the colon tissue, which along with reduced lymphatic competence would favor immune dysfunction in the tissue. These findings help expand our understanding of the effects of space flight on various organ systems. It also points out potential issues that have not been closely examined and have to potential for the need of countermeasure development.

  15. Changes in apolipoprotein B and oxidized low-density lipoprotein levels in gingival crevicular fluids as a result of periodontal tissue conditions.

    Science.gov (United States)

    Ishizuka, M; Kato, R; Moriya, Y; Noguchi, E; Koide, Y; Inoue, S; Itabe, H; Yamamoto, M

    2017-06-01

    Periodontal disease is a chronic inflammatory disease caused by bacterial infection that can lead to tooth loss. Gingival crevicular fluid can be collected easily and noninvasively. We previously discovered the presence of apolipoprotein B (apoB), the main constituent of low-density lipoprotein, and oxidized low-density lipoprotein (oxLDL) in the gingival crevicular fluid of healthy subjects. In this study, we investigated whether periodontal conditions affect the levels of apoB and oxLDL in gingival crevicular fluid. The study population comprised 11 patients with chronic periodontitis. A pair of gingival crevicular fluid samples was collected from each patient at a healthy site and at a site with periodontitis (baseline samples). Thereafter, gingival crevicular fluid samples were collected from the same patients again at 4 and 8 wk after scaling and root planing (SRP). The levels of apoB, oxLDL, protein and cytokines in gingival crevicular fluid, in addition to gingival crevicular fluid volume, were measured. At baseline, the levels of apoB and oxLDL in gingival crevicular fluid were higher at the sites with periodontitis than at the healthy sites. The levels of apoB and oxLDL at periodontal sites decreased after SRP. The level of oxLDL in gingival crevicular fluid correlated well with the probing pocket depth. The oxLDL : apoB ratio in gingival crevicular fluid was significantly higher than that in plasma. The levels of apoB and oxLDL in gingival crevicular fluid change according to the periodontal tissue conditions. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Molecular monitoring of equine joint homeostasis

    NARCIS (Netherlands)

    de Grauw, J.C.

    2010-01-01

    Chronic joint disorders are a major cause of impaired mobility and loss of quality of life in both humans and horses. Regardless of the primary insult, any joint disorder is characterized by an upset in normal joint homeostasis, the balance between tissue anabolism and catabolism that is normally

  17. Tissue

    Directory of Open Access Journals (Sweden)

    David Morrissey

    2012-01-01

    Full Text Available Purpose. In vivo gene therapy directed at tissues of mesenchymal origin could potentially augment healing. We aimed to assess the duration and magnitude of transene expression in vivo in mice and ex vivo in human tissues. Methods. Using bioluminescence imaging, plasmid and adenoviral vector-based transgene expression in murine quadriceps in vivo was examined. Temporal control was assessed using a doxycycline-inducible system. An ex vivo model was developed and optimised using murine tissue, and applied in ex vivo human tissue. Results. In vivo plasmid-based transgene expression did not silence in murine muscle, unlike in liver. Although maximum luciferase expression was higher in muscle with adenoviral delivery compared with plasmid, expression reduced over time. The inducible promoter cassette successfully regulated gene expression with maximum levels a factor of 11 greater than baseline. Expression was re-induced to a similar level on a temporal basis. Luciferase expression was readily detected ex vivo in human muscle and tendon. Conclusions. Plasmid constructs resulted in long-term in vivo gene expression in skeletal muscle, in a controllable fashion utilising an inducible promoter in combination with oral agents. Successful plasmid gene transfection in human ex vivo mesenchymal tissue was demonstrated for the first time.

  18. Survey of 800+ datasets from human tissue and body fluid reveals XenomiRs are likely artifacts

    DEFF Research Database (Denmark)

    Kang, Wenjing; Bang-Berthelsen, Claus Heiner; Holm, Anja

    2017-01-01

    the main bloodstream (such as brain and cerebro-spinal fluids). Interestingly, the majority (81%) of body fluid xenomiRs stem from rodents, which are rare human dietary contributions, but common laboratory animals. Body fluid samples from the same studies tend to group together when clustered by xenomi...

  19. Development of Highly Sensitive and Specific mRNA Multiplex System (XCYR1) for Forensic Human Body Fluids and Tissues Identification

    Science.gov (United States)

    Xu, Yan; Xie, Jianhui; Cao, Yu; Zhou, Huaigu; Ping, Yuan; Chen, Liankang; Gu, Lihua; Hu, Wei; Bi, Gang; Ge, Jianye; Chen, Xin; Zhao, Ziqin

    2014-01-01

    The identification of human body fluids or tissues through mRNA-based profiling is very useful for forensic investigations. Previous studies have shown mRNA biomarkers are effective to identify the origin of biological samples. In this study, we selected 16 tissue specific biomarkers to evaluate their specificities and sensitivities for human body fluids and tissues identification, including porphobilinogen deaminase (PBGD), hemoglobin beta (HBB) and Glycophorin A (GLY) for circulatory blood, protamine 2 (PRM2) and transglutaminase 4 (TGM4) for semen, mucin 4 (MUC4) and human beta defensin 1(HBD1) for vaginal secretion, matrix metalloproteinases 7 and 11 (MMP7 and MMP11) for menstrual blood, keratin 4(KRT4) for oral mucosa, loricrin (LOR) and cystatin 6 (CST6) for skin, histatin 3(HTN3) for saliva, statherin (STATH) for nasal secretion, dermcidin (DCD) for sweat and uromodulin (UMOD) for urine. The above mentioned ten common forensic body fluids or tissues were used in the evaluation. Based on the evaluation, a reverse transcription (RT) PCR multiplex assay, XCYR1, which includes 12 biomarkers (i.e., HBB, GLY, HTN3, PRM2, KRT4, MMP11, MUC4, DCD, UMOD, MMP7, TGM4, and STATH) and 2 housekeeping genes [i.e., glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and 18SrRNA], was developed. This assay was further validated with real casework samples and mock samples (with both single source and mixture) and it was approved that XCYR1 is effective to identify common body fluids or tissues (i.e., circulatory blood, saliva, semen, vaginal secretion, menstrual blood, oral mucosa, nasal secretion, sweat and urine) in forensic casework samples. PMID:24991806

  20. Informatic system for a global tissue-fluid biorepository with a graph theory-oriented graphical user interface.

    Science.gov (United States)

    Butler, William E; Atai, Nadia; Carter, Bob; Hochberg, Fred

    2014-01-01

    The Richard Floor Biorepository supports collaborative studies of extracellular vesicles (EVs) found in human fluids and tissue specimens. The current emphasis is on biomarkers for central nervous system neoplasms but its structure may serve as a template for collaborative EV translational studies in other fields. The informatic system provides specimen inventory tracking with bar codes assigned to specimens and containers and projects, is hosted on globalized cloud computing resources, and embeds a suite of shared documents, calendars, and video-conferencing features. Clinical data are recorded in relation to molecular EV attributes and may be tagged with terms drawn from a network of externally maintained ontologies thus offering expansion of the system as the field matures. We fashioned the graphical user interface (GUI) around a web-based data visualization package. This system is now in an early stage of deployment, mainly focused on specimen tracking and clinical, laboratory, and imaging data capture in support of studies to optimize detection and analysis of brain tumour-specific mutations. It currently includes 4,392 specimens drawn from 611 subjects, the majority with brain tumours. As EV science evolves, we plan biorepository changes which may reflect multi-institutional collaborations, proteomic interfaces, additional biofluids, changes in operating procedures and kits for specimen handling, novel procedures for detection of tumour-specific EVs, and for RNA extraction and changes in the taxonomy of EVs. We have used an ontology-driven data model and web-based architecture with a graph theory-driven GUI to accommodate and stimulate the semantic web of EV science.

  1. Homeostasis, inflammation, and disease susceptibility.

    Science.gov (United States)

    Kotas, Maya E; Medzhitov, Ruslan

    2015-02-26

    While modernization has dramatically increased lifespan, it has also witnessed the increasing prevalence of diseases such as obesity, hypertension, and type 2 diabetes. Such chronic, acquired diseases result when normal physiologic control goes awry and may thus be viewed as failures of homeostasis. However, while nearly every process in human physiology relies on homeostatic mechanisms for stability, only some have demonstrated vulnerability to dysregulation. Additionally, chronic inflammation is a common accomplice of the diseases of homeostasis, yet the basis for this connection is not fully understood. Here we review the design of homeostatic systems and discuss universal features of control circuits that operate at the cellular, tissue, and organismal levels. We suggest a framework for classification of homeostatic signals that is based on different classes of homeostatic variables they report on. Finally, we discuss how adaptability of homeostatic systems with adjustable set points creates vulnerability to dysregulation and disease. This framework highlights the fundamental parallels between homeostatic and inflammatory control mechanisms and provides a new perspective on the physiological origin of inflammation. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Collagen metabolism during wound healing in rats. The aminoterminal propeptide of type III procollagen in serum and wound fluid in relation to formation of granulation tissue

    DEFF Research Database (Denmark)

    Jensen, L T; Garbarsch, C; Hørslev-Petersen, K

    1993-01-01

    The aminoterminal propeptide of type III procollagen (PIIINP) in serum has been shown to correlate with fibrillogenesis, and thus to be a potential direct marker of type III collagen deposition. The aim of the study was to investigate the correlation between changes in serum PIIINP and formation ......, changes in serum PIIINP mirror fibrillogenesis. Furthermore, our study provides experimental evidence consistent with the hypothesis that wound fluid PIIINP directly mirrors the local formation of granulation tissue, independent of weight loss and cyclophosphamide treatment.......The aminoterminal propeptide of type III procollagen (PIIINP) in serum has been shown to correlate with fibrillogenesis, and thus to be a potential direct marker of type III collagen deposition. The aim of the study was to investigate the correlation between changes in serum PIIINP and formation...... loss caused by treatment, weight loss caused by starvation was investigated. In untreated rats, serum PIIINP and wound fluid PIIINP were related to formation of granulation tissue (serum: r = 0.58, p

  3. Gingival crevicular fluid tissue/blood vessel-type plasminogen activator and plasminogen activator inhibitor-2 levels in patients with rheumatoid arthritis: effects of nonsurgical periodontal therapy.

    Science.gov (United States)

    Kurgan, Ş; Önder, C; Balcı, N; Fentoğlu, Ö; Eser, F; Balseven, M; Serdar, M A; Tatakis, D N; Günhan, M

    2017-06-01

    The aim of this study was to evaluate the effect of nonsurgical periodontal therapy on clinical parameters and gingival crevicular fluid levels of tissue/blood vessel-type plasminogen activator (t-PA) and plasminogen activator inhibitor-2 (PAI-2) in patients with periodontitis, with or without rheumatoid arthritis (RA). Fifteen patients with RA and chronic periodontitis (RA-P), 15 systemically healthy patients with chronic periodontitis (H-P) and 15 periodontally and systemically healthy volunteers (C) were included in the study. Plaque index, gingival index, probing pocket depth, clinical attachment level, bleeding on probing, gingival crevicular fluid t-PA and PAI-2 levels, erythrocyte sedimentation rate, serum C-reactive protein and disease activity score were evaluated at baseline and 3 mo after mechanical nonsurgical periodontal therapy. All periodontal clinical parameters were significantly higher in the RA-P and H-P groups compared with the C group (p periodontitis groups (p periodontitis and RA, nonsurgical periodontal therapy reduced the pretreatment gingival crevicular fluid t-PA levels, which were significantly correlated with gingival crevicular fluid PAI-2 levels. The significantly higher t-PA and PAI-2 gingival crevicular fluid levels in periodontal patients, regardless of systemic status, suggest that the plasminogen activating system plays a role in the disease process of periodontitis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Changes in D-aspartic acid and D-glutamic acid levels in the tissues and physiological fluids of mice with various D-aspartate oxidase activities.

    Science.gov (United States)

    Han, Hai; Miyoshi, Yurika; Koga, Reiko; Mita, Masashi; Konno, Ryuichi; Hamase, Kenji

    2015-12-10

    D-Aspartic acid (D-Asp) and D-glutamic acid (D-Glu) are currently paid attention as modulators of neuronal transmission and hormonal secretion. These two D-amino acids are metabolized only by D-aspartate oxidase (DDO) in mammals. Therefore, in order to design and develop new drugs controlling the D-Asp and D-Glu amounts via regulation of the DDO activities, changes in these acidic D-amino acid amounts in various tissues are expected to be clarified in model animals having various DDO activities. In the present study, the amounts of Asp and Glu enantiomers in 6 brain tissues, 11 peripheral tissues and 2 physiological fluids of DDO(+/+), DDO(+/-) and DDO(-/-) mice were determined using a sensitive and selective two-dimensional HPLC system. As a result, the amounts of D-Asp were drastically increased with the decrease in the DDO activity in all the tested tissues and physiological fluids. On the other hand, the amounts of D-Glu were almost the same among the 3 strains of mice. The present results are useful for designing new drug candidates, such as DDO inhibitors, and further studies are expected. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Post-processing of polymer foam tissue scaffolds with high power ultrasound: A route to increased pore interconnectivity, pore size and fluid transport

    International Nuclear Information System (INIS)

    Watson, N.J.; Johal, R.K.; Glover, Z.; Reinwald, Y.; White, L.J.; Ghaemmaghami, A.M.; Morgan, S.P.; Rose, F.R.A.J.; Povey, M.J.W.; Parker, N.G.

    2013-01-01

    The aim of this work is to demonstrate that the structural and fluidic properties of polymer foam tissue scaffolds, post-fabrication but prior to the introduction of cells, can be engineered via exposure to high power ultrasound. Our analysis is supported by measurements of fluid uptake during insonification and imaging of the scaffold microstructure via X-ray computed tomography, scanning electron microscopy and acoustic microscopy. The ultrasonic treatment is performed with a frequency of 30 kHz, average intensities up to 80,000 Wm −2 and exposure times up to 20 h. The treatment is found to increase the mean pore size by over 10%. More striking is the improvement in fluid uptake: for scaffolds with only 40% water uptake via standard immersion techniques, we can routinely achieve full saturation of the scaffold over approximately one hour of exposure. These desirable modifications occur with negligible loss of scaffold integrity and mass, and are optimized when the ultrasound treatment is coupled to a pre-wetting stage with ethanol. Our findings suggest that high power ultrasound is highly targeted towards flow obstructions in the scaffold architecture, thereby providing an efficient means to promote pore interconnectivity and fluid transport in thick foam tissue scaffolds. - Highlights: • We expose thick PLA foam tissue scaffolds to high power ultrasound. • This treatment both accelerates and enhances the uptake of fluid into the scaffold. • It leads to significant increases in the mean pore size, pore interconnectivity and porosity. • The ultrasonic treatment is most effective when the scaffold is pre-wet with ethanol. • We demonstrate the use of acoustic microscopy to characterize the scaffold microstructure

  6. Synovial fluid white cell count and histopathological examination of periprosthetic tissue samples (frozen and permanent sections in the diagnosis of prosthetic knee infection

    Directory of Open Access Journals (Sweden)

    Obada B.

    2017-02-01

    Full Text Available The aim of the study was to determine prospectively the importance of synovial fluid white cell count and intraoperative frozen and permanent sections analysis (number of polymorphonuclear leukocytes per high-power field in the diagnosis of septic total knee arthroplasty. There were studied prospectively 72 patients who needed a revision total knee arthroplasty between 2013-2015. 30 patients were diagnosed with prosthetic joint infection due to high rates of ESR (93% and CRP (90% and preoperative positive culture from aspirated synovial fluid and 42 patients were considered to have aseptic failure according to negative preoperative culture from joint aspirate. For all the patients was analysed synovial fluid white cell count and histopathological aspect of intraoperative frozen and permanent sections of periprosthetic tissue. The results showed a median value of 13800 of sinovial white cells count for infected knee and 92 for noninfected knee. 90% of the patients with joint infection had more than 5 polymorphonuclear leukocytes per high power field on intraoperative frozen sections and 83% on permanent sections. None of the patients from aseptic group had more than 5 polymorphonuclear leukocytes per field on permanent sections. The erythrocyte sedimentation rate and C-reactive protein level can be supplemented with cultures of aspirated joint fluid and fluid white cell count to confirm the diagnosis of periprosthetic infection. When the preoperative diagnosis remain unclear, the histological examination of frozen or permanent sections of periprosthetic tissue with at least 5 polymorphonuclear leukocytes per high power field, is predictive for the presence of infection.

  7. Molecular monitoring of equine joint homeostasis

    OpenAIRE

    de Grauw, J.C.

    2010-01-01

    Chronic joint disorders are a major cause of impaired mobility and loss of quality of life in both humans and horses. Regardless of the primary insult, any joint disorder is characterized by an upset in normal joint homeostasis, the balance between tissue anabolism and catabolism that is normally maintained by resident articular cells. This upset is often fuelled by a local inflammatory response in the synovial membrane and the articular cartilage. Our current understanding of the pathogenesi...

  8. Penetration and distribution of gadolinium-based contrast agents into the cerebrospinal fluid in healthy rats: a potential pathway of entry into the brain tissue

    Energy Technology Data Exchange (ETDEWEB)

    Jost, Gregor; Frenzel, Thomas; Lohrke, Jessica; Pietsch, Hubertus [MR and CT Contrast Media Research, Bayer Pharma AG, Berlin (Germany); Lenhard, Diana Constanze [Charite, Institute of Vegetative Physiology, Berlin (Germany); Naganawa, Shinji [Nagoya University Graduate School of Medicine, Department of Radiology, Nagoya (Japan)

    2017-07-15

    Signal hyperintensity on unenhanced MRI in certain brain regions has been reported after multiple administrations of some, but not all, gadolinium-based contrast agents (GBCAs). One potential initial pathway of GBCA entry into the brain, infiltration from blood into the cerebrospinal fluid (CSF), was systematically evaluated in this preclinical study. GBCA infiltration and distribution in the CSF were investigated in healthy rats using repeated fluid-attenuated MRI up to 4 h after high-dose (1.8 mmol/kg) administration of six marketed and one experimental GBCA. Additionally, gadolinium measurements in CSF, blood and brain tissue samples (after 24 h) were performed using inductively coupled plasma mass spectrometry. Enhanced MRI signals in the CSF spaces with similar distribution kinetics were observed for all GBCAs. No substantial differences in the gadolinium concentrations among the marketed GBCAs were found in the CSF, blood or brain tissue. After 4.5 h, the concentration in the CSF was clearly higher than in blood but was almost completely cleared and lower than the brain tissue concentration after 24 h. In contrast to the brain signal hyperintensities, no differences in penetration and distribution into the CSF of healthy rats exist among the marketed GBCAs. (orig.)

  9. Penetration and distribution of gadolinium-based contrast agents into the cerebrospinal fluid in healthy rats: a potential pathway of entry into the brain tissue

    International Nuclear Information System (INIS)

    Jost, Gregor; Frenzel, Thomas; Lohrke, Jessica; Pietsch, Hubertus; Lenhard, Diana Constanze; Naganawa, Shinji

    2017-01-01

    Signal hyperintensity on unenhanced MRI in certain brain regions has been reported after multiple administrations of some, but not all, gadolinium-based contrast agents (GBCAs). One potential initial pathway of GBCA entry into the brain, infiltration from blood into the cerebrospinal fluid (CSF), was systematically evaluated in this preclinical study. GBCA infiltration and distribution in the CSF were investigated in healthy rats using repeated fluid-attenuated MRI up to 4 h after high-dose (1.8 mmol/kg) administration of six marketed and one experimental GBCA. Additionally, gadolinium measurements in CSF, blood and brain tissue samples (after 24 h) were performed using inductively coupled plasma mass spectrometry. Enhanced MRI signals in the CSF spaces with similar distribution kinetics were observed for all GBCAs. No substantial differences in the gadolinium concentrations among the marketed GBCAs were found in the CSF, blood or brain tissue. After 4.5 h, the concentration in the CSF was clearly higher than in blood but was almost completely cleared and lower than the brain tissue concentration after 24 h. In contrast to the brain signal hyperintensities, no differences in penetration and distribution into the CSF of healthy rats exist among the marketed GBCAs. (orig.)

  10. Adipose tissue-derived mesenchymal stem cells acquire bone cell-like responsiveness to fluid shear stress on osteogenic stimulation

    NARCIS (Netherlands)

    Knippenberg, M.; Helder, M.N.; Doulabi, B.Z.; Semeins, C.M.; Wuisman, P.I.J.M.; Klein-Nulend, J.

    2005-01-01

    To engineer bone tissue, mechanosensitive cells are needed that are able to perform bone cell-specific functions, such as (re)modeling of bone tissue. In vivo, local bone mass and architecture are affected by mechanical loading, which is thought to provoke a cellular response via loading-induced

  11. Penetration and distribution of gadolinium-based contrast agents into the cerebrospinal fluid in healthy rats: a potential pathway of entry into the brain tissue.

    Science.gov (United States)

    Jost, Gregor; Frenzel, Thomas; Lohrke, Jessica; Lenhard, Diana Constanze; Naganawa, Shinji; Pietsch, Hubertus

    2017-07-01

    Signal hyperintensity on unenhanced MRI in certain brain regions has been reported after multiple administrations of some, but not all, gadolinium-based contrast agents (GBCAs). One potential initial pathway of GBCA entry into the brain, infiltration from blood into the cerebrospinal fluid (CSF), was systematically evaluated in this preclinical study. GBCA infiltration and distribution in the CSF were investigated in healthy rats using repeated fluid-attenuated MRI up to 4 h after high-dose (1.8 mmol/kg) administration of six marketed and one experimental GBCA. Additionally, gadolinium measurements in CSF, blood and brain tissue samples (after 24 h) were performed using inductively coupled plasma mass spectrometry. Enhanced MRI signals in the CSF spaces with similar distribution kinetics were observed for all GBCAs. No substantial differences in the gadolinium concentrations among the marketed GBCAs were found in the CSF, blood or brain tissue. After 4.5 h, the concentration in the CSF was clearly higher than in blood but was almost completely cleared and lower than the brain tissue concentration after 24 h. In contrast to the brain signal hyperintensities, no differences in penetration and distribution into the CSF of healthy rats exist among the marketed GBCAs. • Gadolinium-based contrast agents can cross the blood-CSF barrier. • Fluid-attenuated MRI shows GBCA distribution with CSF flow. • GBCA structure and physicochemical properties do not impact CSF penetration and distribution. • GBCA clearance from CSF was almost complete within 24 h in rats. • CSF is a potential pathway of GBCA entry into the brain.

  12. Total iodine quantification in fluids and tissues from iodine- or iodide-supplemented rats by ion chromatography following microwave-assisted digestion.

    Science.gov (United States)

    Delgado, Guadalupe; Muñoz-Torres, Carolina; Orozco-Esquivel, Teresa; Anguiano, Brenda; Aceves, Carmen

    2015-03-01

    Iodine is a crucial component of thyroid hormones, and several reports have shown that iodine per se is implicated in the physiopathology of other organs. Innovative ion chromatography detection following a four-step temperature ramp microwave digestion in 25-50 mM nitric acid was developed to measure total iodine in biological fluids and tissue samples from female Sprague-Dawley rats supplemented with 0.05% molecular iodine (I2) or 0.05% potassium iodide (I(-)) in drinking water. The reported method allows the measurement of total iodine with a limit of quantification of 13.7 μg L(-1), recoveries of 96.3-100.3%, and intra- and inter-assay variations, of 3.5% and 7.4% respectively. Analysis of biological fluids showed that after 48 hours, iodine-supplemented animals exhibited significantly higher levels of total iodine in both serum and urine compared with those supplemented with iodide. The half-life of iodine in serum and urine measured over the first 48 h showed similar patterns for both the I2 (7.89 and 7.76 hours) and I(-) (8.27 and 8.90 hours) supplements. Differential uptake patterns were observed in tissues after 6 days of supplements, with I(-) preferentially retained by thyroid, lactating mammary gland, and milk, and a slightly but significantly higher capture of I2 in pituitary, ovary, and virgin mammary gland. We developed a rapid, selective, and accurate digestion method to process fluid and tissue samples that permits reproducible measurements of total iodine by ion chromatography; iodine or iodide supplement show a similar serum and urine half-life, but organ-specific uptake depends on the chemical form of the iodine supplement.

  13. MicroRNAs and Periodontal Homeostasis.

    Science.gov (United States)

    Luan, X; Zhou, X; Trombetta-eSilva, J; Francis, M; Gaharwar, A K; Atsawasuwan, P; Diekwisch, T G H

    2017-05-01

    MicroRNAs (miRNAs) are a group of small RNAs that control gene expression in all aspects of eukaryotic life, primarily through RNA silencing mechanisms. The purpose of the present review is to introduce key miRNAs involved in periodontal homeostasis, summarize the mechanisms by which they affect downstream genes and tissues, and provide an introduction into the therapeutic potential of periodontal miRNAs. In general, miRNAs function synergistically to fine-tune the regulation of biological processes and to remove expression noise rather than by causing drastic changes in expression levels. In the periodontium, miRNAs play key roles in development and periodontal homeostasis and during the loss of periodontal tissue integrity as a result of periodontal disease. As part of the anabolic phase of periodontal homeostasis and periodontal development, miRNAs direct periodontal fibroblasts toward alveolar bone lineage differentiation and new bone formation through WNT, bone morphogenetic protein, and Notch signaling pathways. miRNAs contribute equally to the catabolic aspect of periodontal homeostasis as they affect osteoclastogenesis and osteoclast function, either by directly promoting osteoclast activity or by inhibiting osteoclast signaling intermediaries or through negative feedback loops. Their small size and ability to target multiple regulatory networks of related sets of genes have predisposed miRNAs to become ideal candidates for drug delivery and tissue regeneration. To address the immense therapeutic potential of miRNAs and their antagomirs, an ever growing number of delivery approaches toward clinical applications have been developed, including nanoparticle carriers and secondary structure interference inhibitor systems. However, only a fraction of the miRNAs involved in periodontal health and disease are known today. It is anticipated that continued research will lead to a more comprehensive understanding of the periodontal miRNA world, and a systematic

  14. Pseudomonas aeruginosa outer membrane vesicles triggered by human mucosal fluid and lysozyme can prime host tissue surfaces for bacterial adhesion

    Directory of Open Access Journals (Sweden)

    Matteo Maria Emiliano Metruccio

    2016-06-01

    Full Text Available Pseudomonas aeruginosa is a leading cause of human morbidity and mortality that often targets epithelial surfaces. Host immunocompromise, or the presence of indwelling medical devices, including contact lenses, can predispose to infection. While medical devices are known to accumulate bacterial biofilms, it is not well understood why resistant epithelial surfaces become susceptible to P. aeruginosa. Many bacteria, including P. aeruginosa, release Outer Membrane Vesicles (OMVs in response to stress that can fuse with host cells to alter their function. Here, we tested the hypothesis that mucosal fluid can trigger OMV release to compromise an epithelial barrier. This was tested using tear fluid and corneal epithelial cells in vitro and in vivo. After 1 h both human tear fluid, and the tear component lysozyme, greatly enhanced OMV release from P. aeruginosa strain PAO1 compared to PBS controls (~100 fold. TEM and SDS-PAGE showed tear fluid and lysozyme-induced OMVs were similar in size and protein composition, but differed from biofilm-harvested OMVs, the latter smaller with fewer proteins. Lysozyme-induced OMVs were cytotoxic to human corneal epithelial cells in vitro and murine corneal epithelium in vivo. OMV exposure in vivo enhanced Ly6G/C expression at the corneal surface, suggesting myeloid cell recruitment, and primed the cornea for bacterial adhesion (~4-fold, P < 0.01. Sonication disrupted OMVs retained cytotoxic activity, but did not promote adhesion, suggesting the latter required OMV-mediated events beyond cell killing. These data suggest that mucosal fluid induced P. aeruginosa OMVs could contribute to loss of epithelial barrier function during medical device-related infections.

  15. Determination of pharmacological levels of harmane, harmine and harmaline in mammalian brain tissue, cerebrospinal fluid and plasma by high-performance liquid chromatography with fluorimetric detection.

    Science.gov (United States)

    Moncrieff, J

    1989-11-24

    Increased blood aldehyde levels, as occur in alcohol intoxication, could lead to the formation of beta-carbolines such as harmane by condensation with indoleamines. Endogenous beta-carbolines, therefore, should occur in specific brain areas where indoleamine concentrations are high, whilst exogenous beta-carbolines should exhibit an even distribution. The author presents direct and sensitive methods for assaying the beta-carbolines harmane, harmine and harmaline in brain tissue, cerebrospinal fluid and plasma at picogram sample concentrations using reversed-phase high-performance liquid chromatography with fluorimetric detection and minimal sample preparation. Using these assay methods, it was found that the distribution of beta-carbolines from a source exogenous to the brain results in a relatively even distribution within the brain tissue.

  16. Human homeostasis in the space environment: A systems synthesis approach

    Science.gov (United States)

    Economos, A. C.

    1982-01-01

    The features of homeostatic changes which occur during adaptation to the weightless state are examined and the possible mechanisms underlying the responses are explored. Cardiac output, negative fluid balance, body weight, bone calcium, and muscle atrophy are discussed. Some testable hypotheses concerning possible effects on homeostasis that long-term exposure to weightlessness might cause are proposed.

  17. An update clinical application of amniotic fluid-derived stem cells (AFSCs) in cancer cell therapy and tissue engineering.

    Science.gov (United States)

    Gholizadeh-Ghaleh Aziz, Shiva; Fathi, Ezzatollah; Rahmati-Yamchi, Mohammad; Akbarzadeh, Abolfazl; Fardyazar, Zahra; Pashaiasl, Maryam

    2017-06-01

    Recent studies have elucidated that cell-based therapies are promising for cancer treatments. The human amniotic fluid stem (AFS) cells are advantageous cells for such therapeutic schemes that can be innately changed to express therapeutic proteins. HAFSCs display a natural tropism to cancer cells in vivo. They can be useful in cancer cells targeting. Moreover, they are easily available from surplus diagnostic samples during pregnancy and less ethical and legal concern are associated with the collection and application than other putative cells are subjected. This review will designate representatives of amniotic fluid and stem cell derived from amniotic fluid. For this propose, we collect state of human AFS cells data applicable in cancer therapy by dividing this approach into two main classes (nonengineered and engineered based approaches). Our study shows the advantage of AFS cells over other putative cells types in terms differentiation ability to a wide range of cells by potential and effective use in preclinical studies for a variety of diseases. This study has shown the elasticity of human AFS cells and their favorable potential as a multipotent cell source for regenerative stem cell therapy and capable of giving rise to multiple lineages including such as osteoblasts and adipocyte.

  18. Data Mining of Small RNA-Seq Suggests an Association Between Prostate Cancer and Altered Abundance of 5′ Transfer RNA Halves in Seminal Fluid and Prostatic Tissues

    Directory of Open Access Journals (Sweden)

    Joseph M Dhahbi

    2018-02-01

    Full Text Available Extracellular RNAs are gaining clinical interest as biofluid-based noninvasive markers for diseases, especially cancer. In particular, derivatives of transfer RNA (tRNA are emerging as a new class of small-noncoding RNAs with high biomarker potential. We and others previously reported alterations in serum levels of specific tRNA halves in disease states including cancer. Here, we explored seminal fluid for tRNA halves as potential markers of prostate cancer. We found that 5′ tRNA halves are abundant in seminal fluid and are elevated in prostate cancer relative to noncancer patients. Importantly, most of these tRNA halves are also detectable in prostatic tissues, and a subset were increased in malignant relative to adjacent normal tissue. These findings emphasize the potential of 5′ tRNA halves as noninvasive markers for prostate cancer screening and diagnosis and provide leads for future work to elucidate a putative role of the 5′ tRNA halves in carcinogenesis.

  19. Pain emotion and homeostasis.

    Science.gov (United States)

    Panerai, Alberto E

    2011-05-01

    Pain has always been considered as part of a defensive strategy, whose specific role is to signal an immediate, active danger. This definition partially fits acute pain, but certainly not chronic pain, that is maintained also in the absence of an active noxa or danger and that nowadays is considered a disease by itself. Moreover, acute pain is not only an automatic alerting system, but its severity and characteristics can change depending on the surrounding environment. The affective, emotional components of pain have been and are the object of extensive attention and research by psychologists, philosophers, physiologists and also pharmacologists. Pain itself can be considered to share the same genesis as emotions and as a specific emotion in contributing to the maintenance of the homeostasis of each unique subject. Interestingly, this role of pain reaches its maximal development in the human; some even argue that it is specific for the human primate.

  20. Quantification of sulfatides and lysosulfatides in tissues and body fluids by liquid chromatography-tandem mass spectrometry

    NARCIS (Netherlands)

    Mirzaian, Mina; Kramer, Gertjan; Poorthuis, Ben J. H. M.

    2015-01-01

    Sulfatides are found in brain as components of myelin, oligodendrocytes, and neurons but are also present in various visceral tissues. Metachromatic leukodystrophy (MLD) is an inherited lysosomal storage disorder caused by a deficiency of arylsulfatase A, leading to severe white matter disease due

  1. Evaluation of penicillin G residues by kidney inhibition swab tests in sow body fluids and tissues following intramuscular injection

    Science.gov (United States)

    In 2011, the USDA-Food Safety and Inspection Service (FSIS) changed the method used for screening swine tissues for antimicrobial residues from the Fast Antimicrobial Screen Test to the Kidney Inhibition Swab (KIS(TM)). Here, we describe the use of KIS(TM) test for the detection of penicillin G res...

  2. A Physiologist's View of Homeostasis

    Science.gov (United States)

    Modell, Harold; Cliff, William; Michael, Joel; McFarland, Jenny; Wenderoth, Mary Pat; Wright, Ann

    2015-01-01

    Homeostasis is a core concept necessary for understanding the many regulatory mechanisms in physiology. Claude Bernard originally proposed the concept of the constancy of the "milieu interieur," but his discussion was rather abstract. Walter Cannon introduced the term "homeostasis" and expanded Bernard's notion of…

  3. Potential radioimmunoassay system for detection of Hanganutziu-Deicher type heterophile antigen(s) and antibodies in tissues and fluids

    Energy Technology Data Exchange (ETDEWEB)

    Mukuria, J C; Naiki, Masaharu; Hashimoto, Masato; Nishiura, Katsumi; Okabe, Masahiro; Kato, Shiro

    1985-06-12

    A relatively simple, specific and sensitive radioimmunoassay system has been developed for the detection of heterophile Hanganutziu-Deicher (H-D) antigen(s) and antibodies. The SVI-labeled H-D antigen-active molecule used for the assay is a bovine erythrocyte major glycoprotein previously found to have a strong H-D antigen potency. Different H-D antigen-active molecules were compared for heterophile H-D antigen potency. Eight different lung cancer tissues were assayed for H-D antigen. The sera from the 8 lung cancer patients were also screened by ELISA and RIA in an attmept to correlate expression of H-D antigen on tissues with elevation of H-D antibodies.

  4. Determination of fluoroquinolones in fish tissues, biological fluids, and environmental waters by liquid chromatography tandem mass spectrometry.

    Science.gov (United States)

    Ziarrusta, Haizea; Val, Nahia; Dominguez, Haizea; Mijangos, Leire; Prieto, Ailette; Usobiaga, Aresatz; Etxebarria, Nestor; Zuloaga, Olatz; Olivares, Maitane

    2017-11-01

    This work describes the optimization, validation, and application in real samples of accurate and precise analytical methods to determine ten fluoroquinolones (FQs) (norfloxacin, enoxacin, pefloxacin, ofloxacin, levofloxacin, ciprofloxacin, danofloxacin, lomefloxacin, enrofloxacin, and sparfloxacin) in different environmental matrices, such as water (estuarine, seawater, and wastewater treatment plant effluent), fish tissues (muscle and liver), and fish biofluids (plasma and bile). The analysis step performed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was fully optimized to improve the separation and detection steps. The extraction of analytes from fish tissues was accomplished using focused ultrasound solid-liquid extraction using methanol/acetic acid (95:5 v/v) as extractant. The preconcentration and clean-up steps were optimized in terms of extraction efficiency and cleanliness and the best strategy for each matrix was selected: (i) Oasis HLB for seawater and muscle, (ii) liquid-liquid extraction combined with Oasis HLB for the lipid-rich liver, (iii) the combination of Evolute-WAX and Oasis HLB for estuarine water and wastewater treatment plant effluent, and (iv) molecular imprinted polymers for biofluids. The methods afforded satisfactory apparent recoveries (80-126%) and repeatability (RSD < 15%), except for sparfloxacin, which showed a lack of correction with the available isotopically labeled surrogates ([ 2 H 8 ]-ciprofloxacin and [ 2 H 5 ]-enrofloxacin). Ciprofloxacin, norfloxacin, and ofloxacin were detected in both water and fish liver samples from the Biscay Coast at concentrations up to 278 ng/L and 4 ng/g, respectively. To the best of our knowledge, this work is one of the few analyzing up to ten FQs and in so many fish tissues and biofluids. Graphical abstract Determination of fluoroquinolones in different environmental matrices, such as water (estuarine, seawater, and wastewater treatment plant effluent), fish tissues (muscle

  5. Near-infrared spectroscopy of the adult head: effect of scattering and absorbing obstructions in the cerebrospinal fluid layer on light distribution in the tissue.

    Science.gov (United States)

    Dehghani, H; Delpy, D T

    2000-09-01

    Previous modeling of near-infrared (NIR) light distribution in models of the adult head incorporating a clear nonscattering cerebrospinal fluid (CSF) layer have shown the latter to have a profound effect on the resulting photon measurement density function (PMDF). In particular, the presence of the CSF limits the PMDF largely to the outer cortical gray matter with little signal contribution from the deeper white matter. In practice, the CSF is not a simple unobstructed clear layer but contains light-scattering membranes and is crossed by various blood vessels. Using a radiosity-diffusion finite-element model, we investigated the effect on the PMDF of introducing intrusions within the clear layer. The results show that the presence of such obstructions does not significantly increase the light penetration into the brain tissue, except immediately adjacent to the obstruction and that its presence also increases the light sampling of the adjacent skull tissues, which would lead to additional contamination of the NIR spectroscopy signal by the surface tissue layers.

  6. Connective tissue of cervical carcinoma xenografts: associations with tumor hypoxia and interstitial fluid pressure and its assessment by DCE-MRI and DW-MRI.

    Science.gov (United States)

    Hompland, Tord; Ellingsen, Christine; Galappathi, Kanthi; Rofstad, Einar K

    2014-01-01

    Abstract Background. A high fraction of stroma in malignant tissues is associated with tumor progression, metastasis, and poor prognosis. Possible correlations between the stromal and physiologic microenvironments of tumors and the potential of dynamic contrast-enhanced (DCE) and diffusion-weighted (DW) magnetic resonance imaging (MRI) in quantification of the stromal microenvironment were investigated in this study. Material and methods. CK-160 cervical carcinoma xenografts were used as preclinical tumor model. A total of 43 tumors were included in the study, and of these tumors, 17 were used to search for correlations between the stromal and physiologic microenvironments, 11 were subjected to DCE-MRI, and 15 were subjected to DW-MRI. DCE-MRI and DW-MRI were carried out at 1.5 T with a clinical MR scanner and a slotted tube resonator transceiver coil constructed for mice. Fraction of connective tissue (CTFCol) and fraction of hypoxic tissue (HFPim) were determined by immunohistochemistry. A Millar SPC 320 catheter was used to measure tumor interstitial fluid pressure (IFP). Results. CTFCol showed a positive correlation to IFP and an inverse correlation to HFPim. The apparent diffusion coefficient assessed by DW-MRI was inversely correlated to CTFCol, whereas no correlation was found between DCE-MRI-derived parameters and CTFCol. Conclusion. DW-MRI is a potentially useful method for characterizing the stromal microenvironment of tumors.

  7. Flavanol-Enriched Cocoa Powder Alters the Intestinal Microbiota, Tissue and Fluid Metabolite Profiles, and Intestinal Gene Expression in Pigs.

    Science.gov (United States)

    Jang, Saebyeol; Sun, Jianghao; Chen, Pei; Lakshman, Sukla; Molokin, Aleksey; Harnly, James M; Vinyard, Bryan T; Urban, Joseph F; Davis, Cindy D; Solano-Aguilar, Gloria

    2016-04-01

    Consumption of cocoa-derived polyphenols has been associated with several health benefits; however, their effects on the intestinal microbiome and related features of host intestinal health are not adequately understood. The objective of this study was to determine the effects of eating flavanol-enriched cocoa powder on the composition of the gut microbiota, tissue metabolite profiles, and intestinal immune status. Male pigs (5 mo old, 28 kg mean body weight) were supplemented with 0, 2.5, 10, or 20 g flavanol-enriched cocoa powder/d for 27 d. Metabolites in serum, urine, the proximal colon contents, liver, and adipose tissue; bacterial abundance in the intestinal contents and feces; and intestinal tissue gene expression of inflammatory markers and Toll-like receptors (TLRs) were then determined. O-methyl-epicatechin-glucuronide conjugates dose-dependently increased (Pcocoa powder. The concentration of 3-hydroxyphenylpropionic acid isomers in urine decreased as the dose of cocoa powder fed to pigs increased (75-85%,Pcocoa powder/d, respectively. Moreover, consumption of cocoa powder reducedTLR9gene expression in ileal Peyer's patches (67-80%,Pcocoa powder/d compared with pigs not supplemented with cocoa powder. This study demonstrates that consumption of cocoa powder by pigs can contribute to gut health by enhancing the abundance ofLactobacillusandBifidobacteriumspecies and modulating markers of localized intestinal immunity. © 2016 American Society for Nutrition.

  8. Regulation of energy homeostasis via GPR120

    Directory of Open Access Journals (Sweden)

    Atsuhiko eIchimura

    2014-07-01

    Full Text Available Free fatty acids (FFAs are fundamental units of key nutrients. FFAs exert various biological functions, depending on the chain length and degree of desaturation. Recent studies have shown that several FFAs act as ligands of G-protein-coupled receptors (GPCRs, activate intracellular signaling and exert physiological functions via these GPCRs. GPR120 (also known as free fatty acid receptor 4, FFAR4 is activated by unsaturated medium- to long-chain FFAs and has a critical role in various physiological homeostasis mechanisms such as incretin hormone secretion, food preference, anti-inflammation and adipogenesis. Recent studies showed that a lipid sensor GPR120 has a key role in sensing dietary fat in white adipose tissue and regulates the whole body energy homeostasis in both humans and rodents. Genetic study in human identified the loss-of-functional mutation of GPR120 associated with obesity and insulin resistance. In addition, dysfunction of GPR120 has been linked as a novel risk factor for diet-induced obesity. This review aims to provide evidence from the recent development in physiological function of GPR120 and discusses its functional roles in regulation of energy homeostasis and its potential as drug targets.

  9. Liver immunology and its role in inflammation and homeostasis.

    Science.gov (United States)

    Robinson, Mark W; Harmon, Cathal; O'Farrelly, Cliona

    2016-05-01

    The human liver is usually perceived as a non-immunological organ engaged primarily in metabolic, nutrient storage and detoxification activities. However, we now know that the healthy liver is also a site of complex immunological activity mediated by a diverse immune cell repertoire as well as non-hematopoietic cell populations. In the non-diseased liver, metabolic and tissue remodeling functions require elements of inflammation. This inflammation, in combination with regular exposure to dietary and microbial products, creates the potential for excessive immune activation. In this complex microenvironment, the hepatic immune system tolerates harmless molecules while at the same time remaining alert to possible infectious agents, malignant cells or tissue damage. Upon appropriate immune activation to challenge by pathogens or tissue damage, mechanisms to resolve inflammation are essential to maintain liver homeostasis. Failure to clear 'dangerous' stimuli or regulate appropriately activated immune mechanisms leads to pathological inflammation and disrupted tissue homeostasis characterized by the progressive development of fibrosis, cirrhosis and eventual liver failure. Hepatic inflammatory mechanisms therefore have a spectrum of roles in the healthy adult liver; they are essential to maintain tissue and organ homeostasis and, when dysregulated, are key drivers of the liver pathology associated with chronic infection, autoimmunity and malignancy. In this review, we explore the changing perception of inflammation and inflammatory mediators in normal liver homeostasis and propose targeting of liver-specific immune regulation pathways as a therapeutic approach to treat liver disease.

  10. Deregulation of ocular nucleotide homeostasis in patients with diabetic retinopathy.

    Science.gov (United States)

    Loukovaara, Sirpa; Sandholm, Jouko; Aalto, Kristiina; Liukkonen, Janne; Jalkanen, Sirpa; Yegutkin, Gennady G

    2017-02-01

    Clear signaling roles for ATP and adenosine have been established in all tissues, including the eye. The magnitude of signaling responses is governed by networks of enzymes; however, little is known about the regulatory mechanisms of purinergic signaling in the eye. By employing thin-layer chromatographic assays with 3 H-labeled substrates, this study aimed to evaluate the role of nucleotide homeostasis in the pathogenesis of vitreoretinal diseases in humans. We have identified soluble enzymes ecto-5'-nucleotidase/CD73, adenylate kinase-1, and nucleoside diphosphate kinase in the vitreous fluid that control active cycling between pro-inflammatory ATP and anti-inflammatory adenosine. Strikingly, patients with proliferative form of diabetic retinopathy (DR) had higher adenylate kinase activity and ATP concentration, when compared to non-proliferative DR eyes and non-diabetic controls operated for rhegmatogenous retinal detachment, macular hole, and pucker. The non-parametric correlation analysis revealed positive correlations between intravitreal adenylate kinase and concentrations of ATP, ADP, and other angiogenic (angiopoietins-1 and -2), profibrotic (transforming growth factor-β1), and proteolytic (matrix metalloproteinase-9) factors but not erythropoietin and VEGF. Immunohistochemical staining of postmortem human retina additionally revealed selective expression of ecto-5'-nucleotidase/CD73 on the rod-and-cone-containing photoreceptor cells. Collectively, these findings provide novel insights into the regulatory mechanisms that influence purinergic signaling in diseased eye and open up new possibilities in the development of enzyme-targeted therapeutic approaches for prevention and treatment of DR. Ecto-5'-nucleotidase/CD73 and adenylate kinase-1 circulate in human vitreous fluid. Adenylate kinase activity is high in diabetic eyes with proliferative retinopathy. Diabetic eyes display higher intravitreal ATP/ADP ratio than non-diabetic controls. Soluble adenylate

  11. Iron homeostasis during pregnancy.

    Science.gov (United States)

    Fisher, Allison L; Nemeth, Elizabeta

    2017-12-01

    During pregnancy, iron needs to increase substantially to support fetoplacental development and maternal adaptation to pregnancy. To meet these iron requirements, both dietary iron absorption and the mobilization of iron from stores increase, a mechanism that is in large part dependent on the iron-regulatory hormone hepcidin. In healthy human pregnancies, maternal hepcidin concentrations are suppressed in the second and third trimesters, thereby facilitating an increased supply of iron into the circulation. The mechanism of maternal hepcidin suppression in pregnancy is unknown, but hepcidin regulation by the known stimuli (i.e., iron, erythropoietic activity, and inflammation) appears to be preserved during pregnancy. Inappropriately increased maternal hepcidin during pregnancy can compromise the iron availability for placental transfer and impair the efficacy of iron supplementation. The role of fetal hepcidin in the regulation of placental iron transfer still remains to be characterized. This review summarizes the current understanding and addresses the gaps in knowledge about gestational changes in hematologic and iron variables and regulatory aspects of maternal, fetal, and placental iron homeostasis. © 2017 American Society for Nutrition.

  12. A mixture theory model of fluid and solute transport in the microvasculature of normal and malignant tissues. II: Factor sensitivity analysis, calibration, and validation.

    Science.gov (United States)

    Schuff, M M; Gore, J P; Nauman, E A

    2013-12-01

    The treatment of cancerous tumors is dependent upon the delivery of therapeutics through the blood by means of the microcirculation. Differences in the vasculature of normal and malignant tissues have been recognized, but it is not fully understood how these differences affect transport and the applicability of existing mathematical models has been questioned at the microscale due to the complex rheology of blood and fluid exchange with the tissue. In addition to determining an appropriate set of governing equations it is necessary to specify appropriate model parameters based on physiological data. To this end, a two stage sensitivity analysis is described which makes it possible to determine the set of parameters most important to the model's calibration. In the first stage, the fluid flow equations are examined and a sensitivity analysis is used to evaluate the importance of 11 different model parameters. Of these, only four substantially influence the intravascular axial flow providing a tractable set that could be calibrated using red blood cell velocity data from the literature. The second stage also utilizes a sensitivity analysis to evaluate the importance of 14 model parameters on extravascular flux. Of these, six exhibit high sensitivity and are integrated into the model calibration using a response surface methodology and experimental intra- and extravascular accumulation data from the literature (Dreher et al. in J Natl Cancer Inst 98(5):335-344, 2006). The model exhibits good agreement with the experimental results for both the mean extravascular concentration and the penetration depth as a function of time for inert dextran over a wide range of molecular weights.

  13. A high-throughput method for the simultaneous determination of multiple mycotoxins in human and laboratory animal biological fluids and tissues by PLE and HPLC-MS/MS.

    Science.gov (United States)

    Cao, Xiaoqin; Wu, Shuangchan; Yue, Yuan; Wang, Shi; Wang, Yuting; Tao, Li; Tian, Hui; Xie, Jianmei; Ding, Hong

    2013-12-30

    A high-throughput method for the determination of 28 mycotoxins involving pressurised liquid extraction (PLE) coupled with liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) has been optimised and validated for determination in various biological fluids and tissues of human and laboratory animals. High-throughput analysis was achieved using PLE pre-treatment and without the need for any cleanup. The extraction solvent was acetonitrile/water/acetic acid (80/19/1, v/v/v). The static extraction time was 5min. The extraction pressure and temperature were 1500psi and 140°C, respectively. The flush volume was 60%. The limits of detection, which were defined as CCα, varied from 0.01μg/kg (μg/L) to 0.69μg/kg (μg/L). The recoveries of spiked samples from 0.20μg/kg (μg/L) to 2μg/kg (μg/L) ranged from 71% to 100.5% with relative standard deviations of less than 17.5%, except FB1 and FB2 recoveries, which were lower than 60%. The method was successfully applied in real samples, and the data indicate that this technique is a useful analytical method for the determination of mycotoxins from humans and animals. To the best of our knowledge, this method is the first for the large-scale testing of multi-class mycotoxins in all types of biological fluids and tissues that uses PLE and HPLC-MS/MS. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Collagen Homeostasis and Metabolism

    DEFF Research Database (Denmark)

    Magnusson, S Peter; Heinemeier, Katja M; Kjaer, Michael

    2016-01-01

    The musculoskeletal system and its collagen rich tissue is important for ensuring architecture of skeletal muscle, energy storage in tendon and ligaments, joint surface protection, and for ensuring the transfer of muscular forces into resulting limb movement. Structure of tendon is stable...... inactivity or immobilization of the human body will conversely result in a dramatic loss in tendon stiffness and collagen synthesis. This illustrates the importance of regular mechanical load in order to preserve the stabilizing role of the connective tissue for the overall function of the musculoskeletal...

  15. Adaptive mechanisms of homeostasis disorders

    Directory of Open Access Journals (Sweden)

    Anna Maria Dobosiewicz

    2017-08-01

    Full Text Available The ability to preserve a permanent level of internal environment in a human organism, against internal and external factors, which could breach the consistency, can be define as homeostasis. Scientific proven influence on the homeostasis has the periodicity of biological processes, which is also called circadian rhythm. The effect of circadian rhythm is also to see in the functioning of autonomic nervous system and cardiovascular system. Sleep deprivation is an example of how the disorders in circadian rhythm could have the influence on the homeostasis.

  16. Intrabronchial Microdialysis: Effects of Probe Localization on Tissue Trauma and Drug Penetration into the Pulmonary Epithelial Lining Fluid

    DEFF Research Database (Denmark)

    Rottbøll, Lisa Amanda Holm; Skovgaard, Kerstin; Barington, Kristiane

    2015-01-01

    (PELF). The objective of this study was to investigate the effect of intrabronchial microdialysis on the integrity of the bronchial epithelium. Microdialysis sampling in PELF in proximal (n=4) and distal bronchi (n=4) was performed after intravenous inulin and florfenicol administration in anaesthetized...... pigs. Inulin was used as a marker molecule of permeability of the epithelium, and florfenicol was used as test drug. Bronchial tissue was examined by histopathology (distal and proximal bronchi) and gene expression analysis (RT-qPCR, proximal bronchi) at the termination of the experiment (6.5hr....... Likewise, florfenicol penetration into PELF was unaffected by bronchial histopathology. However, this independency of pathology on drug penetration may not be valid for other antibiotics. We conclude that short-term microdialysis drug quantification can be performed in proximal bronchi without disruption...

  17. Fluid dynamics, cavitation, and tip-to-tissue interaction of longitudinal and torsional ultrasound modes during phacoemulsification.

    Science.gov (United States)

    Zacharias, Jaime; Ohl, Claus-Dieter

    2013-04-01

    To describe the fluidic events that occur in a test chamber during phacoemulsification with longitudinal and torsional ultrasound (US) modalities. Pasteur Ophthalmic Clinic Phacodynamics Laboratory, Santiago, Chile, and Nanyang Technological University, Singapore. Experimental study. Ultra-high-speed videos of a phacoemulsifying tip were recorded while the tip operated in longitudinal and torsional US modalities using variable US power. Two high-speed video cameras were used to record videos up to 625,000 frames per second. A high-intensity spotlight source was used for illumination to engage shadowgraphy techniques. Particle image velocimetry was used to evaluate fluidic patterns while a hyperbaric environmental system allowed the evaluation of cavitation effects. Tip-to-tissue interaction at high speed was evaluated using human cataract fragments. Particle imaging velocimetry showed the following flow patterns for longitudinal and torsional modes at high US powers: forward-directed streaming with longitudinal mode and backward-directed streaming with torsional mode. The ultrasound power threshold for the appearance of cavitation was 60% for longitudinal mode and 80% for torsional mode. Cavitation was suppressed with pressure of 1.0 bar for longitudinal mode and 0.3 bar for torsional mode. Generation of previously unseen stable gaseous microbubbles was noted. Tip-to-tissue interaction analysis showed the presence of cavitation bubbles close to the site of fragmentation with no apparent effect on cutting. High-speed imaging and particle image velocimetry yielded a better understanding and differentiated the fluidic pattern behavior between longitudinal and torsional US during phacoemulsification. These recordings also showed more detailed aspects of cavitation that clarified its role in lens material cutting for both modalities. Copyright © 2013 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  18. Neuroscience of glucose homeostasis

    NARCIS (Netherlands)

    La Fleur, S E; Fliers, E; Kalsbeek, A

    2014-01-01

    Plasma glucose concentrations are homeostatically regulated and maintained within strict boundaries. Several mechanisms are in place to increase glucose output when glucose levels in the circulation drop as a result of glucose utilization, or to decrease glucose output and increase tissue glucose

  19. Metal ion transporters and homeostasis.

    OpenAIRE

    Nelson, N

    1999-01-01

    Transition metals are essential for many metabolic processes and their homeostasis is crucial for life. Aberrations in the cellular metal ion concentrations may lead to cell death and severe diseases. Metal ion transporters play a major role in maintaining the correct concentrations of the various metal ions in the different cellular compartments. Recent studies of yeast mutants revealed key elements in metal ion homeostasis, including novel transport systems. Several of the proteins discover...

  20. Utility of bronchial lavage fluids for epithelial growth factor receptor mutation assay in lung cancer patients: Comparison between cell pellets, cell blocks and matching tissue specimens

    Science.gov (United States)

    Asaka, Shiho; Yoshizawa, Akihiko; Nakata, Rie; Negishi, Tatsuya; Yamamoto, Hiroshi; Shiina, Takayuki; Shigeto, Shohei; Matsuda, Kazuyuki; Kobayashi, Yukihiro; Honda, Takayuki

    2018-01-01

    The detection of epidermal growth factor receptor (EGFR) mutations is necessary for the selection of suitable patients with non-small cell lung cancer (NSCLC) for treatment with EGFR tyrosine kinase inhibitors. Cytology specimens are known to be suitable for EGFR mutation detection, although tissue specimens should be prioritized; however, there are limited studies that examine the utility of bronchial lavage fluid (BLF) in mutation detection. The purpose of the present study was to investigate the utility of BLF specimens for the detection of EGFR mutations using a conventional quantitative EGFR polymerase chain reaction (PCR) assay. Initially, quantification cycle (Cq) values of cell pellets, cell-free supernatants and cell blocks obtained from three series of 1% EGFR mutation-positive lung cancer cell line samples were compared for mutation detection. In addition, PCR analysis of BLF specimens obtained from 77 consecutive NSCLC patients, detecting EGFR mutations was validated, and these results were compared with those for the corresponding formalin-fixed paraffin-embedded (FFPE) tissue specimens obtained by surgical resection or biopsy of 49 of these patients. The Cq values for mutation detection were significantly lower in the cell pellet group (average, 29.58) compared with the other groups, followed by those in cell-free supernatants (average, 34.15) and in cell blocks (average, 37.12) for all three series (P<0.05). Mutational status was successfully analyzed in 77 BLF specimens, and the results obtained were concordant with those of the 49 matching FFPE tissue specimens. Notably, EGFR mutations were even detected in 10 cytological specimens that contained insufficient tumor cells. EGFR mutation testing with BLF specimens is therefore a useful and reliable method, particularly when sufficient cancer cells are not obtained. PMID:29399190

  1. Neurohypophyseal hormones: novel actors of striated muscle development and homeostasis

    Directory of Open Access Journals (Sweden)

    Alessandra Costa

    2014-09-01

    Full Text Available Since the 1980's, novel functional roles of the neurohypophyseal hormones vasopressin and oxytocin have emerged. Several studies have investigated the effects of these two neurohormones on striated muscle tissues, both in vitro and in vivo. The effects of vasopressin on skeletal myogenic cells, developing muscle and muscle homeostasis have been documented. Oxytocin appears to have a greater influence on cardiomyocite differentiation and heart homeostasis. This review summarizes the studies on these novel roles of the two neurohypophyseal hormones, and open the possibility of new therapeutic approaches for diseases affecting striated muscle.

  2. Mechanisms of Cell Polarity-Controlled Epithelial Homeostasis and Immunity in the Intestine

    NARCIS (Netherlands)

    Klunder, Leon J.; Faber, Klaas Nico; Dijkstra, Gerard; van IJzendoorn, Sven C. D.

    Intestinal epithelial cell polarity is instrumental to maintain epithelial homeostasis and balance communications between the gut lumen and bodily tissue, thereby controlling the defense against gastrointestinal pathogens and maintenance of immune tolerance to commensal bacteria. In this review, we

  3. Lifespan extension by preserving proliferative homeostasis in Drosophila.

    Directory of Open Access Journals (Sweden)

    Benoît Biteau

    2010-10-01

    Full Text Available Regenerative processes are critical to maintain tissue homeostasis in high-turnover tissues. At the same time, proliferation of stem and progenitor cells has to be carefully controlled to prevent hyper-proliferative diseases. Mechanisms that ensure this balance, thus promoting proliferative homeostasis, are expected to be critical for longevity in metazoans. The intestinal epithelium of Drosophila provides an accessible model in which to test this prediction. In aging flies, the intestinal epithelium degenerates due to over-proliferation of intestinal stem cells (ISCs and mis-differentiation of ISC daughter cells, resulting in intestinal dysplasia. Here we show that conditions that impair tissue renewal lead to lifespan shortening, whereas genetic manipulations that improve proliferative homeostasis extend lifespan. These include reduced Insulin/IGF or Jun-N-terminal Kinase (JNK signaling activities, as well as over-expression of stress-protective genes in somatic stem cell lineages. Interestingly, proliferative activity in aging intestinal epithelia correlates with longevity over a range of genotypes, with maximal lifespan when intestinal proliferation is reduced but not completely inhibited. Our results highlight the importance of the balance between regenerative processes and strategies to prevent hyperproliferative disorders and demonstrate that promoting proliferative homeostasis in aging metazoans is a viable strategy to extend lifespan.

  4. Radiation and Homeostasis

    International Nuclear Information System (INIS)

    Sugahara, T.; Nikaido, O.; Niwa, O.

    2002-01-01

    These proceedings aim to promote the understanding of the health hazard of radiation at low dose range and to construct a more solid basis for radiation safety policy. Radiation hazard has been the central issue of investigation in the field of radiation research. The two major approaches are mechanistic analysis by laboratory investigation and phenomenological analysis of radiation-exposed population as represented by epidemiology. In an increasingly safety-conscious society, the extremely low level risk associated with low dose of radiation has become an important issue. In this area, the phenomenological approach has a limit. DNA damage is the primary and direct cause of the risk. Tremendous progress has been made recently in the basic understanding of radiation effects on cells and tissues and the importance of damage response rather than damage itself. This challenges the classical linear non-threshold hypothesis

  5. Assessment of CCL2 and CXCL8 chemokines in serum, bronchoalveolar lavage fluid and lung tissue samples from dogs affected with canine idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Roels, Elodie; Krafft, Emilie; Farnir, Frederic; Holopainen, Saila; Laurila, Henna P; Rajamäki, Minna M; Day, Michael J; Antoine, Nadine; Pirottin, Dimitri; Clercx, Cecile

    2015-10-01

    Canine idiopathic pulmonary fibrosis (CIPF) is a progressive disease of the lung parenchyma that is more prevalent in dogs of the West Highland white terrier (WHWT) breed. Since the chemokines (C-C motif) ligand 2 (CCL2) and (C-X-C motif) ligand 8 (CXCL8) have been implicated in pulmonary fibrosis in humans, the aim of the present study was to investigate whether these same chemokines are involved in the pathogenesis of CIPF. CCL2 and CXCL8 concentrations were measured by ELISA in serum and bronchoalveolar lavage fluid (BALF) from healthy dogs and WHWTs affected with CIPF. Expression of the genes encoding CCL2 and CXCL8 and their respective receptors, namely (C-C motif) receptor 2 (CCR2) and (C-X-C motif) receptor 2 (CXCR2), was compared in unaffected lung tissue and biopsies from dogs affected with CIPF by quantitative PCR and localisation of CCL2 and CXCL8 proteins were determined by immunohistochemistry. Significantly greater CCL2 and CXCL8 concentrations were found in the BALF from WHWTs affected with CIPF, compared with healthy dogs. Significantly greater serum concentrations of CCL2, but not CXCL8, were found in CIPF-affected dogs compared with healthy WHWTs. No differences in relative gene expression for CCL2, CXCL8, CCR2 or CXCR2 were observed when comparing lung biopsies from control dogs and those affected with CIPF. In affected lung tissues, immunolabelling for CCL2 and CXCL8 was observed in bronchial airway epithelial cells in dogs affected with CIPF. The study findings suggest that both CCL2 and CXCL8 are involved in the pathogenesis of CIPF. Further studies are required to determine whether these chemokines might have a clinical use as biomarkers of fibrosis or as targets for therapeutic intervention. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Protective effect of hydroferrate fluid, MRN-100, against lethality and hematopoietic tissue damage in γ-radiated Nile tilapia, Oreochromis niloticus

    International Nuclear Information System (INIS)

    Ghoneum, Mamdooh; Elbaghdady, Heba Allah M.; El-Shebly, Abdallah A.; Pan, Deyu; Assanah, Edward; Lawson, Greg

    2013-01-01

    Hydroferrate fluid, MRN-100, an iron-based compound derived from bivalent and trivalent ferrates, is a potent antioxidant compound. Therefore, we examined the protective effect of MRN-100 against γ-radiation-induced lethality and damage to hematopoietic tissues in fish. A total of 216 Nile tilapia fish (Oreochromis niloticus) were randomly divided into four groups. Group 1 served as a control that was administered no radiation and no MRN-100 treatment. Group 2 was exposed only to γ-radiation (15 Gy). Groups 3 and 4 were pre-treated with MRN-100 at doses of either 1 ml/l or 3 ml/l in water for 1 week, and subsequently exposed to radiation while continuing to receive MRN-100 for 27 days. The survival rate was measured, and biochemical and histopathological analyses of hematopoietic tissues were performed for the different treatment groups at 1 and 4 weeks post-radiation. Exposure to radiation reduced the survival rate to 27.7%, while treatment with MRN-100 maintained the survival rate at 87.2%. In addition, fish exposed to γ-radiation for 1 week showed a significant decrease in the total number of white blood cells (WBCs) and red blood cells (RBCs) series. However, treatment with MRN-100 protected the total WBC count and the RBCs series when compared with irradiated fish. Furthermore, significant histological lesions were observed in the hepatopancreas, spleen and gills of irradiated fish. However, treatment with MRN-100 protected the histopathology of various organs. We conclude that MRN-100 is a radioprotective agent in fish and may be useful as an adjuvant treatment to counteract the adverse side effects associated with radiation exposure. (author)

  7. Origins and Hallmarks of Macrophages: Development, Homeostasis, and Disease

    Science.gov (United States)

    Wynn, Thomas A.; Chawla, Ajay; Pollard, Jeffrey W.

    2013-01-01

    Preface Macrophages the most plastic cells of the hematopoietic system are found in all tissues and exhibit great functional diversity. They have roles in development, homeostasis, tissue repair, and immunity. While anatomically distinct, resident tissue macrophages exhibit different transcriptional profiles, and functional capabilities, they are all required for the maintenance of homeostasis. However, these reparative and homeostatic functions can be subverted by chronic insults, resulting in a causal association of macrophages with disease states. In this review, we discuss how macrophages regulate normal physiology and development and provide several examples of their pathophysiologic roles in disease. We define the “hallmarks” of macrophages performing particular functions, taking into account novel insights into the diversity of their lineages, identity, and regulation. This diversity is essential to understand because macrophages have emerged as important therapeutic targets in many important human diseases. PMID:23619691

  8. Regulation of brain copper homeostasis by the brain barrier systems: Effects of Fe-overload and Fe-deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Monnot, Andrew D.; Behl, Mamta; Ho, Sanna; Zheng, Wei, E-mail: wzheng@purdue.edu

    2011-11-15

    Maintaining brain Cu homeostasis is vital for normal brain function. The role of systemic Fe deficiency (FeD) or overload (FeO) due to metabolic diseases or environmental insults in Cu homeostasis in the cerebrospinal fluid (CSF) and brain tissues remains unknown. This study was designed to investigate how blood-brain barrier (BBB) and blood-SCF barrier (BCB) regulated Cu transport and how FeO or FeD altered brain Cu homeostasis. Rats received an Fe-enriched or Fe-depleted diet for 4 weeks. FeD and FeO treatment resulted in a significant increase (+ 55%) and decrease (- 56%) in CSF Cu levels (p < 0.05), respectively; however, neither treatment had any effect on CSF Fe levels. The FeD, but not FeO, led to significant increases in Cu levels in brain parenchyma and the choroid plexus. In situ brain perfusion studies demonstrated that the rate of Cu transport into the brain parenchyma was significantly faster in FeD rats (+ 92%) and significantly slower (- 53%) in FeO rats than in controls. In vitro two chamber Transwell transepithelial transport studies using primary choroidal epithelial cells revealed a predominant efflux of Cu from the CSF to blood compartment by the BCB. Further ventriculo-cisternal perfusion studies showed that Cu clearance by the choroid plexus in FeD animals was significantly greater than control (p < 0.05). Taken together, our results demonstrate that both the BBB and BCB contribute to maintain a stable Cu homeostasis in the brain and CSF. Cu appears to enter the brain primarily via the BBB and is subsequently removed from the CSF by the BCB. FeD has a more profound effect on brain Cu levels than FeO. FeD increases Cu transport at the brain barriers and prompts Cu overload in the CNS. The BCB plays a key role in removing the excess Cu from the CSF.

  9. Assessment of gastrointestinal pH, fluid and lymphoid tissue in the guinea pig, rabbit and pig, and implications for their use in drug development.

    Science.gov (United States)

    Merchant, Hamid A; McConnell, Emma L; Liu, Fang; Ramaswamy, Chandrasekaran; Kulkarni, Rucha P; Basit, Abdul W; Murdan, Sudaxshina

    2011-01-18

    Laboratory animals are often used in drug delivery and research. However, basic information about their gastrointestinal pH, fluid volume, and lymphoid tissue is not completely known. We have investigated these post-mortem in healthy guinea pigs, rabbits and pigs, to assess their suitability for pre-clinical studies by comparing the results with reported human literature. The mean gastric pH (fed ad libitum) was 2.9 and 4.4 in guinea pig and pig, respectively. In contrast, a very low pH (1.6) was recorded in the rabbits. The small intestinal pH was found in the range of 6.4-7.4 in the guinea pigs and rabbits, whereas lower pH (6.1-6.7) was recorded in the pig, which may have consequences for ionisable or pH responsive systems when tested in pig. A relatively lower pH than in the small intestine was found in the caecum (6.0-6.4) and colon (6.1-6.6) of the guinea pig, rabbit and the pig. The water content in the gastrointestinal tract of guinea pig, rabbit and pig was 51g, 153g and 1546g, respectively. When normalized to the body weight, the guinea pig, had larger amounts of water compared to the rabbit and the pig (guinea pig>rabbit>pig); in contrast, a reverse order was found when normalized to per unit length of the gut (guinea pigpig). The lymphoid tissue distribution (lymphoid follicles, Peyer's patches and long strips) along the length of the gut in these animals is presented; in particular, an abundance of lymphoid tissue was found in pig's stomach, small intestine and caecum, and rabbit's appendix. Their ample presence indicated the potential utility of these animal species in oral and colonic vaccination. These differences in the gastrointestinal parameters of the guinea pig, rabbit and pig reiterates the crucial importance of correctly selecting animal models for pre-clinical studies. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Macrophages in intestinal homeostasis and inflammation

    Science.gov (United States)

    Bain, Calum C; Mowat, Allan McI

    2014-01-01

    The intestine contains the largest pool of macrophages in the body which are essential for maintaining mucosal homeostasis in the face of the microbiota and the constant need for epithelial renewal but are also important components of protective immunity and are involved in the pathology of inflammatory bowel disease (IBD). However, defining the biological roles of intestinal macrophages has been impeded by problems in defining the phenotype and origins of different populations of myeloid cells in the mucosa. Here, we discuss how multiple parameters can be used in combination to discriminate between functionally distinct myeloid cells and discuss the roles of macrophages during homeostasis and how these may change when inflammation ensues. We also discuss the evidence that intestinal macrophages do not fit the current paradigm that tissue-resident macrophages are derived from embryonic precursors that self-renew in situ, but require constant replenishment by blood monocytes. We describe our recent work demonstrating that classical monocytes constantly enter the intestinal mucosa and how the environment dictates their subsequent fate. We believe that understanding the factors that drive intestinal macrophage development in the steady state and how these may change in response to pathogens or inflammation could provide important insights into the treatment of IBD. PMID:24942685

  11. Air pollution particles and iron homeostasis | Science ...

    Science.gov (United States)

    Background: The mechanism underlying biological effects of particles deposited in the lung has not been defined. Major Conclusions: A disruption in iron homeostasis follows exposure of cells to all particulate matter including air pollution particles. Following endocytosis, functional groups at the surface of retained particle complex iron available in the cell. In response to a reduction in concentrations of requisite iron, a functional deficiency can result intracellularly. Superoxide production by the cell exposed to a particle increases ferrireduction which facilitates import of iron with the objective being the reversal of the metal deficiency. Failure to resolve the functional iron deficiency following cell exposure to particles activates kinases and transcription factors resulting in a release of inflammatory mediators and inflammation. Tissue injury is the end product of this disruption in iron homeostasis initiated by the particle exposure. Elevation of available iron to the cell precludes deficiency of the metal and either diminishes or eliminates biological effects.General Significance: Recognition of the pathway for biological effects after particle exposure to involve a functional deficiency of iron suggests novel therapies such as metal supplementation (e.g. inhaled and oral). In addition, the demonstration of a shared mechanism of biological effects allows understanding the common clinical, physiological, and pathological presentation fol

  12. Energy Homeostasis in Monotremes

    Directory of Open Access Journals (Sweden)

    Stewart C. Nicol

    2017-04-01

    Full Text Available In 1803, the French anatomist Étienne Geoffroy Saint-Hilaire decided that the newly described echidna and platypus should be placed in a separate order, the monotremes, intermediate between reptiles and mammals. The first physiological observations showed monotremes had low body temperatures and metabolic rates, and the consensus was that they were at a stage of physiological development intermediate between “higher mammals” and “lower vertebrates.” Subsequent studies demonstrated that platypuses and echidnas are capable of close thermoregulation in the cold although less so under hot conditions. Because the short-beaked echidna Tachyglossus aculeatus, may show very large daily variations in body temperature, as well as seasonal hibernation, it has been suggested that it may provide a useful model of protoendotherm physiology. Such analysis is complicated by the very significant differences in thermal relations between echidnas from different climates. In all areas female echidnas regulate Tb within 1°C during egg incubation. The lactation period is considered to be the most energetically expensive time for most female mammals but lactating echidnas showed no measurable difference in field metabolic rate from non-lactating females, while the lactation period is more than 200 days for Kangaroo Island echidnas but only 150 days in Tasmania. In areas with mild winters echidnas show reduced activity and shallow torpor in autumn and early winter, but in areas with cold winters echidnas enter true hibernation with Tb falling as low as 4.5°C. Monotremes do not possess brown adipose tissue and maximum rates of rewarming from hibernation in echidnas were only half those of marmots of the same mass. Although echidnas show very large seasonal variations in fat stores associated with hibernation there is no relationship between plasma leptin and adiposity. Leptin levels are lowest during post-reproductive fattening, supporting suggestions that in

  13. Comparison of the Concentrations of Lidocaine in Different Body Fluids/Tissues after Subarachnoid Space and Intravenous Administration of a Lethal Dose of Lidocaine

    Directory of Open Access Journals (Sweden)

    Nan Zhang

    2015-01-01

    Full Text Available The objective of the study was to compare the concentration of lidocaine in different body fluids/tissues after subarachnoid space and intravenous administrations of a lethal dose of lidocaine. Totally 18 dogs were used in the experiment. Six dogs were given subarachnoid anesthesia, another were given an intravenous injection of a dose of 75 mg/kg weight of lidocaine hydrochloride in 5 min and the last 6 dogs were used as the blank control dogs and given a subarachnoid space injection or a femoral artery injection of the same volume of sodium chloride. As soon as its vital signs disappeared, each dog was dissected and the specimen, such as brain, cerebrospinal fluid (CSF in lateral ventricle, CSF in subarachnoid space, spinal cord (cervical spinal cord, thoracic spinal cord, lumbar spinal cord, and waist spinal cord, heart, lung, liver, spleen, kidney, bile, urine, heart blood, peripheral blood, muscle in injection location, and muscle in no injection location, were collected for analysis of lidocaine immediately. Analysis was performed with gas chromatography-mass spectrometry (GC-MS. From the maximum to the minimum, the order of lidocaine concentration detected in the subarachnoid space-administered dogs was as follows: CSF in subarachnoid space, waist spinal cord, thoracic spinal cord, CSF in lateral ventricle, lumbar spinal cord, cervical spinal cord, lung, kidney, muscle in injection location, heart, brain, spleen, heart blood, liver, peripheral blood, bile, muscle in no injection location, and urine. The order of lidocaine concentration detected in the intravenously administered dogs was as followed: Kidney, heart, lung, spleen, brain, liver, peripheral blood, bile, heart blood, cervical spinal cord, thoracic spinal cord, muscle in injection location, lumbar spinal cord, muscle in no injection location, CSF in subarachnoid space, urine, and CSF in lateral ventricle. The maximum concentration of lidocaine was detected in the subarachnoid

  14. Fluid Shifts

    Science.gov (United States)

    Stenger, M. B.; Hargens, A. R.; Dulchavsky, S. A.; Arbeille, P.; Danielson, R. W.; Ebert, D. J.; Garcia, K. M.; Johnston, S. L.; Laurie, S. S.; Lee, S. M. C.; hide

    2017-01-01

    Introduction. NASA's Human Research Program is focused on addressing health risks associated with long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but now more than 50 percent of ISS astronauts have experienced more profound, chronic changes with objective structural findings such as optic disc edema, globe flattening and choroidal folds. These structural and functional changes are referred to as the visual impairment and intracranial pressure (VIIP) syndrome. Development of VIIP symptoms may be related to elevated intracranial pressure (ICP) secondary to spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight and to determine if a relation exists with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as any VIIP-related effects of those shifts, are predicted by the crewmember's pre-flight status and responses to acute hemodynamic manipulations, specifically posture changes and lower body negative pressure. Methods. We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, and calcaneus tissue thickness (by ultrasound); (3) vascular dimensions by ultrasound (jugular veins, cerebral and carotid arteries, vertebral arteries and veins, portal vein); (4) vascular dynamics by MRI (head/neck blood flow, cerebrospinal fluid

  15. The homeostasis solution – Mechanical homeostasis in architecturally homeostatic buildings

    International Nuclear Information System (INIS)

    Wang, Lin-Shu; Ma, Peizheng

    2016-01-01

    Highlights: • Architectural homeostatic buildings (AHBs) make sense because of the laws of physics. • However, high efficiency can be obtained only with AHBs and equipment considered as systems. • Mechanical homeostasis facilitates AHB-equipment system synergy with heat extraction. • Entropically speaking a building needs neither energy nor a fixed amount of heat, but its homeostatic existence. • Homeostatic buildings can reduce building energy consumption from 80% to 90%. - Abstract: We already know, for energy-saving potential, the necessary architectural features in well-designed buildings: high performance building envelope, sufficient interior thermal mass, and hydronic-network activated radiant surfaces for cooling and heating. Buildings with these features may be referred to as architecturally homeostatic buildings (AHBs); such a building-system is thermally semi-autonomous in the sense that its temperature variation stays within a certain range even without conditioning equipment, and, with conditioning equipment in operation, its thermal regulation is handled by its hydronic heat-distribution-network for controlling the temperature level of the building. At the present time conventional HVAC equipment is used for maintaining the heat-distribution-network: this arrangement, however, has resulted in great energy saving only for AHBs with accessible natural water bodies. In operation of general AHBs, a case is made here for a new kind of mechanical equipment having the attribute of mechanical homeostasis (MH). MH is a new energy transformation concept in a triadic framework. Superlative energy efficiency is predicted as a result of combined improvements in higher triadCOPs and lower total (inducted + removed) heat rates—evincing existence of synergy in architectural and mechanical homeostasis, which together will be referred to as the homeostasis solution.

  16. Peripheral Serotonin: a New Player in Systemic Energy Homeostasis

    Science.gov (United States)

    Namkung, Jun; Kim, Hail; Park, Sangkyu

    2015-01-01

    Whole body energy balance is achieved through the coordinated regulation of energy intake and energy expenditure in various tissues including liver, muscle and adipose tissues. A positive energy imbalance by excessive energy intake or insufficient energy expenditure results in obesity and related metabolic diseases. Although there have been many obesity treatment trials aimed at the reduction of energy intake, these strategies have achieved only limited success because of their associated adverse effects. An ancient neurotransmitter, serotonin is among those traditional pharmacological targets for anti-obesity treatment because it exhibits strong anorectic effect in the brain. However, recent studies suggest the new functions of peripheral serotonin in energy homeostasis ranging from the endocrine regulation by gut-derived serotonin to the autocrine/paracrine regulation by adipocyte-derived serotonin. Here, we discuss the role of serotonin in the regulation of energy homeostasis and introduce peripheral serotonin as a possible target for anti-obesity treatment. PMID:26628041

  17. Central insulin action in energy and glucose homeostasis.

    Science.gov (United States)

    Plum, Leona; Belgardt, Bengt F; Brüning, Jens C

    2006-07-01

    Insulin has pleiotropic biological effects in virtually all tissues. However, the relevance of insulin signaling in peripheral tissues has been studied far more extensively than its role in the brain. An evolving body of evidence indicates that in the brain, insulin is involved in multiple regulatory mechanisms including neuronal survival, learning, and memory, as well as in regulation of energy homeostasis and reproductive endocrinology. Here we review insulin's role as a central homeostatic signal with regard to energy and glucose homeostasis and discuss the mechanisms by which insulin communicates information about the body's energy status to the brain. Particular emphasis is placed on the controversial current debate about the similarities and differences between hypothalamic insulin and leptin signaling at the molecular level.

  18. Alteration of brain insulin and leptin signaling promotes energy homeostasis impairment and neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Taouis Mohammed

    2011-09-01

    Full Text Available The central nervous system (CNS controls vital functions, by efficiently coordinating peripheral and central cascades of signals and networks in a coordinated manner. Historically, the brain was considered to be an insulin-insensitive tissue. But, new findings demonstrating that insulin is present in different regions of themammalian brain, in particular the hypothalamus and the hippocampus. Insulin acts through specific receptors and dialogues with numerous peptides, neurotransmitters and adipokines such as leptin. The cross-talk between leptin and insulin signaling pathways at the hypothalamic level is clearly involved in the control of energy homeostasis. Both hormones are anorexigenic through their action on hypothalamic arcuate nucleus by inducing the expression of anorexigenic neuropetides such as POMC (pro-opiomelanocortin, the precursor of aMSH and reducing the expression of orexigenic neuropeptide such as NPY (Neuropeptide Y. Central defect of insulin and leptin signaling predispose to obesity (leptin-resistant state and type-2 diabetes (insulin resistant state. Obesity and type-2 diabetes are associated to deep alterations in energy homeostasis control but also to other alterations of CNS functions as the predisposition to neurodegenerative diseases such as Alzheimer’s disease (AD. AD is a neurodegenerative disorder characterized by distinct hallmarks within the brain. Postmortem observation of AD brains showed the presence of parenchymal plaques due to the accumulation of the amyloid beta (AB peptide and neurofibrillary tangles. These accumulations result from the hyperphosphorylation of tau (a mictrotubule-interacting protein. Both insulin and leptin have been described to modulate tau phosphorylation and therefore in leptin and insulin resistant states may contribute to AD. The concentrations of leptin and insulin cerebrospinal fluid are decreased type2 diabetes and obese patients. In addition, the concentration of insulin in the

  19. Three-component homeostasis control

    Science.gov (United States)

    Xu, Jin; Hong, Hyunsuk; Jo, Junghyo

    2014-03-01

    Two reciprocal components seem to be sufficient to maintain a control variable constant. However, pancreatic islets adapt three components to control glucose homeostasis. They are α (secreting glucagon), β (insulin), and δ (somatostatin) cells. Glucagon and insulin are the reciprocal hormones for increasing and decreasing blood glucose levels, while the role of somatostatin is unknown. However, it has been known how each hormone affects other cell types. Based on the pulsatile hormone secretion and the cellular interactions, this system can be described as coupled oscillators. In particular, we used the Landau-Stuart model to consider both amplitudes and phases of hormone oscillations. We found that the presence of the third component, δ cell, was effective to resist under glucose perturbations, and to quickly return to the normal glucose level once perturbed. Our analysis suggested that three components are necessary for advanced homeostasis control.

  20. Telomere Homeostasis: Interplay with Magnesium

    Directory of Open Access Journals (Sweden)

    Donogh Maguire

    2018-01-01

    Full Text Available Telomere biology, a key component of the hallmarks of ageing, offers insight into dysregulation of normative ageing processes that accompany age-related diseases such as cancer. Telomere homeostasis is tightly linked to cellular metabolism, and in particular with mitochondrial physiology, which is also diminished during cellular senescence and normative physiological ageing. Inherent in the biochemistry of these processes is the role of magnesium, one of the main cellular ions and an essential cofactor in all reactions that use ATP. Magnesium plays an important role in many of the processes involved in regulating telomere structure, integrity and function. This review explores the mechanisms that maintain telomere structure and function, their influence on circadian rhythms and their impact on health and age-related disease. The pervasive role of magnesium in telomere homeostasis is also highlighted.

  1. Lactate rescues neuronal sodium homeostasis during impaired energy metabolism

    OpenAIRE

    Karus, Claudia; Ziemens, Daniel; Rose, Christine R

    2015-01-01

    Recently, we established that recurrent activity evokes network sodium oscillations in neurons and astrocytes in hippocampal tissue slices. Interestingly, metabolic integrity of astrocytes was essential for the neurons' capacity to maintain low sodium and to recover from sodium loads, indicating an intimate metabolic coupling between the 2 cell types. Here, we studied if lactate can support neuronal sodium homeostasis during impaired energy metabolism by analyzing whether glucose removal, pha...

  2. Sleep Homeostasis and Synaptic Plasticity

    Science.gov (United States)

    2017-06-01

    Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202...circuit (a homeostat) that operates in concert with the circadian circuitry or does sleep drive accumulate everywhere in the brain? To answer these...neurons is capable of generating sleep drive. RNAi-mediated knockdown of insomniac in R2 neurons abolished sleep homeostasis without affecting baseline

  3. Lean Body Mass Harbors Sensing Mechanisms that Allow Safeguarding of Methionine Homeostasis

    Directory of Open Access Journals (Sweden)

    Yves Ingenbleek

    2017-09-01

    Full Text Available Protein-depleted states generate allosteric inhibition of liver cystathionine β-synthase (CBS, which governs the first enzymatic step of the transsulfuration cascade, resulting in upstream accretion of homocysteine (Hcy in body fluids. A similar Hcy increase may arise from normal hepatocytes undergoing experimentally-induced impairment of betaine-homocysteine methyltransferase (BHTM activity or from components of lean body mass (LBM submitted to any inflammatory disorder. LBM comprises a composite agglomeration of extrarenal tissues characterized by naturally occurring BHTM inactivity. As a result of cellular injury, LBM releases high concentrations of Hcy into the extracellular space, contrasting with the disruption of normal remethylation pathways. Hyperhomocysteinemia acts as a biomarker, reflecting the severity of insult and operating as an alarm signal. Elevated Hcy levels constitute a precursor pool recognized by a CBS coding region that reacts to meet increased methionine requirements in LBM tissues, using its enhanced production in hepatocytes. Preservation of methionine homeostasis benefits from its high metabolic priority and survival value.

  4. Lean Body Mass Harbors Sensing Mechanisms that Allow Safeguarding of Methionine Homeostasis.

    Science.gov (United States)

    Ingenbleek, Yves

    2017-09-20

    Protein-depleted states generate allosteric inhibition of liver cystathionine β-synthase (CBS), which governs the first enzymatic step of the transsulfuration cascade, resulting in upstream accretion of homocysteine (Hcy) in body fluids. A similar Hcy increase may arise from normal hepatocytes undergoing experimentally-induced impairment of betaine-homocysteine methyltransferase (BHTM) activity or from components of lean body mass (LBM) submitted to any inflammatory disorder. LBM comprises a composite agglomeration of extrarenal tissues characterized by naturally occurring BHTM inactivity. As a result of cellular injury, LBM releases high concentrations of Hcy into the extracellular space, contrasting with the disruption of normal remethylation pathways. Hyperhomocysteinemia acts as a biomarker, reflecting the severity of insult and operating as an alarm signal. Elevated Hcy levels constitute a precursor pool recognized by a CBS coding region that reacts to meet increased methionine requirements in LBM tissues, using its enhanced production in hepatocytes. Preservation of methionine homeostasis benefits from its high metabolic priority and survival value.

  5. Tissue Classification

    DEFF Research Database (Denmark)

    Van Leemput, Koen; Puonti, Oula

    2015-01-01

    Computational methods for automatically segmenting magnetic resonance images of the brain have seen tremendous advances in recent years. So-called tissue classification techniques, aimed at extracting the three main brain tissue classes (white matter, gray matter, and cerebrospinal fluid), are now...... well established. In their simplest form, these methods classify voxels independently based on their intensity alone, although much more sophisticated models are typically used in practice. This article aims to give an overview of often-used computational techniques for brain tissue classification...

  6. Gravity and positional homeostasis of the cell

    Science.gov (United States)

    Nace, G. W.

    1983-01-01

    The effect of gravity upon cytoplasmic aggregates of the size present in eggs and upon cells is investigated. An expression is developed to describe the tendency of torque to rotate the egg and reorganize its constituents. This expression provides the net torque resulting from buoyancy and gravity acting upon a dumbbell-shaped cell, with heavy and light masses at either end and floating in a medium. Torques of approximately 2.5 x 10 to the -13th to 0.85 dyne-cm are found to act upon cells ranging from 6.4 microns to 31 mm (chicken egg). It is noted that cells must expend energy to maintain positional homeostasis against gravity, as demonstrated by results from Skylab 3, where tissue cultures used 58 percent more glucose on earth than in space. The implications for developmental biology, physiology, genetics, and evolution are discussed. It is argued that at the cellular and tissue levels the concept of gravity receptors may be unnecessary.

  7. Mechanisms of Cell Polarity-Controlled Epithelial Homeostasis and Immunity in the Intestine.

    Science.gov (United States)

    Klunder, Leon J; Faber, Klaas Nico; Dijkstra, Gerard; van IJzendoorn, Sven C D

    2017-07-05

    Intestinal epithelial cell polarity is instrumental to maintain epithelial homeostasis and balance communications between the gut lumen and bodily tissue, thereby controlling the defense against gastrointestinal pathogens and maintenance of immune tolerance to commensal bacteria. In this review, we highlight recent advances with regard to the molecular mechanisms of cell polarity-controlled epithelial homeostasis and immunity in the human intestine. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  8. Hyaluronan supplementation as a mechanical regulator of cartilage tissue development under joint-kinematic-mimicking loading.

    Science.gov (United States)

    Wu, Yabin; Stoddart, Martin J; Wuertz-Kozak, Karin; Grad, Sibylle; Alini, Mauro; Ferguson, Stephen J

    2017-08-01

    Articular cartilage plays an essential role in joint lubrication and impact absorption. Through this, the mechanical signals are coupled to the tissue's physiological response. Healthy synovial fluid has been shown to reduce and homogenize the shear stress acting on the cartilage surfaces due to its unique shear-thinning viscosity. As cartilage tissues are sensitive to mechanical changes in articulation, it was hypothesized that replacing the traditional culture medium with a healthy non-Newtonian lubricant could enhance tissue development in a cartilage engineering model, where joint-kinematic-mimicking mechanical loading is applied. Different amounts of hyaluronic acid were added to the culture medium to replicate the viscosities of synovial fluid at different health states. Hyaluronic acid supplementation, especially at a physiologically healthy concentration (2.0 mg ml -1 ), promoted a better preservation of chondrocyte phenotype. The ratio of collagen II to collagen I mRNA was 4.5 times that of the control group, implying better tissue development (however, with no significant difference of measured collagen II content), with a good retention of collagen II and proteoglycan in the mechanically active region. Simulating synovial fluid properties by hyaluronic acid supplementation created a favourable mechanical environment for mechanically loaded constructs. These findings may help in understanding the influence of joint articulation on tissue homeostasis, and moreover, improve methods for functional cartilage tissue engineering. © 2017 The Author(s).

  9. Lactate rescues neuronal sodium homeostasis during impaired energy metabolism.

    Science.gov (United States)

    Karus, Claudia; Ziemens, Daniel; Rose, Christine R

    2015-01-01

    Recently, we established that recurrent activity evokes network sodium oscillations in neurons and astrocytes in hippocampal tissue slices. Interestingly, metabolic integrity of astrocytes was essential for the neurons' capacity to maintain low sodium and to recover from sodium loads, indicating an intimate metabolic coupling between the 2 cell types. Here, we studied if lactate can support neuronal sodium homeostasis during impaired energy metabolism by analyzing whether glucose removal, pharmacological inhibition of glycolysis and/or addition of lactate affect cellular sodium regulation. Furthermore, we studied the effect of lactate on sodium regulation during recurrent network activity and upon inhibition of the glial Krebs cycle by sodium-fluoroacetate. Our results indicate that lactate is preferentially used by neurons. They demonstrate that lactate supports neuronal sodium homeostasis and rescues the effects of glial poisoning by sodium-fluoroacetate. Altogether, they are in line with the proposed transfer of lactate from astrocytes to neurons, the so-called astrocyte-neuron-lactate shuttle.

  10. Lactate rescues neuronal sodium homeostasis during impaired energy metabolism

    Science.gov (United States)

    Karus, Claudia; Ziemens, Daniel; Rose, Christine R

    2015-01-01

    Recently, we established that recurrent activity evokes network sodium oscillations in neurons and astrocytes in hippocampal tissue slices. Interestingly, metabolic integrity of astrocytes was essential for the neurons' capacity to maintain low sodium and to recover from sodium loads, indicating an intimate metabolic coupling between the 2 cell types. Here, we studied if lactate can support neuronal sodium homeostasis during impaired energy metabolism by analyzing whether glucose removal, pharmacological inhibition of glycolysis and/or addition of lactate affect cellular sodium regulation. Furthermore, we studied the effect of lactate on sodium regulation during recurrent network activity and upon inhibition of the glial Krebs cycle by sodium-fluoroacetate. Our results indicate that lactate is preferentially used by neurons. They demonstrate that lactate supports neuronal sodium homeostasis and rescues the effects of glial poisoning by sodium-fluoroacetate. Altogether, they are in line with the proposed transfer of lactate from astrocytes to neurons, the so-called astrocyte-neuron-lactate shuttle. PMID:26039160

  11. Colonic macrophage polarization in homeostasis, inflammation, and cancer

    Science.gov (United States)

    Appleyard, Caroline B.

    2016-01-01

    Our review focuses on the colonic macrophage, a monocyte-derived, tissue-resident macrophage, and the role it plays in health and disease, specifically in inflammatory conditions such as inflammatory bowel disease and cancer of the colon and rectum. We give special emphasis to macrophage polarization, or phenotype, in these different states. We focus on macrophages because they are one of the most numerous leukocytes in the colon, and because they normally contribute to homeostasis through an anti-inflammatory phenotype. However, in conditions such as inflammatory bowel disease, proinflammatory macrophages are increased in the colon and have been linked to disease severity and progression. In colorectal cancer, tumor cells may employ anti-inflammatory macrophages to promote tumor growth and dissemination, whereas proinflammatory macrophages may antagonize tumor growth. Given the key roles that this cell type plays in homeostasis, inflammation, and cancer, the colonic macrophage is an intriguing therapeutic target. As such, potential macrophage-targeting strategies are discussed. PMID:27229123

  12. Maintenance of the adult Drosophila intestine: all roads lead to homeostasis.

    Science.gov (United States)

    Guo, Zheng; Lucchetta, Elena; Rafel, Neus; Ohlstein, Benjamin

    2016-10-01

    Maintenance of tissue homeostasis is critical in tissues with high turnover such as the intestinal epithelium. The intestinal epithelium is under constant cellular assault due to its digestive functions and its function as a barrier to chemical and bacterial insults. The resulting high rate of cellular turnover necessitates highly controlled mechanisms of regeneration to maintain the integrity of the tissue over the lifetime of the organism. Transient increase in stem cell proliferation is a commonly used and elaborate mechanism to ensure fast and efficient repair of the gut. However, tissue repair is not limited to regulating ISC proliferation, as emerging evidence demonstrates that the Drosophila intestine uses multiple strategies to ensure proper tissue homeostasis that may also extend to other tissues. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. The Balance of Fluid and Osmotic Pressures across Active Biological Membranes with Application to the Corneal Endothelium.

    Directory of Open Access Journals (Sweden)

    Xi Cheng

    Full Text Available The movement of fluid and solutes across biological membranes facilitates the transport of nutrients for living organisms and maintains the fluid and osmotic pressures in biological systems. Understanding the pressure balances across membranes is crucial for studying fluid and electrolyte homeostasis in living systems, and is an area of active research. In this study, a set of enhanced Kedem-Katchalsky (KK equations is proposed to describe fluxes of water and solutes across biological membranes, and is applied to analyze the relationship between fluid and osmotic pressures, accounting for active transport mechanisms that propel substances against their concentration gradients and for fixed charges that alter ionic distributions in separated environments. The equilibrium analysis demonstrates that the proposed theory recovers the Donnan osmotic pressure and can predict the correct fluid pressure difference across membranes, a result which cannot be achieved by existing KK theories due to the neglect of fixed charges. The steady-state analysis on active membranes suggests a new pressure mechanism which balances the fluid pressure together with the osmotic pressure. The source of this pressure arises from active ionic fluxes and from interactions between solvent and solutes in membrane transport. We apply the proposed theory to study the transendothelial fluid pressure in the in vivo cornea, which is a crucial factor maintaining the hydration and transparency of the tissue. The results show the importance of the proposed pressure mechanism in mediating stromal fluid pressure and provide a new interpretation of the pressure modulation mechanism in the in vivo cornea.

  14. Osteopontin: Relation between Adipose Tissue and Bone Homeostasis

    OpenAIRE

    De Fusco, Carolina; Messina, Antonietta; Monda, Vincenzo; Viggiano, Emanuela; Moscatelli, Fiorenzo; Valenzano, Anna; Esposito, Teresa; Sergio, Chieffi; Cibelli, Giuseppe; Monda, Marcellino; Messina, Giovanni

    2017-01-01

    Osteopontin (OPN) is a multifunctional protein mainly associated with bone metabolism and remodeling. Besides its physiological functions, OPN is implicated in the pathogenesis of a variety of disease states, such as obesity and osteoporosis. Importantly, during the last decades obesity and osteoporosis have become among the main threats to health worldwide. Because OPN is a protein principally expressed in cells with multifaceted effects on bone morphogenesis and remodeling and because it se...

  15. Joint homeostasis in tissue engineering for cartilage repair

    NARCIS (Netherlands)

    Saris, D.B.F.

    2002-01-01

    Traumatic joint damage, articular cartilage and the research into methods of restoring the articulation are not new topics of interest. For centuries, clinicians have recognized the importance of cartilage damage and sought ways of learning about the normal form and function of hyaline cartilage as

  16. CHF: circulatory homeostasis gone awry.

    Science.gov (United States)

    Weber, Karl T; Burlew, Brad S; Davis, Richard C; Newman, Kevin P; D'Cruz, Ivan A; Hawkins, Ralph G; Wall, Barry M; Parker, Robert B

    2002-01-01

    The role of the renin-angiotensin-aldosterone system (RAAS) is integral to salt and water retention, particularly by the kidneys. Over time, positive sodium balance leads first to intra- and then to extravascular volume expansion, with subsequent symptomatic heart failure. This report examines the role of the RAAS in regulating a less well recognized component essential to circulatory homeostasis--central blood volume. The regulation of central blood volume draws on integrative cardiorenal physiology and a key role played by the RAAS in its regulation. In presenting insights into the role of the RAAS in regulating central blood volume, this review also addresses other sodium-retaining states with a predisposition to edema formation, such as cirrhosis and nephrosis. (c)2002 CHF, Inc

  17. [Bone homeostasis and Mechano biology.

    Science.gov (United States)

    Nakashima, Tomoki

    The weight-bearing exercises help to build bones and to maintain them strength. Bone is constantly renewed by the balanced action of osteoblastic bone formation and osteoclastic bone resorption both of which mainly occur at the bone surface. This restructuring process called "bone remodeling" is important not only for normal bone mass and strength, but also for mineral homeostasis. Bone remodeling is stringently regulated by communication between bone component cells such as osteoclasts, osteoblasts and osteocytes. An imbalance of this process is often linked to various bone diseases. During bone remodeling, resorption by osteoclasts precedes bone formation by osteoblasts. Based on the osteocyte location within the bone matrix and the cellular morphology, it is proposed that osteocytes potentially contribute to the regulation of bone remodeling in response to mechanical and endocrine stimuli.

  18. Regulation of leucocyte homeostasis in the circulation.

    Science.gov (United States)

    Scheiermann, Christoph; Frenette, Paul S; Hidalgo, Andrés

    2015-08-01

    The functions of blood cells extend well beyond the immune functions of leucocytes or the respiratory and hemostatic functions of erythrocytes and platelets. Seen as a whole, the bloodstream is in charge of nurturing and protecting all organs by carrying a mixture of cell populations in transit from one organ to another. To optimize these functions, evolution has provided blood and the vascular system that carries it with various mechanisms that ensure the appropriate influx and egress of cells into and from the circulation where and when needed. How this homeostatic control of blood is achieved has been the object of study for over a century, and although the major mechanisms that govern it are now fairly well understood, several new concepts and mediators have recently emerged that emphasize the dynamism of this liquid tissue. Here we review old and new concepts that relate to the maintenance and regulation of leucocyte homeostasis in blood and briefly discuss the mechanisms for platelets and red blood cells. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  19. Zinc and the modulation of redox homeostasis

    Science.gov (United States)

    Oteiza, Patricia I.

    2012-01-01

    Zinc, a redox inactive metal, has been long viewed as a component of the antioxidant network, and growing evidence points to its involvement in redox-regulated signaling. These actions are exerted through several mechanisms based on the unique chemical and functional properties of zinc. Overall, zinc contributes to maintain the cell redox balance through different mechanisms including: i) the regulation of oxidant production and metal-induced oxidative damage; ii) the dynamic association of zinc with sulfur in protein cysteine clusters, from which the metal can be released by nitric oxide, peroxides, oxidized glutathione and other thiol oxidant species; iii) zinc-mediated induction of the zinc-binding protein metallothionein, which releases the metal under oxidative conditions and act per se scavenging oxidants; iv) the involvement of zinc in the regulation of glutathione metabolism and of the overall protein thiol redox status; and v) a direct or indirect regulation of redox signaling. Findings of oxidative stress, altered redox signaling, and associated cell/tissue disfunction in cell and animal models of zinc deficiency, stress the relevant role of zinc in the preservation of cell redox homeostasis. However, while the participation of zinc in antioxidant protection, redox sensing, and redox-regulated signaling is accepted, the involved molecules, targets and mechanisms are still partially known and the subject of active research. PMID:22960578

  20. Peritoneal fluid reduces angiogenesis-related microRNA expression in cell cultures of endometrial and endometriotic tissues from women with endometriosis.

    Directory of Open Access Journals (Sweden)

    Aitana Braza-Boïls

    Full Text Available UNLABELLED: Endometriosis, defined as the presence of endometrium outside the uterus, is one of the most frequent gynecological diseases. It has been suggested that modifications of both endometrial and peritoneal factors could be implicated in this disease. Endometriosis is a multifactorial disease in which angiogenesis and proteolysis are dysregulated. MicroRNAs (miRNAs are small non-coding RNAs that regulate the protein expression and may be the main regulators of angiogenesis. Our hypothesis is that peritoneal fluid from women with endometriosis could modify the expression of several miRNAs that regulate angiogenesis and proteolysis in the endometriosis development. The objective of this study has been to evaluate the influence of endometriotic peritoneal fluid on the expression of six miRNAs related to angiogenesis, as well as several angiogenic and proteolytic factors in endometrial and endometriotic cell cultures from women with endometriosis compared with women without endometriosis. METHODS: Endometrial and endometriotic cells were cultured and treated with endometriotic and control peritoneal fluid pools. We have studied the expression of six miRNAs (miR-16, -17-5p, -20a, -125a, -221, and -222 by RT-PCR and protein and mRNA levels of vascular endothelial growth factor-A, thrombospondin-1, urokinase plasminogen activator and plasminogen activator inhibitor-1 by ELISA and qRT-PCR respectively. RESULTS: Control and endometriotic peritoneal fluid pools induced a significant reduction of all miRNAs levels in endometrial and endometriotic cell cultures. Moreover, both peritoneal fluids induced a significant increase in VEGF-A, uPA and PAI-1 protein levels in all cell cultures without significant increase in mRNA levels. Endometrial cell cultures from patients treated with endometriotic peritoneal fluid showed lower expression of miRNAs and higher expression of VEGF-A protein levels than cultures from controls. In conclusion , this "in vitro

  1. Ebola Virus Persistence in Ocular Tissues and Fluids (EVICT Study: Reverse Transcription-Polymerase Chain Reaction and Cataract Surgery Outcomes of Ebola Survivors in Sierra Leone

    Directory of Open Access Journals (Sweden)

    Jessica G. Shantha

    2018-04-01

    Full Text Available Background: Ebola virus disease (EVD survivors are at risk for uveitis during convalescence. Vision loss has been observed following uveitis due to cataracts. Since Ebola virus (EBOV may persist in the ocular fluid of EVD survivors for an unknown duration, there are questions about the safety and feasibility of vision restorative cataract surgery in EVD survivors. Methods: We conducted a cross-sectional study of EVD survivors anticipating cataract surgery and patients with active uveitis to evaluate EBOV RNA persistence in ocular fluid, as well as vision outcomes post cataract surgery. Patients with aqueous humor that tested negative for EBOV RNA were eligible to proceed with manual small incision cataract surgery (MSICS. Findings: We screened 137 EVD survivors from June 2016 – August 2017 for enrolment. We enrolled 50 EVD survivors; 46 with visually significant cataract, 1 with a subluxated lens, 2 with active uveitis and 1 with a blind painful eye due to uveitis. The median age was 24.0 years (IQR 17–35 and 35 patients (70% were female. The median logMAR visual acuity (VA was 3.0 (Snellen VA Hand motions; Interquartile Range, IQR: 1.2-3.0, Snellen VA 20/320 – Hand motions. All patients tested negative for EBOV RNA by RT-PCR in aqueous humor/vitreous fluid and conjunctiva at a median of 19 months (IQR 18-20 from EVD diagnosis in Phase 1 of ocular fluid sampling and 34 months (IQR 32-36 from EVD diagnosis in Phase 2 of ocular fluid sampling. Thirty-four patients underwent MSICS, with a preoperative median VA improvement from hand motions to 20/30 at three-month postoperative follow-up (P < 0.001. Interpretation: EBOV persistence by RT-PCR was not identified in ocular fluid or conjunctivae of fifty EVD survivors with ocular disease. Cataract surgery can be performed safely with vision restorative outcomes in patients who test negative for EBOV RNA in ocular fluid specimens. These findings impact the thousands of West African EVD

  2. Osmotic homeostasis and NKLy lymphoma cells radiosensitivity

    International Nuclear Information System (INIS)

    Tishchenko, V.V.; Magda, I.N.

    1992-01-01

    In experiments with cells of ascites NKLy lymphoma differing in ploidy and position in the cell cycle, a study was made of the radiosensitivity, osmotic homeostasis peculiarities and thermoradiation changes in potassium content. It was shown that the resistance of osmotic homeostasis of NKLy cells to thermoradiation correlated with their radioresistance

  3. Hardwiring Stem Cell Communication through Tissue Structure.

    Science.gov (United States)

    Xin, Tianchi; Greco, Valentina; Myung, Peggy

    2016-03-10

    Adult stem cells across diverse organs self-renew and differentiate to maintain tissue homeostasis. How stem cells receive input to preserve tissue structure and function largely relies on their communication with surrounding cellular and non-cellular elements. As such, how tissues are organized and patterned not only reflects organ function, but also inherently hardwires networks of communication between stem cells and their environment to direct tissue homeostasis and injury repair. This review highlights how different methods of stem cell communication reflect the unique organization and function of diverse tissues. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Hardwiring stem cell communication through tissue structure

    Science.gov (United States)

    Xin, Tianchi; Greco, Valentina; Myung, Peggy

    2016-01-01

    Adult stem cells across diverse organs self-renew and differentiate to maintain tissue homeostasis. How stem cells receive input to preserve tissue structure and function largely relies on their communication with surrounding cellular and non-cellular elements. As such, how tissues are organized and patterned not only reflects organ function but also inherently hardwires networks of communication between stem cells and their environment to direct tissue homeostasis and injury repair. This review highlights how different methods of stem cell communication reflect the unique organization and function of diverse tissues. PMID:26967287

  5. Numerical simulation of fluid field and in vitro three-dimensional fabrication of tissue-engineered bones in a rotating bioreactor and in vivo implantation for repairing segmental bone defects.

    Science.gov (United States)

    Song, Kedong; Wang, Hai; Zhang, Bowen; Lim, Mayasari; Liu, Yingchao; Liu, Tianqing

    2013-03-01

    In this paper, two-dimensional flow field simulation was conducted to determine shear stresses and velocity profiles for bone tissue engineering in a rotating wall vessel bioreactor (RWVB). In addition, in vitro three-dimensional fabrication of tissue-engineered bones was carried out in optimized bioreactor conditions, and in vivo implantation using fabricated bones was performed for segmental bone defects of Zelanian rabbits. The distribution of dynamic pressure, total pressure, shear stress, and velocity within the culture chamber was calculated for different scaffold locations. According to the simulation results, the dynamic pressure, velocity, and shear stress around the surface of cell-scaffold construction periodically changed at different locations of the RWVB, which could result in periodical stress stimulation for fabricated tissue constructs. However, overall shear stresses were relatively low, and the fluid velocities were uniform in the bioreactor. Our in vitro experiments showed that the number of cells cultured in the RWVB was five times higher than those cultured in a T-flask. The tissue-engineered bones grew very well in the RWVB. This study demonstrates that stress stimulation in an RWVB can be beneficial for cell/bio-derived bone constructs fabricated in an RWVB, with an application for repairing segmental bone defects.

  6. Repair and regeneration: opportunities for carcinogenesis from tissue stem cells

    OpenAIRE

    Perryman, Scott V; Sylvester, Karl G

    2007-01-01

    This review will discuss the mechanisms of repair and regeneration in various tissue types and how dysregulation of these mechaisms may lead to cancer. Normal homeostasis involves a careful balance between cell loss and cell renewal. Stem and progenitor cells perform these biologic processes as the functional units of regeneration during both tissue homeostasis and repair. The concept of tissue stem cells capable of giving rise to all differentiated cells within a given tissue led to the conc...

  7. Regulation of intestinal homeostasis by innate and adaptive immunity.

    Science.gov (United States)

    Kayama, Hisako; Takeda, Kiyoshi

    2012-11-01

    The intestine is a unique tissue where an elaborate balance is maintained between tolerance and immune responses against a variety of environmental factors such as food and the microflora. In a healthy individual, the microflora stimulates innate and adaptive immune systems to maintain gut homeostasis. However, the interaction of environmental factors with particular genetic backgrounds can lead to dramatic changes in the composition of the microflora (i.e. dysbiosis). Many of the specific commensal-bacterial products and the signaling pathways they trigger have been characterized. The role of T(h)1, T(h)2 and T(h)17 cells in inflammatory bowel disease has been widely investigated, as has the contribution of epithelial cells and subsets of dendritic cells and macrophages. To date, multiple regulatory cells in adaptive immunity, such as regulatory T cells and regulatory B cells, have been shown to maintain gut homeostasis by preventing inappropriate innate and adaptive immune responses to commensal bacteria. Additionally, regulatory myeloid cells have recently been identified that prevent intestinal inflammation by inhibiting T-cell proliferation. An increasing body of evidence has shown that multiple regulatory mechanisms contribute to the maintenance of gut homeostasis.

  8. A new vision of immunity: homeostasis of the superorganism.

    Science.gov (United States)

    Eberl, G

    2010-09-01

    The immune system is commonly perceived as an army of organs, tissues, cells, and molecules that protect from disease by eliminating pathogens. However, as in human society, a clear definition of good and evil might be sometimes difficult to achieve. Not only do we live in contact with a multitude of microbes, but we also live with billions of symbionts that span all the shades from mutualists to potential killers. Together, we compose a superorganism that is capable of optimal living. In that context, the immune system is not a killer, but rather a force that shapes homeostasis within the superorganism.

  9. Regulation of brain copper homeostasis by the brain barrier systems: Effects of Fe-overload and Fe-deficiency

    International Nuclear Information System (INIS)

    Monnot, Andrew D.; Behl, Mamta; Ho, Sanna; Zheng, Wei

    2011-01-01

    Maintaining brain Cu homeostasis is vital for normal brain function. The role of systemic Fe deficiency (FeD) or overload (FeO) due to metabolic diseases or environmental insults in Cu homeostasis in the cerebrospinal fluid (CSF) and brain tissues remains unknown. This study was designed to investigate how blood-brain barrier (BBB) and blood-SCF barrier (BCB) regulated Cu transport and how FeO or FeD altered brain Cu homeostasis. Rats received an Fe-enriched or Fe-depleted diet for 4 weeks. FeD and FeO treatment resulted in a significant increase (+ 55%) and decrease (− 56%) in CSF Cu levels (p < 0.05), respectively; however, neither treatment had any effect on CSF Fe levels. The FeD, but not FeO, led to significant increases in Cu levels in brain parenchyma and the choroid plexus. In situ brain perfusion studies demonstrated that the rate of Cu transport into the brain parenchyma was significantly faster in FeD rats (+ 92%) and significantly slower (− 53%) in FeO rats than in controls. In vitro two chamber Transwell transepithelial transport studies using primary choroidal epithelial cells revealed a predominant efflux of Cu from the CSF to blood compartment by the BCB. Further ventriculo-cisternal perfusion studies showed that Cu clearance by the choroid plexus in FeD animals was significantly greater than control (p < 0.05). Taken together, our results demonstrate that both the BBB and BCB contribute to maintain a stable Cu homeostasis in the brain and CSF. Cu appears to enter the brain primarily via the BBB and is subsequently removed from the CSF by the BCB. FeD has a more profound effect on brain Cu levels than FeO. FeD increases Cu transport at the brain barriers and prompts Cu overload in the CNS. The BCB plays a key role in removing the excess Cu from the CSF.

  10. Protein synthesis controls phosphate homeostasis.

    Science.gov (United States)

    Pontes, Mauricio H; Groisman, Eduardo A

    2018-01-01

    Phosphorus is an essential element assimilated largely as orthophosphate (Pi). Cells respond to Pi starvation by importing Pi from their surroundings. We now report that impaired protein synthesis alone triggers a Pi starvation response even when Pi is plentiful in the extracellular milieu. In the bacterium Salmonella enterica serovar Typhimurium , this response entails phosphorylation of the regulatory protein PhoB and transcription of PhoB-dependent Pi transporter genes and is eliminated upon stimulation of adenosine triphosphate (ATP) hydrolysis. When protein synthesis is impaired due to low cytoplasmic magnesium (Mg 2+ ), Salmonella triggers the Pi starvation response because ribosomes are destabilized, which reduces ATP consumption and thus free cytoplasmic Pi. This response is transient because low cytoplasmic Mg 2+ promotes an uptake in Mg 2+ and a decrease in ATP levels, which stabilizes ribosomes, resulting in ATP consumption and Pi increase, thus ending the response. Notably, pharmacological inhibition of protein synthesis also elicited a Pi starvation response in the bacterium Escherichia coli and the yeast Saccharomyces cerevisiae Our findings identify a regulatory connection between protein synthesis and Pi homeostasis that is widespread in nature. © 2018 Pontes and Groisman; Published by Cold Spring Harbor Laboratory Press.

  11. Immunocapture-based fluorometric assay for the measurement of neprilysin-specific enzyme activity in brain tissue homogenates and cerebrospinal fluid.

    NARCIS (Netherlands)

    Miners, J.S.; Verbeek, M.M.; Olde Rikkert, M.G.M.; Kehoe, P.G.; Love, S.

    2008-01-01

    Neprilysin, a zinc-metalloendopeptidase, has important roles in the physiology and pathology of many diseases such as hypertension, cancer and Alzheimer's disease. We have developed an immunocapture assay to measure the specific enzyme activity of neprilysin in brain tissue homogenates and

  12. HIGH-PERFORMANCE LIQUID-CHROMATOGRAPHIC PROFILING OF TRYPTOPHAN AND RELATED INDOLES IN BODY-FLUIDS AND TISSUES OF CARCINOID PATIENTS

    NARCIS (Netherlands)

    KEMA, IP; SCHELLINGS, AMJ; HOPPENBROUWERS, CJM; RUTGERS, HM; DEVRIES, EGE; MUSKIET, FAJ

    1993-01-01

    A high performance liquid chromatographic method with quaternary gradient elution and fluorometric detection was developed for profiling of tryptophan (TRP), 5-hydroxytryptophan, serotonin (5-HT) and 5-hydroxyindole-3-acetic acid (5-HIAA) in urine, platelet-rich plasma and (tumour) tissue of

  13. Unresolved issues in the analysis of F2-isoprostanes, F4-neuroprostanes, isofurans, neurofurans, and F2-dihomo-isoprostanes in body fluids and tissue using gas chromatography/negative-ion chemical-ionization mass spectrometry.

    Science.gov (United States)

    Yen, H-C; Wei, H-J; Lin, C-L

    2015-01-01

    F2-isoprostanes (F2-IsoPs) generated from arachidonic acid (AA) have been recognized as the most reliable marker of nonenzymatic lipid peroxidation in vivo. F2-IsoPs are initially produced in esterified form on phospholipids, and then released into body fluids in free form. The same mechanism can lead to generation of F4-neuroprostanes (F4-NPs) and F2-dihomo-IsoPs from docosahexaenoic acid (DHA) and adrenic acid, respectively. In addition, isofurans (IsoFs) and neurofurans (NFs) may be preferentially produced from AA and DHA, respectively, under high oxygen tension. The detection of F2-IsoPs using gas chromatography/negative-ion chemical-ionization mass spectrometry (GC/NICI-MS) has been widely employed, which is important for human body fluids containing low quantity of free-form F2-IsoPs. F4-NPs have also been detected using GC/NICI-MS, but multiple peaks need to be quantified. In this paper, we summarize the basic workflow of the GC/NICI-MS method for analyzing F2-IsoPs and F4-NPs, and various formats of assays conducted by different groups. We then discuss the feasibility of simultaneous analysis of IsoFs, NFs, and F2-dihomo-IsoPs with F2-IsoPs or F4-NPs. Representative GC chromatograms for analyzing these markers in human body fluids and rat brain tissue are demonstrated. Furthermore, we discuss several factors that may affect the performance of the analysis, such as those related to the sample processing steps, interference from specimens, types of GC liners used, and the addition of electron multiplier voltage in the method setting for the MS detector. Finally, we question the appropriateness of measuring total (free plus esterified) levels of these markers in body fluids.

  14. Control of Immune Cell Homeostasis and Function by lncRNAs.

    Science.gov (United States)

    Mowel, Walter K; Kotzin, Jonathan J; McCright, Sam J; Neal, Vanessa D; Henao-Mejia, Jorge

    2018-01-01

    The immune system is composed of diverse cell types that coordinate responses to infection and maintain tissue homeostasis. In each of these cells, extracellular cues determine highly specific epigenetic landscapes and transcriptional profiles to promote immunity while maintaining homeostasis. New evidence indicates that long non-coding RNAs (lncRNAs) play crucial roles in epigenetic and transcriptional regulation in mammals. Thus, lncRNAs have emerged as key regulatory molecules of immune cell gene expression programs in response to microbial and tissue-derived cues. We review here how lncRNAs control the function and homeostasis of cell populations during immune responses, emphasizing the diverse molecular mechanisms by which lncRNAs tune highly contextualized transcriptional programs. In addition, we discuss the new challenges faced in interrogating lncRNA mechanisms and function in the immune system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Gut Homeostasis, Microbial Dysbiosis, and Opioids.

    Science.gov (United States)

    Wang, Fuyuan; Roy, Sabita

    2017-01-01

    Gut homeostasis plays an important role in maintaining animal and human health. The disruption of gut homeostasis has been shown to be associated with multiple diseases. The mutually beneficial relationship between the gut microbiota and the host has been demonstrated to maintain homeostasis of the mucosal immunity and preserve the integrity of the gut epithelial barrier. Currently, rapid progress in the understanding of the host-microbial interaction has redefined toxicological pathology of opioids and their pharmacokinetics. However, it is unclear how opioids modulate the gut microbiome and metabolome. Our study, showing opioid modulation of gut homeostasis in mice, suggests that medical interventions to ameliorate the consequences of drug use/abuse will provide potential therapeutic and diagnostic strategies for opioid-modulated intestinal infections. The study of morphine's modulation of the gut microbiome and metabolome will shed light on the toxicological pathology of opioids and its role in the susceptibility to infectious diseases.

  16. Air pollution particles and iron homeostasis

    Science.gov (United States)

    Background: The mechanism underlying biological effects of particles deposited in the lung has not been defined. Major Conclusions: A disruption in iron homeostasis follows exposure of cells to all particulate matter including air pollution particles. Following endocytosis, fun...

  17. Neuronal regulation of homeostasis by nutrient sensing.

    Science.gov (United States)

    Lam, Tony K T

    2010-04-01

    In type 2 diabetes and obesity, the homeostatic control of glucose and energy balance is impaired, leading to hyperglycemia and hyperphagia. Recent studies indicate that nutrient-sensing mechanisms in the body activate negative-feedback systems to regulate energy and glucose homeostasis through a neuronal network. Direct metabolic signaling within the intestine activates gut-brain and gut-brain-liver axes to regulate energy and glucose homeostasis, respectively. In parallel, direct metabolism of nutrients within the hypothalamus regulates food intake and blood glucose levels. These findings highlight the importance of the central nervous system in mediating the ability of nutrient sensing to maintain homeostasis. Futhermore, they provide a physiological and neuronal framework by which enhancing or restoring nutrient sensing in the intestine and the brain could normalize energy and glucose homeostasis in diabetes and obesity.

  18. Flavanol-Enriched Cocoa Powder Alters the Intestinal Microbiota, Tissue and Fluid Metabolite Profiles, and Intestinal Gene Expression in Pigs1234

    Science.gov (United States)

    Jang, Saebyeol; Sun, Jianghao; Chen, Pei; Lakshman, Sukla; Molokin, Aleksey; Harnly, James M; Vinyard, Bryan T; Urban, Joseph F; Davis, Cindy D; Solano-Aguilar, Gloria

    2016-01-01

    Background: Consumption of cocoa-derived polyphenols has been associated with several health benefits; however, their effects on the intestinal microbiome and related features of host intestinal health are not adequately understood. Objective: The objective of this study was to determine the effects of eating flavanol-enriched cocoa powder on the composition of the gut microbiota, tissue metabolite profiles, and intestinal immune status. Methods: Male pigs (5 mo old, 28 kg mean body weight) were supplemented with 0, 2.5, 10, or 20 g flavanol-enriched cocoa powder/d for 27 d. Metabolites in serum, urine, the proximal colon contents, liver, and adipose tissue; bacterial abundance in the intestinal contents and feces; and intestinal tissue gene expression of inflammatory markers and Toll-like receptors (TLRs) were then determined. Results: O-methyl-epicatechin-glucuronide conjugates dose-dependently increased (P cocoa powder. The concentration of 3-hydroxyphenylpropionic acid isomers in urine decreased as the dose of cocoa powder fed to pigs increased (75–85%, P cocoa powder/d, respectively. Moreover, consumption of cocoa powder reduced TLR9 gene expression in ileal Peyer’s patches (67–80%, P cocoa powder/d compared with pigs not supplemented with cocoa powder. Conclusion: This study demonstrates that consumption of cocoa powder by pigs can contribute to gut health by enhancing the abundance of Lactobacillus and Bifidobacterium species and modulating markers of localized intestinal immunity. PMID:26936136

  19. Lak of influence of glucagon on glucose homeostasis after prolonged exercise in rats

    DEFF Research Database (Denmark)

    Galbo, H; Richter, Erik; Holst, J J

    1977-01-01

    The significance of glucagon for post-exercise glucose homeostasis has been studied in rats fasted overnight. Immediately after exhaustive swimming either rabbit-antiglucagon serum or normal rabbit serum was injected by cardiac puncture. Cardiac blood and samples of liver and muscle tissue were...

  20. Persistent hepatitis virus infection and immune homeostasis

    OpenAIRE

    ZHOU Yun

    2014-01-01

    Homeostasis between the host and viruses is naturally maintained. On the one hand, the immune system activates the immune response to kill or eliminate viruses; on the other hand, the immune system controls the immune response to maintain immune homeostasis. The cause of persistent infections with hepatitis viruses such as HBV and HCV is that viral molecules damage the immune system of the host and their variants escape immune clearance. Long-term coexistence of the host and viruses is the pr...

  1. Neuroimmune regulation during intestinal development and homeostasis.

    Science.gov (United States)

    Veiga-Fernandes, Henrique; Pachnis, Vassilis

    2017-02-01

    Interactions between the nervous system and immune system are required for organ function and homeostasis. Evidence suggests that enteric neurons and intestinal immune cells share common regulatory mechanisms and can coordinate their responses to developmental challenges and environmental aggressions. These discoveries shed light on the physiology of system interactions and open novel perspectives for therapy designs that target underappreciated neurological-immunological commonalities. Here we highlight findings that address the importance of neuroimmune cell units (NICUs) in intestinal development, homeostasis and disease.

  2. A potential role for muscle in glucose homeostasis: in vivo kinetic studies in glycogen storage disease type 1a and fructose-1,6-bisphosphatase deficiency

    NARCIS (Netherlands)

    Huidekoper, Hidde H.; Visser, Gepke; Ackermans, Mariëtte T.; Sauerwein, Hans P.; Wijburg, Frits A.

    2010-01-01

    A potential role for muscle in glucose homeostasis was recently suggested based on characterization of extrahepatic and extrarenal glucose-6-phosphatase (glucose-6-phosphatase-beta). To study the role of extrahepatic tissue in glucose homeostasis during fasting glucose kinetics were studied in two

  3. Simultaneous determination of D-aspartic acid and D-glutamic acid in rat tissues and physiological fluids using a multi-loop two-dimensional HPLC procedure.

    Science.gov (United States)

    Han, Hai; Miyoshi, Yurika; Ueno, Kyoko; Okamura, Chieko; Tojo, Yosuke; Mita, Masashi; Lindner, Wolfgang; Zaitsu, Kiyoshi; Hamase, Kenji

    2011-11-01

    For a metabolomics study focusing on the analysis of aspartic and glutamic acid enantiomers, a fully automated two-dimensional HPLC system employing a microbore-ODS column and a narrowbore-enantioselective column was developed. By using this system, a detailed distribution of D-Asp and D-Glu besides L-Asp and L-Glu in mammals was elucidated. For the total analysis concept, the amino acids were first pre-column derivatized with 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F) to be sensitively and fluorometrically detected. For the non-stereoselective separation of the analytes in the first dimension a monolithic ODS column (750 mm × 0.53 mm i.d.) was adopted, and a self-packed narrowbore-Pirkle type enantioselective column (Sumichiral OA-2500S, 250 mm × 1.5 mm i.d.) was selected for the second dimension. In the rat plasma, RSD values for intra-day and inter-day precision were less than 6.8%, and the accuracy ranged between 96.1% and 105.8%. The values of LOQ of D-Asp and D-Glu were 5 fmol/injection (0.625 nmol/g tissue). The present method was successfully applied to the simultaneous determination of free aspartic acid and glutamic acid enantiomers in 7 brain areas, 11 peripheral tissues, plasma and urine of Wistar rats. Biologically significant D-Asp values were found in various tissue samples whereas for D-Glu the values were very low possibly indicating less significance. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Fluid Mechanics.

    Science.gov (United States)

    Drazin, Philip

    1987-01-01

    Outlines the contents of Volume II of "Principia" by Sir Isaac Newton. Reviews the contributions of subsequent scientists to the physics of fluid dynamics. Discusses the treatment of fluid mechanics in physics curricula. Highlights a few of the problems of modern research in fluid dynamics. Shows that problems still remain. (CW)

  5. Postmortem detection of 25I-NBOMe [2-(4-iodo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine] in fluids and tissues determined by high performance liquid chromatography with tandem mass spectrometry from a traumatic death.

    Science.gov (United States)

    Poklis, Justin L; Devers, Kelly G; Arbefeville, Elise F; Pearson, Julia M; Houston, Eric; Poklis, Alphonse

    2014-01-01

    We present a traumatic fatality of a 19-year-old man who had ingested blotter paper containing 25I-NBOMe [2-(4-iodo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine]. Postmortem specimens were analyzed by high performance liquid chromatography with tandem mass spectrometry (HPLC/MS/MS). Toxicology findings for fluids based upon blood or urine calibrators were as follows: peripheral blood, 405 pg/mL; heart blood, 410 pg/mL; urine, 2.86 ng/mL; and vitreous humor, 99 pg/mL. While findings based upon the method of standard additions were: gastric contents, 7.1 μg total; bile, 10.9 ng/g; brain, 2.54 ng/g and liver, 7.2 ng/g. To our knowledge the presented case is the first postmortem case of 25I-NBOMe intoxication documented by toxicological analysis of tissues and body fluids. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Atypical antipsychotics and glucose homeostasis.

    Science.gov (United States)

    Bergman, Richard N; Ader, Marilyn

    2005-04-01

    Persistent reports have linked atypical antipsychotics with diabetes, yet causative mechanisms responsible for this linkage are unclear. Goals of this review are to outline the pathogenesis of nonimmune diabetes and to survey the available literature related to why antipsychotics may lead to this disease. We accessed the literature regarding atypical antipsychotics and glucose homeostasis using PubMed. The search included English-language publications from 1990 through October 2004. Keywords used included atypical antipsychotics plus one of the following: glucose, insulin, glucose tolerance, obesity, or diabetes. In addition, we culled information from published abstracts from several national and international scientific meetings for the years 2001 through 2004, including the American Diabetes Association, the International Congress on Schizophrenia Research, and the American College of Neuropsychopharmacology. The latter search was necessary because of the paucity of well-controlled prospective studies. We examined publications with significant new data or publications that contributed to the overall comprehension of the impact of atypical antipsychotics on glucose metabolism. We favored original peer-reviewed articles and were less likely to cite single case studies and/or anecdotal information. Approximately 75% of the fewer than 150 identified articles were examined and included in this review. Validity of data was evaluated using the existence of peer-review status as well as our own experience with methodology described in the specific articles. The metabolic profile caused by atypical antipsychotic treatment resembles type 2 diabetes. These agents cause weight gain in treated subjects and may induce obesity in both visceral and subcutaneous depots, as occurs in diabetes. Insulin resistance, usually associated with obesity, occurs to varying degrees with different antipsychotics, although more comparative studies with direct assessment of resistance are

  7. Development and validation of a liquid chromatography-MS/MS method for simultaneous quantification of tenofovir and efavirenz in biological tissues and fluids.

    Science.gov (United States)

    Barreiros, Luisa; Cunha-Reis, Cassilda; Silva, Eduarda M P; Carvalho, Joana R B; das Neves, José; Sarmento, Bruno; Segundo, Marcela A

    2017-03-20

    Millions of people worldwide live with human immunodeficiency virus (HIV) infection thus justifying the continuous search for new prevention and treatment strategies, including topical microbicide products combining antiretroviral drugs (ARVs) such as tenofovir (TFV) and efavirenz (EFV). Therefore, the aim of this work was to develop and validate a high performance liquid chromatography method coupled to triple quadrupole-tandem mass spectrometry (HPLC-MS/MS) for the quantification of TFV and EFV in biological matrices (mouse vaginal tissue, vaginal lavage and blood plasma). Chromatographic separation was achieved using a reversed phase C18 column (3μm, 100×2.1mm) at 45°C and elution in gradient mode using a combination of 0.1% (v/v) formic acid in water and 0.1% (v/v) formic acid in acetonitrile at 0.35mLmin -1 . Total run time was 9min, with retention time of 2.8 and 4.1min for TFV and EFV, respectively. The MS was operated in positive ionization mode (ESI+) for TFV and in negative ionization mode (ESI-) for EFV detection. Data were acquired in selected reaction monitoring (SRM) mode and deuterated ARVs were employed as internal standards. Calibration curves were linear for ARV concentrations ranging from 4 to 500ngmL -1 with LOD and LOQ for both analytes ≤0.4 and ≤0.7ngmL -1 in sample extracts, respectively. The method was found to be specific, accurate (96.0-106.0% of nominal values) and precise (RSDfluids were ≥88.4%. Matrix effects were observed for EFV determination in tissue and plasma extracts but compensated by the use of deuterated internal standards. The proposed methodology was successfully applied to a pharmacokinetic study following intravaginal administration of both ARVs. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. BDE-47 and 6-OH-BDE-47 modulate calcium homeostasis in primary fetal human neural progenitor cells via ryanodine receptor-independent mechanisms

    NARCIS (Netherlands)

    Gassmann, Kathrin; Schreiber, Timm; Dingemans, Milou M L; Krause, Guido; Roderigo, Claudia; Giersiefer, Susanne; Schuwald, Janette; Moors, Michaela; Unfried, Klaus; Bergman, Åke; Westerink, Remco H S; Rose, Christine R.; Fritsche, Ellen

    2014-01-01

    Polybrominated diphenyl ethers (PBDEs) are bioaccumulating flame retardants found in rising concentrations in human tissue. Epidemiological and animal studies have raised concern for their potential to induce developmental neurotoxicity (DNT). Considering the essential role of calcium homeostasis in

  9. The importance of the renin-angiotensin system in normal cardiovascular homeostasis

    Science.gov (United States)

    Haber, E.

    1975-01-01

    Studies were carried out on adult mongrel dogs (20 to 30 kilograms) to investigate the importance of the renin-angiotensin system. Results indicate that the renin-angiotensin system plays a major role in the maintenance of circulatory homeostasis when extracellular fluid volume is depleted. It was also found that angiotensin II concentration, in addition to renal perfusion pressure, is a factor in the regulation of renin release.

  10. [Hormonal homeostasis and intraocular pressure in chronic emotional stress caused by influences acting on the amygdala].

    Science.gov (United States)

    Isakova, L S; Danilov, G E; Egorkina, S B; Butolin, E G

    1989-01-01

    Changes in intraocular pressure, eye hydrodynamics and the amount of hypophyseal, thyroid, adrenal and pancreatic hormones were studied during continuous stimulation of amygdaloid complex or after administration of angiotensin II into the structure in rabbits. The effects involved changes in hormonal homeostasis and elevation of intraocular pressure due to a hypersecretion of intraocular fluid. The administration of angiotensin II during the amygdala stimulation enhanced the changes.

  11. Current understanding of iron homeostasis.

    Science.gov (United States)

    Anderson, Gregory J; Frazer, David M

    2017-12-01

    Iron is an essential trace element, but it is also toxic in excess, and thus mammals have developed elegant mechanisms for keeping both cellular and whole-body iron concentrations within the optimal physiologic range. In the diet, iron is either sequestered within heme or in various nonheme forms. Although the absorption of heme iron is poorly understood, nonheme iron is transported across the apical membrane of the intestinal enterocyte by divalent metal-ion transporter 1 (DMT1) and is exported into the circulation via ferroportin 1 (FPN1). Newly absorbed iron binds to plasma transferrin and is distributed around the body to sites of utilization with the erythroid marrow having particularly high iron requirements. Iron-loaded transferrin binds to transferrin receptor 1 on the surface of most body cells, and after endocytosis of the complex, iron enters the cytoplasm via DMT1 in the endosomal membrane. This iron can be used for metabolic functions, stored within cytosolic ferritin, or exported from the cell via FPN1. Cellular iron concentrations are modulated by the iron regulatory proteins (IRPs) IRP1 and IRP2. At the whole-body level, dietary iron absorption and iron export from the tissues into the plasma are regulated by the liver-derived peptide hepcidin. When tissue iron demands are high, hepcidin concentrations are low and vice versa. Too little or too much iron can have important clinical consequences. Most iron deficiency reflects an inadequate supply of iron in the diet, whereas iron excess is usually associated with hereditary disorders. These disorders include various forms of hemochromatosis, which are characterized by inadequate hepcidin production and, thus, increased dietary iron intake, and iron-loading anemias whereby both increased iron absorption and transfusion therapy contribute to the iron overload. Despite major recent advances, much remains to be learned about iron physiology and pathophysiology. © 2017 American Society for Nutrition.

  12. Fluids engineering

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Fluids engineering has played an important role in many applications, from ancient flood control to the design of high-speed compact turbomachinery. New applications of fluids engineering, such as in high-technology materials processing, biotechnology, and advanced combustion systems, have kept up unwaining interest in the subject. More accurate and sophisticated computational and measurement techniques are also constantly being developed and refined. On a more fundamental level, nonlinear dynamics and chaotic behavior of fluid flow are no longer an intellectual curiosity and fluid engineers are increasingly interested in finding practical applications for these emerging sciences. Applications of fluid technology to new areas, as well as the need to improve the design and to enhance the flexibility and reliability of flow-related machines and devices will continue to spur interest in fluids engineering. The objectives of the present seminar were: to exchange current information on arts, science, and technology of fluids engineering; to promote scientific cooperation between the fluids engineering communities of both nations, and to provide an opportunity for the participants and their colleagues to explore possible joint research programs in topics of high priority and mutual interest to both countries. The Seminar provided an excellent forum for reviewing the current state and future needs of fluids engineering for the two nations. With the Seminar ear-marking the first formal scientific exchange between Korea and the United States in the area of fluids engineering, the scope was deliberately left broad and general

  13. THE ANTI-TB DRUG SENSITIVITY OF MYCOBACTERIUM TUBERCULOSIS FROM CEREBROSPINAL FLUID AND BONE TISSUE BIOPSY SPECIMENS OF PATIENTS SUSPECTED TUBERCULOUS MENINGITIS AND SPINAL TB IN DR SOETOMO HOSPITAL INDONESIA

    Directory of Open Access Journals (Sweden)

    Ni Made Mertaniasih

    2014-09-01

    Full Text Available Tuberculous meningitis (TBM is an infection of meningens which potentially life threatening with significant morbidity and mortality. Spinal TB has the same problem with TBM, infection in bone and joint, the delayed diagnosis worsens the prognosis. The rapid and accurate diagnosis plus promt adequate treatment is essential for the good outcome. The aim of this research is to study the first line drug sensitivity of Mycobacterium tuberculosis isolated from specimens of cerebrospinal fluid from suspected tuberculous meningitis patients and bone tissue biopsy from suspected spinal TB patients. The method of this research is TB Laboratory examination in Department of Clinical Microbiology – Dr. Soetomo General Hospital, Indonesia, using the gold standard liquid culture method MGIT 960 System (Becton Dickinson and solid culture method with Lowenstein-Jensen medium. The specimens CSF from 50 TBM patients at January 2013 until May 2014. Positive isolate detection of Mycobacterium tuberculosis complex were 11 isolates (22%, which sensitivity 100% (11/11 isolates to Rifampin (R, Pyrazinamide (Z, Ethambutol (E, and Streptomycin (S; one isolate resistant to Isoniazid, sensitivity to Isoniazid 90,90% (10/11; and received 21 specimens of bone tissue biopsy which positive 5 isolates (23%, all isolates sensitive 100% (5/5 isolates to Rifampin and Pyrazinamide, and 1 isolates resistant to Isoniazid, Ethambutol, and Streptomycin, in which sensitivity 80% (4/5 isolates to Isoniazid, Ethambutol, and Streptomycin. The conclusion of this research is positivity detection 22% of CSF specimens, and 23% of bone tissue biopsy were low. All isolates sensitive 100% to Rifampin and Pyrazinamide, and 80-90% sensitive to Isoniazid.

  14. Microbiota-Dependent Crosstalk Between Macrophages and ILC3 Promotes Intestinal Homeostasis

    Science.gov (United States)

    Mortha, Arthur; Chudnovskiy, Aleksey; Hashimoto, Daigo; Bogunovic, Milena; Spencer, Sean P.; Belkaid, Yasmine; Merad, Miriam

    2014-01-01

    The intestinal microbiota and tissue-resident myeloid cells promote immune responses that maintain intestinal homeostasis in the host. However, the cellular cues that translate microbial signals into intestinal homeostasis remain unclear. Here, we show that deficient granulocyte-macrophage colony-stimulating factor (GM-CSF) production altered mononuclear phagocyte effector functions and led to reduced regulatory T cell (Treg) numbers and impaired oral tolerance. We observed that RORγt+ innate lymphoid cells (ILCs) are the primary source of GM-CSF in the gut and that ILC-driven GM-CSF production was dependent on the ability of macrophages to sense microbial signals and produce interleukin-1β. Our findings reveal that commensal microbes promote a crosstalk between innate myeloid and lymphoid cells that leads to immune homeostasis in the intestine. PMID:24625929

  15. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis.

    Science.gov (United States)

    Mortha, Arthur; Chudnovskiy, Aleksey; Hashimoto, Daigo; Bogunovic, Milena; Spencer, Sean P; Belkaid, Yasmine; Merad, Miriam

    2014-03-28

    The intestinal microbiota and tissue-resident myeloid cells promote immune responses that maintain intestinal homeostasis in the host. However, the cellular cues that translate microbial signals into intestinal homeostasis remain unclear. Here, we show that deficient granulocyte-macrophage colony-stimulating factor (GM-CSF) production altered mononuclear phagocyte effector functions and led to reduced regulatory T cell (T(reg)) numbers and impaired oral tolerance. We observed that RORγt(+) innate lymphoid cells (ILCs) are the primary source of GM-CSF in the gut and that ILC-driven GM-CSF production was dependent on the ability of macrophages to sense microbial signals and produce interleukin-1β. Our findings reveal that commensal microbes promote a crosstalk between innate myeloid and lymphoid cells that leads to immune homeostasis in the intestine.

  16. Neuronal and molecular mechanisms of sleep homeostasis.

    Science.gov (United States)

    Donlea, Jeffrey M

    2017-12-01

    Sleep is necessary for survival, and prolonged waking causes a homeostatic increase in the need for recovery sleep. Homeostasis is a core component of sleep regulation and has been tightly conserved across evolution from invertebrates to man. Homeostatic sleep regulation was first identified among insects in cockroaches several decades ago, but the characterization of sleep rebound in Drosophila melanogaster opened the use of insect model species to understand homeostatic functions and regulation of sleep. This review describes circuits in two neuropil structures, the central complex and mushroom bodies, that influence sleep homeostasis and neuromodulatory systems that influence the accrual of homeostatic sleep need. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Hypothalamic neurones governing glucose homeostasis.

    Science.gov (United States)

    Coppari, R

    2015-06-01

    The notion that the brain directly controls the level of glucose in the blood (glycaemia) independent of its known action on food intake and body weight has been known ever since 1849. That year, the French physiologist Dr Claude Bernard reported that physical puncture of the floor of the fourth cerebral ventricle rapidly leads to an increased level of sugar in the blood (and urine) in rabbits. Despite this important discovery, it took approximately 150 years before significant efforts aimed at understanding the underlying mechanism of brain-mediated control of glucose metabolism were made. Technological developments allowing for genetically-mediated manipulation of selected molecular pathways in a neurone-type-specific fashion unravelled the importance of specific molecules in specific neuronal populations. These neuronal pathways govern glucose metabolism in the presence and even in the absence of insulin. Also, a peculiarity of these pathways is that certain biochemically-defined neurones govern glucose metabolism in a tissue-specific fashion. © 2015 British Society for Neuroendocrinology.

  18. Buffer fluid

    Energy Technology Data Exchange (ETDEWEB)

    Mirzadzhanzade, A Kh; Dedusanko, G Ya; Dinaburg, L S; Markov, Yu M; Rasizade, Ya N; Rozov, V N; Sherstnev, N M

    1979-08-30

    A drilling fluid is suggested for separating the drilling and plugging fluids which contains as the base increased solution of polyacrylamide and additive. In order to increase the viscoelastic properties of the liquid with simultaneous decrease in the periods of its fabrication, the solution contains as an additive dry bentonite clay. In cases of the use of a buffer fluid under conditions of negative temperatures, it is necessary to add to it table salt or ethylene glycol.

  19. Reactive Oxygen Species and Mitochondrial Homeostasis as Regulators of Stem Cell Fate and Function.

    Science.gov (United States)

    Tan, Darren Q; Suda, Toshio

    2018-07-10

    The precise role and impact of reactive oxygen species (ROS) in stem cells, which are essential for lifelong tissue homeostasis and regeneration, remain of significant interest to the field. The long-term regenerative potential of a stem cell compartment is determined by the delicate balance between quiescence, self-renewal, and differentiation, all of which can be influenced by ROS levels. Recent Advances: The past decade has seen a growing appreciation for the importance of ROS and redox homeostasis in various stem cell compartments, particularly those of hematopoietic, neural, and muscle tissues. In recent years, the importance of proteostasis and mitochondria in relation to stem cell biology and redox homeostasis has garnered considerable interest. Here, we explore the reciprocal relationship between ROS and stem cells, with significant emphasis on mitochondria as a core component of redox homeostasis. We discuss how redox signaling, involving cell-fate determining protein kinases and transcription factors, can control stem cell function and fate. We also address the impact of oxidative stress on stem cells, especially oxidative damage of lipids, proteins, and nucleic acids. We further discuss ROS management in stem cells, and present recent evidence supporting the importance of mitochondrial activity and its modulation (via mitochondrial clearance, biogenesis, dynamics, and distribution [i.e., segregation and transfer]) in stem cell redox homeostasis. Therefore, elucidating the intricate links between mitochondria, cellular metabolism, and redox homeostasis is envisioned to be critical for our understanding of ROS in stem cell biology and its therapeutic relevance in regenerative medicine. Antioxid. Redox Signal. 00, 000-000.

  20. Immunology in the liver--from homeostasis to disease.

    Science.gov (United States)

    Heymann, Felix; Tacke, Frank

    2016-02-01

    The liver is a central immunological organ with a high exposure to circulating antigens and endotoxins from the gut microbiota, particularly enriched for innate immune cells (macrophages, innate lymphoid cells, mucosal-associated invariant T (MAIT) cells). In homeostasis, many mechanisms ensure suppression of immune responses, resulting in tolerance. Tolerance is also relevant for chronic persistence of hepatotropic viruses or allograft acceptance after liver transplantation. The liver can rapidly activate immunity in response to infections or tissue damage. Depending on the underlying liver disease, such as viral hepatitis, cholestasis or NASH, different triggers mediate immune-cell activation. Conserved mechanisms such as molecular danger patterns (alarmins), Toll-like receptor signalling or inflammasome activation initiate inflammatory responses in the liver. The inflammatory activation of hepatic stellate and Kupffer cells results in the chemokine-mediated infiltration of neutrophils, monocytes, natural killer (NK) and natural killer T (NKT) cells. The ultimate outcome of the intrahepatic immune response (for example, fibrosis or resolution) depends on the functional diversity of macrophages and dendritic cells, but also on the balance between pro-inflammatory and anti-inflammatory T-cell populations. As reviewed here, tremendous progress has helped to understand the fine-tuning of immune responses in the liver from homeostasis to disease, indicating promising targets for future therapies in acute and chronic liver diseases.

  1. Temporal aspects of copper homeostasis and its crosstalk with hormones

    Directory of Open Access Journals (Sweden)

    Lola ePeñarrubia

    2015-04-01

    Full Text Available To cope with the dual nature of copper as being essential and toxic for cells, plants temporarily adapt the expression of copper homeostasis components to assure its delivery to cuproproteins while avoiding the interference of potential oxidative damage derived from both copper uptake and photosynthetic reactions during light hours. The circadian clock participates in the temporal organization of coordination of plant nutrition adapting metabolic responses to the daily oscillations. This timely control improves plant fitness and reproduction and holds biotechnological potential to drive increased crop yields. Hormonal pathways, including those of abscisic acid, gibberellins, ethylene, auxins, and jasmonates are also under direct clock and light control, both in mono and dicotyledons. In this review, we focus on copper transport in Arabidopsis thaliana and Oryza sativa and the presumable role of hormones in metal homeostasis matching nutrient availability to growth requirements and preventing metal toxicity. The presence of putative hormone-dependent regulatory elements in the promoters of copper transporters genes suggests hormonal regulation to match special copper requirements during plant development. Spatial and temporal processes that can be affected by hormones include the regulation of copper uptake into roots, intracellular trafficking and compartmentalisation, and long-distance transport to developing vegetative and reproductive tissues. In turn, hormone biosynthesis and signalling are also influenced by copper availability, which suggests reciprocal regulation subjected to temporal control by the central oscillator of the circadian clock. This transcriptional regulatory network, coordinates environmental and hormonal signalling with developmental pathways to allow enhanced micronutrient acquisition efficiency.

  2. Asthma as a disruption in iron homeostasis | Science ...

    Science.gov (United States)

    Over several decades, asthma has evolved from being recognized as a single disease to include a diverse group of phenotypes with dissimilar natural histories, pathophysiologies, responses to treatment, and distinctive molecular pathways. With the application of Occam’s razor to asthma, it is proposed that there is one cause underlying the numerous phenotypes of this disease and that the responsible molecular pathway is a deficiency of iron in the lung tissues. This deficiency can be either absolute (e.g. asthma in the neonate and during both pregnancy and menstruation) or functional (e.g. asthma associated with infections, smoking, and obesity). Comparable associations between asthma co-morbidity (e.g. eczema, urticaria, restless leg syndrome, and pulmonary hypertension) with iron deficiency support such a shared mechanistic pathway. Therapies directed at asthma demonstrate a capacity to impact iron homeostasis, further strengthening the relationship. Finally, pathophysiologic events producing asthma, including inflammation, increases in Th2 cells, and muscle contraction, can correlate with iron availability. Recognition of a potential association between asthma and an absolute and/or functional iron deficiency suggests specific therapeutic interventions including inhaled iron. Asthma is a public health issue that has environmental triggers. Iron homeostasis is an essential mechanism whereby the body manages the impact of environmental agents on overall

  3. Concentrations of cadmium and selected essential elements in malignant large intestine tissue

    Science.gov (United States)

    Dziki, Adam; Kilanowicz, Anna; Sapota, Andrzej; Duda-Szymańska, Joanna; Daragó, Adam

    2015-01-01

    Introduction Colorectal cancer is one of the most common cancers worldwide. Incidence rates of large intestine cancer indicate a role of environmental and occupational factors. The role of essential elements and their interaction with toxic metals can contribute to the explanation of a complex mechanism by which large intestine cancer develops. Bearing this in mind, determining the levels of essential and toxic elements in tissues (organs), as well as in body fluids, seems to shed light on their role in the mode of action in malignant disease. Aim Determination of the levels of cadmium, zinc, copper, selenium, calcium, magnesium, and iron in large intestine malignant tissue. Material and methods Two intraoperative intestine sections were investigated: one from the malignant tissue and the other one from the normal tissue, collected from each person with diagnosed large intestine cancer. Cadmium, zinc, copper, calcium, magnesium, and iron levels were determined with atomic absorption spectrometry, and selenium levels by spectrofluorimetric method. Results The levels of copper, selenium, and magnesium were higher in the malignant than in normal tissues. In addition, the zinc/copper and calcium/magnesium relationship was altered in malignant tissue, where correlations were lower compared to non-malignant tissue. Conclusions The results seems to demonstrate disturbed homeostasis of some essential elements. However, it is hard to confirm their involvement in the aetiology of colorectal cancer. PMID:27110307

  4. Bach2 Controls Homeostasis of Eosinophils by Restricting the Type-2 Helper Function of T Cells.

    Science.gov (United States)

    Sato, Yuki; Kato, Hiroki; Ebina-Shibuya, Risa; Itoh-Nakadai, Ari; Okuyama, Ryuhei; Igarashi, Kazuhiko

    2017-03-01

    Bach2 is a transcription factor which represses its target genes and plays important roles in the differentiation of B and T lymphoid cells. Bach2-deficient (KO) mice develop severe pulmonary alveolar proteinosis, which is associated with increased numbers of granulocytes and T cells. Bach2 is essential for the regulation of T cells, but its role in the regulation of granulocytes is not clear. Here, we observed increased numbers of eosinophils but not neutrophils in the bone marrow, spleen, peripheral blood, and bronchoalveolar lavage fluids of Bach2 KO mice compared with those of wild-type (WT) mice. Upon co-transplantation of the bone marrow cells from CD45.2 Bach2 KO and CD45.1/CD45.2 double-positive WT mice to irradiated WT CD45.1/CD45.2 mice, the reconstituted numbers of eosinophils were similar between Bach2 KO and WT cells. These results showed that the deficiency of Bach2 in eosinophils did not directly drive the differentiation of eosinophils. To investigate the effect of Bach2 KO CD4 + T cells upon eosinophils, we analyzed Rag2/Bach2-double deficient (dKO) mice which lack lymphocytes including CD4 + T cells. Rag2/Bach2 dKO mice did not show any increase in the numbers of eosinophils. Importantly, Bach2 KO mice showed an increase of interleukin-5 (Il-5) in the sera compared with WT mice. These results suggest that up-regulated functions of CD4 + T cells including secretion of Il-5 resulted in proliferation and/or migration to peripheral tissues of eosinophils in Bach2 KO mice. We propose that Bach2 controls homeostasis of eosinophils via restricting the production of Il-5 in CD4 + T cells.

  5. Gut commensal flora: tolerance and homeostasis

    OpenAIRE

    Rescigno, Maria

    2009-01-01

    Commensal microorganisms are not ignored by the intestinal immune system. Recent evidence shows that commensals actively participate in maintaining intestinal immune homeostasis by interacting with intestinal epithelial cells and delivering tolerogenic signals that are transmitted to the underlying cells of the immune system.

  6. Redox Homeostasis in Pancreatic beta Cells

    Czech Academy of Sciences Publication Activity Database

    Ježek, Petr; Dlasková, Andrea; Plecitá-Hlavatá, Lydie

    2012-01-01

    Roč. 2012, č. 2012 (2012), s. 932838 ISSN 1942-0900 R&D Projects: GA ČR(CZ) GAP302/10/0346; GA ČR(CZ) GPP304/10/P204 Institutional support: RVO:67985823 Keywords : beta cells * reactive oxygen species homeostasis * mitochondria Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 3.393, year: 2012

  7. Calcium homeostasis in fly photoreceptor cells

    NARCIS (Netherlands)

    Oberwinkler, J

    2002-01-01

    In fly photoreceptor cells, two processes dominate the Ca2+ homeostasis: light-induced Ca2+ influx through members of the TRP family of ion channels, and Ca2+ extrusion by Na+/Ca2+ exchange.Ca2+ release from intracellular stores is quantitatively insignificant. Both, the light-activated channels and

  8. Effectiveness of carnosine on disturbed electrolytes homeostasis ...

    African Journals Online (AJOL)

    Jane

    2011-07-20

    Jul 20, 2011 ... of the cells to cisplatin may result from the interaction of specific proteins with ..... respiration, which is similar to uncoupling of oxidative phosphorylation (Binet ... cellular ion homeostasis with decreased cellular K+ content, increased ... of sodium and hydrogen ions will take place passively. Also, magnesium ...

  9. Pharmacological modulation of mitochondrial calcium homeostasis.

    Science.gov (United States)

    Arduino, Daniela M; Perocchi, Fabiana

    2018-01-10

    Mitochondria are pivotal organelles in calcium (Ca 2+ ) handling and signalling, constituting intracellular checkpoints for numerous processes that are vital for cell life. Alterations in mitochondrial Ca 2+ homeostasis have been linked to a variety of pathological conditions and are critical in the aetiology of several human diseases. Efforts have been taken to harness mitochondrial Ca 2+ transport mechanisms for therapeutic intervention, but pharmacological compounds that direct and selectively modulate mitochondrial Ca 2+ homeostasis are currently lacking. New avenues have, however, emerged with the breakthrough discoveries on the genetic identification of the main players involved in mitochondrial Ca 2+ influx and efflux pathways and with recent hints towards a deep understanding of the function of these molecular systems. Here, we review the current advances in the understanding of the mechanisms and regulation of mitochondrial Ca 2+ homeostasis and its contribution to physiology and human disease. We also introduce and comment on the recent progress towards a systems-level pharmacological targeting of mitochondrial Ca 2+ homeostasis. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  10. Brain glucose sensing, counterregulation, and energy homeostasis.

    Science.gov (United States)

    Marty, Nell; Dallaporta, Michel; Thorens, Bernard

    2007-08-01

    Neuronal circuits in the central nervous system play a critical role in orchestrating the control of glucose and energy homeostasis. Glucose, beside being a nutrient, is also a signal detected by several glucose-sensing units that are located at different anatomical sites and converge to the hypothalamus to cooperate with leptin and insulin in controlling the melanocortin pathway.

  11. Schroedinger fluid

    International Nuclear Information System (INIS)

    Kan, K.K.

    1983-01-01

    The relationship of nuclear internal flow and collective inertia, the difference of this flow from that of a classical fluid, and the approach of this flow to rigid flow in independent-particle model rotation are elucidated by reviewing the theory of Schroedinger fluid and its implications for collective vibration and rotation. (author)

  12. Liquid chromatography--tandem mass spectrometry analysis of cocaine and its metabolites from blood, amniotic fluid, placental and fetal tissues: study of the metabolism and distribution of cocaine in pregnant rats.

    Science.gov (United States)

    Srinivasan, K; Wang, P P; Eley, A T; White, C A; Bartlett, M G

    2000-08-18

    The ability to simultaneously quantitate cocaine and its 12 metabolites from pregnant rat blood, amniotic fluid, placental and fetal tissue homogenates aids in elucidating the metabolism and distribution of cocaine. An efficient extraction method was developed to simultaneously recover these 13 components using underivatized silica solid-phase extraction (SPE) cartridges. The overall recoveries for cocaine and its metabolites were studied from pregnant rat blood (47-100%), amniotic fluid (61-100%), placental homogenate (31-83%), and fetal homogenate (39-87%). Extraction of the samples using silica is not classical SPE, but rather allows for the concentration of the sample into a small volume prior to injection and the removal of the proteins due to their strong interaction with the active silica surface. A positive ion mode electrospray ionization liquid chromatography-tandem mass spectrometry (LC-MS-MS) method was used and validated to simultaneously quantitate cocaine and 12 metabolites from these four biological matrices. A gradient elution method with a Zorbax XDB C8 reversed-phase column was used to separate the components. Multiple reaction monitoring (MRM) of a product ion arising from the corresponding precursor ion was used in order to enhance the selectivity and sensitivity of the method. Low background noise was observed from the complex biological matrices due to efficient SPE and the selectivity of the MRM mode. Linear calibration curves were generated from 0.01 to 2.50 ppm. The method also showed high intra-day (n =3) and inter-day (n=9) precision (% RSD) and accuracy (% error) for all components. The limits of detection (LODs) for the method ranged from 0.15 to 10 ppb. The LODs of cocaine and its major metabolites were less than 1 ppb from all four biological matrices. This method was applied to the study of the metabolism and distribution of cocaine in pregnant rats following intravenous infusion to a steady state plasma drug concentration. The

  13. Lung Homeostasis: Influence of Age, Microbes, and the Immune System.

    Science.gov (United States)

    Lloyd, Clare M; Marsland, Benjamin J

    2017-04-18

    Pulmonary immune homeostasis is maintained by a network of tissue-resident cells that continually monitor the external environment, and in health, instruct tolerance to innocuous inhaled particles while ensuring that efficient and rapid immune responses can be mounted against invading pathogens. Here we review the multiple pathways that underlie effective lung immunity in health, and discuss how these may be affected by external environmental factors and contribute to chronic inflammation during disease. In this context, we examine the current understanding of the impact of the microbiota in immune development and function and in the setting of the threshold for immune responses that maintains the balance between tolerance and chronic inflammation in the lung. We propose that host interactions with microbes are critical for establishing the immune landscape of the lungs. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Local iron homeostasis in the breast ductal carcinoma microenvironment

    International Nuclear Information System (INIS)

    Marques, Oriana; Porto, Graça; Rêma, Alexandra; Faria, Fátima; Cruz Paula, Arnaud; Gomez-Lazaro, Maria; Silva, Paula; Martins da Silva, Berta; Lopes, Carlos

    2016-01-01

    While the deregulation of iron homeostasis in breast epithelial cells is acknowledged, iron-related alterations in stromal inflammatory cells from the tumor microenvironment have not been explored. Immunohistochemistry for hepcidin, ferroportin 1 (FPN1), transferrin receptor 1 (TFR1) and ferritin (FT) was performed in primary breast tissues and axillary lymph nodes in order to dissect the iron-profiles of epithelial cells, lymphocytes and macrophages. Furthermore, breast carcinoma core biopsies frozen in optimum cutting temperature (OCT) compound were subjected to imaging flow cytometry to confirm FPN1 expression in the cell types previously evaluated and determine its cellular localization. We confirm previous results by showing that breast cancer epithelial cells present an ‘iron-utilization phenotype’ with an increased expression of hepcidin and TFR1, and decreased expression of FT. On the other hand, lymphocytes and macrophages infiltrating primary tumors and from metastized lymph nodes display an ‘iron-donor’ phenotype, with increased expression of FPN1 and FT, concomitant with an activation profile reflected by a higher expression of TFR1 and hepcidin. A higher percentage of breast carcinomas, compared to control mastectomy samples, present iron accumulation in stromal inflammatory cells, suggesting that these cells may constitute an effective tissue iron reservoir. Additionally, not only the deregulated expression of iron-related proteins in epithelial cells, but also on lymphocytes and macrophages, are associated with clinicopathological markers of breast cancer poor prognosis, such as negative hormone receptor status and tumor size. The present results reinforce the importance of analyzing the tumor microenvironment in breast cancer, extending the contribution of immune cells to local iron homeostasis in the tumor microenvironment context

  15. Probiotics Differently Affect Gut-Associated Lymphoid Tissue Indolamine-2,3-Dioxygenase mRNA and Cerebrospinal Fluid Neopterin Levels in Antiretroviral-Treated HIV-1 Infected Patients: A Pilot Study.

    Science.gov (United States)

    Scagnolari, Carolina; Corano Scheri, Giuseppe; Selvaggi, Carla; Schietroma, Ivan; Najafi Fard, Saeid; Mastrangelo, Andrea; Giustini, Noemi; Serafino, Sara; Pinacchio, Claudia; Pavone, Paolo; Fanello, Gianfranco; Ceccarelli, Giancarlo; Vullo, Vincenzo; d'Ettorre, Gabriella

    2016-09-27

    Recently the tryptophan pathway has been considered an important determinant of HIV-1 infected patients' quality of life, due to the toxic effects of its metabolites on the central nervous system (CNS). Since the dysbiosis described in HIV-1 patients might be responsible for the microbial translocation, the chronic immune activation, and the altered utilization of tryptophan observed in these individuals, we speculated a correlation between high levels of immune activation markers in the cerebrospinal fluid (CSF) of HIV-1 infected patients and the over-expression of indolamine-2,3-dioxygenase (IDO) at the gut mucosal surface. In order to evaluate this issue, we measured the levels of neopterin in CSF, and the expression of IDO mRNA in gut-associated lymphoid tissue (GALT), in HIV-1-infected patients on effective combined antiretroviral therapy (cART), at baseline and after six months of probiotic dietary management. We found a significant reduction of neopterin and IDO mRNA levels after the supplementation with probiotic. Since the results for the use of adjunctive therapies to reduce the levels of immune activation markers in CSF have been disappointing so far, our pilot study showing the efficacy of this specific probiotic product should be followed by a larger confirmatory trial.

  16. Precision Fluid Management in Continuous Renal Replacement Therapy.

    Science.gov (United States)

    Murugan, Raghavan; Hoste, Eric; Mehta, Ravindra L; Samoni, Sara; Ding, Xiaoqiang; Rosner, Mitchell H; Kellum, John A; Ronco, Claudio

    2016-01-01

    Fluid management during continuous renal replacement therapy (CRRT) in critically ill patients is a dynamic process that encompasses 3 inter-related goals: maintenance of the patency of the CRRT circuit, maintenance of plasma electrolyte and acid-base homeostasis and regulation of patient fluid balance. In this article, we report the consensus recommendations of the 2016 Acute Disease Quality Initiative XVII conference on 'Precision Fluid Management in CRRT'. We discuss the principles of fluid management, describe various prescription methods to achieve circuit integrity and introduce the concept of integrated fluid balance for tailoring fluid balance to the needs of the individual patient. We suggest that these recommendations could serve to develop the best clinical practice and standards of care for fluid management in patients undergoing CRRT. Finally, we identify and highlight areas of uncertainty in fluid management and set an agenda for future research. © 2016 S. Karger AG, Basel.

  17. Putative nanobacteria represent physiological remnants and culture by-products of normal calcium homeostasis.

    Directory of Open Access Journals (Sweden)

    John D Young

    Full Text Available Putative living entities called nanobacteria (NB are unusual for their small sizes (50-500 nm, pleomorphic nature, and accumulation of hydroxyapatite (HAP, and have been implicated in numerous diseases involving extraskeletal calcification. By adding precipitating ions to cell culture medium containing serum, mineral nanoparticles are generated that are morphologically and chemically identical to the so-called NB. These nanoparticles are shown here to be formed of amorphous mineral complexes containing calcium as well as other ions like carbonate, which then rapidly acquire phosphate, forming HAP. The main constituent proteins of serum-derived NB are albumin, fetuin-A, and apolipoprotein A1, but their involvement appears circumstantial since so-called NB from different body fluids harbor other proteins. Accordingly, by passage through various culture media, the protein composition of these particles can be modulated. Immunoblotting experiments reveal that antibodies deemed specific for NB react in fact with either albumin, fetuin-A, or both, indicating that previous studies using these reagents may have detected these serum proteins from the same as well as different species, with human tissue nanoparticles presumably absorbing bovine serum antigens from the culture medium. Both fetal bovine serum and human serum, used earlier by other investigators as sources of NB, paradoxically inhibit the formation of these entities, and this inhibition is trypsin-sensitive, indicating a role for proteins in this inhibitory process. Fetuin-A, and to a lesser degree albumin, inhibit nanoparticle formation, an inhibition that is overcome with time, ending with formation of the so-called NB. Together, these data demonstrate that NB are most likely formed by calcium or apatite crystallization inhibitors that are somehow overwhelmed by excess calcium or calcium phosphate found in culture medium or in body fluids, thereby becoming seeds for calcification. The

  18. Fluid dynamics

    CERN Document Server

    Bernard, Peter S

    2015-01-01

    This book presents a focused, readable account of the principal physical and mathematical ideas at the heart of fluid dynamics. Graduate students in engineering, applied math, and physics who are taking their first graduate course in fluids will find this book invaluable in providing the background in physics and mathematics necessary to pursue advanced study. The book includes a detailed derivation of the Navier-Stokes and energy equations, followed by many examples of their use in studying the dynamics of fluid flows. Modern tensor analysis is used to simplify the mathematical derivations, thus allowing a clearer view of the physics. Peter Bernard also covers the motivation behind many fundamental concepts such as Bernoulli's equation and the stream function. Many exercises are designed with a view toward using MATLAB or its equivalent to simplify and extend the analysis of fluid motion including developing flow simulations based on techniques described in the book.

  19. Neutrophils in Homeostasis, Immunity, and Cancer.

    Science.gov (United States)

    Nicolás-Ávila, José Ángel; Adrover, José M; Hidalgo, Andrés

    2017-01-17

    Neutrophils were among the first leukocytes described and visualized by early immunologists. Prominent effector functions during infection and sterile inflammation classically placed them low in the immune tree as rapid, mindless aggressors with poor regulatory functions. This view is currently under reassessment as we uncover new aspects of their life cycle and identify transcriptional and phenotypic diversity that endows them with regulatory properties that extend beyond their lifetime in the circulation. These properties are revealing unanticipated roles for neutrophils in supporting homeostasis, as well as complex disease states such as cancer. We focus this review on these emerging functions in order to define the true roles of neutrophils in homeostasis, immunity, and disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Imbalanced immune homeostasis in immune thrombocytopenia.

    Science.gov (United States)

    Yazdanbakhsh, Karina

    2016-04-01

    Immune thrombocytopenia (ITP) is an autoimmune bleeding disorder resulting from low platelet counts caused by inadequate production as well as increased destruction by autoimmune mechanisms. As with other autoimmune disorders, chronic ITP is characterized by perturbations of immune homeostasis with hyperactivated effector cells as well as defective regulatory arm of the adaptive immune system, which will be reviewed here. Interestingly, some ITP treatments are associated with restoring the regulatory imbalance, although it remains unclear whether the immune system is redirected to a state of tolerance once treatment is discontinued. Understanding the mechanisms that result in breakdown of immune homeostasis in ITP will help to identify novel pathways for restoring tolerance and inhibiting effector cell responses. This information can then be translated into developing therapies for averting autoimmunity not only in ITP but also many autoimmune disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Homeostasis as the Mechanism of Evolution

    Directory of Open Access Journals (Sweden)

    John S. Torday

    2015-09-01

    Full Text Available Homeostasis is conventionally thought of merely as a synchronic (same time servo-mechanism that maintains the status quo for organismal physiology. However, when seen from the perspective of developmental physiology, homeostasis is a robust, dynamic, intergenerational, diachronic (across-time mechanism for the maintenance, perpetuation and modification of physiologic structure and function. The integral relationships generated by cell-cell signaling for the mechanisms of embryogenesis, physiology and repair provide the needed insight to the scale-free universality of the homeostatic principle, offering a novel opportunity for a Systems approach to Biology. Starting with the inception of life itself, with the advent of reproduction during meiosis and mitosis, moving forward both ontogenetically and phylogenetically through the evolutionary steps involved in adaptation to an ever-changing environment, Biology and Evolution Theory need no longer default to teleology.

  2. Transcranial electrical stimulation accelerates human sleep homeostasis.

    Directory of Open Access Journals (Sweden)

    Davide Reato

    Full Text Available The sleeping brain exhibits characteristic slow-wave activity which decays over the course of the night. This decay is thought to result from homeostatic synaptic downscaling. Transcranial electrical stimulation can entrain slow-wave oscillations (SWO in the human electro-encephalogram (EEG. A computational model of the underlying mechanism predicts that firing rates are predominantly increased during stimulation. Assuming that synaptic homeostasis is driven by average firing rates, we expected an acceleration of synaptic downscaling during stimulation, which is compensated by a reduced drive after stimulation. We show that 25 minutes of transcranial electrical stimulation, as predicted, reduced the decay of SWO in the remainder of the night. Anatomically accurate simulations of the field intensities on human cortex precisely matched the effect size in different EEG electrodes. Together these results suggest a mechanistic link between electrical stimulation and accelerated synaptic homeostasis in human sleep.

  3. The liver in regulation of iron homeostasis.

    Science.gov (United States)

    Rishi, Gautam; Subramaniam, V Nathan

    2017-09-01

    The liver is one of the largest and most functionally diverse organs in the human body. In addition to roles in detoxification of xenobiotics, digestion, synthesis of important plasma proteins, gluconeogenesis, lipid metabolism, and storage, the liver also plays a significant role in iron homeostasis. Apart from being the storage site for excess body iron, it also plays a vital role in regulating the amount of iron released into the blood by enterocytes and macrophages. Since iron is essential for many important physiological and molecular processes, it increases the importance of liver in the proper functioning of the body's metabolism. This hepatic iron-regulatory function can be attributed to the expression of many liver-specific or liver-enriched proteins, all of which play an important role in the regulation of iron homeostasis. This review focuses on these proteins and their known roles in the regulation of body iron metabolism. Copyright © 2017 the American Physiological Society.

  4. Mitochondrial Iron Transport and Homeostasis in Plants

    Directory of Open Access Journals (Sweden)

    Anshika eJain

    2013-09-01

    Full Text Available Iron (Fe is an essential nutrient for plants and although the mechanisms controlling iron uptake from the soil are relatively well understood, comparatively little is known about subcellular trafficking of iron in plant cells. Mitochondria represent a significant iron sink within cells, as iron is required for the proper functioning of respiratory chain protein complexes. Mitochondria are a site of Fe-S cluster synthesis, and possibly heme synthesis as well. Here we review recent insights into the molecular mechanisms controlling mitochondrial iron transport and homeostasis. We focus on the recent identification of a mitochondrial iron uptake transporter in rice and a possible role for metalloreductases in iron uptake by mitochondria. In addition, we highlight recent advances in mitochondrial iron homeostasis with an emphasis on the roles of frataxin and ferritin in iron trafficking and storage within mitochondria.

  5. The Commensal Microbiota Drives Immune Homeostasis

    OpenAIRE

    Arrieta, Marie-Claire; Finlay, Barton Brett

    2012-01-01

    For millions of years, microbes have coexisted with eukaryotic cells at the mucosal surfaces of vertebrates in a complex, yet usually harmonious symbiosis. An ever-expanding number of reports describe how eliminating or shifting the intestinal microbiota has profound effects on the development and functionality of the mucosal and systemic immune systems. Here, we examine some of the mechanisms by which bacterial signals affect immune homeostasis. Focusing on the strategies that microbes use t...

  6. A mathematical model of brain glucose homeostasis

    Directory of Open Access Journals (Sweden)

    Kimura Hidenori

    2009-11-01

    Full Text Available Abstract Background The physiological fact that a stable level of brain glucose is more important than that of blood glucose suggests that the ultimate goal of the glucose-insulin-glucagon (GIG regulatory system may be homeostasis of glucose concentration in the brain rather than in the circulation. Methods In order to demonstrate the relationship between brain glucose homeostasis and blood hyperglycemia in diabetes, a brain-oriented mathematical model was developed by considering the brain as the controlled object while the remaining body as the actuator. After approximating the body compartmentally, the concentration dynamics of glucose, as well as those of insulin and glucagon, are described in each compartment. The brain-endocrine crosstalk, which regulates blood glucose level for brain glucose homeostasis together with the peripheral interactions among glucose, insulin and glucagon, is modeled as a proportional feedback control of brain glucose. Correlated to the brain, long-term effects of psychological stress and effects of blood-brain-barrier (BBB adaptation to dysglycemia on the generation of hyperglycemia are also taken into account in the model. Results It is shown that simulation profiles obtained from the model are qualitatively or partially quantitatively consistent with clinical data, concerning the GIG regulatory system responses to bolus glucose, stepwise and continuous glucose infusion. Simulations also revealed that both stress and BBB adaptation contribute to the generation of hyperglycemia. Conclusion Simulations of the model of a healthy person under long-term severe stress demonstrated that feedback control of brain glucose concentration results in elevation of blood glucose level. In this paper, we try to suggest that hyperglycemia in diabetes may be a normal outcome of brain glucose homeostasis.

  7. THE WORLD VIEW, IDENTITY AND SOCIOCULTUR HOMEOSTASIS

    Directory of Open Access Journals (Sweden)

    Marina Yur’evna Neronova

    2016-02-01

    Full Text Available The paper presents the relationship between the phenomenon of world view and sociocultural identity both individuals and the community as a whole. The research is being carried out in the context of current crisis of world view accepted in so-called art Nouveau era. This paper also presents the identity crisis typical for modern civilized societies. A new notion of sociocultural homeostasis is introduced in connection with analyzable phenomena and their mutual relations.Purpose. Study of the relationship between the phenomenon of the world view and sociocultural identity as a structural and functional mechanism.Methodology. Phenomenological and systematic methods with the elements of historical method were employed. Cultural analysis is based on using both axiological and phenomenological approach, and also the elements of semiotic approach.Results. The dependence of identity on the world view is revealed (or is being revealed?, the phenomenon of sociocultural homeostasis is singled out (or is being singled out in the capacity of the mechanism setting up the correspondence in the contradictory unity between the world view as a subjective image and concrete reality as an objective part of this contradictory. The analysis of sociocultural homeostasis is carried out (or is being carried out and the conclusion is being drown that instability of the latter leads to serious problems in the identification of both individuals and communities as a whole. Besides, (moreover the relationship between the legitimacy level of the world view and stability of sociocultural homeostasis is established. (is being established.Practical implications: the system of education.

  8. Guest editor's introduction: Energy homeostasis in context.

    Science.gov (United States)

    Schneider, Jill E

    2014-06-01

    This article is part of a Special Issue "Energy Balance". Energy homeostasis is achieved through neuroendocrine and metabolic control of energy intake, storage, and expenditure. Traditionally, these controls have been studied in an unrealistic and narrow context. The appetite for food, for example, is most often assumed to be independent of other motivations, such as sexual desire, fearfulness, and competition. Furthermore, our understanding of all aspects of energy homeostasis is based on studying males of only a few species. The baseline control subjects are most often housed in enclosed spaces, with continuous, unlimited access to food. In the last century, this approach has generated useful information, but all the while, the global prevalence of obesity has increased and remains at unprecedented levels (Ogden et al., 2013, 2014). It is likely, however, that the mechanisms that control ingestive behavior were molded by evolutionary forces, and that few, if any vertebrate species evolved in the presence of a limitless food supply, in an enclosed 0.5 × 1 ft space, and exposed to a constant ambient temperature of 22+2 °C. This special issue of Hormones and Behavior therefore contains 9 review articles and 7 data articles that consider energy homeostasis within the context of other motivations and physiological processes, such as early development, sexual differentiation, sexual motivation, reproduction, seasonality, hibernation, and migration. Each article is focused on a different species or on a set of species, and most vertebrate classes are represented. Energy homeostasis is viewed in the context of the selection pressures that simultaneously molded multiple aspects of energy intake, storage, and expenditure. This approach yields surprising conclusions regarding the function of those traits and their underlying neuroendocrine mechanisms. Copyright © 2014. Published by Elsevier Inc.

  9. Orm family proteins mediate sphingolipid homeostasis

    DEFF Research Database (Denmark)

    Breslow, David K; Collins, Sean R; Bodenmiller, Bernd

    2010-01-01

    a conserved complex with serine palmitoyltransferase, the first and rate-limiting enzyme in sphingolipid production. We also define a regulatory pathway in which phosphorylation of Orm proteins relieves their inhibitory activity when sphingolipid production is disrupted. Changes in ORM gene expression...... or mutations to their phosphorylation sites cause dysregulation of sphingolipid metabolism. Our work identifies the Orm proteins as critical mediators of sphingolipid homeostasis and raises the possibility that sphingolipid misregulation contributes to the development of childhood asthma....

  10. Impact of intermittent fasting on glucose homeostasis.

    Science.gov (United States)

    Varady, Krista A

    2016-07-01

    This article provides an overview of the most recent human trials that have examined the impact of intermittent fasting on glucose homeostasis. Our literature search retrieved one human trial of alternate day fasting, and three trials of Ramadan fasting published in the past 12 months. Current evidence suggests that 8 weeks of alternate day fasting that produces mild weight loss (4% from baseline) has no effect on glucose homeostasis. As for Ramadan fasting, decreases in fasting glucose, insulin, and insulin resistance have been noted after 4 weeks in healthy normal weight individuals with mild weight loss (1-2% from baseline). However, Ramadan fasting may have little impact on glucoregulatory parameters in women with polycystic ovarian syndrome who failed to observe weight loss. Whether intermittent fasting is an effective means of regulating glucose homeostasis remains unclear because of the scarcity of studies in this area. Large-scale, longer-term randomized controlled trials will be required before the use of fasting can be recommended for the prevention and treatment of metabolic diseases.

  11. Pseudomonas aeruginosa Trent and zinc homeostasis.

    Science.gov (United States)

    Davies, Corey B; Harrison, Mark D; Huygens, Flavia

    2017-09-01

    Pseudomonas aeruginosa is a Gram-negative pathogen and the major cause of mortality in patients with cystic fibrosis. The mechanisms that P. aeruginosa strains use to regulate intracellular zinc have an effect on infection, antibiotic resistance and the propensity to form biofilms. However, zinc homeostasis in P. aeruginosa strains of variable infectivity has not been compared. In this study, zinc homeostasis in P. aeruginosa Trent, a highly infectious clinical strain, was compared to that of a laboratory P. aeruginosa strain, ATCC27853. Trent was able to tolerate higher concentrations of additional zinc in rich media than ATCC27853. Further, pre-adaptation to additional zinc enhanced the growth of Trent at non-inhibitory concentrations but the impact of pre-adaption on the growth of ATCC27853 under the same conditions was minimal. The results establish clear differences in zinc-induced responses in Trent and ATCC27853, and how zinc homeostasis can be a promising target for the development of novel antimicrobial strategies for P. aeruginosa infection in cystic fibrosis patients. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Response of normal stem cells to ionizing radiation: A balance between homeostasis and genomic stability

    International Nuclear Information System (INIS)

    Harfouche, G.; Martin, M.T.

    2010-01-01

    Stem cells have been described in most adult tissues, where they play a key role in maintaining tissue homeostasis. As they self-renew throughout life, accumulating genetic anomalies can compromise their genomic integrity and potentially give rise to cancer. Stem cells (SCs) may thus be a major target of radiation carcinogenesis. In addition, unrepaired genotoxic damage may cause cell death and stem cell pool depletion, impairing lineage functionality and accelerating aging. Developments in SC biology enabled the characterization of the responses of stem cells to genotoxic stress and their role in tissue damage. We here examine how these cells react to ionizing radiation (IR), and more specifically their radiosensitivity, stress signaling and DNA repair. We first review embryonic SCs, as a paradigm of primitive pluri-potent cells, then three adult tissues, bone marrow, skin and intestine, capable of long-term regeneration and at high risk for acute radiation syndromes and long-term carcinogenesis. We discuss IR disruption of the fine balance between maintenance of tissue homeostasis and genomic stability. We show that stem cell radiosensitivity does not follow a unique model, but differs notably according to the turnover rates of the tissues. (authors)

  13. Managing Fluid and Electrolyte Disorders in Kidney Disease.

    Science.gov (United States)

    Langston, Cathy

    2017-03-01

    Because of the role of the kidneys in maintaining homeostasis in the body, kidney disease leads to derangements of fluid, electrolyte, and acid-base balance. The most effective therapy of a uremic crisis is careful management of fluid balance, which involves thoughtful assessment of hydration, a fluid treatment plan personalized for the specific patient, and repeated and frequent reassessment of fluid and electrolyte balance. Disorders of sodium, chloride, potassium, calcium, and phosphorus are commonly encountered in kidney disease and some may be life-threatening. Treatment of metabolic acidosis and nutritional support is frequently needed. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Deletion of hepatic carbohydrate response element binding protein (ChREBP impairs glucose homeostasis and hepatic insulin sensitivity in mice

    Directory of Open Access Journals (Sweden)

    Tara Jois

    2017-11-01

    Conclusions: Overall, hepatic ChREBP is protective in regards to hepatic insulin sensitivity and whole body glucose homeostasis. Hepatic ChREBP action can influence other peripheral tissues and is likely essential in coordinating the body's response to different feeding states.

  15. Regulation of NKT Cell Localization in Homeostasis and Infection

    Science.gov (United States)

    Slauenwhite, Drew; Johnston, Brent

    2015-01-01

    Natural killer T (NKT) cells are a specialized subset of T lymphocytes that regulate immune responses in the context of autoimmunity, cancer, and microbial infection. Lipid antigens derived from bacteria, parasites, and fungi can be presented by CD1d molecules and recognized by the canonical T cell receptors on NKT cells. Alternatively, NKT cells can be activated through recognition of self-lipids and/or pro-inflammatory cytokines generated during infection. Unlike conventional T cells, only a small subset of NKT cells traffic through the lymph nodes under homeostatic conditions, with the largest NKT cell populations localizing to the liver, lungs, spleen, and bone marrow. This is thought to be mediated by differences in chemokine receptor expression profiles. However, the impact of infection on the tissue localization and function of NKT remains largely unstudied. This review focuses on the mechanisms mediating the establishment of peripheral NKT cell populations during homeostasis and how tissue localization of NKT cells is affected during infection. PMID:26074921

  16. Regulation of NKT Cell Localization in Homeostasis and Infection.

    Science.gov (United States)

    Slauenwhite, Drew; Johnston, Brent

    2015-01-01

    Natural killer T (NKT) cells are a specialized subset of T lymphocytes that regulate immune responses in the context of autoimmunity, cancer, and microbial infection. Lipid antigens derived from bacteria, parasites, and fungi can be presented by CD1d molecules and recognized by the canonical T cell receptors on NKT cells. Alternatively, NKT cells can be activated through recognition of self-lipids and/or pro-inflammatory cytokines generated during infection. Unlike conventional T cells, only a small subset of NKT cells traffic through the lymph nodes under homeostatic conditions, with the largest NKT cell populations localizing to the liver, lungs, spleen, and bone marrow. This is thought to be mediated by differences in chemokine receptor expression profiles. However, the impact of infection on the tissue localization and function of NKT remains largely unstudied. This review focuses on the mechanisms mediating the establishment of peripheral NKT cell populations during homeostasis and how tissue localization of NKT cells is affected during infection.

  17. Epigenetic Control of Stem Cell Potential During Homeostasis, Aging, and Disease

    Science.gov (United States)

    Beerman, Isabel; Rossi, Derrick J.

    2015-01-01

    Stem cell decline is an important cellular driver of aging-associated pathophysiology in multiple tissues. Epigenetic regulation is central to establishing and maintaining stem cell function, and emerging evidence indicates that epigenetic dysregulation contributes to the altered potential of stem cells during aging. Unlike terminally differentiated cells, the impact of epigenetic dysregulation in stem cells is propagated beyond self; alterations can be heritably transmitted to differentiated progeny, in addition to being perpetuated and amplified within the stem cell pool through self-renewal divisions. This review focuses on recent studies examining epigenetic regulation of tissue-specific stem cells in homeostasis, aging, and aging-related disease. PMID:26046761

  18. Enteric Virome Sensing-Its Role in Intestinal Homeostasis and Immunity.

    Science.gov (United States)

    Metzger, Rebecca N; Krug, Anne B; Eisenächer, Katharina

    2018-03-23

    Pattern recognition receptors (PRRs) sensing commensal microorganisms in the intestine induce tightly controlled tonic signaling in the intestinal mucosa, which is required to maintain intestinal barrier integrity and immune homeostasis. At the same time, PRR signaling pathways rapidly trigger the innate immune defense against invasive pathogens in the intestine. Intestinal epithelial cells and mononuclear phagocytes in the intestine and the gut-associated lymphoid tissues are critically involved in sensing components of the microbiome and regulating immune responses in the intestine to sustain immune tolerance against harmless antigens and to prevent inflammation. These processes have been mostly investigated in the context of the bacterial components of the microbiome so far. The impact of viruses residing in the intestine and the virus sensors, which are activated by these enteric viruses, on intestinal homeostasis and inflammation is just beginning to be unraveled. In this review, we will summarize recent findings indicating an important role of the enteric virome for intestinal homeostasis as well as pathology when the immune system fails to control the enteric virome. We will provide an overview of the virus sensors and signaling pathways, operative in the intestine and the mononuclear phagocyte subsets, which can sense viruses and shape the intestinal immune response. We will discuss how these might interact with resident enteric viruses directly or in context with the bacterial microbiome to affect intestinal homeostasis.

  19. A comprehensive phylogeny of auxin homeostasis genes involved in adventitious root formation in carnation stem cuttings.

    Directory of Open Access Journals (Sweden)

    Ana Belén Sánchez-García

    Full Text Available Understanding the functional basis of auxin homeostasis requires knowledge about auxin biosynthesis, auxin transport and auxin catabolism genes, which is not always directly available despite the recent whole-genome sequencing of many plant species. Through sequence homology searches and phylogenetic analyses on a selection of 11 plant species with high-quality genome annotation, we identified the putative gene homologs involved in auxin biosynthesis, auxin catabolism and auxin transport pathways in carnation (Dianthus caryophyllus L.. To deepen our knowledge of the regulatory events underlying auxin-mediated adventitious root formation in carnation stem cuttings, we used RNA-sequencing data to confirm the expression profiles of some auxin homeostasis genes during the rooting of two carnation cultivars with different rooting behaviors. We also confirmed the presence of several auxin-related metabolites in the stem cutting tissues. Our findings offer a comprehensive overview of auxin homeostasis genes in carnation and provide a solid foundation for further experiments investigating the role of auxin homeostasis in the regulation of adventitious root formation in carnation.

  20. Enteric Virome Sensing—Its Role in Intestinal Homeostasis and Immunity

    Directory of Open Access Journals (Sweden)

    Rebecca N. Metzger

    2018-03-01

    Full Text Available Pattern recognition receptors (PRRs sensing commensal microorganisms in the intestine induce tightly controlled tonic signaling in the intestinal mucosa, which is required to maintain intestinal barrier integrity and immune homeostasis. At the same time, PRR signaling pathways rapidly trigger the innate immune defense against invasive pathogens in the intestine. Intestinal epithelial cells and mononuclear phagocytes in the intestine and the gut-associated lymphoid tissues are critically involved in sensing components of the microbiome and regulating immune responses in the intestine to sustain immune tolerance against harmless antigens and to prevent inflammation. These processes have been mostly investigated in the context of the bacterial components of the microbiome so far. The impact of viruses residing in the intestine and the virus sensors, which are activated by these enteric viruses, on intestinal homeostasis and inflammation is just beginning to be unraveled. In this review, we will summarize recent findings indicating an important role of the enteric virome for intestinal homeostasis as well as pathology when the immune system fails to control the enteric virome. We will provide an overview of the virus sensors and signaling pathways, operative in the intestine and the mononuclear phagocyte subsets, which can sense viruses and shape the intestinal immune response. We will discuss how these might interact with resident enteric viruses directly or in context with the bacterial microbiome to affect intestinal homeostasis.

  1. Ductal Mucus Obstruction and Reduced Fluid Secretion Are Early Defects in Chronic Pancreatitis

    Directory of Open Access Journals (Sweden)

    Anita Balázs

    2018-05-01

    Full Text Available Objective: Defective mucus production in the pancreas may be an important factor in the initiation and progression of chronic pancreatitis (CP, therefore we aimed to (i investigate the qualitative and quantitative changes of mucus both in human CP and in an experimental pancreatitis model and (ii to correlate the mucus phenotype with epithelial ion transport function.Design: Utilizing human tissue samples and a murine model of cerulein induced CP we measured pancreatic ductal mucus content by morphometric analysis and the relative expression of different mucins in health and disease. Pancreatic fluid secretion in CP model was measured in vivo by magnetic resonance cholangiopancreatography (MRCP and in vitro on cultured pancreatic ducts. Time-changes of ductal secretory function were correlated to those of the mucin production.Results: We demonstrate increased mucus content in the small pancreatic ducts in CP. Secretory mucins MUC6 and MUC5B were upregulated in human, Muc6 in mouse CP. In vivo and in vitro fluid secretion was decreased in cerulein-induced CP. Analysis of time-course changes showed that impaired ductal ion transport is paralleled by increased Muc6 expression.Conclusion: Mucus accumulation in the small ducts is a combined effect of mucus hypersecretion and epithelial fluid secretion defect, which may lead to ductal obstruction. These results suggest that imbalance of mucus homeostasis may have an important role in the early-phase development of CP, which may have novel diagnostic and therapeutic implications.

  2. [Acid-base homeostasis and the thyro-parathyroid glands].

    Science.gov (United States)

    Cuisinier-Gleizes, P; George, A; Thomasset, M; Mathieu, H

    1975-05-12

    Chronic metabolic acidosis entails hyperparathyroidism and osteopathy. In order to elucidate the role of the thyroparathyroids in this bone lesion production the effects of acidic diet for 7 weeks were studied in parathyroidectomized (PTX), thyroparathyroidectomized (TPTX) and shamoperated (Sh-O) growing rats. In all animals urinary excretion of calcium, phosphate, ammonium and titrable acidity was similarly increased. The rise in hydroxyproline excretion and urinary 85-sr (that was injected previous to acidic feeding) was more marked in PTX and TPTX rats. Moreover, in these animals the serum calcium level was increased, the blood pH was decreased. According to these data, an acidic diet intake that is not sufficient to elicit a fall in blood pH of normal young rats can induce severe acidosis in chronically parathyroidectomized or thyroparathyroidectomized animals; moreover the bone resorption appears more marked. It is concluded that parathyroids are involved in the extra-cellular fluid defense mechanism against acidosis by a no bone resorptive mechanism. We hypothesize that the parathyroids permit the necessary and adequate supply of bicarbonates by the bone to maintain blood pH homeostasis.

  3. The Role of Aquaporins in Ocular Lens Homeostasis

    Science.gov (United States)

    Schey, Kevin L.; Petrova, Rosica S.; Gletten, Romell B.; Donaldson, Paul J.

    2017-01-01

    Aquaporins (AQPs), by playing essential roles in the maintenance of ocular lens homeostasis, contribute to the establishment and maintenance of the overall optical properties of the lens over many decades of life. Three aquaporins, AQP0, AQP1 and AQP5, each with distinctly different functional properties, are abundantly and differentially expressed in the different regions of the ocular lens. Furthermore, the diversity of AQP functionality is increased in the absence of protein turnover by age-related modifications to lens AQPs that are proposed to alter AQP function in the different regions of the lens. These regional differences in AQP functionality are proposed to contribute to the generation and directionality of the lens internal microcirculation; a system of circulating ionic and fluid fluxes that delivers nutrients to and removes wastes from the lens faster than could be achieved by passive diffusion alone. In this review, we present how regional differences in lens AQP isoforms potentially contribute to this microcirculation system by highlighting current areas of investigation and emphasizing areas where future work is required. PMID:29231874

  4. The commensal microbiota drives immune homeostasis

    Directory of Open Access Journals (Sweden)

    Marie-Claire eArrieta

    2012-03-01

    Full Text Available For millions of years, microbes have coexisted with eukaryotic cells at the mucosal surfaces of vertebrates in a complex, yet usually harmonious symbiosis. An ever-expanding number of reports describe how eliminating or shifting the intestinal microbiota has profound effects on the development and functionality of the mucosal and systemic immune systems. Here, we examine some of the mechanisms by which bacterial signals affect immune homeostasis. Focusing on the strategies that microbes use to keep our immune system healthy, as opposed to trying to correct the immune imbalances caused by dysbiosis, may prove to be a more astute and efficient way of treating immune-mediated disease.

  5. Diuretics and disorders of calcium homeostasis.

    Science.gov (United States)

    Grieff, Marvin; Bushinsky, David A

    2011-11-01

    Diuretics commonly are administered in disorders of sodium balance. Loop diuretics inhibit the Na-K-2Cl transporter and also increase calcium excretion. They are often used in the treatment of hypercalcemia. Thiazide diuretics block the thiazide-sensitive NaCl transporter in the distal convoluted tubule, and can decrease calcium excretion. They are often used in the treatment of nephrolithiasis. Carbonic anhydrase inhibitors decrease bicarbonate absorption and the resultant metabolic acidosis can increase calcium excretion. Their use can promote nephrocalcinosis and nephrolithiasis. This review will address the use of diuretics on disorders of calcium homeostasis. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Homeostatic pressure, tumor growth and fingering of epithelial tissues: Some generic physics arguments

    Science.gov (United States)

    Risler, Thomas

    2011-03-01

    We propose that one aspect of homeostasis is the regulation of tissues to preferred pressures, which can lead to a competition for space of purely mechanical origin and be an underlying mechanism for tumor growth. Surface and bulk contributions to pressure lead to the existence of a critical size that must be overcome by metastases to reach macroscopic sizes. This property qualitatively explains the observed size distributions of metastases, while size-independent growth rates cannot account for clinical and experimental data. It also potentially explains the observed preferential growth of metastases on tissue surfaces and membranes, suggests a mechanism underlying the seed and soil hypothesis introduced by Stephen Paget in 1889, and yields realistic values for metastatic inefficiency. Treating epithelial tissues as viscous fluids with effective cell division, we find a novel hydrodynamic instability that leads to the formation of fingering protrusions of the epithelium into the connective tissue. Arising from a combination of viscous friction effects and proliferation of the epithelial cells, this instability provides physical insight into a potential mechanism by which interfaces between epithelia and stroma undulate, and potentially by which tissue dysplasia leads to cancerous invasion. In collaboration with M. Basan, J.-F. Joanny, X. Sastre-Garau and J. Prost.

  7. Fluid mechanics

    International Nuclear Information System (INIS)

    Granger, R.A.

    1985-01-01

    This text offers the most comprehensive approach available to fluid mechanics. The author takes great care to insure a physical understanding of concepts grounded in applied mathematics. The presentation of theory is followed by engineering applications, helping students develop problem-solving skills from the perspective of a professional engineer. Extensive use of detailed examples reinforces the understanding of theoretical concepts

  8. Stretching the limits: from homeostasis to stem cell plasticity in wound healing and cancer.

    Science.gov (United States)

    Ge, Yejing; Fuchs, Elaine

    2018-05-01

    Stem cells (SCs) govern tissue homeostasis and wound repair. They reside within niches, the special microenvironments within tissues that control SC lineage outputs. Upon injury or stress, new signals emanating from damaged tissue can divert nearby cells into adopting behaviours that are not part of their homeostatic repertoire. This behaviour, known as SC plasticity, typically resolves as wounds heal. However, in cancer, it can endure. Recent studies have yielded insights into the orchestrators of maintenance and lineage commitment for SCs belonging to three mammalian tissues: the haematopoietic system, the skin epithelium and the intestinal epithelium. We delineate the multifactorial determinants and general principles underlying the remarkable facets of SC plasticity, which lend promise for regenerative medicine and cancer therapeutics.

  9. [Glucose homeostasis and gut-brain connection].

    Science.gov (United States)

    De Vadder, Filipe; Mithieux, Gilles

    2015-02-01

    Since the XIX(th) century, the brain has been known for its role in regulating food intake (via the control of hunger sensation) and glucose homeostasis. Further interest has come from the discovery of gut hormones, which established a clear link between the gut and the brain in regulating glucose and energy homeostasis. The brain has two particular structures, the hypothalamus and the brainstem, which are sensitive to information coming either from peripheral organs or from the gut (via circulating hormones or nutrients) about the nutritional status of the organism. However, the efforts for a better understanding of these mechanisms have allowed to unveil a new gut-brain neural axis as a key regulator of the metabolic status of the organism. Certain nutrients control the hypothalamic homeostatic function via this axis. In this review, we describe how the gut is connected to the brain via different neural pathways, and how the interplay between these two organs drives the energy balance. © 2015 médecine/sciences – Inserm.

  10. Thiol/disulphide homeostasis in celiac disease

    Science.gov (United States)

    Kaplan, Mustafa; Ates, Ihsan; Yuksel, Mahmut; Ozderin Ozin, Yasemin; Alisik, Murat; Erel, Ozcan; Kayacetin, Ertugrul

    2017-01-01

    AIM To determine dynamic thiol/disulphide homeostasis in celiac disease and to examine the associate with celiac autoantibodies and gluten-free diet. METHODS Seventy three patients with celiac disease and 73 healthy volunteers were enrolled in the study. In both groups, thiol/disulphide homeostasis was examined with a new colorimetric method recently developed by Erel and Neselioglu. RESULTS In patients with celiac disease, native thiol (P = 0.027) and total thiol (P = 0.031) levels were lower, while disulphide (P < 0.001) level, disulphide/native thiol (P < 0.001) and disulphide/total thiol (P < 0.001) ratios were higher compared to the control group. In patients who do not comply with a gluten-free diet, disulphide/native thiol ratio was found higher compared to the patients who comply with the diet (P < 0.001). In patients with any autoantibody-positive, disulphide/native thiol ratio was observed higher compared to the patients with autoantibody-negative (P < 0.05). It is found that there is a negative correlation between celiac autoantibodies, and native thiol, total thiol levels and native thiol/total thiol ratio, while a positive correlation is observed between disulphide, disulphide/native thiol and disulphide/total thiol levels. CONCLUSION This study is first in the literature which found that the patients with celiac disease the dynamic thiol/disulphide balance shifts through disulphide form compared to the control group. PMID:28533921

  11. Lipid Raft, Regulator of Plasmodesmal Callose Homeostasis

    Directory of Open Access Journals (Sweden)

    Arya Bagus Boedi Iswanto

    2017-04-01

    Full Text Available Abstract: The specialized plasma membrane microdomains known as lipid rafts are enriched by sterols and sphingolipids. Lipid rafts facilitate cellular signal transduction by controlling the assembly of signaling molecules and membrane protein trafficking. Another specialized compartment of plant cells, the plasmodesmata (PD, which regulates the symplasmic intercellular movement of certain molecules between adjacent cells, also contains a phospholipid bilayer membrane. The dynamic permeability of plasmodesmata (PDs is highly controlled by plasmodesmata callose (PDC, which is synthesized by callose synthases (CalS and degraded by β-1,3-glucanases (BGs. In recent studies, remarkable observations regarding the correlation between lipid raft formation and symplasmic intracellular trafficking have been reported, and the PDC has been suggested to be the regulator of the size exclusion limit of PDs. It has been suggested that the alteration of lipid raft substances impairs PDC homeostasis, subsequently affecting PD functions. In this review, we discuss the substantial role of membrane lipid rafts in PDC homeostasis and provide avenues for understanding the fundamental behavior of the lipid raft–processed PDC.

  12. Lipid Raft, Regulator of Plasmodesmal Callose Homeostasis.

    Science.gov (United States)

    Iswanto, Arya Bagus Boedi; Kim, Jae-Yean

    2017-04-03

    A bstract: The specialized plasma membrane microdomains known as lipid rafts are enriched by sterols and sphingolipids. Lipid rafts facilitate cellular signal transduction by controlling the assembly of signaling molecules and membrane protein trafficking. Another specialized compartment of plant cells, the plasmodesmata (PD), which regulates the symplasmic intercellular movement of certain molecules between adjacent cells, also contains a phospholipid bilayer membrane. The dynamic permeability of plasmodesmata (PDs) is highly controlled by plasmodesmata callose (PDC), which is synthesized by callose synthases (CalS) and degraded by β-1,3-glucanases (BGs). In recent studies, remarkable observations regarding the correlation between lipid raft formation and symplasmic intracellular trafficking have been reported, and the PDC has been suggested to be the regulator of the size exclusion limit of PDs. It has been suggested that the alteration of lipid raft substances impairs PDC homeostasis, subsequently affecting PD functions. In this review, we discuss the substantial role of membrane lipid rafts in PDC homeostasis and provide avenues for understanding the fundamental behavior of the lipid raft-processed PDC.

  13. Fluid dynamics of dilatant fluid

    DEFF Research Database (Denmark)

    Nakanishi, Hiizu; Nagahiro, Shin-ichiro; Mitarai, Namiko

    2012-01-01

    of the state variable, we demonstrate that the model can describe basic features of the dilatant fluid such as the stress-shear rate curve that represents discontinuous severe shear thickening, hysteresis upon changing shear rate, and instantaneous hardening upon external impact. An analysis of the model...

  14. CART neurons in the arcuate nucleus and lateral hypothalamic area exert differential controls on energy homeostasis

    Directory of Open Access Journals (Sweden)

    Jackie Lau

    2018-01-01

    Full Text Available Objective: The cocaine- and amphetamine-regulated transcript (CART codes for a pivotal neuropeptide important in the control of appetite and energy homeostasis. However, limited understanding exists for the defined effector sites underlying CART function, as discrepant effects of central CART administration have been reported. Methods: By combining Cart-cre knock-in mice with a Cart adeno-associated viral vector designed using the flip-excision switch (AAV-FLEX technology, specific reintroduction or overexpression of CART selectively in CART neurons in the arcuate nucleus (Arc and lateral hypothalamic area (LHA, respectively, was achieved. The effects on energy homeostasis control were investigated. Results: Here we show that CART neuron-specific reintroduction of CART into the Arc and LHA leads to distinct effects on energy homeostasis control. Specifically, CART reintroduction into the Arc of otherwise CART-deficient Cartcre/cre mice markedly decreased fat mass and body weight, whereas CART reintroduction into the LHA caused significant fat mass gain and lean mass loss, but overall unaltered body weight. The reduced adiposity in ArcCART;Cartcre/cre mice was associated with an increase in both energy expenditure and physical activity, along with significantly decreased Npy mRNA levels in the Arc but with no change in food consumption. Distinctively, the elevated fat mass in LHACART;Cartcre/cre mice was accompanied by diminished insulin responsiveness and glucose tolerance, greater spontaneous food intake, and reduced energy expenditure, which is consistent with the observed decrease of brown adipose tissue temperature. This is also in line with significantly reduced tyrosine hydroxylase (Th and notably increased corticotropin-releasing hormone (Crh mRNA expressions in the paraventricular nucleus (PVN. Conclusions: Taken together, these results identify catabolic and anabolic effects of CART in the Arc and LHA, respectively, demonstrating for

  15. The role of brain barriers in fluid movement in the CNS: is there a 'glymphatic' system?

    Science.gov (United States)

    Abbott, N Joan; Pizzo, Michelle E; Preston, Jane E; Janigro, Damir; Thorne, Robert G

    2018-03-01

    Brain fluids are rigidly regulated to provide stable environments for neuronal function, e.g., low K + , Ca 2+ , and protein to optimise signalling and minimise neurotoxicity. At the same time, neuronal and astroglial waste must be promptly removed. The interstitial fluid (ISF) of the brain tissue and the cerebrospinal fluid (CSF) bathing the CNS are integral to this homeostasis and the idea of a glia-lymph or 'glymphatic' system for waste clearance from brain has developed over the last 5 years. This links bulk (convective) flow of CSF into brain along the outside of penetrating arteries, glia-mediated convective transport of fluid and solutes through the brain extracellular space (ECS) involving the aquaporin-4 (AQP4) water channel, and finally delivery of fluid to venules for clearance along peri-venous spaces. However, recent evidence favours important amendments to the 'glymphatic' hypothesis, particularly concerning the role of glia and transfer of solutes within the ECS. This review discusses studies which question the role of AQP4 in ISF flow and the lack of evidence for its ability to transport solutes; summarizes attributes of brain ECS that strongly favour the diffusion of small and large molecules without ISF flow; discusses work on hydraulic conductivity and the nature of the extracellular matrix which may impede fluid movement; and reconsiders the roles of the perivascular space (PVS) in CSF-ISF exchange and drainage. We also consider the extent to which CSF-ISF exchange is possible and desirable, the impact of neuropathology on fluid drainage, and why using CSF as a proxy measure of brain components or drug delivery is problematic. We propose that new work and key historical studies both support the concept of a perivascular fluid system, whereby CSF enters the brain via PVS convective flow or dispersion along larger caliber arteries/arterioles, diffusion predominantly regulates CSF/ISF exchange at the level of the neurovascular unit associated with

  16. Innate immune signalling at the intestinal epithelium in homeostasis and disease

    Science.gov (United States)

    Pott, Johanna; Hornef, Mathias

    2012-01-01

    The intestinal epithelium—which constitutes the interface between the enteric microbiota and host tissues—actively contributes to the maintenance of mucosal homeostasis and defends against pathogenic microbes. The recognition of conserved microbial products by cytosolic or transmembrane pattern recognition receptors in epithelial cells initiates signal transduction and influences effector cell function. However, the signalling pathways, effector molecules and regulatory mechanisms involved are not yet fully understood, and the functional outcome is poorly defined. This review analyses the complex and dynamic role of intestinal epithelial innate immune recognition and signalling, on the basis of results in intestinal epithelial cell-specific transgene or gene-deficient animals. This approach identifies specific epithelial cell functions within the diverse cellular composition of the mucosal tissue, in the presence of the complex and dynamic gut microbiota. These insights have thus provided a more comprehensive understanding of the role of the intestinal epithelium in innate immunity during homeostasis and disease. PMID:22801555

  17. Thyroid hormone regulation of adult intestinal stem cells: Implications on intestinal development and homeostasis.

    Science.gov (United States)

    Sun, Guihong; Roediger, Julia; Shi, Yun-Bo

    2016-12-01

    Organ-specific adult stem cells are essential for organ homeostasis, tissue repair and regeneration. The formation of such stem cells often takes place during postembryonic development, a period around birth in mammals when plasma thyroid hormone concentration is high. The life-long self-renewal of the intestinal epithelium has made mammalian intestine a valuable model to study the function and regulation and adult stem cells. On the other hand, much less is known about how the adult intestinal stem cells are formed during vertebrate development. Here, we will review some recent progresses on this subject, focusing mainly on the formation of the adult intestine during Xenopus metamorphosis. We will discuss the role of thyroid hormone signaling pathway in the process and potential molecular conservations between amphibians and mammals as well as the implications in organ homeostasis and human diseases.

  18. Tongue and Taste Organ Biology and Function: Homeostasis Maintained by Hedgehog Signaling.

    Science.gov (United States)

    Mistretta, Charlotte M; Kumari, Archana

    2017-02-10

    The tongue is an elaborate complex of heterogeneous tissues with taste organs of diverse embryonic origins. The lingual taste organs are papillae, composed of an epithelium that includes specialized taste buds, the basal lamina, and a lamina propria core with matrix molecules, fibroblasts, nerves, and vessels. Because taste organs are dynamic in cell biology and sensory function, homeostasis requires tight regulation in specific compartments or niches. Recently, the Hedgehog (Hh) pathway has emerged as an essential regulator that maintains lingual taste papillae, taste bud and progenitor cell proliferation and differentiation, and neurophysiological function. Activating or suppressing Hh signaling, with genetic models or pharmacological agents used in cancer treatments, disrupts taste papilla and taste bud integrity and can eliminate responses from taste nerves to chemical stimuli but not to touch or temperature. Understanding Hh regulation of taste organ homeostasis contributes knowledge about the basic biology underlying taste disruptions in patients treated with Hh pathway inhibitors.

  19. Atg9 antagonizes TOR signaling to regulate intestinal cell growth and epithelial homeostasis in Drosophila.

    Science.gov (United States)

    Wen, Jung-Kun; Wang, Yi-Ting; Chan, Chih-Chiang; Hsieh, Cheng-Wen; Liao, Hsiao-Man; Hung, Chin-Chun; Chen, Guang-Chao

    2017-11-16

    Autophagy is essential for maintaining cellular homeostasis and survival under various stress conditions. Autophagy-related gene 9 (Atg9) encodes a multipass transmembrane protein thought to act as a membrane carrier for forming autophagosomes. However, the molecular regulation and physiological importance of Atg9 in animal development remain largely unclear. Here, we generated Atg9 null mutant flies and found that loss of Atg9 led to shortened lifespan, locomotor defects, and increased susceptibility to stress. Atg9 loss also resulted in aberrant adult midgut morphology with dramatically enlarged enterocytes. Interestingly, inhibiting the TOR signaling pathway rescued the midgut defects of the Atg9 mutants. In addition, Atg9 interacted with PALS1-associated tight junction protein (Patj), which associates with TSC2 to regulate TOR activity. Depletion of Atg9 caused a marked decrease in TSC2 levels. Our findings revealed an antagonistic relationship between Atg9 and TOR signaling in the regulation of cell growth and tissue homeostasis.

  20. Central insulin and leptin-mediated autonomic control of glucose homeostasis.

    Science.gov (United States)

    Marino, Joseph S; Xu, Yong; Hill, Jennifer W

    2011-07-01

    Largely as a result of rising obesity rates, the incidence of type 2 diabetes is escalating rapidly. Type 2 diabetes results from multi-organ dysfunctional glucose metabolism. Recent publications have highlighted hypothalamic insulin- and adipokine-sensing as a major determinant of peripheral glucose and insulin responsiveness. The preponderance of evidence indicates that the brain is the master regulator of glucose homeostasis, and that hypothalamic insulin and leptin signaling in particular play a crucial role in the development of insulin resistance. This review discusses the neuronal crosstalk between the hypothalamus, autonomic nervous system, and tissues associated with the pathogenesis of type 2 diabetes, and how hypothalamic insulin and leptin signaling are integral to maintaining normal glucose homeostasis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Fluid dynamics

    CERN Document Server

    Ruban, Anatoly I

    This is the first book in a four-part series designed to give a comprehensive and coherent description of Fluid Dynamics, starting with chapters on classical theory suitable for an introductory undergraduate lecture course, and then progressing through more advanced material up to the level of modern research in the field. The present Part 1 consists of four chapters. Chapter 1 begins with a discussion of Continuum Hypothesis, which is followed by an introduction to macroscopic functions, the velocity vector, pressure, density, and enthalpy. We then analyse the forces acting inside a fluid, and deduce the Navier-Stokes equations for incompressible and compressible fluids in Cartesian and curvilinear coordinates. In Chapter 2 we study the properties of a number of flows that are presented by the so-called exact solutions of the Navier-Stokes equations, including the Couette flow between two parallel plates, Hagen-Poiseuille flow through a pipe, and Karman flow above an infinite rotating disk. Chapter 3 is d...

  2. Adipose Type One Innate Lymphoid Cells Regulate Macrophage Homeostasis through Targeted Cytotoxicity.

    Science.gov (United States)

    Boulenouar, Selma; Michelet, Xavier; Duquette, Danielle; Alvarez, David; Hogan, Andrew E; Dold, Christina; O'Connor, Donal; Stutte, Suzanne; Tavakkoli, Ali; Winters, Desmond; Exley, Mark A; O'Shea, Donal; Brenner, Michael B; von Andrian, Ulrich; Lynch, Lydia

    2017-02-21

    Adipose tissue has a dynamic immune system that adapts to changes in diet and maintains homeostatic tissue remodeling. Adipose type 1 innate lymphoid cells (AT1-ILCs) promote pro-inflammatory macrophages in obesity, but little is known about their functions at steady state. Here we found that human and murine adipose tissue harbor heterogeneous populations of AT1-ILCs. Experiments using parabiotic mice fed a high-fat diet (HFD) showed differential trafficking of AT1-ILCs, particularly in response to short- and long-term HFD and diet restriction. At steady state, AT1-ILCs displayed cytotoxic activity toward adipose tissue macrophages (ATMs). Depletion of AT1-ILCs and perforin deficiency resulted in alterations in the ratio of inflammatory to anti-inflammatory ATMs, and adoptive transfer of AT1-ILCs exacerbated metabolic disorder. Diet-induced obesity impaired AT1-ILC killing ability. Our findings reveal a role for AT1-ILCs in regulating ATM homeostasis through cytotoxicity and suggest that this function is relevant in both homeostasis and metabolic disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Anatomical localization of commensal bacteria in immune cell homeostasis and disease.

    Science.gov (United States)

    Fung, Thomas C; Artis, David; Sonnenberg, Gregory F

    2014-07-01

    The mammalian gastrointestinal (GI) tract is colonized by trillions of beneficial commensal bacteria that are essential for promoting normal intestinal physiology. While the majority of commensal bacteria are found in the intestinal lumen, many species have also adapted to colonize different anatomical locations in the intestine, including the surface of intestinal epithelial cells (IECs) and the interior of gut-associated lymphoid tissues. These distinct tissue localization patterns permit unique interactions with the mammalian immune system and collectively influence intestinal immune cell homeostasis. Conversely, dysregulated localization of commensal bacteria can lead to inappropriate activation of the immune system and is associated with numerous chronic infectious, inflammatory, and metabolic diseases. Therefore, regulatory mechanisms that control proper anatomical containment of commensal bacteria are essential to maintain tissue homeostasis and limit pathology. In this review, we propose that commensal bacteria associated with the mammalian GI tract can be anatomically defined as (i) luminal, (ii) epithelial-associated, or (iii) lymphoid tissue-resident, and we discuss the role and regulation of these microbial populations in health and disease. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Autophagy, Innate Immunity and Tissue Repair in Acute Kidney Injury

    Directory of Open Access Journals (Sweden)

    Pu Duann

    2016-05-01

    Full Text Available Kidney is a vital organ with high energy demands to actively maintain plasma hemodynamics, electrolytes and water homeostasis. Among the nephron segments, the renal tubular epithelium is endowed with high mitochondria density for their function in active transport. Acute kidney injury (AKI is an important clinical syndrome and a global public health issue with high mortality rate and socioeconomic burden due to lack of effective therapy. AKI results in acute cell death and necrosis of renal tubule epithelial cells accompanied with leakage of tubular fluid and inflammation. The inflammatory immune response triggered by the tubular cell death, mitochondrial damage, associative oxidative stress, and the release of many tissue damage factors have been identified as key elements driving the pathophysiology of AKI. Autophagy, the cellular mechanism that removes damaged organelles via lysosome-mediated degradation, had been proposed to be renoprotective. An in-depth understanding of the intricate interplay between autophagy and innate immune response, and their roles in AKI pathology could lead to novel therapies in AKI. This review addresses the current pathophysiology of AKI in aspects of mitochondrial dysfunction, innate immunity, and molecular mechanisms of autophagy. Recent advances in renal tissue regeneration and potential therapeutic interventions are also discussed.

  5. MR imaging of a malignant schwannoma and an osteoblastoma with fluid-fluid levels. Report of two new cases

    International Nuclear Information System (INIS)

    Vilanova, J.C.; Dolz, J.L.; Aldoma, J.; Capdevila, A.; Maestro de Leon, J.L.; Aparicio, A.

    1998-01-01

    One case of malignant schwannoma of the sacrum and another of occipital osteoblastoma were evaluated by MR imaging. Both tumors showed fluid-fluid levels with different signal intensities in the sequences performed. Pathologic examination revealed hemmorhagic fluid in both tumors. Malignant schwannoma and osteoblastoma should be included in the list of bone and soft-tissue with fluid-fluid levels. Our data confirm the non-specificity of this finding, which only suggests the presence of previous intratumoral hemorrhage. (orig.) (orig.)

  6. Mitochondrial redox biology and homeostasis in plants.

    Science.gov (United States)

    Noctor, Graham; De Paepe, Rosine; Foyer, Christine H

    2007-03-01

    Mitochondria are key players in plant cell redox homeostasis and signalling. Earlier concepts that regarded mitochondria as secondary to chloroplasts as the powerhouses of photosynthetic cells, with roles in cell proliferation, death and ageing described largely by analogy to animal paradigms, have been replaced by the new philosophy of integrated cellular energy and redox metabolism involving mitochondria and chloroplasts. Thanks to oxygenic photosynthesis, plant mitochondria often operate in an oxygen- and carbohydrate-rich environment. This rather unique environment necessitates extensive flexibility in electron transport pathways and associated NAD(P)-linked enzymes. In this review, mitochondrial redox metabolism is discussed in relation to the integrated cellular energy and redox function that controls plant cell biology and fate.

  7. TAM Receptor Signaling in Immune Homeostasis

    Science.gov (United States)

    Rothlin, Carla V.; Carrera-Silva, Eugenio A.; Bosurgi, Lidia; Ghosh, Sourav

    2015-01-01

    The TAM receptor tyrosine kinases (RTKs)—TYRO3, AXL, and MERTK—together with their cognate agonists GAS6 and PROS1 play an essential role in the resolution of inflammation. Deficiencies in TAM signaling have been associated with chronic inflammatory and autoimmune diseases. Three processes regulated by TAM signaling may contribute, either independently or collectively, to immune homeostasis: the negative regulation of the innate immune response, the phagocytosis of apoptotic cells, and the restoration of vascular integrity. Recent studies have also revealed the function of TAMs in infectious diseases and cancer. Here, we review the important milestones in the discovery of these RTKs and their ligands and the studies that underscore the functional importance of this signaling pathway in physiological immune settings and disease. PMID:25594431

  8. Nitric oxide and plant iron homeostasis.

    Science.gov (United States)

    Buet, Agustina; Simontacchi, Marcela

    2015-03-01

    Like all living organisms, plants demand iron (Fe) for important biochemical and metabolic processes. Internal imbalances, as a consequence of insufficient or excess Fe in the environment, lead to growth restriction and affect crop yield. Knowledge of signals and factors affecting each step in Fe uptake from the soil and distribution (long-distance transport, remobilization from old to young leaves, and storage in seeds) is necessary to improve our understanding of plant mineral nutrition. In this context, the role of nitric oxide (NO) is discussed as a key player in maintaining Fe homeostasis through its cross talk with hormones, ferritin, and frataxin and the ability to form nitrosyl-iron complexes. © 2015 New York Academy of Sciences.

  9. The role of biological clock in glucose homeostasis 

    Directory of Open Access Journals (Sweden)

    Piotr Chrościcki

    2013-06-01

    Full Text Available The mechanism of the biological clock is based on a rhythmic expression of clock genes and clock-controlled genes. As a result of their transcripto-translational associations, endogenous rhythms in the synthesis of key proteins of various physiological and metabolic processes are created. The major timekeeping mechanism for these rhythms exists in the central nervous system. The master circadian clock, localized in suprachiasmatic nucleus (SCN, regulates multiple metabolic pathways, while feeding behavior and metabolite availability can in turn regulate the circadian clock. It is also suggested that in the brain there is a food entrainable oscillator (FEO or oscillators, resulting in activation of both food anticipatory activity and hormone secretion that control digestion processes. Moreover, most cells and tissues express autonomous clocks. Maintenance of the glucose homeostasis is particularly important for the proper function of the body, as this sugar is the main source of energy for the brain, retina, erythrocytes and skeletal muscles. Thus, glucose production and utilization are synchronized in time. The hypothalamic excited orexin neurons control energy balance of organism and modulate the glucose production and utilization. Deficiency of orexin action results in narcolepsy and weight gain, whereas glucose and amino acids can affect activity of the orexin cells. Large-scale genetic studies in rodents and humans provide evidence for the involvement of disrupted clock gene expression rhythms in the pathogenesis of obesity and type 2 diabetes. In general, the current lifestyle of the developed modern societies disturbs the action of biological clock. 

  10. Extracellular matrix in lung development, homeostasis and disease.

    Science.gov (United States)

    Zhou, Yong; Horowitz, Jeffrey C; Naba, Alexandra; Ambalavanan, Namasivayam; Atabai, Kamran; Balestrini, Jenna; Bitterman, Peter B; Corley, Richard A; Ding, Bi-Sen; Engler, Adam J; Hansen, Kirk C; Hagood, James S; Kheradmand, Farrah; Lin, Qing S; Neptune, Enid; Niklason, Laura; Ortiz, Luis A; Parks, William C; Tschumperlin, Daniel J; White, Eric S; Chapman, Harold A; Thannickal, Victor J

    2018-03-08

    The lung's unique extracellular matrix (ECM), while providing structural support for cells, is critical in the regulation of developmental organogenesis, homeostasis and injury-repair responses. The ECM, via biochemical or biomechanical cues, regulates diverse cell functions, fate and phenotype. The composition and function of lung ECM become markedly deranged in pathological tissue remodeling. ECM-based therapeutics and bioengineering approaches represent promising novel strategies for regeneration/repair of the lung and treatment of chronic lung diseases. In this review, we assess the current state of lung ECM biology, including fundamental advances in ECM composition, dynamics, topography, and biomechanics; the role of the ECM in normal and aberrant lung development, adult lung diseases and autoimmunity; and ECM in the regulation of the stem cell niche. We identify opportunities to advance the field of lung ECM biology and provide a set recommendations for research priorities to advance knowledge that would inform novel approaches to the pathogenesis, diagnosis, and treatment of chronic lung diseases. Copyright © 2017. Published by Elsevier B.V.

  11. Insights into the Mechanisms Underlying Boron Homeostasis in Plants

    Directory of Open Access Journals (Sweden)

    Akira Yoshinari

    2017-11-01

    Full Text Available Boron is an essential element for plants but is toxic in excess. Therefore, plants must adapt to both limiting and excess boron conditions for normal growth. Boron transport in plants is primarily based on three transport mechanisms across the plasma membrane: passive diffusion of boric acid, facilitated diffusion of boric acid via channels, and export of borate anion via transporters. Under boron -limiting conditions, boric acid channels and borate exporters function in the uptake and translocation of boron to support growth of various plant species. In Arabidopsis thaliana, NIP5;1 and BOR1 are located in the plasma membrane and polarized toward soil and stele, respectively, in various root cells, for efficient transport of boron from the soil to the stele. Importantly, sufficient levels of boron induce downregulation of NIP5;1 and BOR1 through mRNA degradation and proteolysis through endocytosis, respectively. In addition, borate exporters, such as Arabidopsis BOR4 and barley Bot1, function in boron exclusion from tissues and cells under conditions of excess boron. Thus, plants actively regulate intracellular localization and abundance of transport proteins to maintain boron homeostasis. In this review, the physiological roles and regulatory mechanisms of intracellular localization and abundance of boron transport proteins are discussed.

  12. Palmitoylation regulates epidermal homeostasis and hair follicle differentiation.

    Directory of Open Access Journals (Sweden)

    Pleasantine Mill

    2009-11-01

    Full Text Available Palmitoylation is a key post-translational modification mediated by a family of DHHC-containing palmitoyl acyl-transferases (PATs. Unlike other lipid modifications, palmitoylation is reversible and thus often regulates dynamic protein interactions. We find that the mouse hair loss mutant, depilated, (dep is due to a single amino acid deletion in the PAT, Zdhhc21, resulting in protein mislocalization and loss of palmitoylation activity. We examined expression of Zdhhc21 protein in skin and find it restricted to specific hair lineages. Loss of Zdhhc21 function results in delayed hair shaft differentiation, at the site of expression of the gene, but also leads to hyperplasia of the interfollicular epidermis (IFE and sebaceous glands, distant from the expression site. The specific delay in follicle differentiation is associated with attenuated anagen propagation and is reflected by decreased levels of Lef1, nuclear beta-catenin, and Foxn1 in hair shaft progenitors. In the thickened basal compartment of mutant IFE, phospho-ERK and cell proliferation are increased, suggesting increased signaling through EGFR or integrin-related receptors, with a parallel reduction in expression of the key differentiation factor Gata3. We show that the Src-family kinase, Fyn, involved in keratinocyte differentiation, is a direct palmitoylation target of Zdhhc21 and is mislocalized in mutant follicles. This study is the first to demonstrate a key role for palmitoylation in regulating developmental signals in mammalian tissue homeostasis.

  13. Interference between nanoparticles and metal homeostasis

    International Nuclear Information System (INIS)

    Petit, A N; Catty, P; Charbonnier, P; Cuillel, M; Mintz, E; Moulis, J M; Niviere, V; Choudens, S Ollagnier de; Garcia, C Aude; Candeias, S; Chevallet, M; Collin-Faure, V; Lelong, C; Luche, S; Rabilloud, T; Casanova, A; Herlin-Boime, N; Douki, T; Ravanat, J L; Sauvaigo, S

    2011-01-01

    The TiO 2 nanoparticles (NPs) are now produced abundantly and widely used in a variety of consumer products. Due to the important increase in the production of TiO 2 -NPs, potential widespread exposure of humans and environment may occur during both the manufacturing process and final use. Therefore, the potential toxicity of TiO 2 -NPs on human health and environment has attracted particular attention. Unfortunately, the results of the large number of studies on the toxicity of TiO 2 -NPs differ significantly, mainly due to an incomplete characterization of the used nanomaterials in terms of size, shape and crystalline structure and to their unknown state of agglomeration/aggregation. The purpose of our project entitled NanoBioMet is to investigate if interferences between nanoparticles and metal homeostasis could be observed and to study the toxicity mechanisms of TiO 2 -NPs with well-characterized physicochemical parameters, using proteomic and molecular approaches. A perturbation of metal homeostasis will be evaluated upon TiO 2 -NPs exposure which could generate reactive oxygen species (ROS) production. Moreover, oxidative stress consequences such as DNA damage and lipid peroxidation will be studied. The toxicity of TiO 2 -NPs of different sizes and crystalline structures will be evaluated both in prokaryotic (E. coli) and eukaryotic cells (A549 human pneumocytes, macrophages, and hepatocytes). First results of the project will be presented concerning the dispersion of TiO 2 -NPs in bacterial medium, proteomic studies on total extracts of macrophages and genotoxicity on pneumocytes.

  14. Nubbin isoform antagonism governs Drosophila intestinal immune homeostasis.

    Directory of Open Access Journals (Sweden)

    Bo G Lindberg

    2018-03-01

    Full Text Available Gut immunity is regulated by intricate and dynamic mechanisms to ensure homeostasis despite a constantly changing microbial environment. Several regulatory factors have been described to participate in feedback responses to prevent aberrant immune activity. Little is, however, known about how transcriptional programs are directly tuned to efficiently adapt host gut tissues to the current microbiome. Here we show that the POU/Oct gene nubbin (nub encodes two transcription factor isoforms, Nub-PB and Nub-PD, which antagonistically regulate immune gene expression in Drosophila. Global transcriptional profiling of adult flies overexpressing Nub-PB in immunocompetent tissues revealed that this form is a strong transcriptional activator of a large set of immune genes. Further genetic analyses showed that Nub-PB is sufficient to drive expression both independently and in conjunction with nuclear factor kappa B (NF-κB, JNK and JAK/STAT pathways. Similar overexpression of Nub-PD did, conversely, repress expression of the same targets. Strikingly, isoform co-overexpression normalized immune gene transcription, suggesting antagonistic activities. RNAi-mediated knockdown of individual nub transcripts in enterocytes confirmed antagonistic regulation by the two isoforms and that both are necessary for normal immune gene transcription in the midgut. Furthermore, enterocyte-specific Nub-PB expression levels had a strong impact on gut bacterial load as well as host lifespan. Overexpression of Nub-PB enhanced bacterial clearance of ingested Erwinia carotovora carotovora 15. Nevertheless, flies quickly succumbed to the infection, suggesting a deleterious immune response. In line with this, prolonged overexpression promoted a proinflammatory signature in the gut with induction of JNK and JAK/STAT pathways, increased apoptosis and stem cell proliferation. These findings highlight a novel regulatory mechanism of host-microbe interactions mediated by antagonistic

  15. Fluid mechanics

    International Nuclear Information System (INIS)

    Paraschivoiu, I.; Prud'homme, M.; Robillard, L.; Vasseur, P.

    2003-01-01

    This book constitutes at the same time theoretical and practical base relating to the phenomena associated with fluid mechanics. The concept of continuum is at the base of the approach developed in this work. The general advance proceeds of simple balances of forces as into hydrostatic to more complex situations or inertias, the internal stresses and the constraints of Reynolds are taken into account. This advance is not only theoretical but contains many applications in the form of solved problems, each chapter ending in a series of suggested problems. The major part of the applications relates to the incompressible flows

  16. Mapping and signaling of neural pathways involved in the regulation of hydromineral homeostasis

    Directory of Open Access Journals (Sweden)

    J. Antunes-Rodrigues

    2013-04-01

    Full Text Available Several forebrain and brainstem neurochemical circuitries interact with peripheral neural and humoral signals to collaboratively maintain both the volume and osmolality of extracellular fluids. Although much progress has been made over the past decades in the understanding of complex mechanisms underlying neuroendocrine control of hydromineral homeostasis, several issues still remain to be clarified. The use of techniques such as molecular biology, neuronal tracing, electrophysiology, immunohistochemistry, and microinfusions has significantly improved our ability to identify neuronal phenotypes and their signals, including those related to neuron-glia interactions. Accordingly, neurons have been shown to produce and release a large number of chemical mediators (neurotransmitters, neurohormones and neuromodulators into the interstitial space, which include not only classic neurotransmitters, such as acetylcholine, amines (noradrenaline, serotonin and amino acids (glutamate, GABA, but also gaseous (nitric oxide, carbon monoxide and hydrogen sulfide and lipid-derived (endocannabinoids mediators. This efferent response, initiated within the neuronal environment, recruits several peripheral effectors, such as hormones (glucocorticoids, angiotensin II, estrogen, which in turn modulate central nervous system responsiveness to systemic challenges. Therefore, in this review, we shall evaluate in an integrated manner the physiological control of body fluid homeostasis from the molecular aspects to the systemic and integrated responses.

  17. Regulation of intestinal homeostasis and immunity with probiotic lactobacilli

    NARCIS (Netherlands)

    Baarlen, van P.; Wells, J.; Kleerebezem, M.

    2013-01-01

    The gut microbiota provide important stimuli to the human innate and adaptive immune system and co-mediate metabolic and immune homeostasis. Probiotic bacteria can be regarded as part of the natural human microbiota, and have been associated with improving homeostasis, albeit with different levels

  18. A Formal Explication of the Concept of Family Homeostasis.

    Science.gov (United States)

    Ariel, Shlomo; And Others

    1984-01-01

    Presents three articles discussing the concept of family homeostasis and the related concepts of family rules and family feedback. Includes a reply by Paul Dell citing the need for family therapy to go beyond homeostasis and further comments by Ariel, Carel, and Tyano. (JAC)

  19. Development and Validation of the Homeostasis Concept Inventory

    Science.gov (United States)

    McFarland, Jenny L.; Price, Rebecca M.; Wenderoth, Mary Pat; Martinková, Patrícia; Cliff, William; Michael, Joel; Modell, Harold; Wright, Ann

    2017-01-01

    We present the Homeostasis Concept Inventory (HCI), a 20-item multiple-choice instrument that assesses how well undergraduates understand this critical physiological concept. We used an iterative process to develop a set of questions based on elements in the Homeostasis Concept Framework. This process involved faculty experts and undergraduate…

  20. Principles of fluid mechanics

    International Nuclear Information System (INIS)

    Kreider, J.F.

    1985-01-01

    This book is an introduction on fluid mechanics incorporating computer applications. Topics covered are as follows: brief history; what is a fluid; two classes of fluids: liquids and gases; the continuum model of a fluid; methods of analyzing fluid flows; important characteristics of fluids; fundamentals and equations of motion; fluid statics; dimensional analysis and the similarity principle; laminar internal flows; ideal flow; external laminar and channel flows; turbulent flow; compressible flow; fluid flow measurements

  1. Fluid-fluid level on MR image: significance in Musculoskeletal diseases

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Hye Won; Lee, Kyung Won [Seoul Naitonal University, Seoul (Korea, Republic of). Coll. of Medicine; Song, Chi Sung [Seoul City Boramae Hospital, Seoul (Korea, Republic of); Han, Sang Wook; Kang, Heung Sik [Seoul Naitonal University, Seoul (Korea, Republic of). Coll. of Medicine

    1998-01-01

    To evaluate the frequency, number and signal intensity of fluid-fluid levels of musculoskeletal diseases on MR images, and to determine the usefulness of this information for the differentiation of musculoskeletal diseases. MR images revealed fluid-fluid levels in the following diseases : giant cell tumor(6), telangiectatic osteosarcoma(4), aneurysmal bone cyst(3), synovial sarcoma(3), chondroblastoma(2), soft tissue tuberculous abscess(2), hematoma(2), hemangioma (1), neurilemmoma(1), metastasis(1), malignant fibrous histiocytoma(1), bursitis(1), pyogenic abscess(1), and epidermoid inclusion cyst(1). Fourteen benign tumors and ten malignant, three abscesses, and the epidermoid inclusion cyst showed only one fluid-fluid level in a unilocular cyst. On T1-weighted images, the signal intensities of fluid varied, but on T2-weighted images, superior layers were in most cases more hyperintense than inferior layers. Because fluid-fluid layers are a nonspecific finding, it is difficult to specifically diagnose each disease according to the number of fluid-fluid levels or signal intensity of fluid. In spite of the nonspecificity of fluid-fluid levels, they were frequently seen in cases of giant cell tumor, telangiectatic osteosarcoma, aneurysmal bone cycle, and synovial sarcoma. Nontumorous diseases such abscesses and hematomas also demonstrated this finding. (author). 11 refs., 1 tab., 4 figs.

  2. Fluid-fluid level on MR image: significance in Musculoskeletal diseases

    International Nuclear Information System (INIS)

    Chung, Hye Won; Lee, Kyung Won; Han, Sang Wook; Kang, Heung Sik

    1998-01-01

    To evaluate the frequency, number and signal intensity of fluid-fluid levels of musculoskeletal diseases on MR images, and to determine the usefulness of this information for the differentiation of musculoskeletal diseases. MR images revealed fluid-fluid levels in the following diseases : giant cell tumor(6), telangiectatic osteosarcoma(4), aneurysmal bone cyst(3), synovial sarcoma(3), chondroblastoma(2), soft tissue tuberculous abscess(2), hematoma(2), hemangioma (1), neurilemmoma(1), metastasis(1), malignant fibrous histiocytoma(1), bursitis(1), pyogenic abscess(1), and epidermoid inclusion cyst(1). Fourteen benign tumors and ten malignant, three abscesses, and the epidermoid inclusion cyst showed only one fluid-fluid level in a unilocular cyst. On T1-weighted images, the signal intensities of fluid varied, but on T2-weighted images, superior layers were in most cases more hyperintense than inferior layers. Because fluid-fluid layers are a nonspecific finding, it is difficult to specifically diagnose each disease according to the number of fluid-fluid levels or signal intensity of fluid. In spite of the nonspecificity of fluid-fluid levels, they were frequently seen in cases of giant cell tumor, telangiectatic osteosarcoma, aneurysmal bone cycle, and synovial sarcoma. Nontumorous diseases such abscesses and hematomas also demonstrated this finding. (author). 11 refs., 1 tab., 4 figs

  3. Disappearing fluid?

    International Nuclear Information System (INIS)

    Graney, K.; Chu, J.; Lin, P.C.

    2002-01-01

    Full text: A 78-year old male in end stage renal failure (ESRF) with a background of NIDDM retinopathy, nephropathy, and undergoing continuous ambulatory peritoneal dialysis (CAPD) presented with anorexia, clinically unwell, decreased mobility and right scrotal swelling. There was no difficulty during CAPD exchange except there was a positive fluid balance Peritoneal dialysates remained clear A CAPD peritoneal study was requested. 100Mbq 99mTc Sulphur Colloid was injected into a standard dialysate bag containing dialysate. Anterior dynamic images were acquired over the abdomen pelvis while the dialysate was infused Static images with anatomical markers were performed 20 mins post infusion, before and after patient ambulation and then after drainage. The study demonstrated communication between the peritoneal cavity and the right scrotal sac. Patient underwent right inguinal herniaplasty with a marlex mesh. A repeat CAPD flow study was performed as follow up and no abnormal connection between the peritoneal cavity and the right scrotal sac was demonstrated post operatively. This case study shows that CAPD flow studies can be undertaken as a simple, minimally invasive method to evaluate abnormal peritoneal fluid flow dynamics in patients undergoing CAPD, and have an impact on dialysis management. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  4. Auxillary Fluid Flowmeter

    DEFF Research Database (Denmark)

    RezaNejad Gatabi, Javad; Forouzbakhsh, Farshid; Ebrahimi Darkhaneh, Hadi

    2010-01-01

    The Auxiliary Fluid Flow meter is proposed to measure the fluid flow of any kind in both pipes and open channels. In this kind of flow measurement, the flow of an auxiliary fluid is measured Instead of direct measurement of the main fluid flow. The auxiliary fluid is injected into the main fluid ...

  5. A conceptual framework for homeostasis: development and validation

    Science.gov (United States)

    Wenderoth, Mary Pat; Michael, Joel; Cliff, William; Wright, Ann; Modell, Harold

    2016-01-01

    We have developed and validated a conceptual framework for understanding and teaching organismal homeostasis at the undergraduate level. The resulting homeostasis conceptual framework details critical components and constituent ideas underlying the concept of homeostasis. It has been validated by a broad range of physiology faculty members from community colleges, primarily undergraduate institutions, research universities, and medical schools. In online surveys, faculty members confirmed the relevance of each item in the framework for undergraduate physiology and rated the importance and difficulty of each. The homeostasis conceptual framework was constructed as a guide for teaching and learning of this critical core concept in physiology, and it also paves the way for the development of a concept inventory for homeostasis. PMID:27105740

  6. A conceptual framework for homeostasis: development and validation.

    Science.gov (United States)

    McFarland, Jenny; Wenderoth, Mary Pat; Michael, Joel; Cliff, William; Wright, Ann; Modell, Harold

    2016-06-01

    We have developed and validated a conceptual framework for understanding and teaching organismal homeostasis at the undergraduate level. The resulting homeostasis conceptual framework details critical components and constituent ideas underlying the concept of homeostasis. It has been validated by a broad range of physiology faculty members from community colleges, primarily undergraduate institutions, research universities, and medical schools. In online surveys, faculty members confirmed the relevance of each item in the framework for undergraduate physiology and rated the importance and difficulty of each. The homeostasis conceptual framework was constructed as a guide for teaching and learning of this critical core concept in physiology, and it also paves the way for the development of a concept inventory for homeostasis. Copyright © 2016 The American Physiological Society.

  7. Loss of NAD Homeostasis Leads to Progressive and Reversible Degeneration of Skeletal Muscle.

    Science.gov (United States)

    Frederick, David W; Loro, Emanuele; Liu, Ling; Davila, Antonio; Chellappa, Karthikeyani; Silverman, Ian M; Quinn, William J; Gosai, Sager J; Tichy, Elisia D; Davis, James G; Mourkioti, Foteini; Gregory, Brian D; Dellinger, Ryan W; Redpath, Philip; Migaud, Marie E; Nakamaru-Ogiso, Eiko; Rabinowitz, Joshua D; Khurana, Tejvir S; Baur, Joseph A

    2016-08-09

    NAD is an obligate co-factor for the catabolism of metabolic fuels in all cell types. However, the availability of NAD in several tissues can become limited during genotoxic stress and the course of natural aging. The point at which NAD restriction imposes functional limitations on tissue physiology remains unknown. We examined this question in murine skeletal muscle by specifically depleting Nampt, an essential enzyme in the NAD salvage pathway. Knockout mice exhibited a dramatic 85% decline in intramuscular NAD content, accompanied by fiber degeneration and progressive loss of both muscle strength and treadmill endurance. Administration of the NAD precursor nicotinamide riboside rapidly ameliorated functional deficits and restored muscle mass despite having only a modest effect on the intramuscular NAD pool. Additionally, lifelong overexpression of Nampt preserved muscle NAD levels and exercise capacity in aged mice, supporting a critical role for tissue-autonomous NAD homeostasis in maintaining muscle mass and function. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Role of glutaredoxin 3 in iron homeostasis

    Science.gov (United States)

    Iron is an essential mineral nutrient that is tightly regulated through mechanisms involving iron regulatory genes, intracellular storage, and iron recycling. Dysregulation of these mechanisms often results in either excess tissue iron accumulation (overload) or iron deficiency (anemia). Many bioche...

  9. Misregulation of iron homeostasis in amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Anna Gajowiak

    2016-06-01

    Full Text Available Iron is essential for all mammalian cells, but it is toxic in excess. Our understanding of molecular mechanisms ensuring iron homeostasis at both cellular and systemic levels has dramatically increased over the past 15 years. However, despite major advances in this field, homeostatic regulation of iron in the central nervous system (CNS requires elucidation. It is unclear how iron moves in the CNS and how its transfer to the CNS across the blood-brain and the blood-cerebrospinal fluid barriers, which separate the CNS from the systemic circulation, is regulated. Increasing evidence indicates the role of iron dysregulation in neuronal cell death observed in neurodegenerative diseases including amyotrophic lateral sclerosis (ALS. ALS is a progressive neurodegenerative disorder characterized by selective cortical czynand spinal motor neuron dysfunction that results from a complex interplay among various pathogenic factors including oxidative stress. The latter is known to strongly affect cellular iron balance, creating a vicious circle to exacerbate oxidative injury. The role of iron in the pathogenesis of ALS is confirmed by therapeutic effects of iron chelation in ALS mouse models. These models are of great importance for deciphering molecular mechanisms of iron accumulation in neurons. Most of them consist of transgenic rodents overexpressing the mutated human superoxide dismutase 1 (SOD1 gene. Mutations in the SOD1 gene constituteone of the most common genetic causes of the inherited form of ALS. However, it should beconsidered that overexpression of the SOD1 gene usually leads to increased SOD1 enzymaticactivity, a condition which does not occur in human pathology and which may itself changethe expression of iron metabolism genes.

  10. Whole body immersion and hydromineral homeostasis: effect of water temperature.

    Science.gov (United States)

    Jimenez, Chantal; Regnard, Jacques; Robinet, Claude; Mourot, Laurent; Gomez-Merino, Danielle; Chennaoui, Mounir; Jammes, Yves; Dumoulin, Gilles; Desruelle, Anne-Virginie; Melin, Bruno

    2010-01-01

    This experiment was designed to assess the effects of prolonged whole body immersion (WBI) in thermoneutral and cold conditions on plasma volume and hydromineral homeostasis.10 navy "combat swimmers" performed three static 6-h immersions at 34 degrees C (T34), 18 degrees C (T18) and 10 degrees C (T10). Rectal temperature, plasma volume (PV) changes, plasma proteins, plasma and urine ions, plasma osmolality, renin, aldosterone and antidiuretic hormone (ADH) were measured. Results show that compared to pre-immersion levels, PV decreased throughout WBI sessions, the changes being markedly accentuated in cold conditions. At the end of WBI, maximal PV variations were -6.9% at T34, -14.3% at T18, and -16.3% at T10. Plasma osmolality did not change during and after T34 immersion, while hyperosmolality was present at the end of T18 immersion and began after only 1 h of T10 immersion. In the three temperature conditions, significant losses of water (1.6-1.7 l) and salt (6-8 g) occurred and were associated with similar increases in osmolar and free water clearances. Furthermore, T18 and T10 immersions increased the glomerular filtration rate. There was little or no change in plasma renin and ADH, while the plasma level of aldosterone decreased equally in the three temperature conditions. In conclusion, our data indicate that cold water hastened PV changes induced by immersion, and increased the glomerular filtration rate, causing larger accumulated water losses. The iso-osmotic hypovolemia may impede the resumption of baseline fluid balance. Results are very similar to those repeatedly described by various authors during head-out water immersion.

  11. Helicobacter pylori colonization ameliorates glucose homeostasis in mice through a PPAR γ-dependent mechanism.

    Science.gov (United States)

    Bassaganya-Riera, Josep; Dominguez-Bello, Maria Gloria; Kronsteiner, Barbara; Carbo, Adria; Lu, Pinyi; Viladomiu, Monica; Pedragosa, Mireia; Zhang, Xiaoying; Sobral, Bruno W; Mane, Shrinivasrao P; Mohapatra, Saroj K; Horne, William T; Guri, Amir J; Groeschl, Michael; Lopez-Velasco, Gabriela; Hontecillas, Raquel

    2012-01-01

    There is an inverse secular trend between the incidence of obesity and gastric colonization with Helicobacter pylori, a bacterium that can affect the secretion of gastric hormones that relate to energy homeostasis. H. pylori strains that carry the cag pathogenicity island (PAI) interact more intimately with gastric epithelial cells and trigger more extensive host responses than cag(-) strains. We hypothesized that gastric colonization with H. pylori strains differing in cag PAI status exert distinct effects on metabolic and inflammatory phenotypes. To test this hypothesis, we examined metabolic and inflammatory markers in db/db mice and mice with diet-induced obesity experimentally infected with isogenic forms of H. pylori strain 26695: the cag PAI wild-type and its cag PAI mutant strain 99-305. H. pylori colonization decreased fasting blood glucose levels, increased levels of leptin, improved glucose tolerance, and suppressed weight gain. A response found in both wild-type and mutant H. pylori strain-infected mice included decreased white adipose tissue macrophages (ATM) and increased adipose tissue regulatory T cells (Treg) cells. Gene expression analyses demonstrated upregulation of gastric PPAR γ-responsive genes (i.e., CD36 and FABP4) in H. pylori-infected mice. The loss of PPAR γ in immune and epithelial cells in mice impaired the ability of H. pylori to favorably modulate glucose homeostasis and ATM infiltration during high fat feeding. Gastric infection with some commensal strains of H. pylori ameliorates glucose homeostasis in mice through a PPAR γ-dependent mechanism and modulates macrophage and Treg cell infiltration into the abdominal white adipose tissue.

  12. Helicobacter pylori colonization ameliorates glucose homeostasis in mice through a PPAR γ-dependent mechanism.

    Directory of Open Access Journals (Sweden)

    Josep Bassaganya-Riera

    Full Text Available BACKGROUND: There is an inverse secular trend between the incidence of obesity and gastric colonization with Helicobacter pylori, a bacterium that can affect the secretion of gastric hormones that relate to energy homeostasis. H. pylori strains that carry the cag pathogenicity island (PAI interact more intimately with gastric epithelial cells and trigger more extensive host responses than cag(- strains. We hypothesized that gastric colonization with H. pylori strains differing in cag PAI status exert distinct effects on metabolic and inflammatory phenotypes. METHODOLOGY/PRINCIPAL FINDINGS: To test this hypothesis, we examined metabolic and inflammatory markers in db/db mice and mice with diet-induced obesity experimentally infected with isogenic forms of H. pylori strain 26695: the cag PAI wild-type and its cag PAI mutant strain 99-305. H. pylori colonization decreased fasting blood glucose levels, increased levels of leptin, improved glucose tolerance, and suppressed weight gain. A response found in both wild-type and mutant H. pylori strain-infected mice included decreased white adipose tissue macrophages (ATM and increased adipose tissue regulatory T cells (Treg cells. Gene expression analyses demonstrated upregulation of gastric PPAR γ-responsive genes (i.e., CD36 and FABP4 in H. pylori-infected mice. The loss of PPAR γ in immune and epithelial cells in mice impaired the ability of H. pylori to favorably modulate glucose homeostasis and ATM infiltration during high fat feeding. CONCLUSIONS/SIGNIFICANCE: Gastric infection with some commensal strains of H. pylori ameliorates glucose homeostasis in mice through a PPAR γ-dependent mechanism and modulates macrophage and Treg cell infiltration into the abdominal white adipose tissue.

  13. Mice lacking ANGPTL8 (Betatrophin) manifest disrupted triglyceride metabolism without impaired glucose homeostasis.

    Science.gov (United States)

    Wang, Yan; Quagliarini, Fabiana; Gusarova, Viktoria; Gromada, Jesper; Valenzuela, David M; Cohen, Jonathan C; Hobbs, Helen H

    2013-10-01

    Angiopoietin-like protein (ANGPTL)8 (alternatively called TD26, RIFL, Lipasin, and Betatrophin) is a newly recognized ANGPTL family member that has been implicated in both triglyceride (TG) and glucose metabolism. Hepatic overexpression of ANGPTL8 causes hypertriglyceridemia and increased insulin secretion. Here we examined the effects of inactivating Angptl8 on TG and glucose metabolism in mice. Angptl8 knockout (Angptl8(-/-)) mice gained weight more slowly than wild-type littermates due to a selective reduction in adipose tissue accretion. Plasma levels of TGs of the Angptl8(-/-) mice were similar to wild-type animals in the fasted state but paradoxically decreased after refeeding. The lower TG levels were associated with both a reduction in very low density lipoprotein secretion and an increase in lipoprotein lipase (LPL) activity. Despite the increase in LPL activity, the uptake of very low density lipoprotein-TG is markedly reduced in adipose tissue but preserved in hearts of fed Angptl8(-/-) mice. Taken together, these data indicate that ANGPTL8 plays a key role in the metabolic transition between fasting and refeeding; it is required to direct fatty acids to adipose tissue for storage in the fed state. Finally, glucose and insulin tolerance testing revealed no alterations in glucose homeostasis in mice fed either a chow or high fat diet. Thus, although absence of ANGPTL8 profoundly disrupts TG metabolism, we found no evidence that it is required for maintenance of glucose homeostasis.

  14. Gyroelastic fluids

    Energy Technology Data Exchange (ETDEWEB)

    Kerbel, G.D.

    1981-01-20

    A study is made of a scale model in three dimensions of a guiding center plasma within the purview of gyroelastic (also known as finite gyroradius-near theta pinch) magnetohydrodynamics. The (nonlinear) system sustains a particular symmetry called isorrhopy which permits the decoupling of fluid modes from drift modes. Isorrhopic equilibria are analyzed within the framework of geometrical optics resulting in (local) dispersion relations and ray constants. A general scheme is developed to evolve an arbitrary linear perturbation of a screwpinch equilibrium as an invertible integral transform (over the complete set of generalized eigenfunctions defined naturally by the equilibrium). Details of the structure of the function space and the associated spectra are elucidated. Features of the (global) dispersion relation owing to the presence of gyroelastic stabilization are revealed. An energy principle is developed to study the stability of the tubular screwpinch.

  15. Gyroelastic fluids

    International Nuclear Information System (INIS)

    Kerbel, G.D.

    1981-01-01

    A study is made of a scale model in three dimensions of a guiding center plasma within the purview of gyroelastic (also known as finite gyroradius-near theta pinch) magnetohydrodynamics. The (nonlinear) system sustains a particular symmetry called isorrhopy which permits the decoupling of fluid modes from drift modes. Isorrhopic equilibria are analyzed within the framework of geometrical optics resulting in (local) dispersion relations and ray constants. A general scheme is developed to evolve an arbitrary linear perturbation of a screwpinch equilibrium as an invertible integral transform (over the complete set of generalized eigenfunctions defined naturally by the equilibrium). Details of the structure of the function space and the associated spectra are elucidated. Features of the (global) dispersion relation owing to the presence of gyroelastic stabilization are revealed. An energy principle is developed to study the stability of the tubular screwpinch

  16. Impact of experimental endogenous gram-negative peritonitis on the pancreas of the rat as evaluated by cationic trypsin-like immunoreactivity in peritoneal fluid and serum and by electron microscopy of pancreatic tissue

    International Nuclear Information System (INIS)

    Florholmen, J.; Almdahl, S.M.; Myklebust, R.; Burhol, P.G.; Malm, D.; Riepl, R.; Giercksky, K.E.

    1987-01-01

    Endogenous gram-negative peritonitis leading to septic shock was induced in rats by a defined perforation of the coecum. Cationic trypsin-like immunoreactivity (CTLI) was measured in peritoneal fluid and serum by a radioimmunoassay method. 5, 10 and 15 h after the coecal perforation, CTLI in peritoneal fluid was significantly higher than before the coecal perforation and also higher than in the corresponding control rats. Moreover, CTLI in serum was under the same conditions significantly higher 10 and 15 h after the induction of peritonitis. Gel chromatography of peritoneal fluid and serum during peritonitis showed free CTLI and CTLI bound to both alpha-1-antitrypsin and alpha-2-macroglobulin, wheras only free CTLI could be detected in serum from control rats. These findings were accompanied by local ultrastructural changes in the acinar cells as evaluated by electron microscopy. The pathophysiologic implications of the findings are discussed

  17. TIPE2, a negative regulator of innate and adaptive immunity that maintains immune homeostasis.

    Science.gov (United States)

    Sun, Honghong; Gong, Shunyou; Carmody, Ruaidhri J; Hilliard, Anja; Li, Li; Sun, Jing; Kong, Li; Xu, Lingyun; Hilliard, Brendan; Hu, Shimin; Shen, Hao; Yang, Xiaolu; Chen, Youhai H

    2008-05-02

    Immune homeostasis is essential for the normal functioning of the immune system, and its breakdown leads to fatal inflammatory diseases. We report here the identification of a member of the tumor necrosis factor-alpha-induced protein-8 (TNFAIP8) family, designated TIPE2, that is required for maintaining immune homeostasis. TIPE2 is preferentially expressed in lymphoid tissues, and its deletion in mice leads to multiorgan inflammation, splenomegaly, and premature death. TIPE2-deficient animals are hypersensitive to septic shock, and TIPE2-deficient cells are hyper-responsive to Toll-like receptor (TLR) and T cell receptor (TCR) activation. Importantly, TIPE2 binds to caspase-8 and inhibits activating protein-1 and nuclear factor-kappaB activation while promoting Fas-induced apoptosis. Inhibiting caspase-8 significantly blocks the hyper-responsiveness of TIPE2-deficient cells. These results establish that TIPE2 is an essential negative regulator of TLR and TCR function, and its selective expression in the immune system prevents hyperresponsiveness and maintains immune homeostasis.

  18. Effect of intermittent cold exposure on brown fat activation, obesity, and energy homeostasis in mice.

    Directory of Open Access Journals (Sweden)

    Yann Ravussin

    Full Text Available Homeotherms have specific mechanisms to maintain a constant core body temperature despite changes in thermal environment, food supply, and metabolic demand. Brown adipose tissue, the principal thermogenic organ, quickly and efficiently increases heat production by dissipating the mitochondrial proton motive force. It has been suggested that activation of brown fat, via either environmental (i.e. cold exposure or pharmacologic means, could be used to increase metabolic rate and thus reduce body weight. Here we assess the effects of intermittent cold exposure (4°C for one to eight hours three times a week on C57BL/6J mice fed a high fat diet. Cold exposure increased metabolic rate approximately two-fold during the challenge and activated brown fat. In response, food intake increased to compensate fully for the increased energy expenditure; thus, the mice showed no reduction in body weight or adiposity. Despite the unchanged adiposity, the cold-treated mice showed transient improvements in glucose homeostasis. Administration of the cannabinoid receptor-1 inverse agonist AM251 caused weight loss and improvements in glucose homeostasis, but showed no further improvements when combined with cold exposure. These data suggest that intermittent cold exposure causes transient, meaningful improvements in glucose homeostasis, but without synergy when combined with AM251. Since energy expenditure is significantly increased during cold exposure, a drug that dissociates food intake from metabolic demand during cold exposure may achieve weight loss and further metabolic improvements.

  19. Phosphatidyl inositol 3-kinase signaling in hypothalamic proopiomelanocortin neurons contributes to the regulation of glucose homeostasis.

    Science.gov (United States)

    Hill, Jennifer W; Xu, Yong; Preitner, Frederic; Fukuda, Makota; Cho, You-Ree; Luo, Ji; Balthasar, Nina; Coppari, Roberto; Cantley, Lewis C; Kahn, Barbara B; Zhao, Jean J; Elmquist, Joel K

    2009-11-01

    Recent studies demonstrated a role for hypothalamic insulin and leptin action in the regulation of glucose homeostasis. This regulation involves proopiomelanocortin (POMC) neurons because suppression of phosphatidyl inositol 3-kinase (PI3K) signaling in these neurons blunts the acute effects of insulin and leptin on POMC neuronal activity. In the current study, we investigated whether disruption of PI3K signaling in POMC neurons alters normal glucose homeostasis using mouse models designed to both increase and decrease PI3K-mediated signaling in these neurons. We found that deleting p85alpha alone induced resistance to diet-induced obesity. In contrast, deletion of the p110alpha catalytic subunit of PI3K led to increased weight gain and adipose tissue along with reduced energy expenditure. Independent of these effects, increased PI3K activity in POMC neurons improved insulin sensitivity, whereas decreased PI3K signaling resulted in impaired glucose regulation. These studies show that activity of the PI3K pathway in POMC neurons is involved in not only normal energy regulation but also glucose homeostasis.

  20. Lymphatic Vascular Regeneration : The Next Step in Tissue Engineering

    NARCIS (Netherlands)

    Huethorst, Eline; Krebber, Merle M; Fledderus, Joost O; Gremmels, Hendrik; Xu, Yan Juan; Pei, Jiayi; Verhaar, Marianne C; Cheng, Caroline

    2016-01-01

    The lymphatic system plays a crucial role in interstitial fluid drainage, lipid absorption, and immunological defense. Lymphatic dysfunction results in lymphedema, fluid accumulation, and swelling of soft tissues, as well as a potentially impaired immune response. Lymphedema significantly reduces

  1. Assaying of drugs in body fluids

    International Nuclear Information System (INIS)

    Braestrup, C.; Squires, R.F.

    1981-01-01

    The invention provides, in general terms, a process for determining the concentration of a psychotropically active benzodiazepine drug in blood or other body fluid or urine, including bringing a sample of the fluid or urine into contact with brain tissue and with tritium labelled molecules of a benzodiazepine which can bind reversibly to receptors of the brain tissue to induce binding of molecules of the unlabelled drug and of the tritium labelled benzodiazepine to the receptors, and determining the radioactivity of the brain tissue, preferably by scintillation counting. (author)

  2. Cell Extrusion: A Stress-Responsive Force for Good or Evil in Epithelial Homeostasis.

    Science.gov (United States)

    Ohsawa, Shizue; Vaughen, John; Igaki, Tatsushi

    2018-02-05

    Epithelial tissues robustly respond to internal and external stressors via dynamic cellular rearrangements. Cell extrusion acts as a key regulator of epithelial homeostasis by removing apoptotic cells, orchestrating morphogenesis, and mediating competitive cellular battles during tumorigenesis. Here, we delineate the diverse functions of cell extrusion during development and disease. We emphasize the expanding role for apoptotic cell extrusion in exerting morphogenetic forces, as well as the strong intersection of cell extrusion with cell competition, a homeostatic mechanism that eliminates aberrant or unfit cells. While cell competition and extrusion can exert potent, tumor-suppressive effects, dysregulation of either critical homeostatic program can fuel cancer progression. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Modulation of immune homeostasis by commensal bacteria

    Science.gov (United States)

    Ivanov, Ivaylo I.; Littman, Dan R.

    2011-01-01

    Intestinal bacteria form a resident community that has co-evolved with the mammalian host. In addition to playing important roles in digestion and harvesting energy, commensal bacteria are crucial for the proper functioning of mucosal immune defenses. Most of these functions have been attributed to the presence of large numbers of “innocuous” resident bacteria that dilute or occupy niches for intestinal pathogens or induce innate immune responses that sequester bacteria in the lumen, thus quenching excessive activation of the mucosal immune system. However it has recently become obvious that commensal bacteria are not simply beneficial bystanders, but are important modulators of intestinal immune homeostasis and that the composition of the microbiota is a major factor in pre-determining the type and robustness of mucosal immune responses. Here we review specific examples of individual members of the microbiota that modify innate and adaptive immune responses, and we focus on potential mechanisms by which such species-specific signals are generated and transmitted to the host immune system. PMID:21215684

  4. [Contribution of the kidney to glucose homeostasis].

    Science.gov (United States)

    Segura, Julián; Ruilope, Luis Miguel

    2013-09-01

    The kidney is involved in glucose homeostasis through three major mechanisms: renal gluconeogenesis, renal glucose consumption, and glucose reabsorption in the proximal tubule. Glucose reabsorption is one of the most important physiological functions of the kidney, allowing full recovery of filtered glucose, elimination of glucose from the urine, and prevention of calorie loss. Approximately 90% of the glucose is reabsorbed in the S1 segment of the proximal tubule, where glucose transporter-2 (GLUT2) and sodium-glucose transporter-2 (SGLT2) are located, while the remaining 10% is reabsorbed in the S3 segment by SGLT1 and GLUT1 transporters. In patients with hyperglycemia, the kidney continues to reabsorb glucose, thus maintaining hyperglycemia. Most of the renal glucose reabsorption is mediated by SGLT2. Several experimental and clinical studies suggest that pharmacological blockade of this transporter might be beneficial in the management of hyperglycemia in patients with type 2 diabetes. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  5. Nutrition and protein energy homeostasis in elderly.

    Science.gov (United States)

    Boirie, Yves; Morio, Béatrice; Caumon, Elodie; Cano, Noël J

    2014-01-01

    Protein-energy homeostasis is a major determinant of healthy aging. Inadequate nutritional intakes and physical activity, together with endocrine disturbances are associated with of sarcopenia and frailty. Guidelines from scientific societies mainly address the quantitative aspects of protein and energy nutrition in elderly. Besides these quantitative aspects of protein load, perspective strategies to promote muscle protein synthesis and prevent sarcopenia include pulse feeding, the use of fast proteins and the addition of leucine or citrulline to dietary protein. An integrated management of sarcopenia, taking into account the determinants of muscle wasting, i.e. nutrition, physical activity, anabolic factors such as androgens, vitamin D and n-3 polyunsaturated fatty acids status, needs to be tested in the prevention and treatment of sarcopenia. The importance of physical activity, specifically resistance training, is emphasized, not only in order to facilitate muscle protein anabolism but also to increase appetite and food intake in elderly people at risk of malnutrition. According to present data, healthy nutrition in elderly should respect the guidelines for protein and energy requirement, privilege a Mediterranean way of alimentation, and be associated with a regular physical activity. Further issues relate to the identification of the genetics determinants of protein energy wasting in elderly. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Homeostasis and function of regulatory T cells (Tregs) in vivo: lessons from TCR-transgenic Tregs

    Science.gov (United States)

    Attridge, Kesley; Walker, Lucy S K

    2014-01-01

    The identification of CD25 and subsequently Forkhead box protein 3 (Foxp3) as markers for regulatory T cells (Tregs) has revolutionized our ability to explore this population experimentally. In a similar vein, our understanding of antigen-specific Treg responses in vivo owes much to the fortuitous generation of T-cell receptor (TCR)-transgenic Tregs. This has permitted tracking of Tregs with a defined specificity in vivo, facilitating analysis of how encounter with cognate antigen shapes Treg homeostasis and function. Here, we review the key lessons learned from a decade of analysis of TCR-transgenic Tregs and set this in the broader context of general progress in the field. Use of TCR-transgenic Tregs has led to an appreciation that Tregs are a highly dynamic proliferative population in vivo, rather than an anergic population as they were initially portrayed. It is now clear that Treg homeostasis is positively regulated by encounter with self-antigen expressed on peripheral tissues, which is likely to be relevant to the phenomenon of peripheral repertoire reshaping that has been described for Tregs and the observation that the Treg TCR specificities vary by anatomical location. Substantial evidence has also accumulated to support the role of CD28 costimulation and interleukin-2 in Treg homeostasis. The availability of TCR-transgenic Tregs has enabled analysis of Treg populations that are sufficient or deficient in particular genes, without the comparison being confounded by repertoire alterations. This approach has yielded insights into genes required for Treg function in vivo, with particular progress being made on the role of ctla-4 in this context. As the prospect of manipulating Treg populations in the clinic becomes reality, a full appreciation of the rules governing their homeostasis will prove increasingly important. PMID:24712457

  7. Energy homeostasis and running wheel activity during pregnancy in the mouse.

    Science.gov (United States)

    Ladyman, S R; Carter, K M; Grattan, D R

    2018-05-05

    Pregnancy and lactation are metabolically challenging states, where the mother must supply all the energy requirements for the developing fetus and growing pups respectively. The aim of the current study was to characterize many aspects of energy homeostasis before and during pregnancy in the mouse, and to examine the role of voluntary activity on changes in energy expenditure during pregnancy. In a secondary aim, we evaluate measures of energy homeostasis during pregnancy in mice that successfully reared their litter or in mice that went on to abandon their litter, to determine if an impairment in pregnancy-induced adaptation of energy homeostasis might underlie the abandonment of pups soon after birth. During pregnancy, food intake was increased, characterized by increased meal size and duration but not number of meals per day. The duration of time spent inactive, predicted to indicate sleep behaviour, was increased both early and late in pregnancy compared to pre-pregnancy levels. Increased x + y beam breaks, as a measure of activity increased during pregnancy and this reflected an increase in ambulatory behaviour in mid pregnancy and an increase in non-ambulatory movement in late pregnancy. Energy expenditure, as measured by indirect calorimetry, increased across pregnancy, likely due to the growth and development of fetal tissue. There was also a dramatic reduction in voluntary wheel running as soon as the mice became pregnant. Compared with successful pregnancies and lactations, pregnancies where pups were abandoned soon after birth were associated with reduced body weight gain and an increase in running wheel activity at the end of pregnancy, but no difference in food intake or energy expenditure. Overall, during pregnancy there are multiple adaptations to change energy homeostasis, resulting in partitioning of provisions of energy to the developing fetus and storing energy for future metabolic demands. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Regulation of intestinal homeostasis and immunity with probiotic lactobacilli.

    Science.gov (United States)

    van Baarlen, Peter; Wells, Jerry M; Kleerebezem, Michiel

    2013-05-01

    The gut microbiota provide important stimuli to the human innate and adaptive immune system and co-mediate metabolic and immune homeostasis. Probiotic bacteria can be regarded as part of the natural human microbiota, and have been associated with improving homeostasis, albeit with different levels of success. Composition of microbiota, probiotic strain identity, and host genetic differences may account for differential modulation of immune responses by probiotics. Here, we review the mechanisms of immunomodulating capacities of specific probiotic strains, the responses they can induce in the host, and how microbiota and genetic differences between individuals may co-influence host responses and immune homeostasis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. The role of CDX2 in intestinal homeostasis and inflammation

    DEFF Research Database (Denmark)

    Coskun, Mehmet; Troelsen, Jesper Thorvald; Nielsen, Ole Haagen

    2011-01-01

    a causal role in a large number of diseases and developmental disorders. Inflammatory bowel disease (IBD) is characterized by a chronically inflamed mucosa caused by dysregulation of the intestinal immune homeostasis. The aetiology of IBD is thought to be a combination of genetic and environmental factors......, including luminal bacteria. The Caudal-related homeobox transcription factor 2 (CDX2) is critical in early intestinal differentiation and has been implicated as a master regulator of the intestinal homeostasis and permeability in adults. When expressed, CDX2 modulates a diverse set of processes including...... of the intestinal homeostasis and further to reveal its potential role in inflammation....

  10. Glucose homeostasis in mice is transglutaminase 2 independent.

    Directory of Open Access Journals (Sweden)

    Siiri E Iismaa

    Full Text Available Transglutaminase type 2 (TG2 has been reported to be a candidate gene for maturity onset diabetes of the young (MODY because three different mutations that impair TG2 transamidase activity have been found in 3 families with MODY. TG2 null (TG2(-/- mice have been reported to be glucose intolerant and have impaired glucose-stimulated insulin secretion (GSIS. Here we rigorously evaluated the role of TG2 in glucose metabolism using independently generated murine models of genetic TG2 disruption, which show no compensatory enhanced expression of other TGs in pancreatic islets or other tissues. First, we subjected chow- or fat-fed congenic SV129 or C57BL/6 wild type (WT and TG2(-/- littermates, to oral glucose gavage. Blood glucose and serum insulin levels were similar for both genotypes. Pancreatic islets isolated from these animals and analysed in vitro for GSIS and cholinergic potentiation of GSIS, showed no significant difference between genotypes. Results from intraperitoneal glucose tolerance tests (GTTs and insulin tolerance tests (ITTs were similar for both genotypes. Second, we directly investigated the role of TG2 transamidase activity in insulin secretion using a coisogenic model that expresses a mutant form of TG2 (TG2(R579A, which is constitutively active for transamidase activity. Intraperitoneal GTTs and ITTs revealed no significant differences between WT and TG2(R579A/R579A mice. Given that neither deletion nor constitutive activation of TG2 transamidase activity altered basal responses, or responses to a glucose or insulin challenge, our data indicate that glucose homeostasis in mice is TG2 independent, and question a link between TG2 and diabetes.

  11. Telomere dynamics and homeostasis in a transmissible cancer.

    Science.gov (United States)

    Ujvari, Beata; Pearse, Anne-Maree; Taylor, Robyn; Pyecroft, Stephen; Flanagan, Cassandra; Gombert, Sara; Papenfuss, Anthony T; Madsen, Thomas; Belov, Katherine

    2012-01-01

    Devil Facial Tumour Disease (DFTD) is a unique clonal cancer that threatens the world's largest carnivorous marsupial, the Tasmanian devil (Sarcophilus harrisii) with extinction. This transmissible cancer is passed between individual devils by cell implantation during social interactions. The tumour arose in a Schwann cell of a single devil over 15 years ago and since then has expanded clonally, without showing signs of replicative senescence; in stark contrast to a somatic cell that displays a finite capacity for replication, known as the "Hayflick limit". In the present study we investigate the role of telomere length, measured as Telomere Copy Number (TCN), and telomerase and shelterin gene expression, as well as telomerase activity in maintaining hyperproliferation of Devil Facial Tumour (DFT) cells. Our results show that DFT cells have short telomeres. DFTD TCN does not differ between geographic regions or between strains. However, TCN has increased over time. Unlimited cell proliferation is likely to have been achieved through the observed up-regulation of the catalytic subunit of telomerase (TERT) and concomitant activation of telomerase. Up-regulation of the central component of shelterin, the TRF1-intercating nuclear factor 2 (TINF2) provides DFT a mechanism for telomere length homeostasis. The higher expression of both TERT and TINF2 may also protect DFT cells from genomic instability and enhance tumour proliferation. DFT cells appear to monitor and regulate the length of individual telomeres: i.e. shorter telomeres are elongated by up-regulation of telomerase-related genes; longer telomeres are protected from further elongation by members of the shelterin complex, which may explain the lack of spatial and strain variation in DFT telomere copy number. The observed longitudinal increase in gene expression in DFT tissue samples and telomerase activity in DFT cell lines might indicate a selection for more stable tumours with higher proliferative potential.

  12. Telomere dynamics and homeostasis in a transmissible cancer.

    Directory of Open Access Journals (Sweden)

    Beata Ujvari

    Full Text Available Devil Facial Tumour Disease (DFTD is a unique clonal cancer that threatens the world's largest carnivorous marsupial, the Tasmanian devil (Sarcophilus harrisii with extinction. This transmissible cancer is passed between individual devils by cell implantation during social interactions. The tumour arose in a Schwann cell of a single devil over 15 years ago and since then has expanded clonally, without showing signs of replicative senescence; in stark contrast to a somatic cell that displays a finite capacity for replication, known as the "Hayflick limit".In the present study we investigate the role of telomere length, measured as Telomere Copy Number (TCN, and telomerase and shelterin gene expression, as well as telomerase activity in maintaining hyperproliferation of Devil Facial Tumour (DFT cells. Our results show that DFT cells have short telomeres. DFTD TCN does not differ between geographic regions or between strains. However, TCN has increased over time. Unlimited cell proliferation is likely to have been achieved through the observed up-regulation of the catalytic subunit of telomerase (TERT and concomitant activation of telomerase. Up-regulation of the central component of shelterin, the TRF1-intercating nuclear factor 2 (TINF2 provides DFT a mechanism for telomere length homeostasis. The higher expression of both TERT and TINF2 may also protect DFT cells from genomic instability and enhance tumour proliferation.DFT cells appear to monitor and regulate the length of individual telomeres: i.e. shorter telomeres are elongated by up-regulation of telomerase-related genes; longer telomeres are protected from further elongation by members of the shelterin complex, which may explain the lack of spatial and strain variation in DFT telomere copy number. The observed longitudinal increase in gene expression in DFT tissue samples and telomerase activity in DFT cell lines might indicate a selection for more stable tumours with higher proliferative

  13. Regulation of glucose homeostasis by KSR1 and MARK2.

    Directory of Open Access Journals (Sweden)

    Paula J Klutho

    Full Text Available Protein scaffolds control the intensity and duration of signaling and dictate the specificity of signaling through MAP kinase pathways. KSR1 is a molecular scaffold of the Raf/MEK/ERK MAP kinase cascade that regulates the intensity and duration of ERK activation. Relative to wild-type mice, ksr1⁻/⁻ mice are modestly glucose intolerant, but show a normal response to exogenous insulin. However, ksr1⁻/⁻ mice also demonstrate a three-fold increase in serum insulin levels in response to a glucose challenge, suggesting a role for KSR1 in insulin secretion. The kinase MARK2 is closely related to C-TAK1, a known regulator of KSR1. Mice lacking MARK2 have an increased rate of glucose disposal in response to exogenous insulin, increased glucose tolerance, and are resistant to diet-induced obesity. mark2⁻/⁻ksr1⁻/⁻ (DKO mice were compared to wild type, mark2⁻/⁻, and ksr1⁻/⁻ mice for their ability to regulate glucose homeostasis. Here we show that disruption of KSR1 in mark2⁻/⁻ mice reverses the increased sensitivity to exogenous insulin resulting from MARK2 deletion. DKO mice respond to exogenous insulin similarly to wild type and ksr1⁻/⁻ mice. These data suggest a model whereby MARK2 negatively regulates insulin sensitivity in peripheral tissue through inhibition of KSR1. Consistent with this model, we found that MARK2 binds and phosphorylates KSR1 on Ser392. Phosphorylation of Ser392 is a critical regulator of KSR1 stability, subcellular location, and ERK activation. These data reveal an unexpected role for the molecular scaffold KSR1 in insulin-regulated glucose metabolism.

  14. Calcium homeostasis modulator (CALHM) ion channels.

    Science.gov (United States)

    Ma, Zhongming; Tanis, Jessica E; Taruno, Akiyuki; Foskett, J Kevin

    2016-03-01

    Calcium homeostasis modulator 1 (CALHM1), formerly known as FAM26C, was recently identified as a physiologically important plasma membrane ion channel. CALHM1 and its Caenorhabditis elegans homolog, CLHM-1, are regulated by membrane voltage and extracellular Ca(2+) concentration ([Ca(2+)]o). In the presence of physiological [Ca(2+)]o (∼1.5 mM), CALHM1 and CLHM-1 are closed at resting membrane potentials but can be opened by strong depolarizations. Reducing [Ca(2+)]o increases channel open probability, enabling channel activation at negative membrane potentials. Together, voltage and Ca(2+) o allosterically regulate CALHM channel gating. Through convergent evolution, CALHM has structural features that are reminiscent of connexins and pannexins/innexins/LRRC8 (volume-regulated anion channel (VRAC)) gene families, including four transmembrane helices with cytoplasmic amino and carboxyl termini. A CALHM1 channel is a hexamer of CALHM1 monomers with a functional pore diameter of ∼14 Å. CALHM channels discriminate poorly among cations and anions, with signaling molecules including Ca(2+) and ATP able to permeate through its pore. CALHM1 is expressed in the brain where it plays an important role in cortical neuron excitability induced by low [Ca(2+)]o and in type II taste bud cells in the tongue that sense sweet, bitter, and umami tastes where it functions as an essential ATP release channel to mediate nonsynaptic neurotransmitter release. CLHM-1 is expressed in C. elegans sensory neurons and body wall muscles, and its genetic deletion causes locomotion defects. Thus, CALHM is a voltage- and Ca(2+) o-gated ion channel, permeable to large cations and anions, that plays important roles in physiology.

  15. Maintaining homeostasis by decision-making.

    Directory of Open Access Journals (Sweden)

    Christoph W Korn

    2015-05-01

    Full Text Available Living organisms need to maintain energetic homeostasis. For many species, this implies taking actions with delayed consequences. For example, humans may have to decide between foraging for high-calorie but hard-to-get, and low-calorie but easy-to-get food, under threat of starvation. Homeostatic principles prescribe decisions that maximize the probability of sustaining appropriate energy levels across the entire foraging trajectory. Here, predictions from biological principles contrast with predictions from economic decision-making models based on maximizing the utility of the endpoint outcome of a choice. To empirically arbitrate between the predictions of biological and economic models for individual human decision-making, we devised a virtual foraging task in which players chose repeatedly between two foraging environments, lost energy by the passage of time, and gained energy probabilistically according to the statistics of the environment they chose. Reaching zero energy was framed as starvation. We used the mathematics of random walks to derive endpoint outcome distributions of the choices. This also furnished equivalent lotteries, presented in a purely economic, casino-like frame, in which starvation corresponded to winning nothing. Bayesian model comparison showed that--in both the foraging and the casino frames--participants' choices depended jointly on the probability of starvation and the expected endpoint value of the outcome, but could not be explained by economic models based on combinations of statistical moments or on rank-dependent utility. This implies that under precisely defined constraints biological principles are better suited to explain human decision-making than economic models based on endpoint utility maximization.

  16. Collection of apoplastic fluids from Arabidopsis thaliana leaves

    DEFF Research Database (Denmark)

    Madsen, Svend Roesen; Nour-Eldin, Hussam Hassan; Halkier, Barbara Ann

    2016-01-01

    The leaf apoplast comprises the extracellular continuum outside cell membranes. A broad range of processes take place in the apoplast, including intercellular signaling, metabolite transport, and plant-microbe interactions. To study these processes, it is essential to analyze the metabolite conte...... in apoplastic fluids. Due to the fragile nature of leaf tissues, it is a challenge to obtain apoplastic fluids from leaves. Here, methods to collect apoplastic washing fluid and guttation fluid from Arabidopsis thaliana leaves are described....

  17. Dynamic thiol/disulfide homeostasis and effects of smoking on homeostasis parameters in patients with psoriasis.

    Science.gov (United States)

    Emre, Selma; Demirseren, Duriye Deniz; Alisik, Murat; Aktas, Akin; Neselioglu, Salim; Erel, Ozcan

    2017-12-01

    Recently, increased reactive oxygen species (ROS), reduced antioxidant capacity, and oxidative stress have been suggested in the pathogenesis of psoriasis. The aim of this study to evaluate the thiol/disulfide homeostasis in patients with psoriasis. Ninety patients with psoriasis who did not receive any systemic treatment in the last six  months were included in the study. Seventy-six age and gender-matched healthy volunteers served as control group. Thiol/disulfide homeostasis was measured in venous blood samples obtained from patient and control groups. Native thiol and total thiol levels were significantly higher in patients than in control group. When thiol/disulfide hemostasis parameters and clinical and demographic characteristics were compared, a negative correlation was detected between native thiol and total thiol with age. The levels of total thiols had also negative correlation with PASI and duration of the disease. When we divided the patients into smokers and non-smokers, native thiol and total thiol levels were significantly higher in smokers than in controls, whereas native thiol and total thiol levels were comparable in non-smoker patients and controls. Thiol/disulfide balance shifted towards thiol in psoriasis patients and this may be responsible for increased keratinocyte proliferation in the pathogenesis of psoriasis.

  18. Calcium homeostasis during pregnancy and lactation: role of vitamin ...

    African Journals Online (AJOL)

    Arun Kumar Agnihotri

    skinned but also even Caucasian women tend to go into vitamin D deficiency during ... homeostasis in this phase of life is still controversial. Studies are .... calcium balance in lactating women. .... work on vitamin D. In general these authors.

  19. Investigation of manganese homeostasis in dogs with anaemia and ...

    African Journals Online (AJOL)

    Investigation of manganese homeostasis in dogs with anaemia and chronic enteropathy. Marisa da Fonseca Ferreira, Arielle Elizabeth Ann Aylor, Richard John Mellanby, Susan Mary Campbell, Adam George Gow ...

  20. COPT6 is a plasma membrane transporter that functions in copper homeostasis in Arabidopsis and is a novel target of SQUAMOSA promoter binding protein-like 7

    Science.gov (United States)

    Among the mechanisms controlling copper homeostasis in plants is the regulation of its uptake and tissue partitioning. Here we characterized a newly identified member of the conserved CTR/COPT family of copper transporters in Arabidopsis thaliana, COPT6. We showed that COPT6 resides at the plasma me...

  1. Redox homeostasis: The Golden Mean of healthy living.

    Science.gov (United States)

    Ursini, Fulvio; Maiorino, Matilde; Forman, Henry Jay

    2016-08-01

    The notion that electrophiles serve as messengers in cell signaling is now widely accepted. Nonetheless, major issues restrain acceptance of redox homeostasis and redox signaling as components of maintenance of a normal physiological steady state. The first is that redox signaling requires sudden switching on of oxidant production and bypassing of antioxidant mechanisms rather than a continuous process that, like other signaling mechanisms, can be smoothly turned up or down. The second is the misperception that reactions in redox signaling involve "reactive oxygen species" rather than reaction of specific electrophiles with specific protein thiolates. The third is that hormesis provides protection against oxidants by increasing cellular defense or repair mechanisms rather than by specifically addressing the offset of redox homeostasis. Instead, we propose that both oxidant and antioxidant signaling are main features of redox homeostasis. As the redox shift is rapidly reversed by feedback reactions, homeostasis is maintained by continuous signaling for production and elimination of electrophiles and nucleophiles. Redox homeostasis, which is the maintenance of nucleophilic tone, accounts for a healthy physiological steady state. Electrophiles and nucleophiles are not intrinsically harmful or protective, and redox homeostasis is an essential feature of both the response to challenges and subsequent feedback. While the balance between oxidants and nucleophiles is preserved in redox homeostasis, oxidative stress provokes the establishment of a new radically altered redox steady state. The popular belief that scavenging free radicals by antioxidants has a beneficial effect is wishful thinking. We propose, instead, that continuous feedback preserves nucleophilic tone and that this is supported by redox active nutritional phytochemicals. These nonessential compounds, by activating Nrf2, mimic the effect of endogenously produced electrophiles (parahormesis). In summary

  2. Association of SSTR2 Polymorphisms and Glucose Homeostasis Phenotypes

    OpenAIRE

    Sutton, Beth S.; Palmer, Nicholette D.; Langefeld, Carl D.; Xue, Bingzhong; Proctor, Alexandria; Ziegler, Julie T.; Haffner, Steven M.; Norris, Jill M.; Bowden, Donald W.

    2009-01-01

    OBJECTIVE This study evaluated the influence of somatostatin receptor type 2 (SSTR2) polymorphisms on measures of glucose homeostasis in the Insulin Resistance Atherosclerosis Family Study (IRASFS). SSTR2 is a G-protein?coupled receptor that, in response to somatostatin, mediates inhibition of insulin, glucagon, and growth hormone release and thus may affect glucose homeostasis. RESEARCH DESIGN AND METHODS Ten single nucleotide polymorphisms (SNPs) spanning the gene were chosen using a SNP de...

  3. Redox homeostasis: The Golden Mean of healthy living

    Directory of Open Access Journals (Sweden)

    Fulvio Ursini

    2016-08-01

    Full Text Available The notion that electrophiles serve as messengers in cell signaling is now widely accepted. Nonetheless, major issues restrain acceptance of redox homeostasis and redox signaling as components of maintenance of a normal physiological steady state. The first is that redox signaling requires sudden switching on of oxidant production and bypassing of antioxidant mechanisms rather than a continuous process that, like other signaling mechanisms, can be smoothly turned up or down. The second is the misperception that reactions in redox signaling involve “reactive oxygen species” rather than reaction of specific electrophiles with specific protein thiolates. The third is that hormesis provides protection against oxidants by increasing cellular defense or repair mechanisms rather than by specifically addressing the offset of redox homeostasis. Instead, we propose that both oxidant and antioxidant signaling are main features of redox homeostasis. As the redox shift is rapidly reversed by feedback reactions, homeostasis is maintained by continuous signaling for production and elimination of electrophiles and nucleophiles. Redox homeostasis, which is the maintenance of nucleophilic tone, accounts for a healthy physiological steady state. Electrophiles and nucleophiles are not intrinsically harmful or protective, and redox homeostasis is an essential feature of both the response to challenges and subsequent feedback. While the balance between oxidants and nucleophiles is preserved in redox homeostasis, oxidative stress provokes the establishment of a new radically altered redox steady state. The popular belief that scavenging free radicals by antioxidants has a beneficial effect is wishful thinking. We propose, instead, that continuous feedback preserves nucleophilic tone and that this is supported by redox active nutritional phytochemicals. These nonessential compounds, by activating Nrf2, mimic the effect of endogenously produced electrophiles

  4. Cellular Links between Neuronal Activity and Energy Homeostasis

    OpenAIRE

    Shetty, Pavan K.; Galeffi, Francesca; Turner, Dennis A.

    2012-01-01

    Neuronal activity, astrocytic responses to this activity, and energy homeostasis are linked together during baseline, conscious conditions, and short-term rapid activation (as occurs with sensory or motor function). Nervous system energy homeostasis also varies during long-term physiological conditions (i.e., development and aging) and with adaptation to pathological conditions, such as ischemia or low glucose. Neuronal activation requires increased metabolism (i.e., ATP generation) which lea...

  5. Synovial fluid analysis

    Science.gov (United States)

    Joint fluid analysis; Joint fluid aspiration ... El-Gabalawy HS. Synovial fluid analysis, synovial biopsy, and synovial pathology. In: Firestein GS, Budd RC, Gabriel SE, McInnes IB, O'Dell JR, eds. Kelly's Textbook of ...

  6. Innate lymphoid cells: models of plasticity for immune homeostasis and rapid responsiveness in protection.

    Science.gov (United States)

    Almeida, F F; Belz, G T

    2016-09-01

    Innate lymphoid cells (ILCs) have stormed onto the immune landscape as "newly discovered" cell types. These tissue-resident sentinels are enriched at mucosal surfaces and engage in complex cross talk with elements of the adaptive immune system and microenvironment to orchestrate immune homeostasis. Many parallels exist between innate cells and T cells leading to the initial partitioning of ILCs into rather rigid subsets that reflect their "adaptive-like" effector cytokines profiles. ILCs themselves, however, have unique attributes that are only just beginning to be elucidated. These features result in complementarity with, rather than complete duplication of, functions of the adaptive immune system. Key transcription factors determine the pathway of differentiation of progenitors towards an ILC1, ILC2, or ILC3 subset. Once formed, flexibility in the responses of these subsets to stimuli unexpectedly allows transdifferentation between the different subsets and the acquisition of altered phenotypes and function. This provides a mechanism for rapid innate immune responsiveness. Here, we discuss the models of differentiation for maintenance and activation of tissue-resident ILCs in maintaining immune homeostasis and protection.

  7. The connective tissue phenotype of glaucomatous cupping in the monkey eye - Clinical and research implications.

    Science.gov (United States)

    Yang, Hongli; Reynaud, Juan; Lockwood, Howard; Williams, Galen; Hardin, Christy; Reyes, Luke; Stowell, Cheri; Gardiner, Stuart K; Burgoyne, Claude F

    2017-07-01

    In a series of previous publications we have proposed a framework for conceptualizing the optic nerve head (ONH) as a biomechanical structure. That framework proposes important roles for intraocular pressure (IOP), IOP-related stress and strain, cerebrospinal fluid pressure (CSFp), systemic and ocular determinants of blood flow, inflammation, auto-immunity, genetics, and other non-IOP related risk factors in the physiology of ONH aging and the pathophysiology of glaucomatous damage to the ONH. The present report summarizes 20 years of technique development and study results pertinent to the characterization of ONH connective tissue deformation and remodeling in the unilateral monkey experimental glaucoma (EG) model. In it we propose that the defining pathophysiology of a glaucomatous optic neuropathy involves deformation, remodeling, and mechanical failure of the ONH connective tissues. We view this as an active process, driven by astrocyte, microglial, fibroblast and oligodendrocyte mechanobiology. These cells, and the connective tissue phenomena they propagate, have primary and secondary effects on retinal ganglion cell (RGC) axon, laminar beam and retrolaminar capillary homeostasis that may initially be "protective" but eventually lead to RGC axonal injury, repair and/or cell death. The primary goal of this report is to summarize our 3D histomorphometric and optical coherence tomography (OCT)-based evidence for the early onset and progression of ONH connective tissue deformation and remodeling in monkey EG. A second goal is to explain the importance of including ONH connective tissue processes in characterizing the phenotype of a glaucomatous optic neuropathy in all species. A third goal is to summarize our current efforts to move from ONH morphology to the cell biology of connective tissue remodeling and axonal insult early in the disease. A final goal is to facilitate the translation of our findings and ideas into neuroprotective interventions that target

  8. Heterocellular cadherin connections: coordinating adhesive cues in homeostasis and cancer [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Silvia Fontenete

    2017-06-01

    Full Text Available This short insight covers some of the recent topics relevant to the field of cadherin–catenin adhesion in mediating connections between different cell types, so-called heterotypic or heterocellular connections, in both homeostasis and cancer. These scientific discoveries are increasing our understanding of how multiple cells residing in complex tissues can be instructed by cadherin adhesion receptors to regulate tissue architecture and function and how these cadherin-mediated heterocellular connections spur tumor growth and the acquisition of malignant characteristics in tumor cells. Overall, the findings that have emerged over the past few years are elucidating the complexity of the functional roles of the cadherin–catenin complexes. Future exciting research lies ahead in order to understand the physical basis of these heterotypic interactions and their influence on the behavior of heterogeneous cellular populations as well as their roles in mediating phenotypic and genetic changes as cells evolve through complex environments during morphogenesis and cancer.

  9. Self lubricating fluid bearings

    International Nuclear Information System (INIS)

    Kapich, D.D.

    1980-01-01

    The invention concerns self lubricating fluid bearings, which are used in a shaft sealed system extending two regions. These regions contain fluids, which have to be isolated. A first seal is fluid tight for the first region between the carter shaft and the shaft. The second seal is fluid tight between the carter and the shaft, it communicates with the second region. The first fluid region is the environment surrounding the shaft carter. The second fluid region is a part of a nuclear reactor which contains the cooling fluid. The shaft is conceived to drive a reactor circulating and cooling fluid [fr

  10. Modern fluid dynamics

    CERN Document Server

    Kleinstreuer, Clement

    2018-01-01

    Modern Fluid Dynamics, Second Edition provides up-to-date coverage of intermediate and advanced fluids topics. The text emphasizes fundamentals and applications, supported by worked examples and case studies. Scale analysis, non-Newtonian fluid flow, surface coating, convection heat transfer, lubrication, fluid-particle dynamics, microfluidics, entropy generation, and fluid-structure interactions are among the topics covered. Part A presents fluids principles, and prepares readers for the applications of fluid dynamics covered in Part B, which includes computer simulations and project writing. A review of the engineering math needed for fluid dynamics is included in an appendix.

  11. Tissue engineering

    CERN Document Server

    Fisher, John P; Bronzino, Joseph D

    2007-01-01

    Increasingly viewed as the future of medicine, the field of tissue engineering is still in its infancy. As evidenced in both the scientific and popular press, there exists considerable excitement surrounding the strategy of regenerative medicine. To achieve its highest potential, a series of technological advances must be made. Putting the numerous breakthroughs made in this field into a broad context, Tissue Engineering disseminates current thinking on the development of engineered tissues. Divided into three sections, the book covers the fundamentals of tissue engineering, enabling technologies, and tissue engineering applications. It examines the properties of stem cells, primary cells, growth factors, and extracellular matrix as well as their impact on the development of tissue engineered devices. Contributions focus on those strategies typically incorporated into tissue engineered devices or utilized in their development, including scaffolds, nanocomposites, bioreactors, drug delivery systems, and gene t...

  12. Cellular copper homeostasis: current concepts on its interplay with glutathione homeostasis and its implication in physiology and human diseases.

    Science.gov (United States)

    Bhattacharjee, Ashima; Chakraborty, Kaustav; Shukla, Aditya

    2017-10-18

    Copper is a trace element essential for almost all living organisms. But the level of intracellular copper needs to be tightly regulated. Dysregulation of cellular copper homeostasis leading to various diseases demonstrates the importance of this tight regulation. Copper homeostasis is regulated not only within the cell but also within individual intracellular compartments. Inactivation of export machinery results in excess copper being redistributed into various intracellular organelles. Recent evidence suggests the involvement of glutathione in playing an important role in regulating copper entry and intracellular copper homeostasis. Therefore interplay of both homeostases might play an important role within the cell. Similar to copper, glutathione balance is tightly regulated within individual cellular compartments. This review explores the existing literature on the role of glutathione in regulating cellular copper homeostasis. On the one hand, interplay of glutathione and copper homeostasis performs an important role in normal physiological processes, for example neuronal differentiation. On the other hand, perturbation of the interplay might play a key role in the pathogenesis of copper homeostasis disorders.

  13. Milrinone and homeostasis to treat cerebral vasospasm associated with subarachnoid hemorrhage: the Montreal Neurological Hospital protocol.

    Science.gov (United States)

    Lannes, Marcelo; Teitelbaum, Jeanne; del Pilar Cortés, Maria; Cardoso, Mauro; Angle, Mark

    2012-06-01

    For the treatment of cerebral vasospasm, current therapies have focused on increasing blood flow through blood pressure augmentation, hypervolemia, the use of intra-arterial vasodilators, and angioplasty of proximal cerebral vessels. Through a large case series, we present our experience of treating cerebral vasospasm with a protocol based on maintenance of homeostasis (correction of electrolyte and glucose disturbances, prevention and treatment of hyperthermia, replacement of fluid losses), and the use of intravenous milrinone to improve microcirculation (the Montreal Neurological Hospital protocol). Our objective is to describe the use milrinone in our practice and the neurological outcomes associated with this approach. Large case series based on the review of all patients diagnosed with delayed ischemic neurologic deficits after aneurysmal subarachnoid hemorrhage between April 1999 and April 2006. 88 patients were followed for a mean time of 44.6 months. An intravenous milrinone infusion was used for a mean of 9.8 days without any significant side effects. No medical complications associated with this protocol were observed. There were five deaths; of the surviving patients, 48.9 % were able to go back to their previous baseline and 75 % had a good functional outcome (modified Rankin scale ≤ 2). A protocol using intravenous milrinone, and the maintenance of homeostasis is simple to use and requires less intensive monitoring and resources than the standard triple H therapy. Despite the obvious limitations of this study's design, we believe that it would be now appropriate to proceed with formal prospective studies of this protocol.

  14. Mechanoregulation of Wound Healing and Skin Homeostasis

    Directory of Open Access Journals (Sweden)

    Joanna Rosińczuk

    2016-01-01

    Full Text Available Basic and clinical studies on mechanobiology of cells and tissues point to the importance of mechanical forces in the process of skin regeneration and wound healing. These studies result in the development of new therapies that use mechanical force which supports effective healing. A better understanding of mechanobiology will make it possible to develop biomaterials with appropriate physical and chemical properties used to treat poorly healing wounds. In addition, it will make it possible to design devices precisely controlling wound mechanics and to individualize a therapy depending on the type, size, and anatomical location of the wound in specific patients, which will increase the clinical efficiency of the therapy. Linking mechanobiology with the science of biomaterials and nanotechnology will enable in the near future precise interference in abnormal cell signaling responsible for the proliferation, differentiation, cell death, and restoration of the biological balance. The objective of this study is to point to the importance of mechanobiology in regeneration of skin damage and wound healing. The study describes the influence of rigidity of extracellular matrix and special restrictions on cell physiology. The study also defines how and what mechanical changes influence tissue regeneration and wound healing. The influence of mechanical signals in the process of proliferation, differentiation, and skin regeneration is tagged in the study.

  15. Tissue-specific expression of transgenic secreted ACE in vasculature can restore normal kidney functions, but not blood pressure, of Ace-/- mice.

    Directory of Open Access Journals (Sweden)

    Saurabh Chattopadhyay

    Full Text Available Angiotensin-converting enzyme (ACE regulates normal blood pressure and fluid homeostasis through its action in the renin-angiotensin-system (RAS. Ace-/- mice are smaller in size, have low blood pressure and defective kidney structure and functions. All of these defects are cured by transgenic expression of somatic ACE (sACE in vascular endothelial cells of Ace-/- mice. sACE is expressed on the surface of vascular endothelial cells and undergoes a natural cleavage secretion process to generate a soluble form in the body fluids. Both the tissue-bound and the soluble forms of ACE are enzymatically active, and generate the vasoactive octapeptide Angiotensin II (Ang II with equal efficiency. To assess the relative physiological roles of the secreted and the cell-bound forms of ACE, we expressed, in the vascular endothelial cells of Ace-/- mice, the ectodomain of sACE, which corresponded to only the secreted form of ACE. Our results demonstrated that the secreted form of ACE could normalize kidney functions and RAS integrity, growth and development of Ace-/- mice, but not their blood pressure. This study clearly demonstrates that the secreted form of ACE cannot replace the tissue-bound ACE for maintaining normal blood pressure; a suitable balance between the tissue-bound and the soluble forms of ACE is essential for maintaining all physiological functions of ACE.

  16. Tissue-specific expression of transgenic secreted ACE in vasculature can restore normal kidney functions, but not blood pressure, of Ace-/- mice.

    Science.gov (United States)

    Chattopadhyay, Saurabh; Kessler, Sean P; Colucci, Juliana Almada; Yamashita, Michifumi; Senanayake, Preenie deS; Sen, Ganes C

    2014-01-01

    Angiotensin-converting enzyme (ACE) regulates normal blood pressure and fluid homeostasis through its action in the renin-angiotensin-system (RAS). Ace-/- mice are smaller in size, have low blood pressure and defective kidney structure and functions. All of these defects are cured by transgenic expression of somatic ACE (sACE) in vascular endothelial cells of Ace-/- mice. sACE is expressed on the surface of vascular endothelial cells and undergoes a natural cleavage secretion process to generate a soluble form in the body fluids. Both the tissue-bound and the soluble forms of ACE are enzymatically active, and generate the vasoactive octapeptide Angiotensin II (Ang II) with equal efficiency. To assess the relative physiological roles of the secreted and the cell-bound forms of ACE, we expressed, in the vascular endothelial cells of Ace-/- mice, the ectodomain of sACE, which corresponded to only the secreted form of ACE. Our results demonstrated that the secreted form of ACE could normalize kidney functions and RAS integrity, growth and development of Ace-/- mice, but not their blood pressure. This study clearly demonstrates that the secreted form of ACE cannot replace the tissue-bound ACE for maintaining normal blood pressure; a suitable balance between the tissue-bound and the soluble forms of ACE is essential for maintaining all physiological functions of ACE.

  17. Fluid mechanics in fluids at rest.

    Science.gov (United States)

    Brenner, Howard

    2012-07-01

    Using readily available experimental thermophoretic particle-velocity data it is shown, contrary to current teachings, that for the case of compressible flows independent dye- and particle-tracer velocity measurements of the local fluid velocity at a point in a flowing fluid do not generally result in the same fluid velocity measure. Rather, tracer-velocity equality holds only for incompressible flows. For compressible fluids, each type of tracer is shown to monitor a fundamentally different fluid velocity, with (i) a dye (or any other such molecular-tagging scheme) measuring the fluid's mass velocity v appearing in the continuity equation and (ii) a small, physicochemically and thermally inert, macroscopic (i.e., non-Brownian), solid particle measuring the fluid's volume velocity v(v). The term "compressibility" as used here includes not only pressure effects on density, but also temperature effects thereon. (For example, owing to a liquid's generally nonzero isobaric coefficient of thermal expansion, nonisothermal liquid flows are to be regarded as compressible despite the general perception of liquids as being incompressible.) Recognition of the fact that two independent fluid velocities, mass- and volume-based, are formally required to model continuum fluid behavior impacts on the foundations of contemporary (monovelocity) fluid mechanics. Included therein are the Navier-Stokes-Fourier equations, which are now seen to apply only to incompressible fluids (a fact well-known, empirically, to experimental gas kineticists). The findings of a difference in tracer velocities heralds the introduction into fluid mechanics of a general bipartite theory of fluid mechanics, bivelocity hydrodynamics [Brenner, Int. J. Eng. Sci. 54, 67 (2012)], differing from conventional hydrodynamics in situations entailing compressible flows and reducing to conventional hydrodynamics when the flow is incompressible, while being applicable to both liquids and gases.

  18. Reduced abrasion drilling fluid

    NARCIS (Netherlands)

    2010-01-01

    A reduced abrasion drilling fluid system and method of drilling a borehole by circulating the reduced abrasion drilling fluid through the borehole is disclosed. The reduced abrasion drilling fluid comprises a drilling fluid, a first additive and a weighting agent, wherein the weighting agent has a

  19. Reduced abrasion drilling fluid

    NARCIS (Netherlands)

    2012-01-01

    A reduced abrasion drilling fluid system and method of drilling a borehole by circulating the reduced abrasion drilling fluid through the borehole is disclosed. The reduced abrasion drilling fluid comprises a drilling fluid, a first additive and a weighting agent, wherein the weighting agent has a

  20. Process fluid cooling system

    International Nuclear Information System (INIS)

    Farquhar, N.G.; Schwab, J.A.

    1977-01-01

    A system of heat exchangers is disclosed for cooling process fluids. The system is particularly applicable to cooling steam generator blowdown fluid in a nuclear plant prior to chemical purification of the fluid in which it minimizes the potential of boiling of the plant cooling water which cools the blowdown fluid

  1. Quantification of Temozolomide in Nonhuman Primate Fluids by Isocratic Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry to Study Brain Tissue Penetration Following Intranasal or Intravenous Delivery

    Directory of Open Access Journals (Sweden)

    Cody J. Peer

    2016-02-01

    Full Text Available A sensitive and selective ultra-high performance liquid chromatography-tandem mass spectrometric method was developed for the quantification of temozolomide (TMZ in nonhuman primate (NHP plasma, cerebrospinal fluid (CSF, and brain extracellular fluid (ECF following microdialysis. Ethyl acetate was used to extract the plasma and CSF samples, using theophylline as the internal standard (IS. ECF samples were diluted with acetonitrile prior to analysis. TMZ was separated on a Waters UPLC® BEH C18 column with an isocratic mobile phase of ammonium acetate (10 mM-0.1% formic acid/acetonitrile (30:70, v/v in a positive-ion multiple reaction monitoring mode (m/z 195.5→137.6 for TMZ; m/z 181.5→124.2 for IS. The retention time of TMZ and theophylline was 0.45 min with a total run time of 2.5 min. The method was validated over the range from 5–2000 ng/mL in NHP plasma, CSF, and ECF with respect to linearity, accuracy, precision, selectivity, and stability. This method was successfully applied toward the measurement of pharmacokinetic samples following various routes of drug administration.

  2. Tissue types (image)

    Science.gov (United States)

    ... are 4 basic types of tissue: connective tissue, epithelial tissue, muscle tissue, and nervous tissue. Connective tissue supports ... binds them together (bone, blood, and lymph tissues). Epithelial tissue provides a covering (skin, the linings of the ...

  3. Roles of the Gut in Glucose Homeostasis

    DEFF Research Database (Denmark)

    Holst, Jens Juul; Gribble, Fiona; Horowitz, Michael

    2016-01-01

    The gastrointestinal tract plays a major role in the regulation of postprandial glucose profiles. Gastric emptying is a highly regulated process, which normally ensures a limited and fairly constant delivery of nutrients and glucose to the proximal gut. The subsequent digestion and absorption...... of nutrients are associated with the release of a set of hormones that feeds back to regulate subsequent gastric emptying and regulates the release of insulin, resulting in downregulation of hepatic glucose production and deposition of glucose in insulin-sensitive tissues. These remarkable mechanisms normally...... keep postprandial glucose excursions low, regardless of the load of glucose ingested. When the regulation of emptying is perturbed (e.g., pyloroplasty, gastric sleeve or gastric bypass operation), postprandial glycemia may reach high levels, sometimes followed by profound hypoglycemia. This article...

  4. Space medicine considerations: Skeletal and calcium homeostasis

    Science.gov (United States)

    Schneider, Victor B.

    1989-01-01

    Based on the information obtained from space missions, particularly Skylab and the longer Salyut missions, it is clear that bone and mineral metabolism is substantially altered during space flight. Calcium balance becomes increasingly more negative throughout the flight, and the bone mineral content of the os calcis declines. The major health hazards associated with skeletal changes include the signs and symptoms of hypercalcemia with rapid bone turnover, the risk of kidney stones because of hypercalciuria, the lengthy recovery of lost bone mass after flight, the possibility of irreversible bone loss (particularly the trabecular bone), the possible effects of metastated calcification in the soft tissues, and the possible increase in fracture potential. For these reasons, major efforts need to be directed toward elucidating the fundamental mechanisms by which bone is lost in space and developing more effective countermeasures to prevent both short-term and long-term complications.

  5. Respiratory Adaptations in Acid-base Disturbances: Role of Cerebral Fluids,

    Science.gov (United States)

    1979-06-19

    The respiratory and metabolic components of acid-base homeostasis are defined. A quantitative empirical description of the (incomplete) mutual...literature. Respiratory adaptations in steady acid-base disturbances of metabolic origin (hyperventilation with hypocapnia in primary metabolic acidosis, and...hypoventilation with hypercapnia in metabolic alkalosis ) are analyzed as a function of the acidity of the cerebral fluids (cerebrospinal and cerebral interstitial fluid). (Author)

  6. Effects of potassium or potassium/magnesium supplementation on potassium content of body tissues and fluids in furosemide-treated rats on magnesium-deficient or magnesium-sufficient diet

    Energy Technology Data Exchange (ETDEWEB)

    Coram, W.M.; Kapeghian, J.C.; Plocinski, A.F.; Toledo, L.M.; Douglas, F.L.; Weiss, G.B. (Univ. of New Jersey, Newmark (USA))

    1990-01-01

    Persistent Mg{sup 2+} deficiency may interfere with restoration of normal tissue K{sup +} levels. This study examined: (a) the effects of chronic furosemide treatment of K{sup +} of sartorius, aorta and ventricle of rats fed Mg{sup 2+}-deficient or Mg{sup 2+} sufficient diet and deionized water; (b) whether normal tissue K{sup +} is restored by oral K{sup +} or K{sup +}/Mg{sup 2+} supplementation with continued furosemide therapy. Levels of Mg{sup 2+} were also measured. Furosemide decreased K{sup +} in sartorius, aorta and ventricle by 5.5, 4.3 and 19.9 {mu}Eq/gm, respectively, in rats fed 100 ppm Mg{sup 2+} diet. Furosemide did not alter K{sup +} levels in rats fed 400 ppm Mg{sup 2+} diet. K{sup +} supplementation restored K{sup +} to normal in sartorius but the addition of Mg{sup 2+} supplementation was necessary to restore K+ levels to normal in ventricle and aorta. These data indicate that furosemide can decrease tissue K{sup +} in rats on a Mg{sup 2+}- deficient diet. This decrease can be reversed during diuretic administration by K{sup +} supplementation in sartorius, or K{sup +} plus Mg{sup 2+} supplementation in ventricle and aorta.

  7. The E2F2 transcription factor sustains hepatic glycerophospholipid homeostasis in mice.

    Directory of Open Access Journals (Sweden)

    Eduardo N Maldonado

    Full Text Available Increasing evidence links metabolic signals to cell proliferation, but the molecular wiring that connects the two core machineries remains largely unknown. E2Fs are master regulators of cellular proliferation. We have recently shown that E2F2 activity facilitates the completion of liver regeneration after partial hepatectomy (PH by regulating the expression of genes required for S-phase entry. Our study also revealed that E2F2 determines the duration of hepatectomy-induced hepatic steatosis. A transcriptomic analysis of normal adult liver identified "lipid metabolism regulation" as a major E2F2 functional target, suggesting that E2F2 has a role in lipid homeostasis. Here we use wild-type (E2F2+/+ and E2F2 deficient (E2F2-/- mice to investigate the in vivo role of E2F2 in the composition of liver lipids and fatty acids in two metabolically different contexts: quiescence and 48-h post-PH, when cellular proliferation and anabolic demands are maximal. We show that liver regeneration is accompanied by large triglyceride and protein increases without changes in total phospholipids both in E2F2+/+ and E2F2-/- mice. Remarkably, we found that the phenotype of quiescent liver tissue from E2F2-/- mice resembles the phenotype of proliferating E2F2+/+ liver tissue, characterized by a decreased phosphatidylcholine to phosphatidylethanolamine ratio and a reprogramming of genes involved in generation of choline and ethanolamine derivatives. The diversity of fatty acids in total lipid, triglycerides and phospholipids was essentially preserved on E2F2 loss both in proliferating and non-proliferating liver tissue, although notable exceptions in inflammation-related fatty acids of defined phospholipid classes were detected. Overall, our results indicate that E2F2 activity sustains the hepatic homeostasis of major membrane glycerolipid components while it is dispensable for storage glycerolipid balance.

  8. Perilipin 1 Mediates Lipid Metabolism Homeostasis and Inhibits Inflammatory Cytokine Synthesis in Bovine Adipocytes

    Directory of Open Access Journals (Sweden)

    Shiqi Zhang

    2018-03-01

    Full Text Available Dairy cows with ketosis displayed lipid metabolic disorder and high inflammatory levels. Adipose tissue is an active lipid metabolism and endocrine tissue and is closely related to lipid metabolism homeostasis and inflammation. Perilipin 1 (PLIN1, an adipocyte-specific lipid-coated protein, may be involved in the above physiological function. The aim of this study is to investigate the role of PLIN1 in lipid metabolism regulation and inflammatory factor synthesis in cow adipocytes. The results showed that PLIN1 overexpression upregulated the expression of fatty acid and triglyceride (TAG synthesis molecule sterol regulator element-binding protein-1c (SREBP-1c and its target genes, diacylglycerol acyltransferase (DGAT 1, and DGAT2, but inhibited the expression of lipolysis enzymes hormone-sensitive lipase (HSL and CGI-58 for adipose triglyceride lipase (ATGL, thus augmenting the fatty acids and TAG synthesis and inhibiting lipolysis. Importantly, PLIN1 overexpression inhibited the activation of the NF-κB inflammatory pathway and decreased the expression and content of tumor necrosis factor alpha (TNF-α, interleukin 1 beta (IL-1β, and interleukin 6 (IL-6 induced by lipopolysaccharide. Conversely, PLIN1 silencing inhibited TAG synthesis, promoted lipolysis, and overinduced the activation of the NF-κB inflammatory pathway in cow adipocytes. In ketotic cows, the expression of PLIN1 was markedly decreased, whereas lipid mobilization, NF-κB pathway, and downstream inflammatory cytokines were overinduced in adipose tissue. Taken together, these results indicate that PLIN1 can maintain lipid metabolism homeostasis and inhibit the NF-κB inflammatory pathway in adipocytes. However, low levels of PLIN1 reduced the inhibitory effect on fat mobilization, NF-κB pathway, and inflammatory cytokine synthesis in ketotic cows.

  9. Perilipin 1 Mediates Lipid Metabolism Homeostasis and Inhibits Inflammatory Cytokine Synthesis in Bovine Adipocytes.

    Science.gov (United States)

    Zhang, Shiqi; Liu, Guowen; Xu, Chuang; Liu, Lei; Zhang, Qiang; Xu, Qiushi; Jia, Hongdou; Li, Xiaobing; Li, Xinwei

    2018-01-01

    Dairy cows with ketosis displayed lipid metabolic disorder and high inflammatory levels. Adipose tissue is an active lipid metabolism and endocrine tissue and is closely related to lipid metabolism homeostasis and inflammation. Perilipin 1 (PLIN1), an adipocyte-specific lipid-coated protein, may be involved in the above physiological function. The aim of this study is to investigate the role of PLIN1 in lipid metabolism regulation and inflammatory factor synthesis in cow adipocytes. The results showed that PLIN1 overexpression upregulated the expression of fatty acid and triglyceride (TAG) synthesis molecule sterol regulator element-binding protein-1c (SREBP-1c) and its target genes, diacylglycerol acyltransferase (DGAT) 1, and DGAT2, but inhibited the expression of lipolysis enzymes hormone-sensitive lipase (HSL) and CGI-58 for adipose triglyceride lipase (ATGL), thus augmenting the fatty acids and TAG synthesis and inhibiting lipolysis. Importantly, PLIN1 overexpression inhibited the activation of the NF-κB inflammatory pathway and decreased the expression and content of tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β), and interleukin 6 (IL-6) induced by lipopolysaccharide. Conversely, PLIN1 silencing inhibited TAG synthesis, promoted lipolysis, and overinduced the activation of the NF-κB inflammatory pathway in cow adipocytes. In ketotic cows, the expression of PLIN1 was markedly decreased, whereas lipid mobilization, NF-κB pathway, and downstream inflammatory cytokines were overinduced in adipose tissue. Taken together, these results indicate that PLIN1 can maintain lipid metabolism homeostasis and inhibit the NF-κB inflammatory pathway in adipocytes. However, low levels of PLIN1 reduced the inhibitory effect on fat mobilization, NF-κB pathway, and inflammatory cytokine synthesis in ketotic cows.

  10. MicroRNAs at the epicenter of intestinal homeostasis.

    Science.gov (United States)

    Belcheva, Antoaneta

    2017-03-01

    Maintaining intestinal homeostasis is a key prerequisite for a healthy gut. Recent evidence points out that microRNAs (miRNAs) act at the epicenter of the signaling networks regulating this process. The fine balance in the interaction between gut microbiota, intestinal epithelial cells, and the host immune system is achieved by constant transmission of signals and their precise regulation. Gut microbes extensively communicate with the host immune system and modulate host gene expression. On the other hand, sensing of gut microbiota by the immune cells provides appropriate tolerant responses that facilitate the symbiotic relationships. While the role of many regulatory proteins, receptors and their signaling pathways in the regulation of the intestinal homeostasis is well documented, the involvement of non-coding RNA molecules in this process has just emerged. This review discusses the most recent knowledge about the contribution of miRNAs in the regulation of the intestinal homeostasis. © 2017 WILEY Periodicals, Inc.

  11. Breast Milk Hormones and Regulation of Glucose Homeostasis

    Directory of Open Access Journals (Sweden)

    Francesco Savino

    2011-01-01

    Full Text Available Growing evidence suggests that a complex relationship exists between the central nervous system and peripheral organs involved in energy homeostasis. It consists in the balance between food intake and energy expenditure and includes the regulation of nutrient levels in storage organs, as well as in blood, in particular blood glucose. Therefore, food intake, energy expenditure, and glucose homeostasis are strictly connected to each other. Several hormones, such as leptin, adiponectin, resistin, and ghrelin, are involved in this complex regulation. These hormones play a role in the regulation of glucose metabolism and are involved in the development of obesity, diabetes, and metabolic syndrome. Recently, their presence in breast milk has been detected, suggesting that they may be involved in the regulation of growth in early infancy and could influence the programming of energy balance later in life. This paper focuses on hormones present in breast milk and their role in glucose homeostasis.

  12. Phospholipid Homeostasis Regulates Dendrite Morphogenesis in Drosophila Sensory Neurons

    Directory of Open Access Journals (Sweden)

    Shan Meltzer

    2017-10-01

    Full Text Available Disruptions in lipid homeostasis have been observed in many neurodevelopmental disorders that are associated with dendrite morphogenesis defects. However, the molecular mechanisms of how lipid homeostasis affects dendrite morphogenesis are unclear. We find that easily shocked (eas, which encodes a kinase with a critical role in phospholipid phosphatidylethanolamine (PE synthesis, and two other enzymes in this synthesis pathway are required cell autonomously in sensory neurons for dendrite growth and stability. Furthermore, we show that the level of Sterol Regulatory Element-Binding Protein (SREBP activity is important for dendrite development. SREBP activity increases in eas mutants, and decreasing the level of SREBP and its transcriptional targets in eas mutants largely suppresses the dendrite growth defects. Furthermore, reducing Ca2+ influx in neurons of eas mutants ameliorates the dendrite morphogenesis defects. Our study uncovers a role for EAS kinase and reveals the in vivo function of phospholipid homeostasis in dendrite morphogenesis.

  13. Vitamin B6 vitamer concentrations in cerebrospinal fluid differ between preterm and term newborn infants

    NARCIS (Netherlands)

    Albersen, Monique; Groenendaal, Floris; van der Ham, Maria; de Koning, Tom J; Bosma, Marjolein; Visser, Wouter F; Visser, Gepke; de Sain-van der Velden, Monique G M; Verhoeven-Duif, Nanda M

    BACKGROUND AND OBJECTIVE: Vitamin B(6) plays a pivotal role in brain development and functioning. Differences in vitamin B(6) homeostasis between preterm and term newborn infants have been reported. The authors sought to investigate whether B(6) vitamers in cerebrospinal fluid (CSF) of preterm and

  14. Requirement of matrix metalloproteinase-1 for intestinal homeostasis in the adult Drosophila midgut

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Shin-Hae; Park, Joung-Sun [Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 609-735 (Korea, Republic of); Kim, Young-Shin [Research Institute of Genetic Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Chung, Hae-Young [Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Busan 609-735 (Korea, Republic of); Yoo, Mi-Ae, E-mail: mayoo@pusan.ac.kr [Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 609-735 (Korea, Republic of)

    2012-03-10

    Stem cells are tightly regulated by both intrinsic and extrinsic signals as well as the extracellular matrix (ECM) for tissue homeostasis and regenerative capacity. Matrix metalloproteinases (MMPs), proteolytic enzymes, modulate the turnover of numerous substrates, including cytokine precursors, growth factors, and ECM molecules. However, the roles of MMPs in the regulation of adult stem cells are poorly understood. In the present study, we utilize the Drosophila midgut, which is an excellent model system for studying stem cell biology, to show that Mmp1 is involved in the regulation of intestinal stem cells (ISCs). The results showed that Mmp1 is expressed in the adult midgut and that its expression increases with age and with exposure to oxidative stress. Mmp1 knockdown or Timp-overexpressing flies and flies heterozygous for a viable, hypomorphic Mmp1 allele increased ISC proliferation in the gut, as shown by staining with an anti-phospho-histone H3 antibody and BrdU incorporation assays. Reduced Mmp1 levels induced intestinal hyperplasia, and the Mmp1depletion-induced ISC proliferation was rescued by the suppression of the EGFR signaling pathway, suggesting that Mmp1 regulates ISC proliferation through the EGFR signaling pathway. Furthermore, adult gut-specific knockdown and whole-animal heterozygotes of Mmp1 increased additively sensitivity to paraquat-induced oxidative stress and shortened lifespan. Our data suggest that Drosophila Mmp1 is involved in the regulation of ISC proliferation for maintenance of gut homeostasis. -- Highlights: Black-Right-Pointing-Pointer Mmp1 is expressed in the adult midgut. Black-Right-Pointing-Pointer Mmp1 is involved in the regulation of ISC proliferation activity. Black-Right-Pointing-Pointer Mmp1-related ISC proliferation is associated with EGFR signaling. Black-Right-Pointing-Pointer Mmp1 in the gut is required for the intestinal homeostasis and longevity.

  15. Requirement of matrix metalloproteinase-1 for intestinal homeostasis in the adult Drosophila midgut

    International Nuclear Information System (INIS)

    Lee, Shin-Hae; Park, Joung-Sun; Kim, Young-Shin; Chung, Hae-Young; Yoo, Mi-Ae

    2012-01-01

    Stem cells are tightly regulated by both intrinsic and extrinsic signals as well as the extracellular matrix (ECM) for tissue homeostasis and regenerative capacity. Matrix metalloproteinases (MMPs), proteolytic enzymes, modulate the turnover of numerous substrates, including cytokine precursors, growth factors, and ECM molecules. However, the roles of MMPs in the regulation of adult stem cells are poorly understood. In the present study, we utilize the Drosophila midgut, which is an excellent model system for studying stem cell biology, to show that Mmp1 is involved in the regulation of intestinal stem cells (ISCs). The results showed that Mmp1 is expressed in the adult midgut and that its expression increases with age and with exposure to oxidative stress. Mmp1 knockdown or Timp-overexpressing flies and flies heterozygous for a viable, hypomorphic Mmp1 allele increased ISC proliferation in the gut, as shown by staining with an anti-phospho-histone H3 antibody and BrdU incorporation assays. Reduced Mmp1 levels induced intestinal hyperplasia, and the Mmp1depletion-induced ISC proliferation was rescued by the suppression of the EGFR signaling pathway, suggesting that Mmp1 regulates ISC proliferation through the EGFR signaling pathway. Furthermore, adult gut-specific knockdown and whole-animal heterozygotes of Mmp1 increased additively sensitivity to paraquat-induced oxidative stress and shortened lifespan. Our data suggest that Drosophila Mmp1 is involved in the regulation of ISC proliferation for maintenance of gut homeostasis. -- Highlights: ► Mmp1 is expressed in the adult midgut. ► Mmp1 is involved in the regulation of ISC proliferation activity. ► Mmp1-related ISC proliferation is associated with EGFR signaling. ► Mmp1 in the gut is required for the intestinal homeostasis and longevity.

  16. Phloretin Prevents High-Fat Diet-Induced Obesity and Improves Metabolic Homeostasis.

    Science.gov (United States)

    Alsanea, Sary; Gao, Mingming; Liu, Dexi

    2017-05-01

    Reactive oxygen species generated as a by-product in metabolism play a central role in the development of obesity and obesity-related metabolic complications. The objective of the current study is to explore the possibility to block obesity and improve metabolic homeostasis via phloretin, a natural antioxidant product from apple tree leaves and Manchurian apricot. Both preventive and therapeutic activities of phloretin were assessed using a high-fat diet-induced obesity mouse model. Phloretin was injected intraperitoneally twice weekly into regular and obese mice fed a high-fat diet. The effects of phloretin treatment on body weight and composition, fat content in the liver, glucose and lipid metabolism, and insulin resistance were monitored and compared to the control animals. Phloretin treatment significantly blocks high-fat diet-induced weight gain but did not induce weight loss in obese animals. Phloretin improved glucose homeostasis and insulin sensitivity and alleviated hepatic lipid accumulation. RT-PCR analysis showed that phloretin treatment suppresses expression of macrophage markers (F4/80 and Cd68) and pro-inflammatory genes (Mcp-1 and Ccr2) and enhances adiponectin gene expression in white adipose tissue. In addition, phloretin treatment elevated the expression of fatty acid oxidation genes such as carnitine palmitoyltransferase 1a and 1b (Cpt1a and Cpt1b) and reduced expression of monocyte chemoattractant protein-1 (Mcp-1), de novo lipogenesis transcriptional factor peroxisome proliferator-activated receptor-γ 2 (Pparγ2), and its target monoacylglycerol O-acyltransferase (Mgat-1) genes. These results provide direct evidence to support a possible use of phloretin for mitigation of obesity and maintenance of metabolic homeostasis.

  17. Nicotianamine synthase overexpression positively modulates iron homeostasis-related genes in high iron rice

    Directory of Open Access Journals (Sweden)

    Meng eWang

    2013-05-01

    Full Text Available Nearly one-third of the world population, mostly women and children, suffer from iron malnutrition and its consequences, such as anemia or impaired mental development. Biofortification of rice, which is a staple crop for nearly half of the world’s population, can significantly contribute in alleviating iron deficiency. NFP rice (transgenic rice expressing nicotianamine synthase, ferritin and phytase genes has a more than six-fold increase in iron content in polished rice grains, resulting from the synergistic action of nicotianamine synthase (NAS and ferritin transgenes. We investigated iron homeostasis in NFP plants by analyzing the expression of 28 endogenous rice genes known to be involved in the homeostasis of iron and other metals, in iron-deficient and iron-sufficient conditions. RNA was collected from different tissues (roots, flag leaves, grains and at three developmental stages during grain filling. NFP plants showed increased sensitivity to iron-deficiency conditions and changes in the expression of endogenous genes involved in nicotianamine (NA metabolism, in comparison to their non-transgenic siblings. Elevated transcript levels were detected in NFP plants for several iron transporters. In contrast, expression of OsYSL2, which encodes a member of Yellow Stripe-like protein family, and a transporter of the NA-Fe(II complex was reduced in NFP plants under low iron conditions, indicating that expression of OsYSL2 is regulated by the endogenous iron status. Expression of the transgenes did not significantly affect overall iron homeostasis in NFP plants, which establishes the engineered push-pull mechanism as a suitable strategy to increase rice endosperm iron content.

  18. Fluid mechanics of heart valves.

    Science.gov (United States)

    Yoganathan, Ajit P; He, Zhaoming; Casey Jones, S

    2004-01-01

    Valvular heart disease is a life-threatening disease that afflicts millions of people worldwide and leads to approximately 250,000 valve repairs and/or replacements each year. Malfunction of a native valve impairs its efficient fluid mechanic/hemodynamic performance. Artificial heart valves have been used since 1960 to replace diseased native valves and have saved millions of lives. Unfortunately, despite four decades of use, these devices are less than ideal and lead to many complications. Many of these complications/problems are directly related to the fluid mechanics associated with the various mechanical and bioprosthetic valve designs. This review focuses on the state-of-the-art experimental and computational fluid mechanics of native and prosthetic heart valves in current clinical use. The fluid dynamic performance characteristics of caged-ball, tilting-disc, bileaflet mechanical valves and porcine and pericardial stented and nonstented bioprostheic valves are reviewed. Other issues related to heart valve performance, such as biomaterials, solid mechanics, tissue mechanics, and durability, are not addressed in this review.

  19. Nondestructive mechanical characterization of developing biological tissues using inflation testing.

    Science.gov (United States)

    Oomen, P J A; van Kelle, M A J; Oomens, C W J; Bouten, C V C; Loerakker, S

    2017-10-01

    One of the hallmarks of biological soft tissues is their capacity to grow and remodel in response to changes in their environment. Although it is well-accepted that these processes occur at least partly to maintain a mechanical homeostasis, it remains unclear which mechanical constituent(s) determine(s) mechanical homeostasis. In the current study a nondestructive mechanical test and a two-step inverse analysis method were developed and validated to nondestructively estimate the mechanical properties of biological tissue during tissue culture. Nondestructive mechanical testing was achieved by performing an inflation test on tissues that were cultured inside a bioreactor, while the tissue displacement and thickness were nondestructively measured using ultrasound. The material parameters were estimated by an inverse finite element scheme, which was preceded by an analytical estimation step to rapidly obtain an initial estimate that already approximated the final solution. The efficiency and accuracy of the two-step inverse method was demonstrated on virtual experiments of several material types with known parameters. PDMS samples were used to demonstrate the method's feasibility, where it was shown that the proposed method yielded similar results to tensile testing. Finally, the method was applied to estimate the material properties of tissue-engineered constructs. Via this method, the evolution of mechanical properties during tissue growth and remodeling can now be monitored in a well-controlled system. The outcomes can be used to determine various mechanical constituents and to assess their contribution to mechanical homeostasis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Disruption of estrogen homeostasis as a mechanism for uterine toxicity in Wistar Han rats treated with tetrabromobisphenol A

    International Nuclear Information System (INIS)

    Sanders, J. Michael; Coulter, Sherry J.; Knudsen, Gabriel A.; Dunnick, June K.; Kissling, Grace E.; Birnbaum, Linda S.

    2016-01-01

    Chronic oral treatment of tetrabromobisphenol A (TBBPA) to female Wistar Han rats resulted in increased incidence of cell proliferation at 250 mg/kg and tumor formation in the uterus at higher doses. The present study was designed to test the hypothesis that disruption of estrogen homeostasis was a major mode-of-action for the observed effects. Biological changes were assessed in serum, liver, and the proximal (nearest the cervix) and distal (nearest the ovaries) sections of the uterine horn of Wistar Han rats 24 h following administration of the last of five daily oral doses of 250 mg/kg. Expression of genes associated with receptors, biosynthesis, and metabolism of estrogen was altered in the liver and uterus. TBBPA treatment also resulted in changes in expression of genes associated with cell division and growth. Changes were also observed in the concentration of thyroxine in serum and in expression of genes in the liver and uterus associated with thyroid hormone receptors. Differential expression of some genes was tissue-dependent or specific to tissue location in the uterus. The biological responses observed in the present study support the hypothesis that perturbation of estrogen homeostasis is a major mode-of-action for TBBPA-mediated cell proliferation and tumorigenesis previously observed in the uterus of TBBPA-treated Wistar Han rats. - Highlights: • Perturbation of estrogen homeostasis in TBBPA-treated female rats was investigated. • Gene expression changes were observed in the liver and uterus of these rats. • Genes associated with estrogen biosynthesis and metabolism were affected. • Genes associated with thyroid homeostasis and cell division/growth were affected. • A mechanism of uterine toxicity via endocrine disruption was indicated.

  1. Disruption of estrogen homeostasis as a mechanism for uterine toxicity in Wistar Han rats treated with tetrabromobisphenol A

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, J. Michael, E-mail: sander10@mail.nih.gov [Laboratory of Toxicology and Toxicokinetics, National Cancer Institute at the National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 (United States); Coulter, Sherry J.; Knudsen, Gabriel A. [Laboratory of Toxicology and Toxicokinetics, National Cancer Institute at the National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 (United States); Dunnick, June K.; Kissling, Grace E. [National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 (United States); Birnbaum, Linda S. [Laboratory of Toxicology and Toxicokinetics, National Cancer Institute at the National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 (United States)

    2016-05-01

    Chronic oral treatment of tetrabromobisphenol A (TBBPA) to female Wistar Han rats resulted in increased incidence of cell proliferation at 250 mg/kg and tumor formation in the uterus at higher doses. The present study was designed to test the hypothesis that disruption of estrogen homeostasis was a major mode-of-action for the observed effects. Biological changes were assessed in serum, liver, and the proximal (nearest the cervix) and distal (nearest the ovaries) sections of the uterine horn of Wistar Han rats 24 h following administration of the last of five daily oral doses of 250 mg/kg. Expression of genes associated with receptors, biosynthesis, and metabolism of estrogen was altered in the liver and uterus. TBBPA treatment also resulted in changes in expression of genes associated with cell division and growth. Changes were also observed in the concentration of thyroxine in serum and in expression of genes in the liver and uterus associated with thyroid hormone receptors. Differential expression of some genes was tissue-dependent or specific to tissue location in the uterus. The biological responses observed in the present study support the hypothesis that perturbation of estrogen homeostasis is a major mode-of-action for TBBPA-mediated cell proliferation and tumorigenesis previously observed in the uterus of TBBPA-treated Wistar Han rats. - Highlights: • Perturbation of estrogen homeostasis in TBBPA-treated female rats was investigated. • Gene expression changes were observed in the liver and uterus of these rats. • Genes associated with estrogen biosynthesis and metabolism were affected. • Genes associated with thyroid homeostasis and cell division/growth were affected. • A mechanism of uterine toxicity via endocrine disruption was indicated.

  2. Molecular aspects of bacterial pH sensing and homeostasis

    Science.gov (United States)

    Krulwich, Terry A.; Sachs, George; Padan, Etana

    2011-01-01

    Diverse mechanisms for pH-sensing and cytoplasmic pH homeostasis enable most bacteria to tolerate or grow at external pH values that are outside the cytoplasmic pH range they must maintain for growth. The most extreme cases are exemplified by the extremophiles that inhabit environments whose pH is below 3 or above 11. Here we describe how recent insights into the structure and function of key molecules and their regulators reveal novel strategies of bacterial pH-homeostasis. These insights may help us better target certain pathogens and better harness the capacities of environmental bacteria. PMID:21464825

  3. Upper intestinal lipids regulate energy and glucose homeostasis.

    Science.gov (United States)

    Cheung, Grace W C; Kokorovic, Andrea; Lam, Tony K T

    2009-09-01

    Upon the entry of nutrients into the small intestine, nutrient sensing mechanisms are activated to allow the body to adapt appropriately to the incoming nutrients. To date, mounting evidence points to the existence of an upper intestinal lipid-induced gut-brain neuronal axis to regulate energy homeostasis. Moreover, a recent discovery has also revealed an upper intestinal lipid-induced gut-brain-liver neuronal axis involved in the regulation of glucose homeostasis. In this mini-review, we will focus on the mechanisms underlying the activation of these respective neuronal axes by upper intestinal lipids.

  4. BCAA Metabolism and NH3 Homeostasis.

    Science.gov (United States)

    Conway, M E; Hutson, S M

    2016-01-01

    The branched chain amino acids (BCAA) are essential amino acids required not only for growth and development, but also as nutrient signals and as nitrogen donors to neurotransmitter synthesis and glutamate/glutamine cycling. Transamination and oxidative decarboxylation of the BCAAs are catalysed by the branched-chain aminotransferase proteins (BCATm, mitochondrial and BCATc, cytosolic) and the branched-chain α-keto acid dehydrogenase enzyme complex (BCKDC), respectively. These proteins show tissue, cell compartmentation, and protein-protein interactions, which call for substrate shuttling or channelling and nitrogen transfer for oxidation to occur. Efficient regulation of these pathways is mediated through the redox environment and phosphorylation in response to dietary and hormonal stimuli. The wide distribution of these proteins allows for effective BCAA utilisation. We discuss how BCAT, BCKDC, and glutamate dehydrogenase operate in supramolecular complexes, allowing for efficient channelling of substrates. The role of BCAAs in brain metabolism is highlighted in rodent and human brain, where differential expression of BCATm indicates differences in nitrogen metabolism between species. Finally, we introduce a new role for BCAT, where a change in function is triggered by oxidation of its redox-active switch. Our understanding of how BCAA metabolism and nitrogen transfer is regulated is important as many studies now point to BCAA metabolic dysregulation in metabolic and neurodegenerative conditions.

  5. Wine consumption and intestinal redox homeostasis

    Science.gov (United States)

    Biasi, Fiorella; Deiana, Monica; Guina, Tina; Gamba, Paola; Leonarduzzi, Gabriella; Poli, Giuseppe

    2014-01-01

    Regular consumption of moderate doses of wine is an integral part of the Mediterranean diet, which has long been considered to provide remarkable health benefits. Wine׳s beneficial effect has been attributed principally to its non-alcoholic portion, which has antioxidant properties, and contains a wide variety of phenolics, generally called polyphenols. Wine phenolics may prevent or delay the progression of intestinal diseases characterized by oxidative stress and inflammation, especially because they reach higher concentrations in the gut than in other tissues. They act as both free radical scavengers and modulators of specific inflammation-related genes involved in cellular redox signaling. In addition, the importance of wine polyphenols has recently been stressed for their ability to act as prebiotics and antimicrobial agents. Wine components have been proposed as an alternative natural approach to prevent or treat inflammatory bowel diseases. The difficulty remains to distinguish whether these positive properties are due only to polyphenols in wine or also to the alcohol intake, since many studies have reported ethanol to possess various beneficial effects. Our knowledge of the use of wine components in managing human intestinal inflammatory diseases is still quite limited, and further clinical studies may afford more solid evidence of their beneficial effects. PMID:25009781

  6. Altered tissue mineralization, increased hepatic lipid and inhibited ...

    African Journals Online (AJOL)

    Mineral homeostasis is often disrupted in intrauterine growth retardation (IUGR) infants. Most studies focus on calcium or phosphorus metabolism of IUGR infants via determining serum mineral concentrations instead of tissues. This study was conducted to investigate the effects of IUGR on the mineralization and ...

  7. FOREWORD Fluid Mechanics and Fluid Power (FMFP)

    Indian Academy of Sciences (India)

    This section of the Special Issue carries selected articles from the Fluid Mechanics and Fluid. Power Conference held during 12–14 December 2013 at the National Institute of Technology,. Hamirpur (HP). The section includes three review articles and nine original research articles. These were selected on the basis of their ...

  8. MR imaging of a malignant schwannoma and an osteoblastoma with fluid-fluid levels. Report of two new cases

    Energy Technology Data Exchange (ETDEWEB)

    Vilanova, J.C.; Dolz, J.L.; Aldoma, J.; Capdevila, A. [Centre Diagnostic Pedralbes, Ressonancia Magnetica, Barcelona (Spain); Maestro de Leon, J.L.; Aparicio, A. [Department of Neurosurgery, Hospital Mutua de Terrassa, Barcelona (Spain)

    1998-10-01

    One case of malignant schwannoma of the sacrum and another of occipital osteoblastoma were evaluated by MR imaging. Both tumors showed fluid-fluid levels with different signal intensities in the sequences performed. Pathologic examination revealed hemmorhagic fluid in both tumors. Malignant schwannoma and osteoblastoma should be included in the list of bone and soft-tissue with fluid-fluid levels. Our data confirm the non-specificity of this finding, which only suggests the presence of previous intratumoral hemorrhage. (orig.) (orig.) With 2 figs., 2 tabs., 17 refs.

  9. Investigation of lipid homeostasis in living Drosophila by coherent anti-Stokes Raman scattering microscopy

    Science.gov (United States)

    Chien, Cheng-Hao; Chen, Wei-Wen; Wu, June-Tai; Chang, Ta-Chau

    2012-12-01

    To improve our understanding of lipid metabolism, Drosophila is used as a model animal, and its lipid homeostasis is monitored by coherent anti-Stokes Raman scattering microscopy. We are able to achieve in vivo imaging of larval fat body (analogous to adipose tissue in mammals) and oenocytes (analogous to hepatocytes) in Drosophila larvae at subcellular level without any labeling. By overexpressing two lipid regulatory proteins-Brummer lipase (Bmm) and lipid storage droplet-2 (Lsd-2)-we found different phenotypes and responses under fed and starved conditions. Comparing with the control larva, we observed more lipid droplet accumulation by ˜twofold in oenocytes of fat-body-Bmm-overexpressing (FB-Bmm-overexpressing) mutant under fed condition, and less lipid by ˜fourfold in oenocytes of fat-body-Lsd-2-overexpressing (FB-Lsd-2-overexpressing) mutant under starved condition. Moreover, together with reduced size of lipid droplets, the lipid content in the fat body of FB-Bmm-overexpressing mutant decreases much faster than that of the control and FB-Lsd-2-overexpressing mutant during starvation. From long-term starvation assay, we found FB-Bmm-overexpressing mutant has a shorter lifespan, which can be attributed to faster consumption of lipid in its fat body. Our results demonstrate in vivo observations of direct influences of Bmm and Lsd-2 on lipid homeostasis in Drosophila larvae.

  10. Fish gut-liver immunity during homeostasis or inflammation revealed by integrative transcriptome and proteome studies

    Science.gov (United States)

    Wu, Nan; Song, Yu-Long; Wang, Bei; Zhang, Xiang-Yang; Zhang, Xu-Jie; Wang, Ya-Li; Cheng, Ying-Yin; Chen, Dan-Dan; Xia, Xiao-Qin; Lu, Yi-Shan; Zhang, Yong-An

    2016-11-01

    The gut-associated lymphoid tissue, connected with liver via bile and blood, constructs a local immune environment of both defense and tolerance. The gut-liver immunity has been well-studied in mammals, yet in fish remains largely unknown, even though enteritis as well as liver and gallbladder syndrome emerged as a limitation in aquaculture. In this study, we performed integrative bioinformatic analysis for both transcriptomic (gut and liver) and proteomic (intestinal mucus and bile) data, in both healthy and infected tilapias. We found more categories of immune transcripts in gut than liver, as well as more adaptive immune in gut meanwhile more innate in liver. Interestingly reduced differential immune transcripts between gut and liver upon inflammation were also revealed. In addition, more immune proteins in bile than intestinal mucus were identified. And bile probably providing immune effectors to intestinal mucus upon inflammation was deduced. Specifically, many key immune transcripts in gut or liver as well as key immune proteins in mucus or bile were demonstrated. Accordingly, we proposed a hypothesized profile of fish gut-liver immunity, during either homeostasis or inflammation. Current data suggested that fish gut and liver may collaborate immunologically while keep homeostasis using own strategies, including potential unique mechanisms.

  11. Secretory IgA's complex roles in immunity and mucosal homeostasis in the gut.

    Science.gov (United States)

    Mantis, N J; Rol, N; Corthésy, B

    2011-11-01

    Secretory IgA (SIgA) serves as the first line of defense in protecting the intestinal epithelium from enteric toxins and pathogenic microorganisms. Through a process known as immune exclusion, SIgA promotes the clearance of antigens and pathogenic microorganisms from the intestinal lumen by blocking their access to epithelial receptors, entrapping them in mucus, and facilitating their removal by peristaltic and mucociliary activities. In addition, SIgA functions in mucosal immunity and intestinal homeostasis through mechanisms that have only recently been revealed. In just the past several years, SIgA has been identified as having the capacity to directly quench bacterial virulence factors, influence composition of the intestinal microbiota by Fab-dependent and Fab-independent mechanisms, promote retro-transport of antigens across the intestinal epithelium to dendritic cell subsets in gut-associated lymphoid tissue, and, finally, to downregulate proinflammatory responses normally associated with the uptake of highly pathogenic bacteria and potentially allergenic antigens. This review summarizes the intrinsic biological activities now associated with SIgA and their relationships with immunity and intestinal homeostasis.

  12. The scavenger endothelial cell: a new player in homeostasis and immunity.

    Science.gov (United States)

    Sørensen, Karen Kristine; McCourt, Peter; Berg, Trond; Crossley, Clive; Le Couteur, David; Wake, Kenjiro; Smedsrød, Bård

    2012-12-15

    To maintain homeostasis, the animal body is equipped with a powerful system to remove circulating waste. This review presents evidence that the scavenger endothelial cell (SEC) is responsible for the clearance of blood-borne waste macromolecules in vertebrates. SECs express pattern-recognition endocytosis receptors (mannose and scavenger receptors), and in mammals, the endocytic Fc gamma-receptor IIb2. This cell type has an endocytic machinery capable of super-efficient uptake and degradation of physiological and foreign waste material, including all major classes of biological macromolecules. In terrestrial vertebrates, most SECs line the wall of the liver sinusoid. In phylogenetically older vertebrates, SECs reside instead in heart, kidney, or gills. SECs, thus, by virtue of their efficient nonphagocytic elimination of physiological and microbial substances, play a critical role in the innate immunity of vertebrates. In major invertebrate phyla, including insects, the same function is carried out by nephrocytes. The concept of a dual-cell principle of waste clearance is introduced to emphasize that professional phagocytes (macrophages in vertebrates; hemocytes in invertebrates) eliminate larger particles (>0.5 μm) by phagocytosis, whereas soluble macromolecules and smaller particles are eliminated efficiently and preferentially by clathrin-mediated endocytosis in nonphagocytic SECs in vertebrates or nephrocytes in invertebrates. Including these cells as important players in immunology and physiology provides an additional basis for understanding host defense and tissue homeostasis.

  13. NKT cell self-reactivity: evolutionary master key of immune homeostasis?

    Science.gov (United States)

    Issazadeh-Navikas, Shohreh

    2012-04-01

    Complex immune responses have evolved to protect multicellular organisms against the invasion of pathogens. This has exerted strong developmental pressure for specialized functions that can also limit damage to self-tissue. Two arms of immunity, the innate and adaptive immune systems, have evolved for quick, non-specific immune responses to pathogens and more efficient, long-lasting ones upon specific recognition of recurrent pathogens. Specialized cells have arisen as the sentinels of these functions, including macrophages, natural killer (NK), and T and B-lymphocytes. Interestingly, a population of immune cells that can exert both of these complex functions, NKT cells, not only share common functions but also exhibit shared cell surface markers of cells of both arms of the immune system. These features, in combination with sophisticated maintenance of immune homeostasis, will be discussed. The recent finding of self-peptide reactivity of NKT cells in the context of CD1d, with capacity to regulate multiple autoimmune and inflammatory conditions, motivates the current proposal that self-reactive NKT cells might be the ancestral link between present NK and T cells. Their parallel selection through evolution by higher vertebrates could be related to their central function as master regulators of immune homeostasis that in part is shared with regulatory T cells. Hypothetical views on how self-reactive NKT cells secure such a central role will also be proposed.

  14. Ca2+ cycling in heart cells from ground squirrels: adaptive strategies for intracellular Ca2+ homeostasis.

    Directory of Open Access Journals (Sweden)

    Xiao-Chen Li

    Full Text Available Heart tissues from hibernating mammals, such as ground squirrels, are able to endure hypothermia, hypoxia and other extreme insulting factors that are fatal for human and nonhibernating mammals. This study was designed to understand adaptive mechanisms involved in intracellular Ca(2+ homeostasis in cardiomyocytes from the mammalian hibernator, ground squirrel, compared to rat. Electrophysiological and confocal imaging experiments showed that the voltage-dependence of L-type Ca(2+ current (I(Ca was shifted to higher potentials in ventricular myocytes from ground squirrels vs. rats. The elevated threshold of I(Ca did not compromise the Ca(2+-induced Ca(2+ release, because a higher depolarization rate and a longer duration of action potential compensated the voltage shift of I(Ca. Both the caffeine-sensitive and caffeine-resistant components of cytosolic Ca(2+ removal were more rapid in ground squirrels. Ca(2+ sparks in ground squirrels exhibited larger amplitude/size and much lower frequency than in rats. Due to the high I(Ca threshold, low SR Ca(2+ leak and rapid cytosolic Ca(2+ clearance, heart cells from ground squirrels exhibited better capability in maintaining intracellular Ca(2+ homeostasis than those from rats and other nonhibernating mammals. These findings not only reveal adaptive mechanisms of hibernation, but also provide novel strategies against Ca(2+ overload-related heart diseases.

  15. Effect of malnutrition on iron homeostasis in black-necked swans (Cygnus melanocoryphus).

    Science.gov (United States)

    Norambuena, M Cecilia; Bozinovic, Francisco

    2009-12-01

    The Cayumapu River black-necked swan (Cygnus melanocoryphus) population in southern Chile suffered a syndrome of malnutrition and hyperferremia in 2005. The iron metabolic imbalance could not be explained on the basis of the quality of their diet. Hence, the primary objective of this study was to determine the relationship between malnutrition and iron homeostasis in black-necked swans. It was proposed that catabolic processes could increase serum iron levels due to the release of endogenous iron from tissues. A free-living swan population undergoing natural nutritional imbalance due to molting was studied. In addition, swans captured were subjected to a diet restriction until they became emaciated. The results revealed that neither lipolytic activity nor emaciation affected serum iron concentrations. The increment of total iron binding capacity observed was in agreement with the reduction of endogenous iron stored, with the increase of erythropoeitic demand, or with both. Future studies are needed to determine the effect of incremental erythropoietic activity on iron homeostasis in anemic, malnourished birds.

  16. Effects of nanoparticle zinc oxide on emotional behavior and trace elements homeostasis in rat brain.

    Science.gov (United States)

    Amara, Salem; Slama, Imen Ben; Omri, Karim; El Ghoul, Jaber; El Mir, Lassaad; Rhouma, Khemais Ben; Abdelmelek, Hafedh; Sakly, Mohsen

    2015-12-01

    Over recent years, nanotoxicology and the potential effects on human body have grown in significance, the potential influences of nanosized materials on the central nervous system have received more attention. The aim of this study was to determine whether zinc oxide (ZnO) nanoparticles (NPs) exposure cause alterations in emotional behavior and trace elements homeostasis in rat brain. Rats were treated by intraperitoneal injection of ZnO NPs (20-30 nm) at a dose of 25 mg/kg body weight. Sub -: acute ZnO NPs treatment induced no significant increase in the zinc content in the homogenate brain. Statistically significant decreases in iron and calcium concentrations were found in rat brain tissue compared to control. However, sodium and potassium contents remained unchanged. Also, there were no significant changes in the body weight and the coefficient of brain. In the present study, the anxiety-related behavior was evaluated using the plus-maze test. ZnO NPs treatment modulates slightly the exploratory behaviors of rats. However, no significant differences were observed in the anxious index between ZnO NP-treated rats and the control group (p > 0.05). Interestingly, our results demonstrated minimal effects of ZnO NPs on emotional behavior of animals, but there was a possible alteration in trace elements homeostasis in rat brain. © The Author(s) 2012.

  17. Connective tissue activation. XVII

    International Nuclear Information System (INIS)

    Weiss, J.J.; Donakowski, C.; Anderson, B.; Meyers, S.; Castor, C.W.

    1980-01-01

    The platelet-derived connective tissue activating peptide (CTAP-III) has been shown to be an important factor stimulating the metabolism and proliferation of human connective tissue cell strains, including synovial tissue cells. The quantities of CTAP-III affecting the cellular changes and the amounts in various biologic fluids and tissues are small. The objectives of this study were to develop a radioimmunoassay (RIA) for CTAP-III and to ascertain the specificities of the anti-CTAP-III sera reagents. The antisera were shown not to cross-react with a number of polypeptide hormones. However, two other platelet proteins β-thromboglobulin and low affinity platelet factor-4, competed equally as well as CTAP-III for anti-CTAP-III antibodies in the RIA system. Thus, the three platelet proteins are similar or identical with respect to those portions of the molecules constituting the reactive antigenic determinants. The levels of material in normal human platelet-free plasma that inhibited anti-CTAP-III- 125 I-CTAP-III complex formation were determined to be 34+-13 (S.D.) ng/ml. (Auth.)

  18. Adipose Tissue Branched Chain Amino Acid (BCAA) Metabolism Modulates Circulating BCAA Levels*

    OpenAIRE

    Herman, Mark A.; She, Pengxiang; Peroni, Odile D.; Lynch, Christopher J.; Kahn, Barbara B.

    2010-01-01

    Whereas the role of adipose tissue in glucose and lipid homeostasis is widely recognized, its role in systemic protein and amino acid metabolism is less well-appreciated. In vitro and ex vivo experiments suggest that adipose tissue can metabolize substantial amounts of branched chain amino acids (BCAAs). However, the role of adipose tissue in regulating BCAA metabolism in vivo is controversial. Interest in the contribution of adipose tissue to BCAA metabolism has been renewed with recent obse...

  19. Tissue carnitine homeostasis in very-long-chain acyl-CoA dehydrogenase-deficient mice

    NARCIS (Netherlands)

    Spiekerkoetter, Ute; Tokunaga, Chonan; Wendel, Udo; Mayatepek, Ertan; Ijlst, Lodewijk; Vaz, Frederic M.; van Vlies, Naomi; Overmars, Henk; Duran, Marinus; Wijburg, Frits A.; Wanders, Ronald J.; Strauss, Arnold W.

    2005-01-01

    Deficiency of very-long-chain acyl-CoA dehydrogenase (VLCAD) is the most common long-chain fatty acid oxidation defect and presents with heterogeneous clinical manifestations. Accumulation of long-chain acylcarnitines and deficiency of free carnitine have often been proposed to play an important

  20. Innate Lymphoid Cells (ILCs): Cytokine Hubs Regulating Immunity and Tissue Homeostasis

    NARCIS (Netherlands)

    Nagasawa, Maho; Spits, Hergen; Ros, Xavier Romero

    2017-01-01

    Innate lymphoid cells (ILCs) have emerged as an expanding family of effector cells particularly enriched in the mucosal barriers. ILCs are promptly activated by stress signals and multiple epithelial- and myeloid-cell-derived cytokines. In response, ILCs rapidly secrete effector cytokines, which

  1. Fusion of intestinal epithelial cells with bone marrow derived cells is dispensable for tissue homeostasis

    NARCIS (Netherlands)

    de Jong, Joan H.; Rodermond, Hans M.; Zimberlin, Cheryl D.; Lascano, Valeria; de Sousa E Melo, Felipe; Richel, Dick J.; Medema, Jan Paul; Vermeulen, Louis

    2012-01-01

    The epithelial lining of the intestine is characterized by an immense cellular turn-over ascertaining an extensive regenerative capacity. Multiple reports suggest that besides the local intestinal stem cell pool, circulating cells of bone marrow origin (BMDCs) contribute to this process by fusing

  2. A disintegrin and metalloprotease 10 (ADAM10) is a central regulator of murine liver tissue homeostasis

    Czech Academy of Sciences Publication Activity Database

    Muller, M.; Wetzel, S.; Koehn-Gaone, J.; Chalupský, Karel; Luellmann-Rauch, R.; Barikbin, R.; Bergmann, J.; Woehner, B.; Žbodáková, Olga; Leuschner, I.; Gregor, Martin; Tiegs, G.; Rose-John, S.; Sedláček, Radislav; Tirnitz-Parker, J.E.E.; Saftig, P.; Schmidt-Arras, D.

    2016-01-01

    Roč. 7, č. 14 (2016), s. 17431-17441 ISSN 1949-2553 R&D Projects: GA ČR GAP302/11/2048; GA ČR GAP303/10/2044; GA ČR GA13-01710S; GA ČR GA15-23858S; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:68378050 Keywords : ADAM10 * liver progenitor cell * c-Met * Notch * hepatocyte differentiation * Pathology Section Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.168, year: 2016

  3. Signal transduction pathways participating in homeostasis and malignant transformation of the intestinal tissue

    Czech Academy of Sciences Publication Activity Database

    Krausová, Michaela; Kořínek, Vladimír

    2012-01-01

    Roč. 59, č. 6 (2012), s. 708-718 ISSN 0028-2685 R&D Projects: GA ČR GAP305/11/1780; GA ČR GAP305/12/2347; GA ČR GAP304/11/1252; GA ČR GD204/09/H058 Keywords : colorectal cancer * epithelium * gut * intestine * mouse models * stem cells Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.574, year: 2012

  4. Complex fluids modeling and algorithms

    CERN Document Server

    Saramito, Pierre

    2016-01-01

    This book presents a comprehensive overview of the modeling of complex fluids, including many common substances, such as toothpaste, hair gel, mayonnaise, liquid foam, cement and blood, which cannot be described by Navier-Stokes equations. It also offers an up-to-date mathematical and numerical analysis of the corresponding equations, as well as several practical numerical algorithms and software solutions for the approximation of the solutions. It discusses industrial (molten plastics, forming process), geophysical (mud flows, volcanic lava, glaciers and snow avalanches), and biological (blood flows, tissues) modeling applications. This book is a valuable resource for undergraduate students and researchers in applied mathematics, mechanical engineering and physics.

  5. Hedgehog Signaling and Maintenance of Homeostasis in the Intestinal Epithelium

    NARCIS (Netherlands)

    Büller, Nikè V. J. A.; Rosekrans, Sanne L.; Westerlund, Jessica; van den Brink, Gijs R.

    2012-01-01

    Homeostasis of the rapidly renewing intestinal epithelium depends on a balance between cell proliferation and loss. Indian hedgehog (Ihh) acts as a negative feedback signal in this dynamic equilibrium. We discuss recent evidence that Ihh may be one of the key epithelial signals that indicates

  6. Salt stress induced ion accumulation, ion homeostasis, membrane ...

    African Journals Online (AJOL)

    Salt stress induced ion accumulation, ion homeostasis, membrane injury and sugar contents in salt-sensitive rice ( Oryza sativa L. spp. indica ) roots under isoosmotic conditions. ... The accumulation of sugars in PT1 roots may be a primary salt-defense mechanism and may function as an osmotic control. Key words: ...

  7. Activating transcription factor 3 regulates immune and metabolic homeostasis

    Czech Academy of Sciences Publication Activity Database

    Ryneš, J.; Donohoe, C. D.; Frommolt, P.; Brodesser, S.; Jindra, Marek; Uhlířová, M.

    2012-01-01

    Roč. 32, č. 19 (2012), s. 3949-3962 ISSN 0270-7306 R&D Projects: GA ČR(CZ) GD204/09/H058 Institutional support: RVO:60077344 Keywords : metabolic homeostasis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.372, year: 2012

  8. nfluence of antidepressants on glucose homeostasis : effects and mechanisms

    NARCIS (Netherlands)

    Derijks, H.J.

    2009-01-01

    Depression has shown to be a common morbidity in patients with diabetes mellitus and comorbid depression in diabetes mellitus patients is frequently treated with antidepressants. It has been postulated that antidepressants may interfere with glucose homeostasis and that the interference of

  9. Exploring the role of glucagon in glucose homeostasis

    NARCIS (Netherlands)

    Dongen, Maria Gertrud Jobina van

    2015-01-01

    The aim of this thesis was to gain further insight into the role of glucagon in glucose homeostasis in healthy volunteers and type 2 diabetes mellitus (T2DM) patients, and to explore the novel antisense glucagon receptor antagonist. Chapter 2 showed that the effect of meal replacers containing

  10. Multilevel control of glucose homeostasis by adenylyl cyclase 8

    NARCIS (Netherlands)

    Raoux, Matthieu; Vacher, Pierre; Papin, Julien; Picard, Alexandre; Kostrzewa, Elzbieta; Devin, Anne; Gaitan, Julien; Limon, Isabelle; Kas, Martien J.; Magnan, Christophe; Lang, Jochen

    2015-01-01

    Aims/hypothesis: Nutrient homeostasis requires integration of signals generated by glucose metabolism and hormones. Expression of the calcium-stimulated adenylyl cyclase ADCY8 is regulated by glucose and the enzyme is capable of integrating signals from multiple pathways. It may thus have an

  11. The Interplay between Feedback and Buffering in Cellular Homeostasis.

    Science.gov (United States)

    Hancock, Edward J; Ang, Jordan; Papachristodoulou, Antonis; Stan, Guy-Bart

    2017-11-22

    Buffering, the use of reservoirs of molecules to maintain concentrations of key molecular species, and negative feedback are the primary known mechanisms for robust homeostatic regulation. To our knowledge, however, the fundamental principles behind their combined effect have not been elucidated. Here, we study the interplay between buffering and negative feedback in the context of cellular homeostasis. We show that negative feedback counteracts slow-changing disturbances, whereas buffering counteracts fast-changing disturbances. Furthermore, feedback and buffering have limitations that create trade-offs for regulation: instability in the case of feedback and molecular noise in the case of buffering. However, because buffering stabilizes feedback and feedback attenuates noise from slower-acting buffering, their combined effect on homeostasis can be synergistic. These effects can be explained within a traditional control theory framework and are consistent with experimental observations of both ATP homeostasis and pH regulation in vivo. These principles are critical for studying robustness and homeostasis in biology and biotechnology. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Dietary inhibitors of histone deacetylases in intestinal immunity anc homeostasis

    NARCIS (Netherlands)

    Schilderink, R.; Verseijden, C.; de Jonge, W. J.

    2013-01-01

    Intestinal epithelial cells (IECs) are integral players in homeostasis of immunity and host defense in the gut and are under influence of the intestinal microbiome. Microbial metabolites and dietary components, including short chain fatty acids (acetate, propionate, and butyrate, SCFAs), have an

  13. The influence of bile acids homeostasis by cryptotanshinone ...

    African Journals Online (AJOL)

    Background: Herbs might affect the homeostasis of bile acids through influence of multiple metabolic pathways of bile acids. Aim: The present study aims to investigate the inhibition of cryptotanshinone towards the glucuronidation of LCA, trying to indicate the possible influence of cryptotanshinone-containing herbs towards ...

  14. Challenging homeostasis to define biomarkers for nutrition related health

    NARCIS (Netherlands)

    Ommen, van B.; Keijer, J.; Heil, S.G.; Kaput, J.

    2009-01-01

    A primary goal of nutrition research is to optimize health and prevent or delay disease. Biomarkers to quantify health optimization are needed since many if not most biomarkers are developed for diseases. Quantifying normal homeostasis and developing validated biomarkers are formidable tasks because

  15. TRPV5, the gateway to Ca2+ homeostasis.

    NARCIS (Netherlands)

    Mensenkamp, A.R.; Hoenderop, J.G.J.; Bindels, R.J.M.

    2007-01-01

    Ca2+ homeostasis in the body is tightly controlled, and is a balance between absorption in the intestine, excretion via the urine, and exchange from bone. Recently, the epithelial Ca2+ channel (TRPV5) has been identified as the gene responsible for the Ca2+ influx in epithelial cells of the renal

  16. Deficiency of a alpha-1-antitrypsin influences systemic iron homeostasis

    Science.gov (United States)

    Abstract Background: There is evidence that proteases and anti-proteases participate in the iron homeostasis of cells and living systems. We tested the postulate that alpha-1 antitrypsin (A1AT) polymorphism and the consequent deficiency of this anti-protease in humans are asso...

  17. Chemistry Misconceptions Associated with Understanding Calcium and Phosphate Homeostasis

    Science.gov (United States)

    Cliff, William H.

    2009-01-01

    Successful learning of many aspects in physiology depends on a meaningful understanding of fundamental chemistry concepts. Two conceptual diagnostic questions measured student understanding of the chemical equilibrium underlying calcium and phosphate homeostasis. One question assessed the ability to predict the change in phosphate concentration…

  18. Microenvironmental regulation of stem cells in intestinal homeostasis and cancer

    NARCIS (Netherlands)

    Medema, Jan Paul; Vermeulen, Louis

    2011-01-01

    The identification of intestinal stem cells as well as their malignant counterparts, colon cancer stem cells, has undergone rapid development in recent years. Under physiological conditions, intestinal homeostasis is a carefully balanced and efficient interplay between stem cells, their progeny and

  19. The influence of bile acids homeostasis by cryptotanshinone ...

    African Journals Online (AJOL)

    The homeostasis of bile acids can be tightly regulated through feed-back and feed-forward regula- tion pathways. Bile acids exert their toxicity towards cells at high concentrations, and the accumulation of bile acids can induce the severe damage towards liver cells 2. Bile acids have been reported to induce cell injury.

  20. Regulation of calcium homeostasis in activated human neutrophils ...

    African Journals Online (AJOL)

    Objectives. The objectives of the current study were to: (i) present an integrated model for the restoration of calcium homeostasis in activated human neutrophils based on current knowledge and recent research; and (ii) identify potential targets for the modulation of calcium fluxes in activated neutrophils based on this model ...